

Title Page

Graph-embedding Enhanced Attention Adversarial Autoencoder

by

Yurong Chen

Bachelor of Science, Changsha University of Science & Technology, 2019

Submitted to the Graduate Faculty of the

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2020

 ii

Committee Page

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Yurong Chen

It was defended on

March 31, 2020

and approved by

Liang Zhan, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

Feng Xiong, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

Jingtong Hu, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

Thesis Advisor: Liang Zhan, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

 iii

Copyright © by Yurong Chen

2020

 iv

Abstract

Graph-embedding Enhanced Attention Adversarial Autoencoder

Yurong Chen, MS

University of Pittsburgh, 2020

When dealing with the graph data in real problems, only part of the nodes in the graph are

labeled and the rest are not. A core problem is how to use this information to extend the labeling

so that all nodes are assigned a label (or labels). Intuitively we can learn the patterns (or extract

some representations) from those labeled nodes and then apply the patterns to determine the

membership for those unknown nodes. A majority of previous related studies focus on extracting

the local information representations and may suffer from lack of additional constraints which are

necessary for improving the robustness of representation. In this work, we presented Graph-

embedding enhanced attention Adversarial Autoencoder Networks (Great AAN), a new scalable

generalized framework for graph-structured data representation learning and node classification.

In our framework, we firstly introduce the attention layers and provide insights on the self-attention

mechanism with multi-heads. Moreover, the shortest path length between nodes is incorporated

into the self-attention mechanism to enhance the embedding of the node’s structural spatial

information. Then a generative adversarial autoencoder is proposed to encode both global and local

information and enhance the robustness of the embedded data distribution. Due to the scalability

of our approach, it has efficient and various applications, including node classification, a

recommendation system, and graph link prediction. We applied this Great AAN on multiple

datasets (including PPI, Cora, Citeseer, Pubmed and Alipay) from social science and biomedical

science. The experimental results demonstrated that our new framework significantly outperforms

several popular methods.

 v

Table of Contents

Preface ... viii

1.0 Introduction ... 1

2.0 Related Work .. 5

2.1.1 Graph Embedding ... 5

2.1.2 Shortest Path Length for Graph Learning ... 6

2.1.3 Adversarial Networks on Graph Embedding ... 7

3.0 Great ANN Architecture .. 8

3.1.1 Graph Shortest Path Length Attention Layer (GSA) .. 8

3.1.2 Enhanced Attention Autoencoder .. 12

3.1.3 Adversarial Networks for Graph Learning .. 16

4.0 Experiments ... 20

4.1.1 Datasets ... 20

4.1.2 Parameter Settings .. 21

4.1.3 Results ... 23

5.0 Conclusion ... 25

Bibliography .. 26

 vi

List of Tables

Table 1 Summary of the datasets .. 21

Table 2 Summary of testing Micro-F1 results on PPI in the inductive setting. 24

Table 3 Summary of testing results on Cora, Citeseer, Pubmed and Alipay in the

transductive setting ... 24

Table 4 Hyper-parameters analysis of the shortest path length ... 24

 vii

List of Figures

Figure 1 The main process of the Great AAN .. 4

Figure 2 The Graph Shortest Path Length Attention Layer. ... 9

Figure 3 The Multi-Heads Attention Mechanism .. 11

Figure 4 The Enhanced Attention Autoencoder. ... 15

 viii

Preface

This basis for this research is for developing better methods of research about graph-

structured network like social science and biomedical science network. As the world moves further

into the digital age, and with the rapid growth of emerging applications such as social network

analysis, Web semantic analysis, bioinformatics network analysis, and traffic navigation, large-

scale graph data with large scales, complex internal structures, and diverse have appeared. In our

research, we study the better methods for representation those larger graph datasets and have

proved our methods archived great performance.

In the end, I cannot have achieved my current success without strong supports. First of all,

my parents and family, who supported me with love and understanding. And secondly, my advisor,

Professor Zhan who give me lots of guidance and direction during my research. And he encouraged

me when I face difficult. Also, thanks for my committee members, each of whom has provided

patient advice and guidance throughout the research process. Thank you all for your support.

 1

1.0 Introduction

Low-dimensional vector embeddings of nodes in the large social networks have proved

quite useful as feature inputs for various graph analysis tasks. The low-dimensional embedding

meaningful vector of nodes which can capture and preserve the network structure has attracted

great researchers’ attention. The key idea of node embedding methods is to distill high dimensional

sparse data vector into a useful dense vector. With the reduced dimensionality, various graph

analysis tasks can be conducted efficiently, such as node classification [1], link prediction [2],

knowledge graph representation [3] and biological networks [4] or brain connectomes

classification [5] node clustering [6].

In the past decades, the most common practical methods for graph embedding are Locally

Linear Embedding [7], which assume one node can be represented by the linear combination of its

neighborhoods and to minimize the loss of real data value and the linear combination value;

Laplacian Eigenmaps [8], which proposed that the nodes which have high similarity (measure by

the edge) should be homologous in the embedding space domain so that the cost function is the

edge weight multiplying the difference of two nodes; And Graph Factorization [9], which achieved

graph embedding via matrix factorization. Since the underlying network structure is complex with

high dimensional data information, those traditional methods cannot capture the non-linear the

node features and network structure and preserve the global and local node information.

However, those traditional algorithms face the challenge when embedding non-linear node

features and lack the ability to deal with sparse high dimensional information. Based on the

previous graph work and introducing some concept of work2vec, Deepwalk [10] adopted a random

 2

walk to construct the “sentence sequence” of a node, in that way, the embedding features which

provide the “symbiotic relationship” of nodes can be formed by the Deepwalk sentence. Unlike

Depth First Search (DFS) random walk of Deepwalk, LINE [11] is proposed to respectively

optimize the first order proximity and second-order proximity via Breadth-First Search (BFS).

Based on this, node2vec [12] combined BFS with DFS for considering both local information from

BFS and global structure information from DFS achieved successful results.

In recent years, with the development of deep learning, researchers explored deep learning

algorithms to make up for deficiencies of previous shallow-level methods. SDNE [13] proposed

deep autoencoder to learn embedding of the graph adjacent matrix to preserve both global structure

and local structure. Other than unsupervised graph embedding learning methods, Graph

Convolutional Neural Network (GCN) [14] is one of the most significant milestones. Based on the

huge successful application of convolutional neural networks (CNNs) on grid-like structure data,

GCN achieved generalizing convolutions on graph domain. In conclusion, GCN is categorized as

spectral domain methods and non-spectral domain methods. On the spectral approaches, the key

idea is the convolutional transform computed by the eigendecomposition of the graph Laplacian

on the Fourier domain. Depend on this, the spectral convolutional neural networks [15] are

proposed based on the spectrum of the graph Laplacian. However, the high complexity, lack of

spatial localization motivated the second-generation Spectral Convolution [16] adopting

Chebyshev expansion and the third generation Spectral Convolution network [17] increased the

depth of layer with decreasing the breath of layer. Although the complexity and computational

cost are reduced, the need for eigendecomposition and spatial limitations impeded spectral

approaches to be a generalized framework on different datasets. On the other hand, non-spectral

 3

algorithms have to be addressed the problem that the nodes in the graph have different numbers of

neighbors. Learning Convolutional Neural Networks for Graphs (CNN4G) [18] selected particular

nodes via centrality and assigned them specific features number, then adopted convolutional

operation on the constructed matrix. Moreover, GraphSAGE [19] for computing node

representations in an inductive manner can operate by sampling neighborhoods of each node and

then feeding them through a recurrent neural network.

Nowadays, the attention mechanism attracted lots of attention [20][21] due to its highly

efficient learning ability. Graph Attention Networks (GATs) [22] dynamically computed the

hidden representations of each node in the graph and stacked a multi GAT layer to get a larger

receptive field. Although its’ results on several datasets proved it is state-of-the-art methods, it

only focuses on first order proximity and lack of second-order proximity so that it cannot represent

node global structure information and only count those directly connected nodes which make lack

those structurally connected nodes impact.

Inspired by those recent work, we proposed an end-to-end graph-embedding enhanced

attention adversarial autoencoder networks as Figure 1 shown. The idea is that firstly compute the

latent representations of each node via graph attention networks with multi- heads self-attention

strategy combined shortest path length coefficient; secondly, based on the embedding vectors, we

build two parallel decoder architecture networks: one is for minimizing the difference between

decoder vectors and the node features, anther is for minimizing the difference between decoder

vectors and the node adjacency matrix; In the end, the adversarial network is designed to

discriminate the real data (the noise data with prior distribution) and the fake data (the generated

 4

embedded features by encoder). In our method, the first order proximity of the node-local

information is learned by the modified GAT layers which can conduct on a query (Q) and a set of

key (K) value (V) pairs to compute the output. The graph structural information and node global

features are mapped though our constructed second-order proximity loss function of the

autoencoder. Moreover, for improving the features data distribution network structural

information, the adversarial game is used to tuned embedded feature vectors with a data

distribution that we can as the prior data distribution. After the latent representation matches the

prior distribution, the decoder of the autoencoder is trained to map the imposed prior to the data

distribution which enhanced the model representation robustness against uncertainty.

Figure 1: The main process of theGreat AAN consisting of two parts: (1) on the top line, the autoencoder for

node features embedding; (2) on the bottom line, the adversarial network for embedding representation data

distribution learning.

 5

2.0 Related Work

Related works mainly consist of three categories: Algorithms for graphs embedding,

applications of shortest path length for graph learning, and applying adversarial networks on graph

embedding. Each will be discussed below and compared with our proposed model.

2.1.1 Graph Embedding

As mentioned in the introduction, there are many effective graph embedding algorithms

and can mainly be divided into two categories: random walk based methods and deep learning-

based methods. For the random walk based methods, Deepwalk [10] is introduced to preserves

higher-order proximity with node sequences by maximizing the likelihood 𝒍𝒐𝒈𝑷𝒓 =

{𝑣𝑖−𝑘 , … , ℎ𝑖−1, ℎ𝑖+1, … , ℎ𝑖+𝑘|𝑌𝑖} , here 2𝑘 + 1 is the length of the random walk. Similar to

DeepWalk, LINE [11] and node2vec [12] produce higher-quality and more informative embedding

representations. Hierarchical representation learning for networks (HARP) [23] proposed another

algorithm with aggregating previous layers’ nodes using graph coarsening to improve the local

optima. Recently, Discriminative Deep Random Walk (DDRW) [24] extended the random walk

technique to learn the network structure and node attributes and achieved great performance. ON

the other hand, deep learning-based methods have grown rapidly due to its high performance on

graph-related tasks. SDNE [13] and DNGR [25] firstly introduced deep autoencoder to generate

non-linear embeddings. Then GCN [14] is proposed to reduce the computationally cost and for

larger sparse graph networks. Recently, Deep Attributed Network Embedding [26] designed a

 6

novel deep attributed network embedding approach which can preserve various proximities in both

node attributes and topological structure. And via introducing the attention mechanism, GAT [22]

addressed several key challenges in graph neural networks. In our paper, based on GAT, we adopt

the shortest path length to preserve more structural spatial information in the graph and the details

will be explained in the next section.

2.1.2 Shortest Path Length for Graph Learning

Most previous graph learning works focus on the 1st-order or 2nd-order proximity. The

1st-order proximity considers those nodes with the only direct connection that should be embedded

closely while the 2nd-order proximity will translate those nodes sharing with the same

neighborhoods using similar embedding representations. However, some studies on the shortest

path length between nodes demonstrated that the shortest path length can be one of the most

important measures to quantify the relationship among nodes [27]. For example, Path length

associated community estimation (PLACE) [28] has been proposed to estimate the modular

structure for brain structural networks by differentiating the difference between nodes using the

shortest path length. Especially in the larger graph-structure network, the shortest path length

provides a different way to quantify the distances between pair of nodes [29]. In this paper, by

including the Shortest Path length into our graph attention layer, we can explore more higher-order

node information to preserve global and local node structure with more precious and robustness.

 7

2.1.3 Adversarial Networks on Graph Embedding

Recently, Generative Adversarial Network (GAN) [30] has attracted a lot of attention

because of its huge success in various applications such as word sequence generation [31] and

graph representation learning [32]. GAN [30] plays an important role in deep learning which can

be formulated as a minimax adversarial game. This minimax adversarial game consists of a

generator and a discriminator. Due to the superior performance of GAN, Self-Paced Network

Embedding [33] extended the sampling strategy to the generative adversarial network which can

sample difficult negative nodes. Moreover, GraphGAN [34] tried to reconstruct the distribution of

nodes’ underlying true connectivity, while the discriminator is trained to detect whether the

sampled node is from the ground truth or generated. Unlike those aforementioned studies, WGAN

[35] enhanced the training of the GAN network by introducing the minimizing the Wasserstein

distance as the following:

 𝑊(𝑃𝑟, 𝑃𝑔) = inf
𝛾~∏(𝑃𝑟,𝑃𝑔)

𝔼(𝑥,𝑦)~𝛾 [||𝑥 − 𝑦||] (1)

between the prior data distribution (x) and the generator data distribution (y), which can let the

embedded features from the generator be closer to the prior distribution. Based on this, Adversarial

network embedding [36] aims to capture stable and robust latent feature representations with

regularizing data distribution. In our paper, following with [36] where the goal of the generator is

to map data samples from some prior distribution to data space, while the discriminator tries to

differentiate fake samples from true data, we incorporate this component into our graph attention

autoencoder showing.

 8

3.0 GREAT AAN Architecture

In this section, we will present the graph shortest path length attention layer in Section 3.1,

the autoencoder network in the section Section 3.2. And the adversarial mechanism network will

be introduced in Section 3.3.

3.1.1 Graph Shortest Path Length Attention Layer (GSA)

The inputs of GSA block layers are a branch of nodes' features, 𝒉 =

{ℎ1, ℎ2, … , ℎ𝑖 , … , ℎ𝑁}, ℎ𝑖 𝜖 ℝ
𝐹 ; nodes' corresponding adjacency vectors can be denoted as 𝒂 =

 {𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑁}, 𝑎𝑖 𝜖 ℝ
𝑁 , and the shortest path length nodes' vectors 𝒔 =

{𝑠1, 𝑠2, … , 𝑠𝑖 , … , 𝑠𝑁}, 𝑠𝑖 𝜖 ℝ
𝑁, where 𝑁 represents the number of nodes, and 𝐹 is the number of

dimension of features of each node. The output of GSA is a new set of nodes embedding features,

𝒉′ = {ℎ1′, ℎ2′, … , ℎ𝑖′, … , ℎ𝑁′}, ℎ𝑖
′𝜖 ℝ𝐹

′
 where 𝐹′ can be any number of dimension of embedding

features. The main graph attention layer follows the work of [20][22], and we particularly

incorporate multiple shortest path lengths, from the Dijkstra's Shortest Path First algorithm [37]

and Bellman–Ford algorithm [38] into the attention mechanism to improve (1) the node structural

spatial information; (2) network global information representation; (3) the robustness of graph

structural representations.

In order to project the high dimensional sparse features data into a meaningful expressive

manifold space and prepare for the downstream multi-heads attention strategy on the multi

embedding sub-spaces, the weight matrix for linear transformation, 𝑊𝐾 𝜖 ℝ
𝐹′ × ℝ𝐹 is adopted on

each node firstly. Then in the query-key attention step, for deriving a set of attention coefficients

 9

Figure 2: The Graph Shortest Path Length Attention Layer. 𝒉𝒊 represents the input node features. The

function 𝒇 (𝒉𝒊, 𝒉𝑵) consists of the average of the cosine similarity (gray line) and one LeakReLU activation

function (black line). The output node feature vector 𝒉𝒊′ will be the sum of all nodes’contributing weights

generated by our similarity matrices.

α, instead of normal processes that take their dot product and using SoftMax to normalize, both

fully connected layer and cosine similarity are adopted, and the resulted output vectors are

concatenated as the output of attention coefficients α. In this process, the transformed features of

each node are taken as the query to match others for retrieval of the similarity of the query node

and other nodes. And then the weighted sum is the similarity coefficient with the value that in the

self-attention and the value is the same as the key. For one single node, this operation is shown as

the following:

 10

{

 𝑓(ℎ𝑖 , ℎ𝑁) =

1

2
(𝐹𝐶(ℎ𝑖 , ℎ𝑁) + 𝐶𝑜𝑠𝑖𝑛𝑒(ℎ𝑖 , ℎ𝑁)),

𝛼𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(ℎ𝑖 , ℎ𝑁)),

ℎ𝑖
′ =∑(𝛼𝑖 ℎ𝑖)

𝑁

𝑛=1

 (2)

For avoiding the inaccuracy caused by “Curse of Dimensionality” [3] of computing the similarity

coefficient using single dot product or cosine operation and uninterpretability using neural

perceptron, in this paper, we take the average of the output of perceptron and modified cosine

similarity.

 One important issue in previous works is that they only compute the αi for those nodes that

are neighbors in the adjacency matrix of the query node. In other words, only those directly

connected nodes are computed in the attention layer. However, due to the sparse, there are a few

nodes connected with each other and just sticking to count the first-order information of the node

would lead to the loss of many correlations or information form indirectly connected nodes, which

also preserve important implications. Motivated by this, we proposed a novel shortest path length

attention mechanism based normal self-attention layer for ameliorating those mentioned problems.

The main process is shown in Figure 2.

 It's worth noting that the introduction of the shortest path length leads to two changes: the

first one is the extra calculation of the attention coefficients for those indirectly connected nodes

as taking considering of 𝑠𝑖 in Figure 2; another modification is that the attention coefficient 𝑎𝑖 is

combined with the original attention coefficient 𝑎𝑖 and the normalized shortest path length 𝑠𝑖 by

weighted sum will not increase the computational complexity. In particular, the Dijkstra's Shortest

 11

Path First algorithm [37] and Bellman-Ford algorithm [38] are adopted to computing the shortest

path length between two nodes. Briefly, given a weighted graph network of 𝐺 = {𝐸, 𝑉} where 𝑉

Figure 3: The Multi-Heads Attention Mechanism. 𝑾𝟏,𝑾𝟐, … ,𝑾𝒌 represent the different feature

transformation matrixes that can transform hi into 𝒉𝒊_𝟏, 𝒉𝒊_𝟐, … , 𝒉𝒊_𝒌 , which can consider different aspects node

attention at each sub-space. Through our GSA layer, all output features vectors can be averaged or fed into a

neural layer to get the final output node representation features hi.

represents all vertices (nodes) and 𝐸 denotes the set of edges, the output of the Dijkstra’s algorithm

is the 𝑆𝐷 = [𝑠𝑖𝑗] 𝜖 ℝ
𝑁×𝑁, where 𝑠𝑖𝑗 is the shortest path length between node i and node j with

Dijkstra's algorithm, Bellman-Ford proceeds by relaxation, that is the approximation of the correct

distance is replaced by a better approximation until the final solution is reached and output 𝑆𝐵 =

[𝑠𝑖𝑗] 𝜖 ℝ
𝑁×𝑁, and in the result section, we will discuss the different results of the rate of weights

of shortest path length.

 Moreover, considering the information from different embedding representations may

comprehensively pay attention to different aspects of the information, the multi-head attention

strategy is adopted to stabilize the training process and provide more robust results. Figure 3 shows

the execution processes, where 𝐾 is the number of independent different transformations. Each

node features at different sub-space will be taken as the input of the self-attention layer mentioned

 12

before to get the attention coefficient. Then the final attention coefficient is computed by one fully

connected layer that concatenates all individual attention coefficients. Lastly, we will apply the

nonlinear activation function LeakyReLU (with negative slope 𝑎 = 0.2) as follows:

 ℎ𝑖
′ = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(ℎ𝑖 , ℎ𝑁) = 𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑖𝑘)). (3)

To sum up, each embedded node features ℎ𝑖
′ in GSA is calculated by the multi-head

transformation of original node features ℎ𝑖 with a query-retrieval self-attention layer incorporated

with shortest path length, and the cross-entropy loss function is adopted for the classification

during the encoder training and for regularizing the data which can enforce the embedding node

vectors be closer in the hidden space to preserve the first order proximity. The final encoder loss

function is shown as follows:

𝐿𝑜𝑠𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟 = 𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 + 𝐿𝑜𝑠𝑠1𝑠𝑡 ,

 𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ (𝐿𝑎𝑏𝑒𝑙𝑖)log (𝑦𝑖)
𝑁

𝑖=1
 , (4)

𝐿𝑜𝑠𝑠1𝑠𝑡 = ∑ ||𝑦𝑖 − 𝑦𝑗||
2

2
= 2𝑡𝑟𝑎𝑐𝑒(𝑌𝑇 𝐿 𝑌)

𝑁

𝑖,𝑗=1

 .

where 𝑦𝑖 is the embedding representation of 𝑛𝑜𝑑𝑒𝑖 , 𝑌 is the embedding graph and 𝐿 is the

Laplacian Eigenmaps.

3.1.2 Enhanced Attention Autoencoder

Although existing methods [11][12][22] did the node classification task based on the

embedding features and achieved remarkable results, those studies built the network only focusing

on the encoder network and ignored the decoder part. Due to the excellent performance, the

autoencoder becomes more and more popular on the graph embedding tasks. However, in previous

 13

works [13], the fully connected layer is the prior option to build the autoencoder. Although it can

achieve satisfying performance in some certain cases, it is hampered by carefully-crafted the

number of layers and/or the number of neural cells.

Apparently, another issue is that only the first order proximity will be optimized to make

two nodes closer in the embedding manifold space when there is a high similarity in the raw data

space. However, the first order proximity is not enough, and the second order proximity is also

crucial [11], because it represents the similarity of two nodes’ neighbor sets. So that it can help the

model to learn more local and global structure information and improve the robustness to the sparse

network which results from embedding two nodes closer when their neighbors’ sets are similar.

Considering this and for better model generalization, we propose a novel autoencoder attention

network. The encoder part adopts the GSA layer as described in Section 3.1, in this section, we

will focus on the decoder part.

As we mentioned before, given the node features of the graph to the encoder part, the output

will be the features representations for each node. Taken the outputs of the encoder as the inputs

of decoder, we built two parallel decoder networks: the first one is for reconstructing the node

neighborhood’s relationship which is the graph adjacency matrix and the second one is to

conjecture the node features. Both decoder networks are stacked by our GSA layers. Similar to the

architecture in the encoder, two graph attention layer blocks are adopted. The purpose of the first

layer is to project the linear transformation of the embedded features into the hidden space. For

the feature decoder network, the dimension of hidden features is 1 × 𝐹 where 𝐹 is the original

dimension of node features; After that, another independent layer is followed. In the feature

decoder network, it is the self-attention query-retrieval layer for minimizing the difference of the

 14

data distribution between the real data and the reconstructed data. Also, in this layer the multi-

head method is adopted with the same number of 𝐾 used in the encoder GSA layers. The normal

loss function used in previous work is the Kullback–Leibler (𝐾𝐿) divergence for decoding same

data distribution as following:

 𝐷𝐾𝐿(𝑝||𝑞) = ∑ 𝑝(ℎ𝑖)𝑙𝑜𝑔
𝑝(ℎ𝑖)

𝑞(ℎ𝑖)
 ,

𝑁

𝑖=1
 (5)

where 𝑝(ℎ𝑖) represents the true features of data distribution while the 𝑞(ℎ𝑖) is the modeling

features data distribution. In order to achieve a data distribution 𝑞(ℎ𝑖) that is the closest to 𝑝(ℎ𝑖),

we can minimize the 𝐾𝐿 divergence information gain. However, it is hard to converge at the low

dimensional embedding space and easy to cause simplifying problems in generating the samples.

In detail, the 𝐾𝐿 divergence tends to infinity when there is no overlap between two distributions

and has a mutation when states from non-overlap to overlap. One alternative solution to avoid this

issue is to adopt the Wasserstein distance (Equation 1) as the loss function [35]. Unlike 𝐾𝐿

divergence, the Wasserstein distance can provide smoothing useful gradient even there is no

overlap between two distributions. Based on the Equation 1 that for ∏(𝑃𝑟, 𝑃𝑔) each marginal

distribution is 𝑃𝑟 or 𝑃𝑔 and for each joint probability distribution 𝛾 of true sample 𝑥 and

generating sample 𝑦, we want to minimize the lower bound of the expected value of distance. So,

the features decoder loss function is defined as following:

 𝐿𝑜𝑠𝑠𝐹 =
1

𝑁
∑(𝔼ℎ𝑖~𝑝(ℎ) − 𝔼ℎ𝑖′~𝑝(ℎ′)) ,

𝑁

𝑖=1

 (6)

where ℎ𝑖is the input node features and ℎ𝑖′ is the output reconstructed node features of autoencoder.

 We can also perverse node neighborhoods’ connections by recovering its adjacency matrix.

Based on this and considering the second order proximity which can make the embedding features

 15

vector to preserve the network structural spatial information, the second layer of another network

of decoder is built to recover the graph adjacency matrix using the self-attention transfer. And for

this decoder network, the dimension of the hidden features is 1 × 𝑁 where 𝑁 is the number of

Figure 4: The Enhanced Attention Autoencoder. Each node features would be fed into the autoencoder whose

parameters are shared. In the encoder part, the loss function includes CrossEntropy function that can map

node features into right classes and the first order proximity loss function which can guarantee connected nodes

will be mapped closer. And in the decoder network, we minimize data distribution of reconstructed node

features and the second order proximity which can ensure those node embedded closer when they share with

the same neighborhood relationship.

nodes. The detailed architecture of the combined autoencoder network is shown in Figure 4. Beside

reducing the common mean square loss (MSL) of the data, the zero may take the dominating part

 16

in each adjacency matrix for some sparse graph cases. In those cases, the model can easily achieve

the optimal solution but hard to use a gradient descent method to optimize the mean square error

loss function with given output all zero. Inspired by the loss function of SDNE, the penalty

coefficient 𝛽 is used to control the zero elements. More minutely, if there is no connection between

𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗, 𝛽 equals to 1. Else, 𝛽 is set to larger than 1. In the end, the loss function of

second order proximity preserving with adjacency decoder as shown in the following equation:

 𝐿𝑜𝑠𝑠2𝑛𝑑 =∑ ||(𝑎𝑖𝑗 − 𝑎𝑖𝑗′)𝛽𝑖𝑗||
2

2𝑁

𝑖,𝑗=1
, (7)

Where 𝑎𝑖𝑗′ represents the value of two nodes’ reconstructed adjacency matrix, 𝛽𝑖𝑗 is the

correspond penalty coefficient. With minimizing this loss function, the nodes which have similar

neighborhood structure are embedded near in the representations space.

 In conclusion, the first order proximity is guaranteed by the encoder network to preserve

the local structural node information which map the vertexes near which have multi edges between

them. And the second order proximity can keep the global network structure by reconstructing the

neighborhood set of vertexes. The final loss function will jointly encoder part and decoder part as

following:

 𝐿𝑜𝑠𝑠_𝐴𝐸 = 𝐿𝑜𝑠𝑠_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐿𝑜𝑠𝑠_𝐷𝑒𝑐𝑜𝑑𝑒𝑟, (8)

𝐿𝑜𝑠𝑠𝐷𝑒𝑐𝑜𝑑𝑒𝑟 = 𝐿𝑜𝑠𝑠𝐹 + 𝐿𝑜𝑠𝑠2𝑛𝑑 .

 17

3.1.3 Adversarial Networks for Graph Learning

The most impactful framework that introducing GAN into the graph learning is the

GraphGAN [34], which training the generator 𝐺 to the distribution of neighborhoods of one node

that try to cheat the discriminator; on the other hand, the discriminator is honed to differentiate

between the real node and the generated node. Different from common GAN, Adversarial Network

Embedding [36] conducts the adversarial idea on the graph tasks that train the generated data

distribution closer to the prior data distribution in order to regularize the representation features.

Due to the simple network structure of the normal graph embedding network, it is difficult to

preserve the node information comprehensively and robustly, which only receives very little

attention in the graph research. Motivated by the great performance of Adversarial Network

Embedding, we introduce the idea of the adversarial network into our method. The idea of the

adversarial network is incorporated with the autoencoder. Specifically, the generator (𝐺) is played

by the encoder part of autoencoder, which tries to represent a serious of non-linear attention

transformations of the input sparse high dimensional features into embedding features. The

discriminator (𝐷) is designed with a 1-dimension convolution layer and the fully connected layer

which aims to differentiate the embedding features from the valid data which the sample possesses

at the set prior distribution. The detailed network layer is shown in the bottom part of Figure 1,

and in the training process, the alternative update strategy is used to train the autoencoder network

and the discriminator. The generator optimization is provided in the previous section, therefore, in

the last section, we will only focus on discriminator optimization. This training process can be

treated as a two-player minimax game with the discriminator and generator playing against each

other. After optimization, the generator (the encoder of autoencoder) aims to embed features vector

with the target distribution.

 18

In our framework, given the valid samples from the prior distribution 𝑝(𝑧) data, while fake

samples are embedded feature vectors from the encoder generator as the inputs, the goal for

discriminator is to tell apart the prior distribution valid data from the fake data of embedded

vectors. Selecting a proper prior distribution is the most significant step during the adversarial

training. Like previous work in graph GANs research [40], the data prior distribution is commonly

defined as Gaussian noise or Uniform noise which helps autoencoder network to learn useful and

robust embedding representations against uncertainty. In our experiments, we test those two prior

data distributions and show almost have the same impact on results. However, here we only

proposed a generalized framework that other researchers can further used with their particular data

distribution which can enhance the application applied task performance. The detailed network

layers are built by three fully connected layers, the front two layers are both set with 𝑁 neural cells

and the final layer is set with 1 neural cell which makes a distinction between the valid samples

and fake samples. The solution to this training process of discriminator can be expressed as

following:

 𝑚𝑎𝑥𝔼𝑧~𝑝(𝑧)[𝑙𝑜𝑔𝐷(𝑧)] + 𝔼ℎ[log (1 − 𝐷(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(ℎ)))]. (9)

 19

The encoder is trained to minimize the second term in order to camouflage its output as prior

samples.

 In conclusion, we propose an end-to-end adversarial autoencoder graph shortest path length

attention network for node classification and graph embedding combined with supervised and

unsupervised learning. The GAN-like network is introduced with the autoencoder as generator

whose loss function is 𝐿𝑜𝑠𝑠𝐴𝐸 in Equation 8 and the neural network as discriminator whose loss

function is the Equation 9. In the training process, the alternative updating weights strategy is used

for finally achieving the steady model in two stages: (1) Train the autoencoder to fool the

discriminator with its generated embedding node representations. (2) Train the discriminator to

distinguish the true samples data distribution from the fake samples generated by the autoencoder.

 20

4.0 Experiment

We have conducted on the multi evaluation of the Great AAN model against various strong

and performance baselines and previous works, on one inductive task and four prevalent graph-

based benchmark transductive tasks, achieving or surpassing sota performance across all of them.

The following section will provide datasets, our experimental set-up details, results, and qualitative

analysis of Great AAN compared with others.

4.1.1 Datasets

Transductive learning: Three standard citation network benchmark datasets— Citeseer,

Cora, Pubmed [42] and one account-device network Alipay [43]. In those three citation datasets,

documents are treated as nodes and the citation links correspond to undirected edges. The datasets

include elements of a bag-of-words feature vectors representation for each document and all

citation links between documents. It is usually that only using 20 labeled samples per class to train

the model and evaluating on 1000 or 1500 test nodes. The Citeseer dataset includes 3327

documents, 4732 citation links, 6 classes and 3703 features for each node. The Cora dataset

contains 2708 documents, 5429 citation links, 7 classes and 1433 features per node. The Pubmed

dataset contains 19717 documents, 44338 citation links, 3 classes and 500 features per node as

shown in Table 1. And the Alipay dataset is built for detecting malicious accounts in the online

payment. The nodes represent the users’ accounts. The edges mean the login relationships between

accounts and their using devices during a period. Discretization of login behaviors into hours and

account profiles treated as node features. The class labels consist of malicious accounts and normal

 21

accounts. This dataset includes 981748 nodes, 2308614 edges and 4000 features per node.

Inductive learning: For the graph leaning task on biological networks, we make use of a protein-

protein interaction (PPI) dataset [41] for multi-label node classification. The dataset contains 24

graphs with 20 graphs for training, 2 for validation and 2 for testing. And each graph represents a

different human tissue with each node corresponds a protein and edges mean the interaction

between proteins. Each protein has input 50 features that include of positional gene sets, motif

gene sets and immunological signatures and 121gene ontology sets as labels. The average number

of nodes per graph is 2372 as shown in Table 1. The goal is to predict which labels are contained

in each node.

4.1.2 Parameter Settings

For the encoder part, a two-layer graph shortest path length attentional layer is adopted.

The first layer includes a set of a linear transformation with 𝐹′ = 128 and 6-heads graph shortest

path length attentional layer for a total output with 768 features with leaky ReLU activations (with

a leak of 0.2) and batch normalization (BN) [44]. Then a fully connect layer as the second layer is

followed for node classification with transforming 768 hidden layer features to 𝑁 features where

 22

𝑁 represents the number of the node classes. In the combination function of adjacency matrix

weights and two shortest path length values, the weight of computed attention coefficient 𝜆𝛼 is 0.7

and both two shortest path length weights 𝜆𝑠 are 0.15. Also, we show the choosing different rate

of 𝜆𝛼 and 𝜆𝑠 will make different results in Table 4. During the whole training process, the dropout

layer [45] with 𝑝 = 0.5 is used to each layer for avoiding overfitting and λ = 0.001 is applied in

the 𝐿2 regularization. Those parameters are all suitable inductive learning, but for transductive

leaning, except the 𝐹′ = 8 with 48 hidden features are different, other parameters are the same.

Also, Adam optimizer with an initial learning rate of 0.005 for all datasets. For the decoder part,

the same structure as the encoder is applied with a two-layer graph shortest path length attentional

layer which the first layer consists of a linear transformation with 𝐹′ = 128. And then followed

by the fully connected layer with output F features, where F represents the row feature dimension

of the node. Also, anther fully connected layer for reconstructed the neighborhood relationship via

adjacency matrix transfers hidden features to 𝑁 features where 𝑁 is the number of nodes. For the

discriminator (𝐷) of the framework, the standard three neural layer network is applied, which

consists of a 512-512-1 layer structure. For the first two layers, leaky ReLU activations (with the

leak of 0.2) and batch normalization are also followed and the dropout layer with 𝑝 = 0.5. For the

final output layer, the sigmoid activation function is used for classification. The prior distribution

of adversarial learning is set to U [-1, 1] or N [-1, 1]. Finally, all training processes are conducted

on NVIDIA Tesla P100 GPUs with the Pytorch framework.

 23

4.1.3 Results

For the inductive task on the PPI dataset, we provided the 𝑚 − 𝐹1 score as the evaluation

metric, which has an overall evaluation of precision and recall. Training on the nodes of the 20

graphs, 2 for validation and testing on 2 untrained graphs. We compared our Great AAN model

with several baselines, such as MLP (multilayer perceptron), utilizes the node features but not the

structures of the graph, and state-of-art models such as GraphSAGE [19]. GraphSAGE* represents

the best GraphSAGE result we are able to obtain by just modifying its architecture. GCN [14] that

“GCN-mean” by averaging the neighborhoods instead of GCN and GAT Table 2. The results

obviously show the effectiveness and performance of graph attention autoencoder with the shortest

path length connections and adversarial learning. More specifically, we are able to improve upon

GAT by a margin of 0.102 on the PPI dataset demonstrating that our model has the potential to be

applied in inductive settings. For the transudative learning task of node classification, the

experiments conducted on several graph benchmark datasets including Cora, Citeseer, Pubmed

and Alipay. The accuracy and F1 are reported on testing nodes. Comparing with nowadays state-

of-the-art techniques such as DeepWalk, node2vec, ICA [46], Chebyshev, GCN, MoNet [47],

GraphSAGE and GAT. We report the comparison results of transudative settings on those datasets

in Table 3. In most cases, we found our method achieved or matched state-of-the-art results.

Furthermore, for analyzing the hyper-parameters weights of the shortest path length in of

𝜆𝑠. We changed each of 𝜆𝑠 and 𝜆𝑎 = (1 − 2 × 𝜆𝑠) to analyze the impact of joining the shortest

path length with attention layer. The results are shown in Table. 4 and all these results are obtained

from the Cora dataset. And as we can see, the best performance archived at 𝜆𝑠 equals 0.15 so that

𝜆𝑎 is 0.7.

 24

Table 3: Summary of testing results on Cora, Citeseer, Pubmed and Alipay in the

transductive setting. In accordance comparison and with former benchmarks, we report

accuracy for Cora, Citeseer, Pubmed, and F1 for Alipay.

 25

5.0 Conclusion

In this work, we presented a novel, generalized framework, graph-embedding enhanced

attention adversarial autoencoder networks (Great AAN) for Social Network which focuses on

studying the graph embedding features representation and applying the learned embedding features

to address the node classification task. The Graph Shortest Path Length Attention Layer (GSA)

improved assigning different significance to different nodes within a neighborhood even though

there is no direct connection with preserving the structural shortest path length. Our network can

copy with different sized neighborhoods of nodes, which does not rely on the whole graph structure,

thus it can address many previous spectral-based approaches challenges. With the decoder network,

we further address the problem of preserving structure information and sparsity by jointing the

first order proximity and second-order proximity, so that the features of the learned representation

can be local and global structure-preserving. A particularly interesting research GAN is taken as

embedding features adversarial leaning with a prior data distribution to enhance the robustness.

Finally, Our models have successfully achieved state-of-the-art performance across four well-

established node classification benchmarks, both inductive task (PPI) and transductive task (Cora,

Citeseer, Pubmed and Alipay).

 26

Bibliography

[1] H. L. Jiliang Tang, “Node classification in signed social net- works,” 16th SIAM

International Conference on Data Mining 2016, SDM 2016, pp. 54–62, 2016.

[2] G. P. Gao S, “Temporal link prediction by integrating content and structure information,”

In CIKM, pp. 1169–1174, 2011.

[3] Y. Lin, “Learning entity and relation embeddings for knowledge graph completion,”

Twenty-ninth AAAI conference on artificial intelligence, 2015.

[4] M. Zhang, “An end-to-end deep learning architecture for graph classification,” Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[5] H.Tang, “Classifying stages of mild cognitive impairment via augmented graph

embedding,” MBIA 2019, MFCA 2019, pp. 30–38, 2019.

[6] S.Wang, “Structural deep brain network mining,” the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 475–484, 2017.

[7] S.T. RoweisandL.K. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[8] M. Belkinand, “Laplacian eigenmaps for dimensionality reduction and data

representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[9] D. Cai, “Graph regularized nonnegative matrix factorization for data representation,”

IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 8, pp. 1548–

1560, 2010.

[10] B. Perozzi, “Deepwalk: Online learning of social representations,” the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining, pp. 701–

710, 2014.

[11] J. Tang, “Line: Large-scale information network embedding,” the 24th international

conference on world wide web, pp. 1067–1077, 2015.

[12] A. Grover “node2vec: Scalable feature learning for networks,” the 22nd ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

[13] D. Wang, “Structural deep network embedding,” the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 1225–1234, 2016.

[14] T. N. Kipf “Semi-supervised classification with graph convolutional networks,” the 5th

International Conference on Learning Representations, 2017.

 27

[15] J. Bruna, “Spectral networks and locally connected networks on graphs,” International

Conference on Learning Representations (ICLR2014), 2014.

[16] M. Defferrard, “Convolutional neural networks on graphs with fast localized spectral

filtering,” Advances in Neural Information Processing Systems 29, pp. 3844–3852, 2016.

[17] G. Li, “Can gcns go as deep as cnns?” the IEEE International Conference on Computer

Vision, pp. 9267–9276, 2019.

[18] M. Niepert, “Learning convolutional neural networks for graphs,” International

conference on machine learning, no. 2014-2023, 2016.

[19] W. Hamilton, “Inductive representation learning on large graphs,” Advances in neural

information processing systems, pp. 1024–1034, 2017.

[20] A.Vaswani, “Attention is all you need,” Advances in neural information processing

systems, pp. 5998–6008, 2017.

[21] Z. Lin, “A structured self-attentive sentence embedding,” International Conference on

Learning Representations 2017, 2017.

[22] Pelinkovac ,“Graph attention networks,” ICLR 2018, 2018.

[23] H. Chen, “Harp: Hierarchical representation learning for networks,” Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

[24] J. Li, “Discriminative deep random walk for network classification,” the 54th Annual

Meeting of the Association for Computational Linguistics, pp. 1004–1013, 2016.

[25] S.Cao, “Deep neural networks for learning graph representations,” Thirtieth AAAI

conference on artificial intelligence, 2016.

[26] H.Gao, “Deep attributed network embedding,” the Twenty-Seventh International Joint

Conference on Artificial Intelligence (IJCAI-18), pp. 3364–3370, 2018.

[27] T.H.Byers, “Determining all optimal and near-optimal solutions when solving shortest

path problems by dynamic programming,” Operations Research, vol. 32, no. 6, pp. 1381–

1384, 1984.

[28] J.J.GadElkarim, “Investigating brain community structure abnormalities in bipolar

disorder using path length associated community estimation,” Human Brain Mapping,

vol. 35, pp. 2253–2264, 2014.

[29] X.Zhao, “Efficient shortest paths on massive social graphs,” the 7th International

Conference on Collaborative Computing, vol. 77-86, 2011.

[30] I. Goodfellow, “Generative adversarial nets,” Advances in neural information

processing systems, pp. 2672–2680, 2014.

 28

[31] J. Guo, “Long text generation via adversarial training with leaked information,” the

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[32] H.Gao, “Progan: Network embedding via proximity generative adversarial network,” the

25th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 1308–1316, 2019.

[33] H.Gao, “Self-pacednetworkembedding,”the24th ACMSIGKDD International

Conference on Knowledge Discovery and Data Mining, no. 10, pp. 1406– 1415, 2018.

[34] H.Wang, “Graphgan: Graph representation learning with generative adversarial nets,”

AAAI, 2017.

[35] M. Arjovsky, “Wasserstein generative adversarial networks,” ICML, pp. 214–223, 2017.

KDD 2020, August 22-27, 2020, San Diego, United States

[36] Q. Dai, “Adversarial network embedding,” Thirty- Second AAAI Conference on

Artificial Intelligence, 2018.

[37] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[38] B. J. Jorgen, “Section 2.3.4: The bellman-ford-moore algorithm,” Digraphs: Theory,

Algorithms and Applications, 2000.

[39] R. E. Bellman, “Adaptive control processes: a guided tour,” Princeton university press,

2015.

[40] A. Radford, “Unsupervised representation learning with deep convolutional generative

adversarial networks,” ICLR, 2016.

[41] B.-J. Breitkreutz, “The biogrid interaction database: 2008 update,” Nucleic acids

research, vol. 36, pp. D637–D640, 2007.

[42] P. Sen, “Collective classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–

93, 2008.

[43] Z. Liu, “Neural network-based graph embedding for malicious accounts detection,” the

2017 ACM SIGSAC Conference on Computer and Communications Security, vol. 3, pp.

2543–2545, 2017.

[44] S. Ioffe, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” International Conference on Machin Learning, 2015.

[45] N. Srivastava, “Dropout: a simple way to prevent neural networks from overfitting,” The

journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

 29

[46] Q. Lu, “Link-based classification,” the 20th International Conference on Machine

Learning (ICML-03), pp. 496–503, 2003.

[47] F. Monti, “Geometric deep learning on graphs and manifolds using mixture model

cnns,” the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–

5124, 2017.

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	Figure 1: The main process of theGreat AAN consisting of two parts: (1) on the top line, the autoencoder for node features embedding; (2) on the bottom line, the adversarial network for embedding representation data distribution learning.

	2.0 Related Work
	2.1.1 Graph Embedding
	2.1.2 Shortest Path Length for Graph Learning
	2.1.3 Adversarial Networks on Graph Embedding

	3.0 GREAT AAN Architecture
	3.1.1 Graph Shortest Path Length Attention Layer (GSA)
	Figure 2: The Graph Shortest Path Length Attention Layer. ,𝒉-𝒊. represents the input node features. The function ,𝒇 (𝒉-𝒊., ,𝒉-𝑵.) consists of the average of the cosine similarity (gray line) and one LeakReLU activation function (black line). Th...
	Figure 3: The Multi-Heads Attention Mechanism. ,𝑾-𝟏.,,𝑾-𝟐., …, ,𝑾-𝒌. represent the different feature transformation matrixes that can transform hi into ,𝒉-𝒊_𝟏.,,𝒉-𝒊_𝟐., …, ,𝒉-𝒊_𝒌. , which can consider different aspects node attention at...

	3.1.2 Enhanced Attention Autoencoder
	Figure 4: The Enhanced Attention Autoencoder. Each node features would be fed into the autoencoder whose parameters are shared. In the encoder part, the loss function includes CrossEntropy function that can map node features into right classes and the...

	3.1.3 Adversarial Networks for Graph Learning

	4.0 Experiment
	4.1.1 Datasets
	4.1.2 Parameter Settings
	4.1.3 Results

	5.0 Conclusion
	Bibliography

