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Abstract 

In Silico Simulation of DUSP-YIV906 Protein-Ligand Interactions and DUSP-ERK 

Protein-Protein Interactions 

Shuhan Liu, B.S 

 

University of Pittsburgh, 2020 

 

 

 

 

The dual-specificity phosphatases (DUSPs) are a heterogeneous group of protein enzymes 

that modulate several critical cellular signaling pathways by dephosphorylating the 

phosphotyrosine and phosphoserine/phosphothreonine residues within their substrate proteins. 

One of the best characterized sub-group of DUSPs is the mitogen-activated protein kinase 

phosphatases (MKPs), which act as the antagonists of associated signaling cascades including the 

extracellular signal-regulated kinases (ERKs) pathways. Accumulated evidences have highlighted 

the therapeutic value of DUSPs, as deletion or inhibition of some DUSPs can increase the 

phosphorylated level of ERKs to cause cancer cell death. In this study, multi-scale molecular 

modeling simulations were first performed to investigate the mechanism of action of YIV-906, 

which is an herbal formulation used in cancer treatment targeting DUSP-ERK1/2 pathways. In 

total, MD simulations and binding free energy calculations were performed for 99 DUSP-ligand 

complexes. Our results demonstrate that the sulfate moieties and carboxyl moieties of the 

advantageous ligands, either original herbal chemicals or human metabolites from YIV-906, can 

occupy the enzymes’ catalytic sites, mimicking the endogenous phosphate substrates of DUSPs. 

With the second aim to improve the accuracy of protein-peptide docking between DUSP3 and a 

peptide fragment of ERK1/2, a new receptor residue mapping (RR mapping) algorithm was 

developed to identify hotspots residues on the surface of DUSP3 and improve the peptide docking 

scoring. By performing all-atom molecular dynamics (MD) simulations with the receptor being 
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soaked in a water box containing 0.5 moles of capped dipeptide of 20 natural amino acids (AA) 

plus 3 phosphorylated non-standard AAs, the RR maps with probabilities of AAs interacting with 

DUSP3’s surface residues were obtained. With the interaction probabilities incorporated, the ERK 

peptide binding models yielded by protein-peptide docking can be re-ranked and generate more 

accurate predictions. We have demonstrated that multi-scale molecular modeling techniques are 

able to elucidate molecular mechanisms involving complex molecular systems. Finally, our 

modeling study provides useful insights into the rational design of high potent anti-cancer drugs 

targeting DUSPs, and the new RR mapping algorithm is a promising tool that can be universally 

applied in characterization of protein-protein interactions (PPIs).  

  



vi 

Table of Contents 

Preface ......................................................................................................................................................... xi 

1.0 Introduction ........................................................................................................................................... 1 

1.1 Overview of DUSPs as ERK signaling pathway modulators ................................................... 1 

1.1.1 Physiological and pathological role of DUSP and ERK ............................................... 1 

1.1.2 Structural biology of DUSP ........................................................................................... vi 

1.2 YIV-906 targeting DUSPs as adjuvant in cancer treatment .................................................... 2 

1.3 Molecular simulation techniques in drug discovery and development ................................... 5 

1.3.1 Molecular docking ........................................................................................................... 5 

1.3.1.1 Small molecule-protein docking ......................................................................... 5 

1.3.1.2 Protein-protein docking ...................................................................................... 6 

1.3.2 Molecular dynamics simulation ...................................................................................... 7 

2.0 Methods .................................................................................................................................................. 9 

2.1 Application of in silico methods in identifying mechanisms of action of YIV-906 ................. 9 

2.1.1 Structural preparation of ligands and target proteins ................................................. 9 

2.1.2 Molecular docking ......................................................................................................... 10 

2.1.3 MD simulation ................................................................................................................ 10 

2.1.4 MM/PBSA binding free energy calculation and MM/GBSA free energy 

decomposition .......................................................................................................................... 12 

2.2 Development of the RR mapping algorithm to improve the accuracy of protein-protein 

docking between DUSP3 and ERK peptide ................................................................................... 13 

2.2.1 Structural preparation of simulation systems ............................................................. 13 

2.2.1.1 Generation of conformations for AA analogues and solvate boxes ............... 13 

2.2.1.2 Construction of initial systems for protein mapping ...................................... 13 



vii 

2.2.2 MD simulations .............................................................................................................. 14 

2.2.3 Data analysis and mapping ........................................................................................... 15 

2.2.4 Protein-peptide docking ................................................................................................ 15 

2.2.5 Re-ranking of docking yielded models ......................................................................... 16 

3.0 Results and Discussion ........................................................................................................................ 18 

3.1 Mechanisms of action of YIV-906 ............................................................................................ 18 

3.1.1 Unexpected pre-docking results led to the expansion of the compound library to 

include human metabolites for virtual screening ................................................................. 18 

3.1.2 The high similarity of target proteins allows the implementation of the same docking 

protocol .................................................................................................................................... 20 

3.1.3 Molecular docking yielded ligands of interest ............................................................. 20 

3.1.4 MD simulation and binding free energy prediction ................................................... 23 

3.1.4.1 RMSD fluctuations of ligands and binding free energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 jointly 

reflect binding stability. ................................................................................................ 23 

3.1.4.2 Electrostatic energy is a key driving force in DUSP ligand binding. ............ 24 

3.1.4.3 Sulfation and glucuronidation human metabolites of YIV-906 are vital to its 

DUSP-inhibiting bioactivity. ......................................................................................... 26 

3.1.4.4 Common ligands identified for DUSP3, DUSP5, and DUSP7. ...................... 29 

3.1.4.5 Interactions between identified common ligands and corresponding DUSPs.

 ......................................................................................................................................... 31 

3.1.4.6 MM/PBSA is a powerful tool to differentiate compounds with different 

activities. ......................................................................................................................... 34 

3.2 Protein-protein interactions between DUSP and ERK .......................................................... 36 

4.0 Conclusions .......................................................................................................................................... 41 

Appendix A Supplementary materials for DUSP-YIV906 Protein-Ligand Interactions ................... 43 

Bibliography .............................................................................................................................................. 62 



viii 

List of Tables 

Table 1 Basic information of DUSP3, DUSP5, and DUSP7 .................................................................... 4 

 



ix 

List of Figures 

Figure 1 Effect of YIV-906 on the DUSP-ERK1/2 signaling pathway (simplified, schematic) ............ 3 

Figure 2 Crystal structures of target proteins in surface representation .............................................. 4 

Figure 3 Establishment of YIV-906 compound library ......................................................................... 19 

Figure 4 Top-ranked ligands and their docking scores with DUSP3 (A), DUSP5 (B), and DUSP7 (C)

 ................................................................................................................................................................ 22 

Figure 5 Analysis of electrostatic energy (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑𝒔𝒐𝒍), van der Waals energy ∆𝑬𝒗𝒅𝒘 and their 

correlation with binding energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 ................................................................................ 25 

Figure 6 Common substituent groups of advantageous DUSP3 ligands from YIV-906 ..................... 26 

Figure 7 Human metabolites and herbal chemicals from YIV-906 act as phosphate mimic and occupy 

the catalytic center of DUSP3, which is shown as surface ................................................................ 28 

Figure 8 (A) MM-PBSA-reranked ligands of DUSP3, DUSP5 and DUSP7. The axis of this radar is 

∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 (kcal/mol). .................................................................................................................... 32 

Figure 9 Interactions between binding-site residues of DUSP3 and representative ligands. ............. 33 

Figure 10 Hotspot residues identification for DUSP3, DUSP5, and DUSP7. ...................................... 34 

Figure 11 The mapping simulation system of DUSP3 mapped with ACE-ALA-NHE ....................... 36 

Figure 12 Heatmaps for probabilities of each type of AA interacting with each residues of DUSP3 at 

distance cutoffs of 2, 3, 4, and 5 Å. ...................................................................................................... 38 

Figure 13 The correlation between the docking score and RMSD to the crystal structure before and 

after re-ranking with interaction possibilities .................................................................................... 40 



x 

Appendix A Supplementary Materials for DUSP-YIV906 Protein-Ligand Interactions 

Appendix Figure 1 Sequence alignment for DUSP3, DUSP5, and DUSP7 .......................................... 43 

Appendix Figure 2 Validation of the Glide docking protocol by docking the co-crystal ligand, STT, 

back to the binding pocket of DUSP3 ................................................................................................. 44 

Appendix Figure 3 Fluctuational patterns of Root-Mean-Square Deviations along the time course of 

MD simulations for DUSP3-ligand complexes ................................................................................... 48 

Appendix Figure 4 RMSD ~ Simulation Time (RST) plots for DUSP5-ligand complexes. ................ 52 

Appendix Figure 5 RMSD ~ Simulation Time (RST) plots for DUSP7-ligand complexes ................. 55 

Appendix Figure 6 Common substituent groups of advantageous DUSP5 ligands from YIY-906 ... 57 

Appendix Figure 7 Common substituent groups of advantageous DUSP7 ligands from YIY-906 ... 58 

Appendix Figure 8 Comparison of the binding modes predicted by docking and MD simulations for 

DUSP3 .................................................................................................................................................... 59 

Appendix Figure 9 Comparison of the binding modes predicted by docking and MD simulations for 

DUSP5 .................................................................................................................................................... 60 

Appendix Figure 10 Comparison of the binding modes predicted by docking and MD simulations for 

DUSP7 .................................................................................................................................................... 61 

 



xi 

Preface 

I have been enjoying doing molecular modeling in front of my computer at my desk in the Baum 

Office. When using Pymol to look at my proteins, I always feel the protein structures with helixes and loops 

are like the roller coasters, well-designed and breathtaking, making me imagine taking a ride and figuring 

out the related molecular mechanisms at the end. 

Doing research, however, takes a lot longer time than taking a roller coaster ride.  The first part of 

this project started off when I was an undergraduate student, and after two years, it turned out to be my first 

publication during my master’s study. Based on that, I took a step further trying to develop a new mapping 

algorithm to study peptide-protein interactions, which is second major component of this thesis.  

I would like to express my gratitude to my undergrad mentor, Dr. Junjun Liu, and my current 

mentor, Dr. Junmei Wang, for opening the door of molecular modeling to me and giving me generous 

support whenever I needed. I would also like to thank all professors as my committee members for their 

valuable suggestions. Thank all my lab fellows, my families and friends who see me through hardships and 

encourage me all the time. 

I am grateful to acknowledge the research support from the National Institutes of Health 

(R01GM79383 and R21GM097617) and the National Natural Science Foundation of China Grants 

(21102050). Computational support from the Center for Research Computing of the University of 

Pittsburgh and Extreme Science and Engineering Discovery Environment (TG-CHE090098) is 

acknowledged. 

Contents in this thesis regarding YIV-906-DUSP interactions come from this publication, Liu et 

al. New Application of In Silico Methods in Identifying Mechanisms of Action and Key Components 

of Anti-Cancer Herbal Formulation YIV-906 (PHY906), of which the author, I, can adapt the paper for 

non-commercial exploitation purpose without seeking permissions from the publisher, the Royal Society 

of Chemistry, according to their Licence to Publish – Physical Chemistry Chemical Physics. 



1 

1.0 Introduction 

1.1 Overview of DUSPs as ERK signaling pathway modulators 

1.1.1 Physiological and pathological role of DUSP and ERK 

The dual-specificity phosphatases (DUSPs) are a heterogeneous group of protein enzymes 

that dephosphorylate the phosphotyrosine and phosphoserine/phosphothreonine residues within 

their substrate proteins[1]. One of the well-established signaling pathway modulated by DUSPs is 

the extracellular signal-regulated kinase (ERK) pathway[2], where ERK is an important cassette 

of the mitogen-activated protein kinase (MAPK). Depending on the cell type, subcellular 

localization of ERK, and the duration and magnitude of stimulus, ERK activation can mediate 

various cell events such as cellular proliferation, differentiation, apoptosis, and autophagy[3]. As 

such, abnormal ERK has been implicated in cancer development[4]. Specifically, the ERK 

pathway is deregulated in approximately 30% of human malignancies[5], probably as a result of 

the upregulation of several DUSPs in cancer cells. Moreover, prolonged ERK activation has been 

proved to help stimulate both the apoptosis and autophagy of cancer cells via either intrinsic or 

extrinsic mechanisms[3, 6-9]. Therefore, inhibition of DUSPs to increase the active 

phosphorylated ERK (ERK-P) level is of great interest in cancer treatment. 
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1.1.2 Structural biology of DUSP 

In general, the active sites of DUSPs are usually very shallow and highly conserved, 

consisting of a phosphate-binding loop (P-loop) and a general acid loop (D-loop). Despite the 

common active site conformation and the same catalytic mechanism, different sub-types of 

phosphatases in DUSP family may have a different catalytic preference due to their subtle 

difference of steric and electrostatic characteristics near their catalytic domains. By now, there are 

78 DUSP structures of homo sapiens (74 solved by X-ray crystallography and 4 solved by solution 

nucleic magnetic resonance (NMR)) recorded in the Protein Data Bank (PDB), with 40 DUSP 

ligands in total. In this study, specifically, DUSP3, DUSP5, and DUSP7 are targets of interest. The 

reasons why these DUSPs were selected and their structure information are given in the following 

Section 1.2.  

1.2 YIV-906 targeting DUSPs as adjuvant in cancer treatment  

YIV-906 (also known as PHY906, KD018) is a standardized herbal formulation inspired 

by a Traditional Chinese Medicine formula named Huang Qin Tang[10]. With the same 

ingredients as Huang Qin Tang, the clinical grade YIV-906 is produced following cGMP (current 

Good Manufacturing Practice) protocol, consisting of spray-dried aqueous extracts from 

Scutellaria baicalensis Georgi (S), Paeonia lactiflora Pall (P), Glycyrrhiza uralensis Fisch (G), and 

Ziziphus jujuba Mill (Z)[10]. In both preclinical and clinical studies, YIV-906 has shown great 

potential to enhance therapeutic outcomes of a broad spectrum of anticancer agents such as 

Sorafenib[11], Capecitabine[12-14], and Irinotecan[15]. It can also ameliorate the complications 
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and side effects induced by chemotherapy, especially effective for gastrointestinal symptoms. By 

now, seven Phase I/II clinical trials of YIV-906 have finished, and no related toxicity has been 

observed[10]. 

Although YIV-906 is a promising adjuvant in cancer treatment, the molecular action 

mechanism of it remains unclear, largely due to its multi-component and multi-target features. It 

has been reported that YIV-906 improved the therapeutic index of Sorafenib in patients with 

hepatocellular carcinoma (HCC), as evidenced by the increase of the phosphorylation of 

extracellular signal-regulated kinases1/2 (ERK1/2), of which the higher level corresponds to the 

higher susceptibility of HCC to Sorafenib[11]. In this context, YIV-906 works synergistically with 

Sorafenib by increasing the phosphorylated ERK1/2 (ERK1/2-P) level to trigger apoptosis and 

autophagy in tumors (Figure 1). Thus, DUSPs, which show catalytic preference to ERK1/2-P, are 

potential targets of YIV-906. 

Specifically, DUSP3[16, 17], DUSP5[18], and DUSP7[19] have been reported to 

preferentially dephosphorylate ERK1/2 both in vitro and in vivo. Among these three DUSPs, 

DUSP3 is an atypical DUSP, whereas DUSP5 and DUSP7 are both typical DUSPs. Inhibitors of 

Figure 1 Effect of YIV-906 on the DUSP-ERK1/2 signaling pathway (simplified, schematic) 

By inhibiting DUSPs, which are the negative regulators of ERK1/2, YIV-906 can increase 

the phosphorylated ERK1/2 to promote tumor apoptosis and autophagy. 
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DUSP3 have been reported to cause cell circle arrest and halt cervix tumor growth without 

affecting the growth of primary normal keratinocytes[16]. DUSP5 abrogation has been shown to 

cause ERK hyperactivity and accelerate cell senescence[20]. Similarly, other studies have 

suggested the potential of DUSP7 inhibitors in cancer therapy. Therefore, we selected DUSP3, 

DUSP5, and DUSP7 as target proteins based on their normal biological functions and beneficial 

loss-of-function in cancer. A summary of the PDB ID, subcellular localization, active-site amino 

acids, and crystal-structure conformation status of target proteins is given in Table 1. Schematic 

crystal structures of DUSP3, DUSP5, and DUSP7 and their active sites are shown in Figure 2. 

Table 1 Basic information of DUSP3, DUSP5, and DUSP7 

Target 

Protein 
PDBID 

Subcellular 

Localization 
Active-site Amino Acids 

Crystal-Structure 

Conformation Status 

DUSP3 3F81 Nuclear 
P-loop: residues 16,23,25,128 

D-loop: residues 68,69 
With inhibitor  

DUSP5 2G6Z 
Nuclear & 

Cytoplasmic 

P-loop: residues 263–269 

D-loop: residue   232 
No inhibitor 

DUSP7 4Y2E Cytoplasmic 
P-loop: residues 231–238 

D-loop: residues 197–208 
No inhibitor 

 

Figure 2 Crystal structures of target proteins in surface representation 

(A) DUSP3, (B) DUSP5, (C) DUSP7. For their active sites, P-loops are colored in 

blue while D-loops in yellow. 
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1.3 Molecular simulation techniques in drug discovery and development 

Molecular modeling has been extensively employed in modern medicinal chemistry for the 

study of molecular recognition events[21]. The field has grown hand-in-hand with progresses in 

molecular and structural biology, given increasingly resolved three-dimensional protein structures 

by X-ray crystallography and nuclear magnetic resonance (NMR)[22, 23]. With the vital structural 

information of drug targets and the demand to make the best of such information for drug discovery 

and development, numerous molecular modeling techniques regarding molecular docking and 

molecular dynamics simulation are developed, while researchers in this field are still actively 

improving current computational tools and developing new algorithms. 

1.3.1 Molecular docking 

In most cases, molecular docking refers to predicting the binding conformation of small 

molecules within the binding site of target proteins[22, 24]. Whereas in a larger context, this 

technique can also be utilized to predict the binding of ligand peptides or proteins to target proteins. 

In general, molecular docking is composed of two phases: (1) exploration of a large conformational 

space and sampling of possible binding modes of the interacting molecules; (2) quantitative 

prediction of binding energies associated with each binding modes and scoring to identify the 

correct ones[22, 25, 26]. 

1.3.1.1 Small molecule-protein docking 

Molecular docking is an essential tool in structure-based drug design (SBDD), since it can 

be performed quickly and conveniently to predict both the binding orientations and the binding 



6 

energies of ligands of interest to target proteins[27, 28]. Most docking programs can successfully 

yield the binding conformations of ligands within the binding pocket of proteins, which can be 

validated by comparison of re-docked ligand poses with their corresponding poses in the co-

crystalized structures[22]. However, these docking programs are not able to reproduce the absolute 

binding energies of ligand-protein complexes, due to issues including de-solvation and entropic 

effects[22, 29, 30]. Therefore, molecular docking for small molecules is useful in virtual screening 

and understanding of intermolecular recognition, narrowing down the scope for further drug 

discovery. More accurate prediction of biding free energies can be obtained from more 

sophisticated and computationally expensive molecular dynamics (MD) methods such as 

molecular mechanics Poison Boltzmann area (MM/PBSA), molecular mechanics generalized Born 

surface area (MM/GBSA) calculation and thermodynamics integration (TI) calculation.  

1.3.1.2 Protein-protein docking 

Protein-protein interactions (PPIs) are essential for all cellular processes and dysregulated 

PPIs underlie a wide range of pathologies[31]. As potential therapeutic targets, however, PPIs have 

posted challenges to both experimental and computational modeling biologists on understanding 

the molecular recognition and binding affinities between interacting proteins.  

Compared to small molecules, which generally do not interact at large PPI interfaces, 

peptides are much better candidates in PPI inhibition for two main reasons. One reason is that 

peptides have more physiochemically favorable natures including large and flexible backbones. 

The other is the presence of amino acid residues that can interact with residues on the surface of 

target proteins[32]. 

PPI docking can guide rapid peptide drug design at an atomic level. Similar to small 

molecule docking, there are both rigid and flexible docking strategies for PPI. These docking 
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strategies can also be categorized into local or global docking according to the extent of structural 

information provided as inputs[31]. The increasing number of protein-peptide complex structures 

in the Protein Data Bank has promoted the development of docking and refinement algorithms in 

predicting PPIs. However, major challenges remain despite recent advances in modeling PPIs, 

including the difficulties in simultaneously consider both the backbone and side-chain flexibilities, 

ambiguous interpretation of experimental data to be integrated into modeling, and immature 

scoring methods that might result in lower rank of higher-quality models[31].  

1.3.2 Molecular dynamics simulation 

Molecular dynamics (MD) simulations capture the behavior of proteins and other 

biomolecules over time at the atomic level, based on physical principles that govern interatomic 

interactions[33, 34]. In combination with a wide range of structural biology techniques, such as 

X-ray crystallography, MD simulations have expanded their impact dramatically in molecular 

biology and drug discovery. On the other hand, recently introduced computer hardware, especially 

graphics processing units (GPUs), enables MD simulations to be more accessible and powerful 

modeling tools with a modest cost[33].  

As a strong compensation to wet-lab experimental techniques, MD simulations can not 

only delineate the motion and position of every atom at any time point, but also can be precisely 

controlled with different settings of simulation conditions. These simulation conditions include the 

initial conformation of macromolecules, the ligands bound to them, solvent molecules, 

temperature, pressure, and so on. By comparing simulation results yielded by different condition 

settings, one can qualitatively identify the key interactions the ligands make with target 

macromolecules and quantitatively calculate the binding free energies. For binding free energy 
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prediction, the alchemical methods such as TI calculation in which a ligand gradually mutate to 

another one with similar scaffold can offer the most accurate estimates[35], but these methods are 

computationally expensive and require structure similarities between ligands. In comparison, the 

MM/PBSA and MM/GBSA methods are cheaper and faster and can deal with more diverse ligand 

series, since these methods rely on continuum solvent models instead of an explicit representation 

of water[33]. 

 

 

In this work, we investigated the mechanism of YIV-906 inhibiting DUSPs, using a broad 

spectrum of molecular modelling techniques, including molecular docking, MD simulations, and 

binding free energy calculations. To characterize the PPI interface of DUSP3, we also utilized MD 

simulations to develop a new protein residue mapping algorithm, which in principle can be applied 

to any protein of interest and be used to improve the accuracy of protein-protein docking.   
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2.0 Methods 

2.1 Application of in silico methods in identifying mechanisms of action of YIV-906 

2.1.1 Structural preparation of ligands and target proteins 

We acquired 3D structures of known parent chemicals in S, P, G, and Z from the 

Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP   

http://lsp.nwu.edu.cn/tcmsp.php) and constructed 3D structures of identified human metabolites 

of YIV-906 with ChemDraw (https://www.perkinelmer.com/category/chemdraw). All ligands 

were prepared using the LigPrep program implemented in the Schrodinger suite of software 

(Maestro version 11.2). At target pH 6.8 ± 0.2 which mimicked the pH in the cell cytoplasm and 

nucleus, possible states of ligands were generated by Epik. Specified chiralities were retained for 

stereoisomer computation and the maximum number of stereoisomers was set to 32 (as default). 

After preparation, in total 2502 stereoisomers with possible ionization states were generated for 

350 ligands. 

Crystal structures of target proteins DUSP3, DUSP5, and DUSP7 were downloaded from 

Research Collaboratory for Structural Bioinformatics - Protein Data Bank (RCSB – PDB 

https://www.rcsb.org/). We applied the program Protein Preparation Wizard in the Schrodinger 

software to prepare target proteins for docking: missing side chains were filled if there were any; 

restrained minimization (converge heavy atoms RMSD to 0.3 Å) was performed for each target 

protein to optimize the structure after adding hydrogens and deleting waters. Next, docking grid 

files were generated using the Receptor Grid Generation module. For each receptor, the center of 
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the docking site was specified by providing the X, Y, and Z coordinates of the center of the 

previously reported catalytic sites. 

2.1.2 Molecular docking 

Flexible ligand docking simulations were performed using the Glide module of the 

Schrodinger software (Maestro version 11.2).[36] The Glide docking setting is described as 

follows: (1) using the standard precision version of docking scoring function; (2) applying scaling 

factor and partial charge cut-off of 0.80 and 0.15, respectively; (3) applying the “Sample nitrogen 

inversions” and “Sample ring conformations” options for ligand sampling; (4) rewarding 

intramolecular hydrogen bonds and adding Epik state penalties to docking scores; and (5) writing 

out at most 10 poses per ligand and performed post-docking minimization. 

2.1.3 MD simulation 

Large-scale molecular dynamics simulations were performed to study if YIV-906 

molecules and their metabolites could bind to DUSPs. The starting protein-ligand conformations 

for MD simulations came from docking simulations. For each complex, the best docking pose was 

selected to study the dynamics of the protein-ligand binding. The complex was immersed in a 

rectangular box with TIP3P water molecules[37] and the shortest distance from any atom of the 

protein to the edge of the box is at least 12 Å. Proportional Na+/Cl- ions were added to make a 0.15 

M concentration of the NaCl salt after the system was neutralized with counterions. For the 

molecular mechanics force field parameters, the partial atomic charges of ligands were derived by 

using the RESP[38] program to fit the HF/6-31G* electrostatic potentials generated with the 
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GAUSSIAN16 software package.[39] The other force field parameters came from GAFF[40] in 

AMBER 18.[41] The residue topologies for ligands were prepared using the Antechamber 

module.[42] The AMBER FF14SB[43] force fields were used to model proteins.   

We performed MD simulations to produce isothermal-isobaric ensembles using the 

pmemd.cuda program of AMBER 18. The Particle Mesh Ewald (PME) method[44] was used to 

calculate the full electrostatic energy of a unit cell in a macroscopic lattice of repeating images. 

All bonds were constrained using the SHAKE algorithm[45] in both the minimization and MD 

simulation stages. We first performed a series of minimizations with the main chain atoms 

restrained using the harmonic restraint force constants decreased from 20 to 10, 5, and 1 

kcal/mol/Å2. After that, the system was further relaxed by a maximum 10,000-step minimization. 

The above minimization steps removed any possible steric clashes. The subsequent MD simulation 

step consists of three phases, namely, the relaxation phase, the equilibrium phase, and the sampling 

phase. In the relaxation phase, the simulation system was heated up progressively from 50 K to 

250 K at steps of 50 K. At each temperature, a 1-nanosecond MD simulation was run without any 

restraints or constraints. In the following equilibrium phase, the system was equilibrated at 298 K, 

1 bar for 15 ns. Finally, a 140-nanosecond MD simulation was performed at 298 K, 1 bar to 

produce NTP (constant temperature and pressure) ensembles. Due to some intrinsic deficiency of 

GPU codes, some simulations were restarted if unexpectedly terminated. This led to different total 

simulation time scales for different protein-ligand complexes. We consider the 120 nanoseconds 

as the lower-limit time scale for simulation systems to reach the steady states and for us to obtain 

enough snapshots for analysis. After simulation, all simulation times were over 120 ns. Integration 

of the equations of motion was conducted at a time step of 1 fs for the relaxation phase and 2 fs 

for both the equilibrium and sampling phases. In total, 1400 MD frames were recorded. All MD 
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snapshots were applied to conduct MM/GBSA free energy decomposition and 280 were evenly 

selected for the MM-PBSA binding free energy calculation.  

For extensive sampling, we sampled 20 independent MD trajectories using the last 

snapshot of the equilibrium phase as the starting conformation. For each MD trajectory, the 

simulation lasted 20 nanoseconds and 50 MD frames were recorded for the MM/PBSA binding 

free energy calculations. 

2.1.4 MM/PBSA binding free energy calculation and MM/GBSA free energy decomposition 

In MM/PBSA methods, the binding free energy is calculated as below:  

∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 = ∆𝐻 − 𝑇∆𝑆 ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑝
𝑠𝑜𝑙 + ∆𝐺𝑛𝑝

𝑠𝑜𝑙 − 𝑇∆𝑆 

where ∆𝐸𝑒𝑙𝑒, ∆𝐸𝑣𝑑𝑤, ∆𝐺𝑝
𝑠𝑜𝑙, ∆𝐺𝑛𝑝

𝑠𝑜𝑙, and −𝑇∆𝑆 are the change of MM electrostatic energy, 

the change of MM van der Waals energy, the polar solvation free energy, the nonpolar solvation 

free energy, and the change of entropy upon ligand binding, respectively. 

Key parameters controlling the MM/PBSA and MM/GBSA analyses were the following: 

external dielectric constant, ~ 80; internal dielectric constant, ~ 1; and the surface tension for 

estimating the nonpolar solvation energy, ~ 0.054. The Parse radii[46] was used in the MMPB/SA 

solvation calculation using the Delphi package (http://compbio.clemson.edu/delphi). The entropic 

term was estimated using a method described elsewhere[47]. Free energy decompositions were 

performed for all the snapshots collected in the sampling phases of the MD simulations. The 

interaction energies between the ligand and each residue were calculated with the consideration of 

solvent effect using an MMGB/SA solvation model developed previously[48].  
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2.2 Development of the RR mapping algorithm to improve the accuracy of protein-protein 

docking between DUSP3 and ERK peptide 

2.2.1 Structural preparation of simulation systems 

2.2.1.1 Generation of conformations for AA analogues and solvate boxes 

To mimic the side chains of peptides or proteins, dipeptides were created by adding the 

acetyl group (ACE) to the N terminal of each type of amino acids (AAs) and the amino group 

(NHE) to corresponding C terminal (thus the common structure of dipeptides can be expressed as 

ACE-AA-NHE). In addition to the 20 common AAs, 3 more phosphorylated non-standard AAs 

were also included, since the protein of interest, DUSP3, catalyzes the dephosphorylation reaction 

to its substrate ERK-P at its active site. These 3 non-standard AAs are phosphorylated serine, 

tyrosine, and threonine, respectively. The AMBER FF14SB[43] force fields were used to model 

dipeptides. For the phosphorylated residues, we used reported parameters in the literature of the 

partial atomic charges[49] and the phosphate oxygen van der waals[50]. After construction of 

dipeptides, a 10-ns MD simulation (settings described in the following 2.2.2 section) was 

performed for each dipeptide to generate structures with different conformations and orientations. 

From the last 5-ns of the 10-ns simulations, 500 structures of each dipeptide were extracted. Using 

these dipeptide monomers, cubic dipeptide solvate boxes with grids were generated. 

2.2.1.2 Construction of initial systems for protein mapping 

A protein-peptide complex structure of DUSP3 and a phosphorylated ERK peptide is 

available with PDBID: 1J4X. From this crystal structure, the protein DUSP3 was extracted and 

served as the mapping protein. Next, the mapping protein was positioned into the dipeptide boxes, 



14 

where dipeptides originally located within the maximum distance λmax from the mapping protein’s 

surface to its center of mass were removed, and dipeptides originally located farer than the distance 

of λmax plus 15 Å were removed. Therefore, ball-shaped systems were obtained, in which there 

were no initial crashes of dipeptide to the mapping protein and sufficient dipeptides to interact 

with the mapping protein’s surface residues. Then these complexes were immersed with TIP3P 

water molecules[37] and proportional Na+/Cl- ions were added to make a 0.15 M concentration of 

the NaCl salt after the systems were neutralized with counterions. The AMBER FF14SB[43] force 

fields were used to model proteins. As such, the initial simulation systems consisting of each type 

of AA (with random conformations), mapping protein DUSP3, water molecules, and ions were 

constructed. For parallel simulation, 2 initial systems for each type of AA with the mapping 

proteins were constructed, where both the structures of individual mapping amino acids and their 

positions related to the protein are different. Therefore, there were 46 systems in total for MD 

simulations. 

2.2.2 MD simulations 

All MD simulations in this part were performed using the pmemd.cuda program of 

AMBER 16. 

To generate AA conformations, we first performed minimizations with the heavy atoms 

restrained using the harmonic restraint force constant of 30 kcal/mol/Å2. In the relaxation phase, 

the simulation systems were heated up progressively from 0 K to 310 K with the harmonic restraint 

force constant of 18 kcal/mol/Å2. In the following equilibrium phase, the systems were equilibrated 

at 310 K for 0.1ns. Finally, a 10-ns MD simulation was performed for each system at 310 K to 
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produce AA structures with diverse conformations and orientations. From the last 5-ns 

simulations, 500 structures of each type of dipeptide with different conformations were sampled. 

For mapping MD simulations, we adopted the same protocols for minimization, relaxation, 

and equilibrium as above described. A 100-ns MD simulation was performed for each system at 

310 K to predict interactions between AA analogues and the surface residues of the target protein. 

2.2.3 Data analysis and mapping  

Distances (λ) between the center of mass of each dipeptide in the simulation system and 

the center of mass of each residue on the surface of DUSP3 were calculated for whole simulation 

processes. Using cutoffs of 1, 2, 3, 4, and 5 Å, the frequencies of λ falling within these cutoff 

values were calculated, representing the probabilities of each type of AA interacting with the 

residues on the surface of DUSP3. This information further indicated the binding affinities of AAs 

to the target protein. Heatmaps for the receptor residues were obtained.  

2.2.4 Protein-peptide docking 

The protein-peptide docking program, ZDock[51] (version 3.0.2 for Linux), was used to 

predict binding modes of the phosphorylated peptide of ERK to the target protein DUSP3. The 

sequence of the phosphorylated peptide of ERK is DDE(AHP)(TPO)G(PTR)VATR. Since there 

were no parameters in the ZDcok library file, uniCHARMM, for nonstandard residues that were 

involved, we manually modified the file to include atom names and corresponding charges of these 

residues. CGenFF[52] (https://cgenff.umaryland.edu/initguess/) was utilized to predict the charges 

of dipeptides ACE-TPO-NHE, ACE-PTR-NHE, ACE-SEP-NHE, and ACE-AHP-NHE. Then the 

https://cgenff.umaryland.edu/initguess/
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charge information for TPO, PTR and SEP were incorporated into the library file for structure 

preparation. The input structures of the peptide and target protein were extracted from the 1J4X 

complex structure and were prepared according to ZDock’s instruction. Next, 2000 predicted 

binding modes of the ERK peptide with docking scores were generated. 

 

2.2.5 Re-ranking of docking yielded models 

With the interaction probabilities incorporated, the ERK peptide binding models yielded 

by protein-peptide docking can be re-ranked and generate more accurate predictions. The 

equations that we used to re-score the docking models are given below: 

𝑠𝑟𝑐 = ∑ ∑ 𝑃𝑟𝑐
𝑖.𝑗

𝑗𝑖        (1) 

Where 𝑠𝑟𝑐 is the sum of interaction probabilities 𝑃𝑟𝑐
𝑖.𝑗

 at the residue cut-off, rc (rc = 1, 2, 3, 4, and 

5 Å), and 𝑃𝑟𝑐
𝑖.𝑗

 represents the interaction probability of the protein-residue i to the amino acid j. 

Note j can also represent a peptide residue which contacts to protein-residue i in the complex poses. 

𝑆 = {∑
𝑠𝑟𝑐

𝑟𝑐2𝑟𝑐=1,5 }
−1

     (2) 

Where 𝑆  is the parameter for re-scoring and is inversely proportional to the interaction 

probabilities 𝑠𝑟𝑐. Therefore, the larger S value of a docking pose, the lower ranking place of the 

pose is.  

𝑅𝑆 = 𝑤 ∗ 𝑆     (3) 

Where 𝑅𝑆 is the re-ranking score and the weighting factor 𝑤 = max(𝑅𝑀𝑆𝐷𝑝𝑜𝑠𝑒𝑠) /max (𝑆𝑝𝑜𝑠𝑒𝑠). 

𝑅𝑀𝑆𝐷𝑝𝑜𝑠𝑒 is the RMSD of a pose of the docking peptide in comparison with its native position 

(the protein’s position is fixed during docking). There are 2000 poses from ZDock result, thus we 
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can calculate 2000 RMSD values. The max(𝑅𝑀𝑆𝐷𝑝𝑜𝑠𝑒𝑠) is the maximum value of the 2000 

values. The max (𝑆𝑝𝑜𝑠𝑒𝑠) is the 𝑆 value of the pose ranked at 2000, and the min (𝑆𝑝𝑜𝑠𝑒𝑠) is the 𝑆 

value of the top 1 pose.   

Z𝑆𝑅 = 𝑣/𝑍𝑆    (4) 

Where ZSR represents the ZDock ranking, ZS is the docking score given by ZDock, and the 

weighting factor 𝑣 = max(𝑅𝑀𝑆𝐷𝑝𝑜𝑠𝑒𝑠) ∗ m𝑖𝑛 (𝑍𝑆𝑝𝑜𝑠𝑒𝑠). The m𝑖𝑛 (𝑍𝑆𝑝𝑜𝑠𝑒𝑠) is the docking score 

of the top 1 pose. 
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3.0 Results and Discussion 

3.1 Mechanisms of action of YIV-906 

3.1.1 Unexpected pre-docking results led to the expansion of the compound library to 

include human metabolites for virtual screening 

In order to figure out which herbal ingredient(s), or more specifically, which chemical(s) 

might play a leading role in modulating DUSPs, we need to firstly establish the ligand library 

which contains known chemicals in YIV-906 to the greatest extent. A previous study has identified 

57 chemicals from YIV-906 aqueous extract and 38 of their metabolites in the plasma of a patient 

treated with Irinotecan and YIV-906[53]. However, due to the small sample size of this study, 

there were missing compounds from possible inter-patient ADME (absorption, distribution, 

metabolism, and excretion) differences. Limitations of detection techniques were also responsible 

for missing compounds from chemicals’ co-precipitation with proteins during the sample 

preparation process[53]. In addition, a newly-published study on YIV-906 has demonstrated that 

the chemical profile analysis based on detectable chemicals is not suitable for quality control of 

herbal formulations and may lead to the false prediction of their biological activities[10]. Since 

chemical databases provide more comprehensive information, we collected all known parent 

herbal chemicals of Scutellaria baicalensis Georgi (S), Paeonia lactiflora Pall (P), Glycyrrhiza 

uralensis Fisch (G), and Ziziphus jujuba Mill (Z) from the Traditional Chinese Medicine Systems 

Pharmacology Database and Analysis Platform (TCMSP)[54]. In total, 500 parent chemicals were 

included, among which 119, 67, 193, and 121 came from S, P, G, and Z, respectively. In 



19 

consideration of the first-pass effect, solubility, and intestinal absorption of drug-like compounds, 

we performed a preliminary screening according to the following criteria: (1) removing highly 

hydrophobic molecules, namely molecules with AlogP>5, (2) removing molecules that are 

composed of only carbon and hydrogen atoms, (3) removing the carbohydrate compounds that will 

undergo digestion in the gastrointestinal tract. After the preliminary screening, 312 parent 

chemicals remained in the compound library. 

Interestingly, after docking these 312 molecules to DUSPs, the results were not consistent 

with the previous experimental reports. Top-ranked molecules in our pre-docking simulation were 

mainly from Glycyrrhiza uralensis Fisch (G), not in agreement with the fact that Scutellaria 

baicalensis Georgi (S) was most important ingredient of YIV-906 in inhibiting ERK1/2 

phosphatases both in vitro and in vivo[11]. Inspired by the concept of “prodrug” that only if 

metabolized can the drugs become active, we then added the 38 aforementioned human 

Figure 3 Establishment of YIV-906 compound library 

The simplified workflow is demonstrated by the grey flowchart. The counts and 

origins (G, P, S and Z) of parent herbal chemicals and human metabolites of 

YIV-906 are shown in pie charts. 
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metabolites of YIV-906[53] (36 S-derived metabolites and 2 G-derived metabolites) into our 

virtual screening ligand library (Figure 3). 

3.1.2 The high similarity of target proteins allows the implementation of the same docking 

protocol 

Currently, there are two crystal structures of DUSP3 reported – one contains an artificial 

peptide mimicking ERK1/2 (PDB ID: 1J4X[55], referred to in 4.3), while the other has a co-

crystallized inhibitor called STT in its active site (PDB ID: 3F81)[16]. The crystal structure with 

PDB ID 3F81 was used to establish the docking protocol. Only one crystal structure was reported 

for DUSP5 and has two sulfate ions located in its active site (PDB ID: 2G6Z)[18]. Similarly, the 

only known crystal structure of DUSP7 contained a phosphate ion in its active site (PDB ID: 

4Y2E)[19]. To test the structure similarity of target proteins, we performed sequence and structural 

alignment for these three proteins where DUSP3 and DUSP7 were aligned to DUSP5 (Appendix 

Figure 1 in the Supplementary Material). The mainchain root-mean-square deviation (RMSD) 

after least square fitting achieves 0.69 Å for DUSP3 and 0.65 Å for DUSP7, which indicates that 

the structures of DUSP3, DUSP5, and DUSP7 are similar enough to allow us to adopt the same 

docking protocol established by using the DUSP3/STT crystal structure.  

3.1.3 Molecular docking yielded ligands of interest 

First, we docked the reported inhibitor of DUSP3 back to its crystal structure as a validation 

of our docking protocol. As shown in Appendix Figure 2 in the Supplementary Material, the 

docked DUSP3 inhibitor overlaps well with the crystallized inhibitor structure with an RMSD of 
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0.37 Å, indicating our docking protocol is reliable. Then we docked all the parent chemicals and 

metabolites in our compound library to DUSP3, DUSP5, and DUSP7 with the same protocol. 

Docked ligands were sorted according to their docking scores, which represented the docking 

combination free energy. Lower values (more negative values) of docking score indicate higher 

binding affinity. 

In general, top-ranked compounds of DUSP3 are structurally more diverse and have lower 

binding energy than those of DUSP5 and DUSP7. As demonstrated in Figure 4, several human 

metabolites stood out, even though the total number of human metabolites was much less than that 

of parent chemicals (38 metabolites versus 312 herbal chemicals). There are substrate overlaps 

among DUSP3, DUSP5, and DUSP7, probably due to the conservativeness of their catalytic 

domains. Common ligands for target proteins include MOL012951, MOL001468, and M18. We 

selected compounds with docking scores lower than -6.0 kcal/mol for DUSPs for further 

investigation. Among selected top compounds, most are from S ingredient of YIV-906: 20 S 

compounds for DUSP3, 6 S compounds for DUSP5, and 13 S compounds for DUSP7. Among 

these 39 S compounds, only 3 are herbal chemicals, and the rest are all human metabolites. 

Compounds from ingredient Z of YIV-906 took the second place. 
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Molecular docking is helpful to narrow down the screening scope. Nevertheless, it only 

takes the flexibility of ligands into account, utilizes a relatively simple algorithm to achieve 

computation efficiency, and may produce false positive predictions. We next performed MD 

simulation for ligands of interest with target proteins, which considers the flexibility of both the 

ligands and receptors. MM/PBSA binding free energy calculations were further conducted to study 

the ligand-protein interactions.  

Figure 4 Top-ranked ligands and their docking scores with DUSP3 (A), DUSP5 (B), and DUSP7 (C) 

Series G, P, S, and Z indicate the origins of ligands. Ligands of which the IDs start with “MOL” are parent 

chemicals, while IDs starting with only “M” indicate human metabolites of YIV-906. 
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3.1.4 MD simulation and binding free energy prediction 

3.1.4.1 RMSD fluctuations of ligands and binding free energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 jointly reflect 

binding stability.  

Stability of docking-yielded binding modes of top YIV-906 ligands with target proteins 

was assessed by MD simulation. Fluctuations of ligand-protein complex conformation are 

described by the RMSD ~ Simulation Time (RST) plots which are shown in Figs. S3, S4, and S5. 

For the receptors, only mainchain atoms were considered for least-square (LS) fitting; while for 

ligands, all heavy atoms were considered. To measure the dynamics of a ligand in the binding 

pocket, non-LS fitting RMSDs were calculated for the ligand after the receptor was aligned to the 

reference structure. Non-LS fitting RMSDs are always equal to or larger than the corresponding 

LS fitting RMSDs, as the former takes the conformational change, the ligand’s translational and 

rotational movements into account.  

Furthermore, free energy differences between bound and unbound states of solvated 

proteins and their ligands were calculated using an endpoint free energy method, MM/PBSA. 

Individual energy terms of binding free energy (in kcal/mol), including the electrostatics, van der 

Waals, solvation and entropy, are listed in Tables S1, S2, and S3 for DUSP3, DUSP5, and DUSP7, 

respectively.  

The conjoining of RMSDs and ∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 can be more reliable than when we look at one 

of the two indicators alone. It is encouraging that our results of RMSDs and ∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴  are 

consistent. As shown in Figs S1-S3 and Tables S1-S3, ligands with negative ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 tend to 

have relatively more narrowed RMSD fluctuations, which indicates they bind stably at DUSPs’ 

binding sites. On the contrary, ligands with positive values of ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨  that indicate 
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unfavourable bound states are also observed as embodying more drastic fluctuations of non-LS 

fitting RMSDs for ligands. In other words, those ligands had poor binding stability and underwent 

more conformational change as well as translational and rotational movements during the MD 

simulations.  

3.1.4.2 Electrostatic energy is a key driving force in DUSP ligand binding. 

In our MM/PBSA results, we find a significant positive correlation between electrostatic 

energy (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍)  and binding energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 , while no significant correlation is 

observed between van der Waals energy ∆𝑬𝒗𝒅𝒘 and ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 (Figure 5). This indicates the 

greater importance of electrostatic interaction than van der Waals interaction in DUSP-ligand 
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binding. This result is consistent with the previous finding that negatively charged molecules have 

high affinity to DUSPs, but their hydrophobic entities show high diversity without common 

structure patterns[15].  

Figure 5 Analysis of electrostatic energy (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍), van der Waals energy ∆𝑬𝒗𝒅𝒘 and their 

correlation with binding energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 

(A) and (B) are boxplots showing the spreads and centers of (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍) and ∆𝑬𝒗𝒅𝒘 of DUSP-

ligand complexes. (C) shows the correlation between (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍) and ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨. (D) shows the 

correlation between ∆𝑬𝒗𝒅𝒘 and ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨. Three types of correlation methods (Pearson, Spearman, 

and Kendall correlation with different sensitivity to outliers and explanatory power) were applied. 

Corresponding correlation coefficients r and p-values are listed in the table below the diagrams. 
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3.1.4.3 Sulfation and glucuronidation human metabolites of YIV-906 are vital to its DUSP-

inhibiting bioactivity. 

Ligands with positive values of 

∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨  were considered as false positive 

docking results. With those false-positive ligands excluded, we performed binding mode 

visualization for all three target proteins with their advantageous ligands bound in the binding 

pockets.  

Figure 6 Common substituent groups of advantageous 

DUSP3 ligands from YIV-906 

The protein DUSP3 is represented as surface with the 

P-loop colored in blue and the D-loops in yellow. 

Ligand binding modes are demonstrated by 

representative conformations of MD simulations. The 

co-crystalized inhibitor of DUSP3 is shown as magenta 

lines. Common substituent groups (-SO4, -PO4, and -

COOH) are marked with dashed red circles. (A) The 

binding of phosphate groups and sulfate groups in the 

protein’s active pocket; (B) The binding of carboxyl 

groups of glucuronic acids on YIV-906 metabolites in 

the protein’s active site; (C) The binding of carboxyl 

groups of original YIV-906 chemicals in the protein’s 

active site. The perspective of each ligand-protein 

complex was slightly adjusted to achieve a clearer 

view. The surface transparency is set to 60% to show 

the parts of ligands which stick into the pocket but are 

concealed by nearby surface. 
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As demonstrated in Figure 6, we find some common substituents of top-ranked molecules 

for DUSP3, such as sulfate groups (-SO4) and carboxyl groups (-COOH), aggregate in the 

enzymes’ catalytic center. Preponderant ligands for DUSP5 and DUSP7 have the same common 

substituents (Appendix Figure 6, S7). These functional groups are all negatively charged as 

aforementioned. Fluctuations of whole ligands can be observed from their RST plots with the 

docking poses as the reference structures, but fluctuations of sulfate or carboxyl groups on these 

ligands are much smaller, indicating the catalytic center is a preferred interaction site for those 

negatively charged functional groups. Among these substituents, all sulfate groups belong to YIV-

906 metabolites generated by Phase II sulfation biotransformation, while carboxyl groups are 

either from original YIV-906 herbal chemicals or glucuronides generated by the Phase II 

glucuronidation reaction. 

In total, 23 YIV-906 metabolites (22 from the S ingredient and 1 from the G ingredient) 

stand out, among which 11 are sulfate or glucuronide metabolites of baicalein or baicalin. A 

recently published study has reported that baicalein or baicalin monotherapy causatively increased 

ERK-P and caused apoptosis in HCT116 and SW480 colon cancer cells[56]. Thus, we believe that 

baicalein and baicalin of S ingredient should be two key components of YIV-906 without which 

the cancer-cell-death related ERK-DUSP pathway is less likely to be modulated. Metabolism to 

S-source chemicals, including baicalein and baicalin, can endow them with DUSP-inhibiting 

bioactivity. 

The drug binding modes of our results can also be supported by several structural and 

biophysical studies. The binding location of sulfate moieties of YIV-906 sulfation metabolites 

overlap well with that of the sulfate inhibitor in the DUSP3 crystal structure (Figure 6 (A)), one 

of the sulfate ions in the DUSP5 crystal structure (Appendix Figure 6 (A)) and the phosphate ion 
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in the DUSP7 crystal structure (Appendix Figure 7 (A)). For another crystal structure of DUSP3 

(PDB ID: 1J4X)[55], an artificial peptide mimicking a phosphorylated ERK1/2 segment is bound 

to it. As shown in Figure 7, several representative ligands from YIV-906 also overlap well with 

the crystallized ERK1/2-like peptide. Taken together, it is quite likely that the sulfate moiety and 

carboxyl moiety act like phosphate mimics to block the P-loop of DUSPs, and hydrophobic 

moieties of those ligands block the surrounding area of the active sites.  

In addition, hydrophobic moieties of advantageous ligands are quite flexible as mentioned, 

reflecting the fact that the surface residues surrounding the DUSP active sites are structurally very 

Figure 7 Human metabolites and herbal chemicals from YIV-906 act as phosphate mimic and occupy 

the catalytic center of DUSP3, which is shown as surface 

The artificial peptide that mimics ERK1/2 in the crystal structure of DUSP3 is shown as turquoise 

ribbon except for the phosphothreonine and phosphotyrosine residues which are shown in sticks and 

colored by element. Representative ligands are shown in lines and colored by element. Ligands whose 

carbons are magenta, light purple, green, light blue, and dark blue are STT, M15-1, M18, M19-2, and 

MOL001841, respectively. 
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dynamic as indicated by their large B-factors. It is very likely that phosphate-mimic moieties are 

vital to binding affinity while hydrophobic moieties account for binding selectivity. 

Glucuronidation metabolites of YIV-906 are observed to bind dominantly to DUSP3 and DUSP7, 

while sulfation metabolites are in the ascendant when binding to DUSP5. 

As mentioned before in Table 1, the target proteins DUSP3, DUSP5, and DUSP7 have 

different subcellular localization. We believe the subcellular localization of different DUSPs is an 

important issue in terms of how drugs work on them and cause therapeutic effect by directly 

inhibiting the cytoplasmic DUSPs and/or by inhibiting nuclear DUSPs to modulate gene 

expression. It is tempting to link the observed DUSPs’ ligand preference to their subcellular 

localization and cellular function to induce apoptosis and autophagy. In vitro experiments are 

needed in the future to promote this topic from molecular level to cellular level and to investigate 

whether there is a relationship between the DUSPs’ ligand preference and their subcellular 

localization. 

Moreover, unlike a mono-component drug which is solely responsible for its therapeutic 

effect, the chemicals and their metabolites of the YIV-906 formulation work synergistically. There 

was no significant difference between sulfation and glucuronidation metabolites in their binding 

free energies. We suggest that the contribution of these metabolites to YIV-906’s therapeutic effect 

is more likely to be related to their relative abundances rather than binding affinities. Future work 

will probably be needed to uncover the pharmacokinetic profile of the mixture YIV-906.  

3.1.4.4 Common ligands identified for DUSP3, DUSP5, and DUSP7. 

In many cases, the combination of molecular docking and MM/PBSA rescoring has proven 

to correctly predict binding poses and binding affinities of a series of ligands[57-62]. MM/PBSA-

rescored rank of binding affinities are given in Figure 8 (A). Common ligands of DUSP3, DUSP5, 
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and DUSP7 are identified as M13-1, M18, M22-1, MOL001468, MOL001841, MOL001886, 

MOL001931, and MOL012951. Chemical structures of these common ligands are illustrated in 

Figure 8 (B). Representative positions and orientations of these ligands during MD simulations are 

given in Appendix Figure 8, S9, and S10 together with the corresponding initial docking-yielded 

binding modes. 

Among these common ligands, M13-1, M18, and M22-1 are metabolites of the S ingredient 

in YIV-906. The compound MOL001468 is essentially L-malic acid which is derived from the Z 

ingredient in YIV-906. A crystal structure of the Shp2 DUSP domain in complex with malic acid 

has been previously published[63], which partially validates our result. Compound MOL001841 

is indoleacetic acid (IAA) from the Z ingredient. Very interestingly, IAA has been reported to 

activate the MAPK pathway in plant[64]. It also causes cell circle arrest and apoptosis in a dose-

dependent manner on various human cancer cell lines, including MCF-7, MDA-MB231, HuH-7, 

and HeLa[65].  Compound MOL001886 and MOL001931 are from the Z and P ingredient, 

respectively, of which there are no related targets or diseases currently reported. Compound 

MOL012951 from ingredient Z is the isomer of the secondary messenger, cGMP. What’s also 

worth mentioning is that compound MOL012950 itself is the secondary messenger, cAMP. 

However, MOL012950 is not a common ligand for DUSPs, and our simulation result indicates 

that it only binds well with DUSP5. This is probably because near-catalytic-site geometry fitting 

is also important in addition to the presence of a phosphate group or its mimics. Protein kinases 

and phosphatases have been reported as secondary messengers’ targets[66], whilst the cGMP has 

also been shown to manipulate the kinase-MLC-phosphatase pathway[67]. Nonetheless, we did 

not find literature specifically reporting on how cGMP or cAMP targeting DUSPs. It is tempting 

to speculate that DUSPs are receptors of cGMP and cAMP and have binding-specificity to DUSP5.  
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3.1.4.5 Interactions between identified common ligands and corresponding DUSPs. 

The dynamic interactions between common ligands and DUSP residues were investigated 

by performing MM/GBSA free energy decomposition. Herein, MOL001841 (indoleacetic acid, 

IAA) was selected as a representative original compound ligand from plants, and M13-1 was 

selected as a representative metabolite ligand for DUSP3. As shown in Figure 9 (A) and (C), M13-

1 interacts with both the P-loop and D-loop of DUSP3, while MOL001841 only interacts with the 

P-loop of DUSP3. Other common ligands which are not shown here behaved likewise. Original 

herbal compounds which are generally smaller in size block the P-loops, while larger metabolites 

of YIV-906 block both the P-loops and D-loops. The sulfate groups or carboxyl groups can form 

several hydrogen bonds with residues at DUSPs’ catalytic centers, which contribute to the most 

electrostatic binding energy and binding stability (Figure 9 (B) and (D)). Specifically, as 

molecules which have both the sulfate moiety and carboxyl moiety in their chemical structures, 

M13-1 adopt different binding orientations when binding to different DUSPs: with the sulfate 

moiety binding to the P-loop of DUSP5 and the carboxyl moiety binding to the P-loops of DUSP3 

and DUSP7. The binding modes of M13-1 to DUSP3, DUSP5, and DUSP7 are given in Appendix 

Figure 11 in the Supplementary Material.  
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Figure 8 (A) MM-PBSA-reranked ligands of DUSP3, DUSP5 and DUSP7. The axis of this radar 

is ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 (kcal/mol). 

Inner concentric circles indicate lower binding energy. Ligands for each target proteins are 

ranked clockwise. Three areas with grayscales from shallow to deep indicate the ligands’ 

affiliation to DUSP3, DUSP5, and DUSP7, respectively. Common ligands of these three DUSPs 

are marked with same colors. 

(B) Chemical structures of common ligands of DUSP3, DUSP5, and DUSP7. 
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For drug discovery, a residue that has high-propensity for ligand binding is important and 

often referred to as a hotspot residue.  Hotspot residues of the three DUSPs in this study are 

identified (Figure 10).  All hotspot residues are located on the reported P-loop or D-loop of 

DUSPs. The binding energy decomposition to P-loop residues was significantly higher than that 

of D-loop residues, squaring with the fact that the P-loop is responsible for catalysis and the D-

loop takes the subsidiary function. The MM/GBSA free energy decomposition results combined 

Figure 9 Interactions between binding-site residues of DUSP3 and representative ligands. 

(A) Overall view of the original herbal compound MOL001841 at DUSP3’s catalytic site. (B) Overall view of 

the metabolite M13-1 at DUSP3’s catalytic site. (C) and (D) are the corresponding amplified views of (A) and 

(B), respectively. Representative ligands are shown as sticks and colored by element. Hydrogen bonds formed 

between ligands and DUSP3 are shown in dashed magenta lines. In (C) and (D), correlated residues at 

catalytic sites are shown in lines. In (A) and (C), DUSP3 is represented as cartoon and residues are colored 

according to their interaction energies with the ligand. The stronger the ligand-residue interaction is, the 

more reddish the residue is colored; the weaker the interaction is, the more blueish the residue is colored. In 

(B) and (D), DUSP3 is represented as cartoon and colored by element.  
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with the afore discussed DUSPs’ ligand preference (in 4.3) can provide us useful information on 

developing high potent and selective antagonists of the DUSPs. 

3.1.4.6 MM/PBSA is a powerful tool to differentiate compounds with different activities. 

The MM/PBSA method is a more physical and accurate method compared to the docking 

scoring function[62, 68-71]. The performance of MM/PBSA, which depends on the setting for 

desolvation calculations, such as the dielectric constants, is system-dependent. To evaluate how 

well this technique performs for DUSP proteins, we searched for existing bioassays for DUSPs 

from Chemical Database of European Molecular Biology Laboratory (CHEMBL Database[72] - 

Figure 10 Hotspot residues identification for DUSP3, DUSP5, and DUSP7. 

Each fraction with different color on the stacked bars represents the interaction energy of each common ligand to 

each individual residue of DUSPs and each common ligand has a distinct color. 
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https://www.ebi.ac.uk/chembl/). Since no compounds were reported for DUSP7 and there was 

only one compound recorded for DUSP5 with no standard values of Ki or IC50, we focused on 

DUSP3 for which more experimental data are available. We randomly selected 15 bioassay 

compounds with the experimental ∆𝑮  (calculated from Ki values) ranging from -5.0 to -8.0 

kcal/mol for MD simulations and MM/PBSA calculations. The complex structures of those 

compounds binding to DUSP3 were prepared following the same docking protocol as detailed in 

Section 3.  

One of the bioassay compounds, CHEMBL592943, had poor MM/PBSA binding free 

energy and became an outlier. One explanation of this failed prediction lies in that this compound 

has a positive charge center and may have a different binding mode than other negatively charged 

or neutral compounds. Nevertheless, our MM/PBSA method turned out to successfully identify 4 

of the top 5 compounds with the lowest Ki values and 3 of the bottom 5 compounds (Appendix 

Table  4 in the Supplementary Material). This indicates that the MM/PBSA calculation has the 

capacity to differentiate active and inactive inhibitors. 

With the outlier removed, we calculated the prediction index (PI) and conducted the 

correlation analysis. The PI between the (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍) and experimental ∆𝑮 for these bioassay 

compounds is 0.7805, which is higher than the PI of 0.6941 between ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨and experimental 

∆𝑮 . The correlation between the (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍)  and experimental ∆𝑮  for these bioassay 

compounds is again better than the correlation between ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨and experimental ∆𝑮. By 

applying the (∆𝑬𝒆𝒍𝒆 + ∆𝑮𝒑
𝒔𝒐𝒍) ~  experimental ∆𝑮  linear regression equation, the predicted 

binding energy ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 for each bioassay compound is calibrated (Appendix Table  4). 

Calibrated values of ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨  are close to experimental data but exceptions still exist. Possible 

reasons include the diversity of bioassay compound structures and limitations of the MM/PBSA 

https://www.ebi.ac.uk/chembl/
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method compared to more computationally expensive methods.[58, 68-70, 73] In our study, most 

chemicals from YIV-906 for MM/PBSA calculations have similar substituting groups and parent 

skeletons, thus we can expect relatively accurate predictions.  

3.2 Protein-protein interactions between DUSP and ERK 

An example of the mapping simulation systems is given in Figure 11. Since 2 initial 

systems for each type of dipeptide with the mapping proteins were constructed, there were 46 

systems in total for MD simulations.  

Figure 11 The mapping simulation system of DUSP3 mapped with ACE-ALA-NHE 

The protein DUSP3 is shown in cartoon in orange. The dipeptides ACE-ALA-NHE are shown 

in sticks, while water molecules are shown in lines. 
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Heatmaps for the receptor residues’ affinity to each type of AA were obtained. At the 

distance cutoff of 1 Å, the probabilities for all dipeptides’ AA side chains to interact with residues 
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of DUSP3 were 0, which is reasonable because of the strong repulsion between residues and 

Figure 12 Heatmaps for probabilities of each type of AA interacting with each residues of DUSP3 at 

distance cutoffs of 2, 3, 4, and 5 Å.  

In the sub-figure, on the X axis, the first 20 ACE-AA-NHEs are named as the same single-letter name of 

the coresponding standard AAs. The last 3, P1, P2, and P3 represednt dipeptide of phoshorylated 

tyrosine, serine and threonine. The Y axes show the renumbered residue number of DUSP3. The 

probabilities of different values are colored accroding to the color bar. 
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dipeptides at such distance. Despite this, other heatmaps are shown in Figure 12. 

Most areas of the heatmaps have colors, indicating that corresponding residues were on the 

surface of the mapping protein DUSP3 and there were interactions between those residues and AA 

analogues during simulations. Residues with index from 58 to 62, which form the D-loop of 

DUSP3, were observed to interact with most AA analogues with relatively higher probabilities. 

On the other hand, there were “white bands” on the heatmaps, meaning corresponding residues 

were not located on the shallow protein surface. Specifically, the P-loop residues with residue 

index from 118 to 125 form the catalytic active site of DUSP3, which was not exposed to the 

dipeptides as much as residues on the shallow surface but was critical for phosphate binding. It 

can be seen from the heatmap with the distance cut-off of 2 Å that the three phosphorylated 

dipeptides interacted with the residue 118 with significantly higher possibilities than other AA 

analogues, but almost no interactions with other P-loop residues were observed at this cut-off. As 

the cut-off values increased to 3, 4, and 5 Å, interactions of phosphorylated dipeptide were 

observed with more P-loop residues. Though the possibilities of such interactions that were key to 

the catalytic function of DUSP3 were not significantly higher than those of other AA analogues, 

it was due to the relatively smaller contact area of the binding pocket and the calculated interaction 

possibilities could still be useful for re-scoring of docking peptides. 

Using the ZDock program, 2000 binding modes of the ERK peptide to DUSP3 were 

generated. As shown in Figure 14, the correlation coefficient R between the docking score from 

ZDock and the RMSD compared to the peptide’s crystal structure is only 0.017, indicating the 

inaccuracy of ZDock scoring and ranking. After using our equations to re-calculate the scores and 

re-rank the predicted modes, it is encouraging that the correlation coefficient R increased to 0.217. 

Though this correlation is still not strong, it can give us several top-ranked binding modes which 



40 

are very close to that of the crystal structure. There are many ways to calculate the re-scoring 

parameter S in the equation (2). Currently we are still exploring the best way to re-scoring, and 

future work is needed to incorporate the MM/PBSA predicted binding energy into re-scoring. 

Figure 13 The correlation between the docking score and RMSD to the 

crystal structure before and after re-ranking with interaction possibilities 
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4.0 Conclusions 

We applied a set of molecular modeling techniques to decipher the black box of how YIV-

906 inhibit DUSPs and applied our newly developed RR algorithm to simulate the interactions 

between each type of amino acid and each residue of one of the target proteins, DUSP3. It is 

encouraging that our large-scale molecular modeling study successfully linked the 

pharmacokinetic metabolism of YIV-906 to its pharmacodynamic effect.  We demonstrated that 

sulfate moieties (produced through the human sulfation metabolism) and carboxyl moieties (either 

intrinsic or produced through the human glucuronidation metabolism) of the top-ranked ligands 

from YIV-906 act as the endogenous phosphate mimics. Even though all four ingredients of YIV-

906 contribute to the inhibitory effect on DUSPs, the S ingredient plays a dominant role. 

Specifically, the sulfation and glucuronidation human metabolites of baicalin and baicalein from 

the S ingredient are identified as key components of the herb formulation without which the 

cancer-cell-death related ERK-DUSP pathway is less likely to be modulated. Most importantly, 

the occupancy of the ligands or metabolites at the negative charge centers of the active sites of 

DUSPs undermines the interaction between DUSPs and ERK1/2  and the resulting elevated 

phosphorylated ERK1/2 level may trigger apoptosis and autophagy in cancer cells.[74] More 

efforts should be made to investigate the pharmacokinetics profile and other pharmacological 

targets of YIV-906 and to explore how different compounds in YIV-906 work synergistically. 

To further study the protein-protein interactions between DUSP3 and ERK, the heatmaps 

describing possibilities of each type of AA interacting with the residues of DUSP3 were obtained 

with the RR mapping algorithm. By incorporating the interaction probabilities as new scoring 

arguments, the correlation coefficient between the docking score and the RMSD values compared 
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to the peptide’s crystal structure has been improved from 0.017 to 0.217. After re-ranking, several 

predicted binding modes that were close to the crystal structure were ranked on the top. It is also 

necessary to apply our RR mapping method to more proteins of interest with benchmark or 

mutagenesis data to validate and optimize our protocol for future use in other protein systems. 

Nevertheless, our multiscale modeling work well characterized the YIV-906 chemicals binding to 

DUSPs and provided useful hints on rational design of high potent antagonists, either small 

molecules or therapeutic peptides, targeting the negative regulators of ERK1/2.  
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Appendix A Supplementary Figures for DUSP-YIV906 Protein-Ligand Interactions 

 

 

Appendix Figure 1 Sequence alignment for DUSP3, DUSP5, and DUSP7 

Appendix Figure 1(a) gives sequences of these DUSPs. Appendix Figure 1(b) gives the 

aligned 3D structures (shown in cartoon) from two different views. DUSP3, DUSP5, and 

DUSP7 are colored orange, gray, and yellow, respectively. DUSP5 and DUSP7 are quite 

similar as typical DUSPs. The atypical DUSP3 has a longer loop near the catalytic center’s 

P-loop compared to DUSP5 and DUSP7. This structure difference is marked with the 

dashed red circle and the sequences are marked with the dashed red rectangle. The extra 

loop and alpha-helix at the N terminal of DUSP3 is marked with a blue circle. The 

corresponding sequence difference is marked with a blue rectangle. 
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Appendix Figure 2 Validation of the Glide docking protocol by docking 

the co-crystal ligand, STT, back to the binding pocket of DUSP3 

The shown binding mode of redocked STT is the top 1 among redocking 

results with both the lowest docking energy and the lowest RMSD to 

STT’s crystal structure. DUSP3 is represented as gray cartoon. STT in the 

crystal structure is shown as sticks and colored by element with the 

magenta carbon. The docked-back STT is shown as sticks and colored by 

element with green carbon. 
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Appendix Table 1 Individual energy terms for DUSP3-ligand binding free energy 

calculations using the MM-PBSA method (energies in kcal/mol) 

Ligands with a positive value of ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨  are shown in red and considered as false 

positives of docking screening. 

 

LIGAND 

 

∆𝑬𝒗𝒅𝑾
𝒈𝒂𝒔

 

 

∆𝑬𝒆𝒆𝒍
𝒈𝒂𝒔

 

 

∆𝑮𝒑
𝑺𝒐𝒍 

 

∆𝑮𝒏𝒑
𝑺𝒐𝒍 

 

𝑻∆𝑺 ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 

M1 -37.14±0.06 -204.79±0.44 201.80±0.52 -3.25±0.01 -21.44±0.06 -21.93±0.11 

M2 -33.32±0.28 -210.73±1.51 189.46±1.63 -2.94±0.01 -20.88±0.04 -36.65±0.33 

M3 -32.86±0.10 -196.53±0.72 186.35±0.75 -2.88±0.01 -20.17±0.04 -25.74±0.10 

Appendix Figure 3 Fluctuational patterns of Root-Mean-Square Deviations along the time course 

of MD simulations for DUSP3-ligand complexes 

Black broken lines represent the RMSD of backbone heavy atoms of whole target proteins. 

Orange broken lines represent the RMSD of backbone heavy atoms of only secondary structures 

of target proteins. Blue broken lines represent the RMSD of least-square (LS) fitting ligands. 

Turquoise broken lines represent the RMSD of non-LS fitting ligands. non-LS fitting RMSDs 

were directly calculated for the ligand after the receptor was aligned to the reference structure.   
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M4 -29.05±0.18 15.56±0.44 10.77±0.48 -2.29±0.02 -17.08±0.01 12.08±0.44 

M9 -34.97±0.28 17.19±0.46 12.70±0.24 -2.94±0.02 -18.37±0.06 10.34±0.28 

M13-1 -42.92±0.11 -131.10±0.70 130.13±0.49 -3.07±0.00 -21.47±0.02 -25.50±0.27 

M14-3 -32.91±0.14 -220.08±0.25 225.39±0.34 -2.49±0.01 -19.43±0.03 -10.66±0.15 

M15-1 -33.80±0.04 -143.19±0.42 142.85±0.39 -2.19±0.01 -18.80±0.03 -17.52±0.03 

M16-1 -35.39±0.25 -185.69±0.39 181.57±0.75 -3.00±0.02 -20.35±0.04 -22.16±0.18 

M16-2 -29.54±0.34 -215.53±0.74 192.57±0.26 -2.77±0.01 -20.64±0.06 -34.62±0.31 

M17-2 -28.53±0.17 -173.51±1.04 168.17±1.16 -2.66±0.01 -19.22±0.02 -17.31±0.12 

M18 -40.32±0.13 -178.98±1.50 179.97±1.31 -3.07±0.00 -20.54±0.05 -21.85±0.38 

M19-1 -38.92±0.16 -205.09±1.50 204.75±1.08 -3.10±0.02 -21.19±0.03 -21.16±0.47 

M19-2 -33.96±0.27 -161.23±0.90 156.47±0.96 -2.67±0.01 -19.73±0.00 -21.66±0.11 

M21 -38.75±0.23 -202.83±0.89 201.36±0.43 -3.27±0.02 -21.79±0.02 -21.69±0.37 

M22-1 -34.62±0.40 -157.37±0.83 157.82±0.50 -2.48±0.01 -19.33±0.05 -17.32±0.53 

M22-2 -32.09±0.55 -196.66±0.79 201.12±0.77 -2.77±0.01 -19.16±0.02 -11.24±0.26 

M23-1 -32.49±0.11 -133.29±0.32 130.76±0.31 -2.00±0.01 -18.08±0.04 -18.94±0.20 

M24 -38.25±0.26 -182.81±0.56 187.99±0.21 -3.42±0.00 -21.72±0.02 -14.78±0.20 

M25 -35.28±0.06 -223.38±1.54 224.06±1.32 -3.39±0.01 -20.85±0.04 -17.14±0.40 

M27 -31.93±0.11 -125.28±0.23 122.70±0.40 -2.07±0.01 -18.35±0.02 -18.22±0.34 

MOL000415 -27.99±0.16 -38.53±0.13 53.77±0.45 -2.74±0.02 -18.03±0.05 2.54±0.37 

MOL000429 -12.85±0.23 -103.72±0.28 115.33±0.27 -0.97±0.01 -15.68±0.03 13.47±0.23 

MOL000783 -32.33±0.05 -219.76±1.47 228.59±1.06 -3.02±0.00 -19.52±0.01 -6.99±0.47 

MOL001468 -10.54±0.14 -365.51±1.26 324.57±1.03 -0.80±0.00 -16.52±0.00 -35.76±0.20 

MOL001841 -18.09±0.17 -156.91±0.49 139.78±0.31 -1.21±0.00 -16.26±0.01 -20.17±0.33 



50 

MOL001886 -11.43±0.16 -303.55±0.27 281.52±0.53 -0.88±0.00 -16.48±0.00 -17.87±0.37 

MOL001926 -31.83±0.25 35.07±0.37 3.94±0.68 -2.94±0.02 -18.34±0.11 22.57±0.67 

MOL001931 -15.19±0.06 -162.05±0.74 143.27±0.80 -0.82±0.00 -16.53±0.02 -18.25±0.20 

MOL001932 -39.81±0.10 -21.07±0.51 42.81±0.57 -3.17±0.01 -19.81±0.07 -1.43±0.05 

MOL003050 -19.44±0.21 -168.83±0.49 150.34±0.43 -1.42±0.01 -17.17±0.03 -22.18±0.16 

MOL003686 -24.14±0.14 -41.26±0.52 47.35±0.38 -1.99±0.03 -16.71±0.07 -3.34±0.28 

MOL004860 -46.46±0.08 -46.33±0.53 67.07±0.16 -4.21±0.02 -22.80±0.09 -7.13±0.25 

MOL004900 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

MOL004982 -15.47±0.29 -167.69±0.28 154.75±0.07 -0.94±0.00 -16.05±0.01 -13.30±0.17 

MOL009092 -41.18±0.08 -28.05±0.19 52.82±0.32 -3.57±0.01 -19.67±0.06 -0.31±0.18 

MOL012240 -20.73±0.09 -14.85±0.64 30.85±0.37 -1.64±0.00 -15.68±0.03 9.32±0.29 

MOL012942 -35.69±0.17 -17.29±0.28 51.82±0.16 -2.92±0.00 -17.83±0.05 13.74±0.11 

MOL012951 -28.20±0.30 -175.48±0.64 165.28±0.45 -1.76±0.00 -18.56±0.02 -21.61±0.15 
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Appendix Figure 4 RMSD ~ Simulation Time (RST) plots for DUSP5-ligand complexes.  

Legend description is the same with Appendix Appendix Figure 2. 
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Appendix Table 2 Individual energy terms for DUSP5-ligand binding free energy 

calculations using the MM-PBSA method (energies in kcal/mol) 

Ligands with a positive value of ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 are shown in red and considered as false 

positives of docking screening. 

 

LIGAND 

 

∆𝑬𝒗𝒅𝑾
𝒈𝒂𝒔

 

 

∆𝑬𝒆𝒆𝒍
𝒈𝒂𝒔

 

 

∆𝑮𝒑
𝑺𝒐𝒍 

 

∆𝑮𝒏𝒑
𝑺𝒐𝒍 

 

𝑻∆𝑺 ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 

M4 -22.55±0.06 -102.18±0.54 114.52±0.34 -1.87±0.01 -15.69±0.02 3.61±0.40 

M10 -26.31±0.35 -141.49±0.41 135.52±0.31 -1.48±0.01 -16.99±0.02 -16.77±0.27 

M13-1 -35.36±0.06 -213.23±1.10 210.57±1.12 -2.32±0.00 -19.29±0.03 -21.04±0.22 

M14-1 -31.18±0.19 -293.41±1.09 280.59±1.37 -2.31±0.00 -19.66±0.02 -26.65±0.16 

M16-1 -33.61±0.23 -152.90±0.38 155.01±0.29 -2.51±0.01 -19.43±0.04 -14.59±0.25 

M18 -33.63±0.09 -243.16±3.08 240.33±2.91 -2.26±0.02 -19.35±0.04 -19.37±0.25 

M22-1 -27.76±0.00 -184.87±0.53 178.28±0.60 -1.69±0.00 -18.06±0.06 -17.98±0.33 

M23-1 -24.31±0.28 -122.63±0.82 115.41±0.61 -1.25±0.01 -16.43±0.05 -16.35±0.32 

M27 -23.91±0.04 -127.68±0.63 120.39±0.77 -1.24±0.01 -16.49±0.02 -15.96±0.23 

MOL000065 -9.88±0.20 -214.08±0.96 190.86±0.60 -0.77±0.00 -15.95±0.03 -17.92±0.27 

MOL000219 -12.82±0.29 -159.96±0.32 141.84±0.51 -0.69±0.00 -14.99±0.01 -16.64±0.09 

MOL000513 -12.92±0.37 -160.52±0.93 141.05±0.66 -0.82±0.00 -15.18±0.03 -18.03±0.23 

MOL001468 -11.13±0.32 -218.97±1.93 201.49±1.49 -0.75±0.00 -15.61±0.01 -13.74±0.33 

MOL001841 -16.92±0.23 -167.59±0.32 150.31±0.48 -0.91±0.00 -15.53±0.03 -19.58±0.22 

MOL001886 -10.23±0.13 -290.37±0.57 267.28±0.66 -0.76±0.00 -15.73±0.01 -18.34±0.17 

MOL001931 -11.55±0.04 -162.94±0.40 143.11±0.38 -0.67±0.00 -15.69±0.01 -16.36±0.26 

MOL004480 -8.21±0.42 -190.79±0.46 160.96±0.56 -0.24±0.00 -14.04±0.01 -24.24±0.57 

MOL004982 -14.38±0.11 -185.51±0.32 166.34±0.29 -0.82±0.00 -15.80±0.01 -18.57±0.13 

MOL012950 -24.69±0.29 -177.21±0.07 162.16±0.42 -1.40±0.00 -17.62±0.03 -23.52±0.57 

MOL012951 -24.78±0.07 -123.07±0.72 111.92±0.86 -1.29±0.01 -17.14±0.05 -20.08±0.13 
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Appendix Figure 5 RMSD ~ Simulation Time (RST) plots for DUSP7-ligand complexes 

Legend description is the same as Appendix Appendix Figure 2. 
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Appendix Table 3. Individual energy terms for DUSP7-ligand binding free energy 

calculations using the MM-PBSA method (energies in kcal/mol)  

Ligands with a positive value of ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 are shown in red and considered as false 

positives of docking screening. 

 

LIGAND 

 

∆𝑬𝒗𝒅𝑾
𝒈𝒂𝒔

 

 

∆𝑬𝒆𝒆𝒍
𝒈𝒂𝒔

 

 

∆𝑮𝒑
𝑺𝒐𝒍 

 

∆𝑮𝒏𝒑
𝑺𝒐𝒍 

 

𝑻∆𝑺 ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 

M2 -28.05±0.01 -334.82±0.74 311.93±0.46 -2.57±0.02 -20.91±0.02 -32.60±0.27 

M4 -34.99±0.21 -229.22±2.09 223.36±1.39 -2.58±0.01 -20.10±0.05 -23.33±0.53 

M5 -28.56±0.44 -243.84±0.83 226.98±0.84 -2.34±0.01 -20.00±0.04 -27.76±0.24 

M13-1 -29.89±0.18 -345.54±0.56 321.20±0.57 -2.33±0.02 -20.10±0.05 -36.46±0.01 

M13-3 -21.43±0.20 -335.62±0.36 311.08±0.68 -1.62±0.00 -18.41±0.02 -29.18±0.21 

M14-1 -33.11±0.11 -251.07±1.06 256.44±1.43 -2.18±0.01 -18.56±0.02 -11.36±0.37 

M14-3 -27.75±0.06 -335.77±0.48 321.36±0.47 -1.88±0.01 -18.76±0.20 -25.27±0.30 

M17-1 -29.85±0.13 -171.55±0.17 193.87±0.01 -2.38±0.01 -18.09±0.00 8.19±0.32 

M17-2 -29.09±0.16 -212.70±0.87 204.59±0.71 -2.24±0.01 -18.70±0.02 -20.74±0.35 

M18 -33.30±0.56 -340.89±0.60 323.14±0.70 -2.44±0.03 -20.73±0.09 -32.76±0.49 

M19-1 -33.38±0.26 -330.13±0.48 326.51±0.16 -2.69±0.01 -19.66±0.06 -20.04±0.13 

M22-1 -25.91±0.32 -211.58±1.35 203.09±1.13 -2.09±0.03 -18.27±0.10 -18.22±0.30 

MOL000061 -11.08±0.14 -69.25±0.29 72.11±0.54 -0.71±0.00 -14.84±0.01 5.91±0.31 

MOL000065 -9.96±0.20 -278.89±0.89 252.88±0.72 -0.81±0.00 -16.03±0.03 -20.76±0.33 

MOL000771 -12.49±0.33 -230.19±0.68 209.35±0.12 -0.92±0.01 -14.86±0.03 -19.39±0.33 

MOL001468 -8.98±0.22 -397.56±1.04 370.55±0.69 -0.73±0.00 -15.85±0.02 -20.86±0.22 

MOL001737 -15.32±0.19 -218.12±0.20 201.21±0.19 -1.01±0.01 -15.24±0.02 -18.00±0.17 

MOL001801 -14.80±0.04 -198.65±0.40 184.16±0.10 -0.82±0.00 -15.26±0.01 -14.84±0.32 

MOL001841 -12.98±0.06 -230.24±0.85 211.94±0.45 -1.13±0.00 -15.43±0.03 -16.98±0.43 

MOL001886 -10.45±0.29 -376.06±1.16 354.42±1.13 -0.81±0.00 -15.99±0.03 -16.92±0.22 

MOL001931 -11.80±0.02 -209.91±0.28 189.50±0.35 -0.79±0.00 -15.68±0.02 -17.32±0.11 

MOL004480 -5.18±0.32 -238.60±0.46 209.04±0.17 -0.25±0.00 -14.10±0.01 -20.89±0.12 

MOL012951 -26.83±0.17 -185.28±0.63 175.53±0.57 -1.70±0.02 -17.81±0.03 -20.47±0.15 
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 Appendix Figure 6 Common substituent 

groups of advantageous DUSP5 ligands from 

YIY-906 

The protein DUSP3 is represented as surface 

with the P-loop colored blue and the D-loops 

colored yellow. Ligand binding modes are 

demonstrated using the representative 

conformations of MD simulations. 

Specifically, sulfate ions in the crystal 

structure of DUSP5 are shown in the right 

corner of Panel (A). Common substituent 

groups (-SO4, -PO4, and -COOH) are marked 

with dashed red circles. (A) the binding of 

phosphate groups and sulfate groups in the 

protein’s active pocket; (B) the binding of 

carboxyl groups of glucuronic acids on YIV-

906 metabolites in the protein’s active site; 

(C) the binding of carboxyl groups of original 

YIV-906 chemicals in the protein’s active site. 

The perspective of each ligand-protein 

complex was slightly adjusted to achieve a 

clearer view. The surface transparency was 

set to 60% to show the parts of ligands which 

stick into the pocket but are concealed by 

nearby surface.  
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Appendix Figure 7 Common substituent 

groups of advantageous DUSP7 ligands from 

YIY-906 

Specifically, the phosphate ion in the crystal 

structure of DUSP7 are shown in the right 

corner of Panel (A). Other captions are the 

same as that of Appendix Appendix Figure 6. 
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Appendix Figure 8 Comparison of the binding modes predicted by docking 

and MD simulations for DUSP3 

For each DUSP3-ligand complex, the representative MD snapshot, which has 

the smallest RMSD to the average structure of collected MD frames, was 

selected and aligned to the crystal structure. The receptor is represented using 

golden and marine blue cartoons for the docking and MD modes, respectively. 

The common ligands are shown as sticks using the same color scheme.  
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Appendix Figure 9 Comparison of the binding modes predicted by docking 

and MD simulations for DUSP5  

For each DUSP5-ligand complex, the representative MD snapshot, which has 

the smallest RMSD to the average structure of collected MD frames, was 

selected and aligned to the crystal structure. Other captions are the same as 

that of Appendix Appendix Figure 8. 
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Appendix Figure 10 Comparison of the binding modes predicted by docking 

and MD simulations for DUSP7 

For each DUSP7-ligand complex, the representative MD snapshot, which has 

the smallest RMSD to the average structure of collected MD frames, was 

selected and aligned to the crystal structure. Other captions are the same as 

that of Appendix Appendix Figure 8. 
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