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Abstract 

Ada Youk, PhD 

 

Analysis of Post-Secondary Bound Graduation Rates in Pennsylvania Public Schools 

 

 

Elijah Lovelace, MS 

 

University of Pittsburgh, 2020 

 

 

Abstract 

 

High school graduation rates have been increasing statewide in Pennsylvania in recent 

years. However, the rate of these graduates attending any form of post-secondary education 

remains inconsistent across the state and even within districts. Access to post-secondary education 

is important to public health because significant reductions in negative health outcomes have been 

observed in those with post-secondary education levels. This thesis analyzes the relationship 

between a school’s post-secondary bound graduation rate and the distribution of the race and 

socioeconomic status of the student population. In order to quantify and test these relationships for 

statistical significance, we developed a mixed effects model relating demographic covariates and 

other school characteristics to multiple post-secondary bound graduation rates. In addition, we also 

utilized machine learning clustering techniques to categorize schools on student demographic data 

distributions and model the differences in post-secondary bound graduation rates between these 

groups. We observed that school-wide Title I status (as an indicator for socioeconomic status) had 

a negative effect on post-secondary bound rates. In addition, there a was positive relationship 

observed between the proportion of students from Historically Underserved Groups (HUGs) in a 

school’s student population and post-secondary bound graduation rates. Through our cluster 

analysis, we found that the race/ethnicity distribution of students in individual schools fell into 

four categories. Further analysis using the results from the cluster analysis showed the previous 
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relationship between student HUG proportion and post-secondary graduation rates applied only 

toward schools with a majority Black student population and not schools with a majority Hispanic 

student population or schools with more diverse student populations.  In conclusion, there is 

evidence the proportion of school’s student population that is historically underserved may affect 

the post-secondary bound graduation rates of that school, however, this trend may not be similar 

in schools serving different demographics of students.  The results of this analysis justify further 

quantitative and qualitative research into understanding what school-level qualities influence a 

student’s access to post-secondary education.   
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1.0 Introduction 

Education has long been an important determinate in the overall health of an individual. 

Relationships between education level and several health outcomes have been thoroughly observed 

in multiple countries and time periods (Desjardins, 2008). Particularly, post-secondary education 

influences multiple factors that contribute to one’s ability to maintain a healthy lifestyle including 

financial security, safer work environments and access to healthcare (Desjardins, 2008). Many 

factors contribute to one’s access to post-secondary education; however, the public-school system 

bears most of the responsibility in preparing individuals for further education and contributes 

greatly to the accessibility of a post-secondary education. The responsibility of the public-school 

system is even more significant for students from historically underserved groups (HUG).   

According to the 2019 National Vital Statistics Report, the age-adjusted mortality rate of 

those with a high school diploma or less is more than twice the rate of those with some college or 

more (National Vital Statistics Report, 2019).  One could rightfully argue that many factors 

contribute simultaneously to increased education and decreased mortality, such as family income 

and childhood environment. That being said, there is still a significant relationship between 

education and health outcomes (Zajacova, 2018). Negative correlations in predicted probability of 

negative health outcomes (such as poor/fair health, multimorbidity and functional limitations) and 

education levels have been observed in men and women and among all race/ethnic groups 

(Zajacova, 2018). For example, the probability of reporting fair or poor health in White men and 

women without a high school diploma is 57% compared to only 9% in those with a college 

education (Zajacova, 2018).   



 2 

One explanation for the above-described results is the positive relationship between post-

secondary educations and accessibility of jobs with higher salaries. The U.S Bureau of Education 

reports that the median income of those with a bachelor’s degree is 64% higher than that for those 

with a high school diploma. This difference increases further with higher levels of education. 

Higher income in adulthood increases accessibility to many items that contribute to a healthier 

lifestyle, such as healthy food, secure housing, protection against environmental shocks, and better 

healthcare (Bloom, 2005). Because of these and other factors, higher salary jobs tend to increase 

the employees’ resilience to health setbacks (Bloom, 2005).  

Mirowsky and Ross argue that although education’s economic benefits strongly affect 

health, education itself is the main factor to a healthy life (Mirowsky, 2015). They propose that a 

college education helps people overcome the ‘default American lifestyle;’ which they describe as 

the consumption of engineered non-nutritious food, non-stimulating or unsatisfying employment, 

and reactive, rather than proactive, health related actions. This healthy lifestyle may be more 

influenced by the insight and knowledge provided by education to override this unhealthy standard 

of life (Mirowsky, 2015). In addition, higher levels of education lead to creative and fulfilling 

careers that not only might provide for better mental health but also a sense of control and optimism 

that inspires healthier choices (Mirowsky, 2015). This effect can be observed in the positive 

relationship between education levels and healthy behaviors (Cutler, 2006).  

Because of the statistical and public health significance of the relationship between 

education and health, access to proper education could be seen as a health equity issue.  This 

premise motivates the importance of the public education system in providing quality education 

equally to all of the residents of the associated jurisdiction. These public health concerns further 

motivate the need to monitor the performance of public schools and set goals for measurable 
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quality education to all students. The following section focuses on historically underserved 

students, as they represent a particularly vulnerable population in terms of both health outcomes 

and access to quality education.  

1.1 Historically Underserved Students 

Historically underserved (HUG) students are students of color, students from low income 

families, and students who speak English as a second language. According to the National Center 

for Education Statistics (NCES), 50% of students in the public education system are students of 

minority backgrounds. This figure is projected to grow to 55% percent by 2026 (NCES: 

Racial/Ethnic Enrollment in Public Schools). Students of minority backgrounds tend to attend 

schools with a majority population of minority students, in fact, over 50% of students of Black, 

Hispanic, and Pacific Islander descent attend schools with 75% or more minority student 

enrollment (NCES: Racial/Ethnic Enrollment in Public Schools). Although improving, there is 

still a significant discrepancy in the graduation rates between White students and students of color. 

In 2017, the nationwide high school graduation rate for White students was 89% compared to 78% 

for Black students and 80% for Hispanic students. However, 90% of all high school seniors plan 

to go college (Green, 2006).   

The gap in high school graduation rates between White students and students of color is 

generally closing over time (McFarland, 2018). Although, this is certainly a step in the right 

direction, it is not necessarily indicative of the difference in the quality of the education that is 

being provided to White students and students of color. Graduation requirements may differ 

between school districts and school districts who are focusing on increasing the graduation rates 
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in their schools may relax their requirements in order to give the appearance that they are 

progressing (Murane, 2006).  

1.2 Statement of the Problem 

The purpose of this study is to test whether there are differences in the percent of post-

secondary bound graduates in public schools that serve higher proportions of students from HUGs 

than those that do not in Pennsylvania from 2008 to 2016.  This study aims to model the 

distribution of percent college bound and total-postsecondary bound graduates in relationship to 

proportion of HUG students, and student socioeconomic status at an individual school level using 

longitudinal regression analysis. The results of this regression analysis will be used to quantify the 

relationship, if any, between proportion HUG students served and percent of college-bound 

graduates.  

Furthermore, this study is to analyze the distribution of student race/ethnicities in 

Pennsylvania public schools using cluster analysis. The results of this cluster analysis will be used 

to investigate post-secondary bound graduation rates in schools based on their student 

demographics in more detail than a single HUG student variable.  
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2.0  Methods 

2.1 Data Management 

2.1.1 Data sources 

Post-secondary bound graduation rates and charter school status for 1628 public schools in 

Pennsylvania that have a graduating 12th grade class were pulled from the Pennsylvania 

Department of Education (PDE) public database found on their website (www.education.pa.gov) 

and was accessed on February 16, 2020 . School demographic data (race and sex distribution) were 

pulled from National Center for Education Statistics (NCES) Common Core of Data (CCD) 

Database found on their website (www.nces.ed.gov/ccd/) and was accessed on February 17, 2020. 

Data from school years 2007/2008 to 2015/2016 were used. Both databases are available to the 

public and were created for internal and external analysis use. All source datasets were separated 

by school year.  

Data from NCES required substantial cleanup. Data from certain years from the NCES 

database were stored in txt format while others were stored as csv. Variable names from the NCES 

datasets were somewhat inconsistent across all tables and required some standardization. All 

NCES data were converted to wide data format (if not already) and combined to form a collective 

wide-format table. The data was standardized using NCES-defined variables that appeared in most 

of the datasets. Variables were created for student count in each grade, gender and race 

combination both by school year and by school.  For example, a high school would have 40 

covariates (4 grades * 2 sexes * 5 race/ethnicity categories). In the same example, the number of 

http://www.nces.ed.gov/ccd/
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male Asian 10th graders would have its own variable (e.g. 10ASM). Grade-level and school-level 

totals for sex and race were calculated and added to dataset. Furthermore, grade-level and school-

level gender and race/ethnicity proportions were calculated and added to dataset.  

In addition to race and sex data, other variables from the NCES datasets were kept in final 

table. An indicator variable for schoolwide Title I status (1= Title I, 0 = non-Title I) by year was 

kept to account for general family income levels of students in school while modeling. An indicator 

variable for charter school status was also kept (1= charter school, 0= non-charter school).  

All data from the Pennsylvania Department of Education was available as Microsoft Excel 

Spreadsheets (.xlsx) and required some manual formatting in order to be readable by R. All manual 

formatting was purely for arrangement and no data were edited. Post-secondary bound graduation 

figures and rates were sourced from the PDE data and joined to the NCES data on school ID 

(assigned by state) and school year.  

2.1.2 Post-secondary bound graduation rates 

Two different rates are used in this analysis to measure a school’s effectiveness in 

preparing students for a post-secondary education: college bound and total post-secondary bound 

graduation rates. College bound graduates (according to the Pennsylvania Department of 

Education) include any student attending a 2- or 4-year degree-granting college or university. A 

postsecondary graduate is any student defined as either meeting the definition of a college bound 

graduate or attending a specialized degree granting institution. A specialized degree granting 

institution is considered a non-degree granting institution (such as a trade school) or a specialized 

associate degree-granting institution (such as a medical assistant technician training program).  The 
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denominator used for these rates is the total number of graduating 12th grade seniors for that 

academic year.  

2.2 Statistical Analysis  

2.2.1 Covariates 

Race and ethnicity data were obtained from the NCES Common Core Database and 

categorized as White, Black, Asian, Hispanic/Latino, American Indian/Alaska Native, Pacific 

Islander, or two or more races. For analysis, race/ethnicity was further categorized by historically 

underserved (HUG) and non-historically underserved (non-HUG). Race/ethnicities categorized as 

HUG were Black, Hispanic/Latino, American Indian/Alaska Native and Pacific Islander. 

Races/ethnicities categorized as non-HUG were White and Asian. Percent HUG was then 

calculated by dividing the total number of HUG students by the total number of students enrolled 

in the school and multiplying by 100. Title I status was used as an indicator of overall general 

income level of student families. In order to qualify for Title I status, a school must have at least 

40% of its student population be eligible for free and reduced lunch (U.S Dept. of Education, 

2018). Charter School Status was provided by the NCES CCD Database.  
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2.2.2 Regression Analysis 

2.2.2.1 Continuous outcomes 

The two post-secondary bound graduation rates were treated as continuous percent ranging 

between 0 and 100%.  Observations with missing outcomes were assumed to be missing 

completely at random (observations are considered at a school and year level) and were removed 

from the dataset.  

2.2.2.2 Mixed effect regression models  

 Mixed effect regression models continuous outcomes on covariates of interest while 

accounting for changes in time. This allows for identification and quantification of fixed 

significant relationships between the outcome and covariates. The mixed effect regression model 

accounts for different individual intercepts and time trends, if they exist. The model achieves this 

by establishing an intercept parameter and slope parameter (if needed) for the change in outcome 

over time at both the individual and population level. A simple version of this model shows the 

outcome for individual i at time j based on the time effect for outcome yij (Hedeker, 2006): 

𝑦𝑖𝑗 =  𝑏0𝑖 + 𝑏1𝑡𝑖𝑗 + 𝜖𝑖𝑗 

𝑏0𝑖 = β0 + 𝑣0𝑖 

 𝑏1𝑖 = 𝛽1 + 𝑣1𝑖  

Where 𝑏0𝑖 represents the initial level for subject i, 𝑏1𝑖 represents the slope for individual i,  

β0 is the overall population intercept and β1 is the overall population slope,  𝑣0𝑖 is the intercept 

deviation for subject i and 𝑣1𝑖 is the slope deviation for subject i. 𝜖𝑖𝑗 represents the independent 

error term. 
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This model assumes that error term 𝜖𝑖𝑗 is conditionally independent on 𝑣0𝑖 and 𝑣1𝑖  and 

normally distributed with mean 0 and variance 𝜎2. When there are two random individual-specific 

effects, the population distribution of the intercept and slope deviation are assumed to be bivariate 

normal with mean zero and variance-covariance matrix Σ𝑣 = [
𝜎𝑣0

2 𝜎𝑣0𝑣1

𝜎𝑣0𝑣1
𝜎𝑣1

2 ] . The model also 

assumes that the change in outcome over time is linear (Hedeker, 2006).  

When additional covariates are introduced to the model, the equation above can be re-

written in matrix form as follows: 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑣𝑖 + 𝜖𝑖 

Where Xi is the 𝑛𝑖 × 𝑝 covariate matrix, 𝛽 is a 𝑝 × 1 vector of fixed regression parameters, Zi is 

the 𝑛𝑖 × 𝑟 design matrix for the random effects and vi is a 𝑟 × 1 vector of random individual effects 

and 𝜖𝑖 is the 𝑛𝑖 × 1 error vector. The assumptions for the random effects and errors are (Hedeker, 

2006): 

𝜖𝑖~ N(0, σ2𝐼𝑛𝑖
), 

𝑣𝑖~ 𝑁(0, Σ𝑣). 

When the mixed effect model is fit for a set of observations, values in the 𝛽 vector of fixed 

regression parameters can be interpreted as the fixed effect of the covariate of interest xi on the 

average outcome y if the covariate is discrete, or per one-unit change in xj if continuous.  

Mixed effect regression models were used to model post-secondary bound graduation rates 

on covariates of interest while accounting for changes over time. This method allows us to utilize 

8 years of data in hopes of modeling the underlying trend more accurately and allows the 

identification of possible time effects.   
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We fit a random effects models with a random intercept as well as models with both a 

random intercept and random slope at the individual school level. A random intercept model was 

used to assess the fixed effects of the covariates while accounting between school variability of 

the outcomes while the random effects model was used to assess the fixed effects of the covariates 

while accounting for between school variability in the outcomes and change in the outcomes over 

time (if any).  Figure 1 shows the hierarchy structure and estimated count of each assuming no 

missing data.  

                       

Figure 1 Hierarchical structure of mixed effect model 

 

Title I status and charter school status were treated as time constant fixed effects while percent 

HUG was treated as a time-varying covariate.  

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟𝑗 + 𝛽2𝐻𝑈𝐺𝑖𝑗 + 𝛽3𝑇𝑖𝑡𝑙𝑒𝐼𝑖 + 𝛽4𝐶𝐻𝑅𝑇𝑖 + ζ0i + [𝜁1𝑖𝑦𝑒𝑎𝑟𝑖𝑗] + 𝜖𝑖𝑗 

 Where: 

𝑦𝑖𝑗 = post-secondary graduation rate of interest for school i during year j 

𝛽1 = overall mean effect of school year j on  post-secondary graduation rate 

𝐻𝑈𝐺𝑖𝑗 = percent HUG student population for school i during year j 

Level 2: 
School • i= 603 schools

Level 1: 
School Year

• j= 8 years

Total 
Observations 

• n= 4,118
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𝛽2 = overall mean effect of percent HUG on outcome 

𝑇𝑖𝑡𝑙𝑒𝐼𝑖 = Title I status for school i (1=Title 1, 0=non-Title 1) 

𝛽3 = overall mean effect of Title I status on post-secondary graduation rate 

𝐶𝐻𝑅𝑇𝑖 = Charter school status for school i (1=charter school, 0=non-charter school) 

𝛽4 = overall mean effect of charter school status on post-secondary graduation rate 

𝜁0𝑖 = school i intercept deviation  

𝜁1𝑖 = school i slope deviation (not included in only random intercept models) 

𝜖𝑖𝑗 = error term for school i during year j 

Assuming: 

𝜁0𝑗~𝑁(0, 𝜓00) 

𝜁1𝑗~𝑁(0, 𝜓11) 

𝐶𝑜𝑣(𝜁0𝑗 , 𝜁1𝑗) = 𝜓01) 

𝜖𝑖𝑗~𝑁(0, 𝜃) 

 

In addition, interaction between all covariates, including school year, were tested for 

significance in either model in order to assess changes in the covariates over time or whether there 

are interactions between covariates. Predicted residuals, random intercepts and random slopes 

were plotted to check normality according to model assumptions.   

2.2.2.3 Mixed-effects polynomial regression models 

It is often too simplistic to assume the change across time is linear, particularly for 

outcomes that are a proportion or a percent because floor or ceiling effects can occur (Hedeker, 

2006). A curvilinear trend model would allow for this leveling off, as well as handle any 
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accelerated changes over time. The model achieves this with the addition of quadratic terms of 

time to the model. For example, the simple model considering only the effect of time on outcome 

yij can be written as: 

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑏2𝑡𝑖𝑗
2 + 𝜖𝑖𝑗 

Using multiples of the time covariate t can often result in collinearity problems which can 

be avoided by representing the polynomials in orthogonal form (Bock, 1975). This is accomplished 

by expressing the time covariate and associated polynomials in centered form.  

Because our outcome is limited between 0% and 100% it is possible that a floor or ceiling 

effect could occur. For example, a school may reach close to 100% post-secondary bound 

graduates in the middle of the study window and remain there until the end of the study window. 

The result of a flooring or ceiling effect is a possible non-linear change across time of our outcome 

(Hedeker, 2006). Therefore, we also fit a curvilinear trend model regression model in addition to 

the linear mixed-effects model.  

To avoid collinearity issues when adding polynomials of year, we centered the year and 

associated polynomial terms (Bock, 1975). Varying degree polynomial terms were added to the 

mixed effect model in a forward stepwise matter (starting with quadratic, then cubic, etc.). AIC, 

BIC and adjusted-R2 was used to determine the optimal degree polynomial term to include.  

2.2.2.4 Test for statistical significance and quantify effect on outcome 

Coefficients of the covariate effects were tested for significance by two-tailed t-test with 

degrees of freedom equal to n -k-1 (where k is the number of variables) against the null hypothesis 

of βj = 0. A p-value of 0.05 or less was considered statistically significant. The test statistic, t, was 

calculated by dividing the coefficient for covariate j (βj) by the standard error (SE) of βj. The effect 
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of the covariates was quantified from the relative mean-effect coefficients derived from the most 

accurate model which determined by evaluation of AIC, BIC and adjusted-R2.   

For continuous covariates (HUG), the interpretation of the mean-effect coefficient can be 

interpreted as a change in percent of post-secondary bound graduates per a one percent change in 

student HUG population. For binary covariates (charter status, title I status), the mean-effect 

coefficient can be interpreted as the difference in percent of post-secondary bound graduates 

between schools having with that covariate status and those that do not.  

2.2.2.5 Categorical percent HUG covariate 

In certain situations, continuous variables may be better represented as categorical 

variables to improve the interpretability of the effect of the variable on the outcome (DeCoster, 

2011). We refit the final models from 2.2.2.3 using a categorical percent HUG variable that 

represents the quartile of a school’s percent student HUG population in place of the continuous 

percent HUG variable.  

2.2.2.6 Identifying outliers 

Outliers were identified by plotting standardized residuals against fitted values from the 

final model. Observations with standardized residuals less than -2 or greater than 2 were 

considered outliers and identified. Cook’s distance for each observation was then calculated and 

plotted to ensure that previously identified outliers were not too influential on the model, thus 

reducing the overall accuracy.  
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2.2.3 Cluster analysis 

2.2.3.1 K-Means clustering 

K-means clustering is a popular and effective method of unsupervised machine learning. It 

is used to partition a dataset into K distinct, non-overlapping clusters (James, 2013). Subgroups 

derived from K-means clustering can be explored to not only understand the data better, but if the 

data can be clustered into practical subgroups, these subgroup assignments can be used as a 

covariate when fitting statistical models. 

The K-means algorithm works to minimize some within-cluster measure, W(Ck), of the 

amount by which observations within a cluster differ from each other. K is the user-defined number 

of clusters. 

minimize
𝐶1,…,𝐶𝑘

{∑ 𝑊(𝐶𝑘)

𝐾

𝑘=1

} 

Typically, squared Euclidean distance is used as this measure and is what will be used in this study.  

𝑊(𝐶𝐾) =
1

|𝐶𝑘|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

 

The K-means algorithm has essentially 2 steps when using Euclidian distance as the within cluster 

distance measure (James, 2013): 

1. Each observation is randomly assigned a cluster number from 1 to K, where K is defined 

by the user.  

2. The following is repeated until the individual cluster assignments do not change. 

a. A centroid is computed for each of the K clusters by calculating a vector of length 

p of the means of each feature observed in the kth cluster. 
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b. Assign each observation to the cluster whose centroid is the ‘closest’ as defined by 

Euclidean distance.  

2.2.3.2 Within cluster sum of squares  

A popular method to determine the optimal number of clusters (K) the data should be 

partitioned into is to optimize cluster size and within-cluster sum of squares (WSS). To do this 

optimization, the K-means algorithm must be used on the data for multiple values of K, typically 

2- 20 times. For each value of K, the WSS should be calculated and plotted against K. The optimal 

number of clusters can then be determined by identifying the ‘elbow’ of the resulting curve or 

where the WSS stoops decreasing rapidly and begins leveling out (Kodinariya, 2013). 

𝑊𝑆𝑆 =  ∑ ∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

𝑝

𝑗=1𝑖∈𝑆𝑘

𝐾

𝑘=1

 

2.2.3.3 Clustering schools by race/ethnicity distributions 

To expand on our model, we used K-means clustering to cluster the schools based on the 

student race/ethnicity distributions of each school’s student population. The mean proportion of 

students of each race/ethnicity were calculated for the all available time periods for each school. 

This averaged data was then used to cluster the schools using 2 to 20 centers (i.e. the K-means 

algorithm was used to separate the data into 2 clusters, then 3 clusters, then 4 clusters etc.); this 

range was chosen to ensure cluster numbers were assesses while being computationally efficient. 

The algorithm was used on the data 18 times with cluster amounts ranging from 2 to 20. The WSS 

was calculated at each number of clusters and then plotted against the number of clusters. The 

elbow method was then used to determine the optimal number of clusters. The distributions of 
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student race/ethnicity of schools in each cluster was then analyzed to understand how the 

representation of each cluster.  

2.2.3.4 Modeling on clusters 

The clusters were treated as a categorical variable representing racial/gender distributions. 

This categorical model was then used to replace the continuous student HUG proportion covariate 

in the linear mixed model. Then, a model was fit for each round of clustering. For example, the 

model for the data obtained from clustering on 3 clusters would look like:  

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟𝑖𝑗 + 𝛽2𝐶𝐿𝑆𝑇2𝑖 + 𝛽3𝐶𝐿𝑆𝑇3𝑖 +  𝛽4𝑇𝑖𝑡𝑙𝑒𝐼𝑖 + 𝛽5𝐶𝐻𝑅𝑇𝑖 + ζ0i + 𝜁1𝑗𝑦𝑒𝑎𝑟𝑖𝑗 + 𝜖𝑖𝑗 

Where: 

 𝐶𝐿𝑆𝑇2𝑖 = indicator variable for school i if in cluster 2 

𝐶𝐿𝑆𝑇3𝑖 = indicator variable for school i if in cluster 3 

The best fitting model based on number of clusters was determined by AIC, BIC and adjusted-R2 

evaluation.  

For this study, mixed modeling was done in R (Version 3.6.2) using the package ‘nlme’ 

(Pinheiro et.al). Visualization were created in R using the ‘ggplot2’ package (Wickham et.al). K-

means clustering was done using base R.   
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3.0 Results 

3.1 Summary Statistics 

After the data were cleaned, there were 4,118 total years of data for 601 individual schools. 

Table 1 displays the number of schools per number of years (1 year up to 8 years) of complete data 

available.  There was an average of 6.85 years of data available per school. Out of the 601 schools, 

199 were missing at least one year’s worth of data because either the school only existed for a 

portion of the study timeframe (2008 - 20015) or the school had not reported data for that school 

year.  

 

Table 1 Number of schools per number of years of data available 

No. of years of data No. of Schools (%) 

8 402 (66.89%) 

7 39 (6.50%) 

6 38 (6.32%) 

5 29 (4.83%) 

4 31 (5.16%) 

3 28 (4.66%) 

2 14 (2.33%) 

1 20 (3.33%) 

Total 601 

3.1.1 Race 

 The race category labels were used directly from the NCES Common Core Database.  On 

average, schools had 74% White students, 16% Black students, 6% Hispanic students, 2% Asian 

students and less than 1% of the other racial categories. However, there was a large variation in 

the racial distribution across schools was observed, particularly in percent of White, Black and 
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Hispanic students. This implies variability of the racial distributions across schools and that there 

may be schools with significantly more students of one race/ethnicity than others. This was further 

explored in the cluster analysis.  

3.1.1.1 Percent Historically Underserved  

The distribution of race/ethnicity was then summarized by categorizing race/ethnicity as 

either HUG or not. Black, American Indian, Hispanic, Hawaiian/Pacific Islander were classified 

as HUG while White and Asian were not. Figure 2 shows the overall distribution of percent HUG 

across all schools by school year. There are no obvious changes in the distribution of HUG student 

percent over the course of the study timeframe.  

 

Figure 2 Distribution of school-level percent HUG students by school year 
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3.1.2 Title I and Charter School Status 

No school had a change in school-wide title I status over the course of the study timeframe. 

Overall, there were 177 (29.45%) schools who held school-wide Title I status and 424 (70.55%) 

who did not. In addition, 74 (12.31%) of school were classified as charter schools while 527 

(87.69%) of schools were not.  

3.1.3 Post-Secondary Bound Graduation Rates 

Figure 3 shows the overall distribution of post-secondary bound, college bound and 

specialized degree bound graduation rates for all schools over all time periods. Both total post-

secondary bound and college bound graduation rates were bell shaped and symmetrically 

distributed and centered around means 73.25% and 70.10%, respectively. Specialized degree 

bound was very right skewed with a mean of 3.55%; for most schools, the majority of the post-

secondary bound graduates went to 2- or 4-year colleges. There is some slight skewness in the 

total post-secondary bound and college bound rates due to outlying values below 30%.  There was 

little variation in the distribution of each outcome over time.  
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Figure 3 Overall distributions of total post-secondary bound, college bound and specialized degree bound 

distributions (all schools, over entire study timeframe) 

 

3.2 Longitudinal Linear Regression Models 

3.2.1 Modeling with Continuous HUG Covariate 

Continuous percent HUG, Title I status and charter status were used as covariates to model 

total post-secondary bound and college bound graduation rates over time. Both random effect and 

random intercept models were tested. A random intercept model was used to assess the fixed 

effects of the covariates while accounting between school variability of the outcomes while the 

random effects model was used to assess the fixed effects of the covariates while accounting for 
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between school variability in the outcomes and change in the outcomes over time (if any).  

Stepwise variable selection was used to identify statistically significant covariates and to build the 

best fitting model. Percent HUG and Title I status were identified as statistically significant 

covariates. The random intercept model modeled the data as accurately as the random effects 

model according to AIC and BIC. In addition, the likelihood ratio testing the assumption that the 

random intercept model was nested in the random coefficient model was not statistically 

significant. Therefore, the random intercept model with HUG percent, Title I status and school 

year was chosen as the final model for both total post-secondary bound and college bound 

graduation rate outcomes. Table 2 describes the coefficients from the final models. The final 

models for both outcomes met all of the assumptions for a linear random intercept mixed model.  

 

Table 2 Coefficients of random intercept model with continuous HUG, Title I status and School Year 

Covariate Coefficient [95% CI] p-value 

Total Post-Secondary Bound   

Percent HUG 0.066 [0.03, 0.11] 0.001 

Title I Status -6.70[-9.81, -3.59] <0.0001 

School Year -0.61[-0.74, -0.48] < 0.0001 

College Bound   

Percent HUG 0.060 [0.018, 0.10] 0.006 

Title I Status -7.36 [-10.73, -3.99] <0.0001 

School Year -0.54 [-0.67, -0.42] <0.0001 

 

The model presented in Table 2 shows total post-secondary bound and college bound 

graduation rates were estimated to increase 0.07 percentage points (pp) and 0.06pp, respectively, 

per 1pp increase in HUG, all other covariates constant. Schools with school-wide Title I status had 

significantly lower post-secondary bound (-6.70pp) and college bound (-7.36pp) graduation rates 

than schools who did not, all else constant. In addition, there was slight decrease in average total 

post-secondary bound and average college bound rates over time (0.61pp and 0.54pp annually 

respectively, adjusting for other covariates).  
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3.2.1.1 Mixed-effects polynomial regression models 

To test whether there was a floor or ceiling effect, both quadratic and cubic variations of 

centered time (school year) were added to the random coefficient and random intercept models. 

School year was centered to avoid collinearity in the associated polynomials. The relative squared 

and cubed time variables were not statistically significant and did not increase the effectiveness of 

the model based on AIC and BIC and therefore final random effects models were kept the same 

(results not shown).  

3.2.2 Modeling with Categorical HUG Covariate 

As seen in Figure 2, The distribution of percent HUG is nearly U-Shaped with a majority 

of the concentrated towards 0 or 100%. We can see in Figure 4 that the schools are fairly 

concentrated in certain parts of the graph and it is difficult to see the linear relationship between 

percent student HUG and post-secondary bound graduation rates. Because of this, a linear 

relationship may not be the most effective way of quantifying the effect of percent HUG on either 

outcome. Therefore, percent HUG was categorized based on the quartiles of the overall distribution 

(over all school years) of percent HUG as follows: Q1 (0 -2.40%), Q 2 (2.41% - 6.84%), Q3 (6.85% 

- 30.709%), Q4 (30.71% - 100%).  New random intercept models were derived with categorical 

percent HUG covariate replacing continuous percent HUG. The 0 – 2.40% quartile was used as 

the reference group in the models. Table 3 describes the coefficients of these models.  
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Figure 4 Plot of post-secondary outcomes against percent student HUG colored by Title I status 

 

The models in Table 3 show that both school-wide Title I status and school year have nearly 

identical effects when being modeled with either continuous percent HUG (as presented in Table 

2) or categorical percent HUG (as presented in Table 3). Schools in the third and fourth quartile of 

the percent HUG distribution had estimated total post-secondary and college-bound graduation 

rates 2.5pp and 5.5pp higher than those for schools with percent HUG in the first quartile, all else 

constant. There was not a statistically significant difference in school with percent HUG in the 

second quartile and those with percent HUG in the first quartile. A likelihood ratio test was used 

to test the overall statistical significance of the categorical HUG covariates by testing the models 

from Table 3 against random intercept models (for each outcome) with only the Title I status and 

school year covariates. The likelihood ratio test for the total post-secondary bound model had a p-
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value of 0.0004 and the test for college bound model had a p-value 0.0005. As result, the 

categorical percent HUG covariate is statistically significant in each model for either outcome.  

 

Table 3 Coefficients of random intercept model with categorical HUG, school-wide Title I status and school 

year 

Covariate Coefficient [95% CI]  p-value 

Total Post-Secondary Bound    

Percent HUG Q2 0.34 [-0.92, 1.60]  0.60 

Percent HUG Q3 2.33 [0.41, 4.24]  0.017 

Percent HUG Q4 5.51 [2.88, 8.13]  <0.0001 

Title I Status -6.38[-9.18, -3.58]  <0.0001 

School Year -0.63[-0.75, -0.50]  < 0.0001 

College Bound Rate    

Percent HUG Q2 0.25 [-1.02, 1.51]  0.70 

Percent HUG Q3 2.50 [0.54, 4.46]  0.012 

Percent HUG Q4 5.53 [2.79, 8.28]  <0.0001 

Title I Status -7.31[-10.33, -4.299]  <0.0001 

School Year -0.56 [-0.69, -0.43]  <0.0001 

Quartile ranges: Q1- 0% to 2.4%, Q2- 2.41% to 6.84%, Q3- 6.85% to 30.709%, Q4- 30.71% to 100% 

 

3.3 Cluster Analysis  

3.3.1 Determining the Ideal Number of Clusters 

Using school-level proportions of student race (White, Black, Hispanic, Asian, 

Hawaiian/Pacific Islander, American Indian and two or more races) as covariates, the K-means 

clustering algorithm was used on the data 18 times with number of clusters ranging from 2 to 20. 

Figure 4 shows the relationship of within sum of squares to the number of clusters. Using this plot, 
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the optimal number of clusters appears to be 4 using the elbow method (Kodinariya, 2013). As 

shown in Figure 4, the value of WSS drops substantially up 4 clusters and then begins to plateau.  

Results for k=3, k=4, k=5 clusters were analyzed, particularly the distribution of 

student/race ethnicity of schools in each cluster. The results for k=3 clusters were determined to 

have too high of variability in regard to student race/ethnicity distributions and grouped together 

schools that we thought were too dissimilar in one cluster.  The results for k=4 clustering were 

similar to the results of the k=3 clustering for 2 of the clusters, however, the extra center in the 

k=4 clustering allowed further stratification of the third cluster (the one with high-variability), 

reveling a distinct fourth cluster representing schools with a large majority of Hispanic students. 

The results of the k=5 clustering were very similar to the results of the k=4 clustering; however 

we felt the k=5 clustering unnecessarily stratified schools with large majorities of White students. 

Therefore, we decided that 4 clusters were the optimal amount to present and further investigate.   
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Figure 5 Number of clusters in k-means algorithm vs. WSS in order to determine optimal number of clusters 

3.3.2 Cluster Characteristics 

The distributions of student race/ethnicity in the resulting four clusters were identified in 

order to understand the school representation in each cluster.  Table 4 shows the mean proportion 

of each race/ethnicity category and percent of schools with Title I status for each cluster. There 

appears to be differences in the racial distributions of each cluster, particularly in the proportion 

of White, Black and Hispanic students.   
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Figure 6 3D scatterplot of proportion of White, Black and Hispanic students by school (averaged over study 

period), colored by assigned cluster 

 

The clusters represent four fairly distinct school-level race/ethnicity distributions as seen 

in table 4. This implies that the cluster labels would be useful as covariate in a model replacing 

percent HUG as each cluster represents a distinct race/ethnicity distribution. The first cluster 

contains schools with a large majority of White students and very small proportion of students 

from other/race ethnicities. The second cluster contains schools with a large majority of Black 

students with some variability in White and Hispanic proportions. The third cluster contained 

schools with a majority of Hispanic students with some variability in White and Black proportions. 

The fourth cluster contained schools with a more diverse student body, but still containing a 

majority of White students. There was substantial variability in all races in this fourth cluster. 

Cluster 1 was largest cluster as 65% of schools were assigned to cluster 1 while cluster 3 is the 

smallest cluster with only 4% of the schools were assigned to it.  Figure 5 highlights this further 
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with a 3D scatterplot comparing the mean proportion over the time periods of these race/ethnicities 

in each school for each cluster. 

As seen in Table 4, a large majority of the schools in cluster 1 and a small majority in 

cluster 3 did not have school-wide Title I status, whereas a majority of the schools in clusters 2 

and 3 did. As a result of the larger proportions of Black and Hispanic students in clusters 2 and 3 

(respectively), schools in these clusters had a higher average percent of HUG student population 

at 89% and 88% (respectively) compared to schools in cluster 1 (6%) and cluster 4 (40%).  

 

Table 4 Average student race/ethnicity proportions, percent Title I status and average post-secondary bound 

graduation rates in each cluster in each cluster 

 Cluster 

  1 2 3 4 

Number of schools in cluster 390 105 24 82 

Mean(sd) Percent of School-Level Student 

Population     

White  91.89(7.3) 7.09(9.11) 9.96(10.11) 51.57(13.65) 

Black 3.32(3.79) 82.71(15.2) 20.16(13.01) 29(12.96) 

Hispanic 2.45(3.45) 6.5(8.5) 67.55(17.74) 11.68(10.49) 

Asian 1.46(2.38) 2.63(5.02) 1.41(1.61) 4.58(6.4) 

Hawaiian/ Pacific Islander 0.04(0.14) 0.02(0.09) 0.04(0.11) 0.08(0.37) 

American Indian/ Alaskan Native 0.15(0.28) 0.15(0.26) 0.07(0.11) 0.16(0.29) 

 HUG  5.97(5.84) 89.38(11.2) 87.81(10.62) 40.93(12.85) 

Percent of Schools     

School-wide TITLE I Status 0.096 0.79 0.812 0.34 

Mean(sd) School-level Percent Graduates      

College Bound 70.07(14.59) 71.17(23.41) 61.82(21.25) 71.52(16.59) 

Total Post-Secondary Bound 73.12(13.73) 74.74(22.35) 67.12(21.61) 74.2(16.04) 

 

Table 4 also describes the distribution of the total post-secondary bound and college 

bound graduation rates, respectively, for each cluster. Clusters 1, 2 and 4 had similar mean total 

post-secondary bound graduation rates around 74%, however, there was more variability in cluster 
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2. Cluster 3 (schools with a majority Hispanic student population) had the lowest average total 

post-secondary bound graduation rate at 67%. Total post-secondary bound rates in schools in 

cluster 1 (schools with a majority White student population) were normally distributed around 

mean 73.13%. In cluster 2 (majority Black student population), the total post-secondary bound 

rates were skewed left with mean 74.74%. Cluster 4 (schools with a more diverse student 

population) were normally distributed around mean 74.19%.  Similar trends were observed in 

college bound graduation rates in each cluster however there was slightly more variability in this 

rate in cluster 2. 

3.3.3 Longitudinal regression model using cluster as covariate 

To address the clustering of the racial distributions in the student population across schools, 

the random intercept models were refit using the categorical cluster variable replacing any HUG 

related variable from previous models. Table 6 describes the coefficients resulting from these 

models.  

In Table 6, school-wide Title I status and school year had similar effects as in previous 

models. Schools in cluster 2 had the highest total post-secondary bound and college bound 

graduations rates, 4.38pp higher on average than that for cluster 1 with all else constant. Schools 

in cluster 3 had the lowest rates in both outcomes, 1.1pp lower total post-secondary bound 

graduates on average and 3.55pp less college bound graduates on average than in cluster 1. There 

was not a statistically significant difference in either rate in cluster 3 or cluster 4 compared to 

cluster 1. The overall significance of the cluster variable was tested by likelihood ratio tests with 

relevant models of both outcomes using only Title I status and school year as covariates. The 

resulting p-values were 0.023 for the total post-secondary bound model and  0.005 for the college 
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bound model. This model reveals that the trend seen in previous models of increased post-

secondary bound graduation rates in schools with higher proportion of HUG students may only 

apply to schools with a majority Black student population (schools in cluster 2) and not in schools 

with a majority Hispanic population (schools in cluster 3) or schools with a diverse student 

population (schools in cluster 4).  

 

Table 5 Coefficients of random intercept model with cluster covariate (cluster 1 is reference), school-wide 

Title I status and school year 

Covariate Coefficient [95% CI] p-value 

Total – Post Secondary Bound   

Cluster 2 4.38 [1.20, 7.56] 0.01 

Cluster 3 -1.10 [-6.30, 4.11] 0.20 

Cluster 4 1.41 [-0.82, 3.63] 0.098 

Title I Status -5.36[-8.31, -2.40] 0.00019 

School Year -0.60 [-0.72, -0.47] < 0.0001 

College Bound Rate   

Cluster 2 4.38 [1.03, 7.73] 0.0071 

Cluster 3 -3.55 [-9.02, 1.92] 0.678 

Cluster 4 1.93[-0.35, 4.22] 0.21 

Title I Status -6.06 [-9.23, -2.89] 0.0004 

School Year -0.53[ -0.66, -0.41] < 0.0001 
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4.0 Discussion 

This analysis modelled the relationship between the race/ethnicity distribution of a school 

student population and post-secondary bound graduation rates using a random intercept linear 

model. There were not substantial between-school differences in the changes of either outcome 

over time, therefore a random intercept model was adequate to fit the data. Three separate 

measurements to quantify a school’s race/ethnicity distribution were modeled along with time and 

school-wide Title I status: continuous percent historically underserved (HUG), categorized percent 

HUG and student race/ethnicity cluster.  

The percent of HUG students in a school’s student population was also found to have 

statistically significant relationship with both total post-secondary bound and college bound 

graduation rates. Accounting for school-wide Title I status and school year, there was an observed 

increase of 0.07pp in total post-secondary bound and 0.06pp in college bound graduation rates per 

l% increase in percent student HUG. This implies that schools with higher percentages of a HUG 

students will have more of their graduates attend some form of post-secondary education including 

2- or 4- year universities. However, we also observed that a majority of schools had either small 

percentages of HUG students (<5%) or large percentages of HUG students ( >80%) with fewer 

schools in the middle of the range. This led us to believe that using a continuous percent HUG 

may not be the optimal method to quantify this relationship.  

A categorical percent HUG variable based on the quartile of the student population was 

used in the model in place of the continuous percent HUG variable. In this model, the effect school-

wide Title I status and school year did not change. However, the effect of percent HUG was more 

interpretable. It was observed that schools with percent student HUG in the fourth quartile (>31%) 
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had on-average 5.5pp higher total post-secondary bound and college bound graduations accounting 

for school-wide Title I status and school year. The 5.5pp increase in post-secondary bound 

graduation rates is fairly substantial and implies that graduates from schools with higher proportion 

of HUG students are attending some form of post-secondary education at higher rates than 

graduates from schools with small proportions of HUG students.  

Interestingly, the effect of HUG student percent we observed in Pennsylvania schools 

contradicts college enrollments rates by race/ethnicity seen across the United States. In 2017 41% 

of White students 65% of Asian students were enrolled in college compared to 36% of Black 

students and 36% of Hispanic students (NCES College Enrollment Rates, 2019). We speculate 

that this may be due to that fact that there a significantly more schools in Pennsylvania with low 

proportions of HUG students than schools with high proportions of HUG students (50% of 

Pennsylvania schools have less than 7% HUG student enrollment). Because of the difference in 

sample size, there is a possibility of higher variability in post-secondary bound graduation rates in 

schools with low proportions of HUG student than those with high proportions of HUG students. 

To further investigate the trend observed in the analysis, qualitative research may be necessary to 

gain better insight on why schools in Pennsylvania with higher proportions of HUG students have 

higher post-secondary bound graduations rates, particularly in Title I schools. In addition, it would 

be beneficial to model the data from states with higher populations of HUG students to see if 

similar trends exist.  

School-wide Title I status was observed to have a statistically significant effect on both 

total post-secondary and college bound graduation rates. Because at least 40% of a school’s student 

population must be considered as coming from low-income families (NCES Fast Facts, 2019) to 

qualify for school-wide Title I status. Therefore, it is likely that the relationship we observed in 
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our model is due to the increasing financial barrier to post-secondary education access. The 

average cost of college attendance has increased over 170% since 1980, adjusting for inflation 

(NCES Fast Facts, 2019) and need-based financial aid has not increased to keep up with the 

increasing cost of college (College Board, 2019). This results in students, especially from low-

income families, needing to borrow more money to afford college (Reimherr, 2013). Because of 

the increasing need to use loans to pay for college, there is large inferred risk in attending college 

that could stop more students from low income families from enrolling in college (Lim, 2019).  

We used cluster analysis to further explore the racial distributions of schools. It was 

observed that schools fell into 4 distinct clusters based on the distribution of the race/ethnicity of 

their student population. Schools either had a large majority of White students, a larger majority 

of Black students, a large majority of Hispanic students or a more diverse student population with 

a smaller majority of White students.  

As result, schools falling into the clusters with a large majority of Black students or a large 

majority of Hispanic students had substantially higher proportions of HUG students. This led us 

to using the categorical cluster assignment in place of categorical HUG in the modelling.  The 

results of this model showed that schools with a large majority of Black students had, on average, 

larger percentages (by 4.4pp) of graduates attending some form of post-secondary education 

compared to schools with a majority of White students. This agreed with the earlier models, 

however, schools with a majority of Hispanic students and schools with a more diverse student 

population did not have statistically significant difference in either post-secondary bound 

graduation rate compared to schools with a majority of White students. This contradicts the 

relationship found between post-secondary bound graduation rates and student percent HUG found 
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in earlier models and implies that this relationship may only be observed for schools with a 

majority population of Black students.  

Only 4% of the schools in our population had large majorities of Hispanic students 

compared the 17% of schools that had large majorities of Black students. This might indicate that 

percent HUG is too generalizing when describing the trends found in the previous models and may 

not be the most representative measurement when describing post-secondary bound outcomes to 

all HUG students. In the models that used percent HUG covariates, the percent student HUG 

covariate is more representative of schools with large majorities of Black students and less 

representative of schools with larger majorities of Hispanic students.  This suggests that when 

assessing education equality, race/ethnicity distributions should be considered when modeling 

outcomes in addition or in place of a generalizing HUG covariate.   

In addition, modeling multiple race/ethnicities under one category may over/underestimate 

unique barriers one culture may experience that others would not. For example, we speculate that 

one reason students in schools with a majority Hispanic population may experience different 

educational barriers than students in schools with majority Black student population could be that 

there is larger proportion of Hispanic students who are English Language Learners (ELLs). In 

2015, 29.8% of ELL students in the United States were Hispanic, compared 2.4% who were Black 

(NCES English Language Learners in Public Schools, 2019). ELL students may face extra 

challenges to accessing college such as access to college preparatory classes (Perez, 2016). 

We propose that additional qualitative research may be necessary to understand why there 

is a difference in post-secondary bound graduation rates in Pennsylvania schools with majority 

Black student population and schools with a majority White student population, particularly in 

schools with school-wide Title I status. A limitation in our study is that we did not consider overall 
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high school graduation rates in our models. It would be beneficial to model high school graduation 

rates as well as use high school graduation rates as a covariate when modeling post-secondary 

bound graduation rates allowing the model to account for the proportion of students that actually 

graduated. This would also help to identify any relationships between high school graduation rates 

and post-secondary bound graduation rates. Alternatively, the post-secondary bound graduation 

rates could be re-calculated with all seniors eligible to graduate as the denominator rather than 

graduating seniors only. Then model the re-calculated rates as the outcomes with similar covariates 

used in this study to observe any changes.   

In conclusion, higher education rates have been observed to correlate with better health 

outcomes (Zajocova, 2018). It is the duty of the public education system to ensure that all students 

are prepared and provided resources to increase access to higher education levels. In order to 

ensure that every student is receiving equal opportunities for higher education, research must be 

conducted at multiple stages of a student’s education in order to find areas that need support. One 

stage we analyzed was post-secondary bound rates at high school graduation. We found there is 

evidence that schools with different distributions of student race/ethnicities and socioeconomic 

status are having different rates of post-secondary bound graduates in Pennsylvania. We also found 

evidence that there may be a need to investigate schools with different student populations in a 

closer and qualitative manner to find areas that need support.  
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Appendix A R Code 

Appendix A.1 Select R code for models and figures 

Section 3.2.1 Random intercept models w/ continuous percent HUG: 

#college bound grad rate outcome 

ri.college <- lmer(college_bound.p ~ HUG_percent + SURVYEAR +STITLI_OVERALL  

+ (1|SCHNO), df.arm1, REML = 0) 

 

#total post-secondary bound grad rate 

ri.total <- lmer(total_postsecondary_bound.p ~ HUG_percent + SURVYEAR 

+STITLI_OVERALL  + (1|SCHNO), df.arm1, REML = 0) 

 

Section 3.2.2 Random intercept models w/ categorical percent HUG: 

#creating categorical variables 

df.arm2$HUG_catq[df.arm2$HUG_prop < .0241] <- 1 

df.arm2$HUG_catq[ df.arm2$HUG_prop >=.0241  & df.arm2$HUG_prop < .06853] <- 2 

df.arm2$HUG_catq[df.arm2$HUG_prop >= 0.06853 & df.arm2$HUG_prop < .30710] <- 

3 

df.arm2$HUG_catq[df.arm2$HUG_prop >= .30710] <- 4 

 

#modeling 

ri.tot.c <- lmer(total_postsecondary_bound.p ~ factor(HUG_catq) + SURVYEAR 

+STITLI_OVERALL  + (1|SCHNO), df.arm2, REML = 0) 

 

ri.col.c <- lmer(college_bound.p ~ factor(HUG_catq) + SURVYEAR 

+STITLI_OVERALL  + (1|SCHNO), df.arm2, REML = 0) 

 

#likelihood ratio test testing the significance of categorical variable  

#making null models 

model.0.t <- lmer(total_postsecondary_bound.p ~ SURVYEAR + STITLI_OVERALL + 

(1|SCHNO), df.arm2, REML =0) 

model.0.c <- lmer(college_bound.p ~ SURVYEAR + STITLI_OVERALL + (1|SCHNO), 

df.arm2, REML =0) 

anova(model.0.t, ri.tot.c, test = 'LRT') 

anova(model.0.c, ri.col.c, test = 'LRT') 

 

 

Section 3.3.1 Cluster analysis: 

#clustering and calculating WSS for k =2 through k=20  

wss <- rep(NA,20) 

clusters <- rep(NA,20) 

for(k in 1:20){ 

  a <- kmeans(x = cluster_data[,-c(1:8)], centers =  k) 

  wss[k] <- a$tot.withinss 
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  clusters[k] <- k 

} 

 

 

#3,4 or 5 clusters 

k.4 <- kmeans(x = cluster_data[,-c(1:8)], centers =  4) 

k.3 <- kmeans(x = cluster_data[,-c(1:8)], centers =  3) 

k.5 <- kmeans(x = cluster_data[,-c(1:8)], centers =  5) 

 

df.4cluster <- cbind.data.frame(cluster_data, cluster = k.4$cluster) #4421 

 

Section 3.3.3 Random intercept model using cluster assignment covariate: 

ri.model.cb <- lmer(college_bound.p ~ factor(clust_label) + SURVYEAR + 

factor(STITLI_OVERALL) +(1|SCHNO), df.4cluster, REML = 0) 

 

ri.model.psb <- lmer(total_postsecondary_bound.p ~ factor(cluster) + SURVYEAR 

+STITLI_OVERALL  + (1|SCHNO), df.4cluster, REML = 0) 

 

#likelihood ratio tests to test overall significance of clusters 

model.0c.t <- lmer(total_postsecondary_bound.p ~SURVYEAR +STITLI_OVERALL  + 

(1|SCHNO), df.4cluster, REML = 0) 

model.0c.c <- lmer(college_bound.p ~SURVYEAR +STITLI_OVERALL  + (1|SCHNO), 

df.4cluster, REML = 0) 

 

anova(model.0c.t, ri.model.psb, test = 'LRT') 

anova(model.0c.c, ri.model.cb, test = 'LRT') 

 

Figure 2: 

ggplot(data = df.arm1)+ 

  geom_histogram(aes(x=HUG_prop), col = 'white')+ 

  theme_bw()+ 

  facet_wrap('SURVYEAR')+ 

  xlab('Percent HUG') 

 

Figure 3:  

 
ggplot(data = df.arm1.ol)+ 

  geom_histogram(aes(x=Percent), col = 'white', binwidth = 5)+ 

  theme_bw()+ 

  facet_wrap('Outcome') 

 

Figure 4: 

 
ggplot(data = df.arm1.ol2[which(df.arm1.ol2$Outcome != 'Specialized Degree 

Bound')])+ 

  geom_point(aes(x=(HUG_prop*100),y=Percent, color = STITLI_OVERALL), alpha = 

0.5)+ 

  theme_bw()+ 

  xlab('Percent HUG Student Population')+ 

  ylab('Percent Graduates')+ 

  scale_color_discrete(name = 'Title I Status', 
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                       labels=c('1' = 'Yes', '2' = "No"))+ 

  facet_wrap('Outcome') 

 

Figure 5:  

 
ggplot()+ 

  geom_point(aes(x=clusters, y=wss))+ 

  theme_bw()+ 

  ylab('WSS')+ 

  xlab('No. of Clusters') 

 

Figure 6:  

 
fig <- plot_ly(data = df.4clusterm, x = ~WH_all.p, y = ~BL_all.p , z = 

~HI_all.p, type = 'scatter3d', mode = "markers", color= ~ 

as.factor(clust_label2), size = 2, colors = c('#4AC6B7', '#1972A4', 

'#965F8A', '#FF7070')) 

 
fig <- fig %>% layout(scene = list(xaxis = list(title='Proportion White'), 

                                   yaxis = list(title = 'Proportion Black'), 

                                   zaxis = list(title = 'Proportion 

Hispanic')), 

                       #paper_bgcolor = 'rgb(243, 243, 243)', 

                       #plot_bgcolor = 'rgb(243, 243, 243)', 

                       annotations = list( 

                        x = 1.1, 

                        y = 1.05, 

                        text = 'Cluster', 

                        xref = 'paper', 

                        yref = 'paper', 

                        showarrow = FALSE 

                        )) 

Appendix A.2 All R code used in analysis  

loading libraries 

```{r} 

library(tidyverse) 

library(data.table) 

library(stringi) 

library(tidyr) 

library(reshape2) 

library(ggplot2) 

library(gganimate) 

library(EnvStats) 

library(nlme) 

library(lme4) 

library(lmerTest) 

library(varhandle) 

library(sjstats) 
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library(geepack) 

library(cowplot) 

library(plotly) 

library(dotwhisker) 

library(sjPlot) 

library(sjlabelled) 

library(sjmisc) 

``` 

Reading in data 

```{r} 

#demographics 

df.07_08 <- fread('07_08.txt', header = T) %>% subset(MSTATE07 == 'PA') 

df.08_09 <- fread('08_09.txt', header = T) %>% subset(MSTATE08 == 'PA') 

df.09_10 <- fread('09_10.txt', header = T) %>% subset(MSTATE09 == 'PA') 

df.10_11 <- fread('10_11.txt', header = T) %>% subset(MSTATE == 'PA') 

df.11_12 <- fread('11_12.txt', header = T) %>% subset(MSTATE == 'PA') 

df.12_13 <- fread('12_13.txt', header = T) %>% subset(MSTATE == 'PA') 

df.13_14 <- fread('13_14.txt', header = T) %>% subset(MSTATE == 'PA') 

df.14_15 <- read.delim('14_15.txt', header = T) %>% subset(STATENAME == 

'PENNSYLVANIA') 

df.15_16 <- fread('15_16.csv', header = T) %>% subset(STABR == 'PA') 

df.16_17 <- fread('16_17.csv', header = T) %>% subset(STATENAME == 

'PENNSYLVANIA') 

df.17_18 <- fread('17_18.csv', header = T) %>% subset(STATENAME == 

'PENNSYLVANIA') 

#graduation data 

grad_07_08 <- fread("grad_07_08.csv") 

grad_08_09 <- fread("grad_08_09.csv") 

grad_09_10 <- fread("grad_09_10.csv") 

grad_10_11 <- fread("grad_10_11.csv") 

grad_11_12<- fread("grad_11_12.csv") 

grad_12_13<- fread("grad_12_13.csv") 

grad_13_14 <- fread("grad_13_14.csv") 

grad_14_15 <- fread("grad_14_15.csv") 

grad_15_16 <- fread("grad_15_16.csv") 

``` 

Aggregating Demographic Data 

```{r} 

#07,08,09 need to remove suffix 

year <- c('07','08','09') 

k=1 

col_name_list=list(NA, NA, NA) 

for (i in list(df.07_08,df.08_09,df.09_10)){ 

col_name <- colnames(i) 

for (j in 1:length(colnames(i))){ 

if (stri_sub(col_name[j], -2, -1)==year[k]){ 

col_name[j] <- stri_sub(col_name[j],from = 1, to = -3) 

}else{ 

col_name[j] <- col_name[j] 

} 

} 

col_name_list[[k]]<- as.vector(rep(NA, times = length(col_name))) 

col_name_list[[k]] <- col_name 

k <- k+1 

} 

colnames(df.07_08) <- col_name_list[[1]] 

colnames(df.08_09) <- col_name_list[[2]] 
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colnames(df.09_10) <- col_name_list[[3]] 

#suffix removed 

#adding survey year to 08/09 and 09/10 

df.08_09$SURVYEAR <- 2008 

df.09_10$SURVYEAR <- 2009 

#fixing some survey years 

df.14_15$SURVYEAR <- 2014 

df.15_16$SURVYEAR <-2015 

df.14_15$SURVYEAR <- as.numeric(df.14_15$SURVYEAR) 

df.15_16$SURVYEAR <- as.numeric(df.15_16$SURVYEAR) 

#fixing NCESSCH in 14_15 

df.14_15$NCESSCH <- as.integer(df.14_15$NCESSCH) 

#fixing colnames to match in 2014/2015 

df.14_15$SCHNAM <- toupper(df.14_15$SCH_NAME) 

df.14_15$SCHNO <- df.14_15$SCHID 

df.14_15$LEANM <- df.14_15$LEA_NAME 

df.14_15$SEASCH <- df.14_15$ST_SCHID 

df.14_15$STID <- df.14_15$ST_LEAID 

df.15_16$SCHNAM <- toupper(df.15_16$SCH_NAME) 

df.15_16$SCHNO <- df.15_16$SCHID 

df.15_16$LEANM <- df.15_16$LEA_NAME 

df.15_16$SEASCH <- df.15_16$ST_SCHID 

df.15_16$STID <- df.15_16$ST_LEAID 

#matching all colnames 

keep <- colnames(df.08_09) 

for( i in keep[-which(keep %in% colnames(df.09_10))]){ 

df.09_10[,i] <- as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.10_11))]){ 

df.10_11[,i] <- as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.11_12))]){ 

df.11_12[,i] <- as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.12_13))]){ 

df.12_13[,i] <- as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.13_14))]){ 

df.13_14[,i] <-as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.14_15))]){ 

df.14_15[,i] <- as.numeric(NA) 

} 

for( i in keep[-which(keep %in% colnames(df.15_16))]){ 

df.15_16[,i] <- as.numeric(NA) 

} 

df.09_10.i <- as.data.frame(df.09_10)[,which(colnames(df.09_10) %in% keep)] 

df.09_10.i <- as.data.frame(df.09_10)[,which(colnames(df.09_10) %in% keep)] 

df.10_11.i <- as.data.frame(df.10_11)[,which(colnames(df.10_11) %in% keep)] 

df.11_12.i <- as.data.frame(df.11_12)[,which(colnames(df.11_12) %in% keep)] 

df.12_13.i <- as.data.frame(df.12_13)[,which(colnames(df.12_13) %in% keep)] 

df.13_14.i <- as.data.frame(df.13_14)[,which(colnames(df.13_14) %in% keep)] 

df.14_15.i <- as.data.frame(df.14_15)[,which(colnames(df.14_15) %in% keep)] 

df.15_16.i <- as.data.frame(df.15_16)[,which(colnames(df.15_16) %in% keep)] 

#turning LZIP to Numeric 

df.08_09$LZIP <- as.numeric(df.08_09$LZIP) 

df.08_09$LZIP4 <- as.numeric(df.08_09$LZIP4) 
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df.09_10.i$LZIP <- as.numeric(df.09_10.i$LZIP) 

df.09_10.i$LZIP4 <- as.numeric(df.09_10.i$LZIP4) 

df.10_11.i$LZIP <- as.numeric(df.10_11.i$LZIP) 

df.10_11.i$LZIP4 <- as.numeric(df.10_11.i$LZIP4) 

df.11_12.i$LZIP <- as.numeric(df.11_12.i$LZIP) 

df.11_12.i$LZIP4 <- as.numeric(df.11_12.i$LZIP4) 

df.12_13.i$LZIP <- as.numeric(df.12_13.i$LZIP) 

df.12_13.i$LZIP4 <- as.numeric(df.12_13.i$LZIP4) 

df.13_14.i$LZIP <- as.numeric(df.13_14.i$LZIP) 

df.13_14.i$LZIP4 <- as.numeric(df.13_14.i$LZIP4) 

df.14_15.i$LZIP <- as.numeric(df.14_15.i$LZIP) 

df.14_15.i$LZIP4 <- as.numeric(df.14_15.i$LZIP4) 

df.15_16.i$LZIP <- as.numeric(df.15_16.i$LZIP) 

df.15_16.i$LZIP4 <- as.numeric(df.15_16.i$LZIP4) 

df.overall <- as.data.frame(df.08_09) %>% 

bind_rows(.,df.09_10.i) %>% 

bind_rows(.,df.10_11.i) %>% 

bind_rows(.,df.11_12.i) %>% 

bind_rows(.,df.12_13.i) %>% 

bind_rows(.,df.13_14.i) %>% 

bind_rows(.,df.14_15.i) %>% 

bind_rows(.,df.15_16.i) 

#290 x 25627 

``` 

Preparing DF overall 

```{r} 

df.hs <- df.overall 

df.hs <- df.overall[df.overall$GSHI == '12' | df.overall$GSHI == 'N' | 

df.overall$GSHI == 'UG' |df.overall$SURVYEAR == 2014|df.overall$SURVYEAR == 

2015,] ###########3 11031 x 290 

#df.hs <- merge(x = df.overall, y = grad.overall, by = 

c('SCHNO','SURVYEAR') ) #3957624 x 309 

#df.hs <- unique(df.hs) 

#changing negative values to missing 

for(j in 31:290){ 

for(i in 1:length(df.hs$NCESSCH)){ 

if(df.hs[i,j] < 0 & is.na(df.hs[i,j]) == FALSE){ 

df.hs[i,j] <- 0 

} 

} 

} 

#totaling m+f for each race/grade 

#G9 

df.hs$AM09 <- df.hs$AM09F + df.hs$AM09M 

df.hs$AS09 <- df.hs$AS09F + df.hs$AS09M 

df.hs$HI09 <- df.hs$HI09F + df.hs$HI09M 

df.hs$BL09 <- df.hs$BL09F + df.hs$BL09M 

df.hs$WH09 <- df.hs$WH09F + df.hs$WH09M 

df.hs$HP09 <- df.hs$HP09F + df.hs$HP09M 

df.hs$TR09 <- df.hs$TR09F + df.hs$TR09M 

df.hs$HUG09 <- df.hs$AM09 + df.hs$HI09 + df.hs$BL09 + df.hs$HP09 

#G10 

df.hs$AM10 <- df.hs$AM10F + df.hs$AM10M 

df.hs$AS10 <- df.hs$AS10F + df.hs$AS10M 

df.hs$HI10 <- df.hs$HI10F + df.hs$HI10M 

df.hs$BL10 <- df.hs$BL10F + df.hs$BL10M 

df.hs$WH10 <- df.hs$WH10F + df.hs$WH10M 
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df.hs$HP10 <- df.hs$HP10F + df.hs$HP10M 

df.hs$TR10 <- df.hs$TR10F + df.hs$TR10M 

df.hs$HUG10 <- df.hs$AM10 + df.hs$HI10 + df.hs$BL10 + df.hs$HP10 

#G11 

df.hs$AM11 <- df.hs$AM11F + df.hs$AM11M 

df.hs$AS11 <- df.hs$AS11F + df.hs$AS11M 

df.hs$HI11 <- df.hs$HI11F + df.hs$HI11M 

df.hs$BL11 <- df.hs$BL11F + df.hs$BL11M 

df.hs$WH11 <- df.hs$WH11F + df.hs$WH11M 

df.hs$HP11 <- df.hs$HP11F + df.hs$HP11M 

df.hs$TR11 <- df.hs$TR11F + df.hs$TR11M 

df.hs$HUG11 <- df.hs$AM11 + df.hs$HI11 + df.hs$BL11 + df.hs$HP11 

#G12 

df.hs$AM12 <- df.hs$AM12F + df.hs$AM12M 

df.hs$AS12 <- df.hs$AS12F + df.hs$AS12M 

df.hs$HI12 <- df.hs$HI12F + df.hs$HI12M 

df.hs$BL12 <- df.hs$BL12F + df.hs$BL12M 

df.hs$WH12 <- df.hs$WH12F + df.hs$WH12M 

df.hs$HP12 <- df.hs$HP12F + df.hs$HP12M 

df.hs$TR12 <- df.hs$TR12F + df.hs$TR12M 

df.hs$HUG12 <- df.hs$AM12 + df.hs$HI12 + df.hs$BL12 + df.hs$HP12 

#adding all race categories 

df.hs$AM_all <- df.hs$AM09 + df.hs$AM10 + df.hs$AM11 + df.hs$AM12 

df.hs$AS_all <- df.hs$AS09 + df.hs$AS10 + df.hs$AS11 + df.hs$AS12 

df.hs$HI_all <- df.hs$HI09 + df.hs$HI10 + df.hs$HI11 + df.hs$HI12 

df.hs$BL_all <- df.hs$BL09 + df.hs$BL10 + df.hs$BL11 + df.hs$BL12 

df.hs$WH_all <- df.hs$WH09 + df.hs$WH10 + df.hs$WH11 + df.hs$WH12 

df.hs$HP_all <- df.hs$HP09 + df.hs$HP10 + df.hs$HP11 + df.hs$HP12 

df.hs$TR_all <- df.hs$TR09 + df.hs$TR10 + df.hs$TR11 + df.hs$TR12 

#addng all hug 

df.hs$HUG_all <- df.hs$HUG09 + df.hs$HUG10 + df.hs$HUG11 + df.hs$HUG12 

df.hs$HS_all <- df.hs$G09 + df.hs$G10 + df.hs$G11 + df.hs$G12 

df.hs$HS_all_noNA <- df.hs$AM_all + df.hs$AS_all + df.hs$HI_all + 

df.hs$BL_all + df.hs$WH_all + df.hs$HP_all + df.hs$TR_all 

df.hs$HUG_prop <- df.hs$HUG_all/df.hs$HS_all_noNA 

df.hs <- as.data.table(df.hs) 

#adding title I status as of 2013 and 2009 

#df.hs <- merge(x = df.hs , y = cbind.data.frame(SEASCH = 

df.hs$SEASCH[which(df.hs$SURVYEAR == 2013)], TITLEI_2013 = 

df.hs$TITLEI[which(df.hs$SURVYEAR == 2013)]), by = 'SEASCH', all.x = T) 

#adding proportions of all races 

df.hs$AM_all.p <- df.hs$AM_all/df.hs$HS_all_noNA 

df.hs$AS_all.p <- df.hs$AS_all/df.hs$HS_all_noNA 

df.hs$HI_all.p <- df.hs$HI_all/df.hs$HS_all_noNA 

df.hs$BL_all.p <- df.hs$BL_all/df.hs$HS_all_noNA 

df.hs$WH_all.p <- df.hs$WH_all/df.hs$HS_all_noNA 

df.hs$HP_all.p <- df.hs$HP_all/df.hs$HS_all_noNA 

df.hs$TR_all.p <- df.hs$TR_all/df.hs$HS_all_noNA 

#adding all 12th graders 

df.hs$all_G12 <- df.hs$AM12 + df.hs$AS12 + df.hs$HI12 + df.hs$BL12 + 

df.hs$WH12 + df.hs$HP12 + df.hs$TR12 

``` 

Preparing Graduation Data 

```{r} 

#adding Survey Year 

grad_07_08$SURVYEAR <- 2007 

grad_08_09$SURVYEAR <- 2008 
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grad_09_10$SURVYEAR <- 2009 

grad_10_11$SURVYEAR <- 2010 

grad_11_12$SURVYEAR <- 2011 

grad_12_13$SURVYEAR <- 2012 

grad_13_14$SURVYEAR <- 2013 

grad_14_15$SURVYEAR <- 2014 

grad_15_16$SURVYEAR <- 2015 

#adding school number to 14/15 and 15/16 

grad_14_15$`School Number` <- grad_14_15$`School Code` 

grad_15_16$`School Number` <- grad_15_16$`School Code` 

#fixing title of some columns in 14_15/15_16 

names(grad_14_15)[names(grad_14_15) %in% c('Graduate Count', 

'Total College Bound %', 

'College Bound', 

'2- Or 4-Year University %', 

'Specialized Associate Degree 

Granting Institution', 

'Specialized Assocate Degree 

Granting Institution %')] <- c('Total Graduates', 

'Total College-Bound', 

'Total College-Bound %', 

'2- or 4-Year College or University %', 

'Specialized Associate Degree-Granting Institution', 

'Specialized Associate Degree-Granting Institution %') 

names(grad_15_16)[names(grad_15_16) %in% c('Graduate Count', 

'Total College Bound %', 

'College Bound', 

'2- Or 4-Year University %', 

'Specialized Associate Degree 

Granting Institution', 

'Specialized Assocate Degree 

Granting Institution %')] <- c('Total Graduates', 

'Total College-Bound', 

'Total College-Bound %', 

'2- or 4-Year College or University %', 

'Specialized Associate Degree-Granting Institution', 

'Specialized Associate Degree-Granting Institution %') 

#names(grad_15_16)[names(grad_15_16) %in% c('Total College Bound 

%','College Bound')] <- c('Total College-Bound','Total College-Bound %') 

#fixing columns to be the same 

grad_07_08.i <- grad_07_08[,4:17] 

grad_08_09.i <- grad_08_09[,5:18] 

grad_09_10.i <- grad_09_10[,5:18] 

grad_10_11.i <- grad_10_11[,5:18] 

grad_11_12.i <- grad_11_12[,5:18] 

grad_12_13.i <- grad_12_13[,5:18] 

grad_13_14.i <- grad_13_14[,5:18] 

grad_14_15.i <- grad_14_15[,5:18] 

grad_15_16.i <- grad_15_16[,5:18] 

#fixing some columns in some table so data types agree 

grad_13_14.i$`Total College-Bound %` <- as.character(grad_13_14.i$`Total 

College-Bound %`) 

grad_13_14.i$`2- or 4-Year College or University %` <- 

as.character(grad_13_14.i$`2- or 4-Year College or University %`) 

grad_13_14.i$`Total Postsecondary Bound %` <- 

as.character(grad_13_14.i$`Total Postsecondary Bound %`) 

grad_13_14.i$`Non-Degree-Granting Postsecondary School %`<- 
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as.character(grad_13_14.i$`Non-Degree-Granting Postsecondary School %`) 

grad_13_14.i$`Specialized Associate Degree-Granting Institution %`<- 

as.character(grad_13_14.i$`Specialized Associate Degree-Granting 

Institution %`) 

#unioning all 

grad.overall <- grad_08_09.i %>% 

bind_rows(., grad_09_10.i) %>% 

bind_rows(., grad_10_11.i) %>% 

bind_rows(., grad_11_12.i) %>% 

bind_rows(., grad_12_13.i) %>% 

bind_rows(., grad_13_14.i) %>% 

bind_rows(., grad_14_15.i) %>% 

bind_rows(., grad_15_16.i) 

#8674 x 20 

grad.overall$SCHNO <- grad.overall$`School Number` 

``` 

bringing outcomes and predictors together 

```{r} 

grad.overall$SCHNAM = toupper(grad.overall$School) 

df.hs$SCHNAM <- toupper(df.hs$SCHNAM) 

df.hs$SURVYEAR = as.factor(df.hs$SURVYEAR) 

grad.overall$SURVYEAR = as.factor(grad.overall$SURVYEAR) 

df.xynam <- merge(x = df.hs, y = grad.overall, by = c('SCHNAM','SURVYEAR') 

) #5456 

df.xynum <- merge(x = df.hs, y = grad.overall, by = c('SCHNO','SURVYEAR') ) 

#4364 

df.xynam <- df.xynam[,-"SCHNO.y"] 

names(df.xynam)[names(df.xynam) == "SCHNO.x"] <- "SCHNO" 

df.xynum <- df.xynum[,-"SCHNAM.y"] 

names(df.xynum)[names(df.xynum) == "SCHNAM.x"] <- "SCHNAM" 

df.xy <- union(df.xynam, df.xynum) #5565 

df.xy <-df.xy[,-333] # get rid of after fresh run 

``` 

Preparing data 

```{r} 

#converting data to numeric that should be 

#percents 

df.xy$college_bound.p <- as.numeric(sub('%', '',df.xy$`Total College-Bound 

%`)) 

df.xy$college_bound <- as.numeric(df.xy$`Total College-Bound`) 

df.xy$nondegree_bound.p <- as.numeric(sub('%', '',df.xy$`Non-Degree- 

Granting Postsecondary School %`)) 

df.xy$nondegree_bound <- as.numeric(df.xy$`Non-Degree-Granting 

Postsecondary School`) 

df.xy$total_postsecondary_bound.p <- as.numeric(sub('%', '',df.xy$`Total 

Postsecondary Bound %`)) 

df.xy$total_postsecondary_bound <- as.numeric(df.xy$`Total Postsecondary 

Bound`) 

df.xy$specialized_degree_bound.p <- as.numeric(sub('%', 

'',df.xy$`Specialized Associate Degree-Granting Institution %`)) 

df.xy$specialized_degree_bound <- as.numeric(df.xy$`Specialized Associate 

Degree-Granting Institution`) 

#creating charter variable 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2008],CHARTER_2008 = 

df.xy$CHARTR[df.xy$SURVYEAR==2008])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 
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df.xy$SCHNO[df.xy$SURVYEAR == 2009],CHARTER_2009 = 

df.xy$CHARTR[df.xy$SURVYEAR==2009])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2011],CHARTER_2011 = 

df.xy$CHARTR[df.xy$SURVYEAR==2011])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2013],CHARTER_2013 = 

df.xy$CHARTR[df.xy$SURVYEAR==2013])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2014],CHARTER_2014 = 

df.xy$CHARTR[df.xy$SURVYEAR==2014])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2015],CHARTER_2015 = 

df.xy$CHARTR[df.xy$SURVYEAR==2015])), by = 'SCHNO', all.x = T) 

#making an overall charter variable 

for(i in 1:length(df.xy$SCHNO)){ 

if(is.na(df.xy$CHARTER_2008[i])){ 

if(is.na(df.xy$CHARTER_2009[i])){ 

if(is.na(df.xy$CHARTER_2011[i])){ 

if(is.na(df.xy$CHARTER_2013[i])){ 

if(is.na(df.xy$CHARTER_2014[i])){ 

df.xy$CHARTER_OVERALL[i] <- df.xy$CHARTER_2015[i] 

} 

else{df.xy$CHARTER_OVERALL[i]<-df.xy$CHARTER_2014[i]} 

} 

else{df.xy$CHARTER_OVERALL[i] <- df.xy$CHARTER_2013[i]} 

} 

else{df.xy$CHARTER_OVERALL[i] <- df.xy$CHARTER_2011[i]} 

} 

else{df.xy$CHARTER_OVERALL[i] <- df.xy$CHARTER_2009[i]} 

} 

else{df.xy$CHARTER_OVERALL[i] <- df.xy$CHARTER_2008[i]} 

} 

for(i in 1:length(df.xy$SCHNO)){ 

if(is.na(df.xy$CHARTER_OVERALL[i])){ 

if(df.xy$SCHNAM[i] %like% "%CS%" | df.xy$SCHNAM[i] %like% "%CHARTER%"){ 

df.xy$CHARTER_OVERALL[i] <- 1 

} 

else(df.xy$CHARTER_OVERALL[i]<-2) 

} 

} 

#creating TITLEI variable 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2008],TITLEI_2008 = 

df.xy$TITLEI[df.xy$SURVYEAR==2008])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2009],TITLEI_2009 = 

df.xy$TITLEI[df.xy$SURVYEAR==2009])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2011],TITLEI_2011 = 

df.xy$TITLEI[df.xy$SURVYEAR==2011])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2013],TITLEI_2013 = 

df.xy$TITLEI[df.xy$SURVYEAR==2013])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2014],TITLEI_2014 = 

df.xy$TITLEI[df.xy$SURVYEAR==2014])), by = 'SCHNO', all.x = T) 
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df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2015],TITLEI_2015 = 

df.xy$TITLEI[df.xy$SURVYEAR==2015])), by = 'SCHNO', all.x = T) 

#making an overall TITLE I variable 

for(i in 1:length(df.xy$SCHNO)){ 

if(is.na(df.xy$TITLEI_2008[i])| df.xy$TITLEI_2008[i] == "N"){ 

if(is.na(df.xy$TITLEI_2009[i])| df.xy$TITLEI_2009[i] == "N"){ 

if(is.na(df.xy$TITLEI_2011[i])| df.xy$TITLEI_2011[i] == "N"){ 

if(is.na(df.xy$TITLEI_2013[i])| df.xy$TITLEI_2013[i] == "N"){ 

if(is.na(df.xy$TITLEI_2014[i])| df.xy$TITLEI_2014[i] == "N"){ 

df.xy$TITLEI_OVERALL[i] <- df.xy$TITLEI_2015[i] 

} 

else{df.xy$TITLEI_OVERALL[i]<-df.xy$TITLEI_2014[i]} 

} 

else{df.xy$TITLEI_OVERALL[i] <- df.xy$TITLEI_2013[i]} 

} 

else{df.xy$TITLEI_OVERALL[i] <- df.xy$TITLEI_2011[i]} 

} 

else{df.xy$TITLEI_OVERALL[i] <- df.xy$TITLEI_2009[i]} 

} 

else{df.xy$TITLEI_OVERALL[i] <- df.xy$TITLEI_2008[i]} 

} 

#creating School wide STITLI variable 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2008],STITLI_2008 = 

df.xy$STITLI[df.xy$SURVYEAR==2008])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2009],STITLI_2009 = 

df.xy$STITLI[df.xy$SURVYEAR==2009])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2011],STITLI_2011 = 

df.xy$STITLI[df.xy$SURVYEAR==2011])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2013],STITLI_2013 = 

df.xy$STITLI[df.xy$SURVYEAR==2013])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2014],STITLI_2014 = 

df.xy$STITLI[df.xy$SURVYEAR==2014])), by = 'SCHNO', all.x = T) 

df.xy <- merge(df.xy, y = unique(cbind.data.frame(SCHNO = 

df.xy$SCHNO[df.xy$SURVYEAR == 2015],STITLI_2015 = 

df.xy$STITLI[df.xy$SURVYEAR==2015])), by = 'SCHNO', all.x = T) 

#making an overall School-wide TITLE I variable 

for(i in 1:length(df.xy$SCHNO)){ 

if(is.na(df.xy$STITLI_2008[i])| df.xy$STITLI_2008[i] == "N" | 

df.xy$STITLI_2008[i] == "M"){ 

if(is.na(df.xy$STITLI_2009[i])| df.xy$STITLI_2009[i] == "N"| 

df.xy$STITLI_2009[i] == "M"){ 

if(is.na(df.xy$STITLI_2011[i])| df.xy$STITLI_2011[i] == "N"| 

df.xy$STITLI_2011[i] == "M"){ 

if(is.na(df.xy$STITLI_2013[i])| df.xy$STITLI_2013[i] == "N"| 

df.xy$STITLI_2013[i] == "M"){ 

if(is.na(df.xy$STITLI_2014[i])| df.xy$STITLI_2014[i] == "N"| 

df.xy$STITLI_2014[i] == "M"){ 

df.xy$STITLI_OVERALL[i] <- df.xy$STITLI_2015[i] 

} 

else{df.xy$STITLI_OVERALL[i]<-df.xy$STITLI_2014[i]} 

} 
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else{df.xy$STITLI_OVERALL[i] <- df.xy$STITLI_2013[i]} 

} 

else{df.xy$STITLI_OVERALL[i] <- df.xy$STITLI_2011[i]} 

} 

else{df.xy$STITLI_OVERALL[i] <- df.xy$STITLI_2009[i]} 

} 

else{df.xy$STITLI_OVERALL[i] <- df.xy$STITLI_2008[i]} 

} 

#creating managable sub-data set for arm 1 

df.arm1 <- na.omit(df.xy[,c('SCHNAM', 

'SCHNO', 

'SURVYEAR', 

'HUG_prop', 

'TITLEI_OVERALL', 

'STITLI_OVERALL', 

'CHARTER_OVERALL', 

'college_bound.p', 

'nondegree_bound.p', 

'specialized_degree_bound.p', 

'total_postsecondary_bound.p')]) #4431 

length(unique(df.arm1$SCHNO)) #610 

df.arm1 <- unique(df.arm1[which(df.arm1$total_postsecondary_bound.p != 

0),]) 

df.arm1 <- unique(df.arm1[which(df.arm1$SCHNO != 16),]) 

df.arm1 <- unique(df.arm1[which(df.arm1$SCHNO != 3848),]) 

df.arm1 <- unique(df.arm1[which(df.arm1$SCHNO != 941),]) 

df.arm1 <- unique(df.arm1[which(is.na(df.arm1$HUG_prop) != T),]) #4118 

length(unique(df.arm1$SCHNO)) #601 

#unfactoring SURVYEAR 

df.arm1$SURVYEAR <- unfactor(df.arm1$SURVYEAR) 

#adding centered continuous features for polynomial models 

df.arm1$SURVYEAR.c <- df.arm1$SURVYEAR - mean(df.arm1$SURVYEAR) 

df.arm1$HUG_prop.c <- df.arm1$HUG_prop - mean(df.arm1$HUG_prop) 

#adding polynomial continuous features 

df.arm1$SURVYEAR.2 <- df.arm1$SURVYEAR.c^2 

df.arm1$SURVYEAR.3 <- df.arm1$SURVYEAR.c^3 

df.arm1$HUG_prop.2 <- df.arm1$HUG_prop.c^2 

df.arm1$HUG_prop.3 <- df.arm1$HUG_prop.c^3 

#making hug_prop a percent 

df.arm1$HUG_percent <- df.arm1$HUG_prop*100 

#creating functional data table with all variables of interest 

df.dev <- na.omit(df.xy[,c('SCHNO', 

'SCHNAM', 

'SURVYEAR', 

'Total Graduates', 

'college_bound.p', 

'nondegree_bound.p', 

'specialized_degree_bound.p', 

"total_postsecondary_bound.p", 

'STITLI_OVERALL', 

"HUG_prop", 

'AM_all.p', 

'AS_all.p', 

'HI_all.p', 

'BL_all.p', 

'WH_all.p', 

'HP_all.p', 
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'TR_all.p')]) #4431 

df.dev <- unique(df.dev[which(df.dev$total_postsecondary_bound.p != 0),]) 

#4170 

df.dev <- unique(df.dev[which(df.dev$SCHNO != 16),]) #4154 

df.dev <- unique(df.dev[which(df.dev$SCHNO != 3848),]) #4118 

df.dev <- unique(df.dev[which(df.dev$SCHNO != 941),]) 

#creating long forms of data 

df.dev.l <- melt(df.dev, 

# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNAM", "SURVYEAR"), 

# The source columns 

measure.vars=c("AM_all.p", "AS_all.p", 

"HI_all.p","BL_all.p","WH_all.p","HP_all.p","TR_all.p", "HUG_prop", 

"college_bound.p", "total_postsecondary_bound.p", 'STITLI_OVERALL'), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Race", 

value.name="Percent" 

)#29078 x 4 

#long format just race 

df.dev.r <- melt(df.dev, 

# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNAM", "SURVYEAR"), 

# The source columns 

measure.vars=c("AM_all.p", "AS_all.p", 

"HI_all.p","BL_all.p","WH_all.p","HP_all.p","TR_all.p"), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Race", 

value.name="Percent" 

)#29078 x 4 

#long form of outcomes 

df.arm1.ol <- melt(df.dev, 

# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNAM", "SURVYEAR"), 

# The source columns 

measure.vars=c('total_postsecondary_bound.p', 'college_bound.p', 

'specialized_degree_bound.p'), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Outcome", 

value.name="Percent" 

)#29078 x 4 

#maybe merging df.xy with total number of grads? 

df.dev <- merge(df.dev,df.hs[,c('SCHNO','SCHNAM','SURVYEAR','all_G12')], by 

= c('SCHNO','SURVYEAR','SCHNAM'),all.x = T) #4118 

df.dev <- merge(df.dev,df.xy[,c('SCHNO','SCHNAM','SURVYEAR','G12')], by = 

c('SCHNO','SURVYEAR','SCHNAM'),all.x = T) #4118 

``` 

Data exploration 

```{r} 

summary(df.hs[,323:332]) 

ggplot(data = df.hs)+ 

geom_bar(aes(x=factor(SURVYEAR), y = HUG_prop), stat = "summary", fun.y = 

"mean")+ 

theme_bw() 

ggplot(data = df.hs)+ 
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geom_boxplot(aes(x=factor(SURVYEAR), y = HUG_prop))+ 

theme_bw() 

ggplot(data = df.hs)+ 

geom_point(aes(x=HUG_prop, y = as.factor(TITLEI_2013)))+ 

theme_bw() 

#merging outcome long with phug and title I 

df.arm1.ol$SURVYEAR <- unfactor(df.arm1.ol$SURVYEAR) 

df.arm1.ol2 <- merge(df.arm1.ol, df.arm1[,c('SCHNAM','SURVYEAR','HUG_prop', 

'STITLI_OVERALL')], by = c('SCHNAM','SURVYEAR')) 

df.arm1.ol2$Outcome <- factor(df.arm1.ol2$Outcome, levels = 

c("college_bound.p", "total_postsecondary_bound.p", 

"specialized_degree_bound.p"), 

labels = c("College Bound", "Total Post-Secondary Bound", 

"Specialized Degree Bound")) 

#scatter plot of covariates vs outcome 

ggplot(data = df.arm1.ol2[which(df.arm1.ol2$Outcome != 'Specialized Degree 

Bound')])+ 

geom_point(aes(x=(HUG_prop*100),y=Percent, color = STITLI_OVERALL), alpha 

= 0.5)+ 

theme_bw()+ 

xlab('Percent HUG Student Population')+ 

ylab('Percent Graduates')+ 

scale_color_discrete(name = 'Title I Status', 

labels=c('1' = 'Yes', '2' = "No"))+ 

facet_wrap('Outcome') 

ggplot(data = df.arm1)+ 

geom_point(aes(x=HUG_prop,y=total_postsecondary_bound.p, color = 

STITLI_OVERALL))+ 

theme_bw()+ 

xlab('Proportion HUG Student Population')+ 

ylab('Percent Post-Secondary Bound Graduates')+ 

scale_color_discrete(name = 'Title Status',labels=c('1' = 'Yes', 

'2' = "No"))+ 

scale_color_manual(values=c("#E69F00", "#56B4E9"))+ 

ggtitle("Total Post-Secondary Bound") 

#scatter plot of college-bound rates 

ggplot(data = df.arm1)+ 

geom_point(aes(x=HUG_prop,y=college_bound.p, color = STITLI_OVERALL))+ 

theme_bw()+ 

transition_time(as.integer(SURVYEAR)) + 

labs(title = "Year: {frame_time}")+ 

ease_aes('linear') 

#ease_aes('cubic-in-out') 

p2 <- ggplot(data = ocdrug, aes(x = Tmnt, y = EE_Cmax, group = ID, colour = 

Seq)) + 

mytheme + 

coord_trans(y="log10", limy=c(100,700)) + 

labs(list(title = "Cmax", y = paste("EE","n","pg/mL"))) + 

geom_line(size=1) + 

geom_text(data=subset(ocdrug, ID %in% c(2,20)), 

aes(Tmnt,EE_Cmax,label=ID)) + 

theme(legend.position="none") 

#interaction plot 

interaction.plot(df.arm1$SURVYEAR,df.arm1$SCHNO, 

df.arm1$total_postsecondary_bound.p, xlab="Year", ylab="Total Post- 

Secondary College Bound", legend=F) 

interaction.plot(df.arm1$SURVYEAR,df.arm1$SCHNO, df.arm1$college_bound.p, 
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xlab="Year", ylab="Percent College Bound", legend=F) 

interaction.plot(df.arm1$SURVYEAR,df.arm1$SCHNO, 

df.arm1$specialized_degree_bound.p, xlab="Year", ylab="Specialized Degree 

Bound", legend=F) 

``` 

Summary Stats 

```{r} 

#finding average obs per school 

obvs_by_school <- (aggregate(x = df.arm1, 

by = list(unique.values = df.arm1$SCHNO), 

FUN = length)) 

table(obvs_by_school$SURVYEAR.c) 

prop.table(table(obvs_by_school$SURVYEAR.c))*100 

mean(obvs_by_school$SURVYEAR) 

#mean/variance of race 

mean(df.dev$AM_all.p)*100 

mean(df.dev$AS_all.p)*100 

mean(df.dev$HI_all.p)*100 

mean(df.dev$BL_all.p)*100 

mean(df.dev$WH_all.p)*100 

mean(df.dev$HP_all.p)*100 

mean(df.dev$TR_all.p)*100 

var(df.dev$AM_all.p*100) 

var(df.dev$AS_all.p*100) 

var(df.dev$HI_all.p*100) 

var(df.dev$BL_all.p*100) 

var(df.dev$WH_all.p*100) 

var(df.dev$HP_all.p*100) 

var(df.dev$TR_all.p*100) 

#table of TITLE I status by school 

uniq_titleI <- unique(df.arm1[,c('SCHNO','STITLI_OVERALL')]) 

table(uniq_titleI$STITLI_OVERALL) 

prop.table(table(uniq_titleI$STITLI_OVERALL))*100 

#table of Charter School status by school 

uniq_charter <- unique(df.arm1[,c('SCHNO','CHARTER_OVERALL')]) 

table(uniq_charter$CHARTER_OVERALL) 

prop.table(table(uniq_charter$CHARTER_OVERALL))*100 

#mean of outcomes 

mean(df.arm1$total_postsecondary_bound.p) 

mean(df.arm1$college_bound.p) 

mean(df.arm1$specialized_degree_bound.p) 

``` 

Exploring Distribution of Race in schools (mean/variance) 

```{r} 

#overall mean and variance (grouped by year) 

ggplot(data = df.xyl)+ 

geom_bar(aes(x=Race, y=Percent, fill = SURVYEAR), 

stat = "summary", fun.y = "mean", position = position_dodge())+ 

theme_bw()+ 

#theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 4))+ 

ylab('Mean Percent')+ 

xlab('RACE')+ 

ggtitle('Mean Percents by Race')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 
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"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races")) 

ggplot(data = df.xyl)+ 

geom_bar(aes(x=Race, y=Percent, fill = SURVYEAR), 

stat = "summary", fun.y = "var",position = position_dodge())+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 90, hjust = 1))+ 

ylab('Variance of Percent')+ 

xlab('RACE')+ 

ggtitle('Percent Variance by Race')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races")) 

#overall mean and variance over all years 

ggplot(data = df.xyl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1))+ 

ylab('Mean Proportion')+ 

xlab('RACE')+ 

#ggtitle('Average Racial Distribution of Pennsylvania Public Schools from 

2008 to 2016')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races")) 

ggplot(data = df.xyl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "var")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1))+ 

ylab('Variance of Proportion')+ 

xlab('RACE')+ 

#ggtitle('Variance of Racial Distribution of Pennsylvania Public Schools 

from 2008 to 2016')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races")) 

``` 

Checking Features/Linear Model Assumptions 

```{r} 

#looking at percent HUG 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=HUG_prop), col = 'white')+ 
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theme_bw()+ 

xlab('Percent HUG') 

#looking at percent HUG by year 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=HUG_prop), col = 'white')+ 

theme_bw()+ 

facet_wrap('SURVYEAR')+ 

xlab('Percent HUG') 

#looking at total post secondary bound 

pb <- ggplot(data = df.arm1)+ 

geom_histogram(aes(x=total_postsecondary_bound.p), col = 'white')+ 

theme_bw()+ 

xlab('Percent Total Post-Secondary Bound') 

#over time 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=total_postsecondary_bound.p), col = 'white')+ 

theme_bw()+ 

xlab('Percent Total Post-Secondary Bound')+ 

facet_wrap('SURVYEAR') 

#boxplots 

pb.bp <- ggplot(data = df.arm1, aes( y = total_postsecondary_bound.p))+ 

geom_boxplot()+ 

theme_bw()+ 

ylab('Percent Total Post-Secondary Bound') 

cb <- ggplot(data = df.arm1)+ 

geom_histogram(aes(x= college_bound.p), col = 'white')+ 

theme_bw()+ 

xlab('Percent College Bound') 

cb.bp <- ggplot(data = df.arm1, aes( y = college_bound.p))+ 

geom_boxplot()+ 

theme_bw()+ 

ylab('Percent College Bound') 

plot_grid(pb, pb.bp, cb, cb.bp, nrow = 2, rel_widths = c(1,1,1,1)) 

#using the long data 

levels(df.arm1.ol$Outcome) <- c('Total Post-Secondary Bound','College 

Bound', 'Specialized Degree Bound') 

ggplot(data = df.arm1.ol)+ 

geom_histogram(aes(x=Percent), col = 'white', binwidth = 5)+ 

theme_bw()+ 

facet_wrap('Outcome') 

ggplot(data = df.arm1.ol, aes( y = Percent))+ 

geom_boxplot()+ 

theme_bw()+ 

facet_wrap('Outcome') 

#looking at total college bound 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=college_bound.p), col = 'white')+ 

theme_bw() 

#also normal! 

#looking at specialized degree bound 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=specialized_degree_bound.p), col = 'white')+ 

theme_bw() 

#not normal, trying transfrom 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x= sqrt(specialized_degree_bound.p+1)), col = 'white') 

+ 
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theme_bw() 

#looking at charter status 

ggplot(data = df.arm1)+ 

geom_histogram(aes(x=CHARTER_OVERALL), col = 'white')+ 

theme_bw() 

#looking at School-wide Title I Status 

ggplot(data = df.arm1)+ 

geom_bar(aes(x=STITLI_OVERALL, stat = 'count'), col = 'white')+ 

theme_bw() 

#interaction plot 

interaction.plot(df.arm1$SURVYEAR,df.arm1$SCHNO, 

df.arm1$total_postsecondary_bound.p, xlab="Year", ylab="Percent College 

Bound", legend=F) 

``` 

Results Section I- Longitudinal and polynomial models 

```{r} 

xtabs(~ SCHNO + SURVYEAR, df.arm1) 

 

rm.college <- lmer(college_bound.p ~ HUG_prop + SURVYEAR +STITLI_OVERALL + 

(SURVYEAR|SCHNO), df.arm1, REML = 0) 

rm.total <- lmer(total_postsecondary_bound.p ~ HUG_prop + SURVYEAR 

+STITLI_OVERALL + (SURVYEAR|SCHNO), df.arm1, REML = 0) 

#polynomial models (quadratic) 

ri.college.2 <- lmer(college_bound.p ~ HUG_prop.c + HUG_prop.2 + SURVYEAR.c 

+ SURVYEAR.2 +STITLI_OVERALL + (1|SCHNO), df.arm1, REML = 0) 

ri.total.2 <- lmer(total_postsecondary_bound.p ~ HUG_prop.c + HUG_prop.2 + 

SURVYEAR.c + SURVYEAR.2 +STITLI_OVERALL + (1|SCHNO), df.arm1, REML = 0) 

summary(rm.model) 

summary(ri.model) 

summary(rm.model.2) 

summary(ri.model.2) 

performance::icc(rm.model) 

performance::icc(ri.model) 

performance::icc(rm.model.2) 

performance::icc(ri.model.2) 

 

#setting no title I as reference 

df.arm1 <- within(df.arm1, STITLI_OVERALL <- 

relevel(factor(STITLI_OVERALL), ref = 2)) 

 

#models for write-up 

ri.college <- lmer(college_bound.p ~ HUG_percent + SURVYEAR +STITLI_OVERALL 

+ (1|SCHNO), df.arm1, REML = 0) 

ri.total <- lmer(total_postsecondary_bound.p ~ HUG_percent + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm1, REML = 0) 

summary(ri.college) 

summary(ri.total) 

confint(ri.college, method="profile", ## default 

oldNames = FALSE) 

confint(ri.total) 

#checking residuals 

#creating the residuals (epsilon.hat) 

resid <- residuals(ri.model) 

qqnorm(resid) 

#creating the standardized residual (std epsilon.hat) 

resid.std <- resid/sd(resid) 

plot(df.arm1$SCHNO, resid.std, ylim=c(-10, 10), ylab="std epsilon hat") 
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abline(h=0) 

#homoskedacity plots 

plot(df.arm1$SURVYEAR, resid, ylim=c(-10, 10), ylab="epsilon.hat", 

xlab="AGE") 

abline(h=0) 

plot(df.arm1$STITLI_OVERALL, resid, ylim=c(-10, 10), ylab="epsilon.hat", 

xlab="AGE") 

abline(h=0) 

plot(df.arm1$HUG_prop, resid, ylim=c(-10, 10), ylab="epsilon.hat", 

xlab="AGE") 

abline(h=0) 

#plotting results 

dwplot(ri.total@frame) 

plot_model(ri.total, show.values = TRUE, vline.color = 'grey', title = 

'Total Post-Secondary Bound')+theme_bw() 

dwplot(ri.college) 

plot_model(ri.college, show.values = TRUE, vline.color = 'grey', title = 

'College Bound')+theme_bw() 

#LRT checking nested models 

#rand intercepts vs random effects 

anova(ri.total, rm.total, test = 'LRT') 

anova(ri.college, rm.college, test = 'LRT') 

#polynomial models vs ri models 

anova(ri.total, ri.total.2, test = 'LRT') 

anova(ri.college, ri.college.2, test = 'LRT') 

#Looking at change in 10pp HUG 

df.arm1$HUG_percent10 <- df.arm1$HUG_percent/10 

ri.college10 <- lmer(college_bound.p ~ HUG_percent10 + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm1, REML = 0) 

ri.total10 <- lmer(total_postsecondary_bound.p ~ HUG_percent10 + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm1, REML = 0) 

summary(ri.college10) 

summary(ri.total10) 

plot_model(ri.total10, show.values = TRUE, vline.color = 'grey', title = 

'Total Post-Secondary Bound')+theme_bw() 

plot_model(ri.college10, show.values = TRUE, vline.color = 'grey', title = 

'College Bound')+theme_bw() 

``` 

Turning Prop HUG into a Categorical Variable 

```{r} 

#graphing box plot of hug plot 

ggplot(data = df.arm1)+ 

geom_boxplot(aes(x= factor(SURVYEAR), y=HUG_prop))+ 

theme_bw() 

table(df.arm1$SURVYEAR) 

table(df.arm1$STITLI_OVERALL, useNA = 'ifany') 

summary(df.arm2$HUG_prop) 

#creating categorical variables 

df.arm2 <- df.arm1 

df.arm2$HUG_cat[df.arm2$HUG_prop < .05] <- 1 

df.arm2$HUG_cat[ df.arm2$HUG_prop >=.05 & df.arm2$HUG_prop < .25] <- 2 

df.arm2$HUG_cat[df.arm2$HUG_prop >= .25 & df.arm2$HUG_prop < .50] <- 3 

df.arm2$HUG_cat[df.arm2$HUG_prop >= .50 & df.arm2$HUG_prop < .75] <- 4 

df.arm2$HUG_cat[df.arm2$HUG_prop >= .75 & df.arm2$HUG_prop <= 1] <- 5 

#same but with quartiles 

df.arm2$HUG_catq[df.arm2$HUG_prop < .0241] <- 1 

df.arm2$HUG_catq[ df.arm2$HUG_prop >=.0241 & df.arm2$HUG_prop < .06853] <- 
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2 

df.arm2$HUG_catq[df.arm2$HUG_prop >= 0.06853 & df.arm2$HUG_prop < .30710] 

<- 3 

df.arm2$HUG_catq[df.arm2$HUG_prop >= .30710] <- 4 

table(df.arm2$HUG_cat) 

table(df.arm2$HUG_catq) 

#modeling 

ri.tot.c <- lmer(total_postsecondary_bound.p ~ factor(HUG_catq) + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm2, REML = 0) 

ri.col.c <- lmer(college_bound.p ~ factor(HUG_catq) + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm2, REML = 0) 

ri.modelq <- lmer(total_postsecondary_bound.p ~ factor(HUG_catq) + SURVYEAR 

+STITLI_OVERALL + (1|SCHNO), df.arm2, REML = 0) 

summary(ri.tot.c) 

summary(ri.col.c) 

confint(ri.tot.c, method="profile", ## default 

oldNames = FALSE) 

confint(ri.col.c) 

confint(ri.col.c, method="profile", ## default 

oldNames = FALSE) 

plot_model(ri.tot.c, show.values = TRUE, vline.color = 'grey', title = 

'Total Post-Secondary Bound')+theme_bw() 

plot_model(ri.col.c, show.values = TRUE, vline.color = 'grey', title = 

'College Bound')+theme_bw() 

#likelihood ratio test testing the significance of categorical variable 

#making null model 

model.0.t <- lmer(total_postsecondary_bound.p ~ SURVYEAR + STITLI_OVERALL + 

(1|SCHNO), df.arm2, REML =0) 

model.0.c <- lmer(college_bound.p ~ SURVYEAR + STITLI_OVERALL + (1|SCHNO), 

df.arm2, REML =0) 

anova(model.0.t, ri.tot.c, test = 'LRT') 

anova(model.0.c, ri.col.c, test = 'LRT') 

``` 

Clustering the data based on race distribution 

```{r} 

set.seed(101) 

cluster_data <- na.omit(df.xy[,c('SCHNO', 

'SURVYEAR', 

'college_bound.p', 

'nondegree_bound.p', 

'specialized_degree_bound.p', 

"total_postsecondary_bound.p", 

'STITLI_OVERALL', 

"HUG_prop", 

'AM_all.p', 

'AS_all.p', 

'HI_all.p', 

'BL_all.p', 

'WH_all.p', 

'HP_all.p', 

'TR_all.p')]) #4431 

cluster_data<- 

unique(cluster_data[which(cluster_data$total_postsecondary_bound.p != 0),]) 

#4170 

cluster_data <- unique(cluster_data[which(cluster_data$SCHNO != 16),]) 

#4154 

cluster_data <- unique(cluster_data[which(cluster_data$SCHNO != 3848),]) 



 56 

#4136 

cluster_data <- unique(cluster_data[which(cluster_data$SCHNO != 941),]) 

#4118 

wss <- rep(NA,20) 

clusters <- rep(NA,20) 

for(k in 1:20){ 

a <- kmeans(x = cluster_data[,-c(1:8)], centers = k) 

wss[k] <- a$tot.withinss 

clusters[k] <- k 

} 

ggplot()+ 

geom_point(aes(x=clusters, y=wss))+ 

theme_bw()+ 

ylab('WSS')+ 

xlab('No. of Clusters') 

#3,4 or 5 clusters 

k.4 <- kmeans(x = cluster_data[,-c(1:8)], centers = 4) 

k.3 <- kmeans(x = cluster_data[,-c(1:8)], centers = 3) 

k.5 <- kmeans(x = cluster_data[,-c(1:8)], centers = 5) 

df.4cluster <- cbind.data.frame(cluster_data, cluster = k.4$cluster) #4421 

df.allcluster <- cbind.data.frame(df.4cluster, cluster3 = k.3$cluster) 

df.allcluster <- cbind.data.frame(df.allcluster, cluster5 = k.5$cluster) 

df.4cluster$SURVYEAR <- unfactor(df.4cluster$SURVYEAR) 

#releveling so that cluster 4 (all white) is reference (only if all white 

cluster is not number1) 

df.4cluster <- within(df.4cluster, cluster <- relevel(factor(cluster), ref 

= 4)) 

#looking into number of schools that fit into each 

just.schools <- unique(cbind.data.frame(SCHNO = df.4cluster$SCHNO, cluster 

= df.4cluster$clust_lab)) 

table(just.schools$cluster) 

prop.table(table(just.schools$cluster))*100 

# 1=403 (62%), 2=116 (17.85%), 3=104 (16%), 4=27 (4.15%) 

#adding labels to cluster 

df.4cluster$clust_label[df.4cluster$cluster == 4] <- 'white' 

df.4cluster$clust_label[df.4cluster$cluster == 1] <- 'black' 

df.4cluster$clust_label[df.4cluster$cluster == 2] <- 'mix' 

df.4cluster$clust_label[df.4cluster$cluster == 3] <- 'hisp' 

df.4cluster$clust_label[df.4cluster$cluster == 4] <- 1 

df.4cluster$clust_label[df.4cluster$cluster == 1] <- 4 

df.4cluster$clust_label[df.4cluster$cluster == 2] <- 3 

df.4cluster$clust_label[df.4cluster$cluster == 3] <- 2 

df.4cluster <- within(df.4cluster, cluster <- relevel(factor(clust_label), 

ref = 1)) 

#making long version fr graphing 

df.4clusterl <- melt(df.4cluster, 

# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNO", "SURVYEAR", "cluster","clust_label"), 

# The source columns 

measure.vars=c("AM_all.p", "AS_all.p", 

"HI_all.p","BL_all.p","WH_all.p","HP_all.p","TR_all.p"), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Race", 

value.name="Percent" 

) 

df.allclusterl <- melt(df.allcluster, 
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# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNO", "SURVYEAR", "cluster","clust_label","cluster3", 

"cluster5"), 

# The source columns 

measure.vars=c("AM_all.p", "AS_all.p", 

"HI_all.p","BL_all.p","WH_all.p","HP_all.p","TR_all.p"), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Race", 

value.name="Percent" 

) 

``` 

Graphing Cluster Data 

```{r} 

#looking at race dsitributions by cluster 

ggplot(data = df.4clusterl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 7))+ 

ylab('Mean Percent')+ 

xlab('RACE')+ 

#ggtitle('Mean Percents by Race')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

facet_wrap('clust_label') 

#3 clusters 

ggplot(data = df.allclusterl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 7))+ 

ylab('Mean Percent')+ 

xlab('RACE')+ 

#ggtitle('Mean Percents by Race')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

facet_wrap('cluster3') 

#5 clusters 

ggplot(data = df.allclusterl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 7))+ 

ylab('Mean Percent')+ 

xlab('RACE')+ 

#ggtitle('Mean Percents by Race')+ 
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scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

facet_wrap('cluster5') 

ggplot(data = df.4clusterl)+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "var")+ 

theme_bw()+ 

theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 7))+ 

ylab('Variance of Percent')+ 

xlab('RACE')+ 

scale_x_discrete(labels=c("AM_all.p" = "American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

facet_wrap('clust_label') 

#lookng at percent hug by cluster 

ggplot(df.4cluster, aes(clust_label, HUG_prop)) + 

stat_summary(fun.y=mean, geom="bar")+ 

theme_bw()+ 

xlab('Cluster')+ 

ylab('Mean Percent HUG') 

ggplot(df.4cluster, aes(clust_label, HUG_prop)) + 

stat_summary(fun.y=var, geom="bar")+ 

theme_bw()+ 

xlab('Cluster')+ 

ylab('Variance Percent HUG') 

#looking at Title I status by cluster 

ggplot(data = df.4cluster)+ 

geom_bar(aes(x=STITLI_OVERALL, stat = 'count'), col = 'white')+ 

theme_bw()+ 

facet_wrap('clust_label') 

#looking post-secondary bound rates by cluster 

ggplot(data = df.4cluster)+ 

geom_histogram(aes(x=total_postsecondary_bound.p), col = 'white', 

binwidth = 5)+ 

theme_bw()+ 

xlab('Total Post-Secondary Bound Rate')+ 

facet_wrap('clust_label') 

ggplot(data = df.4cluster)+ 

geom_histogram(aes(x=college_bound.p), col = 'white', binwidth = 5)+ 

theme_bw()+ 

xlab('College Bound Rate')+ 

facet_wrap('clust_label') 

ggplot(data = df.4cluster)+ 

geom_bar(aes(x=clust_label, y=total_postsecondary_bound.p), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

#theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 4))+ 

ylab('Mean Percent')+ 
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xlab('Cluster')#+ 

#ggtitle('Post-Secondary bound percent by cluster') 

ggplot(data = df.4cluster)+ 

geom_bar(aes(x=clust_label, y=total_postsecondary_bound.p), 

stat = "summary", fun.y = "var")+ 

theme_bw()+ 

#theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 4))+ 

ylab('Variance of Percent')+ 

xlab('Cluster')#+ 

#ggtitle('Post-Secondary bound percent by cluster') 

``` 

3d plot for clusters 

```{r} 

#aggregating for mean race by school 

df.4clusterm<- (aggregate(x = df.4cluster, 

by = list(unique.values = df.4cluster$SCHNO), 

FUN = mean)) 

#using mode 

#making mode function 

Mode <- function(x) { 

ux <- unique(x) 

ux[which.max(tabulate(match(x, ux)))] 

} 

df.4clusterMode <- (aggregate(x = df.4cluster, 

by = list(unique.values = df.4cluster$SCHNO), 

FUN = Mode)) 

df.4clusterm$clust_label2 <- df.4clusterMode$clust_label 

fig <- plot_ly(data = df.4clusterm, x = ~WH_all.p, y = ~BL_all.p , z = 

~HI_all.p, type = 'scatter3d', mode = "markers", color= ~ 

as.factor(clust_label2), size = 2, colors = c('#4AC6B7', '#1972A4', 

'#965F8A', '#FF7070')) 

#fig <- fig %>% add_markers() 

fig <- fig %>% layout(scene = list(xaxis = list(title='Proportion White'), 

yaxis = list(title = 'Proportion 

Black'), 

zaxis = list(title = 'Proportion 

Hispanic')), 

#paper_bgcolor = 'rgb(243, 243, 243)', 

#plot_bgcolor = 'rgb(243, 243, 243)', 

annotations = list( 

x = 1.1, 

y = 1.05, 

text = 'Cluster', 

xref = 'paper', 

yref = 'paper', 

showarrow = FALSE 

)) 

fig 

#looking at how many schools in each cluster 

table(df.4clusterm$clust_label2) 

prop.table(table(df.4clusterm$clust_label2))*100 

``` 

Modeling Cluster Data 

```{r} 

#modeling the 4 cluster data 

#df.4cluster$SURVYEAR <- unfactor(df.4cluster$SURVYEAR) 

#setting no title 1 status a reference 
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df.4cluster <- within(df.4cluster, STITLI_OVERALL <- 

relevel(factor(STITLI_OVERALL), ref = 2)) 

ri.model.cb <- lmer(college_bound.p ~ factor(clust_label) + SURVYEAR + 

factor(STITLI_OVERALL) +(1|SCHNO), df.4cluster, REML = 0) 

ri.model.psb <- lmer(total_postsecondary_bound.p ~ factor(cluster) + 

SURVYEAR +STITLI_OVERALL + (1|SCHNO), df.4cluster, REML = 0) 

ri.model.sdb <- lmer(specialized_degree_bound.p ~ factor(cluster) + 

SURVYEAR +STITLI_OVERALL + (1|SCHNO), df.4cluster, REML = 0) 

summary(ri.model.cb) 

confint(ri.model.cb) 

summary(ri.model.psb) 

confint(ri.model.psb) 

summary(ri.model.sdb) 

#plotting coefficients 

plot_model(ri.model.psb, show.values = TRUE, vline.color = 'grey', title = 

'Total Post-Secondary Bound')+theme_bw() 

plot_model(ri.model.cb, show.values = TRUE, vline.color = 'grey', title = 

'College Bound')+theme_bw() 

#likelihood ratio tests to test overall significance of clusters 

model.0c.t <- lmer(total_postsecondary_bound.p ~SURVYEAR +STITLI_OVERALL + 

(1|SCHNO), df.4cluster, REML = 0) 

model.0c.c <- lmer(college_bound.p ~SURVYEAR +STITLI_OVERALL + (1|SCHNO), 

df.4cluster, REML = 0) 

anova(model.0c.t, ri.model.psb, test = 'LRT') 

anova(model.0c.c, ri.model.cb, test = 'LRT') 

``` 

```{r} 

ggplot(data = df.xyl[df.xyl$SCHNAM == 'SCHENLEY HS'])+ 

geom_bar(aes(x=Race, y=Percent), 

stat = "summary", fun.y = "mean")+ 

theme_bw()+ 

#theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 4))+ 

ylab('Percent')+ 

xlab('RACE')+ 

ggtitle('Race Distribution-SCHENLEY HIGH') 

``` 

Race distribution in depth by cluster 

```{r} 

ggplot(data = df.4clusterl[df.4clusterl$clust_label == 2])+ 

geom_histogram(aes(x=Percent))+ 

theme_bw()+ 

facet_wrap('Race') 

ggplot(data = df.4clusterl[df.4clusterl$clust_label == 'white'])+ 

geom_histogram(aes(x=Percent))+ 

theme_bw()+ 

facet_wrap('Race') 

ggplot(data = df.4clusterl[df.4clusterl$clust_label == 'hisp'])+ 

geom_histogram(aes(x=Percent))+ 

theme_bw()+ 

facet_wrap('Race') 

ggplot(data = df.4clusterl[df.4clusterl$clust_label == 'mix'])+ 

geom_histogram(aes(x=Percent))+ 

theme_bw()+ 

facet_wrap('Race') 

``` 

Figure 2 race/ethnicity mean/ var prop 

```{r} 



 61 

#creating summary data set of long data 

df.dev.r$Percent = df.dev.r$Percent*100 

df.dev.r.summary <- df.dev.r %>% # the names of the new data frame and the 

data frame to be summarised 

group_by(Race,SURVYEAR) %>% # the grouping variable 

summarise(mean_Percent = mean(Percent), # calculates the mean of each 

group 

sd_Percent = sd(Percent), # calculates the standard deviation 

of each group 

n_Percent = n(), # calculates the sample size per group 

SE_Percent = sd(Percent)/sqrt(n())) # calculates the standard 

error of each group 

#line plot with error bars (too much clutter) 

ggplot(df.dev.l.summary, aes(x = unfactor(SURVYEAR), y=mean_Percent, color 

= factor(Race)))+ 

geom_line(stat = "identity")+ 

geom_errorbar(aes(ymin = mean_Percent - sd_Percent, ymax = mean_Percent + 

sd_Percent), width = 0.2, alpha = 0.3) + 

theme_bw()+ 

scale_color_discrete(name = 'Race/Ethnicity',labels=c("AM_all.p" = 

"American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

xlab('School Year')+ 

scale_x_continuous(n.breaks = 7) 

#no error bars (mean) 

ggplot(df.dev.l.summary, aes(x = unfactor(SURVYEAR), y=mean_Percent, color 

= factor(Race)))+ 

geom_line(stat = "identity")+ 

theme_bw()+ 

scale_color_discrete(name = 'Race/Ethnicity',labels=c("AM_all.p" = 

"American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

xlab('School Year')+ 

scale_x_continuous(n.breaks = 7)+ 

ylab('Overall Mean Percent of Students') 

#no error bars (sd) 

ggplot(df.dev.l.summary, aes(x = unfactor(SURVYEAR), y=sd_Percent, color = 

factor(Race)))+ 

geom_line(stat = "identity")+ 

theme_bw()+ 

scale_color_discrete(name = 'Race/Ethnicity',labels=c("AM_all.p" = 

"American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 
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"TR_all.p"="Two or More Races"))+ 

xlab('School Year')+ 

scale_x_continuous(n.breaks = 7)+ 

ylab('Standard Deviation of Percent') 

#old version of plot 

ggplot(df.dev.l, aes(x = unfactor(SURVYEAR), y=Percent, color = 

factor(Race)))+ 

geom_line(stat = "summary", fun ="mean")+ 

geom_segment(aes(x = unfactor(SURVYEAR), 

y = Low, yend = High), hjust = 4) + 

theme_bw()+ 

scale_color_discrete(name = 'Race/Ethnicity',labels=c("AM_all.p" = 

"American Indian", 

"AS_all.p" = "Asian", 

"WH_all.p" = "White", 

"BL_all.p"="Black", 

"HI_all.p" = "Hispanic", 

"HP_all.p" = "Hawaiian/Pacific Islander", 

"TR_all.p"="Two or More Races"))+ 

xlab('School Year')+ 

scale_x_continuous(n.breaks = 7) 

``` 

Summary Stats by Year Table 

```{r} 

#creating summary data set of long data 

df.dev.l$Percent = df.dev.l$Percent*100 

df.dev.l.summary <- df.dev.l %>% # the names of the new data frame and the 

data frame to be summarised 

group_by(Race,SURVYEAR) %>% # the grouping variable 

summarise(mean_Percent = mean(Percent), # calculates the mean of each 

group 

sd_Percent = sd(Percent), # calculates the standard deviation 

of each group 

n_Percent = n(), # calculates the sample size per group 

SE_Percent = sd(Percent)/sqrt(n())) # calculates the standard 

error of each group 

``` 

Summary Stats of Clusters 

```{r} 

#making long version of cluster data 

df.4clusterl.all <- melt(df.4cluster, 

# ID variables - all the variables to keep but not split apart on 

id.vars=c("SCHNO", "SURVYEAR", "cluster","clust_label"), 

# The source columns 

measure.vars=c("AM_all.p", "AS_all.p", 

"HI_all.p","BL_all.p","WH_all.p","HP_all.p","TR_all.p", 'HUG_prop', 

'STITLI_OVERALL', 'college_bound.p', 'total_postsecondary_bound.p' ), 

# Name of the destination column that will identify the original 

# column that the measurement came from 

variable.name="Var", 

value.name="Percent" 

) 

#summarizing everything 

df.4clusterl.all$Percent = df.dev.l$Percent*100 

df.4clusterl.summary <- df.4clusterl.all %>% # the names of the new data 

frame and the data frame to be summarised 

group_by(Var,clust_label) %>% # the grouping variable 
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summarise(mean_Percent = mean(Percent), # calculates the mean of each 

group 

sd_Percent = sd(Percent), # calculates the standard deviation 

of each group 

n_Percent = n(), # calculates the sample size per group 

SE_Percent = sd(Percent)/sqrt(n())) # calculates the standard 

error of each group 

``` 

Spaghetti Plots 

```{r} 

p <- ggplot(data = df.4cluster, aes(x = SURVYEAR, y = 

total_postsecondary_bound.p, group = SCHNO)) 

p+geom_line(aes(col = factor(clust_label)),alpha = 0.3)+ 

facet_wrap('STITLI_OVERALL')+theme_bw() 

``` 

Univariate Plots 

```{r} 

test <- lmer(total_postsecondary_bound.p ~ HUG_percent + (1|SCHNO), 

df.arm1, REML = 0) 

summary(test) 

test <- lmer(total_postsecondary_bound.p ~ STITLI_OVERALL+ (1|SCHNO), 

df.arm1, REML = 0) 

summary(test) 

test <- lmer(total_postsecondary_bound.p ~ SURVYEAR + (1|SCHNO), df.arm1, 

REML = 0) 

summary(test) 

``` 
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