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Abstract 

The Role of Lung Epithelial IL-17RC signaling during Influenza, MRSA, and Influenza-

MRSA Super-Infection 

 

Michael Marinelli, BPhil 

 

University of Pittsburgh, 2020 

 

 

 

Influenza is a common cause of respiratory illness contributing significantly to morbidity 

and mortality each year. Secondary-bacterial infections following influenza illness are less 

common but increase the likelihood of developing severe infection complications further 

increasing morbidity and mortality. IL-17, an immune system signaling molecule, induces cell 

signaling that drives proinflammatory activation of the immune response including the 

recruitment of immune cells to infection sites and inducing changes in gene expression. These 

actions have been shown to increase morbidity associated with influenza infections by increasing 

damage to host tissues. During bacterial infections, such as methicillin-resistant Staphylococcus 

aureus (MRSA), IL-17 signaling helps with bacterial clearance, reducing morbidity. 

Understanding the roles IL-17 signaling has in the lungs during different infections can help 

provide new avenues for therapeutic interventions. IL-17 is thought to activate immunity via 

signaling through its receptor on lung epithelial cells. Club cells of the lung epithelium, 

identified by club cell secretory protein, are known as immune activators. In this study, we 

sought to understand what effects IL-17  signaling in club cells has using three infection models: 

primary influenza, primary MRSA, and influenza-MRSA super-infection of the lungs. Mice were 

generated using cre-lox recombination to remove the gene for IL-17RC, a receptor subunit 

needed for IL-17 signaling initiation, specifically in club cells. In all three infections, no 

significant changes were observed between the knockouts and control mice. This suggests that 
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IL-17A and IL-F signaling in club cells does not greatly affect the immune response in this 

setting.  
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1.0 Introduction 

1.1 Global Impact of Influenza 

Influenza infections in the US contribute significantly to morbidity, mortality, and costs 

relating to treatment and lost earnings. Each year, millions of people become infected with 

influenza which results in millions of outpatient visits, hundreds of thousands of 

hospitalizations, and tens of thousands of deaths in the US alone. The mortality rate of 

influenza underestimates the disease toll associated with the infection. Influenza associated 

costs for treatment and loss work days is estimated to be tens of billions of dollars annually, 

during non-pandemic years [1]. During the most recent pandemic in 2009, it is estimated that 

up to 24% of the world, over 1.6 billion people, became infected with the virus [2]. Despite 

its low mortality rate; influenza remains a top 10 cause of death in Americans aged 1-24 and 

65 and older [3]. Secondary bacterial infections, with pathogens such as methicillin-resistant 

Staphylococcus aureus (MRSA), associated with influenza infections contribute to an 

increase in rates of mortality and morbidity [4].  

1.2 Influenza Viral Cycle 

Influenza virions begin the viral cycle by entering the respiratory tract of humans. The 

virions have hemagglutinin proteins protruding from their cell membrane. These proteins bind to 

sialic acid receptors on host cells initiating endocytosis of the virion. Upon acidification of the 
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endosome and cleavage of hemagglutinin by host proteases, the membranes of the virion and 

endosome fuse allowing for the release of the viral RNA along with viral proteins into the 

cytoplasm. These all traffic to the nucleus of the host cell where viral RNA can be replicated, 

snatch 5’ caps from host mRNA, and return to the cytoplasm for translation. As virions are 

formed, they can exit the host cell via budding from the host cell membrane after being cleaved 

from the membrane via neuraminidase and infect new cells [5]. 

1.3 Immune Response to Influenza 

When a pathogen infects a host, the immune system must be able to respond to quell the 

infection before it causes significant damage. Pathogens have conserved structural components 

known as pathogen-associated molecular patterns (PAMPS) made of carbohydrates, lipids, 

nucleic acids, or proteins. These PAMPS can be detected by pattern recognition receptors on host 

cells that can initiate the innate immune response [6, 7]. There are a number of ways for the host 

to recognize influenza.  

One mechanism involves identifying the viral genome. After influenza is taken into an 

endosome, its RNA genome can be detected by toll-like receptors 7 and 9 found in the endosome 

[5]. Toll-like receptor 7 sees single-stranded RNA while toll-like receptor 9 detects unmethylated 

CpG-DNA from viruses or bacteria [8]. Activation leads to initiation of the transcription factors 

NF-κB or interferon-regulated factor causing expression of proinflammatory cytokines and type I 

interferons. RIG-I in the cytoplasm can recognize newly replicated viral RNA and causes the 

production of type I interferons through the mitochondrial antiviral signaling protein [5]. 
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During an influenza infection, type I (interferon- and ), type II (interferon-), and type 

III (interferon-) interferons are released by infected cells and act as an alarm system for nearby 

cells, warning them of the viral infection. Type I interferons bind to transmembrane receptors 

leading to the formation of heterodimers made of signal transducer and activator of transcription 

1 and 2 (STAT1-STAT2). Type II interferons lead to STAT1-STAT1 homodimers. These dimers 

act as transcription factors and move into the nucleus to induce expression of interferon-

stimulated genes [5, 9-14]. Interferon-stimulated genes reduce viral protein production. Common 

examples include: protein kinase R, which prevents translation initiation 2’-5’-oligoadenylate 

synthetase activates RNase L in the cytoplasm to destroy viral genomes; Mx1 protein, a GTPase, 

destroys nucleocapsid proteins of the virus [15]. Interestingly, type I interferon gene expression 

has been positively correlated with influenza burden and weight loss [16]. 

Neutrophils and macrophages have both been implicated in assisting in influenza 

clearance during infection. Dessing et. al. used an influenza model with mice deficient in the 

macrophage chemokine monocyte chemoattractant-1 (MCP-1). They showed that MCP-1 is 

critical in macrophage recruitment during influenza infection and that reduced macrophage 

recruitment caused increased viral burden and weight loss in MCP-1 deficient mice [17].  

Like macrophages, neutrophils are recruited during an influenza infection. Neutrophil 

depletion has been shown to increase viral burden and mortality to sublethal doses of influenza 

infections [18]. Prolonged neutrophil chemokines and recruitment have been associated with 

increased viral burden and weight loss most likely from immunopathology. Lung damage during 

an influenza infection is caused by both direct killing of lung cells, but also from excessive 

immune responses damaging lung cells [16]. 
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Natural killer cells are important in lysing virally infected cells contributing to reduced 

viral proliferation and spread. Type I interferons have been shown to activate natural killer cells 

during influenza infection, but there may be other indirect activators as well. STAT1 activity, 

induced by type I interferons, increased granzyme B which increases apoptosis of host cells by 

natural killer cells [19]. The number of natural killer cells in the lungs increases four-fold during 

influenza infection [20]. Depleting natural killer cells or inhibiting their lysis induction of host 

cells has been shown to increase morbidity and mortality from influenza infection [20, 21]. 

Adaptive immune cells contribute to influenza clearance and immunity following 

infection. Type I interferons are important ligands for T and B cell activities. Kohlmeier et. al. 

experimented with cytotoxic T cells (CD8+) to determine how their lytic capabilities were 

influenced during influenza infection. Type I interferon signaling in these cells was required for 

increased expression of granzyme B and lyse cells presenting the antigen-specific ligand. This 

response enables better clearance of influenza early on in the infection [22]. 

Type I interferons can directly activate B cells early on during influenza infection. Type I 

interferons are both needed and sufficient for B cell activation. Type I interferon induced 

activation enhanced B cell antibody production and likely contributes to influenza control and 

clearance [23].  

Proinflammatory cytokines released during influenza infection can contribute to causing 

or preventing host damage. IL-33 can cause innate lymphoid cells in the lung to initiate repair of 

damaged tissues by secreting amphiregulin. This action does not affect viral burden. In some 

circumstances, the innate lymphoid cells can secrete IL-13 inducing damage to the airways from 

mucus production and tissue remodeling. Tissue growth factor- (TGF-) can be activated by 

proteolytic cleavage from the influenza neuraminidase protein. It can increase the viral burden 
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but reduce inflammatory pathology. IL-17A and F released from  T cells and tumor necrosis 

factor- promote immunopathology, damaging host tissues without contributing to viral 

clearance [5].  

T helper cells (CD4+) change from a naïve T cell to an activated T cell after an antigen-T 

cell receptor sustained interaction mediated by antigen presenting cells. Antigen presenting cells, 

most commonly dendritic cells, macrophages, and B cells, present digested, protein fragments 

from exogenous pathogens on the surface protein MHC class II. If the antigen presented can 

form a sustained interaction with the T cell receptor, the T cell can become activated and 

differentiate into five main subtypes: TH1, TH2, TH17, Treg, and TFH [24, 25]. Each of these 

serve a different role in host defense.  

TH1 cells release antiviral cytokines including interferon- and tumor necrosis factor-

 which help activate macrophage cells in the lungs and induce antiviral states. TH2 cells bind to 

digested influenza antigens presented on antigen-presenting cells via MHC class II molecules. If 

the antigen matches the receptor on the TH2 cell, the cytokines interleukin-4 (IL-4) and IL-13 can 

be produced to activate B cells [26].  

TH17 cells release IL-17 cytokines including IL-17A, IL-17F, and IL-22 [25]. These 

appear to alter the cytokine production of other cells altering the cellular response and promote 

mucus production. IL-17A promotes TH2 cytokine release while IL-17F likely inhibits it. IL-17A 

can increase neutrophil infiltration into the lungs. These responses, particular the mucus 

production and IL-17A induced neutrophil recruitment, can induce immunopathology [27]. 

Regulatory T cells (Treg) release the immunosuppressive cytokines IL-10 and 

transforming growth factor-. This action can help the host by reducing damage to host tissues as 

a result of the immune response (immunopathology). However, the suppression can also be 
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detrimental to the host by reducing pathogen clearance. In fact, some pathogens take advantage 

of this system by secreting proteins homologous to IL-10 or transforming growth factor- and 

inducing the same suppression mechanisms [28]. During influenza infections, Treg cells have 

been shown to play important roles in reducing immunopathology by reducing monocyte and 

macrophage recruitment to the lungs early on by delaying chemokine production [29]. 

T follicular helper (TFH) cells help create germinal centers that support B plasma cells for 

antibody production and secretion. Influenza induces TFH populations to increase primarily in 

draining lymph nodes, the spleen, and to a lesser extent, the lungs. These cells induce B cell 

activating and germinal center formations by releasing IL-21, IL-4, and interferon- . These 

actions are critical to the immune response as the innate immune system cannot fend off 

influenza by itself forever. Failure of the adaptive immune system to respond to the virus proves 

fatal. Although the immune response needs to be robust enough to eliminate influenza, it needs 

to be regulated to reduce damage to host tissues [29].   

1.4 Methicillin Resistant Staphylococcus Aureus  (MRSA) 

MRSA is a gram-positive bacterium commonly found to be the causative agent of 

hospital-acquired infections. Like influenza, MRSA can enter the respiratory tract and begin 

infection in the epithelial region of the lungs. MRSA uses various compounds to latch onto 

epithelial cells lining the mucous membrane of the respiratory tract including clumping factor b 

and teichoic acids from the cell wall [31, 32]. An important difference between MRSA and 

influenza is that MRSA can survive and replicate extracellularly. However, it has also been 

shown that S. aureus can survive intracellularly after being engulfed by macrophages. 
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Macrophages can clear the intracellular bacteria if they were primed with interferon- before 

phagocytosis [33]. S. aureus has also been shown to be able to infect neutrophils and promote 

apoptosis in endothelial cells given the right gene cassettes [34, 35]. Because of MRSA’s growth 

cycle, the immune system must be able to recognize the bacteria extracellularly and 

intracellularly as well as respond to the bacteria in these different environments. 

1.5 MRSA Recognition and Immune Response 

Like influenza, there are multiple pattern recognition receptors that can identify motifs on 

MRSA. Toll-like receptor 2, as a dimer complexed with toll-like receptor 1 or 6, can recognize 

gram positive bacterial cell wall components including lipoproteins and lipoteichoic acids. Toll-

like receptor 9 can recognize the genome of phagocytosed MRSA that has undergone 

degradation in the endosome [8]. It has also been found that toll-like receptor 9 recognition of 

MRSA can trigger the type I interferon cascade [36]. C-type lectins can detect carbohydrate 

recognition domains found on the surface of MRSA [37]. Nod-like receptors can also recognize 

peptidoglycan on MRSA [38]. Recognition leads to the activation of transcription factors such as 

NF-κB or STAT1-STAT2 heterodimers and the release of antibacterial compounds as well as 

chemokines to attract immune cells [39, 40]. MRSA infections alone present many challenges to 

humans especially those who are patients in hospitals [41, 42]. However, pneumonia caused by 

MRSA infections are often associated with preceding viral infections [43]. 
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1.6 Influenza Induced Secondary Bacterial Infections 

Influenza-associated mortality is greatly increased by secondary bacterial infections most 

commonly from Streptococcus and Staphylococcus bacterium [43]. In fact, during the Spanish 

influenza pandemic, most of the 50 million deaths were caused by secondary bacterial infections 

[44]. The increased risk is generally during the end of the first week of influenza infection [43]. 

There are a few immunologic mechanisms that describe the increased risk. It has been shown 

that influenza can induce secondary necrosis processes resulting in 90% of alveolar macrophages 

to be depleted at the one-week mark. The macrophages that remained exhibited signs of necrosis. 

This suggests that the lack of viable macrophages in the alveolar space compromises clearing of 

the bacteria [45]. Another proposed mechanism is that influenza infection decreases the action of 

the T-helper cell 17 (TH17) signaling pathway. Type I interferons produced in response to an 

influenza infection have been shown to inhibit the TH17 signaling pathway. It does so by 

inhibiting the production of IL-23, a cytokine needed to activate TH17pathway. This pathway is 

responsible for increasing the production of antimicrobial proteins and lipocalin-2. Without this 

pathway, the production of antimicrobial proteins decreases. Lipocalin-2 is responsible for 

sequestering iron, needed by MRSA to survive, away from the extracellular space in the lungs. 

Without antimicrobial compounds and lipocalin-2, the clearance of MRSA becomes more 

difficult. Other mechanisms involving the TH17pathway likely exist, but more research is needed 

to elucidate these  [43, 46, 47]. 
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2.0 Interleukin-17  

Interlleukin-17 (IL-17), originally named CTLA-8, was first discovered in 1993 by 

researchers looking for new molecules in immune responses [48]. More than a decade later, a 

new subset of T-helper (Th) cells was discovered that produces IL-17 as its primary effector 

cytokine [49]. By this time, researchers had already discovered that IL-23 induces Th cell IL-17 

production as well as pro-inflammatory actions induced by IL-17 [50, 51]. IL-17 cytokines are 

also produced from innate immune cells including  T cells, natural killer cells, and Paneth cells 

[52] 

2.1 IL-17 Cytokines 

The IL-17 cytokine family has 6 members: IL-17A (originally CTLA-8), IL-17B, C, D, 

E, and F. IL-17A and F are the most studied interleukins and also the most closely related. They 

share about half of their amino acids and are both coded on the same chromosome [53]. The IL-

17 cytokines are all capable of inducing proinflammatory effects in various tissues. This 

inflammation can help during infections, but if prolonged can contribute to chronic inflammation 

in autoimmune diseases [54]. 
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2.1.1 IL-17A 

 IL-17A is secreted as a homodimer, held together by disulfide bonds, by activated T 

cells [55]. IL-17A can increase proinflammatory cytokines, including tumor necrosis factor alpha 

(TNF-), IL-1, and IL-6 through the transcription factors NF-B and AP-1 in macrophages 

[56]. Another study indicated that the increased IL-6 levels was not due to IL-17A increasing 

mRNA transcription. Instead, it’s thought that IL-6 levels increase from higher IL-6 mRNA 

stability allowing for increased translation of IL-6 [57]. IL-17A has also been shown to play an 

important role in controlling infections. Hamada et. al. demonstrated that IL-17A plays an 

important role in early liver innate immune response to Listeria monocytogenes infection in the 

liver. Mice deficient in IL-17A had a higher bacterial burden in the liver and more liver damage 

than wild-type mice [58]. Huang et. al. showed that IL-17A signaling is important for fungal 

control with Candida albicans infection. Mice deficient in the IL-17A receptor had reduced 

neutrophil recruitment and uncontrolled fungal growth. This group of mice also died quicker 

than the wild-the mice [59]. IL-17A has also been found to have increased actions in tissues 

affected by autoimmune diseases.  

Hueber et. al. studied the effects of AIN457, an IL-17A antibody that inhibits IL-17A 

actions in three autoimmune diseases: plaque psoriasis, rheumatoid arthritis, and uveitis. In all of 

these diseases, patients treated with AIN457 showed decreased inflammation and reduced 

symptoms [60]. In 2015, the US Food and Drug Administration approved AIN457, trade name 

Cosentyx, as a treatment for plaque psoriasis [61]. The same drug was tried to improve the 

conditions of patients with Crohn’s disease. Unlike with the previous autoimmune diseases, 

patients receiving AIN457 did not show improvement in their symptoms, In fact, these patients 

experienced higher adverse effects than placebo including increased infections than the placebo 
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groups and worsening of symptoms [60]. Together, these studies show that IL-17A induced 

inflammation can be detrimental to individual’s health, such as in plaque psoriasis and arthritis, 

but also beneficial, as seen in Crohn’s disease. 

2.1.2 IL-17B and IL-17C 

IL-17B and C were discovered together in 1999 by researchers screening expressed 

sequence tags from public databases. IL-17A, B, and C share about 27% of their amino acids. IL-

17B was found to be expressed in pancreas, small intestine, and adult stomach tissues. IL-17C 

was found in smaller quantities in adult prostate tissue and fetal kidney tissue. Li et. al. assayed 

the expression of TNF- and IL-6 from different tissues to determine how the three (IL-17A, B, 

and C) molecules acted on different tissues. IL-17B and C, in contrast to IL-17A, did not induce 

IL-6 production from fibroblast cells. In a human leukemic monocytic cell like, IL-17B and C 

induced TNF- in a time and dose dependent manner with higher TNF-  following a higher 

dose or longer time. This effect was not seen with IL-17A [62]. 

IL-17B is found to be increased in patients with pneumonia. It influences the release of 

the proinflammatory cytokine IL-8.  The IL-17B receptor (IL-17RB) was found in both lung 

fibroblasts and bronchial epithelial cells. Upon IL-17B binding, only the bronchial epithelial 

cells expressed IL-8 and also in dose and time dependent manner. The amount of IL-8 expressed 

could be influenced by the presence of other signals. When both IL-17B and TNF- were 

present, IL-8 expression increased. When interferon- was present, IL-8 expression decreased 

[63].  



 12 

Song et. al. demonstrated the crucial need for IL-17C signaling during mouse intestinal 

infections with Citrobacter rodentium. This infection exhibits similar pathogenesis to human 

infections with Escherichia coli. The researchers disrupted IL-17C signaling by using mice 

deficient in the receptor for IL-17C (IL-17RE). Following infection, the IL-17RE deficient mice 

had uncontrolled bacterial growth, up to 100x more bacteria than wildtype, in the spleen, colon, 

and feces. This increased bacterial burden was coupled with decreased antibacterial peptides, 

proinflammatory cytokines, and chemokines. As a result, IL-17RE deficient mice lost more 

weight and died from the infections by day 13 in contrast to wildtype mice who lost no weight 

and remained alive [64].  

Both IL-17B and C have been implicated as serving roles in human disease. Huang et. al. 

demonstrated that IL-17B signaling through its receptor, IL-17RB, can induce breast cancer. It 

does so by activating NF-B to increase transcription of the antiapoptotic factor Bcl-2. By 

interrupting the signaling cascade with IL-17B antibodies or IL-17RB antibodies, tumor growth 

could be disrupted [65]. By examining paws of mice with arthritis,  Yamaguchi et. al. 

demonstrated IL-17B can elicit inflammation seen in arthritis by increasing the proinflammatory 

cytokines of TNF-, IL-1, IL-6, and IL-23 in macrophages .IL-17C increased the same 

cytokines in macrophages except IL-6. Blocking IL-17B could halt the progression of arthritis 

[66]. 

2.1.3 IL-17 D    

IL-17D, the last member of the IL-17 cytokine family to be discovered, was found by 

Starnes et. al. They discovered the gene after conducting rapid amplification of cDNA ends 

(RACE) PCR. It is most homologous with IL-17B (27% similar amino acid sequence). The 
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researchers found it to be expressed at high levels in tissues of skeletal muscle, lung, pancreas, 

heart, brain, and adipose. They also found low levels in bone marrow, leukocytes, lymph nodes, 

thymus, spleen, kidney, and fetal liver. Interestingly, it was expressed by resting CD4+ T cells 

(Helper T cells)and resting CD19+ B cells, but not when these cell types become activated. It was 

not expressed by CD8+ T cells ( Cytotoxic T Cells) [67]. 

In endothelial cells, IL-6 and IL-8 proinflammatory cytokines were increased following 

IL-17D incubation. IL-8 expression increased as a result of increased NF-B activity. IL-17D 

was also shown to promote the release of granulocyte-macrophage colony-stimulating factor 

(GM-CSF) by human umbilical vein endothelial cells (HUVEC) which do not normally release it 

[67]. 

O’Sullivan et. al. demonstrated IL-17D could be used to reduce cancer growth or 

rejection of  a tumor in mouse lines. The effect was seen greatest in smaller tumors (25 mm2) and 

had no effect on larger tumors (100 mm2). The antitumor effect is believed to be from the 

recruitment of natural killer (NK) cells. Mice treated with anti-NK1.1 no longer rejected tumors 

in response to IL-17D [68]. 

IL-17D has been shown to increase in response to viral infections as a result of the 

transcription factor Nrf2. IL-17D serves a protective role that reduces scarring of host tissue and 

reduces weight loss. IL-17D did not directly protect cells from viral infection [69]. 

2.1.4 IL-17E 

Lee et. al. discovered IL-17E in 2000 following examination of the human genome in 

GenBank . It shares  about 18% of amino acids with IL-17A-C. IL-17E expression was found in 

low levels in many tissues including the kidney, lung and brain [70].  IL-17E, now renamed as 
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IL-25, has been shown to induce the production of the proinflammatory cytokines CCL-5, CCL-

11, CXCL-8, and GM-CSF. When coupled with TNF-, expression of CXCL-8 and GM-CSF 

increased more than with IL-17E alone. This effect was not observed with CCL-5 and CCL-11. 

In asthma patients’ bronchial biopsies, IL-17E was elevated and so was eosinophil infiltration 

[71]. Considering CCL-5 and CCL-11 are both chemokines for eosinophils, this implicates an 

indirect role of IL-17E on the recruitment of eosinophils [72, 73].  These findings are also 

consistent with other IL-17E investigations that demonstrated after direct inhalation of IL-17E or 

IL-17E expression mediated by an adenovirus, caused eosinophil recruitment [74, 75]. IL-17E 

has been found to be released by T helper type 2 cells and by mast cells [76, 77]. Blocking IL-

17E was shown to prevent hyperresponsiveness in allergic asthma [78]. 

Benatar et. al. demonstrated IL-17E as having antitumor effects reducing not only how 

large the tumor grows, but also decreases the rate of growth. It’s believed the antitumor effects 

are a result of B cell responses induced by NF-B activation that also promotes eosinophil 

infiltration into the tumor [79]. The effects of IL-17E are also thought to be why the cancer drug 

Virulizin, which triggers the release of IL-17E, causes tumor destruction [80]. 

Another role of IL-17E is with parasitic infections. Expulsion of parasitic helminth 

worms is mediated in part by T helper type 2 cell activity. IL-17E induces this activity 

contributing to parasite clearance [81, 82]. 

2.1.5 IL-17F 

Starnes et. al. discovered IL-17F by examining RACE PCR on cDNA from the GenBank. 

After elucidating its structure, the researchers noted that IL-17F has a third pair of cysteines in a 

disulfide bridge, unlike the other members who contain 2 pairs of cysteines and 2 disulfide 
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bridges. Expression was found in activated CD4+ T cells and activated monocytes. There was no 

expression in resting CD4+ T cells, resting monocytes, CD8+ cells (both resting and activated), 

B cells or leukocytes. IL-17F also inhibited vascular formation in a dose dependent manner. IL-

17F increased gene expression of  transforming growth factor beta 1 (TGF1), TGF2, 

monocyte chemoattractant protein-1, IL-2, and lymphotoxin- [83]. IL-17F shares about 50% of 

its amino acids with IL-17A. IL-17F is also secreted as a homodimer held by disulfide bonds 

[84]. 

Ishigame et. al. showed the effects IL-17F had on infection susceptibility. When both IL-

17A and F were knocked out, mice exhibited larger abscess and higher bacterial burden of 

Staphylococcus aureus from mucocutaneous tissue than wildtype, IL-17A-/- alone, and IL-17F-/- 

alone. There was no difference in bacterial control between these groups during systemic 

infection with S. aureus. These results show that IL-17A and F play a role in controlling 

opportunistic infections. When challenged with C. rodentium, all knockouts (IL-17A-/-, IL-17F-/-, 

and IL-17A-/-IL-17F-/-) exhibited higher peak bacterial burdens, but eventually returned to 

wildtype level given enough time (day 28). Both the IL-17F-/- and IL-17A-/-IL-17F-/- groups had 

more enlarged colons and spleens than wildtype and IL-17A-/- mice suggesting IL-17F is more 

important in the inflammatory response than IL-17A in this infection model [85].  

During viral infection in the liver, IL-17F-/- had less liver damage accompanied with 

lower pathology scores than wildtype and IL-17A-/-. However, there were no differences in viral 

burden between the groups meaning that the increased inflammatory action of IL-17F has more 

detrimental effects. Interestingly, IL-17A has a negative feedback loop with IL-17F production, 

but IL-17F does not exhibit this same effect with IL-17A [86].  
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A clinical study has shown that the drug bimekizumab, which neutralizes both IL-17A 

and IL-17F, reduced inflammation associated with psoriatic arthritis. When IL-17A was blocked, 

proinflammatory cytokines were reduced. IL-17F blocking had no significant changes in the 

proinflammatory cytokines. However, when both IL-17A and F were neutralized, the reduction 

in inflammation was more pronounced than IL-17A blocking alone [87].  

2.2 IL-17 Receptors 

The IL-17 receptor (IL-17R) family includes 5 members: IL-17RA-E. The receptors are 

found on the cell membrane and are found as heterodimers [50]. IL-17RA is found as one 

subunit in most of the IL-17 receptors while the second subunit determines receptor identity and 

function [88]. 

2.2.1 IL-17RA 

The first IL-17 receptor was located after Yao et. al. found that the herpesvirus saimiri 

encodes a viral IL-17 protein that has a similar structure to IL-17A (57% identical) during 

infection.  A fusion protein made up of the viral IL-17 and the Fc portion of human IgG, allowed 

the researchers to identify the receptor for IL-17A [89]. Toy et. al. demonstrated that for IL-

17RA to respond to IL-17A, it must form a heterodimeric receptor with a second IL-17 receptor 

subunit, IL-17RC [90]. IL-17RA is expressed on most body tissues enabling for IL-17A 

signaling to impact a profound number of systems [89]. Because of their shared structure, IL-

17F, like IL-17A, has been shown to bind to IL17RA, albeit with less binding affinity (1000 fold 
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difference) [91]. It has also been discovered that IL-17A and IL-17F can exist as heterodimers 

with one another changing the binding affinity to IL-17RA to be an intermediate affinity and 

subsequently, an intermediate cytokine release than IL-17A or IL-17F alone [92]. IL-17A binds 

the strongest to IL-17RA; IL-17F has the weakest binding affinity, and the IL-17A/F heterodimer 

has an intermediate binding affinity [93]. 

2.2.2 IL-17RB 

IL-17RB has been shown to bind to IL-17B as well as IL-17E [70, 94]. IL-17RB forms a 

heterodimeric receptor with IL-17RA for IL-17E. What role each subunit contributes to 

downstream signaling remains unknown [95]. It’s not known yet what IL-17RB interacts with to 

form the receptor responsible for binding with IL-17B. The receptor is expressed in a variety of 

tissues, but most highly in the kidney, liver, and small intestine. Binding of IL-17E led to the 

activation of NF-B [70]. NF-B activation relies on TRAF6 involvement. TRAF6 is bound to a 

cytoplasmic region of the IL-17E receptor and induces NF-B when IL-17E binds [96]. The 

activation of NF-kB has been shown to require the adaptor protein Act1[74]. Act1 acts upstream 

of the NF-kB signaling cascade and is required to IKK. IKK phosphorylates and deactivates the 

NF-B inhibitory molecule, IB, enabling NF-B to move into the nucleus and begin 

transcription activation  [97].  

2.2.3 IL-17RC 

IL-17RC expression appears to be highest in non-immune cells, including the liver, 

prostate, and thyroid, but lower in immune cells and hemopoietic tissues [91]. It has been shown 
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to only associate with IL-17RA [90]. Unlike IL-17RA, IL-17RC appears to bind both IL-17A 

and IL-17F with similar affinities. These data suggests that IL-17F signals through the IL-17RC 

subunit and therefore primarily has effects only on tissues expressing IL-17RC [91]. IL-

17RA,RB, and RC all share a SEFIR domain that binds to Act1 to mediate the NF-B activation 

pathway [98]. IL-17RB and RC do not have a CBAD domain found in IL-17RA. This domain 

can interfere the binding between Act1 to IL-17RA which can affect I-17RA signaling. This 

difference highlights why the receptors are heterodimers [99].  

IL-17RA can bind IL-17A, E, and F, while IL-17RC only binds IL-17A and F. In this 

study, IL-17RC was knocked out as opposed to IL-17RA as it has fewer signaling ligands [99]. 

More information regarding the knockout is explained below in section 4.  

2.2.4 IL-17RD 

Rong et. al. found IL-17RD after examining the National Center for Biotechnology 

Information (NCBI) database based off of the IL-17RA’s intracellular domain. They were able to 

show that IL-17RD interacts with IL-17RA independently of IL-17A binding. It can also interact 

with IL-17RB. Like IL-17RA, IL-17RD can interact with TRAF6 and may be responsible for 

helping to transmit IL-17 signaling. The intracellular domain of IL-17RD proved to be required 

for signal transduction. The exact order of interactions and subsequent signaling cascades are not 

known. The ligand for IL-17RD is not known either so its biological role remains unknown 

[100]. 
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2.2.5 IL-17RE 

IL-17RE forms a heterodimeric dimer with IL-17RA to act as a receptor for IL-17C. 

Song et. al. demonstrated that IL-17RE proved critical for mucosal immunity against C. 

rodentium as it enables the production of antibacterial compounds as well as proinflammatory 

cytokines.  IL-17C signaling caused an increase in NF-kB pathways and mitogen-activated 

protein kinase pathways [64].  
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3.0 Lung Epithelium 

The lung epithelium is a mechanical barrier that comprises a diverse number of cell types 

and functions to impede the entry and proliferation of pathogens. The main broad classes of cells 

are ciliated and secreting cells [101]. The predominant cells include goblet cells, serous cells, 

type I and type II cells, multiciliated cells, basal cells, and club cells [102]. Rig-like and Toll-like 

receptors are the primary means of pathogen recognition in the epithelium initiating the 

production of host immune responses [103]. Changes to cells encompassing this region from 

environmental conditions, including smoking and infections, have been attributed to the 

development of respiratory diseases including asthma and COPD [104, 105].  

3.1 Goblet Cells 

In healthy adult mice, goblet cell populations in the lung epithelium are very small [106]. 

In humans, the population is much more abundant. Their numbers decrease as you progress 

deeper into the respiratory tract. They make up about 11% and 10% in the bronchi and 

bronchioles, respectively. In the terminal bronchioles, they make up about 2% [107]. Goblet cells 

contribute to the pathogenesis of obstructive airway diseases including COPD and asthma in 

both humans and mouse disease models [108]. 

Mucous lines the lung epithelium aiding in pathogen defense and homeostasis of the 

lungs. Mucous is a gel-like liquid that contains water, ions, and macromolecules including 

proteins and carbohydrates. The mucous traps pathogenic microbes that can be destroyed by 
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antimicrobial peptides found in the mucous [109]. The mucous can also be cleared out of the 

system by ciliated cells that push the mucous into the nasopharynx where it is then swallowed 

[110].  

Goblet cells, along with cells of the submucosal glands, provide these mucous secretions 

[111]. Although this function serves to protect the host from pathogens, it also contributes to the 

development of obstructive air diseases [109].  

COPD patients experience a persistent inability to move airflow properly resulting from 

the accumulation of mucous. This excess mucous occurs in response to infections, inflammation, 

or inhalation of irritants including those found in cigarette smoke. These irritants cause 

remodeling of the lung airways and increase the amount of goblet cells present and therefore the 

amount of mucous secreted [112].  

In asthmatics, an increase in goblet cell populations and subsequent mucous secretions 

also facilitates the pathogenesis of asthma [113]. Progenitor cells for goblet cells include basal 

and club cells. These cells induce the transcription factors SAM-pointed domain-containing 

ETS-like factor (SPDEF) and forkhead ortholog A3 (FOXA3) that facilitate goblet cell 

differentiation in response to infections, cytokines, and irritants [114]. In addition to increasing 

mucous secretions, the goblet cells also release proinflammatory cytokines that may help with 

asthma pathogenesis [115].  

3.2 Brush Cells 

Brush cells make up only 1-7% of the lung epithelium. They contain about 120-140 

microvilli on their cell surface and are found throughout the lung epithelium with varying 
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densities. Their highest presence are in the first bifurcation of the alveolar ducts and the trachea 

[116]. Saunders et. al. determined the lineage for brush cells. Brush cells likely differentiate from 

basal cells and terminate differentiation as a brush cell. New brush cells can be regenerated 

following injury; however, their population size is relatively static in healthy adults [117]. 

Krasteva et. al. discovered the chemosensory function of brush cells. Brush cells contain 

receptors for bitter taste transduction. When a noxious substance triggers the receptor, brush cells 

release acetylcholine decreasing respiration [118].  

During pulmonary infections or inflammatory reactions, such as those observed in 

asthmatics, inflammatory cells can generate lipid mediating leukotrienes. Cellular sources of 

leukotrienes include neutrophils, macrophages, and mast cells. When leukotrienes bind to their 

receptors, either the leukotriene B4 or cysteinyl leukotriene receptors, inflammation is induced 

[119, 120]. The reaction includes recruitment of neutrophils, monocytes, lymphocytes, and 

eosinophils. As well as capillary leakage and edema [120]. Bankova et. al. demonstrated that 

brush cells are the dominant sources of IL-25 (IL-17E) in the tracheal epithelium making up 93% 

of IL-25 expressing cells of naïve mice. When the brush cells were exposed to leukotriene E4, 

they responded through the cysteinyl leukotriene 3 receptor and increased IL-25 production. The 

authors believe this IL-25 production acted in an autocrine loop that expanded the brush cell 

population. This expansion could also be triggered by exposure to the common fungal 

aeroallergen Alternaria. This response lead to the development of type 2 inflammation 

suggesting a role for brush cells in the pathogenesis of allergen induced responses [121].  
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3.3 Alveolar Type I and II Cells 

The epithelium of the alveolar space is dominated by type I and type II cells. Type I cells 

are flat making up 95-97% of the total surface area of the lung periphery and make up 8-10% of 

total lung cells [122, 123]. They are believed to differentiate from type II cells and are the last 

stage of differentiation [122]. Lack of type I cell development in new born mice results in 

respiratory failure, usually within minutes after birth [124]. Type II cells make up about  15% of 

total lung cells. They are cuboidal in shape and capable of self-renewal [125]. They produce 

surfactants to reduce surface tension within the alveoli and prevent alveolar collapse. Both cell 

types express pattern recognition receptors including toll-like and nod-like receptors. Type I cells 

express a pattern recognition receptor for damage-associated molecular patterns, the receptor for 

advanced glycation end products [111].  

3.4 Multiciliated Cells 

Multiciliated cells are column shaped cells that differentiate from basal cells and make up 

much of the human epithelium. They comprise 46% of the cells in the trachea and 73% in the 

small airway epithelium [126].  

Their primary function is to clear mucous out of the airways and into the digestive tract 

with the actions of their cilia. Mucous traps pathogens in a sea of antimicrobial peptides 

including lysozyme and lactoferrin, as well as antiproteases and antioxidants to aid in host tissue 

protection. Clearing mucous either through ciliary movement or coughing are critical in 

maintaining the health of the host. Severe, and sometimes fatal, consequences develop from an 
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inability to clear the mucous that can create a breeding ground for pathogens as seen in cystic 

fibrosis patients [101].  

Cystic fibrosis patients have a mutation in the chloride channel cystic fibrosis 

transmembrane conductance regulator that pumps chloride ions into the mucous. The increase in 

ion concentration in the mucous attracts water thereby hydrating the mucous and allowing for it 

to be cleared by ciliated cells. When this hydration becomes impaired, the mucous becomes too 

thick to move by cilia, decreasing mucous clearance. Patients have chronic lung infections and 

increased inflammation aiding in damage to the lungs and reducing lung function [101].  

3.5 Basal Cells 

Basal cells in human lungs are found throughout the respiratory system up to the terminal 

bronchiole while in mice, the cells are confined to the trachea [127, 128]. In humans, basal cells 

make up 34%, 27%, and 10% of cells in the trachea, large airways, and small airways, 

respectively [129]. In mice, the distribution of tracheal basal cells is between 5-10% [106]. Basal 

cells of both human and mouse lungs are stem cells that can both self-renew and differentiate 

into club and ciliated cells. Rock et. al. demonstrated that murine basal cells serve as progenitor 

cells for the development of the mouse trachea after birth, and for repair following injury [127]. 

Damage to basal cells from inhalation of irritants, specifically those found in cigarette 

smoke, may lead to the development of COPD. These irritants can lead to a change in normal 

gene expression that diminishes the capability of the basal cells to differentiate into a normal 

epithelium. In addition, basal cells contain the epidermal growth factor receptor that can respond 

to epidermal growth factor and amphiregulin. These two signaling molecules increase in smokers 
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causing consistent activation. This activation results in a change in the normal distribution of 

epithelial cells including an increase in basal cells and mucous cells as well as a decrease in cilia 

length. Together, these changes can act to damage the epithelium and lead to the development of 

COPD [129].  

3.6 Club Cells 

In humans, club cells are absent from the bronchi and increase as one travels further 

towards the respiratory bronchioles. In the bronchioles, club cells make up less than 1% of 

epithelial cells. In the terminal bronchioles, the population increases to about 11%. The highest 

concentration of club cells are is in the respiratory bronchioles where they make up about 22% of 

epithelial cells [107]. In mice, a larger percentage of epithelial cells are club cells. Karnati et.al. 

found that 64% of bronchiolar cells were club cells [130]. Fanucchi et. al. found an even higher 

percentage, 77%, of bronchiolar epithelial cells were club cells [131]. Zuo et. al. described a 

thorough list of genes expressed by club cells. Genes expressed include anti-inflammatory genes, 

chemokines for dendritic cells and neutrophils, complement and pattern recognition receptors, 

antibacterial compounds, protease inhibitors, and proteins for barrier function. Club cells also 

have viral receptors including those for influenza, adenovirus, and measles [132, 133]. Heaton et. 

al. demonstrated that influenza-infected club cells can survive viral replication and mediate 

increased proinflammatory cytokine expression contributing to immunopathology [132].  

Further, club cells express genes whose mutations can result in a number of hereditary lung 

diseases including cystic fibrosis suggesting that club cells may be involved in the pathogenesis 
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of some lung diseases [133]. Club cells are major secretory cells with a dome shaped appearance 

along with many mitochondria and smooth and rough endoplasmic reticula [134].   

One of the primary proteins secreted by club cells is secretoglobin 1a1(Scgb1 a1) or club 

cell secretory protein (CCSP). CCSP is thought to be an anti-inflammatory protein. Mice lacking 

CCSP have been shown to have increased total leukocytes, macrophages, and neutrophils in 

bronchoalveolar lavage fluid compared to wildtype mice after both groups are exposed to air 

after just one month. CCSP knockouts also had higher levels of apoptotic bronchial epithelial 

cells and alveolar septal cells along with an increase in small airway remodeling. Together, these 

data support the anti-inflammatory and protective roles of CCSP [135].  
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4.0 Cre-Recombination 

The P1 bacteriophage is a virus commonly found to infect E. coli bacteria. Upon 

infection of a bacterium, P1 integrates its DNA genome into that of the bacterium with the use of 

a virally encoded integrase. This process allows the virus to be replicated each time the 

bacterium replicates and will continue until environmental conditions force P1 to induce 

lysogeny. At which point, P1 will be rapidly replicated and force the lysis of the bacterium.  

P1 encodes the Cre recombinase protein. This enzyme catalyzes site specific 

recombination events on DNA between two loxP sites. LoxP sites are 34-bp sequences that 

contain two 13-bp inverted repeats where Cre binds. Strand exchange happens between these 

sequences in an 8-bp spacer region [136]. If the loxP sites are oriented in the same direction 

flanking a target gene, the target gene can be excised from the DNA and permanently removed 

from the genome. The excised DNA, including one loxP site, is circularized, and the original 

DNA strand is ligated together. Alternatively, if the loxP sites are facing different directions, the 

target gene is inverted. This inversion is not permanent, and can be reversed as two loxP sites 

remain in place [137].  

Cre recombinase can be used to create gene changes that do not induce a total (global) 

gene knockout in an organism, but instead target the deletion to a particular organ, tissue, or 

specialized cell.  
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4.1 Cre-Recombination in this Study 

This study used mice generated with cre-recombination. The Cre recombinase DNA 

segment was inserted into exon 1 of CCSP. By doing so, Cre expression would only occur when 

CCSP is being expressed as the two now share the CCSP promoter. Therefore, the Cre 

recombinase will only be expressed in club cells of the lung epithelium [138].  

LoxP sites were inserted and flanked the gene encoding IL-17RC in the same direction. 

In cells expressing Cre (i.e. Club cells), a segment of the IL-17RC gene would be removed from 

the genome along with one of the loxP sites permanently. These cells, and their daughter cells, 

would no longer encode a gene for IL-17RC. IL-17RC was chosen as it only forms receptor 

complexes with the IL-17RA subunit and therefore only assists in transmitting IL-17A and IL-

17F signaling [90]. Most work in the past have used IL-17RA-/- models. However, IL-17RA can 

associate with IL-17RB,IL-17RC and IL-17RE receptor subunits. IL-17RA is therefore used to 

transmit IL-17E (IL-25)IL-17A, IL-17F and, IL-17C signaling [64, 76, 90]. IL-17E mediates the 

TH2 pathway and by choosing an IL-17RA-/- model, both TH17 and TH2 pathways would be 

affected [76]. Choosing the IL-17RC receptor subunit would only impact the TH17 signaling 

pathway, minimizing disruption of other signaling pathways, and enabling clearer conclusions to 

be made. This genetic manipulation will allow us to determine what role IL-17RC has in club 

cells using the three infection models: primary influenza, primary MRSA, and influenza-MRSA 

super-infections. 
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4.2 Hypotheses 

4.2.1 Primary Influenza  

IL-17 has been shown to increase inflammation in the lungs leading to increased damage 

to host tissues increasing morbidity and mortality. One of the most damaging consequences of  

immunopathology in the respiratory tract is the development of acute lung injury or acute 

respiratory distress syndrome (a more severe form of acute lung injury) which have mortality 

rates as high as 20% and 45%, respectively. They are characterized by inflammatory cytokines, 

particularly from neutrophils, and fluid buildup leading to damage that compromises gas 

exchange in the alveoli [139]. 

IL-17RA signaling has been attributed to the development of acute lung injury. Crowe et. 

al. did extensive work on the role of IL-17 during primary influenza infections. They found IL-

17A and IL-17F protein and gene expression levels to rise as early as 2 days post influenza 

infection. They determined that the increase in IL-17 was a result of  T cells, not  T cells. 

Not only did the  number of  T cells increase, but also the percentage of  T cells that 

expressed IL-17. The percentage of IL-17 expressing  T cells did not change during the 

infection. Mice deficient in  T cells had reduced IL-17A mRNA expression at the 6 days post 

infection mark and decreased IL-17F mRNA expression as early as 2 days post infection. 

Together, this information demonstrates that the influenza infection induces an increase in IL-

17A and IL-17F expression levels in a growing  T cell population [140]. 

Next, they characterized the effects of IL-17 signaling through the IL-17RA subunit by 

comparing the immune responses to influenza in wildtype and IL-17RA-/- mice. IL-17RA-/- mice 
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had reduced weight loss than wildtype mice and also lower mortality rates (80% for IL-17RA-/- 

mice and 20% for wildtype, at 2 weeks post infection). Viral burden at day 6 was higher in IL-

17RA-/- mice than wildtype mice despite reduced morbidity factors [140]. 

IL-17RA-/- mice compared to wildtype mice experienced reduced inflammation 

determined from lower pathology scores. IL-17RA-/- also had reduced IL-17 signaling 

downstream cytokines, including IL-6, and chemokines, including the neutrophil attracting 

chemokines CXCL-1 and granulocyte-colony stimulating factor. Neutrophil recruitment 

decreased in IL-17RA-/- mice [140]. IL-6 has been suggested to reduce lung injury during 

influenza infection as a result of increased macrophage recruitment and activation along with a 

reduction in influenza induced epithelial cell apoptosis [141]. IL-17RA-/- did not have reduced 

macrophage recruitment. Further, when wildtype mice were infected and treated with an IL-6 

neutralization antibody, there were no significant differences in disease severity indicators such 

as weight loss and total protein in bronchoalveolar lavage fluid [140].  

In addition, neutrophils have been attributed to increasing acute lung injury. Neutrophils 

can induce damage to host tissue through the formation of neutrophil extracellular traps. 

Narasaraju et. al.  showed that reactive oxygen species found in neutrophils, such as 

myeloperoxidase, can increase the production of neutrophil extracellular traps [142]. Neutrophils 

also increase oxidized phospholipids which can trigger toll-like receptor 4 signaling and 

contribute to acute lung injury [143]. Li et. al. showed that acute lung injury could be reduced in 

mice deficient in IL-17A or in mice treated with an IL-17A monoclonal antibody. These mice 

had higher survival rates and reduced weight loss than mice with active IL-17A [144]. Together, 

these data support that the decreased neutrophil recruitment observed in IL-17RA-/- mice reduces 

injury to host tissue [140]. 
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In another study, Gopal et. al. demonstrated the increased immunopathology observed 

from IL-17 signaling during an influenza infection. Mice were treated with PBS or one of two 

mucosal TH17-inducing adjuvants: type II heat-labile enterotoxin (LT-IIb) and cholera toxin 

(CT). After treatment, the mice were infected with the highly virulent H5N1 influenza strain. 

Those receiving the adjuvants had higher morbidity characterized by an increase in weight loss, 

neutrophil accumulation, and lung inflammation than mice treated with PBS. This effect from 

the adjuvants was attenuated when the mice were treated with an antibody blocking IL-17RA or 

in IL-17RA knockouts [145]. 

Together, these data indicate that the damage observed during influenza infections can be 

attributed to the host IL-17 signaling immune response. Inhibiting this mechanism can reduce 

immunopathology to the host. Therefore, in my study, I expect to see reduced inflammation in 

IL-17RC-cre+ mice compared to IL-17RC-cre- mice following influenza infection indicated by a 

reduction in proinflammatory molecules. I also expect to see reduced morbidity factors indicated 

by less weight loss in IL-17RC-cre+ mice than wildtype mice. Lastly, the viral burden in IL-

17RC-cre+ mice are expected to be higher than in IL-17RC-cre- mice, but the damage should be 

reduced in IL-17RC-cre+ mice indicated by reduced pathology scores. 

4.2.2 Primary MRSA Infection 

Job’s syndrome, also known as Hyper IgE syndrome, affects patients who have mutations 

in STAT3 that results in a deficiency of TH17 cells and subsequently IL-17. They frequently 

experience opportunistic infections including Candida albicans in the mouth, skin, or lungs. 

They also have infections with Staphylococcus aureus on the skin or in the lungs. Because IL-17 

signaling induces the recruitment of neutrophils through granulocyte-colony stimulating factor. 
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This relationship suggests a potential protective role for neutrophils during fungal and bacterial 

infections mediated by IL-17 [146]. 

Kudva et. al. demonstrated the need for IL-17 signaling during pulmonary bacterial 

infections with S. aureus by infecting wildtype and IL-17RA-/- mice. 24 hours later, the lung 

bacterial burden was determined and IL-17RA-/- mice had significantly higher bacterial burdens. 

Neutrophilic chemokine granulocyte-colony stimulating factor and the proinflammatory cytokine 

IL-6 were decreased in IL-17RA-/- mice than wildtype mice [147].  The increased bacterial 

burden is consistent in data collected in our lab. Wildtype and IL-17RC-/- mice were infected 

with S. aureus and 24 hours later, the lung bacterial burden was measured. IL-17RC-/- mice had 

significantly higher, approximately four-fold, bacterial burden than wildtype mice (Supplemental 

Figure 1). 

I expected IL-17RC-cre+ mice to have higher bacterial burdens in the lungs than IL-

17RC-cre- mice 24 hours post infection. I expect IL-17RC-cre+ mice to have reduced 

inflammation characterized by decreases in proinflammatory cytokines as well as reduced 

number of cells, particularly neutrophils, in the bronchoalveolar lavage fluid than IL-17RC-cre- 

mice. IL-17RC-cre+ will have increased lung damage than IL-17RC-cre- mice.  

4.2.3 Influenza-MRSA Super-infection 

Influenza is known to increase the risk of developing secondary bacterial infections [43]. 

Robinson et. al. have described a mechanism responsible for the increased risk and reduced 

ability to clear secondary bacterial infections. 

The bacterial burden of wildtype mice with influenza-S. aureus super-infections have not 

only significantly higher bacterial burdens than S. aureus alone, but also reduced clearance of 
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bacteria. Whereas S. aureus alone (108 cfu) infected mice will clear the infection within 4 days, 

those with preceding influenza infections still have a high bacterial burden 5 days post infection 

[47]. 

The IL-17 protein level in mice following S. aureus infection lasts as long as 5 days post 

infection. When measuring the IL-17 protein level in mice with influenza preceding the S. aureus 

infection, the IL-17 protein levels disappear by day 3 post bacterial infection and remains at 0 as 

long as 5 days post bacterial infection [47]. 

Kudva et. al. demonstrated why the IL-17 levels do not increase as greatly following S. 

aureus infection in wildtype mice that initially had an influenza infection. IL-23 is a cytokine 

released by antigen presentation cells to induce TH17 polarization and TH17 cytokine production 

and release. When comparing the IL-23 levels of wildtype mice during S. aureus alone and 

influenza- S. aureus super-infections, IL-23 is significantly reduced during the super-infection. 

Interferon-a signaling, which is induced in response to influenza infections, is responsible for the 

decrease in IL-23. In mice deficient in the interferon- receptor, IL-23 protein levels can 

increase during the influenza-S. aureus to levels observed in S. aureus alone infected mice. In 

addition, bacterial clearance during the super-infection in interferon-a receptor deficient mice 

returns to levels observed in S. aureus alone infected wildtype mice [147]. 

Robinson et. al. demonstrated that the inhibition of the IL-17 signaling pathway causes a 

reduction in antimicrobial peptide mRNA expression of RegIII, lipocalin 2, and S100 A8. Each 

of these peptides contribute to bacterial clearance and control. Because of the suppression of the 

IL-17 signaling pathway by influenza-induced interferon- signaling, these antimicrobial peptide 

levels during the super-infection are decreased compared to mice infected with S. aureus alone. 
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This suppression of antimicrobial peptides contributes to the decreased bacterial burden observed 

in super-infected mice than S. aureus alone infected mice [47].  

Given that suppression of the IL-17 signaling mechanism during influenza infections 

increases morbidity factors following bacterial infection, I expect IL-17RC-cre+ mice will have 

increased bacterial burdens than IL-17RC-cre- mice. Without the IL-17RC subunit, IL-17 

signaling will be reduced  causing a reduction in antimicrobial peptides and likely a reduction in 

inflammation. I also expect IL-17RC-cre+ mice will have increased lung damage than IL-17RC-

cre- mice following the super-infection. 
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5.0 Methods 

5.1 Mice 

The IL-17RC-ccsp-cre mice on C57BL/6 background were a kind gift from Dr. Jay 

Kolls, Tulane University, LA, and colonies were subsequently maintained under specific 

pathogen-free conditions. In vivo studies were performed on age matched adult male littermate 

mice that were either positive or negative for the ccsp-cre gene, unless otherwise indicated. All 

experiments were approved by the University of Pittsburgh IACUC.  

Prior to use, all mice were genotyped by collecting tail-snips. These were lysed and DNA 

was extracted using the DirectPCR Lysis Reagent (Tail) kit (Viagen Biotech, Los Angeles, CA). 

The DNA was used to conduct PCR to identify that the loxP sites were placed flanking the IL-

17RC gene and that the cre recombinase gene was present. The presence of loxP sites flanking 

the IL-17RC gene was determined by using IL-17RC flox primers (Forward: GGA AGG CAT 

GAG GAT TGC AGA CT; Reverse: CAG ACT TTC CAG CTT CTT CAG GCT). The presence 

of cre recombinase in the CCSP gene was determined by using CCSP-cre primers (Forward: 

CGG TCG ATG CAA CGA GTG ATG AG; Reverse: ACG AAC CTG GTC GAA ATC AGT 

GCG. The DNA can then be southern blotted (2% agarose gel, 80-150 V, 1-1.5 hours). In 

homozygous floxed mice, a band should be observed at 287 bps while CCSP-cre+ mice should 

have a band observed at 400 bps.  
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5.2 Infections 

5.2.1 Influenza A PR/8/34 H1N1 infection 

Mice were infected with 100 PFU of Influenza A/PR/8/34 (influenza H1N1) in 50 µl of 

sterile PBS from a frozen stock. Infections were administered on isoflurane-anesthetized mice 

using oropharyngeal aspiration. Infected mice were incubated for 7 days. On the 7th day, mice 

were sacrificed and bronchoalveolar lavage (BAL) fluid, lungs, and serum were collected. 

Quantitative real-time RT-PCR was used to determine viral burden on lung RNA based on the 

amount of viral RNA (M protein) [16]. The primers and probe used were: 

Forward primer:  5' GGACTGCAGCGTAGACGCTTT 3'  

Reverse primer: 5' CATCCTGTTGTATATGAGKCCCAT 3'  

Probe: 5' 6FAM-CTMAGYTATTCWRCTGGTGCACTTGCC-BHQ 3' 

5.2.2 MRSA USA300 

Mice were infected with 1x108 cfu (during primary infection) or 5x107 cfu (during 

secondary infection) of MRSA USA300 in 50 µl of sterile PBS from a frozen stock. A lower 

dose of MRSA was used during secondary infections as mice are more susceptible to bacterial 

infections if they have an influenza infection. Infections were administered on isoflurane-

anesthetized mice using oropharyngeal aspiration. In primary bacterial infections, infected mice 

were incubated for 24 hours. 24 hours was chosen as previous work in our lab has shown that 

wildtype mice can clear the bacteria within 48 hours. At 24 hours, mice were sacrificed and 

bronchoalveolar lavage fluid, lungs, and serum were collected. Lung homogenate was used to 
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grow bacteria on Staphylococcus aureus growth plates and incubated over night to determine 

bacterial burden. In secondary bacterial infections, mice were infected with influenza as 

described before. On day 6, mice were then infected with MRSA as described before. 24 hours 

post MRSA infection mice were sacrificed and samples collected as described before [148].  

5.3 Lung inflammation measurement 

5.3.1 Bronchoalveolar lavage fluid measurement 

After the mice were sacrificed, bronchoalveolar lavage (BAL) fluid was collected by 

flushing the lungs of mice with 1 mL of sterile PBS. The BAL was used to make slide smears 

using a cytospin. The slides were stained with Protocol Hema 3 staining (Fisher Scientific, 

Kalamazoo, MI) and used for differential cell counts. Stained slide smears were observed under 

light microscope and the cell types (neutrophils, lymphocytes, and macrophages) were 

determined based off of cell size, nuclear shape, and staining pattern. 

5.3.2 Gene expression via RT-PCR 

Middle and accessory lobes of the right lung were collected and snap frozen with liquid 

nitrogen. These were homogenized mechanically, and RNA was extracted using the Absolutely 

RNA Miniprep Kit (Agilent Technologies, Santa Clara, Ca). Gene expression was measured 

using RT-PCR with Taqman primer and probe steps (Applied Biosystems, Foster City, Ca). The 

data was calculated using the delta-delta CT method, as described before, and were normalized 
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to the housekeeping gene hypoxanthine-guanine phosphoribosyl transferase (HPRT) or 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as specified in the figure [149]. 

5.4 Statistical Analysis 

All analyses were performed using GraphPad Prism Software. Two-tailed Student’s t-test 

was used for analysis and differences were deemed significant if p≤0.05. All figures represent 

data as mean±SEM. 
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6.0 Results 

6.1 Primary Flu Infection 

6.1.1 No difference in weight loss or viral burden in the lungs between IL-17RC-cre+ and 

IL-17RC-cre- mice 

The first infection model we  conducted our tests on were primary influenza infections. 

IL-17RC-cre+ and IL-17RC-cre- mice were infected with 100 pfu of influenza in 50 mL of sterile 

PBS (day 0) and were sacrificed on day 7. Based off of other works that show IL-17 signaling 

contributes to immunopathology during viral infections, I first analyzed the weight loss and viral 

burden between the IL-17RC-cre+ and IL-17RC-cre- [86, 140]. Weight loss can serve as an 

indicator of infection severity. Those who lose more weight tend to not be controlling the 

infection as well as those who lose less weight. Viral burden was measured using RT-PCR based 

off of viral gene expression levels of influenza matrix (M) protein. There were no differences 

observed between the two groups in terms of weight loss or viral burden at the one-week mark 

(Figure 1 A and B).  

6.1.2 IL-17A levels and downstream proinflammatory cytokine expression levels in the 

lungs are the same between IL-17RC-cre+ and IL-17RC-cre- mice 

Next, we wanted to see if there were any changes in IL-17A production in the lungs and 

if there were any effects from downstream IL-17 signaling at the one-week mark. First cytokine 
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we looked at was IL-23, which induces the production of IL-17 [51]. There were no differences 

between the IL-17RC-cre+ and IL-17RC-cre- mice for IL-23 expression in the lungs(Figure 2A). 

Likewise, the amount of IL-17A trends higher in IL-17RC-cre+ but was not significantly 

different with IL-17RC-cre- mice levels (Figure 2B). IL-17A is known to increase 

proinflammatory cytokines such as TNF- and IL-6 [56, 57]. Both of these inflammatory 

markers were expressed equally in IL-17RC-cre+ and IL-17RC-cre- mice (Figures 2C and 2D). 

6.1.3 No change in neutrophil chemokines or neutrophilic activity associated gene 

expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

Previous studies have shown that IL-17RA signaling increases neutrophil recruitment 

during a fungal infection and a primary influenza infection [59, 140]. The neutrophil attractant 

chemokine CXCL-1 did not differ between IL-17RC-cre+ and IL-17RC-cre- mice (Figure 3A). 

Two neutrophil activity markers, neutrophil elastase and cathepsin G, did not differ between IL-

17RC-cre+ and IL-17RC-cre- mice (Figures 3B and 3C) [150, 151].  

6.1.4 No difference in cellular makeup of bronchoalveolar lavage fluid between IL-17RC-

cre+ and IL-17RC-cre- mice 

Bronchoalveolar lavage (BAL) fluid was collected from the mice one-week post infection 

and used to develop cell smears to measure the number and type of cells present in the lung 

alveoli. The cellular composition of the BAL fluid did not differ between IL-17RC-cre+ and IL-

17RC-cre- mice as shown by no changes in the percentage of neutrophils, lymphocytes, or 

macrophages (Figures 4A-E). 
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6.2 Primary MRSA Infection 

6.2.1 No difference in lung bacterial burden or weight loss between IL-17RC-cre+ and IL-

17RC-cre- mice 

The next infection model we studied was a primary MRSA infection. IL-17RC-cre+ and 

IL-17RC-cre- mice were infected with 1 x 108 cfu of MRSA in 50 µl of sterile PBS (day 0) and 

sacrificed 24 hours later. Previous studies have shown that decreased IL-17A signaling results in 

higher bacterial burden the liver following to Listeria monocytogenes [58]. Other studies have 

observed reduced bacterial clearance in S. aureus when IL-17A and F signaling is blocked (as a 

result of knocking out both IL-17A and F) and higher bacterial burdens in response to C. 

rodentium when IL-17A or IL-17F were knocked out [85]. Based off of this information, we 

hypothesized that the IL-17RC-cre+ mice would have increased bacterial burden and potentially 

more weight loss.  

Following the MRSA infection, there were no differences in bacterial burden between IL-

17RC-cre+ and IL-17RC-cre- mice after incubation of MRSA collected from the upper right lung 

lobe (Figures 5B). There were also no differences between IL-17RC-cre+ and IL-17RC-cre- mice 

weight loss (Figure 5A). 

6.2.2 No difference in gene expression levels of IL-17A and downstream proinflammatory 

cytokines in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

The next gene expression levels examined were those of IL-17A and downstream 

signaling induced genes. IL-17A expression levels were measured to see if IL-17RC-cre+ and IL-
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17RC-cre- mice both were able to induce the same amount of IL-17A. The proinflammatory 

cytokines released after IL-17A signaling were also measured to see if there were any defects in 

production from a lack of IL-17A signaling in IL-17RC-cre+ mice. Both groups had the same 

expression level of IL-17A and the proinflammatory cytokine IL-6 (Figures 6A and 6C). IL-

17RA and TNF- trended to be lower in IL-17RC-cre+ mice, but were not significantly different 

(Figures 6B and 6D; TNF- p-value=0.0807). 

6.2.3 No difference in recruitment of neutrophils, lymphocytes, or macrophages to the 

lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

Using BAL fluid, slide smears of the immune cells were made and the number of total 

cells and number of neutrophils, lymphocytes, and macrophages were enumerated. Reduced IL-

17A signaling has been shown to cause less CXCL-5, neutrophil chemokine, and impair 

neutrophil recruitment [152]. There were no differences in the number of total cells, neutrophils, 

lymphocytes, or macrophages between IL-17RC-cre+ and IL-17RC-cre- mice following infection 

(Figures 7A-D). The cellular composition of the BAL fluid was the same IL-17RC-cre+ and IL-

17RC-cre- mice (Figures 8A-E). No difference in the neutrophil activity markers neutrophil 

elastane and cathepsin g, nor any differences in the neutrophil chemokine CXCL-5 (Figures 9A-

C). 
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6.2.4 IL-17RC-cre+ have reduced mannose receptor c type 2 gene expression in the lungs, 

but no changes in other M2 macrophage markers or M1 macrophage marker Nos2 

There are two broad classes of macrophages: M1 and M2 macrophages. M1 macrophages 

mainly phagocytose microbes while M2 macrophages are involved in host tissue repair. Nitric 

oxide synthase 2 (Nos2) is used as a marker for M1 macrophages. Mannose receptor c type 2 

(MRC2), arginase 1 (Arg1), and macrophage receptor with collagenous structure (MARCO) are 

M2 macrophage markers [153]. There is no difference in Arg1 or MARCO gene expression 

levels between IL-17RC-cre+ and IL-17RC-cre- mice following MRSA infection (Figures 10B 

and D). However, IL-17RC-cre+ mice have less expression of the M2 macrophage marker, 

MRC2 (Figure 10C, p=0.0176). The M1 macrophage marker Nos2 expression trended to be 

lower (Figure 10A, p-value= 0.0669). 

6.2.5 No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ 

and IL-17RC-cre- mice 

The last set of gene expression levels tested were those of the antimicrobial peptides 

lipocalin 2 (Lcn2), calprotectin subunit S100A8, and regenerating islet derived protein 3 

(Reg3) that are produced to aid in bacterial clearance [154]. No differences in the expression 

levels of these proteins were seen between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 11A-

C). 
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6.3 Influenza-MRSA Super Infection 

6.3.1 No differences in weight loss, viral burden, or bacterial burden between IL-17RC-cre+ 

and IL-17RC-cre- mice 

The last infection model used is an influenza-MRSA super-infection. IL-17RC-cre+ and 

IL-17RC-cre- mice were infected with 100 pfu of influenza in 50 L of sterile PBS (Day 0). On 

day 6, the mice were infected with 5 x 107 cfu of MRSA in 50 L of sterile PBS. The mice were 

sacrificed 24 hours later (Day 7). This model mimics the secondary bacterial infection patients 

can experienced superimposed on their current influenza infection. The risk of developing a 

secondary bacterial infection is greatest one week after influenza infection [43]. 

Like before, weight loss, viral burden, and bacterial burden were measured to determine 

if the knockout had any effect on these disease severity indicators. It’s been shown that 

interrupting IL-17 signaling diminishes bacterial clearance [58, 85]. It’s also been shown that 

influenza infection before a bacterial infection diminishes bacterial clearance. Interferons 

produced in response to influenza can inhibit IL-23 release, which promotes the release of IL-17 

from  T cells, which attenuates the IL-17 signaling mechanism [43]. With this in mind, we 

hypothesized the IL-17RC-cre+ mice would experience greater morbidity. When weight, lung 

viral burden, and lung bacterial burden were measured, no significant differences were observed 

between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 12A-C). 
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6.3.2 No differences in IL-17A or TNF- expression in the lungs, nor any differences in 

total cells in BAL between IL-17RC-cre+ and IL-17RC-cre- mice 

IL-17A expression did not differ between IL-17RC-cre+ and IL-17RC-cre- mice nor did 

the downstream TNF- expression differ (Figures 13A and B). The total number of cells 

enumerated from the BAL did not differ between IL-17RC-cre+ and IL-17RC-cre- mice either 

(Figure 13C).  

6.3.3 No differences in the macrophage and neutrophil marker expressions in the lungs 

between IL-17RC-cre+ and IL-17RC-cre- mice  

The M1 macrophage marker, Nos2, did not have different expression levels in the lungs 

between the groups following infection (Figure 14A). There were no differences in expression 

levels of the M2 macrophage markers MARCO, MRC2, or Arg1 in the lungs between IL-17RC-

cre+ and IL-17RC-cre- mice (Figures 14B-D). There were no differences in expression levels of 

the neutrophil chemokine CXCL5 and no difference in expression of the neutrophil marker 

ELANE in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 15A and 15B).  

6.3.4 No difference in the expression of interferons or downstream interferon induced gene 

expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

Interferon- and  expression levels in the lungs did not differ between IL-17RC-cre+ and 

IL-17RC-cre- mice nor did the interferon-stimulated gene Mx1 expression in the lungs differ 

between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 16A-C).  
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6.3.5 No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ 

and IL-17RC-cre- mice 

The antimicrobial Lcn2  expression levels in the lungs trended to be lower in IL-17RC-

cre+ mice, but was not statistically different (Figure 17A, p-value= 0.0969). Reg3 expression 

levels in the lungs did not differ between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 17B).  

6.3.6 Influenza-MRSA super-infection increases total number of cells in BAL fluid in IL-

17RC-cre- mice compared to primary MRSA infection in IL-17RC-cre- mice 

When comparing the total number of cells in BAL fluid from Il-17RC-cre- mice in 

primary MRSA and influenza-MRSA super-infections, the influenza-MRSA super-infection 

resulted in a greater number of cells in BAL fluid (Figure 18; p-value = 0.0011). There were no 

changes in total BAL cell count between IL-17RC-cre+ mice (Figure 18).  
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7.0 Discussion 

This study sought to understand what effects IL-17RC signaling has on club cells of the 

lung epithelium during three infection models: primary influenza, primary MRSA, and 

influenza-MRSA superinfection. The experimental mice had the IL-17RC receptor removed via 

cre-recombination in cells that express club cell secretory protein-16 (CCSP). This knockout is 

confined strictly to club cells of the lung epithelium inhibiting IL-17A and IL-17F signaling 

effects on the club cells.  

IL-17A has been shown to induce inflammation that results in immunopathology 

increasing damage to host tissues. In three autoimmune diseases: plaque psoriasis, rheumatoid 

arthritis, and uveitis, IL-17A inhibition has reduced the damaging effects of inflammation to the 

tissues affected by these diseases [60]. IL-17F increases inflammation in concert with IL-17A 

signaling to produce the immunopathology observed in psoriatic arthritis [87] .  

During viral infections, these two cytokines have shown to increase inflammation that 

may result in enhanced viral clearance but increases tissue damage. These data suggests that the 

inflammatory actions resulting from the signaling cascades hurt’s the host more than the 

pathogen [86, 140]. Based on these data, we expected IL-17RC-cre+ mice to exhibit less signs of 

morbidity. Surprisingly, no differences in morbidity were seen between IL-17RC-cre+ and IL-

17RC-cre- mice. Weight loss and viral burden were the same as were downstream IL-17 

proinflammatory molecules (Figures 2A-D). Previous studies showed that IL-17A signaling 

enhances neutrophil recruitment [59, 140]. When the neutrophil attractant chemokine CXCL-1 

was measured, its expression levels were not different between IL-17RC-cre+ and IL-17RC-cre- 

mice one week after influenza infection (Figure 3A). Likewise, there were no changes in 
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neutrophil activity markers neutrophil elastase and cathepsin G, nor differences in the cellular 

composition of collected BAL fluid (Figures 3B-C, 4A-C). These data suggests that IL-17RC 

mediated signaling in club cells does not significantly affect the immune response to influenza 

nor any effects resulting from influenza infection.  

A possible explanation for no changes is that other cells present in the lungs can secrete 

proinflammatory cytokines making up for the decreased expression levels from club cells. Mast 

cells and eosinophils can both secrete CXCL-1 allowing for chemotaxis of neutrophils to the 

lungs [155, 156]. Once in the lungs, these neutrophils can induce the immunopathology 

associated with their activity [142, 143]. 

Unlike during influenza and other viral infections, IL-17A and IL-17F signaling proved 

to aid the host in bacterial control. IL-17A and IL-17F both reduced inflammation during C. 

rodentium intestinal infections [85]. IL-17A signaling has also been shown to improve host 

tissue protection during Crohn’s disease, an autoimmune disease that has been correlated with a 

dysregulation of the intestinal microbiome [60, 157]. In K. pneumonia infections, IL-17RA and 

IL-17RC signaling in the club cells garnered better bacterial control then without the signaling 

[152]. Based off of these results, we predicted that IL-17RC-cre+ mice would have increased 

morbidity and bacterial burden than IL-17RC-cre- mice during a primary MRSA infection. 

Both groups had similar weight loss 24 hours after infection (Figure 5A). This result was 

not entirely surprising as the infection window was short: 24 hours. However, there were no 

differences in MRSA bacterial burden in the lungs between IL-17RC-cre+ and IL-17RC-cre- 

mice (Figures 5B). IL-17A and IL-17RA expression levels were the same 24 hours after 

infection as were the downstream proinflammatory molecules IL-6 and TNF- (Figures 6A-D). 
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The number and types of cells recruited to the lungs did not change when examining the 

cellular composition of BAL fluid (Figures 8A-E). Previous studies indicated IL-17A signaling 

increases expression of the neutrophil chemokine CXCL-5 [152]. IL-17RC-cre+ mice did not 

have changes in this chemokine or neutrophil markers (Figures 9A-C). The M1 macrophage 

marker Nos2 did not differ between IL-17RC-cre+ and IL-17RC-cre- mice nor did the M2 

macrophage markers MARCO and Arg1 (Figures 10A,B, and D). IL-17RC-cre+ mice did have 

decreased expression of the M2 macrophage marker MRC2 (Figure 10C, p=0.0176). 

Antimicrobial peptide production did not differ between IL-17RC-cre+ and IL-17RC-cre- mice 

(Figures 11A-C). Decreased MRC2 could impair host tissue repair, however with no other 

differences observed in the morbidity indicators, this difference likely does not matter at the 24-

hour time point. Similar antimicrobial production as well as phagocyte activity markers correlate 

with a similar bacterial burden as there are no overt differences in bacterial clearance 

mechanisms. The phagocytes, macrophages and neutrophils, both can produce S100A8 during 

bacterial infections and neutrophils can generate Lcn2 [158-160]. With no differences in cell 

numbers and composition, the expression of these antimicrobials is not surprisingly the same. 

Influenza infections have been shown to cause a deficit in the immune response to 

bacterial infections in the lung increasing the likelihood of a secondary infection [43]. One 

particular mechanism is the inhibition of the TH17 signaling pathway brought on by the 

suppression of IL-23 by type I interferons. This inhibition causes a deficit in antimicrobial 

production and compromises bacterial clearance [43, 46, 147]. Given that the IL-17 pathway is 

important in bacterial clearance, we expected the IL-17RC-cre+ mice to have increased bacterial 

burden and greater weight loss. However, there were no differences in viral burden, bacterial 

burden, or weight loss between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 12A-C). IL-17A 
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and downstream proinflammatory cytokine TNF- all had equal expression between IL-17RC-

cre+ and IL-17RC-cre- mice (Figures 13A-B). The total number of cells in the BAL fluid were 

not significantly different (Figure 13C).The macrophage markers for both M1 and M2 

macrophages did not significantly differ between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 

14A-D). The neutrophil chemokine CXCL5 and the neutrophil activity marker ELANE did not 

differ between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 15A and 15B). These data indicate 

that IL-17A and F signaling in club cells does not significantly impact the recruitment or activity 

of immune cells to the lung. The amount of interferon expression levels and downstream 

interferon induced Mx1 expression are not different between IL-17RC-cre+ and IL-17RC-cre- 

mice (Figures 16A-C). Expression of the antimicrobial Lcn2 and Reg3 were not different 

between IL-17RC-cre+ and IL-17RC-cre- mice (Figures 17A and 17B). Together these data 

indicate that IL-17A and F signaling in club cells does not significantly impact the production of 

antimicrobials in the lungs.  

Furthermore, when comparing the total number of cells in BAL fluid between the MRSA 

and influenza-MRSA super-infections, there was a significant increase in total number of cells in 

IL-17RC-cre- mice during influenza-MRSA super-infection than in IL-17RC-cre- mice (Figure 

18). There were no changes in total number of cells in BAL fluid between IL-17RC-cre- mice 

during MRSA or influenza-MRSA super-infection (Figure 18). 

Altogether, this study has shown that IL-17A and IL-17F signaling in club cells of the 

lung epithelium likely does not contribute significantly during primary influenza, primary 

MRSA, or influenza-MRSA superinfections. In all infection models, there were no changes in 

the immune responses between IL-17RC-cre+ and IL-17RC-cre- mice. Immune cell recruitment 

was not affected nor were immune cell activity markers following each infection. Different 
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signaling mechanisms including interferons, IL-17A expression levels, and proinflammatory 

cytokines did not differ between IL-17RC-cre+ and IL-17RC-cre- mice . Most importantly, 

morbidity factors such as weight loss, viral burden, were bacterial burden were not different 

between IL-17RC-cre+ and IL-17RC-cre- mice. Affecting IL-17A or IL-17F signaling in club 

cells will most likely not prove to have therapeutic outcomes in these infections.   

However, there are important caveats to these interpretations that extend beyond 

concluding that IL-17RC signaling in club cells does not significantly affect the host immune 

response. There are a number of potential reasons why no differences were observed between IL-

17RC-cre+ and IL-17RC-cre- during these infection models.  

The first involves the data collection and sample size. The data collection of this study 

was severely impacted from the Covid-19 pandemic. It forced the premature shutdown of the 

study. Although I had more infection studies planned and more data to collect from previous 

studies, no more data could be collected. The variation in samples sizes between and within 

infection models of this study resulted from the shutdown. Given the low numbers, it’s possible 

that the small sample size does not truly reflect the general population. IL-17RC-cre+ mice had 

trends towards reduced proinflammatory cytokine TNF-, M1 macrophage marker Nos2, during 

primary MRSA infections (TNF-a p= .0807; Nos2, p= 0.06600) and reduced antimicrobial 

compound Lcn2 during influenza-MRSA super-infection (p= 0.0969). It’s possible that these 

may have reached significantly different if given more data. Further studies will need to be done 

to truly determine whether or not IL-17 signaling in the club cells impacted these factors.  

It’s possible that the gene deletions did not work as effectively as we thought. There are 

no direct data that support the gene deletions were not as expected; however, there are couple of 

tests that can be done to determine if the gene deletion worked. The IL-17RC mRNA expression 
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can be determined using RT-PCR and compare the IL-17RC expression rates between IL-17RC-

cre+ and IL-17RC-cre- mice. If the gene deletion worked as expected, IL17RC-cre+ should have 

reduced IL-17RC expression compared to IL-17RC-cre- mice. Immunohistochemistry could be 

used with antibodies that bind to CCSP, therefore labeling club cells, and  IL-17RC [161]. When 

the club cells are observed, cells from IL-17RC-cre+ should have no IL-17RC antibody staining 

on the cell membrane while IL-17RC-cre- should have IL-17RC antibody staining on the cell 

membrane.  

Another possibility is that IL-17 signaling may be occuring in the club cells despite the 

absence of the IL-17RC subunit. Recently, Goepfert et. al. discovered that IL-17RC can bind to 

IL-17A and IL-17F in the absence of IL-17RA. Whether or not the interaction leads to 

intracellular signaling is unknown [162]. Although no studies have pointed to the ability of IL-

17RA to bind to IL-17 cytokines independently of other receptor subunits, it raises the possibility 

that IL-17RA may share this ability. However, even if IL-17RA could effectively transmit a 

signaling cascade from IL-17 activation, it’s not known if this signaling has significant effects on 

the immune response. Numerous studies have been conducted exploring the effects of IL-17 

receptor subunit deletions and they have shown that there are significant changes in the immune 

response. These suggest that even if there is independent signaling occuring through one IL-17 

subunit (IL-17RA or IL-17RC), it cannot act as a substitute for whole receptor, IL-17RA/RC, 

signaling. 

 To determine if the club cells of IL-17RC-cre+ mice have changes in IL-17 signaling 

response, club cells from these mice and IL-17RC-cre- mice can be selected for with flow 

cytometry based off of CCSP immunoreactivity [161]. These cells can then be cultured in the 

presence of IL-17 and antibodies for IL-17 signaling induced genes. If the deletion is correct and 
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the signaling is disrupted in IL-17RC-cre+ mice, their club cells should have reduced protein 

production, and therefore reduced antibody binding than IL-17RC-cre- mice.  

In addition, these studies should be repeated by introducing exogenous IL-17 or a 

combination of IL-1 and IL23 (this combination triggers IL-17 release from  T cells) 

intranasally [152]. Any differences between the mice (IL-17RC-cre+ and cre-) would be 

attributed to lack of IL-17 response, as a result of the receptor missing, and not IL-17 production.  
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8.0 Figures 

8.1 Primary Flu Infection 

 

 

 

 

 

Figure 1. No difference in weight loss or viral burden in the lungs between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, , 6-8 weeks old mice 

were infected with 100 pfu of influenza (N=10 per group). (A) Weight loss was determined from 

comparing weight at time of infection (Day 0) and on day of sacrifice (Day 7) n= 7 and 17 for IL-17RC-

cre- and IL-17RC-cre+ groups respectively. (B) Viral burden was measured by influenza M protein 

expression in lung by RT PCR, N=5 and 10  for IL-17RC-cre- and IL-17RC-cre+ groups respectively. Data 

are represented as mean±SEM, two tailed Student’s t test, ns- not significant 
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Figure 2. IL-17A levels and downstream proinflammatory cytokine expression levels in the lungs are 

the same between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 100 pfu of influenza. (A-D) IL-23A, IL-17A, TNF-, IL6 expression was measured in whole 

lung by RT-PCR, N=5 and 10  for IL-17RC-cre- and IL-17RC-cre+ groups respectively. Data are represented 

as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 3. No change in neutrophil chemokines or neutrophilic activity associated gene expression levels in 

the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 100 pfu of influenza (N=10 per group). (A-C) CXCL1, neutrophil elastane (ELANE), cathepsin g 

(CTSG) expression was measured in whole lung by RT-PCR, N=5 and 10  for IL-17RC-cre- and IL-17RC-cre+ 

groups, respectively. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 4. No difference in cellular makeup of bronchoalveolar lavage fluid between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were infected 

with 100 pfu of influenza. The BAL cells were stained, and differential cells were counted as described in methods.  

(A) Percentage of neutrophils, (B) macrophages, (C) and lymphocytes were measured in BAL. (D) IL-17RC-cre-, 

(E) IL-17RC-cre+ BAL cell composition. N=5 and 10  for IL-17RC-cre- and IL-17RC-cre+ groups, respectively. 

Data are represented as mean±SEM, two tailed Student’s t and  test, ns-not significant. 
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8.2 Primary MRSA Infection 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. No difference in weight loss or lung bacterial burden between IL-17RC-cre+ and IL-17RC-cre- mice 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were infected 

with 1x108 CFU of MRSA. (A) Weight loss was determined from comparing weight at time of infection (Day 0) and 

on day of sacrifice (Day 1) (B) Bacterial burden measured by amount of MRSA growth from homogenized lungs in 

1:10 dilutions. N=10 and 8  for IL-17RC-cre- and IL-17RC-cre+ groups, respectively. Data are represented as 

mean±SEM, two tailed Student’s t test, ns-not significant. 
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Figure 6. No difference in gene expression levels of IL-17A and downstream proinflammatory cytokines in 

the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 1x108 cfu of MRSA.(A-D) IL-23A (N=5 and 3 for IL-17RC-cre- and IL-17RC-cre+ groups, 

respectively), IL-17A (N= 5 per group), IL-6 (N= 5 per group), TNF- (N= 10 and 7 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively), expression was measured in whole lung by RT-PCR, Data are represented as 

mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 7. No difference in recruitment of neutrophils, lymphocytes, or macrophages to the lungs between 

IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 1x108 cfu of MRSA. N=5 per group unless otherwise noted. The BAL cells were stained, and 

differential cells were counted as described in methods.  (A) Total number of cells (N=10 and 8 for IL-17RC-cre- 

and IL-17RC-cre+ groups, respectively), (B) neutrophils, (C) lymphocytes (D) and macrophages were measured in 

BAL. Data are represented as mean±SEM, two tailed Student’s t test, ns-not significant. 
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Figure 8. No difference in cellular composition of BAL fluid between IL-17RC-cre+ and IL-17RC-cre- 

mice 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 1x108 cfu of MRSA. The BAL cells were stained, and differential cells were counted as 

described in methods.  (A) Percentage of neutrophils, (B) macrophages, (C) and lymphocytes were measured 

in BAL. (D) IL-17RC-cre-, (E) IL-17RC-cre+ BAL cell composition. N=5 per group. Data are represented as 

mean±SEM, two tailed Student’s t and test, ns-not significant. 

 



 62 

 

Figure 9. No difference in neutrophil chemokine or neutrophil activity markers' expression levels 

between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

infected with 1x108 cfu of MRSA (N=10 and 8 for IL-17RC-cre- and IL-17RC-cre+ groups, respectively unless 

otherwise noted.). (A-C) CXCL5, cathepsin g (CTSG) (N=5 per group), neutrophil elastane (ELANE), 

expression was measured in whole lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t 

test,  ns-not significant. 
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Figure 10. IL-17RC-cre+ have reduced mannose receptor c type 2 gene expression in the lungs, but no changes 

in other M2 macrophage markers or M1 macrophage marker Nos2 

 
IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were infected 

with 1x108 cfu of MRSA (N=10 and 8 for IL-17RC-cre- and IL-17RC-cre+ groups, respectively unless otherwise 

noted.). (A-D) Nos2 (N=5 and 3 for IL-17RC-cre- and IL-17RC-cre+ groups, respectively), MARCO, MRC2, Arg1 

expression was measured in whole lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t test,  

*= p= 0.0176, ns-not significant. 
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Figure 11. No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were infected 

with 1x108 cfu of MRSA (N=10 and 8 for IL-17RC-cre- and IL-17RC-cre+ groups, respectively unless otherwise 

noted.). (A-C) Lcn2, Reg3, S100A8 (N=5 per group), expression was measured in whole lung by RT-PCR. Data are 

represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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8.3 Influenza-MRSA Super-infection 

 

Figure 12. No differences in weight loss, viral burden, or bacterial burden between IL-17RC-cre+ 

and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were 

first infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. (N=4 and 9 for IL-

17RC-cre- and IL-17RC-cre+ groups, respectively). (A) Weight loss was determined from comparing 

weight at time of infection (Day 0) and on day of sacrifice (Day 7) n= 7 and 17 for IL-17RC-cre- and IL-

17RC-cre+ groups respectively. (B) Viral burden was measured by influenza M protein expression in lung 

by RT PCR (C) Bacterial burden measured by amount of MRSA growth from homogenized lungs in 1:10 

dilution. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 13. No differences in IL-17A or TNF- expression in the lungs, nor any differences in total cells in 

BAL between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were first 

infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. N=4 and 8 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively unless otherwise noted, (A-B) IL-17A,TNF- expression was measured in whole 

lung by RT-PCR. The BAL cells were stained, and differential cells were counted as described in methods.  (C) 

Total number of cells (N=5 and 8 for IL-17RC-cre- and IL-17RC-cre+ groups, respectively) .Data are represented as 

mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 14. No differences in the macrophage marker expressions in the lungs between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were first 

infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. N=4 and 9 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively unless otherwise noted, (A-D) Nos2, MARCO, MRC2, Arg1 expression was 

measured in whole lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not 

significant. 
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Figure 15. No differences in the neutrophil marker expressions in the lungs between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were first 

infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. N=4 and 9 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively unless otherwise noted, (A-B) CXCL5, ELANE expression was measured in whole 

lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 16. No difference in the expression of interferons or downstream interferon induced gene expression 

levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were first 

infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. N=4 and 9 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively unless otherwise noted, (A-C) IFN, IFN, and Mx1 expression was measured in 

whole lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 17. No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-

17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice were first 

infected with 100 pfu of influenza and then 5 x 107 CFU of MRSA 6 days later. N=4 and 9 for IL-17RC-cre- and IL-

17RC-cre+ groups, respectively unless otherwise noted, (A-B) LCN, and Reg3 expression was measured in whole 

lung by RT-PCR. Data are represented as mean±SEM, two tailed Student’s t test,  ns-not significant. 
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Figure 18. 6.3.6 Influenza-MRSA super-infection increases total number of cells in BAL fluid in 

IL-17RC-cre- mice compared to primary MRSA infection in IL-17RC-cre- mice 

 

IL-17RC-cre- and IL-17RC-cre+ (CCSPcre (-) and CCSPcre (+)) female, 6-8 weeks old mice 

were infected with either 1x108 cfu of MRSA or with 100 pfu of influenza and then 5 x 107 CFU of 

MRSA 6 days later. N=8 for CCSPcre (+) mice in each infection model. N= 10 and 5 for CCSPcre (-) 

mice in primary MRSA and influenza-MRSA super-infection models, respectively. The BAL cells 

were stained, and differential cells were counted as described in methods. Total number of cells in 

BAL fluid. Data are represented as mean ± SEM, two tailed Student’s t test, **p-value = 0.001l, ns- 

not significant.  
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9.0 Supplemental Figure 

 

Supplemental Figure 1. Global IL-17RC knockout mice have increased bacterial burden 

Wildtype and IL-17RC knockout mice male, 6-8 weeks old were infected with 1 x 108 cfu of S. 

aureus for 1 day. N=4 in both groups. Bacterial burden measured by amount of S. aureus growth from 

homogenized lung in 1:10 dilution. Data are represented as mean ± SEM, two tailed Student’s t test, *p-

value= 0.0028509. 



 73 

Bibliography 

 

1. Molinari, N.A., et al., The annual impact of seasonal influenza in the US: measuring 

disease burden and costs. Vaccine, 2007. 25(27): p. 5086-96. 

2. Van Kerkhove, M.D., et al., Estimating age-specific cumulative incidence for the 2009 

influenza pandemic: a meta-analysis of A(H1N1)pdm09 serological studies from 19 

countries. Influenza and other respiratory viruses, 2013. 7(5): p. 872-886. 

3. Heron, M., Deaths: Leading Causes for 2017. 2019, National Center for Health Statistics: 

Hyattsville, MD. p. 11. 

4. Ballinger, M.N. and T.J. Standiford, Postinfluenza bacterial pneumonia: host defenses 

gone awry. J Interferon Cytokine Res, 2010. 30(9): p. 643-52. 

5. Iwasaki, A. and P.S. Pillai, Innate immunity to influenza virus infection. Nat Rev 

Immunol, 2014. 14(5): p. 315-28. 

6. Abraham, C. and R. Medzhitov, Interactions between the host innate immune system and 

microbes in inflammatory bowel disease. Gastroenterology, 2011. 140(6): p. 1729-37. 

7. Chu, H. and S.K. Mazmanian, Innate immune recognition of the microbiota promotes 

host-microbial symbiosis. Nat Immunol, 2013. 14(7): p. 668-75. 

8. Kawasaki, T. and T. Kawai, Toll-like receptor signaling pathways. Front Immunol, 2014. 

5: p. 461. 

9. Pulendran, B. and M.S. Maddur, Innate immune sensing and response to influenza. 

Current topics in microbiology and immunology, 2015. 386: p. 23-71. 

10. Tripathi, S., M.R. White, and K.L. Hartshorn, The amazing innate immune response to 

influenza A virus infection. Innate immunity, 2015. 21(1): p. 73-98. 

11. Wu, S., J.P. Metcalf, and W. Wu, Innate immune response to influenza virus. Current 

opinion in infectious diseases, 2011. 24(3): p. 235-240. 

12. McGill, J., J.W. Heusel, and K.L. Legge, Innate immune control and regulation of 

influenza virus infections. Journal of leukocyte biology, 2009. 86(4): p. 803-812. 

13. Durbin, J.E., et al., Type I IFN modulates innate and specific antiviral immunity. Journal 

of immunology (Baltimore, Md. : 1950), 2000. 164(8): p. 4220-4228. 

14. Durbin, R.K., S.V. Kotenko, and J.E. Durbin, Interferon induction and function at the 

mucosal surface. Immunological reviews, 2013. 255(1): p. 25-39. 

15. Schoggins, J.W., Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin 

Virol, 2014. 6: p. 40-6. 

16. McHugh, K.J., et al., A novel outbred mouse model of 2009 pandemic influenza and 

bacterial co-infection severity. PloS one, 2013. 8(12): p. e82865-e82865. 

17. Dessing, M.C., et al., Monocyte chemoattractant protein 1 contributes to an adequate 

immune response in influenza pneumonia. Clinical Immunology, 2007. 125(3): p. 328-

336. 

18. Tumpey, T.M., et al., Pathogenicity of Influenza Viruses with Genes from the 1918 

Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting 



 74 

Virus Replication and Mortality in Mice. Journal of Virology, 2005. 79(23): p. 14933-

14944. 

19. Hwang, I., et al., Activation mechanisms of natural killer cells during influenza virus 

infection. PloS one, 2012. 7(12): p. e51858-e51858. 

20. Gazit, R., et al., Lethal influenza infection in the absence of the natural killer cell 

receptor gene Ncr1. Nature Immunology, 2006. 7(5): p. 517-523. 

21. Stein-Streilein, J. and J. Guffee, In vivo treatment of mice and hamsters with antibodies 

to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. The 

Journal of Immunology, 1986. 136(4): p. 1435-1441. 

22. Kohlmeier, J.E., et al., Type I interferons regulate cytolytic activity of memory CD8(+) T 

cells in the lung airways during respiratory virus challenge. Immunity, 2010. 33(1): p. 

96-105. 

23. Coro, E.S., W.L.W. Chang, and N. Baumgarth, Type I IFN Receptor Signals Directly 

Stimulate Local B Cells Early following Influenza Virus Infection. The Journal of 

Immunology, 2006. 176(7): p. 4343-4351. 

24. Kambayashi, T. and T.M. Laufer, Atypical MHC class II-expressing antigen-presenting 

cells: can anything replace a dendritic cell? Nature Reviews Immunology, 2014. 14(11): 

p. 719-730. 

25. Zhu, J., H. Yamane, and W.E. Paul, Differentiation of Effector CD4 T Cell Populations. 

Annual Review of Immunology, 2010. 28(1): p. 445-489. 

26. Chen, X., et al., Host Immune Response to Influenza A Virus Infection. Frontiers in 

Immunology, 2018. 9(320). 

27. Mukherjee, S., et al., IL-17–Induced Pulmonary Pathogenesis during Respiratory Viral 

Infection and Exacerbation of Allergic Disease. The American Journal of Pathology, 

2011. 179(1): p. 248-258. 

28. Mills, K.H.G., Regulatory T cells: friend or foe in immunity to infection? Nature Reviews 

Immunology, 2004. 4(11): p. 841-855. 

29. Antunes, I. and G. Kassiotis, Suppression of Innate Immune Pathology by Regulatory T 

Cells during Influenza A Virus Infection of Immunodeficient Mice. Journal of Virology, 

2010. 84(24): p. 12564-12575. 

30. Boyden, A.W., K.L. Legge, and T.J. Waldschmidt, Pulmonary infection with influenza A 

virus induces site-specific germinal center and T follicular helper cell responses. PloS 

one, 2012. 7(7): p. e40733-e40733. 

31. Wertheim, H.F.L., et al., Key role for clumping factor B in Staphylococcus aureus nasal 

colonization of humans. PLoS medicine, 2008. 5(1): p. e17-e17. 

32. Weidenmaier, C., et al., Role of teichoic acids in Staphylococcus aureus nasal 

colonization, a major risk factor in nosocomial infections. Nature Medicine, 2004. 10(3): 

p. 243-245. 

33. Kubica, M., et al., A potential new pathway for Staphylococcus aureus dissemination: the 

silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PloS 

one, 2008. 3(1): p. e1409-e1409. 

34. Gresham, H.D., et al., Survival of <em>Staphylococcus aureus</em> Inside Neutrophils 

Contributes to Infection. The Journal of Immunology, 2000. 164(7): p. 3713-3722. 

35. Haslinger-Löffler, B., et al., Multiple virulence factors are required for Staphylococcus 

aureus-induced apoptosis in endothelial cells. Cellular Microbiology, 2005. 7(8): p. 

1087-1097. 



 75 

36. Parker, D. and A. Prince, Staphylococcus aureus induces type I IFN signaling in 

dendritic cells via TLR9. Journal of immunology (Baltimore, Md. : 1950), 2012. 189(8): 

p. 4040-4046. 

37. Hoving, J.C., G.J. Wilson, and G.D. Brown, Signalling C-type lectin receptors, microbial 

recognition and immunity. Cellular microbiology, 2014. 16(2): p. 185-194. 

38. Volz, T., et al., Natural Staphylococcus aureus-derived peptidoglycan fragments activate 

NOD2 and act as potent costimulators of the innate immune system exclusively in the 

presence of TLR signals. The FASEB Journal, 2010. 24(10): p. 4089-4102. 

39. Lee, P.Y., et al., Type I Interferon Modulates Monocyte Recruitment and Maturation in 

Chronic Inflammation. The American Journal of Pathology, 2009. 175(5): p. 2023-2033. 

40. Masumoto, J., et al., Nod1 acts as an intracellular receptor to stimulate chemokine 

production and neutrophil recruitment in vivo. The Journal of experimental medicine, 

2006. 203(1): p. 203-213. 

41. Hassoun, A., P.K. Linden, and B. Friedman, Incidence, prevalence, and management of 

MRSA bacteremia across patient populations—a review of recent developments in MRSA 

management and treatment. Critical Care, 2017. 21(1): p. 211. 

42. Jones, M., et al., Vital Signs: Trends in Staphylococcus aureus Infections in Veterans 

Affairs Medical Centers - United States, 2005-2017. MMWR. Morbidity and mortality 

weekly report, 2019. 68(9): p. 220-224. 

43. Robinson, K.M., J.K. Kolls, and J.F. Alcorn, The immunology of influenza virus-

associated bacterial pneumonia. Curr Opin Immunol, 2015. 34: p. 59-67. 

44. Morens, D.M., J.K. Taubenberger, and A.S. Fauci, Predominant role of bacterial 

pneumonia as a cause of death in pandemic influenza: implications for pandemic 

influenza preparedness. J Infect Dis, 2008. 198(7): p. 962-70. 

45. Ghoneim, H.E., P.G. Thomas, and J.A. McCullers, Depletion of alveolar macrophages 

during influenza infection facilitates bacterial superinfections. J Immunol, 2013. 191(3): 

p. 1250-9. 

46. Robinson, K.M., et al., Influenza A virus exacerbates Staphylococcus aureus pneumonia 

in mice by attenuating antimicrobial peptide production. J Infect Dis, 2014. 209(6): p. 

865-75. 

47. Robinson, K.M., et al., Influenza A exacerbates Staphylococcus aureus pneumonia by 

attenuating IL-1beta production in mice. J Immunol, 2013. 191(10): p. 5153-9. 

48. Rouvier, E., et al., CTLA-8, cloned from an activated T cell, bearing AU-rich messenger 

RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol, 

1993. 150(12): p. 5445-56. 

49. Park, H., et al., A distinct lineage of CD4 T cells regulates tissue inflammation by 

producing interleukin 17. Nature immunology, 2005. 6(11): p. 1133-1141. 

50. Aggarwal, S. and A.L. Gurney, IL-17: prototype member of an emerging cytokine family. 

J Leukoc Biol, 2002. 71(1): p. 1-8. 

51. Aggarwal, S., et al., Interleukin-23 promotes a distinct CD4 T cell activation state 

characterized by the production of interleukin-17. J Biol Chem, 2003. 278(3): p. 1910-4. 

52. Cua, D.J. and C.M. Tato, Innate IL-17-producing cells: the sentinels of the immune 

system. Nature Reviews Immunology, 2010. 10(7): p. 479-489. 

53. Moseley, T.A., et al., Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor 

Rev, 2003. 14(2): p. 155-74. 



 76 

54. Gu, C., L. Wu, and X. Li, IL-17 family: cytokines, receptors and signaling. Cytokine, 

2013. 64(2): p. 477-85. 

55. Fossiez, F., et al., T cell interleukin-17 induces stromal cells to produce proinflammatory 

and hematopoietic cytokines. J Exp Med, 1996. 183(6): p. 2593-603. 

56. Chen, J., et al., IL-17A Induces Pro-Inflammatory Cytokines Production in Macrophages 

via MAPKinases, NF-&#954;B and AP-1. Cellular Physiology and Biochemistry, 2013. 

32(5): p. 1265-1274. 

57. Henness, S., et al., IL-17A augments TNF-α–induced IL-6 expression in airway smooth 

muscle by enhancing mRNA stability. Journal of Allergy and Clinical Immunology, 2004. 

114(4): p. 958-964. 

58. Hamada, S., et al., IL-17A Produced by γδ T Cells Plays a Critical Role in Innate 

Immunity against &lt;em&gt;Listeria monocytogenes&lt;/em&gt; Infection in the Liver. 

The Journal of Immunology, 2008. 181(5): p. 3456. 

59. Huang, W., et al., Requirement of Interleukin-17A for Systemic Anti-Candida albicans 

Host Defense in Mice. The Journal of Infectious Diseases, 2004. 190(3): p. 624-631. 

60. Hueber, W., et al., Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on 

Psoriasis, Rheumatoid Arthritis, and Uveitis. Science Translational Medicine, 2010. 

2(52): p. 52ra72-52ra72. 

61. Fala, L., Cosentyx (Secukinumab): First IL-17A Antagonist Receives FDA Approval for 

Moderate-to-Severe Plaque Psoriasis. American health & drug benefits, 2016. 9(Spec 

Feature): p. 60-63. 

62. Li, H., et al., Cloning and characterization of IL-17B and IL-17C, two new members of 

the IL-17 cytokine family. Proceedings of the National Academy of Sciences, 2000. 

97(2): p. 773-778. 

63. Zhou, J., et al., IL-17B is elevated in patients with pneumonia and mediates IL-8 

production in bronchial epithelial cells. Clinical Immunology, 2017. 175: p. 91-98. 

64. Song, X., et al., IL-17RE is the functional receptor for IL-17C and mediates mucosal 

immunity to infection with intestinal pathogens. Nature Immunology, 2011. 12(12): p. 

1151-1158. 

65. Huang, C.K., et al., Autocrine/paracrine mechanism of interleukin-17B receptor 

promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. 

Oncogene, 2014. 33(23): p. 2968-2977. 

66. Yamaguchi, Y., et al., IL-17B and IL-17C Are Associated with TNF-α Production and 

Contribute to the Exacerbation of Inflammatory Arthritis. The Journal of Immunology, 

2007. 179(10): p. 7128-7136. 

67. Starnes, T., et al., Cutting Edge: IL-17D, a Novel Member of the IL-17 Family, Stimulates 

Cytokine Production and Inhibits Hemopoiesis. The Journal of Immunology, 2002. 

169(2): p. 642-646. 

68. O’Sullivan, T., et al., Interleukin-17D Mediates Tumor Rejection through Recruitment of 

Natural Killer Cells. Cell Reports, 2014. 7(4): p. 989-998. 

69. Saddawi-Konefka, R., et al., Nrf2 Induces IL-17D to Mediate Tumor and Virus 

Surveillance. Cell Reports, 2016. 16(9): p. 2348-2358. 

70. Lee, J., et al., IL-17E, a Novel Proinflammatory Ligand for the IL-17 Receptor Homolog 

IL-17Rh1. Journal of Biological Chemistry, 2001. 276(2): p. 1660-1664. 

71. Létuvé, S., et al., IL-17E upregulates the expression of proinflammatory cytokines in lung 

fibroblasts. Journal of Allergy and Clinical Immunology, 2006. 117(3): p. 590-596. 



 77 

72. Kameyoshi, Y., et al., Cytokine RANTES released by thrombin-stimulated platelets is a 

potent attractant for human eosinophils. Journal of Experimental Medicine, 1992. 

176(2): p. 587-592. 

73. Teixeira, M.M., et al., Chemokine-induced eosinophil recruitment. Evidence of a role for 

endogenous eotaxin in an in vivo allergy model in mouse skin. The Journal of Clinical 

Investigation, 1997. 100(7): p. 1657-1666. 

74. Claudio, E., et al., The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic 

airway inflammation. Journal of immunology (Baltimore, Md. : 1950), 2009. 182(3): p. 

1617-1630. 

75. Hurst, S.D., et al., New IL-17 Family Members Promote Th1 or Th2 Responses in the 

Lung: In Vivo Function of the Novel Cytokine IL-25. The Journal of Immunology, 2002. 

169(1): p. 443-453. 

76. Fort, M.M., et al., IL-25 Induces IL-4, IL-5, and IL-13 and Th2-Associated Pathologies In 

Vivo. Immunity, 2001. 15(6): p. 985-995. 

77. Ikeda, K., et al., Mast cells produce interleukin-25 upon FcεRI-mediated activation. 

Blood, 2003. 101(9): p. 3594-3596. 

78. Ballantyne, S.J., et al., Blocking IL-25 prevents airway hyperresponsiveness in allergic 

asthma. Journal of Allergy and Clinical Immunology, 2007. 120(6): p. 1324-1331. 

79. Benatar, T., et al., IL-17E, a proinflammatory cytokine, has antitumor efficacy against 

several tumor types in vivo. Cancer Immunology, Immunotherapy, 2010. 59(6): p. 805-

817. 

80. Benatar, T., et al., Virulizin® induces production of IL-17E to enhance antitumor activity 

by recruitment of eosinophils into tumors. Cancer Immunology, Immunotherapy, 2008. 

57(12): p. 1757-1769. 

81. Saenz, S.A., M. Noti, and D. Artis, Innate immune cell populations function as initiators 

and effectors in Th2 cytokine responses. Trends in Immunology, 2010. 31(11): p. 407-

413. 

82. Neill, D.R. and A.N.J. McKenzie, Nuocytes and beyond: new insights into helminth 

expulsion. Trends in Parasitology, 2011. 27(5): p. 214-221. 

83. Starnes, T., et al., Cutting Edge: IL-17F, a Novel Cytokine Selectively Expressed in 

Activated T Cells and Monocytes, Regulates Angiogenesis and Endothelial Cell Cytokine 

Production. The Journal of Immunology, 2001. 167(8): p. 4137-4140. 

84. Hymowitz, S.G., et al., IL-17s adopt a cystine knot fold: structure and activity of a novel 

cytokine, IL-17F, and implications for receptor binding. Embo j, 2001. 20(19): p. 5332-

41. 

85. Ishigame, H., et al., Differential Roles of Interleukin-17A and -17F in Host Defense 

against Mucoepithelial Bacterial Infection and Allergic Responses. Immunity, 2009. 

30(1): p. 108-119. 

86. Jie, Z., et al., Intrahepatic Innate Lymphoid Cells Secrete IL-17A and IL-17F That Are 

Crucial for T Cell Priming in Viral Infection. The Journal of Immunology, 2014. 192(7): 

p. 3289-3300. 

87. Glatt, S., et al., Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic 

arthritis: evidence from preclinical experiments and a randomised placebo-controlled 

clinical trial that IL-17F contributes to human chronic tissue inflammation. Annals of the 

Rheumatic Diseases, 2018. 77(4): p. 523-532. 



 78 

88. Monin, L. and S.L. Gaffen, Interleukin 17 Family Cytokines: Signaling Mechanisms, 

Biological Activities, and Therapeutic Implications. Cold Spring Harbor perspectives in 

biology, 2018. 10(4): p. a028522. 

89. Yao, Z., et al., Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel 

cytokine receptor. Immunity, 1995. 3(6): p. 811-21. 

90. Toy, D., et al., Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor 

Complex. The Journal of Immunology, 2006. 177(1): p. 36-39. 

91. Kuestner, R.E., et al., Identification of the IL-17 receptor related molecule IL-17RC as 

the receptor for IL-17F. J Immunol, 2007. 179(8): p. 5462-73. 

92. Wright, J.F., et al., Identification of an interleukin 17F/17A heterodimer in activated 

human CD4+ T cells. J Biol Chem, 2007. 282(18): p. 13447-55. 

93. Wright, J.F., et al., The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through 

the IL-17RA/IL-17RC Receptor Complex. The Journal of Immunology, 2008. 181(4): p. 

2799-2805. 

94. Shi, Y., et al., A Novel Cytokine Receptor-Ligand Pair: IDENTIFICATION, 

MOLECULAR CHARACTERIZATION, AND IN VIVO IMMUNOMODULATORY 

ACTIVITY. Journal of Biological Chemistry, 2000. 275(25): p. 19167-19176. 

95. Rickel, E.A., et al., Identification of Functional Roles for Both IL-17RB and IL-17RA in 

Mediating IL-25-Induced Activities. The Journal of Immunology, 2008. 181(6): p. 4299-

4310. 

96. Maezawa, Y., et al., Involvement of TNF Receptor-Associated Factor 6 in IL-25 Receptor 

Signaling. The Journal of Immunology, 2006. 176(2): p. 1013-1018. 

97. Li, X., et al., Act1, an NF-kappa B-activating protein. Proceedings of the National 

Academy of Sciences of the United States of America, 2000. 97(19): p. 10489-10493. 

98. Gaffen, S.L., Structure and signalling in the IL-17 receptor family. Nature Reviews 

Immunology, 2009. 9(8): p. 556-567. 

99. Amatya, N., A.V. Garg, and S.L. Gaffen, IL-17 Signaling: The Yin and the Yang. Trends 

in Immunology, 2017. 38(5): p. 310-322. 

100. Rong, Z., et al., IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates 

IL-17 signaling. Cell Research, 2009. 19(2): p. 208-215. 

101. Fahy, J.V. and B.F. Dickey, Airway mucus function and dysfunction. The New England 

journal of medicine, 2010. 363(23): p. 2233-2247. 

102. Schlingmann, B., S.A. Molina, and M. Koval, Claudins: Gatekeepers of lung epithelial 

function. Seminars in Cell & Developmental Biology, 2015. 42: p. 47-57. 

103. Ryu, J.-H., C.-H. Kim, and J.-H. Yoon, Innate immune responses of the airway 

epithelium. Molecules and Cells, 2010. 30(3): p. 173-183. 

104. Holgate, S.T., The sentinel role of the airway epithelium in asthma pathogenesis. 

Immunological Reviews, 2011. 242(1): p. 205-219. 

105. Shaykhiev, R. and R.G. Crystal, Early Events in the Pathogenesis of Chronic Obstructive 

Pulmonary Disease. Smoking-induced Reprogramming of Airway Epithelial Basal 

Progenitor Cells. Annals of the American Thoracic Society, 2014. 11(Supplement 5): p. 

S252-S258. 

106. Pack, R.J., et al., The distribution and structure of cells in the tracheal epithelium of the 

mouse. Cell and Tissue Research, 1980. 208(1): p. 65-84. 



 79 

107. BOERS, J.E., A.W. AMBERGEN, and F.B.J.M. THUNNISSEN, Number and 

Proliferation of Clara Cells in Normal Human Airway Epithelium. American Journal of 

Respiratory and Critical Care Medicine, 1999. 159(5): p. 1585-1591. 

108. Rock, J.R. and B.L.M. Hogan, Epithelial Progenitor Cells in Lung Development, 

Maintenance, Repair, and Disease. Annual Review of Cell and Developmental Biology, 

2011. 27(1): p. 493-512. 

109. Ma, J., B.K. Rubin, and J.A. Voynow, Mucins, Mucus, and Goblet Cells. Chest, 2018. 

154(1): p. 169-176. 

110. Marttin, E., et al., Nasal mucociliary clearance as a factor in nasal drug delivery. 

Advanced Drug Delivery Reviews, 1998. 29(1): p. 13-38. 

111. Whitsett, J.A. and T. Alenghat, Respiratory epithelial cells orchestrate pulmonary innate 

immunity. Nature Immunology, 2015. 16(1): p. 27-35. 

112. Ramos, F.L., J.S. Krahnke, and V. Kim, Clinical issues of mucus accumulation in COPD. 

International journal of chronic obstructive pulmonary disease, 2014. 9: p. 139-150. 

113. Fahy, J.V., Goblet Cell and Mucin Gene Abnormalities in Asthma*. Chest, 2002. 122(6, 

Supplement): p. 320S-326S. 

114. Rajavelu, P., et al., Airway epithelial SPDEF integrates goblet cell differentiation and 

pulmonary Th2 inflammation. The Journal of Clinical Investigation, 2015. 125(5): p. 

2021-2031. 

115. Tanabe, T. and B.K. Rubin, Airway Goblet Cells Secrete Pro-Inflammatory Cytokines, 

Chemokines, and Growth Factors. Chest, 2016. 149(3): p. 714-720. 

116. Reid, L., et al., The Mysterious Pulmonary Brush Cell. American Journal of Respiratory 

and Critical Care Medicine, 2005. 172(1): p. 136-139. 

117. Saunders, C.J., S.D. Reynolds, and T.E. Finger, Chemosensory Brush Cells of the 

Trachea. A Stable Population in a Dynamic Epithelium. American Journal of Respiratory 

Cell and Molecular Biology, 2013. 49(2): p. 190-196. 

118. Krasteva, G., et al., Cholinergic chemosensory cells in the trachea regulate breathing. 

Proceedings of the National Academy of Sciences of the United States of America, 2011. 

108(23): p. 9478-9483. 

119. Yokomizo, T., M. Nakamura, and T. Shimizu, Leukotriene receptors as potential 

therapeutic targets. The Journal of clinical investigation, 2018. 128(7): p. 2691-2701. 

120. Bennett, M. and D.W. Gilroy, Lipid Mediators in Inflammation. Microbiology Spectrum, 

2016. 4(6). 

121. Bankova, L.G., et al., The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–

producing airway brush cells leading to type 2 inflammation. Science Immunology, 

2018. 3(28): p. eaat9453. 

122. Williams, M.C., Alveolar Type I Cells: Molecular Phenotype and Development. Annual 

Review of Physiology, 2003. 65(1): p. 669-695. 

123. Dobbs, L.G., Isolation and culture of alveolar type II cells. American Journal of 

Physiology-Lung Cellular and Molecular Physiology, 1990. 258(4): p. L134-L147. 

124. Ramirez, M.I., et al., T1α, a lung type I cell differentiation gene, is required for normal 

lung cell proliferation and alveolus formation at birth. Developmental Biology, 2003. 

256(1): p. 62-73. 

125. Barkauskas, C.E., et al., Type 2 alveolar cells are stem cells in adult lung. The Journal of 

Clinical Investigation, 2013. 123(7): p. 3025-3036. 



 80 

126. Tilley, A.E., et al., Cilia Dysfunction in Lung Disease. Annual Review of Physiology, 

2015. 77(1): p. 379-406. 

127. Rock, J.R., et al., Basal cells as stem cells of the mouse trachea and human airway 

epithelium. Proceedings of the National Academy of Sciences, 2009. 106(31): p. 12771-

12775. 

128. Rackley, C.R. and B.R. Stripp, Building and maintaining the epithelium of the lung. The 

Journal of Clinical Investigation, 2012. 122(8): p. 2724-2730. 

129. Crystal, R.G., Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive 

Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2014. 

190(12): p. 1355-1362. 

130. Karnati, S., et al., Postnatal development of the bronchiolar club cells of distal airways in 

the mouse lung: stereological and molecular biological studies. Cell and Tissue 

Research, 2016. 364(3): p. 543-557. 

131. Fanucchi, M.V., et al., Naphthalene Cytotoxicity of Differentiating Clara Cells in 

Neonatal Mice. Toxicology and Applied Pharmacology, 1997. 144(1): p. 96-104. 

132. Heaton, N.S., et al., Long-term survival of influenza virus infected club cells drives 

immunopathology. Journal of Experimental Medicine, 2014. 211(9): p. 1707-1714. 

133. Zuo, W.-L., et al., Ontogeny and Biology of Human Small Airway Epithelial Club Cells. 

American Journal of Respiratory and Critical Care Medicine, 2018. 198(11): p. 1375-

1388. 

134. Aryal, G., Y. Kimula, and M. Koike, Ultrastructure of Clara cells stimulated by 

isoproterenol. J Med Dent Sci, 2003. 50(3): p. 195-202. 

135. Laucho-Contreras, M.E., et al., Protective role for club cell secretory protein-16 (CC16) 

in the development of COPD. European Respiratory Journal, 2015. 45(6): p. 1544-1556. 

136. Nafissi, N. and R. Slavcev, Bacteriophage recombination systems and biotechnical 

applications. Applied Microbiology and Biotechnology, 2014. 98(7): p. 2841-2851. 

137. Oberdoerffer, P., et al., Unidirectional Cre‐mediated genetic inversion in mice using the 

mutant loxP pair lox66 / lox71. Nucleic Acids Research, 2003. 31(22): p. e140-e140. 

138. Li, H., et al., Cre-mediated recombination in mouse Clara cells. Genesis (New York, 

N.Y. : 2000), 2008. 46(6): p. 300-307. 

139. Ragaller, M. and T. Richter, Acute lung injury and acute respiratory distress syndrome. 

Journal of emergencies, trauma, and shock, 2010. 3(1): p. 43-51. 

140. Crowe, C.R., et al., Critical role of IL-17RA in immunopathology of influenza infection. 

Journal of immunology (Baltimore, Md. : 1950), 2009. 183(8): p. 5301-5310. 

141. Yang, M.-L., et al., IL-6 ameliorates acute lung injury in influenza virus infection. 

Scientific Reports, 2017. 7(1): p. 43829. 

142. Narasaraju, T., et al., Excessive Neutrophils and Neutrophil Extracellular Traps 

Contribute to Acute Lung Injury of Influenza Pneumonitis. The American Journal of 

Pathology, 2011. 179(1): p. 199-210. 

143. Imai, Y., et al., Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a 

Key Pathway of Acute Lung Injury. Cell, 2008. 133(2): p. 235-249. 

144. Li, C., et al., IL-17 response mediates acute lung injury induced by the 2009 Pandemic 

Influenza A (H1N1) Virus. Cell Research, 2012. 22(3): p. 528-538. 

145. Gopal, R., et al., Mucosal Pre-Exposure to Th17-Inducing Adjuvants Exacerbates 

Pathology after Influenza Infection. The American Journal of Pathology, 2014. 184(1): p. 

55-63. 



 81 

146. Milner, J.D., N.G. Sandler, and D.C. Douek, Th17 cells, Job's syndrome and HIV: 

opportunities for bacterial and fungal infections. Current opinion in HIV and AIDS, 

2010. 5(2): p. 179-183. 

147. Kudva, A., et al., Influenza A Inhibits Th17-Mediated Host Defense against Bacterial 

Pneumonia in Mice. The Journal of Immunology, 2011. 186(3): p. 1666-1674. 

148. Lee, B., et al., STAT1 Is Required for Suppression of Type 17 Immunity during Influenza 

and Bacterial Superinfection. ImmunoHorizons, 2017. 1(6): p. 81-91. 

149. Rao, X., et al., An improvement of the 2ˆ(-delta delta CT) method for quantitative real-

time polymerase chain reaction data analysis. Biostatistics, bioinformatics and 

biomathematics, 2013. 3(3): p. 71-85. 

150. Korkmaz, B., T. Moreau, and F. Gauthier, Neutrophil elastase, proteinase 3 and 

cathepsin G: physicochemical properties, activity and physiopathological functions. 

Biochimie, 2008. 90(2): p. 227-242. 

151. Korkmaz, B., et al., Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic 

targets in human diseases. Pharmacological reviews, 2010. 62(4): p. 726-759. 

152. Chen, K., et al., IL-17 Receptor Signaling in the Lung Epithelium Is Required for 

Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. 

Cell host & microbe, 2016. 20(5): p. 596-605. 

153. Sica, A., et al., Macrophage polarization in pathology. Cellular and Molecular Life 

Sciences, 2015. 72(21): p. 4111-4126. 

154. Spiga, L. and S.E. Winter, Using Enteric Pathogens to Probe the Gut Microbiota. Trends 

in Microbiology, 2019. 27(3): p. 243-253. 

155. Sokol, C.L. and A.D. Luster, The chemokine system in innate immunity. Cold Spring 

Harbor perspectives in biology, 2015. 7(5): p. a016303. 

156. Chang, Y.-J., et al., Innate lymphoid cells mediate influenza-induced airway hyper-

reactivity independently of adaptive immunity. Nature Immunology, 2011. 12(7): p. 631-

638. 

157. Kostic, A.D., R.J. Xavier, and D. Gevers, The Microbiome in Inflammatory Bowel 

Disease: Current Status and the Future Ahead. Gastroenterology, 2014. 146(6): p. 1489-

1499. 

158. Yui, S., Y. Nakatani, and M. Mikami, Calprotectin (S100A8/S100A9), an Inflammatory 

Protein Complex from Neutrophils with a Broad Apoptosis-Inducing Activity. Biological 

and Pharmaceutical Bulletin, 2003. 26(6): p. 753-760. 

159. Ehrchen, J.M., et al., The endogenous Toll–like receptor 4 agonist S100A8/S100A9 

(calprotectin) as innate amplifier of infection, autoimmunity, and cancer. Journal of 

Leukocyte Biology, 2009. 86(3): p. 557-566. 

160. Goetz, D.H., et al., The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that 

Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell, 2002. 10(5): p. 

1033-1043. 

161. Wang, X.-Y., et al., Novel method for isolation of murine clara cell secretory protein-

expressing cells with traces of stemness. PloS one, 2012. 7(8): p. e43008-e43008. 

162. Goepfert, A., et al., Structural Analysis Reveals that the Cytokine IL-17F Forms a 

Homodimeric Complex with Receptor IL-17RC to Drive IL-17RA-Independent Signaling. 

Immunity, 2020. 52(3): p. 499-512.e5. 

 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Figures
	List of Supplemental Figures
	Preface
	1.0 Introduction
	1.1 Global Impact of Influenza
	1.2 Influenza Viral Cycle
	1.3 Immune Response to Influenza
	1.4 Methicillin Resistant Staphylococcus Aureus  (MRSA)
	1.5 MRSA Recognition and Immune Response
	1.6 Influenza Induced Secondary Bacterial Infections

	2.0 Interleukin-17
	2.1 IL-17 Cytokines
	2.1.1 IL-17A
	2.1.2 IL-17B and IL-17C
	2.1.3 IL-17 D
	2.1.4 IL-17E
	2.1.5 IL-17F

	2.2 IL-17 Receptors
	2.2.1 IL-17RA
	2.2.2 IL-17RB
	2.2.3 IL-17RC
	2.2.4 IL-17RD
	2.2.5 IL-17RE


	3.0 Lung Epithelium
	3.1 Goblet Cells
	3.2 Brush Cells
	3.3 Alveolar Type I and II Cells
	3.4 Multiciliated Cells
	3.5 Basal Cells
	3.6 Club Cells

	4.0 Cre-Recombination
	4.1 Cre-Recombination in this Study
	4.2 Hypotheses
	4.2.1 Primary Influenza
	4.2.2 Primary MRSA Infection
	4.2.3 Influenza-MRSA Super-infection


	5.0 Methods
	5.1 Mice
	5.2 Infections
	5.2.1 Influenza A PR/8/34 H1N1 infection
	5.2.2 MRSA USA300

	5.3 Lung inflammation measurement
	5.3.1 Bronchoalveolar lavage fluid measurement
	5.3.2 Gene expression via RT-PCR

	5.4 Statistical Analysis

	6.0 Results
	6.1 Primary Flu Infection
	6.1.1 No difference in weight loss or viral burden in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.1.2 IL-17A levels and downstream proinflammatory cytokine expression levels in the lungs are the same between IL-17RC-cre+ and IL-17RC-cre- mice
	6.1.3 No change in neutrophil chemokines or neutrophilic activity associated gene expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.1.4 No difference in cellular makeup of bronchoalveolar lavage fluid between IL-17RC-cre+ and IL-17RC-cre- mice

	6.2 Primary MRSA Infection
	6.2.1 No difference in lung bacterial burden or weight loss between IL-17RC-cre+ and IL-17RC-cre- mice
	6.2.2 No difference in gene expression levels of IL-17A and downstream proinflammatory cytokines in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.2.3 No difference in recruitment of neutrophils, lymphocytes, or macrophages to the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.2.4 IL-17RC-cre+ have reduced mannose receptor c type 2 gene expression in the lungs, but no changes in other M2 macrophage markers or M1 macrophage marker Nos2
	6.2.5 No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice

	6.3 Influenza-MRSA Super Infection
	6.3.1 No differences in weight loss, viral burden, or bacterial burden between IL-17RC-cre+ and IL-17RC-cre- mice
	6.3.2 No differences in IL-17A or TNF- expression in the lungs, nor any differences in total cells in BAL between IL-17RC-cre+ and IL-17RC-cre- mice
	6.3.3 No differences in the macrophage and neutrophil marker expressions in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.3.4 No difference in the expression of interferons or downstream interferon induced gene expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.3.5 No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	6.3.6 Influenza-MRSA super-infection increases total number of cells in BAL fluid in IL-17RC-cre- mice compared to primary MRSA infection in IL-17RC-cre- mice


	7.0 Discussion
	8.0 Figures
	8.1 Primary Flu Infection
	Figure 1. No difference in weight loss or viral burden in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 2. IL-17A levels and downstream proinflammatory cytokine expression levels in the lungs are the same between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 3. No change in neutrophil chemokines or neutrophilic activity associated gene expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 4. No difference in cellular makeup of bronchoalveolar lavage fluid between IL-17RC-cre+ and IL-17RC-cre- mice

	8.2 Primary MRSA Infection
	Figure 5. No difference in weight loss or lung bacterial burden between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 6. No difference in gene expression levels of IL-17A and downstream proinflammatory cytokines in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 7. No difference in recruitment of neutrophils, lymphocytes, or macrophages to the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 8. No difference in cellular composition of BAL fluid between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 9. No difference in neutrophil chemokine or neutrophil activity markers' expression levels between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 10. IL-17RC-cre+ have reduced mannose receptor c type 2 gene expression in the lungs, but no changes in other M2 macrophage markers or M1 macrophage marker Nos2
	Figure 11. No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice

	8.3 Influenza-MRSA Super-infection
	Figure 12. No differences in weight loss, viral burden, or bacterial burden between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 13. No differences in IL-17A or TNF- expression in the lungs, nor any differences in total cells in BAL between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 14. No differences in the macrophage marker expressions in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 15. No differences in the neutrophil marker expressions in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 16. No difference in the expression of interferons or downstream interferon induced gene expression levels in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 17. No differences in antimicrobial peptide expression in the lungs between IL-17RC-cre+ and IL-17RC-cre- mice
	Figure 18. 6.3.6 Influenza-MRSA super-infection increases total number of cells in BAL fluid in IL-17RC-cre- mice compared to primary MRSA infection in IL-17RC-cre- mice


	9.0 Supplemental Figure
	Supplemental Figure 1. Global IL-17RC knockout mice have increased bacterial burden

	Bibliography



