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Abstract 

Graph-embedding Enhanced Attention Adversarial Autoencoder 

 

Yurong Chen, MS 

 

University of Pittsburgh, 2020 

 

 

 

When dealing with the graph data in real problems, only part of the nodes in the graph are 

labeled and the rest are not. A core problem is how to use this information to extend the labeling 

so that all nodes are assigned a label (or labels). Intuitively we can learn the patterns (or extract 

some representations) from those labeled nodes and then apply the patterns to determine the 

membership for those unknown nodes. A majority of previous related studies focus on extracting 

the local information representations and may suffer from lack of additional constraints which are 

necessary for improving the robustness of representation. In this work, we presented Graph-

embedding enhanced attention Adversarial Autoencoder Networks (Great AAN), a new scalable 

generalized framework for graph-structured data representation learning and node classification. 

In our framework, we firstly introduce the attention layers and provide insights on the self-attention 

mechanism with multi-heads. Moreover, the shortest path length between nodes is incorporated 

into the self-attention mechanism to enhance the embedding of the node’s structural spatial 

information. Then a generative adversarial autoencoder is proposed to encode both global and local 

information and enhance the robustness of the embedded data distribution. Due to the scalability 

of our approach, it has efficient and various applications, including node classification, a 

recommendation system, and graph link prediction. We applied this Great AAN on multiple 

datasets (including PPI, Cora, Citeseer, Pubmed and Alipay) from social science and biomedical 

science. The experimental results demonstrated that our new framework significantly outperforms 

several popular methods.  
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Preface 

This basis for this research is for developing better methods of research about graph-

structured network like social science and biomedical science network. As the world moves further 

into the digital age, and with the rapid growth of emerging applications such as social network 

analysis, Web semantic analysis, bioinformatics network analysis, and traffic navigation, large-

scale graph data with large scales, complex internal structures, and diverse have appeared. In our 

research, we study the better methods for representation those larger graph datasets and have 

proved our methods archived great performance.  

 

In the end, I cannot have achieved my current success without strong supports. First of all, 

my parents and family, who supported me with love and understanding. And secondly, my advisor, 

Professor Zhan who give me lots of guidance and direction during my research. And he encouraged 

me when I face difficult. Also, thanks for my committee members, each of whom has provided 

patient advice and guidance throughout the research process. Thank you all for your support.
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1.0 Introduction 

Low-dimensional vector embeddings of nodes in the large social networks have proved 

quite useful as feature inputs for various graph analysis tasks. The low-dimensional embedding 

meaningful vector of nodes which can capture and preserve the network structure has attracted 

great researchers’ attention. The key idea of node embedding methods is to distill high dimensional 

sparse data vector into a useful dense vector. With the reduced dimensionality, various graph 

analysis tasks can be conducted efficiently, such as node classification [1], link prediction [2], 

knowledge graph representation [3] and biological networks [4] or brain connectomes 

classification [5] node clustering [6]. 

In the past decades, the most common practical methods for graph embedding are Locally 

Linear Embedding [7], which assume one node can be represented by the linear combination of its 

neighborhoods and to minimize the loss of real data value and the linear combination value; 

Laplacian Eigenmaps [8], which proposed that the nodes which have high similarity (measure by 

the edge) should be homologous in the embedding space domain so that the cost function is the 

edge weight multiplying the difference of two nodes; And Graph Factorization [9], which achieved 

graph embedding via matrix factorization. Since the underlying network structure is complex with 

high dimensional data information, those traditional methods cannot capture the non-linear the 

node features and network structure and preserve the global and local node information. 

 

However, those traditional algorithms face the challenge when embedding non-linear node 

features and lack the ability to deal with sparse high dimensional information. Based on the 

previous graph work and introducing some concept of work2vec, Deepwalk [10] adopted a random 
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walk to construct the “sentence sequence” of a node, in that way, the embedding features which 

provide the “symbiotic relationship” of nodes can be formed by the Deepwalk sentence. Unlike 

Depth First Search (DFS) random walk of Deepwalk, LINE [11] is proposed to respectively 

optimize the first order proximity and second-order proximity via Breadth-First Search (BFS). 

Based on this, node2vec [12] combined BFS with DFS for considering both local information from 

BFS and global structure information from DFS achieved successful results. 

 

In recent years, with the development of deep learning, researchers explored deep learning 

algorithms to make up for deficiencies of previous shallow-level methods. SDNE [13] proposed 

deep autoencoder to learn embedding of the graph adjacent matrix to preserve both global structure 

and local structure. Other than unsupervised graph embedding learning methods, Graph 

Convolutional Neural Network (GCN) [14] is one of the most significant milestones. Based on the 

huge successful application of convolutional neural networks (CNNs) on grid-like structure data, 

GCN achieved generalizing convolutions on graph domain. In conclusion, GCN is categorized as 

spectral domain methods and non-spectral domain methods. On the spectral approaches, the key 

idea is the convolutional transform computed by the eigendecomposition of the graph Laplacian 

on the Fourier domain. Depend on this, the spectral convolutional neural networks [15] are 

proposed based on the spectrum of the graph Laplacian. However, the high complexity, lack of 

spatial localization motivated the second-generation Spectral Convolution [16] adopting 

Chebyshev expansion and the third generation Spectral Convolution network [17] increased the 

depth of layer with decreasing the breath of layer. Although the complexity and computational 

cost are reduced, the need for eigendecomposition and spatial limitations impeded spectral 

approaches to be a generalized framework on different datasets. On the other hand, non-spectral 
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algorithms have to be addressed the problem that the nodes in the graph have different numbers of 

neighbors. Learning Convolutional Neural Networks for Graphs (CNN4G) [18] selected particular 

nodes via centrality and assigned them specific features number, then adopted convolutional 

operation on the constructed matrix. Moreover, GraphSAGE [19] for computing node 

representations in an inductive manner can operate by sampling neighborhoods of each node and 

then feeding them through a recurrent neural network. 

 

Nowadays, the attention mechanism attracted lots of attention [20][21] due to its highly 

efficient learning ability. Graph Attention Networks (GATs) [22] dynamically computed the 

hidden representations of each node in the graph and stacked a multi GAT layer to get a larger 

receptive field. Although its’ results on several datasets proved it is state-of-the-art methods, it 

only focuses on first order proximity and lack of second-order proximity so that it cannot represent 

node global structure information and only count those directly connected nodes which make lack 

those structurally connected nodes impact. 

 

Inspired by those recent work, we proposed an end-to-end graph-embedding enhanced 

attention adversarial autoencoder networks as Figure 1 shown. The idea is that firstly compute the 

latent representations of each node via graph attention networks with multi- heads self-attention 

strategy combined shortest path length coefficient; secondly, based on the embedding vectors, we 

build two parallel decoder architecture networks: one is for minimizing the difference between 

decoder vectors and the node features, anther is for minimizing the difference between decoder 

vectors and the node adjacency matrix; In the end, the adversarial network is designed to 

discriminate the real data (the noise data with prior distribution) and the fake data (the generated 
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embedded features by encoder). In our method, the first order proximity of the node-local 

information is learned by the modified GAT layers which can conduct on a query (Q) and a set of 

key (K) value (V) pairs to compute the output. The graph structural information and node global 

features are mapped though our constructed second-order proximity loss function of the 

autoencoder. Moreover, for improving the features data distribution network structural 

information, the adversarial game is used to tuned embedded feature vectors with a data 

distribution that we can as the prior data distribution. After the latent representation matches the 

prior distribution, the decoder of the autoencoder is trained to map the imposed prior to the data 

distribution which enhanced the model representation robustness against uncertainty. 

 

 

Figure 1: The main process of theGreat AAN consisting of two parts: (1) on the top line, the autoencoder for 

node features embedding; (2) on the bottom line, the adversarial network for embedding representation data 

distribution learning. 
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2.0 Related Work 

Related works mainly consist of three categories: Algorithms for graphs embedding, 

applications of shortest path length for graph learning, and applying adversarial networks on graph 

embedding. Each will be discussed below and compared with our proposed model. 

 

2.1.1 Graph Embedding 

As mentioned in the introduction, there are many effective graph embedding algorithms 

and can mainly be divided into two categories: random walk based methods and deep learning-

based methods. For the random walk based methods, Deepwalk [10] is introduced to preserves 

higher-order proximity with node sequences by maximizing the likelihood 𝒍𝒐𝒈𝑷𝒓 =

{𝑣𝑖−𝑘 , … , ℎ𝑖−1, ℎ𝑖+1, … , ℎ𝑖+𝑘|𝑌𝑖} , here 2𝑘 + 1  is the length of the random walk. Similar to 

DeepWalk, LINE [11] and node2vec [12] produce higher-quality and more informative embedding 

representations. Hierarchical representation learning for networks (HARP) [23] proposed another 

algorithm with aggregating previous layers’ nodes using graph coarsening to improve the local 

optima. Recently, Discriminative Deep Random Walk (DDRW) [24] extended the random walk 

technique to learn the network structure and node attributes and achieved great performance. ON 

the other hand, deep learning-based methods have grown rapidly due to its high performance on 

graph-related tasks. SDNE [13] and DNGR [25] firstly introduced deep autoencoder to generate 

non-linear embeddings. Then GCN [14] is proposed to reduce the computationally cost and for 

larger sparse graph networks. Recently, Deep Attributed Network Embedding [26] designed a 
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novel deep attributed network embedding approach which can preserve various proximities in both 

node attributes and topological structure. And via introducing the attention mechanism, GAT [22] 

addressed several key challenges in graph neural networks. In our paper, based on GAT, we adopt 

the shortest path length to preserve more structural spatial information in the graph and the details 

will be explained in the next section. 

2.1.2 Shortest Path Length for Graph Learning 

Most previous graph learning works focus on the 1st-order or 2nd-order proximity. The 

1st-order proximity considers those nodes with the only direct connection that should be embedded 

closely while the 2nd-order proximity will translate those nodes sharing with the same 

neighborhoods using similar embedding representations. However, some studies on the shortest 

path length between nodes demonstrated that the shortest path length can be one of the most 

important measures to quantify the relationship among nodes [27]. For example, Path length 

associated community estimation (PLACE) [28] has been proposed to estimate the modular 

structure for brain structural networks by differentiating the difference between nodes using the 

shortest path length. Especially in the larger graph-structure network, the shortest path length 

provides a different way to quantify the distances between pair of nodes [29]. In this paper, by 

including the Shortest Path length into our graph attention layer, we can explore more higher-order 

node information to preserve global and local node structure with more precious and robustness. 
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2.1.3 Adversarial Networks on Graph Embedding 

Recently, Generative Adversarial Network (GAN) [30] has attracted a lot of attention 

because of its huge success in various applications such as word sequence generation [31] and 

graph representation learning [32]. GAN [30] plays an important role in deep learning which can 

be formulated as a minimax adversarial game. This minimax adversarial game consists of a 

generator and a discriminator. Due to the superior performance of GAN, Self-Paced Network 

Embedding [33] extended the sampling strategy to the generative adversarial network which can 

sample difficult negative nodes. Moreover, GraphGAN [34] tried to reconstruct the distribution of 

nodes’ underlying true connectivity, while the discriminator is trained to detect whether the 

sampled node is from the ground truth or generated. Unlike those aforementioned studies, WGAN 

[35] enhanced the training of the GAN network by introducing the minimizing the Wasserstein 

distance as the following:  

                                 𝑊(𝑃𝑟, 𝑃𝑔) = inf
𝛾~∏(𝑃𝑟,𝑃𝑔)

𝔼(𝑥,𝑦)~𝛾 [||𝑥 − 𝑦||]                                      (1) 

between the prior data distribution (x) and the generator data distribution (y), which can let the 

embedded features from the generator be closer to the prior distribution. Based on this, Adversarial 

network embedding [36] aims to capture stable and robust latent feature representations with 

regularizing data distribution. In our paper, following with [36] where the goal of the generator is 

to map data samples from some prior distribution to data space, while the discriminator tries to 

differentiate fake samples from true data, we incorporate this component into our graph attention 

autoencoder showing. 
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3.0 GREAT AAN Architecture 

In this section, we will present the graph shortest path length attention layer in Section 3.1, 

the autoencoder network in the section Section 3.2. And the adversarial mechanism network will 

be introduced in Section 3.3. 

3.1.1 Graph Shortest Path Length Attention Layer (GSA) 

The inputs of GSA block layers are a branch of nodes' features, 𝒉 =

{ℎ1, ℎ2, … , ℎ𝑖 , … , ℎ𝑁}, ℎ𝑖 𝜖 ℝ
𝐹 ; nodes' corresponding adjacency vectors can be denoted as 𝒂 =

 {𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑁}, 𝑎𝑖 𝜖 ℝ
𝑁 , and the shortest path length nodes' vectors 𝒔 =

{𝑠1, 𝑠2, … , 𝑠𝑖 , … , 𝑠𝑁}, 𝑠𝑖 𝜖 ℝ
𝑁, where 𝑁 represents the number of nodes, and 𝐹 is the number of 

dimension of features of each node. The output of GSA is a new set of nodes embedding features, 

𝒉′ = {ℎ1′, ℎ2′, … , ℎ𝑖′, … , ℎ𝑁′}, ℎ𝑖
′𝜖 ℝ𝐹

′
 where 𝐹′ can be any number of dimension of embedding 

features. The main graph attention layer follows the work of [20][22], and we particularly 

incorporate multiple shortest path lengths, from the Dijkstra's Shortest Path First algorithm [37] 

and Bellman–Ford algorithm [38] into the attention mechanism to improve (1) the node structural 

spatial information; (2) network global information representation; (3) the robustness of graph 

structural representations. 

In order to project the high dimensional sparse features data into a meaningful expressive 

manifold space and prepare for the downstream multi-heads attention strategy on the multi 

embedding sub-spaces, the weight matrix for linear transformation, 𝑊𝐾 𝜖 ℝ
𝐹′ × ℝ𝐹  is adopted on 

each node firstly. Then in the query-key attention step, for deriving a set of attention coefficients  
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Figure 2: The Graph Shortest Path Length Attention Layer. 𝒉𝒊 represents the input node features. The 

function 𝒇 (𝒉𝒊, 𝒉𝑵) consists of the average of the cosine similarity (gray line) and one LeakReLU activation 

function (black line). The output node feature vector 𝒉𝒊′  will be the sum of all nodes’contributing weights 

generated by our similarity matrices. 

 

α, instead of normal processes that take their dot product and using SoftMax to normalize, both 

fully connected layer and cosine similarity are adopted, and the resulted output vectors are 

concatenated as the output of attention coefficients α. In this process, the transformed features of 

each node are taken as the query to match others for retrieval of the similarity of the query node 

and other nodes. And then the weighted sum is the similarity coefficient with the value that in the 

self-attention and the value is the same as the key. For one single node, this operation is shown as 

the following: 
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{
 
 

 
 𝑓(ℎ𝑖 ,  ℎ𝑁) =

1

2
(𝐹𝐶(ℎ𝑖 ,  ℎ𝑁)  +  𝐶𝑜𝑠𝑖𝑛𝑒(ℎ𝑖 ,  ℎ𝑁)),

𝛼𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(ℎ𝑖 ,  ℎ𝑁)),

ℎ𝑖
′ =∑(𝛼𝑖 ℎ𝑖)

𝑁

𝑛=1

                                   (2) 

 

For avoiding the inaccuracy caused by “Curse of Dimensionality” [3] of computing the similarity 

coefficient using single dot product or cosine operation and uninterpretability using neural 

perceptron, in this paper, we take the average of the output of perceptron and modified cosine 

similarity. 

 

        One important issue in previous works is that they only compute the αi for those nodes that 

are neighbors in the adjacency matrix of the query node. In other words, only those directly 

connected nodes are computed in the attention layer. However, due to the sparse, there are a few 

nodes connected with each other and just sticking to count the first-order information of the node 

would lead to the loss of many correlations or information form indirectly connected nodes, which 

also preserve important implications. Motivated by this, we proposed a novel shortest path length 

attention mechanism based normal self-attention layer for ameliorating those mentioned problems. 

The main process is shown in Figure 2. 

 

        It's worth noting that the introduction of the shortest path length leads to two changes: the 

first one is the extra calculation of the attention coefficients for those indirectly connected nodes 

as taking considering of  𝑠𝑖 in Figure 2; another modification is that the attention coefficient 𝑎𝑖 is 

combined with the original attention coefficient 𝑎𝑖 and the normalized shortest path length 𝑠𝑖 by 

weighted sum will not increase the computational complexity. In particular, the Dijkstra's Shortest 
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Path First algorithm [37] and Bellman-Ford algorithm [38] are adopted to computing the shortest 

path length between two nodes. Briefly, given a weighted graph network of 𝐺 = {𝐸, 𝑉} where  𝑉  

 

Figure 3: The Multi-Heads Attention Mechanism. 𝑾𝟏,𝑾𝟐, … ,𝑾𝒌  represent the different feature 

transformation matrixes that can transform hi into 𝒉𝒊_𝟏, 𝒉𝒊_𝟐, … , 𝒉𝒊_𝒌 , which can consider different aspects node 

attention at each sub-space. Through our GSA layer, all output features vectors can be averaged or fed into a 

neural layer to get the final output node representation features hi. 

 

represents all vertices (nodes) and 𝐸 denotes the set of edges, the output of the Dijkstra’s algorithm 

is the 𝑆𝐷 = [𝑠𝑖𝑗] 𝜖 ℝ
𝑁×𝑁, where 𝑠𝑖𝑗 is the shortest path length between node i and node j with 

Dijkstra's algorithm, Bellman-Ford proceeds by relaxation, that is the approximation of the correct 

distance is replaced by a better approximation until the final solution is reached and output 𝑆𝐵 =

[𝑠𝑖𝑗] 𝜖 ℝ
𝑁×𝑁, and in the result section, we will discuss the different results of the rate of weights 

of shortest path length. 

 

        Moreover, considering the information from different embedding representations may 

comprehensively pay attention to different aspects of the information, the multi-head attention 

strategy is adopted to stabilize the training process and provide more robust results. Figure 3 shows 

the execution processes, where 𝐾 is the number of independent different transformations. Each 

node features at different sub-space will be taken as the input of the self-attention layer mentioned 
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before to get the attention coefficient. Then the final attention coefficient is computed by one fully 

connected layer that concatenates all individual attention coefficients. Lastly, we will apply the 

nonlinear activation function LeakyReLU (with negative slope 𝑎 = 0.2) as follows: 

                        ℎ𝑖
′ = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(ℎ𝑖 , ℎ𝑁) = 𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑖𝑘)).                             (3)  

To sum up, each embedded node features  ℎ𝑖
′  in GSA is calculated by the multi-head 

transformation of original node features ℎ𝑖 with a query-retrieval self-attention layer incorporated 

with shortest path length, and the cross-entropy loss function is adopted for the classification 

during the encoder training and for regularizing the data which can enforce the embedding node 

vectors be closer in the hidden space to preserve the first order proximity. The final encoder loss 

function is shown as follows: 

𝐿𝑜𝑠𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟 = 𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦  +  𝐿𝑜𝑠𝑠1𝑠𝑡 ,     

                                             𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ (𝐿𝑎𝑏𝑒𝑙𝑖)log (𝑦𝑖)
𝑁

𝑖=1
 ,                                           (4) 

𝐿𝑜𝑠𝑠1𝑠𝑡 = ∑ ||𝑦𝑖 − 𝑦𝑗||
2

2
= 2𝑡𝑟𝑎𝑐𝑒(𝑌𝑇  𝐿 𝑌)

𝑁

𝑖,𝑗=1

 . 

where 𝑦𝑖  is the embedding representation of   𝑛𝑜𝑑𝑒𝑖  , 𝑌  is the embedding graph and 𝐿  is the 

Laplacian Eigenmaps. 

3.1.2 Enhanced Attention Autoencoder  

Although existing methods [11][12][22] did the node classification task based on the 

embedding features and achieved remarkable results, those studies built the network only focusing 

on the encoder network and ignored the decoder part. Due to the excellent performance, the 

autoencoder becomes more and more popular on the graph embedding tasks. However, in previous 
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works [13], the fully connected layer is the prior option to build the autoencoder. Although it can 

achieve satisfying performance in some certain cases, it is hampered by carefully-crafted the 

number of layers and/or the number of neural cells. 

Apparently, another issue is that only the first order proximity will be optimized to make 

two nodes closer in the embedding manifold space when there is a high similarity in the raw data 

space. However, the first order proximity is not enough, and the second order proximity is also 

crucial [11], because it represents the similarity of two nodes’ neighbor sets. So that it can help the 

model to learn more local and global structure information and improve the robustness to the sparse 

network which results from embedding two nodes closer when their neighbors’ sets are similar. 

Considering this and for better model generalization, we propose a novel autoencoder attention 

network. The encoder part adopts the GSA layer as described in Section 3.1, in this section, we 

will focus on the decoder part. 

 

As we mentioned before, given the node features of the graph to the encoder part, the output 

will be the features representations for each node. Taken the outputs of the encoder as the inputs 

of decoder, we built two parallel decoder networks: the first one is for reconstructing the node 

neighborhood’s relationship which is the graph adjacency matrix and the second one is to 

conjecture the node features. Both decoder networks are stacked by our GSA layers. Similar to the 

architecture in the encoder, two graph attention layer blocks are adopted. The purpose of the first 

layer is to project the linear transformation of the embedded features into the hidden space. For 

the feature decoder network, the dimension of hidden features is 1 × 𝐹 where 𝐹 is the original 

dimension of node features; After that, another independent layer is followed. In the feature 

decoder network, it is the self-attention query-retrieval layer for minimizing the difference of the 
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data distribution between the real data and the reconstructed data. Also, in this layer the multi- 

head method is adopted with the same number of 𝐾 used in the encoder GSA layers. The normal 

loss function used in previous work is the Kullback–Leibler (𝐾𝐿) divergence for decoding same 

data distribution as following: 

                                                      𝐷𝐾𝐿(𝑝||𝑞) = ∑ 𝑝(ℎ𝑖)𝑙𝑜𝑔
𝑝(ℎ𝑖)

𝑞(ℎ𝑖)
 ,

𝑁

𝑖=1
                                                  (5) 

where 𝑝(ℎ𝑖) represents the true features of data distribution while the 𝑞(ℎ𝑖) is the modeling 

features data distribution. In order to achieve a data distribution 𝑞(ℎ𝑖)  that is the closest to 𝑝(ℎ𝑖), 

we can minimize the 𝐾𝐿 divergence information gain. However, it is hard to converge at the low 

dimensional embedding space and easy to cause simplifying problems in generating the samples. 

In detail, the 𝐾𝐿 divergence tends to infinity when there is no overlap between two distributions 

and has a mutation when states from non-overlap to overlap. One alternative solution to avoid this 

issue is to adopt the Wasserstein distance (Equation 1) as the loss function [35]. Unlike 𝐾𝐿 

divergence, the Wasserstein distance can provide smoothing useful gradient even there is no 

overlap between two distributions. Based on the Equation 1 that for ∏(𝑃𝑟, 𝑃𝑔) each marginal 

distribution is 𝑃𝑟  or 𝑃𝑔  and for each joint probability distribution 𝛾  of true sample 𝑥  and 

generating sample 𝑦, we want to minimize the lower bound of the expected value of distance. So, 

the features decoder loss function is defined as following: 

                                                    𝐿𝑜𝑠𝑠𝐹 =
1

𝑁
∑(𝔼ℎ𝑖~𝑝(ℎ)  −  𝔼ℎ𝑖′~𝑝(ℎ′)) ,

𝑁

𝑖=1

                                            (6) 

where ℎ𝑖is the input node features and ℎ𝑖′ is the output reconstructed node features of autoencoder. 

 

            We can also perverse node neighborhoods’ connections by recovering its adjacency matrix. 

Based on this and considering the second order proximity which can make the embedding features 
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vector to preserve the network structural spatial information, the second layer of another network 

of decoder is built to recover the graph adjacency matrix using the self-attention transfer. And for 

this decoder network, the dimension of the hidden features is 1 ×  𝑁 where 𝑁 is the number of  

 

Figure 4: The Enhanced Attention Autoencoder. Each node features would be fed into the autoencoder whose 

parameters are shared. In the encoder part, the loss function includes CrossEntropy function that can map 

node features into right classes and the first order proximity loss function which can guarantee connected nodes 

will be mapped closer. And in the decoder network, we minimize data distribution of reconstructed node 

features and the second order proximity which can ensure those node embedded closer when they share with 

the same neighborhood relationship. 

 

nodes. The detailed architecture of the combined autoencoder network is shown in Figure 4. Beside 

reducing the common mean square loss (MSL) of the data, the zero may take the dominating part 
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in each adjacency matrix for some sparse graph cases. In those cases, the model can easily achieve 

the optimal solution but hard to use a gradient descent method to optimize the mean square error 

loss function with given output all zero. Inspired by the loss function of SDNE, the penalty 

coefficient 𝛽 is used to control the zero elements. More minutely, if there is no connection between 

𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗, 𝛽 equals to 1. Else, 𝛽 is set to larger than 1. In the end, the loss function of 

second order proximity preserving with adjacency decoder as shown in the following equation: 

                                                    𝐿𝑜𝑠𝑠2𝑛𝑑 =∑ ||(𝑎𝑖𝑗 − 𝑎𝑖𝑗′)𝛽𝑖𝑗||
2

2𝑁

𝑖,𝑗=1
,                                          (7) 

Where 𝑎𝑖𝑗′  represents the value of two nodes’ reconstructed adjacency matrix,  𝛽𝑖𝑗  is the 

correspond penalty coefficient. With minimizing this loss function, the nodes which have similar 

neighborhood structure are embedded near in the representations space. 

 

            In conclusion, the first order proximity is guaranteed by the encoder network to preserve 

the local structural node information which map the vertexes near which have multi edges between 

them. And the second order proximity can keep the global network structure by reconstructing the 

neighborhood set of vertexes. The final loss function will jointly encoder part and decoder part as 

following: 

                                   𝐿𝑜𝑠𝑠_𝐴𝐸 = 𝐿𝑜𝑠𝑠_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐿𝑜𝑠𝑠_𝐷𝑒𝑐𝑜𝑑𝑒𝑟,                                 (8) 

𝐿𝑜𝑠𝑠𝐷𝑒𝑐𝑜𝑑𝑒𝑟 = 𝐿𝑜𝑠𝑠𝐹 + 𝐿𝑜𝑠𝑠2𝑛𝑑 .  
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3.1.3 Adversarial Networks for Graph Learning 

The most impactful framework that introducing GAN into the graph learning is the 

GraphGAN [34], which training the generator 𝐺 to the distribution of neighborhoods of one node 

that try to cheat the discriminator; on the other hand, the discriminator is honed to differentiate 

between the real node and the generated node. Different from common GAN, Adversarial Network 

Embedding [36] conducts the adversarial idea on the graph tasks that train the generated data 

distribution closer to the prior data distribution in order to regularize the representation features. 

Due to the simple network structure of the normal graph embedding network, it is difficult to 

preserve the node information comprehensively and robustly, which only receives very little 

attention in the graph research. Motivated by the great performance of Adversarial Network 

Embedding, we introduce the idea of the adversarial network into our method. The idea of the 

adversarial network is incorporated with the autoencoder. Specifically, the generator (𝐺) is played 

by the encoder part of autoencoder, which tries to represent a serious of non-linear attention 

transformations of the input sparse high dimensional features into embedding features. The 

discriminator (𝐷) is designed with a 1-dimension convolution layer and the fully connected layer 

which aims to differentiate the embedding features from the valid data which the sample possesses 

at the set prior distribution. The detailed network layer is shown in the bottom part of Figure 1, 

and in the training process, the alternative update strategy is used to train the autoencoder network 

and the discriminator. The generator optimization is provided in the previous section, therefore, in 

the last section, we will only focus on discriminator optimization. This training process can be 

treated as a two-player minimax game with the discriminator and generator playing against each 

other. After optimization, the generator (the encoder of autoencoder) aims to embed features vector 

with the target distribution. 
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In our framework, given the valid samples from the prior distribution 𝑝(𝑧) data, while fake 

samples are embedded feature vectors from the encoder generator as the inputs, the goal for 

discriminator is to tell apart the prior distribution valid data from the fake data of embedded 

vectors. Selecting a proper prior distribution is the most significant step during the adversarial 

training. Like previous work in graph GANs research [40], the data prior distribution is commonly 

defined as Gaussian noise or Uniform noise which helps autoencoder network to learn useful and  

 

robust embedding representations against uncertainty. In our experiments, we test those two prior 

data distributions and show almost have the same impact on results. However, here we only 

proposed a generalized framework that other researchers can further used with their particular data 

distribution which can enhance the application applied task performance. The detailed network 

layers are built by three fully connected layers, the front two layers are both set with 𝑁 neural cells 

and the final layer is set with 1 neural cell which makes a distinction between the valid samples 

and fake samples. The solution to this training process of discriminator can be expressed as 

following: 

                      𝑚𝑎𝑥𝔼𝑧~𝑝(𝑧)[𝑙𝑜𝑔𝐷(𝑧)] + 𝔼ℎ[log (1 − 𝐷(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(ℎ)))].                          (9) 
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The encoder is trained to minimize the second term in order to camouflage its output as prior 

samples. 

 

            In conclusion, we propose an end-to-end adversarial autoencoder graph shortest path length 

attention network for node classification and graph embedding combined with supervised and 

unsupervised learning. The GAN-like network is introduced with the autoencoder as generator 

whose loss function is 𝐿𝑜𝑠𝑠𝐴𝐸 in Equation 8 and the neural network as discriminator whose loss 

function is the Equation 9. In the training process, the alternative updating weights strategy is used 

for finally achieving the steady model in two stages: (1) Train the autoencoder to fool the 

discriminator with its generated embedding node representations. (2) Train the discriminator to 

distinguish the true samples data distribution from the fake samples generated by the autoencoder. 
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4.0 Experiment 

We have conducted on the multi evaluation of the Great AAN model against various strong 

and performance baselines and previous works, on one inductive task and four prevalent graph-

based benchmark transductive tasks, achieving or surpassing sota performance across all of them. 

The following section will provide datasets, our experimental set-up details, results, and qualitative 

analysis of Great AAN compared with others. 

4.1.1 Datasets 

Transductive learning: Three standard citation network benchmark datasets— Citeseer, 

Cora, Pubmed [42] and one account-device network Alipay [43]. In those three citation datasets, 

documents are treated as nodes and the citation links correspond to undirected edges. The datasets 

include elements of a bag-of-words feature vectors representation for each document and all 

citation links between documents. It is usually that only using 20 labeled samples per class to train 

the model and evaluating on 1000 or 1500 test nodes. The Citeseer dataset includes 3327 

documents, 4732 citation links, 6 classes and 3703 features for each node. The Cora dataset 

contains 2708 documents, 5429 citation links, 7 classes and 1433 features per node. The Pubmed 

dataset contains 19717 documents, 44338 citation links, 3 classes and 500 features per node as 

shown in Table 1. And the Alipay dataset is built for detecting malicious accounts in the online 

payment. The nodes represent the users’ accounts. The edges mean the login relationships between 

accounts and their using devices during a period. Discretization of login behaviors into hours and 

account profiles treated as node features. The class labels consist of malicious accounts and normal 
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accounts. This dataset includes 981748 nodes, 2308614 edges and 4000 features per node. 

Inductive learning: For the graph leaning task on biological networks, we make use of a protein-

protein interaction (PPI) dataset [41] for multi-label node classification. The dataset contains 24 

graphs with 20 graphs for training, 2 for validation and 2 for testing. And each graph represents a 

different human tissue with each node corresponds a protein and edges mean the interaction 

between proteins. Each protein has input 50 features that include of positional gene sets, motif 

gene sets and immunological signatures and 121gene ontology sets as labels. The average number 

of nodes per graph is 2372 as shown in Table 1. The goal is to predict which labels are contained 

in each node. 

 

 

4.1.2 Parameter Settings 

For the encoder part, a two-layer graph shortest path length attentional layer is adopted. 

The first layer includes a set of a linear transformation with 𝐹′ = 128 and 6-heads graph shortest 

path length attentional layer for a total output with 768 features with leaky ReLU activations (with 

a leak of 0.2) and batch normalization (BN) [44]. Then a fully connect layer as the second layer is 

followed for node classification with transforming 768 hidden layer features to 𝑁 features where 
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𝑁 represents the number of the node classes. In the combination function of adjacency matrix 

weights and two shortest path length values, the weight of computed attention coefficient 𝜆𝛼 is 0.7 

and both two shortest path length weights 𝜆𝑠  are 0.15. Also, we show the choosing different rate 

of 𝜆𝛼  and 𝜆𝑠 will make different results in Table 4. During the whole training process, the dropout 

layer [45] with 𝑝 = 0.5 is used to each layer for avoiding overfitting and λ = 0.001 is applied in 

the 𝐿2  regularization. Those parameters are all suitable inductive learning, but for transductive 

leaning, except the 𝐹′ = 8 with 48 hidden features are different, other parameters are the same. 

Also, Adam optimizer with an initial learning rate of 0.005 for all datasets. For the decoder part, 

the same structure as the encoder is applied with a two-layer graph shortest path length attentional 

layer which the first layer consists of a linear transformation with 𝐹′ = 128. And then followed 

by the fully connected layer with output F features, where F represents the row feature dimension 

of the node. Also, anther fully connected layer for reconstructed the neighborhood relationship via 

adjacency matrix transfers hidden features to 𝑁 features where 𝑁 is the number of nodes. For the 

discriminator (𝐷) of the framework, the standard three neural layer network is applied, which 

consists of a 512-512-1 layer structure. For the first two layers, leaky ReLU activations (with the 

leak of 0.2) and batch normalization are also followed and the dropout layer with 𝑝 = 0.5. For the 

final output layer, the sigmoid activation function is used for classification. The prior distribution 

of adversarial learning is set to U [-1, 1] or N [-1, 1]. Finally, all training processes are conducted 

on NVIDIA Tesla P100 GPUs with the Pytorch framework. 
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4.1.3 Results 

For the inductive task on the PPI dataset, we provided the 𝑚 − 𝐹1 score as the evaluation 

metric, which has an overall evaluation of precision and recall. Training on the nodes of the 20 

graphs, 2 for validation and testing on 2 untrained graphs. We compared our Great AAN model 

with several baselines, such as MLP (multilayer perceptron), utilizes the node features but not the 

structures of the graph, and state-of-art models such as GraphSAGE [19]. GraphSAGE* represents 

the best GraphSAGE result we are able to obtain by just modifying its architecture. GCN [14] that 

“GCN-mean” by averaging the neighborhoods instead of GCN and GAT Table 2. The results 

obviously show the effectiveness and performance of graph attention autoencoder with the shortest 

path length connections and adversarial learning. More specifically, we are able to improve upon 

GAT by a margin of 0.102 on the PPI dataset demonstrating that our model has the potential to be 

applied in inductive settings. For the transudative learning task of node classification, the 

experiments conducted on several graph benchmark datasets including Cora, Citeseer, Pubmed 

and Alipay. The accuracy and F1 are reported on testing nodes. Comparing with nowadays state-

of-the-art techniques such as DeepWalk, node2vec, ICA [46], Chebyshev, GCN, MoNet [47], 

GraphSAGE and GAT. We report the comparison results of transudative settings on those datasets 

in Table 3. In most cases, we found our method achieved or matched state-of-the-art results. 

Furthermore, for analyzing the hyper-parameters weights of the shortest path length in of 

𝜆𝑠. We changed each of 𝜆𝑠  and 𝜆𝑎 =  (1 −  2 × 𝜆𝑠)  to analyze the impact of joining the shortest 

path length with attention layer. The results are shown in Table. 4 and all these results are obtained 

from the Cora dataset. And as we can see, the best performance archived at 𝜆𝑠  equals 0.15 so that 

𝜆𝑎  is 0.7. 
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Table 3: Summary of testing results on Cora, Citeseer, Pubmed and Alipay in the 

transductive setting. In accordance comparison and with former benchmarks, we report 

accuracy for Cora, Citeseer, Pubmed, and F1 for Alipay. 
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5.0 Conclusion 

In this work, we presented a novel, generalized framework, graph-embedding enhanced 

attention adversarial autoencoder networks (Great AAN) for Social Network which focuses on 

studying the graph embedding features representation and applying the learned embedding features 

to address the node classification task. The Graph Shortest Path Length Attention Layer (GSA) 

improved assigning different significance to different nodes within a neighborhood even though 

there is no direct connection with preserving the structural shortest path length. Our network can 

copy with different sized neighborhoods of nodes, which does not rely on the whole graph structure, 

thus it can address many previous spectral-based approaches challenges. With the decoder network, 

we further address the problem of preserving structure information and sparsity by jointing the 

first order proximity and second-order proximity, so that the features of the learned representation 

can be local and global structure-preserving. A particularly interesting research GAN is taken as 

embedding features adversarial leaning with a prior data distribution to enhance the robustness. 

Finally, Our models have successfully achieved state-of-the-art performance across four well- 

established node classification benchmarks, both inductive task (PPI) and transductive task (Cora, 

Citeseer, Pubmed and Alipay). 
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