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Abstract 

 

More than 50 million adults in America suffer from chronic pain. Opioids are commonly 

prescribed for their effectiveness in relieving many types of pain. However, excessive 

prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory 

drugs (NSAIDs), another major class of analgesic, also have many problematic side effects 

including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and 

drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie 

drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain 

management. To facilitate pain related small-molecule signaling pathway studies and the 

prediction of potential therapeutic target(s) for the treatment of pain, here we present a 

comprehensive platform of pain domain-specific chemogenomics knowledgebase (PAIN-CKB) 

with integrated data mining computing tools. Our new computing platform describes the 

chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. PAIN-

CKB is implemented with a friendly user-interface for the prediction of the relevant protein 

targets of the query compound and analysis and visualization of the outputs based on HTDocking, 

TargetHunter, BBB predictor, and Spider Plot. We performed three case studies to systematically 

validate the integrity and accuracy of PAIN-CKB and its algorithms/tools.  First, system 

pharmacology target mapping was carried out for four FDA approved analgesics (acetaminophen, 
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diclofenac, fentanyl, and morphine) in order to identify the known targets and predict off-targets. 

Subsequently, the target mapping outcomes were applied to build physiologically based 

pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the potential drug-

drug interaction (DDI) between this pair of drugs. Finally, docking analysis was conducted to 

explore the detailed interaction pattern of acetaminophen reactive metabolite (NAPQI) and its 

hepatotoxicity target thioredoxin reductase (TrxR). 

 

Key words: Pain, Knowledgebase, Opioids, NSAIDs, Computational Systems Pharmacology-

Target Mapping, PBPK 
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1.0 INTRODUCTION 

1.1 PAIN  

1.1.1 Molecular mechanism of pain 

Pain is defined by the International Association for the Study of Pain (IASP) as ‘an 

unpleasant sensory and emotional experience associated with actual or potential tissue damage, 

or described in terms of such damage.’1 Briefly, it is an unpleasant sensation as a response to 

noxious stimuli from external or internal sources on the human body.2  

The nociception process starts with the activation of sensory fibers, also known as the 

nociceptors, in the peripheral by chemical, mechanical, and thermal stimuli that go beyond the 

noxious range.3 There are three main types of sensory fibers with different functionalities in the 

human body: Aβ-fibers, Aδ-fibers, and C-fibers.4 All the A-fibers can respond to thermal and 

mechanical stimuli. The Aβ-fibers have relatively large diameters and low thresholds and are 

highly myelinated.5-7 Thus they are mainly responsible for the quick conduction of light touch 

sensation.8 The thin myelinated Aδ-fibers are relatively smaller in diameters and higher in 

thresholds compared to the Aβ-fibers.4,9 They were believed to mediate fast and sharp pain 

caused by thermal or mechanical events.10 As to the C-fibers, they have the slowest conducting 

rate because they are unmyelinated and have the smallest diameters among the three main 

nociception fibers.11,12 These fibers have the highest thresholds and thus they only selectively 

respond to those noxious chemical, mechanical, and thermal stimuli.13 It is widely accepted that 

the Aδ-fibers and C-fibers were together termed as the nociceptors for their selectivity on the 
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painful stimuli.14 Once those nociceptors are evoked, electrical signals will be generated and 

transduced from the periphery to an area called dorsal horn located in the spinal cord (part of the 

central nervous system (CNS))15, where various sensory and nociceptive signals are converged 

and modulated before being passed by neurotransmitters, such as the excitatory glutamate or 

inhibitory γ-aminobutyric acid (GABA), to the brain (Figure 1).16 

Under normal circumstances, the ability to detect noxious signals is essential to the safety 

and wellbeing of individuals. Pain, or more specifically, acute pain, exhibits its protective role by 

motivating the body to keep away from damaging sources and adopting behaviors to promote the 

healing process of damaged body parts.17,18 Acute pain typically lasts less than 3 to 6 months and 

can be relieved when the stimuli source no longer lasts.19 For example, the pain from a healing 

wound can remind us to avoid further exposure to harmful sources and pain from inside of our 

body can be seen as a warning for certain diseases or internal organ damage. However, pain will 

be considered as chronic pain when it lasts longer than 12 weeks after the initial damage.20,21 

Chronic pain may occur as a result of alterations in the pain pathway. At this time, far from being 

beneficial, pain becomes both physiologically and psychologically debilitating.22  
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Figure 1 The diagram of pain pathway 
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1.1.2 Current statues of pain 

Chronic pain is one of the most common reasons for people to seek medical help in the 

United States23 and is often associated with restricted daily activities and lowered mood, which 

will ultimately lead to a decrease in quality of life. The consequence of chronic pain is far more 

server than acute pain. For example, it can cause listlessness, decreased appetite, sleep 

disturbance, weight loss, and immobility.24 On the other hand, emotional changes can also occur 

in patients, especially the elderly with chronic pain25, such as depression and anxiety and 

eventually lead to social withdrawal. 

According to a previous National Health Interview Survey data-based estimation, around 

50 million U.S. adults (20.4%) suffer from chronic pain.26 With such high prevalence, pain-

related healthcare costs are estimated to be $280 billion each year.27 Other economic losses could 

result due to the loss of productivity caused by pain.28 Yet still, approximately 79% of patients 

are not satisfied with their pain management medications they are receiving29,30 due to limited 

effectiveness31 and severe side effects caused by the analgesics currently available on the 

market.32 Thus, efforts in the improvement of clinical guidelines about patient monitoring 

practices and the development of novel analgesics with less side effect and better therapeutic 

effect are urgently needed.33 

1.1.3 Pain medications 

Currently, there are many kinds of analgesics available on the market. Non-steroidal anti-

inflammation drugs (NSAIDs), such as ibuprofen34 and celecoxib35, are some of the most used 
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classes of analgesics. These drugs are known to block the synthesis of prostanoids from 

arachidonic acids by inhibiting the prostaglandin G/H synthases (COX enzymes).36 NSAIDs are 

usually used to treat mild to moderate pain37 and their side effects include ulceration and 

bleeding in the GI tract, stomach pain, and renal failure38,39 depending on the dose and the 

inhibition ratio between COX1 and COX2.40  

When it comes to the relief of moderate to severe pain, the use of opioid analgesics like 

morphine, fentanyl, and codeine may be more dominant.41 As agonists of opioid receptors, after 

binding, opioid analgesics can cause a conformational change and switch the opioids receptor to 

its active state and deliver signals to both block the voltage-gated dependent calcium channel 

(which will enable the calcium ions to flow into the neuron cells)42,43 and activate the G protein-

coupled inwardly-rectifying potassium channel (which will pump out the potassium ions from 

the neuron cells)44. This process will further hyperpolarize the neuronal cells45 to inhibit the 

neural excitability and decrease the release of neurotransmitters to derive analgesia.46 Opioids 

may have better therapeutic effects, however, compared with NSAIDs, they often have more 

severe side effects such as respiratory depression, dependence, and drug addiction.32,47 

However, there are still critical problems associated with the analgesics available on the 

market. The most important aspect is the safety issue related to analgesics, especially opioids. 

Opioid poisoning is reported to be involved in nearly 40% of all the drug poisoning deaths48 due 

to the synergistic effects caused by the combination use of opioids49 

(https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates).50 Even under 

the recommended dosage, chronic use of opioids will still cause tolerance, addiction, and severe 

withdrawal syndrome.51 Moreover, the lack of progress achieved by the pharmaceutical industry 

during the past few years is not reflective of the urgent need for new analgesics with better 
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efficacy and side effects profile.52 Thus, the research into the pain process and treatment is of 

great importance and urgency. 

1.2 DATABASE AND PILOT STUDIES 

Herein, in order to accelerate the research of the pain-related areas, we constructed a pain 

domain-specific chemogenomics knowledgebase (PAIN-CKB) based on our previous established 

molecular information databases.53-57 The knowledgebase assembled a large amount of 

analgesics’ information and pain-related protein targets structure information extracted from the 

literature. The protein targets collected in PAIN-CKB are further divided into four major 

subgroups: G-protein coupled receptors (GPCRs), enzymes, ion channels, nuclear receptors, and 

others (if the target does not belong to the four major subgroups) based on the Drug Target 

Ontology (DTO) with slight modifications.58  

1.2.1 Target classification 

G-protein coupled receptors (GPCRs), which are consist of typical seven transmembrane 

domains and integral membrane G proteins, are the largest protein family of receptors in human 

body.59 It regulates a wide range of physiologically important cell signaling pathways through 

the coupled G proteins and arrestins after activation.60 As shown in Figure 2 (this figure is 

adapted from the work of Daniel Hilger et al.)60, when activated by extracellular signals, the 

receptor will go through a conformational change and further associate and activate the G protein 

(exchanging the GDP bound to the G protein for a GTP). The activation of G protein will cause 
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the Gα subunit and GTP disassociate from the Gβ and Gγ subunits. These subunits can then bind 

to its target receptors and exhibit the signaling function. Currently, there are around 34 percent 

drugs approved by the FDA target on different GPCRs.61 For example, the nutrient sensors free 

fatty acid receptors (FFA2, FFA3) are potential targets for inflammatory diseases and metabolic 

dysfunction62 and the formyl peptide receptors (FPR) can recognize pathogens and thus become 

drug targets related to the immune responses,63 etc. Because of this wide participation, GPCRs 

has become a hot target for drug development.  

 

 

Figure 2 GPCR signaling mechanism 

 

Enzymes are biological catalysts in organisms which accelerate the reactions in metabolic 

pathways to sustain life. Thus, the enzyme is another promising drug target.64 Cases are abundant: 

the amine oxidase mainly catalyzes the oxidative deamination of biogenic amines such as 5-

hydroxytryptamine (5-HT), norepinephrine and epinephrine.65 Drugs targeting at amine oxidase 
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are thus used to treat the neurological disorders66 like depressions and epilepsy or as 

anesthetics.67 Another example is β-lactamase, which can provide resistance to β-lactam 

antibiotics in bacteria.68 To overcome that, the β-lactamase inhibitor, tazobactam  ̧was developed 

to restore the therapeutic effect of antibiotics such as Piperacillin.69 

Ion channels are the third major drug target class. They are transmembrane proteins 

widely distributed in body with a pore that allows specific ions to pass through70. When activated 

by ligand binding, voltage changes or stretch, ions channels will go through conformational 

changes thus control the substance exchange between different sites of the membrane.71 Ion 

channels are involved in a series of physiological processes such as nerve conduction, muscle 

contraction, and sensory reception72 and they are the second biggest drug family accounting for 

approximately 13% of the known drugs so far.73 For example, the anticonvulsant phenytoin 

works by blocking voltage‐dependent of membrane sodium channels.74 Verapamil, which is a 

non-dihydropyridine calcium channel blocker, is used for the treatment for angina, cardiac 

arrhythmias.75  

The last subgroup, nuclear receptors, are proteins that can bind to the DNA and control 

the expression of genes. Therefore, nuclear receptors are often called as transcriptional factors.76 

Nuclear receptors can be divided into four different subgroups depending on the cellular 

distribution and dimerization state.77,78 However, their mechanism of actions can be identical: 

ligand binding to the nuclear receptor can cause a conformational change to the receptor and 

further direct the nuclear receptor to the transcription regulation site to cause the up-regulation of 

down-regulation of the gene expression level.79 The critical transcriptional regulation function of 

nuclear receptors have made them important therapeutic drug targets.80 For example, the 
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peroxisome proliferator-activated receptors (PPARs) are popular targets for anti-inflammation81 

and anti-diabetic drugs,82 orphan nuclear receptor 4A1 (NR4A1) is a target for breast cancer 

chemotherapy,83 and the DAF-12 receptor in Caenorhabditis elegans is emerging as target for the 

treatment of parasitic diseases.84  

Integrated with the algorithms previously developed by our lab, such as TargetHunter,85 

HTDocking, and Spider Plot, PAIN-CKB enables the pain-related target identification, drug 

repurposing analysis, small-molecule screening, and DDI predictions from the view of systems 

pharmacology. Therefore, PAIN-CKB is a valuable platform for information sharing and 

investigating in the pain domain in the hope of aiding the research of pain and analgesics. We 

also conducted a series of case studies based on four FDA-approved analgesics (acetaminophen, 

diclofenac, fentanyl, and morphine) to demonstrate the usage of our PAIN-CKB.  

1.2.2 Four analgesics for pilot studies 

Acetaminophen (N-acetyl-para-aminophenol), also known as paracetamol or Tylenol, is 

one of the most commonly used medication for the management of fever and mild to moderate 

pain.86 It is widely used in combination with opioid analgesics to treat moderate to severe pain in 

order to reduce the dosage of opioids and avoid severe side effects.87 Acetaminophen exhibits the 

therapeutic effect by interacting with the COX enzymes in the central. However, the COX 

enzyme inhibition effect is relatively weak in the peripheral88 and this provides an explains why 

acetaminophen serves as analgesics as well as antipyretics but not anti-inflammation 

medication.89 At its therapeutic dose, acetaminophen is mainly metabolized to acetaminophen 

glucuronide (52-57%), acetaminophen sulfate (30-44%), and N-acetyl-p-benzoquinone imine 
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(NAPQI, 5-10%) in the liver (Figure 3). Among them, NAPQI is a highly electrophilic 

metabolite produced by the cytochrome P-450 (CYP) enzymes and it is mainly responsible for 

the acetaminophen liver toxicity when overdosed.90  According to Yi-Hua Jan et.al, NAPQI can 

covalently modify and inhibit the redox center of TrxR, which is an important cellular 

antioxidant involving in diverse physiological systems,91 and cause enzyme inhibition and 

further hepatotoxicity.92  

 

Figure 3 The metabolic pathways of acetaminophen 

UGT: UDP-glucuronosyl transferases, main UGTs involved in the metabolic pathways of 

acetaminophen include UGT1A1, UGT1A6, UGT1A9 and UGT2B15. CYPs: cytochrome P450 

enzymes, main CYPs involved in the metabolic pathways of acetaminophen include CYP3A4, 

CYP1A2, CYP2E1, CYP2D6, and CYP2A6. SULTs: sulfotransferases, main SULTs involved in 

the metabolic pathways of acetaminophen include SULT1E1, SULT1A1, SULT2A1, SULT1A3, 

and SULT1A4. 
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Figure 4 The metabolic pathways of diclofenac 

CYPs: cytochrome P450 enzymes, main CYPs involved in the metabolic pathways of diclofenac 

to 5-hydroxydiclofenac include CYP2C8, CYP2C19, CYP3A4, CYP2B6, and CYP2C18. 

 

Diclofenac (2-[2,6-dichloranilino]phenylacetic acid) is a NASID drug sold under the 

brand names Voltaren. It is used to treat pain and inflammatory disorders.93 Diclofenac is 

confirmed to inhibit the COX enzymes (with a better inhibition effect on COX2 than COX1) and 

further reduce the synthesis of prostaglandin to achieve analgesia. There are also some 

publications discussing the possibility for diclofenac to inhibit the synthesis of leukotriene, 
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phospholipase A2, and simulate the peripheral nitric oxide–cyclic guanosine monophosphate–

potassium channel pathways.94 The metabolism of diclofenac mainly takes place in the liver and 

depends on the hydroxylation and glucuronidation pathways as shown in Figure 4. The main 

metabolite product of diclofenac is 4-hydroxydiclofenac.95 

Fentanyl (1-phenethyl-4-N-propionylanilinopiperidine) is a potent (50 times more potent 

than heroin and 100 times more potent than morphine) synthetic opioids which is frequently used 

to treat severe chronic pain and cancer pain.96 However, the strong potency of fentanyl has also 

contributed to its common appearance with the illicit drugs such as heroin.97 According the data 

provided by the National Institute of Drug Abuse (https://www.drugabuse.gov/related-

topics/trends-statistics/overdose-death-rates), the overdose death involving fentanyl is around 

28,000 in 2017 and the number is still increasing dramatically.98 Fentanyl is extensively 

metabolized in human liver by the CYP3A4 enzyme to norfentanyl (Figure 5).  

 

 

Figure 5 The metabolic pathway of fentanyl 

https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates
https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates
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Morphine ((5alpha,6alpha)-17-methyl-7,8-didehydro-4,5-epoxymorphinan-3,6-diol) is an 

opioid analgesics that naturally exists in the opium poppy.99 It acts as an agonist for endogenous 

opioids receptors to achieve pain relief, sedation, euphoria and respiratory depression.100 As 

shown in Figure 6, morphine is mainly metabolized through glucuronidation to morphine-3-

glucuronide (around 60%) and morphine-6-glucuronide (5%-10%).101,102 The remaining minor 

portion is metabolized by the CYP enzymes to normorphine.103 

 

 

Figure 6 The metabolic pathways of morphine 
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UGT: UDP-glucuronosyl transferases, main UGTs involved in the metabolic pathways of 

morphine to morphine-6-glucuronide include UGT2B7, UGT2B4, UGT1A1, UGT1A3, and 

UGT1A8; main UGTs involved in the metabolic pathways of morphine to morphine-3-

glucuronide include UGT2B7, UGT2B4, UGT1A1, UGT1A3, UGT2B15, UGT1A9, UGT1A10, 

and UGT2B17. CYPs: cytochrome P450 enzymes, main CYPs involved in the metabolic 

pathways of morphine to normorphine include CYP3A4 and CYP2C8. 

 

Based on the newly established knowledgebase PAIN-CKB, firstly, a computational 

systems pharmacology target mapping was constructed to identify the known targets and 

potential off-targets based on the output of HTDocking and TargetHunter for the above four 

analgesics. Secondly, PBPK models were applied to quantify the DDI between acetaminophen 

and fentanyl from the PK aspect. Finally, we conducted docking studies to reveal the detailed 

interaction pattern between acetaminophen reactive metabolite and its reported liver toxicity 

target thioredoxin reductase 1 (TrxR1). 
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2.0 METHODS 

2.1 PAIN-CKB CONSTRUCTION 

2.1.1 Database infrastructure 

PAIN-CKB (https://www.cbligand.org/g/pain-ckb) is a one-stop integrated cloud 

computing server containing analgesics profiles, pain-related protein targets information, and 

chemoinformatics tools. Users can submitted compounds using JSME Molecular Editor v2017-

03-01.104 PAIN-CKB was constructed on the base our established molecular database prototype 

DAKB-GPCRs (https://www.cbligand.org/dakb-gpcrs/)56 using SQLite database management 

system (https://sqlite.org/) and Kestrel HTTP server (https://github.com/aspnet/ 

KestrelHttpServer) with Apache HTTP server (https://httpd.apache.org/) as its reverse proxy 

server. To support this new pain-domain knowledgebase we refactored the architecture and 

added multi-domain support, keyword-based protein search, variable number of target structures 

support, new webpage layout, etc. The overall workflow of our PAIN-CKB is shown in Figure 7. 

 

https://www.cbligand.org/g/pain-ckb
https://www.cbligand.org/dakb-gpcrs/
https://sqlite.org/
https://github.com/aspnet/%20KestrelHttpServer
https://github.com/aspnet/%20KestrelHttpServer
https://httpd.apache.org/
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Figure 7 Overview of PAIN-CKB 

PAIN-CKB is a one-stop integrated cloud computing server containing analgesics profiles, pain-

related protein targets information and chemoinformatics tools with free access to the public. 

PAIN-CKB is designed to facilitate the research, for example, drug repurposing, DDI prediction, 

and drug combination studies in pain-related areas  
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The PAIN-CKB website is compatible with commonly used web browsers (such as 

Chrome, Firefox, Microsoft Edge, and Safari) provided JavaScript and cookies are enabled. Our 

PAIN-CKB is free to public users. The newest versions of these browsers are recommended for 

better user experience. 

 

2.1.2 Genes and proteins  

Genes or proteins that are related to pain were extracted from literature research and 

public databases such as Ensembl (https://useast.ensembl.org/index.html),105 UniProt 

(http://www.uniprot.org/ uniprot/),106 KEGG (https://www.genome.jp/kegg/),107 GPCRDB 

(https://gpcrdb.org/),108 and NCBI Protein Database (https://www.ncbi.nlm.nih.gov/protein/).109 

Protein targets were further divided into four major groups according to the Drug Target 

Ontology (DTO)58 as introduced before.  

Available 3D crystal structures of pain-related targets were collected from the Protein 

Data Bank (PDB) (https://www.rcsb.org/). PDB files of homo sapiens were chosen in priority. 

For those protein targets without homo sapiens’ PDB files, homology modeling techniques were 

applied to replace the incorrect amino acid sequences. PDB files were further processed using 

PyMol to separate the target proteins and the small molecules binding in the corresponding 

binding pockets when crystalizing.110 The binding pocket of the target proteins were then 

generated using the SYBYL software based on the coordinates of the separated small molecules. 

For PDB files without small molecules binding to the proteins, the binding pockets were 

generated automatically in SYBYL and manually selected based on important residues in the 

https://useast.ensembl.org/index.html
http://www.uniprot.org/%20uniprot/
https://www.genome.jp/kegg/
https://gpcrdb.org/
https://www.ncbi.nlm.nih.gov/protein/
https://www.rcsb.org/
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binding pockets reported published literatures. If one protein target possesses more than one 

binding pocket such as glycine receptor subunit alpha-3 (GLRA3), which owns a ligand binding 

region and a modulator binding region,111 different pockets will be defined based on both regions 

to fit specific purposes of different users. 

2.1.3 Homology modeling  

Homology modeling, also known as comparative modeling, is a technique to construct 

atomic models for a protein target based on the sequences and structures of homologous 

proteins.112 For those protein targets without homo sapiens PDB files, we applied homology 

modeling method to build the 3D structure model using Modeler software.113 The intact amino 

acid sequence from different species can be downloaded from the UniProt database 

(http://www.uniprot.org/uniprot/).  

To build a homology model for a specific protein target, we start with providing the 

homo sapiens target sequence and a template structure from another species of that protein. Then 

the target sequence will be aligned with the sequence of the template structure before the 3D 

structure model was built. A brief graphic description of the overall workflow of homology 

modeling is shown in Figure 8. 

 

http://www.uniprot.org/uniprot/
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Figure 8 Brief workflow of homology modeling 

 

2.1.4 Drugs and chemicals 

All the drugs integrated in PAIN-CKB were collected from the DrugBank database 

(https://www.drugbank.ca/) filtered under drug categories using the keyword ‘analgesics’. The 

https://www.drugbank.ca/
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drug targets, enzymes, carriers, and transporters information were also integrated in our 

knowledgebase for reference.  

ChEMBL database (https://www.ebi.ac.uk/chembl/) (version 23)114 was utilized in our 

work. The experimental data for each small-molecule against and their respective target proteins 

were collected using text mining techniques and cleaned up by manual inspection. Bioactivity 

data from different resources were normalized using the same standard.  

2.1.5 Computational tools 

In order to fulfil the potential of the collected target information and drug data in the 

PAIN-CKB, several chemoinformatics tools developed by our lab before were integrated in this 

knowledgebase to identify the therapeutic targets, potential off-targets, physiochemical 

properties, and ADME (absorption, distribution, metabolism, and excretion) profiles of the query 

compounds. Equipped with those tools, our PAIN-CKB can be used to facilitate the discovery 

and development of novel small-molecule analgesics and help investigate and understanding of 

possible DDIs between analgesics. The fundamental principles of these computational tools were 

briefly described as below:  

HTDocking. PAIN-CKB is equipped with HTDocking, an online high-throughput 

molecular docking technique, for the identification of possible interactions between protein 

targets and the user-inputted small molecules. Three different conformations with the highest 

resolutions were processed as indicated before for each target/protein, depending on the 

availability of PDB files (if the currently available PDB files are less than three, then this number 

will shrink accordingly). Briefly, HTDocking will automatically dock each query compound into 

https://www.ebi.ac.uk/chembl/
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the previously defined binding pockets of these different conformations and generate at most 

three independent docking scores. A higher the docking score indicates the more likely the query 

compound will be the ligand of the protein target of interest. The HTDocking algorithm is 

established based on the iDock algorithm115, which can provide predicted binding affinity values 

(ΔG values) based on independent docking poses for each compound when interacting with 

different  proteins. The HTDocking program only consider the best binding affinity value. Our 

PAIN-CKB can further transfer the affinity values to docking scores using the following 

equation: Docking score = -log10 (eΔG*4184/8.314/310.15). 

TargetHunter. The second powerful web-interfaced chemoinformatics tool integrated in 

PAIN-CKB is called TargetHunter, which can be used to predict the potential of the submitted 

compounds to interact with the therapeutic targets of interest.85 TargetHunter is constructed 

based on an fundamental principle of medicinal chemistry, that is compounds have similar 

physicochemical profiles or biological properties always share structural similarities. The query 

compounds will be first converted to molecular descriptors, which can be understood as 

numerical values that represent the structural information, physical properties, chemical 

reactivity, and biological activity of chemical compounds of interest, for these compounds to be 

treated mathematically by computers.116  

More specifically, the molecular descriptors used in TargetHunter are various molecular 

fingerprints: Extended Connectivity Fingerprint 6 (ECFP6), ECFP4, and FP2 molecular 

fingerprints.117,118 The detailed form of different molecular fingerprints can be different from 

each other but the overall fundamental concepts between these methods are identical. Figure 9 

provides a graphic explanation of the ECFP method. TargetHunter will automatically calculate 

the similarity score for each inputted compound based on the molecular fingerprints using the 



22 

 

Tanimoto coefficients (from 0.0-1.0, totally different to totally the same) with its known active 

compound’s dataset collected from Drugs and Chemicals. For each target, the algorithm will 

give the highest similarity score between the query compound and all the known compounds 

interacting with that specific protein target. 

 

 

Figure 9 Graphic description of the principle of molecular fingerprints 

 

BBB Predictor. We also integrated our blood-brain barrier (BBB) predictor into PAIN-

CKB as well. This predictor was built based on the support vector machine (SVM) and 
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LiCABEDS119,120 algorithms on four types of fingerprints of 1593 reported compounds.121 It can 

predict the ability of a  query compound to penetrate across the BBB to the central nervous 

system (CNS).122 Besides our knowledgebase, the BBB predictor can also be visited at 

https://www.cbligand.org/BBB/. 

Spider Plot. The last algorithm implanted in PAIN-CKB is Spider Plot, which is able to 

construct the interaction network map between molecules and proteins based on the output of 

HTDocking and TargetHunter. The averaged docking scores are shown as labels and the 

predicted protein targets of the query compounds are presented using circular dots. By default, 

the green nodes indicate targets with high similarity scores (> 0.7) comparing the best matched 

known compound and the query compound, while magenta ones denote the predicted off-targets. 

Users can customize the font sizes, node sizes, colors, border widths, node shapes as well as the 

layout completely within Spider Plot. Users can export the generated network maps as image 

files on particular browsers. Through the spider plots, users can easily get some primary hints 

about whether there are common targets between different molecules and combine other methods 

to investigate the possible DDIs.  

2.2 TARGET MAPPING CONSTRUCTION 

DDI is a very common yet life-threatening phenomenon in clinical situation.123 To better 

detect and present the possible DDIs related to analgesics, we conducted a computational 

systems pharmacology mapping using Cytoscape (version 3.7.1)124 for four commonly used 

analgesics (acetaminophen, diclofenac, fentanyl, and morphine) based on the results of 

HTDocking and TargetHunter. Cytoscape is an open source bioinformatics platform which can 
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be used to construct and visualize the interaction network between genes, proteins, and drugs. 

Users can easily modify the network to better cater their specific needs. In this study, drugs are 

indicated using circles, the nodes are used to represent the protein targets, and the interactions 

are denoted using lines. Specifically, the green nodes and the solid lines indicate those confirmed 

drug therapeutic targets and known interaction. The magenta nodes and dashed lines indicate 

those potential off-targets and predicted drug-protein interactions.  

2.3 MOLECULAR DOCKING 

Molecular docking is a commonly used method to predict the possible orientation and the 

detailed interaction pattern between a small molecule and its protein target.125 The docking 

results can provide us information about the critical residues or functional groups responsible for 

the biding between the molecule and target and further guide the de-novo rational-based drug 

design process.126 The docking algorithm is used in this study to reveal the interaction between 

the small-molecule analgesics (acetaminophen and fentanyl) and their common target (CYP3A4 

(PDB ID: 4K9T) and ABCB1 (PDB ID: 6FN1)) as well as the active metabolite NAPQI and its 

reported hepatotoxicity target TrxR1 (PDB ID: 2ZZ0). 

Docking analysis was conducted using Chimera (Version 1.13.1)127 in this study. 

Chimera is a program used for visualizing and analyzing the protein and molecule structures. 

Energy minimization was first conducted on both the protein targets and small molecules 

analgesics using AMBER ff14SB force field.128 After that, docking was ran using AutoDock 

Vina129, which is integrated in Chimera. The docking workflow is shown in Figure 10. The 

output contains multiple possible docking poses. The final poses were manually selected based 
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on both the docking scores (the lower the better), the degree of overlap between the binding 

results and crystalized ligand, and the key residue contributions.  

 

Figure 10 The docking workflow 

 

2.4 PBPK MODELING 

In this study, we tried to use Simcyp Population-based ADME Simulator130 to construct 

PBPK models to investigate and explain the DDI between acetaminophen and fentanyl as 

indicated by our target mapping results from the PK aspect. Simcyp is an in-silico population-

based simulation platform developed by the Simcyp Limited, Sheffield, UK.131 It utilizes the 
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bottom-up method to build the mechanism-based PBPK models to predict the ADME profiles of 

drug compounds.  

In Simcyp, the PBPK model is separated into systems data and compound/drug data. In 

this study, we used healthy volunteers as our simulation population. The parameters in systems 

data are kept default. As to the compound data, the required parameters of the PBPK model were 

obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov)132 or from previously published 

data if available and if not, we used Simcyp software to predict the missing parameters.  

The simulations were conducted upon 10 trials of 10 virtual healthy volunteers. The mean 

value of systematic drug concentration in plasma were generated as well as the upper 95th 

percentile and the lower 5th percentile of the simulation range. The constructed models were 

validated using the PK profiles from previously published papers before being applied to 

investigate the possible DDI.  

2.4.1 Full PBPK modeling 

A full PBPK model consists of explicit compartments that indicated the organs of the 

human body critical to the ADME process of the drug for their intrinsic physiological functions. 

Organ compartments simulated include the lung, adipose tissue, bone, heart, kidney and blood. 

The separate organ compartments are linked by the circulating blood system. The parameters for 

each compartment include anatomy parameters such as the organ capacities, blood flow rates, 

and tissue/blood partition coefficients.133 Based on the time-based differential equations, full 

PBPK  models are able to simulate the drug concentrations in different organ compartments. The 

overall architecture of a typical full PBPK model is shown in Figure 11. 
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Figure 11 Full-PBPK model 

Representation of the overall structure of a full PBPK model. The blue and red lines with arrows 

indicate the venous and arterial blood flow directions. IV: intravenous therapy; PO: oral 

administration. 

 

In this project, we used the full PBPK modelling method to construct the fentanyl model 

in Simcyp. Factors like age, sex, height and body weight can contribute to the interindividual 

variability. According to the literature report, the metabolism of fentanyl in human body is 

mainly mediated by CYP3A4 pathway (around 90%). The renal clearance also accounted for less 
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than 10% of fentanyl elimination. Contribution from other clearance pathways are negligible, so 

this part of metabolism was not considered in this model. 

2.4.2 Minimal PBPK model 

The full PBPK model takes all the major compartments in the human body, which can 

better fit the experimental data but collecting all the parameters required can be a very 

demanding task. An alternative way is to use a minimal PBPK model. The major difference 

between full PBPK model and minimal PBPK model is that the full PBPK model considers the 

drug concentration in different compartments separately while the minimal PBPK model 

assumes that the drug concentration in plasma is identical to that of organ tissues (exclude 

liver).134 The minimal PBPK model only considers the core compartments needed for 

constructing a PBPK model. Thus, the minimal PBPK model inherits the major advantages for 

being a mechanism-based model from whole-body PBPK models while requires relatively fewer 

input parameters.134,135 Figure 12 is the paradigm of a minimal PBPK model.  

Acetaminophen is mainly metabolized in the liver, which is covered by the minimal 

PBPK model, and here we are mainly interested in the blood or plasma time-concentrations 

curves. Thus, the acetaminophen model was built using the minimal PBPK model with four basic 

compartments (central, liver, gut, and single adjusting compartment (SAC)) in Simcyp. The SAC 

is a virtual organ compartment with physiological parameters which can be adjusted arbitrarily to 

account for the influence caused by all the other organs on the drug PK profile.136 The total 

systemic clearance was used to describe the metabolism of acetaminophen, and the percentage of 

drugs metabolized by CYP3A4 is around 5% to 10%.137 In addition, the inhibition effect of 
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acetaminophen on the CYP3A4 enzyme is considered as the main reason for the DDI between 

acetaminophen and fentanyl in the PK level. The inhibition constant Ki (Ki = 2800 μM) of 

acetaminophen was collected from the literature.138    

 

 

Figure 12 Minimal PBPK model 

SAC: single adjusting compartment; QH: blood flows in the liver; QPV: blood flows in the portal 

vein; QHA: blood flows in the hepatic artery; kin and kout are first order rate constants of the 

masses of drug within the systemic compartment and the SAC; IV: intravenous therapy; PO: oral 

administration. 
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2.4.3 PBPK model validation 

Before applying these models to investigate the possible DDI between acetaminophen 

and fentanyl, we first used experimental data to validate if the newly-constructed PBPK models 

can predict the PK profiles correctly. The experimentally observed plasma concentration-time 

data of acetaminophen and fentanyl were extracted from a previously published paper as a 

validation of the reliability of PBPK models. The simulation dosing regimen and administering 

route were selected based on the same literature where the experimental data comes from to wipe 

out unnecessary influence caused by those factors. The simulated plasma concentration profiles 

were generated upon 10 trials of 10 virtual healthy volunteers. The arithmetic mean prediction 

values and 95th/5th percentile values of simulated results were compared with the experimental 

data. The parameters related to absorption were ignored as all the drug administration routes 

selected in this study are iv bolus in order to keep consistency with previously published 

literature. 
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3.0 RESULTS 

3.1 OVERVIEW OF PAIN-CKB 

To date, PAIN-CKB archived 272 analgesics and 84 pain-related targets. All the 

collected pain-related targets are listed in Table 7 in appendix. These targets were further 

divided into four main groups following the criteria introduced before. As shown in Figure 13, 

the targets collected were separated into: (1) 28 G-protein coupled receptors (GPCR), such as mu, 

kappa, delta-opioid receptor (OPRM, OPRK, OPRM), cannabinoid receptors (CNR1, CNR2); (2) 

32 enzymes, such as Prostaglandin G/H synthases (PGH1, PGH2), angiotensin-converting 

enzyme (ACE); (3) 14 ion channels, such as transient receptor potential cation channels (TRPV1, 

TRPV2, TRPV3, TRPM4, TRPM8); and, (4) 2 nuclear receptors: progesterone receptor (PRGR) 

and estrogen receptor1 (ESR1). The PAIN-CKB will be continuously updated to keep the 

validity and comprehensiveness of the information collected. Also, we identified 169,321 

chemical agents reported for these target proteins from ChEMBL database, which includes 

39006 inactive compounds, 26704 intermediate compounds, and 103611 active compounds for 

further reference.  
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Figure 13 Summary of pain-related targets in PAIN-CKB 

A total of 84 pain-related targets are collected in the PAIN-CKB: (1) 28 G-protein coupled 

receptors, (2) 32 enzymes, (3) 14 ion channels, (4) 2 nuclear receptors, and (5) 8 other targets 

categorize. 

 

The equipped chemoinformatics tools like TargetHunter, HTDocking, BBB predictor, 

and Spider Plot in PAIN-CKB provide public users with cloud computing services for target 

identification and systems pharmacology research. The knowledgebase enables two usages: 

protein search and query compound computation. The protein search is a keyword-based full-text 

search for the best-matched pain-domain targets in the database. The query compound 

computation accepts a small molecule (in SMILES or other common formats) and emits for each 
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pain-domain target in our database both the docking scores in the binding to the known X-ray / 

Cryo-EM structures and the most similar experiment-proved active compound. All ~90,000 

known experimented compounds for the DAKB-GPCRs database56 plus 3,000 compounds from 

Zinc database139 were tested (~500,000 docking runs in total) before the server first released.  

To start a new calculation job, users can click on the ‘Create a new job’ bottom from any 

page of PAIN-CKB. After naming the new job, users can submit the small-molecule structure by 

either draw the molecular structure or paste the MOL, SDF or SMILES format of the compound 

through the drop-down menu of the blue double-triangle icon located in the toolbar. Users can 

upload up to 5 small-molecules in one single job to explore the drug-target interaction network 

between them. After modifying and confirming your submitted job, hit on the ‘Create Job’ 

bottom then your job will be processed automatically (as shown in Figure 14).  

 

 

Figure 14 Create a new job in PAIN-CKB 
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While the new job is under processing, as shown in Figure 15, users can navigate the 

web page to see the ligand structure models, SMILES and various molecular fingerprints of the 

submitted small-molecule. Once the calculation is finished, the docking score and similarity 

score of the inputted ligand on each protein target will be listed near the respective protein. Users 

can switch between table format output (Figure 16) or card format output (Figure 17) for 

convenience. Also provided in the output page are some useful links to other webpages such as 

Uniport and PDBe140 to information about the protein, to download models or to compare 

between best matched known molecule. The spider plot will be generated automatically based on 

the calculation result. In this case, our algorithm predicates that the example compound SMZ is 

not a potential ligand for any of the collected protein targets in the PAIN-CKB (Figure 18).  

 

 

Figure 15 The processing page of PAIN-CKB 
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Figure 16 Example output of PAIN-CKB in table format 
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Figure 17 Example output of PAIN-CKB in card format 
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Figure 18 Example output of spider plot in PAIN-CKB 

 

 

3.2 TARGET MAPPING FOR FOUR ANALGESICS 

 

We conducted a series of pilot studies to demonstrate the functionality of our PAIN-CKB 

and how computation algorithms can aid the research in pain-related areas. First of all, we 

conducted a computational systems pharmacology-based study to generate a target mapping for 

four analgesics approved by the FDA (acetaminophen, diclofenac, morphine, and fentanyl). The 

prediction of polypharmacology of known drugs is a potential method for drug repurposing and 

DDI prediction.141,142 Among those four drugs, though acetaminophen works by interacting with 

COX enzymes,143 it is categorized as aniline analgesics because of the limited inhibition effect of 

COX enzymes144 while diclofenac is a typical NSAID.93 On the other hand, morphine and 

fentanyl are members of the opioid analgesics family which exhibit their pain-relieving effect by 

binding to opioid receptors to mimic the endogenous opioid peptides.145 As shown in Figure 19, 
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after integrating the information included in the PAIN-CKB and the results of TargetHunter and 

HTDocking algorithm, we were able to generate a target mapping for these four drugs. The green 

dots and solid lines indicate the confirmed protein targets and interactions between the 

corresponding drugs and protein targets. The magenta dots and dashed lines represent the 

predicted protein targets with interactions.  

As expected, our results showed clearly that the COX enzymes were targeted by both 

acetaminophen and diclofenac. For acetaminophen, transient receptor potential cation channel 

subfamily V member 1 (TRPV1), which is another known target for acetaminophen in the brain 

to produce antinociception,146 is also listed in our result. Moreover, PAIN-CKB also predicted 

several acetaminophen off-targets such as nitric oxide synthase 1 (NOS1) and carbonic 

anhydrase 2 (CAH2). As to diclofenac, apart from the COX enzymes, possible off-targets like 

acetylcholinesterase (ACES) and C-X-C chemokine receptor type 1 (CXCR1), have been 

reported to interact with diclofenac analogs.147,148 
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Figure 19 Target mapping for four analgesics 

Computational systems pharmacology-target mapping (CSP-Target Mapping) for acetaminophen, 

diclofenac, morphine, and fentanyl. The green dots and solid lines indicate the confirmed targets 

and interaction. The magenta dots and dashed lines indicate the predicted targets and interaction.  

 

For morphine and fentanyl, known targets such as mu, kappa, and delta-opioid 

receptors149 were all successfully identified by PAIN-CKB. Our algorithm also predicted 

cholinesterase (CHLE) and ACES as potential targets for morphine. Surprisingly, both CHLE 

and ACES were reported to be inhibited by morphine150 and its analogs151 in the literature. 

Finally, the prediction that MAOB and HRH1 are potential targets for fentanyl is consistent with 

the ChEMBL database. This target map serves as a compelling example showing the reliability 

of our TargetHunter and HTDocking algorithm. Though at this time, other predicted targets in 

this target map have not be experimentally validated, we strongly believe they have the potential 
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to be confirmed as new targets for their corresponding drugs and here we highly encourage other 

peers interested in this result to validate our predictions through experiments. 

3.3 INVESTIGATION OF THE DDI BETWEEN ACETAMINOPHEN AND 

FENTANYL 

From the previous target mapping result, we found there are two common targets, 

cytochrome P450 3A4 (CYP3A4) and ATP-dependent translocase (ABCB1), between 

acetaminophen and fentanyl, suggesting there might exist a DDI between these two drugs. 

CYP3A4 is a well-known enzyme responsible for the phase I metabolism of many drugs and 

compounds such as steroids, fatty acids, and xenobiotics.152  ABCB1 is a transmembrane active 

efflux pump for a wide range of drugs.153 We then conducted literature research and found 

articles reporting that acetaminophen can inhibit the metabolism of fentanyl by CYP3A4 

inhibition in vitro138 and exhibit significant fentanyl-sparing effect in vivo.154 However, there is 

no direct evidence indicating the DDI is related to ABCB1.  

3.3.1 Docking analysis 

To gain an insight into the detailed interaction between the small-molecule drugs and 

their protein targets at the molecular level, we first conducted docking studies between CYP3A4 

and these two drugs. The binding poses and the energy contributions of each residue are shown 

in Figure 20 and Figure 21, respectively. The key residues in the CYP3A4 ligand-binding 

pocket include Thr309, Phe304, Phe215, Phe241, Phe108, Ser119, Arg105, and HEME.  
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As acetaminophen is a relatively small-molecule, it is not likely to interact with most of 

the key residues. The binding pose of acetaminophen in the binding pocket of CYP3A4 allows 

the formation of two hydrogen bonds: one is observed between the hydroxyl group of 

acetaminophen and the HEME structure of CYP3A4 (2.8 Å) and another between the acetamide 

group of acetaminophen and Arg105 residue (2.9 Å). The benzene ring of fentanyl faces the 

HEME structure of the CYP3A4, forming one hydrophobic interaction between these two 

structures (4.6 Å). Other hydrophobic interactions can also be found between the drug and 

Thr309 (4.8 Å), Phe304 (4.8 Å), Phe215 (3.7 Å), and Phe241 (3.6 Å).  One hydrogen bond with 

a binding distance of 3.3 Å formed between the oxygen on fentanyl and Phe108 residue of 

CYP3A4.  

 

 

Figure 20 Interaction patterns of (A) acetaminophen and (B) fentanyl in CYP3A4 
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Figure 21 Residue energy contribution of (A) acetaminophen and (B) fentanyl in CYP3A4 

 

Figure 21 and the following table provide some intuitive illustrations of the detailed 

energy contribution of the key residues in the binding between acetaminophen (Table 1), 

fentanyl (Table 2) and CYP3A4. The most important residues for acetaminophen to bind with 

CYP3A4 are Arg105 (-0.5604 kcal/mol) and HEME (-1.7225 kcal/mol through hydrogen bond 

and -0.4635 through hydrophobic interaction). Both of them can form hydrogen bond with the 

ligand. As for the binding of fentanyl, Phe108 contributes -0.238 kcal/mol mainly through 

forming the hydrogen bond with fentanyl. The binding energy contribution of Phe215, Phe241, 

Phe304, and HEME mainly comes from the hydrophobic interactions (-0.1902, -0.4416, -0.1401, 

and -0.8809 kcal/mol, respectively). 

 

Table 1 Detailed residue energy contribution (kcal/mol) between CYP3A4 and 

acetaminophen 

Residue Gauss H-bonding Hydrophobic Repulsion Total 

Arg105 -0.4094 -0.5604 0 0.4101 -0.5597 

Ser119 -0.5689 0 0 0.1162 -0.4526 

Phe304 -0.2081 0 0 0 -0.2081 
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Thr309 -0.0997 0 0 0 -0.0997 

HEME -2.1223 -1.7225 -0.4635 1.1446 -3.1636 

Table 2 Detailed residue energy contribution (kcal/mol) between CYP3A4 and fentanyl 

Residue Gauss H-bonding Hydrophobic Repulsion Total 

Arg105 -0.6988 0 0 0.0116 -0.6872 

Phe108 -0.4497 -0.238 -0.0257 0.0678 -0.6456 

Ser119 -0.4737 0 0 0 -0.4737 

Phe215 -0.4568 0 -0.1902 0.0027 -0.6443 

Phe241 -0.5166 0 -0.4416 0.0692 -0.889 

Phe304 -0.3271 0 -0.1401 0 -0.4671 

Thr309 -0.0651 0 -0.0135 0 -0.0786 

HEME -2.0051 0 -0.8809 0.1797 -2.7064 

 

For the other overlapped target ABCB1 between acetaminophen and fentanyl, the 

docking results for the important residues on this target protein and their energy contributions are 

shown in Figure 22 and Figure 23. Key residues in the ABCB1 binding pocket are Tyr306, 

Tyr309, Phe335, Phe342, Gln724, Phe977, and Val981. Acetaminophen formed two hydrogen 

bonds between the hydroxyl group and Tyr306 (3.1 Å), Tyr 309 (2.8 Å) residues. Three 

hydrophobic interactions can also be observed at Phe335 (4.2 Å), Phe977 (3.8 Å) and Val981 

(3.6 Å). For fentanyl, during its binding with ABCB1, one hydrogen bond was formed with 

oxygen on the amide group of Gln724 (3.3 Å), What’s more, five hydrophobic interactions can 

also be detected between the drug  molecule and Phe335 (5.0 Å), Tyr306 (3.4 Å), Phe342 (3.7 Å), 

Phe977 (3.5 Å), and Val981 (4.0 Å) as well. 
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Figure 22 Interaction patterns of (A) acetaminophen and (B) fentanyl in P-glycoprotein 

(ABCB1) 

 

 

Figure 23 Residue energy contribution of (A) acetaminophen and (B) fentanyl in ABCB1 

 

Table 3 and Table 4 are the detailed key residue energy contribution tables between 

ABCB1 and the two analgesics of interest. The hydrogen bond between acetaminophen and 

ABCB1 contributed -0.293 (Tyr306) and -0.5189 (Tyr309) kcal/mol and the hydrophobic 
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interaction contributes -0.2831 (Phe335), -0.2259 (Phe977), and -0.1086 (Val981). On the other 

hand, the hydrogen bond between Gln724 and fentanyl contributes -0.2186 kcal/mol energy and 

the energy contribution of hydrophobic interactions are -0.6008 (Tyr306), -0.4554 (Phe342), -

0.4307 (Phe977), and -0.3883 (Val981) kcal/mol, respectively.  

 

Table 3 Detailed residue energy contribution (kcal/mol) between ABCB1 and 

acetaminophen 

Residue Gauss H-bonding Hydrophobic Repulsion Total 

Tyr306 -0.3445 -0.293 -0.0058 0.1137 -0.5296 

Tyr309 -0.223 -0.5189 0 0.3303 -0.4116 

Phe335 -0.5739 0 -0.2831 0.022 -0.835 

Phe977 -0.6023 0 -0.2259 0.1378 -0.6904 

Val981 -0.335 0 -0.1086 0.0251 -0.4185 

 

Table 4 Detailed residue energy contribution (kcal/mol) between ABCB1 and fentanyl 

Residue Gauss H-bonding Hydrophobic Repulsion Total 

Tyr306 -1.4522 0 -0.6008 0.2207 -1.8322 

Phe335 -0.2176 0 -0.0093 0 -0.2269 

Phe342 -0.6583 0 -0.4554 0.0272 -1.0865 

Gln724 -0.4892 -0.2186 0 0.1234 -0.5844 

Phe977 -0.5563 0 -0.4307 0.1848 -0.8021 

Val981 -0.7219 0 -0.3883 0.1476 -0.9626 

 

3.3.2 PBPK models 

Furthermore, we built two physiologically based pharmacokinetic (PBPK) models to 

quantitively explore the metabolism changes of these two drugs caused by the drug interaction 
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on CYP3A4 when administrated simultaneously from a pharmacometrics point of view. The 

final parameters used to build the PBPK models for acetaminophen and fentanyl are listed in 

Table 5 and Table 6.  

Using the optimized acetaminophen PBPK model, we simulated the drug plasma 

concentration profile in healthy volunteers after administered a single 1000 mg dose through iv 

bolus. As shown in Figure 24, our simulation is highly consistent with the observed data 

reported by previous papers.155 The PBPK model for fentanyl was built based on the model 

published by our lab before.156 The simulated drug plasma concentration profile after a single 7.0 

mg iv bolus in healthy individuals overlaps with the experimental data well157 (Figure 25). In 

conclusion, our PBPK model is highly consistent with the clinical data, thus supporting the 

further utilization of these PBPK models to study the DDI between acetaminophen and fentanyl.  

 

Table 5 Input parameters for acetaminophen PBPK model 

Parameter a Value Source 

PhysChem and Blood Binding   

MW (g/mol) 151.16 b 

log P 0.46 b 

pKa 9.46 Ref158, c 

B/P 0.98 Ref159, c 

fu 0.82 Ref160, c 

Distribution   

Vss (L/kg) 1 Ref161, c 

Elimination   

ClAPAP (L/h) 19.7 Ref162, c 

Interaction   

Ki(μM) 2800 Ref138, c 
a Abbreviations: MW, molecule weight; log P, log of the octanol−water partition coefficient for 

the neutral compound; pKa, dissociation constant; B/P, blood/plasma concentration ratio; fu, 
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fraction of drug unbound in plasma; Vss, steady-state volume of distribution; ClAPAP, in vivo 

clearance of acetaminophen; Ki, inhibition constant of acetaminophen on CYP3A4. b From 

PubChem (PubChem CID: 1983) (https://pubchem.ncbi.nlm.nih.gov). c Derived from published 

data and then optimized based on observed data. 

 

Table 6 Input parameters for fentanyl PBPK model 

Parameter a Value Source 

PhysChem and Blood Binding   

MW (g/mol) 336.47 b 

log P 2.8 b 

pKa 8.06 b 

B/P 0.963 Ref163, c 

fu 0.297 d 

Distribution   

Vss (L/kg) 4.089 d 

Elimination   

Clint 3A4 (μL/min/pmol) 0.496 Ref164, c 

ClR (L/h) 4.6 Ref165, c 

Interaction   

Ki(μM) 24.2 Ref166, c 
a Abbreviations: MW, molecule weight; log P, log of the octanol−water partition coefficient for 

the neutral compound; pKa, dissociation constant; B/P, blood/plasma concentration ratio; fu, 

fraction of drug unbound in plasma; Vss, steady-state volume of distribution; ClAPAP, in vivo 

clearance of acetaminophen; Ki, inhibition constant of acetaminophen on CYP3A4. b From 

PubChem (PubChem CID: 3345) (https://pubchem.ncbi.nlm.nih.gov). c Derived from published 

data and then optimized based on observed data. 
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Figure 24 PBPK model simulated and experimentally observed concentration−time profiles 

of acetaminophen after 1000 mg iv bolus dosing 

The simulated results for acetaminophen were generated using 10 trials of 10 virtual healthy 

volunteers. Observed data were highlighted in red dots while the simulated results, mean value, 

and the 95th/5th percentile of the simulation were shown by corresponding lines.  
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Figure 25 PBPK model simulated and experimentally observed concentration−time profiles 

of fentanyl after 7 mg iv bolus dosing 

The simulated results for fentanyl were generated using 10 trials of 10 virtual healthy volunteers. 

Observed data were highlighted in red dots while the simulated results, mean value, and the 

95th/5th percentile of the simulation were shown by corresponding lines.  

 

Next, the virtual study of the DDI between acetaminophen and fentanyl was carried out 

based on the established PBPK models. Acetaminophen was chosen as the inhibitor substrate of 

fentanyl metabolism as reported by the literature.138 We first used the therapeutic doses of 

acetaminophen (4000 mg)167 and fentanyl (0.003 mg/kg)168 to see if metabolism inhibition may 

occur under this dosage. As shown in Figure 26a, the systematic concentration of fentanyl with 

or without acetaminophen is almost identical. The AUC ratio (Figure 26b) is around 1.02, also 
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indicating there are no significant changes in body exposure to fentanyl due to the enzyme 

inhibition effect of acetaminophen.  

We then used acetaminophen concentration around one order of magnitude greater than 

the therapeutic concentration to run the simulation, where potential fentanyl–paracetamol drug 

interactions have been reported to occur.138 When the dosage of acetaminophen reaches 80,000 

mg, which is 20-fold the therapeutic dose, we observed a significant elevation (the mean AUC 

ratio between administering fentanyl with acetaminophen and fentanyl alone is 1.27) in the 

systematic concentration of fentanyl (Figure 27a, 27b). The simulated results indicate that when 

used in combination with acetaminophen at this concentration, fentanyl metabolism by the 

CYP3A4 is likely to be affected.  

The dose for acetaminophen to exhibit the significant DDI is incredibly high and not very 

like to reach in clinical usage. We believe the DDI observed in clinical scenario154 is more likely 

to related to the PD aspect. However, considering that the lethal dose of fentanyl can be as low as 

2 mg according to the drug enforcement administration (DEA), more attention should be paid 

when administrating it with very high doses of acetaminophen. Our results not only provide a 

possible explanation to the real-world observed data, but it also builds more confidence for users 

to utilize our PAIN-CKB along with pharmacometrics and systems pharmacology tools to 

explore DDI problems. 
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Figure 26 Virtual PBPK model DDI studies between acetaminophen and fentanyl under 

therapeutic dosing 

26(a): Fentanyl systemic plasma time-concentration profile with and without 4000 mg 

acetaminophen. 26(b) The mean value and standard deviation for 10 groups of 10 healthy 

volunteers of fentanyl simulated PK profiles with and without 4000 mg acetaminophen. 
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Figure 27 Virtual PBPK model DDI studies between acetaminophen and fentanyl under 

acetaminophen overdosing 

27(a): Fentanyl systemic plasma time-concentration profile with and without 80000 mg 

acetaminophen. 26(b) The mean value and standard deviation for 10 groups of 10 healthy 

volunteers of fentanyl simulated PK profiles with and without 4000 mg acetaminophen. 
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3.3.3 NAPQI hepatotoxicity  

Acetaminophen is, currently, one of the most common causes of acute liver failure (ALF) 

in the United States.169 At its therapeutic dose, around 90% of acetaminophen is metabolized in 

the human body into inactive glucuronide and sulfate conjugates, while the rest of the 

unmetabolized drug is converted to a highly reactive metabolite N-acetyl-p-benzoquinone imine 

(NAPQI)137 primarily by CYP2E1 and CYP3A4.170 However, the supratherapeutic dose of 

acetaminophen will cause the conjugation pathways to become saturated and increase the amount 

of NAPQI in the body, which can cause hepatotoxicity.171,172  

NAPQI has been reported to target thioredoxin reductase (TrxR) to induce oxidative 

stress and liver toxicity. In detail, LC-MS/MS analysis confirmed that NAPQI can modify the 

cysteine 59, cysteine 497, and selenocysteine 498 residues in the redox centers of TrxR to cause 

the enzyme inhibition.92 TrxR has been collected as a potential pain target173 in our PAIN-CKB. 

We were excited to find that in our previous attempt to create the target map for the four drugs, 

our platform suggested that acetaminophen is very much likely to interact with TrxR. 

Considering the structural similarity between acetaminophen and NAPQI, it is highly possible 

that if the inputted compound was NAPQI instead of acetaminophen, our algorithms would 

successfully predict the toxicity target for NAPQI. We again validated the powerful functionality 

of our PAIN-CKB, and the algorithms embedded in it. 

To study the interaction pattern between NAPQI and TrxR1, a docking study was 

conducted between this receptor-ligand pair. In perfect agreement with the observed results,92 as 

shown in Figure 28, NAPQI is likely to interact with TrxR1 in three different ways. First, the 

carbonyl group of NAPQI can form a strong hydrogen bond with the Cys497 residue with a 
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distance of 2.9 Å. Another possible hydrogen bond interaction is observed between the N-acyl 

amides functional group and Sec498 residue with a distance of 3.1 Å. Finally, NAPQI can also 

form a steric interaction with the Cys59 residue (3.4 Å) because of the special spatial structure of 

the Cys59 residue. These possible binding poses provide a suitable spatial condition which can 

then facilitate the alkylation reaction on these residues and cause enzyme inhibition and further 

hepatotoxicity. 

 

 

Figure 28 Detailed binding pattern between NAPQI and TrxR1 
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4.0 DISCUSSION 

Pain is a highly complex phenomenon174 which can cause severe challenges to patients’ 

daily life.175 Efforts have been devoted to improving the pain management, yet limited 

improvements have been achieved.176 Several databases related to pain such as PainNetworks 

database have been built to study the pain-related genes and their network associations.120 

Several other specific disease-related databases have already been developed and implemented 

as novel ways to explore the molecular mechanisms and pathways of the disease to facilitate the 

studies in related areas.177,178 Here, our PAIN-CKB serves as a pain domain-specific 

chemogenomics knowledgebase with free access to the public and user-friendly web interface 

and powerful algorithms implemented, such as the target structural-based HTDocking and ligand 

structural-based TargetHunter. Our database has the potential to pave the gap between biology 

and chemistry in the hope of facilitating the discovery of new analgesics.  

The pilot studies presented here validated the ability of our PAIN-CKB to map the 

network between different drugs and their targets based on the results of docking score 

(HTDocking) and similarity score (TargetHunter). The target map precisely identified known 

targets for the inputted analgesics. It can also make predictions based on the known target 

structure as well as some small-molecule structures that have been confirmed to bind to the 

target. As shown in the present work, our platform successfully predicted targets that are not 

widely recognized but have been reported by previously published papers. The ability for PAIN-

CKB to identify drug targets allows users to conduct drug repurpose studies by looking for 

potential off-targets for a known compound or scan new compounds as a starting point for new 
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analgesics development. In addition, based on the common targets mapped between certain drug 

pairs, studies can be carried out by using the molecular simulation methods (molecular docking, 

molecular dynamic simulation, etc.) and pharmacometrics models to explore the potential DDIs 

and synergistic drug pairs. Given the fact that DDIs related to analgesics can cause severe 

adverse effects179 and the synergistic drug pairs with greater therapeutic effects and fewer side 

effects are of great research interest to the pain-related area,180 PAIN-CKB can be extremely 

beneficial for future researches.  

However, our PAIN-CKB has its limitations. First, although we conducted a thorough 

literature research to implement as many pain-related targets as we could, potential pain related 

targets that are not included can still exist. To minimize this limitation, we will continuously 

update our PAIN-CKB database with future literature research. Secondly, the performance of the 

HTDocking algorithm relies largely on the quality and availability of the 3D structure of the 

target protein. Luckily, PAIN-CKB is also equipped with TargetHunter, therefore, this ligand-

based algorithm can predict the targets for small-molecules based on the structure of ligands 

known to bind to that specific protein target. Combining these tools, PAIN-CKB can handle most 

of the analysis work. 
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5.0 CONCLUSION 

Currently, chronic pain is one of the main challenges in the modern medication area. The 

annual cost of pain medication is burdensome and there are still many unsatisfying features in 

the analgesics available in the market such as the limited pain-relieving effect, severe side effects, 

DDIs between different medications, and drug addiction. The high prevalence of chronic pain 

makes this problem even more urgent to solve.  

Computer-aided drug discovery (CADD) may provide a new aspect to solve this problem. 

CADD is a newly emerging technique in the drug discovery area. With the help of the amazing 

calculation speed of modern computers, CADD is more efficient and economic compared to the 

traditional drug discovery methods. The typical methods used in CADD includes molecular 

docking, molecular dynamic simulation, machine learning, PBPK models and etc.  

In this study, we constructed a pain-domain specific knowledgebase containing the 

information of current analgesics and pain-related protein targets files. Equipped with cutting-

edge computational tools, the PAIN-CKB is able to identify the potential protein targets of the 

input small molecule. The pilot studies presented here demonstrated the functionality and 

validity of this newly-built database. Future users are encouraged, but should not be restricted, to 

follow the principle procedures of the presented case studies to make more breakthroughs in the 

pain-related area.  

All in all, PAIN-CKB is an integrative pain-domain specific knowledgebase with full 

access for public use. It includes pain-related targets data and tools for target identification and 
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systems pharmacology research. This knowledgebase will benefit the pain research area by 

bridging the knowledge barrier between computational, chemical, and biological to facilitate the 

identification of new DDIs and to accelerate the development of new analgesics. 
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APPENDIX 

Table 7 The pain-related targets collected in PAIN-CKB 

Gene name Protein name Uniport ID 3D structure 

5HT1B 
5-hydroxytryptamine 

receptor 1B 
P28222 

 

5HT2A 
5-hydroxytryptamine 

receptor 2A 
P28223 

 

5HT2B 
5-hydroxytryptamine 

receptor 2B 
P41595 

 

5HT2C 
5-hydroxytryptamine 

receptor 2C 
P28335 

 

AA1R 
Adenosine receptor 

A1 
P30542 

 

AA2AR 
Adenosine receptor 

A2a 
P29274 

 

https://www.uniprot.org/uniprot/P30542
https://www.uniprot.org/uniprot/P29274
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ACE 
Angiotensin-

converting enzyme 
P12821 

 

ACES Acetylcholinesterase P22303 

 

ACHA9 

Neuronal 

acetylcholine 

receptor subunit 

alpha-9 

Q9UGM1 

 

ACHB2 

Neuronal 

acetylcholine 

receptor subunit beta-

2 

P17787 

 

ACM1 

Muscarinic 

acetylcholine 

receptor M1 

P11229 

 

ACM4 

Muscarinic 

acetylcholine 

receptor M4 

P08173 

 

ADRB2 
Beta-2 adrenergic 

receptor 
P07550 

 

AGTR2 
Type-2 angiotensin II 

receptor 
P50052 

 

https://www.uniprot.org/uniprot/P12821
https://www.uniprot.org/uniprot/P22303
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ALDR 
Aldo-keto reductase 

family 1 member B1 
P15121 

 

AMPN Aminopeptidase N P15144 

 

AOFA 
Amine oxidase 

[flavin-containing] A 
P21397 

 

AOFB 
Amine oxidase 

[flavin-containing] B 
P27338 

 

BACE1 Beta-secretase 1 P56817 

 

CAH2 Carbonic anhydrase 2 P00918 

 

CASP1 Caspase-1 P29466 

 

CDK5 
Cyclin-dependent-

like kinase 5 
Q00535 
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CHLE Cholinesterase P06276 

 

CNR1 
Cannabinoid receptor 

1 
P21554 

 

CNR2 
Cannabinoid receptor 

2 
P34972 

 

COLI Pro-opiomelanocortin P01189 

 

COMT 
Catechol O-

methyltransferase 
P21964 

 

CRP C-reactive protein P02741 

 

CXCR1 
C-X-C chemokine 

receptor type 1 
P25024 

 

CXCR4 
C-X-C chemokine 

receptor type 4 
P61073 
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DRD2 
D (2) dopamine 

receptor 
P14416 

 

DRD3 
D (3) dopamine 

receptor 
P35462 

 

DRD4 
D (4) dopamine 

receptor 
P21917 

 

EDN1 Endothelin-1 P05305 

 

ESR1 Estrogen receptor P03372  

 

FABP5 
Fatty acid-binding 

protein 5 
Q01469 

 

FYN 
Tyrosine-protein 

kinase Fyn 
P06241 

 

GLRA3 
Glycine receptor 

subunit alpha-3 
O75311 
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GLRA3 modulator 
Glycine receptor 

subunit alpha-3 
O75311 

 

GRM5 
Metabotropic 

glutamate receptor 5 
P41594 

 

HPGDS 

Hematopoietic 

prostaglandin D 

synthase 

O60760 

 

HRH1 
Histamine H1 

receptor 
P35367 

 

HYES 
Bifunctional epoxide 

hydrolase 2 
P34913 

 

IKKB 

Inhibitor of nuclear 

factor kappa-B kinase 

subunit beta 

O14920 

 

MDR1 
ATP-dependent 

translocase ABCB1 
P08183 

 

MIF 

Macrophage 

migration inhibitory 

factor 

P14174 
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MK01 
Mitogen-activated 

protein kinase 1 
P28482 

 

MK03 
Mitogen-activated 

protein kinase 3 
P27361 

 

MTOR 
Serine/threonine-

protein kinase mTOR 
P42345 

 

NEP Neprilysin P08473 

 

NK1R Substance-P receptor P25103 

 

NMDE1 
Glutamate receptor 

ionotropic epsilon-1 
Q12879 

 

NMDE2 
Glutamate receptor 

ionotropic epsilon-2 
Q13224 

 

NMDZ1 
Glutamate receptor 

ionotropic zeta-1 
Q05586 
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NOS1 
Nitric oxide synthase 

1 
P29475 

 

NOS2 
Nitric oxide synthase 

2 
P35228 

 

NTRK1 

High affinity nerve 

growth factor 

receptor 

P04629 

 

OPRD 
Delta-type opioid 

receptor 
P41143 

 

OPRK 
Kappa-type opioid 

receptor 
P41145 

 

OPRM 
Mu-type opioid 

receptor 
P35372 

 

OPRX Nociceptin receptor P41146 

 

P2RX3 P2X purinoceptor 3 P56373 
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P2Y12 P2Y purinoceptor 12 Q9H244 

 

PAR1 
Proteinase-activated 

receptor 1 
P25116 

 

PDE4B 

cAMP-specific 3',5'-

cyclic 

phosphodiesterase 4B 

Q07343 

 

PDE5A 

cGMP-specific 3',5'-

cyclic 

phosphodiesterase 5A 

O76074 

 

PERM Myeloperoxidase P05164 

 

PGH1 
Prostaglandin G/H 

synthase 1 
P23219 

 

PGH2 
Prostaglandin G/H 

synthase 2 
P35354 

 

PPAP 
Prostatic acid 

phosphatase 
P15309 
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PPARG 

Peroxisome 

proliferator-activated 

receptor gamma 

P37231 

 

PRGR Progesterone receptor P06401 

 

PTGES 
Prostaglandin E 

synthase 
O14684 

 

SC6A4 
Solute carrier family 

6 member 4 
P31645 

 

SCN9A 

Sodium channel 

protein type 9 subunit 

alpha 

Q15858 

 

TLR4 Toll-like receptor 4 O00206 

 

TNFA Tumor necrosis factor P01375 

 

TRBM Thrombomodulin P07204 

 

https://www.uniprot.org/uniprot/Q15858
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TRPM4 

Transient receptor 

potential cation 

channel subfamily M 

member 4 

Q8TD43 

 

TRPM8 

Transient receptor 

potential cation 

channel subfamily M 

member 8 

Q7Z2W7 

 

 

TRPV1 

Transient receptor 

potential cation 

channel subfamily V 

member 1 

Q8NER1 

 

TRPV2 

Transient receptor 

potential cation 

channel subfamily V 

member 2 

Q9Y5S1 

 

TRPV3 

Transient receptor 

potential cation 

channel subfamily V 

member 3 

Q8NET8 

 

TRY1 Trypsin-1 P07477 
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