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Abstract 

The Impacts of Adipose Tissue and the Gut Microbiome on Diabetes Risk among African-

Caribbean Men 

 

Curtis Michael Tilves, PhD 

 

University of Pittsburgh, 2020 

 

 

Abstract 

 

Type 2 diabetes (T2D) and its complications are increasing in prevalence and burden 

worldwide. Caribbean rates of T2D rival those of the United States, and mortality from T2D is 

exceptionally higher. The study of novel T2D risk factors, such as adipose tissue (AT) 

radiodensity, AT distribution, and the intestinal microbiome, yield greater insights into T2D 

pathophysiology and can inform targeted interventions. However, individuals of African ancestry, 

who have a higher burden of T2D compared to Caucasian counterparts, are underrepresented in 

this research. Thus, this dissertation fills the gaps by investigating associations of AT radiodensity, 

body composition, and the intestinal microbiome with T2D in a cohort of African Caribbean men 

from Tobago, Trinidad and Tobago. 

The first dissertation paper investigates associations between AT radiodensity in the 

abdomen (visceral [VAT] and subcutaneous [SAT]) and thigh (intermuscular [IMAT]) with 

glucose, insulin, and insulin resistance. We demonstrate that lower radiodensity in any AT 

(indicating greater tissue lipid accumulation) was associated with higher insulin and insulin 

resistance, with independent contributions from thigh IMAT. The second dissertation paper 

models the associations of both AT and muscle from the abdomen and thigh with T2D. We report 

that abdominal SAT (but not VAT) was positively associated, and thigh muscle negatively 

associated, with higher odds of T2D. The third dissertation paper examines associations of the 

intestinal microbiome with sociodemographic, lifestyle, body composition, and T2D measures. 
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We identified sociodemographic factors as a main driver of microbial clustering, and several 

lifestyle and body composition measures as being differentially associated with taxonomic units, 

thus informing future prediction modeling of the microbiome with T2D. 

These findings have significant public health implications. Our results somewhat differ 

from those reported in predominantly Caucasian cohorts, highlighting the importance of including 

racial/ethnic minorities in novel risk factor research. These papers also provide important 

methodological work, informing how body composition analyses are performed. Finally, this 

research produced the first nutritional and microbiome databases in Tobago, which can aid future 

T2D research. Taken together, information from this dissertation can be leveraged to inform future 

observational and interventional studies in T2D prevention, both in the Caribbean and worldwide. 
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1.0 Introduction 

1.1 Overall Background 

1.1.1 Impact of obesity and T2D in the Caribbean 

The United Nations cites an increase in obesity in Caribbean countries, with 58% of 

individuals in the Latin American/Caribbean region considered to be overweight and the highest 

rates of obesity (>30%) found in Caribbean countries (2). The rate of diabetes in many Caribbean 

countries is also increasing, with some rates surpassing those seen in the US (3). Several studies 

in the Caribbean have linked diabetes prevalence with increasing obesity (4-6), thus making 

control and prevention of obesity a main target for diabetes prevention in these countries. 

Importantly, the rise in obesity and T2D is likely to lead to much greater increases in 

morbidity, mortality, and cost. Early 2000 projections estimated that age-adjusted cause-specific 

mortality for diabetes in Caribbean countries was 3-6 times higher than in the US, and that 

economic costs of diabetes were as high as $467 million (7). Studies have also indicated extremely 

high rates of amputations (8, 9), retinopathy (10, 11), and renal diseases related to diabetes (12, 

13). While improved work is necessary for the access to care and treatment of diabetes in the 

Caribbean, it is imperative that action is also taken to reduce the increasing prevalence of diabetes. 
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1.1.2 Importance of fat distribution in development of T2D 

While overall obesity remains a major risk factor for diabetes, the location of stored fat is 

also thought to play a role. Adipose tissue is found throughout the body, and the major depot for 

initial fat storage is thought to be subcutaneous fat (fat beneath the skin) (14). However, 

impairment of or inability of subcutaneous fat to store lipids results in fat storage in other depots 

(visceral, pericardial, hepatic, and intramuscular); such fat stores are called ectopic fat depots (14-

16). Ectopic fat depots are often indicative of metabolic dysfunction in those areas, most notably 

with insulin resistance (16). Thus, fat distribution is considered to be a novel risk factor for 

cardiometabolic health and a likely contributor to T2D. 

1.1.3 Importance of fat quality in development of T2D 

Beyond the distribution of fat tissue, other characteristics of AT may reflect its 

functionality or pathogenicity. AT radiodensity, a CT-derived measure indicating the tissue’s 

opacity to X-rays, was shown to reflect characteristics of AT, such as higher AT radiodensity being 

associated with beneficial aspects of adipose tissue such as smaller adipocyte cell size and lower 

lipid content (17, 18) and increased vascularity (19), as well as detrimental aspects such as 

potentially increased tissue fibrosis (20, 21). However, as an imaging measure it cannot distinguish 

between these different biological factors that may encompass the quality of fat tissue. Thus, AT 

radiodensity may serve as a surrogate marker of adipose tissue “quality”. In observational studies, 

abdominal AT radiodensity has been associated with multiple cardiometabolic risk factors, even 

after accounting for AT volume (22-26). Lower abdominal VAT and SAT radiodensity was 

associated with higher HOMA-IR (24), increased odds of impaired fasting glucose (23, 24), and 
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increased glucose concentrations (22-24) in the Framingham cohort. Elevated glucose and 

prevalence of diabetes was also observed in individuals with lower vs. higher abdominal VAT, 

SAT, and IMAT radiodensity according to reports from the Multi Ethnic Study of Atherosclerosis 

(MESA) (25, 26). Thus, AT radiodensity may serve as a surrogate measure of AT quality and may 

be a novel biomarker of diabetes-related risk factors. 

1.1.4 Dietary intake is associated with ectopic fat and T2D 

It is well known that poor diet quality is associated with obesity and T2D. Poor diet quality 

is thought to be a major contributor to the obesity epidemic in the Caribbean (2). One way of 

measuring diet quality is through the use of dietary patterns, which take into account combinations 

of foods rather than specific foods or nutrients (27). While several dietary patterns exist (DASH 

diet, Alternative Healthy Eating Index, Mediterranean Diet Score, etc.), moderate evidence 

indicates that higher adherence to any healthy eating pattern is associated with reduced risk of 

obesity and T2D (27). A recent meta-analysis of prospective studies confirms that while differing 

in the food components that comprise the scores, dietary patterns are associated with diabetes 

incidence in apparently healthy populations (28). In addition to associations with obesity and T2D, 

a study in the Multi-Ethnic Study of Atherosclerosis (MESA) population also found associations 

between a Mediterranean-style dietary pattern and ectopic fat distribution (29). The authors of this 

study found that higher adherence to this dietary pattern was cross-sectionally associated with 

decreased visceral, pericardial, and liver fat, but not with subcutaneous fat. Preliminary data from 

the Tobago Health Study (30) also suggests associations between dietary patterns and various 

ectopic fat depot volumes. Dietary patterns, then, are not only associated with general obesity and 

risk of T2D but also with ectopic fat distribution. 
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1.1.5 Dietary intake is associated with the gut microbiome, which influences host 

metabolism 

Diet quality not only impacts the persons eating foods, but also the function and 

composition of our resident microbial inhabitants. The gut microbiome consists of bacteria, 

viruses, fungi, and other microscopic organisms inhabiting our gastrointestinal tract. The human 

intestines are home to several trillion bacteria, outnumbering our own body cells (31). These 

intestinal bacteria survive in our gastrointestinal tract on undigested and unabsorbed foods which 

they are able to digest and utilize (32). It has even been suggested that the gut microbiome may 

function as an endocrine organ due to the ability to release hundreds of bacterial products into the 

circulatory system (33). The coexistence between host and microbiome, then, is thought to be 

mutually beneficial (32). Intestinal bacteria may modulate metabolism and disease through a 

variety of methods. For example, intestinal bacteria can break down food we cannot through 

fermentation, thus increasing energy harvest; additionally, fermentation products like short chain 

fatty acids have been implicated in energy metabolism (34). Microbes are also involved in the 

transformations of carcinogenic molecules and bile acids to the production of vitamins and amino 

acids (35). 

Different dietary patterns are thought to help shape the composition and function of the gut 

microbiome. De Fillipo et al. demonstrated marked differences in bacterial diversity and the 

presence of specific bacterial taxa between children from Europe, who eat a predominantly 

Westernized-style diet (high animal proteins, fats, sugars, and starches, and low in fiber), and 

children in Africa, who eat a more agrarian diet (high in starches, fiber, and plant polysaccharides, 

and low in fat and animal protein) (36). A study comparing African American and African adults 

also found significant differences in microbiome makeup, microbial genes, and metabolites (37); 
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when diets were switched between individuals from these two populations for only two weeks, 

significant changes were observed in the bacteria present as well as differences in metabolites, 

intestinal mucosal inflammation and cell proliferation (38). A dietary intervention in Americans 

comparing a plant-based diet versus and animal-based diet for five days each also found 

differences in microbial composition and function, with between-person diversity significantly 

changing within one day of food reaching the distal colon (39). Thus, the influence of diet on the 

gut microbiome composition is rapid and contributes to changes in host metabolism. 

1.1.6 The gut microbiome is associated with overall obesity and T2D 

Differences in the gut microbiome at the phylum level and with respect to overall diversity 

are associated with obese phenotypes (40-42). This phenotype is likely due to a greater ability to 

harvest energy and is transmissible by fecal transplant in mice (43). Studies have also demonstrated 

associations between microbial profiles and function with T2D (44, 45). While findings have 

demonstrated associations between bacterial taxa, phyla, and diversity measures with obesity and 

T2D, these associations are inconsistent across studies (46, 47). Reasons for this inconsistency are 

likely due to methodological differences in sample processing and handling (46, 47), but may also 

be due to a lack of measuring confounders such as total caloric intake and diet (47). Additionally, 

these studies tend to look at BMI as a marker of obesity rather than separating lean and fat mass. 

Therefore, while specific relationships are inconsistent, the gut microbiome does seem to be 

consistently associated with overall obesity and T2D. 
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1.1.7 The gut microbiome is also associated with ectopic fat 

While few in number, recent studies of humans indicate that the intestinal microbiome 

composition is associated with the development of fat in ectopic sites. An intervention study by 

Kadooka et al. demonstrated that probiotic administration could reduce visceral and subcutaneous 

fat depots as well as overall measures of adiposity (48). Beaumont et al. investigated associations 

between the gut microbiome and visceral fat in a large UK Twin cohort study (49). The authors 

found that specific taxa and decreased within-person diversity were associated with increased 

visceral adiposity. A study by Zhu et al. found increased levels of alcohol-producing bacteria in 

individuals with non-alcoholic steatohepatitis compared to obese and control individuals (50). 

Associations have also been found between gut microbial metabolites, namely lipopolysaccharide, 

with ectopic fat distribution. We previously published on the association of baseline serum 

lipopolysaccharide binding protein (a surrogate marker of lipopolysaccharide) with significant 

increases in trunk fat and borderline significant decreases muscle density (51). A large longitudinal 

study in Chinese individuals also found associations between baseline serum markers of bacterial 

lipopolysaccharide and increases in intrahepatic triglycerides (52). Taken together, these results 

suggest that the gut microbiome may be associated with various ectopic fat depots. 

1.1.8 Knowledge gaps 

1.1.8.1 Is adipose tissue quality associated with T2D risk factors in African Ancestry men? 

African ancestry individuals are at a greater risk of T2D compared to Caucasian individuals 

at similar measures of general adiposity (53-55). There are also racial/ethnic differences in adipose 

tissue distribution, with African Ancestry individuals having less VAT (56-59) and greater IMAT 
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(60-62) compared to Caucasian counterparts. Results from MESA suggest that there may also be 

racial/ethnic differences in AT radiodensity (25). Given the associations of AT radiodensity with 

insulin and glucose, it is important to understand the contributions of AT radiodensity to T2D risk 

in both understudied ethnic populations (such as higher-risk African Ancestry individuals) and in 

understudied AT depots (such as thigh IMAT). 

1.1.8.2 How does upper and lower body composition impact T2D risk? 

Studies investigating upper and lower body composition have generally identified upper-

body AT as being positively associated with T2D, while lower body AT may be protective (63). 

CT scans allow for good discrimination between AT and muscle, and studies utilizing images from 

abdominal and thigh CT scans (64-67) generally support the findings that upper body adiposity is 

harmful, while lower body SAT may be beneficial. However, these previous studies have generally 

low representation of African Ancestry individuals, who have greater risk of T2D and different 

body compositions compared to Caucasian counterparts. Additionally, models within those studies 

varied greatly in the tissues included in final models. By excluding tissues, it is likely that estimates 

obtained were biased. Further, tissues were entered into the models in a way that ignored the 

compositional nature of the data, whereby an increase in one tissue (holding body size constant) 

can only occur at the expense of some other tissue(s). This may further bias estimates and obscure 

true associations.  

1.1.8.3 Is the intestinal microbiome associated with T2D risk factors in African Ancestry 

men? 

The microbiome, which is associated with T2D (44, 45), can be impacted by geography 

(68), race/ethnicity (69, 70), and dietary intake (39), among many other factors. Studies looking at 
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the association of the microbiome with T2D risk have not yet been performed in the Caribbean 

region, which has countries like Tobago with high rates of T2D (71). Further, Tobago has a 

predominantly African Ancestry population (72) and lifestyle habits that may differ from other 

studied populations, such as dietary intake differences (Table 1.2 compares Tobago and US dietary 

intakes). Given the impacts of race/ethnicity, geography, and lifestyle on the microbiome, it is 

unclear if associations between the microbiome and glucose and insulin levels are similar in 

Caribbean populations like Tobago as in other studied geographic and racial/ethnic groups. 

Additionally, studies investigating associations of the microbiome with T2D risk in African 

Ancestry individuals are lacking, with only one study specifically focusing on this racial/ethnic 

group (73). 

1.1.9 Overall Background Summary 

T2D is an increasing health risk in the Caribbean region. While causes of T2D are 

multifactorial, a more thorough understanding of the risk factors associated with T2D development 

is needed in order to better implement interventions. Traditional risk factors such as body 

composition, and more novel risk factors such as AT quality and the intestinal microbiome, show 

some promise in understanding the etiology of insulin resistance and T2D, but further research is 

needed to determine their importance in high-risk and understudied populations such as African 

Ancestry individuals. 
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1.2 Type 2 Diabetes: Biology and Risk Factors 

1.2.1.1 Glucose, Insulin, and Insulin Resistance 

Glucose is used as a source of energy in human cells, where it is metabolized to generate 

adenosine triphosphate (ATP). Glucose is obtained from the diet, absorbed in the intestines, and 

transported in the blood to other organs for use. Excess glucose can be stored in the liver and 

muscles by biochemically linking them together into a large polysaccharide called glycogen 

through a process called glycogenesis (74). When glucose levels are low, this glycogen can be 

easily broken down into monomeric glucose through a process called glycogenolysis; this glucose 

is released by the liver back into the blood stream (74). Alternatively, glucose can also be generated 

de novo in the liver from substances such as lactic acid in a process called gluconeogenesis (74).  

Because of the importance of glucose in cellular energy production, regulation of blood 

glucose levels is needed, with a proper balance of glycogenesis, glycogenolysis, and 

gluconeogenesis. A typical non-fasting blood glucose level tends to fluctuate between 70-110 

mg/dL (74). An improper balance can lead to a very low blood sugar (hypoglycemia) or a very 

high blood sugar (hyperglycemia). Chronic hyperglycemia can have long-term complications that 

damage blood vessels, kidneys, nerves, vision, and bones and joints, as well as increasing the risks 

of oral infections (75). In more acute and severe cases, it can also lead to life-threatening 

ketoacidosis or hyperglycemic hyperosmolar dehydration (75). Hyperglycemia can be brought on 

by chronic diseases (ex. type 1 or type 2 diabetes), excess eating and/or a lack of exercise, stress, 

or the “dawn phenomenon” where early-morning hormonal changes may impact blood sugar levels 

(76). In all of these cases, a unifying underlying abnormality occurs with the hormone insulin, with 

individuals having either too low of insulin levels or a resistance to the effects of insulin (76). 
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While several hormones contribute to glucose metabolism, the predominant two are 

glucagon and insulin. Glucagon is a protein secreted by pancreatic α-cells when blood glucose 

levels are low, and its main actions are to promote hepatic glucose production through stimulating 

glycogenolysis (77). Insulin, on the other hand, is secreted by pancreatic β-cells when blood 

glucose levels are high, and it acts to decrease in blood glucose levels (77). Blood glucose 

reductions are accomplished by three mechanisms: one, the stimulation of insulin-sensitive cells 

(such as adipocytes, hepatocytes, and myocytes) to increase glucose uptake; two, the promotion of 

glycogenesis; and three, inhibition of glucagon secretion from pancreatic α-cells, resulting in a halt 

of gluconeogenesis and glycogenolysis (77). 

It is important to note that both glucagon and insulin are involved in metabolism beyond 

glucose control. Glucagon is also thought to play a role in regulating plasma lipids, promoting 

lipolysis and ketone-body production, and increasing energy expenditure and adipose tissue 

thermogenesis (78). Insulin inhibits adipose tissue lipolysis and the release of fatty acids, plays a 

role in lipoprotein metabolism and clearance, and prevents protein breakdown (79). Additionally, 

insulin is involved in cellular growth, proliferation, and migration, and can inhibit cellular 

apoptosis (80). Thus, circulating levels of these hormones play complicated roles in cellular and 

systemic metabolism. 

Insulin resistance is the inability of previously insulin-sensitive cells or tissues to respond 

to the action of insulin, resulting in a compensatory increase in insulin secretion (81). Insulin 

resistance can occur in a multitude of ways, including genetic mutations, lipotoxicity from 

increased circulating free fatty acids and lipid storage in non-adipose tissues, inflammation, 

glycation of proteins due to hyperglycemia, mitochondrial dysfunction and endoplasmic reticulum 

stress, and hyperinsulinemia (82). These processes typically result in modifications that decrease 
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binding of insulin to insulin receptors or interrupt signaling cascades downstream of the insulin 

receptor (82). Given the myriad ways in which insulin resistance can occur, it has come to be 

associated with multiple pathological and chronic conditions, such as T2D, metabolic syndrome, 

polycystic ovarian syndrome (PCOS), non-alcoholic fatty liver disease (NAFLD), cancer, and 

more (83).  

Despite associations with multiple diseases, insulin resistance in the right context may be 

beneficial. It has been hypothesized that insulin resistance was actually an evolutionary adaptation 

that allows for glucose mobilization in times of energy demand, such as fasting, stress, infection, 

and pregnancy (84). These times of energy demand are temporary; however, in a modern 

environment of high calories, chronic stress, and chronic low-grade inflammation, insulin 

resistance would become chronic and maladaptive (84). 

1.2.1.2 Type 2 Diabetes Definitions 

Diabetes mellitus is a chronic condition in which blood glucose levels are elevated, with 

the underlying mechanism being either a defect in insulin secretion or in insulin signaling (85). 

There are various forms of diabetes, including type 1 diabetes (an inability to produce insulin, 

generally diagnosed in younger individuals), T2D (an inability to effectively use insulin due to 

high insulin resistance, sometimes accompanied by lower insulin production), gestational diabetes 

(a potentially temporary diabetes occurring during pregnancy), and rare genetic forms of diabetes 

(85). As T2D is the most common form of diabetes mellitus (comprising 90-95% of all diabetes 

cases (86)) and the focus of this dissertation, this section will focus exclusively on T2D. 

In 2014, it was estimated that 422 million adults had some form of diabetes, with the 

greatest increase since 1980 occurring in low- and middle-income countries (86). Diabetes is a 

leading cause of global mortality, with 2012 statistics estimating 1.5 million deaths as a direct 
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result of diabetes and 2.2 million indirectly associated with diabetes (87). It is also a huge economic 

burden, with estimates of global healthcare costs around $850 billion (3). T2D is treatable, but not 

curable; thus, prevention of T2D and its complications is of the utmost importance. Poor 

management of diabetes can lead to a variety of complications affecting multiple organ systems, 

including increased risk of cardiovascular diseases like stroke and coronary artery disease, kidney 

disease, hypertension, neuropathy, increased risk of lower limb amputation, retinopathy, 

periodontitis, and pregnancy complications (88). Diabetes may also increase the risk of dementia 

by as much as two-fold (89). 

Symptoms of diabetes include increased thirst, urination, and hunger; fatigue; blurred 

vision; unexplained weight loss; numbness or tingling in the hands or feet; and sores that do not 

heal (90). Individuals with T2D may be asymptomatic or may not recognize symptoms due to the 

slow and progressive nature of the disease (90). 

T2D is diagnosed by first diagnosing diabetes mellitus, and second using clinical and 

family history factors to identify the T2D subtype of diabetes mellitus. The World Health 

Organization (WHO) currently recommends four methods of diabetes diagnosis (86), which are 

also recognized by the American Diabetes Association (ADA) (91). Each diagnostic test consists 

of a measure of plasma glucose or glycated hemoglobin (HbA1c) under some specific condition. 

The four diagnostic tests recommended by both organizations include:  

1) A fasting plasma glucose ≥ 7.0 mmol/L (126 mg/dL) 

2) A plasma glucose ≥ 11.1 mmol/L (200 mg/dL) following a 2-hour OGTT 

3) An HbA1c ≥ 6.5% (48 mmol/mol) 

4) A random blood glucose of ≥ 11.1 mmol/L (200 mg/dL) if an individual has signs and 

symptoms of diabetes  
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For diagnostic tests 1-3 (occurring in asymptomatic individuals), a second positive test is 

usually administered to confirm the diagnosis, with the suggestion of repeating the same test. If 

different tests are used, then diabetes is diagnosed if both tests meet their diagnostic thresholds; if 

results are discordant, than the test which exceeded the diagnostic threshold should be repeated 

(86, 92). It is important to note that discordant results between tests are not uncommon, as they are 

likely measuring different underlying pathophysiological mechanisms which lead to the elevated 

glucose levels (93, 94).  

Additionally, not reaching the threshold for diabetes diagnosis does not indicate a low risk 

for diabetes. Prediabetes is a state of elevated plasma glucose that is not high enough to be 

diagnosed as diabetes (92). These can be measured using tests 1-3 listed above with lower criteria; 

however, there is a lack of consistency in these cutoffs (3, 92). Prediabetes also goes by different 

names depending on the method used: if based on fasting plasma glucose, it is referred to as 

impaired fasting glucose (IFG); if based on an OGTT, it is referred to as impaired glucose tolerance 

(IGT). The ADA also has suggested cut-offs for HbA1c values and prediabetes diagnosis (92). 

Table 1.1 summarizes all of the diagnostic methods and test cut-offs for diabetes and prediabetes. 

While these cut-offs for diabetes and prediabetes diagnoses are useful in the clinical and research 

setting, it is also important to note that regardless of the test method used, risk of plasma glucose 

is continuous and increases from below the range of prediabetes diagnosis to beyond the limit for 

diabetes diagnosis (92). 
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Table 1.1 Diagnostic Criteria for Prediabetes/Diabetes 

Diagnosis 
Fasting Plasma 

Glucose (FPG) 

Oral Glucose 

Tolerance Test 

(OGTT) 

Glycated 

Hemoglobin 

(HbA1c) 

Random Blood 

Glucose 

Prediabetes 

(WHO/IDF) 

6.1–6.9 mmol/L 

(110–125 

mg/dL)  

AND 

 OGTT < 7.8 

mmol/L (140 

mg/dL)  

[IFG] 

7.8–11.0 

mmol/L (140–

199 mg/dL)  

AND 

FPG < 7.0 

mmol/L (126 

mg/dL)  

[IGT] 

-- -- 

Prediabetes 

(ADA) 

5.6 – 6.9 

mmol/L (100–

125 mg/dL)   

[IFG] 

7.8–11.0 

mmol/L (140–

199 mg/dL)  

[IGT] 

5.7%–6.4% (39–

47 mmol/mol 
-- 

Diabetes 
≥ 7.0 mmol/L 

(126 mg/dL) 

≥ 11.1 mmol/L 

(200 mg/dL) 

≥ 6.5% (48 

mmol/mol) 

≥ 11.1 mmol/L 

(200 mg/dL) 

with 

signs/symptoms 

 

Once diabetes is confirmed, it must be differentiated into one of the many subtypes that 

exists, based on factors such as age at diagnosis, family history, and any other clinical 

characteristics or presentations (86). T2D typically occurs after puberty, and factors that suggest 

T2D over other forms include being overweight or obese, having strong family history of T2D, 

the presence of acanthosis nigrans, having elevated or normal C-peptide, no detectable pancreatic 

autoantibodies or history of autoimmune disease, and a lack of rapid weight loss (86). 

1.2.1.3 Risk Factors for Type 2 Diabetes 

Some risk factors, such as increasing age, having a family history of diabetes, and being in 

specific racial/ethnic groups (such as being of African ancestry) are non-modifiable factors which 

contribute to diabetes risk (95). While non-modifiable risk factors have importance in diabetes 
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risk, modifiable risk factors provide the greatest potential for reducing diabetes risk as they can be 

intervened upon. 

Obesity is a well-known risk factor for diabetes, with over half of US individuals with 

diabetes being obese and over 85% being overweight or obese (96). Studies have demonstrated 

that individuals who gain weight are at a higher risk for developing incident diabetes (97), and that 

intentional weight loss can improve risk (98). Mechanisms linking obesity to diabetes are 

multifactorial, including inflammation, insulin resistance, and increased circulation of fatty acids 

(99). Further contributions of obesity to diabetes risk may come from the distribution and quality 

of adipose tissue in the body, discussed later in this document. 

Dietary intake is a contributor to both obesity and T2D risk. The overall caloric content of 

an individual’s diet may increase risk if an individual’s caloric intake exceeds their caloric output, 

resulting in a net weight gain. However, the quality of a diet also plays a role. This may include 

differences in the quality or source of specific nutrients, such as dietary fats and fibers (100); the 

consumption of particular food groups, such as increased risks seen with higher consumption of 

red and processed meats (101, 102)  and sugar-sweetened beverages (102); or with overall 

combinations of food groups, in which greater adherence to healthy dietary patterns were 

associated with reduced T2D risk (27, 28). 

As presented in a joint position statement by the American College of Sports Medicine and 

the American Diabetes Association (103), multiple observational and interventional studies have 

provided extensive evidence that increased physical activity (aerobic or resistance exercise) can 

help with prevention of and maintenance of T2D through reductions in blood glucose levels and 

improvements in systemic insulin sensitivity. A review including analyses for sedentary behavior 

and T2D risk identified a few studies that demonstrated associations between increased sedentary 
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time and increased risk of T2D, though these associations were not significant after adjustment for 

BMI (104). 

Other lifestyle factors such as smoking and alcohol intake can also influence the risk of 

T2D. Cigarette smoking impacts multiple cardiovascular disease risk factors. In an intervention 

study comparing the effects of smoking cigarettes in healthy smokers and healthy never-smokers, 

cigarette smoking was found to lead to impaired glucose tolerance and increases in blood pressure 

and serum cholesterol in both groups, while leading to decreased insulin sensitivity and increased 

LDL-cholesterol and triglycerides in the healthy smoker group (105). A meta-analysis of 

observational studies found that active smoking increased the risk of incident T2D, with a pooled 

Relative Risk of 1.44 (95% CI: 1.31-1.58); the study results were also consistent with a dose-

response relationship between smoking and risk for T2D, as well as an increased (but reduced) 

risk for previous smokers (106). The association of alcohol consumption with T2D risk, however, 

is less consistent. Meta-analyses have demonstrated a U-shaped association between amount of 

alcohol consumption and T2D risk, with individuals who have low or moderate alcohol 

consumption exhibiting a decreased risk and those with high consumption having an increased risk 

(107-109); however, these protective effects may be more pronounced in women (108) or 

completely limited to women and non-Asian populations (107), or may be affected by the type of 

alcohol consumed (109). Furthermore, trajectory analyses indicate that differences in risk seen 

between participants with T2D may be affected by earlier-life heavy drinking (110) and that 

differences in risk between those who do or don’t develop T2D are reduced when controlling for 

confounders (111). 

Being of a lower socio-economic position can impact both risk of T2D as well as 

management of disease in those with T2D. A meta-analysis of socio-economic position and T2D 
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incidence found that socio-economic status, measured as education level, occupation, or income, 

was inversely associated with T2D incidence regardless of country-level income (112). How socio-

economic factors contribute to T2D prevalence and maintenance is complex, as one’s socio-

economic position can impact personal-level factors (household income, education, occupational 

status) as well as factors beyond the individual (neighborhood, school, and work environments), 

all of which can shape an individual’s choices, their resulting health behaviors, and their access to 

and utilization of healthcare services (113, 114).  

Other cardiometabolic diseases may place an individual at risk for T2D. Hypertension and 

T2D are risk factors for each other, likely due to a shared pathophysiology of a variety of factors 

including obesity, inflammation, oxidative stress, inappropriate activation of the renin-

angiotensin-aldosterone system (RAAS), and impaired insulin-mediated vasodilation (115). 

Associations of elevated blood pressure or blood pressure category and incident diabetes have been 

documented in multiple studies of differing ethnic backgrounds (116-121), as well as a potential 

increased risk with use of beta-blockers (118, 119). However, one study looking at incidence in 

African Americans compared to Caucasians found that although hypertension increased risk more 

than two-fold for developing diabetes in African Americans compared to being normotensive, 

adjustments for BMI, fasting glucose, and lipids greatly attenuated these results (121), suggesting 

that risk for diabetes may be more strongly associated with other cardiometabolic risk factors 

rather than blood pressure in this population. 

Similar to hypertension, dyslipidemia (having high triglycerides, high low-density 

lipoprotein (LDL)-cholesterol, and low high-density lipoprotein (HDL)-cholesterol) is also 

common in individuals with T2D and serves as a risk factor for T2D (122, 123). Studies using 

nuclear magnetic resonance to measure lipoprotein particles found associations between 
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lipoprotein size and concentrations with incidence of T2D, with increased triglycerides, larger very 

low-density lipoproteins (VLDLs), and smaller HDL particles being associated with increased 

incidence of T2D across most studies (124-127). As reviewed by von Eckardstein and Sibler (122), 

lipoprotein particles may differentially affect pancreatic β-cell function, proliferation, and 

survival. Additionally, changes in lipids due to therapy with statins may increase risk of T2D 

development (123). 

1.3 Impact of T2D in Tobago, Trinidad and Tobago 

1.3.1 Trinidad and Tobago History and Current State 

1.3.1.1 History 

A brief history of the Republic of Trinidad and Tobago, as told by the country’s first Prime 

Minister Dr. Eric Williams, is summarized in this paragraph (72). The islands of Trinidad and 

Tobago, located in the southern Caribbean, were separately colonized in the early 1500’s by Spain 

for the purpose of establishing sugar plantations. As with most Caribbean islands, while 

enslavement of Amerindians first took place, African slaves were later brought to Trinidad and 

Tobago as substitutes for Amerindian slaves given the racist belief that Africans were more 

accustomed to hard labor. With the rise and fall of colonial empires, both Tobago and Trinidad 

underwent ownership by different powers, with Tobago being occupied by multiple colonial 

powers while Trinidad remained more consistently under Spanish, French, or British rule. After 

the abolition of slavery, Britain sought to avoid paying freed Black workers a fair price and instead 

brought in indentured servants from India as competition, thus changing the ethnic makeup of the 
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Trinidadian population greatly. However, Tobagonians remained (and still remain) a 

predominantly Black island. The islands were later merged under British rule, but became 

independent in 1962. 

1.3.1.2 Current State 

Statistics presented in this section are for the entire Republic of Trinidad and Tobago unless 

explicitly stated otherwise. Island-specific reporting tends to be uncommon in governmental 

reports; this may be due to a strong push for unity and nationality as a rebuke of the racist policies 

and actions from previous colonial rule. Indeed, as part of his Independence Day speech, Prime 

Minister Williams stated “Division of the races was the policy of colonialism. Integration of the 

races must be the policy of Independence” (72). Additionally, while there are reports of health 

studies performed in “Trinidad and Tobago”, a majority of these have occurred primarily in the 

island of Trinidad with little inclusion of individuals from Tobago. Many socioeconomic and 

cultural differences likely exist between the sister islands, as will be highlighted below; thus, 

national statistics and study results should be taken with a grain of salt when thinking specifically 

of the island of Tobago. 
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 Government 

The governmental system of Trinidad and Tobago is a parliamentary republic, currently 

headed by President Paula-Mae Weekes and Prime Minister Keith Rowley (128). Tobago has its 

own local authority, the Tobago House of Assembly, which has ten divisions comprising its 

Legislative and Executive arms (129). One such division is the division of Health, Wellness, and 

Family Development, currently under the direction of Councillor Tracy Davidson-Celestine (130). 

The Tobago House of Assembly and the Division of Health, Wellness, and Family Development 

have provided support and in-kind services to population research programs such as the Tobago 

Health Study (see section 1.3.4). 
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 Economy 

Trinidad and Tobago is considered to be a high-income country, with a 2017 GDP of almost 

$22.1 billion (131). The main driver of the economy is the energy sector, with oil and natural gas 

accounting for a majority of the country’s exports and about 40% of its GDP (128). The US is a 

major trading partner for Trinidad and Tobago (128); however, regional instability with 

neighboring country Venezuela, a currency crisis in Argentina, uncertainties surrounding Brexit, 

and a combination of US trade disputes, sanctions, and trade renegotiations have led to some future 

economic uncertainties (132).   

Though the energy sector is the main driver of the nation’s economy, Trinidad is the 

primary beneficiary of this sector (133). Instead, the predominant economy of Tobago is tourism, 

an industry that has fallen by 75% in the past decade due to competition with other Caribbean 

islands (133). The 2017 unemployment rates for Trinidad and Tobago were at 4.8% with projected 

increases in unemployment in 2018 (132); however, if similar to 2015 trends, this may 

disproportionately affect the younger population (aged 15-19) and females (134). While there are 

no current estimates of poverty in Trinidad and Tobago, it was estimated that 18.9% of the 

population in 2009 were living in poverty, with reductions of about 2% per year by 2015 (135).  
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 Demographics 

Trinidad and Tobago has a population around 1.35 million individuals, with about 91.4% 

of individuals living in rural areas (136). Trinidad and Tobago has undergone an epidemiological 

transition since the 1960’s, with non-communicable diseases now the primary source of health 

problems (136). Along with this transition, there has been a demographic transition as well, 

creating a shift in population structure. There has been notable greater growth in older age groups, 

with almost 45% of the population being between the ages of 25-54, 13.31% between 55-64, and 

11.1% being 65 or older (128).  

Trinidad and Tobago has an ethnically diverse population, with over a third of the 

population being of East Indian descent, another third being of African descent, about 20% being 

mixed race, and the remaining listed as other/unspecified (128); though as previously mentioned, 

Tobago is predominantly African descent. 
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 Healthcare 

Healthcare in Trinidad and Tobago consists of government-funded free health services as 

well as services from private and non-governmental organizations (136). The Ministry of Health 

is responsible for financial and regulatory oversite as well as policy and legislation; beyond the 

Ministry of Health, there are five Regional Health Authorities, one of which is located in Tobago, 

which help deliver health care through hospitals, district health facilities, and health centers (137). 

Health expenditures in 2016 in Trinidad and Tobago was 6.51% of the country’s GDP; as a 

comparison, the number was around 17% of GDP for the United States that same year (138).   

1.3.2 Health Profile and Type 2 Diabetes Burden 

As a country having undergone an epidemiologic transition, the burden of health issues in 

Trinidad and Tobago can mainly be attributed to chronic non-communicable diseases (NCDs). 

Between 2010-2015, NCDs accounted for half of all hospital admissions and remain in the top 

leading causes of death for older adults aged 45-60 (137). Importantly for this dissertation, diabetes 

mellitus ranked as the second leading cause of death overall and in males (113.32 and 114.26 

deaths per 100,000 live births, respectively) and the first leading cause of death among females 

(112.4 deaths per 100,000 live births) (137). 

In 2016, the overall diabetes prevalence was estimated at 12.5%, with a higher prevalence 

in females compared to males (14.1% to 10.9%, respectively) (71). Despite this high prevalence, 

no diabetes registry currently exists (71). This lack of a registry has implications: a 2010 white 

paper highlights some difficulties in providing accurate morbidity/mortality statistics of diabetes 



24 

in Trinidad and Tobago, as data collected by the country’s Ministry of Health may be 

undercounting diabetes cases (data not collected from all public hospitals and none from private 

hospitals, as well as a failure to separate first-time admissions and repeat admissions), and data 

from the International Diabetes Federation (IDF) on diabetes in many Caribbean countries are 

estimates derived using Jamaican data and adjusted for country age distributions (139). Still, while 

true prevalence estimates are not accurately known, all estimates indicate that Trinidad and Tobago 

have some of the highest diabetes rates globally. 

In addition to high prevalence rates of diabetes, the burden of diabetes complications in 

Trinidad and Tobago is high. Individuals with diabetes had 2-4 times the rates of heart disease and 

stroke; diabetes was the leading cause of blindness and contributed to increased dialysis needs; 

over 60% of individuals with diabetes had mild-to-sever neuropathy, with many individuals 

requiring lower-limb amputations and suffering resulting depression; a 74% prevalence of erectile 

dysfunction in men with diabetes for longer than 15 years; and increased risk of periodontal disease 

(139). These high rates of morbidity indicate poor disease management among individuals with 

diabetes.  

Importantly, the management of diabetes involves factors at both the health care provider 

and patient levels. A survey of health care providers from Trinidad and Tobago identified multiple 

barriers in providing adequate diabetes care including a lack of resources for the care of persons 

with diabetes, inadequate screening and evaluating time, and low education of cardiovascular 

complications risks (140). One study from the Trinidad and Tobago Health Sciences Initiative’s 

(TTHSI) Diabetes Outreach Program also found that patients lacked proper understanding of 

diabetes management and the effects of diabetes on the body, poor lifestyle factors such as high 

rates of sedentary behavior and low quality of diet, and financial barriers to management (141). 
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Similarly, a small study of diabetic individuals in a Trinidad health center found low participant 

knowledge of the causes diabetes and how to care for it, as well as low rates of regular exercise 

and low diet quality (142). An additional TTHSI report also found high rates of diabetes 

complications and low utilization of eye and foot exams (143). Thus, a multitude of barriers at 

many levels are impacting diabetes care and self-management. 

Local and national initiatives have been implemented to address many of the issues 

surrounding diabetes reporting and management. The Eastern Regional Health Authority in 

Trinidad, covering about one third of the island, has had a diabetic registry initiated in 2007 and 

found some disparities by gender, ethnicity, and geographic location, though the registry data was 

considered to be of poorer quality (144). The Ministry of Health has also implemented several 

initiatives to target modifiable risk factors, such as the “Healthy Me” childhood obesity prevention 

camp, the “Fight the Fat” initiative, and the “Annual Wellness Campaign” (137). Additional 

government-funded programs exist to help residents of Trinidad and Tobago including the Chronic 

Disease Assistance Programme, food subsidy grants, government-provided housing, free medical 

equipment, and home improvements (137), all of which can impact multiple socioeconomic 

barriers to diabetes management and care. Finally, international collaborations for diabetes-related 

research also have occurred, including the Tobago Health Study (current) and the aforementioned 

TTHSI Diabetes Outreach Program (2007-2014).  

1.3.3 Non-Modifiable and Modifiable Risk Factors for Diabetes in Trinidad and Tobago 

Given the high rates of diabetes in Trinidad and Tobago, it is important to understand how 

various factors contribute to excess risk. Importantly, many risk factors are interrelated. Some risk 

factors, such as increasing age, having a family history of diabetes, and being in specific 
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racial/ethnic groups (such as being of African ancestry) are non-modifiable factors which 

contribute to diabetes risk (95). These risk factors are important to diabetes risk in Tobago; indeed, 

small studies from Trinidad indicated that increasing age and family history of diabetes were 

significantly associated with greater prevalence of diabetes (145, 146), and our Tobago Health 

Study has previously reported diabetes family history estimates of about 48.3% (147). African 

ancestry individuals also have a greater risk for T2D, independent of overall obesity (53-55), and 

given that Tobago is predominantly African ancestry, this is likely to be an important contributor 

to diabetes risk as well. 

While non-modifiable risk factors have importance in diabetes risk, modifiable risk factors 

provide potential for reducing diabetes risk as they can be intervened upon, providing the greatest 

impact on reducing diabetes burden in Tobago. In this section, I will make some reference to the 

Tobago Health Study (further discussed in section 1.3.4) in order to give more Tobago-centric data 

when possible; however, these statistics will be limited to men aged 40 and older, who we estimate 

at our most recent visit to have an overall prevalence of T2D at 23.6%. This estimate is slightly 

higher than the self-reported national prevalence of 18.1% for men aged 45-64 (148), but when 

restricted to a similar age range (50-64) is somewhat similar (Tobago: 21.1%). This data will also 

rely heavily on the 2011 Trinidad and Tobago Chronic Non-Communicable Disease Risk Factor 

Survey (Pan American STEPS) (148), which I will refer to as the STEPS survey. 

1.3.3.1 Obesity 

Rates of overweight and obesity in Trinidad and Tobago are high and increasing, with the 

nation considered to have one of the highest obesity rates in the Caribbean at ~30% (149). The 

STEPS survey showed gender disparities in overweight/obesity, with rates being much higher in 

women compared to men (59.0% vs 52.3%, respectively) (148). Age disparities were also noted, 
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with obesity increasing after age 24 and then decreasing again in older age groups (148). In men 

aged 45-64, about 23.3% of men were considered to be obese (148); this is much less than that 

reported in the Tobago Health Study, where men aged 50-64 had an obesity prevalence of 31.5%. 

Waist circumference was also measured in the STEPS survey and showed men with an overall 

larger waist size compared to women (mean 104.9 cm vs. 89.3 cm, respectively); this gender 

disparity persisted in all age groups (148). Men from the Tobago Health Study tended to have 

slightly smaller waist circumference sizes, with the average size in men aged 50-64 being 99.0 cm. 

1.3.3.2 Diet and Nutrition 

The different population makeups and histories of Trinidad and Tobago have resulted in a 

rich and varied food culture. African dishes such as callaloo and accra are still present (72); there 

is use of native plants once eaten by Amerindians such as maize, sweet potato, and custard apple 

(72); and there is a noticeable Indian-influence of foods such as roti and curries (150). 

Additionally, the differences in economy and urbanization that exist between the islands may 

contribute to differences in purchasing and eating patterns.  

In addition to ethnic influences, other factors may be contributing to current dietary intake 

in Trinidad and Tobago. A focus on the oil and energy sectors came at the expense of agricultural 

policies, which may contribute to a high reliance on imported foods (151). These foreign imported 

foods, according to anthropologists, may also be associated with feelings of wealth and status, a 

connection which may find historical roots in social hierarchies between slaves who worked in the 

fields compared to those who worked in houses (and had access to foreign foods) (151). 

Conversely, more modern social identities seem to equate individuality with fast food, with some 

Trinidadian youth saying that Kentucky Fried Chicken “to some extent it is what makes us 

Trinidadian” (151). Other indications that age may be a factor in healthy food intake comes from 
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the STEPS report which indicated a slight increase in mean servings of daily fruit and vegetable 

intake across increasing age groups, though the overall average was still low (overall fruit mean: 

1.0 , 95% CI: 0.9-1.0; overall vegetable mean: 1.3, 95% CI: 1.2-1.4) (148). 

Dietary intake likely differs between individuals in Trinidad and Tobago with the United 

States, as there are large overall differences in economy, culture, climate, and history. Table 1.2 

below shows a rough comparison of food intakes between men aged 40 and older from the Tobago 

Health Study and men from the National Health and Nutrition Examination Survey (NHANES) 

2013-2014 (152). It is important to note that due to differences in collection methodologies 

(Tobago used a monthly 146-item semi-quantitative Food Frequency Questionnaire validated for 

the Trinidad and Tobago population (153), while NHANES used 24-hour dietary recall 

interviews), it is not possible to perform a direct comparison of intakes. Still, these preliminary 

results suggest that men from Tobago report consuming larger daily intakes of fruits, vegetables, 

whole grains, and seafood, while reporting lesser intakes of refined grains, red and processed 

meats, dairy, and alcohol, compared to their American counterparts. The high intakes of fruits and 

vegetables is in contrast to that reported in the STEPS survey; this may be in part due to differences 

in how diet was ascertained (Tobago Health Study: 146-item questionnaire of foods consumed in 

the past month vs STEPS: survey questions on amount and frequency of fruits or vegetables 

consumed in a typical week). However, it is also possible that there are island-specific differences 

in food consumption which was not reported on through the STEPS survey. 
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Table 1.2 Comparison of Tobago and NHANES Men, 40+, using Food Patterns Equivalent Database (FPED) 

Food Groups 

Food Group 

 
Tobago 

 
 

N=799 

Non-
Hispanic 

White 
 

N=692 

Non-
Hispanic 

Black 
 

N=336 

Non-
Hispanic 

Asian 
 

N=156 

 
Hispanic 

 
 

N=347 

Citrus, Melons, and Berries  (cup eq) 0.83 (0.04) 
0.20 

(0.02) 
0.17 

(0.04) 
0.25 

(0.06) 
0.20 

(0.03) 

Other Fruit  (cup eq) 2.09 (0.09) 
0.45 

(0.05) 
0.44 

(0.04) 
0.94 

(0.14) 
0.57 

(0.05) 

Fruit Juice  (cup eq) 0.11 (0.01) 
0.23 

(0.03) 
0.35 

(0.04) 
0.25 

(0.06) 
0.31 

(0.05) 

Total Fruit  (cup eq) 3.04 (0.12) 
0.88 

(0.07) 
0.96 

(0.06) 
1.45 

(0.21) 
1.07 

(0.06) 
      

Dark Green Vegetables (cup eq) 0.76 (0.03) 
0.12 

(0.02) 
0.14 

(0.03) 
0.27 

(0.05) 
0.11 

(0.03) 

Tomatoes (cup eq) 0.19 (0.01) 
0.34 

(0.02) 
0.27 

(0.05) 
0.24 

(0.03) 
0.38 

(0.03) 

Other Red/Orange Vegetables (cup 
eq) 

0.71 (0.02) 
0.10 

(0.01) 
0.12 

(0.02) 
0.19 

(0.04) 
0.09 

(0.02) 

Total Red/Orange Vegetables (cup 
eq) 

0.91 (0.02) 
0.44 

(0.02) 
0.38 

(0.05) 
0.42 

(0.05) 
0.47 

(0.02) 

Potatoes (cup eq) 0.17 (0.01) 
0.46 

(0.03) 
0.44 

(0.05) 
0.32 

(0.05) 
0.31 

(0.03) 

Other Starchy Vegetables (cup eq) 1.06 (0.03) 
0.08 

(0.01) 
0.13 

(0.03) 
0.12 

(0.03) 
0.13 

(0.02) 

Total Starchy Vegetables (cup eq) 1.24 (0.03) 
0.53 

(0.03) 
0.56 

(0.06) 
0.44 

(0.05) 
0.44 

(0.03) 

Other Vegetables (cup eq) 1.16 (0.03) 
0.57 

(0.02) 
0.36 

(0.03) 
0.86 

(0.11) 
0.65 

(0.07) 

Total Vegetables (cup eq) 4.06 (0.07) 
1.67 

(0.06) 
1.45 

(0.10) 
1.99 

(0.16) 
1.67 

(0.10) 
      

Legumes as Vegetables (cup eq) 0.14 (0.01) 
0.10 

(0.01) 
0.18 

(0.05) 
0.24 

(0.06) 
0.29 

(0.04) 

Legumes as Protein (oz eq) 0.58 (0.03) 
0.40 

(0.04) 
0.71 

(0.20) 
0.96 

(0.23) 
1.17 

(0.14) 
      

Whole Grains (oz eq) 2.19 (0.07) 
1.10 

(0.08) 
0.94 

(0.07) 
1.89 

(0.19) 
0.75 

(0.11) 

Refined Grains (oz eq) 2.87 (0.09) 
5.83 

(0.22) 
5.54 

(0.46) 
5.97 

(0.47) 
7.29 

(0.18) 

Total Grains (oz eq) 5.06 (0.11) 
6.93 

(0.21) 
6.48 

(0.46) 
7.86 

(0.46) 
8.04 

(0.19) 
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Meat (oz eq) 0.37 (0.02) 
1.76 

(0.11) 
1.58 

(0.18) 
1.83 

(0.30) 
2.17 

(0.27) 

Cured Meat (oz eq) 0.35 (0.02) 
1.33 

(0.13) 
1.30 

(0.11) 
0.50 

(0.11) 
0.75 

(0.11) 

Organ Meats (oz eq) 0.03 (0.00) 
0.05 

(0.03) 
0.08 

(0.04) 
## 

0.08 
(0.03) 

Poultry (oz eq) 1.29 (0.04) 
1.58 

(0.10) 
2.24 

(0.19) 
1.64 

(0.32) 
2.03 

(0.28) 

Seafood High N-3 (oz eq) 1.30 (0.04) 
0.26 

(0.09) 
0.23 

(0.08) 
0.53 

(0.18) 
0.20 

(0.10) 

Seafood Low N-3 (oz eq) 1.36 (0.04) 
0.51 

(0.14) 
1.13 

(0.20) 
0.82 

(0.16) 
0.61 

(0.11) 

Total Meat, Poultry, and Seafood 
(oz eq) 

4.69 (0.10) 
5.48 

(0.22) 
6.56 

(0.38) 
5.32 

(0.51) 
5.84 

(0.29) 

Eggs (oz eq) 0.34 (0.01) 
0.59 

(0.04) 
0.79 

(0.10) 
0.47 

(0.09) 
0.91 

(0.09) 

Soybean Products (oz eq) 0.04 (0.00) 
0.05 

(0.01) 
0.04 

(0.02) 
0.23 

(0.07) 
0.03 

(0.01) 

Nuts and Seeds (oz eq) 0.12 (0.01) 
1.10 

(0.16) 
0.83 

(0.15) 
0.72 

(0.13) 
0.54 

(0.11) 

Total Protein (oz eq) 5.20 (0.10) 
7.22 

(0.30) 
8.22 

(0.48) 
6.74 

(0.59) 
7.32 

(0.31) 
      

Fluid Milk (cup eq) 0.56 (0.02) 
0.88 

(0.04) 
0.50 

(0.04) 
0.58 

(0.08) 
0.61 

(0.05) 

Yogurt (cup eq) 0.02 (0.00) 
0.06 

(0.01) 
0.02 

(0.01) 
0.08 

(0.03) 
0.03 

(0.00) 

Cheese (cup eq) 0.35 (0.01) 
0.83 

(0.05) 
0.65 

(0.12) 
0.35 

(0.05) 
0.86 

(0.11) 

Total Dairy (cup eq) 0.97 (0.03) 
1.81 

(0.05) 
1.19 

(0.15) 
1.03 

(0.11) 
1.56 

(0.15) 
      

Oils (g) 
19.05 
(0.32) 

30.05 
(1.04) 

30.16 
(2.52) 

25.12 
(1.67) 

25.31 
(1.64) 

Solid Fats (g) 
25.37 
(0.49) 

40.34 
(0.90) 

40.84 
(3.49) 

23.33 
(2.07) 

38.06 
(1.74) 

Added Sugars (tsp eq) 6.49 (0.15) 
17.85 
(1.12) 

20.39 
(1.52) 

8.90 
(0.75) 

16.38 
(0.90) 

Alcoholic Drinks (# drinks) 0.39 (0.04) 
1.16 

(0.13) 
1.04 

(0.23) 
0.41 

(0.09) 
0.80 

(0.07) 
A comparison of calculated food group equivalents from the Tobago Health Study and NHANES. Men 

from the Tobago Health Study excluded individuals who were missing 10% or more food items on a 

questionnaire or who reported energy intakes < 600 kcal/day or > 5,000 kcal/day. 

 

Table 1.2 Continued 
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Importantly for diabetes risk in the Caribbean, these nutritional and dietary patterns are not 

unique to Trinidad and Tobago. Many of the Caribbean islands, while having different 

developmental histories, share similarities in colonial pasts, in being huge importers of food, and 

in having increasing food patterns of poorer nutritional quality (154). Thus, nutrition and dietary 

intake are major risk factors for diabetes risk in the Caribbean. 

1.3.3.3 Physical Activity and Sedentary Time 

In Trinidad and Tobago, physical activity tends to be seasonal (136). The vigorousness of 

activity levels differ between men and women, with twice as many men having reported high level 

physical activity compared to women, and significantly more women participating in low-to-

moderate physical activity compared to men, in the STEPS survey (148). This difference in activity 

and its seasonality was attributed to men participating in more laborious occupational work (148). 

In addition to seasonal or occupational contributions, other facilitators and barriers of physical 

activity may play a role. A survey of Trinidadians identified a lack of time for physical activity, 

low motivation to be physically active, and a lack of affordable or accessible places to be 

physically active as major barriers to being more active (155). Increasing population age is another 

factor, with the STEPS survey indicating that prevalence of low physical activity level generally 

increased with age while high physical activity level decreased with age (148). 

Physical activity definitions are found in Appendix A Table 1. In the STEPS survey, 

47.2% of men aged 45-64 had low levels of physical activity while 32.2% had high levels of 

physical activity. These men also reported ~3 hours of sedentary activity per day (148). Our men 

also have low objectively-measured physical activity and low subjectively measures of walking 

with high rates of sedentary behavior. Men from our most recent visit (restricted to those aged 50-

64) reported roughly 2.4 hours per week of watching television (our marker of sedentary behavior), 
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and self-reported high vigorous activity was 2.2 hours/day and light physical activity was 9.0 

hours/day. Using objectively-measured physical activity in a subset of men from this most recent 

visit, men on average spent 27% of waking hours in light physical activity, 4.9% in moderate 

physical activity, and 0.6% in vigorous or very vigorous physical activity, with over 67% of the 

time spent in sedentary activity. These survey reports and objectively-measured physical activity 

reports indicate both low levels of physical activity and high levels of sedentary behavior, both 

likely to contribute to an increased risk for T2D. 

1.3.3.4 Smoking and Alcohol Use 

National smoking rates are high in Trinidad and Tobago, with an estimated prevalence of 

21.1% and a higher prevalence in men (33.5%) compared to women (9.4%) (148). Current 

smoking status generally increased with age in men but decreased with age in women (148). Most 

individuals who smoke use manufactured cigarettes and smoked on average 11.5 cigarettes per 

day (136). National alcohol consumption is also high, with an overall reported prevalence of 

drinking in the past 30 days at 40.4% and a higher prevalence in men (50.6%) compared to women 

(30.9%) (148). Daily consumption was reported to be much lower, with only 3.3% of men and 

0.2% of women reporting daily consumption over the past year (148). While the number of 

drinking occasions increased with increasing age group in men, the number of drinks per drinking 

occasion decreased; both drinking occasions and number of drinks decreased with age in women 

(148). Binge drinking rates were reported as high (~34% in males and ~17% in females), and 

almost 60% of men and women reported rarely or never drinking with meals (148). 

These reported national statistics for smoking differ compared to those reported in our 

Tobago Health Study, with our men reporting lower smoking prevalence. Using data from the 

Tobago Health Study at a similar time frame to the STEPS survey (Tobago: 2010-2014 vs. STEPS: 
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2011), our men aged 45-64 reported a current smoking prevalence of 11.3% and a former smoker 

prevalence of 20.5%. This is much lower than that reported for men 45-64 in the STEPS survey, 

who had a current smoking prevalence of 35.9% (former smoking not reported) (148). Results also 

differed for alcohol consumption, where men aged 45-64 from our study report higher rates of any 

drinking but a lower number of drinks consumed per week compared to national averages. In 

Tobago, 67.5% of men reported having had any alcohol consumption in the past year, with 28.9% 

of drinkers having had at least 1 drink per week, 19.4% of drinkers having had 4+ drinks per week, 

and 4.7% of drinkers having had 15+ drinks per week. This is in contrast to men in the STEPS 

survey, which indicated a frequency of 61.2% ever drinkers in the past year but, among current 

drinkers (drank in last 30 days), about 9.2% had 20+ drinks in the past week (148). These results 

may reflect cultural differences of tobacco and alcohol use in Tobago as compared to overall 

national statistics; however, if there are cultural differences in perceptions of smoking or alcohol 

intake, this may also lead to an underreporting of these risk factors in our study. It may also be 

impacted by differences in how questions were asked between interviews, especially concerning 

alcohol intake. Still, these results suggest an overall favorable profile for smoking and alcohol 

intake in our Tobago population, which may beneficially impact T2D risk. 

1.3.3.5 Socio-economic Factors 

Despite the availability of free education (137), the level of education attainment is 

relatively low, with almost 30% of the population having only completed a primary level education 

and less than 15% with education beyond high-school level (156). This lack of educational 

attainment is more stark in age groups 50 and older, where over half the population in each age 

group did not have a stated educational qualification (156). As mentioned previously (section 

1.3.1.2.2), national poverty rates in 2009 were estimated at around 18.9%, and the primary driver 
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of the Tobagonian economy (tourism) has taken a hit in recent decades. These factors of lower 

education and high poverty rates are likely to impact an individual’s income, occupational status 

and opportunities, and resulting health behaviors. Indeed, as previously discussed, cost was 

reported as a barrier to both increased physical activity (through access to fitness facilities) and to 

healthy eating (through purchasing of healthy foods) (155). Markers of low socio-economic status 

were inversely associated with diabetes morbidity in a sample of diabetic Trinidadian patients 

(157), suggesting that social determinants of may also play a role in diabetes prevalence and 

management in Trinidad and Tobago. 

1.3.3.6 Hypertension and Dyslipidemia 

In Trinidad and Tobago, around 26.3% of individuals are estimated to have hypertension 

(SBP ≥ 140 and/or DBP ≥ 90 mmHg or on antihypertensive medication), with a majority of them 

being men (29.8% in men vs. 23.1% in women) (148). Among men, rates were higher in older age 

groups, with a prevalence of about 52.4% in men aged 45-64 (148). Men from our study have a 

slightly higher rate, with men from our most recent visit aged 50-64 having a prevalence of 55.3%. 

However, these Tobago Study rates and the national rates are based off of older criteria; given the 

new criteria (SBP ≥ 130 and/or DBP ≥ 80 mmHg or on antihypertensive medication) (158), the 

prevalence in our study is closer to 71.9%. 

Rates of high cholesterol were similar, with an overall prevalence of 23.5% of individuals 

having a total cholesterol ≥ 240 mg/dl or being on a lipid-lowering medication, with a higher 

prevalence in men compared to women (28.3% vs. 18.9%, respectively) (148). Having a low HDL-

cholesterol (< 40 mg/dl in men or < 50 mg/dl in women) was more prevalent in women (34.7%) 

than in men (9.9%); similarly, having triglycerides ≥ 150 mg/dl was also higher in women than in 

men (51.4% vs. 47.9%, respectively) (148). These results were not stratified by race, an important 
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confounder as African ancestry individuals tend to have better lipid profiles compared to other 

ethnic groups (159). We currently do not have lipids measured at our most recent Tobago Study 

visit. However, a study comparing a subset of our Tobago men with Caucasian and African 

American men in the Cardiovascular Health Study (160) found more favorable lipoprotein profiles 

in African ancestry men compared to Caucasians and lower levels of various lipoproteins 

(triglycerides; small, medium, and large VLDLs; and small and medium LDLs) in Tobago men 

compared to both Caucasian and African American men. In total, these results suggest that 

hypertension, but potentially not dyslipidemia, may have a greater impact on diabetes risk in the 

Tobago population.  

1.3.4 Our Study: The Tobago Health Study 

1.3.4.1 Origins 

The Tobago Health Study is a longitudinal study of men from the island of Tobago, 

Trinidad and Tobago, described in further detail in the next section (1.3.4.2). The study, which 

began recruitment in 1997 (161), was originally started as a population-based prostate cancer 

screening study. For this reason, the study population is restricted to only middle-aged and older 

males. However, men from the Tobago Health Study have returned for multiple follow-up visits, 

at which time various clinical and body compositional data collections were performed. While 

many of the clinical measures were collected using standardized procedures over the study visits, 

body compositional measures and anatomical locations assessed varied depending on the visit. For 

example, CT measures for ectopic fat assessment and microbiome data collection were only 

performed at one visit (between 2014-2018). Thus, while the study is a longitudinal study of 
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Tobago men, data for this dissertation (which will utilize CT and microbiome measures) can only 

be cross-sectionally analyzed. 

1.3.4.2 Study Description 

Figure 1.1 shows the flowchart of the study participants. Between 1997 and 2003, 3,170 

previously unscreened men were recruited for a population-based prostate cancer screening study 

on the Caribbean island of Tobago, Trinidad and Tobago (161). To be eligible, men had to be aged 

40 years or older, ambulatory, noninstitutionalized, and not terminally ill. Recruitment for the 

survey was accomplished by flyers, public service announcements, and posters; by informing 

health care workers at local hospitals and health centers; and by word of mouth. Approximately 

60% of all age-eligible men on the island participated, and participation was similar across the 

island parishes. All men were invited to participate in a follow-up clinic examination between 

2004 and 2007, and 2,031 men (70% of survivors) and 451 new participants completed the visit. 

A second follow-up examination was performed between 2010 and 2013, and a total of 1,611 men 

completed this follow-up assessment (82% of survivors). Between 2014 and 2018, a convenience 

sample of N=768 participants from the prior (2010-2013) visit had CT scans of the chest, abdomen, 

and mid-thigh for ectopic fat assessment performed, and a subset of men (N=262) participated in 

an ancillary study of fecal collection for microbiome analysis. Data from the 2014-2018 visit was 

used for this dissertation. 
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Figure 1.1 Flowchart of Tobago Study Visits 

 

To be eligible for the 2014-2018 study, participants had to be aged 40 or older, ambulatory 

(able to walk without assistance of another person; assistive devices permitted), and willing and 

able to give informed consent. Participants could be withdrawn from the study if they were unable 

to answer or complete the study questionnaires due to cognitive impairment or dementia, or if 

participants were unable to complete most of the other clinical procedures. Potential participants 

were identified from men who participated in the previous 2010-2013 visit of the Tobago cohort 

study (n=1,611) and were contacted by those who are directly involved in the participants’ care in 

the study to determine their eligibility and willingness to participate in the extended CT exam. 

Participants were re-contacted by Tobago Study staff via telephone call. Written informed consent 

was obtained before enrollment. 

Beginning in June 2017, participants who had completed CT visits were re-contacted to 

participate in an ancillary microbiome study. IRB approval was obtained for this ancillary study. 

Participants were contacted by phone, with emphasis for recruitment placed on those who most 

recently completed a CT visit. Informed consent was obtained. 
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1.4 The Role of Adipose Tissue in Type 2 Diabetes Risk 

1.4.1 Adipocytes and Adipose Tissue Biology 

1.4.1.1 Adipose Tissue as Energy Storage 

Adipose tissue is comprised of multiple cell types, including those of the stromal vascular 

fraction (consisting of a diverse population of cells such as pericytes, immune cells, endothelial 

cells, and vascular smooth muscle cells) and the adipocytes (162), though mature adipocytes are 

the major cell type found (163). Adipose tissue can be further broken down into two main tissue 

types: white adipose tissue (WAT) or brown adipose tissue (BAT). BAT is composed of 

mitochondria-rich adipocytes, is well-innervated and well-vascularized, and is responsible for 

converting chemical energy into heat through non-shivering thermogenesis; however, BAT tissue 

is a minority of the AT in adult humans and is found in localized areas in thoracic and 

supraclavicular regions (164). WAT on the other hand is the predominant AT in adult humans, is 

a major endocrine organ, and is involved in energy homeostasis (163).  

WAT is a major site of triglyceride storage and fat mobilization by secretion of 

nonesterified fatty acids (165). As previously mentioned (section 1.2.1.1), insulin can act to inhibit 

adipocyte lipolysis. This allows the adipocyte to continue to store lipids, which in mature 

adipocytes fuse to form a characteristic large lipid droplet (166). Additionally, the storage of lipids 

in adipose tissue also can prevent the circulation of free fatty acids, which can cause insulin 

resistance (section 1.2.1.1). Thus, fatty acid storage and mobilization is linked to insulin action 

and resistance. 
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1.4.1.2 Adipose Tissue as an Endocrine/Paracrine Organ 

In addition to fatty acids, AT is a major secretor of several proteins collectively referred to 

as adipokines. There are at least 50 different documented adipokines (167), allowing cross-talk 

between AT and several organ systems such as the brain, skeletal muscle, immune system, adrenal 

cortex, and cardiovascular systems (167, 168). I will not go into a review of different adipokines 

and their roles in such cross-talks; however, the main purpose of this section is to highlight the 

complex role AT plays in whole-body energy homeostasis through both positive and negative 

regulation of multiple tissues. 

1.4.1.3 Adipose Tissue Growth: Hypertrophy vs. Hyperplasia 

AT expands in response to overnutrition as a mechanism to store excess calories. This 

expansion is accomplished in predominantly two ways: cellular hypertrophy and cellular 

hyperplasia. Hypertrophy is thought to be the first mode of expansion, where the size of the 

adipocyte increases to accommodate an ever-growing lipid droplet (169). Upon reaching a critical 

size, additional cells are recruited for energy storage through adipocyte proliferation or the 

differentiation of preadipocytes in a process called hyperplasia (169). 

As adipose tissue grows, remodeling of the tissue to accommodate the increased cellular 

size and number is needed. This requires changes in the tissue vasculature to meet nutrient and 

oxygen needs of the tissue, as well as changes in tissue extracellular matrix to accommodate the 

growing size. An inability to accommodate the tissue size can lead to hypoxia, cellular stress, and 

inflammation, all of which negatively impact the ability for the tissue depot to store lipids (169, 

170). This can lead to adipocyte cell death and subsequent proliferation of new adipocytes, 

contributing to a net growth of AT (169); additionally, it may promote the storage of fat in non-

traditional and ectopic sites such as the liver and muscle (16). 
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1.4.2 Adipose Tissue Distribution 

Adipose tissue is found throughout the body from locations under the skin to within bone 

marrow. Given the wide variety of locations and changes in naming conventions, Shen et al 

propose a classification system that helps to separate AT depots by location and function (1). These 

classifications are visualized in Appendix A Figure 1 and Appendix A Figure 2. Briefly, the 

most broad classifications of adipose tissue are the subcutaneous adipose tissue (SAT), visceral 

adipose tissue (VAT), and non-VAT. SAT is the adipose tissue located beneath the skin, and can 

be further divided into superficial and deep SAT with respect to reference to the fascial plane (1). 

VAT is an umbrella term for the AT located within the thoracic, abdominal, and pelvic cavities. 

This tissue surrounds internal organs such as the heart, intestines, kidneys, and liver. Depending 

on location, they may have different local or systemic effects; for example, intraperitoneal adipose 

tissues within the VAT drain into the portal system, whereas retroperitoneal drain into the inferior 

vena cava, thus providing intraperitoneal adipose tissue a greater ability to impact multiple organ 

systems involved in metabolism in comparison to retroperitoneal tissues (1). Finally, non-VAT 

tissues predominantly make up those within and surrounding the musculature. These include 

intramuscular AT, which is located between muscle fascicles, intermuscular AT, which is located 

between muscles, and paraosseal AT, which is found between muscle and bone (1).  

The reasons for differences in accumulation of AT in differing depots is not fully known, 

though several hypotheses exist. One hypothesis is the AT expandability hypothesis, which 

suggests that impaired expandability of AT leads to lipid storage in non-adipose tissues (171). SAT 

is the largest AT depot in the human body and therefore should contribute most to lipid storage. A 

modification of this hypothesis is that even preceding the inability of adipocytes to continue 

expansion, an impaired triglyceride turnover ability of adipocytes may also contribute to a 
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propensity to store fat in non-adipose tissues (172). Another hypothesis suggests that nutritional 

status in the womb may predispose an individual to store lipids in VAT as a mechanism to help 

fight intraabdominal infections (173). Beyond these hypotheses, other aspects are also noted to 

play a role. Gender is associated with distribution, with men being more likely to accrue fat 

centrally and women (prior to menopause) storing fat in a gluteal-femoral pattern (174). 

Racial/ethnic differences have also been identified in fat distribution patterns  (56-62, 175), with 

some suggestions of underlying genetic associations (176); however, environmental interactions 

may have a predominant or modifying role in these associations as well (177-179). 

The various AT depots have differing storage and lipolytic activities (172), as well as 

differing functional and genetic profiles (180). Combined with their proximities to insulin-

sensitive tissues or major circulatory pathways, this may lead to greater risk of metabolic 

disturbances if those particular tissues become dysfunctional. For example, IMAT may have a 

great impact on skeletal muscle insulin sensitivity (181), whereas VAT depots may have more of 

an impact on hepatic insulin sensitivity (182). 

1.4.3 Adiposopathy: Potential Connection between Adipose Tissue and Inflammation 

“Adiposopathy” is a term describing pathological fat tissue function, wherein the fat tissue 

has an abnormal release of hormones, cytokines, and molecules resulting in non-fat tissue damage 

and disease development (183). Hallmarks of adiposopathy include enlarged hypertrophic 

adipocytes, increased visceral fat accumulation, and increased ectopic fat deposition (184), all of 

which are associated with the inflammatory and metabolically dysfunctional states of unhealthy 

obesity. Additional measures of quality include macrophage infiltration of AT (185, 186), 

angiogenesis (187), arteriolar dysfunction (188), and tissue hypoxia (189).  
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1.4.3.1 Measuring Body Composition with CT Scans 

CT scans use X-rays to generate cross-sectional images that, if performed in series, can be 

additionally used to generate 3D images (190). Thus, CT scans can provide cross-sectional area 

measurements or 3D volumetric measurements of tissues. Images are divided into a grid of voxels, 

which each hold an X-ray attenuation value for that voxel location (given in Hounsfield units, HU) 

and are colored on a grey scale (191). Water has an attenuation of 0 HU, while air has an 

attenuation of -1000 HU; thus, more positive HU values indicate more-dense tissues. There is 

inconsistency in the field on exact locations to be used for measuring different AT depots and the 

HU thresholds used to define adipose tissue (ranging from -20 to -250 HU) (191). However, the 

HU may range considerably over AT voxels. 

Organ and tissue boundaries are delineated manually or semi-automatically by trained 

technicians and software (191). This allows for precise measurements of AT area or volume, but 

can be laborious and influenced by technician skill (191). However, it also allows for 

quantification of AT in more difficult areas of imaging such as intermuscular deposition (192). CT 

also exposes individuals to radiation, which may place them at a small but increased risk for 

development of radiation-induced cancer (193). 

1.4.3.2 Radiodensity: A Measure of Adiposopathy? 

In addition to AT volume, a recently novel measure of average AT attenuation has been 

proposed. This average attenuation, also referred to as AT radiodensity, is the average HU value 

across the defined tissue. Human biopsy studies and studies in animal models indicate that higher 

AT radiodensity can reflect beneficial aspects of AT such as smaller adipocyte cell size and lower 

lipid content (17, 18) and increased vascularity (19). Thus, AT radiodensity may serve as a 

surrogate marker of AT “quality”. 
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CT-derived AT radiodensity is emerging as a marker of increased risk for cardiometabolic 

disease independent of tissue volume (22-26). Several reports using the Framingham cohort 

observed lower abdominal VAT and SAT radiodensity associated with worse cardiometabolic 

profiles, including higher HOMA-IR (24), increased odds of impaired fasting glucose (23, 24), 

and increased glucose concentrations (22-24). Studies from the Multi Ethnic Study of 

Atherosclerosis (MESA) have also reported that individuals with lower vs. higher abdominal VAT, 

SAT, and IMAT radiodensity had greater levels of glucose and diabetes (25, 26). 

1.5 The Intestinal Microbiome: A Novel Risk Factor for Type 2 Diabetes 

1.5.1 Defining the Intestinal Microbiome and its Importance to Health 

Humans are host to a variety of microorganisms, covering all domains of life (bacteria, 

archaea, and eukaryotes) as well as viruses (194). Collectively, the genomes of these microbiota 

are noted as the “microbiome” (32). While studies have predominantly focused on the microbiome 

in the gastrointestinal tract, communities of resident microorganisms have also been documented 

in the oral cavity, urogenital tract, skin, airways, placenta, and eyes (68). These microbiota are not 

inert, and can influence host health through metabolic functions as well as be influenced by the 

host environment in a mutualistic relationship (32). 

A large portion of microbiome research has focused on microbes in the gastrointestinal 

tract, and more specifically with bacteria. As this is also the focus of this dissertation, I will also 

focus predominantly on bacteria in the intestinal tract; the term microbiome will be used to refer 

to bacteria specifically in this case, as is done frequently in the literature. It is important to note, 
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however, that populations in other anatomical sites, as well as other types of microorganisms 

(archaea, eukaryotes, and viruses) also play integral roles in the relationships between the whole 

microbiome and human health. 

The influence of gut bacteria and other microbes on host health is not specific to humans. 

The co-evolution of microbes and their hosts may exist across many species, with mammals 

showing stronger similarities among members of the same species compared to others, and 

similarities that tracked with diet and host phylogeny (195). Studies involving the absence of a 

microbiome, such as the use of gnotobiotic mice, as well as those that then repopulate the guts of 

gnotobiotic mice with specific bacterial communities, have demonstrated effects on the immune 

system, metabolism, reproduction, and behavior (196). Thus, these bacterial organisms have a 

storied and profound effect on how multiple systems in our bodies function, making them an 

important key in helping to understand human disease. 

Large population-based microbiome projects in recent years have contributed significantly 

to our understanding of the gut microbiome and human health. These include the U.S.-based 

Human Microbiome Project (HMP1) (197) and the Integrative Human Microbiome Project 

(HMP2) (198), the European-based Metagenomics of the Human Intestinal Tract (MetaHIT) (199), 

and studies from China (44). Studies from other countries and across a range of urbanicity 

environments are also being conducted, providing a large amount of new information across 

geographies, race/ethnicity, and culture (200). It is the hope that data from the Tobago Health 

Study may add to this growing field, providing a new geographical and dietary insight into the 

connection between gut microbiota and human health. 



45 

1.5.2 Measuring the Intestinal Microbiome 

There are two ways to look at the microbiome. The first is a descriptive analysis, which 

asks what bacteria are present in a sample. This is derived from a sample’s bacterial DNA, which 

I will describe below. The second is a functional analysis, which asks what the bacteria are doing 

(or are capable of doing) in a sample. This can be estimated using predictions from DNA (201), 

but can be more precisely measured using transcriptomics, proteomics, metabolomics, and other –

omics methodologies (202). Given that our project will be descriptive in nature, I will focus in this 

section on the collection, process, and analysis of samples for describing microbial taxonomies 

using 16S DNA sequences. However, the functional analyses are an incredibly important 

component as well for understanding host/microbiome interactions and health consequences. 

1.5.2.1 Sample collection methods 

Methods of intestinal microbiome sampling in large population-based studies typically 

involve the collection of fecal matter from an individual. Based on the previous sections of this 

document, fecal samples are unlikely to be representative of the entire intestinal microbiome, given 

differences in concentration along the gastrointestinal tract, intestinal lumen, and the constant 

shifts in bacterial populations. Multiple methods of collection exist, including collection of whole 

fecal samples or the use of swabs or cards (203). In addition to different methods of collection (as 

well as different manufacturer kits for collection), other choices must be made such as the use of 

stabilizers, storage temperature and anticipated number of freeze-thaw cycles, transportation 

method and timing from toilet to lab, and aliquoting of sample (if applicable) (204). These 

considerations are made based on the ease of sample collection for study participants and the type 

of analyses prepared for the samples, and may have variable impacts on results (205). 
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1.5.2.2 Process from sample to DNA 

Once collected, the bacterial DNA must be separated from the rest of the stool using 

physical and chemical methods. Typical commercial kits use beaded tubes and shakers to 

mechanically homogenize and lyse bacterial cells, after which DNA is isolated using chemical 

extraction procedures (204). Differences in extraction kits and processes, as well as potential 

contamination from the kits themselves, can result in some between-kit differences (204); 

however, a comparison of extraction protocols used in the HMP and MetaHIT studies found that 

the largest variation was still attributable to inter-individual differences (206). 

1.5.2.3 DNA Sequencing 

Once DNA has been isolated, the investigator next chooses what portions and how much 

of the DNA to sequence. Ideally, one would want to obtain as much genetic information from a 

sample as possible to get as close to species identification as possible. Shotgun metagenomics can 

accomplish this by fragmenting DNA into small pieces, sequencing the pieces, and aligning 

overlapping pieces to reconstruct parts (or nearly all) of the genome of an organism (207). Using 

a metagenomics approach allows for the identification of bacteria (and any other microbes) as well 

as a description of many functional genes; however, such an approach is computationally and 

analytically complex due to the large volume of data, potential issues in overlapping of DNA 

sequences, inclusion of host DNA, and detection and handling of contamination (207). 

An alternative approach is the use of amplicon sequencing, where a specific and identifying 

region of DNA is isolated and amplified through polymerase chain reaction (PCR) and then 

sequenced (194). In bacteria and archaea, a portion of the 16S ribosomal RNA subunit is typically 

amplified as this region contains multiple hypervariable regions that can differentiate between 

many bacteria (194). While much simpler to perform in comparison to shotgun metagenomics, 
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16S rRNA sequencing is less sensitive to differences in some bacterial taxa, and the same sample 

may yield different results depending on the hypervariable region sequenced and PCR primers 

used (194). For the Tobago study, we will be using 16S rRNA sequencing on our fecal samples. 

1.5.2.4 Taxonomy, Analytical Pipelines, and the OTU 

It is important to give a brief primer on taxonomy and its issues with respect to bacteria. 

Taxonomy is the system by which organisms are classified, encompassing the taxa (i.e. groups) of 

Domain, Kingdom, Phylum, Class, Order, Family, Genus, and Species. The rules for classifying 

bacteria at the species level have strict criterion involving the percentage of sequences shared as 

well as phenotypic discrimination; however, there is less uniformity in rules for classification at 

higher taxonomic ranks (208, 209). This is further complicated by the sheer number of detected 

and uncultured microorganisms being discovered with improving bioinformatics methods, which 

are outnumbering the classified cultured microbes in reference databases (208). The prior choice 

of DNA sequencing method can also impact resolution of your taxonomic assignment, as 16S 

rRNA is not necessarily sensitive to the species level (194). For this reason, groups of closely-

related sequences are often clustered together into what is called an operational taxonomic unit 

(OTU) (210).  

Following DNA sequencing, the data must be cleaned and placed into taxonomic bins. 

These processes are performed using dedicated bioinformatics tools such as QIIME (211) and 

mothur (212). The choice of pipeline used may have an impact on the classification of some genera, 

but results are generally comparable between programs (213). For 16S rRNA sequences, a next 

choice comes from methods of binning sequences together into OTUs based on their similarities 

(210). OTU construction is based on algorithms that either use a reference database to help assign 

OTUs or create them de novo, often with differing results (210). Sequences and OTUs are then 
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aligned to a reference database, allowing a taxonomic assignment (214). Importantly, the choice 

of reference database may also impact assigned taxonomy (214). 

1.5.2.5 Structural Characteristics of a Microbiome 

There are three main characteristics that can be ascertained for the microbiome: diversity, 

stability, and resilience. Diversity refers to structural or functional differences within a sample 

and/or between samples (215). Stability refers to the identification of distinct and longer-lasting 

community signatures, such as the identification of enterotypes (216). Resilience refers to the 

ability of the microbiome to return to a steady state following some perturbation, such as dietary 

change, antibiotics, and invasion by new bacterial species (215). Stability and resilience likely 

require multiple measures to ascertain. However, diversity measures can be obtained with a single 

measure; therefore, I will focus a bit more on the different diversity measures in this section. 

Once taxonomy has been assigned, measures of structural differences between individual’s 

microbiomes can be determined. As reviewed by Lozupone and Knight (217), there are three main 

considerations for looking at the diversity of microbiomes: 1) the choice of diversity within an 

individual community (α diversity) and diversity between individuals (β diversity), 2) looking for 

the presence or absence of a taxon (qualitative) versus both presence and abundance of the taxon 

(quantitative), and 3) treating the species or OTUs as being equally related to one another (species-

based) or allow for different species/OTUs to not be equally related to one another (divergence-

based). 

Measures of α diversity try to answer the question “Which samples have the most diverse 

compositions?” (215). This can typically be split into two types of measures: richness, which is 

the total number of species in a sample, and evenness, which is the abundance of a particular 

species (217). Some indices combine both measures, such as the Shannon’s index (217). Measures 
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of β diversity try to answer the question “How different are our samples from each other?” (218). 

These include phylogeny-based measures such as the weighted and unweighted UniFrac and non-

phylogeny based such as Bray-Curtis (217, 218).  

1.5.2.6 Comparing Intestinal Microbiomes 

When thinking of comparing intestinal microbiomes in public health, we are often 

interested in identifying what microbiomes are “healthy” and which are not. Defining a healthy 

microbiome, though, is not simple. As reviewed by Bäckhed et al (219), microbiome health can 

be looked at from an ecological standpoint as community stability (measured as resistance to 

change under stress or as resilience in returning to a prior state post-stress), from a functional 

standpoint (as containing a core set of “healthy” genes and pathways), and from a taxonomic 

standpoint (as the presence or absence of particular taxa). Additional issues come with the actual 

comparison of population samples to a chosen reference “healthy” microbiome, as microbiomes 

may vary significantly by geographic location independently of host health and impact the use of 

that reference for building diseases models (220). Thus, in making a comparison of microbial 

communities, the choice of a reference microbiome and the definition of “healthy” are important 

factors to consider and can affect the generalizability of results. 

Additionally, comparisons should only be made with references obtained using 

standardized protocols, as issues affecting comparability can arise at all steps of microbial 

collection and analysis. These include factors such as sample collection (when and at what sites 

samples are collected, sampling methods such as swabs versus stool collection, differences in 

manufacturer kit choice, choice to homogenize samples), sample storage (how samples are stored, 

length of storage, use of protectants), extraction kit choice and methods, choice of 16S 

hypervariable region and primer set, sequencing platforms used, pipelines used to process and 
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analyze data, quality control methods, and method of OTU picking, among others (214). Together, 

this can impact not only which microbiomes are considered to be “healthy” references, but can 

also impact the comparisons of your results to those found in other studies.  

1.5.2.7 Visualization and Analysis 

The richness and evenness of specific taxa can be visualized using bar graphs and 

phylogenetic trees. β diversity measures can be visualized using principal coordinates analysis 

(PCoA), which uses a scatterplot of components of the variability in the microbial communities to 

allow for a cluster-based analysis (218). Heat maps can show relationships between bacterial taxa 

and metadata, and dendrograms can be overlayed to show the relationships and clusters (218). Co-

occurrence analyses and network analyses can help demonstrate relationships between bacteria at 

structural and functional levels (218). 

Structural measures can also be included in statistical models. For example, diversity 

indices, principal coordinates, and abundance levels can all be used as model variables (218). 

However, modeling generally requires correction for multiple comparisons given the large number 

of OTUs in a sample, and transformations or zero-inflated models would be needed if OTUs are 

rare and only present in a few samples (218). 

1.5.3 Factors Influencing the Intestinal Microbiome 

The gastrointestinal tract is a continuity of our outer environment, as it is topographically 

connected to the outside of the body. The bacteria in the intestines have a constant cross-talk with 

both this external environment brought inward (through ingested materials) as well as with the 

internal environment (through interactions with host cells and products). It is therefore connected 
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to many parts of host physiology and the external environment, making the impacts of various 

factors on gut bacteria complex and numerous. I will focus here on a limited number of modifiable 

and non-modifiable factors, though countless others are likely to exist.  

1.5.3.1 The Microbiome at Birth 

The human intestinal microbiome is impacted by factors from the prenatal stage onward. 

It is not clear if there are bacteria which can inhabit the fetus during development, as low biomass 

and contamination preclude definitive evidence (221); however, the maternal vaginal microbiome 

(222, 223) and potentially the intestinal microbiome (224) also experience changes during 

pregnancy. These changes can help support the health of the mother and fetus by helping to prevent 

infection and increase energy harvest (221). Additionally, these are the first bacterial species to 

colonize the newborn in vaginal deliveries (225). Other factors associated with the first major 

introduction to the microbiome are mode of delivery (cesarean section babies are colonized mostly 

be skin microbes), breast feeding (which confers additional microbes and prebiotics), and the 

introduction to solid foods (which leads to increased diversity and increases in adult-associated 

microbes) (225). 

1.5.3.2 Genes versus Environment 

The microbiome is predominantly determined by environmental factors, with limited 

contributions from genetics. A study of twin pairs in the United Kingdom found low heritability, 

with less than 10% of taxa being heritable and the highest heritability for a taxon was 0.42, an 

estimate they state is lower than for systolic blood pressure, anxiety, and serum Vitamin D from 

the same population (226). Still, some taxa were very heritable, such as bacteria from the family 

Christensenellaceae who had a heritability of 42% (226). A study in an Israeli population with 
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differing genetic ancestries found that similarities were strongest among individuals who shared 

households, regardless of genetic relation, and that up to 20% of the variance in between-person 

bacterial diversity could be determined by looking at environmental factors (227). That there is 

low genetic influence on most of the microbiome suggests that changes in many lifestyle factors 

(such as those associated with T2D) are likely to have a greater impact on microbial composition; 

however, the higher heritability of some microbial taxa also highlights the importance of host 

genetic makeup.  

1.5.3.3 Age and Sex 

Both age and sex are non-modifiable risk factors which may be associated with intestinal 

bacterial populations. A study of US, Malawian, and Amerindian populations found that bacterial 

diversity increased with age and, together with geography and cultural traditions, explained most 

of the variation in their data (228). Changes in bacterial populations are also noted between infants 

and adults and between adults and the elderly, with infants and elders sharing a similarly low 

Firmicutes/Bacteroidetes ratio compared to adults (229). These changes were also similarly 

reflected in a large study of US, UK, Columbian, and Chinese individuals, where a positive 

association between age and within-individual diversity was observed in non-Chinese individuals, 

but the association plateaued in middle age (230). This may be due to an increase in factors 

associated with poor health, or an increasing “biological age” (231). It is possible that these age-

related differences are due to differences in lifestyle factors over time, as discussed in sections 

below. 

The microbiome may also differ by sex. Gender was found to be a significant covariate of 

the microbiome in two European cohorts (232). In one of these cohorts (the LifeLines-DEEP 

Netherlands cohort), females had a more diverse microbiome both taxonomically and functionally; 
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however, the contribution of sex to the microbial variation was small (0.5%) and mainly driven by 

differential medication use (233). Still, studies in mouse models (234) and human clinical 

populations (235) suggest that sex-specific interactions may impact immune-related diseases, 

providing a role for the importance of sex in some microbiome/health related contexts. 

1.5.3.4 Geographic Location 

The microbiome varies by geographical location, with variation in both global gut 

microbial signatures as well as at the strain level (68). It is unclear how much of geography may 

be due to other factors, such as dietary and other lifestyle differences between compared areas 

(200). Additionally, comparisons across populations can be affected by a variety of factors (section 

1.5.2.5), further complicating the understanding of geographical impact on the microbiome. Still, 

a study in China utilizing standard procedures found that most microbial variation was due to the 

location within one of 14 districts in the province they studied, with effects being noticeable even 

when comparing communities within the same neighborhood (220). Thus, exploration of the 

microbiome in different geographic settings may shed light on important similarities and 

differences with respect to disease statuses. 

1.5.3.5 Race/Ethnicity 

An individual’s race/ethnicity is also associated with different intestinal microbes. A study 

in a multi-ethnic Dutch cohort from Amsterdam found that ethnicity was the strongest determinant 

of within-individual and between-individual microbial diversity, even when accounting for diet, 

area of residence in Amsterdam, lifestyle factors, or metabolic conditions (69). However, given 

that most non-Dutch participants in the study were first-generation immigrants, the authors suggest 

that these microbial differences may also be a factor of the individuals’ previous environments and 
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a lack of microbial adaptation to the new environment (69). Another study combining data from 

the Human Microbiome Project and the American Gut Project found that self-identified ethnicity 

had slightly stronger associations than BMI, age, and sex, and that many of the taxa which 

significantly varied across ethnic groups also have been previously identified as highly-heritable 

taxa, including Christensenellaceae (70). Gut bacterial functions may also differ by race/ethnicity: 

one example is the production of soy isoflavone daidzein to equol by intestinal bacteria, a 

phenotype which was more prevalent in Korean American women and girls compared to 

Caucasian Americans and was not associated with soy or meat intake (236). Though many of these 

analyses could be confounded by lifestyle characteristics, geography, and immigration, they 

together suggest that there may be some impact of race/ethnicity on microbial structure and 

function. 

1.5.3.6 Diet 

Diet has a profound impact on the intestinal microbiome makeup. A study in U.S. adults 

demonstrated that administration of a plant-based diet versus an animal-based diet rapidly (within 

a few days) altered the microbiome composition and metabolic activity, and that foreign 

microorganisms were introduced through the differing food intakes (39). These dietary influences 

may even override other considerations such as the effect of genetics, as different inbred strains of 

mice showed reproducible differences in microbial changes from dietary intervention (237), and 

geography, as diet exchanges between Africans and African Americans showed reciprocal changes 

in microbial function associated with colon cancer risk (38). While these are rapid changes, how 

long they last is still not well understood. A controlled feeding study found detectable changes in 

the microbiome after one day of an administered diet, though after 10 days individuals on the same 

diet still had similar intersubject variations as they did prior to the feeding study (238). This same 
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study also noted that long-term dietary intake was more closely associated with enterotypes 

(proposed robust signature clusters of dominant bacteria in the gut (216)) than short-term dietary 

intake (238). 

Changes have been noted by overall dietary pattern, nutrient sources, and amount of 

nutrients themselves, as reviewed by Dong and Gupta (225). Diets can also affect microbial 

richness at taxonomic or gene levels and is associated with changes in function of the microbiome 

(239). While individual-level differences are likely to exist, more consistent associations have been 

seen when comparing agrarian-style diets with western-style diets, where the agrarian-style diets 

are associated with more Prevotella and the western with more Bacteroides (239). 

1.5.3.7 Physical Activity 

Exercise can exhibit multiple different influences on the intestines, including reduced 

blood flow, changes to vagal tone, and less consistently with changes in intestinal motility, 

digestion, and absorption (240). Rodent studies suggest physical activity may impact the 

microbiome, though these are often impacted by differences in rodent breed and differences in 

methodology (240). Still, human studies do suggest that there may be a link between physical 

activity level and microbial profiles. A study among older men with objectively measured physical 

activity found some associations between physical activity and the relative abundance of particular 

taxa, though level of physical activity was not associated with within-individual diversity (241). 

Another study in college students found that self-reported high moderate-to-vigorous physical 

activity was associated with specific bacterial phylotypes and with group-level differences in 

bacteria, but these group-level differences were only seen when also comparing groups by 

low/high fiber intake (242). 
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Studies have also compared the microbiomes of extreme athletes and more sedentary 

individuals. Structural and functional differences were seen between the microbiomes of rugby 

players and healthy controls, with athletes having greater diversity and differences in multiple 

metabolic pathways (243). A recent study in marathon runners identified Veillonella genus bacteria 

and their conversion of systemically-derived lactate into propionate as a mechanism by which the 

microbiome can affect athletic performance (244). However, differences in microbial structure and 

function due to physical activity may depend on obesity status and can be reversed with a return 

to a sedentary lifestyle (245). Thus, the effects of physical activity, similar to diet, may be 

dependent on the length of participation in the lifestyle habit and differ according to other personal 

attributes. 

1.5.3.8 Medications 

Another factor which may influence gut bacterial composition, and potentially complicate 

associations with disease states, is medication use. A study combining data from Belgian and 

Dutch microbiome cohorts found a wide variety of medications were associated with microbial 

composition (antibiotics, antihistamines, antidepressants, hormones, and laxatives, among others), 

and that these medications accounted for most of the variation in microbiome composition (232). 

One would reasonably anticipate that antibiotics would have an impact on the intestinal 

microbiome, but the effects of non-microbial targeted drugs on microbial composition are 

intriguing. Potential effects could be through different modes of drug action: a study looking at 

non-steroidal anti-inflammatory drugs (NSAIDs) found that the type of drug, rather than the 

number of medications used, had a larger effect on diversity (246). For relevance to our Tobago 

study, metformin use was shown to be associated with compositional changes in the intestinal 

microbiome, and these changes were associated with some of the beneficial and adverse effects of 
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metformin use (247). Drugs that target humans may also have off-target effects on bacteria that 

influence their survival, and similarities in drug structural components may be associated with 

similar effects on microbial composition (248). These similarities in antibiotic/non-antibiotic drug 

structure, targets, and bactericidal properties may also contribute to increased antibiotic resistance 

(248).  

1.5.3.9 Infections/Immune System 

The intestines house the largest portion of the immune system, and regional differences in 

immune structures and functions can be found along the length of the intestines (249). Multiple 

mechanisms allow for the regulation of commensal bacteria and prevention of infection in the 

intestinal tract, including mucus production, excretion of antimicrobial proteins, and the 

“sampling” of bacteria by dendritic cells and the coating of commensals with immunoglobulin A 

(IgA) to prevent penetration of and association with epithelial cells (250). Breaches of the intestinal 

barrier can also result in innate and adaptive immune responses to eliminate the threatening 

pathogens (250). 

Microbiota can interact with each other and with the immune system to help prevent 

colonization by pathogenic bacteria (251). Alternatively, some pathogens have adapted to use 

commensal microbiota as a mechanism to increase infectivity (251). Acute infections are 

associated with shifts in microbiota (such as increased proteobacteria) that can result in greater 

inflammation and tissue damage (251). These changes in intestinal bacteria and immune response 

can also have more distal effects through changes to immune system activity and increases in 

systemic inflammation, impacting both the regular state of immunity as well as the tone of immune 

responses (251). 
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1.5.3.10 Differences along the GI tract 

The gastrointestinal tract is extremely varied in its morphology and function, allowing for 

digestion and maximal absorption of nutrients. However, these differences also affect the types of 

bacteria which may grow there. Moving along the gastrointestinal tract shows differences in 

nutrient absorption and availability, pH, oxygen tension, all of which may impact the bacteria 

which can reside there (252). Further differences can also be seen cross-sectionally, as different 

bacteria may be located within the lumen or at different points in the mucosa, though these 

differences are thought to be small in comparison to those along the intestinal tract (252).  

Other aspects of morphology also differ as one moves along the intestines. As reviewed in 

Mowat and Agace (249), differences in the structure of the intestinal wall itself are found along 

the GI tract. The small intestine is characterized by larger villi, a smaller diameter, and longer 

length, allowing for maximum nutrient absorption. The large intestine has no villi, is larger in 

diameter, and houses most of the commensal bacteria. Mucus-producing cells increase along the 

GI tract and create an outer mucus layer (where bacteria are typically found) and an inner mucus 

layer. 

1.5.4 Links Between the Intestinal Microbiome and Type 2 Diabetes 

Given that the intestinal microbiome is impacted by many of the same factors that serve as 

risk factors for T2D (section 1.5.3), it is not surprising that associations have been found between 

gut bacteria and the presence of T2D. A metagenome-wide association study using shotgun 

metagenomics in a case-control Chinese population found that individuals with T2D could be 

characterized by moderate gut dysbiosis, decreasing butyrate-producing bacteria, and increasing 

opportunistic pathogens (44); this suggests that microbial functional differences are seen in T2D. 
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Another study of shotgun metagenomics sequencing, but in European women, found both 

compositional and functional differences between individuals with T2D and normal glucose 

tolerance, though discriminatory gene clusters in this study were different than those identified in 

the previous Chinese study (45). A Japanese study of T2D patients and controls found structural 

differences, with T2D individuals having a decrease in obligate anaerobes and an increase in 

facultative anaerobes in fecal samples, as well as an increase in intestinal Gram-positive bacteria 

found in the bloodstream (253). While these studies used different populations and methods, 

collectively they suggest a relationship between the structure and function of the intestinal 

microbiome and the prevalence of T2D. 

The link between intestinal bacteria and T2D may be through modulation of insulin 

resistance. The colonization of germ-free mice with bacteria from conventionally-raised mice 

showed an increase in body fat and insulin resistance (254). In addition to the usual caveat that 

“mice are not humans”, another study using different strains of mice found diabetes-related 

differences in gut microbial composition after a dietary challenge depended on mouse strain, but 

could be partially repeated with microbial transplants into other mouse strains (255). Still, in a 

longitudinal study of humans Zhou et al. (256) showed microbes and some microbial-associated 

metabolites were associated with fasting SSPG and found that intra-individual correlations of 

microbes differed by insulin resistance status, suggesting that differences in microbes may be 

associated with insulin resistance in humans as well. 

Multiple mechanisms may link the gut microbiota with insulin resistance. A study in 

Danish individuals found branched-chain amino acids were differentiated between those with 

insulin resistance and those without, that a functional shift in the microbiome associated with 

insulin resistance was independent of BMI, and that a few detected species were largely driving 
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these associations by increasing serum branched-chain amino acids (257). Alternative 

explanations include gut-derived lipopolysaccharides (LPS) from intestinal Gram-negative 

bacteria, which can bind to toll-like receptor 4 (TLR4) pro-inflammatory receptors and induce 

cellular insulin resistance, as well as modulation of bile acid pathways (258, 259). Previously, our 

group has demonstrated in the Tobago Health Study that baseline serum levels of LPS-binding 

protein, an acute-phase protein which facilitates the shuttling of LPS to the TLR4 receptor and 

serves as a surrogate marker of gut bacterial-derived LPS, was associated with increased trunk fat, 

increased HOMA-IR, and increased odds of incident impaired fasting glucose after 6 years of 

follow-up (51). Thus, there is some biological plausibility for the mechanistic link between 

intestinal bacteria and insulin resistance. 

1.6 Statistical Analysis of Compositional Data 

1.6.1 Compositional Data: Definition and Geometry 

Compositional data are any data which sum to an arbitrary whole; thus, components are 

necessarily positive values which are constrained to somewhere between 0%-100% of the total 

measured sample. Because components sum to a whole, they have an inherent structural 

relationship with each other. Essentially, if one component were to increase in size, at least one 

other component must decrease as a result. This collinearity is not the result of redundancy in 

measured variables, but rather due to the special sample space in which compositional data lie. 

This sample space, referred to as a simplex, is a hyperplane of the real Euclidean sample space. 

For a composition made up of D components, the simplex space is made up of D vertices in D-1 
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dimensions; thus, a composition of three components would be represented by a two-dimensional 

triangle (Figure 1.2). 

            

Figure 1.2 Comparison of a 3 dimensional Euclidean space  to a 2 dimensional simplex space 

 

Importantly, different sample space geometries require different statistical modeling 

approaches. Specifically, in compositional data, distances in the hyperplane are not equivalent to 

distances in the Euclidean space; thus, it is inappropriate to apply traditional Euclidean statistics 

(such as ordinary least squares regression) to data in the simplex. 

1.6.2 Compositional Data Analysis 

In logistic regression, outcomes range from 0 to 1 (or 0% to 100%), and in order to apply 

Euclidean methods to such data, we first must transform the probability data with a logit 

transformation. Compositional data is also constrained to being positive (0 or greater, and can be 

thought of ranging from 0% to 100%); similarly, transformations can be applied to compositional 

data which then allow Euclidean distance-based methods to be applied. Compositional Data 

Analysis (CoDA) was established by Aitchison (260) who developed the methods for transforming 

simplexed data to Euclidean sample spaces.  
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One such method is the additive log ratio (ALR) transformation, where simplexed data is 

represented as the sum of log ratios of components such that one component is used as the ratio 

denominator for all remaining components (creating S-1 terms). If used as predictors, these ratios 

are interpreted with respect to the referent component, such that for any logn term, the coefficient 

is “for an n-fold increase in the ratio of the numerator component to the denominator component”. 

If used as an outcome, these would be interpreted similarly to a multinomial logistic regression. 

These transformations in CoDA result in three unique properties (261): scale invariance, which 

states that information obtained from the ratios of component parts is not impacted by specimen 

size; permutation invariance, that the ordering of components in a model shouldn’t impact results; 

and subcompositional coherence, which states that missing components in a reduced dataset 

should not impact associations between component ratios present in both reduced and full datasets.  

1.6.3 The Microbiome and Body Composition as Compositional Data 

The importance of the simplex structure of compositional data is becoming increasingly 

recognized in the health sciences. There are increasing calls for data such as the high-throughput 

sequencing output of the microbiome (262), physical activity measures (263), and diet (264) to be 

viewed through a compositional lens. Body composition data derived from imaging methods 

should be thought of as compositional data. That measured tissues within a single image must sum 

to a whole (ex. the total area measured in a single-slice CT image) indicates that the different 

tissues may be seen as components to be used in a CoDA analysis.  

In currently executed body composition analyses, issues of collinearity among body tissues 

or between body tissues and overall body size are often dealt with by exclusions of some imaged 

tissues to focus on tissues of primary interest (which may lead to information loss), or the use of 
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ratios, such as taking the tissue as a percentage of the total scanned area (ex. % fat located in the 

trunk), or using the ratio of two different tissue measurements (ex. VAT/SAT ratio). While 

investigating the relative amount of tissues might reduce the collinearity between different tissues 

or between tissues and a whole, the use of ratios is known to be problematic, resulting in spurious 

findings (265) and biased estimates (266). Thus, previous analyses which use untransformed 

measured values of some or all tissues, and analyses which use ratios or percent totals of tissues, 

are applying Euclidean distance-based methods to simplexed data, which may increase spurious 

findings. However, no study to date has utilized CoDA methods to look at associations of body 

composition tissues with health outcomes. 

 

1.7 Summary and Public Health Significance 

1.7.1 What is Known 

The summary of the connection of risk factors contributing to T2D can be visualized in 

Figure 1.3 below. Environmental and lifestyle factors, such as diet, exercise, and smoking, can act 

on both the intestinal microbiome and directly on particular organs and tissues. The microbiome, 

in turn, is structurally and functionally altered, resulting in changes in energy harvest, intestinal 

barrier integrity, and release of pro-inflammatory products. Together these all act to influence 

changes in body composition and immune activation. This culminates in the development and 

progression of cardiometabolic diseases such as T2D. 
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Figure 1.3 Impact of diet on the gut microbiome and human health 

Figure from “Influence of diet on the gut microbiome and implications for human health” by Singh et al (267). 

Creative Common License: (http://creativecommons.org/licenses/by/4.0/) 

1.7.2 Knowledge Gaps 

Despite the wealth of knowledge in T2D risk factors, the knowledge of mechanisms linking 

these risk factors to T2D are still lacking. Disentangling the relationships between more proximate 

risk factors, such as body composition and the microbiome, is needed in order to understand what 

kind of lifestyle interventions may be most effective in preventing or ameliorating T2D. While 

body composition is a well-studied risk factor for T2D, there are many questions regarding the use 

of body composition imaging data. The use of AT radiodensity from CT images shows promise as 

a novel risk factor for T2D; however, its use has thus far been limited to abdominal AT depots, 

and it remains unclear whether or not AT radiodensity represents anything more than traditionally-
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measured AT volumes. Current body composition analyses also suffer from improper statistical 

methodology, which may distort associations between metabolically active tissues and T2D, and 

a lack of inclusion of specific tissue types in different anatomical locations. Even greater unknowns 

exist in associations of the less-studied intestinal microbiome with T2D, with associations being 

impacted by a slew of intrinsic and extrinsic factors.  

Further, greater representation of racial/ethnic minorities in body composition and 

microbiome research is needed, as they are disproportionately burdened by T2D and may have 

different risk factor profiles. This is especially true in Caribbean islands like Tobago, where T2D 

rates are exceptionally high and where lifestyle characteristics differ from other geographic 

locations.  

1.7.3 Public Health Significance 

Obesity and T2D epidemics are heavily burdening Caribbean peoples and health systems. 

While lifestyle factors such as poor-quality dietary intake are understood to be important risk 

factors driving these epidemics, information on downstream mechanisms such as adiposopathy 

and alterations of the microbiome are lacking. This dissertation will allow for the elucidation of 

the relationships between the microbiome, fat distribution and quality, and biomarkers of T2D in 

an African Caribbean population. This contribution is significant because it can be utilized to 

enhance and further develop targeted interventions for T2D. This study will also establish the first 

data repository for the microbiome in Tobago, aiding in future cardiometabolic research in the 

Caribbean. This work may help to turn the tide against rising rates of obesity and T2D, both in the 

Caribbean and worldwide. 
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1.8 Specific Aims 

The goals of this dissertation are to investigate the associations of body composition 

imaging data (radiodensity and distribution) and the intestinal microbiome with T2D. My focus is 

on individuals of African Caribbean descent, as African Ancestry individuals are underrepresented 

in both body composition and microbiome studies. To address these goals, I will be utilizing cross-

sectional data from the Tobago Health Study, a cohort of middle-aged and older men who 

predominantly identify as African Caribbean. At the most recent study visit (2014-2018), fasting 

glucose and medication use were ascertained to help identify individuals with T2D. CT was used 

to collect body composition measures in the abdomen and thigh, allowing for assessment of tissue 

radiodensities as well as tissue distributions. Using this data, we can investigate associations of 

adipose tissue radiodensity and upper and lower body compositions with T2D in African 

Caribbean men. Additionally, a subset of study participants was called back to participate in a pilot 

study for fecal sample collection and microbiome assessment; thus, we can also explore 

associations of the intestinal microbiome with T2D. 

 

Paper 1: Associations of Thigh and Abdominal Adipose Tissue Radiodensity with Glucose and 

Insulin in Nondiabetic African-Ancestry Men 

Aims: To determine the associations of abdominal (SAT and VAT) and peripheral (IMAT) adipose 

tissue radiodensities with glucose, insulin, and insulin resistance in African Caribbean men in 

Tobago 

Hypothesis: Less radiodense adipose tissue in any depot will be associated with worse glucose, 

insulin, and insulin resistance measures 
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Paper 2: Associations of Upper and Lower Body Composition with Type 2 Diabetes in African 

Caribbean Men 

Aims: To determine differential associations of adipose and muscle tissues in the abdomen and 

thigh with type 2 diabetes using a compositional data analytic approach 

Hypothesis: Upper body VAT and SAT, and lower body IMAT, will be positively associated with 

prevalence of type 2 diabetes; lower body SAT and muscle will be inversely associated with type 

2 diabetes 

 

Paper 3: Associations of the Intestinal Microbiome with Type 2 Diabetes in African Caribbean 

Men 

Aims: To perform exploratory analyses investigating different levels of intestinal microbial 

structure (cluster analysis, diversity metrics, and operational taxonomic units) with type 2 diabetes 
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2.0 Manuscript 1: Adipose Tissue Radiodensity with Serum Glucose and Insulin 

Title: Associations of Thigh and Abdominal Adipose Tissue Radiodensity with Glucose and 

Insulin in Nondiabetic African‐Ancestry Men 

 

Authors: Tilves C1, Zmuda JM1, Kuipers AL1, Carr JJ2, Terry JG2, Wheeler V3, Peddada SD4, Nair 
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Previously published in Obesity (Silver Spring).  

Associations of Thigh and Abdominal Adipose Tissue Radiodensity with Glucose and Insulin in 

Nondiabetic African‐Ancestry Men. Contributor: Iva Miljkovic. Obesity (Silver Spring), 2020 

Feb;28(2):404-411. doi: 10.1002/oby.22695. Epub 2019 Dec 24. Copyright © 2019 The Obesity 

Society.  

2.1 Abstract 

Objective: Decreased radiodensity of adipose tissue (AT) located in the visceral AT (VAT), 

subcutaneous AT (SAT), and intermuscular AT (IMAT) abdominal depots is associated with 

hyperglycemia, hyperinsulinemia, and insulin resistance independent of AT volumes. These 
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associations were sought in African-ancestry men, who have higher risk for type 2 diabetes and 

have been underrepresented in previous studies. 

Methods: This cross-sectional analysis included 505 nondiabetic men of African-Caribbean 

ancestry (median age: 61 years; median BMI: 26.8 kg/m2 ) from the Tobago Health Study. AT 

volumes and radiodensities were assessed using computed tomography, including abdominal 

(VAT and SAT) and thigh (IMAT) depots. Associations between AT radiodensities were assessed 

with fasting serum glucose and insulin and with insulin resistance (updated homeostatic model 

assessment of insulin resistance, HOMA2-IR). 

Results: Higher radiodensity in any AT depot was associated with lower log-insulin and log-

HOMA2-IR (β range: -0.16 to -0.18 for each; all P < 0.0001). No AT radiodensity was associated 

with glucose. Thigh IMAT radiodensity associations were independent of, and similar in 

magnitude to, VAT radiodensities. Model fit statistics suggested that AT radiodensities were a 

better predictor for insulin and insulin resistance compared with AT volumes in individuals with 

overweight and obesity. 

Conclusions: AT radiodensities at multiple depots are significantly associated with insulin and 

insulin resistance in African-ancestry men. 

2.2 Study Importance Questions 

What is already known?  

• Abdominal adipose tissue radiodensity (visceral, subcutaneous, and intermuscular) is 

inversely associated with glucose and insulin levels, with most studies conducted in 

predominantly Caucasian cohorts. 
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What does this study add?  

• Adipose tissue radiodensities, including thigh intermuscular adipose tissue, are inversely 

associated with fasting insulin and insulin resistance in African‐ancestry individuals. 

• Adipose tissue radiodensities may be more informative predictors of insulin resistance than 

adipose tissue volumes. 

2.3 Introduction 

Despite the fact that obesity is a major driver of type 2 diabetes (T2D), T2D also depends 

on the distribution of adipose tissue (AT) throughout the body, especially the amount of fat around 

and within non-AT organs (known as ectopic AT) (268). The size of non-ectopic AT depots such 

as the subcutaneous AT (SAT) and visceral AT (VAT) depots are associated with worse glucose 

and insulin levels, with the VAT depot being more strongly associated than SAT (269-271). 

Additionally, ectopic AT depots such as abdominal and thigh intermuscular AT (IMAT) volume 

are also associated with impaired glucose and insulin levels (270, 272, 273).  

In addition to AT distribution, novel surrogate markers of AT biology, such as computed 

tomography (CT)-derived average AT radiodensity, may indicate more pathogenic AT. Biopsy 

studies performed in rodents and small human trials suggest that AT radiodensity may capture 

other AT attributes such as cell size (17), lipid content (18), and vascularity (19). Indeed, AT 

radiodensity is emerging as a marker of increased risk for cardiometabolic disease independent of 

tissue volume (22-26). Several reports using the Framingham cohort observed lower abdominal 

VAT and SAT radiodensity associated with worse cardiometabolic profiles, including higher 
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HOMA-IR (24), increased odds of impaired fasting glucose (23, 24), and increased glucose 

concentrations (22-24). Studies from the Multi Ethnic Study of Atherosclerosis (MESA) have also 

reported that individuals with lower vs. higher abdominal VAT, SAT, and IMAT radiodensity had 

greater levels of glucose and diabetes (25, 26). 

These studies were performed in predominantly Caucasian cohorts or were not stratified 

by race; thus, there remains a paucity of data on associations of AT radiodensity with biomarkers 

of T2D risk in non-Caucasian racial/ethnic groups. This is an important area of inquiry, as African 

Ancestry individuals, who are at a higher risk of T2D independent of overall adiposity (53-55), 

also exhibit different ectopic AT distributions compared to their Caucasian counterparts, such as 

having lower VAT (56-59), higher abdominal SAT (56, 58, 59), and higher total IMAT (61). 

Additionally, data on non-abdominal IMAT radiodensity, such as in the thigh, is very sparse. 

Skeletal muscle, which is insulin sensitive, is found in larger quantities in the thigh compared to 

the abdomen (274). The location of IMAT next to skeletal muscle suggests a role for IMAT in 

insulin resistance; indeed, IMAT-secreted factors were shown to reduce insulin sensitivity in 

myotubes in vitro (181), and thigh IMAT volume is positively associated with both insulin 

resistance and risk of T2D independent of overall obesity (62, 147, 270). There are also 

racial/ethnic differences in regional IMAT distribution, with studies reporting greater thigh and 

calf IMAT in African Ancestry individuals compared to Caucasians (60, 62, 275) as opposed to 

similar (275, 276) or lower (277)  levels of abdominal IMAT. 

Thus, our primary objective was to determine if lower AT radiodensity, including thigh 

IMAT radiodensity, was associated with higher fasting serum levels of glucose and insulin, as well 

as insulin resistance, in middle-aged and older African Ancestry men without T2D. We 

hypothesized that less-dense AT would be associated with worse glucose and insulin levels. 
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2.4 Methods 

2.4.1 Study Population 

All men in this analysis were from the Tobago Health Study, which has been previously 

described (161). Briefly, the Tobago Health Study is a population-based, prospective cohort study 

of community-dwelling men aged 40 years and older, residing on the Caribbean island of Tobago, 

Trinidad and Tobago. Men from Tobago are of homogeneous African ancestry with low European 

admixture (<6%) (278). Participants in the Tobago Health Study were recruited without regard to 

health status and men were eligible if they were ambulatory, not terminally ill, and without a 

bilateral hip replacement. The baseline visit occurred from 2004-2007 and recruited 2,482 men; of 

these, a random subset (N=1,725) attended the first follow-up visit from 2010-2014. Men used in 

the current analysis attended an ancillary study visit from 2014-2018, when a convenience sub-

sample of N=768 participants from the prior visit had computed tomography (CT) scans of the 

chest, abdomen, and mid-thigh for ectopic AT assessment. Exclusion from the current analysis 

included missing CT scans in the abdomen or in one or both thighs (N=33), having T2D (N=174), 

missing covariate data (N=12), non-African Caribbean ethnicity by self-report (N=43), and non-

fasting serum samples (N=1). Individuals with T2D were excluded to better reflect potential 

associations of AT radiodensity on glucose and insulin levels without confounding effects of the 

later disease process. The final analytical sample included 505 individuals. Written informed 

consent was obtained from each participant using forms and procedures approved by the 

University of Pittsburgh Institutional Review Board, the U.S. Surgeon General’s Human Use 

Review Board, and the Tobago Division of Health and Social Services Institutional Review Board. 

This study was completed in accordance with the Declaration of Helsinki. 
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2.4.2 Computed Tomography Scans 

Abdominal and thigh volumes and radiodensities were assessed on 3 mm thick slices and 

500 mm display field of view from scans acquired using a GE dual slice, high-speed NX/I CT 

scanner (GE Medical Systems, Waukesha, WI) with 120 KVp, 250 mA, 0.7 second gantry speed, 

and pitch of 1.5:1.  For participants with body weight greater than 200 lbs, the mA was increased 

to 300. CT contrast was not used. Only one CT scanner was used, and a single individual collected 

the scans for all participants. Scans were electronically transmitted to the central CT reading center 

at Vanderbilt University where image analysis and quality control were performed.  

Image analysis was performed using methods as previously described (276, 279, 280). 

Briefly, images were analyzed using a dedicated imaging processing workstation with custom-

programmed subroutines (OsiriX, Pixmeo, Geneva, Switzerland) and a dedicated pen computing 

display (Cintiq, Wacom Technology Corporation, Vancouver, WA, USA). A radiologist-trained 

analyst manually traced anatomical boundaries (skin, muscular fascia, muscle, and peritoneum) in 

CT scans. Tissue attenuation thresholds of −190 to −30 Hounsfield Units (HU) were used to 

distinguish AT voxels in these defined regions. For each tissue, the volume (mm3) and mean tissue 

attenuation (referred to here as AT radiodensity, in HU) were calculated. 

Abdominal VAT and SAT were measured from CT scans of 3 contiguous slices of 3mm 

thickness centered at L4-L5. A lateral scout image was used to determine the z-axis location of the 

L4-L5 intervertebral space and that location and the slice immediately above and the slice 

immediately below were used to reconstruct a 9-mm thick single block of images. VAT was 

defined as AT located within the peritoneal cavity; SAT was defined as AT located beneath the 

skin and superficial to the abdominal muscular fascia.  
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Thigh IMAT was measured from CT scans of 10 contiguous slices of 3mm thickness at the 

mid-thigh level in both legs. An anterior-posterior scout scan of the entire femur was used to 

localize the mid-thigh position, and that location and the four slices immediately above and five 

slices immediately below were used to reconstruct a 30-mm thick single block of images. IMAT 

was defined as AT located within thigh muscle groups. IMAT volume was defined as the total 

IMAT summed across both thighs, and IMAT radiodensity was the average AT attenuation across 

both thighs. 

Intrareader technical error (TE) in re-analysis of a 5% oversampling of blinded scans was 

0.6% for total abdominal volume, 1.4% for SAT volume, and 4.8% for VAT volume whereas TE 

for abdominal radiodensities were 0.7% for SAT and 0.5% for VAT. For thigh measures, TE was 

1.5% for total thigh volume, 2.7% for IMAT volume, and 1.0% for IMAT radiodensity. 

2.4.3 Anthropometric Measurements 

Standing height was measured to the nearest 0.1 cm using a wall-mounted stadiometer. 

Body weight was recorded to the nearest 0.1 kg without shoes on a balance beam scale. BMI was 

calculated from body weight and standing height (kg/m2). BMI categories were defined as normal 

weight (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30). Waist 

circumference was measured at the narrowest point of the waist using an inelastic tape. If there 

was no narrowest point, waist circumference was measured at the umbilicus. 
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2.4.4 Glucose and Insulin Measures 

Fasting serum glucose and insulin measures were measured at the Advanced Research and 

Diagnostics Laboratory (ARDL), University of Minnesota. Fasting serum glucose was measured 

using an enzymatic procedure (interassay CV: 1.3-1.8%) and fasting serum insulin was measured 

using a sandwich immunoassay procedure (interassay CV: 3.1%) (assays manufacturer: Roche 

Diagnostics, Indianapolis, IN). Glucose was assessed in mg/dL units that were converted to SI 

units (mmol/L) by dividing by 18. Insulin was assessed in pmol/L units. The degree of insulin 

resistance was estimated by homeostasis model assessment (HOMA2-IR) and calculated using 

fasting glucose and insulin values and the HOMA2 Calculator v2.2.3 available from 

http://www.dtu.ox.ac.uk/homacalculator/ (281). 

2.4.5 Other Measures 

Information on lifestyle habits (current smoking [yes/no], number of hours walked per 

week, watching 14 or more hours of television per week [yes/no], current intake of alcohol of more 

than 4 drinks per week [yes/no]), ethnic self-identification (dichotomized as African-Caribbean 

Ethnicity [yes/no]), and medication use were assessed using standardized interviewer-

administered questionnaires. Self‐reported information on walking was recorded as walking is the 

predominant form of physical activity on the island of Tobago.  Men were asked to bring all 

prescription medications taken in the past 30 days to their clinic visit. T2D was defined as currently 

taking an antidiabetic medication, regardless of fasting serum glucose level, or having a fasting 

serum glucose level of ≥7 mmol/l; all men with T2D were excluded from the current analyses. 

http://www.dtu.ox.ac.uk/homacalculator/
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2.4.6 Statistical Analyses 

Men were stratified by median AT radiodensity, and comparisons of their baseline 

characteristics were made using two-sample t-test or Wilcoxon rank-sum test for continuous 

variables and Chi-square tests for categorical variables. Age-adjusted partial Spearman 

correlations were performed between AT radiodensities and outcomes/covariates.  

Multiple linear regression models were performed separately for each outcome (glucose, 

insulin, HOMA2-IR), and separately for each predictor of interest (VAT radiodensity, SAT 

radiodensity, IMAT radiodensity). Insulin and HOMA2-IR were log-transformed to make 

residuals normal. Model covariates included age, weight, height, hours walked per week for 

exercise, watching 14+ hours of television per week, current smoking, and drinking 4+ alcoholic 

drinks per week. Identification of significant curvilinear relationships between AT volume and 

radiodensity (Figure 2.1) suggested that mutual adjustment for these variables would be 

inappropriate; thus, models including both AT volume and radiodensity were not included in our 

main analyses. A series of three models were run sequentially:  

Model 1: model covariates + a specific AT radiodensity  

Model 2: model covariates + VAT and SAT radiodensities  

Model 3: model covariates + VAT and IMAT radiodensity 

Multicollinearity was assessed using condition indices and was not found to be an issue in any of 

these models; however, multicollinearity was an issue for models including both SAT and IMAT 

radiodensities, so models which included simultaneous addition of both of these depots were not 

reported, but can be found in Supplementary Materials (Appendix B Supplementary Tables, 

p.157). Sensitivity analyses for regression models included further adjustment for respective total 

thigh and abdominal scan volumes (obtained from CT images), adjustment for respective AT depot 
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volume, and adjustment for respective AT depot volume after stratification by BMI category. In 

the BMI-stratified analyses, four individuals were excluded for having a BMI below 18.5 kg/m2. 

Changes in model fit statistics (Akaike Information Criteria [AIC] and Bayesian 

Information Criteria [BIC]) were assessed when all three AT radiodensity or all three AT volumes 

were added to covariate-adjusted models; though collinearity can affect the estimates of individual 

predictors, overall model fit is not affected, allowing simultaneous inclusion of multiple AT 

depots. A change in fit ≤ -2 for either AIC or BIC was regarded as representing greater model fit. 

Interactions between radiodensity and age were assessed. 

Statistical significance was based on an α = 0.05, and analyses were performed using SAS 

9.4 software (SAS Institute, Inc., Cary, NC). Graphical 3-Dimensional Scatterplot was generated 

using the package scatterplot3d (282) in R version 3.5.2 (283). 

2.5 Results 

2.5.1 General Baseline Characteristics 

Men had a median age of 61 years and a median BMI of 26.8 kg/m2 (Table 2.1). There 

were low rates of reported physical activity and high reported sedentary behavior, but other 

lifestyle factors of current smoking and alcohol intake were relatively low. We next stratified our 

sample characteristics by median AT radiodensities (Supplementary Table Appendix B Table 

1). Overall, individuals with AT radiodensities above the median in either the VAT, SAT, or IMAT 

depots had significantly lower anthropometric measures (weight, BMI, and waist circumference), 

lower AT depot volumes, and higher AT radiodensities in any depot (all p <0.0001).  
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2.5.2 Association of AT Depot Attenuation with Anthropometric Measures and Levels of 

Glucose and Insulin 

Table 2.2 shows interrelationships of AT radiodensities with anthropometric, CT-based, 

and glucose/insulin variables.  In general, AT radiodensities were strongly positively correlated 

with each other and strongly negatively correlated with anthropometry and AT volume measures, 

with stronger associations seen between VAT and SAT radiodensity (all p < 0.0001). AT 

radiodensity in any depot was strongly negatively correlated with insulin levels and HOMA2-IR 

(p < 0.0001), while only VAT and SAT radiodensity were significantly (though weakly) associated 

with glucose. 

The relationship between each AT depot’s radiodensity and corresponding volume was 

explored visually using a scatterplot (Figure 2.1). Relationships followed an inverse association, 

where tissues at higher radiodensities tended to be of lower volume while tissues at lower 

radiodensities tended to have much higher volumes. Though the IMAT depot followed a similar 

curvilinear relationship as the VAT and SAT depots, it increased in volume at a much higher 

radiodensity as compared to the other depots, and did not reach the levels of low radiodensity that 

the other depots did.  

The results from multiple linear regression analyses are shown in Table 2.3. Multiple linear 

regression model building indicated high collinearity between SAT and IMAT radiodensities; 

when regressing on one another, the model R2 for SAT and IMAT radiodensities was ~0.70. Given 

these strong interrelationships, reported regression models did not include additional adjustment 

for AT volume, nor did they include mutual adjustment for SAT and IMAT radiodensities (though 

sensitivity analyses including these adjustments can be found in Supplementary Tables 

Appendix B Table 2-4). 
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After adjustment for age, weight, height, alcohol intake, smoking, hours walked per week, 

and television watching, higher radiodensity in any tissue was associated with significantly lower 

serum insulin and lower HOMA2-IR (all p <0.0001). SAT and IMAT radiodensity associations 

persisted even after VAT radiodensity adjustment. To provide context using HOMA2-IR results, 

the smallest reported effect size of β=-0.10 (for VAT radiodensity, after adjustment for SAT 

radiodensity) indicates a 9.5% lower HOMA2-IR for every 1 SD increase in VAT radiodensity; in 

contrast, the largest effect size of β=-0.18 (for SAT adjustment alone) indicates a 16.5% lower 

HOMA2-IR for every 1 SD increase in SAT radiodensity. Notably, no AT radiodensity was 

statistically significantly associated with glucose, though there was a tendency towards lower 

glucose at higher AT radiodensities. Results remained similar in a number of sensitivity analyses 

including adjustment for all 3 AT radiodensities, adjustment for respective AT volumes, and 

adjustment for total abdominal and thigh CT scan volume (Supplementary Tables Appendix B 

Table 2-4).  

We additionally explored the potential interactions of AT radiodensity-by-age in the main 

analysis models. No significant AT radiodensity-by-age interactions were identified for any 

outcome. 

2.5.3 Model Fit Statistics 

Changes in model fit statistics (AIC and BIC) were evaluated for the linear regression 

models (Table 2.4), where covariate-adjusted models were further adjusted for either all three AT 

radiodensities or all three AT volumes. For linear regression models, the simultaneous addition of 

VAT, SAT, and IMAT radiodensities to log-insulin and log-HOMA2-IR models greatly improved 

model fit by both AIC and BIC criteria. Compared to volume-alone or volume- and radiodensity-
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adjusted models, the radiodensity-alone models accounted for a greater increase in model fit. 

Glucose models had worsening model fit by inclusion of AT radiodensities and/or volumes. 

Changes in model AIC and BIC for individual AT radiodensities and volumes remained similar to 

simultaneous AT inclusion (Supplementary Table Appendix B Table 5). 

2.5.4 Models Stratified by BMI-Category 

To further disentangle the relationship between AT volume, radiodensity, and T2D risk 

factors, we investigated the consistency of these relationships within each by BMI category.  

Models adjusted for covariates age, hours walking for exercise, TV watching, smoking, drinking, 

and a specific AT depot’s volume and radiodensity together. The regression coefficients for each 

depot’s radiodensity and volume are plotted in Supplementary Figures Appendix B Figure 1-3. 

Briefly, an overall trend was observed in which, after adjustment for AT volume, coefficients for 

AT radiodensity were significantly and inversely associated with log-insulin and log-HOMA2-IR 

in individuals with overweight and obesity, but not in individuals with normal weight status. 

Conversely, AT volumes were significantly and positively associated with log-insulin and log-

HOMA2-IR in individuals with normal weight status, but not in individuals with overweight or 

obesity, after adjustment for AT radiodensity. Only lower VAT radiodensity and higher SAT 

volume were significantly associated with small increases in glucose, and only in individuals with 

normal weight status. These results were supported by assessing changes in model fit statistics 

(Supplementary Table Appendix B Table 6). 
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2.6 Discussion 

In this population study of non-diabetic middle-aged and older African ancestry men, we 

identified relationships between higher AT radiodensity and better levels of insulin and insulin 

resistance. These relationships were overall similar but not entirely consistent with those seen in 

predominantly Caucasian or race -adjusted cohorts. Our study included the novel addition of thigh 

IMAT radiodensity, an AT depot in peripheral skeletal muscle, which showed associations that 

were independent of and as strong as VAT radiodensities. Importantly, insulin and HOMA2-IR 

model fits were largely improved with the addition of AT radiodensities, demonstrating that AT 

radiodensity may be most closely linked to insulin compared to glucose levels in these men.   

AT radiodensity is a CT-derived measure indicating the tissue’s opacity to X-rays. As such, 

it is not a direct measure of AT biology, which can only be assessed through invasive techniques 

such as biopsies. Nonetheless, studies indicate that AT radiodensity can reflect structural aspects 

of AT (17-19) and is associated with metabolic health (22-26). Importantly, there is a lack of 

information on AT radiodensity in African Ancestry populations, who are at higher risk for 

development of T2D independent of overall obesity (53-55). This is an important knowledge gap, 

as there are known racial/ethnic differences in AT distribution which may impact T2D risk, and 

suggestions of racial/ethnic differences in AT radiodensity as well (25). While cohort studies of 

Framingham and MESA have laid the groundwork for the associations of AT radiodensity with 

cardiometabolic health, further studies of these associations in African Ancestry individuals, 

specifically, and focusing additionally on relevant non-abdominal AT depots are needed to 

demonstrate consistency of findings in this high-risk racial/ethnic group.  

While explorations of AT radiodensity and diabetes-related biomarkers are relatively 

novel, we are the first study to report on thigh IMAT radiodensity. MESA found that levels of 
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glucose and prevalence of diabetes increased across decreasing quartiles of abdominal IMAT 

radiodensity (independent of age, gender, and race/ethnicity) (26), indicating that IMAT 

radiodensity may play a role in diabetes risk. In contrast, our study found no associations between 

lower thigh IMAT radiodensity and fasting glucose, but did find significant associations with 

higher insulin and insulin resistance, even after adjustment for VAT radiodensity. It is important 

to note that regional IMAT accumulation may differentially impact the relationship between IMAT 

and metabolic health (284). Comparisons of regional distribution of IMAT are not well studied; 

however, results from Ruan et al (275) suggest that the thigh may have a greater amount of IMAT 

compared to the waist. Additionally, studies suggest that IMAT in African Ancestry individuals 

tends to be found in larger amounts in the thigh (60, 275) but not in the abdomen (275-277) when 

compared to Caucasian individuals. These differences in IMAT distribution and their metabolic 

consequences suggest a need for greater understanding of non-abdominal IMAT radiodensity and 

T2D risk factors.  

Another interesting finding regarding IMAT radiodensity was its high collinearity with 

SAT, but not VAT, radiodensity. IMAT volume increases with increasing total AT, and 

racial/ethnic differences suggest that African American individuals have a greater IMAT increase 

at higher levels of adiposity compared to Asian and Caucasian individuals (61). We and others 

have demonstrated that while IMAT increases with aging, the rate of IMAT accumulation depends 

on weight gain status, with greater accumulation in weight-gainers and lesser accumulation in 

weight-losers (272, 285); this suggests that IMAT accumulation is influenced by overall adiposity, 

a large proportion of which is comprised of SAT. The origins of IMAT adipocytes is hypothesized 

to be derived from muscle-based mesenchymal progenitor cells (286); however, a recent study in 

mice demonstrated the ability of SAT-derived adipocyte progenitors to be released from SAT and 
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take up residence in muscle as IMAT in response to nutrient overload (287). People with obesity 

have a five times higher level of circulating progenitor cells (288). We report higher IMAT 

volumes at relatively higher radiodensities compared to SAT, perhaps indicating an increase in 

cell number rather than cellular hypertrophy as the driving force behind increased IMAT volume. 

Further research into human IMAT cellularity and origins is warranted. 

Our findings of associations between abdominal AT radiodensities and glucose and insulin 

were similar, but not entirely consistent, with cross-sectional reports in men from the Framingham 

study (24). Notably, we reported stronger associations between SAT radiodensity than 

Framingham after adjustment for weight and height; additionally, our associations with glucose 

were not statistically significant and were markedly smaller than those reported in Framingham. 

These differences may be due to systematic differences between measurement collections, as 

Framingham scanned a much larger abdominal area; or they may also be attributable to analyzed 

population differences, given the overall differences between the cohorts (Caucasian vs. African 

Ancestry, ~10 year average older age in our study) and our exclusion of individuals with T2D.  

In addition to examining the relationship between AT radiodensities and diabetes-related 

biomarkers, we were also able to determine the relative importance of AT radiodensity compared 

to AT volume, measures which are both derived from the same CT scan and reflect different 

aspects of tissue structure. We found that any specific AT depot’s volume and radiodensity was 

strongly and inversely associated and followed a curvilinear pattern, similar to previous reports 

(25, 289). Given the strength of the curvilinear relationships in our study sample, we felt that 

mutual adjustment for AT radiodensity and volume would not be appropriate. However, to get at 

the relative importance of AT radiodensity compared to volume, we compared changes in model 

fit statistics. We report consistent and large improvements of model fit with the addition of AT 
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radiodensities to our models of insulin and HOMA2-IR. Importantly, these improvements in model 

fit were remarkably larger than those seen in models using AT volumes, and they weren’t 

substantially improved by simultaneous addition of AT radiodensities and volumes. However, 

stratification by BMI category revealed a pattern whereby AT volume was a more significant and 

informative marker in individuals with normal weight but not in individuals with overweight or 

obesity, and AT radiodensity exhibited the opposite pattern. That the associations with 

radiodensity were present only in individuals with overweight and obesity after volume adjustment 

may indicate dysfunctional AT growth in these individuals.  

Our study has several potential limitations. Given our use of an all-male cohort, we were 

unable to examine associations in women. Another limitation is the use of self-reported physical 

activity, which may not be the most accurate assessment of physical activity (290). However, our 

study also has several strengths. The use of multi-slice CT at multiple anatomical locations allowed 

us to obtain and compare volumetric and radiodensity data across multiple AT depots. 

Additionally, the use of an African-ancestry cohort provides information on an understudied and 

high-risk ethnic group.  

In conclusion, higher AT radiodensities are significantly associated with lower insulin and 

HOMA2-IR levels in a cohort of African-ancestry men. These associations are independent of 

adjustment of other depot radiodensities. Our novel thigh IMAT findings highlight the importance 

of this depot’s radiodensity in diabetes risk. Future studies investigating changes in IMAT 

radiodensity with insulin metabolism and mechanistic studies of AT radiodensity are warranted. 
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2.7 Tables and Figures 

Table 2.1 Characteristics of African-Caribbean men (N=505) 

Variable Median (IQR), Mean (SD), or N (%) 

Age (years) 61.0 (56.0, 68.0) 

Weight (kg) 82.5 (73.4, 93.1) 

Height (cm) 175.6 (6.7) 

BMI (kg/m2) 26.8 (24.2, 29.9) 

Underweight [BMI < 18.5] (%) 4 (0.8%) 

Normal Weight [18.5 ≤ BMI < 25] (%) 159 (31.5%) 

Overweight [25 ≤ BMI < 30] (%) 219 (43.4%) 

Obese [BMI ≥ 30] (%) 123 (24.4%) 

Waist Circumference (cm) 95.9 (89.0, 104.0) 

Lifestyle and Comorbidities 

Current Smoker (%) 36 (7.1%) 

Drinks Alcohol 4+/week (%) 67 (13.3%) 

Hours Walked per Week 2.0 (0.0, 5.0) 

Watches television ≥ 14 hours/week (%) 242 (47.9%) 

CT-Derived Measures 

VAT Volume (cm3) 78.3 (49.0, 118.0) 

SAT Volume (cm3) 174.4 (118.6, 234.1) 

IMAT Volume (cm3) 108.0 (84.4, 140.5) 

VAT Radiodensity (HU) -89.6 (-94.7, -82.1) 

SAT Radiodensity (HU) -99.7 (-103.3, -94.0) 

IMAT Radiodensity (HU) -70.9 (-73.3, -68.0) 

Total Abdominal Volume (cm3) 563.3 (465.1, 668.0) 

Total Thigh Volume (cm3) 1625.3 (1396.4, 1849.4) 

Glucose and Insulin Metabolism 

Glucose (mmol/L) 4.8 (4.4, 5.2) 

Insulin (pmol/L) 52.0 (34.0, 81.0) 

HOMA2-IR 1.0 (0.6, 1.5) 
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Results reported as Median (IQR) or Mean (SD) for continuous variables and N (%) for categorical.  

Abbreviations: VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue, IMAT = 

Intermuscular Adipose Tissue 
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Table 2.2 Interrelationship of all adiposity and metabolic measures used in our analyses (age-adjusted 

Spearman correlations) 

 Variable 
VAT 

Radiodensity 

SAT 

Radiodensity 

IMAT 

Radiodensity 

Weight (kg) -0.57‡ -0.60‡ -0.39‡ 

BMI (kg/m2) -0.62‡ -0.68‡ -0.44‡ 

Waist Circumference (cm) -0.64‡ -0.72‡ -0.47‡ 

VAT Volume (cm3) -0.82‡ -0.70‡ -0.47‡ 

SAT Volume (cm3) -0.64‡ -0.84‡ -0.57‡ 

IMAT Volume (cm3) -0.52‡ -0.61‡ -0.57‡ 

Total Abdominal Scan Volume 

(cm3) 
-0.67‡ -0.74‡ -0.48‡ 

Total Thigh Scan Volume (cm3) -0.55‡ -0.67‡ -0.49‡ 

VAT Radiodensity (HU) -- 0.74‡ 0.48‡ 

SAT Radiodensity (HU) 0.74‡ -- 0.66‡ 

IMAT Radiodensity (HU) 0.48‡ 0.66‡ -- 

Glucose (mmol/L) -0.14† -0.13† -0.08 

Insulin (pmol/L) -0.58‡ -0.63‡ -0.47‡ 

HOMA2-IR -0.58‡ -0.63‡ -0.47‡ 

 

†= <0.05, ‡= <0.0001 

Abbreviations: VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue, IMAT = 

Intermuscular Adipose Tissue 
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Figure 2.1 Scatterplot of AT radiodensity by volume, per tissue depot 

Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose 

Tissue, IMAT = Intermuscular Adipose Tissue 
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Table 2.3 Difference in fasting glucose and insulin levels and HOMA2‐IR per 1 SD (95% CI) increase in AT radiodensity 

Outcome Model VAT Radiodensity 

(SD = 8.44 HU) 

SAT Radiodensity 

(SD = 10.71 HU) 

IMAT Radiodensity 

(SD = 5.70 HU) 

Glucose (mmol/L)  

M + Depot -0.04 (-0.11, 0.03) -0.05 (-0.12, 0.02) -0.01 (-0.07, 0.05) 

M + VAT + SAT -0.03 (-0.10, 0.05) -0.03 (-0.11, 0.04) -- 

M + VAT + 

IMAT 

-0.04 (-0.11, 0.03) -- -0.00 (-0.07, 0.07) 

Log Insulin (pmol/L)  

M + Depot -0.16 (-0.21, -0.11) ‡ -0.18 (-0.24, -0.13) ‡ -0.16 (-0.21, -0.11) ‡ 

M + VAT + SAT -0.10 (-0.16, -0.05) † -0.14 (-0.20, -0.08) ‡ -- 

M + VAT + 

IMAT 

-0.12 (-0.17, -0.07) ‡ -- -0.13 (-0.18, -0.08) ‡ 

Log HOMA2-IR   

M + Depot -0.16 (-0.21, -0.11) ‡ -0.18 (-0.24, -0.13) ‡ -0.16 (-0.20, -0.11) ‡ 

M + VAT + SAT -0.10 (-0.16, -0.05) † -0.14 (-0.20, -0.08) ‡ -- 

M + VAT + 

IMAT 
-0.12 (-0.17, -0.07) ‡ -- -0.13 (-0.18, -0.08) ‡ 

M = age, weight, height, alcohol intake, smoking, hours walked/week, and television watching ≥ 14 hours/week 

Significant P-values: † = <0.05, ‡ = <0.0001 

Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue, IMAT = Intermuscular Adipose 

Tissue 
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Table 2.4 Change in multiple linear regression model fit statistics after inclusion of all AT depot radiodensities 

Outcome 

Δ AIC Δ BIC 

All Radiodensities All Volumes 
Radiodensities & 

Volumes 
All Radiodensities All Volumes 

Radiodensities & 

Volumes 

 Glucose 

(mmol/L) 
2.77 3.07 3.89 3.00 3.30 4.43 

 Log-Insulin 

(pmol/L) 
-57.45 † -29.73 † -58.95 † -57.21 † -29.50 † -58.41 † 

 Log-HOMA2-IR  -58.01 † -29.47 † -59.48 † -57.78 † -29.24 † -58.94 † 

† = improvement of fit (Δ ≤ -2) compared to covariate-alone model 

 

Compares inclusion/exclusion of (1) all 3 AT radiodensities simultaneously, (2) all three AT volumes simultaneously, or (3)all 3 AT 

radiodensities AND volumes, to the base covariate model [age, weight, height, alcohol intake, smoking, hours walked/week, and television 

watching ≥ 14 hours/week] 

 

Abbreviations: AT=Adipose Tissue 
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3.1 Abstract 

Objective: Both upper and lower body tissue compositions are associated with type 2 diabetes; 

however, simultaneous adjustment of regional body compositions as measured by detailed imaging 

methods are lacking. We assessed the associations of upper and lower body adipose tissue (AT) 

and muscle tissues with type 2 diabetes categories in African Caribbean men. 

Methods: This cross-sectional analysis included 610 men (median age: 62 years; mean BMI: 27.8 

kg/m2) from the Tobago Health Study. Diabetes categories (normal glucose, impaired fasting 

glucose, type 2 diabetes) were defined by fasting glucose and antidiabetic medication use. 

Abdominal and thigh computed tomography scans were obtained. The abdomen was divided into 
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three components: subcutaneous AT (ASAT), visceral AT (VAT), and remaining “Other tissues”; 

the thigh was divided into four components: subcutaneous AT (TSAT), intermuscular AT (IMAT), 

muscle, and bone. A log2 ratio transformation was applied to each region to create two abdominal 

component ratios (ASAT:Other and VAT:Other) and three thigh component ratios (TSAT:Bone, 

IMAT:Bone, and Muscle:Bone). Linear regressions were used to predict glucose, insulin, and 

HOMA-IR in unmedicated participants. Partial proportional odds models were used to predict 

diabetes category in all participants. 

Results: A two-fold higher ASAT:Other ratio was associated with significantly higher log-

transformed glucose, insulin, and HOMA-IR (β’s range 0.07-0.19), and with higher odds of being 

in a higher diabetes category (OR: 1.95, 95% CI:1.14-3.34). A two-fold higher thigh Muscle:Bone 

ratio was strongly associated with lower odds of being in a higher diabetes category (OR: 0.36, 

95%CI: 0.13-0.98). Other tissues showed differential but nonsignificant associations with 

continuous risk factors, and none showed associations with diabetes category. 

Conclusions: ASAT and thigh muscle were the strongest determinants of diabetes category, with 

little contributions from other body tissues. The simultaneous inclusion of upper and lower body 

compositions may yield greater information on differential risk of metabolically active tissues.  

3.2 Introduction 

Obesity, and the regional growth of adipose tissue (AT), is a major risk factor for 

cardiometabolic diseases such as hypertension and type 2 diabetes. Simultaneous comparisons of 

the effects of upper- and lower-body compartments with type 2 diabetes indicate harmful effects 

of upper-body AT accumulation and protective effects of lower-body AT accumulation (63). 
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Imaging methods such as computed tomography (CT) can identify distinct metabolically active 

tissues within these regions, such as AT and muscle, and demonstrate further differential 

associations with cardiometabolic disease. Abdominal subcutaneous AT (ASAT) and visceral AT 

(VAT) are generally positively associated with type 2 diabetes and related biomarkers, with most 

studies indicating a stronger association with VAT (22, 23, 269, 291, 292). Within the lower body, 

results are more mixed and depend on tissue type, studied population, and modeled covariates. 

After adjustment for upper-body adiposity, thigh subcutaneous AT (TSAT) appear to be protective 

against or unassociated with type 2 diabetes and related biomarkers (64, 65, 67, 293-295). In 

contrast, lower-body intermuscular AT (IMAT) is generally positively associated (62, 64, 65, 147, 

270, 272, 293). Thigh muscle may be beneficial or harmful, with these differential associations 

seemingly due to effect modification by obesity status (67, 296). 

The collection and analysis of both upper and lower-body CT scans for type 2 diabetes risk 

assessment is relatively uncommon (64-67) (293-295). African Ancestry individuals, who are at 

greater risk for type 2 diabetes independent of overall adiposity (53-55) and exhibit different AT 

distributions (greater ASAT (56, 58, 59) and IMAT (61), lower VAT (56-59)) compared to their 

Caucasian counterparts, are underrepresented in this literature. Further, previous analyses of upper 

and lower-body composition do not analytically treat body imaging data as compositional data. 

Compositional data are defined as components which sum to a whole, and as such, they have an 

inherent correlation structure so that an increase in one component must come at the expense of at 

least one other component. Such data are more appropriately modeled using a compositional data 

analysis (CoDA) approach (260); however, while health sciences fields such as high-throughput 

sequencing (262), physical activity measures (263), and diet (264) are applying compositional 

approaches to their data, the body composition field has not. 
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This analysis uses a cohort of African Caribbean men that has both abdominal and thigh 

CT scans. Using a CoDA approach, we compare the simultaneous and relative effects of upper 

(ASAT and VAT) and lower (TSAT, thigh IMAT, and thigh muscle) tissues with type 2 diabetes 

prevalence. 

3.3 Methods 

3.3.1 Study Population 

All men in this analysis were from the Tobago Health Study, which has been previously 

described (161). Briefly, the Tobago Health Study is a population-based, prospective cohort study 

of community-dwelling men aged 40 years and older, residing on the Caribbean island of Tobago, 

Trinidad and Tobago. Men from Tobago are of homogeneous African ancestry with low European 

admixture (<6%) (278). Participants in the Tobago Health Study were recruited without regard to 

health status and men were eligible if they were ambulatory, not terminally ill, and without a 

bilateral hip replacement. The baseline visit occurred from 2004-2007 and recruited 2,482 men; of 

these, a random subset (N=1,725) attended the first follow-up visit from 2010-2014. Men used in 

the current analysis attended an ancillary study visit from 2014-2018, when a convenience sub-

sample of N=768 participants from the prior visit had CT scans of the chest, abdomen, and mid-

thigh for ectopic AT assessment. Exclusion from the current analysis included non-African 

Caribbean ethnicity by self-report (N=67), missing CT scans in the abdomen or in one or both 

thighs (N=31), missing covariate data (N=53), being underweight (N=4), and non-fasting serum 

samples (N=1). Two individuals were also excluded for improper serum handling that led to 
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glucose degradation. The final analytical sample included 610 individuals. Written informed 

consent was obtained from each participant using forms and procedures approved by the 

University of Pittsburgh Institutional Review Board, the U.S. Surgeon General’s Human Use 

Review Board, and the Tobago Division of Health and Social Services Institutional Review Board. 

This study was completed in accordance with the Declaration of Helsinki. 

3.3.2 Computed Tomography Scans 

Abdominal and thigh volumes were assessed on 3 mm thick slices and 500 mm display 

field of view from scans acquired using a GE dual slice, high-speed NX/I CT scanner (GE Medical 

Systems, Waukesha, WI) with 120 KVp, 250 mA, 0.7 second gantry speed, and pitch of 1.5:1.  For 

participants with body weight greater than 200 lbs, the mA was increased to 300. CT contrast was 

not used. Only one CT scanner was used, and a single individual collected the scans for all 

participants. Scans were electronically transmitted to the central CT reading center at Vanderbilt 

University where image analysis and quality control were performed.  

Image analysis was performed using methods as previously described (276, 279, 280). 

Briefly, images were analyzed using a dedicated imaging processing workstation with custom-

programmed subroutines (OsiriX, Pixmeo, Geneva, Switzerland) and a dedicated pen computing 

display (Cintiq, Wacom Technology Corporation, Vancouver, WA, USA). A radiologist-trained 

analyst manually traced anatomical boundaries (skin, muscular fascia, muscle, bone, and 

peritoneum) in CT scans. Tissue attenuation thresholds of −190 to −30 Hounsfield Units (HU) 

were used to distinguish AT voxels in these defined regions and tissue attenuations of -29 to 160 

HU were used to distinguish lean muscle voxels. For each tissue, the volume (mm3) was calculated. 
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Abdominal VAT and ASAT were measured from CT scans of 3 contiguous slices of 3mm 

thickness centered at L4-L5. A lateral scout image was used to determine the z-axis location of the 

L4-L5 intervertebral space and that location and the slice immediately above and the slice 

immediately below were used to reconstruct a 9-mm thick single block of images. VAT was 

defined as AT located within the peritoneal cavity; ASAT was defined as AT located beneath the 

skin and superficial to the abdominal muscular fascia. The remaining non-VAT and non-ASAT 

tissues were not separately measured, but were combined to form an “Other” tissue group. 

TSAT, thigh IMAT, and thigh muscle were measured from CT scans of 10 contiguous 

slices of 3mm thickness at the mid-thigh level in both legs. An anterior-posterior scout scan of the 

entire femur was used to localize the mid-thigh position, and that location and the four slices 

immediately above and five slices immediately below were used to reconstruct a 30-mm thick 

single block of images. Hand-drawn boundaries were traced at the medulla, cortex, thigh muscles, 

fascia, and skin in three of the ten slices; boundaries were imputed over the remaining slices and 

verified for accuracy by the trained analyst. Bone volume was identified as the cortical volume. 

Lean muscle volume was defined as the sum of the adductors, hamstrings, and quadriceps muscles 

across both thighs. TSAT was defined as AT located between the skin and the muscle fascia, and 

IMAT was defined as AT located within thigh muscle groups. TSAT and IMAT volumes were 

defined as the total AT type summed across both thighs. 

3.3.3 Generation of Compositions and Additive Log Ratio Transformation 

As the regional distribution of tissues is of primary interest, two separate compositions 

were created: abdominal and thigh. The abdominal composition was comprised of VAT, ASAT, 
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and the ‘Other’ remaining abdominal tissues. Similarly, thigh composition was comprised of 

TSAT, IMAT, muscle, and bone.  

The additive log ratio (ALR) transformation is described in greater detail elsewhere (260). 

Briefly, for a composition made up of D components (x1, x2, …, xD), the ALR transformation 

generates D-1 terms where each term is the log of the ratio of each component to a referent 

component, ex. log(x1/xD), log(x2/xD), …, log(xD-1/xD). When a composition is used as an 

independent variable in a regression model, all D-1 components are entered into the model as 

covariates, and the interpretation of the regression coefficient is determined as the log base-fold 

increase in the ratio of xi to xD, holding all other component ratios constant. 

For the abdominal composition, the ‘Other’ tissue component was used as the referent; for 

the thigh composition, the bone was used as a referent. A log2 transformation was applied to these 

ratios so that interpretation of coefficients is for a two-fold increase in the ratio numerator 

compared to the denominator. 

3.3.4 Outcome Definition: Type 2 Diabetes Categories 

Fasting serum glucose and insulin measures were measured at the Advanced Research and 

Diagnostics Laboratory (ARDL), University of Minnesota. Fasting serum glucose was measured 

using an enzymatic procedure (interassay CV: 1.3-1.8%). Diabetes categories were defined based 

on American Diabetes Association (ADA) criteria (92). Individuals taking antidiabetic 

medications were classified as “Type 2 Diabetes” regardless of measured fasting glucose.  
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3.3.5 Other Measures 

Standing height was measured to the nearest 0.1 cm using a wall-mounted stadiometer. 

Body weight was recorded to the nearest 0.1 kg without shoes on a balance beam scale. BMI was 

calculated from body weight and standing height (kg/m2).Information on current smoking [yes/no], 

number of hours walked per week, watching 14 or more hours of television (TV) per week 

[yes/no], current intake of alcohol of more than 4 drinks per week [yes/no], ethnic self-

identification (dichotomized as African-Caribbean Ethnicity [yes/no]), family history of 

hypertension or diabetes [yes/no] and medication use were assessed using standardized 

interviewer-administered questionnaires. Self‐reported information on walking was recorded as 

walking is the predominant form of physical activity on the island of Tobago.  Men were asked to 

bring all prescription medications taken in the past 30 days to their clinic visit. 

3.3.6 Statistical Analyses 

Population characteristics were reported overall and stratified by obesity status; p-values 

for linear trend were reported, with linear contrasts used for continuous variables and Cochrane-

Armitage trend test used for categorical variables. Ternary plots for abdominal and thigh 

compositions were generated using the package ‘compositions’ (297) in R version 3.5.2 (283), and 

the mean compositions for each hypertension and diabetes category was plotted over the 

population distribution. Age-adjusted Pearson correlations were reported between the ALR-

transformed components and BMI. Linear regression (for log glucose, log insulin, and log HOMA-

IR outcomes) and partial proportional odds regression (for ordinal diabetes category outcome) 

models were performed adjusting for age, BMI, family histories of diabetes, drinking 4+ alcoholic 
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drinks per week, current smoking, watching TV ≥ 14 hours per week, hours walked per week for 

exercise, taking lipid-modifying medications, and the ALR-transformed abdominal and thigh 

compositions; linear regressions for continuous biomarkers were additionally adjusted for 

antidiabetic medication use. Partial proportional odds models with unequal slopes for lipid-

modifying medications was chosen after rejection of the score test and empirical cumulative logit 

plots indicated that this variable was the only one violating the proportional odds assumption in 

these models. Interactions of tissues with respective total abdominal or thigh volumes, or with 

BMI, were also visualized and assessed using the PROCESS macro (298). Statistical significance 

was based on α = 0.05, and analyses were performed using SAS 9.4 software (SAS Institute, Inc., 

Cary, NC). 

3.3.6.1 Sensitivity analysis 

Regression analyses which use only the abdominal compositions and total abdominal 

volume or only the thigh compositions and total thigh volumes are presented in Supplementary 

Tables Appendix C Table 2 and Appendix C Table 3, respectively. 

Our abdominal composition in main analyses was divided into three components: the 

ASAT, VAT, and “Other tissue” components; these were chosen as only the total abdominal 

volume, the ASAT, and the VAT were accurately traced and measured (as described in Methods 

above), while other abdominal tissues were not separately quantified. Given that the “Other” 

component is thus comprised of various abdominal tissues (organs, bone and bone marrow, 

muscle, and IMAT), with muscle and IMAT being of key interest in our analyses, as a sensitivity 

analysis we estimated the abdominal muscle and IMAT without manual tissue tracing in the area 

between the peritoneal cavity and the muscular fascia using attenuation tissue thresholds defining 

AT (-190 to -30 HU) and lean muscle (-29 to 160 HU). Using this method, estimates of abdominal 
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IMAT are likely to include spinal bone marrow AT, and thus abdominal IMAT would be 

overestimated. We previously accurately measured abdominal VAT, ASAT, muscle, and IMAT 

during a previous study visit of the Tobago Health Study (N=301, men not part of this main 

analysis), and correlations of accurately measured abdominal muscle and IMAT with VAT, ASAT, 

and total abdominal volume in the previous visit were similar to correlations obtained within our 

sensitivity analysis estimates (Supplementary Table Appendix C Table 4); thus, our estimates 

of muscle and IMAT in the abdomen should serve as good surrogates for the true measures. 

Abdominal compositions in the sensitivity analyses now consisted of ASAT, VAT, abdominal 

IMAT, abdominal muscle, and remaining “Other”, such that two new logratio terms (IMAT:Other 

and Muscle:Other) were included in models. Models were otherwise constructed as indicated in 

the main analyses. 

Other sensitivity analyses included the addition of thigh muscle attenuation 

(Supplementary Table Appendix C Table 5), a qualitative measure representing 

intramyocellular lipid accumulation (299, 300), which was defined as the average HU across 

measured thigh volumes, where a lower average HU indicates greater fatty infiltration. 

3.4 Results 

3.4.1 General Baseline Characteristics 

Overall population characteristics and characteristics stratified by obesity status are 

displayed in Table 3.1. Men were slightly older and overweight, with a median age of 62 and mean 



101 

BMI of 27.7 kg/m2. About 23% of the men had type 2 diabetes, with a majority (~76%) being on 

an antidiabetic medication. 

Ternary plots (Figure 3.1-Figure 3.4) were constructed to show overall abdominal and 

thigh composition distributions in the population, as well as the mean compositions for each of the 

diabetes categories. Ternary plots are read such that the closer an individual is plotted towards a 

particular corner, the greater that individual’s composition is comprised of that component (with 

a corner being completely 100% that composition).  In the abdominal compositions (Figure 3.1), 

individuals in higher diabetes categories appeared to have a greater %ASAT, and a slight shift to 

having a greater %VAT. In the thigh compositions (Figure 3.2-Figure 3.4), individuals in higher 

diabetes categories appeared to have greater %TSAT and %IMAT, while having lesser %Bone 

and %Muscle. 

3.4.2 Association of Tissue Depots with Anthropometric Measures and Diabetes Categories 

Age-adjusted Pearson correlations (Table 3.2) were performed to investigate associations 

between ALR-transformed AT components, BMI, and continuous risk factor measures. BMI was 

most strongly correlated with ASAT and TSAT, and showed similar correlations with VAT and 

IMAT components. Interrelationships among all of the components were high, with some of the 

highest correlation coefficients being between ASAT and either of the thigh AT components. 

Despite these higher correlations, multicollinearity among these variables was not identified when 

investigating condition indices and variance proportions in regression models. 

We next performed linear regression models (for log glucose, log insulin, and log HOMA-

IR) and partial proportional odds regression models (for diabetes categories) (Table 3.3). For 

upper-body composition, after adjustment for risk factors, antidiabetic medication use, and lower 
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body composition, higher ASAT ratios were statistically significantly associated with higher log 

glucose and log HOMA-IR (β = 0.06 and 0.15, respectively; both p < 0.05), while non-significantly 

associated with higher log insulin (β = 0.09, p=0.10); meanwhile, higher VAT ratios were only 

significantly associated with higher log insulin and log HOMA-IR (both β = 0.10, p < 0.05). For 

lower-body compositions, no component was statistically significantly associated with glucose, 

insulin, or HOMA-IR; however, TSAT and muscle were inversely associated with log glucose and 

positively associated with log insulin, while IMAT was inversely associated with both log insulin 

and log HOMA-IR. 

When looking at diabetes categories, only ASAT (OR: 1.81, 95% CI: 1.06-3.10) and thigh 

muscle (OR: 0.37, 95%CI: 0.14-1.01) were associated with odds of being in a higher diabetes 

category. Though neither the VAT, IMAT, or TSAT components reached statistical significance, 

the point estimates and confidence intervals for TSAT (OR: 0.71, 95%CI: 0.43-1.18) suggested a 

potentially protective effect against diabetes.  

3.4.3 Interactions 

Interactions between tissue ratios and the overall volume of the respective scanned region 

were assessed. There were no interactions of component ratios by their respective total abdominal 

or thigh volumes in continuous glucose, insulin, or insulin resistance models. However, in models 

with a dichotomous diabetes status outcome, significant interactions were identified for ASAT and 

TSAT. In models with ASAT interactions, as total abdominal size increased, the harmful 

association of higher ASAT with greater odds of type 2 diabetes was attenuated and then reversed. 

In contrast, as total thigh size increased, the protective association of higher TSAT with lower odds 

of type 2 diabetes grew stronger. 
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If looking at interactions by BMI instead of by regional size, similar results were obtained 

as with the regional volume interactions. However, some additional interactions with thigh IMAT 

were seen, whereby at higher BMIs, higher thigh IMAT was associated with lower log-insulin, 

and at lower BMIs, higher thigh IMAT was associated with greater odds of type 2 diabetes. 

3.4.4 Sensitivity Analyses 

Models which used only abdominal CT scans (Supplementary Table Appendix C Table 

2) or only thigh CT scans (Supplementary Table Appendix C Table 3) showed somewhat 

different results when compared to main analysis models. Models which included only upper-body 

measures had slightly attenuated effects for ASAT and slightly larger effects for VAT than those 

in the combined upper and lower-body models. For models which included only lower-body 

measures compared to main analysis models, results were more mixed. For TSAT, results for log-

insulin and log-HOMA-IR were much stronger in the lower-body alone models, while the 

association with diabetes category was attenuated. For IMAT, the log-insulin and log-HOMA-IR 

effects were more attenuated in the lower-body alone models. And for thigh muscle, associations 

with glucose and with diabetes category were stronger in the lower-body alone models. 

Main analysis results remained consistent in sensitivity analyses where abdominal muscle 

and IMAT were estimated and included as additional independent component ratios 

(Supplementary Table Appendix C Table 4) and in models with adjustment for thigh muscle 

density (Supplementary Table Appendix C Table 5). 
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3.5 Discussion 

We show that upper-body ASAT, but not VAT, is the primary AT depot associated with 

diabetes in this African-ancestry population. Additionally, we show that inclusion of thigh muscle 

with other body tissues is also important for assessing associations with type 2 diabetes. Our 

findings underscore the importance of including both upper and lower-body tissues in analyses of 

diabetes risk and development, and indicate that the role of SAT in diabetes may be 

underappreciated in this population. 

Previous studies which have included both abdominal and thigh tissues together (64-67) 

(293-295) tended to exclude some tissues within the fully-adjusted models and did not take into 

account total abdominal or thigh areas. Given the structural nature of compositional data and the 

non-CoDA approaches used in previous analyses, collinearity issues may have impacted the ability 

to simultaneously adjust for all tissue types and/or adjust for total abdominal and thigh volumes in 

addition to body mass. By using a CoDA approach, we are able to overcome structural collinearity 

issues within body composition data, allowing for adjustments of multiple tissue types and total 

regional sizes. 

The most surprising finding in our study is the strong positive association of ASAT with 

diabetes, while there was no association of VAT with diabetes. Our findings may differ from other 

published results for multiple reasons. First, while abdominal imaging scans are more common in 

body imaging studies than thigh imaging scans, simultaneous inclusion of abdominal and thigh 

scans are less common. In our sensitivity analyses looking at only upper or only lower body 

composition, we found that the addition of the lower body tissues attenuated the effects of VAT 

while increasing those of ASAT, thus indicating the importance of including multiple regional 

body compositions in determining specific tissue effects. Second, the use of a compositional data 
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analytic method allows for the investigation of tissue effects independent of overall compositional 

sizes. This in effect reduces the collinearity between tissues and markers of overall mass (such as 

BMI or total abdominal volume), which may be biasing estimates in other analyses. Third, our 

study is in an African ancestry population, who typically have lower levels of VAT (56-59) and 

higher levels of ASAT (56, 58, 59) compared to Caucasian populations. Thus, it is possible that 

with our population’s relatively lower levels of VAT compared to ASAT, that the effects of ASAT 

on diabetes was easier to capture than the effects of VAT. This scenario has some plausibility, as 

our interaction analysis found that higher ASAT storage was harmful in individuals with smaller 

abdominal sizes but was protective in individuals with larger abdominal sizes. 

We report that higher thigh muscle was inversely associated with glucose and diabetes 

categories. Muscle is an important glucose sink, and multiple studies have demonstrated inverse 

associations of muscle with diabetes risk (67, 296, 301-304). The use of CT derived measures of 

muscle size, however, is still complicated by the fact that increasing muscle can alternatively 

indicate greater fatty infiltration of the muscle or an adaptation to help support heavier weights in 

obesity. Because our analyses utilized a compositional data analytic approach, we are able to better 

disentangle some of the different effects of changes in both muscle and AT with increasing body 

size. To address the first scenario, we included a sensitivity analysis which further adjusted models 

for a qualitative measure of intramyocellular lipid accumulation (thigh muscle CT attenuation) and 

found that this did not significantly impact our estimates. For the second scenario, the use of a 

compositional data analysis methodology gives estimates independent of total composition (i.e. 

thigh) size, and further investigations of interactions did not find our muscle estimates to vary 

across increasing thigh volumes or across increasing BMI. Thus, independent of upper and lower 
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body AT and body size, the increase or maintenance of skeletal muscle tissue may be an important 

consideration for diabetes prevention. 

We found relatively high correlations between our transformed ASAT and TSAT 

components. That ASAT and TSAT are highly correlated, and that they comprise the greatest 

percentage of abdominal and thigh AT compartments, speaks to the theorized role of subcutaneous 

white AT as the primary storage site for triglycerides (171). Despite these shared roles, there are 

functional and metabolic differences between ASAT and TSAT which may contribute to their 

opposing roles in cardiometabolic health (63). Our findings that these tissues have opposing 

associations with fasting glucose are consistent with previous reports from Health ABC (65). 

However, both ASAT and TSAT were similarly positively associated with insulin in our regression 

models, though only ASAT was associated with insulin resistance. A few studies suggest that 

having more TSAT is associated with better insulin sensitivity (67, 293-295); while we did not 

observe an inverse relationship between TSAT and insulin resistance, this may be in part to 

differences in insulin resistance/sensitivity estimations, or may also be due to racial/ethnic 

differences such that African ancestry individuals tend to have higher HOMA-IR compared to 

hyperinsulinemic clamp-matched European ancestry individuals (305).  

Interestingly, while IMAT was strongly correlated with ASAT and TSAT, its associations 

with insulin and HOMA-IR were opposite of the subcutaneous ATs. The high correlation between 

subcutaneous AT and IMAT is not unexpected; previous studies (272, 285) demonstrated that 

increases in IMAT mirror increases in total adiposity, of which SAT is a major component. 

However, the role of IMAT in insulin resistance remains understudied. IMAT can secrete factors 

which induce insulin resistance in neighboring muscles (181), indicating that it could play a direct 

role in insulin resistance pathology. We previously demonstrated that lower IMAT radiodensity, a 
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marker of increased tissue lipid accumulation, was associated with greater insulin resistance (306), 

and that increased calf IMAT volume is associated with incident diabetes (272). In this study, we 

also show that while thigh IMAT is not associated with diabetes categories in the overall 

population, it is positively associated with diabetes in individuals with lower BMIs. Still, it may 

be that IMAT is only a marker of overall adiposity and metabolic dysfunction (307). It is also 

possible that the location of IMAT can impact its relationship with local and global insulin 

sensitivity (284), and thus our findings of thigh IMAT and insulin resistance would not be 

generalizable to other anatomical locations. 

Our study has a few limitations. First, we did not have accurate measures of abdominal 

muscle and IMAT available in our dataset, and instead collapsed them with other tissues into a 

singular ‘other’ variable. However, in sensitivity analyses which estimated abdominal muscle and 

IMAT, we found that these additional abdominal components did not substantially change results. 

Second, our analyses are cross-sectional in nature, and so causality cannot be determined. Still, the 

use of partial proportional odds models allows for some stronger evidence for our reported effects. 

Third, our analyses are limited to men, who have different body compositions (174) compared to 

their female counterparts. Our study also has several strengths. This study is novel in its use of 

both upper and lower body CT imaging data to assess tissue associations with type 2 diabetes, 

overcoming the previous limitations of upper and lower body composition studies that could not 

precisely measure different tissues. We also utilized a compositional data analytic approach, 

allowing us to incorporate multiple tissue types as well as total sizes of imaged areas without 

suffering collinearity issues. 

In conclusion, simultaneous assessment of upper and lower body compositions 

demonstrated deleterious effects from higher levels of ASAT, and protective effects of thigh 
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muscle, with respect to type 2 diabetes in African Caribbean men. These findings indicate the 

importance of incorporating regional body compositions when assessing cardiometabolic risk. 
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3.6 Tables and Figures 

Table 3.1 Population Characteristics, Overall and by Obesity Status 

Variable 

Mean (SD), Median (IQR), or N(%) 

Overall (N=610) Normal (N=177) 
Overweight 

(N=266) 
Obese (N=167) P-value 

Demographic and Lifestyle Factors 

Age (years) 62.0 (57.0, 68.0) 63.0 (58.0, 71.0) 62.0 (57.0, 69.0) 60.0 (56.0, 65.0) 0.0003 

Weight (kg) 85.5 (15.4) 70.6 (7.0) 84.2 (7.9) 103.4 (12.3) <.0001 

Height (cm) 175.5 (6.7) 176.0 (6.6) 175.4 (6.9) 174.9 (6.3) 0.1186 

BMI (kg/m2) 27.8 (4.7) 23.2 (21.7, 24.2) 27.4 (26.2, 28.3) 32.9 (30.9, 35.4) <.0001 

Current Smoker [N(%)] 44 (7.2%) 16 (9.0%) 19 (7.1%) 9 (5.4%) 0.1906 

Drinks 4+ alcoholic beverages per 

week [N(%)] 
75 (12.3%) 20 (11.3%) 36 (13.5%) 19 (11.4%) 0.9699 

Watches TV ≥ 14 hours per week 

[N(%)] 
294 (48.2%) 84 (47.5%) 128 (48.1%) 82 (49.1%) 0.7609 

Walking for exercise (hours per 

week) [N(%)] 
1.9 (0.0, 5.0) 1.5 (0.0, 4.5) 2.1 (0.0, 5.0) 1.5 (0.0, 5.0) 0.5095 

On lipid-modifying medications 

[N(%)] 
79 (13.0%) 18 (10.2%) 33 (12.4%) 28 (16.8%) 0.0696 

Has family history of Diabetes 

[N(%)] 
340 (55.7%) 90 (50.8%) 148 (55.6%) 102 (61.1%) 0.0564 

Cardiometabolic Disease Measures 

Fasting Glucose (mg/dL) 89.0 (81.0, 102.0) 87.0 (79.0, 97.0) 89.0 (82.0, 102.0) 93.0 (83.0, 115.0) 0.0008 

Fasting Insulin (µU/mL) 9.0 (5.8, 14.0) 5.7 (4.0, 7.7) 9.0 (6.3, 13.2) 15.0 (11.5, 19.8) <.0001 

HOMA-IR 2.2 (1.3, 3.5) 1.3 (0.9, 1.8) 2.1 (1.4, 3.1) 3.7 (2.5, 5.5) <.0001 
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Type 2 Diabetes Categories 

[N(%)] 

Normal Glucose 

Impaired Fasting Glucose 

Type 2 Diabetes 

 

 

401 (65.7%) 

70 (11.5%) 

 

139 (22.8%) 

 

 

136 (76.8%) 

13 (7.3%) 

 

28 (15.8%) 

 

 

176 (66.2%) 

31 (11.7%) 

 

59 (22.2%) 

 

 

89 (53.3%) 

26 (15.6%) 

 

52 (31.1%) 

<.0001 

Antidiabetic Medication Use 

[N(%)] 
106 (17.4%) 23 (13.0%) 46 (17.3%) 37 (22.2%) 0.0251 

Body Composition Tissue Measures 

ASAT Volume (cm3) 
181.8 (129.2, 

245.7) 
101.8 (49.3) 188.2 (50.9) 308.3 (100.3) <.0001 

VAT Volume (cm3) 86.1 (52.3, 125.0) 44.6 (26.7, 68.4) 92.4 (39.6) 138.6 (56.6) <.0001 

Other Abdominal Volume (cm3) 312.8 (46.6) 288.9 (37.8) 308.5 (40.6) 345.2 (46.3) <.0001 

Total Abdominal Volume (cm3) 
581.5 (485.6, 

690.6) 
442.8 (69.8) 590.0 (79.4) 792.0 (139.7) <.0001 

TSAT Volume (cm3) 
341.2 (229.9, 

485.0) 
204.0 (111.9) 361.6 (133.7) 587.1 (228.3) <.0001 

IMAT Volume (cm3) 118.4 (50.5) 80.3 (36.8) 120.4 (37.4) 
143.6 (118.5, 

187.7) 
<.0001 

Thigh Muscle Volume (cm3) 1068.4 (172.8) 951.1 (139.6) 1079.3 (144.0) 1175.2 (171.4) <.0001 

Thigh Bone Volume (cm3) 44.3 (41.6, 47.9) 42.8 (40.5, 45.4) 44.6 (5.1) 46.3 (4.8) <.0001 

Total Thigh Volume (cm3) 1608.9 (326.0) 1278.2 (176.0) 1605.9 (174.8) 1964.2 (254.4) <.0001 

Continuous p-values: linear regression predicting the characteristic (for parametric), or Joncheere-Terpstra Test (for nonparametric). Categorical p-

values: Cochrane-Armitage trend test for binary variables, or Mantel-Haenszel Chi-square test for ordinal variables. 

Table 3.1 Continued 

 

 



111 

 

 
Figure 3.1 Ternary Plot of Population Abdominal Compositions (VAT, ASAT, and Other Tissue), with Mean 

Composition by Diabetes Category 
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Figure 3.2 Ternary Plot of Population Thigh Compositions (Muscle, TSAT, and IMAT), with Mean 

Composition by Diabetes Category 
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Figure 3.3 Ternary Plot of Population Thigh Compositions (Bone, TSAT, and IMAT), with Mean 

Composition by Diabetes Category 
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Figure 3.4 Ternary Plot of Population Thigh Compositions (Bone, IMAT, and Muscle), with Mean 

Composition by Diabetes Category 
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Table 3.2 Age-Adjusted Pearson Partial Correlation Coefficients for ALR-Transformed Components, BMI, 

and Glucose and Insulin 

  ASATa VATa TSATa 
Thigh 

IMATa 

Thigh 

Musclea 

BMI 

(kg/m2) 

ASATa 1 0.73 ‡ 0.89 ‡ 0.80 ‡ 0.14 † 0.69 ‡ 

VATa 0.73 ‡ 1 0.64 ‡ 0.61 ‡ 0.13 † 0.58 ‡ 

TSATa 0.89 ‡ 0.64 ‡ 1 0.82 ‡ 0.20 ‡ 0.70 ‡ 

Thigh IMATa 0.80 ‡ 0.61 ‡ 0.82 ‡ 1 0.29 ‡ 0.61 ‡ 

Thigh Musclea 0.14 † 0.13 † 0.20 ‡ 0.29 ‡ 1 0.27 ‡ 

BMI (kg/m2) 0.69 ‡ 0.58 ‡ 0.70 ‡ 0.61 ‡ 0.27 ‡ 1 

Log Glucose 0.16 ‡ 0.16 † 0.09 † 0.06 -0.04 0.18 ‡ 

Log Insulin 0.60 ‡ 0.54 ‡ 0.55 ‡ 0.46 ‡ 0.22 ‡ 0.66 ‡ 

Log HOMA-

IR 
0.58 ‡ 0.53 ‡ 0.52 ‡ 0.42 ‡ 0.15 † 0.64 ‡ 

†: p < 0.05, ‡: p < 0.0001 

a: Log2 Transformed AT Depot 
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Table 3.3 Multivariable-Adjusted Regressions for Body Composition Tissues with Continuous Risk Factors (Top) and Ordinal Risk Factors (Bottom) 

Risk Factor VAT ASAT TSAT Thigh IMAT Thigh Muscle 

Log Glucose * 
0.001 (-0.03, 0.03) 0.06 (0.02, 0.11) -0.03 (-0.07, 0.02) 

-0.002 (-0.05, 

0.04) 
-0.07 (-0.16, 0.03) 

Log Insulin * 0.10 (0.04, 0.17) 0.09 (-0.02, 0.19) 0.06 (-0.04, 0.16) -0.07 (-0.17, 0.03) 0.15 (-0.06, 0.36) 

Log HOMA-IR * 0.10 (0.02, 0.19) 0.15 (0.04, 0.27) 0.03 (-0.08, 0.15) -0.07 (-0.18, 0.04) 0.08 (-0.19, 0.35) 

Type 2 Diabetes 

Categories 
0.95 (0.70, 1.28) 1.81 (1.06, 3.10) 0.71 (0.43, 1.18) 1.07 (0.67, 1.71) 0.37 (0.14, 1.01) 

Data are reported as the multivariable adjusted β (95% CI) for continuous risk factor data and OR (95% CI) for Ordinal categorical data. 

All models adjusted for age, BMI, drinking 4+ drinks per week, current smoker, watching television ≥14 hours/week, hours walked per week for 

exercise, lipid-modifying medication, family history of diabetes, log ratios of abdominal tissues (with “Other” tissue as referent component), log 

ratios of thigh tissues (with bone volume as referent component), and total abdominal and thigh volumes.  

* Additionally adjusted for antidiabetic medication use 
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4.1 Abstract 

Objectives: To determine associations of the intestinal microbiome with type 2 diabetes and 

related risk factors in an African Caribbean population. 

Methods: Fecal samples were collected from 253 men from the Tobago Health Study (median 

age: 60 years, mean BMI: 28.2 kg/m2), and the V4 region of the bacterial 16s rRNA was extracted 

and amplified. Clinical characteristics, computed tomography scans of the abdomen and thighs, 

and diet were collected and organized into groups of variables based on similarity. Diabetes status 

was investigated using dichotomized (yes/no) or categorized (normal, impaired fasting glucose, 
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type 2 diabetes) definitions based on fasting glucose and antidiabetic medication, and associations 

with continuous glucose and insulin were also assessed. Associations of the microbiome within 

each variable grouping were assessed after adjustment for sociodemographic covariates. 

PERMANOVA and hierarchical clustering analysis using Manhattan distances were used to 

investigate natural and data-driven cluster separations. Alpha diversity metrics (Tail, Shannon, 

Simpson, Reciprocal Simpson, and Evenness) and logratio transformed taxa were investigated as 

potential predictors or outcomes of group variables using regression analyses. 

Results: Across variable groupings, sociodemographic factors were the main variables driving 

both clustering and alpha diversity. Clustering based on various diabetes status definitions and 

antidiabetic medication shared similar influential taxa, including Akkermansia, 

Enterobacteriaceae, and several taxa from the Clostridiales order. Faecalibacterium was inversely 

associated with glucose and borderline with diabetes categories. Inclusion of microbial taxa did 

not improve diabetes models’ adjusted R2 beyond sociodemographic factors, though diversity 

metric predictors minorly improved glucose models. 

Conclusions: In this sample, sociodemographic factors are the biggest influencers of microbial 

clustering and diversity, and the addition of the microbiome as a predictor did not significantly 

improve diabetes models. Based on these preliminary analyses, while some relationships may exist 

between the microbiome and various type 2 diabetes risk factors, traditional risk factors may still 

be a more influential target for diabetes intervention. 
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4.2 Introduction 

The intestinal microbiome is increasingly recognized as playing a role in the 

pathophysiology of type 2 diabetes. Metagenome-wide association studies have determined some 

structural differences in individuals with type 2 diabetes, including lower amounts of butyrate-

producing bacteria such as Roseburia and higher amounts of Clostridiales and Lactobacillus, as 

well as functional differences involving energy metabolism, butyrate production, and oxidative 

stress resistance (44, 45). Studies have also demonstrated changes in the microbiome following 

metformin use (247, 308, 309), indicating that the microbiome may serve as a mediating and 

therapeutic target for diabetes intervention. 

The microbiome can differ by a variety of factors, including geographical location (68), 

race/ethnicity (70), and lifestyle factors such as diet (39) and exercise (310). Studies of the 

intestinal microbiome rarely include populations in the Caribbean region, where rates of diabetes 

are very high (3); of those performed in Caribbean populations, only one (311) has assessed 

associations of the microbiome with type 2 diabetes. Additionally, few studies on the microbiome 

and type 2 diabetes in general include large numbers of African Ancestry individuals (73, 311, 

312). 

This microbiome analysis uses stool samples from a study of men from the Caribbean 

island of Tobago, Trinidad and Tobago. We first investigate the associations of sociodemographic, 

lifestyle, medication, diet, and anthropometric and body composition measures with intestinal 

microbial diversity and the relative abundance of taxa. We then report on the associations of the 

microbiome with diabetes in this population. 
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4.3 Methods 

4.3.1 Study Population 

All men in this analysis were from the Tobago Health Study, which has been previously 

described (161). Briefly, the Tobago Health Study is a population-based, prospective cohort study 

of community-dwelling men aged 40 years and older, residing on the Caribbean island of Tobago, 

Trinidad and Tobago. Men from Tobago are of homogeneous African ancestry with low European 

admixture (<6%) (278). Participants in the Tobago Health Study were recruited without regard to 

health status and men were eligible if they were ambulatory, not terminally ill, and without a 

bilateral hip replacement. The baseline visit occurred from 2004-2007 and recruited 2,482 men; of 

these, a random subset (N=1,725) attended the first follow-up visit from 2010-2014. A 

convenience subsample of N=768 participants were invited back to an ancillary visit in 2014-2018 

to receive CT scans of the chest, abdomen, and thigh for body composition assessment. Clinical 

and lifestyle characteristics were also obtained at this ancillary study. 

Beginning in June 2017, men who participated in the body composition ancillary study 

were invited back to participate in a microbiome pilot study for fecal sample collection. A 

convenience sample of 262 men returned to the clinic for additional interview and sample 

collection; of these, 259 men donated a fecal sample, and 253 of these samples were able to have 

DNA extracted, resulting in a final sample size of N=253 for analysis. The time difference between 

clinic visit date and microbiome pilot study visit date was a median of 2.5 years, with a minimum 

of 1.1 years and a maximum of 3.4 years.  
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4.3.2 Fecal Sample Collection and Processing 

Fecal samples were collected at home by participants using a Zymo Research DNA/RNA 

Shield Fecal Collection Tube (Zymo Research, catalog No. R1100-9-T). Participants were 

instructed to collect 1 spoonful of feces, invert several times in the collection tube, and to store in 

a refrigerator until the specimen could be brought to the Calder Hall medical clinic in Tobago. 

Returned specimens were stored at -80°C and shipped on dry ice to the University of Pittsburgh 

(GSPH), where the specimens were again stored at –80°C. Samples were later thawed and 

aliquoted into 1.5 mL tubes. Of the 259 fecal samples returned, six of them were unable to be 

aliquoted, resulting in a final sample size of 253 fecal samples. 

DNA extraction was performed using Qiagen PowerSoil DNA Isolation kits (MO BIO 

Laboratories) at the University of Pittsburgh Center for Medicine & the Microbiome. PCR was 

performed using barcoded amplicons of the V4 variable region of the 16S rRNA. Samples were 

then purified using magnetic bead size selection (AMPure XP, Beckman Coulter, US) according 

to manufacturer instructions. Purified samples were combined into a pooled sample for sequencing 

using an Illumina MiSeq (Illumina, San Diego, CA, USA). Reads were de-multiplexed using 

standard Illumina software. An in-house software pipeline was used for quality control of reads. 

Reads meeting quality control cutoffs were merged and processed using an in-house Mothur-

dependent pipeline to generate taxonomically classified reads.  

4.3.3 Outcome Definitions: Glucose, Insulin, and Diabetes 

Fasting serum glucose and insulin measures were obtained during the clinic visit (2014-

2017) and measured at the Advanced Research and Diagnostics Laboratory (ARDL), University 
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of Minnesota. Fasting serum glucose was measured using an enzymatic procedure (interassay CV: 

1.3-1.8%) and fasting serum insulin was measured using a sandwich immunoassay procedure 

(interassay CV: 3.1%) (assays manufacturer: Roche Diagnostics, Indianapolis, IN). Glucose was 

assessed in mg/dL units. Insulin was assessed in pmol/L units.  

Antidiabetic medication use was assessed at both the clinic visit and at the microbiome 

fecal sample collection visit; as some individuals newly began antidiabetic medications between 

visits, antidiabetic medication use was defined using the medication reporting at the fecal sample 

collection visit. Type 2 diabetes was defined as currently taking an antidiabetic medication, 

regardless of fasting serum glucose level, or having a fasting serum glucose level of ≥ 126 mg/dL. 

4.3.4 Covariate Definitions 

4.3.4.1 Dietary Intake 

Long-term dietary intake was assessed using a 146-item semi-quantitative monthly food 

frequency questionnaire (FFQ) developed specifically for the Trinidad and Tobago population 

(153). Items from this questionnaire were linked to food items in the United States Department of 

Agriculture (USDA) Food Composition Database, Standard Reference Release 28 (SR28) (313).  

This database has commonly been used in other studies to estimate nutrition of foods in the 

Caribbean (150, 314, 315), and Caribbean nutrition tables are based on nutritional databases from 

the United States and the United Kingdom (316). Additionally, many foods in Trinidad and 

Tobago are imported from the US, and with the exception of one food item (the fruit 

pommecythere) almost all foods from our questionnaire had representation in the USDA database. 

Various mixed dishes from Trinidad and Tobago have previously had nutrients calculated using 

USDA databases and rigorously-obtained recipes (150), and these values were linked to for energy 



123 

intake instead. Dietary intakes were considered to be missing if individuals were missing ≥10% of 

food items from the questionnaire or if unreasonable energy intakes were reported (<600kcal/day 

or >5.000 kcal/day).  

Questionnaire items were broken down into representative food groups, and these food 

groups were further categorized into high-fiber containing foods (vegetables, whole fruits, whole 

grains, nuts, and legumes) and low-fiber containing foods (remaining food groups). Given the 

compositional nature of dietary data, an additive log ratio transformation with a log base 2 was 

used to create a high-fiber-to-low-fiber variable.  

4.3.4.2 Medication Use 

Men were asked to bring all prescription medications taken in the past 30 days prior to their 

fecal sample collection visit, as well as antibiotics used within the past two weeks. Medications 

considered in this analysis include antidiabetic medications, lipid-modifying medications, and 

antibiotic medications, all dichotomized as [yes/no].  

4.3.4.3 Demographics, Lifestyle Factors, and Anthropometry 

Demographic characteristics (ethnic self-identification and education status) were obtained 

at the baseline visit (2004-2007) using interviewer-administered questionnaires. Given the age for 

study inclusion at baseline was 40 years and older, it is not thought that education status will have 

changed from the baseline visit until now. Ethnic self-identification was dichotomized as African-

Caribbean Ethnicity [yes/no]. Education status was categorized into four groups: primary (1st-5th 

Standard, ages 5-11), secondary (high school, Form 1st thru 5th, ages 11-16) / technical vocational 

training, some university / associate degree, and university graduate or higher degree. 
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Information on age and lifestyle habits (current smoking [yes/no], number of hours walked 

per week, watching 14 or more hours of television per week [yes/no], and current intake of alcohol 

of more than 4 drinks per week [yes/no]) were assessed using standardized interviewer-

administered questionnaires at the clinic visit. Self‐reported information on walking was recorded 

as walking is the predominant form of physical activity on the island of Tobago.   

Standing height was measured to the nearest 0.1 cm using a wall-mounted stadiometer. 

Body weight was recorded to the nearest 0.1 kg without shoes on a balance beam scale. BMI was 

calculated from body weight and standing height (kg/m2).  

4.3.4.4 Computed Tomography 

Abdominal and thigh volumes were assessed on 3 mm thick slices and 500 mm display 

field of view from scans acquired using a GE dual slice, high-speed NX/I CT scanner (GE Medical 

Systems, Waukesha, WI) with 120 KVp, 250 mA, 0.7 second gantry speed, and pitch of 1.5:1.  For 

participants with body weight greater than 200 lbs, the mA was increased to 300. CT contrast was 

not used. Only one CT scanner was used, and a single individual collected the scans for all 

participants. Scans were electronically transmitted to the central CT reading center at Vanderbilt 

University where image analysis and quality control were performed.  

Image analysis was performed using methods as previously described (276, 279, 280). 

Briefly, images were analyzed using a dedicated imaging processing workstation with custom-

programmed subroutines (OsiriX, Pixmeo, Geneva, Switzerland) and a dedicated pen computing 

display (Cintiq, Wacom Technology Corporation, Vancouver, WA, USA). A radiologist-trained 

analyst manually traced anatomical boundaries (skin, muscular fascia, muscle, bone, and 

peritoneum) in CT scans. Tissue attenuation thresholds of −190 to −30 Hounsfield Units (HU) 
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were used to distinguish AT voxels in these defined regions and tissue attenuations of -29 to 160 

HU were used to distinguish lean muscle voxels. For each tissue, the volume (mm3) was calculated. 

Abdominal VAT and ASAT were measured from CT scans of 3 contiguous slices of 3mm 

thickness centered at L4-L5. A lateral scout image was used to determine the z-axis location of the 

L4-L5 intervertebral space and that location and the slice immediately above and the slice 

immediately below were used to reconstruct a 9-mm thick single block of images. VAT was 

defined as AT located within the peritoneal cavity; ASAT was defined as AT located beneath the 

skin and superficial to the abdominal muscular fascia. The remaining non-VAT and non-ASAT 

tissues were not separately measured, but were combined to form an “Other” tissue group. 

TSAT, thigh IMAT, and thigh muscle were measured from CT scans of 10 contiguous 

slices of 3mm thickness at the mid-thigh level in both legs. An anterior-posterior scout scan of the 

entire femur was used to localize the mid-thigh position, and that location and the four slices 

immediately above and five slices immediately below were used to reconstruct a 30-mm thick 

single block of images. Hand-drawn boundaries were traced at the medulla, cortex, thigh muscles, 

fascia, and skin in three of the ten slices; boundaries were imputed over the remaining slices and 

verified for accuracy by the trained analyst. Bone volume was identified as the cortical volume. 

Lean muscle volume was defined as the sum of the adductors, hamstrings, and quadriceps muscles 

across both thighs. TSAT was defined as AT located between the skin and the muscle fascia, and 

IMAT was defined as AT located within thigh muscle groups. TSAT and IMAT volumes were 

defined as the total AT type summed across both thighs. 

Given the scans were performed in two areas, two separate compositions were created: 

abdominal and thigh. The abdominal composition was comprised of VAT, ASAT, and the ‘Other’ 

remaining abdominal tissues. Similarly, thigh composition was comprised of TSAT, IMAT, 
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muscle, and bone. An additive log ratio transformation with a log base 2 was applied to each 

composition. For the abdominal composition, the ‘Other’ tissue component was used as the 

referent; for the thigh composition, the bone was used as a referent.  

4.3.5 Statistical Methods 

In the following statistical analyses, non-microbiome variables were categorized as either 

base covariates (age, BMI, Caribbean ethnicity, education, smoking status, antibiotic use, lipid-

modifying medication use, and the time difference between the clinic interview date and the fecal 

sample donation) or grouped variables (other metadata, organized into the following groups: diet 

[energy intake and fiber-containing food ratio], body composition [VAT, ASAT, TSAT, Muscle, 

Thigh IMAT, and time difference between CT scan and fecal sample collection], physical activity 

[hours walked per week for exercise and television watching ≥ 14 hours/week], or diabetes 

[glucose, insulin, HOMA-IR, diabetes status, and antidiabetic medication use]). A conceptual 

model for the associations of these variables with diabetes is provided in Appendix D Figure 1. 

The below listed analyses were performed several times using an in-house pipeline, with each 

round resulting in removal of uninformative variables. 

4.3.5.1 Distance-Based Analyses 

Inter-sample distances were visualized using multidimensional scaling (MDS) plots of 

Manhattan distances. Distances were assessed in three methods.  

The first method was the application of PERMANOVA tests, which were used to identify 

factors associated with distancing between samples.  
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The second method involved hierarchical cluster analysis with multinomial logistic 

regression (HCAMLR). Using Manhattan distances, hierarchical clusters, k, were computed using 

Ward’s minimum variance method. Starting from the root node (k=1), at each cut lower in the 

hierarchical cluster tree (increasing cluster size by 1), log linear models were fit to model the 

probability of an individual being in a particular cluster; the iteration with the smallest p-value for 

that predictor was determined to be the “optimal cluster cutoff” for that variable. Contrastingly, an 

overall optimal cluster stopping level for the entire hierarchical cluster tree was identified using 

the distance-based pseudo-F statistic from Calinski-Harabasz criteria.  

The third method was identification of cluster influencers, which are the pairwise 

comparisons between clusters that identify taxonomic differences which explain cluster 

separation. Clusters were identified either using the Manhattan distance/Ward’s minimum 

variance method, or using “natural” categorical variable clusters within the data. ANOVA models 

were used to quantify the amount of variation a particular taxon was contributing to intra- and 

inter-cluster membership. The log10 ratio of the R2 for a model without a particular taxon compared 

to the model with that particular taxon can be used to identify taxa which are influential in 

separating pairwise clusters, where a more negative R2 log10 ratio indicates greater separation.  

4.3.5.2 Distribution-Based and Abundance-Based Analyses 

Regression analyses were used to assess associations of group variables with the 

microbiome. Models were constructed with the microbiome as an outcome (with base covariates 

and group variables as predictors), or with the group variables as an outcome (with base covariates 

and the microbiome as predictors). The log10 ratio of the p-value for a microbiome component as 

a predictor to the p-value for that microbiome component as a response was used to determine if 

the component was more strongly associated as a predictor or as a response. A combined p-value 
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score, cpvs = (log10(predictor p-value)2 + log10(response p-value)2)1/2, was used to create a cutoff 

to remove spurious log10 p-value ratios.  

The microbiome was assessed as either alpha diversity metrics (distribution-based) or as 

additive log ratio transformed taxa (abundance-based). Microbial alpha diversity was visualized 

using rank-abundance plots and stacked bar plots. Multiple diversity indices (Tail, Shannon, 

Simpson, Reciprocal Simpson, and Evenness) were considered. Taxonomically classified reads 

were transformed using an additive log ratio.  

4.4 Results 

4.4.1 Sample Characteristics 

Study sample characteristics are presented in Table 4.1. Missing data existed for many 

variables, with a majority of missing data originating in the CT scans. There were 222 participants 

with no missing data. The sample is mostly older, with a median age of 60, and overweight with a 

mean BMI of 28.2. A majority of participants identified as African Caribbean (91.6%). Diabetes 

rates were high with a prevalence of 22.5%; of individuals with type 2 diabetes, a majority of them 

(>73%) were treated with an antidiabetic medication.  

Figure 4.1 shows the mean taxon abundance for 251 of the participants. On average, 

participants in this sample had higher abundances of members of the Bacteroidetes phylum, with 

nearly 40% of the average fecal sample being comprised of Prevotella (~29%) or Bacteroides 

(~13%) bacteria. A large proportion of the remaining highly-abundant taxa were from the 

Firmicutes phylum, with many members also being from the order Clostridiales. 
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4.4.2 Distance-Based Analyses 

4.4.2.1 PERMANOVA 

Results of PERMANOVA analysis for each series of group variables is listed below in 

Table 4.2. Significant associations within each variable grouping were predominantly from the 

base covariates, with Caribbean ethnicity and BMI appearing in all models, and smoking status in 

nearly all models. Education was statistically significant only in glucose/insulin models, but while 

not statistically significant in other group variable models, was generally close to significant 

(p~0.1). Within the diet grouping, total energy intake was also significant in PERMANOVA. 

4.4.2.2 HCAMLR 

Results of the HCAMLR for each series of group and base covariate variables was 

determined; an example showing associations at the Calinski-Harabasz optimal cutoff for each 

variable grouping is shown below in Table 4.3. In general, most models suggested 6 clusters as an 

optimal cutoff, though physical activity analyses suggested 2 clusters. Variables associated with 

clustering tended to be from the base covariates (predominantly Caribbean ethnicity and age), 

though some specific group-level variables for body composition, diet, and diabetes groupings 

were also significantly associated with clustering. 

4.4.2.3 Cluster Influencers 

Figure 4.2 depicts an example cluster influencing graph for taxa which are important for 

cluster membership at a 6-cluster cut-off. Taxa which served as cluster influencers for distance-

based clusters were predominantly Bacteroides and Prevotella_9. While other taxa such as 

Ruminococcaceae_UCG-002, Lachnoclostridium, Faecalibacterium, and Akkermansia were 
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identified as cluster influencers, these tended to be less influential than Bacteroides and 

Prevotella_9. 

Naturally-occurring clustering within grouped variables included the physical activity 

(watching TV ≥ 14 hours/week) and diabetes (antidiabetic medication, diabetes status, and 

diabetes category) groups (Table 4.4). Among diabetes-related clusters, there was significant 

overlap between clusters formed by antidiabetic medication usage and diabetes status or 

categories. These included many Ruminococcaceae taxa, as well as Akkermansia, Blautia, 

Pseudobutyrivibrio, Enterobacteriaceae_uncl, Eubacterium_coprostanoligenes_grp, and 

Ruminiclostridium_6. 

4.4.3 Distribution- and Abundance-Based Analyses 

For group variables, the Evenness and Reciprocal Simpsons indices found microbial 

diversity to be a predictor of glucose, and the Simpson metric to be a predictor of energy intake; 

however, the relationship with energy intake did not hold up with the combined p-value score cut-

off. No other group variables were significantly associated with alpha diversity metrics either as a 

predictor or response. In contrast, various sociodemographic factors (education, age, Caribbean 

ethnicity) were generally significant and independent positive predictors of alpha diversity, while 

BMI was a negative predictor, across multiple variable groupings (example using the Diabetes 

Category variable grouping in Table 4.5). 

Results of abundance-based analyses are summarized for the microbiome as a predictor of 

group variables (Table 4.6) or as a responder of group variables (Table 4.7). Taxa were more 

likely to be a significant response to group variables rather than a significant predictor of them. Of 

note, lower Faecalibacterium was a positive predictor of glucose; Faecalibacterium was also 



131 

inversely associated with diabetes categories, but this did not surpass the combined p-value score 

cut-off. Some reciprocal relationships were identified. When the microbiome was seen as a 

response, for example, Ruminococcus_1 was inversely associated with thigh IMAT and positively 

associated with thigh muscle; Succinivibrio was inversely associated with eating a high-fiber food 

ratio, but positively associated VAT; and Pseudobutyrivibrio was inversely associated with 

glucose but positively associated with log-HOMA-IR. Similarities in relationships with taxa also 

existed: for example, higher in Eubacterium_coprostanoligenes_grp were associated with higher 

abdominal SAT and thigh IMAT, and higher Incertae_Sedis was associated with higher thigh 

muscle and eating a higher high-fiber food ratio. 

We then looked at the explanatory power of including alpha diversity metrics or ALR-

transformed taxa as predictors of diabetes status (dichotomous or categories), glucose and insulin 

measures, and antidiabetic medication use. In all models, addition of microbial taxa resulted in a 

decreased model adjusted R2, though none of these were statistically significant decreases (all p > 

0.4). However, for multiple diversity metrics, significant minor increases in model explanatory 

power were detected if diversity was included as a predictor for glucose (Table 4.8). 

4.5 Discussion 

These analyses are a first step at building a model that uses the microbiome to predict type 

2 diabetes. By looking at the microbiome at different levels (clusters, diversity, and relative 

abundance) and by looking at the microbiome as both a predictor and a response, we can piece 

together which variables may explain most of the variance in the microbiome, and consequently 

build an appropriate and parsimonious model for type 2 diabetes. In these preliminary analyses, 
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we demonstrated that some of the most significant factors impacting microbial clustering were 

ethnicity, BMI, and smoking status, while other lifestyle factors or body composition measures 

had little effect. We found consistent cluster-influencing bacteria across diabetes definitions and 

antidiabetic medication usage. At the alpha diversity level, the microbiome was only a predictor 

of fasting glucose, and was more affected as a response to sociodemographic factors. And at a 

relative abundance level, only Faecalibacterium showed a potential inverse association with 

glucose and diabetes categories.  

The role of the microbiome with type 2 diabetes is complex and likely bidirectional. 

Previous studies indicate functional changes in the microbiome between diabetic and non-diabetic 

states (44, 45). Our group previously reported that a surrogate marker of gut-bacterial derived 

inflammation was associated with incident impaired fasting glucose and alterations in body 

composition (51). Thus, the actions of intestinal bacteria may promote insulin resistance and 

diabetes through multiple pathways. However, adoption of lifestyle changes (such as diet and 

exercise) or antidiabetic medication usage as a consequence of a diabetes diagnosis may also have 

impacts on microbial structure and function. Thus, teasing apart these relationships is essential to 

understanding not only the role of the microbiome in diabetes pathology, but also the potential 

impacts of therapeutic interventions on the microbiome. 

We report that clustering was predominantly explained by ethnicity, BMI, and smoking 

status, and borderline with education, and similarly that sociodemographic variables were 

associated with bacterial alpha diversity. In the Hispanic Community Health Study/Study of 

Latinos, authors reported that factors related to migration, acculturation, and sociodemographics 

were strong influencers of intestinal microbiome diversity, and that the degree of adoption of a 

Westernized lifestyle was associated with a lower Prevotella/Bacteroides ratio (317). Similarly, a 
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study in the Netherlands reported that many sociodemographic factors were also associated with 

between-individual diversity, most notably ethnicity, and that Prevotella was higher among some 

ethnic groups who migrated from countries with high fiber intake (69). While Trinidad and Tobago 

as a nation is considered a high-income country (131), Tobago itself is less socioeconomically 

advantaged. While Tobagonians in our sample report relatively high-fiber intake, the population 

is also undergoing Westernization. Given that our study population is middle-aged and older and 

likely experienced a less Westenized lifestyle for most of their lives, it is possible that their gut 

microbiomes may be less impacted by these sociocultural changes, similar to the dampened impact 

of acculturation in older first-generation Latinx migrants (317); this may contribute to some of 

these similarities noted between our population and those from the Hispanic and Dutch migrant 

populations.   

The association between alpha diversity and health is complex. Studies reporting alpha 

diversity metrics in relation to disease have been conflicting, which may be the result not only of 

different diversity metrics used, but also of incorrect assumptions that diversity metrics reflect 

stability, compositionality, or community interactions of intestinal microbiomes (318). Reports by 

Fei et al. showed that a lower alpha diversity was associated with higher cardiometabolic risk 

factors among African Ancestry individuals, but that these associations (and the particular risk 

factors that were associated with diversity) differed across the studied countries (311). In contrast, 

we report that alpha diversity was a positive predictor of fasting glucose. These differences not 

only highlight that associations may differ between geographical locations, but also further 

question the role of diversity metrics alone as a predictor of health-related outcomes. 

At a relative abundance level, we report that individuals with worse diabetes profiles 

tended to share many bacteria from the Firmicutes phylum, especially from the Clostridiales order. 
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Many Firmicutes are known short chain fatty acid (SCFA) producers (319), and recent work has 

demonstrated that greater fecal excretion of SCFAs was associated with obesity and 

cardiometabolic dysfunction (320); while we do not have circulating or excreted levels of SCFA 

measured, it is possible that there is greater potential of SCFA production in our individuals with 

worse diabetes/glucose profiles given the higher Clostridiales presence. We also report that lower 

Faecalibacterium was associated with higher glucose and borderline with diabetes. While 

Faecalibacterium is also a SCFA producer, it is known for production of butyrate, which is thought 

to be beneficial for colonic health (319). It is also interesting to note that some associations were 

also observed with risk factors such as diet, physical activity, and body composition, and that some 

of the same taxa were associated with multiple of these measures. This may speak to the complex 

interrelatedness of lifestyle factors with the microbiome. Given that inclusion of microbial taxa as 

a predictor in models did not improve model explanatory power, this may also suggest that while 

these risk factors are all interrelated, targeting of modifiable traditional risk factors may still 

provide more benefit. 

Our analyses have some limitations worth mentioning. First, this analytic sample 

originated from an ancillary pilot study of the microbiome in the Tobago Health Study population. 

The smaller sample size limits our statistical power and ability to thoroughly investigate some 

information such as diet. Second, this ancillary study also occurred a period of time after clinical 

variable collection. While we did adjust for time differences between clinical variable collection 

and fecal sample donation, and attempted to update diabetes status through additional medication 

collection, it is possible that changes in lifestyle habits or diabetes status may have occurred over 

the time difference period. Third, our analysis is limited only to men who were middle aged and 

older; thus, we are unable to generalize our results to younger populations or to women. Still, our 
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study has several strengths. This is the first reporting of the intestinal microbiome in the Lesser 

Antilles region of the Caribbean, and one of the few samples of predominantly African ancestry. 

We also had detailed collection of important confounders, including diet and medication, as well 

as unique measures including upper and lower body composition. 

In conclusion, while we found some significant associations between the intestinal 

microbiome structure and fasting glucose levels in Tobagonian men, most explanatory power for 

diabetes remained in traditional risk factor variables. Further, various lifestyle factor and 

anthropometric predictors were associated with different microbial profiles. Future directions 

should investigate the relative contributions of combined lifestyle and microbiome on type 2 

diabetes risk in this population, and whether the microbiome may act as a mediator between 

traditional risk factors and type 2 diabetes.  
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4.6 Tables and Figures 

Table 4.1 Sample Characteristics 

Variable 
Grouping 

Variable N (253) 
Mean (SD), Median (IQR) 

or N (%) 

Base 

Covariates 

Age (years) 253 60 (56, 68) 

BMI (kg/m2) 253 28.2 (4.8) 

African-Caribbean Ethnicity [Y/N] 249 228 (91.6%) 

Education Status 

Primary  
Secondary/Technical Vocational Training 

Some University/Associate Degree 

University Graduate or Advanced Degree 

247 

 

173 (70.0%) 
55 (22.3%) 

11 (4.5%) 

8 (3.2%) 

Current Smoker [Y/N] 253 23 (9.1%) 

Antibiotic Medication Use [Y/N] 253 7 (2.8%) 

Lipid-Modifying Medication Use [Y/N] 253 20 (7.9%) 

Dry Season [Y/N] 253 120 (47.4%) 

Time difference between clinic visit and 
fecal sample collection (years) 

253 2.5 (1.6, 2.6) 

Diet 

Energy Intake (kcal) 249 2419.6 (862.7) 

High Fiber Food Intake (g) 249 1181.4 (879.4, 1551.5) 

Low Fiber Food Intake (g) 249 902.4 (628.2, 1212.1) 

Physical 

Activity 

Hours Walked per Week 250 2.0 (0.0, 6.0) 

Watches Television ≥ 14 hours/week [Y/N] 251 116 (46.2%) 

Body 

Composition 

Abdominal SAT Volume (cm3) 243 185.1 (133.7, 249.8) 

Abdominal VAT Volume (cm3) 243 100.0 (56.8, 130.2) 

Abdominal Other Volume (cm3) 243 312.2 (45.6) 

Total Abdominal Volume (cm3) 243 596.7 (503.8, 685.3) 

Thigh SAT Volume (cm3) 237 352.5 (238.5, 515.1) 

Thigh Muscle Volume (cm3) 239 1079.8 (186.3) 

Thigh IMAT Volume (cm3) 239 109.4 (45.2) 

Thigh Bone Volume (cm3) 241 45.4 (5.2) 

Total Thigh Volume (cm3) 237 1626.1 (350.7) 

Time difference between CT scan and fecal 

sample collection (years) 
245 1.6 (1.0, 2.3) 

Diabetes 

Glucose (mg/dL) 251 89.0 (82.0, 108.0) 

Insulin (µU/mL) 251 9.7 (6.7, 14.8) 

HOMA-IR 251 2.4 (1.5, 3.6) 

Antidiabetic Medication Use [Y/N] 253 42 (16.6%) 

Type 2 Diabetes [Y/N] 253 57 (22.5%) 

Type 2 Diabetes Categories 

Normal 

Impaired Fasting Glucose 
Type 2 Diabetes 

253 

 

169 (66.8%) 

27 (10.7%) 
57 (22.5%) 

 



137 

 
Figure 4.1 Mean taxon abundance across samples (N=251)



138 

 
Table 4.2 PERMANOVA Significant Variables, by Group Variable Categories 

Group Variable Statistically Significant Variables 

Body Composition African Caribbean ethnicity and BMI 

Diet African Caribbean ethnicity, BMI, smoking status, and total 

energy intake 

Physical Activity African Caribbean ethnicity, BMI, and smoking status 

Glucose/Insulin African Caribbean ethnicity, BMI, smoking status, and 

education status 

Diabetes [Y/N] African Caribbean ethnicity, BMI, and smoking status 

Diabetes Categories African Caribbean ethnicity, BMI, and smoking status 
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Table 4.3 Cluster Cutoffs and Variables Associated with Clustering, by Group Variable Categories 

Group Variable Optimal Cluster Cutoff 

(Calinski-Harabasz 

criteria) 

Variable Significantly Associated with 

Cluster 

Cluster Association and Direction 

Body Composition 6 

African Caribbean Ethnicity Cluster 3 (-) 

Age Cluster 2 (+), Cluster 3 (-) 

Time difference between clinical visit 

and fecal sample collection 

Cluster 1 (+) 

Time difference between CT scan and 

fecal sample collection 

Cluster 1 (-), Cluster 6 (+) 

Total Abdominal CT Volume Cluster 2 (-), Cluster 3 (+) 

Diet 6 

African Caribbean Ethnicity Cluster 2 (-), Cluster 4 (-) 

BMI Cluster 4 (+) 

Total Energy Intake Cluster 2 (-), Cluster 4 (+) 

Physical Activity 2 BMI Cluster 1 (-), Cluster 2(+) 

Glucose/Insulin 6 

African Caribbean Ethnicity Cluster 2 (-) 

Age Cluster 4 (-) 

Smoking Status Cluster 4 (+) 

Antidiabetic Medication Cluster 4 (+) 

Diabetes [Y/N] 6 

African Caribbean Ethnicity Cluster 2 (-)  

Age Cluster 4 (-), Cluster 5 (+) 

Diabetes Cluster 1 (+), Cluster 3 (-) 

Diabetes Categories 6 

African Caribbean Ethnicity Cluster 2 (-) 

Age Cluster 4 (-), Cluster 5 (+) 

Diabetes Category Cluster 1 (+), Cluster 3 (-) 
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Figure 4.2 Cluster Unifiers in Diabetes Category Groupings 

The Y-axis shows the top 35 abundant taxa, while the X-axis displays samples by cluster number. The bars on each line indicate the log10 R
2 ratio 

for inclusion of that taxon, such that a larger bar indicates importance of that taxon in unifying cluster membership.  
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Table 4.4 Naturally-Occurring Cluster Influencing Taxa 

Group Variable Group Cluster Influencers (Unifiers) 

Physical Activity 

Doesn’t Watch TV ≥ 14 hours/week 
Ruminococcaceae_UCG-002 

Watches TV ≥ 14 hours/week 

Lachnospiraceae_NK4A136_grp, Succinivibrio, Alistipes, Alloprevotella, 
Prevotella_2, Sutterella, Ruminococcus_1, Incertae_Sedis, 

Enterobacteriaceae_uncl, Akkermansia, Christensenellaceae_r-7_grp, 

Parabacteroides, Ruminiclostridium_6, Gastranaerophilales_uncl 

Glucose/Insulin 

Antidiabetic Medication = No Prevotella_9, Ruminococcaceae_UCG-002 

Antidiabetic Medication = Yes 

Gastranaerophilales_uncl, Ruminococcaceae_UCG-003, Coprococcus_2, 

Ruminiclostridium_6, Baceria_uncl, Ruminococcaceae_uncl, 

Akkermansia, Enterobacteriaceae_uncl, 

Eubacterium_coprostanoligenes_grp, Blautia, Prevotella_7, 
Ruminococcus_2, small Sutterella, Pseudobutyrivibrio 

Diabetes [Y/N] 

Type 2 Diabetes = No Coprococcus_2 

Type 2 Diabetes = Yes 

Gastranaerophilales_uncl, Ruminococcaceae_UCG-003, 

Ruminiclostridium_6, Baceria_uncl, Ruminococcaceae_uncl, 
Akkermansia, Enterobacteriaceae_uncl, Ruminococcaceae_UCG-014, 

Eubacterium_coprostanoligenes_grp, Blautia, Succinivibrio, 

Pseudobutyrivibrio, Lachnospiraceae_NK4A136_grp, 

Ruminococcaceae_UCG-002, Sutterella, Alloprevotella 

Diabetes Category 

Normal Glucose Lachnospiraceae_uncl, Coprococcus_2 

Impaired Fasting Glucose 

Ruminoclostridium_6, Christensenellaceae_R-7_grp, Akkermansia, 

Enterobacteriaceae_uncl, Eubacterium_coprostanoligenes_grp, 

Prevotella_2, Ruminococcaceae_UCG-005, Pseudobutyrivibrio, 
Lachnospiraceae_ uncl, Prevotella_9, Ruminococcus_1, Incertae_Sedis, 

Alloprevotella, Lachnoclostridium, Sutterella 

Type 2 Diabetes 

Ruminococcaceae_UCG-003, Ruminiclostridium_6, Bacteria_uncl, 

Ruminococcaceae_uncl, Akkermansia, Enterobacteriaceae_uncl, 
Ruminococcaceae_UCG-014, Eubacterium_coprostanoligenes_grp, 

Blautia, Succinivibrio, Pseudobutyrivibrio, 

Lachnospiraceae_NK4A136_uncl, Ruminococcaceae_UCG-002, 
Faecalibacterium 
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Table 4.5 Significant coeficients predicting Alpha Diversity metrics, adjusted for other covariates in Diabetes Category grouping 

 Coefficient (p-value < 0.05) 

Alpha Diversity Metric Age BMI Education African Caribbean Ethnicity 

Tail 0.08 -- -- -- 

Shannon -- -- -- -- 

Simpson -- -0.002 0.02 -- 

Reciprocal Simpson -- -0.02 0.12 -- 

Evenness -- -- 0.02 0.04 
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Table 4.6 Taxa Relative Abundance as Predictors, within Group Variable Categories 

Group Variable Taxa 

Body Composition 

Abdominal SAT ↑: Eubacterium_coprostanoligenes_grp 

Thigh IMAT ↑: Eubacterium_coprostanoligenes_grp 

Thigh Muscle ↑: Alistipes 

Physical Activity Hours Walked per Week 
↑: Ruminococcaceae_UCG-005 

↓: Ruminococcus_1 

Glucose/Insulin Glucose ↓: Faecalibacterium 
All taxa surpassed the combined p-value score cut-off
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Table 4.7 Taxa Relative Abundance as Responders, within Group Variable Categories 

Microbiome as a Response 

Group Variable Taxa 

Body 

Composition 

Abdominal SAT ↑: Ruminococcaceae_uncl 

Thigh IMAT ↓: Ruminococcus_1, Dialister 

Thigh Muscle ↑: Ruminococcus_1, Incertae_Sedis 

Abdominal VAT ↑: Succinivibrio 

Total Abdominal Volume ↓: Coprococcus_2 

Diet 

Energy Intake ↓: Bacteroides, Alistipes 

High Fiber/Low Fiber Food 

Ratio 

↑: Lachnospira, Incertae_Sedis 

↓: Succinivibrio 

Physical Activity Hours Walked per Week ↑: Lachnospiraceae_NK4A136_grp 

Glucose/Insulin 
Glucose ↓: Pseudobutyrivibrio 

Log(HOMA-IR) ↑: Pseudobutyrivibrio 

All taxa surpassed the combined p-value score cut-off 
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Table 4.8 Change in adjusted R2 comparing models with and without diversity metrics as a predictor of glucose 

Diversity Metric Δ in Adj. R2 Difference ANOVA p-value 

Tail 0.0063 0.1138 

Shannon 0.0142 0.0362 

Simpson 0.0158 0.0287 

Reciprocal Simpson 0.0182 0.0205 

Evenness 0.0178 0.0220 
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5.0 Overall Conclusions and Public Health Significance 

5.1.1 Dissertation Results Summary 

This dissertation showed the relationship of novel risk factors – adipose tissue radiodensity 

and the intestinal microbiome – with type 2 diabetes in an understudied racial/ethnic group. It also 

applied an approach used in microbiome research, compositional data analysis, to the field of body 

composition and demonstrated that abdominal subcutaneous adipose tissue is a major driver of 

diabetes in this population. Taken together, these papers provide new information in an 

understudied population, filling in multiple gaps in the literature 

The results of Paper 1 showed that lower adipose tissue radiodensity in both abdominal 

and peripheral (IMAT) adipose tissues was associated with higher insulin and insulin resistance. 

This paper expands the knowledge of adipose tissue radiodensity to include non-abdominal IMAT, 

which was found to be independent of (but a similar magnitude to) abdominal VAT. Paper 1 also 

explored the relationship between adipose tissue radiodensity and volume, with results indicating 

that radiodensity may be a more informative marker of insulin resistance than volume. 

Paper 2 further expanded on body composition analyses and the role of non-abdominal 

tissues in type 2 diabetes development. We found that, relative to non-VAT/SAT abdominal tissue, 

increases in abdominal SAT volume was positively associated with type 2 diabetes, while VAT 

was not associated; in contrast, increases thigh muscle (relative to thigh bone) was inversely 

associated with type 2 diabetes. We also confirmed previous findings that SAT in the abdomen 

and thigh have opposing relationships with diabetes, with lower body SAT being somewhat 

protective. 
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In both Papers 1 and 2, abdominal VAT and SAT were positively associated with insulin 

and insulin resistance; however, in Paper 2, thigh IMAT size was inversely associated with insulin 

and insulin resistance while IMAT radiodensity was positively associated in Paper 1. It is 

important to note that while Paper 1 demonstrated a strong relationship between adipose tissue 

radiodensity and volume, that the analysis in Paper 2 used an entirely different transformation of 

volume (looking at increases relative to another component), included more tissue types than Paper 

1 did, and did not exclude individuals with type 2 diabetes as Paper 1 did. Still, further research 

will still be needed to determine if the structural qualities we believe tissue radiodensity is 

measuring (i.e. predominantly lipid accumulation) are consistent across tissue types and 

anatomical locations. 

The results of Paper 3 begin to tie in the microbiome to the relationships between traditional 

risk factors, body composition, and type 2 diabetes. Our preliminary findings show that microbial 

clustering was driven primarily by sociodemographic and lifestyle factors. We also identified 

specific taxa that are associated with body composition, diet, physical activity, and diabetes-related 

variables. While the next steps will include building models predicting type 2 diabetes while 

simultaneously adjusting for many of the group factors together, our current assessments may hint 

at some of the bidirectional and mediating mechanisms by which the microbiome can influence 

diabetes risk. Of future research interest are the associations with body composition measures, 

which are themselves likely to be mediators in the relationship between the microbiome and type 

2 diabetes. 
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5.1.2 Dissertation Public Health Significance 

This dissertation has made three significant contributions with impacts in public health 

research. First, this research includes an underrepresented racial/ethnic group who are at increased 

risk of type 2 diabetes. As previous research in all of these aims have a noticeable lack of 

information in African Ancestry participants, these dissertation aims are providing crucial insights 

that improve our collective knowledge on the pathophysiology of type 2 diabetes and how it might 

differ across different groups and geographical locations.  

Second, findings from this dissertation call for a change in body composition analytic 

methods. In my first aim, we demonstrate that when investigating adipose tissue radiodensity, it is 

likely inappropriate to adjust further for tissue volume given the strong curvilinear relationship 

between volume and radiodensity and given that this further adjustment does not improve model 

fit criteria. In my second aim, we apply a methodology (compositional data analysis) which is used 

in the microbiome field, and in doing so eliminate many of the concerns and analytic missteps in 

the body composition field. Importantly, this methodology can be used for a variety of imaging 

methods, and as such may have broader utility for body composition analysts as well as other 

studies utilizing imaging data for health-related research. 

And third there are some results and products generated by this dissertation which may 

have immediate influence on research and health in Tobago. In the process of completing this 

dissertation, I have developed databases housing information on both diet and the microbiome in 

the Tobago Health Study. These databases are the first for this study and for the island of Tobago, 

and the applications for analyses and future visits within the Tobago Health Study cohorts will 

further aid in disentangling the complex interplay of the many diabetes risk factors as they exist in 

Trinidad and Tobago. Additionally, our strong findings relating subcutaneous adipose tissue 
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volume and radiodensity to diabetes may also have clinical applications for Tobago, as assessment 

of diabetes risk could be assessed through means such as waist circumference or skin-fold tests. 



150 

Appendix A Background Tables and Figures 

Appendix A Table 1 Levels of Physical Activity Definitions 

Activity 
Level 

STEPS (148) Tobago 

 Method: Self-report Method: Self-Report 
Method: Activity 

Monitor 

High 

• Vigorous-intensity activity on 3+ 

days (≥1,500 MET-

minutes/week) OR 

• 7+ days of any combination of 
walking, moderate- or vigorous-

intensity activities (≥3,000 MET-

minutes per week) 

How many hours 
were spent a day 

doing heavy physical 

activity?  
(Examples- heavy 

construction work, 

heavy farming, 

fishing with a net, 
etc.) 

Percent of monitor 
wear time in vigorous 

activity, no sleep 

Moderate 

• 3+ days of vigorous-intensity 
activity of ≥20 minutes/day OR 

• 5+ days of moderate-intensity 

activity or walking ≥30 

minutes/day OR 

• 5+ days of any combination of 

walking, moderate- or vigorous-
intensity activities (≥600 MET-

minutes/week) 

How many hours 

were spent a day 
doing moderate 

physical activity?  

(Examples- 

Gardening, carrying 
light loads, strenuous 

housework, 

continuous 
walking, repairs, light 

construction work, 

e.g. plumbing, 
electrician, etc.) 

Percent of monitor 
wear time in moderate 

activity, no sleep 

Low/Light Not meeting any of the above criteria 

How many hours 

were spent a day 

doing light physical 
activity?  

(Examples- Sitting or 

reclining, standing, 
driving, light 

housework, slow 

leisure walking, etc.). 

TV-watching time 
was subtracted from 

this to try and remove 

“sitting or reclining” 
as a light physical 

activity. 

Percent of monitor 

wear time in light 

activity, no sleep 
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Appendix A Table 1 continued 

Sedentary 
Minutes/day spent in sedentary 

activities (sitting or reclining) 

Hours/week watching 

television, averaged 

Percent of monitor 
wear time in sedentary 

activity, no sleep 
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Appendix A Figure 1 Classification of Adipose Tissue Depots. 

  

Total Adipose Tissue 
(excludes bone marrow and 
adipose in head, hands and 

feet)

Subcutaneous Adipose 
Tissue (SAT): between 

dermis and muscle fascia; 
includes mammary tissue

Superficial 
SAT: 

between 
skin and 

fascial plane

Deep SAT: 
between 

fascial plane 
and muscle 

fascia

Internal 
Adipose 
Tissue

Visceral 
Adipose 

Tissue (VAT): 
within 
chest, 

abdomen, 
and pelvis

Non-Visceral 
Adipose 
Tissue

Intramuscular 
Adipose 
Tissue: 

between 
muscle 

fascicles

Perimuscular 
Adipose 

Tissue: within 
muscle fascia, 

excluding 
intramuscular

Intermuscular 
Adipose 

Tissue (IMAT): 
between 
muscle 
groups

Paraosseal 
Adipose 
Tissue: 

between 
muscle and 

bone

Other non-
VAT (ex. 
orbital 

adipose 
tissue, 

lipomas)

Adapted from Shen et al (1) 
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Appendix A Figure 2 Classification of Visceral Adipose Tissue Depots. 

Adapted from Shen et al (1) 

 

Visceral 
Adipose 

Tissue (VAT)

Intrathoracic 
Adipose 
Tissue

Intrapericardial Extrapericardial

Intraabdominopelvic

Intraperitoneal

Omental Mesenteric
Extraperitoneal

Intraabdominal

Pre-
peritoneal

Retroperitoneal 
(perirenal, pararenal, 

periaortic, 
peripancreatic)

Intrapelvic (parametrial, 
retropubic, paravesical, 
retrouterine, pararectal, 

retrorectal)
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Appendix B Paper 1 Supplementary Tables/Figures 

Appendix B Table 1 Study population characteristics, stratified by median value of AT depot radiodensity 

Variable 

Low VAT 

Radiodensity 

(n=253) 

High VAT 

Radiodensity 

(n=252) 

P-value 

Low SAT 

Radiodensity 

(n=253) 

High SAT 

Radiodensity 

(n=252) 

P-value 

Low IMAT 

Radiodensity 

(n=253) 

High IMAT 

Radiodensity 

(n=252) 

P-

value 

Age (years) 
61.0 (56.0, 

68.0) 

61.0 (57.0, 

68.0) 
0.5516 

61.0 (56.0, 

68.0) 

61.0 (56.0, 

68.0) 
0.8439 

60.0 (56.0, 

67.0) 

61.5 (57.5, 

70.0) 
0.0050 

Weight (kg) 
90.2 (81.0, 

98.0) 

75.2 (67.9, 

83.7) 
<.0001 

90.1 (79.0, 

100.3) 

75.5 (68.0, 

84.5) 
<.0001 

86.5 (77.5, 

95.9) 

77.0 (68.4, 

88.3) 
<.0001 

Height (cm) 175.6 (6.4) 175.5 (6.9) 0.8690 175.1 (6.5) 176.0 (6.8) 0.1556 175.7 (6.5) 175.5 (6.8) 0.7189 

BMI (kg/m2) 
29.0 (26.7, 

32.0) 

24.6 (22.5, 

26.9) 
<.0001 

29.0 (26.7, 

32.2) 

24.7 (22.5, 

27.0) 
<.0001 

28.0 (25.9, 

30.9) 

25.2 (22.7, 

28.1) 
<.0001 

Waist 

Circumference 
(cm) 

102.1 (95.9, 

109.1) 

89.3 (84.1, 

95.9) 
<.0001 

103.0 (95.3, 

110.6) 

89.4 (84.0, 

96.0) 
<.0001 

99.1 (93.2, 

107.1) 

91.0 (84.1, 

99.2) 
<.0001 

BMI Category 

* 
      Normal 

Weight (%) 

      

Overweight 
(%) 

      Obese (%) 

 

26 (10.3%) 
126 (49.8%) 

101 (39.9%) 

 

133 (53.6%) 
93 (37.5%) 

22 (8.9%) <.0001 

 

30 (11.9%) 
118 (46.6%) 

105 (41.5%) 

 

129 (52.0%) 
101 (40.7%) 

18 (7.3%) <.0001 

 

40 (15.8%) 
129 (51.0%) 

84 (33.2%) 

 

119 (48.0%) 
90 (36.3%) 

39 (15.7%) <.0001 

Lifestyle and Comorbidities 

Current 

Smoker (%) 
14 (5.5%) 22 (8.7%) 0.1627 14 (5.5%) 22 (8.7%) 0.1627 18 (7.1%) 18 (7.1%) 0.9902 

Drinks 

Alcohol 
4+/week (%) 

44 (17.4%) 23 (9.1%) 0.0062 38 (15.0%) 29 (11.5%) 0.2447 41 (16.2%) 26 (10.3%) 0.0511 
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Hours Walked 
per Week 

2.0 (0.0, 5.3) 1.5 (0.0, 5.0) 0.7630 2.0 (0.0, 5.3) 1.5 (0.0, 5.0) 0.9246 2.0 (0.0, 5.0) 1.5 (0.0, 5.3) 0.7298 

Watches TV ≥ 

14/week (%) 
123 (48.6%) 119 (47.2%) 0.7538 134 (53.0%) 108 (42.9%) 0.0230 125 (49.4%) 117 (46.4%) 0.5029 

Impaired 
Fasting 

Glucose (%) 

43 (17.0%) 33 (13.1%) 0.2203 48 (19.0%) 28 (11.1%) 0.0135 41 (16.2%) 35 (13.9%) 0.4666 

CT-Derived Measures 

VAT Volume 

(cm3) 

116.3 (93.5, 

141.7) 

49.7 (31.6, 

68.6) 
<.0001 

107.9 (78.3, 

137.1) 

51.7 (30.9, 

77.4) 
<.0001 

98.1 (68.5, 

128.7) 

60.9 (31.9, 

102.5) 
<.0001 

SAT Volume 

(cm3) 

209.8 (173.8, 

273.0) 

122.4 (78.2, 

174.6) 
<.0001 

229.5 (183.0, 

288.1) 

119.4 (77.0, 

162.4) 
<.0001 

203.9 (168.1, 

266.3) 

133.7 (79.1, 

188.2) 
<.0001 

IMAT 

Volume (cm3) 

129.3 (103.4, 

157.0) 

89.9 (62.7, 

113.5) 
<.0001 

129.3 (103.3, 

156.2) 

89.4 (61.8, 

112.7) 
<.0001 

129.3 (101.3, 

160.4) 

91.8 (62.2, 

116.0) 
<.0001 

VAT 

Radiodensity 
(HU) 

-94.7 (-97.9, -

92.5) 

-82.0 (-86.1, -

77.4) 
<.0001 

-94.3 (-97.8, -

90.3) 

-82.5 (-88.4, -

77.4) 
<.0001 

-93.2 (-96.7, -

88.5) 

-84.6 (-90.5, -

78.5) 
<.0001 

SAT 

Radiodensity 

(HU) 

-102.5 (-

105.2, -

100.3) 

-94.3 (-98.9, -

84.4) 
<.0001 

-103.3 (-

105.4, -

101.5) 

-93.9 (-97.8, -

83.5) 
<.0001 

-102.1 (-

104.9, -99.7) 

-95.1 (-99.7, -

84.1) 
<.0001 

IMAT 

Radiodensity 

(HU) 

-72.2 (-74.0, -
70.4) 

-68.7 (-71.4, -
63.6) 

<.0001 
-72.4 (-74.2, -

70.9) 
-68.4 (-70.8, -

63.0) 
<.0001 

-73.3 (-74.7, -
71.9) 

-68.0 (-69.5, -
63.0) 

<.0001 

Total 
Abdominal 

Volume (cm3) 

643.5 (565.3, 

747.8) 

473.4 (416.5, 

555.5) 
<.0001 

645.1 (564.6, 

754.6) 

472.5 (411.5, 

557.7) 
<.0001 

612.2 (531.5, 

714.8) 

501.7 (417.9, 

612.2) 
<.0001 

Total Thigh 

Volume (cm3) 

1750.6 
(1604.1, 

1964.7) 

1463.3 
(1291.5, 

1650.2) 

<.0001 
1774.9 

(1625.3, 

1992.5) 

1460.3 
(1288.0, 

1623.4) 

<.0001 
1717.2 

(1552.2, 

1959.0) 

1465.2 
(1302.2, 

1692.4) 

<.0001 

Glucose and Insulin Metabolism 

Glucose 

(mmol/l) 
4.8 (4.4, 5.2) 4.7 (4.4, 5.3) 0.0641 4.9 (4.4, 5.3) 4.7 (4.4, 5.1) 0.0082 4.8 (4.4, 5.3) 4.8 (4.4, 5.2) 0.2355 

Insulin 

(pmol/l) 

72.0 (50.0, 

101.0) 

36.0 (27.0, 

53.0) 
<.0001 

74.0 (50.0, 

102.0) 

36.0 (27.0, 

53.5) 
<.0001 

68.0 (45.0, 

95.0) 

38.0 (28.0, 

61.5) 
<.0001 

Appendix B Table 1 Continued 
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HOMA2-IR 
1.33 (0.95, 

1.86) 
0.68 (0.51, 

0.97) 
<.0001 

1.36 (0.93, 
1.86) 

0.67 (0.49, 
0.97) 

<.0001 
1.24 (0.85, 

1.75) 
0.72 (0.51, 

1.16) 
<.0001 

  

Results reported as Mean (SD) for normally distributed and Median (IQR) for non-normally distributed continuous variables, or N (%) for 
categorical. Statistical comparisons were made using two-sample t-test or Wilcoxon rank-sum test for continuous variables and Chi-square tests 

for categorical variables within an AT depot. Median VAT radiodensity was -89.6, median SAT radiodensity was -99.7, and median IMAT 

radiodensity was -70.9. 

 
 * = excludes 4 individuals who were underweight and all located in the high radiodensity groups for each AT depot (Fisher's Exact p for each: 

p <0.0001) 

 
Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue, IMAT = Intermuscular Adipose 

Tissue, HU=Hounsfield Unit 

 

  

Appendix B Table 1 Continued 
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Appendix B Table 2 Sensitivity Analyses for Multiple Linear Regression Glucose Models β (95%CI), per SD Higher AT Radiodensity 

Model 1: 

Adjusting 

for 

Covariates 

and a 

Specific AT 

Radiodensit

y 

Outcome: Glucose 
Reported in 

Manuscript; Excluding 

Individuals with Type 

2 Diabetes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Total 

Abdominal and Thigh 

CT Scan Volumes 

Excluding Individuals with 

Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

VAT 

Radiodensity 
(SD = 8.44 HU) -0.04 (-0.11, 0.03) -0.05 (-0.12, 0.02) -0.09 (-0.18, -0.01) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.05 (-0.12, 0.02) -0.07 (-0.15, 0.01) -0.03 (-0.11, 0.05) 

  

IMAT 

Radiodensity 
(SD = 5.70 HU) -0.01 (-0.07, 0.05) -0.02 (-0.09, 0.05) -0.02 (-0.09, 0.05) 

Model 2A: 

Adjusting 

for 

Covariates 

and VAT + 

SAT 

Radiodensit

ies 

Outcome: Glucose 
Reported in 

Manuscript; Excluding 

Individuals with Type 

2 Diabetes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Total 

Abdominal and Thigh 

CT Scan Volumes 

Excluding Individuals with 

Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

  

VAT 

Radiodensity 
(SD = 8.44 HU) -0.03 (-0.10, 0.05) -0.03 (-0.11, 0.05) -0.08 (-0.17, 0.01) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.03 (-0.11, 0.04) -0.06 (-0.14, 0.03) -0.04 (-0.13, 0.05) 
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Model 2B: 

Adjusting 

for 

Covariates 

and VAT + 

IMAT 

Radiodensit

ies 

Outcome: Glucose 
Reported in 

Manuscript; Excluding 

Individuals with Type 

2 Diabetes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Total 

Abdominal and Thigh 

CT Scan Volumes 

Excluding Individuals with 

Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

  

VAT 

Radiodensity 
(SD = 8.44 HU) -0.04 (-0.11, 0.03) -0.05 (-0.12, 0.03) -0.09 (-0.18, -0.00) 

  

IMAT 

Radiodensity 
(SD = 5.70 HU) -0.00 (-0.07, 0.07) -0.01 (-0.08, 0.06) -0.01 (-0.09, 0.06) 

Model 2C: 

Adjusting 

for 

Covariates 

and SAT + 

IMAT 

Radiodensit

ies 

Outcome: Glucose 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Total 

Abdominal and Thigh 

CT Scan Volumes 

Excluding Individuals with 

Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

Covariates + Two AT 

Radiodensities 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.10 (-0.21, 0.02) -0.12 (-0.23, 0.00) -0.08 (-0.18, 0.03) 

  

IMAT 

Radiodensity 
(SD = 5.70 HU) 0.06 (-0.04, 0.16) 0.05 (-0.05, 0.16) 0.05 (-0.06, 0.15) 

Model 3: 

Adjusting 

for 

Covariates 

and VAT + 

Outcome: Glucose 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Total 

Abdominal and Thigh 

CT Scan Volumes 

Excluding Individuals with 

Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

Appendix B Table 2 Continued 
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SAT + 

IMAT 

Radiodensit

ies 

  
Model 

Covariates + All Three 

AT Radiodensities 

Covariates + All Three 

AT Radiodensities 

Covariates + All Three AT 

Radiodensities 

  

VAT 

Radiodensity 
(SD = 8.44 HU) -0.02 (-0.10, 0.05) -0.03 (-0.11, 0.05) -0.08 (-0.16, 0.01) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.08 (-0.21, 0.04) -0.10 (-0.23, 0.02) -0.08 (-0.20, 0.03) 

  

IMAT 

Radiodensity 
(SD = 5.70 HU) 0.05 (-0.05, 0.16) 0.05 (-0.05, 0.16) 0.05 (-0.06, 0.16) 

  

Model reported in manuscript (adjusts for age, weight, height, alcohol intake, smoking, hours walked/week, and TV 

watching ≥ 14 hours/week) 

  

Sensitivity 

analyses: 

1) Mutual adjustment of SAT and IMAT radiodensities (row 22), or SAT, VAT, and IMAT 

radiodensities (row 28) 

2) Additional adjustment for total abdominal volume and total thigh volume (column E) 

3) Additional adjustment for respective AT depot volume 

Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue, 

 IMAT = Intermuscular Adipose Tissue, HU=Hounsfield Unit 
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Appendix B Table 3 Sensitivity Analyses for Multiple Linear Regression Log-Insulin Models β (95%CI), per SD Higher AT Radiodensity 

Model 1: 

Adjusting 

for 

Covariates 

and a 

Specific AT 

Radiodensit

y 

Outcome:  Log-Insulin 

Reported in Manuscript; 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals with 

Type 2 Diabetes, Adjusting 

for Total Abdominal and 

Thigh CT Scan Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for 

Respective AT Depot 

Volumes 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

VAT 

Radiodensity 

(SD = 8.44 

HU) 
-0.16 (-0.21, -0.11) -0.14 (-0.19, -0.08) -0.15 (-0.22, -0.08) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.18 (-0.24, -0.13) -0.16 (-0.22, -0.10) -0.15 (-0.22, -0.09) 

  

IMAT 

Radiodensity 

(SD = 5.70 

HU) 
-0.16 (-0.21, -0.11) -0.14 (-0.20, -0.09) -0.18 (-0.24, -0.13) 

Model 2A: 

Adjusting 

for 

Covariates 

and VAT + 

SAT 

Radiodensit

ies 

Outcome:  Log-Insulin 

Reported in Manuscript; 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals with 

Type 2 Diabetes, Adjusting 

for Total Abdominal and 

Thigh CT Scan Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for 

Respective AT Depot 

Volumes 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

VAT 

Radiodensity 

(SD = 8.44 

HU) 
-0.10 (-0.16, -0.05) -0.10 (-0.16, -0.04) -0.11 (-0.18, -0.04) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.14 (-0.20, -0.08) -0.13 (-0.19, -0.06) -0.11 (-0.18, -0.04) 
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Model 2B: 

Adjusting 

for 

Covariates 

and VAT + 

IMAT 

Radiodensit

ies 

Outcome:  Log-Insulin 

Reported in Manuscript; 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals with 

Type 2 Diabetes, Adjusting 

for Total Abdominal and 

Thigh CT Scan Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for 

Respective AT Depot 

Volumes 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

VAT 

Radiodensity 

(SD = 8.44 

HU) 
-0.12 (-0.17, -0.07) -0.11 (-0.17, -0.06) -0.12 (-0.19, -0.05) 

  

IMAT 

Radiodensity 

(SD = 5.70 

HU) 
-0.13 (-0.18, -0.08) -0.12 (-0.17, -0.07) -0.15 (-0.21, -0.10) 

Model 2C: 

Adjusting 

for 

Covariates 

and SAT + 

IMAT 

Radiodensit

ies 

Outcome:  Log-Insulin 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals with 

Type 2 Diabetes, Adjusting 

for Total Abdominal and 

Thigh CT Scan Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for 

Respective AT Depot 

Volumes 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.11 (-0.20, -0.03) -0.09 (-0.18, 0.00) -0.06 (-0.16, 0.03) 

  

IMAT 

Radiodensity 

(SD = 5.70 

HU) 
-0.08 (-0.16, -0.00) -0.09 (-0.16, -0.01) -0.12 (-0.20, -0.03) 

Model 3: 

Adjusting 

for 

Covariates 

and VAT + 

Outcome:  Log-Insulin 

Excluding Individuals 

with Type 2 Diabetes 

Excluding Individuals with 

Type 2 Diabetes, Adjusting 

for Total Abdominal and 

Thigh CT Scan Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for 

Respective AT Depot 

Volumes 
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SAT + 

IMAT 

Radiodensit

ies 

  
Model 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

Covariates + One AT 

Radiodensity 

  

VAT 

Radiodensity 

(SD = 8.44 

HU) 
-0.11 (-0.17, -0.05) -0.10 (-0.16, -0.05) -0.11 (-0.18, -0.04) 

  

SAT 

Radiodensity 

(SD = 10.71 

HU) 
-0.05 (-0.14, 0.04) -0.04 (-0.13, 0.05) -0.00 (-0.10, 0.10) 

  

IMAT 

Radiodensity 

(SD = 5.70 

HU) 
-0.09 (-0.17, -0.02) -0.10 (-0.17, -0.02) -0.13 (-0.21, -0.05) 

  

Model reported in manuscript (adjusts for age, weight, height, alcohol intake, smoking, hours walked/week, and TV 

watching ≥ 14 hours/week) 

  

Sensitivity 

analyses: 

1) Mutual adjustment of SAT and IMAT radiodensities (row 22), or SAT, VAT, and IMAT 

radiodensities (row 28) 

2) Additional adjustment for total abdominal volume and total thigh volume (column E) 

3) Additional adjustment for respective AT depot volume 

Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue,  

IMAT = Intermuscular Adipose Tissue, HU=Hounsfield Unit 
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Appendix B Table 4 Sensitivity Analyses for Multiple Linear Regression HOMA2-IR Models β (95%CI), per SD Higher AT Radiodensity 

Model 1: Adjusting 

for Covariates and 

a Specific AT 

Radiodensity 

Outcome:  Log-HOMA2-IR 

Reported in 

Manuscript; 

Excluding 

Individuals with 

Type 2 Diabetes 

Excluding 

Individuals with 

Type 2 Diabetes, 

Adjusting for Total 

Abdominal and 

Thigh CT Scan 

Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + One 

AT Radiodensity 

Covariates + One 

AT Radiodensity 

Covariates + One AT 

Radiodensity 

  
VAT Radiodensity 

(SD = 8.44 

HU) 
-0.16 (-0.21, -0.11) -0.14 (-0.20, -0.09) -0.15 (-0.22, -0.08) 

  
SAT Radiodensity 

(SD = 10.71 

HU) 
-0.18 (-0.24, -0.13) -0.17 (-0.22, -0.11) -0.15 (-0.22, -0.09) 

  
IMAT Radiodensity 

(SD = 5.70 

HU) 
-0.16 (-0.20, -0.11) -0.14 (-0.20, -0.09) -0.18 (-0.23, -0.13) 

Model 2A: 

Adjusting for 

Covariates and 

VAT + SAT 

Radiodensities 

Outcome:  Log-HOMA2-IR 

Reported in 

Manuscript; 

Excluding 

Individuals with 

Type 2 Diabetes 

Excluding 

Individuals with 

Type 2 Diabetes, 

Adjusting for Total 

Abdominal and 

Thigh CT Scan 

Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + One 

AT Radiodensity 

Covariates + One 

AT Radiodensity 

Covariates + One AT 

Radiodensity 

  
VAT Radiodensity 

(SD = 8.44 

HU) 
-0.10 (-0.16, -0.05) -0.10 (-0.16, -0.04) -0.11 (-0.18, -0.04) 

  
SAT Radiodensity 

(SD = 10.71 

HU) 
-0.14 (-0.20, -0.08) -0.13 (-0.19, -0.07) -0.11 (-0.18, -0.05) 
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Model 2B: 

Adjusting for 

Covariates and 

VAT + IMAT 

Radiodensities 

Outcome:  Log-HOMA2-IR 

Reported in 

Manuscript; 

Excluding 

Individuals with 

Type 2 Diabetes 

Excluding 

Individuals with 

Type 2 Diabetes, 

Adjusting for Total 

Abdominal and 

Thigh CT Scan 

Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + One 

AT Radiodensity 

Covariates + One 

AT Radiodensity 

Covariates + One AT 

Radiodensity 

  
VAT Radiodensity 

(SD = 8.44 

HU) 
-0.12 (-0.17, -0.07) -0.11 (-0.17, -0.06) -0.12 (-0.19, -0.06) 

  
IMAT Radiodensity 

(SD = 5.70 

HU) 
-0.13 (-0.18, -0.08) -0.12 (-0.17, -0.07) -0.15 (-0.20, -0.10) 

Model 2C: 

Adjusting for 

Covariates and 

SAT + IMAT 

Radiodensities 

Outcome:  Log-HOMA2-IR 

Excluding 

Individuals with 

Type 2 Diabetes 

Excluding 

Individuals with 

Type 2 Diabetes, 

Adjusting for Total 

Abdominal and 

Thigh CT Scan 

Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 

  
Model 

Covariates + One 

AT Radiodensity 

Covariates + One 

AT Radiodensity 

Covariates + One AT 

Radiodensity 

  
SAT Radiodensity 

(SD = 10.71 

HU) 
-0.12 (-0.20, -0.03) -0.10 (-0.18, -0.01) -0.07 (-0.16, 0.03) 

  
IMAT Radiodensity 

(SD = 5.70 

HU) 
-0.07 (-0.15, 0.00) -0.08 (-0.16, 0.00) -0.11 (-0.19, -0.03) 

Model 3: Adjusting 

for Covariates and 

VAT + SAT + 

IMAT 

Radiodensities 

Outcome:  Log-HOMA2-IR 

Excluding 

Individuals with 

Type 2 Diabetes 

Excluding 

Individuals with 

Type 2 Diabetes, 

Adjusting for Total 

Abdominal and 

Thigh CT Scan 

Volumes 

Excluding Individuals 

with Type 2 Diabetes, 

Adjusting for Respective 

AT Depot Volumes 
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Model 

Covariates + One 

AT Radiodensity 

Covariates + One 

AT Radiodensity 

Covariates + One AT 

Radiodensity 

  
VAT Radiodensity 

(SD = 8.44 

HU) 
-0.11 (-0.17, -0.05) -0.10 (-0.16, -0.05) -0.11 (-0.18, -0.04) 

  
SAT Radiodensity 

(SD = 10.71 

HU) 
-0.06 (-0.15, 0.03) -0.05 (-0.14, 0.04) -0.01 (-0.11, 0.09) 

  
IMAT Radiodensity 

(SD = 5.70 

HU) 
-0.09 (-0.17, -0.01) -0.09 (-0.17, -0.01) -0.13 (-0.21, -0.04) 

  

Model reported in manuscript (adjusts for age, weight, height, alcohol intake, smoking, hours walked/week, 

and TV watching ≥ 14 hours/week) 

  

Sensitivity analyses: 

1) Mutual adjustment of SAT and IMAT radiodensities (row 22), or SAT, VAT, and 

IMAT radiodensities (row 28) 

2) Additional adjustment for total abdominal volume and total thigh volume (column E) 

3) Additional adjustment for respective AT depot volume 

Abbreviations: AT = Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose Tissue,  

IMAT = Intermuscular Adipose Tissue, HU=Hounsfield Unit 
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Appendix B Table 5 Change in model AIC/BIC with inclusion of a single AT radiodensity or volume 

Outcome Depot 

Δ AIC Δ BIC 

Depot 

Radiodensity 

Depot 

Volume 

Depot 

Radiodensity & 

Volume 

Depot 

Radiodensity 

Depot 

Volume 

Depot 

Radiodensity & 

Volume 

Glucose 

VAT 0.68 1.38 -1.14 0.75 1.45 -0.99 

SAT 0.37 0.50 1.96 0.44 0.56 2.11 

IMAT 1.90 1.90 3.63 1.97 1.97 3.77 

 Log-Insulin 

VAT -32.95 † -14.37 † -31.17 † -32.89 † -14.30 † -31.02 † 

SAT -42.32 † -22.89 † -43.31 † -42.25 † -22.82 † -43.17 † 

IMAT -39.84 † -0.42 -40.99 † -39.77 † -0.35 -40.84 † 

 Log-

HOMA2-IR 

VAT -33.62 † -13.88 † -31.74 † -33.55 † -13.81 † -31.59 † 

SAT -43.12 † -22.99 † -44.03 † -43.05 † -22.92 † -43.88 † 

IMAT -39.55 † -0.31 -40.82 † -39.49 † -0.24 -40.67 † 

† = improvement of fit (Δ ≤ -2) 

Compares inclusion/exclusion of (1) a specific AT radiodensity, (2) a specific AT volume, or (3) both specific AT radiodensity 

AND volume, to the base covariate model [age, weight, height, alcohol intake, smoking, hours walked/week, and TV watching ≥ 14 

hours/week] 

 

Abbreviations: AT = Adipose Tissue, AIC = Akaike information criterion, BIC = Bayesian information criterion 
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Appendix B Table 6 Change in multiple linear regression model fit statistics after inclusion of all AT depot radiodensities or volumes, stratified 

byBMIstatus 

Outcome 
Obesity 

Status 

Δ AIC Δ BIC 

All 

Radiodensities 

All 

Volumes 

Radiodensities 

& Volumes 

All 

Radiodensities 

All 

Volumes 

Radiodensities 

& Volumes 

Glucose 

 Normal 

Weight 
-3.08 † -7.35 † -7.23 † -2.47 † -6.74 † -5.75 † 

Overweight 4.34 4.30 7.82 4.77 4.73 8.87 

 Obese -0.32 3.10 2.85 0.48 3.90 4.81 

Log-

Insulin 

 Normal 

Weight 
-19.59 † -31.46 † -25.82 † -18.99 † -30.85 † -24.34 † 

Overweight -36.42 † -24.02 † -36.61 † -35.99 † -23.58 † -35.56 † 

 Obese -34.38 † -28.21 † -33.83 † -33.58 † -27.42 † -31.86 † 

Log-

HOMA2-

IR 

 Normal 

Weight 
-19.12 † -31.70 † -26.05 † -18.52 † -31.10 † -24.57 † 

Overweight -35.82 † -23.21 † -36.04 † -35.39 † -22.78 † -34.99 † 

 Obese -36.84 † -28.88 † -36.02 † -36.04 † -28.08 † -34.06 † 

† = improvement of fit (Δ ≤ -2) 

Compares inclusion/exclusion of (1) a specific AT radiodensity, (2) a specific AT volume, or (3) both specific AT radiodensity 

AND volume, to the base covariate model [age, weight, height, alcohol intake, smoking, hours walked/week, and TV watching ≥ 14 

hours/week] 

 

Abbreviations: AT=Adipose Tissue, AIC = Akaike information criterion, BIC = Bayesian information criterion 
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Appendix B Figure 1 Multiple linear regression coefficients (95% confidence intervals) for AT depot 

radiodensity and volume predicting glucose levels, stratified by obesity status. 

Models adjusted for age, alcohol intake, smoking, walking, TV watching, AND the simultaneous 

adjustment of a specific adipose tissue depot’s volume and radiodensity. Models did not adjust for multiple 

AT depots. CI’s above or below the 0.0 line are statistically significant. 

 

Abbreviations: AT= Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose 

Tissue, IMAT = Intermuscular Adipose Tissue, CI = Confidence Interval 
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Appendix B Figure 2 Multiple linear regression coefficients (95% confidence intervals) for AT depot 

radiodensity and volume predicting log-insulin levels, stratified by obesity status 

Models adjusted for age, alcohol intake, smoking, walking, TV watching, AND the simultaneous 

adjustment of a specific adipose tissue depot’s volume and radiodensity. Models did not adjust for multiple 

AT depots. CI’s above or below the 0.0 line are statistically significant. 

 

Abbreviations: AT= Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose 

Tissue, IMAT = Intermuscular Adipose Tissue, CI = Confidence Interval 
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Appendix B Figure 3 Multiple linear regression coefficients (95% confidence intervals) for AT depot 

radiodensity and volume predicting log-HOMA2-IR levels, stratified by obesity status 

Models adjusted for age, alcohol intake, smoking, walking, TV watching, AND the simultaneous 

adjustment of a specific adipose tissue depot’s volume and radiodensity. Models did not adjust for multiple 

AT depots. CI’s above or below the 0.0 line are statistically significant. 

 

Abbreviations: AT= Adipose Tissue, VAT = Visceral Adipose Tissue, SAT = Subcutaneous Adipose 

Tissue, IMAT = Intermuscular Adipose Tissue, CI = Confidence Interval 
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Appendix C Paper 2 Supplementary Tables 

Appendix C Table 1 Additional Abdominal and Thigh Characteristics, Overall and by BMI Category 

Variable 

Mean (SD), Median (IQR), or N(%) 

Overall (N=610) Normal (N=177) 
Overweight 

(N=266) 
Obese (N=167) P-value 

Body Composition Tissue Measures 

Abdominal IMAT Volume (cm3) 

* 
27.6 (21.5, 37.0) 21.7 (9.1) 28.4 (23.0, 36.0)  37.0 (28.5, 49.9)  <.0001 

Abdominal Muscle Volume (cm3) 

* 

165.7 (148.4, 

183.6) 
153.8 (23.1) 167.7 (24.6) 182.3 (28.2) <.0001 

Other Abdominal Volume (cm3) * 115.5 (25.3) 114.0 (26.4) 108.2 (93.7, 127.2) 123.4 (23.8) 0.0007 

Thigh Muscle Attenuation (HU) 43.6 (40.5, 45.6) 43.2 (3.8) 40.1 (37.7, 43.7) 43.1 (39.9, 45.3) 0.1491 

* Abdominal measures in 608 men (264 Overweight) 
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Appendix C Table 2 Multivariable-Adjusted Regressions for Abdominal Composition Tissues Only, with Continuous Risk Factors (Top) and Ordinal 

Risk Factors (Bottom), (N=610) 

Risk Factor VAT ASAT 

Log Glucose * 0.02 (-0.02, 0.05) 0.01 (-0.02, 0.05) 

Log Insulin * 0.10 (0.04, 0.17) 0.09 (0.02, 0.17) 

Log HOMA-IR * 0.12 (0.05, 0.19) 0.11 (0.03, 0.19) 

Type 2 Diabetes Categories 1.10 (0.83, 1.47) 1.13 (0.79, 1.62) 

* Additionally adjusted for antidiabetic medication use 
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Appendix C Table 3 Multivariable-Adjusted Regressions for Thigh Composition Tissues Only, with Continuous Risk Factors (Top) and Ordinal Risk 

Factors (Bottom), (N=610) 

Risk Factor TSAT Thigh IMAT Thigh Muscle 

Log Glucose * 0.02 (-0.03, 0.06) 0.02 (-0.04, 0.07) -0.15 (-0.25, -0.04) 

Log Insulin * 0.15 (0.07, 0.24) -0.001 (-0.10, 0.10) 0.08 (-0.13, 0.28) 

Log HOMA-IR * 0.17 (0.07, 0.27) 0.02 (-0.10, 0.13) -0.07 (-0.33, 0.17) 

Type 2 Diabetes Categories 1.01 (0.68, 1.50) 1.26 (0.79, 1.98) 0.25 (0.10, 0.63) 

* Additionally adjusted for antidiabetic medication use 
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Appendix C Table 4 Multivariable-Adjusted Regressions for Body Composition Tissues with Continuous Risk Factors (Top) and Ordinal Risk Factors 

(Bottom), Including Abdominal IMAT and Muscle Estimates (N=608) 

Risk Factor VAT ASAT Abdominal 

IMAT 

Abdominal 

Muscle 

TSAT Thigh IMAT Thigh 

Muscle 

Log Glucose * -0.003 (-0.04, 

0.03) 

0.07 (0.02, 

0.12) 

0.03 (-0.02, 

0.08) 

-0.11 (-0.20, 

-0.02) 

-0.03 (-0.08, 

0.01) 

-0.01 (-0.06, 

0.03) 

-0.05 (-0.14, 

0.04) 

Log Insulin * 0.11 (0.04, 

0.18) 

0.05 (-0.06, 

0.17) 

-0.06 (-0.17, 

0.04) 

0.16 (-0.01, 

0.34) 

0.08 (-0.02, 

0.19) 

-0.06 (-0.17, 

0.05) 

0.10 (-0.11, 

0.31) 

Log HOMA-IR 

* 

0.10 (0.02, 

0.19) 

0.13 (0.01, 

0.24) 

-0.03 (-0.15, 

0.08) 

0.05 (-0.17, 

0.28) 

0.05 (-0.07, 

0.17) 

-0.08 (-0.19, 

0.04) 

0.05 (-0.22, 

0.32) 

Type 2 Diabetes 

Categories 

0.94 (0.69, 

1.30) 

2.05 (1.17, 

3.60) 

1.10 (0.66, 

1.82) 

0.37 (0.16, 

0.85) 

0.66 (0.40, 

1.10) 

1.02 (0.61, 

1.70) 

0.41 (0.15, 

1.14) 

* Additionally adjusted for antidiabetic medication use 
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Appendix C Table 5 Multivariable-Adjusted Regressions for Body Composition Tissues with Continuous Risk Factors (Top) and Ordinal Risk Factors 

(Bottom), Including Thigh Muscle Density (N=610) 

Risk Factor VAT ASAT TSAT Thigh IMAT Thigh Muscle 

Volume 

Thigh Muscle 

Density (per 

SD increase) 

Log Glucose * 0.001 (-0.03, 

0.03) 
0.06 (-0.01, 0.11) 

-0.03 (-0.07, 

0.02) 

0.005 (-0.05, 

0.06) 

-0.08 (-0.17, 

0.02) 

0.01 (-0.02, 

0.04) 

Log Insulin * 
0.10 (0.03, 0.17) 0.06 (-0.05, 0.16) 

0.03 (-0.07, 

0.14) 

0.03 (-0.09, 

0.14) 

0.01 (-0.21, 

0.23) 

0.10 (0.04, 

0.15) 

Log HOMA-IR * 
0.10 (0.02, 0.18) 0.11 (0.002, 0.23) 

0.01 (-0.11, 

0.12) 

0.03 (-0.10, 

0.16) 

-0.06 (-0.33, 

0.21) 

0.10 (0.04, 

0.16) 

Type 2 Diabetes 

Categories 
0.95 (0.70, 1.28) 1.77 (1.03, 3.04) 

0.70 (0.42, 

1.16) 

1.16 (0.67, 

2.00) 

0.33 (0.11, 

0.97) 

1.08 (0.84, 

1.38) 

* Additionally adjusted for antidiabetic medication use 
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Appendix D Paper 3 Supplementary Figure 

 

Appendix D Figure 1 Conceptual model for association of the microbiome with type 2 diabetes

Microbiome Type 2 Diabetes  

Age, Lipid-modifying medication, antibiotic 
medication use 

Diet, physical activity, 
smoking 

Ethnicity, education 

BMI, Body Composition 
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