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Abstract 

Understanding Key Biomechanical Factors that Influence Rotator Cuff Tear Propagation 

 

Gerald Dave A. Ferrer, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

The high frequency of rotator cuff tears in an aging population, combined with their 

capacity to cause pain and limit normal activity, underscores the importance of treating these 

injuries in a judicious manner. However, high failure rates have been reported for non-operative 

and surgical treatment. Tear propagation may explain high failure rates of treatment as larger tears 

are more difficult to treat and are associated with worse clinical outcomes. Abnormal 

glenohumeral arthrokinematics and localized changes in mechanical properties are factors that 

explain why some tears propagate more easily than others. Furthermore, clinicians lack a tool to 

non-invasively quantify tendon mechanical properties. Therefore, the objective of this dissertation 

is to better understand the role of glenohumeral arthrokinematics and location specific mechanical 

properties on tear propagation as well as the utility of ultrasound techniques to quantify mechanical 

properties of tendons through in-vivo, cadaveric, and computational experiments.  

Following exercise therapy for 5 subjects with a rotator cuff tear, glenohumeral 

arthrokinematics for internal/external rotation with the arm at the side did not improve. Abnormal 

glenohumeral arthrokinematics may be a result of unbalanced force couples, exposing the torn 

supraspinatus tendon to loads that may promote tendon remodeling that increases the likelihood 

of tear propagation. Using a subject-specific finite element model of a supraspinatus tendon, 

tendon remodeling in terms of increased stiffness at the tear tips lead to more tear propagation. 

Cadaveric experiments showed that quantitative ultrasound measures, which analyze the grayscale 

echotexture of an ultrasound image, correlates to measures of tendon quality as quantified through 
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histology. Acoustic Radiation Force Impulse (ARFI) imaging a technique where localized 

radiation forces push onto the tissue, the resulting displacement is measured. The mechanical 

properties of the tissue can then be inferred. However, our findings suggest that ARFI imaging is 

limited for high stiffness tissues such as tendons. Despite large differences in tissue modulus, 

differences in ARFI displacement are minimal. Ultimately, understanding how changes in 

localized tendon mechanical properties influence tear propagation and the capabilities of currently 

available ultrasound techniques to measure tendon mechanical properties will enable clinicians to 

make better treatment decisions for patients with a rotator cuff tear. 
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1.0 Introduction and Background 

The glenohumeral joint is considered a ball and socket joint due to the articulation between 

the humeral head and the glenoid cavity of the scapula. It is one of the most mobile joints in the 

body, but also one of the most unstable (1, 2). The rotator cuff is a group of four muscles and 

tendons that play a critical role in providing stability to the glenohumeral joint by compressing the 

humeral head into the glenoid cavity (3). Injuries to the rotator cuff such as a rotator cuff tear, can 

cause severe pain and a loss of shoulder function. Furthermore, rotator cuff tears are extremely 

prevalent in an aging population (4-6).  

Ultrasound has been shown to be a capable diagnostic tool for detecting rotator cuff tears, 

providing clinicians a cost efficient, non-invasive way to diagnose patients. However, clinicians 

usually evaluate the state of the tissue in ultrasound images subjectively, and there is a clear need 

for the development of technology to quantitatively assess mechanical properties of the tendon to 

better understand their in-vivo function (7).  

Treating rotator cuff tears by non-operative (eg. exercise therapy) and operative means 

remains difficult, with high failure rates being reported (8, 9). While the reasons for high failure 

rates are unclear, increased tear propagation may be a reason since larger tear sizes are associated 

with poor clinical outcomes (10-12). Factors such as abnormal arthrokinematics and location 

specific changes in mechanical properties of the tendon may result in increased tear propagation 

(13-15). Therefore, the focus of this dissertation is understanding these key factors that may lead 

to tear propagation in order to improve treatment decisions for patients with a rotator cuff tear. 
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1.1 Glenohumeral Joint Anatomy and Function 

The glenohumeral joint (glenoid and humerus) is one of the four joints that make up the 

shoulder complex. The other joints forming the shoulder complex are the sternoclavicular (sternum 

and clavicle), acromioclavicular (acromion and clavicle) and scapulothoracic (scapula and thorax) 

joints. These four joints work together to allow for the motion of the shoulder through a complex 

relationship between bony articulations as well as constraints of static (eg. labrum and capsule), 

and dynamic structures (1). Of the four shoulder joints, the glenohumeral joint is at the greatest 

risk of instability because of the bony articulation between the large humeral head and small 

glenoid surface, much like a golf ball on a tee. During normal motion, less than a third of the 

humeral head is in contact with the glenoid cavity (16-18). Even with such little articulation 

between the humeral head and glenoid cavity, joint translations is constrained to less than 2 mm 

of motion (19-21). The precise stabilization of the joint requires a delicate balance between 

different static and dynamic stabilizers to maintain the compression of the humeral head and 

glenoid cavity. 

In addition to the bony anatomy and articulation, other important static stabilizers of the 

glenohumeral joint include the glenoid labrum and joint capsule. The glenoid labrum is a fibrous 

structure that surrounds the rim of the glenoid and functions to increase congruity by deepening 

the glenoid and creating a suction effect as well as serve as an attachment site for the glenohumeral 

capsule (17, 22, 23). The glenohumeral capsule is a continuous sheet of ligamentous tissue that 

functions to stabilize the joint by becoming “tight” in extreme ranges of motion (24-26). The most 

important dynamic stabilizer of the glenohumeral joint is the rotator cuff (27). 
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1.1.1 Rotator Cuff Muscles and Tendons 

The rotator cuff consists of a group of four muscles and tendons that surround the 

glenohumeral joint whose main function is to stabilize the shoulder: supraspinatus, subscapularis, 

infraspinatus and teres minor (Figure 1.1, Figure 1.2, and Figure 1.3) (17, 28). While each 

individual rotator cuff muscle and tendon have their own unique function, when working together, 

the rotator cuff serves as an active stabilizer of the glenohumeral joint by compressing the humeral 

head into the glenoid cavity. Specifically, there is a coronal and transverse force couple that 

stabilizes the humeral head in both the superior-inferior and anterior-posterior direction. In the 

coronal plane, the force couple consists of the deltoid and supraspinatus muscle elevating the 

humeral head, while the inferior portions of the subscapularis, infraspinatus and teres minor 

counteracting that force by depressing the humeral head (29). In the transverse plane, the 

subscapularis pulls the humeral head anteriorly, while the infraspinatus and teres minor pull the 

head posteriorly (30). Because the rotator cuff tendons attach much closer to the joint center of 

rotation, their moment arm is smaller and thus their main function is stability rather than motion. 

Injuries to the rotator cuff such as a rotator cuff tear can disrupt the normal force balance and 

contribute to long-term dysfunction (31, 32). 
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Figure 1.1: Lateral view of right shoulder.Yellow represents tendons and gray represents bone. Bold indicates 

rotator cuff tendons. 

 

The supraspinatus functions to initialize abduction of the humerus. At larger angles of 

abduction (> 30°), the supraspinatus works with the deltoid to abduct the arm, but at this point, the 

deltoid is the principal muscle at work abducting the arm (33). The supraspinatus is located on the 

superior aspect of the shoulder, with the supraspinatus muscle originates in the supraspinatus fossa 

(posterior aspect of the scapula), passing under the acromion and inserting onto the superior aspect 

of the greater tuberosity (Figure 1.1). Because of its superior location, the supraspinatus also 

functions as a passive restraint to superior migration of the humeral head. Near the insertion site, 

the supraspinatus tendon shares fibers with the anterior aspect of the infraspinatus tendon, which 

often results in load sharing between these tendons (34). 
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The infraspinatus functions to externally rotate the humerus (35).  Located in the posterior 

side of the shoulder, the infraspinatus originates from the lateral aspect of the scapula and inserts 

onto the middle facet of the greater tuberosity (Figure 1.1 and Figure 1.2). Inferior to the 

infraspinatus is the teres minor. The teres minor shares the same muscle origin as the infraspinatus, 

but inserts onto the inferior facet of the greater tuberosity (Figure 1.1 and Figure 1.2). Similar to 

the infraspinatus, the teres minor functions to externally rotate the humerus, though to a lesser 

degree (40% of the external rotation force compared to 60% from the infraspinatus) (36). The 

infraspinatus and teres minor also resist posterior and superior translations (37). 

 

 

 

Figure 1.2: Posterior view of right shoulder. Yellow indicates tendon, red indicates muscle, and white 

indicates bone. Bold represents rotator cuff tendons/muscles. 
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On the anterior aspect of the shoulder is the subscapularis. It is the only component of the 

rotator cuff that is on the anterior side of the shoulder. The main function of the subscapularis is 

to internally rotate the humerus (27). The subscapularis muscle originates in the subscapularis 

fossa (anterior surface of scapula) and inserts onto the lesser tuberosity of the humeral head (Figure 

1.1 and Figure 1.3). The tendinous insertion of the subscapularis does not interact with the 

supraspinatus tendon as it is separated by the long head of the biceps tendon. The subscapularis 

also resists anterior and inferior translation of the humeral head. 

 

 

 

Figure 1.3: Anterior view of right shoulder. Yellow indicates tendon, red indicates muscle, and white 

indicates bone. Bold represents rotator cuff tendons/muscles. 
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1.2 Rotator Cuff Tears: Impact and Treatment 

In the United States alone, roughly 4.5 million people each year visit the clinic due to 

shoulder pain, resulting in treatment costs of over $6 billion annually (38, 39).  Injuries to the 

rotator cuff, specifically rotator cuff tears, are a primary cause of shoulder pain and loss of shoulder 

strength and motion, often preventing patients from living an active lifestyle (40). Typically, 

rotator cuff tears occur in the supraspinatus tendon (Figure 1.4), making motions such as raising 

your arm above your head difficult. The incidence rate of rotator cuff tears in the general 

population is about 20-30% (4, 5). In an aging population, rotator cuff tears pose a significant 

clinical problem. The incidence rate increases with age, with studies reporting an incidence rate as 

high as 50% for those over the age of 60 (6, 41, 42). The high frequency of rotator cuff tears, 

combined with their capacity to cause severe pain and limit normal activity, underscores the 

importance of timely and effective treatment. 

 

 

Figure 1.4: Isolated supraspinatus tendon tear 
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1.2.1 Treatment of Rotator Cuff Tears 

Currently, rotator cuff tears are treated either non-operatively or by surgery, though there 

is no consensus as to the most appropriate treatment on a patient-by-patient basis (43, 44). Non-

operative treatment through corticosteroid injections and exercise therapy are often the first course 

of action to treat rotator cuff tears (45-48). Other non-operative management techniques such as 

transcutaneous nerve stimulation, iontophoresis and ultrasound therapy exist, but there is a paucity 

of data supporting the efficacy of these treatments (49). The ultimate goal of non-operative 

management is to reduce/eliminate pain and restore shoulder function (49, 50). Since rotator cuff 

tears create an imbalance of the force couples that stabilize the glenohumeral joint, a key focus of 

exercise therapy is to strengthen the surrounding muscles to compensate for the loss of function. 

However, exercise therapy fails in 25-50% of individuals (51, 52). Individuals with larger tears 

have been associated with poor clinical outcomes (eg. more pain) as well as significant increases 

(>2mm) in rotator cuff tear size in half of the patients within two years following exercise therapy 

(53, 54). In the cases where non-operative treatment is ineffective, patients pursue surgical repair. 

The success of surgical repair for rotator cuff tears is quite variable with failure rates being 

reported from 10-90% (55, 56). A lot of different factors play a role in the success or failure of 

surgical repair such as tissue quality, age, fatty infiltration, repair method (eg. double vs single 

row), and tear size. Similar to non-operative management, tear size have been associated with poor 

clinical outcomes, with larger tears being associated with higher re-tear rates after surgery (57-60). 

For a rotator cuff repair construct, the tissue-suture interface is a primary location for surgical 

failure. Poor tissue quality due to tendon degeneration from the presence of a tear may explain 

why re-tears at the tendon-suture interface of surgically repaired rotator cuff tears occur (56, 61-

69). 
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1.3 Factors of Rotator Cuff Tear Propagation 

There is a multitude of extrinsic and intrinsic factors behind the development and 

propagation of rotator cuff tears (41, 70). Extrinsic mechanisms originate external to the tendon 

and occur when compressive, shear or tensile forces are applied to the rotator cuff tendons causing 

them to tear. Impingement is a specific type of extrinsic mechanism where the rotator cuff tendon 

and surrounding bone impinge with one another is known to cause rotator cuff tears. Subacromial 

impingement occurs due to the narrowing subacromial space for the tendon between the acromion 

and humeral head, causing excessive compressive and shear forces onto the tendon (71). Internal 

impingement is another extrinsic mechanism where the articular side of a rotator cuff tendon is 

impinged between the posterior superior glenoid rim and the humeral head. Extrinsic mechanisms 

of rotator cuff tears are generally due to anatomic, biomechanical or a combination of both. 

Specifically, the anatomic and biomechanical factors that have been shown to influence the risk of 

developing a rotator cuff tear include acromion shape, bone spurs, muscle strength and abnormal 

glenohumeral kinematics. Intrinsic mechanisms originate within the tendon and are associated 

with degenerative changes of the tendon due to aging. Specific factors that contribute to the 

intrinsic mechanisms of rotator cuff tears include poor tendon vascularity, altered tendon 

morphology and poor mechanical properties.    
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1.3.1 Abnormal Glenohumeral Arthrokinematics 

Pathologic changes in glenohumeral joint kinematics and arthrokinematics have been 

shown to occur due to rotator cuff tears in cadaveric, rat and in vivo studies (15, 72-74). 

Glenohumeral arthrokinematics parameters such as joint translations and contact path length (ie. 

translation of the humeral head on the glenoid) are important to consider when treating rotator cuff 

tears because it is related to joint stability. Increased joint translations and contact path length 

compared to healthy individuals would be indicative of joint instability that would need to be 

addressed. For a healthy individual or individuals with a surgically repaired rotator cuff tear doing 

a coronal or scapular plane abduction motion, the overall range of glenohumeral joint translation 

in the superior-inferior direction has been reported to be <3 mm (75-77). Similarly, the normal 

anterior-posterior glenohumeral joint translation range for healthy individuals performing an 

external rotation motion has been reported to be between 1-2 mm (75, 78).  

The force couples in the shoulder, composed of the deltoid, supraspinatus, infraspinatus 

and subscapularis (79), work together to stabilize the glenohumeral joint. As a result of a rotator 

cuff tear involving the supraspinatus, joint instability may occur because not all muscles used to 

stabilize the glenohumeral joint would be functioning normally and the force couples may be 

unbalanced. As a result of the unbalanced force couples, the torn supraspinatus tendon may 

experience loads that lead to tendon remodeling scenarios that may predispose the tendon to an 

increased likelihood of tear propagation. Furthermore, persistent abnormal arthrokinematics may 

injure the structures within the glenohumeral joint and ultimately result in a larger tear over time.  

Most in vivo studies that address non-operative management such as exercise therapy have 

focused on investigating changes in glenohumeral kinematics and arthrokinematics for scapular-

plane and coronal-plane abduction (74, 80-87). However, changes in glenohumeral 
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arthrokinematics for other motions such as internal and external rotation with the arm at the side 

following a rotator cuff tear is not well understood. Other motions such as internal/external rotation 

with the arm at the side are important to consider as it is commonly used during activities of daily 

living. 
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1.3.2 Changes in Location Specific Mechanical Properties 

Mechanical properties are important to understand because they are directly related to 

function. The tensile modulus of supraspinatus tendons are >100 MPa and ultimate stress is >10 

MPa (88, 89). It is known that the mechanical properties differ within the supraspinatus tendon. 

For an intact supraspinatus tendon, the anterior third is the strongest and stiffest followed by the 

middle then posterior third (88). Since torn tendons cannot bear any loads, the remaining intact 

fibers have to compensate and bear extra load. Thus, tear propagation may occur more easily 

especially if the remaining tendon has poor tissue quality and inferior mechanical properties (58). 

For example, anteriorly located tears propagate more easily than middle or posteriorly located tears 

because the strongest part of the supraspinatus tendon was compromised (90-92).  

Mechanical properties of tendon are directly related to the composition and microstructure 

of the tendon (93). Water is the main constituent of tendons, accounting for 70% of the total weight. 

The remaining 30% is primarily composed of collagen proteins which are highly aligned with the 

long axis of the tendon, providing high tensile strength and stiffness. The remaining part of the 

tendon is the extracellular matrix, primarily composed of elastin fibers and proteoglycans (94). 

Elastin is highly elastic and is the main constituent bearing load during low levels of loading before 

the collagen fibers are recruited (ie. toe region of stress-strain curve). Proteoglycans are important 

in regulating collagen fibrillogenesis (ie. assembly of collagen) (95, 96). Furthermore proteoglycan 

composition can changed locally throughout the tendon based on mechanical stimuli, resulting in 

changes in the assembly of collagen (94, 97, 98). Therefore, the presence of a tear may alter the 

tendon composition and microstructure, thus altering the mechanical properties throughout the 

tendon. Previous studies that investigated healing of degenerative ligaments, which have similar 

properties as tendons, showed moduli less than half of the intact ligament (99, 100).  
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For a supraspinatus tendon tear, regional differences in tendon degeneration as well as 

inhomogeneous stress and strain patterns throughout the tendon have been observed (91, 92, 101-

106). These changes in overall tendon degeneration and increased strain have been shown to be a 

significant factor that contributes to rotator cuff tear propagation (91, 92, 102-104, 107-109). 

However, the effect of localized changes in mechanical properties due to tendon remodeling on 

tear propagation is not well understood. 
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1.4 Evaluation of Tissue Quality 

While the current gold standard for detecting rotator cuff tears is through arthroscopy, this 

is an invasive procedure for the patient. Non-invasive diagnostic modalities such as 

ultrasonography and magnetic resonance imaging (MRI) are becoming more widely used by 

clinicians to diagnose whether a patient has a rotator cuff tear (110-114). In the hands of an expert, 

ultrasound has been shown to have similar efficacy in detecting the presence and size of a rotator 

cuff tear as MRI in terms of both specificity and sensitivity when compared to the gold standard 

of arthroscopy (112, 114, 115). Evaluation of tissue quality based on ultrasound images is mostly 

qualitative and depends on the user. Quantifying mechanical properties of tendons with ultrasound 

remains difficult (116). Recently, ultrasound images have been analyzed quantitatively using 

different ultrasound techniques such as quantitative ultrasound (QUS) measures (117-119), 

acoustic radiation force impulse (ARFI) imaging (120-125), and shear wave elastography (116, 

126-128).   
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1.4.1 Quantitative Ultrasound Measures 

When traditional B-mode ultrasound images are obtained, clinicians will qualitatively 

evaluate the quality of the tissue based on their observations. For example, injured tendons would 

be expected to have disorganized fibers and a hypoechoic appearance. Essentially, tendon health 

is being evaluated by examining the grayscale image echotexture. Quantitative ultrasound (QUS) 

measures quantitatively analyzes the grayscale image echotexture by performing first-order 

statistical analyses (skewness, variance, mean echogenicity, and kurtosis) on the grayscale 

distribution (Figure 1.5) (117-119, 129). Interpretation of the statistical features that describe the 

ultrasound image echotexture have been associated with overall tendon quality. Increased 

tendinopathy was associated with increased measures of skewness and kurtosis as well as 

decreased measures of variance and echogenicity, with a healthy tendon expected to exhibit highly 

aligned collagen fibers creating a striped pattern of alternating dark and light bands (117, 118). 

However, it is still unknown what specific factors of degeneration affect these measures and if 

QUS measures can be used to measure location specific mechanical properties of tendons. 

 

 

Figure 1.5: Quantitative Ultrasound Measures: Each pixel within a region of interest (ROI) is assigned a 

value between 0 (black) and 255 (white), and then the grayscale distribution is analyzed. 
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1.4.2 Acoustic Radiation Force Impulse (ARFI) Imaging 

Acoustic Radiation Force Impulse (ARFI) imaging is an ultrasound technique that 

generates a localized force onto the tissue of interest at a precise location and the resulting tissue 

displacement is measured (Figure 1.6) (130). Information about the resulting tissue displacement 

could lead to insights about tissue quality as the amount of displacement may correspond with the 

mechanical properties of the tissue (eg. modulus). Currently, ARFI imaging is primarily utilized 

for compliant, isotropic biological tissues such as breast, liver, and arteries where tissue 

displacements are less than 10µm (120-125, 130). Clinically, ARFI imaging has been used to 

detect the presence of tumors based on the stiffness of the tissue. However, the utility of ARFI 

imaging is not fully understood for stiff, anisotropic biological tissues such as tendons. Tendons 

are transversely isotropic with moduli on the order of hundreds of megapascals, while the 

commonly investigated breast tissue is isotropic with moduli on the order of kilopascals. 

 

 

Figure 1.6: ARFI imaging: An ARFI pushing beam focused to a particular depth (25mm) is fired across the 

transducer aperture width. The B-mode image depicts a homogenous gelatin phantom, and the ARFI 

displacement image illustrates the resulting displacement from the focused ARFI push. 
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1.4.3 Shear Wave Elastography 

Shear wave elastography is another ultrasound technique used to characterize tendon 

quality in research settings. Shear wave elastography and ARFI imaging are often used 

interchangeably in literature despite key differences of the acquired data (131, 132). Similar to 

ARFI imaging, shear wave elastography utilizes a focused acoustic radiation force to provide a 

local stress in the tissue which result in shear waves propagating perpendicular to the direction of 

the acoustic radiation force (128, 133, 134). Unlike ARFI imaging, shear wave elastography 

measures the speed of the propagating shear waves rather than the tissue displacement at the site 

of the acoustic radiation force. Shear wave velocity is calculated from the tissue displacement 

maps in the surrounding tissues which can be used to calculate Young’s modulus for isotropic, 

homogeneous, elastic tissues that undergo small deformations (G = shear modulus, ρ = density, cs
 

= shear wave velocity, E = Young’s modulus, v = Poisson’s ratio): 

 

 

𝑮 =  𝝆𝒄𝒔                                                               ( 1-1 ) 

 

 

𝑬 = 𝟐𝑮(𝟏 +  𝒗)                                                        ( 1-2 ) 
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However, the estimation of the modulus using the above equations does not hold well for 

anisotropic and stiff musculoskeletal tissues such as tendons. For commercial ultrasound 

machines, the stiffness of musculoskeletal tissues often exceeds its measurable range (135, 136).  

Thus, for musculoskeletal applications, shear wave elastography is good at estimating the relative 

stiffness based on the magnitude of the shear wave velocities (ie. stiffer tissue = faster shear wave 

velocity) (116, 135-140). Furthermore, shear wave elastography is useful for understanding the 

overall stiffness of the entire tissue, but cannot quantify location specific mechanical properties 

(eg. modulus) within the tissue.  

1.5 Finite Element Modeling 

Finite element modeling is a useful tool to solve complex engineering and mathematical 

problems (eg. structural mechanics, heat transfer, electromagnetics, fluid mechanics etc.). The 

solutions to these complex problems are achieved by breaking down the problem into simpler 

components (ie. finite elements). While experimental tests can be performed to obtain mechanical 

properties and understand the behavior of biological tissues, researchers are often limited by the 

number of specimens and testing conditions that can be performed. Finite element models can be 

used to address this limitation by re-creating experimental boundary and loading conditions to 

simulate more testing conditions that could be performed experimentally. Furthermore, material 

coefficients which describe the mechanical properties of biological tissues can be determined using 

the inverse finite element method (141, 142). The inverse finite element method optimizes material 

coefficients by iteratively changing the material coefficients until the finite element analysis result 

matches the experimental results (Figure 1.7). 
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Figure 1.7: Inverse finite element method optimization flowchart 

 

Finite element modeling of rotator cuff tears has primarily been used to investigate the 

effect of initial tear characteristics (eg. size, location, shape and chronicity) on the likelihood of 

tear propagation (92, 101, 104, 143-150). Several research groups have shown that as tears get 

larger, the strength of the tendon decreases, resulting in a partial-thickness tear progressing into a 

full-thickness tear, or a full-thickness tear propagating into a larger tear (143, 149, 150). In 

addition, anteriorly located tears were shown to be at a greater risk for tear propagation compared 

to centrally and posteriorly located tears (145). The stress and strain distribution of the 

supraspinatus tendon due to factors such as arm position and tear shape have also been 

investigated, with higher stresses being observed on the articular surface of the tendon and along 

the edges of a tear (101, 144, 146, 147, 151). However, a drawback of some of the models include 

simplified geometry, homogeneous isotropic material properties are assumed for the tendon, and 

the models do not actually simulate tear propagation occurring. As can be seen in all finite element 

models of a rotator cuff tear, inhomogeneous stresses and strains experienced throughout the 
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tendon (eg. high stress at tear tips and stress-shielded region along medial edge of tear). As a result, 

different tendon remodeling scenarios could occur, altering the localized mechanical properties 

within the tendon. However, the effect of localized tendon remodeling on tear propagation is not 

well understood.  

Finite element models have also been developed for ultrasound techniques such as ARFI 

imaging (152-156). However, these models focus on compliant tissues (ie. modulus <1 MPa), not 

stiff anisotropic tissues such as tendons (ie. modulus >100 MPa). Development of finite element 

models that accurately simulate ARFI imaging could be used to quantify location specific 

mechanical properties of tendons by using the inverse finite element method.  
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2.0 Motivation 

Rotator cuff tears are a significant clinical problem not only for the patients but the 

healthcare system as well (38, 39). Rotator cuff tears are extremely prevalent, negatively impact 

quality of life, with billions of dollars being spent annually in the United States alone to treat this 

injury. The desire to improve the quality of life and productivity for those with rotator cuff tears 

in an aging population highlights the importance of being judicious in choosing the most effective 

treatment. 

Both non-operative and surgical treatment of rotator cuff tears have fairly high failure rates 

(51, 52, 55, 56). Due to the high failure rates of treatment, individuals with this injury do not 

improve their quality of life, as well as valuable time and money of both the patient and healthcare 

system are wasted. Thus, there is a clear need to better understand the factors behind high failure 

rates of treatment. Tear propagation is a key factor that may explain high failure rates of treatment 

as larger tears are more difficult to treat and have been associated with worse clinical outcomes 

(53). However, it is not well understood why some tears propagate more easily than others. 

Therefore, there is a need to identify the important factors that increase the likelihood of tears 

propagating over time. 

Abnormal glenohumeral arthrokinematics indicate joint instability. Joint instability may be 

as a result of unbalanced force couples, which may expose the torn supraspinatus tendon to loads 

that increase the likelihood of tear propagation. Furthermore, persistent abnormal arthrokinematics 

may injure the structures within the glenohumeral joint resulting in a larger tear and therefore 

increased pain and loss of shoulder function (13, 79). Increased tear propagation may also be due 
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to changes in mechanical properties of the torn supraspinatus tendon (14). The mechanical 

properties of the supraspinatus tendon may be location dependent since the tendon may remodel 

based on regional differences in degeneration and stresses being experienced during repeated 

loading for a tendon with a tear (107).  

Although changes in location specific mechanical properties may influence tear 

propagation, clinicians need a method or tool to quantitatively evaluate the mechanical properties 

of the tendon. Ultrasound is a non-invasive, reliable, and cost-effective tool used by clinicians to 

detect the presence and size of rotator cuff tears (110-113). Currently, the evaluation of tissue 

quality from ultrasound images is subjective, but recent advancements in ultrasound techniques 

(eg. quantitative ultrasound measures and ARFI imaging) offer the potential for quantification of 

location specific tendon mechanical properties. Expanding the utility of current ultrasound 

techniques to quantify the mechanical properties of the tendon from conventional B-mode 

ultrasound images will help clinicians improve their surgical technique and monitor the healing of 

the tissue during and after treatment. 

By better understanding tear propagation, appropriate treatment decisions can be made to 

minimize the likelihood of failed treatment. It is expected that both abnormal glenohumeral 

arthrokinematics and location specific mechanical properties will significantly influence tear 

propagation. Clinicians can use the results of this dissertation to better assess and understand why 

rotator cuff tears develop into larger tears, which are more difficult to treat. Ultimately, delineating 

the effect of these factors influencing tear propagation will enable clinicians to better determine 

which patients should be treated non-operatively or be referred for immediate surgical repair. 
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2.1 Specific Aims 

The specific objective of this dissertation is to better understand the utility of ultrasound 

techniques as well as the role of glenohumeral arthrokinematics and location specific mechanical 

properties on tear propagation through in-vivo, cadaveric, and computational models. Three 

specific aims were accomplished to meet the specific objective of this dissertation:  

2.1.1 Specific Aim 1 

Determine changes in glenohumeral arthrokinematics for internal/external rotation with the arm at 

the side following exercise therapy. 

 

Hypothesis 1: Exercise therapy will result in improved glenohumeral arthrokinematics in terms of 

decreased translations and contact path length during internal/external rotation with the arm at the 

side. 
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2.1.2 Specific Aim 2 

Determine the effect of location specific tendon remodeling on tear propagation and stress 

distribution using a validated subject-specific finite element model of a supraspinatus tendon. 

 

Hypothesis 3: Positive tendon remodeling (ie. increased stiffness) at the tear tips will result in 

increased tear propagation due to higher stress concentrations. 

 

2.1.3 Specific Aim 3 

Evaluate the utility of different ultrasound techniques (QUS measures and ARFI imaging) to assess 

location specific changes in tendon quality (from histology) and predict location specific 

mechanical properties (from materials testing) of different musculoskeletal tissues. 

 

Hypothesis 2A: Increased fatty infiltration, collagen disorganization and cellularity will correlate 

to increased kurtosis and decreased echogenicity from QUS measures. 

 

Hypothesis 2B: Using the inverse finite element method, mechanical properties of tissues can be 

accurately predicted based on tissue displacement values from ARFI imaging. 
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3.0 Aim 1: Changes in Glenohumeral Arthrokinematics Following Exercise Therapy 

Non-operative treatment such as exercise therapy is often the first course of action to treat 

rotator cuff tears (45-48). However, exercise therapy fails in 25-50% of individuals (51, 52). Tear 

propagation is a key factor that may explain high failure rates of treatment as larger tears are more 

difficult to treat, have been associated with worse clinical outcomes and studies have shown 

significant increases (>2mm) in rotator cuff tear size in half of the patients within two years 

following exercise therapy (53, 54). A key focus of exercise therapy is to strengthen the 

surrounding muscles to compensate for the loss of function from the tear. However, simply 

improving the strength of surrounding muscles may not suffice if the joint is unstable because the 

rotator cuff force couples remain unbalanced. Joint instability, as measured by glenohumeral 

arthokinematic parameters, may be a result of the unbalanced force couples that exposes the torn 

supraspinatus tendon to loads that increase the likelihood of tear propagation. While glenohumeral 

arthrokinematics have been measured for scapular-plane and coronal-plane abduction tasks (74, 

80-87), glenohumeral arthrokinematics for other motions common to daily living such as internal 

and external rotation with the arm at the side following a rotator cuff tear is not well understood. 

Therefore, the first aim was to determine changes in glenohumeral arthrokinematics for 

internal/external rotation with the arm at the side following exercise therapy. 
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3.1 Exercise Therapy for Treatment of Supraspinatus Tears Does Not Alter Glenohumeral 

Arthrokinematics during Internal/External Rotation with the Arm at the Side 

3.1.1 Introduction 

Rotator cuff disease is a prevalent and serious clinical issue. Studies have shown the 

incidence rate of rotator cuff tears to be about 20-30% of the general population (4, 157), increasing 

with age (6). With an aging population, there is a need to improve the treatment modalities for 

rotator cuff tears. Non-operative management is a more cost-effective alternative for treating a 

rotator cuff tear, and is often the initial recommendation for most patients with a rotator cuff tear 

(158-161). However, non-operative management of rotator cuff tears is successful only 50-75% of 

the time (158, 159, 162). When non-operative management fails, surgery might eventually be 

needed, incurring more cost while delaying patient return to function. 

To maximize the success rate of treating rotator cuff tears, a better understanding of the 

reasons for failure is needed. Pathologic changes in glenohumeral joint kinematics and 

arthrokinematics have been shown to occur due to rotator cuff tears in cadaveric, rat and in vivo 

studies (15, 72-74). These changes are an important factor to consider when treating rotator cuff 

tears, since they are likely related to the loss of joint stability. Non-operative management such as 

exercise therapy is focused on strengthening the rotator cuff and scapular muscles that provide 

stability to the glenohumeral joint.  

Most in vivo studies that address non-operative management such as exercise therapy have 

focused on investigating changes in glenohumeral kinematics and arthrokinematics for scapular-

plane and coronal-plane abduction (74, 80-87). However, changes in glenohumeral kinematics and 

arthrokinematics for internal/external rotation following a rotator cuff tear are not well understood. 
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Internal/external rotation in full adduction (arm at the side) is commonly used in exercise therapy 

to strengthen the infraspinatus and subscapularis, so a patient can compensate for the loss of 

function due to a tear in the supraspinatus in order to improve joint stability (48). The force couples 

in the shoulder, composed of the deltoid, supraspinatus, infraspinatus and subscapularis (79), work 

together to stabilize the glenohumeral joint. As a result of a rotator cuff tear involving the 

supraspinatus, joint instability may occur for internal/external rotation because not all muscles 

used to stabilize the glenohumeral joint would be functioning normally. Increased joint translations 

compared to healthy individuals would be indicative of joint instability that would need to be 

addressed. Furthermore, the effect of exercise therapy to restore glenohumeral kinematics during 

internal/external rotation with the arm at the side is unknown and is an important motion to 

consider as it commonly used for activities of daily living. 

Therefore, the objective of was to assess changes of in vivo glenohumeral joint kinematics 

and arthrokinematics for internal/external rotation motions with the arm at the side of subjects with 

a symptomatic full-thickness supraspinatus tear before and after a 12-week exercise therapy 

program. It was hypothesized that improvements in shoulder strength and patient reported 

outcomes after exercise therapy would improve glenohumeral arthrokinematics in terms of 

decreased joint translations during internal/external rotation motions with the arm at the side. 
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3.1.2 Materials and Methods 

Five subjects (3 women and 2 men, mean age 60.2 ± 7.6 years, mean BMI 32.0 ± 7.8) were 

recruited for the study and approved by the University of Pittsburgh Institutional Review Board 

(PRO11050310). Subjects were eligible to enter the study if they were between 45 and 70 years 

old with a symptomatic small (< 1cm), chronic full-thickness rotator cuff tear isolated to the 

supraspinatus tendon. Additionally, the supraspinatus muscle had to show predominantly muscle 

compared to fat on MRI (Goutallier Grade 2 or less). Subjects were excluded if they were smokers, 

had any previous shoulder surgeries, injections within 3 months of study participation, exercise 

therapy within 2 years prior to the study, work-related or traumatic injury, diabetes mellitus, or 

severe capsular tightness (internal/external rotation less than 30°). Each subject underwent 12 

weeks of exercise therapy, where before and after exercise therapy, glenohumeral arthokinematic 

measurements were made (Figure 3.1). 

 

 

Figure 3.1: Flowchart of testing subjects with supraspinatus tears 
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3.1.2.1 Exercise Therapy Protocol and Assessments 

All five subjects participated in a standard 12-week exercise therapy program for non-

operative management of rotator cuff tears, with a focus on strengthening the rotator cuff and 

scapular muscles, and restoring range of motion (ROM). Subjects were treated with oral 

nonsteroidal anti-inflammatories as needed. Subjects were not treated with corticosteroid 

injections to the subacromial space. The first 6 weeks of the program was supervised exercise with 

a single physical therapist for two 45-60 minute sessions a week. The final 6 weeks consisted of a 

home exercise program while completing a daily home exercise log to ensure subject compliance. 

For data collection purposes, an exam at the 12-week time point was included to assess subject 

status after the completion of the home exercise sessions.  

Isometric and active ROM exercises were used to strengthen the rotator cuff and scapular 

muscles, until the subject could actively move the shoulder through a full ROM continuously and 

painlessly. Progressive resistance exercises (PREs) were then introduced. Amount of exercise 

resistance and number of repetitions for each subject was established through the daily adjustable 

progressive resistance exercise (DAPRE) program (163) (Table 3.1). The specific exercises which 

focused on each of the rotator cuff muscles (supraspinatus, subscapularis, infraspinatus and teres 

minor), as well as the serratus anterior and middle and lower trapezius, were selected based upon 

electromyographic (EMG) evidence of maximal activity for each muscle (164-166). Cold therapy 

was applied to minimize shoulder pain as needed based on response to exercise, pain level, and 

subject preference following each exercise session. Subject pain during each session was measured 

on a scale from 0 to 10, which was used by the physical therapist to adjust the exercise program 

on an individual basis. 

During the exercise therapy sessions at 0 and 12 weeks, isometric shoulder strength and 

patient-reported symptoms, activity and participation were assessed for each subject. Isometric 
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strength measurements were taken using a handheld dynamometer (Lafayette Manual Muscle 

Testing System, Lafayette Instrument Company, Lafayette, IN) for four shoulder positions. The 

dynamometer was placed distally on the forearm, just proximal to the wrist joint, along the dorsal 

radius and ulna when taking the measurement. Maximal isometric strength was assessed for 

external rotation at 0° of coronal plane abduction (infraspinatus bias), external rotation at 90° of 

abduction (teres minor bias), scapular plane abduction (supraspinatus bias), and internal rotation 

at 90° of abduction (subscapularis and pectoralis muscles). Subjects performed three trials of each 

task, and the average value was taken as a measure of isometric strength. At the same time points, 

subjects filled out three patient-reported outcome measures including the American Shoulder and 

Elbow Surgeons (ASES) Shoulder Rating Scale (167), Western Ontario Rotator Cuff (WORC) 

Index (168), and Disabilities of the Arm, Shoulder and Hand (DASH) Outcome Measure (169).  

The ASES, WORC, and DASH are commonly used to assess patient-reported outcomes for a 

variety of shoulder conditions including rotator cuff tears. Reliability and validity of ASES (170), 

WORC (171), and DASH (172) scores for rotator cuff disease have been previously demonstrated. 

Changes in the ASES, WORC, and DASH scores were compared to minimal clinically important 

differences (MCID) (173) for each outcome measure to determine if improvements were clinically 

relevant (174, 175). 

  



 31  

Table 3.1: Exercise Therapy Program 

Week #1.  

Acute Phase 

Weeks # 2, 3.  

Transitional Phase 

Weeks # 4, 5, 6.  

Advanced Phase 

PROM cane external rotation Horizontal adduction stretch Continued progression of 

flexibility and strengthening 

from transitional phase 

PROM cane internal rotation Internal Rotation towel stretch Proprioceptive neuromuscular 

facilitation patterns  

PROM supine flexion Sleeper Stretch Lat pull down 

ER at 0° with elastic resistance Rhomboids (retractions) 

PROM standing extension IR at 0° with elastic resistance Pecs (press, flies) 

AAROM supine cane external 

rotation 

ER at 90° with elastic 

resistance 

Deltoids (raises) 

AAROM standing cane flexion Subscapularis hug with elastic 

resistance 

Closed kinetic chain protraction 

with rhythmic stabilization 

AAROM standing cane abduction Scapular Plane Abduction ADL or sport specific activities 

AAROM wall climb / wall walk Prone Row into external 

rotation 

 

AAROM standing cane extension Prone T’s (horizontal abduction 

at 90°) 

 

Isometric ER at 0 degrees Prone Y’s (horizontal 

abduction at 120°) 

 

Isometric IR at 0 degrees Serratus protraction with 

forward flexion 

 

Side-lying ER in pain-free ROM Wall push up with plus  

Prone GH extension with ER Lat pull down  

Scapular Plane Abduction Rhythmic stabilization with 

manual resistance 

 

Scapular Retraction Biceps curl  

Manually resisted scapular 

movements  

Triceps push down  

PROM: Passive Range of Motion; AAROM: Active Assistive Range of Motion; ADL: 

Activities of Daily Living; IR: Internal Rotation; ER: External Rotation 
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3.1.2.2 Glenohumeral Arthrokinematics Protocol and Assessments 

A previously established model-based tracking technique using dynamic stereoradiography 

(DSX) (176) was used to measure glenohumeral arthrokinematics during internal/external rotation 

with the arm at the side before and after the exercise therapy program. Prior to beginning the 

exercise therapy protocol, subjects underwent computed tomography (0.625 × 0.625 × 1.25 mm 

voxels) of the affected shoulder. The DSX system was used to collect x-ray images with the 

subjects were seated with their affected glenohumeral joint positioned at the center of the system 

(Figure 3.2).  Subjects performed an internal-external rotation trial from a maximum internal 

rotation position to a maximum external rotation position in the transverse plane over 2 seconds 

with their arm at the subject’s side. A metronome was used to assist in timing of the motion, and 

subjects were allowed a maximum of two practice trials before collecting data. For each trial, 

subjects performed 3 internal/external rotation cycles, with data collected on the second cycle.  

 

 

Figure 3.2: Dynamic stereoradiography (DSX) system setup with the subject sitting with the glenohumeral 

joint centered in the focal point of the two x-ray sources (left) and an example radiographic image used for 

model based tracking (right). 
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Details regarding how 3D glenohumeral kinematics and arthrokinematics were calculated 

using DSX images has been previously described (87, 176).  To summarize, first the computed 

tomography images were segmented using MIMICS 14 software package (Materialise, Leuven, 

Belgium) to generate subject-specific, three-dimensional (3D) bone models of the humerus and 

scapula. Digitally reconstructed radiographs (DRR) of the 3D bone models were created using the 

projected geometry from the biplane imaging system. Then, the DRRs were oriented to match the 

position of the DSX images for each frame of the dynamic motion. Finally, 3D positions of each 

bone were determined by calculating local coordinate systems for the humerus and scapula based 

off International Society of Biomechanics standards to generate glenohumeral kinematics (177). 

An Euler angle rotation sequence (YXY) was used to determine the translations and rotations of 

the humerus with respect to the scapula. The accuracy of measuring in vivo shoulder motion for 

dynamic activities such as internal/external rotation with the arm at the side is ±0.4 mm and ±0.5°, 

while the dynamic measurement precision was better than ±0.2 mm (87, 176).  

Average contact center of the humeral head on the glenoid surface was the main 

arthrokinematic variable of interest. Contact center location was determined by calculating the 

centroid of the region of closest contact (200 mm2) between the glenoid and humeral head (178). 

From the glenohumeral contact center data, the contact path length (i.e. translation of the humerus 

on the glenoid through the range of internal/external rotation) was calculated as the change in 

frame-by-frame position of the joint contact center and was normalized to glenoid height (179). 

Normalized ranges of anterior-posterior (AP) and superior-inferior (SI) translation of the joint 

were calculated as the largest difference in anterior-posterior and superior-inferior position of the 

joint contact center over the entire contact path length. For each subject, contact path length, AP 

and SI range of translation was used for subsequent statistical analysis.  
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3.1.2.3 Statistical Analysis 

Due to the large variation in ROM between subjects, comparisons between pre- and post-

therapy were made on an individual basis using the largest shared ROM between data collection 

sessions. For example, for a subject with a pre-therapy ROM of 20° of IR and 50° of ER and a 

post-therapy ROM of 25° of internal rotation and 45° of external rotation, the shared ROM over 

which kinematic variables were calculated was 20° of internal rotation to 45° of external rotation. 

Paired t-tests or Wilcoxon Signed Rank tests were performed to compare the contact center path 

length and AP/SI translation range before and after completion of exercise therapy (0 and 12 week 

time points). Paired t-tests or Wilcoxon Signed Rank tests were also used to compare the four 

strength measurements and shoulder questionnaire scores. Pearson’s correlation or Spearman’s 

rho correlation coefficients were calculated to determine relationships between changes in the 

patient-reported outcome scores, shoulder strength, and glenohumeral arthrokinematics from pre- 

to post-therapy. Significance was set at p < 0.05 for all tests. 
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3.1.3 Results 

All five subjects successfully completed the 12 weeks of therapy and none had sought 

surgical treatment at 24 months follow up. One subject showed poor compliance with the home 

exercise protocol and did not give maximal effort during supervised exercise therapy sessions as 

determined by the supervising physical therapist (i.e. did not complete all exercises during 

scheduled sessions and did not follow the DAPRE program as the other four subjects did). 

However, this subject was satisfied with their clinical outcome and did not elect to undergo surgical 

repair after completing the study.  The maximum amount of IR/ER achieved during testing varied 

substantially between subjects, resulting in different ranges of IR/ER for comparison between 

subjects (Table 3.2). No subject reported any difficulty or pain when performing the IR/ER motion. 

 

Table 3.2: Glenohumeral kinematics/arthrokinematics for each subject pre- and post- exercise therapy 

 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

  Pre Post Pre Post Pre Post Pre Post Pre Post 

IR/ER Range 

Shared Between 

Pre- and Post- 

26° IR - 25° ER 75° IR - 87° ER 30° IR - 88° ER 59° IR - 1° ER 69° IR - 50° ER 

SI contact center 

range (% glenoid 

SI height) 

10.4 15.7 32.7 27.6 7.9 8.9 30.9 28.4 15.6 17.1 

AP contact center 

range (% glenoid 

AP width) 

11.9 42.8 34.8 28.5 10.8 12.1 12.8 24.0 15.5 23.8 

Contact Path 

Length (% glenoid 

height) 

28.0 83.9 275.9 155.1 40.2 65.8 106.3 69.4 72.9 88.6 

 



 36  

All five subjects showed improvements in isometric shoulder strength and patient-reported 

outcomes after 12 weeks of exercise therapy (Table 3.3). Strength measures showed significant 

increases of 54%, 31%, 74%, and 54% for external rotation at 0° abduction (p < 0.05), internal 

rotation at 0° abduction (p < 0.05), external rotation at 90° abduction (p < 0.05), and scaption at 

90° abduction (p < 0.05), respectively. Average improvements in the ASES (p < 0.05), DASH (p 

< 0.05), and WORC (p < 0.05) scores were all greater than the MCID (174, 175).  

 

Table 3.3: Shoulder strength and clinical outcomes before and after exercise therapy 

 (Average ± Standard Deviation for all 5 subjects) 

Clinical Measure Pre Post 

Infraspinatus Strength: ER @ 0° abduction (N) 54.2 ± 31.3 83.9 ± 22.3 

Subscapularis Strength: IR @ 0° abduction (N) 93 ± 45.2 121.8 ± 36.9 

Teres Minor Strength: ER @ 90° abduction (N) 46.7 ± 34.1 81.2 ± 20.3 

Supraspinatus Strength: Scaption @ 90° abduction (N) 40.1 ± 27.4 61.9 ± 20.2 

ASES Score (MCID = 6.4) a 50.7 ± 19.3 88.1 ± 16.3 

DASH Score (MCID = 10.2) 35 ± 18.2 5.6 ± 3.4 

WORC Score (MCID = 245.26) 1198.8 ± 347.6 344.8 ± 393.2 

All differences were statistically significant between time points. 

a = Data was non-parametric and used Wilcoxon Signed Rank for comparisons 

MCID = Minimal Clinically Important Differences; IR = internal rotation; ER = external rotation 
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Three of the five subjects showed an increase in glenohumeral contact path length post-

therapy (Figure 3.3). Across the five subjects, path length pre-therapy was 104.7 ± 100.5 % glenoid 

height while post-therapy was 92.6 ± 36.2 %. A similar trend was seen for the absolute AP range 

of translation. Pre-therapy, the AP range was 17.2 ± 10.0 % glenoid AP width, and post-therapy, 

the AP range was 26.2 ± 11.1 % glenoid width. The absolute SI range of translation remained 

relatively the same following therapy for all subjects. Comparing pre- and post-therapy, the SI 

range of translation was 19.5 ± 11.6 % and 19.5 ± 8.3 % glenoid height, respectively. Exercise 

therapy did not have a significant impact on glenohumeral contact path length, SI or AP range of 

translation (p > 0.05).  

When comparing magnitude of changes in arthrokinematic parameters with the percent 

strength increase following the full 12 week exercise therapy program, no significant correlations 

were found. In addition, no correlations were observed between changes in any arthrokinematic 

variables with the change in ASES, DASH, or WORC scores. 

 

 

Figure 3.3: Contact path arthrokinematics for a single subject (a: pre-therapy, b: post-therapy). The black 

circle represents the contact center. The white line is the path in which the contact center follows throughout 

the range of motion. Qualitatively, no differences exist in contact path length pre- versus post-therapy. 
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3.1.4 Discussion 

All subjects successfully completed exercise therapy, and showed significant 

improvements in shoulder strength and patient-reported outcomes (ASES, WORC, DASH). 

However, these clinical improvements did not lead to any significant changes in glenohumeral 

arthrokinematics for internal/external rotation with their arm at their side. Our hypothesis that 

exercise therapy would improve glenohumeral joint arthrokinematics for internal/external rotation 

motions with the arm at the side in terms of decreased translations was refuted. Exercise therapy 

had no effect on changing glenohumeral joint arthrokinematics for internal/external rotation with 

the arm at the side. Rather, exercise therapy was found to only improve shoulder strength and 

patient satisfaction. While no subjects required surgery and improvements in shoulder strength and 

patient reported outcomes were found, these should not be the only factors considered when 

treating patients with rotator cuff tears non-operatively. Non-operative treatment for rotator cuff 

tears can be further improved by adapting current rehabilitation protocols to address glenohumeral 

joint arthrokinematics.  

While the initial clinical outcomes appear positive in terms of increased shoulder strength 

and improved test scores (DASH, ASES and WORC), the long-term effects of exercise therapy 

are still unknown. It is unclear whether these satisfactory outcomes remain or if they will revert 

back to pre-therapy levels. Cases in which patients return to the clinic seeking more treatment after 

exercise therapy complaining of pain and joint instability may be due to the failure to improve the 

arthrokinematics for internal/external rotation motions. This additional treatment would be a 

financial burden for both the patient and the healthcare system.  

The glenohumeral arthrokinematics for internal/external rotation showed increased 

translations compared to previous studies that investigated glenohumeral internal/external rotation 
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for healthy subjects, indicating joint instability. In the current study, the average AP range of 

translation pre-therapy corresponded to 5mm of translation, with previous studies reporting around 

2mm of translation (80, 86, 180). Similarly, the average SI range of translation for the present 

study was 7mm, while previous studies reporting 3-4mm of translation for healthy subjects (180). 

Investigation of glenohumeral internal/external rotation at higher abduction angles would likely 

show even larger differences compared to healthy subjects. The current study shows values of 

translations at least double than healthy subjects, indicating improvements to glenohumeral 

arthrokinematics are needed to improve joint stability. Joint instability may be as a result of 

unbalanced force couples, which may expose the torn supraspinatus tendon to loads that increase 

the likelihood of tear propagation. Thus, current exercise therapy protocols should be altered to 

also address glenohumeral arthrokinematics with the arm at the side. 

Interestingly, the effect of exercise therapy on glenohumeral arthrokinematics may depend 

on the type of motion. In a previous study that looked at glenohumeral joint arthrokinematics for 

coronal plane abduction, glenohumeral arthrokinematics were improved in terms of less 

glenohumeral joint translation following therapy (87). In the current study investigating 

internal/external rotation with the arm at the side, no differences in glenohumeral arthrokinematics 

pre- and post-therapy were found. The interaction between the transverse and coronal force 

couples of the shoulder for stabilization purposes may explain the differences found between 

different motions. Therefore, it is likely that simply increasing the strength of the surrounding 

muscles may not be sufficient in restoring glenohumeral arthrokinematics, and that achieving a 

balanced force couple is more essential. Different exercises may be more effective in changing 

glenohumeral arthrokinematics for different motions and should be incorporated into future 

exercise therapy protocols.  
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 A limitation is the small sample size. Although only five subjects were tested, all subjects 

were representative of the general population of individuals with a degenerative rotator cuff tear 

that would have been treated with exercise therapy. Post-hoc power analysis indicated that over 

100 subjects would be needed to achieve significant differences for contact path length, and SI 

contact range of translation. An additional 8 subjects would be needed to find differences in AP 

contact range of translation. Another limitation is that the results only apply to internal/external 

rotation motions with the arm at the side. Different results may have been obtained if the subjects 

conducted the same internal/external rotation motions at different abduction angles. Furthermore, 

the ‘normal’ glenohumeral arthrokinematics for internal/external rotation motions for each subject 

are unknown since the contralateral shoulder was not tested. Additionally, how glenohumeral 

arthrokinematics change over time following exercise therapy is unknown as glenohumeral 

arthrokinematics at a long term follow up session was not investigated. However, the lack of this 

information does not take away from the key finding that no significant changes in glenohumeral 

arthrokinematics were observed between pre- and post-therapy. 

Future studies are needed to obtain a better understanding on how exercise therapy affects 

glenohumeral arthrokinematics and how these changes in glenohumeral arthrokinematics affect 

the success of therapy. In the future, studies will investigate the changes in glenohumeral 

arthrokinematics for different arm positions that are representative of tasks common to daily living. 

In addition, future work will include long-term follow up studies to assess whether the inability to 

restore glenohumeral arthrokinematics during internal/external rotation with the arm at the side 

results in subjects eventually needing surgery. 
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3.1.5 Conclusions 

Exercise therapy resulted in clinical improvements with regards to shoulder strength and 

patient-reported outcomes, but it does not affect glenohumeral arthrokinematics for 

internal/external rotation with the arm at the side. Current exercise therapy protocols do not 

influence glenohumeral arthrokinematics for internal/external rotation motions with the arm at the 

side. While the subjects successfully completed exercise therapy without needing to resort to 

surgery, there is a lack of understanding as to whether therapy was truly successful since 

glenohumeral arthrokinematics did not change. Exercise therapy should be adapted to emphasize 

the importance of improving glenohumeral arthrokinematics for multiple motions, in addition to 

restoring range of motion, increasing shoulder strength, and reducing pain. 
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4.0 Aim 2: Effect of Location Specific Tendon Remodeling on Tear Propagation 

Finite element modeling is a useful tool to solve complex engineering and mathematical 

problems by re-creating experimental boundary and loading conditions to simulate more testing 

conditions than could be performed experimentally. Previous studies using finite element models 

to investigate rotator cuff tears have focused on the effect of tendon (eg. overall degeneration) and 

tear characteristics (eg. size, location, and shape) on the stress and strain distribution patterns 

experienced by the rotator cuff tendons (92, 101, 104, 143-147). Results from these studies suggest 

that the inhomogeneous stresses and strains experienced throughout the tendon (eg. high stress at 

tear tips and stress-shielded region along medial edge of tear) may result in different tendon 

remodeling scenarios which could alter localized mechanical properties within the tendon. Tear 

propagation is a key factor that may explain high failure rates of treatment as larger tears are more 

difficult to treat and have been associated with worse clinical outcomes (53). However, the effect 

of localized tendon remodeling on tear propagation is not well understood. Thus, the purpose of 

aim 3 of this dissertation is to determine the effect of location specific tendon remodeling on tear 

propagation and stress distribution using a validated subject-specific finite element model of a 

supraspinatus tendon. 
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4.1 Finite Element Analysis of Tendon Remodeling on Tear Propagation 

4.1.1 Introduction 

Rotator cuff tears, which typically occur in the supraspinatus tendon, are a primary cause 

of shoulder pain and loss of shoulder function (40). In an aging population, the high frequency of 

rotator cuff tears, combined with their capacity to cause severe pain and limit normal activity, 

underscores the importance of timely and effective treatment (6, 41, 42). The success of treatment 

by non-operative and operative means have been quite variable and the factors behind the success 

rate of treatment is still debated (43, 44, 51, 52, 55, 56).  

A factor that plays a role in the success or failure of treatment is tear propagation. Larger 

tear sizes have been associated with more pain and higher re-tear rates after surgery (53, 54). Tears 

may propagate more easily than others because of poor tissue quality due to changes in the 

mechanical properties of the tendon. Changes in tendon mechanical properties are directly related 

to the composition and microstructure of the tendon (93).  

Histological studies have shown poor tendon quality being associated with changes at the 

microscopic level (eg. collagen fiber organization, nuclei shape, cellularity and fatty infiltration) 

(106, 181-185). The composition of constituents found in tendons (eg. proteoglycans) has been 

shown to be regulated by mechanical stimuli (94, 97, 98, 186, 187).  Furthermore, regional 

differences in degeneration has been shown for tendons with a tear. Within the layers of the tendon, 

collagen fiber disorganization, myxoid and hyaline degeneration was observed in the deep layers 

of rotator cuff tendons with a tear (183). At the myotendinous junction, more lipoid degeneration 

was observed compared to the mid-substance and insertion site for tendons with a tear (188). Since 

torn tendons cannot bear any loads, the remaining intact fibers have to compensate and bear extra 
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load. Therefore, the presence of a tear may alter the tendon composition and microstructure, 

consequently altering the mechanical properties throughout different locations within the tendon 

(105, 189). For example, degeneration at the insertion site of the supraspinatus tendon due to 

thinning of tendon fibers and presence of granulation tissue resulted in a decrease in tensile 

strength, with a majority of the tendons failing at the insertion site (105). 

Finite element models to investigate rotator cuff tears have primarily focused on the effect 

of tear characteristics (eg. size, location, and shape) and overall tissue quality (eg. reduced 

mechanical properties) on tear propagation (92, 101, 104, 143-147, 190).  The results from these 

studies have showed high stress concentrations at the tear tips and stress-shielding at the medial 

and lateral tear edges of a tear. Therefore, gross changes in mechanical properties across the entire 

tendon may not accurately represent the changes in the tendon following a tear (92). Rather, 

localized changes in mechanical properties may occur due to different tendon remodeling 

scenarios based on the inhomogeneous stresses and strains observed throughout different locations 

within the tendon. 

The effects of localized tendon remodeling on the changes of tendon mechanical properties 

as well as their role in tear propagation are not well understood. Mechanical loading has been 

previously described as a delicate “state switch”, balancing the forces in the tendon which would 

promote functional tissue remodeling or development of tendon degeneration (191). For example, 

high stress concentrations may result in positive (ie. increased stiffness) or negative (ie. decreased 

stiffness) remodeling of the tendon’s structural properties. In addition, negative tendon remodeling 

may occur in areas of low/no stresses as a result of the tissue no longer being used.  
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Therefore, the objective was to investigate the effect of localized tendon remodeling on 

tear propagation for simulated supraspinatus tendon tears. Specifically, evaluate the amount of tear 

propagation, localized stress distribution around the tear, and the critical load needed for tear 

propagation based on positive and negative tendon remodeling around the tear where areas of high 

and low stresses occur. 
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4.1.2 Methods 

4.1.2.1 Model Geometry, Mesh and Material Model 

A previously validated, subject-specific finite element model of an intact supraspinatus and 

infraspinatus tendon was used. The model was validated by using mechanical testing data where 

the predicted strains from the computational model were within the experimental repeatability of 

3% strain (190). Subject-specific model geometry was constructed using CT scans of one 

cadaveric shoulder specimen (70-year-old male). The mesh used for the supraspinatus and 

infraspinatus tendon geometry consisted of 33,092 nodes and 150,626 tetrahedral elements and 

was generated using Hypermesh (Altair Engineering, Troy, MI, USA) (Figure 4.1). The 

appropriate mesh size was determined after a convergence analysis was performed by increasing 

the number of elements until the difference in strain predictions was <0.2% strain. 

 

 

Figure 4.1 Overview of FEM model creation. CT Scans (A) were used to create model geometry (B) 
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A homogeneous, transversely isotropic, hyperelastic material model was used to define the 

tendon (104, 192). This material model defined the properties of the extracellular matrix with an 

isotropic, nearly incompressible Neo-Hookean model, and incorporated collagen fiber modulus 

and orientation through an exponential function of the pseudo-invariant of right Cauchy-Green 

deformation tensor. Mechanical properties of the anterior, middle and posterior tendon thirds were 

determined from load-to-failure mechanical tests of the tendon thirds. The calculated mechanical 

properties of the tendon thirds were then assigned to the appropriate region of the model, with a 

linear gradient used to transition the properties between the tendon thirds to minimize stress 

concentrations (Table 4.1) (92, 143, 190).  

A 1-cm wide anteriorly located full-thickness tear approximately 5mm medial to the 

insertion site was created in the model by “detaching” the relevant adjacent elements (Figure 4.2). 

An anteriorly located tear was chosen to represent a tear most susceptible to tear propagation (90, 

91). The medial location of the tear represents a common location rotator cuff tears, and is also in 

the same area in where the model was validated for accurate predictions of strain.  

 

Table 4.1: Properties of the supraspinatus tendon thirds used in the model 

 Ultimate Stress 

(MPa) 

Collagen Fiber 

Modulus (MPa) 

Fracture 

Toughness (J) 

Max Separation 

(mm) 

Anterior 5.8 10.9 1855 0.64 

Middle 5.8 15.4 1546 0.53 

Posterior 4.3 8.9 1221 0.57 
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4.1.2.2 Cohesive Elements 

Cohesive elements along the anterior-posterior plane of the tear were incorporated in the 

model to simulate tear propagation (Figure 4.2). Cohesive elements are special surface elements 

that have been used to model failure for other biological tissues by allowing the elements on 

adjacent surfaces to separate at a prescribed critical failure point (193-195). The critical failure 

point is based on the cohesive traction-separation law (bi-linear relationship between traction and 

separation) and assumes that the primary mode of failure is tension (196). The fracture toughness 

represented by the area under the traction-separation curve needed to be defined for the computer 

simulations and was estimated based on previously collected mechanical testing data of tear 

propagation (Table 4.1) (90).  The traction-separation law is 

 

 

𝝈 = 𝒌𝒄𝜹                                                              ( 4-1 ) 

 

 

where σ represents traction, δ represents jump/separation and kc is the stiffness of the cohesive 

elements defined by the failure properties of the material. 

 

 

𝒌𝒄 = (
𝑺

𝟏−𝑺
) (

𝝈𝒎𝒂𝒙

𝑺𝒊𝒏𝒊𝒕𝒊𝒂𝒍
) (

𝟏

𝜹𝒎𝒂𝒙
)                                              ( 4-2 ) 
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In this expression, 𝜎𝑚𝑎𝑥  is the intrinsic tensile strength of the tissue. S represents damage to the 

material, which monotonically decreases from Sinitial to 0, depending on how close the separation 

between elements is to the maximum separation. Sinitial is the initial damage to the material that 

defines the starting point along the traction-separation curve. Sinitial for the model was 0.98, 

commonly used for soft tissue tears (193). Once maximum stress is reached, damage occurs and 

eventually the cohesive elements separate at the maximum separation 𝛿𝑚𝑎𝑥 (S = 0) to simulate tear 

propagation. 

 

 

 

 

 

Figure 4.2: A) Example mesh of a tear (white box) and cohesive elements (blue line). B) Boundary and 

loading conditions as well as the locations where tendon remodeling was incorporated indicated by the yellow 

stars.  
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4.1.2.3  Loading and Boundary Conditions 

Tear propagation simulations were performed using a custom non-linear, cohesive-

volumetric finite element code (104). Based on experimental testing and a rigorous analyses 

described in a previous study, the reference configuration was determined to be a 40N preload of 

the supraspinatus tendon at 70° of glenohumeral abduction (190). Therefore, the supraspinatus was 

positioned to simulate 70° of glenohumeral abduction, and the insertion site attachment of the 

tendons to the humeral head was assumed to be fixed.  A 22 N static load was applied to the 

infraspinatus tendon to simulate the load-sharing interaction between the infraspinatus and 

supraspinatus tendons. The medial edge of the supraspinatus tendon was displaced 5 mm and was 

chosen based on experimental tests of supraspinatus tear propagation (90, 91). The direction of 

loading for both tendons was along the physiological line of action (Figure 4.2).  

4.1.2.4 Localized Tendon Remodeling Scenarios 

Localized tendon remodeling was incorporated in the model by modifying collagen fiber 

modulus. Positive remodeling was represented by a 50% increase in the collagen fiber modulus 

and negative remodeling a 50% decrease. Tendon remodeling focused on the elements along the 

medial and lateral edges of the tear and at the tear tips, corresponding to the stress-shielded and 

high stress concentration regions described in previous studies (Figure 4.2B) (92, 104, 190). 

Tendon modulus was the main parameter of interest for tendon remodeling based on the 

inhomogeneous stress distribution found in tendons with a tear because studies have shown the 

effect of injury, healing and mechanical stimulation to cause similar degrees of changes in tendon 

stiffness (197-199). In total, 4 remodeling scenarios were simulated: 1) baseline (ie. no 

remodeling), 2) negative remodeling at the medial and lateral tear edges, 3) positive remodeling at 
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the anterior and posterior tear tips, and 4) negative remodeling at the anterior and posterior tear 

tips.  

For each tendon remodeling scenario, there were 3 main outcome parameters of interest. 

First, the amount of the tear propagation in the anterior-posterior direction. Second, the peak 

maximum principal stress at the tear tips when the medial edge of the supraspinatus tendon was 

displaced 5 mm. Thirdly, the critical load defined time point in which the maximum load was 

reached during the 5 mm of supraspinatus displacement. 
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4.1.3 Results 

Qualitatively, similar propagation patterns and stress distributions were observed for all 

localized tendon remodeling scenarios (Figure 4.3). The tear propagated in the anterior direction, 

nearly reaching the anterior border of the supraspinatus tendon, as well as in the posterior direction, 

approaching the posterior third of the supraspinatus tendon. High stress concentrations were 

observed at the anterior and posterior tear tips, and low stresses were observed at the medial and 

lateral edges of the tear. The anterior tear tip for all remodeling scenarios had a rounded/blunt 

shape compared to the posterior tear tip (Figure 4.4). 

 

 

Figure 4.3: Principal stress distribution after 5 mm of supraspinatus tendon (SS) displacement for all tendon 

remodeling scenarios.  Qualitatively, negative remodeling at the tear tips resulted the least amount of tear 

propagation, though the difference is small. 
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Figure 4.4: Max principal stress distribution of FEM model for positive remodeling at the tear tips with the 

supraspinatus tendon (SS) is displaced 5 mm at 70° of glenohumeral abduction. Regions of red indicate high 

stress, regions of blue indicate low stress. More “blunt” tear shape on anterior portion of the tear. 
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The difference in amount of tear propagation among the four remodeling scenarios was 

small (range: < 3 mm) (Table 4.2). The baseline scenario resulted in a total of 17.4 mm of tear 

propagation. Remodeling along the medial and lateral tear edges resulted in a similar amount of 

tear propagation (< 2% difference) as the baseline scenario (17.7 mm versus 17.4 mm, 

respectively). Negative remodeling at the tear tips resulted in the least amount of tear propagation, 

10% lower than the baseline scenario. Positive remodeling at the tear tips resulted in the most tear 

propagation, 15% more than negative remodeling at the tear tips scenario.  

Similar to the amount of tear propagation, positive remodeling at the tear tips had the 

highest peak maximum principal stress, and negative remodeling at the tear tips with the lowest 

among the remodeling scenarios (Table 4.2). The peak maximum principal stress for positive 

remodeling at the tear tips (25.2 MPa) was 43% larger than negative remodeling at the tear tips, 

35% larger than negative remodeling at the medial/lateral tear edge, and 28% larger than baseline.  

 

Table 4.2: Amount of tear propagation and peak maximum prinicpal stress for different localized tendon 

remodling scenarios 

 Amount of Tear 

Propagation (mm) 

Peak Maximum 

Principal Stress (MPa) 

Baseline 17.4 19.7 

Positive Remodeling at Tear Tips 18.4 25.2 

Negative Remodeling at Tear Tips 16.0 17.6 

Negative Remodeling at Medial/Lateral Tear Edge 17.7 18.7 
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For all tendon remodeling scenarios, critical load occurred between 3.1-3.5 mm of 

displacement of the medial edge of the supraspinatus tendon, corresponding to approximately 7% 

bone-to-medial tendon edge strain (Figure 4.5). Negative remodeling at the tear tips had the highest 

critical load of 278 N. The lowest critical load needed for tear propagation was for the positive 

remodeling at the tear tips (249 N), 11.5% lower than negative remodeling at the tear tips. Similar 

critical loads (< 1% difference) were observed for the baseline and negative remodeling of the 

medial and lateral tear edges scenario.  

Overall, positive remodeling at the tear tips resulted in the largest amount of tear 

propagation, highest peak maximum principal stress, and lowest critical load needed for tear 

propagation. Conversely, negative remodeling at the tear tips resulted in the least amount of tear 

propagation, lowest peak maximum principal stress and highest critical load. Negative remodeling 

along the medial and lateral tear edges showed similar results for all output parameters as the no 

remodeling condition. 

 

 

 
Figure 4.5: Load versus displacement curve for different tendon remodeling scenarios.The peak of each curve 

represents the critical load needed for tear propagation. 
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4.1.4 Discussion 

The effects of localized tendon remodeling on supraspinatus tendon tear propagation were 

investigated using a validated, subject-specific finite element model. Tendon remodeling was 

simulated by localizing changes to the tendon stiffness at the tear tips and medial/lateral tear edges. 

Overall, only subtle differences were observed for peak maximum principal stress and the amount 

of tear propagation for all four tendon remodeling scenarios. The critical load values that lead to 

tear propagation (~250-300 N) are similar to the forces experienced by the supraspinatus tendon 

during activities of daily living and physical therapy (48, 200).  

Remodeling at the tear tips had the greatest effect on influencing the risk of tear 

propagation whereas remodeling at the medial and lateral tear edges had a minimal impact. The 

reason for the minimal impact of medial and lateral tear edge remodeling may be because 

remodeling did not occur in the plane of propagation (ie. anterior-posterior direction) where the 

cohesive elements were located. Incorporating cohesive elements throughout the model may result 

in more tendon retraction and different tear shapes. Moreover, critical loads could change if the 

propensity for the tear to propagate is easier in other directions.  However, the modeling of tear 

propagation only in the anterior-posterior direction reduced the computational complexity while 

maintaining an accurate representation of the behavior of supraspinatus tendon tear propagation 

experimentally (90, 143). The clinical implications of this finding would be to monitor the changes 

in tissue quality directly at the anterior/posterior tips of the tear as the study shows this may be the 

best predictor. 

The FEM model used closely simulates the case of an un-repaired supraspinatus tendon 

tear for an individual going through physical therapy or normal activities of daily living. Even 

though the results showed a minimal impact of remodeling at the medial/lateral tear edges, future 
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analyses of a surgically repaired tendon may provide additional insight of whether localized tendon 

remodeling in this area is relevant. Re-tears are common following surgical treatment of rotator 

cuff tears, and they commonly occur at the tissue-suture interface (61, 69). Since the medial tear 

edge is generally used for suture placement during repair and remodeling of that portion of the 

tissue may provide information about whether the sutures can hold onto the tissue without re-

tearing. 

Interestingly, increasing the collagen fiber stiffness at the tear tips led to more tear 

propagation and the lowest critical load. The finding that increased collagen fiber stiffness at the 

tear tips leads to a greater risk of tear propagation can be explained by the higher stress 

concentrations and Hooke’s Law. The increased stiffness in the tissue at the tear tips would lead 

to higher stress concentrations at the tear tips, and thus reaching the critical load to initiate tear 

propagation at a lower amount of tissue deformation. Conversely, lower tissue stiffness would 

allow the tissue to deform more before the critical load is reached and tear propagation occurs. 

The anterior tear tip showed a more “blunt/rounded” shape since the tissue is more compliant and 

can deform more before reaching the critical load and the tear continues to propagate (Figure 4.4).  

The finding that increased collagen fiber stiffness at the tear tips increases tear propagation 

contradicts previous studies where greater amounts of overall tendon degeneration was associated 

with a greater risk of tear propagation (92). The previous study defined degeneration as a decrease 

in both collagen fiber stiffness as well as the ultimate strength of the tendon. However, stiffer does 

not necessarily mean the tissue will be stronger (eg. scar tissue), therefore only changes in collagen 

fiber stiffness was assumed. Furthermore, the previous study assumed a global change to the 

tendon mechanical properties, whereas the current FEM model accounts for the unique stress 

distribution observed for tendons with a tear and the effect of localized tendon remodeling due to 

changes in the mechanical environment.  



 58  

Studies have shown that the mechanical stimuli has a large role in the mechanical 

properties of musculoskeletal tissues, which can cause both increases and decreases in tissue 

stiffness (189, 201, 202). It is unknown whether an ideal loading condition exists that promote 

maintaining tendon strength while minimizing the increase of tendon stiffness at a localized level. 

Though it may be an interesting approach to mitigating tear propagation, a fine balance is most 

likely needed because too much loading may induce tear propagation and not enough loading may 

result in global degeneration of the entire tendon. Clinicians may be more inclined to suggest a 

more aggressive treatment such as surgery if the tear is believed to be susceptible to tear 

propagation. 

Although, a finite element model with subject-specific geometry, mechanical properties, 

boundary and loading conditions was used, the results may not be generalizable since these 

parameters differ for each individual and may not be representative of the typical specimen. For 

example, the mechanical properties used to model the specimen were strongest and stiffest in the 

middle third of the tendon, rather than the anterior third (88). Future studies should also investigate 

the role of localized changes in collagen fiber organization (188). Based on the findings, clinicians 

should accurately measure tendon stiffness at the tear tips to assess the susceptibility of tear 

propagation. However, there is still a need to develop such a tool where clinicians can 

quantitatively and non-invasively assess tendon mechanical properties at precise locations. 
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4.1.5 Conclusions 

The results identify the localized tendon remodeling scenarios that results in the most tear 

propagation. Specifically, remodeling in terms of increased stiffness at the tear tips resulted in the 

most propagation, highest stresses and lowest critical load. Future work is needed to better 

understand the role of localized tendon remodeling for surgically repaired tears as well as the 

development of a non-invasive tool for clinicians to quantify mechanical properties of tendons. 

Understanding the role of localized tendon remodeling on tear propagation can provide clinicians 

insight as to the most appropriate treatment modality for patients with a rotator cuff tear. 
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5.0 Aim 3: Evaluation of Ultrasound Techniques to Assess Tendon Quality and Quantify 

Mechanical Properties 

Mechanical properties of tendon are important to understand because they are directly 

related to function. Furthermore, the mechanical properties of tendon are associated with the 

composition and microstructure of the tendon (93). The presence of a tear may alter the tendon 

composition and microstructure, thus changing the mechanical properties throughout different 

locations within the tendon. Consequently, tear propagation may occur more easily especially if 

the remaining tendon has poor tissue quality and inferior mechanical properties (58).  

Although changes in location specific mechanical properties may influence tear 

propagation, clinicians need a method or tool to quantitatively evaluate the mechanical properties 

of the tendon. Ultrasound is a non-invasive, reliable, and cost-effective tool used by clinicians to 

detect the presence and size of rotator cuff tears (110-113). Currently, the evaluation of tissue 

quality from ultrasound images is subjective, but recent advancements in ultrasound techniques 

(eg. quantitative ultrasound measures and ARFI imaging) offer the potential for quantification of 

location specific tendon mechanical properties. Providing clinicians a way to quantitatively assess 

tendon quality and mechanical properties could help them improve their surgical technique and 

monitor the healing of tissue during and after treatment. Therefore, the objective of aim 2 of this 

dissertation was to evaluate the utility of different ultrasound techniques (QUS measures and ARFI 

imaging) to assess location specific changes in tendon quality (from histology) and predict location 

specific mechanical properties (from materials testing). 
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5.1 Correlation of Quantitative Ultrasound Measures and Supraspinatus Tendon Quality 

5.1.1 Introduction 

Rotator cuff tears are an important clinical issue with a prevalence rate reported to be 20-

30% in the general population (4). Tear propagation from physical therapy and re-tears occurring 

at the tendon-suture interface following surgical repair are common occurrences. A possible reason 

may be due to poor tissue quality (56, 203).  As a result, a need exists for clinicians to assess tendon 

quality quickly and accurately, which may help in reducing the failure rate of both non-operative 

and surgical treatment. 

Ultrasound is a non-invasive, cost-efficient, accurate and reliable imaging modality that is 

becoming more widely used by clinicians to diagnose, evaluate, and treat rotator cuff tears (50, 

113, 204-207). However, clinicians use ultrasound as a subjective tool to assess whether a rotator 

cuff tear is present and the overall quality of the tendon. The primary quantitative measurements 

made with ultrasound are measurements of tissue geometry such as tear size, tendon width, 

thickness and cross-sectional area (208-210). Recently, quantitative ultrasound (QUS) measures 

have been shown to be a reliable technique for determining tendon quality by analyzing the 

grayscale distribution of an ultrasound image (117-119, 211-214). In these studies, an 

interpretation of features that describe the ultrasound image echotexture (echogenicity, variance, 

skewness, and kurtosis) were explained. Increased tendinopathy was associated with increased 

measures of skewness and kurtosis as well as decreased measures of variance and echogenicity, 

with a healthy tendon expected to exhibit highly aligned collagen fibers creating a striped pattern 

of alternating dark and light bands (117, 118). While quantitative ultrasound measures have been 
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established to quantify overall tendon quality (117, 119), specific factors that can affect these 

measures have yet to be established. 

Histology has been used extensively to determine specific factors that influence the quality 

of the tendon (181-185). These studies have shown poor tendon quality being associated with 

changes in collagen fiber organization, nuclei shape, cellularity and fatty infiltration. 

Understanding tendon quality is important since poor tendon quality relates to decreased 

mechanical properties of the tendon (181). Reduced mechanical properties due to pathologic 

changes may be one reason for high failure rates of surgical repairs. 

By providing a quantitative assessment of specific factors of tendon quality through 

conventional B-mode ultrasound images, clinicians could adapt their surgical technique 

accordingly to minimize the failure rate. Therefore, the objective was to determine the feasibility 

of assessing tendon quality as quantified by histology through changes in quantitative ultrasound 

measures. 
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5.1.2 Methods 

Eight fresh frozen cadaveric shoulders (2 male, 6 female, 63 ± 12 years) were used, in 

which the specimens were acquired with approval from the University of Pittsburgh Committee 

for Oversight of Research and Clinical Training Involving Decedents (CORID). As part of the 

screening process for all shoulder specimens acquired in our laboratory, ultrasound scans are 

performed to detect rotator cuff tears. Four of the cadaveric shoulders that were obtained over time 

had a small tear in the supraspinatus tendon (<1cm in the anterior-posterior direction) confirmed 

after dissection, and the tear size was measured with digital calipers. All specimens were stored at 

-20°C and allowed to thaw overnight at room temperature before use. 

5.1.2.1 Ultrasound Imaging and Analysis 

All ultrasound images were obtained prior to dissection by a single orthopaedic surgeon 

with over 15 years of expertise in musculoskeletal ultrasound for assessment of rotator cuff tears. 

Ultrasound images were taken with the specimen in a position of hyperextension and internal 

rotation of the humerus to expose as much of the supraspinatus tendon as possible under the 

acromion (ie. simulated Crass position) (112, 215-217). A transverse view of the widest part of the 

supraspinatus tendon near its insertion to the humerus for the purposes of minimizing the effects 

of anisotropy on tendon appearance for the quantitative ultrasound measures analysis (118). 

Furthermore, this approach represents the clinical approach to viewing the supraspinatus tendon 

in the transverse view. Images were obtained using an ultrasound machine (LOGIQ S8, General 

Electric Healthcare, Chicago, Illinois, United States) equipped with a 61 mm footprint linear 

transducer (ML6-15 Transducer, General Electric Healthcare, Chicago, Illinois, United States) 

(850 x 649 pixels) (Figure 5.1). To minimize variability between the images obtained between 
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specimens, only one ultrasound examiner obtained the ultrasound images, the long head of the 

biceps tendon was used as a consistent reference point between specimens, and the relevant 

parameters of the ultrasound system did not change across all examinations (Frame rate = 18 fps, 

frequency = 18 MHz, gain = 65 dB, AO% = 100). Furthermore, the ultrasound examiner was 

blinded to the results of the quantitative ultrasound measures, as described below, to minimize any 

bias when obtaining the ultrasound image. 

Another examiner was responsible for evaluating the quantitative ultrasound measures for 

the image from each specimen. A single examiner was utilized to evaluate the quantitative 

ultrasound measures as preliminary tests and prior studies have established low interrater 

reliability (118). A 1 cm wide region of interest located 1 cm posterior from the posterior margin 

of the long head of the biceps tendon was manually selected using ImageJ (National Institutes of 

Health, Bethesda, Maryland, United States) in order to capture the middle third of the 

supraspinatus tendon. From the selected region of interest, quantitative ultrasound measures 

(skewness, kurtosis, variance and echogenicity) were calculated using MATLAB (Mathworks, 

Natick, MA, United States) based on a histogram that describes the grayscale distribution, or 

echotexture, as a measure of tendon quality (118). The histogram contains information about each 

pixel in the ultrasound image, where each pixel in the ultrasound images represents a grayscale 

value ranging from 0 (black) to 255 (white). All histograms were verified to be normally 

distributed and the full 0-255 range was used for analysis. Skewness, kurtosis and variance were 

determined through first-order statistics and represent the asymmetry, pointiness and spread of the 

grayscale histogram. Echogenicity was determined as the mean grayscale value of the region of 

interest.  
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Figure 5.1: Transverse view of an intact and two torn supraspinatus tendons. A 1 cm wide region of interest 

(ROI) was measured 1 cm away from the posterior margin of the long head of the biceps tendon (LHBT). 

Quantitative ultrasound measures were made based on the grayscale distribution within the ROI. The middle 

image demonstrates signs of LHBT tendinopathy and supraspinatus tendon thinning, suggestive of a tear. For 

the far right image, the dark area within the circle indicates the location of the tear. Damage to the surface of 

the humeral head can be observed for both the middle and far right image. 
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5.1.2.2 Histology 

Following ultrasound imaging and analysis, all shoulders were dissected, isolating the 

supraspinatus tendon for the procurement of tissue biopsies for histology. Tissue biopsy samples 

(~2 x 4 mm) were taken near the insertion site, mid-substance and myotendinous junction for each 

supraspinatus tendon, ensuring that the longer edge of the rectangle is parallel to the long axis of 

the tendon. After each piece of tissue was excised, the sample was placed in a histology cassette 

with the distal edge of the tissue sample at the beveled end of the cassette. Samples were then fixed 

in 10% buffered formalin for a minimum of 72 hours and were oriented such that the posterior side 

is the first side to be sectioned. Following fixation and paraffin embedding, each sample was 

sectioned at a 5 µm thickness and cut along the long axis of the tendon such that 3 slices were 

obtained throughout the anterior-posterior width of each tissue biopsy. Each slice was stained with 

hematoxylin and eosin (H&E) to visualize tendon morphology. Light microscopy was used to 

image each slice with a 20x objective lens across the full tendon thickness, where images were 

saved for analysis at a later time. Since the tendon consists of layers that are not tendon proper 

(capsule and bursa), a set percentage of the articular-bursal thickness was removed to ensure the 

analysis only included the tendon (183).  

All histological images were graded for tendon quality using four parameters in a blinded 

fashion by three independent observers using a semi-quantitative scale. The four parameters 

chosen to evaluate tendon quality were: collagen fiber organization, nuclei shape, hypercellularity 

and fatty infiltration (182-185). The semi-quantitative grading scale was adapted from a previous 

study to create a 4-point scale of tendon quality, with a higher score indicating poor tendon quality 

and a larger area of the tendon being affected (0 = no change, 1 = slight localized change < 25% 

of tendon area, 2 = multifocal change 25-50% of tendon area, 3 = diffuse or global change > 50% 
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of tendon area) (181). Poor collagen fiber organization was evaluated as less aligned collagen 

fibers (Figure 5.2D = Poor collagen fiber organization; Figure 5.2B = Highly aligned collagen 

fibers). Nuclei shape indicative of poor tendon quality was evaluated as the increased presence of 

rounded and less elongated nuclei (Black arrow in Figure 5.2A and Figure 5.2C). Hypercellularity 

was identified as an increase in the number of cells to form a cluster (Figure 5.2C). Fatty infiltration 

was determined as the presence of white globules (Arrowhead in Figure 5.2E and Figure 5.2F).  

 

 

Figure 5.2: H&E stained histological images. The top row shows histological images from an intact tendon (A, 

B and C), while the bottom row shows histological images from a tendon with a tear (D, E and F). Each 

column indicates the location where the histological image was obtained from (insertion site = A & D, mid-

substance = B & E or myotendinous junction = C & F). Both intact and torn tendons exhibited changes in 

tendon quality at all location sites in terms of fatty infiltration (black arrowhead), more rounded nuclei shape 

(black arrow), increased cellularity and disorganized collagen fibers. 
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The average grade between the three observers for each image was used to represent the 

tendon quality for each image. For each biopsy sample, the average grade of the three slices were 

used to represent tendon quality for that location site.  The summation of the grades for all four 

parameters represented the overall tendon quality. Tendon quality of the “entire tendon” was 

determined as the average grade between all three locations (insertion, mid-substance and 

myotendinous junction). 

5.1.2.3 Statistical Analyses 

A Kolmogrov-Smirnov test was performed to determine if the data was normally 

distributed. When appropriate, non-parametric tests were performed to account for non-normally 

distributed data. Intraclass correlation coefficient (ICC) determined the inter-rater reliability of 

grading the histology images. A two-way mixed ANOVA with a post-hoc Bonferonni test 

evaluated histological grades of tendon quality based on location site (insertion, mid-substance, 

junction) and tendon state (intact and torn). Independent samples t-tests or Mann Whitney U tests 

determined the effect of tendon state (intact and torn) on quantitative ultrasound measures and 

histological grades of tendon quality. The correlation between quantitative ultrasound measures 

and histological grades of tendon quality were determined through Pearson or Spearman’s rho 

correlation calculations. Significance was set at p < 0.05. 
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5.1.3 Results 

The four shoulders with a tear had an anterior-posterior tear width of 14.8 ± 11.8 mm, and 

a medial-lateral tear width of 11.0 ± 7.0 mm when measured with the shoulder positioned at 0° of 

abduction. Histological grading between the three examiners showed good inter-rater reliability 

for overall tendon quality (ICC = 0.89) as well as for each individual parameter of collagen fiber 

organization, cellularity, nuclei shape and fatty infiltration (ICC = 0.76, 0.77, 0.81 and 0.94, 

respectively). Qualitatively, most specimens with a tear exhibited damage to the long head of the 

biceps tendon and the articular surface of the humeral head (Figure 5.1).  

Quantitative ultrasound measures showed a wide range of values for all tendons, with no 

statistically significant difference for any of the quantitative ultrasound measures between the 

intact and torn tendons (skewness: p = 0.114; kurtosis: p = 0.234; variance: p = 0.114; 

echogenicity: p = 0.718) (Table 5.1). Specifically, the quantitative ultrasound measures of variance 

and echogenicity tended to be higher for the intact tendons (903 ± 551 and 93 ± 16, respectively) 

versus the torn tendons (383 ± 83 and 85 ± 19, respectively). The measures of skewness and 

kurtosis tended to be lower for the intact tendons (0.1 ± 0.1 and -0.1 ± 0.5, respectively) compared 

to the torn tendons (0.6 ± 0.5 and 1.6 ± 1.5, respectively). In addition, the intact tendons showed 

more variability than torn tendons for each quantitative ultrasound measure. 

  



 70  

Table 5.1: Quantitative ultrasound measures and histological grades for significant correlations 

Specimen Kurtosis Variance Skewness Echogenicity 
Cellularity 

(Insertion) 

Fatty 

Infiltration 

(Junction) 

Fatty 

Infiltration 

(Entire 

Tendon) 

1 (Intact) 0.2 376 0.1 92 0.5 1.0 0.3 

2 (Intact) -0.4 1343 0.1 88 1.0 0.4 0.1 

3 (Intact) -0.8 1414 -0.1 114 0.3 0.2 0.1 

4 (Intact) 0.4 481 0.2 78 0.5 0.2 0.2 

5 (Torn) 0.2 275 0.1 112 0.6 2.1 1.2 

6 (Torn) 1.5 404 0.8 75 0.9 1.7 0.7 

7 (Torn) 1.0 376 0.2 69 0.5 1.4 0.6 

8 (Torn) 3.6 476 1.3 84 1.3 0.4 0.4 

 

From histological analysis, collagen fiber disorganization, rounded nuclei shape, 

hypercellularity and fatty infiltration were present throughout the tendon (Table 5.2). Various 

degrees of tendon quality were exhibited among the location sites (Figure 5.2). Regardless of the 

presence of a tear, significantly more fatty infiltration at the myotendinous junction was observed 

compared to the insertion and mid-substance (Table 5.2, p < 0.001). Furthermore, tendons with a 

tear had twice as much fatty infiltration than intact tendons (Table 5.2, p < 0.05). No other 

histological parameters of tendon quality showed significant differences between location sites or 

tendon state. 
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Table 5.2: Histological Grades of Tendon Quality (Mean ± Standard Deviation) 

 Fiber 

Organization 

Nuclei 

Shape 

Increased 

Cellularity 
Fatty Infiltration Sum 

Insertion 2.5 ± 0.3 2.5 ± .03 0.6 ± 0.3 0.2 ± 0.2 5.9 ± 0.7 

Mid-substance 2.4 ± 0.4 2.4 ± 0.4 0.6 ± 0.2 0.3 ± 0.3 5.6 ± 0.9 

Junction 2.4 ± 0.3 2.4 ± 0.3 0.8 ± 0.4 0.9 ± 0.6 6.4 ± 1.1 

p 0.349 0.168 0.616 < 0.001 0.051 

            

Intact 2.5 ± 0.2 2.5 ± 0.3 0.6 ± 0.2 0.3 ± 0.3 5.9 ± 0.7 

Torn 2.3 ± 0.4 2.4 ± 0.4 0.8 ± 0.3 0.6 ± 0.6 6.1 ± 1.2 

p 0.328 0.546 0.163 0.033 0.476 

 

The histological parameters of tendon quality at each individual location site showed poor 

tendon quality for tendons with a tear. At the mid-substance, overall tendon quality was graded to 

be 19% higher in torn tendons (6.4 ± 0.6) than intact tendons (5.4 ± 1.3) (p < 0.05). In addition, 

torn tendons had more fatty infiltration than intact tendons at the mid-substance, 0.5 ± 0.4 and 0.1 

± 0.1 respectively (p < 0.05). No significant difference was found between the intact and torn 

tendons for collagen fiber organization, cellularity, cell shape or fatty infiltration at the insertion 

site or myotendinous junction.  

A total of three significant correlations between quantitative ultrasound measures and 

histological parameters were found (Table 5.1). A significant correlation was found at the insertion 

site between kurtosis and increased cellularity (r = 0.724, p < 0.05) (Figure 5.3). No correlation 

between quantitative ultrasound measures and histological parameters was found at the mid-

substance. At the myotendinous junction, a significant inverse correlation between variance and 

fatty infiltration existed (rho = -0.843, p < 0.01) (Figure 5.4). When considering the entire tendon, 

a significant inverse correlation between variance and fatty infiltration was also found (rho = -

0.826, p < 0.05) (Figure 5.4). 
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Figure 5.3: Positive correlation between kurtosis and cellulaity  at the insertion site (r = 0.724, p < 0.05) 

 

 

Figure 5.4: Strong inverse correlation between variance and fatty infiltration at both the myotendinous 

junction and the entire tendon (rho = -0.843 and rho = -0.825, respectively) (p < 0.05). Plotted data represents 

raw data rather than “ranked” data used for Spearman’s rho calculation. 
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5.1.4 Discussion 

The findings show the potential for using quantitative ultrasound measures to analyze the 

grayscale echotexture of an ultrasound image and assess changes in tendon quality as quantified 

through histology. Certain changes in tendon quality could be detected because of their effect on 

the echotexture of an ultrasound image (eg. fatty infiltration will make the ultrasound image have 

hyperechoic regions). While previous studies have shown quantitative ultrasound measures 

correlate to clinical pathologies (117, 119, 214), no direct evidence has been provided correlating 

quantitative ultrasound measurements to tendon morphology.  

 The quantitative ultrasound measures showed no statistically significant differences 

between the intact and torn tendons, but the trends observed were similar to previous studies in 

terms of healthier tendons exhibiting higher measures of variance and echogenicity as well as 

lower measures of kurtosis and skewness (117, 119). Comparisons of the raw values of each 

quantitative ultrasound measure to previous studies are not possible due to differences in 

ultrasound examiners and ultrasound settings (eg. frequency and gain). Nonetheless, with further 

development and analyses, quantitative ultrasound measures could be useful to assess tendon 

quality as long as a repeatable protocol is used to obtain repeatable images, and inter-examiner 

variability is eliminated (117-119, 213). 

The strong positive correlation between cellularity and kurtosis indicate that a sharp peak 

in the grayscale histogram of the ultrasound image relate to hypercellular regions found in the 

tendon. The other correlations were between variance and fatty infiltration. Variance measures the 

spread of the grayscale values, while fatty infiltration indicates the amount of fatty infiltration. The 

correlations indicate that increased kurtosis and decreased variance are associated with increased 
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supraspinatus tendon degeneration, consistent with prior studies that found increased kurtosis and 

decreased variance correlated to poor supraspinatus and biceps tendon health (117). The 

correlations found suggest that quantitative ultrasound measures could be used to assess specific 

factors that affect tendon quality which can only be otherwise assessed through histology or 

magnetic resonance imaging. The ability for clinicians to evaluate the changes in tendon quality is 

important since material properties of the tendon may be reduced as a result, making rotator cuff 

tear initiation and propagation more likely (185, 218).  

All tendons, regardless of their tendon state (ie. torn or intact) exhibited similar tendon 

quality. No statistical differences were found between the intact and torn group for the quantitative 

ultrasound measures. In addition, most histological parameters of degeneration (collagen fiber 

organization, nuclei shape and cellularity) showed no significant differences between the intact 

and torn tendons. Only fatty infiltration and overall tendon quality exhibited differences between 

the intact and torn tendons, which were similar to findings from previous histological studies (105, 

183).   

A limitation is that only the transverse view of the supraspinatus tendon was imaged by 

ultrasound, corresponding most closely to the insertion site of the tendon. Analysis of the 

supraspinatus tendon near the myotendinous junction using the transverse view is not possible due 

to interference from the acromion. This imaging protocol was previously verified to obtain 

repeatable images of the supraspinatus tendon for quantitative ultrasound measures analyses, while 

maximizing the amount of the tendon that can be imaged (118). The quantitative ultrasound 

measures are sensitive to the conventional B-mode image acquired. Care must be taken to 

thoroughly verify the repeatability of the ultrasound images acquired to account for the anisotropy 

of the supraspinatus tendon and the influence of the surrounding bones. Therefore, while a long-
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axis view of the supraspinatus tendon may have provided more information about multiple tendon 

locations, an established repeatable protocol does not yet exist.  

Based on the findings, further development of an imaging protocol for a long-axis 

supraspinatus tendon view may possibly reveal even more correlations to changes in tendon 

quality. In addition, only a small subset of factors that affect tendon quality could be investigated 

since only H&E staining was used. However, the use of additional staining techniques is not likely 

to change the results found for the subset of factors that altered tendon quality investigated. Future 

studies will utilize additional staining techniques to understand different factors that may affect 

tendon quality (eg. collagen content, fat and GAGs present in the extracellular matrix). To 

differentiate quantitative ultrasound measurements between intact and torn tendons, post-hoc 

power analysis showed 71 additional samples in each group were needed.  

5.1.5 Conclusions 

The foundation for a new methodology of quantitative ultrasound measures has been 

established for clinicians to use ultrasonography as a diagnostic tool to non-invasively and 

quantitatively evaluate tendon quality. With further development of this methodology, clinicians 

might be able to evaluate location specific changes in tendon quality non-invasively and monitor 

healing tendons in patients undergoing treatment.  
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5.2 ARFI Imaging of Musculoskeletal Tissues: An Experimental and Computational 

Approach 

5.2.1 Introduction 

Ultrasound is non-invasive, reliable and cost-effect tool often used by clinicians to 

diagnose and assess the severity musculoskeletal injuries (113). Currently, evaluation of tissue 

quality based on ultrasound images is predominantly qualitative and depends on the user. Acoustic 

Radiation Force Impulse (ARFI) imaging is an ultrasound technique that generates a localized 

force onto the tissue of interest at a precise location (ie. remote palpation) and the resulting tissue 

displacement is measured (120, 130). Information about the resulting tissue displacement may be 

able to predict the mechanical properties of the tissue and provide clinicians quantitative 

information about tissue quality. For example, during surgical repair of a rotator cuff tear, ARFI 

imaging can be used to evaluate tissue quality surrounding the tear, allowing clinicians to make a 

more informed decision as to where to place the sutures through the tendon.   

ARFI imaging is primarily utilized for compliant, isotropic biological tissues such as 

breast, liver, and arteries where tissue displacements are less than 10 µm (120-125, 130). 

Clinically, ARFI imaging has been used to detect the presence of tumors based on the stiffness of 

the tissue (219, 220). For these elastic, isotropic tissues, the magnitude of this compressive ARFI 

displacement is assumed to be inversely proportional to the elastic modulus of the tissue (152). 

However, whether the clinical applications and assumptions can also be applied to musculoskeletal 

tissues which are much stiffer and anisotropic is still unknown. The tensile modulus in the linear 

region for muscles is on the order of hundreds of kilopascals to low megapascals, capsular tissue 

on the order of tens of megapascals, and tendons on the order of hundreds of megapascals (221-
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224). Breast tissue on the other hand is much more compliant, with its tensile and compressive 

modulus on the order of kilopascals (225, 226). 

 Finite element method (FEM) models simulating ARFI imaging have been developed to 

better understand the effect of ultrasound transducer parameters, material properties and motion 

tracking algorithms on ARFI displacement measurements (152, 154-156). While some FEM 

models have investigate the role of anisotropy on ARFI displacement, the magnitude of the 

modulus of the tissues and phantoms being investigated are much lower than musculoskeletal 

tissues (155, 156). For anisotropic tissues, in order to obtain accurate and repeatable measures of 

ARFI displacement, it is essential to consider the orientation of the material when imaging (156). 

The radiation force generated to push the tissue during ARFI imaging may not be strong 

enough to displace the stiff musculoskeletal tissues. The typical magnitude of force applied during 

ARFI imaging is on the order of dynes (121). Conventional ARFI imaging (full-frame) generally 

utilizes a single, focused, narrow beam to push onto the tissue, with this single beam repeated 

across the entire width of the transducer. However, the narrow beam limits the acoustic radiation 

force applied to the tissue. Mutli-foci beamforming is an ultrasound imaging technique that allows 

for a more powerful acoustic radiation force by dividing the ultrasound transducer into multiple 

sub-apertures and sending multiple beams at a specified location (227, 228). Multi-foci beam 

forming has been utilized to improve the efficiency of heating tissues for ultrasound-induced 

thermal strain imaging while using only a single transducer (229). 

Overall, the utility of ARFI imaging is not fully understood for musculoskeletal tissues. 

Therefore, using an experimental and computational approach, the objective was to determine the 

utility of ARFI imaging to differentiate between different musculoskeletal tissues of varying 

moduli (eg. tendon, capsule and muscle) based on ARFI tissue displacement. In addition, the effect 
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of increasing the magnitude of the ARFI push force to allow for better differentiation between 

musculoskeletal tissues of high stiffness will also be investigated.  

5.2.2 Methods: Effect of Tissue Modulus 

15 fresh-frozen strips of tissues (5 pectoralis major muscle, 5 glenohumeral capsule, 5 

biceps tendon) were harvested to a length of at least 10 cm from 8 cadaveric shoulder specimens 

(60.9 ± 4.9 years). All tissues were prepared for tensile testing and ARFI imaging of the tissue 

mid-substance. Two delrin beads (2 mm diameter) were superglued to the surface of each specimen 

to mark the mid-substance area. The cross-sectional area of the tissue mid-substance was 

determined using a laser scanner (Next Engine, Desktop 3D Scanner, Santa Monica, CA, USA). 

Specimens were kept moistened with physiologic saline solution to prevent dehydration during 

preparation and testing. 

Each tissue underwent a uniaxial tensile testing protocol to determine the modulus of the 

toe and linear region of the stress-strain curve. The ends of the tissue were clamped with custom 

soft tissue clamps and aligned for tensile loading in the materials testing machine (Instron, Model 

5965, Norwood, MA, USA) and the strain of the tissue mid-substance was measured by tracking 

the delrin beads with an optical tracking system (DMAS7, Spica Technology, Kihei, HI, USA) 

(Figure 5.5). The tissue was preloaded (tendon & capsule = 1N, muscle = 0.2N), preconditioned 

for 10 cycles (tendon = 1-10N, capsule = 1-5N, muscle = 0.2-2N) and then loaded (tendon = 100N, 

capsule = 50N, muscle = 5N). Loading levels were chosen based on preliminary tests that 

determined the loads required to reach the linear region of a stress-strain curve, but not result in 

tissue failure or clamp slippage.  
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Figure 5.5: Tensile Test Setup for Musculoskeletal Tissues 

 

Modulus of the toe region was determined by iteratively removing the first and last data 

points of the stress-strain curve from 0-1% strain until a linear regression fit of r2 ≥ 0.99 was 

achieved. Similar to the modulus of the toe region, the modulus of the linear region was determined 

by iteratively removing the first and last data points of the stress-strain curve from >1% strain until 

a linear regression fit of r2 ≥ 0.99 was achieved. A Kolmogrov-Smirnov test was performed to 

check the normality of the data. Based on the result of the Komogrov-Smirnov test, either a 

Kruskal-Wallis test or ANOVA with a post-hoc Bonferroni test was performed to evaluate the 

effect of tissue type on the modulus of the toe region and the modulus of the linear region. 

Following tensile testing, each tissue was mounted into a custom tensioning jig and 

tensioned to 0.1MPa and embedded in gelatin. A Krackow stitch was applied to both ends of the 

tendon using a #2 suture (Ethibond*Excel, Ethicon Inc., Somerville, NJ, USA) to allow for tensile 

loading of the tendon in the custom tensioning jig. The gelatin mixture consisted of 1 liter of water, 

5% concentration of gelatin from porcine skin (G2500, Sigma Aldrich, St. Louis, MO, USA) and 

1% concentration of cellulose (S3504, Sigma Aldrich, St. Louis, MO, USA).  

All ARFI testing was performed with the gel temperature at 20°C confirmed by a digital 

infrared thermometer and the tissue positioned at a 25 mm axial depth and centered laterally as 
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confirmed by a B-mode image (Figure 5.6B). A linear array transducer (ATL L7-4) connected to 

a research ultrasound platform (Vantage 128, Verasonics, Kirkland, WA, USA) was used to 

perform the entire full-frame ARFI sequence. The full-frame ARFI sequence first consists of a 

reference imaging pulse focused at the elevation focus of the transducer (25 mm axial depth). 

Then, an ARFI push is generated using a localized radiation force fired at an excitation voltage of 

30V (F# = 1.3, push duration = 192 µs). After the ARFI push, a tracking pulse is fired (ie. imaging 

pulse identical to the reference imaging pulse). The process of imaging, pushing and tracking is 

repeated 64 times across the entire width of the transducer (Figure 5.6A). ARFI displacement due 

to the radiation force is calculated using the phase-based Loupas algorithm on the reference and 

tracking images (230). In total, 3 ARFI images were acquired for each specimen, where the average 

ARFI displacement was used for analysis (repeatability = 0.2 µm). A bi-linear translation stage 

(BiSlide MN10, Velmex, Bloomfield, NY, USA; accuracy = 0.003”, repeatability = 0.0002”) and 

probe holder was used to position the probe directly at tissue mid-substance (ie. halfway between 

the two beads marking the mid-substance). 

ARFI displacement of the tissue was defined by a region of interest at the center area of 

the tissue which was manually selected to minimize boundary effects. Similarly, ARFI 

displacement of the surrounding gelatin was measured at the same axial depth. ARFI displacement 

of the tissue was normalized to the surrounding gel displacement. A Kolmogrov-Smirnov test was 

performed to check the normality of the data. Based on the results from the Komogrov-Smirnov 

test, either a Kruskal-Wallis test or ANOVA with a post-hoc Bonferroni test was performed to 

evaluate the effect of tissue type on the modulus of the toe region, modulus of the linear region 

and normalized ARFI displacement. Significance was set at p < 0.05. 
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Figure 5.6: ARFI imaging overview.  A) 64 ARFI push beams fired across the transducer aperture width. B) 

B-mode image of tissue embedded in gelatin. C) ARFI displacement image where tissue displacement (red 

region) was always lower and normalized to the softer surrounding gelatin 
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5.2.3 Results: Effect of Tissue Modulus 

Tissue type had a significant effect on both the modulus of the linear region and the 

modulus of the toe region of the stress-strain curve (p < 0.05) (Figure 5.7). Large differences 

between the tendon, capsule and muscle were seen for both the modulus of the toe region and 

linear region. The modulus of the toe region for tendons (34.9 ± 27.7 MPa) was 35 times higher 

than muscle (1.0 ± 1.1 MPa) and 3.8 times higher than capsular tissue (9.8 ± 6.5 MPa). The 

modulus of the linear region for tendons (257.8 ± 124.1 MPa) was 103 times higher than muscle 

(2.5 ± 2.1 MPa) and 7 times higher than capsular tissue (36.3 ± 25.3 MPa).  Significant differences 

were found between muscle-tendon and muscle-capsule, but not tendon-capsule for the modulus 

of both the toe and linear region (Figure 5.7). The ratio of the modulus of the linear region to the 

modulus of the toe region was highest for tendons and lowest for muscles (tendons = 7.3:1, capsule 

= 3.7:1 and muscle = 2.5:1). 

For ARFI imaging, tissue displacement was always lower than the surrounding gelatin. 

Tissue type had a significant effect on normalized ARFI displacement (p < 0.05), however, post-

hoc Bonferroni results showed no significant differences between the tendon, capsule and muscle 

groups (Figure 5.7). In general, the higher the modulus of the tissue the lower the normalized ARFI 

displacement Normalized ARFI displacement of muscle (0.60 ± 0.30) was highest, over double 

the values for capsule and tendon. Normalized ARFI displacement between tendon (0.26 ± 0.08) 

and capsule (0.27 ± 0.15) differed by less than 0.1. 
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Figure 5.7: Modulus of toe region (A), linear region (B) and normalized ARFI displacement (C) for muscle, 

capsule and tendon specimens (mean ± SD). 
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5.2.4 Methods: Effect of ARFI Push Magnitude  

Four fresh-frozen porcine knees were dissected and the anterior extensor tendons were 

harvested to a length of at least 10 cm and prepared for mechanical testing and ARFI imaging of 

the tendon mid-substance. Two delrin beads (2 mm diameter) were superglued to the surface of 

each specimen to mark the mid-substance area. The cross-sectional area of the tissue mid-

substance was determined using a laser scanner (Next Engine, Desktop 3D Scanner, Santa Monica, 

CA, USA). Specimens were kept moist with physiologic saline to prevent dehydration during 

preparation and testing. 

The ends of the tendon were clamped with custom soft tissue clamps and aligned for tensile 

loading in the materials testing machine (Instron, Model 5965, Norwood, MA, USA). Each tendon 

underwent a uniaxial tensile testing protocol (preload = 1N, preconditioning = 1-10N for 10 cycles, 

and load to 100N). Loading levels were chosen based on preliminary tests that non-destructively 

loaded the tendon into the linear region. Mid-substance strain in the tendon was measured with an 

optical tracking system (DMAS, Spica Technology, Kihei, HI, USA). Modulus of the linear region 

was determined by iteratively removing the first and last data points of the stress-strain curve from 

>1% strain until a linear regression fit of r2 ≥ 0.99 was achieved. 
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Following tensile testing, each tendon was wrapped with a layer of muscle and loaded into 

a custom tensioning jig immersed in distilled water to more closely mimic physiologic conditions. 

A Krackow stitch was applied to both ends of the tendon using a #2 suture (Ethibond*Excel, 

Ethicon Inc., Somerville, NJ, USA) to allow for tensile loading of the tendon in the custom 

tensioning jig.  The tendon was loaded to five different stress levels (0.1, 0.25, 0.5, 0.75 and 1.0 

MPa). At each stress level, 3 full-frame and 3 multi-foci based ARFI images were acquired using 

a linear array transducer (ATL L7-4) connected to a research ultrasound platform (Vantage 128, 

Verasonics, Kirkland, WA, USA). 

The full-frame ARFI sequence first consists of a reference imaging pulse focused at the 

elevation focus of the transducer (25 mm axial depth). Then, an ARFI push is generated using a 

localized radiation force fired at an excitation voltage of 30V (F# = 1.3, push duration = 192 µs). 

After the ARFI push, a tracking pulse is fired (ie. imaging pulse identical to the reference imaging 

pulse). The process of imaging, pushing and tracking is repeated 64 times across the entire width 

of the transducer (Figure 5.8). For multi-foci imaging, a similar protocol is used, but with some 

key differences. A reference image is acquired using plane wave imaging rather than with 

conventional focused beams. Once the reference image was acquired a mulfi-foci ARFI push is 

introduced. The multi-foci push divides the transducer aperture into 3 foci, and targets the push to 

precise position (25 mm axial depth and 0 mm laterally) (Figure 5.8). The multi-foci ARFI push 

uses the same parameters (ie. excitation voltage, push duration) as full-frame ARFI imaging, but 

because 3 focused beams are used to target the same area, the magnitude of radiation force is 3 

times larger. Following the ARFI push, tracking frames are acquired. ARFI displacement for both 

the full-frame and multi-foci approach is calculated using the phase-based Loupas algorithm on 

the reference and tracking images (230). 
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An additional test was performed to clarify the results found in the “effect of tissue 

modulus” section for higher ARFI forces. Cyclic compressive loading was applied to the tendon 

mid-substance to damage the tendon. Loading conditions were determined based on preliminary 

tests that resulted in a decrease in the modulus of the linear region by ~40%. After the damage 

protocol, the same mechanical testing and ARFI imaging protocol performed for the un-damaged 

tendon was repeated. A paired samples t-test was performed to assess the effect of ARFI technique 

(full-frame versus multi-foci) as well as injury (un-damaged versus damaged) on ARFI tendon 

displacement. Significance was set at p < 0.05. 
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Figure 5.8: Full-frame and Multi-Foci ARFI Imaging  
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5.2.5 Results: Effect of ARFI Push Magnitude 

Qualitatively, the multi-foci approach resulted in noise and worse image resolution making 

it difficult to identify the location of the tendon in the ARFI displacement images (Figure 5.9). As 

stress levels in the tendon increased, ARFI tendon displacement decreased, though the decrease 

was minimal. When increasing the stress level from 0.1 MPa to 1.0 MPa, ARFI tendon 

displacement decreased by only 0.24 µm for the full-frame approach and 0.58 µm for the multi-

foci approach. Multi-foci ARFI imaging resulted in significantly more tendon displacement 

compared to full-frame ARFI imaging (Figure 5.10) (p < 0.05). Across both tendon injury states 

and all stress levels tested, multi-foci ARFI imaging was 2.7 times larger than the ARFI 

displacement measured using full-frame ARFI imaging (multi-foci = 1.6 ± 0.4 µm and full-frame 

= 0.6 ± 0.3 µm, p < 0.001).  

The linear region modulus for the 4 un-damaged tendons was 347.0 ± 100.7 MPa. 

Following the mechanical testing damage protocol, the modulus of the linear region dropped by 

43% (damaged tendons = 195.4 ± 47.8 MPa). The difference of ARFI tendon displacement 

between un-damaged and damaged tendons when using the multi-foci approach was < 0.24 µm. 

For the full-frame approach, the difference in ARFI tendon displacement between un-damaged 

and damaged tendons across all stress levels was < 0.1 µm (Figure 5.10). No significant difference 

in ARFI displacement was found between injury states (p > 0.05). 
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Figure 5.9: Full-Frame and Multi-Foci ARFI imaging of tendon wrapped with muscle. A & B are B-mode 

images using the Full-Frame and Multi-Foci technique respectively. C) Full-Frame: less ARFI displacement 

within stiff tendon than surrounding softer muscle. D) Multi-Foci: higher ARFI displacement, but worse 

image resolution. 
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Figure 5.10: Full-Frame and Multi-Foci ARFI tendon displacement data (Avg ± SD). 
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5.2.6 Methods: FEM Model of ARFI Imaging  

To corroborate and compare experimental findings, a FEM model of ARFI imaging with a 

tissue inclusion was developed. The goal of the computational analysis was to assess the effect of 

tissue modulus and the magnitude of ARFI push force on ARFI displacement measurements. A 

3D, rectangular solid mesh was developed using 8-noded hexahedral elements to replicate the 

geometric shadow of the transducer (axial = 50 mm, lateral = 38 mm, elevation = 2.2 mm) 

(PreView, v2.1.4, febio.org) (Figure 5.11). A circular inclusion was modeled at the center of the 

mesh to represent the embedded tissue. A finer mesh density was used at the axial depth where the 

tissue was located. Additional mesh volume was included that surrounded the geometric shadow 

of the transducer to minimize wave reflection back into the region of interest caused by the 

impulsive ARFI pushing force. In total, the mesh extended 150 mm axially and 96 mm laterally 

with a 2.2 mm elevation depth. The mesh representing the geometric shadow of the transducer 

consisted of 7995 nodes and 5120 elements while the surrounding volume mesh consisted of 

17,400 nodes and 11,2000 elements. A sensitivity analysis on the mesh size was performed until 

the difference in peak displacement predictions was <0.1 µm. 
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Figure 5.11: FEM Model of ARFI Imaging of the geometric shadow of the transducer. The yellow arrows 

represent the ARFI push, modeled as a depth dependent body force with the peak body force applied at the 

center of the tissue. The green circles represent the surface traction force applied to the tissue representing 

the 0.1MPa tensile force applied to the tissue experimentally. The bottom surface of the model was fixed in all 

degrees of freedom. The additional mesh volume used to mitigate the effect of wave reflection is not shown. 
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 To minimize computational complexity and model the behavior of musculoskeletal tissues 

at very low loading conditions (< 0.1 N), the elements associated with the tissue were modeled as 

a neo-Hookean material with 2 material coefficients (v = Poisson’s ratio; E = modulus). All other 

elements represented the surrounding gelatin and were also modeled as a neo-Hookean material. 

Poisson’s ratio of 0.499 was used for both the tissue and the gelatin to represent near 

incompressibility. The modulus of the gelatin was set to 20 kPa based on the manufacturer’s 

description of gel stiffness, unless specified otherwise. The bottom surface of the model (ie. 

opposite of the transducer contact) was fixed in all directions, the top surface (ie. in contact with 

the transducer) was fixed in the axial, and all other faces were unconstrained (Figure 5.11) (152). 

The surface traction load was applied to the tendon to represent the 0.1 MPa tensile loading done 

experimentally. Tied contact was used to model the interaction between the surfaces of the tissue 

and the gelatin. 

  The axially directed ARFI push force was modeled as a depth dependent body force with 

a gaussian distribution (154, 155), 

 

 

 

𝑭⃗⃗ = 𝑭𝟎(𝒕)𝒆
(
−𝒚𝟐

𝟐𝝈𝟐)
                                                         ( 5-1 ) 
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where F0(t) is a time dependent force amplitude, σ = 1mm, and y represents the axial position. The 

model geometry was created so that the peak body force occurred at 25 mm axial depth (ie. 

elevation focus of transducer and centroid of tissue inclusion). The body force was applied as a 

step function and only during the excitation interval 0 < t < 192 µs to mimic experimental ARFI 

methods. For reference, the ARFI push force magnitude based on our experimental conditions was 

54 dynes/mm3.  

The main output parameter was the peak displacement of the node positioned at the 

centroid of the tissue inclusion. The effect of tissue modulus on ARFI displacement was 

investigated by changing material coefficient E of the tissue (range: 25 kPa – 1000 MPa). The 

effect of the ARFI push force magnitude was investigated by changing the peak magnitude of body 

force (range: 1-1000 dyne/mm3). All simulations were performed using FEBio (v2.9.1, 

Musculoskeletal Research Laboratories, University of Utah, febio.org) and post-processing using 

PostView (v2.4.4, febio.org). 
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5.2.7 Results: FEM Model of ARFI Imaging  

As tissue modulus increased, tissue ARFI displacement decreased (Table 5.3). The 

magnitude of the ARFI displacement for all cases was on the order of microns. Large differences 

in ARFI displacement were seen for tissues with a low modulus compared to tissues with high 

moduli. The ARFI displacement for a tissue with a modulus of 250 kPa was 6.13 µm smaller than 

a tissue with a modulus of 25 kPa (ie. overall decrease of 57%). For tissues with a higher modulus, 

ARFI displacement reached a plateau. The percent change in ARFI displacement from a tissue 

modulus of 10 MPa to 1000 MPa was only 1.3% (< 0.1 µm). Increasing the magnitude of the ARFI 

push by an order of magnitude, increases the resulting ARFI displacement by an order of 

magnitude regardless of the modulus of a tissue. For a 1000 dynes/mm3 ARFI push, the difference 

in ARFI displacement for a tissue with a modulus of 100 MPa to 1000 MPa was < 0.1 µm (Table 

5.3). 

 

Table 5.3: Changes in tissue ARFI displacement based on tissue modulus and ARFI push magnitude 

Tissue “E” 
Tissue ARFI Displacement  

(10 dynes/mm3 push) 

Tissue ARFI Displacement    

(100 dynes/mm3 push) 

25 kPa 14.22 µm 142.23 µm 

250 kPa 8.09 µm 80.96 µm 

750 kPa 7.09 µm 70.98 µm 

1 MPa 6.93 µm 69.33 µm 

10 MPa 6.42 µm 64.24 µm 

100 MPa 6.35 µm 63.56 µm 

1000 MPa 6.34 µm 63.49 µm 
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5.2.8 Discussion 

In general, higher stiffness tissues resulted in lower ARFI displacement. However, the 

change in ARFI displacement plateaus for high stiffness tissues. The difference in ARFI 

displacement was less than 1 µm for tissue with a modulus of 10 MPa and 1000 MPa, compared 

to over a 6 µm difference in ARFI displacement between a tissue with a modulus of 25 and 250 

kPa. Experimentally, tissue type had a significant effect on normalized ARFI displacement, but 

minimal differences were observed for capsule and tendons (< 0.1). From tensile testing, almost 

an order of magnitude difference existed in the experimentally calculated modulus of the linear 

region for the tissues tested (muscle: <10 MPa, capsule: >10 but <100 MPa and tendon: >100 

MPa). Similar statistically significant differences were also seen for the modulus of the toe region, 

with tendon and capsule being much stiffer than muscle. Furthermore, despite damaging the tendon 

which resulted in a change in the tendon modulus by over 40%, no significant differences in ARFI 

displacement were found. Thus, from the experimental tests, using ARFI imaging for high stiffness 

musculoskeletal tissues (eg. tendons) will be challenging, especially when discerning healthy and 

injured tendons.  

The computational findings corroborate the experimental findings that ARFI imaging may 

not be able to differentiate between healthy and injured tendons. The modulus of most 

musculoskeletal tissues is greater than 1 megapascal and can reach up to hundreds of megapascals 

whereas tissues that are generally used for ARFI imaging (eg. breast, liver, nerves etc.) are on the 

order of kilopascals (130, 221-223, 231). From the model simulations, the difference between a 

tissue with a modulus of 1 MPa and 1000 MPa was <1 µm. Furthermore, the greatest change in 

ARFI displacement occurred for when the tissue modulus changed from 1 to 10 MPa (0.5 µm of 

that <1 µm difference). While damaged and healing tendons have been shown to have significantly 
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lower moduli than healthy tendons, the magnitude of the modulus is still relatively high (>10 MPa) 

(189, 232). Conversely, for low stiffness tissues, the difference in ARFI displacement for a tissue 

with a modulus of 25 kPa and 1 MPa was >7 µm. Large differences in ARFI tissue displacement 

for low stiffness tissues (kPa) and small differences in ARFI tissue displacement (>1 MPa), despite 

large differences in the modulus suggests that a larger ARFI push may be needed for highly stiff 

musculoskeletal tissues.  

Current transducers available for ARFI imaging are limited on the magnitude of ARFI push 

that can be generated. The full-frame approach is the technique currently used for ARFI imaging. 

Using the full-frame approach, the effect of increasing the ARFI push force could not be performed 

experimentally without damaging our transducer (max magnitude of ARFI push = 54 dynes/mm3). 

Therefore, a multi-foci approach was utilized to assess the effect of increasing the ARFI push force 

magnitude experimentally (227). Rather than a single beam pushing one at a time across the entire 

lateral width of the transducer, 3 simultaneous beams were used to push at one location, allowing 

for an ARFI push force magnitude 3 times larger than the full-frame approach.  

The results demonstrate the utility of multi-foci ARFI imaging to generate larger tendon 

displacement compared to full-frame ARFI imaging. Across all stress levels, multi-foci ARFI 

imaging generated nearly 3 times more tendon displacement, proportional to the increase of ARFI 

push force magnitude multi-foci. For full-frame and multi-foci ARFI imaging can displace the 

tendon enough to be measured, though lower than the magnitude of displacement reported for 

breast and abdominal tissues (up to 10 μm) (130, 219). Experimentally, despite the increase in the 

ARFI push force and larger magnitude of ARFI displacement, differences between the damaged 

and un-damaged tendons were small and within the experimental repeatability of our ARFI 

displacement measurements (< 0.2 µm). Furthermore, the computational results substantiate the 

same findings found experimentally when investigating the effect of the ARFI push force 
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magnitude. Similar to what was observed experimentally, tendon displacement increased 

proportionally to the increase in ARFI push force magnitude. However, even with an ARFI push 

force much higher than currently capable (1000 dynes/mm3), minimal differences still exist in 

ARFI displacement for high moduli tissues (eg. <1 µm for a tissue with modulus of 10 MPa to 

1000 MPa). Despite increasing the ARFI push force magnitude to levels way beyond current 

capabilities, the force being applied may still be too small to generate any reasonable displacement 

(1000 dynes = 0.01 Newtons). Other factors may also influence the magnitude of displacement 

including the duration of the ARFI push, tension in the tissue and the stiffness of the surrounding 

material. Increasing the magnitude or duration of the ARFI push force too much would 

compromise the safety of ultrasound use due to cavitation or temperature changes in the tissue 

(233).  

A limitation of the FEM model used was that although musculoskeletal tissues are 

anisotropic, the constitutive model used for the tissues did not account for anisotropy. The rationale 

for choosing a Neo-Hookean model was an assumption of the tendon behavior due to the low 

magnitude of the ARFI push as well as reducing computational complexity. At such low loads (54 

dynes = 0.00054 Newtons), the collagen fibers are not being recruited and are playing a minimal 

role in resisting the ARFI force. Future work will aim to control localized damage to the fiber 

network or ECM within the same piece of tissue an established method such as thermal ablation 

(234). Thus, a better understanding of the capabilities of ARFI imaging to distinguish healthy 

versus injured areas within the same tissue based on ARFI displacement measurements.  

Some of the findings may be relevant for the challenges of using shear wave elastography 

with musculoskeletal tissues to quantify mechanical properties (116, 138, 140), since the ARFI 

push is used to generate the shear waves. For shear wave elastography, shear wave speed is the 

main parameter of interest that describes the shear modulus of the tissue, but this relationship is 
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complex and not well understood. Shear wave speed is not only influenced by the mechanical 

properties of the tissue, but also the tension in the tissue and the stiffness surrounding media (235-

237). The advantage of ARFI imaging is that it provides local information about the tissue 

properties whereas shear wave elastography is best suited to providing averaged information over 

the entire region where shear wave speed was measured.  

5.2.9 Conclusions 

Through an experimental and computational approach, valuable information about the 

necessary improvements needed to use ARFI imaging for musculoskeletal tissues are provided. 

The key findings suggest that ARFI imaging may be able to differentiate between low and high 

stiffness musculoskeletal tissues. However, for very stiff tissues (ie. modulus >10 MPa) discerning 

between healthy and injured tissues of high stiffness is difficult. Increasing the ARFI push 

magnitude may result in larger displacements, but there are still minimal differences for high 

moduli tissues. While ARFI imaging has great clinical potential to assess localized mechanical 

properties of musculoskeletal tissues, further understanding and development of this technology is 

needed. 

  



 100  

5.3 ARFI Imaging to Quantify Mechanical Properties of Tendons 

5.3.1 Introduction 

Acoustic Radiation Force Impulse (ARFI) imaging is an ultrasound technique that 

generates a localized force onto the tissue of interest at a precise location (ie. remote palpation) 

and the resulting tissue displacement is measured (120, 130). Information about the resulting tissue 

displacement may be able to predict the mechanical properties of the tissue and provide clinicians 

quantitative information about tissue quality/health. For example, in the case of a surgical repair 

procedure for a rotator cuff tear, ARFI imaging has the potential to make precise measurement of 

tissue quality surrounding a tear, allowing the clinician to identify the best piece of tissue to use 

for repair.  

ARFI imaging is primarily utilized for compliant, isotropic biological tissues such as 

breast, liver, and arteries where tissue displacements are less than 10 µm (120-125, 130). 

Clinically, ARFI imaging has been used to detect the presence of tumors based on the stiffness of 

the tissue (219, 220). For these elastic, isotropic tissues, the magnitude of compressive 

displacement is assumed to be inversely proportional to the elastic modulus of the tissue (152). 

However, whether the clinical applications and assumptions can also be applied to musculoskeletal 

tissues which are much stiffer and anisotropic is still unknown. The tensile modulus in the linear 

region for muscles is on the order of hundreds of kilopascals to low megapascals, capsular tissue 

on the order of tens of megapascals, and tendons on the order of hundreds of megapascals (221-

224). Breast tissue on the other hand is much more compliant, with its compressive and tensile 

modulus on the order of kilopascals (225, 226).  
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Finite element method (FEM) models simulating ARFI imaging have been developed to 

better understand the effect of ultrasound transducer parameters, material properties and motion 

tracking algorithms on ARFI displacement measurements (152, 154-156). While some FEM 

models have investigate the role of anisotropy on ARFI displacement, the magnitude of the 

modulus of the tissues and phantoms being investigated are much lower than musculoskeletal 

tissues (155, 156). For anisotropic tissues, in order to obtain accurate and repeatable measures of 

ARFI displacement, it is essential to consider the orientation of the material when imaging (156). 

While other ultrasound techniques such as shear wave elastography have been used to 

estimate the relative stiffness of the tissue based on shear wave speed, accurate quantification of 

tendon mechanical properties from shear wave speed has not yet been proven (116, 127, 138). The 

challenges present in shear wave elastography may be relevant for ARFI imaging because the 

ARFI push used in ARFI imaging is used to generate the shear waves in shear wave elastography. 

Overall, the utility of ARFI imaging is not fully understood for stiff, anisotropic 

musculoskeletal tissues. Therefore, the objective of this section of the dissertation is twofold: 1) 

Determine if ARFI displacement correlates to tensile and compressive mechanical properties of 

the tendon. 2) Predict the modulus of the tissue based on ARFI displacement data. 
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5.3.2 Methods: Correlating ARFI Displacement to Mechanical Properties  

Nine fresh-frozen strips of long head of biceps tendon were harvested from cadaveric 

shoulder specimens (71.4 ± 12.6 years). All tissues were prepared for tensile testing and ARFI 

imaging of the tissue mid-substance. Four of the nine specimens were also prepped for indentation 

testing of the tissue mid-substance.  Two black delrin beads (2 mm diameter) were superglued to 

the surface of each specimen to mark the mid-substance area. Geometric measurements of the 

tendon’s cross-sectional area and thickness at the mid-substance was determined using a laser 

scanner (Next Engine, Desktop 3D Scanner, Santa Monica, CA, USA). Specimens were kept moist 

with physiologic saline solution to prevent dehydration during preparation and testing. 

Each tendon underwent a uniaxial tensile testing protocol to determine the tensile modulus 

of the toe and linear region of the stress-strain curve. The ends of the tissue were clamped with 

custom soft tissue clamps and aligned for tensile loading in the materials testing machine (Instron, 

Model 5965, Norwood, MA, USA) and the strain of the tissue mid-substance was measured by 

tracking the delrin beads with an optical tracking system (DMAS7, Spica Technology, Kihei, HI, 

USA) (Figure 5.12A). The tendon was preloaded to 1N, preconditioned from 1-10N for 10 cycles 

and loaded to 30N (Figure 5.12B).  Loading levels were chosen based on preliminary tests that 

determined the loads required to achieve >1% tendon mid-substance strain, but not result in tissue 

failure or clamp slippage.  

Each tendon also underwent an indentation testing protocol to determine the indentation 

modulus of the tendon. For indentation testing, the tendons were placed on sandpaper to avoid 

tendon slippage immersed a small dish filled with physiologic saline solution (238) (Figure 5.13A). 

A threaded, non-porous metal rod was used as the indenter. One end of the rod was attached to a 

50N load cell (Honeywell Model 31 – 50N, Charlotte, NC, USA), while the other end which 
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contacts the tendon was filed to be smooth and have an approximate diameter of 4 mm. The 

indentation test consisted of a compressive preload of 0.1N, compressive preconditioning of 0.1-

1N for 10 cycles and a compressive load to 2N (Figure 5.13B). A stress-strain curve of the 

indentation test was created from the compressive load-indentation displacement data where the 

stress was calculated by dividing the force with the cross-sectional area of the indenter (12.7 mm2) 

and the strain was calculated based on the indentation displacement relative to the initial thickness 

of the tendon. 

Tensile modulus of the toe region along the long-axis of the tendon was determined by 

iteratively removing the last data point of the tensile test stress-strain curve from 0-1% strain until 

a linear regression fit of r2 ≥ 0.99 was achieved. The tensile modulus of the linear region was 

determined by iteratively removing the minimum and maximum data points of the tensile stress-

strain curve from >1% strain until a linear regression fit of r2 ≥ 0.99 was achieved. The indentation 

modulus of the tendon was calculated when compressively loaded to 2N. The minimum and 

maximum data points of the indentation test stress-strain curve were removed until a linear 

regression fit of r2 ≥ 0.99 was achieved. 

Following mechanical testing, each tissue was mounted into a custom tensioning jig 

immersed in a tank filled with degassed, distilled water (Figure 5.14). A Krackow stitch was 

applied to both ends of the tendon using a #2 suture (Ethibond*Excel, Ethicon Inc., Somerville, 

NJ, USA) to allow for tensile loading of the tendon in the custom tensioning jig. ARFI imaging 

was performed with the tendon tensioned at 1N, 5N and 15N. A bi-linear translation stage (BiSlide 

MN10, Velmex, Bloomfield, NY, USA; accuracy = 0.003”, repeatability = 0.0002”) and probe 

holder was used to allow for repeatable imaging of the tissue mid-substance. All ARFI testing was 

performed with the tendon positioned at a 25 mm axial depth and centered laterally as confirmed 

by a B-mode image. 
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Figure 5.12: A) Tensile testing setup and B) tensile loading protocol. Tensile modulus was calculated when 

loaded to 30N (step 3). 

 

Figure 5.13: A) Indentation testing setup and B) indentation loading protocol. Indentation modulus was 

calculated when loaded to 2N (step 3). 
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Figure 5.14: Experimental setup for ARFI imaging.  The custom tensioning jig utilizes the prinicpal of 

“springs in series” where a spring of a known stiffness is connected in serires with the tendon of interest. By 

measuring the displacement of the spring, the force can be calculated using Hooke’s law and therefore the 

force through the tendon is known. Furthermore, the stress in the tendon is known from cross-sectional area 

measurements from laser scanning. 
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A linear array transducer (ATL L7-4) connected to a research ultrasound platform (Vantage 

128, Verasonics, Kirkland, WA, USA) was used to perform the entire full-frame ARFI sequence. 

The full-frame ARFI sequence first consists of a reference imaging. Then, an ARFI push is 

generated using a localized radiation force fired at an excitation voltage of 30V pulse aimed at the 

elevation focus of the transducer (25 mm axial depth) for 192 µs followed by a tracking pulse. The 

process of imaging, pushing and tracking is repeated 64 times across the entire width of the 

transducer. ARFI displacement due to the radiation force is calculated using the phase-based 

Loupas algorithm on the reference and tracking images (230). ARFI displacement of the tendon 

was defined by a region of interest at the center area of the tissue which was manually selected to 

minimize boundary effects and ensure the ARFI displacement measurement was of the tissue, not 

the tissue-gel interface (repeatability <0.2 µm). 

A Kolmogrov-Smirnov test was performed to check the normality of the data. A repeated 

measures ANOVA with a post-hoc Bonferroni test was performed to evaluate the effect of tissue 

tension on ARFI displacement. Pearson’s correlations were performed to correlate ARFI 

displacement with the long-axis modulus of the toe and linear region as well as the indentation 

modulus along the transverse axis of the tendon. Significance was set at p < 0.05.  
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5.3.3 Results: Correlating ARFI Displacement to Mechanical Properties 

The tendons tested resulted in a wide range of stress-strain curves (Figure 5.15) and 

mechanical properties (Table 5.4).  For the tensile test, when loaded to 30N of tension, a majority 

of the tendon mid-substances reached strain values of 1-2%. The tensile modulus of the toe region 

(0-0.5 MPa) was 67.3 ± 25.1 MPa, with the lowest calculated tensile modulus (40 MPa) 66% 

smaller than the largest tensile modulus of the toe region (117 MPa). The average tensile modulus 

of the linear region (131.1 MPa) was 49% larger than the average tensile modulus of the toe region. 

The modulus of the linear region also had a wide range of values, ranging from 89 to 196 MPa. 

For the indentation test, when compressive load of only 2N was applied, the compressive strain in 

the tendon exceeded 10% for all specimens. The highest indentation modulus of the 4 specimens 

(1.03 MPa) was 286% larger than the smallest indentation modulus (0.36 MPa). However, the 

indentation modulus for the other two specimens only differed by 0.01 MPa (0.83 and 0.84 MPa). 

The indentation modulus was an order of magnitude smaller than the tensile modulus. 

 

 

Figure 5.15: Stress-strain curves for all tendon specimens for (A) tensile loading to 30N and (B) indentation 

loading to 2N. Each color represents a unique tendon specimen. 
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Table 5.4: Tendon mechanical properties: indentation, toe and linear region modulus 

 
INDENTATION 

MODULUS (MPA) 

TOE REGION 

MODULUS (MPA) 

LINEAR REGION 

MODULUS (MPA) 

TENDON 1 - 91.4 147.3 

TENDON 2 - 40.5 89.3 

TENDON 3 - 67.9 183.3 

TENDON 4 - 78.1 100.5 

TENDON 5 - 40.9 98.8 

TENDON 6 0.84 49.8 109.3 

TENDON 7 0.83 55.0 117.2 

TENDON 8 0.36 65.3 137.6 

TENDON 9 1.03 116.9 196.8 

 

 

Qualitatively and quantitatively, with increasing tension, ARFI displacement decreased for 

all 9 specimens (Figure 5.16 and Figure 5.17). ARFI imaging in a tank of water resulted in noise 

in the surrounding water for both the B-mode images and ARFI displacement images (Figure 

5.16). The noise in the B-mode image represented by the vertical white streaks are microbubbles 

being captured, whereas the speckled shadow around the tendon may be due to the reflection of 

the ultrasound waves off of the tank boundaries. In the ARFI displacement image, the displacement 

measurements observed in the surrounding water is due to the tracking of the microbubbles in the 

water and the subtle flow of the water in the tank. 

 

Figure 5.16: Representative B-mode and ARFI displacement images for a tendon at 1N, 5N and 15N of 

tension.  With increasing tension, mangitude of ARFI displacement of tendon decreases. 
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Figure 5.17: ARFI displacement for tendons tensioned at 1N, 5N and 15N.  Each color represents a unique 

tendon specimen. Significant difference in ARFI displacement for all three tension levels. 

 

 

On average, the magnitude of ARFI displacement for the tendon was >1 µm for all tension 

levels. Tension level had a significant effect on ARFI displacement, with all three tension levels 

(1N, 5N and 15N) all significantly different than each other (p < 0.05). ARFI displacement of the 

tendon at 1N (3.2 ± 1.2 µm) was 33% higher than the displacement at 5N (2.4 ± 1.2 µm), and 

128% higher than at 15N (1.4 ± 0.6 µm). The range of tendon ARFI displacement at 15N of tension 

(1.5 µm) was 50% smaller than the range of tendon ARFI displacement at 1N and 5N of tension 

(3.0 µm and 3.2 µm, respectively). ARFI displacement of the tendon was not significantly 

correlated with any mechanical property measured (indentation modulus, toe region modulus and 

linear region modulus), when combining all tension levels or when analyzing each tension level 

separately (p > 0.05) (Figure 5.18 and Figure 5.19).  Furthermore, both positive and negative 

correlations were observed, though the slope of most correlations remained flat (ie. slope of 0).  
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Figure 5.18: Correlation between tendon mechanical properties (indentation modulus, toe region modulus, 

and linear region modulus) and ARFI displacement combining all tension levels (1N, 5N and 15N).  All 

correlations were not significant (p > 0.05). 
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Figure 5.19: Correlation between the tensile modulus of the linear region and ARFI displacement at each 

tension level (1N, 5N and 15N). All correlations were insignificant (p > 0.05). Similar insigificant correlations 

were found for the modulus of the toe region and indentation modulus. 
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5.3.4 Discussion: Correlating ARFI Displacement to Mechanical Properties 

Tendons with various degrees of degeneration were tested and account for the wide range 

of tensile and indentation moduli. ARFI displacements not correlating to the tensile modulus of 

the toe or linear region may be because tendons are transversely isotropic. Furthermore, the 

direction of the ARFI push is along the transverse-axis of the tendon, more closely approximating 

a compressive force. Indentation tests have been performed previously to provide an 

approximation of tendon stiffness in the transverse direction (238). However, the results show that 

ARFI displacement did not correlate to the indentation modulus of the tendon either. A possible 

explanation for the lack of the correlation may be due to the difference between an indentation 

force and an ARFI push force. The indentation test applies a surface force compared to a body 

force from an ARFI push. 

The tension in the tissue was found to have a significant effect on ARFI displacement, 

where increasing tension in the tendon increases the stiffness along the long-axis, resulting in less 

displacement in the transverse-axis in response to an ARFI push. This finding supports previous 

findings for a comparable ultrasound technique, shear wave elastography, where increasing tension 

along the long-axis resulted in faster shear wave speed (235). In addition, at the highest tension 

level of the tendon, the range of ARFI displacement between the tendons was smallest, suggesting 

that differentiating between tissues of high stiffness based on ARFI displacement may be difficult. 

Therefore, ARFI displacement may more accurately measure the tension in the tissue rather than 

the actual mechanical properties of the tissue. 

 Clinically, quantification of the mechanical properties of the tissue is more valuable than 

detecting the amount of tension in the tissue, as information about mechanical properties describe 

the quality or health of the tissue. Specifically, prediction of the tensile modulus in tendons and 



 113  

other musculoskeletal tissues is important since the primary function for most musculoskeletal 

tissues is in tension.  

ARFI imaging in a water tank has some limitations. The decision to perform the experiment 

in a water tank was to allow for ARFI imaging at multiple loading conditions. Ultrasound waves 

pass very quickly through water (no attenuation) and may bounce off the tank boundaries and 

impact the ARFI displacement measurements of the tendon. However, the magnitude of the 

displacement from the reflections is expected to be minimal.  

Overall, while a direct correlation of ARFI displacement to tendon mechanical properties 

was not found, ARFI displacement was clearly affected by the tension in the tissue. Thus, a 

singular measurement of ARFI displacement may be more representative of tendon loading than 

the actual mechanical properties of the tendon. When calculating tendon mechanical properties 

during tensile or compressive testing, the modulus is calculated from a stress-strain curve, not a 

singular value. Therefore, quantification of tendon mechanical properties using ARFI imaging may 

require understanding how the ARFI displacement values changes with increased tensile loading. 

However, based on preliminary tests, ARFI imaging at loading levels representative of the linear 

region of a tensile stress-strain curve is not feasible since the tendon becomes too stiff for the 

acoustic radiation force to generate any measurable displacement. Thus, experiments should be 

performed to attempt to quantify the tensile modulus of the linear region for tendons using ARFI 

imaging data collected at loading levels representative of the toe region of a tensile stress-strain 

curve.  

  

  



 114  

 

5.3.5 Methods: Prediction of Linear Region Modulus 

The data obtained from tensile testing and ARFI imaging of the nine cadaveric specimens 

in section 5.3.2 was used to accomplish the objective of this analysis. Specifically, the objective 

of this analysis is to predict the tensile modulus of the linear region for tendons using ARFI 

imaging data collected at loading levels representative of the toe region of a tensile stress-strain 

curve. To summarize, tensile testing of the tendon consisted of a preload to 1N, preconditioning 

from 1-10N for 10 cycles and loading 30N. The main outcome parameters from tensile testing was 

the stress-strain data. ARFI displacement of the tendon was collected with the tendon tensioned at 

1N, 5N and 15N, loads corresponding to the toe region of a typical stress-strain curve for a tendon. 

The key outcome parameters from ARFI imaging was ARFI displacement data at each stress level 

(ie. stress level during ARFI imaging determined from tension in tendon and cross-sectional area 

measurement from laser scanning).  

 To predict the linear region modulus from ARFI imaging data, a novel methodology 

consisting of 4 steps was utilized: 1) Use ARFI tendon displacement data to predict the strain in 

the tendon. 2) Use predicted strain values and fit to the exponential approximation of a stress-strain 

curve to determine best fit model parameters. 3) Use model fit parameters to predict the modulus 

of the toe region. 4) Use toe region modulus to predict linear region modulus (Figure 5.20). To 

validate our predictions, 6 of the 9 specimens were randomly chosen to establish the relationships. 

The remaining 3 specimens were used to validate predictions with experimental results.  
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Figure 5.20: Overview of novel methodology used to predict linear region modulus of a tendon from ARFI 

displacement data collected at loading levels within the toe region of a stress-strain curve. 

 

(1) Predict tendon strain from ARFI data: Using ARFI displacement data of the tendon, 

the parameter “ARFI strain” was calculated by describing the relationship between ARFI 

displacement with increasing stress: 

 

 

 

“ARFI Strain” = 𝟏 −
𝑨𝑹𝑭𝑰 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕𝑨𝒑𝒑𝒍𝒊𝒆𝒅 𝑺𝒕𝒓𝒆𝒔𝒔

𝑨𝑹𝑭𝑰 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕𝑳𝒐𝒘𝒆𝒔𝒕 𝑨𝒑𝒑𝒍𝒊𝒆𝒅 𝑺𝒕𝒓𝒆𝒔𝒔
              ( 5-2 ) 

 

 

 

Similar to the classic strain equation (change in length divided by original length), the “ARFI 

Strain” equation calculates the strain in the tendon by evaluating the change in ARFI displacement 

with increasing stress with respect to the ARFI displacement at the lowest applied stress. Since 

both ARFI imaging and the tensile test shared the same stress values, a direct relationship with 

“ARFI strain” and strain measured from tensile testing was made. Specifically, a linear regression 

was performed to determine the linear relationship between “ARFI strain” and the measured strain 

acquired during tensile testing. 
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(2 & 3) Stress-strain curve model fit of ARFI testing and relationship to toe region 

modulus: An exponential expression was used to represent the stress-strain (σ-ε) relationship for 

a tendon (239):  

 

 

𝛔(𝛆) = 𝐀(𝐞𝑩𝜺 − 𝟏)                                                    ( 5-3 ) 

 

 

Three data points were used to fit the exponential expression where σ represents the stress of the 

tendon during the 3 loading conditions during ARFI imaging and ε represents the predicted 

measured strain from tensile testing. A and B are constants that need to be determined, where A*B 

approximates the initial stiffness of a tissue (239). A linear regression was then performed to 

determine the relationship between parameter A*B to the modulus of the toe region calculated 

from tensile testing. Modulus of the toe region was determined with a linear fit of the data up until 

1% strain, maximizing the number of data points such that r2 > 0.99. 

(4) Predict modulus of linear region: A dataset of 16 previously tested fresh-frozen 

cadaveric biceps tendons were utilized to determine the relationship between the modulus of the 

toe region modulus and the modulus of the linear region. All specimens were non-destructively 

tested in tension and the tendon mid-substance reached strain values >3%. The modulus of the 

linear region along the long-axis of the tendon was determined by iteratively removing the 

minimum and maximum data points of the stress-strain curve from >1% strain until a linear 

regression fit of r2 ≥ 0.99 was achieved. A linear regression was used to establish the relationship 

between toe and linear region modulus. Significance was set at p < 0.05 for all analyses. 
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5.3.6 Results: Prediction of Linear Region Modulus 

Significant linear relationships were found for all 4 steps in the process of predicting the 

modulus of the linear region from ARFI data collected in the toe region (p < 0.05). “ARFI strain”, 

which is measured along the transverse axis of the tendon was nearly two orders of magnitude 

larger than the experimentally measured strain from tensile testing. From the linear regression 

analyses of 6 of the 9 specimens, “ARFI Strain” was linearly related to the measured strain from 

tensile testing by a factor of 0.02 (p < 0.05, r2 = 0.562) (Figure 5.21): 

 

 

𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝐒𝐭𝐫𝐚𝐢𝐧 𝐟𝐫𝐨𝐦 𝐓𝐞𝐧𝐬𝐢𝐥𝐞 𝐓𝐞𝐬𝐭𝐢𝐧𝐠 = 𝟎. 𝟎𝟐(ARFI Strain) + 𝟎. 𝟎𝟎𝟏          ( 5-4 ) 

 

 

Validation of the linear regression model using the remaining 3 specimens showed an average 

error of 37.0 ± 35.2% between predicted strain and measured strain. Predictions of measured strain 

resulted in both over and under estimation. The error for predicting strain at highest level of tensile 

stress in the tendon (54.6 ± 41.8%) was much higher than at lower levels of tensile stress (19.5 ± 

20.7%).  

 

All specimens were successfully fit to the exponential equation describing the stress-strain 

relationship of the tendon (r2 > 0.9), in which parameters A and B were determined. For model fit 

parameter A*B, a representation of initial stiffness, all 3 specimens used for validation purposes 

underestimated the results from tensile testing (Table 5.5). The average magnitude of error for 

predicting model fit parameter A*B was 11.3 ± 10.9%.  
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Using 6 of the tendon specimens, prediction of the modulus of the toe region from model 

fit parameter A*B showed a strong and significant linear relationship (p < 0.05, r2 = 0.962) (Figure 

5.22): 

 

 

 

𝐓𝐨𝐞 𝐑𝐞𝐠𝐢𝐨𝐧 𝐌𝐨𝐝𝐮𝐥𝐮𝐬 = 𝟏. 𝟐𝟏(Model Fit Parameter A*B) + 𝟏𝟖. 𝟔               ( 5-5 ) 

 

 

 

Modulus of the toe region was underestimated for 2 of the 3 specimens. The average error 

between experimental and model predictions was also higher than model fit parameter A*B, with 

an error 18.7 ± 10.2 %, corresponding to 14.1 ± 11.9 MPa (Table 5.5). 

 

 

Figure 5.21: Predicting measured strain from tensile test from "ARFI Strain". Significant linear relationship 

found where y represents measured strain from tensile test and x represents “ARFI Strain”. 
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Figure 5.22: Prediction of toe region modulus from model fit parameter A*B. Significant linear relationship 

was found (r2 = 0.962, p < 0.05) where y represents toe region modulus and x represents model fit parameter 

A*B. 

 

Prediction of the modulus of the linear region from the modulus of the toe region also 

resulted in a significant strong relationship (p < 0.05, r2 = 0.872) (Figure 5.23): 

 

 

 
𝐋𝐢𝐧𝐞𝐚𝐫 𝐑𝐞𝐠𝐢𝐨𝐧 𝐌𝐨𝐝𝐮𝐥𝐮𝐬 = 𝟒. 𝟓(𝐓𝐨𝐞 𝐑𝐞𝐠𝐢𝐨𝐧 𝐌𝐨𝐝𝐮𝐥𝐮𝐬) − 𝟏𝟒. 𝟕                ( 5-6 ) 

 

 

The previously collected dataset used to derive the relationship between the modulus of the toe 

and linear region utilized tendons where the tendons were strained >3% during tensile testing. 

None of the 3 specimens used for validation purposes reached a tendon mid-substance strain of 

3% when loaded to 30N. Prediction of the linear region modulus, greatly overestimated the 
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experimentally calculated values (Table 5.5) for all 3 specimens. On average, the predictions 

were off by 144 ± 49 MPa, corresponding to 134 ± 57%. 

 

 

Figure 5.23: Prediction of linear region modulus from toe region modulus.  Significant linear relationship was 

found (r2 = 0.872, p < 0.05) where y represents linear region modulus and x represents toe region modulus. 

 

Table 5.5: Comparison of experimental data and predictions from relationships derived from tendon ARFI 

displacement data 

 A*B (MPa) Toe Region Modulus 
(MPa) 

Linear Region Modulus 
(MPa) 

 Predicted Experiment Predicted Experiment Predicted Experiment 

 Tendon 1 34.8 38.8 63.7 91.4 273.9 147.3 

Tendon 2 20.9 21.1 46.4 40.5 195.5 89.3 

 Tendon 3 39.4 50.9 69.4 78.1 299.7 100.5 
 



 121  

5.3.7 Discussion: Prediction of Linear Region Modulus 

The results demonstrate the inaccuracies of predicting the linear region modulus of tendons 

from ARFI imaging data collected in the toe region using only linear relationships. Final 

predictions of the tensile linear region modulus were off by a large margin (>100% error). 

Preliminary tests indicated that ARFI imaging in the linear region was not feasible because the 

tendon became too stiff for the acoustic radiation force to generate any measurable displacement.  

Predicting tendon strain from ARFI displacement only had a moderate relationship (r2 = 

0.562), and had an average prediction error of nearly 40%. The large error is mostly likely 

attributed to the calculation of “ARFI Strain” to approximate tendon strain from ARFI 

displacement data with increasing stress. The “ARFI Strain” equation was chosen to estimate 

tendon strain from ARFI displacement data because it closely resembles the classic strain equation. 

In addition, the magnitude of the “ARFI strain” calculated values relative to tensile testing strain 

were physiologically reasonable. “ARFI Strain” describes the strain in the transverse direction, 

and studies have shown that transverse supraspinatus tendon properties can be 100-1000 times 

smaller than the long-axis properties (240). Therefore, a factor of 0.02 when comparing “ARFI 

strain”, which is representative of strain in the transverse direction, to the long-axis tensile testing 

strain is reasonable.  

Fitting the stress-strain relationship to the exponential expression using the 3 datapoints 

from ARFI imaging was successful for all cases (r2 > 0.9). In addition, parameter A*B, which has 

the physical meaning of approximating the initial stiffness of the tissue (239), was closely related 

to the toe region modulus. This is evident by the slope of the relationship between model fit A*B 

and toe region modulus being close to 1 and having a high r2 value of 0.962. Prediction of the toe 
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region modulus was the most accurate of all predictions, with an average magnitude of error being 

only 11%.  

 A strong relationship (r2 = 0.872) was found predicting linear region modulus from toe 

region modulus, implying accurate assessment of the properties in the toe region of the tendon 

should provide accurate estimations of the properties of the tendon in the linear region. While the 

predicted values of linear region moduli were physiologically reasonable and within the range of 

values of previously tested tendons, the predicted linear region modulus for the 3 tendons used for 

validation were extremely overestimated compared to experimental results (error > 100%). 

However, this may be due to the differences between the dataset used to define the relationship 

between toe region modulus and linear region modulus, and the tendons used for validation. The 

tendons used to establish the relationship all achieved mid-substance strain >3%, while the tendons 

used for validation did not. Calculation of the toe region (<1% strain) and linear region (>1% 

strain) modulus were the same for both datasets. Since the 3 tendons used for validation purposed 

did not reach a strain value of 3%, the tendon may still be recruiting collagen fibers and the tendon 

behavior after 1% strain was more representative of the transition zone from the toe region into 

the linear region of a stress-strain curve. Thus, the experimentally calculated modulus of the linear 

region may be underestimated.  

Overall, prediction of the tensile modulus of the linear region for tendons using ARFI 

imaging data collected at loading levels representative of the toe region of a tensile stress-strain 

curve was unsuccessful. Thus, an alternative strategy that should be investigated to understand the 

relationship between ARFI displacement and the mechanical properties would be to utilize the 

inverse finite element method (FEM). Using the inverse FEM approach, the optimal mechanical 

properties of the tendon to match the experimental data of ARFI displacement can be determined. 



 123  

5.3.8 Methods: Inverse FEM 

15 fresh-frozen strips of tissues (5 pectoralis major muscle, 5 glenohumeral capsule, 5 

biceps tendon) with a length of at least 10 cm were harvested from 8 cadaveric shoulder specimens 

(60.9 ± 4.9 years). All tissues were prepared for tensile testing and ARFI imaging of the tissue 

mid-substance. Two delrin beads (2 mm diameter) were superglued to the surface of each specimen 

to mark the mid-substance area. The cross-sectional area of the tissue mid-substance was 

determined using a laser scanner (Next Engine, Desktop 3D Scanner, Santa Monica, CA, USA). 

Specimens were kept moistened with physiologic saline solution to prevent dehydration during 

preparation and testing. 

Each tissue underwent a uniaxial tensile testing protocol to determine the modulus of the 

toe and linear region. The ends of the tissue were clamped with custom soft tissue clamps and 

aligned for tensile loading in the materials testing machine (Instron, Model 5965, Norwood, MA, 

USA) and the strain of the tissue mid-substance was measured by tracking the delrin beads with 

an optical tracking system (DMAS7, Spica Technology, Kihei, HI, USA). The tissue was 

preloaded (tendon & capsule = 1N, muscle = 0.2N), preconditioned for 10 cycles (tendon = 1-10N, 

capsule = 1-5N, muscle = 0.2-2N) and then loaded (tendon = 100N, capsule = 50N, muscle = 5N). 

Loading levels were chosen based on preliminary tests that determined the loads required to reach 

the linear region of a stress-strain curve, but not result in tissue failure or clamp slippage. Modulus 

of the toe region was determined by iteratively removing the first and last data points of the stress-

strain curve from 0-1% strain until a linear regression fit of r2 ≥ 0.99 was achieved.  

Following tensile testing, each tissue was mounted into a custom tensioning jig and 

tensioned to 0.1MPa. A Krackow stitch was applied to both ends of the tendon using a #2 suture 

(Ethibond*Excel, Ethicon Inc., Somerville, NJ, USA) to allow for tensile loading of the tendon in 
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the custom tensioning jig. Once appropriately tensioned, the tissue was embedded into a gelatin 

mixture. The gelatin mixture consisted of 1 liter of water, 5% concentration of gelatin from porcine 

skin (G2500, Sigma Aldrich, St. Louis, MO, USA) and 1% concentration of cellulose (S3504, 

Sigma Aldrich, St. Louis, MO, USA). A bi-linear translation stage (BiSlide MN10, Velmex, 

Bloomfield, NY, USA; accuracy = 0.003”, repeatability = 0.0002”) and probe holder was used to 

allow for repeatable imaging of the tissue mid-substance. All ARFI testing was performed with 

the gel temperature at 20°C confirmed by a digital infrared thermometer and the tissue positioned 

at a 25 mm axial depth and centered laterally as confirmed by a B-mode image (Figure 5.6).  

A linear array transducer (ATL L7-4) connected to a research ultrasound platform (Vantage 

128, Verasonics, Kirkland, WA, USA) was used to perform the entire full-frame ARFI sequence. 

The full-frame ARFI sequence first consists of a reference imaging pulse focused at the elevation 

focus of the transducer (25 mm axial depth). Then, an ARFI push is generated using a localized 

radiation force fired at an excitation voltage of 30V (push duration = 192 µs). After the ARFI push, 

a tracking pulse is fired (ie. imaging pulse identical to the reference imaging pulse). The process 

of imaging, pushing and tracking is repeated 64 times across the entire width of the transducer. 

ARFI displacement due to the radiation force is calculated using the phase-based Loupas algorithm 

on the reference and tracking images (230). 
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FEM Model Methods 

A FEM model simulating ARFI imaging of a tissue inclusion surrounded by a homogenous 

gelatin phantom was developed. The goal of the computational analysis was to assess the effect of 

tissue modulus on ARFI tissue displacement measurements and predict tissue modulus based on 

experimental ARFI tissue displacement measurements. A 3D, rectangular solid mesh was 

developed using 8-noded hexahedral elements to replicate the geometric shadow of the transducer 

(axial = 50 mm, lateral = 38 mm, elevation = 2.2 mm) (PreView, v2.1.4, febio.org) (Figure 5.24). 

A circular inclusion was modeled at the center of the mesh to represent the embedded tissue. A 

finer mesh density was used at the axial depth where the tissue was located. Additional mesh 

volume was included that surrounded the geometric shadow of the transducer to minimize wave 

reflection back into the region of interest caused by the impulsive ARFI pushing force. In total, 

the mesh extended 150 mm axially and 96 mm laterally with a 2.2 mm elevation thickness. A 

sensitivity analysis on the mesh size was performed by increasing the size of the elements until the 

change in peak displacement predictions was <0.1 µm. The mesh representing the geometric 

shadow of the transducer consisted of 7995 nodes and 5120 elements while the surrounding 

volume mesh consisted of 17,400 nodes and 11,2000 elements.  
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Figure 5.24: FEM Model of ARFI Imaging of the geometric shadow of the transducer. The yellow arrows 

represent the ARFI push, modeled as a depth dependent body force with the peak body force applied at the 

center of the tissue. The green circles represent the surface traction force applied to the tissue representing 

the 0.1MPa tensile force applied to the tissue experimentally. The bottom surface of the model was fixed in all 

degrees of freedom. The additional mesh volume used to mitigate the effect of wave reflection is not shown. 



 127  

 To minimize computational complexity and model the behavior of musculoskeletal tissues 

at low loading conditions (< 0.1 N), the elements associated with the tissue were modeled as a neo-

Hookean material with 2 material coefficients (v = Poisson’s ratio; E = modulus). Despite the 

anisotropy of tendons due to the alignment of collagen fibers, at such low loads, collagen fibers 

are not being recruited. Therefore, the tendon is most likely to behave like an isotropic material, 

supporting the choice of a neo-Hookean material model for this simulation. All other elements 

represented the gelatin and were also modeled as a neo-Hookean material. Poisson’s ratio of 0.499 

was used for both the tissue and the gelatin to represent near incompressibility. 

The bottom surface of the model (ie. opposite of the transducer contact) was fixed in all 

directions, the top surface (ie. in contact with the transducer) was fixed in the axial direction, and 

all other faces were unconstrained (Figure 5.24) (152). The surface traction load was applied to 

the tendon to represent the 0.1 MPa tensile loading. The tied contact feature in FEBio was used to 

connect the surfaces of the tissue and gelatin together. 

  The axially directed ARFI push was modeled as a depth dependent body force with a 

gaussian distribution (154, 155): 

 

 

 

 

𝑭⃗⃗ = 𝑭𝟎(𝒕)𝒆
(
−𝒚𝟐

𝟐𝝈𝟐)
                                                     ( 5-7 ) 

 

 

  



 128  

where F0(t) is a time dependent force amplitude, σ = 1mm, and y represents the axial position. The 

model geometry was created so that the peak body force occurred at 25 mm axial depth (ie. 

elevation focus of transducer). The body force was applied as a step function and only during the 

excitation interval 0 < t < 192 µs to mimic experimental ARFI methods. The derived ARFI push 

force magnitude based on our experimental conditions was 54 dynes/mm3 (Figure 5.25) and was 

used for our FEM model simulations.  

 

 

Figure 5.25: Derivation of ARFI push force magnitude. First, pressure was determined from an experiment 

using a calibrated hydrophone. Knowing pressure, intensity could be determined and knowing intensity, the 

body force could be calculated. The derived body force was 54 dynes/mm3. All constants were based on 

literature (241). 

 

An inverse finite element optimization analysis built in FEBio (Levenberg-Marquardt) was 

performed by minimizing the objective function to determine the optimal material coefficient (E) 

for both the surrounding gel and tissue needed to match the experimental ARFI displacement data. 

Specifically, the data was fit based on the change of nodal position in the axial direction from the 

beginning of an ARFI push to the end of the ARFI push. 
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For the surrounding gel, an initial guess of 20 kPa was used based on the manufacturer’s 

description of the gel stiffness, while constraining the values to be between 1 kPa and 200 kPa to 

ensure a reasonable approximation of the gel stiffness. For the musculoskeletal tissues, the material 

coefficient was constrained to be greater than 0 and less than 1000 MPa to ensure physiologically 

reasonable values. A modulus greater than 1000 MPa is considered unreasonable and well outside 

the range of previously calculated moduli of the toe region for musculoskeletal tissues. The 

optimized coefficients were compared to the modulus of the toe region determined from tensile 

testing. All simulations were performed using FEBio (v2.9.1, Musculoskeletal Research 

Laboratories, University of Utah, febio.org) and post-processing using PostView (v2.4.4).  
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5.3.9 Results: Inverse FEM 

 A detailed description of the experimental results has already been described in Section 

4.2.3.1. To summarize the key results relevant for the analyses of using the inverse FEM approach 

to predict the modulus for musculoskeletal tissues, large differences between the tendon, capsule 

and muscle were seen for the modulus of the toe region. The modulus of the toe region for tendons 

(34.9 ± 27.7 MPa) was 35 times higher than muscle (1.0 ± 1.1 MPa) and 3.8 times higher than 

capsular tissue (9.8 ± 6.5 MPa). Significant differences were found between muscle/tendon and 

muscle/capsule, but not tendon/capsule for the modulus of the toe region.  

The inverse FEM analysis was successful at optimizing the gelatin modulus for all 

specimens (Table 5.6). Higher gelatin modulus corresponded to less gelatin displacement, where 

the optimized gelatin modulus values ranged from 10.6 kPa to 28.4 kPa. Optimization of the tissue 

modulus was successful for only 2 of the 15 tissue specimens (Table 5.7). Both successful 

optimization procedures for the tissue modulus were for muscle tissue. The optimized tissue 

modulus for both specimens were within 3 MPa of the experimentally calculated toe region 

modulus from tensile testing. For the other tissues, the predicted displacement of the tissue from 

the FEM simulations, overestimated the experimentally measured ARFI displacements, even when 

simulating extremely stiff tissues (E = 1000 MPa) (Table 5.7). 
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Table 5.6: Surrounding gel modulus (E) based on ARFI displacement using inverse FEM optimization.Higher 

optimized gel modulus corresponded to lower surround gel ARFI displacement. 

 

Surrounding Gel ARFI 

Displacement (µm) 

Optimized Gel Modulus (E)  

(kPa) 

Tendon 1 19.6 22.1 

Tendon 2 18.0 24.5 

Tendon 3 28.0 14.2 

Tendon 4 15.9 28.4 

Tendon 5 21.1 20.1 

Capsule 1 18.6 23.5 

Capsule 2 20.9 20.4 

Capsule 3 36.7 10.6 

Capsule 4 16.9 26.4 

Capsule 5 27.3 14.6 

Muscle 1 23.0 18.1 

Muscle 2 19.5 22.2 

Muscle 3 20.7 20.6 

Muscle 4 20.3 21.1 

Muscle 5 24.1 17.1 
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Table 5.7: Predicted toe region modulus for tissue samples based on ARFI displacement data using inverse 

FEM optimization.  Data shown is of the successfully optimized muscle tissues and a representative example 

of a tendon that did not converge. Optimized toe region modulus of muscle tissues and predicted 

displacement from an ARFI push closely matched experimental results. For the tendon example, tissue 

displacement was overestimated even when assuming a very high modulus. 

 

Experimental 

Modulus of Toe 

Region (MPa) 

FEM E (MPa) 

Experimental 

ARFI 

Displacement 

(µm) 

Predicted FEM 

Displacement 

(µm) 

Muscle 3 0.3 0.3 12.6 12.9 

Muscle 4 2.8 4.9 12.9 12.1 

Tendon 3 67.0 1000.0 9.2 14.3 
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5.3.10 Discussion: Inverse FEM 

The modulus of the toe region for all musculoskeletal tissues is on the order of 

megapascals, whereas tissues generally used for ARFI imaging are on the order of kilopascals 

(225, 242). Even with large differences in the modulus of the toe region between capsule and 

tendon tissues (10 versus 35 MPa, respectively), minimal differences in ARFI displacement 

existed. Thus, for tissues with moduli greater than 10 MPa, the effect of the ARFI push is minimal. 

Despite the high stiffness of the musculoskeletal tissues relative to the stiffness of tissues generally 

used for ARFI imaging, the magnitude of ARFI displacement for the musculoskeletal tissues (up 

to 20 µm) is similar to the magnitude of ARFI displacement in previous studies (121). The similar 

magnitude of displacement seen experimentally may be because the magnitude of ARFI push used 

(54 dynes/mm3) was larger than previous studies (121). Furthermore, the stiffness of the 

surrounding structures has an effect on ultrasound parameters such as shear wave speed and ARFI 

displacement (235). 

The inverse FEM routine was successful at optimizing the gelatin to match the 

experimental ARFI displacement for all specimens. The optimized moduli of the gelatin (~15-30 

kPa) has a similar modulus to tissues more commonly used for ARFI imaging (eg. breast, prostate, 

and arteries) (120, 123, 125). Only some muscles (2 out of 5), which were the least stiff 

musculoskeletal tissue tested, converged to physiologically reasonable modulus values. The 

optimized modulus values being similar to the experimental modulus of the toe region is an 

encouraging finding suggesting the constitutive model is appropriate. However, the optimization 

procedures for the capsule and tendon tissue specimens were unable to converge, suggesting that 

the modulus would need to be much higher than physiologically reasonable (>1000 MPa) to match 
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the experimental ARFI displacement measurements. Similar to the experimental findings, for high 

stiffness tissues (>10 MPa), the effect of the ARFI push is minimal. 

The lack of convergence for these tissues is probably due to multiple reasons. One of the 

main reasons may be due the inability to distinguish tissue deformation or displacement 

experimentally. The stiffness of surrounding structures has a major effect on ARFI displacement 

measurements. If a tissue is surrounded by a stiff structure, ARFI displacement may be measuring 

tissue deformation. However, given the same tissue but surrounded by a much softer structure, 

ARFI displacement may be measuring the displacement of the tissue rather than the deformation. 

Therefore, future work is needed to understand whether experimental measurements are of tissue 

deformation or displacement in order to make accurate FEM model measurements. In addition, 

since ARFI displacement is dependent on the tension of the tissue, accurate loading conditions of 

the tension in the tissue is essential. In the FEM model, a uniform surface traction was applied to 

the tendon to simulate the tendon in tension, but it is possible that because the tendon ends were 

sutured rather than clamped, non-uniform loading could have occurred. Furthermore, a different 

constitutive model may be needed for the stiffer tissues that better distinguish the role of the ground 

matrix and collagen fibers since the ARFI push is most likely being resisted by the constituents in 

the ground matrix rather than the collagen fibers. 
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5.3.11 Conclusions: Quantifying Mechanical Properties with ARFI Imaging 

The results of these analyses serve as the foundation of understanding the feasibility of 

using ARFI imaging to quantify mechanical properties of tendons and other musculoskeletal 

tissues. The ability to predict the modulus of the linear region is beneficial because other ultrasound 

techniques such as shear wave elastography have only been able to describe relative changes in 

tendon stiffness (116, 137). While ARFI displacement did not directly correlate to the mechanical 

properties of the tissues in the transverse or longitudinal direction, the results show that ARFI 

displacement is impacted by the tension in the tissue. Furthermore, prediction of the tensile 

modulus of the linear region for tendons using ARFI imaging data collected at loading levels 

representative of the toe region of a tensile stress-strain curve was highly inaccurate. 

Experimentally and computationally, the results show that the effect of the ARFI push is minimal 

for high stiffness tissues (>10 MPa) due to minimal differences in ARFI displacement with 

increasing tissue stiffness. 

Our findings are relevant for the challenges of using shear wave elastography with 

musculoskeletal tissues, since the ARFI push is used to generate shear waves.  An additional 

preliminary experiment was performed to substantiate our findings by using an ultrasound system 

equipped with shear wave elastography (Aplio i800, Canon Medical Systems, Otawara, Tochigi, 

Japan) to image an anterior extensor tendon from a porcine knee. From this additional analysis, 

tendon was found to be too stiff and exceeded the capabilities of the ultrasound machine to obtain 

a measurement (i.e. >400 kPa and >12 m/s). Future work will aim to understand the role of the 

collagen fiber network and ground matrix on ARFI displacement measurements. Furthermore, 

additional work is needed to understand when ARFI displacement measurement are of the tissue 

deforming or displacing. 
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6.0 Discussion 

6.1 Relationship of Findings Between Aims 

The findings from Aim 1 and 2 are linked because of the possible interplay that abnormal 

arthrokinematics due to unbalanced force couples may have on localized remodeling of the torn 

supraspinatus tendon. Abnormal glenohumeral arthrokinematics is indicative of joint instability. 

Joint instability may be as a result of unbalanced force couples, exposing the torn supraspinatus 

tendon to different loading conditions. For a tendon with a tear, heterogeneous stress distributions 

are observed throughout various locations a supraspinatus tendon with a tear (92, 101, 104, 143, 

144, 147, 151). Tendon remodeling is known to be driven by mechanical stimuli, where a fine 

balance of the forces in the tendon can promote functional tissue remodeling or development of 

tendon degeneration due to overloading or underloading (191, 198). Thus, further understanding 

of the possible link of arthrokinematics affecting supraspinatus tendon loading that influences 

tendon remodeling can help identify patients susceptible to tear propagation. 

From Aim 2, remodeling at the tear tips had the greatest influence on tear propagation. 

More specifically, increased stiffness at the tear tips lead to more tear propagation and a lower 

critical load. Therefore, the findings from Aims 2 and 3 are related because Aim 3 focuses on 

understanding the capabilities of current ultrasound techniques to measure tendon quality and 

mechanical properties. The continued development of ultrasound techniques such as QUS 

measures and ARFI imaging is essential towards advancing the diagnoses of patients with rotator 

cuff tears to predict whether they are susceptible to tear propagation. For example, targeted 

evaluation of key areas that influence of tear propagation (eg. tear tips), or locations used for suture 
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placement during surgery (eg. medial edge of tear) using ultrasound can help identify which 

individuals will fare well in exercise therapy or surgery. 

The implications of the 3 aims together allow clinicians to better understand the causes of 

tear propagation in order to make a more informed treatment decision (eg. exercise therapy or 

surgery) for their patients with a rotator cuff tear (Figure 6.1). Localized changes in tendon 

mechanical properties is predictive of tear propagation (Aim 2). Localized changes in tendon 

mechanical properties can occur due to tendon remodeling driven by mechanical stimuli. There is 

a fine balance that promotes functional remodeling and tendon degeneration due to overloading or 

underloading. Glenohumeral arthrokinematics may be driven be driven by the balance of the force 

couples to stabilize the joint (Aim 1). As a result, the supraspinatus tendon may experience variable 

loading conditions depending on the force couple balance. There is a need to continue the 

development of new technologies to allow clinicians to measure localized changes in tendon 

mechanical properties non-invasively and accurately (Aim 3). 

The two key factors of interest addressed in this dissertation to better understand rotator 

cuff tear propagation were abnormal glenohumeral arthrokinematics and localized changes in 

tendon mechanical properties. The combined findings from all three aims provide clinicians 

pertinent information toward understanding limitations of current exercise therapy programs to 

address abnormal glenohumeral arthrokinematics, the possible link between arthrokinematics and 

tendon remodeling, relevant localized changes in tendon mechanical properties that influence tear 

propagation, and the capabilities of current ultrasound techniques to measure tendon quality and 

mechanical properties.  
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Figure 6.1: Overview of the relationship between the three Aims to better understand rotator cuff tear 

propagation and improve the decision making process for clinicians. 
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6.2 Future Directions 

The work in this dissertation provides a better understanding of key biomechanical factors 

that influence rotator cuff tear propagation. In order to continually improve the understanding of 

factors behind rotator cuff tear propagation and utility of ultrasound techniques, several limitations 

related to the three aims should be addressed, and new avenues of research should be pursued.  

From Aim 1, the effect of exercise therapy appears to be motion dependent, therefore future 

studies should investigate the changes in glenohumeral arthrokinematics for different arm 

positions that are representative of tasks common to daily living. Future studies should be 

conducted to obtain a better understanding on how specific exercises affect glenohumeral 

arthrokinematics so that exercise therapy can be adapted to emphasize the importance of improving 

glenohumeral arthrokinematics for multiple motions. In addition, the theory that abnormal 

glenohumeral arthrokinematics may be a result of unbalanced force couples, exposing the torn 

supraspinatus tendon to loads that increase the likelihood of tear propagation should be 

investigated. Alternatively, the thought that persistent abnormal arthrokinematics may injure the 

structures within the glenohumeral joint, thus promoting tear propagation should also be explored. 

Glenohumeral arthrokinematics were only measured before and after therapy, with no 

knowledge about the long-term effects. Thus, future work should include long-term follow up 

studies to assess whether the inability to restore glenohumeral arthrokinematics would result in 

patients with rotator cuff tears eventually needing surgery. Furthermore, only 5 subjects were 

investigated, with no subject failing exercise therapy and pursuing surgery. Therefore, more 

subjects should be investigated in order to elucidate the factors that are associated with successful 

and failed non-operative treatment. 
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Two different ultrasound techniques were investigated in this dissertation (ie. QUS 

measures and ARFI Imaging). Both techniques are not without their limitations. For the 

quantitative ultrasound (QUS) measures, the raw values are very sensitive to the image acquired. 

The sensitivity of the image acquired limited our analyses to only using a transverse view of the 

supraspinatus tendon since the transverse view has been previously verified to be sufficiently 

repeatable (118). Quantitative ultrasound measures from a long-axis view of the supraspinatus 

tendon would be interesting to investigate in the future as long as a rigorous protocol that ensures 

repeatable images is established. In addition, only a small subset of factors that affect tendon 

quality was investigated with the H&E staining used. Future studies should correlate quantitative 

ultrasound measures to different factors associated with tendon quality by utilizing additional 

staining techniques (eg. collagen content, elastin, proteoglycans, etc.).  

Despite the high clinical potential for ARFI imaging, limitations of this technique should 

be acknowledged in order to improve the future utility of ARFI imaging for musculoskeletal 

tissues. First and foremost, many of the findings for ARFI imaging are relevant and should be 

considered for the clinicians and other researchers that utilize shear wave elastography. A key 

consideration that must be accounted for before interpreting ARFI displacement in future studies 

is the tension in the tissue. Decreasing ARFI displacement measurements may be a result of the 

tension of the tissue rather than the modulus of the tissue. In addition, the minimal differences in 

ARFI displacement for high stiffness tissues suggest that the magnitude of the ARFI push may not 

be large enough to produce any reasonable displacement for stiff musculoskeletal tissues. It is 

possible, that something other than the modulus of the tissue impacts the magnitude of ARFI 

displacement. Future studies should be performed to identify the key factors that affect ARFI 

displacement for musculoskeletal tissues. For example, controlled localized damage/changes to 
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the collagen fiber network or extracellular matrix (ECM) can be investigated to understand the key 

constituents of the tendon that influences ARFI displacement measurements.  

Prediction of tendon mechanical properties using ARFI imaging remains difficult. The 

work performed in Aim 2 demonstrated the feasibility of predicting the linear region modulus of 

tendons from ARFI imaging data collected in the toe region using only linear relationships. While 

the predicted modulus of the linear region was severely underestimated, future analyses should use 

tendons that were mechanically tested to greater than 3%. By matching the dataset used to define 

the relationship between toe region and linear region modulus more accurate predictions may be 

found.  

Prediction of the modulus for musculoskeletal tissues using an inverse FEM approach was 

largely unsuccessful. A limitation of the ARFI imaging FEM model used was that although 

musculoskeletal tissues are anisotropic, the constitutive model used for the tissues did not account 

for anisotropy. The rationale for choosing a Neo-Hookean model was an assumption of the tendon 

behavior due to the low magnitude of the ARFI push as well as reducing computational 

complexity. At such miniscule loads (50 dynes = 0.0005 Newtons), the collagen fibers are not 

being recruited and are playing a minimal role in resisting the ARFI force. Alternative constitutive 

models (eg. transversely isotropic Mooney-Rivlin) should be investigated in the future to better 

understand the role of the extracellular matrix and collagen fibers in resisting the ARFI push. 

Differentiating the role of the extracellular matrix and collagen fibers may also allow for accurate 

predictions of material coefficients using the inverse FEM approach for the very stiff 

musculoskeletal tissues. Development of a tool such as ARFI imaging for clinicians to 

quantitatively and non-invasively assess tendon mechanical properties at precise locations would 

be especially useful based on the findings from Aim 3, where localized remodeling at the tear tips 

are predictive of the amount of tear propagation. 
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Based on the findings from Aim 3, future work should aim to identify the ideal loading 

condition that would promote maintaining tendon strength while minimizing the increase of tendon 

stiffness at a localized level. Mechanical stimulus has a large effect on the mechanical properties 

of musculoskeletal tissues, causing both increases and decreases in tissue stiffness (189, 201, 202). 

A fine balance is needed because too much loading may induce tear propagation while not enough 

loading may result in global degeneration throughout the entire tendon. 

Currently, the subject-specific finite element model used in Aim 3 is limited because it is 

not representative of the general population. Therefore, a library of subject-specific models should 

be developed in order to account for the variability in the geometry and mechanical properties of 

the simulations. Furthermore, other improvements should also be considered to represent different 

structures and behaviors of the tendon. For example, specific properties of the tendon enthesis and 

rotator cable, as well as quantification of the collagen fiber organization and direction. In addition, 

the current model only utilized cohesive elements to simulate tear propagation in the anterior-

posterior direction. Future models may consider including cohesive elements in multiple directions 

in order to better represent tear retraction as well as tear propagation into different tear shapes (eg. 

L-shaped, crescent, U-shape) (243, 244). Lastly, the model may even be useful for physical 

therapists in determining the exercises and loading levels a patient with a rotator cuff can undergo 

without inducing tear propagation. 
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6.3 Summary 

Rotator cuff tears are extremely prevalent and have a negative impact on the quality of life 

for those with this injury. Billions of dollars are being spent annually in the United States alone to 

treat rotator cuff tears. The desire to improve the quality of life and productivity for those with 

rotator cuff tears in an aging population highlights the importance of being judicious in choosing 

the most effective treatment. Tear propagation is a key factor that may explain high failure rates 

of treatment as larger tears are more difficult to treat and have been associated with worse clinical 

outcomes.  

The key finding from Aim 1 was that glenohumeral arthrokinematics for internal/external 

rotation with the arm at the side did not lead to any significant changes despite significant clinical 

improvements in terms of shoulder strength and patient-reported outcomes. The glenohumeral 

arthrokinematics for internal/external rotation showed increased translations compared to healthy 

subjects, indicating joint instability (75, 86, 245). Joint instability may be as a result of unbalanced 

force couples, which may expose the torn supraspinatus tendon to loads that increase the likelihood 

of tear propagation. While the initial clinical outcomes appear positive in terms of increased 

shoulder strength and improved patient reported outcomes, it is unclear whether these satisfactory 

clinical outcomes will remain.  

Persistent abnormal arthrokinematics may injure the structures within the glenohumeral 

joint resulting in a larger tear and therefore increased pain and loss of shoulder function (13, 79). 

Furthermore, the results show that the effect of exercise therapy on glenohumeral arthrokinematics 

may depend on the type of motion. In a previous study that looked at glenohumeral joint 

arthrokinematics for coronal plane abduction, glenohumeral arthrokinematics were improved in 
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terms of less glenohumeral joint translation following therapy (6). Thus, exercise therapy should 

be adapted to emphasize the importance of improving glenohumeral arthrokinematics for multiple 

motions, in addition to restoring range of motion, increasing shoulder strength, and reducing pain. 

Aim 2 was essential in the development and understanding of how different ultrasound 

techniques can be utilized for assessment of tendon quality as well as the quantification of tendon 

mechanical properties. The first ultrasound technique investigated utilized quantitative ultrasound 

(QUS) measures to assess tendon quality based on the grayscale echotexture of a traditional B-

mode ultrasound image. The key finding was that quantitative ultrasound measures was correlated 

to measures of tendon quality as quantified through histology. The correlations found between 

QUS measures and histological grades of tendon quality suggest that quantitative ultrasound 

measures could be used to assess specific factors that affect tendon quality which can only be 

otherwise assessed through histology. The ability for clinicians to evaluate the changes in tendon 

quality is important since material properties of the tendon may be reduced as a result, making 

rotator cuff tear propagation more likely (185, 218). While previous studies have shown 

quantitative ultrasound measures correlate to clinical pathologies (117, 119, 214), no direct 

evidence had been provided correlating quantitative ultrasound measurements to tendon quality.  

However, there are several factors that must be considered if quantitative ultrasound 

measures were to be used. The raw values of each quantitative ultrasound measure are very 

sensitive to the B-mode image acquired. A comprehensive imaging protocol is required to ensure 

repeatable images are acquired. Thus, direct comparisons of the raw values of each quantitative 

ultrasound measure to previous studies is not possible if different ultrasound examiners and 

ultrasound settings (eg. frequency and gain) are used. Nonetheless, the findings provide a 

foundation for a new methodology of quantitative ultrasound measures to be used by clinicians as 
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a diagnostic tool to non-invasively and quantitatively evaluate tendon quality. With further 

development and analyses, quantitative ultrasound measures could be useful to assess tendon 

quality as long as a repeatable protocol is used to obtain repeatable images, and inter-examiner 

variability is eliminated (117-119, 213). 

The second ultrasound technique investigated for Aim 2 was ARFI imaging. ARFI imaging 

is an exciting ultrasound technique that works like “remote palpation”, where localized radiation 

forces push onto the tissue and the resulting displacement is measured. The magnitude of ARFI 

displacement had been shown to be associated with the stiffness of the tissue, but the traditional 

tissues used for ARFI imaging (eg. breast, liver) are a lot more compliant than musculoskeletal 

tissues such as tendons. The development of ARFI imaging for tendons would advantageous 

because it would allow for precise measurements of tendon mechanical properties. For example, 

information about localized tendon mechanical properties could be helpful for surgical repair of 

rotator cuff tears. Re-tears following surgery typically occur at the suture-tendon interface (61, 

64); therefore, surgeons could use ARFI imaging to identify the healthiest/strongest piece of tissue 

to place the sutures through to minimize the occurrence of the suture pulling through the tendon. 

Non-operatively, ARFI imaging could also be used by physical therapists to monitor the progress 

of tendon healing. In addition, ARFI imaging has the potential to be impactful in other settings as 

well, such as athletics. ARFI imaging can be used by clinicians to identify when an athlete is at an 

increased risk of tendon injury due to overuse and adjusting the athlete’s workload (eg. deciding 

when to take a baseball pitcher out from the game) to proactively treat tendon overuse injuries.    

The key findings from our investigation of ARFI imaging on musculoskeletal tissues were 

supported both experimentally and computationally. In general, stiffer tissues resulted in lower 

ARFI displacement. However, the change in ARFI displacement was dependent on the stiffness 
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of the tissue, with minimal differences in ARFI displacement observed for tissues of high stiffness 

(>10 MPa). Small differences in ARFI displacement despite large differences in the modulus of 

the tissues suggest a larger ARFI push is needed for stiff musculoskeletal tissues. ARFI 

displacement was found to increase proportionally to the increase in the ARFI push force 

magnitude. However, even with an ARFI push force much higher than what is currently capable, 

minimal differences (< 1µm) exist in ARFI displacement for high stiffness tissues. In addition, the 

magnitude of ARFI displacement was found to be dependent on the tension in the tissue, consistent 

with shear wave elastography, where increasing tension along the long-axis resulted in faster shear 

wave speed (235). Therefore, care must be taken when interpreting the magnitude of ARFI 

displacement or shear wave speed for shear wave elastography, since the measurements may 

reflect the tension in the tissue rather than the actual mechanical properties. 

Direct assessment of tendon mechanical properties along the long-axis or transverse-axis 

based on the magnitude of ARFI displacement was not possible. However, this work demonstrated 

the feasibility of predicting the modulus of the linear region for tendons from ARFI imaging data 

collected in the toe region using only linear relationships. The ability to predict the modulus of the 

linear region is beneficial because other ultrasound techniques such as shear wave elastography 

have only been able to describe relative changes in tendon stiffness (116, 137). The development 

of a FEM model of ARFI imaging allowed for unique opportunity to re-create the experiments and 

infer the mechanical properties needed to match the experimental results using an inverse FEM 

approach. The inverse FEM routine was successful at optimizing the gelatin, whose moduli (~15-

30 kPa) is similar to tissues more commonly used for ARFI imaging (eg. breast, prostate, and 

arteries) (120, 123, 125). However, for high stiffness tissues (eg. capsule and tendon), the effect 

of the ARFI push is minimal. The work presented in this dissertation has provided valuable 
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information about the limitations and necessary improvements needed to use ARFI imaging for 

musculoskeletal tissues. Furthermore, the findings may also explain the challenges of using shear 

wave elastography with musculoskeletal tissues, since the ARFI push is used to generate shear 

waves. 

The final aim of this dissertation focused on the effect of location specific tendon 

remodeling on tear propagation using a validated subject-specific finite element model of a 

supraspinatus tendon. A key finding was that remodeling at the tear tips had the greatest influence 

on tear propagation. More specifically, increased stiffness at the tear tips lead to more tear 

propagation and a lower critical load. This finding is interesting because previous studies using 

the same model showed tendon degeneration across the entire tendon was associated with a greater 

risk of tear propagation (92).  From these findings, clinicians may be more inclined to monitor the 

changes in tissue quality directly at the anterior/posterior tear tips, and suggest a more aggressive 

treatment such as surgery if the tear is believed to be susceptible to tear propagation. However, the 

results may not be generalizable since the results were specific to the tendon geometry, mechanical 

properties, boundary and loading conditions used.  

By better understanding tear propagation, appropriate treatment decisions can be made to 

minimize the likelihood of failed treatment. Specifically, this dissertation focused on glenohumeral 

arthrokinematics and location specific mechanical properties. In addition, the assessment of 

different ultrasound techniques to be used by clinicians to evaluate tendon quality and quantify 

tendon mechanical properties was also investigated. Ultimately, delineating the effect of the 

factors influencing tear propagation will enable clinicians to better determine which patients 

should be treated non-operatively or be referred for immediate surgical repair. 
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Appendix A – Aim 1 

This appendix includes additional information regarding data processing, raw data and 

presentations. 

Appendix A.1 MATLAB Code – Interpolation of Kinematic Data 

% Subject 4 - RIGHT Shoulder 

%Import kinematic data 

clear; 

clc; 

 

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Pre1','A2:F73'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -72:1:1; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 

interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Pre1','A2:F75') 

heading=[{'Axial'} 
,{'SI Translation'},{'AP Translation'},{'SI Contact Path'},{'AP Contact 

Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Pre1','A1:F1') 

 

%% 

%Import kinematic data 



 149  

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Pre2','A2:F80'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -66:1:20; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 

interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Pre2','A2:F88') 

heading=[{'Axial'},{'SI Translation'},{'AP Translation'},{'SI Contact 

Path'},{'AP Contact Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Pre2','A1:F1') 

 

%% 

%Import kinematic data 

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Pre3','A2:F83'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -66:1:17; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 

interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Pre3','A2:F85') 
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heading=[{'Axial'},{'SI Translation'},{'AP Translation'},{'SI Contact 

Path'},{'AP Contact Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Pre3','A1:F1') 

 

% %% 

%Import kinematic data 

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Post1','A2:F77'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -66:1:9; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 

interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Post1','A2:F77') 

heading=[{'Axial'},{'SI Translation'},{'AP Translation'},{'SI Contact 

Path'},{'AP Contact Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Post1','A1:F1') 

 

%% 

%Import kinematic data 

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Post2','A2:F85'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -59:1:15; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 
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interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Post2','A2:F76') 

heading=[{'Axial'},{'SI Translation'},{'AP Translation'},{'SI Contact 

Path'},{'AP Contact Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Post2','A1:F1') 

 

%% 

%Import kinematic data 

workbookFile = 'C:\Users\gferr\Documents\Grad School\ORL\Research in ORL\RC 

Kinematics IntExtRotation\Tracking&KinematicsData\04\RC-04_Data_Rot.xlsx'; 

data = importData(workbookFile,'Post3','A2:F81'); 

Axial = data(:,1); 

SI = data(:,2); 

AP = data(:,3); 

SIContact = data(:,4); 

APContact = data(:,5); 

MinWidthStoH = data(:,6); 

 

axi = -68:1:10; 

SI_i=interp1(Axial,SI,axi); 

AP_i=interp1(Axial,AP,axi); 

SIContact_i=interp1(Axial,SIContact,axi); 

APContact_i=interp1(Axial,APContact,axi); 

AHD_i=interp1(Axial,MinWidthStoH,axi); 

 

interpdata = zeros(length(axi),6); 

interpdata(:,1) = axi.'; 

interpdata(:,2) = SI_i.'; 

interpdata(:,3) = AP_i.'; 

interpdata(:,4) = SIContact_i.'; 

interpdata(:,5) = APContact_i.'; 

interpdata(:,6) = AHD_i.'; 

xlswrite('Interpolated.xlsx',interpdata,'Post3','A2:F80') 

heading=[{'Axial'},{'SI Translation'},{'AP Translation'},{'SI Contact 

Path'},{'AP Contact Path'},{'Minimum AHD'}]; 

xlswrite('Interpolated.xlsx',heading,'Post3','A1:F1') 
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Appendix A.2 MATLAB Code – Euler Angle Calculations 

 

%% Humerus to Lab Rotation Matrix calculation 

clear; 

clc; 

 

%% Load Data 

hum2lab = csvread('C:\Users\gferr\Documents\Grad School\ORL\Research in 

ORL\RC Kinematics 

IntExtRotation\Tracking&KinematicsData\04\post\02\HomoTransMatrices_Humerus-

to-Lab.csv',1,1); 

hum2lab_time = hum2lab(:,1); 

lab2scap = csvread('C:\Users\gferr\Documents\Grad School\ORL\Research in 

ORL\RC Kinematics 

IntExtRotation\Tracking&KinematicsData\04\post\02\HomoTransMatrices_Lab-to-

Scapula.csv',1,1); 

lab2scap_time(:,1) = lab2scap(:,1); 

 

%% Humerus to Lab Rotation Matrix calculation 

 

for Z = 1:length(hum2lab_time) 

    j = 1; 

    k = 1; 

    l = 1; 

    m = 1; 

    for i = 2:17 

        if i <= 5 

           rot_hum2lab(j,1) = hum2lab(Z,i); 

           j = j+1; 

        elseif i <= 9 

           rot_hum2lab(k,2) = hum2lab(Z,i); 

           k = k+1;      

        elseif i <= 13 

           rot_hum2lab(l,3) = hum2lab(Z,i); 

           l = l+1;     

        else 

           rot_hum2lab(m,4) = hum2lab(Z,i); 

           m = m+1;         

        end     

    end 

 

 

    %%  Lab to Sacpula Rotation Matrix calculation 

    j = 1; 

    k = 1; 

    l = 1; 

    m = 1; 

    for i = 2:17 

        if i <= 5 

           rot_lab2scap(j,1) = lab2scap(Z,i); 

           j = j+1; 

        elseif i <= 9 

           rot_lab2scap(k,2) = lab2scap(Z,i); 

           k = k+1;      
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        elseif i <= 13 

           rot_lab2scap(l,3) = lab2scap(Z,i); 

           l = l+1;     

        else 

           rot_lab2scap(m,4) = lab2scap(Z,i); 

           m = m+1;         

        end     

    end 

 

    %%  Humerus to Scapula Rotation Matrix 

 

    rot_hum2scap = rot_hum2lab * rot_lab2scap; 

 

    %% Euler Angle Decomposition for YXY rotation 

     

    Pole(Z,1) = atan2d(rot_hum2scap(1,2),rot_hum2scap(3,2)); 

  % Pole(Z,3) = atand(rot_hum2scap(1,2)/rot_hum2scap(3,2)); 

    Elevation(Z,1) = acosd(rot_hum2scap(2,2)); 

    Axial(Z,1) = atan2d(-rot_hum2scap(2,1),rot_hum2scap(2,3));  

  % Axial(Z,3) = atand(-rot_hum2scap(2,1)/rot_hum2scap(2,3));     

 

end 

 

%% Fix Axial degree values  

 for g = 1:length(Axial) 

    if Axial(g,1)<0 

        Axial(g,1) = Axial(g,1)+180; 

    else 

        Axial(g,1) = Axial(g,1)-180; 

    end 

 end 

 

%   for g = 1:length(Axial) 

%     if Pole(g,1)<0 

%         Pole(g,2) = Pole(g,1)+180; 

%     else 

%         Pole(g,2) = Pole(g,1)-180; 

%     end 

%   end 

  

%% Right shoulder - flip pole and axial so that ER = + 

Axial = -Axial; 

Pole = -Pole; 

 

%% Write EXCEL file for Euler Angles 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',{'Time'}x,'ANGLES','A1:A1'); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',{'Pole'},'ANGLES','B1:B1'); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',{'Elevation'},'ANGLES','C1:C1'); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',{'Axial'},'ANGLES','D1:D1'); 

 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',lab2scap_time,'ANGLES','A2:A102'

); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',Pole,'ANGLES','B2:B102'); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',Elevation,'ANGLES','C2:C102'); 

xlswrite('EulerAngleDecomp_postrot0402.xlsx',Axial,'ANGLES','D2:D102'); 

  



 154  

Appendix A.3 – Relevant Raw Data for Each Subject 

Subject 1: 
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Subject 2: 
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Subject 3: 
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Subject 4: 
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Subject 5: 
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Appendix B – Aim 2 

Running of the FEM model for tear propagation required 4 data files (Geometry Data 

“.dat”, Material Model Parameters “.mat”, Fibers Direction Vectors “.fiber”, and Loading 

Conditions “.load”). An example of each file will be shown in this appendix. 

Appendix B.1 Example .dat file defining the model geometry data 

1. Top heading shows information including  

a. number of nodes 

b. number of elements 

c. number of imposed boundary conditions (numimp) 

d. number of materials for volumetric elements (numatv) 

e. number of elements with an imposed traction condition (ntracel) 

f. number of traction conditions (ntracv) 

2. The first block shows node number and associated nodal coordinates 

3. The second block shows volumetric element connectivity 

a. First number is element number 

b. Second number is type of element (e.g. 3 is tetrahedral) 

c. Third number is the number of nodes in the element (e.g. 4 nodes for a linear 

tetrahedral element) 

d. Fourth number is the associated material 

e. Last numbers are the nodes associated with that element 

4. The next blocks show applied nodal boundary conditions, surface element connectivity 

for traction boundary condition, traction vector, reaction node list, etc. 

 

In the following example, “…” represents a continued list of similar data in the file in order to 

minimize the number of pages 
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nodes    elements    numelc    numpair   numimp    numatv    numatc   numelvp   

npmark  ntracel  ntracv 

33092   150626  2652    0   2549    99  3   0   0   1026    1 

coordinates 

    1 1.577209e-02 -6.918577e-02 -4.465969e-02 1 

    2 1.622827e-02 -6.973315e-02 -4.502367e-02 1 

    3 1.591206e-02 -6.930559e-02 -4.525494e-02 1 

    4 1.641208e-02 -6.902694e-02 -4.462640e-02 1 

    5 2.034799e-02 -9.258102e-02 -4.358105e-02 1 

... 

    33085 2.572673e-02 -9.189395e-02 -4.273124e-02 1 

    33086 2.745740e-02 -8.931210e-02 -4.285277e-02 1 

    33087 2.637966e-02 -8.614617e-02 -4.907586e-02 1 

    33088 2.747286e-02 -8.530143e-02 -4.220868e-02 1 

    33089 2.746879e-02 -8.479415e-02 -4.217055e-02 1 

    33090 2.556579e-02 -9.183578e-02 -4.997494e-02 1 

    33091 2.636546e-02 -8.565999e-02 -4.910737e-02 1 

    33092 2.633718e-02 -8.468888e-02 -4.919711e-02 1 

volumetric element connectivity  

1  3  4  2  1  2  3  4 

2   3   4  19   5   6   7   8 

3   3   4  40   9  10  11  12 

4   3   4   3  13  14  15  16 

5   3   4   3  17  18  19  20 

6   3   4   3  21  22  23  24 

... 

150617       3       4      67   32225   32407   32263   32224 

150618       3       4      48   33080   12475   14349   32832 

150619       3       4      98   32748   32854   32852   32983 

150620       3       4      64   32187   32282   32220   32184 

150621       3       4      19   14204   32742   32549   33076 

150622       3       4      19   32547   32548    6153   32422 

150623       3       4      38   32799   32541   32965   32998 

150624       3       4      98   32615   14000   32613   14523 

150625       3       4      98   32748   32854   32342   32852 

150626       3       4      50   33080   12475   14344   14349 

cohesive element connectivity 

1      7      3      2    575    576    577  29224  26392  28889 

2      7      3      3   1177   1178   1179  30407  30326  27000 

3      7      3      3   3058   1192   3059  27023  24343  24983 

4      7      3      3   3058   3059   3518  27023  24983  30438 

5      7      3      2   3753    587    576  22404  26327  26392 

... 

2646      7      3      1  11106  11107  13346  29815  26218  29792 

2647      7      3      1  13787  10639  13435  28821  28822  22658 

2648      7      3      1   5261   8519   5260  26204  25097  29360 

2649      7      3      1   9562  10961   9561  29334  29330  25701 

2650      7      3      1  14173  14178  14177  29995  25621  25622 

2651      7      3      1  11233   7375  10692  29826  26952  26954 

2652      7      3      1   8012   7721  10365  25614  24470  24471 

periodic boundary pairs  

nodes with imposed BC 

 102 1111  

 103 1111  

 203 1111  

 207 1111  

 429 1111  
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... 

30670 2207  

30716 2207  

30721 2207  

31848 2207  

element connectivity for pressure loading 

nodes with imposed load and load value 

0 

Surface element connectivity for traction BC 

   1  7  3  2    21557    21559    21558 

   2  7  3  2    22122    22123    22124 

   3  7  3  2    22292    22294    22293 

   4  7  3  2    22432    22433    21348 

   5  7  3  2    22584    22585    22586 

 ... 

1019  7  3  2    24675    30151    16077 

1020  7  3  2    30782    26480    30402 

1021  7  3  2    23986    24359    22864 

1022  7  3  2    26098    26462    26473 

1023  7  3  2    26031    26032    24780 

1024  7  3  2    27427    26487    27428 

1025  7  3  2    26219    25827    26220 

1026  7  3  2    26031    24780    25793 

Traction vector 

1 6.334000e+04 1.997000e+04 -6.877000e+04 

Reaction node list 

   533 

    1 30654 

    2 30655 

    3 30657 

    4 30656 

    5 30659 

    6 24102 

    7 30664 

    8 30670 

    9 30362 

   10 30354 

   11 30353 

   12 30355 

... 

  527 18775 

  528 29548 

  529 27858 

  530 22483 

  531 29547 

  532 26560 

  533 26905 
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Appendix B.2 Example .mat file defining material parameters 

1. Parameters k1 and k2 will be output to represent properties of the collagen fibers 

(strength and stiffness) 

2. The values for the Lame parameters (lambda and mu) are calculated based on estimated 

values of elastic modulus and Poisson’s ratio for the matrix  

 

In the following example, “…” represents a continued list of similar data in the file in order to 

minimize the number of pages 

 
list Mattype lambda mu sigmay para1 para2 

1 3161 1.8e+07 2e+06 2e+15 0 0 8.91e+06 0.3243 

2 3161 1.8e+07 2e+06 2e+15 0 0 8.91e+06 0.3243 

3 3161 1.8e+07 2e+06 2e+15 0 0 8.91e+06 0.3243 

4 3161 1.8e+07 2e+06 2e+15 0 0 8.9276e+06 0.33578 

5 3161 1.8e+07 2e+06 2e+15 0 0 9.0683e+06 0.42783 

6 3161 1.8e+07 2e+06 2e+15 0 0 9.209e+06 0.51988 

7 3161 1.8e+07 2e+06 2e+15 0 0 9.3497e+06 0.61193 

… 

92 3161 1.8e+07 2e+06 2e+15 0 0 1.5095e+07 4.2604 

93 3161 1.8e+07 2e+06 2e+15 0 0 1.5119e+07 4.3859 

94 3161 1.8e+07 2e+06 2e+15 0 0 1.5193e+07 4.3595 

95 3161 1.8e+07 2e+06 2e+15 0 0 1.5259e+07 4.478 

96 3161 1.8e+07 2e+06 2e+15 0 0 1.529e+07 4.4586 

97 3161 1.8e+07 2e+06 2e+15 0 0 1.5388e+07 4.5576 

98 3161 1.8e+07 2e+06 2e+15 0 0 1.54e+07 4.57 

99 3161 1.8e+07 2e+06 2e+15 0 0 1.54e+07 4.57 

s_max_normal delta_max_normal s_max_shear delta_max_shear initial_damage 

5.78e+06 0.00064 5.78e+06 0.00064 0.98 0 

5.81e+06 0.00053 5.81e+06 0.00053 0.98 0 

4.25e+06 0.00057 4.25e+06 0.00057 0.98 0 

Bulk Damage Variables 

list DamageType DamagePara1 DamagePara2 DamagePara3 

1 0 1e-07 0.2 1 

2 0 1e-07 0.2 1 

3 0 1e-07 0.2 1 

4 0 1e-07 0.2 1 

… 

91 0 1e-07 0.2 1 

92 0 1e-07 0.2 1 

93 0 1e-07 0.2 1 

94 0 1e-07 0.2 1 

95 0 1e-07 0.2 1 

96 0 1e-07 0.2 1 

97 0 1e-07 0.2 1 

98 0 1e-07 0.2 1 

99 0 1e-07 0.2 1 
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Appendix B.3 Example .fiber and .load data files 

1. Direction of fibers is aligned with axis of loading 

 

Number of fibers and then the fiber direction vectors 

1 

  1  .939693 0 -0.34202 

 

1. Define x,y,z displacement vector based on desired displacement 

a. Multiply the displacement by a unit vector that represents the axis of loading (e.g. 

if the +x axis is aligned with the long axis of the humerus and the +z axis points 

toward the bursal side of the tendon, multiply by [1,0,0] for the displacement at 90 

deg and by [0.94,0,-0.34] for 70 deg) – use this vector as the displacement loading 

condition 

"imposed maximum x,y,z-disp (loading_disp_max))" 
0.0047  0   0.0017 

imposed maximum y-disp (loading_disp_max) 

0.0  0.0  0.0 

0.0  0.0  0.0 

0.0  0.0  0.0 

Pressure marker and values 

minimum number of load steps 

100 

pressure 

0 
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Appendix C – Aim 3 

This section provides additional information about data processing and raw data. 

Appendix C.1 MATLAB Code: Calculation of Quantitative Ultrasound Measures 

%% Calculation of Quantitative Ultrasound Measurse (Skewness, Variance, 

Kurtosis, and Echogenicity) 

 

clear; 

clc; 

 

%import histogram data from ImageJ 

filename = uigetfile('*.xls'); 

[value,count] = importHistogram(filename,2, 257);  

 

 

%calculate length of data vector 

sum(count); 

data=zeros(length(count),1); 

 

n=1; %index for writing to data vector 

for i=1:length(count) 

    if count(i) > 0 

        for j=1:count(i) 

            data(n)=value(i); 

            n=n+1; 

        end 

    end 

end 

 

%Plot histogram fitted 

histfit(data); 

 

%Skewness, Kurtosis, and Variance Calculations 

SKV(1) = skewness(data); 

SKV(2) = kurtosis(data)-3; %Normalizes to 0 instead of 3 

SKV(3) = var(data); 

SKV(4) = mean(data); 

 

%Auto-create an EXCEL file of calculated variables 

name = filename(1:end-9); 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',{'Skewness'},name,'A1:A

1') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',{'Kurtosis'},name,'A2:A

2') 
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xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',{'Variance'},name,'A3:A

3') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',{'Echogenecity'},name,'

A4:A4') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',SKV(1),name,'B1:B1') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',SKV(2),name,'B2:B2') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',SKV(3),name,'B3:B3') 

xlswrite('Skewness_Kurtosis_Variance_MasterCopy.xlsx',SKV(4),name,'B4:B4') 

 

Appendix C.2 Raw data images and values for QUS measures 
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Summary of all QUS measures for all specimens 

 

 

 

List of specimens used for correlation of QUS measures and histology section 

 

 

 

 

 

 

 

 

  

Histo ID Specimen ID Side Group Age Sex

1 VA13071125 Left Intact 47 F

2 NJ13071433 Left Intact 73 M

3 NY13062448 Left Intact 51 F

4 VA13070613 Right Torn 58 F

5 NY13062448 Right Intact 51 F

6 09-06278 Left Torn 73 F

7 09-06278 Right Torn 73 F

8 BRC1006037 Left Torn 78 M
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Appendix C.3 ARFI Imaging Raw Data 

Raw data for 9 specimens tested in a water tank at 1N, 5N and 15N of tension. Specimens 6 through 

9 were also underwent ARFI imaging at 0.1, 0.25 and 0.5 MPa of tension 
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Summary of tensile and compressive (indentation test) properties as well as ARFI displacement 

data for all 9 specimens 
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Raw data for full-frame versus multi-foci ARFI imaging at 0.1, 0.25, 0.5, 0.75 and 1MPa of tension 

for 4 tendons, before and after damaging through compressive loading 
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Raw data images for muscle, tendon, capsule experiment. Tissues were embedded in a gelatin 

phantom when tensioned at 0.1MPa 
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Summary of tensile mechanical properties and ARFI displacement measurements 

 

  

Linear Region Modulus (Mpa) Toe Region Modulus (Mpa) Tissue ARFI Displacement (um) Surrounding Gel ARFI Displacement (um) Norm

Tendon 3 430.2 67 9.18 28 0.33

Tendon 1 309.4 63 3.1 19.6 0.16

Tendon 5 274.3 18 7.2 21.1 0.34

Tendon 4 140.4 10.2 2.81 15.9 0.18

Tendon 2 134.8 16.3 5.47 18 0.3

Capsule 2 66.6 17 9.3 20.9 0.45

Capsule 5 59.2 16.5 6 27.3 0.31

Capsule 3 28 6.5 3 36.7 0.08

Capsule 4 18.9 4.9 5.87 16.9 0.35

Capsule 1 9 3.9 2.6 18.6 0.14

Muscle 4 5.9 2.8 12.9 20.3 0.63

Muscle 2 3.3 1.6 5.4 19.5 0.28

Muscle 1 1.4 0.3 24.3 23 1.06

Muscle 3 1.1 0.32 12.6 20.7 0.61

Muscle 5 0.75 0.2 9.8 24.1 0.41
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Appendix C.4 ARFI Imaging FEM Model Details 

Example section of the loading details for FEBio input file. Specifically, a surface traction was 

applied to model the tissue in tension and a depth dependent body force to model the ARFI push. 

<Loads> 

        <surface_load type="traction" surface="SurfaceTraction1"> 

            <scale lc="2">1</scale> 

            <traction>0,0,0.1</traction> 

        </surface_load> 

        <surface_load type="traction" surface="SurfaceTraction2"> 

            <scale lc="3">1</scale> 

            <traction>0,0,-0.1</traction> 

        </surface_load> 

        <body_load type="non-const" elem_set="Part412"> 

            <x lc="1">0</x> 

            <y lc="1">5.4e-4*exp(-(Y^2)/2)</y> 

            <z lc="1">0</z> 

        </body_load> 

        <body_load type="non-const" elem_set="Part1"> 

            <x lc="1">0</x> 

            <y lc="1">5.4e-4*exp(-(Y^2)/2)</y> 

            <z lc="1">0</z> 

        </body_load> 

    </Loads> 

    <Contact> 

        <contact type="tied-node-on-facet" name="TiedContact1" surface_pair="TiedContact1"> 

            <laugon>0</laugon> 

            <tolerance>0.2</tolerance> 

            <penalty>1</penalty> 

            <minaug>0</minaug> 

            <maxaug>10</maxaug> 

        </contact> 

    </Contact> 

    <LoadData> 

        <loadcurve id="1" type="step"> 

            <point>0,0</point> 

            <point>775,0</point> 

            <point>776,1</point> 

            <point>968,1</point> 

            <point>969,0</point> 

        </loadcurve> 

        <loadcurve id="2" type="step"> 

            <point>0,0</point> 

            <point>1,1</point> 

        </loadcurve> 

        <loadcurve id="3" type="step"> 

            <point>0,0</point> 

            <point>1,1</point> 

        </loadcurve> 

    </LoadData> 
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Example optimization file for inverse FEM approach to optimize the gel modulus (E) based on 

ARFI displacement.  

  

<?xml version="1.0"?> 

<febio_optimize version="2.0"> 

    <Options type="levmar"> 

        <obj_tol>0.001</obj_tol> 

        <f_diff_scale>0.001</f_diff_scale> 

        <log_level>LOG_FILE_AND_SCREEN</log_level> 

    </Options> 

    <Parameters> 

        <param name="fem.material('Material1').E">0.02, 0.001, 0.2</param> 

    </Parameters> 

    <Objective type="data-fit"> 

        <fnc type="parameter"> 

            <param name="fem.mesh.node[60].position.y"/> 

        </fnc> 

        <data> 

            <point>0,0</point> 

            <point>192,-0.0241</point> 

        </data> 

    </Objective> 

</febio_optimize> 
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