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Abstract 

Robustness in the Life Sciences: Issues in Modeling and Explanation 

 

Morgan K. Thompson, PhD 

 

University of Pittsburgh, 2020 

 

 

 

My dissertation introduces two new accounts of how robustness can be used to identify 

epistemically trustworthy claims. Through an analysis of research practices in the life sciences, I 

focus on two main senses of robustness: robust reasoning in knowledge generating inferences and 

explanatory strategies for phenomena that are themselves robust. First, I provide a new account of 

robustness analysis (called ‘scope robustness analysis’), in which researchers use empirical 

knowledge to constrain their search for possible models of the system. Scope robustness analysis 

is useful for scientific discovery and pursuit whereas current accounts of robustness analysis are 

useful for confirmation. Second, I provide a new account of how researchers use different methods 

to produce the same result (a research strategy called ‘triangulation’). My account makes two 

contributions: I criticize a prominent account of the diversity criterion for methods because it 

analyzes an inferential strategy (i.e., eliminative inference) distinct from the inferential strategy 

underlying triangulation (i.e., common cause inductive inferences). My account also better 

explains how triangulation can fail in practice by assessing points of epistemic risk, which I 

demonstrate by applying it to implicit attitude research. Finally, I contribute to a debate about 

another sense of robustness: phenomena that occur regardless of changes in their component parts 

and activities. I argue that some robust phenomena in network neuroscience are not best explained 

mechanistically by citing their constituent parts (e.g. individual neurons) and their activities, but 

rather by appealing to features of the connectivity among brain areas.  
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1.0 Introduction 

Scientific investigation comes with epistemic risk. Researchers are often in a position 

where they do not know how their methods work or they find their methods are prone to certain 

types of error. Yet, it is these fallible methods upon which we build our theories and construct 

scientific knowledge. To sort through this epistemic uncertainty, researchers need strategies and 

heuristics to sort noise and error from phenomena of interest. A variety of practices that fall under 

the term ‘robustness’ purport to play this role. 

Robustness is broadly the invariance of a phenomenon, a result, or a prediction over 

variation. Robustness is said to help distinguish reliable claims from unreliable claims. It can both 

(1) guide how we search for robust results in our scientific investigations and (2) be a hallmark of 

phenomena that we’d like to explain.  

‘Robustness reasoning’ is the idea that some claim is more strongly supported by multiple 

lines of argument or evidence than a single line of argument or evidence alone. Consider how this 

reasoning functions when evaluating the evidence provided by eye witnesses of a crime. Multiple 

independent eye witnesses provide much better evidence that the accused likely committed the 

crime than a single eye witness alone. However, as this example illustrates, it is important that 

these eye witnesses base their testimony on independent knowledge. If the eye witnesses talk and 

come to consensus about what they’ve seen before providing their testimony, then the evidence 

that the accused committed the crime is diminished. After all, it could be that one witness swayed 

the others with false information or that all of the witnesses colluded.  

Robustness reasoning is particularly useful in science, where it can help resolve issues 

associated with epistemic uncertainty. Scientists use robust reasoning when they employ multiple 
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methods to investigate the same phenomenon or multiple models to make predictions about the 

same system. ‘Robustness analysis’ refers to the practice of using robustness reasoning over 

differences in modeling assumptions; ‘methodological triangulation’ refers to the practice of using 

robustness reasoning over differences in methods (including experimental protocols and scientific 

instruments). 

Philosophical accounts of robustness in science owe much to William Wimsatt (1981). 

According to Wimsatt (1981, 62), robustness reasoning is characterized by the following activities:  

(1) To analyze a variety of independent derivation, identification, or measurement 

processes.  

(2) To look for and analyze things which are invariant over or identical in the conclusions 

or results of these processes.  

(3) To determine the scope of the processes across which they are invariant and the 

conditions on which their invariance depends.  

(4) To analyze and explain any relevant features of invariance. 

 

Focused on a grand unifying project to demonstrate the importance of robustness to scientific 

practice, Wimsatt brings together cases ranging from using different sensory modalities to perceive 

some property, different experimental methods to generate a phenomenon, the discovery of 

invariance of a law or regularity over variation at a lower scale, and deriving the same result from 

multiple models. According to Wimsatt (1981, 63), all types of robustness have a common function 

in: 

distinguishing of the real from the illusory; the reliable from the unreliable; the objective 

from the subjective; the object of focus from artifacts of perspective; and, in general, that 

which is regarded as ontologically and epistemologically trustworthy and valuable from 

that which is unreliable, ungeneralizable, worthless, and fleeting. 

 

Wimsatt himself was influenced by Donald Campbell (Campbell, 1969; Campbell & Fiske, 1959) 

and Richard Levins (1966). Campbell and Levins form the two central figures inspiring much of 

the work on robustness since. However, the influence of Campbell’s work has been less recognized 

in the philosophical literature on robustness than the influence of Levins’s work. 
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Campbell (1969) views robustness as multiple independent and imperfect measures that 

can be used to bootstrap ourselves into scientific understanding. Campbell introduces his ideas of 

robustness as multiple operationalism, stemming from operationalism in psychology and logical 

positivism more broadly (see Feest 2005). Operationalism holds that the meaning of a term can be 

defined by a measurement procedure. Multiple operationalism recognizes that terms can be 

operationalized in a variety of ways and so, denies that terms get their meaning from operational 

definitions. Instead, returning to Campbell’s (1969, 33) specific multiple operationalism, he 

describes the problem as follows:  

 [W]e have only other invalid measures against which to validate our tests; we have no 

‘criterion’ to check them against… In this predicament, great inferential strength is added 

when each theoretical parameter is exemplified in 2 or more ways, each mode being as 

independent as possible of the other, as far as the theoretically irrelevant components are 

concerned. 

 

I will return to Campbell’s work particularly in Chapter 3. 

Levins (1966) inspired most of the philosophical work on robustness reasoning in modeling 

(i.e., robustness analysis). When modeling complex systems in evolutionary biology, Levins 

(1966, 423) claimed that “our truth is the intersection of independent lies.” That is, it is a problem 

that all of our models are strictly speaking false, in so far as they have simplifying abstractions and 

misleading idealizations, when we are often not in a position to tell if the results of our models are 

due to idealizing assumptions or to core features of the model. However, the problem can be 

addressed by using multiple models of the same system and looking for convergence in their 

results. If none of the idealizations in our models make a difference to this convergent result, then 

we can be more confident in their results.  

My dissertation seeks to clarify some of the ideas in Wimsatt’s work on robustness. First, 

I continue Wimsatt’s emphasis on how robustness can be “illusory” (Wimsatt 1981, 64) in my 
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account of methodological triangulation (Chapter 3). Second, in my discussion of implicit attitudes 

in Chapter 3, I bring Campbell’s ideas back to the fore in the philosophical literature on robustness, 

while the philosophical literature on robustness since Wimsatt has largely taken inspiration from 

Levins’s work (e.g., Weisberg 2013). Finally, Wimsatt’s work is again influential in my discussion 

of the explanation of robust phenomena in Chapter 4.  

These senses of robustness reasoning are also related to robust phenomena. Wimsatt (1981, 

79) discusses the robustness of some phenomena: “upper-level phenomena and laws [have] a 

certain insulation from (through their invariance over: robustness again!) lower-level changes and 

generates a kind of explanatory and dynamic (causal) autonomy of the upper-level phenomena and 

processes.” In other words, some phenomena are stable over changes in their initial conditions, 

boundary conditions, or perhaps the organization of components and activities that produce them. 

One question that arises is how best to explain robust phenomena. Much of this debate has played 

out in terms of the scope of the mechanistic account of explanation. Some mechanists claim that 

all explanations are mechanistic—including explanations of robust phenomena. Some critics take 

their arguments to commit them to the idea that providing more detailed information about some 

phenomena always gives a better explanation. 

1.1  Outline 

This dissertation analyzes the concept of robustness, or the invariance of some feature 

despite variation in other features, in scientific practice. There are two main senses of robustness 

in science: robust reasoning and phenomena that are themselves robust. My dissertation covers 
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each sense in turn. My central aim in this dissertation is to expand and explicate the utility of 

robustness in science. In the case of robustness analysis, I argue that it is a useful strategy for 

contexts of discovery and pursuit, whereas the received view in philosophy holds that it is useful 

in contexts of justification. In the case of triangulation, I argue that it is a strategy more prone to 

inferential risks than philosophers of science have recognized. And in the explanation of some 

robust phenomena, I argue that some are best explained non-mechanistically. 

I examine two scientific subfields in my analysis of how robustness is utilized during 

scientific investigation and how robust phenomena are explained. I consider both network 

neuroscience and social psychology. In both subfields, there is epistemic uncertainty about the 

methods and models employed. They are rife with robustness reasoning and in many cases, also 

aim for explanation of robust phenomena.  

This dissertation proceeds in three chapters: Chapter 2 proposes a new type of robustness 

analysis that is useful in hypothesis selection rather than for the confirmation of some hypothesis 

or elaboration of a robust theorem. Chapter 3 provides a new account of triangulation focused on 

epistemic risk that aims to show some of the many ways triangulation can fail in practice. Finally, 

in Chapter 4, I argue that topological explanation is an alternative to mechanistic explanation and 

provide a case of topological explanation from network neuroscience. Below I discuss each chapter 

in more detail. 

In Chapter 2, my work examines how the epistemic context of research projects affects the 

practice of searching for invariance between some result and set of models. When researchers have 

multiple models of a target system but are unsure which model best suits their purposes, they may 

examine whether all the models make some common prediction or have some common property. 

If convergence is found, an inference from the models to the predicted outcome or the attribution 
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of the property to the system is robust over variation among the models. Most work on robustness 

analysis has focused on whether convergence on results from multiple, diverse models can provide 

confirmation, and has thus examined robustness in the context of confirmatory science (where the 

goal is to support or undermine hypotheses). I argue that searching for a set of models that make 

the same prediction or have a common property can also be fruitful in contexts of scientific 

discovery and pursuit, particularly when empirical constraints are used to identify a set of possible 

models and rule out other models. Thus, I identify and characterize a new type of robustness 

analysis called ‘scope robustness analysis’. I demonstrate that researchers use scope robustness 

analysis in assessing the relative contributions of generating principles on the organization of the 

C. elegans nervous system. 

Robustness analysis is a process by which researchers search for a relation of invariance 

between a set of models of the same target system and some property or prediction. In traditional 

robustness analysis, it is determined whether some property or prediction is invariant over the set 

of models, which have varied assumptions. Traditional robustness analysis has been characterized 

by many philosophers on the basis of examples from climate science, biology, and economics (e.g., 

Lloyd 2015; Parker 2011; Weisberg and Reisman 2008; Kuorikoski, Lehtinen, and Marchionni 

2010; Wimsatt 1981). Weisberg (2006; 2013; Weisberg and Reisman 2008; influenced by Levins 

1966) offers the most influential account in the philosophical literature of the process by which 

researchers make predictions about a target system or ascribe a property to it from a set of models. 

The set of models must represent the same target system, but the models may make heterogeneous 

assumptions about it.  

Much of the recent discussion of traditional robustness analysis has focused on whether 

(and how) agreement (or convergence) among the models confirms the ascription of some property 
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to the target (Houkes & Vaesen, 2012; Lloyd, 2015; Odenbaugh & Alexandrova, 2011; Orzack & 

Sober, 1993; Parker, 2011; Schupbach, 2015). For example, Orzack and Sober (1993) claim that 

convergence alone cannot confirm the ascription of a feature to the target unless all possible 

models of the target system are used in the analysis, which is almost never the case. Alternately, 

Lloyd (2015) argues that convergence among models on some common property or prediction can 

confirm the ascription of some feature to the target system, but only in conjunction with 

independent evidence for the shared model assumptions.   

In Chapter 3, my primary contribution is a new account of triangulation that explains how 

the practice of triangulation can fail. To understand why this contribution is important for the 

literature on triangulation, I first explain and defend the diversity criterion in triangulation. Exactly 

how to understand what it means for methods to be sufficiently diverse for triangulation to lead to 

successful inferences has been the focus of the philosophical literature on triangulation. Most 

philosophers agree that triangulation (and robustness analyses, as well) require methods that make 

diverse assumptions. The simplest interpretation of this criterion is that each method needs to have 

completely independent assumptions. But it is unhelpful because it would mean triangulation will 

almost always fail to employ sufficiently diverse methods. Sometimes this is cashed out in terms 

of confirmational diversity (Fitelson, 2001; Lloyd, 2015). Otherwise, it is often cashed out in terms 

of the methods being subject to different sources of error (Wimsatt, 1981). A new account of the 

diversity criterion holds that only methods that could provide discriminating evidence between the 

hypothesis of interest and an alternative explanation are sufficiently diverse (Schupbach, 2015, 

2018). In this chapter, I argue that Schupbach’s argument for the new explanatory criterion of 

diversity changes the topic from triangulation to eliminative inference.  
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I also introduce a new account of triangulation focused on types of epistemic risk and the 

locations they arise during the research process. I use this account of triangulation to analyze the 

failure of the triangulation argument for implicit attitudes. In particular, I argue that there are at 

least two types of epistemic risk that arise in implicit attitude research: (i) the risk that data cannot 

justifiably serve as evidence for the same hypothesis and (ii) the risk that there is insufficient 

evidence to infer the presence of the phenomenon due to the presence of other plausible 

hypotheses. 

Finally, in Chapter 4 I analyze an explanation of the pattern of robustness and vulnerability 

in the human macroscale brain. My work draws on cases in network neuroscience to argue that the 

organization of the macroscale human brain, when considered from a network perspective, 

explains the pattern of robustness and vulnerability without appealing to cellular or molecular 

details. As a result, I argue that there are cases of non-mechanistic explanation in neuroscience. 

Many mechanists believe that robust phenomena are best explained by mechanistic 

explanation, which describes how entities and activities in a particular organization produce the 

robust phenomenon. In neuroscience, Kaplan and Craver (2011) claim that all explanations are 

mechanistic. Other philosophers of science (Batterman & Rice, 2014; Huneman, 2010; Ross, 

2015) argue that some explanations are not mechanistic by presenting various purported counter-

examples of explanations that do not appeal to a system’s entities and activities nor make use of 

heuristics like decomposition (Bechtel & Abrahamsen, 1991). Mechanists tend to respond to these 

critiques by arguing that the counterexamples are either (i) not explanatory or (ii) mechanistic 

explanations.  

One alternative type of explanation that has been proposed in support of the counter-

examples raised is topological explanation (Huneman, 2010, 2015). While mechanistic 
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explanations explain in virtue of the productive organization of components and activities of a 

system, topological explanations explain solely in virtue of the topological properties of the 

system. Topological properties are general properties of some system’s non-spatial organization, 

often concerning the connectedness of elements in the system. I argue that topological explanations 

are explanatory, at least in some cases, because they meet two norms of explanation that are 

accepted by many mechanists: (1) answering w-questions and (2) the asymmetry of explanation. I 

argue that some cases of topological explanation are not mechanistic because they include so few 

mechanistic details.  
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2.0 Scope Robustness Analysis: Modeling Possibilities 

I argue that there is a role for robustness analysis in discovery and pursuit that has not yet 

been explored in the philosophical literature and is distinct from traditional accounts of robustness 

analysis. My account—scope robustness analysis—and the received view are distinct in the 

following ways: appropriate in different epistemic situations, have different success and failure 

conditions, and have different functions. Scope robustness analysis better accounts for robustness 

analysis used to explore growth principles in network neuroscience and biology where well 

accepted models of the target system already exist (e.g., C. elegans wiring diagram).  

2.1 Introduction 

Robustness analysis is a process by which researchers search for a relation of invariance 

between a set of models of the same target system and some property or prediction. In traditional 

robustness analysis, it succeeds when some property or prediction is invariant over the set of 

models, which have varied assumptions. If not all models of the target system have the same 

properties or make the same predictions, then the set of assumptions that differ among them should 

be re-examined. If all of the models do converge on some property or prediction despite their 

different modeling assumptions and the set of models are all plausible models of the target system, 

then perhaps there is defeasible reason to ascribe the property to the target system.  

I argue that some cases of robustness analysis (‘scope robustness analysis’) are not well-

described by traditional accounts of robustness analysis. In fact, we need a new type of robustness 
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analysis to account for this practice and its utility. I describe the two types in section 2.2. Then I 

describe existing views on modeling possibilities, such as how-possibly explanations and 

perspectival modeling in section 2.3. Scope robustness analysis is the practice of investigating the 

scope of possible models of a system for which some particular known property or observed 

outcome is invariant. The research questions and epistemic contexts of network neuroscience make 

the subfield particularly apt for scope robustness analysis. I illustrate scope robustness analysis 

with a case from network neuroscience in section 2.4. The two types of robustness analysis are 

most appropriate when researchers are in different epistemic situations regarding the target system, 

have different success and failure conditions, and follow different rules for defining the set of 

models explored. In section 2.5 apply these criteria to argue that the case from section 2.4 is best 

seen as an example of scope robustness analysis.  Then I consider objections to my claim that there 

are two types of robustness analysis in section 2.6. 

2.2 Two Types of Robustness Analysis 

Here I describe the predominant view and cases of robustness analysis, which I call 

‘traditional robustness analysis.’ Then I introduce my new account of ‘scope robustness analysis.’ 

On my view, it is fruitful to view general robustness analysis as: the search for an invariance 

relation between a set of models and some property or prediction. 
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2.2.1  Traditional Robustness Analysis 

Call it ‘traditional robustness analysis’ when researchers are investigating whether some 

property of interest X is invariant over a set of models that make different assumptions. Woodward 

(2006) calls this general version of robustness analysis ‘inferential robustness’. Traditional 

robustness analysis has been characterized by many philosophers using cases from climate science, 

biology, and economics (e.g., Lloyd 2015; Parker 2011; Kuorikoski, Lehtinen, and Marchionni 

2010).  

In more sophisticated forms of traditional robustness analysis, it involves the search for 

robust relationships between parts of the model (i.e., particular assumptions) and the results of 

interest while altering other assumptions of the models. Traditional robustness analysis can 

demonstrate the extent of reliability of our inferences from assumptions in our models to new 

predictions, or in the more sophisticated version, causal claims.   

Weisberg (2006; 2013; Weisberg and Reisman 2008; influenced by Levins 1966) offers 

the most influential account of the sophisticated view. According to Weisberg, researchers can 

identify and assess the stability of successful inferences from some features of the models in the 

set to some properties or predictions of the models (call these inferences ‘robust theorems’). The 

set of models must represent the same target system but make heterogeneous assumptions about 

the system.  

Weisberg (2006) provides four-step procedure for robustness analysis: 

(1) Determine whether a robust property or prediction (RP) follows from each [model in 

the set] M1, M2, …, Mn; 

(2) Determine whether M1, M2, …, Mn share a common core set of assumptions (CC); 

(3) Formulate a ‘robust theorem’ connecting CC and RP using the following general form: 

‘Ceteris paribus, if CC obtains, then RP will obtain’;  

(4)  [Optional] Assess the scope and strength of robust theorem by analyzing stability of 

relationship between common structure and robust property. 
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The fourth and final step of in inferential robustness is optional, but it involves determining 

the limits of the application of the robust theorem. Here Weisberg acknowledges that “[o]bviously 

every model cannot be investigated,” so instead researchers can selectively assess the limits of the 

robust theorem (2013, 159). This exploration will determine the assumptions under which the 

robustness of the theorem fails. If a particularly wide investigation is undertaken, then researchers 

might replace the ceteris paribus clause in the robust theorem with particular conditions under 

which the inference holds. 

In biological modeling, Weisberg and Reisman (2008) note that the Lotka-Volterra 

principle holds across a variety of predatory-prey interaction models with different assumptions.1 

The Lotka-Volterra principle states (Weisberg, 2006, 737): “Ceteris paribus, if the abundance of 

predators is controlled mostly by the growth rate of the prey and the abundance of the prey 

controlled mostly by the death rate of predators, then a general pesticide will increase the 

abundance of the prey and decrease the abundance of predators.” The robust theorem for Lotka-

Volterra models demonstrates a causal relationship between growth rates, death rates, and 

population levels of predators and prey. It is general in the sense that it can apply to many different 

actual and possible systems. 

 

1 Here and throughout I assume that varying modeling assumptions results in distinct models. This position makes 

sense of the use of multiple models in these classic robustness analysis cases. Model families are the general types or 

categories of models with small changes in parameters or minor assumption changes. However, my argument does 

not hinge on this claim. If the reader finds it unpalatable to proliferate the number of models, then they can translate 

many of my claims about robustness analysis into their own terminology according to their favorite theory of model 

individuation. For example, if new models are created only when varying the value of biologically significant 

variables, then scope robustness analysis might be referred to as ‘sensitivity analysis’ on some views (e.g., Raerinne, 

2013, 289-290). Still there are important differences between the way that sensitivity analysis is typically characterized 

(as checking the stability of a model’s results under changes in initial and boundary conditions) compared to features 

of scope robustness analysis (as examining the ability of different principles (or the extent of their contribution) to 

produce the result). 
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Ultimately, Weisberg’s account of robustness analysis is a special case of traditional 

robustness analysis in which all the models have an additional commonality (the CC) beyond the 

robust property or prediction and thus, a robust theorem can be defined. This aspect of Weisberg’s 

account also inspired Knuuttila & Loettgers's (2011) account of causal isolation robustness 

analysis, wherein researchers aim to identify the core causal mechanism. Robustness analysis is 

used to isolate the core causal mechanism by searching for what causal features are common to all 

models that produce the result, but unlike Weisberg’s robustness analysis, Knuuttila and Loettgers 

claim that causal isolation robustness analysis does not aim to confirm the common result. Instead, 

the focus is to sufficiently isolate the causal mechanism producing the common result, which 

Knuuttila and Loettgers recognize will often require the use of empirical evidence. Raerinne 

(2013) calls this sufficient parameter robustness analysis.  

Much of the recent discussion of traditional robustness analysis has focused on whether it 

provides empirical confirmation, non-empirical confirmation, or increases the reliability of our 

inferences (Houkes & Vaesen, 2012; Lloyd, 2015; Orzack & Sober, 1993; Parker, 2011; 

Schupbach, 2015).2 Most interlocutors agree robustness analysis alone does not provide empirical 

confirmation. However, some philosophers elaborate views on how robustness analysis could 

provide confirmation indirectly and/or in conjunction with empirical support for modeling 

assumptions without relying on a notion of non-empirical confirmation (Lloyd, 2015; Weisberg, 

2013). There has been comparatively little focus on how robustness analysis might be a tool for 

discovery and pursuit of hypotheses. One exception is Odenbaugh & Alexandrova (2011), who 

assume but do not argue for the claim that robustness analysis is widely used in biology and 

 

2 I set aside Schupbach’s view of robustness analysis here, but I address his account in Chapter 3. His account primarily 

rests on an interpretation of a case of triangulation, not robustness analysis. 
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economics to construct schematic causal hypotheses that are later tested. Still even Odenbaugh 

and Alexandrova focus on how robustness analysis can be used to formulate hypotheses about 

causal mechanisms—akin to Weisberg’s “common core” assumptions or Knuuttila and Loettgers’s 

“core causal mechanism” represented by a set of modeling assumptions. 

 

Figure 1. Schematic of the traditional account of robustness analysis. 

2.2.2  Scope Robustness Analysis 

There are cases that look similar to traditional robustness analysis in that the robustness 

relation between some set of models and a property or prediction made by those models is 

examined by researchers. However, unlike traditional robustness analysis, there is already 

sufficient evidence to ascribe the property to the target system. Often the study is aimed at 

determining how the target system comes to have the properties that it does rather than identifying 

those properties in the first place. For example, Solé, Pastor-Satorras, Smith, & Kepler (2002) aim 

to model different growth principles for the yeast S. cerevisiae protein-protein interaction network 

model. The network represents proteins as nodes and the potential for interactions between any 

two proteins as edges. As the protein-protein interaction network model for S. cerevisiae and other 

organisms (e.g., viruses, prokaryotes) have already been modeled, the researchers know the 
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properties of these models: scale-free degree distribution, small-worldness, and robustness against 

random but not targeted node deletion. Rather than build further network models from empirical 

data on protein interactions, Solé et al. (2002, 3) aim to model simplistically “proteome evolution 

aimed at capturing the main properties exhibited by protein networks.”  

To do so, they generate network models according to different growth principles. In 

particular, they model gene duplication and mutation by: (i) copying a randomly chosen node in 

the graph (i.e., duplication), (ii) removing the edges from this new node with a certain probability 

(i.e., mutation), and (iii) creating new edges between the new node and other nodes with some 

probability. The effects of modeling gene duplication and mutation using a data model of the 

protein-protein network might lead to a resulting non-actual protein-protein network model. The 

idea is to generate models using possible gene duplications and mutations that could have altered 

a protein in such a way that it either now interacts with or fails to continue to interact with some 

other protein in the network. However, the values of the probability in steps (ii) and (iii) are 

constrained by empirical data but varied to generate different synthetic models. Then Solé and 

colleagues compared the synthetic models to the data model of the S. cerevisiae protein-protein 

interaction network. Specifically, they look for whether the synthetic models have the same 

network properties as the data model and the boundaries at which the synthetic models no longer 

have similar properties to the data model. This case appears distinct from traditional robustness 

analysis because it is primarily focused on modeling possibilities and identifying the boundaries 

of possible protein-protein network configurations under different generating principles. 
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Figure 2. Schematic of scope robustness analysis. 

Solé and colleagues are learning information about the (im)possible principles for the 

growth of the S. cerevisiae protein-protein interaction network model. They do so following the 

general logic of robustness analysis—by examining invariance of properties over differences in 

assumptions and idealizations in a set of models. The current literature on robustness analysis does 

not take a stance on whether this type of case is an instance of robustness analysis and whether 

existing views of robustness analysis can be adequately extended to account for these cases.  

Call it ‘scope robustness analysis’ when researchers search for the scope of the set of 

models Y for which some particular property or prediction is invariant. While both processes 

involve evaluating the robustness relation between a property of interest and a set of models, these 

types of robustness analysis are useful in different epistemic contexts and serve different purposes. 

These hypothesized models of the system can be constructed according to different organizational 

or developmental principles and these principles are the ultimate target of inquiry. While both 

scope robustness analysis and traditional robustness analysis involve evaluating the robustness 

relation between a property of interest and a set of models, they examine different relata of that 

relationship. Traditional robustness analysis gives researchers more confidence in common 
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predictions or properties ascribed to the target. Scope robustness analysis, on the other hand, 

identifies possible models of the target, such as the developmental processes that result in some 

specific neural organization. These possible models can answer questions about other ways a 

system could be organized to produce the same behavior or more indirectly, to illustrate which 

developmental principles can generate possible models of the system consistent with known 

properties of the system. 

 

 
Table 1: A Comparison of Key Features of Traditional and Scope Robustness Analysis. 

Features Traditional Robustness 

Analysis 

Scope Robustness Analysis 

Epistemic Context Relative to 

Target System 

Under-described; uncertain 

what modeling assumptions 

are warranted 

Well-accepted descriptive 

model required; know which 

modeling assumptions are 

warranted 

Type of Research Question How best to describe the 

target system? 

How did the target system 

come to have the properties 

that it does? 

Function Identifying differences in 

modeling assumptions that do 

not make a difference for 

certain properties or 

predictions (need not assess 

every assumption) 

Identifying principles (or 

trade-offs among competing 

principles) that can produce 

models with the observed 

properties 

Conditions of Failure Do not identify any invariant 

property 

Do not identify properties of 

descriptive model as invariant 

Success can allow… Increasing the reliability of 

inferences from some core 

modeling assumptions to the 

common result; indirect 

confirmation of the result 

The generation of possible 

models useful for empirical 

investigation; Ruling out 

principles (e.g., growth 

principles) that are unable to 

generate models with the 

properties of the descriptive 

model 

 

In what follows, I will argue that traditional robustness analysis and scope robustness 

analysis answer different research questions, have different functions, and conditions of failure. 
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To do so, I will illustrate what I call scope robustness analysis and provide a detailed account of 

the differences from traditional robustness analysis. 

2.3 Models Demonstrating Possibility 

Because scope robustness analysis generates models that represent the possible states of a 

system, I will now turn to existing philosophical accounts models of possibilities: how-possibly 

explanations and perspectival modeling. There are some similarities to the generated models in 

scope robustness analysis and the models in these views. 

In the context of explanations, some models contribute to how-possibly, how-plausibly, or 

how-actually explanations (Craver, 2007; Machamer, Darden, & Craver, 2000). Intuitively, how-

possibly explanations are provided when model(s) demonstrate that some outcome could have 

happened. How-plausibly explanations are ill-defined and sit between how-possibly and how-

actually explanations in terms of how much confirmation these models have and the extent to 

which they support inferences from the models. How-actually explanations by indicating how 

some outcome actually happened. The philosophers who introduced these notions take them to be 

a continuum of explanations with less to more empirical confirmation.  

Other views hold that how-possibly and how-actually explanations are not on a continuum 

of empirical confirmation. Instead, how-possibly explanations have a different logical form than 

how-actually explanations (Forber, 2010). According to Forber, global how-possibly explanations 

work by examining general processes in idealized models to identify relationships between 

processes and particular outcomes. Local how-possibly explanations work much the same as 

global how-possibly explanations, but specifically aim to explain an outcome in a particular 
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system. I take no stance on whether scope robustness analysis provides explanations and instead, 

I focus on how it can be useful in discovery and pursuit. Still in Forber’s account of local how-

possibly explanations, the general (evolutionary) processes play a role similar to the role principles 

play in my account of scope robustness analysis. They set the bounds of what possible states we 

could have observed in the target system. In scope robustness analysis, researchers are discovering 

which principles could play a role in the development of the actual target system. In how-possibly 

explanation, researchers use these principles (and the evidence supporting them) to derive modal 

consequences for the target system. 

We find a useful account of how to model possibilities in Michela Massimi’s (2018) work 

on perspectival modeling, though Massimi’s work is situated in a debate about whether and how 

multiple, inconsistent models of the same target system are consistent with realism. Perspectival 

modeling is the practice of generating models with sui generis representational content for 

exploratory purposes. The sui generis representational content of perspectival models 

distinguishes them both from non-representational models (discussed in Batterman and Rice 2014) 

and models that represent the target system via a mapping relation (e.g., isomorphism, 

homomorphism). Rather, perspectival models represent possibilities about the target system (not 

states of affairs that are known to be either actual or fictional). It is for this reason that Massimi 

emphasizes perspectival models’ modal role in scientific exploration and discovery: “it is about 

exploring and ruling out the space of possibilities in domains that are still very much open-ended 

for scientific discovery” (2018, 339). Massimi’s perspectival models are a helpful starting place to 

think about how scope robustness analysis models possibilities. 

In scope robustness analysis, the generated models reflect possible states of the system, 

conditional on the different principles that generate them. Importantly for scope robustness 
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analysis, these models are only evaluated for their similarities with data models of the system, not 

for their ability to represent the system directly. Unlike Massimi’s perspectival modeling, however, 

researchers may also include models known to be generated using false principles (or false 

weightings of true principles). These models are known to be false and so, would not satisfy 

Massimi’s criterion that perspectival models represent without researchers knowing the 

representations to be true or false.  

2.4 Scope Robustness Analysis in Network Neuroscience 

Two main research questions that drive the network neuroscience research program are: 

Which topological properties best characterize the organization of the neural system? and how 

does the neural system come to have that specific organization? I will focus on network 

neuroscientists’ research projects aimed at answering the second question. I address the first 

question in Chapter 4. 

Network scientists are interested in how network models come to have the properties that 

they do as opposed to other properties. Some network neuroscientists use generative modeling—

synthetic models are created using simple principles for building the model—to explore possible 

answers to this question. These synthetic network models that are not intended to represent any 

particular target system, but rather to explore the relationship between various growth principles 

and resulting topological properties in the network models (e.g., Erdős and Rényi 1960; Watts and 

Strogatz 1998; Barabási and Albert 1999). These synthetic models are built according to different 

principles or differently weighted principles (e.g., generalizations that describe dynamic and 

functional relations within a set of systems; Green 2013) and then compared to the descriptive 



 22 

models of the target system to determine which of the synthetic models have the same properties. 

If some growth principles cannot generate models with those properties, then researchers can rule 

out those growth principles that could not account for the properties of the target system. However, 

those definitive cases may be rare. Often multiple principles will be involved in generating and 

constraining the outcomes and sometimes principles will even produce competing constraints. In 

these cases, researchers may seek to estimate the relative contributions of different growth 

principles. 

Scope robustness analysis is best used in cases where the researchers are knowledgeable 

about the target system and have already ascribed properties to the target system through empirical 

examination or via consensus among researchers in the research program. When a well-accepted 

descriptive model (e.g., Ankeny 2006) exists (as is the case for many systems in animal models), 

properties of that model can be used to restrict the set of synthetic models (and principles to those 

that could possibly generate the principles of interest).  

 

2.4.1  Scope Robustness Analysis and the C. elegans Wiring Diagram 

One example of scope robustness analysis comes from contemporary uses of research on 

the neural system of the nematode Ceanorhabditis elegans wiring diagram. C. elegans was chosen 

by Sydney Brenner for a research project to use genetic and molecular biological information to 

learn about nervous systems. Brenner identified hopes for the project’s ability to discover “some 

underlying principles that […] are applicable at many different levels of biological complexity” 

(Adler, 1976). Insight into the C. elegans nervous system combined with complete genetic 

information were predicted to shed light on the growth and abstract developmental principles 
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involved in neural systems in general. Researchers identified a near complete wiring diagram for 

the C. elegans hermaphrodite neural system. By examining specimens using sequential electron 

micrographs to identify neurons and synaptic connections, Brenner and colleagues generated a 

schematic model of the C. elegans nervous system, abstracting from any differences in synaptic 

connections found between the specimens (Ankeny, 2001; White, Southgate, Thomson, & 

Brenner, 1986). 

Nearly forty years later, network neuroscientists use this well-accepted wiring diagram to 

examine simple principles that could generate the set of network properties observed in the wiring 

diagram.3 Chen et al. (2013) perform a robustness analysis in order to examine which trade-off 

between competing principles (i.e., wiring cost and efficiency of information transfer principles) 

can generate models with many of the topological properties of the C. elegans wiring diagram. 

Based on their knowledge of the topological properties of the C. elegans wiring diagram (i.e., the 

descriptive model), Chen and colleagues search for the following properties among the synthetic 

networks: a set of interconnected hubs, modularity, and robustness of the network to targeted 

deletion of the node with the highest degree. The information about the descriptive model is used 

to constrain the synthetic models. 

To determine which models to examine in the robustness analysis, Chen et al. generate 

models that trade-off two competing hypotheses concerning general growth principles for neural 

systems. These hypotheses are that the brain evolved to be an efficient information processing 

system and also to minimize the developmental and metabolic costs associated with longer axonal 

connections between spatially distant neural bodies. Information traveling different spatial 

 

3 This strategy has been performed in the network modeling of other target systems as well such as Saccharomyces 

cerevisiae (Solé et al., 2002; Vázquez, 2010) and Drosophila melanogaster (Middendorf, Ziv, & Wiggins, 2005) 

protein–protein interaction networks.  
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distances in the system are subject to different costs (call these ‘wiring costs’), including the 

conduction of action potentials along axons of different diameters and whether the neuron is 

myelinated (Cherniak, Changizi, and Kang 1999; Chklovskii and Stepanyants 2003). Longer axons 

also have further spatial distance for the action potential to conduct through, often resulting in 

delayed times in information transfer. Further, longer axonal connections are subject to other costs 

such as being developmentally and metabolically costly (Bullmore & Sporns, 2012). Thus, long 

distance axonal connections may be minimized. 

However, initial research suggested wiring costs were not completely minimized. Network 

neuroscientists have examined the extent to which wiring cost minimization can be increased by 

non-actual spatial arrangements of the C. elegans’ ganglia (which involve collections of neurons) 

and random rewiring from the actual network model (Cherniak 1995; Klyachko & Stevens 2003; 

Cherniak et al. 2004; Chen, Hall, and Chklovskii 2006; Pérez-Escudero and de Polavieja 2007). If 

the system were solely minimizing the costs of connections between parts of the brain, then only 

connections between local parts would exist. However, there are long distance connections in 

neural systems that would not be predicted by a solely wiring cost minimizing model (Bullmore 

& Sporns, 2012). Some evidence suggests that component placement is near, but not fully optimal 

for the minimization of wiring costs in the C. elegans wiring diagram (Kaiser & Hilgetag, 2006).  

Network neuroscientists also view the brain as a system that maximizes efficiency of 

information transfer. Neural signals should travel quickly between brain areas including spatially 

distant ones. Chen et al. (2013) operationalize the principle as driving the minimization of average 

path length—the average of the minimum number of edges necessarily traversed in order to reach 

one node from another node for each set of nodes in the network. Chen and colleagues reason that 

if both competing principles play a role in the organization of the C. elegans neural system, the 
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trade-off between the two principles could result in many of the observed network properties of 

the C. elegans wiring diagram.  

Chen and colleagues reconstructed particular connections while holding fixed the spatial 

layout of the nodes and the number of edges in the network. Using the following equation, the 

researchers set  to various levels to fix the trade-off between minimizing wiring cost (Lp) or 

minimizing path length (Lg): L = (1 - )Lg+  Lp. For this equation, when  = 0 the average path 

length in the network is minimized without regard to spatial constraints and when  = 1 the wiring 

cost is minimized without regard to efficiency of possible information transfer. Using a simulated 

annealing optimization algorithm, they searched for organizations that minimized the function L 

describing the trade-off between wiring costs and efficiency of information transfer at different 

values of . The simulated annealing algorithm was performed on random networks with the same 

spatial layout for nodes and number of edges.  

In evaluating the  = 1 network model, Chen and colleagues note that the topological 

organization is significantly different from the known C. elegans wiring diagram. The wiring cost 

(Lp) was only 1.25% lower than the C. elegans wiring diagram, however, only 27% of edges are 

recovered in the  = 1 model. There are no hubs in the wiring cost minimization network and the 

efficiency of that network is much lower. On the other hand, in the  = 0 network the FLPL neuron, 

which is the most spatially central node, was the single hub so that all path lengths either connected 

to that neuron or through it. In this extreme model, Chen et al. note that the network would be 

vulnerable to targeted deletion of the hub node, which is inconsistent with the properties of the C. 

elegans wiring diagram. Chen and colleagues conclude that setting L at 0.8 <  < 1 generates 

network models with similar hubs and modules to the C. elegans wiring diagram and so, this trade-

off between wiring cost minimization and efficiency of information transfer maximization is 
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sufficient for the known topological properties. While it is possible that other principles generate 

similar topological properties, the empirical support for wiring cost minimization from 

neurophysiology studies makes it likely that the two principles are involved in generating the 

known network properties. 

 

Figure 3. Schematic of scope robustness analysis particular to Chen and colleages' research. 

One major advantage of exploring the characteristics of synthetic models at different levels 

of  is that values of  that produce networks with properties that are inconsistent with the 

properties of the descriptive model can be ruled out as possible descriptions of the generation of 

the C. elegans wiring diagram. For example, the synthetic models driven predominantly by the 

efficiency maximization principle had only one hub with a very high degree in the network; the 

wiring diagram model is characterized as having multiple hubs with high degree. It can therefore 

be ruled out that low levels of  and the trade-off balanced favoring maximization of efficiency of 

transfer is not a growth principle for the C. elegans neural system. 



 27 

2.4.2  Contrast with Parameter Estimation 

It might seem that Chen and colleagues are simply engaging in parameter estimation 

because they generated their models using a single parameter, which represents a trade-off between 

two growth principles. The suggestion implies that what Chen and colleagues are doing is 

estimating the range of actual values that  takes for the C. elegans neural system. On this 

interpretation, Chen and colleagues know how to model the growth principles of the network, but 

they simply do not know the quantitative value(s) the parameter can take. Their robustness analysis 

then, in a minimal sense, searches the possible parameter values to identify the range of empirical 

values for the development of the target system. 

I think this interpretation fails to take into account the fact that Chen and colleagues do not 

take the two growth principles to be the only principles or constraints at work in the development 

of the C. elegans neural system. Interpreting the trade-off between the two principles allows them 

to more easily determine which growth principle drives the majority of the connections in the C. 

elegans wiring diagram. They can then use this information to guide and limit future directions for 

their research. Further, within the maximal range of reproduction of the properties of the known 

wiring diagram, it can be determined how many connections and properties cannot be accounted 

for. For example, Chen et al. suspect that another important constraint will be the tendency for 

neurons that process sensory information to have cell bodies that are spatially close to the pathways 

for incoming sensory information. Chen et al.’s current model cannot incorporate this growth 

principle as it would require including information about each neuron’s functional role in the 

network. So, I do not think that Chen and colleagues view themselves as estimating the true range 

of values of  as if  were a real value of the C. elegans neural system. 
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2.5 Comparing Types of Robustness Analysis 

Now that I have laid out the case for scope robustness analysis, I will argue that it is indeed 

distinct from traditional robustness analysis. At a coarse level of description, both types of 

robustness analysis involve similar activities: build a set of models varied in some of their 

assumptions and then examine the properties of those models looking for invariance. Chen et al.’s 

(2013) research process fits this coarse-level sketch of robustness analysis. They built a set of 

synthetic models varied in terms of the growth principles used to generate them. Then they 

examined the set of models and their properties looking for invariance of certain properties of 

interest. However, the case departs from traditional robustness analysis in a few distinct ways that 

I will enumerate in the rest of this section.  

2.5.1  Goals of the Robustness Analysis and Epistemic Context 

Viewing Chen and colleagues’ research as the search for robust properties, as in traditional 

robustness analysis, would obscure the goals of these researchers. The studies by Chen and 

colleagues would be pointless if they were engaged in traditional robustness analysis because the 

wiring diagram model of the C. elegans nervous system is known on the basis of empirical 

investigations. When researchers agree on the best descriptive models of the system, there is no 

reason to perform a traditional robustness analysis to confirm the ascription of properties to the 

system. Their goal is to exploit this empirical information to learn more about other aspects of the 

system. In domains with vast amounts of data but little guiding theory, such as neuroscience, these 

strategies for exploiting empirical knowledge to direct future theorizing are particularly important.  
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Chen and colleagues also use scope robustness analysis to determine which growth 

principles cannot adequately represent the target, i.e., developmental processes for the system. By 

ruling out possible growth principles, researchers narrow the search space for future theorizing 

and experimentation. Because Chen et al. focused on the trade-off between two growth principles, 

they rule out ranges of  that are inconsistent with the descriptive model. If they had examined 

different growth principles that did not trade-off, they may have been able to rule out some 

principles completely as contributors to the development of the C. elegans neural system.  

The extent to which scope robustness analysis can rule out some principle depends on 

whether all relevant principles were included in the analysis. The issue of what principles to 

include, and thereby what models will be included, in scope robustness analysis is one that 

researchers need to justify. Otherwise, researchers will not be justified in inferring from some 

principle generating no how-possibly models to that principle not playing a role in the organization 

or development of the system. It is possible that had some other principle been included in the 

analysis, the first principle could produce how-possibly models in conjunction with the other 

principle. This issue is similar to a problem in traditional robustness analysis: the choice of what 

models to include in the analysis can impact the inference that some hypothesis is correct (Orzack 

and Sober 1993). Orzack and Sober argue that researchers can guarantee that a hypothesis is correct 

in robustness analysis only if the researchers know that one model in the set is true. Otherwise it 

is possible that all models included in the robustness analysis are false and any convergence on 

some hypothesis by a set of false models gives no reason to increase credence in that hypothesis. 

So, researchers need to justify their choice of models in both types of robustness analysis.4 One 

 

4 However, I do not agree with Orzack and Sober’s argument as stated. All models are strictly speaking false because 

they idealize and abstract away from details of their target. So, researchers will never be in a position to utilize 

robustness analysis if it requires that researchers know that one of their models is true. Their argument can be softened 
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way to justify the choice of models in traditional robustness analysis is to appeal to evidence and 

theoretical reasoning in support of these models (Lloyd 2015; Winsberg 2018). The same solution 

could be extended to justifying the choice of principles to include in a scope robustness analysis. 

The epistemic context with respect to the properties of the system are different for 

traditional and scope robustness analysis. The system in the C. elegans case is the C. elegans 

nervous system, which was already well-understood by the descriptive model (i.e., the wiring 

diagram). Still some questions about the system remain: How did it develop? How else could it 

have been organized? Thus, the researchers investigate their target (i.e., developmental processes) 

that produce the observed properties of the system (i.e., the C. elegans nervous system). Contrast 

this with traditional robustness analysis, which is useful when relatively little is known about how 

to describe the target system.  

2.5.2  Criteria for Inclusion in the Set of Models 

Another difference between the two types of robustness analysis involves their criteria for 

including models in the analysis. In traditional robustness analysis, researchers include only 

plausible models of the target system. They aim to determine whether any properties are invariant 

over differences in existing assumptions. Including implausible models in the set of models input 

to traditional robustness analysis could potentially obscure the invariance of some property among 

the models and thus fail to identify a true property of the target system.  

 

to require only that one model in a robustness analysis provides the correct truth value regarding the hypothesis (Parker 

2011). 
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Just as in traditional robustness analysis, researchers begin with a set of models, but they 

identify them according to different rules. Before scope robustness analysis, researchers do not yet 

know which principles can generate how-possibly models with the properties of interest, so they 

ought to include a number of plausible principles. Regardless of what criteria are chosen for 

determining which principles to include in an analysis, those for scope robustness analysis will be 

more inclusive than traditional robustness analysis. In the case of Chen et al., they included models 

constructed at regular intervals across the entire range of possible values of . They even included 

a model generated by completely minimizing wiring costs despite previous research demonstrating 

that complete minimization could not account for the spatial placement of nodes in the C. elegans 

wiring diagram.  

My account of scope robustness analysis also better explains why researchers might 

include models they already know to be false, as Chen and colleagues do. Including some false 

models helps identify the scope of how-possibly models. Imagine there is a space of different 

hypothesized models for some target where models are located next to models generated with 

similar principles (or trade-off values for multiple principles). Researchers using scope robustness 

analysis to search the space of hypothesized models are looking for a whole range of how-possibly 

models, which may reflect similar growth principles used to generate them. Including false models, 

and thus searching more of the model space, allows researchers to identify the boundaries of how-

possibly models. Consider the case of Chen and colleagues. They knew from previous research 

that the C. elegans wiring diagram doesn’t have fully minimized wiring costs, but they could not 

rule out that wiring costs were nearly fully minimized. These hypothesized models need to be 

included in the analysis because they might be how-possibly models. By searching systematically 
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across the trade-off  for the two principles, Chen and colleagues are better able to identify where 

in the trade-off hypothesized models are consistent with the descriptive model. 

2.5.3  Conditions of Failure 

Failure for scope robustness analysis involves a failure to generate any models that have 

the properties of the descriptive model. In those cases, it is likely that the growth principles used 

to generate the network models do not represent their target: the developmental processes or 

organization of the system. Researchers should re-evaluate the growth principles and determine 

whether there are other possible growth principles that could be included in the robustness analysis. 

It could also be the case that the descriptive model does not accurately describe the target and so 

researchers should also ensure there is sufficient evidence for the descriptive model. 

Traditional robustness analysis, on the other hand, fails when researchers cannot find some 

property or prediction on which all the models converge. In that case, there is no compelling reason 

provided by the robustness analysis to ascribe any property to the target system or to make any 

prediction about it. Suppose that in some robustness analysis of climate models mostly predicted 

that a particular glacier would melt within the next twenty years, but one climate model predicted 

that the glacier would not melt. There is no convergence among this set of climate models on this 

hypothesis. When this occurs, researchers re-evaluate the set of plausible models. It is possible 

that some of the models make a mistaken assumption about the target system that produces the 

lack of convergence. 
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2.5.4  Functions 

Traditional robustness analysis typically is viewed to have the function of providing 

(dis)confirmation for the attribution of particular properties or confidence in some particular 

prediction (Lloyd, 2010; Weisberg, 2013). While there is debate about whether traditional 

robustness analysis alone can play a confirmatory role (Odenbaugh & Alexandrova, 2011; Orzack 

& Sober, 1993; Parker, 2011), its function is either confirmation of the common result or an 

increase in the reliability of our inferences from modeling assumptions to that result. Even so, 

many actual cases of traditional robustness analysis fall short of the ideal of confirming hypotheses 

sufficient to warrant acceptance or belief in the hypothesis (Parker 2011).  

Scope robustness analysis, on the other hand, aims to identify the set of the models that are 

consistent with empirical knowledge about the system. This process can result in two related 

outcomes: (A) the growth principles used to generate how-possibly models for some system and 

(B) ruling out other growth principles as possible descriptions of the system’s development. Scope 

robustness analysis identifies the boundaries of how-possibly models among the set of examined 

models (A). Scope robustness analysis is one strategy for identifying how-possibly models for 

some system and using that information to shed light on possible organizing principles for the 

system. 

In the process of identifying how-possibly models, researchers also identify plausible 

models that are inconsistent with the descriptive model and rule them out (B). More importantly, 

when certain growth principles produce only inconsistent models, they can rule out the growth 

principles used to generate them as worthy of their limited resources (financial, time, etc.). As 

such, scope robustness analysis also plays a role in hypothesis evaluation by directing researchers 

to the growth principles that are most likely to be fruitful in future research.   
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2.6 Objections 

In this section, I discuss a range of objections to my argument that: (1) scope robustness 

analysis and traditional robustness analysis are distinct types and (2) that scope robustness analysis 

is truly a type of robustness analysis in general.  

2.6.1  Why Not Regular Old Confirmation? 

One might wonder why scope robustness analysis is any different than garden variety 

confirmation in which ruling out potential hypotheses thereby increases the confirmation of all 

remaining hypotheses. By ruling out some possible models of the system and the growth principles 

that generated them, scope robustness analysis does (slightly) confirm all the remaining possible 

models. Consider the similarities with eliminative inferences for a set of hypotheses in which 

ruling out potential hypotheses thereby slightly increases confirmation in all remaining 

hypotheses. According to this objection, if we accept that traditional robustness analysis has the 

function of providing confirmation and scope robustness can also confirm certain models, then 

perhaps the two types of robustness analysis are not distinct after all. 

I agree that scope robustness analysis can provide confirmation by ruling out principles 

that cannot generate models consistent with our current evidence, but I claim that this is not the 

function of scope robustness analysis. Confirmation is rather a side-effect of ruling out possible 

competing hypotheses. When scope robustness analysis does confirm a hypothesis, it does so by 

eliminating competing hypotheses as principles that generate models inconsistent with our current 

evidence. In a typical case, it also will provide relatively small confirmational boosts compared to 
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the size of confirmational boosts that proponents of traditional robustness analysis have claimed 

(Lloyd, 2015; Weisberg, 2013).  

2.6.2  Why Not the Optional Step in Weisberg’s Robustness Analysis? 

Despite the similarities, scope robustness analysis is not simply the final step of Weisberg’s 

account of robustness analysis. First, the order of operations in Weisberg’s account incorrectly 

describes Chen and colleagues’ work. As I have argued in this article, the properties of interest of 

the system were already well-established empirically (i.e., the C. elegans wiring diagram) and so 

a scope robustness analysis could be performed without first having completed steps 1-3 of 

Weisberg’s account of robustness analysis. In fact, steps 1-3 would be superfluous given the 

empirical knowledge about the system. Second, Chen and colleagues learned something beyond 

the removing of the ceteris paribus conditions; they learn which growth principles can produce 

systems with the known properties of the system and which growth principles cannot. 

Now one might wonder whether a traditional robustness analysis can be performed after a 

scope robustness analysis. This order is possible but not necessary. For example, scope robustness 

analysis could be used to determine some set of possible models M1…Mn with property Q (known 

to be ascribed to the system based on empirical knowledge) and then a traditional robustness 

analysis could be conducted using the identified set of models M1…Mn to determine what 

predictions U are common to all those models. In this way, traditional robustness analysis can be 

used to complement scope robustness analysis. 

In fact, this abstract case can be filled out according to the case study here. Scope 

robustness analysis is used to generate possible models of the developmental processes for the C. 

elegans nervous system, a subset of which are identified by those models of the developmental 
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processes that produce network models with the properties known from empirical work on the C. 

elegans nervous system. If researchers were to find that all of these models (with the properties 

similar to the C. elegans nervous system) also had some other properties R, then the researchers 

could reason from a traditional robustness analysis that the property R ought to be attributed to the 

C. elegans nervous system. Note though that this property R would not contribute to the question 

researchers began with: how does the C. elegans nervous system come to have the properties that 

it does? Instead, it answers research questions about what properties the C. elegans nervous system 

has.  

In order to draw conclusions from the joint scope and traditional robustness analysis, 

however, the researchers would need to provide justification that the set of models generated 

according to particular growth principles were the only relevant network models to include, which 

would be difficult given the plausibility of other growth principles. As I mentioned previously, 

Chen and colleagues themselves take there to be at least one more principle guiding the 

development of neural systems: the tendency for neurons that process sensory information to be 

located spatially close to the inputting sensorimotor neurons.  

2.6.3  Why is This Robustness Analysis? 

The basic unifying theme of robustness, according to William Wimsatt (1981), are multiple 

determinations of something that is invariant arrived at via independent means. Although there are 

a number of differences in the epistemic context and practice of each type of robustness analysis, 

they are similar in terms of the relationship sought: invariance between a set of models and some 

property or predicted outcome of those models. Researchers use what they already know about the 

system to fix one side of the invariance relationship. Robustness analysis can then be used to fill 
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in the other side of the relationship. As a result of successful robustness analysis, researchers can 

draw justified conclusions about either the scope of possible models of the system or which 

hypotheses about the target system are confirmed. Which type of inference is justified differs based 

on empirical knowledge, but the invariance relationship is the same across both types of robustness 

analysis.  

My account of scope robustness analysis may not appear to be a case of robustness due to 

some ambiguities in the use of the term ‘robustness.’ There are at least two general senses of 

robustness relevant to the current discussion of robustness analysis. In particular, we can ask which 

sense is relevant when answering the question: what in a particular robustness analysis is robust?   

The first sense of robustness concerns its magnitude. It is a judgement about a large swath of 

variation over which some property, inference, or phenomenon is stable. So, to say that some result 

of a robustness analysis is robust in the magnitude sense is to say that the result holds under a 

relatively large (perhaps surprising) range of varied conditions. The second sense of robustness 

concerns its stability. To say that some result is robust in this sense is to say that some stable 

invariance relationship holds over variation in other assumptions that produce the result. It need 

not imply that the stable relationship between some models and the result holds under a large or 

even moderate range of assumptions. In fact, this sense of robustness allows for there to be 

significant divergence of results under some particular set of assumptions (this sense of robustness 

is also used in the context of traditional robustness analysis, see Kuorikoski et al., 2010). Still this 

sort of robustness can be epistemically useful and significant, depending on the specifics of the 

case. My claim is that the objections that scope robustness analysis is not really a form of 

robustness analysis or does not describe robustness trades on the use of the first sense of robustness 

(magnitude of stability) rather than any stability relationship. 
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2.7 Conclusion 

Robustness analysis has traditionally been understood a research strategy that helps 

scientists when there is uncertainty about whether particular idealizing modeling assumptions 

misleadingly drive common results among a set of models. The main goal is to provide 

confirmation of a common result, or at the very least, to increase confidence in inferences from 

modeling assumptions to the common result.   

I have argued that robustness analysis plays a role in selecting among several hypotheses 

that has been obscured by the focus of philosophical accounts on confirmation and the reliability 

of our inferences relying on modeling assumptions. For this reason, I argue that there are two types 

of robustness analysis: scope robustness analysis and traditional robustness analysis. In both types, 

robustness analysis is used to identify an invariance relationship between a set of models and some 

property or predicted outcome common to a set of models, but the justified inferences that can be 

drawn from such an invariance relationship depend on the context of the research. However, the 

types of robustness analysis are distinct enough to warrant different accounts.  

In the new account of scope robustness analysis presented here, I’ve argued that researchers 

are interested in questions about the development or organizational constraints on a system. 

Researchers use scope robustness analysis to identify possible models among a set of hypothesized 

models. The models that are possible gives researchers information about the developmental 

principles that are live hypotheses for the development of the nervous system. As the cases in this 

paper demonstrate, scope robustness analysis is a powerful tool for investigating which hypotheses 

to further study in early research programs. It becomes increasingly important, given the emphasis 

of many “big data” studies, to have philosophical analysis on fruitful research strategies in domains 

with large numbers of hypotheses but little guiding theory. Scope robustness analysis offers one 
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such tool for leveraging what we know about a system to guide future research in a fruitful 

direction. 
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3.0 How Triangulation Fails: Epistemic Risks in the Triangulation Argument for Implicit 

Attitudes 

One important strategy for dealing with error in our methods is triangulation, or the use 

multiple methods to investigate the same hypothesis. There are two major success criteria in all 

current accounts of triangulation: (i) the methods employed need to be sufficiently diverse and (ii) 

the methods need to provide evidence about the same phenomenon. I address each in turn. First, I 

argue against one recent account of what it means for the methods in triangulation to be sufficiently 

diverse. Second, I argue that an account of triangulation focused on epistemic risk is better able to 

describe how triangulation fails and to normatively guide future triangulation research. I provide 

an account of triangulation that focuses on types of epistemic risk and the conditions under which 

it arises.  

3.1 Introduction 

With the development of new techniques, there is always a risk that their results may be 

due to systematic error rather than the phenomenon of interest. Consider the case of mesosomes—

organelle-like structures in bacteria viewed through electron microscopes in the 1950s (Culp, 

1994; Hudson, 1999). At first, researchers thought mesosomes might be a new internal structure 

in cells with a ribbon-like structure similar to ribosomes. However, after a series of experiments, 

they determined that mesosomes were observed only when the cells were prepared using certain 

chemical fixation techniques and not observed when those chemical fixation techniques were not 
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employed. So, scientific consensus ultimately settled on the claim that mesosomes were the result 

of systematic error introduced by the fixation techniques and not a newly discovered internal 

structure of cells. How did researchers in the 1980s discover that mesosomes were not in fact 

organelles but rather systematic errors from the process of specimen preparation? And more 

generally, how do scientists justify their claims about the existence of some phenomenon, given 

the risk that the data produced by any method could be subject to systematic errors?  

One strategy is to use different experimental methods to investigate the same question—a 

practice called methodological triangulation. In cases where different methods converge on a 

common result, then researchers ought to increase their credence that the result is due to some 

phenomenon of interest rather than noise and error in the data. Most philosophical accounts of 

triangulation focus on why it is a successful and wide-spread practice. In social science, researchers 

might use both quantitative surveys and qualitative interviews; in neuroscience, researchers might 

use neuroimaging methods and electrophysiological methods; and in psychology, researchers 

might use self-report and informant report methods.  

In this chapter, I examine the two major commitments of existing philosophical accounts 

of methodological triangulation. Current accounts of methodological triangulation agree on two 

success criteria: (i) the methods employed need to be sufficiently diverse and (ii) the methods need 

to provide evidence about the same phenomenon. I have two major goals in this chapter. First, I 

will argue that the first success criterion (i) can be understood in terms of the methods having 

different propensities to fail. Second, I will argue that a descriptively and normatively adequate 

account of methodological triangulation needs to account for the ways triangulation is susceptible 

to failure in its practice, especially concerning success criterion (ii), rather than focusing primarily 

on how and why it succeeds in ideal cases. 
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 In the first half of this chapter, I consider existing views of the diversity criterion (i) and 

argue for the failure independence view. In section 3.2, I argue that the function of methodological 

triangulation as controlling for unknown systematic error and not likely or suspected systematic 

error. In section 3.3, I begin by providing some clarification of the primary features of 

methodological triangulation, including an account of both the diversity of methods and what is 

being triangulated upon. In section 3.4, I argue that a recent account of the diversity of methods in 

triangulation changes the subject.  

My second claim is that in order to have an account of triangulation that’s useful for 

scientific practice, we need a sense of the types of epistemic risks and their typical locations in the 

practice of triangulation. Only by identifying potential pitfalls of reasoning can we provide a 

descriptively and normatively satisfying and useful account of triangulation. In particular, by 

looking to insights and developments in the literature on the role of values in science, I develop an 

account of triangulation that can explain why in practice it can fail. This account is necessary to 

better understand how to improve triangulation arguments in practice, including what specific 

types of inferences need justified and what types of errors in reasoning may arise.  

3.2 Methodological Triangulation 

Methodological triangulation involves the use of multiple methods to examine the same 

research question. Current accounts of methodological triangulation agree on two success criteria: 

(i) the methods employed need to be sufficiently diverse and (ii) the methods need to provide 

sufficient evidence to accept the hypothesis (e.g., Heesen, Bright, and Zucker 2016; Munafò and 

Smith 2018; Soler 2012). Much of these statements must be spelled out to analyze particular cases. 
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What unites current accounts of methodological triangulation? Why is methodological 

triangulation a successful practice? When is methodological triangulation useful? I will attempt to 

spell these out in the next three subsections. 

3.2.1  The Received View of Methodological Triangulation 

Most current accounts of triangulation (and robustness reasoning, more generally) are 

cashed out in terms of its success. One view of triangulation sets out to: “identify at an abstract 

level the logic behind successful robustness arguments [and…] to determine what is required for 

a specific form of robustness analysis to be successful” (Kuorikoski and Marchionni 2016, 230). 

On another view, triangulation is defined as: “the use in empirical practice of multiple means of 

investigation to validate an experimental outcome” (Schickore and Coko 2013, 296). The 

philosophical accounts of triangulation primarily seek to explain why it works in the cases where 

it does and what conditions need to be met for triangulation to be successful in new domains. 

One exception to the focus on success is the extensive discussion about what it means for 

triangulation to employ sufficiently diverse methods (discussed more in section 3.3). Still even 

here philosophical discussions tend to develop accounts of what diversity should be required for 

triangulation on the basis of successful cases. For example, Jonah Schupbach (2015, 275) claims: 

“The most important and challenging question an account of [robustness] can answer is what sense 

of evidential diversity is involved in [robustness analyses].” To the extent that failure of 

triangulation is discussed, it is primarily taken to involve the failure to have sufficiently diverse 

methods.  
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3.2.2  Explaining the Success of Methodological Triangulation 

The reason that methodological triangulation is considered superior to single method 

research is that any given method may be subject to systematic errors (Wimsatt 1981; Kuorikoski 

and Marchionni 2016). (I will discuss systematic error more in section 3.2.3.) The more diverse a 

set of methods used to investigate the same question, the less likely that a single systematic error 

is causing all the methods to produce the same result (Cartwright, 1991; Cartwright, 1983; Salmon, 

1984).  

Consider a case where researchers use different methods (that are sufficiently diverse, 

according to your preferred view of the diversity criterion) and they get the same result from each 

method. What would explain the convergence of results? It could be due to error or the 

phenomenon of interest. Let’s consider each possibility in turn. If the convergence were caused by 

error, then we need to posit different errors for each of the methods. Given our assumption that the 

methods employed are sufficiently diverse, they will be unlikely to be subject to the same types of 

error. So, we’d explain the convergence of results in terms of different systematic errors—one for 

each method used. Further, we need to posit that each different systematic error nonetheless 

interacts with the method’s underlying processes to produce the same result. On the other hand, if 

the convergence were caused by the phenomenon of interest, then we need only posit a single 

cause to explain multiple different results. Considering both possibilities, Cartwright argues, it is 

more likely that there is a single cause driving the convergent results. This claim gives us reasons 

to prefer the hypothesis that the phenomenon of interest, rather than different systematic errors, 

cause the convergent results.  
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3.2.3  The Function of Methodological Triangulation 

In this section, I argue that the primary function of a successful methodological 

triangulation is guarding against unknown systematic error when inferring to some claim. To 

support this conclusion, I analyze the notion of systematic error and the difficulty in controlling 

for it. Then I distinguish cases where systematic error is unknown from cases where researchers 

have plausible suspected systematic errors in mind. I argue that triangulation is a particularly 

important research strategy for dealing with unknown systematic error. 

A systematic error (i.e., artifact, confound) occurs when some aspect of a method (e.g., 

protocol, instrument) causes a consistent pattern in the data and this pattern is mistaken for the 

phenomenon of interest. Systematic error can be distinguished from random error. Largely, for 

multiple experiments following similar protocols on the same population, random error (i.e., noise) 

can cancel out when aggregating over many experiments, depending on the distribution of the 

random error. That is, if we hypothesize that we will find some positive effect, in the long run after 

conducting many experiments, we can reasonably assume that the random error biases our 

aggregate results equally in both directions (positively and negatively). If the experiment has a 

source of systematic error, however, that error will continue to influence the results for each 

successive experiment in the same way. Performing the experiment multiple times will not remove 

the source of this systematic error and thus, will not avoid its biasing influence on the results.  

Let me now motivate the importance of removing sources of systematic error from studies. 

Consider a recent set of neuroscience studies that sought to use information from functional 

connectivity to explain developmental or psychiatric differences in human populations. Some of 

these studies aimed to distinguish people with autism and people from normal populations on the 

basis of their brain’s functional connectivity (Jones et al. 2010). And these studies did successfully 
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sort autistic and non-autistic participants. However, their success was not based on the functional 

connectivity of the individual participants. It turns out that the classifiers were using information 

produced by the motion correction processes to sort participants into the two populations. People 

with autism in the sample tended to move their heads more in the MRI than people from normal 

populations (Jones et al. 2010). We can see the same issue in some developmental studies that 

indicated a decrease in short-range functional connections in adult populations compared to 

younger populations (for review see Power, Schlaggar, and Petersen 2014). But again, the 

phenomenon of interest (cognitive development, in this case) was not the relevant feature used for 

correctly distinguishing child and adult populations. The finding of more short-range function 

connections in younger compared to older populations is also what one would expect to see if there 

is a difference in head motion between child and adult populations (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012). So, it can often be difficult to sort out systematic error as the cause 

of our methods. 

Now I would like to make one further distinction between different types of systematic 

error. Researchers can be in different epistemic situations with respect to the systematic errors 

influencing their methods. Researchers can know what systematic errors impact their results, they 

may suspect possible systematic errors are impacting their results, or there may be unknown 

systematic errors impacting their results. Known systematic errors can be accounted for with 

different strategies, such as removing confounding variables from the experimental set-up. The 

process of identifying potential systematic errors requires both experimental skills, such as tacit 

knowledge of how to work with a particular instrument (Feest, 2016), and often a sophisticated 

understanding of the theoretical implications of an experiment. Detailing the ways that researchers 

identify and test for potential systematic errors has not been a focus in recent philosophy of science, 
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but as we will see in section 3.3.2, Schupbach (2018) provides some much needed analysis of this 

practice. However, researchers can never be sure they have eliminated all sources of systematic 

error in their methods. It is always possible that some systematic error that is yet to be articulated 

is driving their results. These systematic errors I call unknown systematic error. 

My main claim is that a unique function of triangulation is to control for unknown 

systematic error. Controlling for known or suspected systematic errors need not lead to the use of 

triangulation as there are a number of other strategies for addressing the contribution of known 

systematic error; controlling for unknown systematic error in our methods can only be dealt with 

by using methodological triangulation. My argument is based on the common cause argument, 

which is the most widely accepted argument for the success of triangulation. Triangulation allows 

researchers to infer that it is unlikely that unknown systematic error produces the same result for 

each method. This unlikely scenario would require that each method is subject to the same 

systematic error unbeknownst to the researchers and that each systematic error produced the same 

result. It does so even in cases where researchers do not know much about plausible sources of 

error in their methods. Even though the systematic error in some methods are not known, they can 

still be controlled for to some extent by appealing to the degree of independence of assumptions 

among the set of methods. The greater the independence, the greater confidence that unknown 

systematic errors are controlled for. Thus, even in the impoverished epistemic situations 

researchers often find themselves in, gradual increases in the confidence of the detection of 

phenomena can be achieved by methodological triangulation. 
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3.3 Diversity in Methodological Triangulation 

In this section, I consider four views of the diversity criterion for successful methodological 

triangulation: the assumption independence view, the failure independence view, the 

confirmational independence view, and the explanatory independence view. I argue for the failure 

independence view of diversity for triangulation. In particular, I consider and reject Schupbach’s 

(Schupbach, 2015, 2018) arguments for the explanatory independence view because he changes 

the topic from triangulation to eliminative inference. 

3.3.1  Views of the Diversity Criterion 

There are numerous ways methods can be diverse. I will illustrate a few different types of 

diversity: diversity of the sample, diversity of the instrumental apparatus, and diversity of the 

theoretical assumptions. Thinking informally about diversity illuminate connections between 

triangulation and replication. A direct replication of some experimental protocol is completed 

using a different sample from the same population under study (Machery draft). In these cases, 

researchers are interested in whether they can find the same result in each study, despite potential 

random bias in the data. In cases of human studies, direct replications may simply use the same 

experimental protocol but vary the participants in the study within the same population. In this 

extreme case, the similarity in protocols means that there is no diversity in the probability of failure 

of the method. If the protocol fails to appropriately identify the phenomenon, then it will fail in 

both experiments.  

In other cases, researchers produce minimal variations in the experimental protocol. For 

example, the instrumental apparatus might remain the same, but other aspects of the protocols are 
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different, such as using different chemical solutions to prepare cells for viewing under an electron 

microscope. As a result, ways that the cells are likely to be damaged in the process of preparation 

are varied across the different protocols. For these moderate cases of diversity, there will be partial 

independence of the probability of failure among the methods. A failure of the instrument will lead 

to error in all variations of the experimental protocol, but a failure in one preparation solution 

protocol may not indicate error in the others. Finally, two methods may use different experimental 

paradigms or instruments, such that each method has almost non-overlapping sets of assumptions 

(Hacking 1983, 201). 

Now that we’ve seen a range of intuitive ways methods can be diverse in experimentation, 

we can ask what it means to have ‘sufficient diversity’ on accounts of successful triangulation. For 

example, it seems there is not sufficient diversity for triangulation among experiments that are 

conducted on different days of the week but are otherwise identical. More formally, there have 

been four views of the diversity criterion put forth in philosophical discussions of triangulation: 

the assumption independence view, the failure independence view, the confirmational 

independence view, and the explanatory independence view. I will discuss each in turn.  

First, the most simplistic view is that the methods employed in triangulation need to have 

fully or partially independent sets of assumptions. Assumptions might be made to make 

mathematical equations more tractable (e.g., assuming a continuous variable is discrete) or make 

causal claims about how the method works (e.g., that the magnet in an MRI is sufficiently strong 

to align the axes of hydrogen protons and that their rotations decay at different rates depending on 

the type of tissue). The strongest reading of this diversity criterion requires all assumptions to be 

independent. On the strong version, the practice of triangulation in science would almost never 

meet this ideal. A more reasonable version of the assumption independence view is that diversity 
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among the methods should involve partial independence of their assumptions. On the weaker 

version, diversity is a matter of degree. It can be determined more precisely: two methods are 

diverse to the extent that they produce results that are unconditionally probabilistically 

independent.  

There are two problems with the weaker assumption independence view. First, most 

methods—especially ones that can measure the same phenomenon—share many assumptions, 

such as the assumption that the methods measure features of the world and so on. In some cases, 

these assumptions may be shared for the purposes of mathematical tractability (Weisberg, 2007) 

or to make multi-scale models work together (“kludges” on Winsberg’s 2010 view). In these cases, 

the fact that the assumptions are shared is unlikely to be the cause of the convergent results. Shared 

assumptions only undermine our inferences from triangulation when they could be responsible for 

the convergence of the results in the absence of the phenomenon of interest. Second, the 

assumption independence view conflicts with one claim in the robustness literature stemming from 

Levins (1966) and developed by Weisberg (2006, 2013; Weisberg & Reisman, 2008): that in 

robustness analysis, one searches for models that share a common biological assumption. It may 

be that we should be revisionary about the views of robustness analysis following from Levins, 

but I will demonstrate below that more sophisticated views of the diversity criterion have other 

benefits and avoid some of the problems.5 

Another diversity criterion is the failure independence view, which holds that methods are 

diverse to the extent that each is prone to different systematic errors (Wimsatt 1981). I subscribe 

to the failure independence view for three reasons: it fits with the general account of triangulation 

 

5 In Chapter 2, I argued for a more general view of robustness analysis that does not assume that a common biological 

assumption for all models must be found. 
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as a strategy helpful in contexts of epistemic uncertainty, it explains why the assumption diversity 

criterion is prima facie plausible, and it is consonant with accounts of the success of triangulation. 

First, it retains the core of robustness, which Wimsatt held to be such an important strategy in 

science. Searching for convergence can give us a strategy for distinguishing trustworthy and 

untrustworthy results, which can be especially useful in contexts of uncertainty. The relevant 

uncertainty for triangulation is uncertainty about the causal processes underlying our methods and 

their interaction with the phenomenon of interest. According to this view, robustness in general 

has this function because robust practices look for invariance over models and methods that fail in 

different ways.  

Second, it makes sense of the intuitive plausibility of the assumption independence view. 

When there is greater partial independence of assumptions of some set of methods, then those 

methods are also likely to have diversity in the ways the methods can fail. For example, the use of 

fMRI in cognitive science often relies on the assumption that increases in the BOLD signal (i.e., 

increased blood flow) is indicative of increased cognitive activity in some localized area. If this 

assumption were wrong under certain conditions, the use of fMRI and its associated inferences in 

much of cognitive science would be undermined. It would not undermine evidence produced by 

EEGs though. EEGs measure brain activity electrically and do not assume that changes in blood 

flow is a good proxy for changes in cognitive activity. However, the failure independence view 

avoids the issues with the simplistic assumption independence view. Particularly, the failure 

independence view need not claim that every difference in assumptions between methods increases 

the power of triangulation; for differences in assumptions that make no difference to the way the 

methods might err, the difference in assumptions do not increase the power of triangulation, 

according to the failure independence view of diversity.  
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Finally, the failure independence view is also consonant with philosophical arguments for 

the success of triangulation (Cartwright, 1983, 83-86; Salmon, 1984). In the classic case of 

triangulation—the estimation of Avogadro’s number, Perrin does not need to know for each of 

thirteen methods, which method is prone to particular systematic errors. Instead, the likelihood 

that the methods are prone to different systematic errors is sufficient to explain the likelihood that 

the common cause is the phenomenon and not error. 

Still philosophers have introduced other diversity criteria. Lisa Lloyd (2010; 2015) 

introduces and defends the confirmational independence view, which states that two methods are 

diverse to the extent that the increase in confirmation for some hypothesis based on one method is 

independent of whether or not we have previously confirmed that hypothesis with a different 

method (Lloyd 2009). Confirmational independence can be more formally understood in terms of 

conditional probabilistic independence relative to a hypothesis. Lloyd draws explicitly on 

Fitelson’s (2001) account of mutual confirmational independence by the screening-off condition. 

Formally, two methods that produce the same result (R) have confirmational independence with 

respect to some hypothesis H when: Pr(R1&R2|H) = Pr (R1|H) x Pr(R2|H) and Pr(R1&R2|~H) = Pr 

(R1|~H) x Pr(R2|~H).  

Schupbach (2018, 284) points out a crucial problem with the confirmational independence 

view. Many cases of triangulation, especially when all methods are not employed simultaneously, 

will not satisfy the formal definition of confirmational independence. That is, according to the 

confirmation function of a particular hypothesis, the c(H, R1|R2) < c(H, R1). Schupbach points out 

that often different experiments in the triangulation, when they successfully confirm the 

hypothesis, result in small increases of confirmation of the hypothesis for future experiments. That 

is, when we confirm some new hypothesis, the initial confirmational boost can be large. But the 
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confirmational boost for the hypothesis with subsequent experiments will be lower. So, following 

Schupbach, I think the confirmational independence view (as it is formulated) is often incorrect 

about what ought to be considered sufficient diversity among methods. 

Schupbach (2015, 2018) introduced the explanatory independence view of the diversity 

criterion. The basic idea is that methods in triangulation are sufficiently diverse when they can rule 

out alternative explanations of the observed results. More formally, Schupbach’s (2018, 288) 

proposal is that methods are sufficiently diverse:  

with respect to potential explanation (target hypothesis) H and its competitors to the 

extent that their detections (R1, R2, ... , Rn) can be put into a sequence for which any 

member is explanatorily discriminating between H and some competing explanation(s) 

not yet ruled out by the prior members of that sequence. 

Suppose that some method produces a particular result. Researchers can most appropriately use 

triangulation by designing similar experiments that can test alternative hypotheses that would 

explain the presence of the result. So, researchers ought to design their experiments to rule out 

likely sources of systematic error.  

3.3.2  Schupbach’s Explanatory Diversity Criterion 

In setting out his argument for the explanatory diversity criterion, Schupbach (2018) poses 

an objection to the failure independence criterion: it is too restrictive because it cannot account for 

classic examples of methodological triangulation such as Perrin’s work on Brownian motion. His 

analysis of this case is also his major positive argument for the explanatory diversity criterion. (His 

other major case is the Lotka-Volterra predator-prey model, which he claims follows similar 

reasoning as the Brownian motion experimental triangulation case. I will set aside the case of the 

Lotka-Volterra model here.) In the remainder of this section, I argue that Schupbach’s objection 
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to the failure independence criterion and argument for the explanatory independence criterion rests 

on the mistaken assumption that Perrin’s experimental work on Brownian motion is a case of 

methodological triangulation. Instead, I argue that he is conflating a classic case of triangulation 

(i.e., Perrin’s estimation of Avogadro’s number) with Perrin’s explanation of Brownian motion. 

The choice of case matters because, on my view, the two have different underlying inferential 

strategies. Perrin’s estimation of Avogadro’s number is an inductive inference following the 

probabilistic common cause argument (e.g., Cartwright, 1991), whereas Perrin’s experimental 

work on Brownian motion is best characterized as an abductive eliminative inference. 

Let me now explicate Schupbach’s interpretation of Perrin’s Brownian motion 

experiments. Perrin performed a series of experiments to successively rule out alternatives to 

Brownian motion that could explain the motion of particles in a medium. The variations included, 

for example, testing for the characteristic motion with both organic and inorganic particles. 

However, many of the assumptions and protocols for these successive experiments remained the 

same: the medium was water, only fine particles were used, and the same container was used. Yet, 

Schupbach holds that these experimental variations are sufficient to establish the existence of 

Brownian motion and that this conclusion is established through methodological triangulation. I 

will reject the latter claim. 

Schupbach argues that these conclusions constitute a problem for the failure independence 

criterion (and other existing criteria of diversity). According to the criterion of failure 

independence, the Brownian motion case is not a very successful case of methodological 

triangulation; many of the experiments had similar protocols to the majority of other experiments. 

If a systematic error was found to be due to, say, the shape and material of the container, it would 
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be present in the majority of experiments. So, Schupbach suggests, a different diversity criterion 

must be at work in methodological triangulation.  

I agree that the Brownian motion case would pose a problem for the failure independence 

criterion, if it were a case of methodological triangulation. I also agree with Schupbach that: there 

is some sense of diversity among the set of experimental protocols employed by Perrin; successive 

experiments ruled out possible alternative explanations of the data; and the set of experiments are 

not very diverse according to the failure independence criterion. As Schupbach notes, the case for 

Brownian motion is best made as a successive set of experiments aimed at ruling out particular 

likely systematic errors. Where Schupbach and I disagree is whether Perrin’s experiments are a 

case of methodological triangulation. In particular, our disagreement lies in both what function 

methodological triangulation plays and what type of inference underlies its practice. 

As I’ve already argued (section 3.2.3), one unique function of methodological triangulation 

is to control for unknown systematic error. On my view, Perrin’s design of experiments does not 

aim to control unknown systematic error. Instead, Perrin designs his experiments to rule out 

suspected sources of systematic error. Each experiment is carefully designed in succession to rule 

out plausible alternative explanations of the observed results (including systematic error and in 

some cases, predictions by alternative theories). Unknown systematic error and suspected 

systematic error pose different problems for experimentation. When dealing with known or 

suspected error, one needs strategies such as abductive eliminative inferences, calibration of 

methods, or adjusting protocols or data to control for known confounding variables.  

Rather than viewing Perrin’s experiments Brownian motion as employing inductive 

inferences of the sort in the common cause argument (section 3.2.2), the case is better viewed as 

Perrin’s attempt to rule out alternative explanations of the observed phenomenon through an 
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abductive eliminative inference. Eliminative inferences support an explanation of some result by 

systematically ruling out alternative explanations until only one explanation remains undefeated. 

In this case, Perrin’s eliminative inference is an inductive inference for the existence of Brownian 

motion as due to the collision of particles composing the fluid and those suspended in the fluid 

justified by ruling out a series of plausible alternative explanations for his observations. First, 

Perrin rules out alternative explanations that result from plausible confounds to his method. Perrin 

then devises key tests of different theoretical explanations for the observed phenomenon. As more 

plausible alternative explanations are ruled out through targeted experimental manipulations, more 

support is generated for the claim that Brownian motion is caused by the collision of particles 

floating in the medium and composing the medium. Perrin is simply following good experimental 

practice in varying aspects of one’s experimental protocol to determine whether the results still 

obtain (Franklin & Howson, 1984). Eliminative inference, but not common cause inductive 

inference, requires the identification of potential other causes of the observed results. As a result, 

eliminative inference works best in cases where researchers have fleshed out competing theories 

or well understood protocols. It will apply in more limited cases than common cause inductive 

inference, but eliminative inference, as Schupbach notices, requires much less diversity among 

methods.  

Here it is important to note that the rhetorical force of Schupbach’s framing trades on an 

ambiguity about which of Perrin’s conclusions is the result of triangulation. Most philosophical 

discussion of Perrin’s triangulation arguments focus on either the conclusion that atoms exist or, 

more specifically, the triangulation on a particular estimation of Avogadro’s number. Schupbach 

instead changes the discussion to only a subset of these experiments: the ones on Brownian motion. 

In my view and from the philosophical literature, the more clear instance of methodological 
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triangulation is Perrin’s estimation of Avogadro’s number from distinct experiments (e.g., 

Brownian motion, x-ray diffraction, Blackbody radiation) (Cartwright, 1983; Mayo, 1996; 

Salmon, 1984).  

In the estimation of Avogadro’s number, Perrin does not need to know any likely sources 

of systematic error for each method. Instead, he employs an inductive inference using the common 

cause argument: the diversity among the methods makes it highly unlikely that there is one 

unknown systematic error producing the same result for each experiment. Nothing about the logic 

of this classic case of triangulation requires the potential systematic error to be described or even 

named. The importance of having tools and strategies for reducing the likelihood of unknown 

systematic error influencing our results cannot be underestimated.  

One interesting consequence of my argument is that there are two types inferences 

underlying cases of robustness in experimentation—common cause inductive inference and 

abductive eliminative inference—but each has a different function and different procedures. First, 

my view is supported by Cartwright’s (1983, 85) arguments that the inferential strategy underlying 

common cause argument is distinct from inference to the best explanation. Both historically and 

philosophically, the common cause argument provides the explanation for how and why 

methodological triangulation is an important practice. Second, eliminative inference plays a 

different sort of role in scientific research. Eliminative inference is most useful when there are 

clear competing theories or suspected experimental confounds. That is, eliminative inferences will 

be a less effective strategy for cases of epistemic uncertainty regarding alternative theoretical 

predictions or causal understanding of how some method produces data. No doubt a large part of 

scientific practice and experimenter reasoning falls under this description. Still it is important to 
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keep different research strategies separate. They are useful in different contexts and have different 

norms (as the work of Wimsatt and Schupbach elaborates). 

To summarize the dialectic: Perrin notes that on the failure independence criterion of 

diversity, Perrin’s arguments for an explanation of Brownian motion would not count as 

methodological triangulation. I agree that were the Brownian motion case an instance of 

triangulation, this would constitute a problem for the failure independence view. But I argue that 

the Brownian motion case is not a case of methodological triangulation because triangulation 

employs common cause inductive inferences and not abductive eliminative inferences. Perrin’s 

experiments aim at identifying and ruling out plausible sources of systematic error and as such, 

are best understood as a practice based on underlying eliminative inferences. I’ve argued above 

that one unique function of methodological triangulation is to control for unknown systematic 

error. So, Schupbach’s analysis of the case does not pose a problem for the failure independence 

view and instead, his work contributes to our understanding of the norms of eliminative inference. 

3.4 How Triangulation Fails 

In this section, I move to defend my section claim in this chapter: that a descriptively and 

normatively adequate account of methodological triangulation needs to account for the ways 

triangulation is susceptible to failure in its practice, especially concerning success criterion (ii), 

rather than focusing primarily on how and why triangulation succeeds in ideal cases.  

A theory or account of a practice should highlight potential failures in order to be useful. 

Consider some ethical theory that gives an account of right and wrong actions. In order to use this 

ethical theory to guide my actions, I need to know not just what makes an action right or wrong, 
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but also some features of my moral psychology. What are the ways that I am likely to err? Should 

I be worried about having a weak will and lacking follow through for actions that I deem right? 

Knowledge of the ways in which I might err allows me to better use the ethical theory to guide my 

actions. Analogously, I argue that an account of triangulation that is useful in practice ought to 

explain not just why triangulation is successful in ideal cases, but also how it can fail in practice. 

To do so, I will appeal to the idea of epistemic risk from the literature on the types and roles of 

values in science, medicine, and technology. By identifying types of failure, this lays the 

groundwork for future normative work developing strategies to avoid or mitigate these risks in 

triangulation research.  

Before providing my account of triangulation, I will first demonstrate that the backbone of 

existing accounts of triangulation are insufficient to explain why the practice of triangulation can 

fail. Current accounts of triangulation are cashed out in terms of its success.6 One view of 

triangulation sets out to: “identify at an abstract level the logic behind successful robustness 

arguments [and…] to determine what is required for a specific form of robustness analysis to be 

successful” (Kuorikoski and Marchionni 2016, 230). On another view, triangulation is defined as: 

“the use in empirical practice of multiple means of investigation to validate an experimental 

outcome” (Schickore and Coko 2013, 296).  

How would this received view of triangulation account for cases of failure in practice? 

Recall that I elucidated two success criteria for triangulation: (i) employ sufficiently diverse 

 

6 One exception is Stegenga (2009) who considers various problems with the use of triangulation as a strategy to deal 

with the problem of epistemic uncertainty in science. However, many of his critiques are not internal to the practice 

of triangulation. Stegenga’s main concern is that philosophical accounts of triangulation provide no guidance when 

evidence both confirms and disconfirms the same hypothesis. But most centrally to this chapter, Stegenga does not 

examine the epistemic risks in triangulation arguments when they appear to be successful. These potential errors are 

all the more suspect because they masquerade as successes. 
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methods and (ii) provide evidence about the same phenomenon. There is substantial discussion of 

the failure to have sufficiently diverse methods (i), which is what Wimsatt (1981) called “illusory 

robustness.” Still these accounts of diversity are based on successful cases of triangulation (e.g., 

Schupbach 2018).  

We can also consider the other success criterion in triangulation: that each method produces 

data about the same phenomenon (ii). While most philosophers working on triangulation recognize 

that this is a success criterion, relatively little has been said about how researchers can know they 

have met this criterion.7 Even less has been said about how researchers can fail to meet this success 

criterion. 

3.4.1  Epistemic Risk 

In order to flesh out an account of triangulation that explains how it can fail in practice, I 

appeal to the concept of epistemic risk, which is “any risk of epistemic error that arises anywhere 

during knowledge practices” (Biddle and Kukla 2017, 218). There are many types of epistemic 

risk that occur at different parts of the research process. The most discussed kind of epistemic risk 

is inductive risk (Douglas, 2016), which is particularly predominant in discussion about the role 

of values in science, medicine, and technology. Although the name implies it is any risk in 

inductive inferences, it is a technical term that refers only to specific inferences: inferences from 

some body of evidence to acceptance or rejection of a hypothesis.  

 

7 One exception is Kuorikoski and Marchionni (2016), who argue that triangulation primarily consists in justifying 

data-to-phenomena inferences. Relying on Bogen and Woodward (1988), Kuorikoski and Marchionni argue that 

researchers can use empirical reasoning to justify these inferences, such as intervening on the phenomenon to 

determine whether there are corresponding differences in the data. While I think their view is on the right track, it is 

(1) susceptible to the criticism of not explaining why triangulation sometimes fails and (2) does not provide a 

sufficiently developed account of the practice of triangulation. I aim to rectify these two issues here. 
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Following Biddle & Kukla (2017), I hold that focusing exclusively on inductive risk makes 

our philosophical accounts of epistemic risk deficient. There are other risks in knowledge 

production that do not neatly fit into the category of inductive risk. Other types of epistemic risk 

include the risk in deciding whether to characterize some datum as evidence for a hypothesis, such 

as whether some particular slide contains tumors and whether the tumors were malignant (Biddle's 

2016 interpretation of Douglas 2000, 569; see also work on phenomena are constituted, Colaço 

2018). Another example is risk in the inference from animal models to the target system of interest 

(usually in humans) as in research on exposure to bisphenol A in a particular rat model (Biddle's 

2016 interpretation of Wilholt 2009). Another risk is the way a problem is implicitly or explicitly 

framed, including setting bounds on what counts as the problem, such as the framing of the ethical 

problems associated with genetically engineered crops (Biddle, 2018). Finally, there is risk in the 

diagnostic criteria for diseases, such as infertility (Biddle, 2016; Kukla, 2019). I discuss and 

expand upon the distinction between epistemic risk (the general category) and inductive risk (one 

type of epistemic risk) below in section 3.6.1. 

Current accounts of triangulation focused on success can only account for two types of 

epistemic risk: the failure to have sufficiently diverse methods (or Wimsatt’s “illusory robustness”) 

and, on my view, inductive risk. Drawing on the tradition of epistemic risk laid out in Biddle & 

Kukla’s recent work, I argue that an account of triangulation that explains failure will need to make 

use of epistemic risk more broadly. There are types of epistemic risk present in triangulation that 

do not neatly fall under either the risk of illusory robustness or inductive risk. Further, the form 

that inductive risk takes in triangulation is a particular kind that warrants its own exploration. That 

is, the inductive risk is the risk of being wrong that each method provides evidence about the same 
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phenomenon, whereas inductive risk in the science and values literature typically is merely the 

risk of being wrong that there is (or is not) some predicted effect. 

3.4.2  Schema for Triangulation in Practice 

In order to develop an account of triangulation that highlights points of failure, I turn away 

from abstract success conditions and to the details of knowledge production via triangulation. I 

highlight important steps in the practice of triangulation from the causal production of data to its 

transition to playing an evidential role to the increased or decreased credence in some hypothesis. 

In this section I provide a schema for the practice of triangulation. 

Let me first distinguish between data and phenomena (Bogen & Woodward, 1988). Data 

are publicly observable reports that result from experimental or observational processes. They are 

not repeatable because they are the actual reports produced through experimentation or 

observation. Phenomena on the other hand are stable patterns in the world. Phenomena are often 

not directly observable and are characterized and explained by theory. 

In the practice of triangulation, researchers identify multiple methods that are likely to 

produce data relevant to the same phenomenon. Each method may include some sources of error, 

such as random error from sampling or systematic error due to the instruments and procedures of 

the method. Unfortunately, researchers are often unaware of all sources of error in their methods. 

And these errors causally impact what data is produced. Yet, it is this data produced by imperfect 

methods that is the input for our inferential reasoning. 

Here let me make a further distinction between data and evidence. Rather than thinking of 

evidence as a separate kind of entity, we can think of it as a role that data play in confirming or 

disconfirming some hypothesis. In some cases of triangulation, this step may not be trivial: when 
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data is produced in radically different experimental and theoretical contexts, many assumptions 

may be required to get from these different datasets to evidence that bears on (some particular) 

hypothesis. This evidential role problem is what Stegenga (2009) calls this the problem of 

incongruity.  

Consider also that the data may be used as evidence in relation to multiple hypotheses. That 

is, despite of the fact that it may have been collected with some particular purpose in mind, it can 

serve as evidence for or against other hypotheses. In the case of triangulation, we’re interested 

only in data that can be used as evidence for the same hypothesis. I’ll focus on hypotheses about 

the existence of a phenomenon, though triangulation can also be used to estimate parameters and 

constants (e.g., Avogadro’s number). At this point in the practice of triangulation, it needs to be 

demonstrated that all of the diverse datasets can serve as evidence for or against the same 

hypothesis. Then once the evidential role of the datasets with respect to the same hypothesis has 

been established, researchers can make an inference to accept or reject the hypothesis. Even if all 

of the datasets provide supporting evidence for the hypothesis, a judgement still needs to be made 

about whether sufficient evidence has been collected to accept the hypothesis.  

Theory can help reduce the uncertainty for some cases of triangulation. If researchers are 

triangulating on a claim about the existence of a phenomenon, then they should use some 

theoretical characterization of that phenomenon that describes its features. Researchers need a 

sufficiently developed characterization of a phenomenon in order to distinguish between 

inferences to the phenomenon of interest from inferences to other phenomena. 
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Figure 4. Schema of triangulation. 

So, to summarize my view: Triangulation begins with the use of multiple methods to 

generate diverse datasets. Here researchers need to deal with the problem of error as a potential 

and partial cause of the data. One partial solution is to appeal to theories about how the methods 

work—how is that they causally produce the data—in order to identify and remove possible 

sources of error. Still other unknown sources of error remain and so, researchers can rely on the 

diversity of ways their methods can fail and the common cause argument when drawing 

conclusions. Researchers then need determine whether all of these diverse datasets can serve as 

evidence for the same hypothesis. This step will often require an appeal to assumptions about what 

is being measured. For hypotheses about phenomena, they need to provide a theoretical 

characterization of the phenomenon’s features and how to distinguish it from other potential 

phenomena. 
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3.5 Triangulation in Implicit Social Cognition 

Now that I’ve described the process of triangulation, I will demonstrate how it locates 

different types of epistemic risk. To do so, I will analyze the triangulation argument for implicit 

attitudes in social psychology. 

By the mid-1990s, the majority of participants in psychology studies no longer self-

reported holding explicitly racial attitudes (e.g., Dovidio and Gaertner 2000). In fact, many 

participants began to view racist acts as socially unacceptable and avoided committing racist 

actions themselves (Sue 2010). Yet, widespread racially discriminatory practices and racial 

disparities in economic, social, and health spheres persisted. Social psychologists posited that an 

explanation for these apparently contradictory features was that individuals still held racially 

biased attitudes, but that they were not reporting them when asked directly about their attitudes. 

So, researchers developed new techniques to control for the social desirability of appearing 

egalitarian (e.g., the “bogus pipeline” Jones and Sigall 1971). Indirect measures get around 

participants’ ability and motivation to present themselves in a particular way to the researchers 

and instead measure their less controlled responses. As a result, researchers posited ‘implicit 

attitudes’ as a mental state or process. Implicit attitudes are automatically activated evaluative 

judgments about which participants are typically unaware or unable to control.  

3.5.1  The IAT and the Evaluative Priming Task 

The study of implicit attitudes bloomed. There are now nearly two dozen methods for 

measuring implicit attitudes. The two initial and most well-developed of these methods are the 
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Implicit Association Test (IAT) (e.g., Greenwald, McGee, and Schwartz 1998) and the evaluative 

priming task (EPT) (e.g., Fazio et al. 1986). I discuss each in turn. 

During a racial IAT, participants view stimuli from four categories: two racial groups and 

two evaluative groups. On any trial, each racial group is paired with a different evaluative category 

and these pairing are displayed on either side of the display screen. On typical racial IATs, two of 

the categories are stimuli related to two racial groups (e.g., faces of White and Black individuals) 

and two of the categories are evaluative stimuli (e.g., positive and negative words). Participants 

are asked to quickly categorize stimuli by pressing one of two keys on the right and left sides of 

the display, each corresponding to the disjunctive categories listed. Researchers can compare 

participants’ reaction times on trials in which Black-positive and White-negative are paired to 

those in which Black-negative and White-positive are paired. A faster response time to the latter 

compared to the former is thought to indicate racial attitudes that more closely link Black people 

with negative concepts and White people with positive concepts (e.g., Mitchell, Nosek, and Banaji 

2003). There is some evidence that IAT scores are also influenced by the salience of stimuli, the 

perceptual similarity of stimuli, and a participant’s cognitive skills (De Houwer, Teige-

Mocigemba, Spruyt, & Moors, 2009). 

Evaluative priming tasks instead use stimuli from the categories of interest to prime 

participants before participants perform a categorization task on unrelated evaluative target 

stimuli. If researchers are interested in racial attitudes, they might use images of Black or White 

people to prime participants. Then during the categorization task, participants are asked to 

categorize positive- and negative-valence words (target stimulus). Researchers reason that reaction 

times on the categorization task will be influenced by the evaluative valence of the prime stimulus. 

If a participant holds negative attitudes towards White people, then after viewing a White stimulus 
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prime, they will categorize negative target words more quickly than positive target words. In 

general, the test-retest reliability of evaluative priming scores for the same participant is very low 

(Bosson, Swann, & Pennebaker, 2000), even compared to test-retest reliability of IAT scores 

(Lane, Banaji, Nosek, & Greenwald, 2007). 

3.5.2  The Triangulation Argument for Implicit Attitudes 

Even early in their research, social psychologists took indirect measures like the IAT and 

EPT to triangulate on the same phenomenon—implicit attitudes. Theories of implicit attitudes also 

often assume that it is a unified psychological kind (a claim discussed by Holroyd, Scaife, and 

Stafford 2017), though some recent philosophical theories do not (Machery, 2016). Social 

psychologists take indirect measures like the IAT and EPT to triangulate on the same 

phenomenon—implicit attitudes. Here I will offer some evidence for this claim. 

Discussing the views of the field at the time in a review article on the nature of implicit 

attitudes, Gawronski, Hofmann, and Wilber (2006, 486; citations removed) state:  

A widespread assumption underlying the application of indirect measures is that they 

provide access to unconscious mental associations that are difficult to assess with standard 

self-report measures. Specifically, it is often argued that self-reported (explicit) evaluations 

reflect conscious attitudes, whereas indirectly assessed (implicit) evaluations reflect 

unconscious attitudes.  

 

While Gawronski and colleagues go on to critique this widespread assumption (at least, its 

attribution of ‘unconscious’ to implicit attitudes), this quote demonstrates the ubiquitous 

assumption among implicit attitude researchers that first-generation indirect methods measured 

implicit attitudes.  

More recently social psychologists have developed a neutral characterization of implicit 

attitudes that does not commit to any particular view of ‘implicit’. This is to broadly accommodate 
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issues that participants are able to predict the evaluative direction of their implicit attitudes (Hahn, 

Judd, Hirsh, & Blair, 2014). As Greenwald and Lai write in a review article this year, “The 

currently dominant understanding of “implicit” among social cognition researchers is “indirectly 

measured.” The labels “indirectly measured attitude” and “implicit attitude” are used 

interchangeably in this review” (Greenwald and Lai 2020). Still the assumption remains: whatever 

indirect measures are measuring, it is the same phenomenon.  

3.6 Two Examples of Epistemic Risks in Triangulation 

In this section, I use my account of triangulation to highlight two examples of epistemic 

risks and where they arise in implicit attitude research. My account better explains what goes 

wrong in these cases than accounts of triangulation focused on success. That is, my account 

provides a better descriptive account of scientific practice, where triangulation does not always 

succeed. Here I identify two types of epistemic risk: (1) epistemic risk when data is taken to be 

evidence for some hypothesis and (2) inductive risk in determining a sufficient level of evidence 

for the acceptance or rejection of a hypothesis.  

3.6.1  Moving from Data to Evidence 

One major epistemic risk in triangulation is that we may mistakenly think that the different 

datasets can serve as evidence for the same hypothesis. We are particularly at risk of this error 

when we do not justify the claim that our methods measure aspects theoretically related to the 

same hypothesis. Data do not automatically bear on hypotheses. A datum can be an image from 



 69 

electron microscopy, a mark selecting an answer on a survey, or recorded video of a researcher 

interacting with participants. So, data needs to be interpreted in relation to the hypotheses for which 

they may serve as evidence. In doing this, researchers must infer on the basis of data and some 

assumptions to the confirmation or disconfirmation of a hypothesis.  

I argue that this epistemic risk is relevant to the triangulation argument for implicit 

attitudes. The data produced and current assumptions in social psychology do not support the claim 

that the data produced by the IAT and EPT serve as evidence for the same hypothesis. In fact, 

according to some implicit attitude researchers, they serve as evidence for slightly different 

hypotheses.  

In IAT studies, the categories of interest are made explicit to the participant as the 

categories must be identified and paired to perform the categorization task. Thus, IAT scores are 

thought to measure attitudes toward the general social category. Thus, they can serve as evidence 

for hypotheses about associations between evaluative categories and social categories. 

In an evaluative priming task, on the other hand, the instructions do not explicitly determine 

the relevant categorical membership of the priming stimulus. It is generally accepted that due to 

this feature, evaluative priming tasks measure attitudes toward the stimuli rather than the category 

(Mitchell et al., 2003; Olson & Fazio, 2003). Consider that the priming stimulus is often an image 

of a person’s face. Researchers may wish to contrast Black and White faces as priming stimuli in 

an evaluative priming task; however, for each stimulus, the individual it represents will also belong 

to other social categories (e.g., attractiveness, gender). Because the categorization task is only 

along the evaluative dimension, it is not made salient which of these categories a participant is 

responding to. Consider the case of a participant who when primed with a particular image of a 

Black face, categorizes positive stimuli more slowly than when primed with an image of a White 
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face. The response discrepancy could be caused by a negative evaluations of the person-

represented-in-the-image’s perceived race, attractiveness, perceived gender, or any combination 

of these and other features. Good task design will control for these differences as much as possible, 

but due to the design of the task, it is impossible to identify what features influence the participant’s 

reaction times in the categorization task in any given case. Further, indirect measures generally 

have low test-retest validity (Bosson et al., 2000). 

In order to address this epistemic risk, researchers need to provide justification for the claim 

that the IAT and EPT produce data that can serve as evidence for the hypothesis that participants 

have a negative association with the social category of interest. For the IAT, this justification 

already exists. For the EPT, it is less obvious. So, using my account of triangulation, I have 

highlighted a particular weak point in the triangulation argument for implicit attitudes and 

emphasized a place for the development and elaboration of norms for successful triangulation.  

In section 3.6.3, I argue that this case cannot be reduced to the failure of sufficient method 

diversity according to different diversity criteria. Here I will argue that it cannot be reduced to 

inductive risk. Biddle and Kukla note the tendency to interpret inductive risk broadly to 

accommodate any risk during experimental knowledge production at the locus of our inferences 

from evidence to the acceptance or rejection of a hypothesis. This broad application of the notion 

of inductive risk fails to disambiguate different cases. Inductive risk in the classic sense impacts 

judgements about whether there are sufficient levels of evidence to accept or reject the hypothesis 

of interest. However, earlier on in the research process, before the production of data that can serve 

as evidence, researchers make many types of inferences.  

Take the example of choosing an appropriate animal model for some series of experiments. 

Suppose researchers are interested in whether exposure to bisphenol A causes cancer in humans 
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(Wilholt 2009). Researchers need to choose an appropriate animal model to test this hypothesis. 

They will need to rely on inferences about the appropriateness of different animal models to do so, 

such as the inference that the relevant causal mechanism for accumulating and processing 

bisphenol A in humans is analogous to the causal mechanism in a rat animal model. This inference 

is where the risk that researchers are wrong arises. They can be wrong if the causal mechanism 

works very differently in the rat model than in humans and therefore, is not as sensitive to the 

presence of bisphenol A. This error also undermines our inferences from the evidence produced 

to, in this case, the rejection of the hypothesis that bisphenol A is harmful to humans. But it 

undermines the inductive inference from evidence to hypothesis rejection because the previous 

inference about the causal mechanism in rats and humans is incorrect. So, it is best to locate the 

epistemic risk where it first arises rather than at the locus of inductive risk, despite the fact that 

errors earlier in the production of evidence will impact the inferences we can make on the basis of 

that evidence. 

 

3.6.2  Inductive Risk in Triangulation 

Once we know data can serve as evidence for the same hypothesis, we can ask: How do 

researchers know there is sufficient evidence to accept the hypothesis? On my view, the epistemic 

risk of error here is best characterized as inductive risk. However, in the context of triangulation 

inductive risk takes a particular form. Specifically, researchers ought to be concerned about the 

risk of accepting the hypothesis when it is false. In cases where our hypothesis is about the 

existence of some phenomenon (as it often is in triangulation), there is a particular risk that 

unbeknownst to researchers, the data produced support the hypothesis that there are distinct 
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phenomena. In other words, there is an inductive risk in accepting the hypothesis that some 

phenomenon of interest exists on the basis of triangulation when researchers have not sufficiently 

ruled out the possible hypothesis that multiple phenomena are differentially driving the results. 

Psychologists evaluate the validity of their tests using psychometrics. Relevant to my 

arguments, convergent validity is the extent to which two methods that are predicted to measure 

the same phenomenon are in fact measuring the same phenomenon. Low convergent validity 

suggests that two methods measure different phenomena. Psychologists often assess convergent 

validity by examining correlation coefficients.8 If two methods measure the same phenomenon, 

they are expected to have high correlations in their scores. However, given that the two methods 

are distinct in some ways, there should not be a perfect correlation in their scores. There is no well 

accepted threshold for what counts as sufficiently high convergent validity. But social 

psychologists hold that the IAT and EPT ought to have high convergent validity (e.g., Banaji 

2001). 

Unfortunately, researchers have found low correlations between the IAT and other implicit 

measures and thus, low convergent validity (Fazio & Olson, 2003). The correlation in scores for 

the IAT and EPT range between r=.24 and r=.13. These are very low positive correlations. So, a 

participant’s score on the IAT provides very little information about their EPT score, and vice 

versa. 

One possible cause of the low correlations between IAT and EPT scores is the low 

reliability of EPT (De Houwer et al., 2009). Perhaps the scores do not correlate well due to 

noisiness in the data produced by unreliable methods rather than the methods measuring different 

 

8 Other methods such as the multi-trait multi-method matrix (Campbell & Fiske, 1959) have been used less frequently 

and less completely in the context of implicit attitudes. 
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phenomena. A recent comparison of seven indirect measures of attitudes Bar-Anan and Nosek 

(2014), the EPT had weak correlations with other indirect measures (including the IAT, r=.24).  

However, there are two reasons to remain neutral with respect to these explanations. First, 

as Bar-Anan and Nosek (2014, 677, original emphasis) suggest, low convergent validity and low 

reliability may both contribute to the low correlations of scores on indirect measures of attitudes: 

the most likely explanation for this pattern, coupled with the similar rank ordering for 

internal consistency, is that [Affective Misattribution Priming] and EPT are both relatively 

distinct, and also less effective in reliably assessing the target evaluation than are the other 

measures. […] it could still be the case that both measures assess unique components of 

evaluation that are not assessed by other indirect measures (including each other).  

 

Still one promising finding is that unlike the Affective Misattribution Priming task, Bar-Anan and 

Nosek (2014) do not find a strong correlation between the EPT and direct measures of racial 

attitudes (i.e., self-report on surveys), which would have indicated the potential influence of 

deliberate evaluation in the indirect measurement. There are further reasons to be concerned that 

the contribution of low reliability and low convergent validity cannot be distinguished for indirect 

measures. Schimmack argues that low reliability is indicative of validity problems. Schimmack 

(2019, 5) states: “even if low convergent validity is caused by low reliability, it poses a problem 

for the validity of the IAT as a measure of individual differences.” He argues that the reliability of 

a measure sets the upper bound for its validity. Having low reliability thus constrains the highest 

possible validity for a measure. So, while some of the low correlations between the measures may 

be due to the low reliability of the EPT, it is likely that both low reliability and low convergent 

validity cause the low correlation among indirect measures of implicit attitudes. 



 74 

3.6.3  Why Can’t These be Understood as a Failure of Diversity? 

One potential objection to my claim that current accounts of triangulation cannot 

sufficiently capture what is going on in the implicit attitude cases appeals to accounts of 

sufficiently diverse methods. On this objection, the IAT and EPT are not sufficiently diverse 

methods, unbeknownst to researchers, and thus the failure to triangulate in this case is explicable 

on existing success-focused accounts of triangulation. The basic idea is that whatever diversity 

criterion we accept (see Schupbach 2018), the IAT and EPT are too similar to count as distinct 

methods for the purposes of triangulation. I respond to this objection in two ways: first, by 

clarifying that these methods are historically descendant from different theories in psychology and 

second, by arguing that on our best understanding of the mechanisms underlying the measurement 

tasks, the IAT and EPT measure slightly different psychological processes. In addition to my 

arguments that they produce data relevant to different hypotheses (section 3.6.1), this gives us 

some reason to think the methods are sufficiently diverse on any appropriate diversity criterion. 

The two methods I discuss were developed out of different historical traditions in 

psychology (Payne & Gawronski, 2015). Drawing on Shiffrin and Schneider’s (Shiffrin & 

Schneider, 1977) work on selective attention, Fazio and colleagues (Fazio, Jackson, Dunton, & 

Williams, 1995) developed the evaluative priming task to distinguish automatic and controlled 

processing. Controlled processing requires attention and can be altered voluntarily, whereas 

automatic processing takes place on memories stored in long-term memory, is automatically 

activated given the appropriate inputs, and is difficult to suppress.  

Greenwald and Banaji’s (1995) work on implicit attitudes came out of cognitive 

psychological research on implicit memory, which describes the way that earlier experiences can 

influence current performance on learned tasks without conscious awareness of the past 
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experiences. Most famously, the patient H.M., who had a medial temporal lobectomy and thus 

lacked bilateral hippocampi and other structures, was unable to create new episodic memories. 

However, H.M. demonstrated the formation of new implicit memories through the time-savings in 

relearning motor skill tasks (Corkin, 2002). As Greenwald et al. (1998) constructed it, the IAT is 

a measurement of implicit memory. So, both measures were designed based on different theories. 

In short, the evaluative priming task was designed to measure a construct that is typically 

uncontrolled or automatic while the IAT is designed to measure a construct that is typically 

unconscious or about which the individual is unaware. 

They are also causally distinct, though there is a caveat to this claim that it is based on 

current evidence and is defeasible. It is generally unclear what mechanisms underlie the racial 

IAT and evaluative priming tasks. Many mechanisms for the IAT have been proposed, but little 

evidence bears on their plausibility. Often what evidence exists is consistent with multiple 

mechanisms. However, for the sake of this chapter, I will outline one proposed mechanism for 

each method to motivate the claim that, given the state of current research, the racial IAT and the 

racial evaluative priming task likely measure distinct phenomena; affect plays a more significant 

role in the underlying mechanism of the latter than the former. 

While there is no one well-accepted mechanism underlying the IAT (De Houwer, 2001; 

Greenwald et al., 1998), I will focus on the familiarity account. Rothermund and Wentura (2004) 

argue that the IAT task is simplified by participants when they only focus on one of the categories 

and thus turn the task into a decision task. Whichever category is more salient (or familiar) will 

have the stimulus that captures attention. Then that category is the “figure” category (rather than 

the “ground” category) and is used to make judgements about which key to press. Kinoshita and 

Peek-O’Leary (2005) endorse Rothermund and Wentura’s view and further argue that in general 
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the more familiar category will be the “figure” and the less familiar categories the “ground.” So, 

in the case of the racial IAT, typically White participants will demonstrate a pro-White bias on 

IAT because their familiarity with White people and the positive valence of the category White 

people. According to the salience/familiarity mechanism, the IAT includes affect to a lesser extent 

than other indirect measures.  

Contrast the role of affect in the IAT with its role in evaluative priming tasks. The 

mechanism for evaluative priming tasks is response priming. The prime stimulus automatically 

readies a response to the target stimulus. The response can be congruent or incongruent to that 

required during that categorization task towards the target stimulus. When the two responses are 

congruent, the prime stimulus has already readied the appropriate response for the target stimulus, 

and thus, responses are faster and there are fewer errors. In the case of incongruent response 

preparation, that initial response must be aborted and the alternative response prepared, which 

increases response time and errors (Wentura and Degner 2010; De Houwer et al. 2009).  

            Much of Fazio’s research into evaluative priming has coincided with research about 

emotional states. After all, the association between target and prime is supposed to 

transfer affective responses from the prime stimulus to the target stimulus in the evaluative 

judgement task. For example, Fazio and Hilden (2001) are interested in the way these 

attitudes feed into emotional states like guilt or conflict-avoidance. In one experiment, they 

showed participants a commercial that depicts a photograph of a Black man and revealed 

text describing a scenario about the apprehension of a criminal. The text was revealed in a 

way to mislead the viewer to interpret the Black man as the criminal rather than the police 

officer. Feelings of guilt from watching the commercial were also associated with more 

positive automatic attitudes towards Black people. Given the prominence of motivation and the
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link to negative emotional states, it is clear that affect is a prominent component or result of 

evaluative priming.  

According to the different diversity criteria, the IAT and EPT count as sufficiently diverse. 

Suppose we accept the failure diversity criterion. There are methodological differences between 

the IAT and EPT, namely, the number and types of dimensions along which participants must 

categorize. This methodological difference makes the IAT more susceptible to the influence of 

researcher demand effects compared to the EPT. So, the IAT scores could fail to track the 

phenomenon when researcher demand effects are present, whereas EPT scores would be 

unaffected. Suppose instead that we held the assumption diversity criterion. Here there are a few 

differences in assumptions between the IAT and EPT. In particular, there are assumptions about 

what is being measured from the theoretical traditions preceding the development of each method 

and some features of the causal mechanism underlying what is measured. First, the IAT assumes 

that the attitude being measured is unconscious to the participant due to its development from work 

on implicit memory. The EPT does not assume participants are unaware of the direction or content 

of their attitudes. Instead, it assumes that participants cannot control the impact of their primed 

responses during the categorization task. Similarly, the IAT does not assume that a participants’ 

sensitivity to certain emotions (such as guilt) would impact their scores, whereas the EPT as a 

measure of affective responses from the prime stimulus would be impacted if participants were 

particularly prone to emotions like guilt. 
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3.7 Conclusion 

In this chapter, I argue that Schupbach’s explanatory independence view of the diversity 

criterion in triangulation is unsuccessful because his argument changes to topic. To do so, I 

distinguished between two epistemic positions researchers can have with respect to the systematic 

error in their methods: known or suspected systematic error and unknown systematic error. Then 

I argue that triangulation is uniquely able to guard against unknown systematic error, whereas 

eliminative inference is one strategy for identifying and controlling the influence of suspected 

systematic error. Schupbach’s explanatory account describes how to design future experiments in 

the context of an eliminative inference argument, but it is distinct from the common cause 

inductive inferences underlying methodological triangulation. 

I have also provided an account of triangulation that highlights locations and types of 

epistemic risk. In particular, I diagnosed two epistemic risks in implicit attitude research: (1) the 

risk that data do not serve as evidence for the same hypothesis, and (2) the particular inductive risk 

that there is insufficient evidence provided to conclude that there is a single phenomenon (given 

the plausibility of alternative hypotheses positing multiple phenomena). Neither is sufficiently 

described by illusory robustness and (1) is not a case of inductive risk either. Finally, I 

demonstrated that current accounts of triangulation focused on successful cases cannot provide 

explanations of why triangulation sometimes fails in practice and thus, do not develop sufficient 

norms to guide future triangulation research. 
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4.0 Topological Explanation in Neuroscience: From Network Models to the Brain 

Some mechanists (Kaplan, 2011; Kaplan & Craver, 2011) hold that all explanation in 

neuroscience is mechanistic. Other philosophers of science have argued that topological 

explanations, in which the behavior of a system is the mathematical consequence of the topological 

properties of that system, are an alternative explanatory strategy. I argue topological explanations 

are both non-mechanistic and employed in neuroscience. In particular, network neuroscientists can 

explain the robustness and vulnerability of the macroscale human brain to perturbation by appeal 

to the topological properties of small-worldness and modularity. This explanandum is an example 

of functional robustness, which holds that some functions can be retained in a system over variation 

in its underlying parts and activities. As such, I argue it is a prime candidate for a non-mechanistic 

explanation because details about the underlying parts and their activities are not relevant. I 

consider objections that the case is either: (i) not explanatory or (ii) mechanistic. I conclude that 

mechanists such as Kaplan and Craver should deny the claim that all explanation in neuroscience 

is mechanistic. There are two benefits for mechanists taking this approach: (1) they can retain their 

commitment to difference-making and asymmetry as norms of explanation in general and (2) they 

can retain the distinctive norms of mechanistic explanation in particular. 

4.1 Introduction 

Some mechanists (Kaplan, 2011; Kaplan & Craver, 2011) have recently argued for the 

wide scope of mechanistic explanation in neuroscience—the claim that all explanation in 
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neuroscience is mechanistic. They claim to allow space for non-mechanistic explanations, but in 

practice these mechanists attempt to accommodate all alleged counterexamples raised against the 

wide scope claim. To defend the wide scope claim from these counterexamples, mechanists adopt 

one of two strategies: (i) deny that the cases are explanatory by appealing to the difference-making 

and asymmetry norms of explanation or (ii) deny that the cases are non-mechanistic by relaxing 

the distinctive norms of mechanistic explanation.  

In this chapter, I present evidence that neuroscientists sometimes use explanatory strategies 

that are not mechanistic. Some of these strategies can be characterized as topological explanations 

(a specific type of mathematical explanation), in which the behavior of a system is mathematical 

consequence of the topological properties of that system. I argue that the current use of network 

models in neuroscience sometimes provides topological explanations. In order to account for this 

fact, I argue that mechanists should reject the wide scope claim and allow room for topological 

explanation as an alternative form of explanation in neuroscience.9  

One particular test of the wide scope claim is whether some robust phenomena in 

neuroscience are better explained by topological explanation than mechanistic explanation. It is 

intuitive to think that mechanistic explanation will not cope well with some types of robust 

phenomena, where the spatio-temporal locations of parts and activities changes under different 

initial conditions.  

In Section 4.2, I discuss the mechanists’ view that all explanation in neuroscience is 

mechanistic as well as the two typical mechanistic responses to alleged counterexamples. In 

Section 4.3, I introduce Huneman’s (2010, 2015) account of topological explanation and recent 

 

9 Some mechanists like Bechtel (2015c) already reject the wide scope claim, though in other work he tends to 

accommodate potential counter-examples to the wide scope claim under mechanistic explanation by expanding the 

norms of mechanistic explanation (Bechtel, 2013, 2015a). 
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clarifications by Kostić (2012, 2020). Then in Section 4.4 I argue that the account of topological 

explanation clearly describes some cases of explanation in network neuroscience. Finally, in 

Section 4.5 I present possible objections that mechanists might make to my interpretation of the 

case and argue that their responses are deficient for the case presented. Further, these responses 

would either require denying norms of explanation that they accept or diminishing the distinctive 

norms of the mechanistic account of explanation. Neither outcome is desirable for the mechanistic 

account of explanation, so I conclude that mechanists like Kaplan and Craver should give up the 

wide scope claim instead. 

4.2 Mechanistic Explanation 

The canonical definition of a mechanism comes from Machamer, Darden, and Craver: 

“Mechanisms are entities and activities organized such that they are productive of regular changes 

from start or set-up to finish or termination conditions” (Machamer et al., 2000, 3). In mechanistic 

explanation, describing how the underlying entities and activities (in some particular organization) 

bring about the phenomenon provides an explanation. Initially, mechanists were cautious about 

the scope of mechanistic explanation. Machamer, Darden, and Craver (2000) express hope that the 

picture of mechanistic explanation can be expanded to scientific fields other than cellular and 

molecular neuroscience, but do not predict that it will account for all explanatory practices. 

However, more recently some mechanists have expanded the scope of mechanistic explanation to 

areas beyond cellular and molecular neuroscience (Bechtel & Abrahamsen, 2010; Craver, 2016; 

Kaplan & Craver, 2011).  
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Kaplan and Craver suggest that mechanistic explanation may accommodate all explanation 

in systems and cognitive neuroscience: “we articulate and defend a mechanistic approach to 

explanation for dynamical and mathematical models in systems neuroscience and cognitive 

neuroscience. Such models…carry explanatory force to the extent, and only to the extent, that they 

reveal (however dimly) aspects of the causal structure of a mechanism” (2011, 602). Kaplan and 

Craver claim that their stance is not “imperialistic” because some instances of explanation may be 

non-mechanistic. However, they list only physics and folk psychology as domains in which 

mechanistic explanation may be inappropriate. Both in print and in practice, Kaplan and Craver 

endorse the wide scope claim—that all explanation in neuroscience is mechanistic.10  

Some philosophers have pushed back against the widened scope of mechanistic 

explanation (e.g., Silberstein and Chemero 2013; Ross 2015; Chirimuuta 2014). The mechanists’ 

responses to these alleged counterexamples follow two lines of response. The mechanists either 

argue that (i) the purported counterexample is explanatory but also mechanistic and so it does not 

actually counter the wide scope claim or (ii) the purported counterexample is not actually 

explanatory and so lies outside the scope of theories of explanation.  

Concerning network models, Zednik (2014, 18) defends a form of response (i). The idea is 

that network models can provide a non-mechanistic explanation stems from a misunderstanding 

about what is required for an explanation to count as mechanistic. Network models highlight the 

functional or structural organization of a system and according to Zednik, the emphasis on 

organization is sufficient for network models to provide a (however incomplete) mechanistic 

 

10 See also Piccinini and Craver (2011, 292) and Zednik (2014, 16-7). 
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explanation.11 In that sense network models might contribute to mechanistic explanations despite 

deviating from the canonical definition by failing to represent components and their activities.12  

Craver & Kaplan (2020) rely on the idea of a mechanism sketch to explain when some 

detail about a mechanism is unknown, but a model refers to at least some internal detail about a 

mechanism. The problem is the assumption that mechanism sketches are ultimately to be fleshed 

out in a mechanistic explanation. While it may be descriptively accurate to say that mechanistic 

details are identified through experimental practice or that models are refined to include further 

mechanistic details, that does not necessarily imply that the original model can only contribute to 

mechanistic explanations. The use of the “mechanism sketch” model could be used in other types 

of explanations or it may provide a satisfactory explanation on its own. In these cases, calling the 

model a ‘mechanism sketch’ gives the impression that its only use is to be later turned into or 

accommodated by a complete mechanistic explanation. This assumption is imperialistic. 

Kaplan and Craver (2011, 602) offer a version of response (ii). Although Kaplan and 

Craver suggest that mathematical models in cognitive and systems neuroscience may be integrated 

into the project of providing mechanistic explanations, they claim the models themselves do not 

provide explanations. Kaplan and Craver (2011, 623) acknowledge that descriptive models can 

improve our understanding of the phenomenon to be explained and act as an important precursor 

to experimentation, but on their view, this does not amount to explanation proper.  

 

11 In some places, Kaplan (2011, 347) endorses something close to this response: “Far from requiring a perfect 

correspondence or isomorphic mapping between model and mechanism, 3M requires only that some (at least one) of 

the variables in the model correspond to at least some (at least one) identifiable component parts and causal 

dependencies among components in the mechanism responsible for producing the target phenomenon.” 

12 Levy and Bechtel (2013) make a similar point about network motifs. Abstraction from the structural properties of 

the components is compatible with mechanistic explanation insofar as causal relationships in the system are 

represented. 
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4.2.1  When Do Details Matter? 

 One major barrier to providing an explanation for a robust phenomenon would be if the 

mechanistic account of explanation did not allow for abstraction or the elimination of irrelevant 

detail in an explanation. The majority of authors in the wide scope debate agree that an explanation 

of a robust phenomenon ought to include all and only the relevant details (e.g., Chirimuuta, 2014; 

Craver & Kaplan, 2020; Kaplan & Craver, 2011; Ross, 2015). The main debate between defenders 

of the wide scope claim and critics is about the sense of ‘relevance’ in this claim.  

According to Kaplan (2011, 347), on the mechanistic account of explanation “a model 

carries explanatory force to the extent it reveals aspects of the causal structure of a mechanism, 

and lacks explanatory force to the extent it fails to describe this structure.” Kaplan articulates this 

claim more precisely in the model-to-mechanism-mapping constraint on mechanistic explanation: 

(3M) A model of a target phenomenon explains that phenomenon to the extent that (a) the 

variables in the model correspond to identifiable components, activities, and organizational 

features of the target mechanism that produces, maintains, or underlies the phenomenon, 

and (b) the (perhaps mathematical) dependencies posited among these (perhaps 

mathematical) variables in the model correspond to causal relations among the components 

of the target mechanism. 

 

More recently, Craver and Kaplan (2020, 297) revisit the 3M principle to be a relative notion of 

explanatory completeness with respect to one phenomenon compared to another and define 3M*: 

A constitutive mechanistic model has explanatory force for phenomenon P versus P’ if and 

only if (a) at least some of its variables refer to internal details relevant to P versus P’, and 

(b) the dependencies posited among the variables refer causal dependencies among those 

variables (and between them and the inputs and outputs definitive of the phenomenon) 

relevant to P versus P’. 

 

In condition (a), ‘internal’ refers to details that are internal to a phenomenon rather than external 

details, which rules out details related to eliciting conditions and so on. It serves to distinguish 

norms for mechanistic explanation (which is both causal and constitutive) from the norms of 
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aetiological causal explanations. The biggest difference between 3M and 3M* (besides making it 

a comparative criterion) is that condition (a) has been significantly weakened. Many took the 

condition (a) from 3M to specify that isomorphism is required, though Kaplan (2011, 347) clarifies 

3M is not intended to imply isomorphism. Condition (a) from 3M* clarifies that not every variable 

needs to correspond to constitutive elements of the mechanism and thus allows some variables to 

be black-boxes. 3M and 3M* provide a kind of hierarchy of the extent to which models contribute 

to an explanation: the more relevant details provided by the model, the more explanatory power. 

So, what details are relevant to a mechanistic explanation? 

Craver and Kaplan claim that 3M* implies that only some details are necessary for any 

constitutive explanation, namely: 

Some Details Are Necessary (SDN): A putative constitutive explanation for P versus P’ 

has explanatory force for P versus P’ only if it constitutively describes some of the entities, 

activities and organizational features relevant to P versus P’. 

 

They propose SDN as primarily a clarification of a norm for any (constitutive) explanation (as 

opposed to aetiological explanations). It cannot be a norm of causal explanation in general because, 

as they mention, some aetiological causal explanations do not involve constitutive relations. 

However, SDN is very permissive—intentionally so—to allow “that even models describing very 

abstract details…cf. (Batterman and Rice 2014)… can count as explanatory” (Craver & Kaplan, 

2020, 298). Thus, even the most recent work by Craver and Kaplan demonstrates they think the 

majority explanations are either mechanistic (constitutive) or aetiological. We will see later in 

section 4.5.6, Craver and Kaplan’s recent account of 3M* and SDN provide reason to agree that 

there are genuine counterexamples to the wide scope claim. 
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4.3 Topological Explanation 

One promising alternative explanatory strategy is topological explanation (Huneman, 

2010, 2015; Jones, 2014; Kostic 2020). While mechanistic explanations explain in virtue of the 

productive organization of components and activities of a system, topological explanations explain 

in virtue of the topological properties of the system. Topological properties are general properties 

of some system’s non-spatial organization, concerning the connectedness of elements in the 

system. Huneman (2010) introduces the idea of topological explanation to account for explanations 

that demonstrate the mathematical entailment of some pattern, behavior, or property of the system 

on the basis of its mathematical structure. Huneman cites a wide range of scientific domains that 

provide topological explanations, including ecology, molecular biology, evolutionary biology, and 

the social sciences. He speculates that there may be topological explanations in neuroscience as 

well but does not discuss any cases. I will clarify Huneman’s characterization of topological 

explanation and argue that some explanations in neuroscience are topological explanations, and 

thus are counterexamples to the claim that all explanation in neuroscience is mechanistic.  

Let me now describe the network approach to explanation. A classic problem in network 

science is the “problem of the seven bridges of Königsberg” described by Leonhard Euler (1741). 

In this problem, Euler describes the layout of the seven bridges of Königsberg. The task is to 

explain why one cannot cross all seven bridges only once (an Eulerian path). Euler explains that 

one’s particular starting point and choice of path is irrelevant to solving the problem. Instead, to 

answer why one cannot cross all seven bridges in Königsberg without crossing at least one bridge 

twice, Euler provided a mathematical explanation of the impossibility of an Eulerian path based 

on a network representation of the bridges. To do so, he represents Königsberg as an abstract 

network of connected nodes and edges. Nodes represent the landmasses and edges represent the 
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bridges. Their connections provide a structure of possible ways one could travel to the different 

landmasses. Each landmass has a different number of bridges connecting it to other landmasses, 

which can be quantified as the degree for each node (i.e., the number of connected edges for a 

node).   

Euler reasoned that if the degree of each node (number of edges adjacent (or connected) to 

the node) were even, then an Eulerian path would be possible. However, in the network 

representing the Königsberg bridges, each node has an odd degree. Given the number of nodes 

with odd degrees, it is a mathematical consequence that an Eulerian path is impossible. It is the 

topological properties of the network, namely its organization as represented in the network model, 

that entail that an Eulerian path does not exist.  

4.3.1  An Account of Topological Explanation 

The problem of Königsberg’s bridges has been seen as an exemplar of what is now called 

topological explanation.13 An explanation is topological when the explanandum, some behavior or 

property of the system, is shown to be the mathematical consequence of some of the system’s 

topological properties. Consider Batterman’s (2002) type-two explanatory question: why do 

distinct systems all exhibit the same pattern of behavior? The answer provides a topological 

explanation, roughly, when distinct systems exhibit the same behavior because they all have the 

same topological properties. These answers are also contrastive: the trait, property or propensity 

 

13 Pincock (2007) argues that the problem of Königsberg’s bridges is solved by giving a structural explanation. His 

account of structural explanation can be seen as a predecessor of topological explanation. Abstract explanations 

provide explanations by mapping elements of a physical system into a mathematical space. While this realization is a 

crucial part of a topological explanation, it is not sufficiently characterized.  
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to behave in a certain way is because the systems have the same topological properties rather than 

some other topological properties (more topological properties are discussed in section 4.4.1).  

Following Huneman (2010), I characterize the steps of topological explanation as: 

(1) The topological properties X (as opposed to topological properties Y) entail the trait,

property, or propensity for behavior Z.

(2) The real system realizes a network model with topological properties X (as opposed to

topological properties Y).

(3) Therefore, the real system exhibits the trait, property, or propensity for behavior Z

solely in virtue of its topological properties X (rather than Y).

Topological explanations need to show that in virtue of the relationship between the 

network model and the real system, some behavior or property of the real system can be 

explained.14 For Huneman, abstract (or mathematical) realization (“A-realization”) plays this role.

A topological property of a network model can be attributed to the real system when the real system 

A-realizes the network model. Huneman relies on Gillett’s characterization of A-realization: X A-

realizes Y when X maps onto or is isomorphic to Y.15,16 Realization occurs when there is 

14 Kostić (2020) argues that there are two types of topological explanations: vertical and horizontal. This distinction 

relies on a difference in topological properties: they can be properties of the network (‘global’) or properties of 

particular nodes (‘local’). However, it is also important to keep in mind that some local properties may rely on 

properties about the organization of the network as a whole, such as the  centrality of a node in a network. Vertical 

topological explanations are when “A describes a global topology of the network, B describes some general physical 

property, and had A had [sic] not obtained, then B would not have obtained either” (Kostić 2020, 2). A horizontal 

topological explanation is when “A describes a set of local topological properties, B describes a set of local physical 

properties, and had the values of A been different, then the values of B would have been different” (Kostić 2020, 2).  
15 A-realization is importantly different from what Gillett calls M-realization, where the relationship between X and 

Y involves metaphysical constitution. 

16 According to Kostić (2018), there is a particular kind of realization in topological explanation that is distinct from 

existing constitutive accounts of realization. Kostić (2018, 87) calls it topological realization when: “The realization 

relation stands between a topology T and a system S, such that the system S realizes topology T when the elements of 

S are interconnected in ways that display the pattern of connectivity characteristic of T.”  Kostić clarifies that elements 

here refers to either spatially-located parts of a target system or aspects of an abstract representation of data. One 

major difference between topological realization and constitutive realization is what can stand as a realizer of the 

target system. For topological realization, the realizer is at the global level of the topology of a system. For constitutive 

realization, the realizer is at the level of parts and activities. According to Kostić’s view, the topological realization 

itself is not explanatory. Rather for topological explanation the “explanatory relation stands between the topology and 

its mathematical consequences” (Kostić 2018, 88).  
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isomorphism between elements of the real system and the topological network model (Gillett, 

2010).  

4.4 Network Models in Neuroscience 

I aim to show that neuroscientists do sometimes give topological explanations using 

network models and thereby expand the scope of Huneman’s account of topological explanation 

to neuroscience. However, I do not endorse the claims made by some neuroscientists (e.g., Seung 

2012) that the connectome—a network of all neural connections in the brain—is a privileged level 

of analysis for the brain, nor the idea that topological explanation is the only kind of explanation 

in neuroscience.  

Network neuroscientists are interested in the topological properties that can be attributed 

to the macroscale brain as a result of creating network models. In macroscale neuroscience, 

researchers consider primarily functional or structural networks, neither of which represent causal 

interactions between brain areas.17 In functional networks, the researchers use neuroimaging to 

determine pair-wise correlations above a certain threshold to create the edges in the network. 

Nodes are often based on single voxels or prior regions of interest (or sets of voxels).18 However, 

with some instruments, such as electrical encephalogram, nodes may be defined as the area of 

brain activity measured by the position of the electrodes in the extracranial cap. In structural 

 

17 While there are some attempts to create effective connectivity network models (where edges are causally directed) 

such as the Granger causality test (e.g., Knight 2007; Kim et al. 2011), these methods are not well accepted, in part 

because Granger causality cannot rule out potential common causes (e.g., Witt and Meyerand 2009). 

18 Voxels are a value on a regular grid in three-dimensional space, commonly representing a 3x3x3 cm brain area in 

neuroimaging data. 
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networks, researchers use predetermined anatomical atlases to define the nodes in the network and 

use tractography method or probabilistic measures of water diffusion down white fiber tracts (e.g., 

Diffusion Tensor Imaging) on magnetic resonance imaging data to determine the edges.  

4.4.1  Network Basics 

Network models are composed of nodes that are connected by edges, which determine the 

organization, or ‘topology’, of the system as a whole. The organization of the nodes and edges has 

first-order properties such as the path length or the clustering coefficient. In a network, the path 

length is the lowest number of edges that must be traversed to get from one node to another. The 

average path length of any network is determined with the following equation:  

Lnet = 1/(n • (n-1)) • d(vi, vj)  

Given a network with n edges, d(v1, v2) represents the shortest path length between v1 and 

v2. If there is no path between v1 and v2, then d(v1, v2) = 0. The average path length of a network 

of interest, compared to a random network, can be calculated with this formula: λ = Lnet/Lran, where 

Lnet designates the average path length of the network and Lran designates the average path length 

of a random network with a similar number of nodes and edges.19  

The clustering coefficient of a network is the extent to which nodes form clusters with 

nearby nodes. When a network has a high clustering coefficient, it is likely that when two nodes 

are both connected to a third node, the first two nodes are also connected to each other. The average 

clustering coefficient of any network model can be determined by the following equation:  

 

19 For more discussion about the comparison of path length of a network of interest to a network representing the null 

hypothesis, in this case a random network, see Hadi Hosseini and Kesler (2013). 



 91 

Cnet = (number of closed triplets)/(number of open and closed triplets) 

Open triplets are defined as three nodes that are connected by two undirected edges and 

closed triplets are defined as three nodes that are connected by three undirected edges. The 

clustering coefficient of some network of interest, compared to a random network, is calculated 

with the following formula: γ = Cnet/Cran, where Cnet designates the average clustering coefficient 

and Cran designates the average clustering coefficient of a random network. Regular (or lattice) 

networks, in which each node is connected to nearby nodes, have high clustering coefficients and 

high average path lengths. Random networks, which have random connections between nodes, 

have low clustering coefficients and low average path length.  

The modularity of a network is a measure of the extent of the division of a network into 

modules.20 Networks with high modularity compared to random network models appear to have 

densely connected clusters with relatively sparse connections to other clusters. The modularity of 

a network can be defined as the fraction of edges that fall within a cluster minus the expected 

fraction, given a random distribution of edges. To calculate modularity, a network model is 

compared to a random network model where the degree of each node is preserved. Formally, the 

modularity of a network (Q) can be calculated with the following formula:  

𝑄 =  
1

2𝑚
∑ [𝐴𝑣𝑤 −

𝑘𝑣 × 𝑘𝑤

2𝑚
] 

(𝑠𝑣 × 𝑠𝑤) + 1

2
𝑣𝑤

 

In the equation, m designates the total number of edges, Avw = 1 or Avw = 0 designate the presence 

or absence (respectively) of an edge between nodes v and w in the network, k designates for node 

degree, and sv = 1 or sv = -1 designate that node v belongs to module 1 or module 2 (respectively) 

 

20 Note this is distinct from the notion of modularity in debates about cognitive architecture (e.g., Fodor, 1983), though 

see Colombo (2013) for an argument that the network science view of modularity is helpful in the former. 
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(Newman, 2006). For more than two communities, the formula can be run iteratively, or more 

complex formulae can be used.  

The organization can also have second-order properties, which are the result of first-order 

properties.21 One such property—small-worldness—was described by (Watts & Strogatz, 1998). 

Within small-world networks, each node can be reached from any other node in the network by 

traversing only a few edges. According to the typical definition of small-worldness, small-world 

networks have a high clustering coefficient but short path length. Small-worldness can be 

calculated with the following: σ = γ/λ.22 For most biological networks, the path length is around 1 

and clustering coefficient is between 2 and 3 (Bassett & Bullmore, 2006).  

Another second order property—scale-free—involves the degree distribution of a network. 

The degree of a node (k) is determined by the number of edges adjacent or connected to it. 

Researchers can then characterize the degree distribution of the network by determining the 

distributions of degrees of all the network’s nodes. According to the typical definition of scale-

freeness, networks are scale-free when they have degree distributions that follow a power law, 

Pr(k)~k-α. These networks are called ‘scale-free’ because the degree distribution has a very gradual 

power law decay that indicates the network lacks a characteristic scale and so the network “looks 

the same” at every scale (Bullmore & Sporns 2009).  

 

21 Both first-order and second-order properties are called topological properties in Huneman’s (2010) terms since they 

are likely to be represented in a graph or network. 

22 For other definitions of ‘small-worldness’, see Humphries and Gurney (2008) and (Muldoon et al., 2016). 
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4.4.2  From Network Models to the Brain 

I propose that neuroscientists use network models to explain at least the following 

explanandum: the macroscale human brain’s distinct pattern of functional robustness and 

vulnerability to damage. Let me first provide some necessary background on the relevant sense of 

robustness in this explanandum. Then I will describe the empirical evidence supporting this pattern 

of robustness and vulnerability in the macroscale human brain. 

Functional robustness is “a property that allows a system to maintain its functions despite 

external and internal perturbations” (Kitano, 2007, 826). Functional robustness can be defined with 

respect to particular functions or to general functioning. Retaining specific functions, such as the 

timing of initiating DNA replication in yeast, can occur by having heterogeneous redundant 

mechanisms, such as the Clb5 and Clb6 genes (Kitano, 2007, 828). Specific functions can also be 

maintained by modularity, in the sense that a system can be decomposed into relatively distinct 

functional units. Often in cognitive and clinical neuroscience, researchers are interested in the 

processes, maintenance, and breakdown of particular cognitive functions.  

However, in network neuroscience, researchers are interested primarily in the brain’s 

capacity to maintain overall information transfer. Efficient information transfer is the primary 

function of interest. It is a general function in that it does not predict any particular cognitive 

activity or resulting behavior, but it is a prerequisite for both. Abstracting away from particular 

cognitive functions allows researchers to think about how the brain is organized to enable (and 

perhaps to retain) efficient information transfer. Network neuroscientists are interested in 

understanding how the human brain works as an informational system and where the transfer of 

information might break down. So, functional robustness here is the continued transfer of 

information throughout the brain after some internal or external change to the normal organization 
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of the system (e.g., a lesion, developmental differences). When there is functional robustness, 

changes in the underlying organizational structures (i.e., brain areas and the white fiber tracts 

connecting them) do not significantly reduce the efficient flow of information in the system. 

Functional vulnerability is when any change to the underlying organization of the normal system 

causes a significant decrease or complete failure to efficiently transfer information throughout the 

system. Researchers are interested in explaining the particular observed pattern of functional 

robustness and vulnerability, that is, explaining why efficient information transfer is preserved 

under some internal or external perturbations, but not others. 

The pattern of robustness and vulnerability is based on observations of clinical patients 

with brain damage. While some lesions (e.g., in Broca’s area) have relatively strong and restricted 

types of functional deficits, other lesions are often quickly compensated for (Stromswold, 2000; 

Young, Hilgetag, & Scannell, 2000; for applications to C. elegans, see Towlson & Barabasi 2020). 

Further, some lesions disproportionately affect a wide range of functions (Damasio & Damasio, 

1989; Mesulam, 2000). Neuroscientists introduce the concept of diaschisis to describe the cases 

where lesions in a particular cortical area can modulate neuronal responses and undermine 

functions based in distant and otherwise viable cortical regions (Price, Warburton, Moore, 

Frackowiak, & Friston, 2001). Evidence of diaschisis has been exhibited in a wide variety of brain 

areas associated with a wide range of functions like attention, cognitive control, and language 

(Carter et al., 2010; Nomura et al., 2010; Price et al., 2001).  

This fits more generally with a trend in research on psychiatric disorders to emphasize the 

commonalities among many mental disorders rather than the unique differences of each disorder. 

While much work on psychiatric conditions in neuroscience continues to search for predictors of 

diagnosis and prognosis, some recent work has sought to understand psychiatric disorders as 
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characterized in part by connectivity changes (e.g., dysconnectivity or hyper-connectivity relative 

to normal populations) (van den Heuvel & Sporns, 2019). For example, the normal modular 

structure of the human connectome is disrupted in autism, depression, and epilepsy (Alexander-

Bloch et al., 2010; Lord, 2012; Rudie, 2012; Vaessen, 2013). Work on identifying common 

disruptions of the connectome for individuals with psychiatric and brain disorders is consistent 

with emphasizing symptom dimensions rather than discrete categories of mental disorder (see 

recent work on psychiatric disorders, e.g., Borsboom, 2010). 

Researchers have recently turned to network models of the brain to model these cases of 

nonlocal functional deficits (e.g., He et al. 2007). On my view, this research supports the following 

topological explanation: 

(1) Small-worldness and modularity as opposed to scale-free degree distributions entail a 

distinct pattern of functional robustness and vulnerability to perturbation. 

(demonstrated by simulations) 

(2) The macroscale human brain realizes a small-world and modular network as opposed 

to a scale-free network. (supported by empirical evidence) 

(3) Therefore, the macroscale human brain exhibits a distinct pattern of functional 

robustness and vulnerability to damage in virtue of its small-worldness and modularity. 

 

Researchers demonstrate that the topological properties of interest entail the relevant trait, 

property, or propensity to behave in the explanandum. In doing so, researchers contrast the 

topological properties of interest with other topological properties and look for differences in the 

entailment of the relevant trait, property, or propensities to behave. Achard et al. (2006) 

demonstrate that small-world networks have a distinct pattern of robustness and vulnerability to 

particular types of perturbation. To test for robustness in a network context, researchers delete 

nodes (Achard et al. 2006; sometimes nodes representing individual neurons for the C. elegans, 

see Towlson & Barabási, 2020), edges (Kaiser & Hilgetag, 2004), or simulate lesions by deleting 

multiple nodes in a spatially adjacent area (e.g., Alstott, Breakspear, Hagmann, Cammoun, & 
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Sporns, 2009; Kaiser, Martin, Andras, & Young, 2007). Small-world networks are explicitly 

compared to scale-free networks to determine the distinctive patterns of robustness and 

vulnerability for each type of network.23 Both small-world and scale-free networks are robust to 

deletions of randomly selected nodes. However, small-worlds are more robust to deletions than 

scale-free networks when nodes with high degree are targeted. In fact, scale-free networks are 

particularly vulnerable to these degree-targeted attacks. Small-world networks are also vulnerable 

to deletions of nodes with high betweenness centrality in the network (Alstott et al. 2009). In 

particular, it is the modular structure of some small-world networks that limits the spread of 

dysfunction and neurodegeneration (van den Heuvel & Sporns, 2019).  

Premise 1 receives further support from simulations of lesions in network models of the 

brain. When modeling lesions (e.g., deletions of spatially close nodes) in a network, lesions to 

some areas of the network showed more non-local effects than others (Alstott et al. 2009). That is, 

the functional deficits could not be accounted for by predicting functional deficits of the spatial 

area of the nodes along with disruptions of the immediate connections between that area and other 

areas. From this evidence, the researchers can conclude that small-world networks exhibit a 

distinctive pattern of robustness and vulnerability of function to perturbation and that this distinct 

pattern is different from the pattern seen in networks with other topological properties (e.g., non-

small-world but scale-free networks). 

To support premise 2, we can draw on the empirical evidence that many functional and 

structural network models of the macroscale brain find that the brain is a small-world (Hagmann 

et al. 2007; He, Chen, and Evans 2007; Iturria-Medina et al. 2007; Achard and Bullmore 2007; 

 

23 Although it is possible for a network to be both a small world and scale-free (e.g. the C. elegans neural system), the 

two properties are distinct. Recent evidence suggests that the human brain is not appropriately modeled as a scale-free 

network (Achard et al. 2006). 
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Achard et al. 2006; Stam 2004). Both structural and functional network models of the macroscale 

brain also indicate it is modular, in the sense that it can be divided into communities of networks 

that are relatively disconnected from each other (Bassett et al., 2013; Bullmore & Sporns, 2012; 

Meunier, Lambiotte, & Bullmore, 2010; Meunier et al., 2009).24 Other evidence suggests that the 

macroscale human brain is not appropriately modeled as a scale-free network (Achard et al. 

2006).25 These findings provide initial evidence that the macroscale brain realizes a network model 

that is within the class of small-world but not scale-free models. Given the overall current empirical 

support described here, the macroscale brain can be said to realize the topological properties small-

worldness and modularity.  

Network neuroscientists have thus explained observed patterns of robustness and 

vulnerability of the brain in virtue of the mathematical relationship between small-worldness and 

such patterns.26 Recall that they were initially accounting for clinical observations concerning the 

general pattern of robustness and vulnerability of the human brain to lesions. Modeling the 

macroscale brain as a network emphasizes the topological property explains this particular pattern. 

 

24 The sense of modularity in network science is distinct from the evolutionary sense of modularity and the Fodorian 

sense of modularity, contra (Colombo, 2013). 

25 However, both He, Zempel, Snyder, and Raichle (2010) and van den Heuvel, Stam, Boersma, and Hulshoff Pol 

(2008) model the brain as a scale-free network. 

26 Structurally, topological explanations resemble deductive-nomological (DN) explanations, with relationships 

between topological properties and behaviors playing a role analogous to that of laws of nature in the classic DN 

model. Lange (2013) has argued that mathematical explanations (of which topological explanations are a subset) 

describe the results of mathematical necessity and thus, are more necessary than ordinary laws of nature.  I take no 

stand on whether such mathematical relationships should be considered genuine laws of nature. 
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4.4.3  Objections 

One objection to my argument is that the “pattern of robustness and vulnerability” used in 

premise (1) is not the same as its use in the explanandum, and thus my argument equivocates. The 

motivation for this objection is that the robustness and vulnerability in network science is assessed 

involves manipulating a model (e.g., deleting a node or edge), whereas the robustness and 

vulnerability of the human brain as observed through clinical and psychiatric studies is assessed 

due to traumatic or developmental deviations from the normal macroscopic human brain.  

This objection rests on a misunderstanding of the sense of “functional robustness” used in 

the argument. As I emphasized earlier, the argument takes place within the context of network 

neuroscience and thus focuses on a very minimal sense of ‘function’, which is not specific to any 

particular underlying mechanisms. In network neuroscience, the brain is represented as an efficient 

information processing system and the explanation is of general observed patterns robustness and 

vulnerability of the ability to process information through neural communication. All other details 

about the system are abstracted away, including specific cognitive functions. Robustness in this 

sense does not require that there are different underlying mechanisms that can carry out specific 

cognitive functions. Instead, it requires that there are multiple routes to get information from one 

part of the system to another. The empirical evidence can support both this information transfer 

functional robustness and claims about the robustness or vulnerability of specific cognitive 

functions. In the case of information transfer abilities, the details of particular cognitive functions 

are abstracted away.  

Another possible objection to my argument here is that premise (2) is false because recent 

empirical work does not support the claim that the macroscopic human brain has small-world 

organization. There is significant controversy over whether neural systems can be appropriately 
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said to have small-world organization. For example, Hilgetag & Goulas (2015) argue that the brain 

may not be best modeled as a small-world network. First, different levels of organization (e.g., 

nodes as neurons, anatomical brain areas) may have different topological organizations. Second, 

if the actual density of connections were included in the network, then the brain might have a large-

world organization (Moretti & Muñoz, 2013). Large-world networks are characterized as networks 

where some subparts of the network may be relatively inaccessible from other parts. More 

formally, we can define a “topological dimension, D, that measures how the number of neighbours 

of any given node grows when moving 1, 2, 3,..., r steps away from it: Nr~rD for large values of r” 

(Moretti & Muñoz 2013, 2). For (classic) small-world networks, as the network size grows 

exponentially, D approaches ∞. For large-world networks, 0 < D < ∞.  

The problem is that Hilgetag and Goulas premise their argument on the distinctions 

between the classical small-world organization introduced in Watts and Strogatz (1998), which are 

not modular or hierarchical, and large-world networks, which are both modular and hierarchical. 

So, as the name of their article asks: are brains really small-worlds? Perhaps the most reasonable 

answer is that they are not classic small-worlds (in Watts and Strogatz’s sense), but there are more 

complex and biologically plausible definitions of small-worldness that are also compatible with 

the fact that the brain is expected to be modular and hierarchical.  

New definitions of small-worldness aim to compare the organization of a given brain 

network with a more appropriate null model comparison classes that control for the density of 

connections in the network, which has been shown to artificially increase small-world estimates 

(Muldoon, Bridgeford, & Bassett, 2016). Our understanding of the density of networks has also 

progressed as new tract tracing methods reveal more density in connections; for example, macaque 

visual cortex is now thought to be 66% dense as opposed to previous estimates of approximately 
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20-40% density (Markov et al., 2013).27 On these new metrics, most neural systems are still 

considered small-worlds, but the quantitative estimates of small-worldness are reduced (Bassett & 

Bullmore, 2017; Muldoon, Bridgeford, & Bassett, 2016). When examining human, Macaque, and 

C. elegans neural networks, only the C. elegans nervous system is no longer considered to be a 

small-world. Further, even groups that critique the frequentist approach to estimating small-

worldness and propose a Bayesian alternative conclude that while the values of the small-

worldness metric is uncertain, hold that it is still sufficiently informative to conclude that the 

human brain has a small-world structure (Zanin, Belkoura, Gomez, Alfaro, & Cano, 2018). Thus, 

Hilgetag and Goulas’s strong conclusion that the brain is not a small-world does not follow from 

the evidence they have provided. 

4.5 Responding to Mechanistic Objections  

I will now argue that understanding this use of network models is best understood as a case 

of topological explanation. To do so, I present three options for the mechanist: (a) argue the case 

is not mechanistic but also not explanatory, (b) argue the case is explanatory but mechanistic, or 

(c) give up the scope claim that all explanation in neuroscience is mechanistic. I will consider 

objections for both (a) and (b), which follow from the mechanists’ responses to other alleged 

counter-examples. I argue that none of these objections are successful and that the mechanist 

should take option (c). 

 

27 It is worth pointing out that density likely has been underestimated in early network neuroscience studies, which 

focused on bidirectional and unweighted edges, and were built from DTI data that cannot resolve small fiber tracts 

(Hilgetag & Goulas, 2015). 
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4.5.1  Giving Up the Scope 

In section 4.5, I argue that the mechanist who defends either (a) or (b) in response to my 

case of purported explanation has to make some undesirable concessions. The mechanist can 

pursue these familiar objections to the mounting number of alleged counter-examples—including 

my own—but only by endorsing undesirable consequences: denying that cases which fulfill the 

difference-making and asymmetry norms are genuinely explanatory (a) or rendering the 

mechanistic account of explanation superfluous to accounts of causal explanation (b).  

As a result, I argue that giving up the wide scope of mechanistic explanation in 

neuroscience (c) is the best move for the mechanist. A limited scope for mechanistic explanation 

is consistent with the mechanist account of explanation accurately describing a large number of 

cases of explanation in neuroscience as well as providing important normative guidance for 

mechanistic explanations. Acknowledging that the mechanistic account of explanation is limited 

in scope better accommodates the classic cases of mechanistic explanation and retains the 

distinctive norms of mechanistic explanation. To argue for limiting the scope of mechanistic 

explanation, I will now reply to a number of objections one might have to the case presented in 

Section 4.4.2 as a genuine counter-example to the scope claim.  

4.5.2  Topological Explanations are Genuinely Explanatory 

Craver argues that alleged counter-examples to the wide scope claims about mechanistic 

explanation are not in fact explanatory (e.g., Kaplan and Craver 2011; Piccinini and Craver 2011). 

I will address Craver’s objection first and argue that the case meets a number of explanatory norms 
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(endorsed by the mechanists), including answering what-if-things-had-been-different (w-) 

questions and maintaining that explanation is asymmetrical.  

4.5.3  Meets the Norms of Explanation 

In this section, I will examine the ways in which the case described in section 4.4.2 is 

genuinely explanatory by appealing to one norm of explanation accepted by some mechanists (e.g., 

Craver 2007; Zednik 2014). In particular, I argue that the case fulfills difference-making norms by 

providing answers to w-questions. While the case fulfills a number of norms for explanation, it 

does not meet the criteria to count as a causal explanation.  In light of this, I argue that topological 

explanations are genuine, but can be non-causal explanations.28  

One norm of scientific explanation is to emphasize systematic patterns of counterfactual 

dependence that make a difference to the explanandum. Woodward (2003) describes these patterns 

of counterfactual dependence as answers to w-questions. On Woodward’s view, “a successful 

explanation should identify conditions that are explanatorily or causally relevant to the 

explanandum: … those that ‘make a difference’ to the explanandum in the sense that changes in 

these factors lead to changes in the explanandum” (Woodward 2013, 5). While Huneman does not 

explicitly endorse Woodward’s view, he does argue that topological explanation is a distinct form 

of explanation because in its instances, topological properties make a difference to the presence of 

the behavior of interest (Huneman 2010, 218).  

 

28 I will not discuss any potential examples of causal topological explanation, but such cases may still be non-

mechanistic. 
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The mechanists who accept the wide scope claim also accept the ability to provide answers 

to w-questions as a norm of explanation (Craver, 2007; Kaplan, 2011; Zednik, 2014). In fact, in 

some of Craver’s most recent work (Craver & Kaplan 2020, 311) he appeals to Woodward’s 

account of w-questions in his account of the explanatory completeness norm of mechanistic 

explanation. One caveat is that Craver & Kaplan also introduce a subset of w-questions called 

how-does-that-work (h-) questions. H-questions are focused on constitutive explanations, whereas 

w-questions more broadly leave room for other kinds of explanations (e.g., aetiological causal 

explanations). 

However, w-questions do not strictly require causal explanations and sometimes call for 

non-causal explanations. Both causal and non-causal explanations provide answers to w-questions, 

but they do so in different ways. Woodward (2003, 221) writes:  

 the common element in many forms of explanation, both causal and noncausal, is that they 

must answer what-if-things-had-been-different questions. When a theory tells us how Y 

would change under interventions on X, we have (or have the material for constructing) a 

causal explanation. When a theory or derivation answers a what-if-things-had-been-

different question but we cannot interpret this as an answer to a question about what would 

happen under an intervention, we may have a noncausal explanation of some sort. 

 

An explanation is causal, on Woodward’s view, when answers to w-questions can be interpreted 

according to an ideal intervention.29 An explanation is non-causal when answers to w-questions 

cannot be given by an ideal intervention, namely, when constitutive or mathematical relationships 

are also changed in the process of an ideal intervention (see also Chirimuuta, 2018). In 

Woodward’s (2003) framework, an intervention is an ideal, unconfounded experimental 

manipulation of the values of some upstream variable X such that the values of Y are affected only 

through this manipulation. On an ideal intervention, the changes in the values of Y can only be 

 

29 Other definitions of causal explanation exist in the literature (e.g., Machamer, 2004; Reutlinger & Andersen, 2016). 

I will not argue here for the preference of this distinction between causal and non-causal explanation. 
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through X and its causal path and not through other causal paths that do not involve X. Antecedents 

to answers of w-question can fail to be appropriate targets of an intervention when an 

unconfounded intervention is impossible according to the relationships among the variables (e.g., 

constitution, supervenience, mathematical entailment). For example, if an ideal manipulation of X 

is confounded by also manipulating Z, both of which contribute to changes in the values of Y, then 

an ideal unconfounded intervention is impossible.30 If we can still answer w-questions about how 

changes in X would affect changes in Y, these answers will be non-causal explanations.  

Topological explanations fulfill difference-making norms of explanation. Scientists can 

and do answer w-questions to learn about relationships between topological properties of the 

model and the behavior of interest. In particular, scientists can answer the following w-question: 

if the topological properties of the network model of the macroscale human brain had been 

different, would the observed pattern of robustness and vulnerability be different (and how)? To 

provide answers to this question, scientists “lesion” (sets of) nodes with different topological 

properties. Manipulations of any node in the network will not always affect the higher-order 

topological properties, but in some cases they will. For example, the deletion of nodes with the 

highest betweenness-centrality—a node through which a high number of shortest paths between 

other nodes in the network must pass—might result in a scale-free network model. In that case the 

observed pattern of robustness and vulnerability would be different, and the system would be 

robust to random perturbations but not targeted attacks on the nodes with high degree. However, 

in cases where a less crucial node was deleted, the difference between the two models would not 

 

30 An ideal intervention may be impossible in situations where intervening on one causal relationship also ideally 

intervenes on another causal relationship in the system. For example, given the supervenience of mental states on 

physical states, an unconfounded ideal intervention on mental states is impossible because by supervenience, any 

intervention on mental states will also be an intervention on physical states. 
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make a difference to the presence of the particular pattern of robustness and vulnerability. It is the 

topological property that makes a difference to the behavior of the system. The deletion of 

particular nodes in a network model make a difference to the behavior of the system only when 

they have certain topological properties themselves (e.g., centrality), which are dependent on the 

global state of the network. 

While providing answers to this w-question is informative for the presence or absence of 

the particular observed pattern of robustness and vulnerability of the macroscale human brain, such 

answers do not follow from ideal interventions. At least in this case, we cannot intervene on the 

second-order topological properties (e.g., small-worldness) of the brain without simultaneously 

intervening on other relationships between first-order topological properties. The failure of an ideal 

intervention is due to the compositional relationship between second-order topological properties 

and first-order topological properties. According to the distinction between causal and non-causal 

explanations adopted in this chapter, the case of topological explanation presented in section 4.4.2 

is non-causal. However, if some network model could be ideally intervened upon at the level of 

first-order properties to answer w-questions, then there may be cases of causal topological 

explanation. 

One possibility open to the mechanist, however, is that better explanations provide answers 

to more w-questions (e.g., Craver & Kaplan 2020). This claim about degrees of explanatory power 

fits well with views of explanatory “depth” (Lange, 2015). Perhaps the mechanist would suggest 

that answering fewer w-questions means that topological explanations are less explanatory than 

mechanistic explanations.  

Even if it is true that the case I present in this chapter answers fewer w-questions than a 

hypothetical mechanistic explanation of some particular traumatic brain injury, developmental or 



 106 

psychiatric disorder, it does not follow that the case I present has no explanatory power. The ability 

to answer any w-questions comes with explanatory power. It may be the case that answering 

further w-questions is indicative of increased explanatory power, but that general claim does not 

undermine the explanatory power of answering some w-questions. Combined with the claim that 

we should be clear and careful about our explananda so that we mistakenly do not shift between 

alternative explananda when evaluating an explanation, this objection does not succeed in showing 

how these cases are not explanatory. It may be true that some mechanistic explanations answer 

more w-questions (and different types of w-questions, like h-questions), but that does not make 

them better explanations relative to the particular explanandum. 

4.5.4  Craver’s Asymmetry Objection 

Craver (2016) has raised an objection to the understanding of network models in 

neuroscience as providing genuine explanations.31 Craver argues that scientific explanation 

adheres to the norm of asymmetry. He has in mind the flagpole case (Salmon, 1989): the flagpole’s 

height and position of the sun explain the shadow’s length, but the shadow’s length does not 

explain the flagpole’s height. He argues that accounts of non-mechanistic explanation do not 

provide an account of why explanation should be asymmetrical. For example, paradigmatic cases 

of potential non-mechanistic explanation like the Königsberg bridge problem can be 

problematically run “reversed”, and so these cases do not provide genuine explanations. 

 

31 In fact, Craver’s objection is to all mathematical explanation, including topological explanation. While I agree that 

topological explanation is best understood as a type of mathematical explanation, I do not have space here to address 

whether all cases of topological explanation would count as a distinctively mathematical explanation. For more on 

different ways in which an explanation may be mathematical, see (Baker, 2009; Batterman, 2002; Lange, 2013).  
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On Craver and Povich’s view, topological explanation cannot account for the asymmetry 

of explanation. One version of the solution to the Königsberg problem is a proper explanation, but 

in the other direction it is not. Consider the explanation Euler provides: 

(1) Empirical Premise: Königsberg can be represented as a network with four nodes where

three nodes have three edges and one node has five.

(2) Mathematical Premise: Of the networks composed of four nodes, only those containing

either zero or two nodes of odd degree have Eulerian paths.

(3) Conclusion: There is no Eulerian path across the bridges of Königsberg.

Yet, according to Craver (2006, 701; Craver & Povich, 2017, 35), this explanation of the solution 

to the Königsberg problem can be reversed by switching the empirical premise and the conclusion 

while negating both to give the following reversed case:  

(1) Empirical Premise: Marta walks an Eulerian path through Königsberg (i.e., an Eulerian

path is possible).

(2) Mathematical Premise: Among connected networks composed of four nodes, only

networks containing zero or two nodes with odd degree also contain an Eulerian path.

(3) Conclusion: Therefore, either zero or two of  Königsberg’s landmasses have an odd

number of bridges in 1756.

Craver and Povich take the reversed case to be a bad argument, whereas ex hypothesi on the 

topological explanation account, the original argument is good. This constitutes a problem for 

topological explanation because, according to Craver, there are no norms of topological 

explanation that can explain this asymmetry.  

Similarly, Craver argues that the same reversed argument can be given for the 

mathematical explanation of the brain’s robustness in terms of its small-worldness. The empirical 

premise that the brain is a small-world together with the mathematical premise that small-worlds 

are more robust to random attack than random networks allow us to conclude that the brain is 

robust. He suggests the following small-world argument: 

(1) Empirical Premise: System S is a small-world network.

(2) Mathematical Premise: Small-world networks are more robust to random attack than 
are random or regular networks.
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(3) Conclusion: Therefore, system S is more robust to random attack than random or  

regular networks. 

 

Alternatively, according to Craver’s reversed cases, the reversed small-world argument would be: 

(1) Empirical Premise: System S is less robust to random attack than random or regular 

networks. 

(2) Mathematical Premise: Small-world networks are more robust to random attack than 

are random or regular networks.  

(3) Conclusion: Therefore, system S is not a small-world network. 

 

 If it is true that the topological explanation concerning small-worldness and robustness can be run 

in both directions, then topological explanation would be symmetrical and thus, fail to satisfy one 

norm of explanation. 

Proponents of non-mechanistic explanation have given two general responses to this 

objection: either explaining how non-mechanistic explanation can adhere to the asymmetry norm 

of explanation or by denying the asymmetry norm. Accepting the asymmetry norm has been much 

more popular than rejecting it, though the latter strategy could be motivated on an epistemic view 

of explanation. If what counts as an explanation is primarily epistemic, then as van Fraassen (1980) 

argued, the shadow of the flag pole does give an explanation of its height insofar as it provides 

reason to believe how tall the flagpole is, provides understanding about how tall the flagpole must 

be given the height of its shadow, and so on. However, here I will not consider the recent 

distinction between ontic and epistemic views of explanation. First, this distinction need not track 

the distinction between proponents of mechanistic explanation and critics. For example, some 

mechanists subscribe to the ontic view (Craver, 2013) while others hold the epistemic view 

(Wright & Bechtel, 2007). Second, the arguments here are neutral with respect to these views. 

Instead, I will appeal to recent work by Lange (2013; 2018) arguing that the asymmetry 

norm is upheld in cases of mathematical explanation. Lange’s response is based on the claim that 

the explanatory question or problem often appears to be ambiguously defined. There are features 
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of an explanatory question or problem that are constitutive. These features are assumptions 

required in order to begin to answer the explanatory question or problem that is posed. As Lange 

(2017, 33) says, they are “fixed parameters of the cases with which those why questions are 

concerned.” To illustrate, Lange suggests that were the Burgermeister of Königsberg to have built 

additional bridges in order to walk an Eulerian path, then we would still not consider the 

Königsberg bridge problem to be solved. Such a move would violate the assumptions on which 

the explanatory question or problem is premised. As part of the Bridges of Königsberg problem, 

it is an assumption that the network of bridges and landmasses remains fixed. On this view, we 

only need to slightly revise the explanatory schema for these cases in order to avoid the 

symmetrical responses to both original and reversed cases.  

Take the Königsberg case: we begin with the explanatory question “Why is there no 

possible Eulerian path in historic Königsberg, which is represented as a network with four nodes 

where three nodes have three edges and one node has five?” So, to change the network layout of 

Königsberg is to avoid answering the original explanatory question. But in the reversed cases, the 

explanatory question does not presuppose the empirical claim. Consider the reversed Königsberg 

case, which would have the following explanatory question: “Why does either zero or two of  

Königsberg’s landmasses have an odd number of bridges in 1756, given that Marta walks an 

Eulerian path across the bridges?” The presence of an Eulerian path is not constitutive of the 

explanatory task set out by the question. In the original cases but not in the reversed cases, the 

explanatory question requires a graph theoretic perspective and assumes the network layout of the 

bridges. Similar arguments can address the small-world case. 

If the mechanist persists in arguing that topological explanation does not meet any norms 

of explanation, then she denies that non-mechanistic strategies fulfill the difference-making and 
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asymmetry norms of explanation. In this section, I have argued that the case of topological 

explanation I present does fulfill the difference-making and asymmetry norms, which are accepted 

by the mechanists who endorse the wide scope claim. Unlike canonical cases of mechanistic 

explanation, the case of topological explanation fulfills difference-making norms non-causally. 

That is, they provide answers to some w-questions, but not by utilizing ideal interventions. Further, 

topological explanations are not symmetrical. I have argued that current objections to the 

explanatory value of topological explanations are unsuccessful and I have outlined the ways in 

which the case I described in section 4.4.2 meets some difference-making norms of explanation.  

4.5.5  Topological Explanations are Not Mechanistic 

Other mechanists might agree that the case discussed in section 4.4.2 is genuinely 

explanatory but argue that the case is adequately accounted for on the mechanistic account of 

explanation, namely, as a mechanism sketch. I will reply that the case is not adequately considered 

as a mechanism sketch, as this would (falsely) imply that including, e.g., more causally directed 

connections in the network would improve its explanatory power. Another way to pursue this 

objection involves arguing that better explanations involve answering more w-questions (e.g., 

Kaplan 2011, 354). Further, I argue that the case does not fit a reasonable account of mechanistic 

explanation. 

4.5.6  Additional Causal Detail is Irrelevant and Detrimental 

The mechanist might respond to my arguments above that network models are mere 

mechanism sketches with causal details to be filled in after more research has been completed. 
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Mechanism sketches are relatively incomplete models, which either leave gaps for “bottom-out” 

entities or “black boxes” for some parts and activities in the system (e.g., Craver 2007).32 

According to this objection, the explanation of the distinct pattern of robustness and vulnerability 

of the macroscale human brain will be better explained if more causal information were included 

in the network model(s). The network models discussed in this chapter do not include any causal 

information about the direction of causal influence between two connected nodes nor any causal 

detail about the nodes themselves (e.g., whether the node is a set of inhibitory neurons). As more 

causal detail is added, the objection goes, these models become filled out as mechanism schemata. 

However, mechanism schemata need not include every possible detail about a system (Kaplan & 

Craver 2011, 610). These models represent all and only the relevant causal detail about the system 

for the purposes of explaining the phenomenon of interest (recall 3M and 3M* above).  

Many philosophers of science, including Craver writing elsewhere (Craver, 2010), agree 

with the principle that only relevant information should be included in an explanation. We might 

also characterize the further principle that irrelevant details make an explanation worse. When 

combined, these principles reflect some elements of 3M* that details should be included in an 

explanation if and only if they are relevant to the explanandum. One view is that only details that 

make a difference to the presence of the phenomenon in the explanandum should be included in 

an explanation (e.g., Strevens, 2009). I will interpret this principle in the following way: details 

are relevant to an explanation only if those details decide between the members of the implicit 

contrast class (i.e., make a difference to) the presence of some trait, property, or propensity in an 

 

32 For a different version of the distinction see Craver and Darden (2013) and Machamer, Darden, & Craver (2000). 
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explanandum. Casual details that are relevant for some explanandum, may be irrelevant for another 

explanandum.33 

One potential objection to my argument here is that in order to provide an explanation of 

any particular mental or brain disorder, neuroscientists need to appeal to further causal information 

not provided by the putative case of topological explanation. For example, neuroscientists will 

need to account for the role of tau in any explanation of Alzheimer’s disease. Indeed, some 

promising evidence of the progression of Alzheimer’s disease suggests that tau may spread along 

the major white fiber pathways in the brain (e.g., Zhou et al., 2012). These integrative practices of 

network models with molecular and cellular evidence fits best with the view that sometimes 

topological properties and, what might be considered, mechanistic details work together to provide 

an explanation (Huneman, 2015).  

In response, I claim that such an objection does not hold the explanandum fixed. Craver & 

Kaplan (2020) recently emphasize that explananda need to be clearly distinguished when 

evaluating potential explanations and so should accept that it could be a particular failure of this 

objection. It is important to note that if some further mechanistic details are necessary to provide 

a sufficient explanation for the progression of Alzheimer’s disease, it does not count against the 

particular purported explanation I have presented here. The objection mixes up two different 

explananda: the explanandum concerning Alzheimer’s disease (focused on explaining the 

development of a particular disease) compared to the explanandum we began with (focused on 

explaining a general pattern of resilience and vulnerability to disease in general). In the case of 

explaining the distinct pattern of robustness and vulnerability of the macroscale human brain, the 

topological properties of the brain are explanatorily sufficient. If the brain had different topological 

 

33 One could hold that causal details are always relevant, but see Andersen (2018) for arguments against this position.  
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properties, such as scale-free organization rather than small-worldness, then the distinct pattern of 

robustness and vulnerability would be different.  

According to the norms of explanation described above (e.g., answering w-questions), the 

presence of this topological property of the brain is explanatorily sufficient to explain the observed 

pattern of robustness and vulnerability. Filling out causal details of network models of the brain 

(e.g., determining causally directed edges) are irrelevant for the purposes of this explanandum. 

The mathematical consequence of the robust functional pattern is due to the contrast between 

small-world and modular networks from scale-free networks. The addition of these causal details 

to the network model will not help the neuroscientists provide a better explanation of the distinct 

pattern of robustness and vulnerability exhibited by the macroscale brain. Given the claim that the 

addition of irrelevant detail in an explanation is detrimental to its explanatory power, the addition 

of irrelevant causal detail for this explanandum would provide a worse explanation.  

If the mechanist still considers these models mechanism sketches, she is suggesting that 

causal detail added to current functional or structural network models (regardless of the impact on 

topological properties) will be explanatorily relevant because such causal information is relevant 

for any explananda. Alternatively, the mechanist could be slipping between different explananda. 

Either possibility is not a defensible position, given the commitments Craver and Kaplan have 

made to: (1) include all and only relevant details in an explanation and (2) be precise about what 

explanandum is being considered in debates about specific cases. I have argued here and in the 

previous section that understanding the relationship between the topological property and the 

behavior of system is sufficient for answering w-questions and so for providing a genuine 

explanation of this particular explanandum. The addition of causal information in network models 

of the brain will be relevant only for some other explananda.  
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4.5.7  Fails to Fulfill Distinctive Norms of Mechanistic Explanation 

Another objection to alleged counter-examples to the wide scope claim pursued by 

mechanists involves widening the account of mechanistic explanation. Some mechanists allow a 

wide variety of explanatory practices to count as mechanistic in virtue of fulfilling even one or two 

norms of mechanistic explanation. For example, Zednik (2014, 2019) claims that as long as models 

are organized and emphasize points of intervention in a system then those models provide 

mechanistic explanations. Such a permissive view of what strategies count as mechanistic 

accommodates nearly all counter-examples, but with the consequence that the distinctive norms 

of mechanistic explanation, such as the emphasis on finding entities and activities, are abandoned. 

The original account of mechanistic explanation (e.g., Machamer, Darden, and Craver 2000) was 

less permissive and better described scientific explanatory practices in molecular biology and 

cellular neuroscience.  

Consider an alternative to Zednik’s permissive account. Woodward (2013) offers a 

reasonable elaboration of the mechanistic account of explanation as a cluster-concept and 

illuminates a set of three criteria (though not complete) that systems should have for mechanistic 

strategies of explanation (e.g., decomposition and localization, the search for functionally 

differentiated entities) to apply: stability of causal relationships, fine-tunedness of spatio-temporal 

organization, and modularity of causal relationships. Stability requires that the causal relations 

among the components be more stable over interventions than the system’s overall behavior. The 

fine-tunedness of organization requires that the specific causal properties of the components and 

their spatio-temporal organization makes a difference to the system’s overall behavior. Modularity 

of causal relationships requires that components’ causal interactions remain relatively unaffected 

when interventions are performed on some other component.  
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As cases fulfill fewer of the criteria, the cases will be less explicable by a mechanistic 

strategy. The case of the pattern of robustness and vulnerability of the macroscale brain to 

perturbation fails two of these criteria. Note that these criteria apply to the system and not the 

models. However, we can restrict our assessment of the system to features that are relevant to the 

explananda of interest. First, the macroscale brain case fails the stability criterion. Causal 

connections between some brain areas are less stable under interventions than the efficient transfer 

of information across the whole brain. So, the causal relationships between the components (i.e., 

brain areas) are less stable under perturbation than the whole system behavior. Information can be 

efficiently transferred from point A to point B in the brain through different routes when causal 

relationships among components are disrupted. The only exception to this case is when a 

particularly well-connected component is perturbed; in those cases, the global behavior (i.e., 

information transfer) is less stable than many of the causal relationships among components. 

Second, the macroscale human brain viewed in terms of its efficiency of information 

transfer, fails to fulfill the spatio-temporal fine-tunedness criterion. A relatively limited amount of 

causal properties of the components make a difference to the systems’ ability to efficiently transfer 

information. Researchers can abstract away from causal details about how information is 

transferred, whether it is electrical or chemical, or how it is modulated by neurotransmitters. Also, 

the spatio-temporal organization of the system is similarly relatively limited. Spatial arrangement 

among the components matters only insofar as the connections among components are represented. 

However, these connections do not need to be to scale and in fact, many of the details of these 

connections can be abstracted away, such as how many neurons have axonal projects through a 

particular white fiber tract or whether there are reflexive connections. 
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As this case looks quite different from stereotypical examples of mechanistic explanation, 

it fulfills fewer distinctive norms of mechanistic explanation. I have provided a number of reasons 

for rejecting the claim that this case is mechanistic—it fails two of the three normative criteria 

distinctive of mechanistic explanation.  

Mechanists like Zednik may wish to argue that even cases that meet a minimal number of 

criteria of causal explanation should count as mechanistic and that the distinctive criteria for 

mechanistic explanation described in this section are too restrictive. Consider the weakened criteria 

of condition (a) from 3M to 3M* discussed in section 4.3.1. One problem with this permissive 

view of mechanistic explanation is that accepting cases at the periphery of the cluster-concept of 

mechanistic explanation will broaden the account and ultimately render it trivial. The mechanistic 

account of explanation would be superfluous if it turned out that mechanistic explanation is merely 

synonymous with our best account of causal explanation. The proponents of this permissive 

account of mechanistic explanation give up the distinctive content and norms of mechanistic 

explanation (such as spatio-temporal fine-tunedness) highlight features of the account that gave it 

traction in the canonical cases of mechanistic explanation. For these reasons, mechanists should 

reject the permissive account of mechanistic explanation. 

However, I’ve argued that if the mechanist accepts the restrictive account of mechanistic 

explanation—including the three criteria mentioned above—then the case of explanation I’ve 

described in this chapter is not explicable by mechanistic strategies. If we retain the more 

restrictive view of mechanistic explanation presented in Woodward (2013), then as I’ve argued 

here the distinctive pattern of robustness and vulnerability of the macroscale human brain is a 

phenomenon that is not appropriately explained by the mechanistic account. Rather the case is an 

instance of non-mechanistic topological explanation in neuroscience. 
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4.6 Conclusion 

By shifting the debate between mechanists and proponents of alternative theories of 

explanation to focus on distinct types of explanatory questions, we can better articulate the limits 

of the mechanistic explanation. I have argued that the mechanist cannot maintain the wide scope 

claims about explanation in neuroscience in the face of cases of topological explanation in 

neuroscience (like the case in section 4.4.2). Instead, the mechanist should give up the wide scope 

claim and concede that some explanatory projects in neuroscience do not fit the mechanistic 

account.  
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5.0 Conclusion 

In this dissertation, I have analyzed the two major senses of robustness in scientific 

research. Chapters 2 and 3 deal with robustness reasoning, or the idea that robust results from our 

scientific modeling and experimentation practices are more trustworthy.   

In Chapter 2, I argued that robustness analysis has utility during scientific discovery and 

the pursuit of hypotheses rather than contexts of confirmation of results or robust theorems. I 

developed and defended a new type of robustness analysis called ‘scope robustness analysis’, 

which is a helpful research strategy when researchers have some knowledge about the target 

system that can be leveraged to constrain other hypotheses that are explored via modeling. I drew 

connections to the modeling of possibilities in existing accounts of how-possibly explanations and 

perspectival modeling. I demonstrate scope robustness analysis by analyzing a case of generative 

modeling in network neuroscience. Researchers use the strategies I described to identify the likely 

range of trade-off between two developmental principles for the system in question. 

In Chapter 3, I argued for two major claims. First, the sense of diversity among the methods 

required for triangulation is not explanatory diversity, but rather diversity in the ways each method 

might fail. My major argument for this claim was that the explanatory diversity criterion is based 

on an analysis of abductive eliminative inferences underlying the design of experiments on 

Brownian motion. However, triangulation relies on a different type of underlying inference: 

common cause inductive inferences. For this reason, Perrin’s account of the estimation of 

Avogadro’s number is an instance of triangulation, but Perrin’s experiments on Brownian motion 

are not. So, the explanatory diversity criterion does not identify “sufficiently diverse” methods for 

triangulation, but may play some role in how researchers typically design a series of experiments 
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to eliminate alternative explanations for their initial observed results. Given the problems with 

other diversity criteria, I hold that the failure diversity criterion, as given by Wimsatt, remains our 

best understanding of “sufficiently diverse” methods in triangulation. 

My second claim is that philosophical accounts of triangulation cannot explain why 

triangulation can fail in practice. We need to explain why triangulation can fail in practice, in 

addition to why it succeeds, in order for our account of triangulation to be descriptively adequate 

and to normatively guide scientific practice. Even extending these accounts, which are based on 

successful cases of triangulation, by considering failures of the two major success criteria do not 

explain some cases of failure to triangulation. Likewise, bringing in resources from the literature 

on inductive risk is insufficient to address the problem. Thus, I provide a new account of 

triangulation based on epistemic risk and highlight particular ways and places in research practice 

where triangulation can fail. Importantly, my account also requires contributing to the types of 

epistemic risk that can arise in all kinds of knowledge practices in addition to triangulation in 

particular.  

Finally, I applied my account of triangulation to explain the failure of the triangulation 

argument for implicit attitudes. While most of the philosophical criticism of implicit attitude 

research has focused on its issues with characterizing the phenomenon or its lack of predictive 

validity, I demonstrated that implicit attitude research relies on an assumption that all indirect 

measures are measuring the same phenomenon. This triangulation argument for implicit attitudes 

has not been the focus of most critiques in the social psychology literature either. I argued that 

there are two main problems with this triangulation argument, which can be understood using my 

account of triangulation. First, there is an epistemic risk in deciding whether data should serve as 

evidence for the same hypothesis. Second, there is a type of inductive risk that is particularly salient 
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in triangulation: the risk that there is insufficient evidence to rule out the hypothesis that there is 

more than one phenomenon. 

In Chapter 4, I turned to consider explanation of phenomena that are robust to many lower-

level details. Rather than assessing how best to explain robust phenomena in general, I examined 

this topic in the context of mechanistic explanation. Much of the debate about the scope of 

mechanistic explanation can be considered in the context of identifying whether some phenomena 

require other explanatory strategies. In this chapter, I argued that topological explanation is distinct 

from mechanistic explanation and for some cases of robust explananda in network neuroscience, 

topological explanation is more appropriate. Specifically, I considered the explananda of the 

pattern of macroscopic human brain’s robustness and vulnerability to damage to its parts. For this 

particular explanandum, we can provide a topological explanation citing the topological properties 

of the system (i.e., small-worldness and modularity) and their mathematical consequences (i.e., 

the pattern of robustness and vulnerability in a network).  

Considering recent responses to purported cases of non-mechanistic explanation, I argued 

that the mechanist should take this case to be both explanatory and non-mechanistic. It is 

explanatory because it fulfills norms of explanation that the mechanists also accept, namely, 

difference-making norms and asymmetry norms. The case ought to be seen as non-mechanistic 

because more details about the parts, such as their spatio-temporal locations, would not improve 

an explanation of this particular explanandum. While the mechanist could reject that all 

mechanistic explanations require, e.g.,  appeal to spatio-temporal locations of the parts, I have 

argued that it would be an unsavory move for the mechanist. In rejecting norms specific to 

mechanistic explanation, the mechanist loses the distinct content of the account and instead relies 

on more general norms of explanation (especially causal explanation). This result would retain the 
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wide scope claim concerning mechanistic explanation, but risks making the mechanistic account 

of explanation (with the distinctive norms elaborated) superfluous to existing accounts of 

explanation. 
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