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New bio-inspiration, micro-/nanomaterials, and micro-/nanomanufacturing processes

offer unprecedented opportunities in engineering optoelectronic substrates for novel pho-

ton management strategies, difficult-to-realize material–property combinations, and new

multi-functionality. In the past decade, discoveries in the multi-functional properties of

micro-/nanostructured surfaces have led to a renaissance of activity in surface engineering,

which have transformed substrates for a wide variety of rigid and flexible optoelectronic

devices.

The most important properties are related to photon management, such as high trans-

parency, antireflection, and haze control. Transparency is the most important property as

this determines the amount of light that either goes into or out of the active region of the

device. In addition, haze control is an important property for various devices. Displays

and touch screens require low optical haze, as high haze can contribute to the blurriness

of text and images viewed. In contrast, applications such as solar cells and light emitting

diodes (LEDs) would benefit from substrates with both high transparency and high haze.

Substrates with high haze can increase how much light scatters into or out of the photoac-

tive layers and may increase the solar cell power conversion efficiency and display or LED

extraction efficiency, respectively.

In addition to photon management properties, a wide variety of other properties are

important that are related to the reliability of the optical properties under a variety of

stressors. This includes wettability-related properties such as anti-soiling, self-cleaning,

stain-resistance, fog resistance, where it is beneficial for the substrate to maintain its opti-

cal properties after exposure to various particulates or liquids. Durability under abrasion,

hydrostatic pressure, and repeated bending are also important. Finally, properties such as

optical switching may also be useful for various applications.
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In this study, we summarize our recent research progress in the micro-/nanostructuring

of various optoelectronic substrate materials while discussing sources of bio-inspiration,

advances in micro-/nanomanufacturing and machine learning strategies we used for fabri-

cation of multi-functional optoelectronic substrates. These engineered surfaces have broad

application to a wide variety of substrates for applications such as displays, solar cells,

smartphones, light emitting diodes (LEDs), and e-paper, as well as new wearables, RF-ID

tags, artificial skin, and medical/health sensors.
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1.0 Introduction

Optoelectronic substrates are a critical component in a wide variety of optoelectronic

devices such as displays, solar panels, smart phones, tablets, e-paper, touchscreens, and

lighting. These substrates must allow light to pass through with high efficiency, protect the

device from the ambient environment, and offer additional multi-functionality. Flexible

optoelectronic substrates are also needed for emerging flexible versions of the aforemen-

tioned optoelectronic devices, as well as new wearables, RF-ID tags, artificial skin, and

medical sensors. Glass is most commonly used for optoelectronic substrates, but there also

is great interest in new types of flexible glass or plastics and paper.

Over the past decade, bio-inspiration from various natural surfaces as well as new ad-

vances in micro-/nanomanufacturing have led to a renaissance of activity in optoelectronic

substrate research (Fig. 1). In this study, we summarize recent research progress while dis-

cussing sources of bio-inspiration, advances in micro-/nanomanufacturing, and challenges

and prospects related to optoelectronic substrates and their integration into various op-

toelectronic applications. First, we discuss some of the photon management properties

that are relevant to optoelectronic substrates such as transparency and haze. Next, we

discuss some of the functionalities that are desirable for maintaining optical properties in

various environments such as anti-soiling, anti-fouling, self-cleaning, stain-resistance, and

anti-fogging. We discuss a variety of natural surfaces that have served as bio-inspiration

for providing these optical properties and functionality, such as insect eyes, insect wings,

and lotus leaves.

Finally, we discuss the durability of these various optoelectronic substrates. We discuss

how the optoelectronic substrate must maintain its properties and functionality in the

presence of various stressors such as bending, abrasion, condensation, and pressure.
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1.1 Bio-inspiration

Over time, various animals, insects and plants have developed unique microscale or

nanoscale topography and surface chemistry for specific functionalities that help them

survive. Biologically evolved surfaces exemplify various functionalities of nano- and mi-

croscale features including anti-reflection, camouflage, anti-hazing, liquid repellency, light

absorption, and anti-icing. These natural surfaces have inspired research into how these

surface provide for these desired functionalities and utilized this research to demonstrated

various synthetic surfaces with novel functionalities.

Properties

Functionality Applications

Bio-Inspiration

Optoelectronic 

Substrates

Figure 1 Optoelectronic substrates includes glass, paper, and plastics that are bio-inspired by examples
from nature such as the moth eye [104], glass wing butterfly [171] and cicada wing [17]. Various properties
are valued such as high transparency and high haze [69, 64], high transparency and low haze [67, ?],
high water contact angle [65] as well as functionalities such as self-cleaning [65], anti-fogging [150], and
stain resistence [199]. Optoelectronic applications include traditional rigid solar cells, electronic devices,
electronic paper, and touch screens as well as emerging flexible versions of these devices as well as
wearables and health/medical sensors.
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1.2 Photon Management Properties

The photon management properties of transparency and haze are important with re-

gard to optoelectronic substrates. High transparency substrates are essential for optoelec-

tronic applications to increase the amount of light going into or coming out of the device.

Maximizing the transparency is equivalent to minimizing the reflection for nonabsorbing

materials. Thus, optoelectronic materials are often described in terms of their antireflect-

ing properties, which may be needed across a broad range of wavelengths as well as a

wide range of incidence angles.

Optical haze is another important characteristic of an optoelectronic substrate and

defined as the percent of transmitted scattered light to the total transmission. Displays and

touch screens require low haze [227, 52, 77, 124], which provides for clarity of text and

images. On the other hand, substrates with high haze can increase how much light scatters

into or out of the photoactive layers and may increase the power conversion efficiency or

extraction efficiency of solar cells [134] and LEDs[71], respectively.

1.3 Wetting Properties and Multi-Functionality

Optoelectronic devices must maintain their performance in various environments and

thus a variety of functionalities related to maintaining their optical performance are of-

ten desired. These functionalities include anti-soiling, anti-biofouling, self-cleaning, stain-

resistance, anti-icing, and anti-fogging. Soiling refers to the accumulation of dust and

other airborne particulates which reduce the transmission of light through the substrate

into or out of the device. Anti-soiling surfaces reduce the adhesion of these particulates

onto the surface. Microbes can adhere to surfaces and form biofilms, which can lead

to structural or functional issues in the surface or contribute to the transmittance of in-

fectious diseases. Anti-biofouling surfaces reduce the adhesion of these microorganisms.

Self-cleaning is also often useful, where any dust, particles, or organisms, may be easily

removed upon the application of of heat, water or solvent. Stain-resistance functionality

3



refers to the ability of the surface to resist discoloration from exposure to different liquids

or fingerprint marks from touching or swiping. Anti-icing surfaces inhibit the formation

of ice or frost which can reduce visibility. Finally, there is also interest in anti-fogging

functionality where the condensation of water is hindered. Small droplets of water may

scatter light and inhibit visibility. These functionalities are often closely correlated with

the wetting characteristics of the surface.

1.4 Durability

Optoelectronic substrates typically form a barrier between the optoelectronic device

and the environment. This is of great importance to optoelectronic devices, which may

degrade in the presence of water and oxygen vapor molecules. The environment may also

include the impact of salts and ultraviolet illumination. This is of particular importance to

optoelectronic devices made of organic materials or perovskites, which tend to have poor

stability.

In addition to effects on the optoelectronic device, various stressors may also effect the

surface properties and functionality. Elevated temperatures, sea water, UV-light, outdoor

exposure, acidic/alkali environments, and mechanical effects may degrade performance

through the loss of optical properties or other functionalities. New strategies are being

investigated for improving the durability of these multi-functional surfaces.

1.5 Choice of Material

Glass is ubiquitous as a rigid optoelectronic substrate due to its high optical trans-

parency, low cost, and moisture barrier properties. Various types of glass such as soda

lime, fused silica, lead, borosilicate glass, and aluminosilicate glass are typically used for

optoelectronic applications. New types of smaller thickness glass, which not only reduce

the weight of the glass, but decrease its bending stiffness so that that it can be flexed are

4



being researched [50]. Plastics and paper are also being researched for flexible optoelec-

tronic applications, which not only include flexible versions of traditional rigid applications

but new types of biomedical optoelectronic applications.

Plastics exhibit a high degree of mechanical flexibility and durability, and can be made

transparent and integrated with low cost roll-to-roll manufacturing processes. Plastics are

very attractive for industrial use due to their light weight and low prices. Semicrystalline

polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) polymers are the

two main transparent flexible substrates used for flexible optoelectronics. These plastics

exhibit good chemical resistance and high melting point, though manufacturing processes

are still typically constrained to less than 200 ◦C.

Recently, paper substrates have attracted interest of both industry and researchers.

Paper is an environmental-friendly and low cost material that can be made in mass quan-

tities with roll-to-roll fabrication process[207]. Also, paper is flexible and lightweight.

However, the major obstacle to the use of paper in optoelectronics is that paper is gen-

erally not transparent. Paper is typically comprised of cellulose fibers with diameters

of 10 to 50 µm and lengths of several millimeters. The cell wall of a cellulose fiber

consists of a bunch of microfibrils (5 to 50 nm in diameter and several micrometers in

length). The microfibrils themselves are composed of self-assembled elementary fibrils,

with a diameter of 3.5 nm [62]. This microscale surface roughness and opaqueness of

cellulosic papers have limited its incorporation into optoelectronic applications. There is a

great interest in fabricating transparent paper through the use of microfibrils or nanofib-

rillated cellulose as well as surface roughness reduction. [147, 38, 41, 160, 210, 187,

166, 143, 206, 78, 169, 144, 87, 208, 225, 115, 140, 142]. Recently, Ha et al. reviewed

the application of paper in a wide variety of electronic and optoelectronic devices.[62]

Paper may be used in photovoltaics, as an antireflection coating [61, 60] or as a substrate

[34, 2, 82, 189, 110, 80, 98, 228, 190, 105]. Paper may also be used in other optoelec-

tronic applications such as transparent conductive electrodes [78, 80, 33, 194, 111, 162,

156, 153, 100, 101, 200, 43, 159, 75, 36, 123, 163, 205, 37, 54, 141, 3, 191, 204], OLEDs

[211, 5, 193, 56, 137, 158, 230, 130, 183, 146, 108] and touch screens [33, 128].
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2.0 Fundamental Performance Limits and Haze Evaluation of Metal Nanomesh

Transparent Conductors

In this chapter, we comprehensively evaluate the optical transmission, sheet resistance,

and haze of metal nanomeshes to determine their fundamental performance limits as

transparent conductors through both simulations and experiments. Numerical and ana-

lytical simulations are used to evaluate the tradeoffs and correlations between these three

figure of merits [44].

2.1 Introduction

Transparent conductors are an important component in a variety of optoelectronic ap-

plications, such as solar cells[216, 184, 95], displays, touch screens, and light-emitting

diodes (LEDs)[107, 172, 112]. Recently, many inexpensive and alternative flexible trans-

parent conductors have been demonstrated, including metal nanowires,[24, 18, 28], car-

bon based materials[6, 76, 27], and metal grids and nanomeshes,[132, 49] as well as

various hierarchical structures [106, 48, 45, 122]. Many of these alternative transparent

conductors have demonstrated comparable or superior performance to indium tin oxide

(ITO) in terms of optical transmission and sheet resistance.

Most research on alternative transparent conductors has focused on evaluating and

understanding the performance limits and tradeoffs in terms of optical transmission and

sheet resistance, such as the study on metal nanowire films [47, 46, 9]. However, aside

from these two figures of merit, haze, which describes the amount of transmitted light

that is scattered, is another important figure of merit for transparent conductors that has

largely been unstudied. In optoelectronic devices, haze determines how much light couples

into or out of the underlying photoactive layers. High haze, for instance, is important

for applications such as solar cells and LEDs, since more light can couple into and out

of photoactive layers, respectively. [211] Yet, there has only been one limited study on
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the haze of nanowire films so far, which compared the properties of two diameters of

nanowires [157]. It is still not clear how to control haze in nanowire films, because the

haze also depends on the nanowire film spacing, uniformity, alignment, and ordering, and

there tends to be much randomness in these films.

In contrast to random metal nanowire films, we demonstrated metal nanomeshes that

may be fabricated with well-defined morphology and high uniformity over large areas

in any metal that can be deposited. [49] These metal nanomeshes have demonstrated

comparable performance to ITO. The ability to fabricate metal nanomeshes with well-

defined pitch, hole diameter, and thickness, translates to the engineering of particular

optical properties such as transmission and haze.

In this chapter, we evaluate the optical transmission, sheet resistance, and haze of

metal nanomeshes as transparent conductors. We study these properties comprehensively

through simulations for all nanomeshes with pitch and diameter less than 4000 nm and

a thickness of 50 nm. The fundamental performance limits of these three properties are

evaluated, and the tradeoffs between these three figures of merit as well as the correlations

between these properties are discussed. In particular, a strong correlation between haze

and transparency is found in nanomeshes. Metal nanomeshes with high transparency tend

to have low haze and vice versa. Furthermore, we fabricate Cu nanomeshes with a range

of geometries to verify our simulation results. The haze of metal nanomeshes may be

primarily explained by Fraunhofer diffraction theory, and the spectral dependence of haze

may be explained by Mie scattering from the metal regions between holes. Here, we focus

on Cu nanomeshes, though the results of our studies should also apply to other metals.

These results should also apply to all types of grating or grid-like structures, in which the

metal structure has a well-defined 2D lattice.

2.2 Results and Discussion

Figure 2 shows a summary of our simulation results for metal nanomeshes. Figure 2(a)

shows a schematic of the metal nanomesh, which consists of a metal thin film with cylindri-
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cal holes patterned in a hexagonal lattice. The morphology of metal nanomeshes is defined

by the pitch of the hexagonal array a, the diameter of the holes d, and the thickness of the

metal t. Figures 2(b), (c), and (d) show the sheet resistance Rs, total transmission at wave-

length λ = 550 nm, and haze at λ = 550 nm, respectively, as a function of metal nanomesh

pitch a and hole diameter d for nanomeshes with thickness t = 50 nm. The pitch a and

hole diameter d range from 600 to 4000 nm, with d < a to ensure continuity of the metal.

The sheet resistance shown in Fig. 2(b) was obtained through finite element analysis sim-

ulations and calculated as the average of Rs,xx and Rs,yy, where Rs,xx and Rs,yy are the

sheet resistance measured in x- and y-direction, respectively. The simulations assume the

bulk resistivity of Cu (ρ = 1.68 × 10−8 Ω-m) and do not consider the polycrystallinity of

the Cu or surface scattering of electrons. Thus, Rs should simply decrease linearly with

increasing thickness in these simulations.

The optical total transmission in Fig. 2(c) accounts for the light scattered into all angles

(both non-scattered and scattered) and will be referred to as the transmission, unless

otherwise specified. The optical transmission was simulated by the finite-difference time-

domain method with periodic boundary conditions.[213] Cu films are essentially opaque

when thicker than 30 nm, [47] so the Cu nanomesh transmission should become constant

for thicknesses over 30 nm. The transmission is averaged for incident light polarized along

the x- and y-direction with 550 nm wavelength. We find that a pitch greater than 1000

nm is needed for achieving transmission over 80%.

The haze H shown in Fig. 2(d) is defined as

H =
forward scattered light

total transmission
× 100%, (2.1)

where the total transmission is composed of forward non-scattered light and forward scat-

tered light. The haze is computationally investigated by calculating the analytical Fraun-

hofer diffraction pattern of metal nanomeshes, where the metal nanomeshes are an infinite

hexagonal array of cylindrical holes in an optically opaque film. The Fraunhofer diffraction

pattern is calculated by sampling the diffraction pattern of a single hole (Bessel function of

the first kind) at the k-points associated with the reciprocal lattice of the two-dimensional

hexagonal hole lattice. The (0, 0) diffraction mode is considered the forward non-scattered
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Figure 2 Simulated metal nanomesh properties. (a) Metal nanomesh schematic. The metal nanomesh is
defined by pitch a, hole diameter d, and thickness t. Contour plots of (b) sheet resistance Rs of copper
nanomeshes, (c) transmission T (at λ = 550 nm), and (d) haze H (at λ = 550 nm) as a function of
pitch a and hole diameter d for thickness t = 50 nm.
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Figure 3 Diffraction patterns of different metal nanomeshes with (a) a = 3500 and d = 3200 nm and
(b) a = 1400 and d = 1200 nm. The color scale shows light intensity normalized to the (0, 0) order
diffraction mode.

light, while the rest of the modes are considered forward scattered light. The haze calcu-

lated from this definition for the metal nanomeshes discussed in this paper is the same as

the haze definition given by ASTM D1003, [26] where non-scattered forward light is con-

sidered as all transmitted light that deviates from the incident beam less than or equal to

2.5◦, and scattered forward light is transmitted light that deviates from the incident beam

greater than 2.5◦ (θ ≤ 2.5◦ and θ > 2.5◦, respectively). Amongst all the Cu nanomeshes ge-

ometries in our study, the largest pitch is 4000 nm, corresponding to the lowest non-(0, 0)

light mode diffracting at about 9◦ from the incidence angle. The lowest non-(0, 0) modes

diffract at angles less than 2.5◦ only for a14600 nm at λ = 550 nm.

Figure 3 plots the diffraction patterns of two different nanomeshes where θ is is plotted

on the radius from 0◦ to 90◦ and φ is plotted as the angle from 0◦ to 360◦. θ is the angle of

deviation from the incident beam, which is the z-axis, and φ is the angle of rotation around

the injection z-axis. Figure 3(a) plots the diffraction pattern of a nanomeshes with pitch

a = 3500 and d = 3200 nm and (b) plots the diffraction pattern with pitch a = 1400 and

d = 1200 nm. These two particular nanomeshes were fabricated experimentally, and their

experimental characterization will be discussed later and compared with simulation results

described here. For the nanomesh with pitch a = 3500 nm, there are 109 modes present
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Figure 4 Performance limits of haze, transmission, and sheet resistance achievable in Cu nanomeshes of
various hole diameters d and pitch a. The data shown is specifically for thickness t = 50 nm. (a) Range
of haze and transmission achievable by varying diameter and pitch. (b) Range of transmission and sheet
resistance.

due to the large pitch. Since the holes are large, the light is mainly diffracted into lower

order modes. As mentioned earlier, the (0, 0) diffraction mode is considered the forward

non-scattered light, while the rest of the modes are considered forward scattered light. For

this particular nanomesh, the analytical haze is 22% and from electrodynamic simulations,

the transmission is 71% (compared to 76% from a geometrical shadowing calculation).

Figure 4(b) plots the diffraction pattern of a metal nanomesh with pitch a = 1400 nm and

diameter d = 800 nm. Due to the smaller pitch, there are only 19 modes present. Since

the holes are small, the light is also strongly diffracted into higher order modes, such that

the haze is high. The analytical haze is 49% and from electrodynamic simulations and the

transmission is 41% (compared to 46% from just a geometrical shadowing calculation).

In order to study the correlation between transmission, haze and sheet resistance, we

evaluated the range of values that are achievable by different nanomesh geometries. Fig-

ure 4 plots the envelope or the range of transmission, haze, and sheet resistance for the

metal nanomeshes simulated (specifically, 600 nm ≤ a ≤ 4000 nm and 600 nm ≤ d ≤

4000 nm with d < a and t = 50 nm). For different thicknesses above t ≥ 30 nm, the

haze and transmission should be about the same as those shown, since the Cu regions are
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Figure 5 SEM pictures of Cu NMs with different geometries fabricated using microsphere lithography.
(a) a = 3500 nm, d = 3200 nm and (b) a = 1400 nm, d = 1000 nm. The thickness is 50 nm for both.

essentially opaque, and for increasing thicknesses, the sheet resistance should decrease

linearly. Figure 4(a) plots the range of transmission and haze (at λ = 550 nm). As can be

seen from this plot, the transmission and haze show a strong and nearly linear correlation

with each other. Nanomeshes with transmission ≥ 80 % have H ≤ 17% and nanomeshes

with H ≥ 80% have transmission ≤ 21%. Figure 4(b) shows the range of sheet resistances

and transmissions that are achievable. Cu nanomeshes with a higher transmission tend to

have a higher sheet resistance, but increasing the thickness of the metal nanomesh may be

utilized to decrease the sheet resistance without significantly sacrificing transmission. In

addition, a variety of hierarchical structures have been reported to dramatically decrease

sheet resistance and only slightly affect transmission.[79, 48, 45]

We next studied the haze and transmission properties of various experimentally fab-

ricated metal nanomeshes and compare them with simulation results. Cu nanomeshes of

a variety of pitches and hole diameters with thickness t = 50 nm were fabricated by mi-

crosphere lithography.[49] Figure 5 shows scanning electron microscope (SEM) pictures

of two representative Cu nanomeshes. The nanomeshes pictured have (a) a = 3500 and
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d = 3200 nm and (b) a = 1400 and d = 1000 nm, which are the same metal nanomeshes

discussed specifically in simulations (Fig. 3). We found that it is more difficult to fabri-

cate larger pitch (a = 3500 nm) nanomeshes with high uniformity and ordering, because

larger microspheres tend to have larger variance in diameter. The optical transmission

was measured using a PerkinElmer Lambda 750 spectrophotometer. The transmission was

measured with an integrating sphere, while the direct transmission was measured with a

2D optical detector. The transmission for the samples shown in Fig. 5(a) and (b) are 80%

and 45%, respectively at λ = 550 nm, compared with 71% and 41% from simulations dis-

cussed earlier. The hazes are 17% and 36%, respectively, at 550 nm (compared to 22% and

49%, respectively, from theory) and the sheet resistances are 20 and 1.5 Ω/sq, respectively

(compared to 2.6 and 0.9 Ω/sq, respectively, from simulations). The larger difference in

sheet resistance for the 3500 nm pitch nanomeshes may result from assumptions of bulk

resistivity and some of the nonuniformity in experimental fabrication.

We next compared the angular distribution of the transmission through these copper

nanomeshes with analytical calculations. The angular distribution of transmission through

the Cu nanomeshes was measured using a universal spectrometer (Cary 7000 Universal

Measurement Spectrophotometer) with a 5 mm by 5 mm square beam at λ = 550 nm

(Figure 6). The photodetector receives light in a 6-degree cone so that there is substantial

broadening on the light intensities measured and the haze calculated directly from these

plots has different values from that measured with an integrating sphere. The angular

distribution was measured at two azimuthal angles, φ = 0◦ and 180◦, at varying zenith

angle, θ = 0◦ to 90◦ to account for all transmission angles. Since the fabricated metal

nanomeshes consist of various grains where the individual crystallites are oriented ran-

domly, the diffraction modes are averaged over all φ and thus, may still be observed. In ad-

dition to experimental data, we also plot the analytical solution for the metal nanomeshes

assuming the size of the hole array is 5 by 5 in the case of the (a) larger pitch metal

nanomesh and 9 by 9 in the case of the (b) smaller pitch metal nanomesh. The analyt-

ical data is also smoothed with a Gaussian kernel with a bandwidth of 3◦ to account for

the photodetector receiving light over a 6-degree cone. As can be seen in Figure 6, the

experimental and analytical data match well. While the larger metal nanomesh consists
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5 by 5; smoothed with Gaussian kernel with bandwidth of 3 

(a) (b)

Figure 6 Angular distribution of transmission through the Cu NMs pictured in Figure 4. (a) a = 3500
nm, d = 3200 nm and (b) a = 1400 nm, d = 1000 nm. The thickness is 50 nm for both.

of many diffraction modes, most of the light is transmitted straight through into the (0,

0) mode. Since the higher modes are closely spaced together in angle and averaged over

all azimuthal angles, the individual peaks are not observable. In contrast, for the smaller

pitch metal nanomesh, the higher order diffraction modes can be observed. The experi-

mental measured data appears to have broader higher order modes due to imperfections

in the nanomesh crystal lattice (different sized holes, hole not being perfectly circular, off

lattice site holes, etc.). The hole spacing can be estimated from the width of the first-

order diffraction modes using Bragg’s law for a 2D hexagonal hole array. The first-order

diffraction, i.e. first-order Debye ring, takes place when:

a =
2× λ√

3× sin(θ)
(2.2)

The maximum and minimum θ within the Debye ring correspond to the minimum and

maximum of hole spacing a. The range of diffraction angle θ is obtained by peak fit. In

Figure 6(b), the center of the peak is at 23◦ and the full width at half maximum (FWHM)

is 6.7◦, with the 6◦ instrumental broadening subtracted. Therefore, the hole spacing is

estimated to be ranging from 1430 nm to 1890 nm. The estimate is a result of the sum of

all the aforementioned imperfection types.
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Figure 7 Range of (a) transmission and haze, and (b) sheet resistance and transmission from the fabricated
Cu NM samples.

Figure 7(a) shows the transmission and haze of all our fabricated Cu nanomeshes. By

varying the pitch and hole diameter of the Cu nanomeshes, a variety of hazes ranging

from 17% to 36%, and transmissions corresponding to 80% to 45% were measured. The

experimentally measured values and correlation match well with the computational results

in Fig. 4(a). Smaller hole diameters are required by the Cu nanomeshes for a higher haze,

which in turn compromise the transmission due to higher reflection and higher absorption.

Figure 7(b) shows the sheet resistance and transmission of the fabricated nanomeshes. Cu

nanomeshes with 80% transmission at 20 Ω/sq is demonstrated, which is comparable to

ITO. Similar to the simulation results shown in Fig. 4(b), there is also a tradeoff between

sheet resistance and transmission in the experimental data. The fabricated Cu NMs exhibit

higher sheet resistance than the simulation results at a fixed transmission, because our

simulations assume bulk resistivity, ignore surface scattering, and assume ideal geometry.

Finally, we studied the transmission and haze as a function of wavelength. Figure 8

shows the experimental and simulation results of (a) transmission and (b) haze as a func-

tion of wavelength for the same geometry nanomeshes that we have been discussing. The

experimentally fabricated Cu NMs have flatter transmission spectra compared with the

simulation results because of their less perfect periodicity. The calculated haze spectra

match the experimental results reasonably well for both geometries. The theoretical haze
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Figure 8 (a) Transmission and (b) haze as a function of wavelength for Cu nanomeshes with pitch
a = 1400, diameter d = 1000 nm, and a = 3500 nm, d = 3200 nm. The thickness is 50 nm for
both nanomeshes. Experimental results are shown with solid lines and theoretical results are shown with
dashed lines. The scattering efficiency of a single Cu nanowire with thickness t = 50 nm and width w =
400 nm is shown on the right y-axis in cyan.

spectra decreases monotonically with increasing wavelength, as the number of diffraction

modes decreases with increasing wavelength. For example, the large pitch (a = 3500 nm)

nanomesh has 433 diffraction modes at λ = 280 nm and 19 at λ = 1200 nm and the smaller

pitch (a = 1400 nm) nanomesh has 61 diffraction modes at λ = 280 nm and 7 at λ = 1200

nm. With less modes at larger wavelengths, more of the light intensity is concentrated

in the (0, 0) non-scattered mode, and thus the haze decreases. However, the experimen-

tally measured haze tends to be lower at smaller wavelengths. This discrepancy may be

explained by Mie scattering from the metal regions between the holes. Figure 8(b) shows

the Mie scattering efficiency of a single freestanding Cu nanowire with rectangular cross

section, with thickness t = 50 nm, width w = 400 nm. This efficiency was calculated by

the finite-difference time-domain method using a total-field scattered-field source to detect

the scattered power flux.

The Mie scattering efficiency of a Cu nanowire is defined as the ratio of the scattering

cross section and the width of the nanowire w, where the scattering cross section is the

energy flux removed from the incident light due to scattering. Mie scattering efficiency
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of Cu nanowire for incident light with electric field vector parallel and perpendicular to

the nanowire was calculated respectively and averaged. As can be seen from the plot, this

geometry has a lower Mie scattering efficiency at wavelengths shorter than 550 nm.

2.3 Conclusions

In conclusion, we report both simulation and experimental results on transmission,

sheet resistance, and haze of Cu nanomeshes. Simulations and theoretical calculations

were used to comprehensively evaluate the transmission, haze, and sheet resistance of

metal NM structures, shedding light on the performance limits and correlation of metal

nanomeshes as transparent conductors. Experimentally, we fabricated a variety of Cu

nanomeshes to verify simulation results. The experimental results verifies the correla-

tion between haze and transmission. The haze may be primarily explained by Fraunhofer

diffraction, though there are some Mie scattering effects from the metal region between

holes. Future work will be devoted to breaking this correlation by introducing additional

light scattering elements to the Cu nanomesh.
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3.0 High Transparency, High Haze Optoelectronic Substrates

In this chapter, we will review our recent works on high transparency high haze opto-

electronic substrates including glass[64] and plastics[69].

3.1 High Transparency, Ultrahigh Haze Nanograss Glass with Fluid-Induced

Switchable Haze

3.1.1 Introduction

Glass substrates form a critical component in many optoelectronic devices, such as dis-

plays, lighting, solar cells, smart phones, tablets, and e-paper, where the glass must protect

the device from the ambient environment and allow light to pass through and couple into

or out of the active layers of the device. Typically, glass has a quarter-wave thickness

antireflection layer coating in order to reduce reflection losses at the air/glass interface

[195]. In addition to these functionalities, many optoelectronic applications such as solar

cells [135, 186], backlit liquid crystal displays [178], and light emitting diodes (LEDs)

[97, 102] would benefit from glass substrates with both high transparency and high haze.

Substrates with high haze can increase how much light scatters into or out of the under-

lying photoactive layers [211] and may increase the solar cell power conversion efficiency

or LED extraction efficiency, respectively. For example, Fang et al. recently introduced a

transparent paper fabricated using wood fibers that possesses both ultrahigh transmission

(96%) and high haze (60%), and showed that this paper can increase solar cell efficiency

[34]. Finally, optical switchability is desired in a variety of smart glass window applica-

tions, where this functionality may be utilized to affect temperature, comfort, and privacy

[21, 59, 57]. A variety of active approaches such as electrochromism [25, 154, 214] and

liquid crystal alignment [99, 152] have been demonstrated for optical switchability, though

these approaches still face many technological and economic barriers to widespread adop-

18



2 μm 

2 μm 

2 μm 

2 μm 

(i) 

(iii) (iv) 

(ii) 

2 μm 

(a) 

(b) 

2 μm 

(i) (ii) 

Figure 9 (a) Cross section SEM images of nanostructured grass-like glass with (i) 2.5, (ii) 4.5, (iii) 6,
and (iv) 8.5 µm height and (b) (i) 15 ◦ tilted and (ii) overhead view of 6 µm height hazy glass.

tion. In this section, we demonstrate monolithic fused silica nanograss glass with both

ultrahigh transparency and ultrahigh haze (both over 95% at 550 nm wavelength). The

nanograss may be fabricated through a scalable maskless, one-step reactive ion etching

(RIE) process on fused silica glass where the height may be controlled through the etch

time. We demonstrate that shorter grass (< 2.5 µm) improves the antireflection properties

of the glass, but the antireflection decreases at longer heights due to increased scattered

(or diffuse) reflectance. In contrast, longer grass tends to monotonically increase the haze.

Finally, we demonstrate that the nanograss glass is superhydrophilic. Various fluids with

a similar index of refraction as the glass may be utilized to permeate the nanograss, such

that it resembles a uniform flat glass substrate with little haze. Upon removal of this fluid,

the nanograss recovers its original hazy state.

3.1.2 Results and Discussion

Figure 9 shows SEM images of the sub-wavelength nanograss glass. The nanograss

is fabricated by a maskless RIE fabrication process (Trion Technology Phantom III) [212].
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The fused silica is etched by CHF3, SF6 and Ar at 40, 10 and 85 sccm, respectively. The total

pressure of chamber was kept at 200 mTorr and the power was 300 W. During the etching

process, polymer particles are deposited on the surface of the fused silica substrate, which

acts as a micro-mask and allows the etching to create the high aspect-ratio nanograss

[145]. Seven different glass substrates were etched for 20, 80, 100, 150, 200, 300 and

450 minutes, yielding nanograss with heights of 0.8, 2.5, 3.3, 4.5, 5.2, 6.0, and 8.5 µm,

respectively. Figure 9(a) shows cross-section SEM images of the (i) 2.5, (ii) 4.5, (iii) 6,

and (iv) 8.5 µm height nanograss. The etch rate is approximately 16 nm/min for a several

cm2 area, 500 µm thick chip. Figure 9(b)(i) and (ii) show 15◦ tilted and overhead view

SEM images of the 6 µm nanograss glass, respectively. The diameter of each grass blade

is roughly 100 - 200 nm and the distance between adjacent grass blades is approximately

100 to 700 nm. The surface is etched uniformly over the entire glass substrate.

The total and direct (or specular) transmission of all nanograss samples as well as

smooth glass were measured using a UV-vis-NIR spectrophotometer (PerkinElmer, Lambda

750) with and without an integrating sphere, respectively. Figure 10 plots the contour

of (a) total transmission and (b) haze factor spectra of different height nanograss glass

ranging in height from 0 to 8.5 µm over wavelengths 250 to 1200 nm. For the entire

spectrum, the smooth glass has a haze of less than 2.5% and a total transmission of about

93.5%. For the 2.5 µm height nanograss, the transmission spectra remains fairly flat and

improves over that of the smooth glass. However, as the nanograss continues to increase in

height, the total transmission tends to decrease, particularly more at shorter wavelengths.

In contrast, the haze tends to decrease at longer wavelengths. The scattering of near

infrared photons (wavelength 750 to 1110 nm) would benefit thin silicon solar cells by

scattering light into the silicon [70, 233]. The high haze nanograss may help to overcome

silicon’s low absorption near its band gap energy.

Next, we focus our discussion on how the nanograss height affects the transmission

and haze of 550 nm wavelength light, which is the average wavelength of visible light.

Figure 11 plots the results of the total transmission and haze at this wavelength as a

function of nanograss height. Smooth glass has a transmission of 93.5%. Low height

nanograss increases the transmission due to improved antireflection. We find a maximum
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Figure 10 Contour plots of (a) total transmission (%) and (b) haze (%) as a function of wavelength and
nanograss height.
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Figure 11 Plots of total transmission (left y-axis) and haze (right y-axis) at 550 nm wavelength as a
function of nanograss height.

transmission of 97.0% for 2.5 µm height nanograss. The transmission decreases at larger

heights due to increased scattered (or diffuse) reflection. In contrast, the haze increases

monotonically with increasing height as the scattering probability of the light increases.

While the smooth glass has a haze of only 0.8%, this haze increases to 1.7% for 0.8 µm

nanograss, and haze factors over 99% may be achieved with nanograss above 6 µm height.

To explain our haze results, we compare our results with the haze predicted from scalar

scattering theory of a single rough surface where the height of the surface has a Gaussian

distribution [165, 14]. According to this theory, the wavelength dependent haze at normal

angle of incidence is

H(λ) =

(
1− exp

[
−
(

2πσrms[n1 − n2(λ)]

λ

)2
])
× 100% (3.1)

where root mean square roughness of surface and the refractive indices of the two media

on either side of the interface are represented by σrms, n1 and n2(λ), respectively. In our

case, n1 = 1 for air and n2 varies from 1.51 at 250 nm to 1.45 at 1200 nm for fused

silica [113]). This theory assumes that the surface correlation length is much larger than
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Figure 12 Experimental (solid lines) and scalar scattering theory (dashed lines) haze values for smooth
and glass with 2.5, 4.5, 6, and 8.5 µm height nanograss.

the root mean square roughness and does not consider multiple scattering. This equation

has been used to model scattering in thin-film solar cells [221, 173, 155, 165]. Optical

profilometry (Contour GT Bruker) was used to measure the root mean square roughnesses

of the hazy glass. σrms equal to 160, 260, 580, and 800 nm were measured for the hazy

glass with heights of 2.5, 4.5, 6, and 8.5 µm, respectively. Figure 12 plots our experimental

haze results compared to that predicted from (3.1). The scalar scattering theory results

match well with experimental results, though some differences are seen due to the lack of

considering multiple scattering from surfaces in the theory.

Figure 13 shows optical images of smooth fused silica and fused silica with various

height nanograss when the substrate is (a) placed directly on top of text and (b) placed

about 1 cm above the text . When the substrate is placed directly on the text, the dif-

ferences in visible transmission of the various samples is apparent. When the substrate

is held about 1 cm above the text, the increasing haze with increasing height can be ob-

served. Even though the 6 µm height nanograss glass looks opaque, in fact, it is only the

direct transmission that is low; Its total transmission is 91.5% at 550 nm.

23



Figure 13 Optical images smooth and with 2.5, and 6, µm height nanograss glass when (a) place directly
on paper with text and (b) about 1 cm above.

The scattering of light is shown in Fig. 14. A green laser beam with a wavelength 532

nm was used to visualize the light scattering ability of the (a) flat fused silica and (b) 6 µm

height nanograss glass. The transmitted light passing through the flat fused silica shows

a small luminous radius on the target with high intensity. The light scattering and haze

of the flat fused silica is low. In contrast, for the 6 µm height nanograss, the light passing

through the sample is almost completely scattered with no observation of a central point

on the target. The distance between samples and target is 30 cm.

The smooth fused silica is hydrophilic. The static water contact angle (WCA) of flat

fused silica is 46 ± 1.5◦ (Fig. 15a (i)). Due to the hydrophilicity of the surface, water

easily fills the empty spaces between the blades of the grass and spreads across the surface.

Nanostructures enhance the hydrophilicity or hydrophobicity of a surface when the wetting

is in the Wenzel state [29]. For the 6 µm nanograss glass, the static WCA is 7±1.5◦ (Fig. 15a

(ii)). Consequently, since the refractive index of the water (1.33 at 550 nm [113]) is near

that of the fused silica (1.46 at 550 nm [113]), the glass has low haze when it is wet by
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Figure 14 Scattering ability of (a) flat fused silica and (b) 6 µm height nanograss glass. The scattering
ability is demonstrated by shining a laser through a sample onto a target. The rings on the target are
spaced 15 cm apart. The distance between sample and target is 30 cm.

the liquid. Optical images are shown in Fig. 15(b) of the transition between transparent

and haze modes of 6 µm nanograss glass which occurs when water is applied. When the

surface is wet, the water fills the gaps and the glass has low haze (0 sec). As the water

is removed (in this case, from evaporation), the haziness increases and after about 80

seconds, the glass returns to its original hazy state.

We characterize the transmission properties of the nanograss glass when wet by dif-

ferent liquids, water, acetone and toluene, in the 350 to 850 nm wavelength range. The

wavelength range is restricted to this range since the cuvette we used (FireflySci Type

523 Rectangular Absorption Cuvette) for characterization is designed for this wavelength

range. The refractive indices of these fluids are 1.33, 1.36, and 1.50, respectively, com-

pared to 1.46 for the fused silica at 550 nm wavelength [113]. Figure 16 plots the haze

(left y-axis) and direct transmission (right y-axis) of the wet 6 µm nanograss glass for

water and toluene. The direct transmission of 6 µm hazy glass at 550 nm is 0.94% and

its haze factor is 99%. When this glass is wet with water and toluene, the direct trans-

mission at 550 nm wavelength increases to 44.3% and 61.5% respectively, while the haze

decreases to 55.4 % and 38.3%, respectively. The total transmission also increases to near

unity when it is wet.

25



(a) 

(b) 
0 sec 80 sec 

WCA= 46° ± 1.5°  WCA= 7° ± 1.5° (i) (ii) 

Figure 15 (a) Contact angle of water droplet on (i) smooth fused silica and (ii) 6 µm nanograss glass
(b) Transition between transparent and haze mode of 6 µm ultrahazy glass by putting water on the glass
and evaporation in 80 seconds.

Figure 16 Haze (solid lines) and direct transmission (dashed lines) as a function of wavelength for 6 µm
hazy glass in dry state and wet state with different liquids.
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As the fluid infuses the nanograss glass, the optical properties more closely resemble

that of a flat fused silica, where the haze is low. The nanograss glass can switch between

low and high haze states within a few seconds with the application and removal of the

fluid.

3.1.3 Conclusions

In conclusion, we report ultrahigh transmission, ultrahigh haze nanograss glass which

has the ability to switch haze by applying fluid with a similar refraction index. The 4.5 µm

height hazy glass showed 95.6% total transmission and 96.2% haze at 550 nm wavelength.

These characteristics make the hazy glass a strong candidate to use in optoelectronic ap-

plications such as solar cells and LEDs, as well as switchable haze smart glass that may

help adjust privacy, comfort, or temperature.

3.2 Flexible Nanograss With Highest Combination Of Transparency And Haze For

Optoelectronic Plastic Substrates

3.2.1 Introduction

Flexible optoelectronics are emerging for a large variety of applications such as flexible

versions of traditional rigid displays, smart phones, tablets, and e-paper, as well as new

applications such as wearables, RF-ID tags, artificial skin, and the Internet of Things [211,

179]. Plastics are the most commonly used substrate for flexible optoelectronics due to

their high transmittance [71, 136, 134]. The optical properties of the substrates are critical

for optoelectronic applications as light needs to be coupled into or out of the active region

of the device through the transparent substrates. Polyethylene terephthalate (PET), in

particular, is often used due to its tolerance to temperature and resistance to solvents as

well as high optical transmittance [220]. Various structures have been incorporated into

PET substrates for different photon management strategies such as moth-eye-like films

[179] and polyurethane acrylate nanostructures [224] for antireflection.
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For flexible optoelectronic applications such as organic-light-emitting-diodes (OLEDs)

[71, 136] and solar cells [134], substrates with both high transmittance and high haze are

desirable as increased light scattering results in increased photon outcoupling or incou-

pling efficiency in these devices, respectively. Plastic-paper hybrids [211], silica nanopar-

ticle arrays [218], and poly(methyl methacrylate)(PMMA)/PET [117, 118] have been

demonstrated to increase the amount of light scattering. However, these PET substrates

involve lithographic steps and/or the synthesis of nanomaterials that increase cost and

complexity for fabrication. These nanostructures tend to increase haze while decreasing

the transmission as there tends to be tradeoff between these two properties [44]. A com-

bination of both transmission and haze over 90% (at 550 nm wavelength) has yet to be

demonstrated in flexible PET substrates. Recently, we demonstrated nanograss glass sub-

strates [64]. In this section, we demonstrate flexible nanograss PET substrates that may be

fabricated through a scalable maskless, one-step reactive ion etching (RIE) process. These

flexible substrates are monolithic and require no additional lithographic processes or syn-

thesis of nanomaterials. These sub-wavelength nanostructures are able to simultaneously

provide for antireflection and scattering such that both transparency and haze may be

improved. While bare PET has a transparency and haze of 88.4% and 1.1% at 550 nm,

respectively, our 9 µm height nanograss samples demonstrate a transparency and haze of

92.4% and 89.4%, respectively. Our 34 µm tall nanograss samples exhibit a transparency

and haze of 91.0% and 97.1%, respectively. These nanostructured PET substrates demon-

strate the highest combination of transparency and haze at 550 nm of all PET substrates in

the literature. Our nanograss samples displays a light scattering angle of 165◦ compared

to 5◦ for planar PET. We also performed durability experiments that show these nanostruc-

tured PET substrates are robust from bending and maintain similar transmission and haze

values after 5,000 cycles of bending.

3.2.2 Results and Discussion

Figure 17 shows the results of the fabrication process. Figure 17(a) displays schematic

of the maskless RIE fabrication process (Trion Technology Phantom III). The PET substrate,
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Figure 17 Fabrication of nanograss PET results. (a) Schematic of fabrication process. (b) Cross section
SEM images of 34 µm nanograss PET. (c) Overhead SEM image, and (d) Height of nanograss PET as
a function of etch time.
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which is 125 µm thick, is etched by CF4 and O2. The etch conditions were optimized to

create high aspect-ratio grass-like nanostructures that maximize both transparency and

haze. The CF4 and O2 flow rates are 45 and 5 sccm, respectively. The total pressure

of the chamber is maintained at 150 mTorr and the power is set at 125 W. During the

etching process, CF and CF2 monomers form polymers that deposit on the PET [145].

These polymers act as a nano-mask that allows for the etching to create high-aspect ratio

nanostructures.

Figure 17(b) shows cross-section SEM image of the nanograss PET. The nanograss

shown here was etched for 120 minutes and is about 34 µm in height. The diameter

of each nanograss blade is roughly 200-500 nm at the top and gradually decreases to

approximately 50-100 nm at the bottom of the structures. Each blade of grass in the texture

has a consistent height across the entire substrate. Figure 17(c) shows an overhead view

SEM image of the hazy plastic. The distance between adjacent blades is approximately

100 to 700 nm and uniformly cover the entire substrate. Figure 17(d) plots the height of

the nanograss as a function of etch time. The etch rate is approximately constant at about

300 nm/min based on a linear fit of the various etched samples.

The use of texturing increases the light scattering, thereby creating a PET substrate

that exhibits both high haze and high transparency. Additionally, the sub-wavelength di-

mensions of the nanograss provides for a graduate change in effective index of refraction

from the air to the PET substrate that provides for antireflection and thus, increased trans-

parency. A UV-vis-NIR spectrophotometer (PerkinElmer, Lambda 1050) equipped with an

150 mm integrating sphere was used for measuring the total and direct (or specular) trans-

mission of all nanograss PET samples as well as the bare PET. Figure 18 plots the (a) total

transmission and (b) haze factor spectra for bare and different height nanograss PET over

wavelengths 400 to 1050 nm. The nanograss is on the side facing the incident light.

The bare PET has a total transmission of about 88.5% and haze of less than 2.5% across

the entire spectrum. The nanograss PET increases both the transmission and haze. For the

9 µm height nanograss PET, the transmission increases to 92.4% and haze to 89.4% at 550

nm wavelength. By increasing the height of nanograss to 18 µm, the transmission improves

due to improved antireflection. In this case, the highest transmission of 93.0% is observed.
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(a)	 (b)	

(c)	 (d)	

Figure 18 (a) Total transmission and (b) Experimental (solid lines) and scalar scattering theory (dashed
lines) haze values for smooth and PET with 4, 9, 18, and 34 µm height nanograss.(c) ADF plots of
bare PET and nanostructured PET, etched for 120 mins. (d) Haze versus transmission for various PET
substrates at λ = 550 nm. Bare PET is shown with a green square and our nanograss PET samples are
shown with blue circles. The best data for plastic-paper [211], silica nanoparticle array on PET [218] and
doped poly(methyl methacrylate)(PMMA)/poly(ethylene terephthalate) (PET) without [117] and with
shear [118] are also shown.
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For longer nanograss, the total transmission begins to decrease slightly. The transmission

decreases at larger heights due to increased scattered (or diffuse) reflection. In contrast,

the haze increases monotonically with increasing height as the scattering probability of the

light increases. Beyond 27 µm though, this increase is very minimal.

The haze behavior of the nanograss PET samples can be explained by scalar scattering

theory of a single rough surface where the height of the surface has a Gaussian distribution

[165, 14, 64]. Figure 18(b) plots our experimental haze results compared to that predicted

from Equation (3.1) where σrms was treated as a fitting parameter. The fits were σrms =

14, 68, 290, 410, and 510 nm for the PET with heights of 0, 4, 9, 18, and 34 µm, respectively.

The scalar scattering theory results match well with experimental results, though some

differences are seen due to the lack of considering multiple scattering from surfaces in

the theory, and shows that haze monotonically increases since the surface roughness also

increases with increasing height based on Equation (3.1). This model also indicates that

nanograss exhibits dispersion effect that the larger wavelength the lower transmission.

It is demonstrated that by obtaining high haze values for long range of wavelengths

the absorption of a solar cell improves, when the path length of scattered light also

increase[34]. Therefore for effective light trapping, the haze value, by itself, is not a suffi-

cient requirement and the angular distribution of scattered light also need to be measured.

In order to measure the light scattering ability, we measured the angular distribution func-

tion (ADF) of both bare PET and the 34 µm height nanograss PET as shown in Fig. 18(c).

The scattering angular distribution was measured using a Cary 7000 Universal Measure-

ment Spectrophotometer (UMS). In this instrument, incident light is normal to the sample

surface with a 5 mm × 5 mm square beam and the photodetector scans from 10◦ to 350◦

(-10◦); the wavelength scan is from 530 to 570 nm and the wavelength of 550 nm is plot-

ted. The photodetector receives light over a 6-degree cone and thus, the haze calculated

from these plots is not exactly as the same as that measured previously. The scattering

angle range is defined as the range of angles in which lights exhibits more than 5% of its

highest measured intensity at 0◦. As can be seen in Fig. 18(c), the bare PET has very small

scattering angle, 5◦, but this value for the 34 µm height nanograss PET is 165◦, which

shows the light scattering ability of the nanostructured PET.
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Figure 19 PET bending results. Optical images of (a) bare and (b) 120 min etched nanostructured
flexible PET. (c) Transparency and (d) Haze at 550 nm as a function of bending cycle, for tension (left
y axis) and compression (right y axis).

Figure 18(d) compares the combination of transmission and haze for our nanostruc-

tured PET and best high transparency, high haze PET reported in the literature so far,

including plastic-paper flexible substrates [211], silica nanoparticle arrays on PET [218],

and doped Poly(methyl methacrylate)(PMMA)/poly(ethylene terephthalate) (PET) with-

out [117] and with shear [118]. All data shown in this plot is at a wavelength of 550 nm.

Bare PET has a transmission and haze of 88.4 and 1.1%, respectively. The plastic-paper

hybrid has a comparable transmission and much higher haze. Most of the other PET sam-

ples sacrifice transmission for an increase in haze. In contrast, our nanograss PET exhibits

both higher transmission and haze. Our nanograss PET demonstrates the highest combi-

nation of transmission and haze of all plastic substrates. The 18 µm height nanograss PET

exhibits 93.0% transmission and 95.6% haze and the 34 µm height nanograss PET displays

91.0% transmission and 97.1 % haze. In addition, our substrates are the only monolithic

samples in the literature. The other PET substrates involve the other materials that need

to be synthesized and then introduced into the PET.
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Figure 19 plots bending experiment results of our PET. Optical images of both bare

PET and 120 min etched nanostructured 34 µm height nanograss PET as the substrates

are being bent are shown in Fig. 19a and b, respectively. The total transmission through

the nanograss PET is in fact higher than that of the bare PET due to the antireflection

properties of the nanograss. However, the letters through the substrate are completely

blurred by the scattering of the light. Figure 19 plots the (c) transmission and (d) haze

of the nanograss PET at 550 nm wavelength as a function of bending cycle under tension

(left y axis) and compression (right y axis). Bending tests were conducted by bending the

34 µm height nanograss PET substrate around a stainless steel rod with a 1 inch diameter.

The thickness of the PET substrate is 125 µm. Two samples with identical size, 3 cm × 3

cm, were placed under bending compression and tension by bending the etched surface

towards and away from the steel rod, respectively. Neither the transmission nor haze are

changed significantly after 5000 cycles of bending, for either tension or compression. This

suggests that the nanograss PET is robust under bending.

3.2.3 Conclusions

In conclusion, we demonstrate a new nanostructured PET that displays both high trans-

parency and high light scattering ability. The 34 µm height PET showed 91.0% transmis-

sion and 97.1% haze at 550 nm wavelength, with 165◦ scattering angle range. The dura-

bility test showed that nanostructured PET substrates are robust from bending and show

similar transmission and haze values after 5000 cycles of bending. The combination of

flexibility, high transparency and high haze with extra large scattering angle range, makes

the nanostructured PET as a strong candidates to use in flexible optoelectronic applica-

tions.
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4.0 Superomniphobic Optical Substrate

In this chapter, we will review our works on multi-functional optoelectronic substrates.

In first section, we review the self-cleaning glass with high haze and high transparency[65].

In the second section we review our work on superomniphobic optical PET[68].

4.1 Self-Cleaning, High Transmission, Near Unity Haze OTS/Silica Nanostructured

Glass

4.1.1 Introduction

Optoelectronic substrates with high transmission and high light scattering are needed

for optoelectronic applications such as solar cells and light emitting diodes (LEDs) where

the substrate can increase how much light scatters into or out of the underlying pho-

toactive layers, respectively[211, 44]. These substrates can enhance the power conver-

sion efficiency of solar cells and extraction efficiency of LEDs. Various paper substrates

have been demonstrated for optoelectronic applications including mesoporous wood cel-

lulose paper[229], microsized wood fibers in paper[32], nanostructured paper[34], wood

composites[231], and plastic-paper[211]. While paper may offer new functionality for op-

toelectronic applications such as flexibility, glass is most frequently used for optoelectronic

devices due to its low cost and moisture barrier properties. High transparency, high haze

glass substrates have included self-aggregated alumina nanowire arrays on glass[93], im-

printed polydimethylsiloxane (PDMS) coatings on glass [22], and our recent nanograss

glass [64]. Optoelectronic substrates would also benefit from self-cleaning properties

where particulates are easily removed from the surface upon application of water. Dust or

dirt particulates may accumulate on the surface and reduce the transmission of light and

can significantly reduce the power conversion and extraction efficiency of solar cells and

LEDs, respectively [58, 12].
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In this section, we report on self cleaning octadecyltrichlorosilane (OTS)/silica nanos-

tructured glass which exhibits both high transparency and near unity haze. The OTS/silica

nanostructures are synthesized by a facile maskless reactive ion etching method (MRIE)

to create silica nanograss blades followed by OTS coating. The OTS/silica nanostructured

glass exhibits a transparency of 91.5±0.5% with a haze value of 98.1±0.5% at a wavelength

of 550 nm. The OTS coating enhances the transparency of the nanograss glass by as much

as over 10% as the silica nanograss blades merge together from capillary forces during

coating and effectively grade the index of refraction between the air and the glass. Fur-

thermore, the OTS coating does not significantly change the haze. The glass exhibits strong

light scattering ability with a scattering angle of 143◦. Our OTS/silica nanostructured glass

demonstrates the highest combination of haze and transmission in the literature as defined

by Pareto optimality.

The nanograss glass is superhydrophilic initially with a water contact angle (WCA) of

7.4 ± 0.2◦. After coating, the OTS/silica nanostructures become superhydrophobic with a

WCA of 159.7 ± 0.6◦ due to a combination of the nanostructures and low surface energy

OTS. The OTS coated glass exhibits lotus leaf-like wetting with high WCA and 4.9 ± 0.6◦

contact angle hysteresis. We demonstrate the structures have self-cleaning functionality

where about 100% of the original transparency can be easily recovered after graphite

soiled substrates are rinsed with water. The original transparency and haze of the sub-

strates are recovered after as many as 200 cycles of soiling and cleaning. The combination

of optical properties and self-cleaning functionality make the nanostructured hazy glass an

strong candidate for several optoelectronic applications.

4.1.2 Results and Discussion

Figure 20 shows details of the fabrication process and structure of the OTS/silica

nanostructured glass. Figure 20(a) shows a schematic of the fabrication process. The

fused silica substrate is etched by a maskless RIE process to create nanograss glass [64]

and then coated with OTS. Details of the fabrication process are provided in the Meth-

ods section. Figure 20(b) shows a 10◦ tilted cross SEM images of 8.5 ± 0.2 µm initial
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Figure 20 (a) Fabrication process of etching silica nanostructures with RIE followed by OTS coating.
(b) 10◦tilted cross section SEM images of 8.5± 0.2 µm height hazy glass (i) before and (ii) after OTS
modification. (c) Overhead SEM images of 8.5± 0.2 µm height hazy glass (i) before and (ii) after OTS
modification, (d) (i) TEM image and (ii) EDS spectrum of OTS coated hazy glass with 8.5 ± 0.2 µm
initial blade height.
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height hazy glass (i) before and (ii) after OTS modification, respectively. While the initial

structures are about 8.5 ± 0.2 µm long, the OTS deposits in the space between nanograss

blades. In some cases where the nanograss blades are close together, the drying process

merges the blades together by capillary-induced bending [94, 93]. The final height of the

structures after OTS coating is only about 2.2± 0.2 µm long. Figure 20(c) shows overhead

SEM images of 8.5± 0.2 µm initial height hazy glass (i) before and (ii) after OTS modifica-

tion, respectively. The reduced density of structures is apparent in these images as various

nanograss blades have merged together therefore the surface roughness slightly decreases.

Figure 20(d)(i) shows a transmission electron microscopy (TEM) image of a selected area

of the 8.5± 0.2 µm initial height OTS coated hazy glass near the tips and Figure 20(d)(ii)

plots the energy-dispersive x-ray spectroscopy (EDS) analysis of this selected area. After

hydrolysis of the chlorine groups in the OTS, the molecules attach to the surface and poly-

merization takes place with elimination of water [180]. The final surfaces are terminated

by methyl groups. The structures are primarily silica with some carbon from the carbon

chains in the OTS. The small peaks near 0.9 keV and 1.1 keV correspond to the Cu La line

and Na Ka line, respectively. The Cu and Na measurements come from the support grid

and glass respectively.

Different height nanograss glass were fabricated by varying the RIE time followed by

OTS deposition. Figure 21(a) shows cross section SEM images of the OTS/silica nanos-

tructured glass of different initial heights of (i) 2.5 ± 0.2, (ii) 4.5 ± 0.2, (iii) 5.2 ± 0.2, and

(iv) 8.5 ± 0.2 µm. After OTS deposition, the final height of the structures are about (i)

0.7 ± 0.2, (ii) 0.9 ± 0.2, (iii) 1.0 ± 0.2, and (iv) 2.2 ± 0.2 µm as the OTS fills the space

between the nanostructures. All the measurement are the average and standard deviation

of three different measurements in different cross sections of samples. Figure 21(b) shows

a plot on the left y-axis of how the OTS thickness varies as a function of initial nanograss

height and on the right y-axis how the final structure height varies as a function of initial

nanograss height.

The optical properties of the various samples were subsequently characterized. The

root mean square (RMS) of the surface roughness for different height hazy glass before

and after OTS coating is shown in Figure 21(c).
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Figure 21 (a) Cross-section SEM images of hazy glass after OTS modification with initial and final blade
heights of (i) 2.5 ± 0.2 and 0.7 ± 0.2, (ii) 4.5 ± 0.2 and 0.9 ± 0.2, (iii) 5.2 ± 0.2 and 1.0 ± 0.2, and
(iv) 8.5± 0.2 and 2.2± 0.2 µm. (b) Variation of the OTS thickness (left y-axis) and the final structure
height(right y-axis) as a function of initial nanograss height. (c) Change in root mean square (rms)
roughness of different height hazy glass before and after OTS coating.
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It is apparent that after OTS coating of hazy glass, the surface roughness slightly de-

crease for all initial heights due to merged blades together. Figure 22(a) shows the

total transmission as a function of wavelength for the nanostructured hazy glass both (i)

before and (ii) after OTS coating. Figure 22(b) shows the total transmission of the vari-

ous structures at 550 nm wavelength. The transmission of bare fused silica is 93.2% both

before and after OTS modification. On these surfaces, the OTS only forms a monolayer

[180, 125, 138, 198] and has negligible change on the transmission of the original fused

silica across the entire spectrum. For the 2.5± 0.2 µm nanograss glass, the transmission is

initially 91.8 ± 0.5% at 550 nm wavelength. After OTS modification, the transmission in-

creases to 92.4±0.5%. The improvements in transmission are primarily in the wavelengths

under 600 nm. Nanograss glass with initial heights 4.5 ± 0.2 µm and above (final height

over 0.9±0.2 µm) demonstrate an improvement in transparency across the entire spectrum

after OTS coating compared to before. The enhancement in transmission from the OTS

coating is shown in Fig. 22(c) and over 8.0 ± 0.5% at a initial silica nanostructure height

of 5.2± 0.2 µm and longer (final OTS/silica height over 1.0± 0.2 µm). This improvement

in enhancement is primarily due to the merging of nanograss blades. While the initial

blades are structures of constant diameter, after OTS deposition, structures that are close

together are merged together. These sub-wavelength structures effectively grade the index

of refraction of the glass such that the antireflection and thus, transmission properties are

improved.

Next, we characterized the haze factor of the original nanograss glass and compared

it with the OTS/silica nanostructured glass. Figure 23(a) plots the haze of (i) the original

nanograss glass, and (ii) the OTS/silica core-shell nanograss glass. The haze in the sil-

ica/OTS core-shell nanograss glass increases monotonically with height similar to that of

just the silica nanograss glass, and the haze does not change much prior to and after OTS

coating. The haze is near unity at wavelengths in the ultraviolet and visible, though the

haze does start to drop slightly in the near-infrared.

We next characterized the angular distribution of the transmission through various

substrates. Figure 23(b) shows the scattering angular distribution of transmission at a

wavelength of 550 nm for (i) bare glass before and after OTS modification and (ii) 5.2±0.2
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Figure 22 Contour plots of (a) total transmission (%) (i) of nanograss glass (ii) and core/shell silica/OTS
nanograss glass. (b) Plot of total transmission at 550 nm wavelength as a function of initial blade height.
(c) Enhancement in transmission after OTS coating.
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Figure 23 Haze contour plots of (a)(i) nanograss glass and (ii) core/shell nanogrss. (b) ADF plots of (i)
Smooth glass and (ii) 5.2± 0.2 µm height hazy glass without and with OTS layer.

Figure 24 Haze versus transmission for substrates at λ = 550 nm. Our hazy glass data with and without
OTS layer is shown. The best data for aggregated alumina nanowire arrays on glass[93], imprinted
PDMS on glass [22], mesoporous wood cellulose paper [229], controlled macro/nanofiber paper[32],
nanostructured paper[34], wood composites[231], and plastic-paper hybrids[211] are also shown. The
Pareto frontier of all the data is marked with a dashed line.
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Bare	glass	 OTS	coated	glass	 Nanograss	glass	
OTS/silica	

nanostructured	
glass	

Water	droplet	
shape	

Sta8c	water	
contact	angle	
(degrees)	

42.9	±	1.1	 108.5	±	0.7	 7.4	±	0.2	 159.7	±	0.6	

Contact	angle	
hysteresis	
(degrees)	

35.5	±	2.7	 19.5	±	1.7	 -	 4.9	±	0.6	

Figure 25 Water contact angle of bare glass, OTS coated bare glass, 5.2 ± 0.2 µm height nanograss
glass, and 5.2± 0.2 µm initial height OTS/silica nanostructured glass.

µm initial height hazy glass before and after OTS coating. As can be seen from these plots,

the OTS coating does not change the haze substantially in either sample. On bare glass,

the OTS only forms a monolayer [90] and does not change the haze as expected. On

the nanograss glass, the OTS also does not change the haze significantly. While the OTS

reduces the height of the structures and merges some of the silica structures together, the

structures are also heterostructures now with silica nanostructures and OTS coating. These

additional interfaces may compensate for the reduced scattering from reduced roughness.

The scattering angle range, defined as the range of angles in which lights have more than

5% intensity of the highest intensity at 0◦ was also characterized from these plots [34].

The scattering angle ranges of the bare silica and OTS-coated silica at wavelength of 550

nm are both 7◦. The photodetector receives light in a 6◦cone so that there is substantial

broadening on the light intensities measured and the haze calculated directly from these

plots differ from those measured with an integrating sphere. The haze of these samples

at 550 nm are both less than 1%. For the 5.2 ± 0.2 µm height hazy nanograss glass, the

scattering angle range is 146◦initially and 143◦after OTS coating. The haze of these samples

are 98.5± 0.5% and 98.1± 0.5%, respectively.
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Figure 24 plots the the total transmission and haze (at 550 nm) for a variety of opto-

electronic substrates. For each type of substrate, only the best performing data (as defined

by Pareto optimality) is plotted. The Pareto frontier is the set of solutions where one at-

tribute cannot be improved without degrading another attribute. Our experimental data

for the nanograss glass is plotted with green circles and our data for the OTS/silica nanos-

tructures is plotted with blue squares. For comparison purposes, we plot the best perform-

ing optoelectronic substrate data in the literature for glass substrates using yellow markers

and other optoelectronic substrates using gray markers. Glass substrates have been modi-

fied using aggregated alumina nanowire arrays [93] and imprinted PDMS on glass [22]. In

addition, a variety of paper substrates have been demonstrated such as mesoporous wood

cellulose paper [229], controlled macro/nanofiber paper[32], nanostructured paper[34],

wood composites[231], and plastic-paper hybrids[211]. For the nanograss glass samples,

two of the nanograss glass samples reside on the Pareto frontier. The 8.5 ± 0.2 µm height

nanograss glass exhibits 76.8±0.5% transmission and 99.4±0.5% haze, and the 6.0±0.2 µm

height nanograss glass has 82.1±0.5% transmission and 98.9±0.5% haze. Other Pareto opti-

mal structures include imprinted PDMS on glass with 94.6% transparency and 92.7% haze

and 96.5% transparency and 87% haze [22]. Our OTS/silica nanostructured glass demon-

strates the highest combination of transmission and haze as well. The 6.0 ± 0.2 µm and

5.2± 0.2 µm initial height (1.1± 0.2 and 1.0± 0.2 µm final height, respectively) OTS/silica

nanostructures have 89.4± 0.5% transmission and 98.4± 0.5% haze and 91.5± 0.5% trans-

mission and 98.1± 0.5% haze, respectively.

For a surface to be self-cleaning, it needs to have a combination of superhydrophobic-

ity (WCA > 150◦) and small contact angle hysteresis[10]. We next compare how the OTS

modifies the wetting of various surfaces. Figure 25 shows the static WCA and hysteresis of

bare glass, OTS coated bare glass, 5.2 ± 0.2 µm height nanograss glass, and 5.2 ± 0.2 µm

initial height (1.0± 0.2 µm final height) OTS/silica nanostructured glass. The hysteresis is

the difference between the advancing and receding contact angle. The bare fused silica is

hydrophilic with a WCA of 42.9± 1.1◦. After OTS coating, the glass becomes hydrophobic

as the WCA increases to 108.5±0.7◦. However, the OTS coating on bare glass is not enough

to make the bare glass sample superhydrophobic. In contrast, nanostructures have been
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Figure 26 (a) Total transmission plots as a function of wavelength for (i) flat fused silica, (ii) OTS coated
flat fused silica and (iii) 5.2± 0.2 µm height OTS coated nanograss glass in three different states. (a)
(iv) plots the normalized transmission of the various glass substrates showing the mean transmission after
cleaning relative to the original mean transmission. (b) Shows Optical images of (i) flat fused silica, (ii)
OTS coated flat fused silica and (iii) 5.2± 0.2 µm height OTS coated nanograss glass in initial, soiled
and cleaned states.
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(a) (b)

Figure 27 (a) Transmission (left y-axis) and haze (right y-axis) at 550 nm wavelength as a function of
soiling/cleaning cycle for 5.2± 0.2 µm initial height OTS/silica nanostructured glass. (b) Water contact
angle (left y-axis) and hysteresis (right y-axis) as a function of soiling/cleaning cycle for 5.2 ± 0.2 µm
initial height OTS/silica nanostructured glass.

demonstrated to increase superhydrophilicity and superhydrophobicity [121, 30, 92, 127].

The nanograss glass is superhydrophilic with a contact angle of 7.4 ± 0.2◦as the nanos-

tructuring enhances the Wenzel state of wetting. After OTS coating, the wetting of the

nanostructures becomes superhydrophobic with a WCA of 159.7 ± 0.6◦. The nanostruc-

tures promote Cassie-Baxter wetting where air pockets increase the apparent static water

contact angle. The hysteresis is only 4.9 ± 0.6◦, which is indicative of weak water adhe-

sion with the surface. When the OTS/silica nanostructured glass is tilted just slightly, the

droplets easily roll off. The rolling angle was measured as 1.5± 0.5◦.

To study the self-cleaning functionality of the different types of glass, we performed

self-cleaning tests where samples were soiled with graphite powder and then rinsed with

water. Self-cleaning is defined here as the application of water without any additional

scrubbing. Glass substrates of about 5 cm2 area were soiled with 0.5 grams of graphite

powder and then rinsed with 2 mL of water. The total transmission of the samples was

measured initially, after soiling, and finally, after cleaning. Figure 26 summarizes these

self-cleaning results. Figure 26(a) shows the transmission spectra and figure 26(b) shows

optical images of the (i) bare glass, (ii) OTS coated bare glass, and (iii) OTS/silica nanos-
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tructured glass in the original state, after soiling, and after cleaning. Three measurements

were made for each sample and the mean and standard deviation for each state are also

shown. For the bare glass, no improvement in transmission was observed after clean-

ing with water. The standard deviation becomes larger due to decreased uniformity in

the transmission as the graphite tended to agglomerate into patches as can be seen in

Fig. 26(b). In contrast, the OTS coated bare glass shows some improvement in transmis-

sion after cleaning, but does not recover its original transmission. Finally, the OTS/silica

nanostructured glass decreases similarly to the other two samples, but the transmission

almost recovers back to its original state after rinsing.

Figure 26(a)(iv) plots the normalized transmission of the various glass substrates show-

ing the mean transmission after cleaning relative to the original mean transmission. The

bare glass transmission is about 75% of its original value across all wavelengths after

cleaning which is about the same as what it is in the soiled state.

In contrast, the soiled OTS coated bare glass recovers about 91% of its original trans-

mission after cleaning. Finally, the OTS/silica nanostructured glass not only demonstrates

the best anti-fouling properties as its transmission decreases the least in the soiled state,

but self-cleaning, where the transmission is about 100% of its original value. Due to sta-

tistical variation, the transmission after cleaning is, in fact, over 100% of its original value

and in some parts of the spectrum measured and slightly below 100% in others.

In order to study the long term functionality of self-cleaning glass, the same soiling and

cleaning procedure were performed up to 200 cycles and the transmission and haze at 550

nm and the WCA and hysteresis were measured. Figure 27(a) plots transmission at 550 nm

(left y-axis) and haze (right y-axis) at 550 nm wavelength as a function of cleaning cycle for

5.2 µm initial height OTS/silica nanostructured glass. There were no significant changes

in both transmission and haze after 200 cycles of soiling and cleaning. Figure 27(b) plots

the WCA (left y-axis) and hysteresis (right y-axis) as a function of cleaning cycle for 5.2

µm initial height OTS/silica nanostructured glass. The WCA and hysteresis were also

maintained after up to 200 cycles of soiling and cleaning. These experiments demonstrate

that the durability of the self-cleaning glass is promising.
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4.1.3 Conclusions

In conclusion, we demonstrated self-cleaning, high transmission, near unity nanos-

tructured glass. The 5.2 ± 0.2 µm initial height OTS/silica nanostructured glass showed

91.5 ± 0.5% total transparency and 98.1 ± 0.5% haze and 143◦ scattering angle at 550

nm wavelength. The wetting went from superhydrophilic to superhydrophobic after OTS

coating. The OTS/silica nanostructures demonstrate high water contact angle and low con-

tact angle hysteresis. The samples demonstrate self-cleaning functionality where graphite

soiled substrates recover about all of their transparency after rinsing with water. This

characteristics make the superhydrophobic hazy glass a strong candidate to use in opto-

electronic applications such as solar cells and LEDs which combination of high transmis-

sion, high haze, and self cleaning function are important requirements.

4.2 Stain-Resistant, Superomniphobic Flexible Optical Plastics Based on

Nano-Enoki Mushrooms

4.2.1 Introduction

There has been tremendous research interest in superhydrophobic surfaces, which

strongly repel water, and can provide for functionalities such as anti-fogging [16], anti-

icing [13], antibacterial[96], and self cleaning [42, 65]. In addition, there is great interest

in extending this repellency beyond water. Surfaces that exhibit these properties may be re-

ferred to as superoleophobic for oils or superomniphobic for a wide range of liquids. A va-

riety of re-entrant geometry structures such as hierarchical structures [55] and mushroom-

like micropillars [131, 19, 120] have been demonstrated for superomniphobicity. Super-

omniphobicity may be used for self-cleaning surfaces [11], chemical shielding surfaces

[149], and stain-free clothing [20, 109]. These functionalities may also be combined with

high transparency and high haze for use in optoelectronic applications.[55, 127]

So far, the only work on omniphobic substrates with high transparency and high haze

has been the work of Jeong et. al, where they reported on a PET substrate with silica
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nanoparticle coating that improves the photon-to-electron conversion efficiency of organic

solar cells by 13% compared to that on a PET substrate without the silica nanoparticle

array layer. [88].

However, the transparency of these coated substrates is fairly low at less than 80%.

Furthermore, the sample demonstrates a contact angle of 139◦, for ethylene glycol, which

still has a relatively high surface tension of 47.7 mN/m. The demonstration of superomni-

phobicity with low liquid surface tension liquids such as hexadecane, which has a surface

tension of 27.7 mN/m, while offering high transparency and high haze performance, has

yet to be demonstrated.

In this section, we demonstrate stain-resistant superomniphobic flexible optical plas-

tics with nano-enoki mushroom-like structures that may be fabricated through scalable

processes.

Our nano-enoki polyethylene terephthalate (PET) has re-entrant geometry and close

spacing between structures to provide for both high apparent contact angles > 150◦ and

low contact angle hysteresis for a wide variety of liquids of varying surface tension such

as water, ethylene glycol, olive oil, and hexadecane. The nano-enoki exhibit high pressure

stability due to the few micron-scale spacing between our nanostructures, which provides

for a large energy barrier to water infiltration. The spacing between our nanostructures is

the closest in the literature that we are aware of for re-entrant superomniphobic structures.

Our nano-enoki structures exhibit no evidence of water breakthrough at pressures over 900

Pa, which demonstrates the high metastability of Cassie-Baxter state wetting. Furthermore,

the nano-enoki PET exhibits high transmission and ultrahigh haze of 86.4% and 96.4%,

respectively, at a wavelength of 550 nm, which may suitable for some optical applications.

The surfaces exhibit stain-resistance for a variety of liquids including mustard and

blood, where the transparency of the original plastic is recovered after staining. Dried

mustard and blood both flake off the samples without any residue, indicating no infiltration

of the liquid and poor adhesion to the surface.

We also performed durability experiments that demonstrate these nanostructured PET

substrates are robust from bending and show similar transmission, haze, contact angle and

hysteresis values after 5,000 cycles of bending.
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4.2.2 Results and Discussion

Figure 28 (a) Nano-enoki mushroom structures on PET. (i) 20◦ tilted cross section SEM images and (ii)
overhead SEM images. (iii) Optical image of enoki mushrooms. (b) SEM images of lotus leaf surface at
different resolutions demonstrating (i) microstructure bumps and (ii) nanostructures.

Figure 28 shows details and results of the nano-enoki mushroom structures on PET

and compares them to that of the Nelumbo nucifera or sacred lotus leaf surface. Fig. 28(a)

shows results of the enoki mushroom-like nanostructures. The structures are formed by

first etching the PET with a maskless reactive ion etching (RIE) process [64], then coat-

ing the nanostructures with a silica layer by plasma enhanced chemical vapor deposition

(PECVD) and finally, treating the structures with a low surface energy fluorosilane. The

PECVD process tends to deposit silica on top of the nanostructures instead of the bottom,

thus creating the re-entrant enoki mushroom-like nanostructures. The subsequent fluorosi-

lane treatment forms a monolayer of fluorosilane on the structure [138]. Figure 28(a)(i)

shows 20◦ tilted cross section SEM images and (ii) shows an overhead SEM image. The

nanostructures shown here are initially 18 µm in height after etching for 60 minutes. The

structures have a diameter of about 50-100 nm at the bottom which gradually increases to

200-500 nm at the top. The overhead SEM image shows some coalescence of nanostruc-

tures during the SiO2 deposition.
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Figure 28(a)(iii) shows a picture of actual enoki for comparison, where the mushrooms

have larger tops and a long string-like appearance. For comparison purposes, we provide

SEM images of the lotus leaf.

The lotus leaf surface consists of micron-sized papillae (Fig. 28(b)(i)) with nanometer-

size protrusions (Fig. 28(b)(ii)) and a surface layer of epicuticular wax. Superhydrophobic

surfaces are inspired by the leaves of the sacred lotus plant, which are both anti-fouling and

self-cleaning due to this combination of hierarchical surface morphology and hydrophobic

epitcuticular wax [7].
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Figure 29 Surface wetting results. (a) The apparent contact angle variation of 18 µm tall nano-enoki
PET and lotus leaf for water, ethylene glycol, olive oil, and hexadecane. (b) Hysteresis of different liquids
with different surface tension on the 18 µm tall nano-enoki PET and lotus leaf. (c) Optical picture of
various liquids on the (i) plastic demonstrating superomniphobicity and (ii) lotus leaf demonstrating
superhydrophobicity, but inability to repel lower surface tension liquids of olive oil and hexadecane. (d)
Plot of apparent contact angle versus equilibrium contact angle of four different liquids for nano-enoki and
nano-enoki without fluorinated tops. The Cassie-Baxter equation and Wenzel equation are also plotted
with estimates of the solid-liquid area fraction and roughness. The dotted lines come from standard error
estimates.

Wetting characterization of the nano-enoki PET and lotus leaf were performed with wa-

ter (surface tension of 72.8 mN/m), ethylene glycol (47.7 mN/m), olive oil (32.0 mN/m),

and hexadecane (27.5 mN/m).

Figure 29(a) shows the static contact angles of these four liquids for the 18 µm tall

nano-enoki PET as compared to the lotus leaf. The lotus leaf is superhydrophobic with a
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static contact angle of 160 ± 2◦ for water. However, lower surface tension liquids tend to

spread more easily and have lower static contact angles. The contact angles are 40±3◦, and

7 ± 2◦ for olive oil and hexadecane, respectively, which tend to spontaneously spread on

the lotus leaf surface. Not only does the nano-enoki PET exhibit high static water contact

angles, but also high contact angles for the other liquids tested above 150◦. The nano-

enoki PET exhibits contact angle values of 172± 1.5◦, 161± 1.6◦, 156± 1.5◦ and 153± 1.7◦,

for water, ethylene glycol, olive oil and hexadecane, respectively.

Figure 29(b) plots the contact angle hysteresis for the four liquids for both the lotus leaf

and the nano-enoki. The contact angle hysteresis is the difference between the advancing

and receding contact angle. The large hysteresis values of the olive oil and hexadecane on

the lotus leaf are indicative of strong adhesion to the surface. For the nano-enoki PET, the

contact angle hysteresis for the four liquids are 2.0±0.6◦, 3.0±0.5◦, 6.0±2.0◦ and 17.0±1.2◦,

respectively. The high apparent contact angles and small hysteresis angles of the re-entrant

nano-enoki mushrooms for a wide range of liquids demonstrate the superomniphobicity

of these structures. The droplets of different liquids easily roll off the surface due to the

repellency of the liquids. Figure 29(c)(i) shows an optical image of different liquids on the

18 µm superomniphobic Enoki mushroom-like nanostructured PET. The superomniphobic

surface demonstrates repellency for a wide variety of liquids beyond those evaluated, in-

cluding blood and coffee. Figure 29(c)(ii) shows an optical image of different liquids on

a lotus leaf. The lotus leaf shows high apparent contact angles for water, ethylene glycol,

blood and coffee. However, the olive oil and hexadecane droplets spread spontaneously

on the leaf.

To examine the importance of re-entrant structures and fluorination in promoting

Cassie-Baxter state wetting, we compared the wetting properties of our 18 µm tall nano-

enoki PET to the same structures without fluorinated tops. The nano-enoki without flu-

orinated tops are the structures just after the RIE process, without the additional PECVD

and fluorination. Fig. 29(d) plots the experimentally measured apparent contact angles of

the nano-enoki PET as well as the nano-enoki PET without the fluorinated tops for water,

ethylene glycol, olive oil and hexadecane.
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The apparent contact angles of the four liquids on the nano-enoki PET were compared

with that predicted from the Cassie-Baxter equation:

cos(θ∗) = fSL cos(θE)− fLV (4.1)

where fSL is the areal fraction of the solid-liquid interface, fLV is the areal fraction of

the liquid-vapor interface, θ∗ is apparent contact angle, and θE is the equilibrium contact

angle. fSL + fLV = 1. fSL was treated as a fitting parameter, and the curve fit shown is

with fSL = 0.04, which is consistent with estimates from overhead SEM pictures.

The θE values are the contact angles of different liquids on plain PET. θE was measured

to be 75.0± 1.0◦, 60.0± 1.0◦, 33.0± 1.0◦ and 15.0± 1.0◦ for water, ethylene glycol, olive oil

and hexadecane, respectively.

The prediction from the equation agrees well with the measured apparent contact an-

gles indicating that the liquids are indeed in the Cassie-Baxter state of wetting.

We further compare the experimentally measured apparent contact angles for the

nano-enoki PET without fluorinated tops with the predicted apparent contact angles from

the Wenzel equation:

cos(θ∗) = r cos(θE) (4.2)

where the value of surface roughness r is estimated as r = 1.5 for the 18 µm tall nano-enoki

PET without fluorinated tops with a diameter of 225 nm and pitch of 5 µm.

As can be seen from the plot, our experimental data agrees well with that predicted

from the Wenzel equation. For liquids with an equilibrium contact angle less than 50◦, such

as hexadecane and olive oil, the liquid completely spreads over the nanostructured surface.

In the cases where the surface has an affinity for the liquid (equilibrium contact angle less

than 90◦), Wenzel wetting state is enhanced by nanostructuring and decreases the wetting

contact angle[29]. The fluorinated tops of the nano-enoki are critical for creating low

surface energy re-entrant structures that promote Cassie-Baxter state wetting as opposed

to the Wenzel state. The low contact angle fraction between the droplets and plastic in the

Cassie-Baxter wetting state enable the high apparent contact angles and low contact angle
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hysteresis. To characterize the stability of the metastable Cassie-Baxter wetting state of

droplets on our nano-enoki nanostructures, we characterized the breakthrough pressure

of nano-enoki of different heights. Different height nano-enoki were fabricated by varying

the RIE etch time, while the PECVD and fluorination process were kept the same. A 5 µl

drop of water was placed on each substrate and evaporated while monitoring the decrease

of contact angle. Fig. 30(a) plots the evolution of the contact angle as a function of time

and Fig. 30(b) plots the contact angle as a function of the baseline diameter. In all surfaces,

the contact angle decreased continuously without any evidence of pinning due to the low

contact angle hysteresis of the surfaces and without any sudden discontinuities in contact

angle. The decreasing contact angle is indicative of gradual infiltration of the water into

the structures. However, only the 4 µm tall nano-enoki exhibited a decrease in contact

angle without a concomitant decrease in baseline diameter, indicative of breakthrough

into the Wenzel wetting state. In these shorter nano-enoki, the droplet may transition into

the Wenzel state at lower pressures as it is easier for the droplet to droop and touch the

bottom of the space between nano-enoki as the pressure increases [91]. The breakthrough

pressure is the maximum external pressure that the surface can tolerate before transition

from the Cassie-Baxter state to the Wenzel state. [182]. The robustness factor A∗ is a

measure of the metastability of the Cassie-Baxter state for a given surface[182, 55, 103]:

A∗ = Pbreakthrough/Pref (4.3)

where Pbreakthrough is the breakthrough pressure at which the surface wetting to transitions

to the Wenzel state, and Pref is a reference pressure given by

Pref = 2γLV /
√
γLV /ρg (4.4)

where ρ is the liquid density, and g is the gravitational acceleration [182].

54



Figure 30 Stability characterization of Cassie-Baxter state wetting. Contact angle as a function of (a)
time and (b) baseline for nano-enoki of different heights and lotus leaf.

WhenA∗ is less than 1, the composite solid-liquid-air interface cannot be supported and

the Cassie-Baxter state is not metastable. A minimum 160 µm droplet radius was observed

in the nano-Enoki PET without any breakthrough. This corresponds to a breakthrough

pressure over 900 Pa and robustness factor more than 17. Other studies in the literature

such as mushroom-shaped micropillar arrays [19] or hierarchical structures [55] exhibit

lower breakthrough pressures or lower robustness factors as those structures are over 20

microns apart from each other. In contrast, the spacing of our nano-enoki structures is

only approximately 5 µm and thus provides for a much larger energy barrier for water

infiltration that increases the robustness of the Cassie-Baxter wetting state and superhy-

drophobicity. The spacing of the nano-enoki structures is the smallest in the literature that

we are aware of for superomniphobic re-entrant structures. Back of the envelope calcula-

tions with a spacing of 5 µm, and 9 µm height and diameter of 300 nm suggest the water

droplet will only contact the bottom of the cavity when the radius of the droplet is smaller

than the spacing or 5 µm [91]. A droplet of radius 5 µm would have a breakthrough

pressure of 28 kPa.

The nano-enoki exhibit high transparency and high haze, which make them suitable

as an optical plastic. Compared to the initial bare plastic, the nano-enokis demonstrate

comparable transmission values (86.4% versus 88.4% at wavelength of 550 nm) and ul-

trahigh haze values (96.4% versus 1.1%). The transparency and haze are similarly high
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between 400 and 1200 nm wavelengths. The sub-wavelength nature of the nano-enoki

provide for the high scattering and high transparency that is not possible with larger struc-

tures. High transparency, high haze optical substrates are important for solar cells and light

emitting diodes where they increase the incoupling and outcoupling of light, respectively

[71, 136, 134, 88].

(a) (b)

(c)

Figure 31 Contour plots of (a) total transmission and (b) haze of nano-Enoki PET as a function of
wavelength and height. (c) shows the scattering angular distribution of transmission for nano-enoki with
and without flourinated tops.

Figure 31 summarize the optical results of the samples. Figure 31(a) shows the total

transmission of the nano-enoki as a function of height from 400 to 1200 nm. The trans-

mission at a height of 0 µm corresponds to flat PET. Initial creation of the nano-enoki PET

corresponds to a reduction in transmission as the creation of the enoki tops increases the

reflection. However, additional increases in the height only slightly decrease the transmis-

sion.
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Figure 31(b)plots the haze from 400 to 1200 nm as a function of nanostructure height

for various structures. The optical haze increases monotonically with the height of the

nano-enoki PET.

We next characterized the angular distribution of the transmission through various

substrates. Figure 31(c) shows the scattering angular distribution of transmission for nano-

enoki with and without flourinated tops. The scattering angle range of both samples are

more than 170◦ which shows the strong light scattering capabilities and is much more than

the scattering angles of ultrahigh haze nanostructured paper [34]. This figure also shows

that the fluorination of the nano-enoki does not effect on the scattering angle since it only

forms a monolayer [180, 125, 138, 198].
(b)(a)

Figure 32 Comparison of transparency (at wavelength 550 nm), haze (also at 550 nm) and (a) water and
(b) ethylene glycol contact angle (in degrees) of our re-entrant nano-enoki PET, plain PET and silica
nanoparticle array on PET [88], The color and size of the data points correspond to the contact angle,
which is also used to label each data point. The shape of each data point corresponds to the type of
surface.

Figure 32 plots the wetting and photon management properties of the nano-enoki PET.

In particular, Figure 32(a) compares the water contact angle, transmission and haze, and

Figure 32(b) plots the ethylene glycol contact angle, transmission and haze of our nano-

enoki PET in comparison with the data reported in Jeong et. al [88]. As can be seen

from these figures, the water contact angle, oil contact angle, transparency and haze for

our 18 µm height nano-enoki structure are 172 ± 1.5◦, 161 ± 1.6◦, 86.4%, and 96.4%,

respectively, while the corresponding values for best sample in their work are 165◦, 150◦,
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77%, and 95%. Therefore, our work not only improves optical properties significantly, but

also shows higher water and ethylene glycol contact angle. The hexadecane contact angle

for our nano-enoki structures is 153 ± 1.7◦, which is higher than the 126◦ reported in this

previous work.

(a)

(i)

Before(b)
Nano-Enoki PET Bare PETBare PETNano-Enoki PET

(ii)

After

(ii)

(i)

(c) (i) (ii) (i) (ii)

Figure 33 (a) Transparency at 550 nm for nano-enoki PET and bare PET before and after staining of
(i) mustard, and (ii) blood. (b) Optical images of (i) mustard, and (ii) blood stain before and after
evaporation. (c) Optical pictures of dried mustard and blood droplets on nano-enoki (i) after drying and
(ii) after tilting the substrate where the droplet simply flakes off the surface.

Next, we characterized the stain-resistance ability of our nano-enoki structures. Figure

33(a) shows the stain test results for (i) mustard, and (ii) blood. The transparency at 550

nm for nano-enoki samples do not change after stain test. In contrast, the transparency

of bare PET reduces significantly after the stain test for mustard and blood. Figure 33(b)

shows optical images of the (i) mustard, and (ii) blood. The mustard and blood tend to

dry into small spots and easily flake off the nano-enoki PET surface after the sample is

tilted due to the low infiltration of the liquid and repellency even after drying. In contrast,

the mustard and blood spread over the bare PET and stay adhered to the surface. Figure

33(c) shows dried mustard and blood droplets on nano-enoki (i) after drying and (ii) after

tilting the sample where the dried drop simply flakes off the surface.
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Figure 34 (a) Transparency and Haze at 550 nm and (b) oil contact angle and hysteresis as a function
of bending cycle, for tension (left y axis) and compression (right y axis). (c) Optical image of flexibility
of substrate (d) Optical image of different liquid droplets on curved PET. Food colors added to liquids
in order to enhance visibility.

Figure 34 plots the (a) transmission and haze at 550 nm wavelength and (b) ethylene

glycol contact angle and hysteresis as a function of bending cycle of the 18 µm nano-

enoki PET, under tension (left y axis) and compression (right y axis). Bending tests were

conducted by bending the PET substrate around a stainless steel rod with a 1 inch diameter.

Two samples with identical size, 3 cm× 3 cm, were placed under bending compression and

tension by bending the etched surface towards and away from the steel rod, respectively.

Figure 34 (c) and (d) show optical images of flexibility of nano-enoki PET and different

liquid droplets on curved substrate. Neither the transmission, haze nor oil contact angle

and hysteresis are changed significantly after 5000 cycles of bending, for either tension or

compression. This suggests that the re-entrant enoki mushroom-like nanostructured PET

is robust under bending and may be useful for flexible optoelectronic applications.
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4.2.3 Conclusions

In conclusion, we demonstrate stain-resistant superomniphobic flexible optical PET

based on nano-enoki structures. The nano-enoki demonstrate apparent contact angles over

150◦ and low contact angle hysteresis for a wide range of fluids with different surface ten-

sions. This is in contrast with lotus leaf surfaces, which demonstrate low apparent contact

angles and high contact angle hysteresis for olive oil and hexadecane. The fluorination and

re-entrant tops of the nano-enoki provide for stable Cassie-Baxter state wetting, where the

low contact angle fraction between the droplets and PET enable the high apparent contact

angle and low contact angle hysteresis. The Cassie-Baxter state wetting is highly stable as

breakthrough is not observed at pressures over 900 Pa, which correspond to a robustness

factor over 17. In particular, the close spacing between nanostructures, which is smallest

of all re-entrant structures in the literature that we are aware of, provides for high ther-

modynamic stability of the wetting. The nano-enoki demonstrate stain-resistance, where

dried mustard and blood flake off the surface after tilting and the original transmission

is recovered. The nano-enoki PET substrates are robust from bending and show similar

transmission, haze, oil contact angle and hysteresis values after 5000 cycles of bending.

This characteristics make the re-entrant nanograss PET a strong candidate to use in opto-

electronic applications such as solar cells and LEDs which combination of flexibility, high

transmission, high haze, and stain-resistance are important requirements.
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5.0 Toward Finding Perfect Antireflection and Superomniphobic Structures

In the first section of this chapter, we review our works on using machine learning to

fabricate highly transparent and superomniphobic glass substrates[67]. In the second sec-

tion we evaluate different nanostructures to find the best antireflection functionality [66].

In the third section, we study the effect of the shape and geometry of the microstructures

on the liquid repellency and mechanical durability by using 3D-printing technology[63].

5.1 Creating Glasswing-Butterfly Inspired Glass Through Bayesian Learning and

Optimization

5.1.1 Introduction

Natural surfaces such as lotus leaves, moth eyes, and butterfly wings have evolved over

millions of years to optimize different surface functionalities related to survival and adap-

tation in different environments. Various unique micro- and nanostructures may be found

in these natural surfaces that provide for functionalities such as anti-soiling, self-cleaning,

bacterial resistance, anti-fogging, and water harvesting [203, 175, 171, 72, 96, 86]. In-

spired by nature, researchers have sought to understand how different micro- and nanos-

tructures provide for desired functionalities and utilized this knowledge to demonstrate a

multitude of synthetic surfaces with novel functionalities [133, 197, 226, 223, 114].

Many self-cleaning surfaces have been demonstrated [65, 138, 125] that are inspired

by the superhydrophobic leaves of the Nelumbo nucifera (sacred lotus), which exhibit both

high wetting contact angle (superhydrophobicity) and low contact angle hysteresis (adhe-

sion) due to the combination of hierarchical surface morphology and hydrophobic epitcu-

ticular wax [7]. Superhydrophobic surfaces may be created through low-surface energy

micro-/nanostructures which promote Cassie-Baxter wetting [15], where the water droplet

contacts a small fraction of the surface due to air being trapped with the structures. This is
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in contrast to Wenzel wetting, where the water homogeneously contacts the surface [196].

Water droplets easily roll or bounce off superhydrophobic surfaces, while removing dust

particles with them.

While these surfaces effectively repel water, there is also great interest in surfaces that

repel more types of liquids than just water. The ability to repel many liquids is referred to

as superomniphobicity, where surfaces demonstrate a static contact angle greater than 150◦

and low contact angle hysteresis for a variety of liquids [149, 20, 4, 103, 181]. Creating

surfaces that are superomniphobic is significantly more challenging than creating ones that

are superhydrophobic. This is because the surface tensions of oil and other organic liquids

are lower than water and thus, they tend to spontaneously spread across surfaces and past

trapped air [174, 120, 164, 84, 19]. Springtail insects are the only known surface in nature

that display apparent wetting contact angles θ > 150◦ and low hysteresis for a wide range

of fluids [19]. Recent research has suggested that the key to obtaining superomniphobicity

is re-entrant structures or surfaces with concave topographic features, which provide for

robust metastable trapped air interfaces [181].

While synthetic microscale superomniphobic surfaces have been demonstrated [215,

202, 131, 19, 120], major challenges exist in the creation of superomniphobic surfaces

with optical functionality such as (i) lack of scalability in nanomanufacturing processes,

(ii) low optical transmission, (iii) poor optical clarity due to light scattering, (iv) condensa-

tion failure, and (v) poor abrasion resistance. Creating superomniphobic surfaces through

scalable manufacturing processes is a challenge due to the more demanding requirements

for re-entrant micro-/nanostructures that are needed to achieve omniphobicity. Re-entrant

structures have generally been achieved by complex micropatterning of a mask followed

by some isotropic etch to provide for undercutting [202, 131, 19, 120]. The various re-

entrant microstructures that have been demonstrated for superomniphobicity are far too

large to provide for antireflection. Subwavelength structures such as the 200 to 300 nm

sized pillars in moth eyes are needed for antireflection [176]. Poor optical clarity due to

high haze is also a major issue. The large difference in refractive index at the solid–air

interface of these surfaces results in significant light scattering[64]. Condensation on glass

or so-called fogging can result in poor visibility [133] and destroy the superhydrophobicity
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of surfaces [197]. Nanostructures with high height over pitch aspect ratios as well as close

spacing are desirable for stable Cassie-Baxter wetting [151]. However, the need for high

aspect ratio structures leads to poor abrasion resistance as tall, thin nanostructures can be

easily scratched off. Indeed, many natural surfaces such as insect wings or eyes tend to be

very fragile under abrasion [170].

In this study, we address these challenges by creating a new self-healing, durable su-

peromniphobic glass with ultrahigh transparency and ultralow haze. Inspired by recent

analysis of glasswing butterfly wings [171], this research focuses on random nanostruc-

tures as opposed to highly ordered sub-wavelength structure arrays that may exhibit un-

desirable optical diffraction patterns. The glass is demonstrated through a simple, scalable

two-step maskless reactive ion etching and fluorination process, which we demonstrate

on 4 inch diameter glass wafers. Single-side nanostructured glass exhibits 97.0% total

transparency while double-side nanostructured glass exhibits 99.5% at 550 nm wavelength

and less than 0.1% haze for both at the same wavelength. The glass shows broadband

antireflection (< 20%) even at high incidence angles of 70◦. The specular reflection for

single-side nanostructured glass and double-side nanostructured glass are 5.8% and 4.4%

at 45◦ incident angle, respectively, while normal glass shows 8.3% reflection at the same

incident angle. In addition, static water and ethylene glycol contact angles of 162.1± 2.0◦

and 155.2± 2.2◦, respectively, for fused silica glass were demonstrated. The glass exhibits

resistance to condensation or antifogging properties. The glass we reported here shows

antifogging efficiency[133] more than 90% and demonstrates water departure of droplets

smaller than 2 µm. The glass shows self-healing behavior after 500 mechanical abrasion

cycles. The abraded glass can recover its high water and oil contact angle after heating for

15 minutes.

Identifying a fabrication process for such a high performance and multifunctionalized

substrate with random nanostructures requires allowing great freedom in the possible fab-

rication process. Consequently, the number of process parameters for creating these nanos-

tructures is often high-dimensional, with many etching and deposition process parameters

that may be varied. Searching this space of possible fabrication strategies is often limited

to grid-like search methods where a particular process parameter is systematically varied
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based on physical intuition. That research approach is only effective to very small localized

regions of the input parameter space and only in low dimensional spaces.

In contrast, this study combines a statistical machine learning procedure with the phys-

ical intuition of the authors to create a new high performance glass. To create this new

glass, we demonstrate a design process that utilizes Bayesian learning and optimization

[168, 39, 148] to facilitate an efficient search of this high-dimensional fabrication space.

To balance the photon management and wettability properties, we posed a multiobjective

optimization problem, where a subset of the Pareto efficient frontier is explored subject

to pre-defined threshold values (as stated using expert physical intuition). Gaussian pro-

cesses are built using existing experimental data, and then updated after each 5 exper-

imental fabrications (which are conducted in parallel batches of 5 to facilitate a faster

search). These batches of 5 fabrication strategies were devised to maximize a modified

form of expected improvement, which defines the utility of identifying high performing

fabrication parameters subject to their viability of satisfying the thresholds.

5.1.2 Fabrication Strategy

The nanofabrication process is performed in two steps: (a) reactive ion etching (RIE)

and (b) plasma enhanced chemical vapor deposition (PECVD) and surface treatment with

fluorination. This fabrication process scalably creates the nanostructures directly into the

fused silica glass without the need for patterning or an external mask[64]. Fig. 35(a) de-

picts the input and output parameters under analysis, and suggests how we will efficiently

optimize this process (which we discuss in greater detail later in this section).

The first fabrication step focuses on RIE to create sub-wavelength nanostructures in

the fused silica in order to maximize the total transparency and minimize the haze at the

wavelength of 550 nm. In the RIE process, the etch chamber is pumped down to high

vacuum and then an etching gas is flowed into the chamber. Next, a 13.56 MHz radio-

frequency (RF) power is applied to a pair of parallel electrodes which generates a plasma.

Reactive species, such as ions and radicals, and monomers are formed when the etch gas

is is dissociated in this plasma. These reactive species and monomers are transported
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Figure 35 Schematic of experimental fabrication and Bayesian learning optimization process for nanos-
tructured glass.

onto the substrate surface by the electric field and react with the etch target material and

competitive reactions of etching and deposition take place near the surface [145]. The

morphology of the etched nanostructures depend strongly on the RIE process parameters

such as the pressure, gas chemistry, and RF power.

The second processing step focuses on creating re-entrant structures and a low energy

surface. In this processing step, we consider the deposition of silicon dioxide (SiO2) by

PECVD on top of the sub-wavelength nanostructures in order to make the structure re-

entrant followed by flourination. We focus on varying the deposition time, which affects

the amount of silicon dioxide deposited, while all the other processing parameters are

fixed. Previous research has demonstrated that a concave (re-entrant) surface formed by

roughness upon microscale features results in local energy minimization and these surfaces

are capable of pinning the liquid-air interface. These structures stabilize the Cassie-Baxter

wetting state, which results in high contact angle for different liquids with various sur-

face energy [181, 182]. In PECVD, the pressure of the chamber and the power were set

at 900 mTorr and 60 Watt, respectively. The flow rate of silane/nitrogen (SiH4/N2) and

dinitrogen monoxide (N2O) were both 140 sccm. The thickness of the SiO2 layer can be

65



controlled by the deposition time. In our process, the deposition rate was approximately

110 nm/min. The temperature of the PECVD chamber was fixed at 400 ◦C. The structures

were modified with flourosilane after SiO2 deposition to create a low surface energy sur-

face by spin coating method. Tridecafluorooctyl triethoxysilane (FAS, Dynasylan F 8261)

was mixed with trimethoxy silane (with ratio of 5:1 vol %) and the solution was dispersed

in ethanol (5:1 vol %)[181]. The final solution was spin coated on the glass substrates for

60 s at 1500 rpm, followed by annealing at 95 ◦C for 10 min. The substrates were then

cleaned with acetone and and dried with nitrogen.

Fig. 35 shows the schematic of fabrication and optimization process. Nine input process

parameters were considered: (1) the CHF3 flow rate, (2) the Ar flow rate, (3) the O2

flow rate, (4) the CF43 flow rate, (5) the SF6 flow rate, (6) the etch time, (7) the radio

frequency (RF) power, (8) the pressure of the etch chamber, and (9) the SiO2 deposition

time. The first eight parameters are associated with the first processing step, while the last

parameter is associated with the second processing step. We focused on optimizing three

output parameters: (1) maximize oil static contact angle, (2) maximize transparency, and

(3) minimize haze.

The optical properties were characterized using a spectrophotometer (PerkinElmer,

Lambda 750), equipped with a 60 mm integrating sphere. The angle-resolved reflection

spectra was measured on an Agilent UV-Vis-NIR Cary-series spectrophotometer system. A

large (6◦) detector aperture was used to ensure all light was collected from the narrow

source beam (1◦ apertures) at high incident angle. At each angle the reflection spectra was

collected in a narrow band around 550 nm (±5 nm) in 1-nm increments and averaged.

This process was performed for both TE- and TM-polarizations. The unpolarized spectra

were calculated from the average of the TE and TM polarized light.

The liquid contact angles were measured using an Attension Theta optical tensiometer.

For the condensation test, a humidifier and dehumidifier were used to control and set the

humidity of the system to specific values. Samples were held vertically, while a humidity

control was used to set the humidity of the surrounding area to 80%. The Attension Theta

optical tensiometer was used to observe the formation of droplets on the substrates. The

relative humidity was sustained for 45 minutes.
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5.1.3 Experimental design methodology

We consider the fabrication of nanostructured substrates as defined in the previous sec-

tion, where we simultaneously want high performance photon management and wetting

properties (Fig. 35), as a multiobjective optimization problem with solution x∗,

x∗ satisfies


x∗ = arg maxx∈X θo(x),

x∗ = arg maxx∈X Ttotal(x), and

x∗ = arg minx∈X H(x)

(5.1)

where X is the space of all possible choices of the process parameters. We denote x to be

both the fabrication process parameters and the resulting nanostructure from using those

parameters. θo(x) is the oil contact angle, Ttotal is the total transmission, and H is the haze.

The total transmission and haze are optimized for wavelength λ = 550 nm, which is in

the middle of the visible spectrum, and ethylene glycol was chosen as the oil.

In general, there is no unique structure x? that is simultaneously optimal in all the

objectives in (5.1). In lieu of such a point, the solution to such a multiobjective problem is

often defined as the Pareto-optimal set, or Pareto-efficient frontier P ∈ X . Pareto optimal

parameters x ∈ P evince a “balance” between objective function values, such that no

x′ ∈ X can yield better performance across all objective functions; any improvements in

one metric would necessitate a loss in performance in at least one other metric (thus the

sense of balance). A more thorough explanation of the topic can be found in multicriteria

literature[31].

5.1.4 Standard Bayesian optimization

The substrate fabrication process described above is quite time-consuming, which ne-

cessitates an effective experimental design so as to quickly search the space X for input

parameters which perform well for all three objective functions. Bayesian optimization

is a sample-efficient iterative search framework, where the relationship between process

parameters and objective function values is unknown, and function evaluations (executing

the fabrication and characterizing the resulting substrate) are expensive or time consum-
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ing. Standard Bayesian optimization consists of two components: a probabilistic surrogate

model, to model the objective function f , and an acquisition function, to determine which

x parameters to next sample.

In a typical single objective Bayesian optimization setting, the objective function f is

assumed to be a realization of a Gaussian process (GP) with mean function µ and a positive

definite covariance kernel K, i.e., f ∼ GP(µ,K)[161, 35]. The mean and covariance

functions are often defined to have certain free parameters which are fit to the data using

strategies such as maximum likelihood estimation (which was our strategy of choice in

this process). In all of our modeling, we assume our GPs to have µ ≡ 0 and a square-

exponential K with independent length-scales in each dimension. A Tikhonov parameter

is fixed to be 10−3, primarily to ease ill-conditioning concerns.

An acquisition function is a utility function that measures the value of sampling at dif-

ferent points within X , given what data has already been observed. Acquisition functions

balance the trade-off between exploitation, suggesting input parameters near where we

have the best results so far, and exploration, suggesting input parameter in regions where

we have not tried out. After n different input parameters have been tested, the nth surro-

gate model can be created, which allows the formation of the acquisition function, which

is then maximized to determine the xn+1 input parameter selection at which to run the

fabrication process.

5.1.5 Modifications to Bayesian optimization

We describe our adaptation of Bayesian optimization to efficiently search for input

parameters which address (5.1). The strategy has some decisions unique to this scenario,

but can be generalized to an arbitrary number of objectives.

First, unlike the traditional sequential nature of Bayesian optimization, we chose to run

5 simultaneous fabrication processes. This allowed us to accelerate the parameter search,

which was valuable because the fabrication process can take more than a couple hours.

The specifics of this parallel Bayesian optimization[201] are explained later.
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The strategy is derived from the ε-constraint method [83]. We transform the multi-

objective optimization problem (5.1) to three constrained scalar optimization problems:

max
x∈X

Ttotal(x), s.t. H(x) ≤ Ĥ and θo(x) ≥ θ̂o, (5.2a)

min
x∈X

H(x), s.t. Ttotal(x) ≥ T̂total and θo(x) ≥ θ̂o, (5.2b)

max
x∈X

θo(x), s.t. Ttotal(x) ≥ T̂total and H(x) ≤ Ĥ, (5.2c)

where T̂total, Ĥ and θ̂o are pre-defined thresholds. These quantities define viability for

this experimental setting – we only consider parameter choices x to be viable if all three

constraints are satisfied, i.e.,

θo(x) ≥ θ̂o and Ttotal(x) ≥ T̂total and H(x) ≤ Ĥ. (5.3)

For the parameter search conducted here, θ̂o = 60◦, T̂total = 88.5%, and Ĥ = 1.1%.

Another modification to the standard Bayesian optimization methodology accounts for

the physical limitations in the precision of executing a proposed fabrication strategy. The

parameters defining X are fundamentally continuous (e.g., the etching time can be any

positive real number), but the actual tooling and machinery used in the fabrication pro-

cess have limited precision and small changes in the input parameters do not result in

quantifiable differences in the created structure. As a result, the actual domain under

analysis is a discrete domain designed to account for a minimum difference (distance in

parameter space) between proposed fabrication strategies. That space is:

• CHF3 flow rate: {0, 5, . . . , 80} sccm,

• Ar flow rate: {0, 5, . . . , 100} sccm,

• O2 flow rate: {0, 5, . . . , 100} sccm,

• CF4 flow rate: {0, 5, . . . , 80} sccm,

• SF6 flow rate: {0, 5, . . . , 80} sccm,

• Etching time: {0, 60, . . . , 5400} seconds,

• Power: {20, 30, . . . , 300} watts,

• Pressure: {50, 100, . . . , 250} mtorr,

• SiO2 deposition time: {8, 10, . . . 500} seconds.
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Because the circumstances of (5.2) are more complicated than a standard Bayesian op-

timization setting, we require more complicated models and a modified acquisition func-

tion. We adapt methods from constrained Bayesian optimization literature[51]. After k

fabrications have been conducted, Gaussian process models sT,k, sH,k and sθ,k are created

for the transmission, haze and contact angles, respectively. These are modeled indepen-

dently, though in future work we could consider a joint model.

Using these models, an acquisition function is defined for each component of (5.2).

This acquisition function is modified from the expected parallel improvement[53] to ac-

count for the desire for viability. Considering, at first, only the solution to (5.2a), imposing

the viability requires us to consider not only the distribution of t ∼ sT,k(x) (a Gaussian

distribution), but the joint distribution t, h, z ∼ sT,k(x), sH,k(x), sθ,k(x), more succinctly de-

noted by t, h, z ∼ sk(x). The acquisition function (without parallel suggestions) would be

defined as

aT,k(x) = Et,h,z∼sk(x)[(t− t̃k)+Ih<Ĥ∩z>θ̂o ], (5.4)

where t̃k is the highest Ttotal value observed thus far, (ξ)+ denotes max(ξ, 0), and Iν = 1 if

the condition ν is satisfied and 0 otherwise (the indicator function). This is semantically

equivalent to maximizing the expected improvement attainable for viable points; points

which do not satisfy our thresholds contribute zero improvement.

To account for the desire for 5 parallel suggested parameters, we expand on the base

structure of (5.4). This requires taking draws of our models at 5 different input parameter

x1, . . . , x5 ∈ X values. We denote this with the shorthand notation

t,h, z ∼ sk(x)⇐⇒ t1, h1, z1, . . . t5, h5, z5,∼ sk(x1), . . . , sk(x5),

which allows us to write the expected parallel improvement, attenuated by viability, as

aT,k,5


x1
...

x5

= Et,h,z∼sk(x)

[
max
1≤i≤5

(ti − t̃k)+Ihi<Ĥ∩zi>θ̂o

]
. (5.5)
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In practice, the quantity (5.5) is estimated through 4000 Monte Carlo iterations, utiliz-

ing our ability to independently draw from Gaussian distributions sT,k(x), sH,k(x), sθ,k(x);

the probability of viability impacts (5.5) implicitly through the indicator function, and

thus no explicit model of viability probability is required. Analogous acquisition functions

to (5.5) allow for optimizing H and θo subject to their viability constraints. We used the

CMA-ES[74] optimization strategy (adapted to the aforementioned discrete parameter do-

main) to maximize all acquisition functions; the evolutionary population is 25, with 100

full iterations and 10 uniform random restarts.

Fig. 36 depicts the Bayesian optimization process in a sample problem reduced to one

dimension for ease of understanding. In the first row, 6 locations have already been sam-

pled of the three objectives. In the second row we demonstrate the Gaussian process

models that have been built, and the resulting predictions. In the third row, we show the

acquisition function (5.5) when considering sampling 3 points in parallel (instead of the

5 used for the 9 dimensional problem); we also show the explicit probability of viability

estimated through Monte Carlo sampling (which is presented simply for display and is not

required to compute (5.5)). In the final row, we show the Gaussian process models after

being updated with data sampled at the 3 suggested points, which would then be used to

generate 3 new points at which to sample.

5.1.6 Results and Discussion

Fig. 37 plots a summary of the experimental design and Bayesian optimization pro-

cess. Sixty four experimental runs were conducted in total. The left component of Fig. 37

shows the three 2D plots depicting the objective values observed during the Bayesian op-

timization. In the optimization of the photon management properties (direct transmission

vs. haze), only a single process condition or structure was determined to be Pareto ef-

ficient (the blue star). This indicates that the total transmission and haze are strongly

correlated[44]. As a baseline, smooth glass has 93.5% transmission and 1.5% haze at

550 nm wavelength. After 22 experimental runs, the transparency increased to 97.0%

while the haze value was reduced to 0.1%.
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Figure 36 Sample depiction of our proposed Bayesian optimization process; each column represents one
of the three output parameters under consideration. These are artificial profiles in one dimension for
explanatory purposes only.
First row : The “true” output parameter to be optimized.
Second row : Statistical models built from the observed data.
Third row : The probability of an input parameter being viable (satisfying the constraints for the other two
output parameters) and the associated acquisition function values along with the points which maximize
the acquisition function.
Fourth row : The new observations achieved by sampling at the “next test parameters” and the new
models which result from this new data.
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Figure 37 Depictions of the experimental design driven by our Bayesian optimization methodology. left:
Three 2D feasible region plots of the three objectives under consideration. right: Radar plot of the 5
viable efficient outcomes identified during the parameter search (plot qualitatively exaggerated to account
for the different scales of the three objectives).

The remaining 42 experimental runs conducted were spent balancing high perfor-

mance of the photon management properties against the substrate’s omniphobicity. By

the end, 5 sets of input parameters were identified which are considered viable (satisfy the

stated constraints) and Pareto efficient. The trade-off between the objectives is depicted in

the rightmost graph of Fig. 37.

5.1.7 Characterizing the nanostructured glass properties

We further characterize the optimally performing nanostructured glass identified from

our parameter search. We focus on characterizing the nanostructured glass associated with

the blue star in Fig. 37, which has the best optical properties compared with other Pareto

efficient data points. Fig. 38(a) shows SEM images of the sub-wavelength, re-entrant struc-

ture. Fig. 38(a)(i) shows 20◦ tilted SEM image and Fig. 38(a)(ii) and Fig. 38(a)(iii) show
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cross sectional SEM images with different magnifications. The height of the pillars are ap-

proximately 100-500 nm and the distance between the pillars are between 20-100 nm. The

diameter of the pillars are between 30-40 nm at top and 10-20 nm at bottom. The random-

ness in the height and spacing provide for broadband and omnidirectional antireflection

like the glasswing butterfly wings [171]. Furthermore, this randomness also provides for

robustness against abrasion as will be discussed later. By depositing the SiO2, the surface

area at the top of the pillars increase which provide the re-entrant structures required for

omniphobicity.

To investigate the omniphobic property, we deposited drops of different liquids with

different surface tensions, from water (72.8 mN/m) to ethylene glycol (47.7 mN/m), on

both bare and nanostructured substrates. The volume of droplets was 5 µl. Three mea-

surements were made for each sample and the mean and standard deviation for each

sample are reported. Fig. 38(b)(i) shows the static contact angle of a variety of liquids

on top of normal glass. The bare fused silica has 42.9± 1.1◦ and 18.7± 0.7◦ contact angle

for water and oil, respectively, with 35.5 ± 2.7◦ hysteresis value for water. The hysteresis

value for oil is not measurable, because it is very close to the contact angle. By creating

re-entrant structure on the bare fused silica, the water and contact angles increase signifi-

cantly to 162.1± 2.0◦ and 155.2± 2.2◦ with 3.2± 0.7◦ and 9.4± 3.6◦ hysteresis, respectively

(Fig. 38(b)(ii)). The contact angle for milk, coffee, blood, cranberry juice, orange juice,

and water are all more than 158.0±3.0◦ with hysteresis less than 8.0±2.0◦. Also, as shown

in Fig. 38(b)(ii), the transparency of the nanostructured glass is high enough that the text

beneath the substrate is clearly visible. Fig. 38(c)(i) and Fig. 38(c)(ii) show the total trans-

mission and haze results for glass as a function of wavelength. As shown in Fig. 38(c)(i),

the total transmission for bare fused silica is 93.5% and increases to 97.0% at 550 nm. The

transmission spectra for both the bare glass and single-side nanostructured glass are fairly

flat across the entire range of 280 to 1000 nm wavelength. The total transmission for the

bare glass is between 93.1% to 94.0%, and the total transmission for the nanostructured

glass is between 95.9% to 97.1%. The total transmission of double-side nanostructured

glass at 550 nm is 99.5%. The transmission spectra for the double-sided glass are also fairly

flat with total transmission between 98.1% to 99.9%. The corresponding values for haze
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are shown in Fig. 38(c)(ii). In both single-side and double-side nanostructured glass, the

haze value reduces to less than 0.1% across a broadband range of wavelength. For normal

glass the haze value is between 2.2% and 0.9%; however, for nanostructured glass the

haze value is fairly flat for the spectrum.
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Figure 38 (a) shows (i) 20◦ tilted, (ii) and (iii) cross sectional SEM images of fabricated glass with different
magnifications. (b) shows the droplet of different liquids on (i) normal and (ii) our superomniphobic glass.
(c) (i) show transmission and (ii) haze plots as a function of wavelength for bare, single side and double
side etched glass (d) Angle-resolved spectra for reflection at 550 nm wavelength for bare, single side and
double side etched glass.

Angle-resolved spectra of specular reflection was recorded at 550 nm wavelength.

Fig. 38(d) shows the angle dependent specular reflection for normal glass, single side,

and double side nanostructured glass. All the values of reflection for etched glass are less

than 5% for both single side and double side etched glass up to 45◦. However the reflection

values are always less than glass even for a high incidence angle of 70◦, which reveals the

high omnidirectional, anti-reflective performance of our fabricated glass.
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5.1.8 Characterizing the nanostructured glass functionality

T= 0 T= 20 T= 40 T= 60 T= 70(a)

(b)

200 m

t= 20 s t= 5 min t= 10 min t= 20 min t= 45 min

200 m

Normal Glass

Antifogging Glass

(d)

(i)

(ii)

(i)

(ii)

(i)

(ii)(c)

(i)

(ii)

Figure 39 (a) (i) shows water jet behaviour as a function of temperature ∆T. (a)(ii) shows the water
contact angle at different ∆T on anti-fogging glass. Condensation versus time optical images of (b)(i)
normal glass and (b) (ii) anti-fogging glass. (c) shows optical image of (i) normal and (ii) anti-fogging
glass after 45 min of condensation. (d) (i) plot of percentage of jumping droplets after coalescences
versus time. (c)(ii) Relationship of percentage of coalescences droplets jumping and radius of the droplet
at the moment of jumping.

We characterized the water-repellency of the nanostructured glass when exposed to

fog. The nucleation of small droplets in the structure may destroy the superhydropho-

bicity of the surface [188]. However, nanostructured texturing as well as reentrant struc-

tures may provide for efficient antifogging by preventing nucleating droplets from growing

within the structure and transition to a Wenzel state of wetting [133, 197]. To produce

condensation, we dispense water at an elevated temperature TL compared to a constant

surface temperature TS. Water evaporates and condenses on the surface. By increasing the

difference between the temperature of the water and surface (∆T = TL−TS, where TL and

TS are the temperature of liquid and surface, respectively), the amount of condensation

increases. Fig. 39(a) shows water jets dispensed with different ∆T on our nanostructured

glass (the rate of dispense estimated as 20 ml/min). The results shows that by increasing

the ∆T , when the jet reaches the sample, the wetting area increases (Fig. 39(a)(i)) and
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a number of small water nuclei form (Fig. 39(a)(ii)). However, even with ∆T = 70, the

surface retains its superrepelency of water as the droplet can move easily by blowing it

off, even without tilting the sample. The small water nuclei retain their spherical shape

even as they evaporate and easily roll along the surface even at the minimum observable

diameter of 5 ± 1.0 µm. The corresponding breakthrough pressure associated with this

diameter is 30± 6.0 kPa [19].

We also characterized the anti-fogging properties of nanostructured glass by placing

the samples in high relative humidity conditions of 80%, which were enough to create

fog on the glass. Fig. 39(b)(i) and Fig. 39(b)(ii) show the evolution of fog formation on

normal and our nanostructured glass, respectively. In a short time, high density micro-

droplets nucleate on both substrates. The difference between normal and anti-fogging

glass, however, becomes apparent after few minutes. While the nucleated droplets grow

and coalescence on the normal glass, without jumping out of the substrate, the water

droplets on the anti-fogging glass merge together fast and they jump out of the substrate,

which provide new nucleation sites for new droplets. This process continues for the whole

recorded time. The optical images of normal glass and antifogging glass after 45 min

condensation are shown in Fig. 39(c)(i) and (ii), respectively.

To quantify the anti-fogging efficiency, we measured the proportionN of drops jumping

off the glass after coalescence[133]. After approximately 5000 coalescences, N versus

time is plotted in Fig. 39(d)(i) by counting the jumping droplets in one minute. For the

normal glass, N is essentially zero for all time because no droplets jump after coalescence.

However, for the nanostructured glass, more than 90% of the coalesced droplets jump off

the surface when the size of droplets becomes large enough. The antifogging properties

of our nanostructured glass is comparable with the reported values for nanocones with

remarkable antifogging abilities [133]. Fig. 39(d)(ii) shows N as a function of droplet

radius at the moment of jumping. The droplets start to jump as soon as their size is as

small as 2 µm. The percentage of jumping droplets increase with size of droplet and 99%

of droplets above 12 µm jump of the sample. Almost all of the droplets (N ≈ 99%) with

larger size have jumped out of the substrate.
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Figure 40 (a) Water and oil contact angle versus (i) abrasion cycle and (ii) after heating the abraded
samples. (b) Shows SEM images of (i)20◦ tilted and (ii) overhead view of abraded and non-abraded
structure with wider view of (iii) non-abraded and (iv) abraded area.

The mechanical durability of our glass surface comes from two features: its random-

ness and self-similar structure and ability to self-heal. A Taber Linear Abraser (model

5750) with weighted SCOTCHBRITE abrasive pad was used for abrasion of the samples

on a constant surface area of 4× 10−3 m2. Fig. 40(a)(i) shows the behavior of water and

ethylene glycol contact angle during repeated abrasion cycles with pressure of 1225 N/m2.

For both water and oil, the contact angles decrease to less than 90◦ after approximately

400 cycles of abrasion. However, the mobility of fluorine molecules provides a path for

self-healing, similar to that of epitucular wax in plant cuticles [139]. Fig. 40(a)(ii) shows

how the water and oil contact angle increase after a heat treatment at 95◦C. After only

15 minutes of heating, the contact angles for both liquids recover. Fig. 40(b)(i) and (ii)

show SEM images of tilted and overhead view of the interface between abraded and non-

abraded areas of the sample after 500 cycles of abrasion with 1225 N/m2 of pressure. The

height of the nanostructures decrease, but their reentrant shape is similar to the structure

before the abrasion. The randomness of the structures and self-similarity are such that
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abraded surfaces are similar in texture to the non-abraded surfaces. Fig. 40(b)(iii) and

(iv) show the uniformity of the structures over a wide area for non-abraded and abraded

samples.

5.1.9 Conclusion

In conclusion, we report superomniophobic, high transmission re-entrant nanostruc-

tured on glass substrates created using a Bayesian optimization powered experimental

design process. The antireflective, superomniphobic glass showed 97.0% and 99.5% total

transparency at 550 nm wavelength, for single side and double side nanostructured glass,

respectively. In addition, static water and ethylene glycol contact angles of 162.1 ± 2.0◦

and 155.2± 2.2◦ for fused silica glass have been achieved. The hysteresis for these liquids

on glass are 3.2 ± 0.7◦ and 9.4 ± 3.6◦, respectively. Also, the superomniphobic glass can

recover its characteristics and heal itself after abrasion through a brief period of heating.

The nanostructured glass showed N ≈ 99% antifogging efficiency for broad range of wa-

ter condensation droplets. In using Bayesian optimization, we explored a complex input

parameter space with competing goals to identify and fabricate multifunctional substrates

with a very small number of experiments. These substrates can be used in large variety of

optoelectronic applications.

5.2 Discovering Near-Perfect Broadband and BroadAngle Antireflection Surfaces

for Optoelectronics by Machine Learning

5.2.1 Introduction

Optoelectronic devices such as touch screens, phones, tablets, laptops, and light emit-

ting diodes (LEDs) typically consist of a top glass sheet that protects the device from the

environment. Antireflection is important in this glass for improving the outcoupling effi-

ciency of light in displays or LEDs, augmenting the responsivity of sensors, or increasing

the power conversion efficiencies of solar modules. AR is often needed across a range of
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wavelengths such as the visible range or the solar spectrum and is often desired across a

wide range of incidence angles. Broad angle AR may increase viewing angles in displays

or LEDs or increase power conversion efficiencies in solar modules.

A single layer (SL) thin film of AR coating can provide for perfect AR at one particu-

lar wavelength and normal incidence. However, these thin films cannot demonstrate high

AR across a wide range of wavelengths and incidence angles. An alternative approach

is to use sub-wavelength nanostructures [73]. Extensive research efforts have been de-

voted to construct nanostructured AR materials to reduce light reflection [85, 150, 185].

These nanostructures have included nanowires (NW) [185] and nanocones (NC) [222].

Groep et al. showed that NW arrays can reduce normal reflection to 0.97% across the so-

lar spectrum when the NWs are fabricated on a both sides of the glass substrate, but did

not measure reflection at higher angles across a broad range of wavelengths [185]. Many

NC-like structures have also been fabricated in the literature by methods such as maskless

reactive ion etching (MRIE) followed by plasma enhanced chemical vapor deposition [67],

metal dewetting [85], interference lithography [150], soft imprint [185], nanoparticle dip-

coating and precursor-derived one-step assembly [89], as well as ultrasonic-assisted sol-gel

[219]. The performance of the NC-like structures from these various fabrication methods

will be discussed in more detail later on in the text. These studies demonstrate some of

the potential of NW and NC arrays in providing broadband and broad angle AR. However,

there has yet to be a comprehensive study on the fundamental performance limits of these

nanostructures for broadband and broad angle AR.

In this project, we studied the optimal AR characteristics of SL films, NW arrays, and

NC arrays for minimizing solar integrated reflection across a broad range of wavelengths

and incidence angles. A Bayesian learning and optimization method was combined with

electrodynamic simulations to rapidly search through the parameter space of various struc-

tures and determine optimal and near-optimal structures. We demonstrate that NC arrays

exhibit the best performance for both broadband and broad angle AR. NW arrays only

demonstrate performance comparable to SL thin films, where NWs function as an effective

medium with index of refraction about the same as the optimal thin film. The NCs grade

the index of refraction and have the best performance when the bottom of the nanocones
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fill out the surface to provide for a smooth change in index of refraction with the flat

glass. The NCs have a narrow optimal or near-optimal angle of 76 to 87◦. Our simulations

suggest that NC arrays can demonstrate a minimum solar-integrated reflection of 0.15%

at normal incidence and 1.25% at 65◦ incidence or solar-integrated reflection of 0.78% at

65◦ and 0.23% at normal incidence. We demonstrate and validate the simulation results

by fabricating NC structures with MRIE as well as nanosphere lithography and compare

their performance. NC arrays fabricated by MRIE on both sides showed a solar integrated

reflection of 0.9% for normal incidence and reflection of 6.7% at 65◦ incidence.

5.2.2 Results and discussion

The first part of our study focused on electrodynamic simulations to study solar inte-

grated reflection. We focused on minimizing two objective functions: the solar integrated

reflection across the wavelengths 280-1200 nm at (1) normal incidence (Rsolar,0◦) and

(2) 65◦ incidence angle (Rsolar,65◦). The solar integrated reflection Rsolar is calculated from

Rsolar =

∫
bs(λ)R(λ)dλ∫
bs(λ)dλ

(5.6)

where R(λ) is the reflection spectrum or the reflection as a function of wavelength λ and

bs(λ) is the photon flux density of the AM1.5 global solar spectrum [1]. Rsolar,65◦ is calcu-

lated by averaging the solar-integrated reflection for transverse electric (TE)-incident light

and transverse magnetic (TM)-incident light at 65◦. Assuming normal incidence light at

solar noon, an incidence angle of 65◦ corresponds to 4 hours 20 minutes before and after

solar noon.

Fig. 41(a) shows schematics of the three types of structures studied: (i) SL films,

(ii) NW arrays, and (iii) NC arrays. The SL film is defined by only its thickness t. For

the SL film, the material was assumed to have a wavelength-independent index of refrac-

tion that is the geometric mean of the materials on its sides, n1 =
√
n0n2. n1 = 1.21 was

used for the SL film, since n0 = 1 for air and n2 = 1.46 for glass. The NW array is defined

by its pitch (a), height (h) and diameter (d). The NC arrays are defined by the four vari-

ables, pitch (a), height (h), top diameter (dtop), and bottom diameter (dbot). In the special
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case, dtop = dbot, the NC array is a NW array. The domains over which the optimization

took place for the NW array was a ∈ [1, 400] nm, d ∈ [1, 400] nm, and h ∈ [1, 800] nm with

the constraint d ≤ a. For the NC array, the domains were a ∈ [1, 400] nm, dbot ∈ [1, 400] nm,

dtop ∈ [1, 400] nm, and h ∈ [1, 800] nm with the following constraints: dbot ≤ a and

dtop ≤ dbot.

(a)

a

a

h

d

dtop

dbot
h

a

a

(i)

(ii)

t

(iii)

(b)
(i) (ii)

(iii) (iv)

Figure 41 Bayesian learning and optimization of electrodynamic simulation results. (a) Schematic of (i)
SL thin films, (ii) NW arrays, and (iii) NC arrays. (b) Scatter plots and Pareto frontier of Rsolar,0◦ and
Rsolar,65◦ for (i) SL films, (ii) NW and (iii) NC arrays. (iv) Comparison of the Pareto frontier for all
structures.

The finite difference time domain (FDTD) method [213] was used for optical simula-

tions. Simulations were set up so that the reflection from only a single air/glass interface

was measured. Please see Appendix B for simulation details. To search for the Pareto

efficient frontier which minimizes both Rsolar,0◦ and Rsolar,65◦, we employ Bayesian opti-

mization [40]. Bayesian optimization is an active machine learning-based strategy which

attempts to efficiently balance a desire to learn how the structure parameters influence the

reflection with a desire to more completely refine the knowledge regarding the minimal

reflection values. In this setting, where there are two competing metrics, we leverage a

multiobjective Bayesian optimization strategy powered by constrained Bayesian optimiza-

tion [51].
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Fig. 41(b) shows the scatter plot and Pareto frontier of Rsolar,0◦ (x-axis) and Rsolar,65◦

(y-axis) for (i) SL films, (ii) NW arrays, and (iii) NC arrays. The performance of bare

glass is shown for reference in each of these plots with a purple box. For the NW and NC

arrays, Bayesian learning and optimization was performed with a budget of 500 simula-

tions. For the SL film, the thickness of the films was changed from 0 nm to 800 nm in 10

nm increments. Fig. 41(b)(iv) compares the Pareto frontier of the SL films, NW arrays,

and NC arrays. The SL films, NW arrays, and NC arrays all show better performance than

bare glass. The Pareto points for the SL films and NW arrays show comparable perfor-

mance and there is no significant difference between the Pareto line for these two systems.

Overall, NC arrays demonstrate the best and near perfect broadband and broad angle AR

properties. NC arrays can demonstrate a minimum Rsolar,0◦ = 0.15% with corresponding

Rsolar,65◦ = 1.25% or minimum Rsolar,65◦ = 0.78% with corresponding Rsolar,0◦ = 0.23%.

Next, we performed some post-hoc analysis of the computations conducted during the

search for the efficient frontier; we analyze the effect of geometry on optimal or near-

optimal as defined by Pareto efficiency. Here, near-optimality refers to the points being

close to a point on the efficient frontier and accounts for some of the numerical error in

the simulations due to finite grid size and simulation time. Fig. 42(a) presents the post-hoc

analysis of NW array simulations, where (i) a parallel axes plot, (ii) feasible outcomes plot,

and (iii) scatter plot are shown. For the NW arrays, efficient solutions only appear with h

in the domain [140, 220], despite the full problem domain being [0, 800]. The combination

of low height h plus larger diameter d (in consistent proportion to pitch a) suggests that

the structures with lowest reflection tend to have more of a flat disk shape than a high

aspect ratio wire shape. These structures occupy approximately 41% of the surface of the

glass. This fill factor makes the effective index of refraction of these NW arrays (using the

effective medium approximation) about 1.28, which is close to 1.21 of an ideal SL film.

The NWs function as an effective medium and thus, overall, can only give about the same

performance as an SL film.

Fig. 42(b) presents the post-hoc analysis of the NC array simulations with (i) parallel

axes plot, (ii) feasible outcomes, and (iii) scatter plots, which have a very different spread

of Pareto efficient outcomes compared to NWs. Of greatest note when looking at Fig. 42
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is dbot = a for all efficient configurations. This implies that the reflection is minimized by

maximizing the amount of material at the interface between the bottom of the NCs and

the glass.

(b)
(i) (ii) (iii)

(a)
(i) (ii) (iii)

(c)

400 nm

Figure 42 Post-hoc analysis of optimal and near-optimal (a) NW and (b) NC arrays with (i) parallel
axes plot, (ii) feasible outcomes, and (iii) scatter plots. The colors are dictated by the location of
nearly efficient outcomes along the Pareto frontier. (c) Nearly efficient outcomes for NC arrays, with the
cross-sections of the NCs placed along the frontier.

From an effective medium analysis, this minimizes the discontinuity between the bot-

tom of the cone with fill fraction π/4 and the top surface of the glass. This contrasts with

the NW case where about 41% of the surface is covered. Fig. 42(b)(i) shows a strong neg-

ative correlation (although not a linear relationship) between a/dtop and Rsolar,0◦. Having

a smaller a/dtop reduces the discontinuity in the effective index of refraction between the

air and the top of the NCs.

Fig. 42(c) shows a plot of the nearly efficient outcomes, but with cross-sections of the

NCs placed along the frontier. In contrast with the NWs, is that all of the nearly efficient

results have a height h in the domain of [600, 790] (note the range was 0 to 800 nm).

Also, the nearly efficient results cluster around very small dtop values (less than 100 nm).

These two factors combine to produce NCs which are taller and more pointed (unlike the

NWs which were short and stout). Additionally, these NCs have a relatively consistent

angle. While, mostly fatter NCs tend to demonstrate lower Rsolar,0◦, slimmer NCs tend to

reduce the Rsolar,65◦. In both cases, when we fit a line relating dbot to the angle of the NCs

of the nearly Pareto efficient outcomes, we see the angles all fall within 76◦ to 87◦.
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Figure 43 Experimental NC array results. (a) SEM images of NC array fabricated by MRIE. (b) Exper-
imentally measured (i) R0◦(λ) and (ii) R65◦(λ) for bare glass and NC arrays. (c) (c) R ass a function
of wavelength and incidence angle for (i) experiments and (ii) simulations. Rsolar,0◦ versus Rsolar,65◦ for
bare glass and AR substrates fabricated by MRIE and nanosphere lithography (NL) (this work) compared
with other NC-like structures in the literature. This includes MRIE followed by plasma enhanced chemical
vapor deposition (MRIE+PECVD) [67], metal dewetting (MD) [85], interference lithography (IL) [150],
soft imprint (SI)[185], nanoparticle dip-coating and precursor-derived one-step assembly (DC) [89], as
well as ultrasonic-assisted sol-gel (SG) [219] .

NC arrays with a morphology similar to near-optimal simulated structures were fab-

ricated on a single side as well as both sides of fused silica glass using MRIE methods

developed by the authors [67, 64] (see Appendix A). Fig. 43(a)(i) and (ii) show SEM im-

ages of a fabricated NC array at different magnifications. The AR properties of fabricated

samples were characterized by spectrophotometer. Fig. 43(b)(i) compares R0◦(λ) for bare

glass and fabricated NC array on single side and double side of the glass. The photon

flux density bs(λ) is plotted on the right y−axis. It should be noted that the experimen-

tally measured reflection results are much higher than simulation results as experiments

can only measure reflection through the entire substrate and two glass/air interfaces as

oppose to our simulations which only characterize reflection from a single glass/air inter-

face. The bare glass shows flat behavior in the wavelength range with Rsolar,0◦ = 7.4%. The

double side NC array shows excellent AR properties with R(λ) between 0.3% to 2.6% for

85



λ between 400 and 1200 nm, with Rsolar,0◦ = 0.9%. The Rsolar,0◦ for single side NC array is

equal to 3.3%. Figure 43(b)(ii) shows R65◦(λ) for bare glass and NC arrays on glass. Bare

glass shows more than 21% reflection in the wavelength range, with Rsolar,65◦ = 21.4%.

The fabricated NC array on double side glass shows R(λ) between 4.9% to 8.2% for the

wavelength range, with Rsolar,65◦ = 6.7%. Rsolar,65◦ for single side NC array is 10.5%.

Fig. 43(c) shows contour plots of the reflection spectrum as a function of wavelength

and incidence angle for (i) fabricated double side NC array samples and (ii) simulated

similar structure, with dtop = 120 nm, dbot = 200 nm, a = 200 nm, and h = 620 nm.

Also, Rsolar(%) as a function of angle plots are shown. For a wide range of angles and

wavelength, for both simulation and experimental data, the plots are in blue range, which

means that the reflection is less than 5% and there is a good agreement between simulation

and experimental results.

We evaluate and compare the optical performance of our fabricated NC array, with

other similar NC-like structures in the literature. Fig. 43(d) plots Rsolar,0◦ and Rsolar,65◦ for

our experimental NC arrays as well as the other NC-like AR structures in the literature

fabricated by different methods. All the data shown are from NC-like structures fabricated

on both sides of the glass. The AR properties of other NC-like structures in the literature

are not necessarily measured over the same wavelength range (280 - 1200 nm) and same

incidence angles (0◦ and 65◦), so the comparisons in Fig. 18(d) were made using the most

comparable data provided. Table 1 in Appendix A provides the wavelength ranges and

incidence angles used from each reference for creating Fig. 18(d). Our experimental data

is plotted with a red circle for MRIE and a red star for nanosphere lithography. The Pareto

frontier is shown with a black dotted line. Our NC array fabricated by MRIE is Pareto

optimal. NC arrays were also fabricated by nanosphere lithography (NL). While NL offers

some tunability in terms of NC size and spacing, the fabrication of NC arrays with very

small inter-spacing distance as suggested by simulations is not possible by this method as

the nanospheres must be etched first. In addition, NC-like AR structures formed from metal

dewetting [85] and ultrasonic-assisted sol-gel [219] are also Pareto optimal where the first

offers better normal reflection but worse broadband high incidence angle reflection and

the second offers better high incidence angle refection, but worse normal reflection.
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5.2.3 Conclusion

In conclusion, we report using machine learning to find the best AR geometry for

different AR coatings of SL films, NW arrays, and NC arrays. We showed that NC arrays

have the best broadband and broad angle AR performance, where the NW arrays and SL

films are comparable. Simulated NC arrays can demonstrate a minimum solar-integrated

reflection of 0.15% at normal incidence and 1.25% at 65◦ incidence or solar-integrated

reflection of 0.78% at 65◦ and 0.23% at normal incidence. We also provide physical insight

into the performance of the different structures. MRIE fabricated NC arrays on both sides

of glass showed a solar integrated reflection of 0.9% for normal incidence and reflection

of 6.7% at 65◦ incidence.

5.3 3D Printed Superomniphobic Structures With Ultra-Low Hysteresis, and High

Abrasion Resistance

5.3.1 Introduction

Superomniphobic substrates defined as a surface with high contact angle (> 150◦) for

water and various oils (with different surface tension), as well as small hysteresis angle

(< 10◦) [149, 20, 4, 103, 181]. For having such a high liquid contact angle, based on the

Cassie-Baxter model[15], the solid-liquid contact area needs to be minimized:

cos θCB = f1 cos θY1 + f2 cos θY2 (5.7)

= f1 cos θY1 + f1 − 1cassie (5.8)

where f1 is the fraction of the surface that is in contact with the liquid. f1 + f2 = 1

and θY2 = 180◦ for air. Typically, Cassie-Baxter states show low adhesion at the solid-liquid

interface. It is important to note that the contact angle in the equations is determined

by the infinitesimal region at the contact line and independent of external factors such

as pressure, drop size, gravity, curvature of a surface, or defects [167]. Generally, very
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large amount of air mats under the droplet (f1 < 0.1) creates both superhydrophobic and

superoleophobic surfaces [126, 23]. Combination of hierarchical micro/nanostructures

and hydrocarbon/fluorocarbon compounds are a common strategy for this purpose[67,

68].

Re-entrant geometry are demonstrated as the most efficient shape for repelling low

surface tension liquids [116, 19]. A variety of re-entrant geometry structures have been

demonstrated that can effectively impede penetration by various liquids, such as T-shaped

microstructures [202], mushroom-like pillars [131, 19, 120], porous membranes[232],

and springtail-inspired surfaces [217].

Fabrication of complicated re-entrant geometry usually involves multi steps. Recently

3D printing was used widely to make re-entrant geometry with high precision[120, 209,

81, 119]. However, multiple drawbacks such as poor mechanical durability and high

rolling angles of the printed microstructures limit their application. Small rolling angle is a

must for supeomniphobic surfaces. While there are some applications for high rolling angle

superomniphobic substrates[119], however, for a wide variety of applications such as self-

cleaning [65, 138, 125], anti-fogging and condensation resistant substrates [67, 197, 133],

stain resistant[68], and anti-icing [192, 129] substrates, low hysteresis (and low rolling

angle) is a critical need.

Poor mechanical robustness, also, is a major challenge in superomniphobic surfaces in

general, including 3D printed re-entrant pillars, which limits the implication of pillar-based

surfaces in commercial applications. We observed that the printed pillar are destroyed after

just a few cycles of abrasion and superomniphobicity is lost. While there are some effort

on making self-compensating liquid-repellent surfaces[81], there is still an absolute need

for fabrication of high mechanical durable surfaces for real life applications.

In this study, we address these challenges by introducing re-entrant walls in triangular

array. To create this new re-entrant surface, we used two-photon polymerization based

3D printing technology that allows the fabrication of the micro re-entrant structures with

high resolution. By using theoretical calculation for solid-liquid fraction and breakthrough

pressure, we determined the feasible dimension for re-entrant walls geometry. For com-

parison purposes, we also fabricated re-entrant pillars with the same dimension reported
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in Liu et. al.[120] work. Both re-entrant walls and pillars then coated with oleophobic

nanoparticles to reduce the rolling angle. Our re-entrant walls showed static contact angle

for water and ethylene glycol (EG) oil as 172.0 ± 1.5◦ and 161.0 ± 2.5◦, respectively. The

hysteresis values for water and EG were 2.5±1.5◦ and 4.5±2.0◦, respectively. The abrasion

experiments for re-entrant walls showed that the water and EG contact angle after 100 cy-

cles of abrasion were 52.0±3.5◦ and 145.0±5.5◦, respectively, with 7.1±2.5◦ and 13.0±6.5◦,

hysteresis, respectively. However, re-entrant pillars array, almost destroyed after the very

first cycle of abrasion. The fabricated re-entrant wall array can find potential applications

in various industries including but not limited to electronic devices, medical devices, and

optoelectronics.

5.3.2 Results and Discussion

Top view- Unit cell Top view- Array Tilted view- Array
Single 

Triply re-entrant
Double 

Triply re-entrant

(a)

(b)

Figure 44 Schematic of Single, and double triply re-entrant configuration as (a) triangular walls array
and (b) pillar array

Fig. 44 shows schematic of re-entrant (a) pillars and (b) walls. Liu et. al.[120] demon-

strated that having double re-entrant parts, one at the top of the pillar and one at the

middle of the height of the pillar, can improve the repellency for lower surface tension

liquids, therefore we made double re-entrant part for both pillar and wall array. Also triply

re-entrant shapes was used to enhance the liquid repellency. the unit cell, top view and

side view of the pillars and walls arrays are also shown in the Fig. 44.
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Two-photon absorption polymerization based 3D printing system (Photonic Profes-

sional GT, Nanoscribe GmbH) was used for printing the microstructures. Polished silicon

wafer (thickness = 500 µm) used as substrates. The substrates were cleaned by ultrasonic

rinse in acetone, isopropanol (IPA) and distilled water for 5 mins each, and then dried

by nitrogen. The negative photoresist, IP-S (Nanoscribe GmbH) with a refractive index

of 1.48 at 780 nm were used in the Dip-in Laser Lithography (DiLL) configuration. After

printing, the samples were developed in SU-8 developer for 20 mins, followed by rinsing

in IPA for 5 mins. Ultimately the samples were dried by gently blowing of nitrogen. To

increase the adhesion of the walls to the silicon surface, first, a film ( 10 µm) of the resist

printed on the silicon substrate then the wall array was printed on the resist film, as it is

shown in Fig. 44(b). To reduce the rolling angle of different liquids, the printed structures

were coated by Teflon oleophobic nanoparticles by nanosphere lithography[44], followed

by drying on a hot plate at 100◦C for 30 mins. The preparation of the nanoparticle solu-

tion is as follows: Tetraethyl orthosilicate, silica precursor (TEOS) (5ml), together with an

appropriate amount of flouroalkysilane, perfluorinated compound (FAS), was dissolved in

25 ml ethanol. The solution was mixed with ammonium hydroxide/ethanol solution (6ml

28% NH3·H2O in 25 ml ethanol), and stirred intensively at room temperature for 12 hr.

The milky mixture solution was then ultrasonicated (VCX750 Sonics Materials Inc.) for

30 min to produce a homogeneous suspension prior to the coating onto substrates. Upon

drying at room temperature, the treated substrate was further cured at 110◦C for 1 hr. For

design consideration, breakthrough pressure and solid fraction (f1) are two determining

parameters. The maximum breakthrough pressure (PBreakthrough) can be calculated as the

ratio of the unit maximum surface energy to the unit stress area[116]. For triply re-entrant

pillar surfaces, the breakthrough pressure can be calculated as[120]:

PBreakthrough−pillars =
4πD

4P 2 − πD2
γ (5.9)

where γ is liquid surface energy, D is the diameter of the re-entrant top and P is the pitch

size, as described in the first row of Fig. 45(a). the solid fraction for this geometry is:

f1 =
πD2

4P 2
(5.10)
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In our study, similar to et. al.[120], we assumed the diameter of re-entrant top, D,

is constant as 30µm. Therefore by changing the pitch, P, the breakthrough pressure and

the f1 can be adjusted, as it is shown in Fig. 45(b) by blue line. For this study pitch

size for pillars selected as P= 80 µm, similar to above mentioned article. The corre-

sponding values for breakthrough pressure and solid fraction area for this geometry are

PBreakthrough−pillars = 1.2kpa, and f1 = 0.11.
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Figure 45 (a) calculation of breakthrough pressure and f value for re-entrant pillar and triangular walls
unit cells. Pressure versus f plots for (b) re-entrant pillar and (c) re-entrant triangular walls unit cell.

For wall array, the breakthrough pressure can be calculated as (Fig. 45(a), second row):

PBreakthrough−walls =
4P −W

2PW − 3W 2
(5.11)

where γ is liquid surface energy, W is the width of the re-entrant top and P is the pitch

size. The solid fraction also can be calculated as:

f1 =
2PW − 3W 2

P 2
(5.12)

To have the smaller value of f1, thinner walls and larger P is required. However, larger P

causes lower breakthrough pressure. Therefore values for wall width at the top, W, and

the pitch size were intentionally selected to have f1 between 0.1 to 0.2 and breakthrough

pressure larger than 15 kpa. From Fig. 45(b), it can be seen that the breakthrough pressure
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range for wall array is larger than pillar array because of the geometry. In this study we

selected W= 10 µm and P= 120 µ, which correspond to PBreakthrough−walls = 16.1kpa, and

f1 = 0.15.
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Figure 46 SEM images of 3D printed (a) pillars and (b) walls, before ((i) overhead, (ii) tilted side view)
and after ( (iii) overhead , (iv) tilted side view) PTFE coating. (v) shows the PTFE nanoparticles on
the structures with larger magnification
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Fig. 46(a) shows SEM images from (i) top and (ii) side view of the fabricated pillar

array, before PTFE coating. The pillar array, before PTFE coating shows high contact angle

(> 150◦) for both water (72.8 mN/m) and EG (47.7 mN/m), however the hysteresis value

for those liquids are large, 35.0± 5.5◦ for water and 58.0± 10.0◦ for oil, which means that

pillars are cannot be used for self-cleaning and many more applications. However, after

PTFE coating, as it is shown in Fig. 46(a) (ii), (iv) and (v), the hysteresis values reduced

significantly to 1.5 ± 0.5◦ for water and 3.0 ± 1.5◦ for oil. The oleophobic nanoparticles

helps the pillar array be more useful for practical application.

Fig. 46(b) shows SEM images of wall array, from (i) top and (ii) side view before

PTFE coating. The water contact angle for wall array before coating is 147.0 ± 2.0◦, with

hysteresis of 53.0± 4.5◦. The oil contact angle for wall array before coating is 135.0± 3.5◦,

with 85.0 ± 6.5◦ hysteresis. By PTFE coating, the water and oil contact angle increased

to 172.0 ± 1.5◦ and 161.0 ± 2.5◦, respectively. The water and hysteresis values reduced to

2.5 ± 1.5◦, and 4.5 ± 2.◦, after PTFE coating. Fig. 46(b) (iii) , (v) shows top head SEM

images of wall array, and (iv) shows side view of wall array after PTFE coating. By using

the PTFE nanoparticles, both high contact angle (> 150◦) and low hysteresis (< 10◦) for

superomniphobic structures achieved for wall arrays which makes them suitable for several

applications.

A Taber Linear Abraser (model 5750) with weighted SCOTCHBRITE abrasive pad was

used for abrasion of the samples on a constant surface area of 4× 10−3 m2. Fig. 47(a)(i)

shows the behavior of water and EG contact angle during repeated abrasion cycles with

pressure of 1225 N/m2, on wall array, coated with PTFE nanoparticles. After 100 cycles

of abrasion, the water contact angle was 152.0 ± 3.5◦, with hysteresis of 7.1 ± 2.5◦. The

contact angle for EG oil after 100 cycles of abrasion was 145.0 ± 5.5◦, with hysteresis of

13.0± 6.5◦. We need to mention that abrasion with SCOTCHBRITE abrasive pad simulates

very harsh abrasion situation, however even with these condition the wall array remain

superhydrophobic and has very high oil contact angle. Fig. 47(a)(ii) shows the SEM image

of the abraded sample after 100 cycles. The wall array is still in good shape, however some

residue from SCOTCHBRITE abrasive pad left on the microstructures.
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In comparison, pillar array almost destroyed after the first cycle (more realistically the

first touch of abrasive pad) of abrasion. Fig. 47(b)(i) shows the contact angle changes with

the abrasion cycle for pillar array. After the very first run of abrasion, the water contact

angle dropped significantly to 91.0± 8.0◦, and hysteresis increased to the maximum value,

which mean that the droplets stayed on the structure and cannot be repelled. The oil

contact angle also dropped to 74.0 ± 12.0◦. Fig. 47(b)(ii) shows a SEM image of pillar

array after the very first touch of abrasive pad. Majority of the pillars are fallen and

destroyed and repellency lost with the first touch. This fact shows that pillar array are

not appropriate for real life application, while wall array shows much better mechanical

durability.

100 m

(ii)

1

100 m

(ii)

(a) (b)(i) (i)

Figure 47 Water and EG contact angle and hysteresis as a function of abrasion for (a)(i) re-entrant walls
and (b) (i) re-entrant pillars. (a)(ii) shows SEM images of re-entrant wall after 100 cycles of abrasion.
(b)(ii) shows SEM image of re-entrant pillar after just one cycle of abrasion.
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5.3.3 Conclusion

In conclusion, we report superomniphobic re-entrant wall array with low hysteresis

and high mechanical durability. Re-entrant wall array showed the water and oil contact

angle of 172.0±1.5◦ and 161.0±2.5◦, respectively, with 2.5±1.5◦, and 4.5±2.0◦, hysteresis,

after being coated by PTFE nanoparticles. Also the abrasion resistant test demonstrated

that the wall array has very good mechanical durability. The water and oil contact angle

for wall array after 100 cycle of abrasion by SCOTCHBRITE abrasive pad were 152.0±3.5◦,

145.0± 5.5◦, respectively, with hysteresis of 7.1± 2.5◦ and 13.0± 6.5◦, respectively. On the

other side, re-entrant pillar array, lost their liquid repellency performance after the very

first touch of the abrasive pad. The wall array can find very wide application in medical

devices, electronic devices. optoelectronics and many more.
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6.0 Conclusions and prospects

Micro/nano fabrication offers exciting new possibilities in material design and opportu-

nities for high performance and multi-functional substrates for optoelectronic applications.

In this project, I tried to develop new functionalities for regular optical substrates including

glass and plastics, by using simulations and experiments.

At the first step, we evaluated the fundamental optical performance for transparent

conductor and we showed that there is a reverse relationship between transparency and

haze. At the second step, we developed optical substrates with both high transparency

and high haze, simultaneously. These functionalities enabled by fabrication of nanograss

structures on glass and plastic substrates. Many optoelectronic applications such as solar

cells, backlit liquid crystal displays, and LEDs would benefit from optical substrates with

both high transparency and high haze. Substrates with high haze can increase how much

light scatters into or out of the underlying photoactive layers and may increase the solar

cell power conversion efficiency or LED extraction efficiency, respectively.

At the second phase, we focused on adding self-cleaning and liquid repellency capabil-

ity to high transparent, high haze optical substrates. We introduced self-cleaning glass with

high optical properties and superomniphobic plastic PET, with the ability of liquid repel-

lency for a wide variety of liquids from water (72.8 mN/m) to hexadecane (27.5 mN/m).

We demonstrated that adding repellency does not negatively affect the optical properties

of these optical substrates. Our Nano Enoki PET substrate exhibit stain-resistance for a va-

riety of liquids including mustard and blood, where the transparency of the original plastic

is recovered after staining. Dried mustard and blood both flake off the samples without

any residue, indicating no infiltration of the liquid and poor adhesion to the surface.

At the next step, we studied the fabrication of antireflection and liquid repellent for

high transparent applications such as displays. We demonstrated a design process that

combines Bayesian learning and optimization with the physical intuition of the authors

to create a new high-performance, multi-functional glass. The integration of machine

learning methods and physical intuition enables us to efficiently search a high-dimensional
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fabrication space for creating random re-entrant nanostructures inspired by those on the

glasswing butterfly. In particular, we pose a multiobjective optimization problem where

we seek to balance the photon management and wettability properties of the surface, and

determine a subset of the Pareto efficient frontier that is subject to pre-defined threshold

values. We report on a self-healing supertransmissive and superclear nanostructured glass

with high liquid repellency and antifogging properties. We envision that these surfaces

will be useful in a variety of optical and optoelectronic applications where self-cleaning,

anti-fouling, and anti-fogging are important.

Eliminating light reflection from the top glass sheet in optoelectronic applications is

often desirable across a broad range of wavelengths and large variety of angles. Next, we

report on a combined simulation and experimental study of single layer films, nanowire

arrays, and nanocone arrays to meet these antireflection (AR) needs. We demonstrate the

application of Bayesian learning to the optimization of these structures for broadband and

broad angle AR. We demonstrate that nanocone structures have the best AR performance

and additionally provide physical insight into the AR performance of different structures.

Simulations suggest nanocone arrays are able to achieve a solar integrated normal and 65◦

incidence angle reflection of 0.15% and 1.25%, respectively.

Finally, we used novel two-photon polymerization based3D printing technology to fab-

ricated re-entrant wall structure to address the poor mechanical durability of superomni-

phobic structures as well as high rolling angle of previously reported 3D printed re-entrant

pillars. The abrasion resistant test demonstrated that the wall array has very good mechan-

ical durability. The water and oil contact angle for wall array after 100 cycle of abrasion

by SCOTCHBRITE abrasive pad were 152.0±3.5◦, 145.0±5.5◦, respectively, with hysteresis

of 7.1± 2.5◦ and 13.0± 6.5◦, respectively.

Despite much work has been done so far to improve the performance of optoelectronic

substrates, there are still challenges. For example, fabrication of mechanically durable

supromniphobic structure on transparent substrate without negative effect on optical prop-

erties need to be systematically investigated. Beside, more device- integrated substrates

need to be designed and tested, as the sole use of figure of merit for substrate may not

adequately reveal how good the surfaces really are.
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Appendix

Additional Details For: Discovering Perfect Broadband and Broad

AngleAntireflection Surfaces for Optoelectronics byMachine Learning

A.1 Experimental

A.1.1 Fabrication process

Samples were fabricated on 2 cm by 2 cm glass substrates using nanosphere lithogra-

phy and maskless reactive ion etching (MRIE) techniques. A polystyrene (PS) nanoparticle

solution (Sigma-Aldrich) was deposited on glass substrates by dip coating, followed by a

plasma etching using reactive ion etching with O2 at 5 sccm flow rate, for various times

based on desired final sphere size. The total pressure of chamber was kept at 150 mTorr

and the power was 150 W. Subsequently, dry etching was carried out in a mixture of CF4

and O2 gases at 45 and 5 sccm flow rates, respectively, for 10 mins. The power and pressure

of the chamber was set on 150 W and 150 mTorr, respectively. Finally, the residuals and

the remaining nanoparticles on the surface were removed by O2 plasma treatment with

same chamber power and pressure, for 3 min, followed by ultrasonication in acetone for 5

min. In this method, the distance between pillars can be controlled by size of nanospheres

and plasma etching parameters. Figure 48 (a)(i) and (ii) show the SEM images of the

fabricated NC array at different magnifications.

Based on Bayesian optimization of numerical simulations, the best optical performance

may be achieved by fabricating very close nanocones with pitch size equal to bottom di-

ameter. In order to fabricate these kind of nanostructures, MRIE was used. The process

is maskless in that no external mask, such as metal nanoparticles or nanospheres, is used

to create the structures. Instead, nanoscale polymer particles randomly deposit on the

surface of the substrate during the etching and provide for the etch selectivity needed to
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create various high aspect ratio structures. Figure 48 (b)(i) and (ii) shows the SEM image

of a fabricated sample by this method. The inter-space of fabricated NCs in this method is

very small in the range of 5-50 nm.

(a) (b)

500 nm

(i)

1 m

(ii)

500 nm

(i)

1 m

(ii)

Fig 4

Figure 48 (a) SEM images of NC array fabricated by (a) nanosphere lithography and (b) MRIE. (i) and
(ii) shows different magnifications.

The fused silica is etched by CF4 and O2 at 45 and 5 sccm flow rates, respectively. The

total pressure of chamber was kept at 200 mTorr and the power was 125 W. During the

etching process, polymer particles are deposited on the surface of the fused silica substrate,

which acts as a micro-mask [145]. The height of the nanostructures can be controlled by

varying the etch in time and the etch chemistry can be used to control the degree of vertical

versus lateral etching.

A.1.2 Optical characterization

A spectrophotometer (PerkinElmer, Lambda 750) equipped with a 100 mm integrating

sphere was used for measuring the total reflection of the sample between 280 and 1200
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nm wavelengths. The angle-resolved reflection spectra was measured on an Agilent UV-

Vis-NIR Cary-series spectrophotometer system. A large (6) detector aperture was used to

ensure all light was collected from the narrow source beam (1 apertures) at high incident

angle. At each angle the reflection spectra was collected in a wide band around from 280

to 1200 nm in 1 nm increments and averaged. This process was performed for both TE-

and TM-polarizations and averaged for non-normal incident light.

A.1.3 Simulation

The finite difference time domain (FDTD) [213, 177] was used to solve Maxwell’s

equations and simulate the optical reflection of the different AR structures on glass sub-

strate. Perfectly matched layer (PML) boundary conditions were used for the upper and

lower boundary of the simulation cell [8], while periodic boundary conditions with appro-

priate symmetries were used for the side boundaries to model the interaction between the

periodic structure and the polarized incident light. The glass substrate extends past the

lower boundary of the simulation cell and thus, only the reflection from the top air/glass

interface is measured. Any light going into the substrate is absorbed by the lower PML

boundary condition.

A.2 Results and discussion

In this section, we provide additional investigation into the geometry of the nearly ef-

ficient outcomes shows predictable behavior in nanostructures which minimize reflection.
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A.2.1 NW array

For the NW array, there seems to be a relatively consistent linear relationship between

pitch a and diameter d of efficient points (most noticeably in Fig. 49 where the points all

roughly fall on a plane); the line of best fit through the nearly efficient points is

Diameter = (0.726)Box Size + 3.489, R2 = 0.980.

200 300 400
Box Size

100

150

200

250

300
Di

am
et

er
R2 = 0.980

Figure 49 All nearly efficient NW array satisfy a linear relationship between Box Size and Diameter.

A.2.2 NC array

For NC arrays, the optimal or near-optitmal cones have a relatively consistent angle,

computed with

Cone Angle = tan−1
(

(2)× Height
Diameter Bottom− Diameter Top

)
.

When we fit a line relating the Diameter Bottom to the angle of the nearly Pareto

efficient outcomes, we see the fit

Cone Angle = (−5.52× 10−4)Diameter Bottom + 1.56,

with R2 = 0.965. These angles all fall within 76◦ to 87◦. This result is plotted in Fig. 50. In

all cases shown, dbot ' a.
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Figure 50 All nearly efficient NC array satisfy a linear relationship between Box Size and Diameter.

A.2.3 Literature data on fabricated NC array

Table 1 Fabricated NC array details in literature.

Fabrication method
R0◦ R65◦

Ref
Wavelength range Wavelength range Incidence angle

Maskless reactive ion etching (MRIE) 280-1200 nm 280-1200 nm 65◦ This work

Nanosphere Lithography (NL) 280-1200 nm 280-1200 nm 65◦ This work

MRIE+ PECVD 280-1000 nm 550 nm 65◦ [67]

Metal dewetting (MD) 390-800 nm 530 nm 65◦ [85]

Interference lithography (IL) 300-1300 nm 300-1300 nm 65◦ [150]

Soft imprint (SI) 420-1000 nm 532 nm 65◦ [185]

Dip-coating and precursor-derived assembly (DC) 400-1200 nm 400-1200 nm 60◦ [89]

Ultrasonic-assisted sol-gel (SG) 450-800 nm 450-800 nm 60◦ [219]

We compared our fabricated NC array with NC-like structures in the literature (See

Tab.S1), fabricated by MRIE followed by plasma enhanced chemical vapor deposition

(MRIE+PECVD) [67], metal dewetting (MD) [85], interference lithography (IL) [150],

soft imprint (SI)[185], ultrasonic-assisted sol-gel (SG), [219], as well as nanoparticle dip-
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coating and precursor-derived one-step assembly (DC) [89]. The wavelength ranges for

R65◦ and R65◦ that used in each paper are shown in Table S1. Since some of the reported

references do not have the reflection value for 65◦incidence angle, we used the closest

angle to 65◦in order to make a fair comparison. These incident angles are also shown in

Table S1. In some references, for example [150], we calculated the reflection from the

R(λ) = 100%−T (λ), where T (λ) is provided in the paper. This assumes absorbance of the

glass substrate is 0%.
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