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Abstract 

Data-Driven Rehabilitation Development for Stroke Patients Using Machine Learning 

Techniques 

 

 

Marcus C. Allen, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

A portable motion capture system that can guide a stroke patient’s rehabilitation session 

will help them regain motion in their arm quicker and save money on medical bills. The goal of 

this dissertation was to investigate stroke patient motions to lay the groundwork for such a 

system. Specifically, the dissertation focused on developing an automated system for stroke 

diagnostics and task-oriented rehabilitation. This form of telerehabilitation is new to the field 

since previous systems do not create skill-based instructions for the patient.  

The system created in this dissertation was demonstrated to classify a patient’s stroke 

severity using supervised machine learning techniques. It was shown how this information can 

be used to create a personalized rehabilitation protocol for that patient. For this study, inertial 

measurement units were used to collect joint kinematics and kinetics during reaching tasks for 10 

healthy and 17 stroke subjects, and from that data machine learning features were defined for a 

support vector machine classification algorithm. These parameters were validated against a gold 

standard optical tracking motion capture system (Optitrack, NaturalPoint, Inc.) where the joint 

results were calculated using the Motion Monitor Biomechanics engine. The kinematic and 

kinetic features extracted from these patients for the machine learning model also served a dual 

purpose by creating a hierarchal rehabilitation session by categorizing reaching tasks by 

difficulty. The features used to determine a patient’s task hierarchy for rehabilitation were 

determined based on the support vector machine algorithm that classified stroke severity. Task 



 v 

rankings were developed for stroke individual stroke subjects as well as for classes of stroke 

subjects. The rankings were unique for classes and for individuals, but their general orders 

coincided with intuitive task difficulty.   
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1.0 Introduction 

As of 2018, there were 795,000 new or reoccurring cases of stroke in the United States 

expected each year (Benjamin E.J., 2018). A maximum of 85% of these stroke cases result in an 

individual having upper extremity paresis poststroke (Kwakkel G., 2007; Sethi A., 2017). 

Unfortunately, this is a large responsibility for our healthcare system with the total direct and 

indirect cost being $65 billion as of 2008. The direct cost includes hospitalization, nursing home 

healthcare professionals and drugs. While indirect costs consist of loss of productivity due to 

morbidity and mortality (Rosamond, 2008). These patients need to start rehabilitation 

immediately, so they can regain their motor skills and save money on their medical bills. This 

dissertation focuses on upper extremity stroke patients and provides knowledge on data-driven 

based rehabilitation.  

A challenge with rehabilitation is the high cost (time and money) of direct contact 

between patients and clinicians, and the difficulty that patients have properly following a rehab 

routine on their own. Patients currently travel to the clinician to be diagnosed and treated and are 

given a series of tasks after each session to complete at home to continue their rehabilitation. 

With the lack of guidance outside of the clinic, patients tend to perform the exercise incorrectly 

and become unmotivated. The completion of each exercise is qualitative and can provide a 

patient with a false sense of success.  

A user-friendly system that helps the patient regain normal upper extremity functions and 

avoids the development of irregular motion to compensate will help with the disconnection 

between clinician visits. In order to create such a system, more information is needed about 

stroke patient motions to characterize the motions, classify the severity of stroke impairment, and 
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prescribe rehabilitation treatment that is individually suited for each patient. The research 

described in this dissertation is intended to provide information in these areas, with the ultimate 

goal of accelerating the rehabilitation process for stroke survivors who only receive professional 

feedback during clinician visits.  

Several key aspects of an eventual portable and individualized rehabilitation system are 

proper diagnosis and classification of a patient’s stroke severity, prescription of proper 

individualized therapy, and monitoring of progress. Inertial measurements can assist in each of 

these areas.  

Diagnosis of stroke severity is challenging and requires significant training. Clinicians 

also face difficulties when evaluating their patients. During an evaluation, clinicians can only 

measure the range of motion (ROM) of one joint angle at a time with a goniometer. Due to this 

limitation, clinicians cannot measure movement during dynamic functional tasks, which makes it 

difficult for them to establish accurate rehabilitation goals. A system that provides the clinician 

with quick, objective and automated methods of assessment of motor severity after stroke using 

kinematic and kinetic measurements will help facilitate a productive rehabilitation regime.  

Once a therapy has been prescribed, clinicians lack necessary time to work with patients 

one-on-one in order to deliver high quality repeated task-oriented rehabilitation. With the lack of 

professional guidance, this can cause the stroke patient to perform the task incorrectly and can lead 

to reinforcement of negative compensatory motor strategies. A system is needed that can have 

patients monitor their hand improvement and receive therapist-guided personalized treatment to 

accelerate and improve functional independence. 
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This dissertation describes research that explores a wearable motion measurement system 

and accompanying analysis techniques that can lay the foundation for a system that may provide 

the benefits needed in stroke rehabilitation. 

1.1 Dissertation Outline 

This dissertation focuses on establishing the underlying information and methods that are 

needed to ultimately develop a data-driven customizable rehabilitation system. Specifically, there 

are three aims of the research:  

Aim 1: Define a kinematic and kinetic based feature set (including new features and 

existing from the literature) from which assess and predict stroke severity (Chapter 3.0). Since in 

this work we are using wearable IMU sensors as the means of measuring patient motions, two 

sub-aims are created: i) verify the IMU system’s accuracy against the gold standard optical 

tracking system (Chapter 4.0). ii) develop algorithms with which to calculate those features from 

raw IMU data.  

Aim 2: Illustrate how the features defined in Aim 1 can be used to predict stroke severity 

(Chapter 5.0).  

Aim 3: Show how the classification results can be used to create a task difficulty 

hierarchy for a patient classes (of similar stroke severity) and for individual patients (Chapter 

5.0) that may, in turn, be used to prescribe personalized treatment.  

The measures of success to ensure that each aim was completed are listed below.  
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Aim 1 measures of success:  

• Define a set of kinematic and kinetic features to assess and predict stroke severity: 

Previous studies have analyzed how a single motion feature correlates with stroke severity, but a 

larger set of features needs to be considered for predictive analysis (machine learning) to be 

applied. The aim is complete when kinematic and kinetic based features that address, all joint 

motions, range of motion, and the relationship between joints are identified and quantified in this 

dissertation. This is an iterative process that requires revisiting to define new features if the 

measure of success for Aim 2 is not met.  

• Calculate motion features from the raw data that predict stroke severity: This aim 

is complete when all motion features defined in the first measure of success of this aim 

(kinematic and kinetic based) are calculated from the IMUs.  

• IMU kinematic validation: To ensure that the IMU’s joint angle readings are accurate, 

the IMU results are compared to an optical tracking system (Optitrack, © 2018 NaturalPoint) 

which is the gold standard in motion capture technologies. The goal is to have the normalized 

cross-correlation between the two systems be within 0.8 – 1, where a normalized cross-

correlation of 0 is the worst performance and 1 is the best performance.  

 

Aim 2 measures of success:  

• Prediction of stroke severity using motion features: Using the features defined in 

Aim 1, feature sets are to be selected for use in machine-learning classification methods. F1 

scores of resulting classifications are to be used to quantify the performance of the classification. 

The aim is complete when the average F1 score over 150 random iterations of training sets is 

within 0.95) – 1.  
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Aim 3 measures of success:  

• Automated goal-oriented rehabilitation development: The goal is to develop a 

method with which to rank rehabilitation tasks based on the difficulty for an individual stroke 

subject or a class of stroke subjects. Two measures are considered to complete this aim. The first 

measure is the ability to quantify motor impairment for each stroke participant. This can be 

shown through the deviation of motion features from a healthy population as stroke severity 

increases. Success is defined when a measure is defined that enables ranking of tasks in relation 

to their difficulty for a stroke subject. The second measure is the ranking of the tasks based on 

difficulty.  

It is important to note that the results presented in this dissertation outline a method that 

can be used if a large patient population (100+ participants) for study. Due to the limited dataset 

available in this work (27 subjects), conclusions cannot be made on the exact subset of features 

selected and the exact task hierarchy for any given class of stroke subjects (explained in detail in 

Chapter 5.0 and 6.0), but the methods themselves are expected to be scalable. Therefore, the 

broader impact of this work leans more on the method proposed. Achieving success in the aims 

will provide strong evidence that a more comprehensive study with more subjects will solidify 

the method. 
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2.0 Background and Motivation 

Current stroke rehabilitation for upper extremity impairment is a cyclic process that 

consists of three steps. These steps include (1) assessment, to identify and quantify the patient’s 

needs (2) goal setting, to define realistic and attainable goals for improvement, and (3) 

intervention, to assist in the achievement of the goals (Langhorne P., 2011). The following 

sections describe the standard methods for each step along with recent developments to provide 

more quantitative data to expand knowledge on rehabilitation approaches. 

2.1 Stroke Assessment  

Stroke impairments are currently assessed by a clinician using the Fugl-Meyer Upper 

Extremity (FMUE) assessment (Yang Q., 2017). This test focuses on the ROM of the joint 

angles and the speed at which a patient performs a task. Patients are asked to perform a total of 

33 tasks (The list of tasks can be seen in Appendix A) that involve the patient fully extending or 

flexing a given joint and grasping household goods such as a soda can. Each task is given a score 

of 0 for not being able to complete the task, 1 for partial completion and 2 for full completion 

(Singer B., 2016). The FMUE scale is set such that 66 is the maximum score (healthy patient) 

and 0 is the minimum score (a patient who is severely limited in completing tasks). Although the 

FMUE is a strong indicator of stroke severity, the static joint measurements (i.e. ROM) cannot 

capture the compensatory reaching strategies developed after stroke. Also, Fugl-Meyer and 

Gladstone (Fugl-Meyer A.R., 1975; Gladstone D.J., 2002) state that the FMUE has difficulty 
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distinguishing the difference between improvement in motion and improvement in strength. 

Through dynamic measurements from motion capture technologies, compensatory strategies can 

be detected, and telerehabilitation (rehabilitation services in remote sites (Peretti A., 2017)) 

methods can be developed to correct their motion. 

Researchers in the biomechanics field have been studying human motion tracking for 

rehabilitation since the 1980s (Zhou H., 2007). Throughout this time, the size of the motion 

tracking devices has decreased while the computational power has increased. Researchers have 

benefitted from highly accurate optical tracking systems such as VICON (VICON Industries, 

Inc) but are not applicable for rehabilitation at home due to the system’s large size, significant 

cost, and complexity of setup and use. In a search for portable systems, researchers have been 

using inertial sensors, encoders (potentiometers) and pressure sensors to analyze limb 

kinematics. 

Even though encoders and force plates are small, they still have some significant 

drawbacks in the motion tracking field. Encoders require some form of a brace to attach them to 

the body and each encoder can only track one axis of rotation. While pressure sensors are highly 

accurate, they are currently limited to measuring bending or twisting along the surface to which 

they are attached and need to be in contact with the ground. In some configurations, the pressure 

sensors can restrict the motion of the subject. Inertial measurement units (IMUs), on the other 

hand, are promising for this field due to their low cost, small configuration (no additional 

attachments and/or ground contact needed), and high performance through sensor fusion of the 

accelerometers, gyroscopes, and magnetometers. Also, IMUs and other wearable sensors have 
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already found widespread applications in homes, with examples such as the Wii U system 

(Nintendo Co., Ltd), Fitbit and smartphones. 

Stroke rehabilitation with IMUs has been explored by Willmann et al. (Willmann R.D., 

2007), where the patient and clinician received feedback from the system in the form of joint 

angles in the sagittal, frontal and horizontal body planes. While this is a significant advancement 

in the field, there still is a lack of quantitative feedback for motion strategies that lead to recovery 

outside of the clinic. A system that can use historical data to provide a personal path to recovery 

based on the patient’s level of impairment would help avoid stagnant recovery during home 

rehabilitation sessions. In order to create this system, it would need to be capable of properly 

predicting a stroke patient’s impairment from their motion patterns. 

Studies have introduced pattern recognition in motion tracking to identify a patient’s 

disability. B. Najafi et al, have used discrete wavelet transform of a gyroscope signal to identify 

sit-to-stand transitions in elderly patients (Najafi B., 2002). Mechanical impedance has been 

correlated with the Unified Parkinson’s Disease Rating System to diagnose rigidity in Parkinson 

patients using a force transducer and a gyroscope (Patrick S.K., 2001). In each study, the output 

from the system was used in a scalar equation to identify the motion. Identifying stroke motion 

can be more complex since multiple joint kinematics need to be monitored. One of the objectives 

of this research is to develop an IMU-based system in which multiple limb movements and joint 

angles can be measured simultaneously. 

Solely using joint kinematics can cause difficulties in distinguishing unique patterns 

between different motions. Additional parameters are needed to define the sporadic motion in 



 9 

stroke patients. In the Biomechanics field, kinetic features have been developed to describe how 

the neuromuscular system effectively organizes the multiple degrees of freedom movement. 

Kinetic features can give unique outputs for sporadic behavior that have a high 

correlation with stroke severity. Hirashima (Hirashima M., 2003) has observed the interaction 

torque (the sum of the Coriolis torques and torques due to the angular acceleration of other 

joints) to quantify joint coordination throughout a motion. The remainder of the torque terms 

were defined as net torque (torque due to angular acceleration of the joint of focus), gravity 

torque, and muscle torque (calculated as the net torque minus the sum of the interaction and 

gravity torques). To avoid confusion with the standard definition of net torque (sum of all torque 

terms), the Hirashima definition of net torque will be called the focal point torque for the 

remainder of the dissertation (further details of this calculation are in section 4.4). When these 

torques were analyzed with patients that have damage to their central nervous system through 

Cerebellar Ataxia, the patient adjusted their muscle torques to account for the change in 

interaction torque patterns (Bastian, 1996). The results demonstrated in Bastian’s study show that 

the central nervous damage caused by a stroke can be captured in gravity, interaction, focal 

point, and muscle torques. 

As more and more motion features are considered (e.g. kinematic and kinetic information 

from multiple joints and body segments), a great deal of data is created. With the high volume of 

information, it is easy for a clinician to overlook motion patterns that predict stroke severity. 

Data-driven methods such as machine learning have been used to identify patterns in large 

datasets and predict future outcomes. 

Algorithms such as artificial neural networks (ANNs), Naïve Bayesian classifiers, 

gaussian mixture models and SVMs have been used to recognize daily and sports activities 
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(Barshan, 2013). In that work, the SVM and ANNs had an identical classification performance 

by evaluating the sports activities with an accuracy of 99.2%. What makes the SVM 

advantageous between the two is its robustness to noise in the data training set and the 

transparency of the predictive model. When patients are affected by stroke, their spatio-temporal 

irregularities provide additional complexity (or process noise) in the motion characteristics due 

to jerk (change in acceleration over time) (Osu R., 2011). 

By following the machine learning methods in the previous studies, one objective of this 

dissertation was to develop a machine-learning algorithm to identify patterns in the high 

dimensional datasets that will be created. With this technology, an initial input dataset (kinematic 

and kinetic data) will be paired with the desired output known to the user (FMUE score) and will 

be used as the training set for the machine learning algorithm. When implemented correctly, this 

process produces a function (or predictive model) that can make appropriate patient assessment 

decisions with future datasets without the guidance of the clinician. 

2.2 Goal Setting 

Once the patient’s stroke severity has been classified, the main goal is to correct their 

motion over time. Current clinical rehabilitation focuses on repetitive task-oriented training as the 

gold standard motor learning method for stroke patients (Winstein C.J., 2014). In a clinical setting, 

the first step involves choosing the appropriate tasks (2. Goal setting). Winstein states that goal 

setting is broken down into 3 objectives: (1) the task must be challenging enough to require new 

learning, (2) the training must progress in difficulty and the task must be iteratively adapted to 

real-world relevance and (3) the task must not lead to rote repetition but repeated attempts to solve 
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a problem. To enforce the proper task-oriented regime a clinician needs to find a series of tasks 

that are achievable for a stroke participant. 

Clinicians prescribe challenging achievable goals using the FMUE assessment by selecting 

FMUE elements that they scored a 1 on (partially completed the task). For example, if a stroke 

patient scored a 1 on the spherical grasp task during the FMUE assessment, they will be asked to 

perform that task during their rehabilitation session (FMUE tasks will be explained in Chapter 

3.0). 

2.3 Intervention 

The second and last step repetitive task-oriented training involves correcting impaired 

motion patterns (3. Intervention). Throughout the session, intervention is provided by constant 

feedback on the patient’s performance and assignment of new tasks if a patient does well. This 

step also involves reevaluating the stroke patient's stroke severity using the FMUE so new tasks 

can be set to continually meet Winstein’s first two objectives for goal setting. 

The problem with basing goal setting and intervention processes off of the FMUE, is the 

FMUE only evaluates stroke severity through static measurements, one joint at a time, and misses 

the motion strategy during dynamic functional tasks. This makes it difficult to set achievable goals 

for the patient if they are still having trouble completing the task assigned to them. Also, clinicians 

are not always available to provide feedback to a patient during the intervention process, which 

can lead to compensatory motion and frustration from slow or no progress. 

Various human motion tracking technologies have been implemented to help correct upper 

extremity movements. In (Linden J., 2011), IMUs and haptic feedback from vibration motors were 
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placed on a subject to teach them the correct posture and bowing technique. Similar methods were 

used for stroke patients in (Huang M.C., 2011), where predefined therapist motions were masked 

in an on-screen jewel thief game controlled by Microsoft Kinect and pressure sensors. 

Although these systems provide feedback to the user, the goals are predetermined. Also, if 

the subject deviates significantly from the target, personalized guidance cannot be given to them 

until they meet with a professional. There is yet a system that customizes the feedback for the 

patient and guides them through a hierarchical set of motion classes. A goal of this dissertation is 

to show that the sets of features derived from IMU data may be useful in prescribing therapies for 

stroke patients. 



 13 

3.0 Aim 1: Define a Kinematic and Kinetic Based Feature Set From Which Assess and 

Predict Stroke Severity 

In this chapter, a method will be presented that can be used to determine a given set of 

motion features that can classify stroke severity. Section 3.1 reviews previous studies that 

quantified differences in healthy and stroke motion patterns. Section 3.2 explains the rationale of 

defining the motion features using the information discussed in the previous section. 

3.1 Theory and Methods 

When an individual has a stroke, the three main motor deficits include hypertonia/reflexia 

(tightness of muscle tone/ overresponsive reflexes), dyscoordination (inability to effectively 

synchronize muscle effort from each limb to complete a task), and weakness (Levin M., 1996). 

These factors cause spatiotemporal irregularities in limb movement during daily living activities 

and can cause further injuries if not corrected. The current gold standard with which to evaluate 

the dyscoordination and weakness developed from stroke is the Fugl-Meyer Upper Extremity 

(FMUE) assessment. A patient’s stroke severity is calculated by measuring their range of motion 

with a goniometer, grip strength by how they grasp and tug on an object (such as a soda can) and 

their speed of motion by measuring the time it takes for their index finger of their affected arm to 

touch their knee then bring their index to their nose. Woodbury (Woodbury M., 2013) performed 

a detailed analysis of the FMUE scoring system to define cutoff scores that set boundaries between 

upper extremity impairment (mild, moderate and severe) and described motor behavior at each 
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level. These cutoff scores were determined using the Rasch-Andrich step calibration (Andrich D., 

1978; Linacre J., 1996). The results from this study are shown in Figure 1, with the cutoff FMUE 

scores and rank of FMUE task difficulty (the top task shown is defined as the easiest and bottom 

task is the hardest). 

 

 

 

 

Figure 1: FMUE with cutoff scores. The X-axis represents the Rasch logit measure. (Woodbury M. 2013) 

 

 

 

Although the FMUE scoring system measures motor impairment, it fails to observe dynamic 

compensatory motor strategies in between the start and end positions within the FMUE tasks. 
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Another limitation of the FMUE scoring system is its inability to distinguish the difference in the 

improvement of motor control from improvement in strength (Fugl-Meyer A.R., 1975; Gladstone 

D.J., 2002).The majority of the tasks defined in the FMUE scoring system primary requirement is 

on the strength of one or two joints to complete a task and can ignore the improvement of joint 

coordination that contributes to their score. With the full FMUE shown in Appendix A, only 3 task 

in section D of FMUE focus on coordination. By conducting kinematic and kinetic analysis during 

specially designed tasks that minimize strength requirements and restrict compensatory strategies, 

motor control recovery can be isolated and quantified (Beer R.F., 2007; Cortes J.C., 2017; Krebs. 

H.I., 2014). 

With the rapid development of motion capture technologies, dynamic joint kinematic 

parameters can be measured at precise quantities. Murphy (Murphy M.A., 2011) used movement 

time, velocity, strategy (shape of velocity profile and location of peak), smoothness (number of 

tangential velocity peaks of the hand) and inter-joint coordination to identify differences in a 

reaching task between 19 healthy and 19 stroke participants (FMUE score ≥ 39). Their results 

showed that the smoothness, total movement time and peak angular velocity of the elbow were the 

best parameters to distinguish the difference between healthy and stroke participants. Although the 

kinematics were able to show movement differences in a binary case, their work wasn’t compared 

to any standard clinical evaluations. 

Yang (Yang Q., 2017) analyzed 6 kinematic parameters to define correlations with the 

FMUE scores. The features that showed significant relationships with the FMUE were the 

percentage of time to peak velocity (PTPV) and relative joint angle correlation (RJAC). The PTPV 

and RJAC monitored movement planning and joint coordination respectively. The results of this 

study are shown in Figure 2. 
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Figure 2: Correlation between kinematic parameters and Fugl Meyer Assessment for Upper Extremity 

(FMA-UE) Score of 10 subjects with stroke at ID3.(a) Mean percentage time to peak velocity (PTPV). (b) 

Mean relative joint angles correlation (RJAC) (Yang Q. 2017) 

 

 

 

This study provides a foundation for refining parameters for clinical scores, but more variables 

need to be explored to find stronger correlations and to attain greater insight into the deterioration 

of joint coordination after stroke. 

In this dissertation, similar kinematics can be obtained from the IMUs to correlate with the 

FMUE score and to get a detailed understanding of the dyscoordination of each stroke participant. 

The goal is to explore a large set of kinematic parameters (the complete list is provided in 

Appendix B) and use machine learning algorithms to find strong correlations between kinematics 

and stroke severity (as defined through FMUE scores). 
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The kinetic analysis helps to isolate strength improvement along with understanding how 

the central nervous system (CNS) performs trajectory planning. Within motion capture studies, 

inverse dynamic models have been incorporated to analyze the kinetics of an individual. Dewald 

(Dewald J., 2001) analyzed joint torques of control and stroke participants during reaching tasks 

across a table. The targets that were arranged in a circular pattern, forced the patient to generate 

shoulder flexion/extension (SF/SE), shoulder abduction/adduction (SAB/SADD), shoulder 

internal/external rotation (SIR), elbow flexion/extension (EF/EE) or a combination of these 

motions. Each patient performed an isometric (maximum torque was analyzed from load cell) or 

dynamic trial (torque analyzed through optical tracking along with an inverse dynamic model) 

throughout the study. The isometric results showed abnormal coupling (in terms of timing and 

magnitude) with the sets of [EF, AB, ER, SE] and [EE, AD, IR]. When shoulder abduction was 

incorporated in these tasks, there was a significant decrease in elbow extension, shoulder flexion 

and shoulder extension. During the dynamic trials, one severe stroke participant showed task-

dependent elbow weakness. These results develop a foundation of motor control after stroke but 

to get a complete understanding, more joints need to be analyzed along with vertical motions that 

reflect more activities of daily living. 

Raj (Raj S., 2018) went a step further by analyzing separate terms in his inverse dynamics 

model to examine changes in control of inter-segmental dynamics to understand dyscoordination 

caused by stroke. The torque terms calculated from the inverse dynamic model were grouped into 

passive torques (gravitational and interaction torque) and active torque (muscle torque) as 

described in (Hollerbach J., 1982). Control and stroke participants were asked to grab a soda can 

on a table while seated and lift the can to eye level. The results in this paper showed that stroke 

patients’ motor strategy consisted of overcompensation of interaction torque. In other words, 
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stroke patients were highly dependent on forces from neighboring limbs to complete a reaching 

task, whereas a healthier individual’s net torque demonstrated a higher dependency on muscle and 

gravity torque from a single joint to generate movement. It can also be seen in Figure 3 that the 

stroke severity and the change in torque have a positive correlation. 

 

 

 

 

Figure 3: Plots showing muscle and gravity torque (MGT), net torque (NT) and interaction torque (IT). Level 

1-3 represents mild, moderate and severe stroke severities respectively. 

 

 

 

This distinct change in motor patterns has led researchers to search for the cause of this behavior. 

Flash (Flash T., 2012) explains that although the nature of how the CNS develops trajectory plans 
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is widely debated in the field, there is an agreement of a general motor hierarchy. The motor 

hierarchy consists of neural commands, muscle activations, joint motions, hand trajectory, and task 

goals. With muscle activation being the second level on the motor commands, joint torques will 

give researchers the closest understanding of the CNS. 

Uno (Uno Y., 1989) was able to predict the hand trajectory in a two-dimensional plane by 

finding a trajectory that minimizes the change in the muscle torque at the shoulder and elbow 

joints. This follows the results in Raj’s (Raj S., 2018) study in Figure 3 which illustrates a loss in 

trajectory planning from the CNS as the change in muscle torques increases. From looking at the 

muscle torque (input from CNS) and gravitational, interaction and net torques (output of CNS), a 

map of the CNS progression can be generated. 

For this dissertation, one of the proposed kinetic parameters were chosen to be the mean 

square difference between the muscle torque and the focal point (referred to as net torque in (Raj 

S., 2018)), interaction, and gravitational torques of each joint. The result should show a strong 

correlation with the FMUE score and a map of CNS recovery by viewing the changing relationship 

between the input and output torques. 

3.2 Motion Features Used to Analyze Stroke Severity 

With the information from the literature mentioned in section 3.1, the total list of motion 

features that have been defined for this study are in Appendix B. 

For the kinematic features, the one linear displacement that will be monitored is the average 

chest displacement of the participant. With stroke participants, it is expected for them to 
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compensate for their lack of range of motion of their arm by leaning forward during a reaching 

task. 

The absolute phase difference between joint flexion angles will help to quantify the 

dyscoordination after stroke. For the other kinematic parameters such as angular position, velocity, 

acceleration, and jerk, there will be a continuation of Yang’s work (Yang Q., 2017) to find which 

kinematics correlate with clinical scores such as the FMUE. 

The focal point, muscle, interaction and gravity torques mentioned in (Raj S., 2018) have 

been calculated as the kinetic features for this study. Unlike in (Raj S., 2018), the inverse dynamics 

model has 10 degrees of freedom (DoF) that tracks forces along all 3 anatomical planes (sagittal, 

coronal and transverse planes) and will calculate these torques using IMUs. The max of each torque 

was chosen to see the compensation methods used from the interaction, gravity and focal point 

torques when a muscle torque is applied. The sum of the change of torque was chosen to monitor 

the damage in the CNS when a stroke occurs. By recruiting stroke participants with a range of 

stroke severities, a better understanding of how stroke affects the CNS commands to the muscles 

can be established. 

From the large set of features, a support vector machine (SVM) along with feature selection 

algorithms will determine the most significant kinematic and kinetic features that can classify 

stroke severity. This process is explained in detail in chapter 5.0. 
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4.0 Motion Capture Data Acquisition 

The purpose of this chapter is to discuss how the kinematic features were obtained from 

the IMU system that was used in this study. A brief discussion is also provided for the optical 

tracking system used to validate the IMU readings. This will help ensure that the IMU system 

behaved as expected. 

Section 4.1 describes the experimental setup used for each participant to collect the motion 

features. The data acquisition methods for the IMUs and Optitrack systems are described in 

sections 4.2 and 4.3 respectively. Section 4.4 explains how the joint kinetics were calculated for 

the IMU system. The summary of findings for Aim 1 is discussed in section 4.5. Lastly, section 

4.6, addresses how the measures of success were met in for Aim 1 in order to set up the machine 

learning stroke predictability in Aim 2. 

4.1 Experimental Setup 

For this study, kinematic and kinetic feature calculations require the capture of dynamic 

motions of the torso, shoulder, elbow and wrist joints. The patient performed a series of motions 

with an adjustable target system (shown in Figure 4) that promotes different joint coordination. 

Each trial began with the subject seated, the center target at eye level and the arm used for the task 

placed on an armrest. With the track system within the vertical and horizontal direction, the neutral 

position was readjusted for each patient. 
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Figure 4: CAD model of the target system used for stroke rehabilitation sessions (Shelf target attached for 

soda cans). The red numbers show the target assignments. 

 

 

 

During the motion analysis, the patient reached all 9 targets with their affected arm under 2 testing 

conditions. First, the target was placed at 40% and 80% of the patient’s arm length for the short 

and far distance trials respectively. Second, three types of targets included a bullseye for pointing, 

a doorknob to twist and a soda can on a shelf to grab and lift. These three tasks will be referred to 

as the pointing, rotating, and grasping tasks for the remainder of this dissertation. Each spoke of 

the test rig, along with the center of the rig, holds only one target type, which is removable to 

quickly set up a different series of targets. With all the testing conditions (9 targets, 3 target types, 

2 arm length positions), there were a total of 54 motions for each patient in a given test set.  
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A push-button was used to track the start and end of each trial and align the IMU and 

Optitrack system in time. The circuit that the button was attached to connected to a data acquisition 

(DAQ) board for the Optitrack system and a wireless dongle to transmit to the IMU system. 

At the beginning of each trial, participants placed their hand on the push button and held it 

down until they were instructed to reach for a target. At the end of the trial, they had to return to 

the button and press down again. Figure 5 shows the button setup. 

 

 

 

 

Figure 5: Button setup for the experiment. The dongle sent the voltage signal to the IMU system while the 

DAQ sent the signal to the Optitrack system. 
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Patients were recruited following the protocol in the Individualized Hand Improvement and 

Tracking System University of Pittsburgh Institutional Review Board (IRB) (Protocol number: 

PRO16070555). For this study, the goal was to recruit 10 healthy as control, and 10 mild stroke, 

and 10 moderate stroke patients. Stroke severity was identified by Dr. Amit Sethi using the FMUE 

scale. 

4.2 Inertial Measurement Units: Theory and Methods 

This section will explain how the joint kinematics are calculated from the IMU readings. 

The calculations follow the workflow shown in Figure 6. 
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Figure 6: Joint kinematics workflow.
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The flowchart in Figure 6 provides a summary of the methods discussed in this chapter to obtain 

the joint kinematics. Two motion trials need to be conducted to calculate the joint kinematics from 

the IMU. The alignment calibration data was first collected where patients moved their upper 

extremities in a pure joint rotation to define the transformation between body coordinate systems 

and the IMU coordinate system in the alignment matrix format (refer to section 4.2.1.3). 

Once the alignment matrices were defined, the patient began the reaching task trial, where 

they used their affected hand to reach for a target shown in Figure 4. The patient is first asked to 

remain stationary to get the initial IMU orientation relative to the global coordinate system in the 

form of the initial quaternions. Then patients started the reaching task where the dynamic 

orientation was collected in the form of the instantaneous quaternions that were converted into an 

instantaneous rotation matrix (refer to section 4.2.1.1). By combining the dynamic readings with 

the alignment matrix, the IMU Euler angles were transformed into the anatomical frames to get 

the joint kinematics (refer to section 4.2.2). 

The IMUs are placed into reflective marker plates by using a 3D printed case (The 

reflective markers will be described in detail in section 4.3.1). The full placement of IMUs on a 

participant is shown in Figure 7. 
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Figure 7: a) Displays the back view of the participant where IMU1 is placed. B) Shows IMUs 2-4 placed on 

the upperarm, forearm and hand repectively 

 

 

 

A total of 10 joint angles were analyzed during the reaching tasks. The elbow was treated as a 

hinge joint so only the flexion angle was analyzed. For the torso, shoulder and wrist joints, they 

were treated as ball joints with 3 DoF each. Figure 8 shows all the body coordinate systems along 

with Table 1 that expresses the relationship between the Euler angles and the anatomical angles 

used in this dissertation. 
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Table 1: List of Euler angles analyzed and their meaning 

 

 

 Euler angles Anatomical angles 

Torso 𝜙𝐺
𝑇 , 𝜃𝐺

𝑇 𝑎𝑛𝑑 𝜓𝐺
𝑇 Lateral bending, axial rotation, and flexion/extension 

Shoulder 𝜙𝐺
𝑈 , 𝜃𝐺

𝑈 𝑎𝑛𝑑 𝜓𝐺
𝑈 Abduction/ Adduction, rotation and flexion/extension 

Elbow 𝜓𝑈
𝐹  Flexion/extension 

Wrist 𝜙𝐺
𝐻 , 𝜃𝐺

𝐻 𝑎𝑛𝑑 𝜓𝐺
𝐻 

Flexion/extension, Forearm pronation/supination and 

deviation 
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Figure 8: The diagram shows the global (G), torso (T), upperarm (U), forearm (F) and hand (H) coordinate 

systems along a cylindical model of the body segments. Each “o” represents the origin of the respective 

coordinate system. 

 

 

 

The subscripts represent the initial coordinate system and the superscripts are the reference 

coordinate system that the measurement is being referenced to. For example, 𝜙1
2 can be explained 

as the angle in the coordinate system 1 represented in coordinate system 2. G, T, U, F, and H 

represent the global, torso, upper arm, forearm and hand coordinate systems, respectively. To 

calculate joint angles in this dissertation, rotation matrices that relate an anatomical coordinate 

system to the global coordinate system were needed. 
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To further complicate the process, measurements were not made in either the anatomical 

or global coordinate systems. Instead, measurements were made in the IMU reference frames. That 

is, an IMU was attached to a body segment, but its coordinate system may not be aligned with the 

anatomical frame of that body segment. So, three coordinate systems were involved in calculations 

of motion for any given body segment: global coordinate system, anatomical (body) coordinate 

system, and IMU (sensor) coordinate system. To measure the angle between two body segments, 

five-coordinate systems were involved: the global coordinate system, the two anatomical 

coordinate systems, and the two IMU coordinate systems. An example of the coordinate systems 

used to calculate the elbow joint angle is shown in Figure 9. 

 

 

 

 

Figure 9: a) shows the global coordinate system (G) and the IMU coordinate systems for IMU 2 (I2) and IMU 

3 (I3) b) shows the two body coordinate systems for the upperarm (U) and forearm (F). 



 31 

In Figure 9, there were a total of five coordinate systems defined to calculate the elbow angle. In 

determining the elbow angle, the objective was to relate the orientation of the upper arm coordinate 

system to the forearm coordinate system in the fixed global frame. Since the two body coordinate 

systems can’t be measured and updated directly, an indirect transformation approach was 

implemented. Instead of transforming from the body- to- global coordinate system directly, the 

inertial measurement unit (IMU) readings were transformed into the body coordinate system, then 

to the global coordinate system. This was done through one of the rotation matrix properties shown 

in equation (4-1). 

 𝑅𝐵
𝐺 = 𝑅𝑖

𝐺𝑅𝐵
𝑖  (4-1) 

 

where 𝑅𝐵
𝐺, 𝑅𝑖

𝐺 and 𝑅𝐵
𝑖  represent body- to- global, IMU- to- global and body- to- IMU rotation 

matrices respectively. The rotation matrices on the right side of equation (4-1) were calculated 

through IMU measurements given the techniques described next. 

IMUs have been selected for this study due to their low cost, small size, and ease of 

operation. The IMUs used to track joint angles in this study consist of a three-axis accelerometer, 

gyroscope, and magnetometer. For the IMU to obtain its orientation relative to the global frame, a 

technique called sensor fusion is used to combine the readings of all the sensors. While the IMU 

is stationary, the accelerometer and magnetometer are used to obtain the initial orientation. The 

accelerometer tracks linear acceleration and captures the global gravitational force as a vertical 

global reference. While the magnetometer tracks the surrounding magnetic field, which is useful 

for determining a global horizontal reference direction (magnetic north). Once the initial 

orientation is calculated, the gyroscope signal that measures angular velocity is integrated to 

update the orientation. 
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In this dissertation, the rotation matrix method was used to implement the sensor fusion 

method and a way to relate to anatomical coordinate systems together to obtain a joint angle. 

A rotation matrix is a cosine matrix that transforms a vector in one Euclidean space into 

another. This can be seen in equation (4-2). 

 𝑣𝑏 = 𝑅𝑖
𝑏𝑣𝑖 (4-2) 

 

where 𝑣𝑏 represents a vector in the fixed body frame, 𝑅𝑖
𝑏 is the rotation matrix from the inertial 

frame to the body frame and 𝑣𝑖 is the vector in the inertial frame. A visualization of the rotation 

matrix transforming the vector 𝑣𝑖 to 𝑣𝑏 is shown in Figure 10 and the calculation of a rotation 

matrix is shown in equation (4-3). 

 

 

 

 

Figure 10: Illustration showing the transformation a vector from the frame I to frame b. 
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 𝑅𝑖
𝑏 = [

cos (𝜃𝑥𝑏,𝑥) cos (𝜃𝑥𝑏,𝑦) cos (𝜃𝑥𝑏,𝑧)

cos(𝜃𝑦𝑏,𝑥) cos (𝜃𝑦𝑏,𝑦) cos (𝜃𝑦𝑏,𝑧)

cos (𝜃𝑧𝑏,𝑥) cos (𝜃𝑧𝑏,𝑦) cos (𝜃𝑧𝑏,𝑧)

] (4-3) 

 

𝜃𝑥𝑏,𝑥 represents the angle between the 𝑥𝑏-axis of the inertial frame and x-axis of the fixed body 

frame (Diebel J., 2006). A problem that arises when creating the rotation matrix as described in 

equation (4-3) is commonly referred to as gimbal lock. Gimbal lock is a singularity problem where 

there is more than one solution to represent an orientation. To overcome this, quaternions were 

used to calculate a rotation matrix. A quaternion that represents a transformation from a fixed body 

frame to an inertial frame is shown in equations (4-4) – (4-5). 

 𝑞 = [

𝑞0

𝑞1
𝑞2

𝑞3

] = [𝑐𝑜𝑠
𝜃

2
𝑢𝑥𝑠𝑖𝑛

𝜃

2
𝑢𝑦𝑠𝑖𝑛

𝜃

2
𝑢𝑧𝑠𝑖𝑛

𝜃

2
] (4-4) 

 

 ‖𝑞‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 (4-5) 

 

where 𝜃 is the rotation about the vector 𝑢⃗ = [𝑢𝑥 𝑢𝑦 𝑢𝑧]. To assure pure rotation without 

scaling, the quaternion was normalized to the magnitude of 1 (Diebel J., 2006; Kuipers J. B., 1999). 

To extend this to a 3-dimensional case or a transformation where rotations about 3 axes are needed, 

Euler angles can be used in quaternions. Euler angles represent the three rotations from the fixed 

body frame to an inertial frame. The most used ones are roll, pitch, and yaw. For this dissertation, 

the order of rotation will be a 123 sequence (sometimes referred to as an XYZ sequence). Where 

the rotation about the first axis is defined as the roll angle (𝜙), the second defined by the pitch 
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angle (𝜃) and the last defined as the yaw angle (𝜓). A diagram of the order of rotation can be seen 

in Figure 11. 

 

 

 

 

Figure 11: Illustration of a 123 euler angle rotation sequence (Diebel J. 2006). 

 

 

 

This series of rotations is expressed mathematically in equations (4-6) – (4-9). 
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 𝑅𝑥(𝜙) = [

1 0 0
0 𝑐𝜙 𝑠𝜙

0 −𝑠𝜙 𝑐𝜙

] (4-6) 

 

 𝑅𝑦(𝜃) = [
𝑐𝜃 0 −𝑠𝜃

0 1 0
𝑠𝜃 0 𝑐𝜃

] (4-7) 

 

 𝑅𝑧(𝜓) = [

𝑐𝜓 𝑠𝜓 0

−𝑠𝜓 𝑐𝜓 0

0 0 1

] (4-8) 

 

 𝑅𝑥𝑦𝑧 = 𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓) (4-9) 

 

where 𝑐∅/2 = cos (
𝜙

2
) and 𝑠∅/2 = sin (

𝜙

2
). Equation (4-9) represents the rotation of a vector about 

the X, Y and Z axes in a given coordinate system when it is initially aligned with a fixed reference 

coordinate system. The quaternion representation of the 3-dimensional rotation in equation (4-9) 

is shown in equation (4-10). 

 𝑞 = [

𝑐𝜙/2𝑐𝜃/2𝑐𝛾/2 + 𝑠𝜙/2𝑠𝜃/2𝑠𝛾/2

−𝑐𝜙/2𝑠𝜃/2𝑠𝛾/2 + 𝑐𝜃/2𝑐𝛾/2𝑠𝜙/2

𝑐𝜙/2𝑐𝛾/2𝑠𝜃/2 + 𝑠𝜙/2𝑐𝜃/2𝑠𝛾/2

𝑐𝜙/2𝑐𝜃/2𝑠𝛾/2 − 𝑠𝜙/2𝑐𝛾/2𝑠𝜃/2

] (4-10) 

 

The quaternion in equation (4-10) can be used to construct a 123-sequence rotation as shown in 

equation (4-11). 

 𝑅𝑖
𝑏 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (4-11) 
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4.2.1 Calculating Rotation Matrices From the Inertial Measurement Unit Data 

At each point in time for the collected data from the IMUs, a rotation matrix can be 

calculated that represents the rotation of the IMU in the global frame from the previous time point. 

The initial condition IMU to global rotation matrix was set using stationary data from the IMU. 

Then the initial rotation matrix was updated using the dynamic IMU data that created a series of 

instantaneous rotation matrices at each time step of the reaching task trial. The process used for 

calculating this sequence of rotation matrices is explained in this section. 

4.2.1.1 Calculation of the IMU-to-global rotation matrices Initial (Stationary) Rotation 

Matrix 

The initial IMU-to-global rotation matrix was defined by measuring global forces in the 

IMU coordinate system while it is stationary. This ensured that gravity is the only acceleration 

being observed by the sensor and no acceleration is being contributed from the body segment the 

IMU is attached to. To get the initial orientation of the IMU coordinate system, the accelerometer 

was used to measure the direction of gravity. The initial Euler angles used for the quaternion 

calculation in equation (4-10) are calculated as shown in equations (4-12) – (4-16). 

Roll angle: 

for 𝐴̅𝐼𝑀𝑈𝑧
< 0: 

 𝜙0 = tan−1 (
𝐴̅𝐼𝑀𝑈𝑦

𝐴̅𝐼𝑀𝑈𝑧

) (4-12) 
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for 𝐴̅𝐼𝑀𝑈𝑧
> 0 and 𝐴̅𝐼𝑀𝑈𝑦

> 0: 

 𝜙0 = −𝜋 + tan−1 (
𝐴̅𝐼𝑀𝑈𝑦

𝐴̅𝐼𝑀𝑈𝑧

) (4-13) 

for 𝐴̅𝐼𝑀𝑈𝑧
> 0 and 𝐴̅𝐼𝑀𝑈𝑦

< 0: 

 𝜙0 = −𝜋 + tan(
𝐴̅𝐼𝑀𝑈𝑦

𝐴̅𝐼𝑀𝑈𝑧

) (4-14) 

 

Pitch angle: 

 𝜃0 = tan−1

(

 
𝐴̅𝐼𝑀𝑈𝑥

√𝐴̅𝐼𝑀𝑈𝑦

2 + 𝐴̅𝐼𝑀𝑈𝑧

2

)

  (4-15) 

 

Yaw angle: 

 𝛾 = 0 (4-16) 

 

where 𝐴̅𝐼𝑀𝑈𝑥
 represents the average IMU accelerometer reading along the x-axis while the 

participant is stationary. Figure 12 shows a basic illustration of how the 𝜙0 is calculated using the 

accelerometer. 
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Figure 12: Using the gravity projection onto the IMU axes, the initial orientation can be found. 

 

 

 

Since the inverse tangent function range is [−
𝜋

2
,
𝜋

2
] (right side of a unit circle) the conditions for 

equations (4-12) – (4-14) are set to expand the range to [−𝜋, 𝜋] (all four quadrants of the unit 

circle). The yaw angle of the sensor coordinate system with respect to the global coordinate system 

is not measurable with the gravity method since gravity is a vertical reference vector within the 

global coordinate system (the axis of rotation for the yaw angle is set to be parallel with gravity). 

There is an infinite number of valid yaw angles for each roll and pitch angle solution. Practically 

speaking, for the analyses done in this dissertation, the global yaw angle is arbitrary (in other 

words, it doesn’t matter if the patient is facing north or south, the motion data from the IMU is the 

same). The absolute yaw angle is not important, but the relative yaw angle (from one point in time 

to the next) is. Therefore, the yaw angle was initially and arbitrarily set to zero. Later in the 
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dissertation the yaw angle in the IMU data is related to the yaw angle defined in the Optitrack data 

for comparison purposes, but it is not required for operation of the wearable system. Changes in 

the yaw angle (as well as changes in pitch and roll) are determined for dynamic data from the 

angular gyro data. 

Even though the absolute yaw angle is not necessary for IMU data analysis, it is important 

for comparison to Optitrack data. In many inertial measurement applications, the yaw angle would 

be calculated by the magnetometer. Due to the magnetic disturbance from the electronic adjustable 

table and other equipment in the lab, in this work, the absolute yaw angle was corrected in the 

Optitrack calibration phase which will be described in section 4.3.1.  

4.2.1.2 Dynamic Rotation Matrices 

Once the initial rotation matrix or quaternion is obtained, future rotation matrices can be 

calculated from the dynamic IMU data. To update the IMU orientation in the global coordinate 

system, the IMU gyroscopes readings were integrated over time. The quaternions are updated as 

shown in equations (4-17) – (4-19). 

 𝑞(𝑘 + 1) = exp (
1

2
Ω(𝑘)𝑇𝑆) 𝑞(𝑘) (4-17) 

 

 𝑞(𝑘) = [𝑞0(𝑘) 𝑞1(𝑘) 𝑞2(𝑘) 𝑞3(𝑘)]𝑇 (4-18) 

 

 Ω(𝑘) =

[
 
 
 
 

0 −𝜔𝑥(𝑘) −𝜔𝑦(𝑘) −𝜔𝑧(𝑘)

𝜔𝑥(𝑘) 0 𝜔𝑧(𝑘) −𝜔𝑦(𝑘)

𝜔𝑦(𝑘)

𝜔𝑧(𝑘)

−𝜔𝑧(𝑘)
𝜔𝑦(𝑘)

0
−𝜔𝑥(𝑘)

𝜔𝑥(𝑘)
0 ]

 
 
 
 

 (4-19) 
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where k represents the current time step of the IMU reading, 𝑇𝑠 is the sampling period and 𝜔𝑥(𝑘) 

is the gyroscope reading about the IMU x-axis for that time step. Once the quaternion was updated, 

it was inserted back into equation (4-11) to update the IMU-to-global rotation matrix. Using this 

procedure, a set of IMU-to-global rotation matrices was obtained from the IMU-to-global frame 

for each instance of time for the motion studied. 

4.2.1.3 Alignment matrix: Body-to-inertial measurement rotation matrix 

For the body-to-IMU rotation matrix, the participant was asked to perform motions about 

the given body frame. From this motion, IMU readings were related to the body frame to calculate 

columns of the rotation matrix. Each column in the body-to-IMU rotation matrix represents the 

body coordinate system axis relative to the IMU frame. This is expressed in equations (4-20) and 

(4-21). 

 𝑅𝐵
𝑖 = [

cos (𝜃𝑥𝑖,𝑥𝑏
) cos (𝜃𝑥𝑖,𝑦𝑏

) cos (𝜃𝑥𝑖,𝑧𝑏
)

cos (𝜃𝑦𝑖,𝑥𝑏
) cos (𝜃𝑦𝑖,𝑦𝑏

) cos (𝜃𝑦𝑖,𝑧𝑏
)

cos (𝜃𝑧𝑖,𝑥𝑏
) cos (𝜃𝑧𝑖,𝑦𝑏

) cos (𝜃𝑧𝑖,𝑧𝑏
)

] = [𝑋𝐵
𝑖 𝑌𝐵

𝑖 𝑍𝐵
𝑖 ] (4-20) 

 

 𝑋𝐵
𝑖 , 𝑌𝐵

𝑖 , 𝑍𝐵
𝑖 ∈ ℝ3𝑥1 (4-21) 

 

where 𝑋𝐵
𝑖 , 𝑌𝐵

𝑖 , and 𝑍𝐵
𝑖  are the x, y and z body axes represented in the IMU frame. When participants 

were asked to perform a motion to calculate the alignment matrix, it is assumed that the IMU 

readings were capturing motions being performed purely in a plane perpendicular to a given body 

axis. In other words, when the IMU moves purely in a plane perpendicular to a given body axis it 

becomes projected onto the IMU frame. Figure 13 shows an example of a participant performing 

the alignment calibration for the body Z-axis. 
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Figure 13: Shoulder flexion was used to defined the body Z axis for the 3 IMUs attached to the arm. 

 

 

 

The alignment matrix calculation process described in the rest of the section was applied similarly 

for all four IMUs attached to the participant, but of course with appropriate body segments being 

moved for each. The descriptions for the movement along anatomical planes and axes that defined 

the alignment matrix is shown in Figure 14. 
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Figure 14: Image showing the definitions of anatomical planes and axes (Richard V., 2016). 

 

 

 

To define the second column of the alignment matrix for each IMU, participants were asked to 

stand still for 5 seconds to collect the stationary accelerometer signal. The longitudinal axis (body 

Y-axis) was assumed to be parallel with gravity. The calculation for the second column is shown 

in equations (4-22) and (4-23). 

 𝑌̂𝐵
𝑖 = 𝑅̂∗2 =

sum(𝐴𝐼𝑀𝑈)

‖sum(𝐴𝐼𝑀𝑈)‖
 (4-22) 

 

 sum(𝐴𝐼𝑀𝑈) = [∑ 𝐴𝐼𝑀𝑈𝑥
(𝑘)

𝑁

𝑘=1

∑ 𝐴𝐼𝑀𝑈𝑦
(𝑘)

𝑁

𝑘=1

∑ 𝐴𝐼𝑀𝑈𝑧
(𝑘)

𝑁

𝑘=1

]

𝑇

 (4-23) 
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where 𝑌̂𝐵
𝑖  and 𝑅̂∗2 represent the estimate of the body y-axis and the second column of the IMU to 

body rotation matrix, respectively. For the summation term, N is the last time step in the stationary 

period. Next, the participants were asked to rotate each body segment along a plane perpendicular 

to the frontal horizontal axis (body Z-axis). 

For the IMU attached to the back, participants were asked to perform 5 repetitions of torso 

flexion. For the IMUs attached to the upper arm, forearm, and hand, the participant was asked to 

perform 5 repetitions of shoulder flexion at 90 degrees. The gyroscope signal was used to record 

both motions. Participants performed 5 rotations to account for cases where they did not purely 

flex across the given joint and would cause the definition of the body coordinate system to have 

non-orthogonal axes. Each trial creates an estimate for the body Z-axis making a total of 5 separate 

estimates. 

The third column of the rotation matrix was defined by the positive rotations of an upper 

extremity limb (from resting position to maximum flexion). This makes sure that the Z-axis is 

defined along the transverse axis from the body segment. The calculation for the third column is 

shown in equations (4-24) – (4-25) below. 

 𝑍̂𝐵
𝑖 (𝑚) = 𝑅̂∗3(𝑚) =

sum(𝜔𝐼𝑀𝑈)

‖sum(𝜔𝐼𝑀𝑈)‖
 (4-24) 

 

 𝑤ℎ𝑒𝑟𝑒, sum(𝜔𝐼𝑀𝑈) = [∑ 𝜔𝐼𝑀𝑈𝑥
(𝑘)

𝑁

𝑘=1

∑ 𝜔𝐼𝑀𝑈𝑦
(𝑘)

𝑁

𝑘=1

∑ 𝜔𝐼𝑀𝑈𝑧
(𝑘)

𝑁

𝑘=1

]

𝑇

 (4-25) 

 

where 𝑍̂𝐵
𝑖 (𝑚) and 𝑅̂∗3(𝑚) represents the “m” number of estimates of the body z-axis and the third 

column of the IMU to body rotation matrix, respectively. The number of estimates “m” was 
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determined by the number of flexion/extension repetitions that were performed during this 

calibration procedure. For the summation term, N is the time step where the participant has reached 

maximum flexion. Maximum flexion was defined when the magnitude of the IMU angular velocity 

returned to zero after the motion was first initiated. 

The estimates for the first column of the rotation matrix were then defined by the cross 

product of the second and third columns (Y and Z axes). This calculation is shown in equations 

(4-26) – (4-27). 

 𝑋̂𝐵
𝑖 (𝑚) = 𝑅̂∗1(𝑚) =

𝑅̂∗1(𝑚)

‖𝑅̂∗1(𝑚)‖
 (4-26) 

 

 𝑤ℎ𝑒𝑟𝑒,            𝑅̂∗1(𝑚) = 𝑅̂∗2 × 𝑅̂∗3(𝑚) (4-27) 

 

Given the procedure described in equations (4-22) – (4-27), there are initially 5 IMU- to- body 

rotation matrix estimates for each segment. Since participants may not have rotated purely along 

the frontal horizontal axis, the columns may not be orthogonal to each other. To ensure 

orthogonality a correction procedure was developed. 

Since it is likely that the 𝑋̂𝐵
𝑖 (𝑚) and 𝑌̂𝐵

𝑖  axes were not orthogonal to the 𝑍̂𝐵
𝑖 (𝑚) axes due to 

the inconsistent flexion trials, the matrix theory properties from equations (4-28) – (4-29) were 

used to correct these axes. 

 ‖𝑟𝑖‖ = ‖𝑐𝑗‖ = 1 𝑓𝑜𝑟 (𝑖 = 1,2,3 𝑎𝑛𝑑 𝑗 = 1,2,3) (4-28) 

 

 𝑟𝑖 ∙ 𝑟𝑗 = 0 𝑎𝑛𝑑 𝑐𝑖 ∙ 𝑐𝑗 = 0 𝑓𝑜𝑟 (𝑖 = 1,2,3  𝑗 = 1,2,3 𝑎𝑛𝑑 𝑖 ≠ 𝑗) (4-29) 
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To make each estimate of the 𝑋̂𝐵
𝑖 (𝑚)  axis orthogonal to the 𝑍̂𝐵

𝑖 (𝑚) axis, the elements in the first 

column were modified with multiplier terms as shown in equation (4-30) and then applied to 

equations (4-31) – (4-32) were applied to ensure orthogonality between the body axes (Zhang, 

2014). 

 𝑅̃∗1(𝑚) = [𝑅̂11(𝑚)𝑎 𝑏 𝑅̂31(𝑚)𝑎] (4-30) 

 

 ‖𝑅̃∗1(𝑚)‖ = (𝑅̂11(𝑚)𝑎)
2
+ 𝑏2 + (𝑅̂31(𝑚)𝑎)

2
= 1 (4-31) 

 

 𝑅̃∗1(𝑚) ∙ 𝑅̂∗2 = 𝑅̂11(𝑚)𝑎𝑅̂12 + 𝑏𝑅̂22 + 𝑅̂31(𝑚)𝑎𝑅̂32 = 0 (4-32) 

 

where a and b are substitute terms to make sure equations (4-28) and (4-29) are true such that the 

column is unity and orthogonal to the third column. With the system of equations in (4-31)and 

(4-32), the solution for the a and b unknowns are given below. 

 𝑎 = √
𝑅22

2

𝑅11
2 𝑅22

2 + (𝑅11𝑅12 + 𝑅31𝑅32)2 + 𝑅31
2 𝑅22

2  (4-33) 

 

 𝑏 =
−𝑎(𝑅11𝑅12 + 𝑅31𝑅32)

𝑅22
 (4-34) 

 

Substituting these values back into equation (4-32) creates a new set of estimates (𝑅̃∗1(𝑚)) for the 

first column of the body-to-IMU rotation matrix that is now orthogonal to the second column. This 

procedure was repeated for the third column with respect to the second column of the IMU to body 

rotation matrix to ensure that these are also orthogonal to the second column. 
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The last step was to make sure the rotation matrix defined the transformation to the body 

axis where the body X-axis was parallel with the horizontal sagittal axis and the body Z-axis was 

parallel with the frontal horizontal axis. To accomplish this, the offset rotation to align the body Z 

axes in the right direction must be calculated. This was done by using the first body Z-axis as a 

reference vector and then finding the average angle between the reference vector and the other 

body Z axes estimates along with the reference vector and the estimated body X axes. The 

calculation is shown in equations (4-35) – (4-38). 

 𝑍𝑟𝑒𝑓 = 𝑅̃∗3(𝑚) (4-35) 

 

 𝜃𝑧𝑧(𝑚) =
𝑍𝑟𝑒𝑓 ∙ 𝑅̃∗3(𝑚)

‖𝑍𝑟𝑒𝑓‖‖𝑅̃∗3(𝑚)‖
 (4-36) 

 

 𝜃𝑧𝑥(𝑚) =
𝑍𝑟𝑒𝑓 ∙ 𝑅̃∗1(𝑚)

‖𝑍𝑟𝑒𝑓‖‖𝑅̃∗1(𝑚)‖
 (4-37) 

 

 𝜃𝑒𝑠𝑡 =
∑ 𝜃𝑧𝑧(𝑚) + 𝜃𝑧𝑥

𝑁
𝑚=1

2 ∗ 𝑁
−

𝜋

4
 (4-38) 

 

where 𝑍𝑟𝑒𝑓 is the reference body Z-body axis from the first estimate m, 𝜃𝑧𝑧(𝑚) is the angle 

between the body Z-body axis reference and the estimate m of the third rotation matrix column, 

and 𝜃𝑧𝑥(𝑚) is the angle between the body Z-axis body reference and the estimate m of the first 

rotation matrix column. The 𝑍𝑟𝑒𝑓 vector is then rotated about the body Y-body axis using the 

equations (4-39) – (4-41) below. 
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𝑅𝑌̂𝑏
(𝜃𝑒𝑠𝑡)

= [

𝑅̂12
2 (1 − 𝐶𝜃𝑒𝑠𝑡

) + 𝐶𝜃𝑒𝑠𝑡
𝑅̂12𝑅̂22(1 − 𝐶𝜃𝑒𝑠𝑡

) − 𝑅̂23𝑆𝜃𝑒𝑠𝑡
𝑅̂12𝑅̂23(1 − 𝐶𝜃𝑒𝑠𝑡

) + 𝑅̂22𝑆𝜃𝑒𝑠𝑡

𝑅̂12𝑅̂22(1 − 𝐶𝜃𝑒𝑠𝑡
) + 𝑅̂23𝑆𝜃𝑒𝑠𝑡

𝑅̂22
2 (1 − 𝐶𝜃𝑒𝑠𝑡

) + 𝐶𝜃𝑒𝑠𝑡
𝑅̂22𝑅̂23(1 − 𝐶𝜃𝑒𝑠𝑡

) − 𝑅̂12𝑆𝜃𝑒𝑠𝑡

𝑅̂12𝑅̂23(1 − 𝐶𝜃𝑒𝑠𝑡
) − 𝑅̂22𝑆𝜃𝑒𝑠𝑡

𝑅̂22𝑅̂23(1 − 𝐶𝜃𝑒𝑠𝑡
) + 𝑅̂12𝑆𝜃𝑒𝑠𝑡

𝑅̂23
2 (1 − 𝐶𝜃𝑒𝑠𝑡

) + 𝐶𝜃𝑒𝑠𝑡

] 

 

(4-39) 

 

 𝑍𝑐𝑜𝑟 = 𝑅𝑌𝑏
(𝜃𝑒𝑠𝑡) ∙ 𝑍𝑟𝑒𝑓 (4-40) 

 

 𝑍𝑐𝑜𝑟 =
𝑍𝑐𝑜𝑟

‖𝑍𝑐𝑜𝑟‖
 (4-41) 

 

where 𝑅𝑌̂𝑏
(𝜃𝑒𝑠𝑡) is the rotation matrix for a rotation of 𝜃𝑒𝑠𝑡 about the 𝑌̂𝑏 axis and 𝑍𝑐𝑜𝑟 is the corrected 

body Z-axis that is now parallel with the frontal horizontal axis. The remaining columns were 

calculated and assembled in the IMU-to-body rotation matrix as shown in equations (4-42) – 

(4-44). 

 𝑋𝑐𝑜𝑟 = 𝑅̂2 × 𝑍𝑐𝑜𝑟 (4-42) 

 

 𝑋𝑐𝑜𝑟 =
𝑋𝑐𝑜𝑟

‖𝑋𝑐𝑜𝑟‖
 (4-43) 

 

 𝑅𝑖
𝑏 = [𝑋𝑐𝑜𝑟 𝑅̂2 𝑍𝑐𝑜𝑟] (4-44) 

 

where 𝑋𝑐𝑜𝑟 represents the corrected body X-axis that is now parallel with the horizontal sagittal 

axis. It is important to note that in this dissertation the relationship between the body and IMU was 

assumed to be constant after the calibration is done. The five alignment matrix estimates along 

with the corrected alignment matrix are shown in Figure 15. 
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Figure 15: Shows the 5 estimates of each body axes relative to the IMU coordinate system. The thick black 

line represents the final corrected body axes. 

 

 

 

4.2.2 Joint Kinematics Calculation 

After finalizing the calculations of the IMU-to-global and IMU-to-body rotation matrices, 

the rotation matrix that relates two body coordinate systems were related to each other to get the 

joint angle. Referring to Figure 9 and expanding on equation (4-1) the transformation from one 

body coordinate system to another is calculated in equation (4-45). 

 𝑅𝑈
𝐹 = 𝑅𝐼3

𝐹 𝑅𝐺
𝐼3𝑅𝐼2

𝐺𝑅𝑈
𝐼2 (4-45) 
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𝑅𝑈
𝐹  represents the rotation matrix from the upper arm to the forearm coordinate system. 𝐼2 and 𝐼3 

are the coordinate system of the IMUs attached to the upper arm and forearm respectively. Once 

the rotation matrix between these two body coordinate systems has been calculated, the Euler 

angles were extracted from 𝑅𝑈
𝐹  rotation matrix as follows. 

 𝜙𝑈
𝐹 = 𝑎𝑡𝑎𝑛2 (

𝑅23

𝑅33
) (4-46) 

 

 𝜃𝑈
𝐹 = −asin (𝑅13) (4-47) 

 

 𝜓𝑈
𝐹 = 𝑎𝑡𝑎𝑛2(𝑅12, 𝑅11) (4-48) 

 

Since these angles represent the movement of the elbow joint, which is assumed to be a hinge joint, 

only the elbow flexion angle is needed. For these Euler angles, the rotation about the Z-axis or 

yaw angle between the two frames of reference represents the flexion angle. 

Once the Euler angles were obtained, the joint velocities and accelerations are needed for 

the kinetic calculations which will be described in section 4.4. The joint velocity is calculated in 

equation (4-49). 

 𝜔𝑈
𝐹 = 𝑅𝐺

𝐹𝑅𝑈
𝐺𝜔𝑈 (4-49) 

 

 𝑤ℎ𝑒𝑟𝑒, 𝜔𝑈 = 𝑅𝐼2
𝑈𝜔𝐼2 (4-50) 

 

 𝜔𝑈
𝐹 = [

𝜙̇𝑈
𝐹

𝜃̇𝑈
𝐹

𝜓̇𝑈
𝐹

] (4-51) 
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𝜔𝑈 represents the angular velocity vector for the upper arm body coordinate system and 𝜔𝑈
𝐹  is the 

angular velocity of the upper arm relative to the forearm. Each element within the 𝜔𝑈
𝐹  represents 

the time derivative of the Euler angles defined in equations (4-46) – (4-48). A comparison of using 

the method in equation (4-49) versus taking the derivative of the Euler angles can be seen in Figure 

16. 

 

 

 

 

Figure 16: Euler angle derivative vs the gyroscope method described in equation (4-49). 
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It can be seen in Figure 16, that taking the direct time derivative of the Euler angle adds more noise 

to the signal vs transforming the angular velocity from the gyroscope signal into the body frames 

using equation (4-49). 

The method described in this section was applied to the other angular joint velocities. For 

the angular acceleration, the time derivative of the angular velocity was calculated. In future work, 

the distance of the IMU from the joint can be used to get an angular acceleration directly from the 

accelerometer signal instead. 

4.3 Optical Tracking System: Theory and Methods 

Optical motion tracking systems are the current gold standard for telerehabilitation studies. 

The system tracks a participant’s motion using reflective markers (passive system) or blinking 

LEDs at predetermined frequencies (active system) to track limbs in a 3-dimensional space. With 

passive marker systems, the camera can track a reflective marker from the light sources in the 

room and/or light sources from the camera itself. Since all the markers are exactly alike, clusters 

of markers fixed to a rigid base are normally used on body segments, oriented in unique patterns, 

so that the optical tracking system can monitor a cluster of markers instead of a single marker. 

Active marker systems avoid the problems faced from passive markers by having LED 

markers flash at unique frequencies. This eliminates confusion over distinguishing markers from 

each other and it eliminates the need for adjusting the lighting in the room if certain markers aren’t 

as reflective. One fault in this system is the need to have a battery pack(s) to power the LEDs along 

with troublesome wiring around the rigid bodies. 
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For both systems, the biggest drawback is the limited space that motion can be tracked, the 

steep learning curve to operate, and the expense of the system. 

For this dissertation, the Optitrack (NaturalPoint, Inc) optical tracking system (passive 

system) was used to validate the IMU joint estimations. This was to validate the accuracy of the 

kinematic and kinetic features extracted from IMU data for when the IMUs are used outside of the 

laboratory setting. 

4.3.1 Optical Tracking Kinematics 

The cameras for this study were orientated as shown in Figure 17. 

 

 

 

 

Figure 17: Shows the camera placement for the experiment. Cameras are circled to highlight their locations. 
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The marker plates shown in Figure 7 in section 4.2.1 were tracked in Optitrack’s Motive software 

where each marker’s position and orientation in the 3-dimensional space are recorded. This 

information was then sent to a third-party software called Motion Monitor (Innovative Sports 

Training, Inc.). Motion Monitor was used to generate a model of the participant’s upper extremity, 

calculate the joint kinematics using the Optitrack data and export it into a text file for further 

analysis. 

To create a model of the participant’s upper extremities, a stylus with reflective markers 

attached was used to locate anatomical points relative to the marker plates. The length of each limb 

was calculated by placing the stylus on the distal and proximal joints surrounding the limb. Then 

the body coordinate systems were defined using the same distal and proximal points along with an 

anterior point. Table 2 shows where the stylus was placed for each limb and Figure 18 shows the 

visual output to this model. 
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Table 2: Anatomical landmarks to define the upper extremity model 

 

 

BODY SEGMENT 

PROXIMAL 

LANDMARK 

DISTAL LANDMARK 

ANTERIOR 

LANDMARK 

Back (Torso) T12-L1 Joint C7-T1 Joint Right Acromion 

Left Upper Arm Left Acromion Antecubital Fossa Right Acromion 

Left Forearm Medial Epicondyle Ulnar Styloid Lateral Epicondyle 

Left Hand 

Underside of Wrist, at 

Radiocarpal Joint 

Underside of 1st Knuckle 

of 3rd Phalanx 

Tip of 1st Disyal 

Phalanx (Thumb) 

Right Upper Arm Right Acromion Antecubital Fossa Left Acromion 

Right Forearm Medial Epicondyle Ulnar Styloid Lateral Epicondyle 

Right Hand 

Underside of Wrist, at 

Radiocarpal Joint 

Underside of 1st Knuckle 

of 3rd Phalanx 

Tip of 1st Distal 

Phalanx (Thumb) 
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Figure 18: Screenshot of the upper extremity model in Motionmonitor. The segment lengths of the skeleton 

are proportional to the participant. The body coordinate systems defined in Table 3 are shown along with the 

global coordinate system that is not attached to the model. 

 

 

 

With the complete upper extremity model, Motion Monitor was used to calculate the joint 

kinematics using the Euler angles between body coordinate systems as described in section 4.2.2. 

It is important to note that the yaw angle extracted in the Motion Monitor software was 

used to correct the yaw angle for the IMUs. As described earlier, this was done because the IMU 

magnetometers could not be used to determine the absolute yaw angle due to the high amount of 
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magnetic interference from the metal frame used to support the Optitrack cameras, the motorized 

desk, and other objects in the laboratory space. While normally the absolute yaw angle from IMU 

data is not important, it is needed here for comparison to between the Optitrack- and IMU-derived 

motion results. In the future work, a Kalman filter similar to the one mentioned in (Sabatini A.M. 

, 2006) can be applied to set a level of dependency of the magnetometer measurements in the 

presence of magnetic disturbance. 

4.4 Inverse Dynamics Model for Joint Kinetics 

To calculate the kinetics of each participant, an inverse dynamics model was derived. An 

inverse dynamics model uses kinematics and mass properties of segments to calculate joint torques 

and forces. For this dissertation, the Euler-Lagrange approach was used to derive the governing 

equations. The Lagrange equation is defined in equations (4-52) – (4-54). 

 𝐿 = 𝐾𝐸 − 𝑃𝐸 (4-52) 

 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 (4-53) 

 

 𝑞 = [𝜙𝑇 𝛳𝑇 ѱ𝑇 ⋯ 𝜙𝑊 𝛳𝑊 ѱ𝑊] (4-54) 

 

where L is the Lagrange variable that is equal to the kinetic energy (KE) of the system minus the 

potential energy (PE). The Euler angles were used as the generalized coordinates in (4-54). To 

define the kinetic and potential energy terms, a few assumptions had to be made. The first being 
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that each segment was assumed to be a cylinder. The height, mass, and center of mass distance 

from the proximal joint (assumed placement of IMUs) were derived from an anthropometric model 

for each segment (Winter D.A., 2009). The radius was calculated from the parameters recorded in 

(Gupta M., 2017) where the ratio of the circumference of each segment over their height was 

obtained from the 50th percentile of US men. Before each testing session, the height and weight 

of the participant were taken to get an estimate of the length and weight of the limbs. These 

assumptions are listed in Table 3 along with the anthropometric model from (Winter D.A., 2009) 

in Figure 19. 
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Table 3: Segment measurement assumptions, where H and M are the total height (in meters) and mass (in kg) 

of the participant. 

 

 

 

Segment length 

(m) 

Segment mass 

(m) 

Segment mass 

(m) 

Center of mass 

location from 

proximal (m) 

Torso 0.288H 0.129H 0.521M 

0.5∙segment 

length 

Upperarm 0.186H 0.0311H 0.029M 

0.436∙segment 

length 

Forearm 0.146H 0.0274H 0.017M 

0.43∙segment 

length 

Hand 0.108H 0.0169H 0.006M 

0.506∙segment 

length 
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Figure 19: Anthropometric model from (Winter D.A. 2009). Each segment length is a ratio of the person's 

height (H). 

 

 

 

The second assumption that was made was that the body coordinate system was parallel with the 

principal axes of inertia to simplify the inertia matrix (I). With these assumptions set, the position 

and velocity of the center of mass of each limb were represented in the global frame and used in 

the kinetic and potential energy equations. 
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𝐾𝐸 =
1

2
𝑚𝑇 𝐺𝑣⃑𝑜𝑙𝑐𝑇

 𝐺𝑣⃑′𝑜𝑙𝑐𝑇
+

1

2
𝑚𝑈 𝐺𝑣𝑜𝑙𝑐𝑈

 𝐺𝑣′
𝑜𝑙𝑐𝑈

+
1

2
𝑚𝐹 𝐺𝑣⃑𝑜𝑙𝑐𝐹

 𝐺𝑣⃑′𝑜𝑙𝑐𝐹

+
1

2
𝑚𝐻 𝐺𝑣⃑𝑜𝑙𝑐𝐻

 𝐺𝑣⃑′𝑜𝑙𝑐𝐻
  

+
1

2
𝜔⃑⃗⃗𝑇𝑰𝑇 𝜔⃑⃗⃗𝑇

′ +
1

2
𝜔⃑⃗⃗𝑈𝑰𝑈 𝜔⃑⃗⃗𝑈

′ +
1

2
𝜔⃑⃗⃗𝐹𝑰𝐹 𝜔⃑⃗⃗𝐹

′ +
1

2
𝜔⃑⃗⃗𝐻𝑰𝐻 𝜔⃑⃗⃗𝐻

′  

(4-55) 

 

 𝑃𝐸 = 𝑚𝑇𝑔 𝐺𝑥⃑𝑜𝑙𝑐𝑇
(3) + 𝑚𝑆𝑔 𝐺𝑥⃑𝑜𝑙𝑐𝑈

(3) + 𝑚𝐸𝑔 𝐺𝑥⃑𝑜𝑙𝑐𝐹
(3) + 𝑚𝑊𝑔 𝐺𝑥⃑𝑜𝑙𝑐𝐻

(3) (4-56) 

 

where 𝑚𝑖  𝑖𝜖[𝑇, 𝑈, 𝐹, 𝑎𝑛𝑑 𝐻] is the mass of the torso, upper arm, forearm, and hand. 

 𝐺𝑥⃑𝑜𝑙𝑐𝑖 
𝑖𝜖[𝑇, 𝑈, 𝐹, 𝑎𝑛𝑑 𝐻] is the location of the center of mass of each segment from the global 

origin located in the middle of the torso.  𝐺𝑣⃑𝑜𝑙𝑐𝑖 
𝑖𝜖[𝑇, 𝑈, 𝐹, 𝑎𝑛𝑑 𝐻] is the velocity of the center of 

masses in the global frame. 

4.5 Aim 1: Summary of Findings 

With the completion of Aim 1, kinematic and kinetic based features were extracted from 

an IMU-based motion capture system with a performance that was comparable to the gold standard 

optical tracking system. This section presents the findings of the Aim 1 research, which led to the 

development of Aim 2 discussed in chapter 5.0. 
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4.5.1 Preliminary Feature Selection 

Measure of success: Define a set of kinematic and kinetic features to 

assess and predict stroke severity 

The literature review in chapter 3.0 described motion features that correlate with stroke 

severity but have not been implemented in a machine-learning algorithm to predict stroke severity 

for new patients. In this project, all motion features were selected using the following criteria: 

feature set had to (1) include all 10 joint angles mentioned in Table 1 (2) capture range of motion 

of each joint, and (3) capture the time based and/or range based relationship between joint motions. 

For this aim, a subset of the motion features from the studies covered in the literature 

review was chosen to initialize the list of features. For example, the peak angular velocity was 

measured at each joint angle due to the results shown in Murphy’s work (Murphy M.A., 2011). 

Features were also chosen by analyzing kinematic and kinetic plots between healthy and stroke 

patients within the studies. The goal was to find features that can distinguish healthy patients from 

stroke patients. Figure 20 shows an example of this comparison between patients. 
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Figure 20: Side by side comparison of shoulder kinematics for a healthy and stroke patient during the 

pointing task for Target 9 (Center target). 

 

 

 

From this plot, an observation was made that the shoulder-joint motion of a healthy patient had 

one distinct peak and valley within its velocity profile, while the stroke patient's velocity profile 

was more sporadic. This led to selection of the three features: amplitude of the dominant frequency, 

the number of zero crossings, and variance of each joint velocity. These features were later defined 

for all 10 joint angles. Examples of these motion features, extracted from the shoulder flexion joint 

velocity, are shown in Figure 21 – Figure 26. 
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Figure 21: Shoulder joint velocity of a healthy patient in the frequency domain with the two dominant frequency amplitudes highlighted in green and 

red.
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Figure 22: Shoulder joint velocity of a severe stroke patient in the frequency domain with the two dominant frequency amplitudes highlighted in green 

and red.
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Figure 23: Shoulder joint velocity of a healthy patient with the mean and the +/- standard deviation away from the mean shown in the solid and dotted 

black lines.
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Figure 24: Shoulder joint velocity of a severe stroke patient with the mean and the +/- standard deviation away from the mean shown in the solid and 

dotted black lines.
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Figure 25: Shoulder joint velocity of a healthy patient with the zero crossings (when the velocity reaches zero) highlighted in red.
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Figure 26: Shoulder joint velocity of a severe stroke with the zero crossings (when the velocity reaches zero) highlighted in red.
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Within each motion feature demonstrated in Figure 21 – Figure 26, there is a clear difference in 

the motion patterns between a healthy and stroke patient. The same heuristic approach was 

repeated to explore other motion features within the feature set. 

It is important to note that the feature selection was an iterative process. Aim 1 was 

revisited throughout the study if the measure of success for Aim 2 was not fulfilled (see section 

1.1 for the measure of success of Aim 2). Once the feature set was defined, it was used as an input 

for the SVM to predict stroke severity in the patient population. If the F1 score (explained later in 

section 5.4) was not between 0.95 – 1, new features were defined and extracted from the IMU 

readings following the procedures outlined in Aim 1. Then the SVM used the feature set with the 

new features included to predict the stroke severity again and this iterative process was repeated 

until the highest F1 score was obtained. The final feature set that was selected for classification in 

chapter 5.0 is shown in Appendix B. 

4.5.2 Feature Calculation 

Calculate motion features from the raw data that classify stroke 

severity. 

All the features defined in the first measure of success were calculated once the joint 

kinematics were collected from the IMUs. For the kinematic based features, statistical or 

frequency-based calculations were applied to get a scalar value that summarizes the patient’s 

kinematics throughout the trial. These calculations were all done in Python, where the frequency- 
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based calculations used the Scipy library to perform a discrete Fourier transformation (DFT) to 

represent the angular velocity and acceleration in the frequency domain. An example of how the 

amplitude of the dominant frequency was calculated for the joint velocities is shown in equations 

(4-57) and (4-58). 

 Θ̇𝑘 = ∑ 𝜃̇𝑛 ∙ 𝑒−
𝑖2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

 (4-57) 

 

 𝑓𝑚𝑎𝑥 = max Θ̇ (4-58) 

 

where Θ̇𝑘 represents the joint velocity 𝜃̇𝑛 in the frequency domain at time step n. Equation (4-47) 

demonstrates the amplitude of the dominant frequency calculated from the joint velocity in the 

frequency domain. 

The kinetic features were defined by calculating the equation of motion using the method 

described in section 4.4. The torque was then split into the focal point, gravity, interaction and 

muscle torque terms as described in (Raj S., 2018). An example of how this can be done for a 

simple planar double pendulum system is shown in Figure 27. 
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Figure 27: An example of defining the focal point, interaction, gravity and muscle torques for link 2 in the 

double pendulum. 

 

 

 

For this dissertation, the torque terms were extended to the 10 DoF equations of motion used to 

model the torque for the upper extremities. Since the equation is highly nonlinear, the terms were 

not as easy to identify as the example above. Matlab (Mathworks ®) Symbolic Math Toolbox was 

used to calculate the equations of motion from the Lagrange equation defined in equations (4-52) 

– (4-54) and to identify the focal point, gravity, interaction and, muscle torque terms. The equations 

were used in an inverse dynamics approach, where the joint kinematics from the IMU were used 

as the input to the equation of motion to get the joint torques. Once the joint torques were 

calculated, they were converted into scalar values to use as motion features using the same method 

mentioned for the joint kinematics. 
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4.5.3 IMU Validation 

Measure of success: IMU kinematic validation [Desired outcome: 

normalized cross-correlation 0.8 – 1]. 

To validate the accuracy of the IMU system, the joint angles calculated through the IMUs 

were compared to the joint angles from the Optitrack system. In this validation study, the joint 

velocities and accelerations were ignored since the Optitrack takes the derivates of the angle adding 

noise to the signals which can amplify the error for the IMU. 

The performance metric used in this study was the cross-correlation, which was chosen 

since there was an unknown lag between the signals from each system. The lag was most likely 

caused by the Optitrack directly measuring the voltage change in the push button (shown in Figure 

5) while the IMU system used the wireless dongle to monitor the voltage. The standard equation 

for cross-correlation is shown in equation (4-59). 

 𝑅12(𝜏) = ∑ 𝑞𝐼𝑀𝑈[𝑛]𝑞𝑂𝑝𝑡𝑖[𝑛 − 𝜏]

𝑁

𝑛=1

 (4-59) 

 

where n is the time step, 𝑞𝐼𝑀𝑈[𝑛] is the joint angle from the IMU and at time step n, N is the length 

of the IMU joint signal 𝑞𝑂𝑝𝑡𝑖[𝑛 − 𝜏] is the Optitrack joint angle delayed by 𝜏. To normalize the 

output of the cross-correlation between [-1,1], equation (4-59) was modified as shown in equation 

(4-60). 
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 𝑅12(𝜏) =
1

𝑁
∑

(𝑞𝐼𝑀𝑈[𝑛] − 𝑞̅𝐼𝑀𝑈)(𝑞𝑂𝑝𝑡𝑖[𝑛 − 𝜏] − 𝑞̅𝑂𝑝𝑡𝑖)

𝜎𝑞𝐼𝑀𝑈
𝜎𝑞𝑂𝑝𝑡𝑖

𝑁

𝑛=1

 (4-60) 

 

where 𝜎𝑞𝐼𝑀𝑈
 and 𝜎𝑞𝑂𝑝𝑡𝑖

 are the standard deviation of IMU and Optitrack angle signals respectively. 

The goal was to determine the best cross correlation through adjusting the lag between the two 

signals through 𝝉. Since the laptop running the IMU data logging experienced varying delays 

between trials, the optimal 𝝉 had to be found for each trial evaluated. All ten joint angles were 

observed to measure the accuracy of the system. The results for one of the trials are shown in 

Figure 28. 

 

 

 

 

Figure 28: IMU and Optitrack comparison with maximum cross correlation for a 40% arm length pointing to 

target 9 trial. 
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The results in Figure 28 show that the IMU system correlated well (meeting the measure of success 

of 0.8 or above) with the torso and shoulder joints in all axes. The performance in the other joints 

deteriorated with a correlation between about 0.5 – 0.66. To see if this trend in IMU performance 

was consistent throughout the trials, 4 trials were randomly selected for each task and the 

normalized cross-correlation was averaged across the 4 trials for each joint. The result for each 

type of target is shown in Figure 29 – Figure 31. 

 

 

 

 

Figure 29: Average normalized cross correlation over 4 trials for the short pointing target 1 task. 
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Figure 30: Average normalized cross correlation over 4 trials for the short grasp target 2 task. 
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Figure 31: Average normalized cross correlation over 4 trials for the short rotation target 3 task. 

 

 

 

The results in Figure 29 – Figure 31, show that the torso flexion, wrist flexion forearm pronation, 

and wrist deviation had low cross-correlation values for the short pointing and grasp tasks. While 

for the short rotation task, the forearm pronation and wrist deviation saw an improvement in their 

performance with cross-correlation values of 0.9 and 0.85, respectively. It is assumed that the 

lower performance at the torso flexion, wrist flexion, forearm pronation, and wrist deviation joints 

was caused by the misalignment of the body coordinate systems defined for each motion capture 

system. The IMUs assume that the body Y-axis (longitudinal axis along segment) is parallel with 

gravity, while the Optitrack body Y-axis was defined as the two points connecting the proximal 

and distal joints surrounding each segment. 
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The readings from the gyroscope also factor into the misalignment. If participants had any 

off-axis motion as they were flexing a given joint during the alignment calibration process, it would 

cause both the body X and Z axes to not point towards their true anatomical directions. The 

calibration motions were more difficult to perform for stroke participants. For severe stroke 

participants, students helping with the research would support the participant throughout the 

calibration step. This would help to ensure proper motions, but it was hard to guarantee the same 

alignment accuracy as with a healthy participant. 

Although the IMU system did not correlate well with the Optitrack system in some 

scenarios, it did not deviate enough where the overall characteristic of the motion cannot be 

recognized (The results for all of the tasks is shown in Appendix D). Furthermore, the joint angles 

extracted from the IMUs were useful in developing the classification and personalized 

rehabilitation process. The measure of success was consistently met for the torso and shoulder 

angles (i.e. torso bending, torso bending, shoulder flexion, shoulder abduction, and shoulder 

rotation) while the performance of the torso flexion, elbow flexion, forearm pronation and wrist 

angles (wrist flexion and wrist deviation) varied between trials and tasks. Although there were 

some cases of disagreement between the two systems, it was determined that there was sufficient 

agreement in important measures for the IMU data to be used in developing a method with which 

to classify stroke severity and later to rank task difficulty. As can be seen later in chapter 5.0, the 

joint angles that showed poor performance (normalized cross-correlation lower than 0.8) were 

rarely chosen as a motion feature to predict stroke severity, and subsequently to rank tasks. To 

fully incorporate all motion features in the future, more work can be done to further close the gap 

between IMU and Optitrack results, with specific emphasis on wrist and elbow motions. 
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4.6 Aim 1: Measure of Success Achievements 

With the completion of Aim 1, the measures of success for selecting and calculating a 

feature set (sections 4.5.1 and 4.5.2) was met with the creation of the feature set used as the input 

to the machine learning algorithm mentioned in Aim 2 (chapter 5.0). As mentioned before, the 

feature selection and calculation steps were revisited if the F1 score (part of Aim 2) was not 

between 0.95 – 1. 

As for the IMU Validation step (section 4.5.3), the measure to have the cross-correlation 

of the joint angles for the IMU and Optitrack to be 0.8 – 1 for all joint angles was met consistently 

for the torso and shoulder joints but not always met for the elbow and wrist joints. The IMU results 

were able to characterize the reaching motion well enough to continue to Aim 2 but future 

adjustments in the body coordinate system definitions for the IMU and Optitrack systems should 

be made to improve the joint angle agreement in future studies. These adjustments should include 

how to have the motion-based alignment matrix process of the IMUs agree with the bony landmark 

digitization process of the Optitrack system. Otherwise validating that the remaining IMU results 

are satisfactory for stroke severity classification, even without a good match to Optitrack, is an 

alternative outcome. 
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5.0 Aim 2: Use Machine Learning to Predict Stroke Severity 

This chapter discusses how the motion features in chapter 4.0 were used to classify stroke 

severity. Due to the large feature set defined earlier, feature selection methods needed to be 

implemented to choose the most useful features for classification. A machine-learning algorithm 

was applied to the data obtained from each task described in chapter 3.0. Participants were 

classified into 3 classes that consisted of healthy, mild stroke and moderate/severe stroke. The 

results showed that a larger pool of participants is needed to justify that the top features are 

appropriate, but the machine learning process proves to be impactful for future studies. 

Section 5.1describes the rationale for using machine learning to classify stroke severity and 

the theory behind the algorithms used. Section 5.2 provides an overview of the support vector 

machine algorithm and its application in classifying stroke severity. Section 5.3 introduces the 

Synthetic Minority Oversampling Technique (SMOTE) that was used to interpolated classes that 

had fewer sample points than necessary to effectively run the algorithm due to a participant’s 

inability to complete a task. Section 5.4 gives an overview of how the F1 score was used as a 

performance metric for the classifier. Section 5.5 describes the feature selection process to find an 

optimal subset of features from the features described in section 3.2. The application of the feature 

selection process and the results is shown in section 5.6. Finally, section 5.7 summarizes why the 

measure of success was not met and methods for future studies to adopt in order to meet the Aim 

2. 
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5.1 Theory and Methods 

Given the large set of motion features defined in chapter 3.0 and obtained in chapter 4.0, a 

method needs to be developed that can correlate these features with the appropriate FMUE score. 

A function that maps the FMUE score and the motion features will help create an automated system 

that can diagnose stroke severity and compliment the feedback provided by a clinician. Once this 

function is defined, it will need to be able to calculate future FMUE scores from patients outside 

of this study using their motion features. This will provide a diagnostic tool for a stroke patient 

outside of the clinic. This aim falls under the category of predictive analysis since the objective is 

to use previously collected data to predict future outcomes. The difficulty in accomplishing this 

task lies in the volume of data and the complexity of relationships between features and the FMUE 

scores. 

In the ideal situation, the dimensions of the feature set can be reduced to one or two 

important features and a simple function can be created to map them to the FMUE score. In most 

real-world applications, this is not a simple task and requires more sophisticated tools. Luckily, 

this is a common problem seen in most predictive analysis applications and a vast number of 

algorithms have been developed for this purpose. 

Statistical methods have been implemented for centuries to find relationships between 

variables in complex processes by using a set of observations over time. The two common forms 

of statistical models are linear regression and analysis of variance (ANOVA). Lee (Lee T.H., 1999) 

used a multiple regression model to find a relationship between 22 gait variables (retrieved from 

gyroscopes and force plates) and target variables (age, velocity, weight, and height) to find relevant 

motion features that show the effects of total knee arthroplasty operation. Some examples of the 

gait variables are cadence, step length gait cycle and step width. The multi regression results 
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showed that velocity had the most significant effect on the gait variables followed by weight, age, 

and height. 

With the use of statistical models to achieve a better understanding of a given system, 

statisticians have tried to extend these same models for the application of predictability. While 

others sought to extend these statistical tools into what is known today as machine learning. 

During the 1950s and 1960s, machine learning was built upon the principles of statistics as 

computers started to become more powerful (Kononenko I., 2001). Even today, machine learning 

is commonly confused with statistical models and they are asserted by some to be one and the 

same. Breiman (Breiman L., 2001) highlights the difference between these two approaches. He 

states that in the data modeling culture (that is, among researchers who use statistical models), the 

assumption is made that nature is a stochastic process that can be modeled using methods such as 

linear or logistic regression. While within the algorithmic modeling culture (researchers that use 

machine learning), it is assumed that nature is too complex to model and a better approach is to 

focus on modeling the predictability of action. An illustration of these two assumptions is shown 

in Figure 32. 
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Figure 32: (Breiman L., 2001) shows the two different assumptions made for modelling predictability of an 

action. 

 

 

 

Through his own experience, Breiman learned how misleading regression models and the r-square 

values (a measure of goodness-of-fit) can be. Most early studies concluded that a given model was 

accurate based on the r-square value and did not further test whether that model could generate 

estimations of future data. Bickel (Bickel P.J., 2006) stated that goodness-of-fit tests have trouble 

rejecting the hypothesis of a well-fit curve unless there is a large disparity between the data and 

the model. Through observing these past studies, statistical models have proven to give a nice 

estimate of relationships between variables but should not be used for predicting future outcomes. 
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By viewing the actual relationship between the input (x) and output (y) as a black box, the 

combination of computational power and statistics helps to find another relationship between 

variables. This, in turn, helps to strengthen the predictability of the machine learning model. 

Machine learning models have a lot in common with statistical models, but machine learning 

derives methods from statistics, probability theory, computational complexity theory, control 

theory and many other fields (Meyfroidt G., 2009). This causes the models to become more 

complex and makes it harder for researchers to interpret the model’s equations. 

Fast forward to today, the advancement of computers has also provided the ability to store 

large datasets to strengthen the application of machine learning. This allows the reduction of bias 

in the models which makes it more robust to predicting outcomes for various cases. Algorithms 

such as k-nearest neighbors, naïve and semi naïve Bayes, neural networks and decision trees have 

been used for medical diagnostics (Kononenko I., 2001). In an earlier study with Kononenko, 

Kukar (Kukar M., 1996) used semi naïve Bayes for the prognostics of femoral neck fracture 

recovery. 

Outside of using machine learning for diagnostic predictions with data stored on medical 

devices provided on computers within the hospital, this work has been extended to motion capture 

technologies to observe motor skills, which allows data to be collected remotely and untethered to 

the hospital or clinic. An engineering application of machine learning has been in the use of visual 

and inertia-based sensors for biometric recognition of an individual. 

This chapter presents the framework for using a machine learning method, the support 

vector machine (SVM), to diagnose stroke severity when a large dataset is present. It is 

hypothesized that given enough data, a full scale of the FMUE score (0-66) can be mapped to 

kinematic and kinetic features and machine learning-based classification can be made at increasing 
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levels of resolution approaching that of the FMUE scale itself. Figure 33 shows a high-level 

flowchart of how stroke severity was classified. The remaining sections will discuss how this 

flowchart is implemented. 
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Figure 33: Flowchart of how the machine learning algorithm was implemented to classify stroke severity.
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5.2 Stroke Severity Classification Using Support Vector Machines 

To classify the stroke severity of the subjects in the study using IMU data, the features 

extracted from the data, as explained in chapter 4.0, were mapped to FMUE scores. The patients 

wore the IMUs and the features extracted from the inertial measurement data were used in a 

machine-learning algorithm to provide a classification that relates to an FMUE score. 

Independently, clinicians monitored the patients’ motion to provide a reference FMUE, which was 

used to label data for training and testing of the machine learning algorithm. Then with this known 

mapping, future diagnoses can be made from the computer using machine learning algorithms. 

After the features were extracted, each motion was represented in a multi-dimensional 

feature space. To differentiate between the skill sets that produced a motion, boundaries needed to 

be defined. An SVM is a supervised learning algorithm that creates optimal boundaries (or support 

vectors) between classes using labeled datasets. These boundaries are defined by decision rule 

functions that output the appropriate label given a feature vector. A linear decision rule function 

for a two-class problem is shown in equations (5-1) and (5-2). 

 (𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) ≥ 1, 𝑖𝑓 𝑦𝑖 = 1 (5-1) 

 

 (𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) ≤ −1, 𝑖𝑓 𝑦𝑖 = −1 (5-2) 
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𝑤⃑⃗⃗, 𝑥⃑𝑖, b, and 𝑦𝑖 represent the weight vector, feature vector, bias and class label respectively for 

sample i. These constraints are then put into a Lagrangian function to find the optimal boundaries 

(or hyperplanes) between classes. This is shown in the equation (5-3). 

 𝐿(𝑤⃑⃗⃗, 𝛼𝑖, b) =
1

2
‖𝑤⃑⃗⃗‖2 − ∑𝛼𝑖[𝑦𝑖(𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) − 1]

𝑁

𝑖=1

 (5-3) 

 

where L is the Lagrangian function, N is the total number of samples in the training dataset and 𝛼𝑖 

is the Lagrangian multiplier. The goal is to minimize 𝑤⃑⃗⃗, which will maximize the margin of the 

hyperplanes. An example of the classifier is shown in Figure 34. 

 

 

 

 

Figure 34: Example of an SVM separation for two classes (Raschka S., 2016). 

 

 

 

Figure 34 represents a 2D (2 features) linear separation of two classes, represented by red circles 

and green plusses. The dashed line represents the hyperplane that the algorithm has found to 
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separate the classes (in this simple case, just a straight line). In some cases, the separation is not 

correct (e.g., the red circle on the right side of the dashed line), so the decision rule or the objective 

function that defines the hyperplane between the classes need to be modified. Modifications can 

involve creating a decision rule that generates complex nonlinear boundaries for a more optimal 

separation. With SVMs, the decision rule can be modified to transform the data into a space where 

other separation cases can be explored. The transformation functions that modify the decision rules 

are called kernels. The purpose of the kernel function is to transform variables into another feature 

space where nonlinear boundaries can be explored. In other words, it is mapping the linear decision 

rule to a nonlinear function. Multiple kernels have been designed to create complex boundaries 

such as polynomial, radial basis function (RBF) and sigmoid. Kernels can be inserted into the 

decision function as shown in equations (5-4) and (5-5). 

 (𝑤⃑⃗⃗ ∙ 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) + 𝑏) ≥ 1, 𝑖𝑓 𝑦𝑖 = 1 (5-4) 

 

 (𝑤⃑⃗⃗ ∙ 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) + 𝑏) ≤ −1, 𝑖𝑓 𝑦𝑖 = −1 (5-5) 

 

where 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) can be one of the three, 

 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥⃑𝑖 − 𝑥⃑𝑗‖
2
) , RBF (5-6) 

 

 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) = (𝑥⃑𝑖 ∙ 𝑥⃑𝑗 + 1)𝑑, Polynomial (5-7) 

 

 𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥⃑𝑖
𝑇 ∙ 𝑥⃑𝑗 + r), Sigmoid (5-8) 
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𝐾(𝑥⃑𝑖, 𝑥⃑𝑗) represents the kernel function and r and 𝛾 are kernel parameters. Once a kernel function 

is inserted into the Lagrange multiplier equation, the new boundaries can be produced. A 

comparison of the kernel separations is shown in Figure 35. 

 

 

 

 

Figure 35: Examples of different boundaries developed using various SVM kernel functions (Pedregosa. F., 

2011). 

 

 

 

Along with picking the proper kernel that provides the optimal separation between classes, the 

characteristics of the hyperplanes can be further modified to fit the training data through tuning 

the model parameters. In order to make the orientation of hyperplanes less sensitive to outliers, 

slack variables are added to the constraints in equations (5-1) and (5-2) as shown in equations (5-9) 

– (5-11). 

 (𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) ≥ 1 − εi, 𝑖𝑓 𝑦𝑖 = 1 (5-9) 
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 (𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) ≤ −1 + εi, 𝑖𝑓 𝑦𝑖 = −1 (5-10) 

 

 ε𝑖 ≥ 0 (5-11) 

 

where εi is the slack variable that adds a penalty to the objective function if 𝑥⃑𝑖 is an outlier. The 

series of slack variables are incorporated in the Lagrange multiplier in equation (5-12). 

 𝐿(𝑤⃑⃗⃗, εi, 𝛼𝑖 , 𝑟𝑖, 𝑏) =
1

2
‖𝑤⃑⃗⃗‖2 + C∑εi

𝑁

𝑖=1

− ∑𝛼𝑖[𝑦𝑖(𝑤⃑⃗⃗ ∙ 𝑥⃑𝑖 + 𝑏) − 1]

𝑁

𝑖=1

− ∑𝑟𝑖εi

𝑁

𝑖=1

 (5-12) 

 

where C is the penalty parameter and 𝑟𝑖 is another Lagrange multiplier added to the equation. A 

small C lets the constraints be ignored which allows more outliers in the classification but creates 

a more generalized SVM model for future data, while a large C creates hard constraints that allow 

highly accurate classification but will overfit the data such that it may readily misclassify future 

datasets. It is up to the researcher to understand the data to find a balance between accuracy and 

model robustness. 

For the nonlinear kernels, other parameters can be adjusted that affect the shape of the 

hyperplane. The polynomial kernel has the parameter, d, which changes the order of the 

polynomial function. A low order polynomial will create a smooth hyperplane while a high order 

polynomial creates a “bumper” hyperplane. For the RBF and sigmoid kernels, the γ seen in 

equations (5-7) and (5-8) can be tuned to determine the area of influence of points (𝑥⃑𝑖) that affect 

the hyperplane. A smaller γ mainly focuses on far points from the hyperplane, while a larger γ 

mostly uses points close to the hyperplane. The effect of both C and γ is shown in Figure 36. 
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Figure 36: a) Visual representation of tuning the C and gamma parameters for an RBF kernel SVM. b) A 

heatmap of the validaton accuracy with the given parameters. (Pedregosa. F., 2011). 
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Figure 36 shows the boundaries (the white lines between the red and blue shaded areas) that 

classify the red and blue data points and the effects C and 𝛾 have on these boundaries. If classified 

correctly, the red points should only be surrounded by the red boundary and the blue boundary for 

blue points. As can be seen, a smaller 𝛾 and C has a smoother boundary but has a lot of 

misclassified points. A high 𝛾 and C, on the other hand, obtains a high classification accuracy but 

fits tightly around each point. Figure 36b, shows a different interpretation of tuning the parameters 

by showing the SVM classification accuracy (where 1 or the white shade is 100% accuracy) with 

the heatmap of 𝛾 vs C parameters. As is shown in the figure, areas in the upper right (corresponding 

to 𝛾 and C of 1000 and 0.01 respectively) provide less accurate classification than areas in the 

lower left (where 𝛾 and C are 1e-7 and 1e8 respectively). To tune these parameters, a popular 

algorithm called the grid search method was implemented. The effectiveness of the model 

parameter tuning was measured by checking the model stability. This was done by running through 

N iterations where the data is randomly split into 70% training and 30% testing data for each 

iteration. N was set to the number of possible combinations of participant trials for that given task. 

If the model is stable, the classification accuracy will not fluctuate greatly between iterations. 

The methods described above were all for a general two-class (binary) machine learning 

problem. For this dissertation, three classes were defined. The labels for the datasets were based 

on the FMUE score provided by a clinician monitoring the motion. The three classes were healthy, 

mild (FMUE≥47), and moderate/severe (FMUE<47). The two multi-class algorithms that can be 

used are the One-vs-Rest (OVR) and One-vs-One classifiers (OVO). OVR labels one class as +1 

and the remaining classes as -1. The classifiers repeat this cycle until all classes are compared with 

the others. For the OVO classifier, N(N-1)/2 binary classifiers are defined, where N is the number 

of classes (so in this case N(N-1)/2 = 3). In this method, each combination of classes will be 
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classified (healthy vs mild, healthy vs moderate/severe and mild vs moderate/severe). To classify 

a patient their data point is evaluated by all 3 classifiers and the class with the highest vote given 

is established as the final classification. Figure 37 show a graphical representation of OVR and 

OVO. 
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Figure 37: a) Shows the OVR classification where optimal hyperplanes are created between a single class and 

the rest of the classes. b) Shows the OVO classification where a series of hyperplanes are created between 

each pair of classes. 
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If the OVR classifier is used, there will be a large imbalance in the dataset to classify appropriately. 

For example, one iteration of the OVR will compare 10 healthy participants with the 20 

participants that fall into the mild or moderate/severe categories. The classification that occurs will 

be extremely biased towards mild and moderate/severe participants. Since 10 participants were 

assigned to each class (healthy, mild, moderate/severe) the OVO classifier is a better multi-

classifier candidate for this study. 

5.3 Data Interpolation (Synthetic Minority Over-Sampling Technique) 

Since each reaching task is a separate classification problem, there was some imbalance in 

the dataset for difficult tasks. This was due to some stroke participants not being able to complete 

the task during their session. To account for this imbalance the Syntenic Minority Over-Sampling 

Technique (SMOTE) was used to interpolate points in the minority class (the class with the least 

amount of sample points). The SMOTE process starts with a randomly selected data point of a 

participant (within the feature space) in the minority class and finding the K nearest neighboring 

points within the class (K was set to 2 for this study). In this case, other participants within the 

class that have similar features to the participant were selected. Then a new interpolated data point 

is defined calculating the distance between the two points and randomly multiplying it by a number 

between 0 and 1. Figure 38 shows graphically how this process is done. 
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Figure 38: Illustration of SMOTE being applied on the minority class. 

 

 

 

As shown in Figure 38, two participants are used to create a fake participant to test the algorithm. 

It is important to note that this method can only be applied to the training dataset. If it is also 
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applied to the testing data, it will cause a false sense of accuracy since the interpolated data point 

can have similar values as the training data from which it is derived. 

Raziff (Raziff A.R.A., 2017) used this method to help classify participants based on their 

gait patterns using the accelerometer in their smartphones. Since the total participant population 

was 30 people and participants only recorded gait twice (once for the training set and the second 

time for the test set) the data was limited. This method helped to simulate a larger population to 

enable future studies in their machine learning algorithm. 

Chawla (Chawla N.V., 2002) explored other applications of SMOTE for classification. 

This study incorporated SMOTE with naïve-Bayesian, RIPPER and decision tree (C4.5) classifiers 

with a variety of datasets with imbalanced data. The results show that SMOTE improved the 

classification accuracy when the minority classes were interpolated no more than the sample size 

of the majority classes. 

Introducing this method limits the study from justifying the classification results as an exact 

replication of the general population. Just like Raziff, the results of this study were to justify the 

classification method for future studies to analyze a larger patient population. 

5.4 Classification Performance Metric (F1 Score) 

Although SMOTE reduces the disparities between the class sizes, it wasn’t implemented 

to the point where the class sizes were even. SMOTE can be exhausted to the point where it just 

generates redundant information with similar interpolated points. To account for this imbalance 

the F1 score was used as a performance metric rather than accuracy (total correct classification 

divided by the total population size). If accuracy were selected, the score would be equally 
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weighted from all classes no matter the number of data points provided by that class. The F1 score 

uses both precision and recall in providing a classification score. Precision measures the 

consistency of the prediction while recall measures reliability (the number of true classifications 

that were classified correctly). This measure of the F1 performance metric is defined as the 

harmonic mean of precision and recall. The equations for precision, recall and F1 score are shown 

below. 

 precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5-13) 

 

 Recall =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (5-14) 

 

 𝐹1 = 2 (
precision ∙ recall

precision + recall
) (5-15) 

 

where TP, FP ad FN are true positive, false positive and false negative identified by the classifier 

respectively. For the 3-class case, all 3 F1 scores will be averaged to get the overall performance 

of the model. This average is expressed in equation (5-16). 

 𝐹1̅̅̅̅ =
𝐹1𝐻𝑒𝑎𝑙𝑡ℎ𝑦 + 𝐹1𝑀𝑖𝑙𝑑 + 𝐹1𝑀𝑜𝑑./𝑆𝑒𝑣.

3
 (5-16) 

 

where 𝐹1𝐻𝑒𝑎𝑙𝑡ℎ𝑦 , 𝐹1𝑀𝑖𝑙𝑑 𝑎𝑛𝑑 𝐹1𝑀𝑜𝑑./𝑆𝑒𝑣. are the F1 score for the one vs the one SVM models 

for healthy, mild and moderate/severe classes respectively. The kernel with the highest 

classification accuracy was selected for the final SVM algorithm. The goal is to have the SVM 

algorithm achieve an F1 score of 0.95 (A perfect score is equal to 1) on the K-fold cross-validation 
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(CV) test (K will equal 10). The SVM F1 score was tested by randomly selecting 70% of the data 

to train the SVM model and 30% to test the trained model. The F1 score was also implemented in 

the feature selection process to reduce the number of features needed to classify stroke severity. 

This is further explained in the next section. 

5.5 Feature Selection 

5.5.1 Feature Normalization 

Before the features were used for machine learning algorithms, normalization techniques 

needed to be applied to the dataset. This is helpful especially if each feature has different units. 

Some of the most common normalization algorithms are the min-max, mean, and z-score 

normalization. The min-max and mean normalization techniques are normally applied to datasets 

where there are known hard limits. 

In this dissertation, the z-score normalization was used to scale the data. Instead of 

normalizing the data with values [0,1] or [-1,1], the data is scaled to have a mean of zero and a 

standard deviation of 1. The calculation of the z-score is shown in equation (5-17). 

 𝑧 =
𝑥 − 𝜇

𝜎
 (5-17) 

 

where x is the feature, 𝜇 is the average of that feature and 𝜎 is the standard deviation of that feature. 

The final z-score then represents the feature’s distance from the mean by the factor of the standard 

deviation. An illustration of this distance is shown in Figure 39. 
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Figure 39: Z-score represented on normal distribution curve. 

 

 

 

When the data is normalized with the z score, a data point with the z score equal to 1 would mean 

it is 1 standard deviation away from the mean. 

To ensure the scaling factors are consistent with the training and test sets, the z score is 

implemented as shown in equations (5-18) – (5-19) 

 𝑧𝑡𝑟𝑎𝑖𝑛 =
𝑥𝑡𝑟𝑎𝑖𝑛 − 𝜇𝑡𝑟𝑎𝑖𝑛

𝜎𝑡𝑟𝑎𝑖𝑛
 (5-18) 

 

 𝑧𝑡𝑒𝑠𝑡 =
𝑥𝑡𝑒𝑠𝑡 − 𝜇𝑡𝑟𝑎𝑖𝑛

𝜎𝑡𝑟𝑎𝑖𝑛
 (5-19) 
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where 𝜇𝑡𝑟𝑎𝑖𝑛 and 𝜎𝑡𝑟𝑎𝑖𝑛 are the mean and standard deviation calculated from solely the training 

data. These same parameters are then applied to the test data. Figure 40 shows a kernel density 

estimation of maximum amplitude of the shoulder flexion velocity signal in the frequency domain 

after z-score normalization. 

 

 

 

 

Figure 40: Kernel desnity estimation used to estimate the probaility desnity function of Shoulder flexion 

velocity maximum amplitude in the frequency domain. 
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The kernel density estimation helps to show how each feature separates the participant population. 

The feature shown in Figure 40 shows that this feature does separate participants based on stroke 

severity to an extent but it can’t accurately classify the participants on its own. An ideal feature 

would have a probability density function for each healthy, mild, and moderate/severe participant 

population that does not overlap. A feature selection method that can find an optimal subset of 

features for classification is needed, that is, a subset of features that when combined can be used 

to accurately classify all participants. 

5.5.2 Feature Selection Algorithms 

A couple of problems arise when classifying stroke severity from the large volume of 

features used in this dissertation. The first one being that if it were desired to keep all 221 features, 

more data would be needed to avoid overfitting the model or making it too specific to the sample 

size that it was tested on (same situation shown in the previous section in Figure 36). This would 

mean that future participants that use the system would more likely be outliers to the SVM 

classifier if they slightly deviate from the training set trials. 

Another problem is that more data is needed as the size of the feature set grows. Simon 

(Simon R., 2003) states that if the number of features significantly exceeds the number of 

observations (sample points), the classification problem becomes harder and overfitting will occur 

(machine learning model is not robust to noise in features). This is commonly known as the high 

dimensional, low sample size problem. Since data is limited for this study, the goal was to define 

a large set of features and then select an optimal subset of features that classify stroke. The 

workflow of how the features were narrowed down is depicted by the Venn diagram in Figure 41. 
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The total feature set included every candidate feature defined using the methods outlined in Aim 

1. These features were chosen based on their potential to be used in a classification process of 

stroke severity, and an iterative process was used to search for a set of features that maximized the 

accuracy of the prediction process. An initial feature set was created and its stroke severity 

predictability tested in a rigorous machine learning feature selection process (to be explained in 

section 5.6). If the through testing of that feature set the F1 score was below 0.95, then the goal 

was not met, so new features had to be found.  Rather than keep all features, the least valuable 

features were discarded.  The features that were chosen as the top 20 stroke severity predictor for 

any given task were kept in the candidate feature set and the remaining features were discarded.   

Aim 1 was then revisited to define new features, and the feature selection process was repeated 

with least valuable features being discarded each time. Finally, that process resulted in a set of 

final features that are the most useful in the classification process.  
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Figure 41: The Venn diagram shows how the features were narrowed down to the top features that can 

classify stroke severity. 

 

 

 

Figure 41 illustrates the subsets of features. The total features are all features created for testing in 

the feature selection process. Candidate features are any feature that survived the process and were 

not discarded along the way. Final features will be explained in more detail in section 5.6 and are 

those that were finally chosen for stroke severity prediction. 

The next section overviews several feature selection methods that can be used for machine 

learning problems. 
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5.5.2.1 Filtering methods 

A simple approach is to use filtering methods that observe the correlations between 

features. One filter method is to apply the Pearson correlation between each feature and the class 

labels. From there the features with the highest correlations with the class labels are kept. The 

Pearson correlation is not ideal in most real-life applications due to its assumption that the 

correlation between the two variables is linear. A nonlinear equivalent is the mutual information 

(MI) equation that extends the definition of entropy (in the information theory field) to find the 

correlation between two variables. The standard definition of entropy within the field is shown in 

equation (5-20). 

 𝑆 = −∑ 𝑃𝑖log (Pi)
𝑖

 (5-20) 

 

where 𝑃𝑖 is the probability that the ith event occurs (Wang Q., 2019). The entropy shows that when 

an event has a low probability, it has more information. Equations (5-21) – (5-23) demonstrates 

how MI is calculated. 

 𝐼(𝑌, 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) (5-21) 

 

 𝐻(𝑌) = − ∑ 𝑃(𝑦)𝑙𝑜𝑔𝑃(𝑦)

𝑦∈𝑌

 
(5-22) 

 

 𝐻(𝑌) = − ∑ ∑ 𝑃(𝑋|𝑌)𝑙𝑜𝑔𝑃(𝑋|𝑌)

𝑦∈𝑌𝑥∈𝑋

 
(5-23) 
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where 𝐼(𝑌, 𝑋) is the MI between the class labels Y and features X. 𝐻(𝑌) and 𝐻(𝑌|𝑋) are the 

entropy of the class labels and the conditional entropy of the class label’s dependence on the 

features respectively. MI will be zero if Y and X are independent and greater than zero if they are 

dependent. Using this method to down-select features, a subset of features can be selected that 

maximizes the MI. Although these methods are computationally inexpensive, it is not guaranteed 

that the subset selected will obtain the optimal model accuracy. 

5.5.2.2 Embedded methods 

The embedded feature selection methods are an optimization approaches to select the best 

features for the machine learning model. The common algorithms are the least absolute shrinkage 

and selection operator (LASSO) and Ridge regression (James G., 2013). The equations for LASSO 

and Ridge are included below. 

 Lasso regression: argmin
𝛽

∑(𝑌𝑖 − 𝛽0 − ∑𝛽𝑗𝑋𝑗𝑖

𝑝

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|
2

𝑝

𝑗=1

𝑛

𝑖=1

 (5-24) 

 

 Ridge regression: argmin
𝛽

∑(𝑌𝑖 − 𝛽0 − ∑𝛽𝑗𝑋𝑗𝑖

𝑝

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 (5-25) 

 

where 𝛽 is the coefficient for the linear regression and 𝜆 is a weight for the additional constraint 

on the coefficients. Both methods add constraints to the linear regression objective function that 

keeps the coefficients from becoming large to avoid overfitting. Lasso accounts for the L1 norm 

between points while Ridge uses the L2 norm. The features that converge the coefficients closest 

to zero are selected for the machine learning model. 
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Another algorithm is the max-relevancy min-redundancy algorithm. This extends the MI 

method by also finding the MI between the currently selected features with the feature being 

observed at the optimization iteration. This algorithm selects a subset of features that have a 

maximum correlation with the class labels and a minimum correlation with other features selected. 

One drawback of the embedded method is that it cannot be guaranteed to find an optimal subset 

of features for the model since the optimization is not based directly on the model performance 

(such as maximizing the F1 score for the case of this study). 

5.5.2.3 Wrapper methods 

Wrapper methods try to fill in the gap between the filtering and embedded methods by 

running an optimization that incorporates the chosen machine learning algorithm. The goal is to 

find a subset of features that trains the machine learning model to obtain optimal classification 

accuracy. The common algorithms include the sequential forward selection (SFS) and backward 

feature selection (SBS) methods. The forward selection method starts with an empty set of features 

and adds one feature at a time until k features (determined by the user) are obtained that optimizes 

the model accuracy. The process for sequential forward selection is below: 

 

 

 

Sequential Forward Selection Pseudo Code 

1.Create an empty set: 𝑌𝑘 = {∅},  𝑘 = 0 

2.Select best remaining feature: 𝑥+ = argmax
𝑥+∈𝑌𝑘

[𝐽(𝑌𝑘 + 𝑥+)]  

3.If 𝐽((𝑌𝑘 + 𝑥+)) > 𝐽((𝑌𝑘)) 
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a.Update 𝑌𝐾+1 = 𝑌𝑘 + 𝑥+ 

b.𝑘 = 𝑘 + 1 

c.Go back to step 2 

 

In the algorithm presented above, 𝐽(𝑌𝑘 + 𝑥+) is the accuracy of the machine learning model when 

feature 𝑥+ is added to the feature array. This process is repeated until the optimal k (selected by 

the user) features are found. 

The backward sequential algorithm works in reverse, starting with a full set of features and 

obtaining the optimal accuracy by removing features from the set. The problem with SFS is that 

features added to the subset cannot be removed which creates a suboptimal selection (Smith A., 

2014). One workaround is the sequential forward floating selection (SFFS) where an additional 

exclusion step is included. In this exclusion step, a feature is removed only if it increases the 

machine learning model performance. A flow chart of the SFFS is included in Figure 42. 

 

 

 

 

Figure 42: A flowchart showing the Sequential Floating Forward Selection Process (Somol P., 2014). 
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For this study, the SFFS was used as the feature selection method. To remove any additional 

redundancies, the Pearson correlation equation was used to drop one from a pair of features that 

had a Pearson correlation coefficient above 0.75. This allowed other features to be explored since 

high-performance features can be highly correlated with many other features. 

5.6 Application of the Feature Selection Method 

Measure of success: Classification of stroke severity using motion 

features [Desired outcome: F1 score 0.95 – 1]. 

Using the SFFS for feature selection and one vs one SVM as a machine learning algorithm, 

stroke severity was classified for all the reaching tasks discussed in chapter 3.0. The feature 

selection process was performed for each iteration of Candidate Feature sets that were created in 

Aim 1. As explained in Section 5.5.2, the Candidate Feature set was redefined (more features were 

created and added) when the F1 score did not reach at least 0.95 and features were not selected as 

a top 20 feature at least once throughout all the tasks. The results shown in this section narrow 

down the final set of Candidate Features (154 features, depicted in Figure 43 and listed in 

Appendix B) to the top five features for any given task (a top five feature is any feature that is one 

of the five most selected features for a given task during the feature selection process). 



 110 

 

 

 

Figure 43: The Feature Venn diagram highlighting the candidate feature as the current step to the feature 

selection process. 

 

 

 

One change from the initial procedure described above was the stroke participant distribution. All 

10 healthy participants were recruited but there was some difficulty in recruiting severe 

participants to the study. In many cases, severe participants recruited from the Pitt+Me database 

had lost all mobility in their affected arm, so they were unable to complete the tasks. Also, mild 

participants with an FMUE score over 60 were almost indistinguishable from healthy participants 

and caused them to be misclassified, so they were moved to the healthy class for the purposes of 

this study. The patient distribution is shown in Figure 44. 
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Figure 44: Stroke participants' distribution in the study based on their FMUE scores. The mild participants 

highlighted with a red box were moved to the healthy class. 

 

 

 

The lack of severe stroke subjects and the reclassification of highly performing mild stroke severity 

patients created a further imbalance in the dataset so the SMOTE interpolation was heavily applied 

to the mild class since it was reduced to four participants. It is also important to note, due to only 

having one severe participant who completed the study, it was decided to place that subject into 

the moderate population for classification. 

Through the data analysis process, the results showed that including all five trials for each 

subject provided the model with redundant information. Another way to think about this is that 

everyone has their signature motion pattern which will rarely deviate in such a short amount of 

time. Therefore, additional trials add no new information. To test this theory, the Pearson 
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correlation was calculated between the feature set of each trial. The results can be seen in the heat 

map in Figure 45. 

 

 

 

 

Figure 45: Pearson correlation between feature vectors for each trial of a single participant. The results show 

that the features extracted from each trial are nearly identical. 

 

 

 

Figure 45 shows that all 5 trials presented essentially the same information in the feature space 

since the Pearson correlation was greater than 0.95. This was a problem when the data was split 

into training and test sets since the same point to train the data cannot be used to test the accuracy 

of the machine learning model. To combat this problem, only one trial from each subject was 

randomly selected to represent the patient population. 
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The process of determining the subset of features that are most useful for stroke severity 

classification, the Final Features as shown in Figure 46, is described in this section. 

 

 

 

 

Figure 46: The Venn diagram highlights the final subset of features used in Aim 3. 

 

 

 

The current population was randomly split into training data (70% of the population) and test data 

(30% of the population). For the feature selection process, the random selection was done for each 

of the 150 iterations described earlier in this chapter. The SFFS was used to select the top 5 features 

in the model based on the average F1 score for all 3 classes. 

For the short pointing target 5 task, Figure 47 – Figure 50 show example results of the 

number of times each feature was chosen among the final 5 features for an iteration of the SFFS 

process, for each of the four kernels. Note that for clarity, only the 20 most-selected features are 
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shown in the graphs, with the top 5 most-selected highlighted in red. For any given task, more 

features than the 20 shown in the charts were chosen at least once during the 150 iterations, but 

only the top 20 are shown to simplify the charts. 

For the remainder of this section, the results for only the short pointing target 5 task are 

shown, as examples. Appendix B contains the full results for all tasks. 
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Figure 47: The top 20 features (out of 154 features) for classifying short pointing target 5 task, selected by the linear kernel .
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Figure 48: The top 20 features (out of 154 Candidate Features) for classifying short pointing target 5 task, selected by the polynomial kernel.



 117 

 

 

 

Figure 49: The top 20 features (out of 154 features) for classifying short pointing target 5 task, selected by the RBF kernel .
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Figure 50: The top 20 features (out of 154 features) for classifying short pointing target 5 task, selected by the sigmoid kernel .
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As described above, the SFFS method relies on the F1 score when any given set of 5 features 

selected with the training data are then evaluated for performance (F1 score) using the test data. A 

snapshot of the F1 score over 150 iterations can be seen for the short pointing target 5 task in 

Figure 51. 
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Figure 51: F1 score over 150 iterations of randomly selecting trials and splitting data (train/test) for short pointing target 5 task. The mean and 

standard deviation of the F1 score is shown in the title of the plots.
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Because the fluctuation in the F1 score shown in Figure 51 is highly dependent on the 70% training 

data selected to train the model, this can result in sensitivity of the results. As mentioned in section 

5.3, SMOTE was used to upsample the minority classes (either mild or moderate/severe 

participants who could not finish the task). Due to the limited amount of points to interpolate within 

some tasks, the minority class could not be upsampled to exactly match the healthy class. The data 

limitation also limits the area in the feature space that the SVM algorithm can explore when 

training since the interpolated points lie between the few actual points defined. 

For iterations where the F1 score dipped below 0.6, it was caused by a larger stroke 

population in the test set than the training set and vice versa when the performance was high. The 

confusion matrices in Figure 52 – Figure 55 reinforces that the algorithm has a flaw in classifying 

the stroke participants. In the perfect scenario, the confusion matrix would be an identity matrix 

showing no misclassifications. 
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Figure 52: Confusion matrix showing the predicted values vs the true values for the linear kernel. 

 

 

 

 

 

 

Figure 53: Confusion matrix showing the predicted values vs the true values for the polynomial kernel. 
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Figure 54: Confusion matrix showing the predicted values vs the true values for the rbf kernel. 
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Figure 55: Confusion matrix showing the predicted values vs the true values for the sigmoid kernel. 

 

 

 

Based on Figure 52 – Figure 55, the healthy participants are classified correctly at least 65% of the 

time since they contain most of the sample points in the training data. While the stroke participants' 

classification is almost evenly distributed in all three classes. The moderate/severe class had a 

higher classification accuracy than the mild class since it had a large participant population. 

To see if the F1 score could be improved, the grid search method was used to tune each 

SVM kernel parameter to adjust the decision boundaries. The top 5 features defined earlier were 

used during the tuning process. The performance of the tuned parameters was tested in the 150-

iteration process again. Figure 56 – Figure 59 shows the results for the tuned parameters with each 

point representing the average F1 score and the error bars representing the standard deviation from 

the average. The ideal tuning result would be an F1 score close to 1 (e.g. >0.9) with a narrow error 
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bar (e.g. <0.05). This would ensure that the machine learning model was accurate and stable (able 

to predict stroke severity accurately given any 70% patient population as training data). 

 

 

 

 

Figure 56: Average F1 score over 150 iterations for each C parameter value applied to the linear kernel. The 

error bars represent one standard deviation from the average. Gamma does not apply for the linear kernel. 
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Figure 57: Average F1 score over 150 iterations for each C parameter value applied to the polynomial kernel. 

Each subplot represents a fixed gamma with a varying C. The error bars represent one standard deviation 

from the average. 
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Figure 58: Average F1 score over 150 iterations for each C parameter value applied to the RBF kernel. Each 

subplot represents a fixed gamma with a varying C. The error bars represent one standard deviation from 

the average. 
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Figure 59: Average F1 score over 150 iterations for each C parameter value applied to the sigmoid kernel. 

Each subplot represents a fixed gamma with a varying C. The error bars represent one standard deviation 

from the average. 

 

 

 

Tuning the model parameters slightly improved the performance of each kernel when the best 

parameters were chosen but there was still room for improvement since the F1 score was not close 

to 1 (for example, the best F1 score with tuning was 0.462 for C=0.001 and gamma=0.0001 in the 

RBF kernel). The obvious solution was to increase the number of features chosen during the feature 

selection but due to the limited size in the dataset, this was not an option since it would introduce 

overfitting as stated earlier. 

Another approach to improve the process was to use a combine the predictions between all 

the kernels. Instead of comparing the kernels with one another, they can be merged using a voting 
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system. This is known as a machine learning ensemble method in which multiple algorithms are 

combined to build a single machine learning model with a better performance. Many ensemble 

methods exist such as stacking, boosting, bagging, and voting. The stacking and bagging ensemble 

methods could not be used since these algorithms split the data into smaller subsets of training and 

test groups. This requires a larger dataset than was available in this dissertation. Boosting was not 

used since it can introduce sensitivity to noise and outliers (overfitting), which eliminates the 

advantages of the SVM that was stated in section 2.1 (Mayr A., 2014). While the voting method 

uses a majority or weighted vote between multiple machine learning algorithms to make a final 

prediction. The selected ensemble method used in this dissertation is the voting ensemble 

algorithm and is illustrated in Figure 60. 
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Figure 60: Illustration of the ensemble classifier voting method. Each classifier votes the prediction and the 

majority vote is the final classification (Géron, 2017). 

 

 

 

As shown in Figure 60, all the classifiers (in this case all the linear, polynomial, RBF and sigmoid 

kernels used in SVM) make a prediction and the majority vote becomes the final classification. 

The results of this ensemble method where all four kernels made a vote is shown in Figure 61 and 

Figure 62. 
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Figure 61: Ensemble confusion matrix for short pointing target 5. 
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Figure 62: Ensemble classification for short pointing target 5 during the 150 iteration process. The mean and 

standard deviation of the F1 score is shown in the title of the plot. 

 

 

 

Figure 61 shows that by using the ensemble method, the classification accuracy has increased by 

12% and 5% for the healthy and mild classes respectively while the classification accuracy 

decreased 12% for the moderate/severe class compared to the best results shown in Figure 52 – 

Figure 55. Looking at the results of the F1 score throughout the 150 iterations in Figure 62, the F1 

score still fluctuates but the overall average F1 score has increased by about 10% compared to the 

individual kernels before tuning and increased about 0.6% for the RBF tuned kernel. 

The results shown in this section have focused on the short pointing task 5. Other intuitively 

“easy” tasks, such as short tasks (40% of arm length) showed similar general classification results. 
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It is interesting, however, that for harder tasks such as when the target system was set to be 80% 

of the participant’s arm length, the classification improved. For example, Figure 63 shows the 

confusion chart for the ensemble classifier for the far grasp target 3 task. 

 

 

 

 

Figure 63: Confusion chart for the ensemble classifier used for far grasp target 3 task. 

 

 

 

The results in Figure 63 show that the healthy class was easier to identify with the ensemble 

classifier than the mild and moderate/severe classes. The increase in accuracy was caused by the 

increase in the difficulty of the task which shows the harder the task the easier it was to detect 

impairment. It is important to note, that the stroke sample size for severe patients dropped for this 

task (2 severe patients dropped due to incompletion). Since the severe patients’ features deviate 
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further from healthy due to their difficult to complete the task, the classification accuracy still 

improved. This did affect the performance for mild patients due to the nature of the task which 

highlights high range of motion for some patients and not others. The SMOTE interpolation could 

have also contributed to the noise of mild stroke patient classification by creating child points 

between mild patients that are close to full recovery and patients still recovering. Some tasks could 

not be classified due to the severe participants not being able to complete it. 

The work done for Aim 2 established a machine learning framework that predicts a 

patient’s stroke severity based on their upper extremity kinematics and kinetics. This system will 

be beneficial for stroke patients looking to receive an immediate evaluation of their stroke severity 

and rehabilitation progression without waiting to receive feedback from a clinical expert. A list of 

the selected features for each task is shown in Appendix B. The remainder of this section discusses 

how the measure of success was met. 

5.7 Aim 2: Measure of Success Achievements 

With the completion of Aim 2, the overall measure of success was not met for each task 

where the F1 score had to fall between 0.95 – 1. The main reason for this shortcoming was due to 

the lack of data collected which made it difficult to predict stroke severity for the minority class 

(usually mild stroke patients for easy tasks and moderate/severe stroke patients for harder tasks). 

Although the SMOTE method was used to emulate a larger patient population, there were cases 

where only two mild patients completed the tasks so there was not much variability in the 

interpolated patients. In some of the hard tasks, for example, far rotation for target 8, not a single 

severe participant could complete the task. 
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This lack of data limited the predictability of the stroke patients’ severity and a more 

balanced population of healthy and classes of stroke patients needs to be represented in future 

studies to complete this system. At a minimum, 10 healthy, 10 mild and 10 moderate/severe 

patients need to be recorded for each reaching tasks, but a much larger data set would greatly 

improve the results. This will ensure that 70% of the training data will adequately represent the 

general patient population for the SVM to predict stroke severity accurately for the remaining 30% 

of the test data. Additional subjects should be collected if the model continues to be unstable (F1 

score is not >0.95 for all iterations of the training data as in Figure 62). 

Although the measure of success was not met, the overall framework to create a machine-

learning algorithm to predict stroke severity is still an important contribution to an at-home 

rehabilitation system that the next researcher can deploy with a larger dataset. Given the increasing 

separation between healthy and stroke patients with harder tasks, the methods developed in this 

aim were considered to be acceptable for use in Aim 3 to establish a method of goal-oriented 

rehabilitation through a reaching task hierarchy. The top 5 features from each kernel within each 

task, were used to define the task hierarchy. These were the final subset of features selected in this 

dissertation as shown in Appendix B. 
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6.0 Aim 3: Define Individualized Task Difficulty Hierarchy 

This chapter provides an overview of how the series of tasks described in chapter 3.0 can 

be ranked based on difficulty. The goal is to use this system to provide participants with a 

personalized rehabilitation program that mimics the advice given by a trained clinician. To see 

how the task hierarchy changes between stroke participants, results are shown for one stroke 

participant in each class (mild, moderate and severe). 

Section 6.1 details how motor learning theory can be used to regain mobility in the affected 

arm and the broader impact of telerehabilitation for the stroke community. Section 6.2 describes 

how Euclidean distance in the feature space can be used to create a custom rehabilitation regime 

and measure progression. The summary of findings for the automated personalized task hierarchy 

that was created with the final features for each task is shown in section 6.3. Lastly, section 6.4 

discusses how the measure of success was met for Aim 3. 

6.1 Theory and Methods 

From a patient’s perspective, the application of the SVM algorithm to classify stroke 

severity is a useful tool if he or she would like to know their current state of impairment, but the 

next logical step is to facilitate motor recovery to regain the mobility that they once had. Langhorne 

(Langhorne P., 2011) details that the typical cycle that a patient experiences post-stroke involves 

(1) assessment, to identify and quantify the patient’s needs (2) goal setting, to define realistic and 

attainable goals for improvement and (3) intervention, to assist in the achievement of goals. 
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The assessment stage is covered by the FMUE scale that monitors their current weakness 

and dyscoordination (the outline for automation of this process has been covered in Aims 1 and 

2). Once they have been given an FMUE score their rehabilitation is based on their current stroke 

severity. 

The current gold standard motor learning method for stroke rehabilitation is a repetitive 

task-oriented regimen where the clinician needs to define achievable tasks (2. Goal Setting) and 

correct impaired motion patterns (3. Intervention) (Winstein C.J., 2014). To properly execute the 

goal-setting and intervention steps, the clinician has to follow three objectives: (1) the task must 

be challenging enough to require new learning; (2) the training must progress in difficulty and the 

task must be iteratively adapted to real-world relevance; and (3) the task must not lead to rote 

repetition but repeated attempts to solve a problem. Clinicians usually focus on tasks that mimic 

common motions used throughout the day otherwise called activities of daily living (ADLs) to 

meet these three objectives. 

Thant (Thant A.A., 2019) evaluated the effectiveness of task-oriented rehabilitation using 

a trained physical therapist to provide instructions. The activities of daily living assigned involved 

lifting a glass of water, moving crystal balls from a table to box, wiping down a table with a towel 

and combing their hair. The physical therapist would adjust the difficulty of each task through 

either changing the speed, distance and/or resistance based on the patient’s ability. After two weeks 

of training (10 hours) and four weeks of training (20 hours), the average FMUE score increased 

5.36 and 6.45 points from their base score, respectively. 

Unfortunately, participants often do not follow this strict regime and become frustrated or 

lose motivation when applying the rehabilitation regime without the supervision of a clinician. A 
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system that provides the same expertise as a trained clinician is needed to keep the rehabilitation 

momentum consistent. 

Telerehabilitation has been on the rise with the frequent innovations of computers and 

microelectromechanical systems (MEMS) sensors. Tsekleves (Tsekleves E., 2011) used the 

MEMS sensors in a Wii (Nintendo Co., Ltd) remote and Blender (open-source 3D environment 

software) for stroke rehabilitation at home. They were able to create a system that mimics a 

patient’s full-body movement in a virtual environment. Their system is in the prototype stage, but 

the end goal is to relay the 3D avatar to the clinician to provide instructions remotely. 

Buonocunto (Buonocunto P., 2017) takes it a step further by providing a MEMS sensor-

based telerehabilitation system that introduces the patient with a series of tasks recommended by 

a physical therapist during an in-person visit. The patient can then perform a task with feedback 

from a 3D avatar. Afterward, a score is provided based on the amount the patient deviated from a 

fixed joint trajectory. 

Although both systems show promise, they cannot rank tasks based on the patient’s 

performance without the clinician remotely monitoring them. A data-driven method is needed that 

can automatically modify a series of tasks based on the patient’s current ability. 

This chapter outlines the process to create customizable instructions for each stroke patient. 

The goal is to rank the task described in chapter 3.0, using the data collected. 
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6.2 Establishing Task Hierarchy Using Euclidean Distance Between the Stroke and Healthy 

Feature Clusters 

The purpose of creating the task hierarchy is to enable a stroke patient to start rehabilitation 

with a task that is challenging but relatively easy for them. It is anticipated that after mastering 

their first task, a patient will approach another, slightly more difficult task with more confidence. 

This will be an iterative process as a patient works their way through the series of tasks listed in 

chapter 3.0. 

Since the rehabilitative goal is to have patients regain the motion patterns of healthy 

subjects, the difficulty of any given task for a particular subject was determined as a measure of 

how far a stroke subject’s motions deviated from the motion patterns defined by the healthy subject 

population. The first step of this process was to define healthy motion patterns for each task in the 

feature space. The feature space for the given task was defined from the top features selected using 

the ensemble SVM classifier described in chapter 5.0. Using data from all the healthy participants 

the centroid for the healthy cluster is defined with the average of the feature set as shown below. 

 𝐶𝑖
𝐻𝑒𝑎𝑙𝑡ℎ𝑦

=
1

14
∑𝑧𝑖,𝑗

14

𝑗

 (6-1) 

 

 𝐶𝐻𝑒𝑎𝑙𝑡ℎ𝑦 = [𝐶1
𝐻𝑒𝑎𝑙𝑡ℎ𝑦

⋯ 𝐶𝑀
𝐻𝑒𝑎𝑙𝑡ℎ𝑦] (6-2) 

 

where 𝐶𝑖
𝐻𝑒𝑎𝑙𝑡ℎ𝑦

 represents centroid for healthy for the ith feature that is an average across all 10 

healthy participants and 4 mild participants with FMUE score over 60 (total of 14 participants),and 

𝑧𝑖,𝑗 represents the ith feature of participant j after it has been normalized using the z-score. The 
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final centroid vector in equation (6-2) has 1xM dimensions where M is the number of unique 

features chosen by the ensemble SVM classifier. As mentioned in section 5.6, M changes based 

on the amount of overlap of features selected between kernels feature space can be 5 (when all 

four kernels pick the same 5 features) to 20 (when all four kernels pick unique features). Once the 

centroid is defined for each task, the hierarchy can be set up by calculating the Euclidean distance 

between a stroke participant and the healthy cluster centroid. An illustration of this hierarchy can 

be seen in Figure 64. 

 

 

 

 

Figure 64: Example showing how the euclidean distance (d) will be used to rank tasks. The easiest task will 

have the smallest distance while the hardest task will have the furthest. 
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To get a perspective of how an individual patient might perform as compared to the overall stroke 

population, the task hierarchy was created for the general stroke population (cluster created for all 

stroke participants) and for an individual stroke patient. The next sections present the calculation 

of these task hierarchies. 

6.2.1 Task Hierarchy of Stroke Population 

To calculate the task difficulty for the stroke population, the stroke cluster needed to be 

defined. Since some participants had trouble completing some of the tasks, yet this result did not 

show up in the feature space, a penalty needed to be created to shift the stroke cluster away from 

the healthy to show that it was a difficult task. After the feature array was populated with all of the 

completed tasks, the remaining empty elements from incomplete tasks were populated with the 

penalty term shown in equation (6-3). 

 𝑧𝑗
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗
|𝐶𝑖

𝐻𝑒𝑎𝑙𝑡ℎ𝑦
− 𝑧𝑖,𝑗| (6-3) 

 

where 𝑧𝑗
∗ represents the penalty term feature. The penalty equation finds the participant j that is 

furthest away from the healthy centroid and populates the remaining empty elements with the ith 

feature. Note that this is a conservative estimation. It is arguable that since the patient could not 

complete the task that the penalty could be more severe. The stroke centroid is then calculated 

using equations (6-4) and (6-5). 

 𝐶𝑖
𝑆𝑡𝑟𝑜𝑘𝑒 =

1

13
∑𝑧𝑖,𝑗

13

𝑗

 (6-4) 
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 𝐶𝑆𝑡𝑟𝑜𝑘𝑒 = [𝐶1
𝑆𝑡𝑟𝑜𝑘𝑒 ⋯ 𝐶𝑀

𝑆𝑡𝑟𝑜𝑘𝑒] (6-5) 

 

where the centroid is averaged over the 4 mild, 8 moderate and 1 severe participant (total of 13). 

The Euclidean distance between the centroids of the healthy and stroke populations for a given 

task was determined as shown in equation (6-6). 

 𝑑 = √(𝐶1
𝐻𝑒𝑎𝑙𝑡ℎ𝑦

− 𝐶1
𝑆𝑡𝑟𝑜𝑘𝑒)

2
+ ⋯ + (𝐶𝑀

𝐻𝑒𝑎𝑙𝑡ℎ𝑦
− 𝐶𝑀

𝑆𝑡𝑟𝑜𝑘𝑒)
2
 (6-6) 

 

The process shown in equations (6-4) – (6-6) was repeated for each task. For cases when they did 

not finish, the empty element in the feature vector was filled with the feature that was furthest 

away from the centroid. For cases where the task could not be classified due to no classification 

results, the task was thrown into an incomplete bin and labeled the hardest out of the series of 

tasks. 

6.2.2 Task Hierarchy for Stroke Individual 

To define the task hierarchy of an individual stroke patient, their location in the feature 

space was defined as shown in equations (6-7) and (6-8). 

 𝐶𝑖
𝑝𝑎𝑟𝑡 =

1

5
∑ 𝑧𝑖,𝑗

5

𝑗

 (6-7) 

 

 𝐶𝑝𝑎𝑟𝑡 = [𝐶1
𝑝𝑎𝑟𝑡 ⋯ 𝐶𝑀

𝑝𝑎𝑟𝑡] (6-8) 
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where each element of the centroid was the ith feature averaged over the 5 trials. Once the centroid 

was defined, the Euclidean distance was calculated using equation (6-9). 

 𝑑 = √(𝐶1
𝐻𝑒𝑎𝑙𝑡ℎ𝑦

− 𝐶1
𝑃𝑎𝑟𝑡)

2
+ ⋯ + (𝐶𝑀

𝐻𝑒𝑎𝑙𝑡ℎ𝑦
− 𝐶𝑀

𝑃𝑎𝑟𝑡)
2
 (6-9) 

 

If a participant could not complete a task, it was labeled incomplete and put in a bin as the hardest 

task. For some of the tasks, there were cases where only a few mild participants completed a task 

that could not be classified from the ensemble SVM classifier due to insufficient data from the 

moderate/severe class. If this was the case, the task would be labeled complete, but a rank could 

not be assigned to it. In future studies when more data is available, these tasks will be given a rank. 

6.3 Aim 3: Summary of Findings 

Measure of success: Automated goal-oriented rehabilitation 

development. 

Using the method described in Section 6.2.1, the task hierarchy for the stroke population 

is shown in Figure 65 along with the labelled target rig in Figure 66. 
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Figure 65: The task hierarchy for the whole stroke population. The euclidean distance on the x axis is the distance away from the healthy centroid.
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Figure 66: CAD drawing of the target system. The red numbers represent the target numbers. 

 

 

 

The most difficult tasks were found to be the incomplete tasks that the moderate/severe participants 

could not complete. Most of these tasks include the top 3 targets (Target 1,2 and 8) during the far 

position (target is 80% of arm length away from chest). For the completed targets, short rotation 

for target 2 ended up being the most difficult with short pointing at target 5 being the easiest. 

Note that the task hierarchy changes depending on the handiness of the participant. For 

example, Target 7 was harder for a right-handed stroke patient than a left-handed patient since it 

requires more coordination to reach a target across their body. 

It is also important to note that, the short grasp and rotation tasks that involve more 

coordination within the forearm pronation and the wrist joint angles were harder than some of the 
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far pointing tasks. This outcome is to be expected since pointing mainly involves the coordination 

of the shoulder and elbow joints where the grasping tasks required additional coordination from 

the wrist to complete. 

In some cases, a stroke participant might be able to follow the trend of their general 

classification population but may run into some trouble for medium level task in the middle of the 

task hierarchy. To see the necessity of an individualized task hierarchy, Figure 67 – Figure 69 

show the hierarchies of a mild, moderate and the one severe participant in their respective orders. 
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Figure 67: Task hierarchy of severe stroke participant.
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Figure 68: Task hierarchy of moderate stroke participant.
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Figure 69: Task hierarchy of mild stroke participant.
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As expected, the incomplete bins for the stroke participants increase with stroke severity. Another 

noticeable observation is the change in the overall scale of the Euclidean distance of the tasks 

between participants. That is, generally the distances increase for more severe patients. In terms 

of Euclidean distance, the hardest task for the mild participant is equivalent to a medium task for 

a moderate participant. The mild participant also showed that they were able to complete all of the 

tasks, but 10 tasks could not be classified due to the limited dataset. 

In addition to differences across classes, the hierarchy plots also show differences within 

classes. For example, Figure 70 shows the task hierarchy for an additional mild stroke participant. 

By comparing Figure 70 with Figure 69, one can see the change in task order for patients in the 

same class, suggesting that patients experience the difficulty of tasks differently. 
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Figure 70: A second mild stroke participant showing a different task hierarchy.
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Based on the hierarchy shown in Figure 70 for a second mild patient, this patient was 

unable to complete the far target 1,2, and 8 tasks, similar to the severe patient, yet some of the 

tasks were ranked as easier for this patient to perform than for the previous mild participant shown 

in Figure 69. This range of mobility for the 4 mild participants in this study may be the cause of 

the noise for this class shown in chapter 5.0. 

It is still yet to be seen if the hierarchies calculated here are robust. For example, will a 

stable hierarchy be found for a given class of stroke patients stable as the tested population grows? 

In addition, it needs to be shown that the hierarchy for a single subject is stable over multiple tests. 

Nonetheless, given the patterns shown here such that the scoring trends generally match expected 

difficulty of the various tasks, the more severe patients show higher difficulty scores for the same 

tasks, and that individuals have unique hierarchies, the method holds promise for clinical use. 

At the beginning of stroke rehabilitation, a clinician will prescribe these tasks that the 

automated system will be able to match. As a patient’s FMUE score improves, the task hierarchy 

will likely evolve and the method shown can be used to adapt to the patient’s rehabilitation regimen 

in real-time. Given the results shown in this chapter, it may be possible to use these methods to 

create an automated rehabilitation system. 

6.4 Aim 3: Measure of Success Achievements 

A personalized stroke rehabilitation system that ranks tasks from easy (motion patterns 

close to healthy population) to hard was created and the measure of success was met with the 

completion of Aim 3. In this dissertation, the research stopped with the ranking of the tasks for the 
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tested stroke patient population and individual stroke patients to demonstrate the method to 

automate goal-oriented stroke rehabilitation. To apply this task hierarchy method in a clinical 

setting will require testing of much larger populations. Nonetheless, the method developed in this 

aim is compatible with accepted motor learning methods for stroke rehabilitation. It provides a 

way to (1) present the patient with a set of tasks that are challenging enough to require new 

learning; (2) ensure that the training progresses in difficulty with real-world relevance; and (3) 

with real-time feedback the task can encourage repeated attempts to solve a problem instead of 

rote repetition. Furthermore, the method is individualized for each patient and enables automated 

re-evaluation at prescribed increments. 

This system can demonstrate the stroke patient’s improvement during their rehabilitation. 

As they begin to master certain tasks, the task hierarchy will evolve with mastered tasks moving 

towards the bottom of the hierarchy and further highlighting tasks that don’t receive much 

attention. The expected recovery road map is assumed to be similar to the change in task hierarchy 

highlighted in Figure 67 – Figure 69. The patient will not only be able to feel when they regained 

their healthy motion patterns but also will have a quantitative result from the system when all tasks 

in the hierarchy have a Euclidean distance close to zero. 

In order to finalize the deployment of this system, more data needs to be collected to refine 

the definition of healthy. With a sample size of only 10 healthy patients, there are not enough 

sample points to conclude that the healthy motion patterns used as a reference for the task hierarchy 

represent the general population. A deployable system will need at least 100 patients to be 

confident in the task hierarchy. 
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7.0 Conclusion 

This dissertation has described a data-driven method to automate a goal-oriented stroke 

rehabilitation session. To establish this method, three aims were defined for this research: 

1. Define a kinematic and kinetic based feature set from which to assess and predict stroke 

severity 

2. Create a method to predict stroke severity with motion-based features using machine 

learning techniques. 

3. Define individualized task difficulty hierarchy. 

In Aim 1, the first two measures of success (1. Define kinematic and kinetic based motion 

features and 2. calculate motion features) were met. The joint kinematics were collected using 

inertial measurement units (IMUs) while the joint kinetics were calculated through an inverse 

dynamic model operating on the trajectories formed from the IMU data. After receiving the 

kinematics and kinetic readings, they were summarized in scalar values using statistical functions 

(mean, variance and max) and frequency domain transformations using discrete Fourier transform 

(DFT). Through the methods described in sections 4.5.1 and 4.5.2, the total list of motion features 

was defined and later refined to the top features used to predict stroke severity (motion features 

list is shown in Appendix B). 

The last measure of success for Aim 1 (3. IMU validation) was set that the IMU joint 

kinematic readings had to have a cross-correlation between 0.8 – 1 with the gold standard optical 

tracking system (Optitrack, NaturalPoint, Inc.). This measure was met consistently for the torso 

and shoulder angles (i.e. torso bending, torso bending, shoulder flexion, shoulder abduction, and 

shoulder rotation) but torso flexion, elbow flexion, forearm pronation and wrist angles (wrist 
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flexion and wrist deviation) varied throughout various tasks and trials. This disagreement between 

these two systems originates from the different methods used to define the body coordinate system 

for each system. The body coordinate system definitions need to be revisited for each system to 

guarantee a cross-correlation of at least 0.8 for all angles. It is important to note that even though 

the IMU readings did not agree with the gold standard, it did not deter from the overarching goal 

for the IMU to predict stroke severity. For this reason, the research continued to Aim 2. 

The measure of success for Aim 2 was to obtain a stroke severity prediction F1 score of at 

least 0.95 for each task. This measure of success was not met mainly due to the limited amount of 

data provided in the study. The dataset had a large disparity in sample sizes with 14 healthy, 4 mild 

and 9 moderate/severe participants with each participant completing 5 trials (26 participants × 5 

trials=504 sample points). Unfortunately, the dataset was further reduced to 26 sample points due 

to redundant information between trials (only 1 trial could be used per subject in the classifier) and 

moderate/severe patients’ inability to complete some tasks. The Synthetic Minority Oversampling 

Technique (SMOTE) was used to reduce the imbalance between the healthy and mild stroke 

severity dataset. The imbalanced caused the performance of the classifier (measured using the F1 

score) to fluctuate depending on the number of stroke patients used in the training dataset. In future 

work, the machine learning method defined in this dissertation can show improved performance 

with a large patient population (+100 patients). Although the measure of success was not met, the 

improved performance of the stroke severity prediction as the task became more difficult for stroke 

participants proved to be useful for Aim 3. 

Aim 3’s measure of success to develop an automated goal-oriented stroke rehabilitation 

system that was met. This system was built by creating a task difficulty hierarchy using the top 

features defined in Aim 2. The two distinguishing factors that influenced the hierarchy were the 
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stroke severity and the handedness of the subject. The task hierarchy follows the goal-oriented 

motor learning method and provides a way to (1) present the patient with a set of tasks that are 

challenging enough to require new learning; (2) ensure that the training progresses in difficulty 

with real-world relevance; and (3) with real-time feedback the task can encourage repeated 

attempts to solve a problem instead of rote repetition. Furthermore, the method is individualized 

for each patient and enables automated re-evaluation at prescribed increments. With the limited 

dataset, it is tough to prove that this hierarchy will remain true when more data is introduced to 

the system but the method to obtain the hierarchy is valid. 

7.1 Summary of Contributions 

A summary of contributions towards the areas of machine learning and occupational 

therapy are described below: 

1. Kinematic and kinetic based motion features have been extracted from the portable 

IMU motion capture system that can predict stroke severity. The work described in this 

dissertation also provides a baseline to extract these motion features when additional 

participants are evaluated in future studies. 

2. A method to select the optimal motion features (final features) and predict stroke 

severity of a participant that matches a professional clinical evaluation has been 

established. Even though the test set was small, a key set of features was identified that 

were consistently selected as important in the classification process. 

3. A method to develop an automated personalized task-oriented stroke rehabilitation 

system has been defined. With further development of this system made through 
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collecting more data, a deployable version of the system can help stroke participants 

continue to set achievable task goals at home and accelerate their recovery time. 
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Appendix A : Fugl-Meyer Upper Extremity Assessment 

The official version of the Fugl-Meyer Upper Extremity Assessment from Fugl-Meyer 

(Fugl-Meyer A.R., 1975) is provided in Figure 71 and Figure 72. 

 

 

 

 

Figure 71: The first page of the FMUE Assessment. 
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Figure 72: The second page for the FMUE Assessment. 



 160 

Appendix B : Final List of Motion Features 

The total list of motion features calculated in this study are shown in Table 4. The first 154 

features represent the Candidate features used as a pool from which to select the top features that 

predict stroke severity as shown in section 5.6 (top features for a given task are the five most 

frequently selected features using the feature selection process described in chapter 5.0). The 

process of narrowing down the motion features is shown in the Venn Diagram in Figure 73. 

 

 

 

 

Figure 73: The Venn diagram shows how the features were narrowed down to the top features that can 

classify stroke severity. 
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The remaining features were once considered for the study but removed due to never being selected 

in the top features to predict stroke severity. To provide further detail for the features, Appendix 

C list the equations used to calculate each feature. 

 

Table 4: List of motion features used to analyze stroke severity. 

 

 

Candidate Features 

# Feature 

Tasks that selected the candidate feature as a top 5 

feature 

1 Average chest displacement 

Short Pointing Target 1 – 9 

Short Grasp Target 3 – 7,9 

Short Rotate Target 1,3 – 9 

Far Pointing Target 2 – 9 

Far Grasp Target 3 – 7,9 

Far Rotate Target 3 – 7,9 

2 

Variance of torso lateral 

bending 

Short Pointing Target 1 – 9 

Short Grasp Target 3 – 7,9 

Short Rotate Target 1,3 – 9 

Far Pointing Target 2 – 9 

Far Grasp Target 3 – 7,9 

Far Rotate Target 3 – 7,9 
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Table 4 (continued) 

 

 

3 Variance of torso axial rotation 

Short Pointing Target 5,8 

Short Grasp Target 4 

Short Rotate Target 5,6,8,9 

Far Rotate Target 5,6,7,9 

4 Variance of torso flexion 

Short Pointing Target 4 

Far Pointing Target 9 

Far Rotate Target 4 

5 Variance of shoulder abduction 

Short Pointing Target 6,7 

Short Rotate Target 7 

Far Pointing Target 6. 

6 Variance of shoulder rotation 

Short Pointing Target 5 

Short Grasp Target 3 

Far Grasp Target 9 

7 Variance of shoulder flexion Far Pointing Target 7 

8 Variance of elbow flexion  

9 Variance of wrist flexion  

10 Variance of forearm pronation  

11 Variance of wrist deviation  
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Table 4 (continued) 

 

 

12 

Zero crossing of torso lateral 

bending velocity 

Short Pointing Target 1 – 9 

Short Grasp Target 3 – 7,9 

Short Rotate Target 1,3 – 9 

Far Pointing Target 2 – 9 

Far Grasp Target 3 – 7,9 

Far Rotate Target 3 – 7,9 

13 

Zero crossing of torso axial 

rotation velocity 

 

14 

Zero crossing of torso flexion 

velocity 

 

15 

Zero crossing of torso lateral 

bending acceleration 

Short Pointing Target 1 – 9 

Short Grasp Target 3,5,6 

Far Pointing Target 2 – 9 

Far Grasp Target 3,5,6 

Far Rotate Target 3 – 6,7,9 

16 

Zero crossing of torso axial 

rotation acceleration 

 

17 

Zero crossing of torso flexion 

acceleration 
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Table 4 (continued) 

 

 

18 

Zero crossing of shoulder 

abduction velocity 

Short Grasp Target 9 

19 

Zero crossing of shoulder 

rotation velocity 

Far Pointing Target 7 

Far Grasp Target 6,9 

20 

Zero crossing of shoulder 

flexion velocity 

 

21 

Zero crossing of shoulder 

abduction acceleration 

 

22 

Zero crossing of shoulder 

rotation acceleration 

Short Grasp Target 4 

Far Grasp Target 6 

23 

Zero crossing of shoulder 

flexion acceleration 

 

24 

Zero crossing of elbow flexion 

velocity 

Far Rotate Target 4 

25 

Zero crossing of elbow flexion 

acceleration 

Far Rotate Target 4 

26 

Zero crossing of wrist flexion 

velocity 

 

27 

Zero crossing of forearm 

pronation velocity 
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Table 4 (continued) 

 

 

28 

Zero crossing of wrist deviation 

velocity 

 

29 

Zero crossing of wrist flexion 

acceleration 

 

30 

Zero crossing of forearm 

pronation acceleration 

 

31 

Zero crossing of wrist deviation 

acceleration 

 

32 

Max amplitude of torso lateral 

bending velocity (Freq. 

domain) 

Short Pointing Target 1,8 

Short Grasp Target 3 – 4 

Short Rotate Target 1,3,4 

Far Pointing Target 2 – 4,6 

Far Grasp Target 3.4.7 – 9 

Far Rotate Target 5 – 7 

33 

Max amplitude of torso axial 

rotation velocity (Freq. domain) 

Short Pointing Target 4 

34 

Max amplitude of torso flexion 

velocity (Freq. domain) 

Short Grasp Target 7 
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Table 4 (continued) 

 

 

35 

2nd Max amplitude of torso 

lateral bending velocity (Freq. 

domain) 

Short Pointing Target 6,7 

Short Grasp Target 4,5 

Short Rotate Target 3,4,7 

Far Grasp Target 3,5 – 7 

Far Rotate Target 5 – 7 

36 

2nd Max amplitude of torso 

axial rotation velocity (Freq. 

domain) 

Short Grasp Target 4 

Short Rotate Target 6 

Far Grasp Target 4 

37 

2nd Max amplitude of torso 

flexion velocity (Freq. domain) 

Short Pointing Target 6 

Short Grasp Target 5 – 7,9 

Far Pointing Target 6 

Far Grasp Target 6 

Far Rotate Target 5 

 

38 

Freq of Max amplitude of torso 

lateral bending velocity (Freq. 

domain) 

Short Pointing Target 1 – 5,8 

Short Grasp Target 3 – 7,9 

Short Rotate Target 1,3 – 9 

Far Pointing Target 5 – 9 

Far Grasp Target 3 – 7 

Far Rotate Target 3,5,7 

 



 167 

Table 4 (continued) 

 

 

39 

Freq of Max amplitude of torso 

axial rotation velocity (Freq. 

domain) 

 

40 

Freq of Max amplitude of torso 

flexion velocity (Freq. domain) 

Far Grasp Target 7 

41 

Freq of 2nd Max amplitude of 

torso lateral bending velocity 

(Freq. domain) 

Short Grasp Target 3,4 

Short Rotate Target 9 

Far Grasp Target 5,9 

42 

Freq of 2nd Max amplitude of 

torso axial rotation velocity 

(Freq. domain) 

Far Grasp Target 4 

43 

Freq of 2nd Max amplitude of 

torso flexion velocity (Freq. 

domain) 

Short Pointing Target 6,7 

Short Grasp Target 6,7 

Short Rotate Target 4,6 

 

44 

Max amplitude of shoulder 

abduction velocity (Freq. 

domain) 

Short Grasp Target 9 
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Table 4 (continued) 

 

 

45 

Max amplitude of shoulder 

rotation velocity (Freq. domain) 

Short Pointing Target 3,9 

Short Grasp Target 4 

Far Pointing Target 4,7 

46 

Max amplitude of shoulder 

flexion velocity (Freq. domain) 

 

47 

2nd Max amplitude of shoulder 

abduction velocity (Freq. 

domain) 

Short Rotate Target 9 

Far Pointing Target 9 

Far Grasp Target 9 

Far Rotate Target 9 

48 

2nd Max amplitude of shoulder 

rotation velocity (Freq. domain) 

Short Pointing Target 6, 9 

Far Pointing Target 4 

49 

2nd Max amplitude of shoulder 

flexion velocity (Freq. domain) 

 

50 

Freq of Max amplitude of 

shoulder abduction velocity 

(Freq. domain) 

Short Grasp Target 7,9 

Far Grasp Target 9 

Far Rotate Target 9 

51 

Freq of Max amplitude of 

shoulder rotation velocity 

(Freq. domain) 

Short Pointing Target 7,9 

Far Pointing Target 4,6 
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Table 4 (continued) 

 

 

52 

Freq of Max amplitude of 

shoulder flexion velocity (Freq. 

domain) 

Far Pointing Target 4 

53 

Freq of 2nd Max amplitude of 

shoulder abduction velocity 

(Freq. domain) 

Far Rotate Target 9 

54 

Freq of 2nd Max amplitude of 

shoulder rotation velocity 

(Freq. domain) 

Short Pointing Target 7,9 

Far Pointing Target 6,9 

Far Rotate Target 4 

55 

Freq of 2nd Max amplitude of 

shoulder flexion velocity (Freq. 

domain) 

 

56 

Max amplitude of elbow 

flexion velocity (Freq. domain) 

Far Pointing Target 5 

57 

2nd Max amplitude of elbow 

flexion velocity (Freq. domain) 

 

58 

Freq of Max amplitude of 

elbow flexion velocity (Freq. 

domain) 
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Table 4 (continued) 

 

 

59 

Freq of 2nd Max amplitude of 

elbow flexion velocity (Freq. 

domain) 

 

60 

Max amplitude of wrist 

deviation velocity (Freq. 

domain) 

 

61 

Max amplitude of forearm 

pronation velocity (Freq. 

domain) 

 

62 

Max amplitude of wrist flexion 

velocity (Freq. domain) 

 

63 

2nd Max amplitude of wrist 

deviation velocity (Freq. 

domain) 

 

64 

2nd Max amplitude of forearm 

pronation velocity (Freq. 

domain) 

 

65 

2nd Max amplitude of wrist 

flexion velocity (Freq. domain) 
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Table 4 (continued) 

 

 

66 

Freq of Max amplitude of wrist 

deviation velocity (Freq. 

domain) 

 

67 

Freq of Max amplitude of 

forearm pronation velocity 

(Freq. domain) 

Short Pointing Target 4 

68 

Freq of Max amplitude of wrist 

flexion velocity (Freq. domain) 

 

69 

Freq of 2nd Max amplitude of 

wrist deviation velocity (Freq. 

domain) 

 

70 

Freq of 2nd Max amplitude of 

forearm pronation velocity 

(Freq. domain) 

 

71 

Freq of 2nd Max amplitude of 

wrist flexion velocity (Freq. 

domain) 

 

72 

Spearman correlation between 

torso and shoulder flexion 
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Table 4 (continued) 

 

 

73 

Spearman correlation between 

shoulder and elbow flexion 

 

74 

Spearman correlation between 

elbow and wrist flexion 

 

75 

Torso lateral bending maximum 

amplitude focal point toque 

(Freq. domain) 

 

76 

Torso axial rotation maximum 

amplitude focal point toque 

(Freq. domain) 

 

77 

Torso flexion maximum 

amplitude focal point toque 

(Freq. domain) 

 

78 

Torso lateral bending maximum 

amplitude interaction torque 

(Freq. domain) 

 

79 

Torso axial rotation maximum 

amplitude interaction torque 

(Freq. domain) 
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Table 4 (continued) 

 

 

80 

Torso flexion maximum 

amplitude interaction torque 

(Freq. domain) 

 

81 

Torso lateral bending maximum 

amplitude gravity torque (Freq. 

domain) 

 

82 

Torso axial rot maximum 

amplitude gravity torque (Freq. 

domain) 

 

83 

Torso flexion maximum 

amplitude gravity torque (Freq. 

domain) 

 

84 

Torso lateral bending maximum 

amplitude muscle torque (Freq. 

domain) 

 

85 

Torso axial rotation maximum 

amplitude muscle torque (Freq. 

domain) 

 

 

 

 



 174 

Table 4 (continued) 

 

 

86 

Torso flexion maximum 

amplitude muscle torque (Freq. 

domain) 

 

87 

Torso lateral bending dominant 

frequency focal point torque 

 

88 

Torso axial rotation dominant 

frequency focal point torque 

 

89 

Torso flexion dominant 

frequency focal point torque 

 

90 

Torso lateral bending dominant 

frequency interaction torque 

 

91 

Torso axial rot dominant 

frequency interaction torque 

 

92 

Torso flexion dominant 

frequency interaction torque 

 

93 

Torso lateral bending dominant 

frequency gravity torque 

 

94 

Torso axial rot dominant 

frequency gravity torque 
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Table 4 (continued) 

 

 

95 

Torso flexion dominant 

frequency gravity torque 

 

96 

Torso lateral bending dominant 

frequency muscle torque 

 

97 

Torso axial rot dominant 

frequency muscle torque 

 

98 

Torso flexion dominant 

frequency muscle torque 

 

99 

Shoulder abduction maximum 

amplitude focal point torque 

(Freq. domain) 

 

100 

Shoulder rotation maximum 

amplitude focal point torque 

(Freq. domain) 

 

101 

Shoulder flexion maximum 

amplitude focal point torque 

(Freq. domain) 

 

102 

Shoulder abduction maximum 

amplitude interaction torque 

(Freq. domain) 
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Table 4 (continued) 

 

 

103 

Shoulder rotation maximum 

amplitude interaction torque 

(Freq. domain) 

 

104 

Shoulder flexion maximum 

amplitude interaction torque 

(Freq. domain) 

 

105 

Shoulder abduction maximum 

amplitude gravity torque (Freq. 

domain) 

 

106 

Shoulder rotation maximum 

amplitude gravity torque (Freq. 

domain) 

 

107 

Shoulder flexion maximum 

amplitude gravity torque (Freq. 

domain) 

 

108 

Shoulder abduction maximum 

amplitude muscle torque (Freq. 

domain) 
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Table 4 (continued) 

 

 

109 

Shoulder abduction maximum 

amplitude muscle torque (Freq. 

domain) 

 

110 

Shoulder flexion maximum 

amplitude muscle torque (Freq. 

domain) 

 

111 

Shoulder abduction dominant 

frequency focal point torque 

 

112 

Shoulder abduction dominant 

frequency focal point torque 

 

113 

Shoulder flexion dominant 

frequency focal point torque 

 

114 

Shoulder abduction dominant 

frequency interaction torque 

 

115 

Shoulder rotation dominant 

frequency interaction torque 

 

116 

Shoulder flexion dominant 

frequency interaction torque 

 

117 

Shoulder abduction dominant 

frequency GT 
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Table 4 (continued) 

 

 

118 

Shoulder rotation dominant 

frequency gravity torque 

 

119 

Shoulder flexion dominant 

frequency gravity torque 

 

120 

Shoulder abduction dominant 

frequency muscle torque 

 

121 

Shoulder rotation dominant 

frequency muscle torque 

 

122 

Shoulder flexion dominant 

frequency muscle torque 

 

123 

Elbow Flexion maximum 

amplitude focal point torque 

(Freq. domain) 

 

124 

Elbow Flexion maximum 

amplitude interaction torque 

(Freq. domain) 

 

125 

Elbow Flexion maximum 

amplitude gravity torque (Freq. 

domain) 
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Table 4 (continued) 

 

 

126 

Elbow Flexion maximum 

amplitude muscle torque (Freq. 

domain) 

 

127 

Elbow flexion dominant 

frequency focal point torque 

 

128 

Elbow flexion dominant 

frequency interaction torque 

 

129 

Elbow flexion dominant 

frequency gravity torque 

 

130 

Elbow flexion dominant 

frequency muscle torque 

 

131 

Wrist flexion maximum 

amplitude focal point torque 

(Freq. domain) 

 

132 

Forearm pronation maximum 

amplitude focal point torque 

(Freq. domain) 
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Table 4 (continued) 

 

 

133 

Wrist deviation maximum 

amplitude focal point torque 

(Freq. domain) 

 

134 

Wrist flexion maximum 

amplitude interaction torque 

(Freq. domain) 

 

135 

Forearm pronation maximum 

amplitude interaction torque 

(Freq. domain) 

 

136 

Wrist deviation maximum 

amplitude interaction torque 

(Freq. domain) 

 

137 

Wrist flexion maximum 

amplitude gravity torque (Freq. 

domain) 

 

138 

Forearm pronation maximum 

amplitude gravity torque (Freq. 

domain) 
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Table 4 (continued) 

 

 

139 

Wrist deviation maximum 

amplitude gravity torque (Freq. 

domain) 

 

140 

Wrist flexion maximum 

amplitude muscle torque (Freq. 

domain) 

 

141 

Forearm pronation maximum 

amplitude muscle torque (Freq. 

domain) 

 

142 

Wrist deviation maximum 

amplitude muscle torque (Freq. 

domain) 

 

143 

Wrist flexion dominant 

frequency focal point torque 

 

144 

Forearm pronation dominant 

frequency focal point torque 

 

145 

Wrist deviation dominant 

frequency focal point torque 
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Table 4 (continued) 

 

 

146 

Wrist flexion dominant 

frequency interaction torque 

 

147 

Forearm pronation dominant 

frequency interaction torque 

 

148 

Wrist deviation dominant 

frequency interaction torque 

 

149 

Wrist flexion dominant 

frequency  gravity torque 

 

150 

Forearm pronation dominant 

frequency  gravity torque 

 

151 

Wrist deviation dominant 

frequency gravity torque 

 

152 

Wrist flexion dominant 

frequency muscle torque 

 

153 

Forearm pronation dominant 

frequency muscle torque 

 

154 

Wrist deviation dominant 

frequency muscle torque 
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Table 4 (continued) 

 

 

Remaining Features Previously Considered 

155 Max Torso lateral bending 

156 Max Torso axial rotation  

157 Max torso flexion  

158 Max torso lateral bending velocity 

159 Max torso axial rotation 

160 Max torso flexion velocity 

161 Max torso lateral bending acceleration 

162 Max torso axial rotation acceleration 

163 Max torso flexion acceleration 

164 Max torso lateral bending jerk 

165 Max torso axial rotation jerk 

166 Max torso flexion jerk 

167 Max shoulder abduction 

168 Max shoulder rotation 

169 Max shoulder flexion 

170 Max shoulder abduction velocity 

171 Max shoulder rotation velocity 

172 Max shoulder flexion velocity 

173 Max shoulder abduction acceleration 
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Table 4 (continued) 

 

 

174 Max shoulder rotation acceleration 

175 Max shoulder flexion acceleration 

176 Max shoulder abduction jerk 

177 Max shoulder rotation jerk 

178 Max shoulder flexion jerk 

179 Max elbow flexion 

180 Max elbow flexion velocity  

181 Max elbow flexion acceleration 

182 Max elbow flexion jerk 

183 Max wrist flexion 

184 Max forearm pronation 

185 Max wrist deviation  

186 Max wrist flexion velocity 

187 Max forearm velocity 

188 Max wrist deviation velocity 

189 Max wrist flexion acceleration 

190 Max wrist deviation acceleration 

191 Max wrist flexion jerk 

192 Max forearm pronation jerk 
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Table 4 (continued) 

 

 

193 Max wrist deviation jerk 

194 

Mean Absolute phase difference between 

torso and shoulder flexion angles 

195 

Mean Absolute phase difference between 

shoulder and elbow flexion angles 

196 

Mean Absolute phase difference between 

elbow flexion and wrist deviation angles 

197 

Torso and shoulder flexion Pearson 

correlation 

198 

Shoulder and elbow flexion Pearson 

correlation 

199 

Elbow flexion and wrist deviation Pearson 

correlation  

200 

Torso and shoulder flexion Spearman 

correlation 

201 

Shoulder and elbow flexion Spearman 

correlation  

202 Elbow flexion and wrist deviation correlation  

203 Torso lateral bending peak velocity time 
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Table 4 (continued) 

 

 

204 Torso axial rotation peak velocity time 

205 Torso flexion peak velocity time 

206 Shoulder abduction peak velocity time 

207 Shoulder rotation peak velocity time 

208 Shoulder flexion peak velocity time 

209 Elbow flexion peak velocity time 

210 Wrist flexion peak velocity time 

211 Forearm pronation peak velocity time 

212 Wrist deviation peak velocity time 

213 

Root mean square of torso lateral bending 

acceleration 

214 

Root mean square of torso axial rotation 

acceleration 

215 

Root mean square of torso flexion 

acceleration 

216 

Root mean square of shoulder abduction 

acceleration 

217 

Root mean square of shoulder rotation 

acceleration 
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Table 4 (continued) 

 

 

218 

Root mean square of shoulder flexion 

acceleration 

219 

Root mean square of wrist flexion 

acceleration 

220 Root mean square of forearm pronation 

221 

Root mean square of elbow flexion 

acceleration 
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Appendix C : Motion Feature Calculations 

Table 5 details the calculations used for each feature outlined in Appendix B. In order to 

provide an example of the calculations, the equations below are presented for an arbitrary joint 

angle (𝜃). 

Table 5: Feature Calculations. 

 

 

# Feature Name Equation 

Argument 

Descriptions 

1 

Average chest 

displacement 
𝑙𝑡𝑜𝑟𝑠𝑜

∑ 𝜃𝑖,𝑡𝑜𝑟𝑠𝑜
𝑁
𝑖=1

𝑁
 

𝑙𝑡𝑜𝑟𝑠𝑜= length of the 

torso body segment 

𝜃𝑡𝑜𝑟𝑠𝑜=torso flexion 

angle 

 

2 

Variance of joint 

angle 

∑(𝜃𝑖 − 𝜃̅)2

𝑁 − 1
  

3 

Zero crossing of 

a joint angle 
∑

|𝑠𝑔𝑛(𝜃𝑖+1) − 𝑠𝑔𝑛(𝜃𝑖)|

2
 

𝑁−1

𝑖=1
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Table 5 (continued) 

 

 

4 

Max amplitude 

of a joint angle 

velocity 

(frequency 

domain) 

Θ̇𝑘 = ∑ 𝜃̇𝑛 ∙ 𝑒−
𝑖2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

 

𝒇𝒎𝒂𝒙 = 𝐦𝐚𝐱 𝚯̇ 

𝑘

∈ [0 1 ⋯ 𝑁 − 1] 

5 

Frequency of the 

max amplitude 

of joint velocity 

Θ̇𝑘 = ∑ 𝜃̇𝑛 ∙ 𝑒−𝑖𝜔𝑘𝑛

𝑁−1

𝑛=0

 

𝑤ℎ𝑒𝑟𝑒 𝜔𝑘 =
2𝜋

𝑁
𝑘 

𝝎𝒎𝒂𝒙 = 𝒂𝒓𝒈𝐦𝐚𝐱
𝝎𝒌

𝚯̇ 

𝑘

∈ [0 1 ⋯ 𝑁 − 1] 

6 

Spearman 

Correlation 

between two 

flexion angles 

𝟏 −
𝟔∑ 𝒅𝒊

𝟐𝑵
𝒊=𝟏

𝑵(𝑵𝟐 − 𝟏)
 

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖 = 𝑟𝑎𝑛𝑘(𝜃1)

− 𝑟𝑎𝑛𝑘(𝜃2) 

𝜃1=flexion angle of 

joint 1 

𝜃2=flexion angle of 

joint 2 

 

7 

Mean absolute 

phase difference 

1

𝑁
∑𝜃𝑖,𝑑𝑖𝑠𝑡𝑎𝑙 − 𝜃𝑖,𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙

𝑁

𝑖=1

 

𝜃𝑑𝑖𝑠𝑡𝑎𝑙=flexion angle 

of distal joint 

𝜃𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙=flexion 

angle of proximal joint 
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Table 5 (continued) 

 

 

8 

Joint peak 

velocity time 

argmax
𝑡

𝜃̇(𝑡)  

9 

Root mean 

square of joint 

acceleration 

√
1

𝑁
∑𝜃𝑖̈

𝑁

𝑖=1
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Appendix D : IMU Validation Results 

This section displays all of the IMU validation results when compared to the gold standard 

optical tracking system (Optitrack, NaturalPoint, Inc.). The results average the normalized cross-

correlation over 4 trials for each joint angle. There were some tasks where Optitrack cameras lost 

sight of the reflective markers for long periods (>0.5 seconds missing with a sampling frequency 

of 100Hz) in the trial and the joint angles could not be interpolated correctly. In these situations, 

the Optitrack trials were then dropped and the average for the normalized cross-correlation was 

over 3 or fewer trials. 

 

 

 

Figure 74: Average normalized cross-correlation over 2 trials for the short grasp target 1 task. 
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Figure 75: Average normalized cross-correlation over 4 trials for the short grasp target 2 task. 
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Figure 76: Average normalized cross-correlation over 4 trials for the short grasp target 3 task. 
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Figure 77: Average normalized cross-correlation over 4 trials for the short grasp target 4 task. 

 

 

 

 

 

 

 

 

 



 195 

 

 

 

 

 

 

 

 

Figure 78: Average normalized cross-correlation over 4 trials for the short grasp target 5 task. 
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Figure 79: Average normalized cross-correlation over 4 trials for the short grasp target 6 task. 
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Figure 80: Average normalized cross-correlation over 4 trials for the short grasp target 7 task. 
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Figure 81: Normalized cross-correlation for 1 trial for the short grasp target 8 task. 
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Figure 82: Average normalized cross-correlation over 4 trials for the short grasp target 9 task. 
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Figure 83: Average normalized cross-correlation over 4 trials for the short pointing target 1 task. 
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Figure 84: Average normalized cross-correlation over 4 trials for the short pointing target 2 task. 
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Figure 85: Average normalized cross-correlation over 4 trials for the short pointing target 3 task. 

 

 

 

 

 

 

 



 203 

 

 

 

 

 

 

 

 

Figure 86: Average normalized cross-correlation over 4 trials for the short pointing target 4 task. 

 

 

 

 

 

 

 



 204 

 

 

 

 

 

 

 

 

Figure 87: Average normalized cross-correlation over 4 trials for the short pointing target 5 task. 
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Figure 88: Average normalized cross-correlation over 4 trials for the short pointing target 6 task. 
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Figure 89: Average normalized cross-correlation over 4 trials for the short pointing target 7 task. 
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Figure 90: Average normalized cross-correlation over 3 trials for the short pointing target 8 task. 
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Figure 91: Average normalized cross-correlation over 4 trials for the short pointing target 9 task. 
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Figure 92: Average normalized cross-correlation over 3 trials for the short rotate target 1 task. 
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Figure 93: Average normalized cross-correlation over 4 trials for the short rotate target 2 task. 
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Figure 94: Average normalized cross-correlation over 4 trials for the short rotate target 3 task. 
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Figure 95: Average normalized cross-correlation over 3 trials for the short rotate target 4 task. 
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Figure 96: Average normalized cross-correlation over 4 trials for the short rotate target 5 task. 
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Figure 97: Average normalized cross-correlation over 2 trials for the short rotate target 6 task. 
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Figure 98: Average normalized cross-correlation over 4 trials for the short rotate target 7 task. 
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Figure 99: Average normalized cross-correlation over 2 trials for the short rotate target 8 task. 
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Figure 100: Average normalized cross-correlation over 4 trials for the short rotate target 9 task. 
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