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Abstract 

The role of RNA in antagonizing aberrant phase transitions of RNA-binding proteins in 

ALS/FTD 

 

Jacob Riley Mann, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Aberrant aggregation of RNA-binding proteins (RBPs) is a common pathological hallmark 

of neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal 

dementia (FTD). In these diseases, RBPs like TDP-43 and FUS are observed to be both depleted 

from the nuclear compartment, where they are normally localized, and found within cytoplasmic 

inclusions in degenerating regions of patient postmortem tissue. The mechanisms responsible for 

the aggregation of these proteins has remained elusive, largely due to technological limitations, 

but current hypotheses have proposed that liquid-liquid phase separation (LLPS) might serve as a 

critical nucleation step in the formation of pathological inclusions. This process of phase 

separation also seems to underlie the formation of a number of membraneless organelles (MLOs) 

throughout the cell, some of which have been shown to contain TDP-43, FUS, and other disease-

linked RBPs. While various in vitro assays have been the predominant method to investigate 

protein phase behavior, here we describe the development of novel optogenetic-based tools to 

investigate the endogenous forces regulating phase separation of these proteins in the native 

intracellular environment. We also demonstrate the application of these tools to selectively induce 

pathologically-relevant aggregation of these proteins under the spatiotemporal control of light, 

which has allowed for the first direct testing of neurotoxicity resulting from TDP-43/FUS 

inclusions. Along with established in vitro assays, the use of these models has also led to the 

discovery of intracellular RNA as a strong modulator of TDP-43 and FUS LLPS and aggregation. 
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Furthermore, we show here that short, specific RNA oligonucleotides mimicking this endogenous 

buffer system are capable of preventing and reversing aberrant TDP-43/FUS phase transitions, 

both in vitro and in cells, resulting in a rescue of cellular toxicity associated with pathological 

aggregation. While the exact mechanisms underlying RNA-mediated antagonization of TDP-

43/FUS aggregation are still unclear, in-depth analysis of various RNA inhibitors outlined in this 

dissertation has begun to identify specific molecular properties, such as length, sequence, and 

secondary structure, that may mediate these effects. Together, this work may represent the 

discovery of a new potential therapeutic opportunity to target aberrant RBP aggregation observed 

in neurodegenerative disease. 
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1.0 Introduction 

1.1 The amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) spectrum 

1.1.1  Clinical definitions of ALS/FTD 

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related 

neurodegenerative disorders characterized primarily by the loss of neurons in the motor cortex and 

ventral horn of the spinal cord or frontal and temporal lobes of the brain, respectively (Ling et al., 

2013). Clinically, these patterns of neurodegeneration produce distinct patient symptomologies. In 

classical ALS, patients typically present with muscle weakness, fasciculations, and/or cramping 

(Zarei et al., 2015). Disease onset typically occurs between the ages of 50-65 and is most often is 

experienced in the limbs (60-70%), but also commonly occurs in bulbar regions (30-40%) of 

patients (Ferrari et al., 2011; Zarei et al., 2015). In classical FTD, patients usually experience 

symptoms involving cognitive impairments, frequently associated with sharp changes in social 

behavior and affect, at ~50-60 years of age (Achi and Rudnicki, 2012; Ferrari et al., 2011). Speech 

and language dysfunction are also not atypical in these patients, while conversely memory and 

other cognitive abilities are usually unaffected (Ferrari et al., 2011). Interestingly, while perhaps 

most cases present with strictly ALS-like symptomologies, up to 50% of patients diagnosed with 

ALS also experience one or more of the above listed clinical features of FTD (Ferrari et al., 2011). 

Similarly, it has been reported that up to 30% of diagnosed FTD patients meet some of the 

diagnostic criteria for ALS (Abramzon et al., 2020; Fay et al., 2017; Ringholz et al., 2005), 

suggesting a potential overlap in pathogenesis across these two disorders.  
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1.1.2  Genetics of ALS/FTD 

Further evidence for crosstalk between ALS and FTD can be found in recent investigations 

into the genetics underlying these diseases. Due to modern technological advancements in 

genome-wide association studies (GWAS) and other genetic assays, mutations in over 50 genes 

have been identified and linked to the development of ALS and/or FTD over the last 30 years 

(Mejzini et al., 2019). The proteins encoded by these genes range in terms of functionality, but 

clusters of affected genes have been identified as being involved in such cellular processes as RNA 

processing/homeostasis, protein quality control, nucleocytoplasmic trafficking and cytoskeletal 

dynamics (Abramzon et al., 2020; Ling et al., 2013; Polymenidou et al., 2012). Furthermore, a 

number of these mutated genes were identified in both ALS and FTD patients, as well as some in 

patients with a clinical diagnosis of ALS/FTD, including but not limited to: C9ORF72, TBK1, 

SQSTM1, TDP-43 and FUS (Abramzon et al., 2020). Interestingly, there have also been genes 

identified in patients diagnosed with only ALS or FTD, such as SOD1 (ALS) and MAPT (FTD), 

which along with clinical observations has led to the current understanding of these two diseases 

as existing as an ALS/FTD spectrum rather than two distinct disorders (Ling et al., 2013). 

1.1.3  Neuropathology of ALS/FTD 

While clues from these genetic studies have certainly drawn a link between these disorders, 

it is important to note that familial forms of ALS/FTD represent a minority of the entire patient 

population (~10% of ALS, ~30% of FTD). The remaining majority of patients suffer from sporadic 

forms of the disease with no known family history or cause of pathogenesis (Ferrari et al., 2011; 

Greaves and Rohrer, 2019). However, a long history of neuropathological analyses of postmortem 



 3 

patient tissue of these familial and sporadic patients has drawn further support for the overlap 

between ALS and FTD. In the 1980’s, examination of some of the first recognized cases of ALS 

with dementia revealed FTD-like degeneration within the temporal and frontal lobes of patient 

brains, in addition to typical ALS-like degeneration of motor areas (Ferrari et al., 2011). A few 

years later, another study then reported that a subset of FTLD patients with non-Alzheimer’s 

frontal lobe degeneration (FLD) shared similar neuropathological features to these ALS with 

dementia cases (Ferrari et al., 2011). In addition to gross morphological changes, subsets of these 

patients were later identified to also share some histopathological features in the form of ubiquitin-

positive, tau-negative inclusions in affected brain and/or spinal cord regions (Leigh et al., 1991; 

Lippa et al., 2001), further suggesting potential etiological commonalities between these different 

disorders. It was later discovered that the predominant component of these ubiquitin-positive, tau-

negative inclusions was the DNA/RNA-binding protein TDP-43 (Neumann et al., 2006), which 

we now know is present in ~97% of all ALS cases and ~45-50% of all FTD patients 

(neuropathologically classified as FTLD-U) regardless of sporadic or familial forms of disease 

(Ling et al., 2013). Furthermore, this common neuropathological hallmark, termed TDP-43 

proteinopathy, has also recently been estimated to be present in up to 75% of Alzheimer’s Disease 

(Amador-Ortiz et al., 2007; Wilson et al., 2011; Youmans and Wolozin, 2012) and ~85% of 

Chronic Traumatic Encephalopathy (CTE) patients (McKee et al., 2010). Thus, considering that 

the occurrence and distribution of TDP-43 proteinopathy seems to correlate with regions of the 

nervous system undergoing neurodegeneration in postmortem patient tissue (Baloh, 2011), these 

observations may suggest that the aberrant aggregation of TDP-43 may represent a common 

downstream mechanism driving neurodegeneration across these different diseases.  
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1.2 TDP-43 proteinopathy and relevance to neurodegeneration in ALS/FTD 

1.2.1  TDP-43 in physiological and pathological states 

TDP-43, encoded by the TARDBP gene, is a ubiquitously expressed DNA/RNA-binding 

protein that under normal physiological conditions is primarily localized within the nuclear 

compartment of cells. Structurally, TDP-43 consists of four major domains: 1) an N-terminal 

domain proposed to mediate functional oligomerization of the protein, as well as its nuclear 

localization via a bipartite nuclear localization signal (NLS) (Afroz et al., 2017; Mompeán et al., 

2017; Wang et al., 2018a); 2) an RNA-recognition motif (RRM1) mediating nucleic acid binding 

and thought to serve as the primary RNA-binding domain of TDP-43 (Buratti and Baralle, 2001); 

3) a second RRM (RRM2) that while displaying weaker binding affinity to target nucleic acids in 

isolation (Kuo et al., 2009) has been proposed to enhance binding specificity through cooperative 

binding with RRM1 (Furukawa et al., 2016), potentially mediated by an intramolecular salt bridge 

formed between the two RRM domains (Flores et al., 2019); and 4) an intrinsically disordered, 

low-complexity domain (IDR or LCD) that harbors a majority of disease-linked mutations in the 

protein and is inherently aggregation-prone (Johnson et al., 2009).  

Functionally, TDP-43 has been reported to play a role in many different aspects of RNA 

metabolism in the nuclear compartment, including pre-mRNA splicing, miRNA biogenesis, and 

regulation of ncRNA and lncRNA expression (Ratti and Buratti, 2016). TDP-43 has also been 

reported to shuttle out of the nucleus and perform a number of functions related to RNA 

homeostasis in the cytoplasmic compartment, such as mRNA transport, stability and translational 

regulation (Ratti and Buratti, 2016). While it was long thought that TDP-43 achieved this 

cytoplasmic shuttling via a predicted nuclear export sequence (NES) within RRM2, it has now 
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been established that this predicted NES is non-functional and TDP-43 may conversely travel out 

to the cytoplasm by passive diffusion independent of major nuclear export proteins (Ederle et al., 

2018; Pinarbasi et al., 2018). As mentioned above, TDP-43 returns to the nucleus through active 

importin -mediated nuclear import, where it remains predominantly localized under normal 

conditions (Ederle et al., 2018). 

However, in TDP-43 proteinopathies, the protein is conversely depleted from the nuclear 

compartment and can be found to be sequestered within inclusion bodies in the cytoplasm of 

affected cells (Prasad et al., 2019). These inclusions display a number of immunohistochemical 

and biochemical hallmarks, including C-terminal hyperphosphorylation, ubiquitin and p62 

immunoreactivity, detergent-insolubility, and C-terminal cleavage (Neumann et al., 2006; Prasad 

et al., 2019). Interestingly, similar to other neurodegenerative disease-linked proteins like Tau in 

Alzheimer’s Disease and other tauopathies (Karikari et al., 2019), TDP-43 has been recently 

shown to aggregate into different “strains” exhibiting distinct morphological and biochemical 

properties across different disease subtypes (Laferrière et al., 2019; Porta et al., 2018). It has also 

been suggested that TDP-43 has the capability to spread via prion-like propagation between 

regions of the nervous system (Shimonaka et al., 2016; Smethurst et al., 2016), much like other 

disease-linked protein aggregates, and these distinct TDP-43 strains are hypothesized to exhibit 

unique spreading patterns that may underlie the different patterns of neurodegeneration observed 

across various TDP-43 proteinopathies (Porta et al., 2018). 

1.2.2  TDP-43 toxicity: gain- and/or loss-of-function mechanisms of neurodegeneration? 

While the common occurrence of TDP-43 proteinopathy across various neurodegenerative 

disorders, as well as its correlation with regional degeneration in postmortem patient tissue, may 
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suggest that the aggregation of TDP-43 could be driving cellular death, it still is unclear whether 

TDP-43 pathology is an active pathogenic mechanism or a secondary byproduct of another 

perturbed pathway in these diseases. Furthermore, questions regarding the precise mechanisms of 

TDP-43 toxicity, be it gain-of-function via toxic cytoplasmic inclusions, loss-of-function via 

nuclear TDP-43 depletion/cytoplasmic sequestration, or some combination of the two, remain 

unanswered. Unfortunately, modelling these specific aspects of TDP-43 proteinopathy in vitro and 

in animal models has been difficult and has produced variable results.  

Perhaps the most common experimental strategy has been overexpression of TDP-43, both 

in its wildtype isoform as well as ALS/FTD-linked mutant versions and disease-linked C-terminal 

truncations of the protein (Hergesheimer et al., 2019). Overexpression of full-length wildtype 

TDP-43 has seemed to produce cellular toxicity in a majority of in vitro model systems, ranging 

from yeast to rodent primary cortical and motor neurons (Hergesheimer et al., 2019). Interestingly, 

investigations into the effects of disease-linked mutant TDP-43 in neuronal overexpression models 

has yielded inconsistent results, with some groups reporting enhanced toxicity associated with 

mutant proteins and others showing no difference between overexpression of wildtype and mutant 

proteins (Hergesheimer et al., 2019). Similar findings have been reported in various in vivo models, 

with the severity of degeneration seemingly being dependent upon the degree of TDP-43 

overexpression produced in these organisms (Ling et al., 2013; Vanden Broeck et al., 2014). 

However, the toxicity observed in these models has not consistently correlated with typical TDP-

43 pathology observed in patient tissue, with many groups reporting a lack of aggregation and 

largely nuclear localization of overexpressed TDP-43 (Hergesheimer et al., 2019). Given the 

typical adult-onset of TDP-43 proteinopathies in human patients, it is possible that other age-

related factors, such as decline in proteostasis (Hipp et al., 2019; Kaushik and Cuervo, 2015) or 
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nucleocytoplasmic transport (Dormann and Haass, 2011), may be important contributors to TDP-

43 mislocalization and aggregation that are not yet experienced by these relatively young 

transgenic models.  

Instead, this overexpression-induced toxicity may alternatively result from a dysregulation 

of target RNA homeostasis, as widespread changes in RNA expression and splicing profiles have 

been reported in various wildtype and mutant TDP-43 overexpression models (Flores et al., 2019; 

Hazelett et al., 2012). Mutation of the TDP-43 RNA-binding regions to reduce RNA-binding 

efficiency has also been shown to prevent these changes and ameliorate associated overexpression-

induced toxicity in multiple model systems (Flores et al., 2019; Loganathan et al., 2019). 

Additionally, it still remains unclear whether upregulation of TDP-43 can be reliably observed in 

patient postmortem samples (Cortese et al., 2014), raising the question of whether 

neurodegeneration produced in these overexpression models may be reflecting pathogenic events 

experienced by patient cells in disease or producing toxicity through distinct mechanisms. 

To begin to address these questions, many groups have begun to utilize recent 

technological advancements in gene editing and patient-derived iPSC models to investigate the 

effects of disease-linked TDP-43 mutant proteins expressed by endogenous promoters at 

physiological expression levels (Guo et al., 2017; Hergesheimer et al., 2019). Unfortunately, a 

majority of the in vitro neuronal models derived from patients harboring ALS/FTD-causing 

mutations have failed to recapitulate many of the hallmarks of TDP-43 proteinopathies, showing 

little to no TDP-43 mislocalization or aggregation (Hergesheimer et al., 2019). While this may be 

limiting from an experimental perspective, it is perhaps not surprising considering the difference 

in timescales typically utilized in these models (~2-3 months in culture) compared to the adult-

onset of these disorders in human patients (Lee and Huang, 2017; Zarei et al., 2015). However, 
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regardless of the developmental nature of many of these cellular models, various disease-related 

phenotypes, such as alterations in neuronal activity, transcriptional changes, and susceptibility to 

cellular stressors, have been observed of these cells and thus may provide some clues into the 

mechanisms underlying ALS/FTD pathogenesis (Guo et al., 2017; Lee and Huang, 2017). Similar 

results have also been reported using knock-in rodent models of disease-linked TDP-43 mutations, 

with most showing no mislocalization/aggregation of TDP-43 and only subtle neurodegenerative 

and/or motor phenotypes (De Giorgio et al., 2019; Hergesheimer et al., 2019). However, while 

many of these models did not demonstrate robust TDP-43 proteinopathy, one commonality seen 

across many of these animals was a disruption in TDP-43 function in the regulation of alternative 

splicing (De Giorgio et al., 2019). These alterations have been predominantly described in terms 

of exon inclusion/exclusion and seem to vary depending on the precise mutation(s) in question, 

but these common observations across individual TDP-43 mutations, as well as some reports from 

overexpression models and postmortem patient tissue, may suggest that splicing dysregulation as 

a result of TDP-43 dysfunction may play a vital role in driving neurodegeneration in these 

disorders (Prasad et al., 2019).  

Interestingly, TDP-43 depletion has been shown to recapitulate some of these observations 

in a variety of model systems, further illustrating the role of proper TDP-43 regulation in the 

maintenance of RNA homeostasis (Prasad et al., 2019). While ubiquitous homozygous knockout 

of TDP-43 in mice has been shown to result in embryonic lethality, heterozygous mice have been 

shown to survive into adulthood and exhibit late-onset motor impairments (Kraemer et al., 2010). 

Furthermore, conditional knockout of TDP-43 in motor neurons seems to produce similar motor 

impairments, and a recent conditional depletion model targeting the mouse forebrain has reported 

FTD-like phenotypes that were associated with widespread RNA expression and processing 
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changes (Wu et al., 2019; Xu, 2012). Additional transcriptomic studies of human stem-cell derived 

motor neurons following TDP-43 depletion have shown comparable alterations in RNA expression 

profiles that interestingly overlapped with some changes observed in iPSC motor neurons derived 

from patients harboring ALS-linked TDP-43 mutations (Klim et al., 2019; Melamed et al., 2019), 

further drawing a link between RNA homeostasis and TDP-43 functionality. However, while this 

relative convergence across gain- and loss-of-function model systems has certainly uncovered 

important clues into the potential pathogenic mechanisms underlying TDP-43 proteinopathies, it 

has still remained difficult to specifically model TDP-43 aggregation in order to tease apart the 

relative contributions of these different toxic mechanisms. Transfection of pre-formed TDP-43 

inclusions, either through artificial generation or purified from FTLD patient tissue, has been 

shown to produce toxicity in cellular models, demonstrating the ability of TDP-43 inclusions to 

exert gain-of-toxic function (Capitini et al., 2014; Laferrière et al., 2019). However, it is unclear 

in these studies whether these exogenous inclusions also sequestered endogenous TDP-43, thereby 

depleting nuclear functionality, to fully recapitulate the disease-state observed in end-stage TDP-

43 proteinopathies. Thus, while both loss of TDP-43 function and inclusion-related toxicity have 

been separately shown to produce cellular toxicity in these models, the precise mechanisms 

underlying neurodegeneration observed in these diseases remains an open query in the field.  
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1.3 Liquid-liquid phase separation as a potential nucleator of TDP-43 proteinopathy 

1.3.1  Phase transitions in biological systems 

While the question of whether TDP-43 aggregation is a key driver of neurodegeneration in 

various TDP-43 proteinopathies is still unclear, another critical unresolved issue in the field relates 

to the intrinsic and extrinsic factors that might be responsible for the initiation of TDP-43 

aggregation in these pathological conditions. One major hypothesis that has recently emerged from 

the fields of polymer chemistry and biophysics revolves around the concept of phase separation. 

In biological terms, phase separation refers to a process by which certain organic molecules 

dynamically transition from an initially mixed population into separate compartments, or phases. 

In the same manner that non-biological molecules, such as water, can transition between different 

states (i.e. liquid water, ice, and water vapor) based upon variables like temperature, it is becoming 

increasingly recognized that various biological molecules, proteins for example, can be found in 

different biophysical states within a cell (i.e. soluble proteins or solid-like aggregates) based upon 

various changes in the intra- and extracellular environment (Hyman et al., 2014). Again using 

temperature as an example, recent proteomic studies have shown that a large number of proteins 

in the yeast proteome undergo heat-induced aggregation upon brief heat shock that appears 

reversible upon return to normal incubation conditions (Wallace et al., 2015). Interestingly, these 

heat-sensitive proteins were only a small subset of the proteome, potentially suggesting this 

temperature-induced phase transition as an evolved trait to allow for adaptive function in response 

to changes in the environment (Wallace et al., 2015). Similar effects also have been reported with 

stressors such as nutrient starvation and oxidative stress (Ibstedt et al., 2014; Narayanaswamy et 

al., 2009).  
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1.3.2  Liquid-liquid phase separation and membraneless organelles 

In addition to a response to system-wide changes in the intracellular environment, these 

kinds of phase transitions can also be utilized to dynamically compartmentalize and organize the 

cell without the use of lipid membranes (Shin and Brangwynne, 2017). Complementing more 

canonical lipid-bound organelles like mitochondria and the endoplasmic reticulum, these 

“membraneless organelles” (MLOs) can be found all over the cell and include such structures as 

the nucleolus, RNA transport granules, P-bodies and the nuclear pore complex (Gomes and 

Shorter, 2019). While some of these MLOs, Cajal bodies for example, have been studied for over 

100 years, until recently the biological mechanisms underlying the formation and maintenance of 

these membraneless structures had remained unclear (Shin and Brangwynne, 2017). Following 

pioneering biophysical investigations into the C. elegans germline P granule (Brangwynne et al., 

2009) and the X. laevis oocyte nucleoli (Brangwynne et al., 2011), it has now been established that 

the many of these MLOs may arise through a type of phase transition called liquid-liquid phase 

separation (LLPS). Commonly presented as analogous to the behavior of oil in water, LLPS 

involves the selective condensation of molecules (i.e. proteins and nucleic acids) from an initially 

mixed dilute phase into distinct droplets, or a condensed phase, within a surrounding liquid 

environment (i.e. the cytoplasm) (Hyman et al., 2014). These condensed droplets have been shown 

to exhibit many properties of “classical” liquids, for example: spherical shape, fission/fusion, 

dripping, surface wetting, and dynamic molecular exchange both within droplets and with the 

surrounding environment (Hyman et al., 2014; Shin and Brangwynne, 2017).  

Interestingly, the dynamic nature and liquid-like properties of MLOs are proposed to 

provide unique advantages over membrane-bound organelles, especially for sensing rapid changes 

in the intra- and extracellular environment (Yoo et al., 2019). One example of this notion can be 
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found in the behavior of the yeast poly-A binding protein (Pab1) in response to heat stress (Riback 

et al., 2017). Under normal conditions, Pab1 often functions as a translational repressor through 

the binding of A-rich regions of target mRNAs (Riback et al., 2017). However, upon brief heat 

shock Pab1 was shown to release RNA and undergo a rapid, temperature-dependent phase 

transition into gel-like assemblies, which has been hypothesized to allow for translation of target 

mRNAs like molecular chaperones to assist with the cellular stress response (Riback et al., 2017; 

Yoo et al., 2019). A similar mechanism has also been described in the cellular recovery from pH 

stress involving the yeast translational termination factor Sup35 (Franzmann et al., 2018). Here, a 

drop in intracellular pH was found to trigger rapid LLPS of Sup35, effectively sequestering the 

protein in non-fibrillar condensates. Upon return to normal pH conditions, a dissolution of Sup35 

assemblies was observed and seemed to coincide with translational restart and cell recovery from 

stress. Cells that expressed a Sup35 deletion mutant unable to undergo pH-induced LLPS exhibited 

impaired stress recovery, which together led to the hypothesis that initial condensation functioned 

to protect the Sup35 catalytic domain from stress-induced damage that would impair its ability to 

effectively aid in translational restart during recovery (Franzmann et al., 2018). 

In addition to “sensing” rapid changes in the intracellular environment, the selective 

concentration of molecules afforded by these types of phase transitions offer distinct functional 

benefits over membrane-bound compartments. In the case of the nucleolus, the ability of different 

nucleolar proteins to assemble into liquid-like condensates with unique biophysical properties has 

recently been shown to underlie the compartmentalized internal architecture of this MLO (Feric et 

al., 2016). Interestingly, it seems as though these core nucleolar proteins form distinct, non-

coalescing sub-compartments within the greater liquid-like nucleolar environment, producing a 

“multi-layered droplet” due to differences in surface tension that maintains the internal 
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organization of the nucleolus and is proposed to aid in the sequential processing reactions of rRNA 

and ribosome assembly (Feric et al., 2016). Similar advantages can be found in the process of 

nucleocytoplasmic transport, where it has become increasingly understood that the selectivity of 

the nuclear pore complex (NPC) can be attributed to the phase behavior of FG-nucleoporins (FG-

Nups) residing in the central channel of the NPC (Schmidt and Görlich, 2016). In this sense, it has 

been shown that these FG-Nups can undergo phase transitions to form liquid- or hydrogel-like 

droplets that seem to mimic the selective transport permeability observed at the nuclear pore 

(Celetti et al., 2020; Hülsmann et al., 2012; Labokha et al., 2013; Schmidt and Görlich, 2015, 

2016). Whereas specific nuclear import proteins are able to enter and transverse the FG-Nup 

droplets/gels, other non-specific molecules are impermeable and are largely excluded from these 

structures (Celetti et al., 2020; Hülsmann et al., 2012; Labokha et al., 2013; Schmidt and Görlich, 

2015). Interestingly, both the formation and permeability of these condensates has been proposed 

to be due to multivalent interactions between highly-conserved FG-repeat domains in specific 

nucleoporins found along the central channel of the NPC (Terry and Wente, 2009). Similar 

conserved domains that seem to mediate LLPS have been identified in a number of other proteins 

(discussed below), thus suggesting that certain proteins and other molecules may have been shaped 

by evolution to produce specific features to allow for the fine-tuning of phase behavior for a variety 

of functional outcomes. 

1.3.3  Intrinsically-disordered regions (IDRs) as key players in the formation and material 

properties of phase-separated assemblies 

As the number and diversity of proteins reported to utilize phase separation across the 

proteome has grown, so too has our understanding of the molecular determinants governing the 
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formation and biophysical properties of these different assemblies. While the precise domain 

composition and molecular interactions can be varied, one key common feature that has seemed 

to allow for proteins to drive phase separation is multivalency (Boeynaems et al., 2018). This 

multivalency can be achieved in a number of ways, but generally involves weak, transient contacts, 

often through repeated interaction motifs or modules, within and between molecules (Boeynaems 

et al., 2018; Shin and Brangwynne, 2017). However, while the existence of multiple specific 

interaction modules, sometimes called “stickers”, seems to be imperative for phase separation, the 

interspersing of these modules by flexible linker, or “spacer”, sequences also seems to be a critical 

determinant of phase behavior in these systems (Posey et al., 2018). This general mode of sticker-

spacer organization can be observed in a variety of naturally occurring proteins shown to undergo 

phase separation, but often seems to involve some combination of folded interaction domains or 

patches and intrinsically-disordered regions (IDRs) that provide flexibility and/or serve as 

scaffolds for non-covalent interactions between short linear motifs (SLiMs) embedded within these 

domains (Boeynaems et al., 2018; Posey et al., 2018).  

Due to the enrichment of these regions within phase-separating proteins, as well as their 

ability to often drive homotypic phase separation in the absence of more-defined interaction 

domains (Shin and Brangwynne, 2017), IDRs have been the recipient of much research attention 

in recent years. IDRs are typically defined as regions of a protein sequence that lack a defined, or 

ordered, secondary structure and thus are capable of adopting a range of three-dimensional 

conformations (van der Lee et al., 2014). Often times this structural ambiguity is conferred by 

amino acid compositions of limited sequence complexity, and regions conforming to these 

characteristics are typically referred to as low-complexity domains (LCDs) or low-complexity 

IDRs (van der Lee et al., 2014). These domains are also typically enriched in charged (i.e. arginine, 
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lysine, glutamic acid), polar (i.e. serine, glutamine, asparagine), and/or aromatic (i.e. 

phenylalanine, tyrosine, tryptophan) amino acids and also generally contain a number of amino 

acids like glycine and proline that may convey some structural information (Shin and Brangwynne, 

2017; Theillet et al., 2013). These sequence compositions in turn allow for a variety of the non-

covalent interactions that seem largely responsible for driving phase separation of these domains 

and the proteins they are part of. While these interaction types can vary both across and within 

IDRs, they generally involve a combination of charge-based interactions (charge-charge or cation-

π), dipole-dipole interactions and π-π stacking of aromatic residues (Brangwynne et al., 2015). 

Interestingly, recent simulations and mutational studies have predicted that the heterogeneity of 

both structural conformation and interaction type (via amino acid composition) in IDRs can have 

profound effects on the formation and biophysical properties of higher-order assemblies 

(Boeynaems et al., 2018; Tüű-Szabó et al., 2018; Wang et al., 2018b). These material properties 

in turn likely reflect specific functions that are encoded within the sequence of IDRs and other 

interaction domains within protein components of various MLOs, and this notion can be seen in 

some of the examples mentioned above. For instance, the selective permeability barrier formed 

within the nuclear pore, which seems to be gel-like in nature, is thought to be due to multivalent 

aromatic interactions between repetitive FG motifs (i.e. FxFG, GLFG, xxFG) within intrinsically-

disordered FG-nucleoporins (Li et al., 2016). Conversely, the nucleolar protein FIB-1 has been 

shown to phase separate into more liquid-like assemblies, both in homotypic in vitro reactions and 

within the nucleolus in vivo, which is likely driven by charge-based interactions afforded by its 

R/G-rich IDR (Feric et al., 2016). In this sense, each of these distinct interaction types encoded 

within these regions have likely been evolutionarily tuned to allow for the formation of assemblies 

with specific, functionally-beneficial material properties.  
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1.3.4  Prion-like domains and their relevance to aberrant RNA-binding protein aggregation 

in neurodegenerative disease 

Another subtype of IDR that has been identified to mediate phase separation of various 

proteins into assemblies with unique biophysical properties are prion-like domains (PrLDs) 

(Franzmann and Alberti, 2019). First identified in the yeast proteins Ure2 and Sup35, these PrLDs 

were shown to drive the assembly of self-propagating, amyloid-like aggregates that were capable 

of templating their aggregated state to soluble versions of the proteins (Franzmann and Alberti, 

2019). Subsequent analysis of these domains revealed that these PrLDs were intrinsically-

disordered and contained very limited sequence complexity, skewing towards amino acid 

compositions of glycine and largely uncharged, polar amino acids like glutamine, asparagine, 

serine and tyrosine (Verdile et al., 2019). Interestingly, when the human proteome was later 

scanned for proteins containing PrLD-like amino acid compositions, a heavy enrichment of 

proteins identified as containing PrLDs was found in RNA-binding proteins (RBPs) (Franzmann 

and Alberti, 2019). Furthermore, a number of these PrLD-containing RBPs have also been reported 

to form pathological inclusions in post-mortem patient tissue across several neurodegenerative and 

muscle-related disorders, including FUS (ALS, FTLD, HD) (Doi et al., 2008; Lagier-Tourenne et 

al., 2010), TAF15 (FTLD, ALS) (Couthouis et al., 2011; Svetoni et al., 2016), EWSR1 (FTLD) 

(Neumann et al., 2011), hnRNPA1 (IBM, MSP) (Harrison and Shorter, 2017; Kim et al., 2013), 

hnRNPA2B1 (IBM, MSP) (Harrison and Shorter, 2017; Kim et al., 2013), and TDP-43 (Gitler and 

Shorter, 2011), suggesting that this common element may play a role in the aberrant aggregation 

of these proteins observed in disease.  

In addition to prion-like IDRs, all of these proteins also contain multiple RNA-binding 

domains, either in the form of “canonical” RNA-recognition motifs (RRMs) or RGG/ZnF regions 
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(Gomes and Shorter, 2019), and have been reported as components of various RNA-containing 

MLOs in the cell like RNA transport granules (Purice and Taylor, 2018), paraspeckles (An et al., 

2019; Modic et al., 2019) and nuclear gems (Cacciottolo et al., 2019). Purified preparations of 

these proteins have also all been shown to undergo LLPS in vitro (Maharana et al., 2018; Ryan et 

al., 2018), and the PrLDs of these RBPs seem to be necessary and sufficient for phase separation 

in these systems (Babinchak et al., 2019; Conicella et al., 2016, 2020; Molliex et al., 2015; Patel 

et al., 2015; Ryan et al., 2018; Schmidt and Rohatgi, 2016). Interestingly, while initial assemblies 

formed by these proteins, as well as their PrLDs in isolation, display liquid-like biophysical 

properties, it has recently been shown that extended incubation seems to promote a “maturation” 

or hardening of these droplets into more gel-like structures or solid-state aggregates that resemble 

the pathological state of these proteins observed in patient tissue (Patel et al., 2015). These liquid-

to-solid transitions seem to occur in a concentration-dependent manner, which has led to the 

hypothesis that increasing the concentration of these PrLD-containing proteins in the dense phase 

may alter the molecular dynamics within these assemblies and/or promote interactions that may 

be responsible for the nucleation of protein fibrillization/aggregation (Patel et al., 2015). Similar 

preliminary droplet-like states have also been reported to preceded amyloid formation of the 

previously mentioned yeast prion protein Sup35 (Patel et al., 2015; Serio et al., 2000), which might 

suggest that PrLDs contain evolutionarily-conserved elements that while allowing for the 

formation of liquid-like compartments in response to physiological stimuli may also confer a 

propensity for solid-state aggregation under certain pathological conditions.  

In support of this notion, these liquid-to-solid state transitions, also called aberrant phase 

transitions, have also been reported to be promoted by different disease-linked familial mutations 

in the PrLDs of these proteins (Gomes and Shorter, 2019; Gopal et al., 2017; Patel et al., 2015). 
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For example, an ALS-linked mutation in the FUS PrLD (G156E) has recently been shown to 

gradually increase the viscosity of initially liquid-like FUS droplets in vitro and promote emergent 

fibrillization at incubation times in which wildtype droplets remained dynamic (Patel et al., 2015). 

Similar results have been observed when examining the effect of an MSP-linked PrLD mutation 

on the in vitro phase behavior of hnRNPA1, which seemed to undergo LLPS indistinguishably 

from wildtype protein at initial timepoints and co-phase separate into liquid-like droplets with 

wildtype protein when mixed (Molliex et al., 2015). However, over time fibrillization of the mutant 

protein was observed to emerge from wildtype droplets and eventually seeded wildtype protein 

into similar fibril-like assemblies (Molliex et al., 2015). These in vitro assays have allowed for the 

precision required to uncover this mechanism, but it is important to note that these reactions are 

limited by the conditions that are often required to induce phase separation and aggregation in 

these cell-free systems (Alberti et al., 2019). For example, many of these proteins require non-

physiological buffer conditions (i.e. low salt), enhanced protein concentration, and/or artificial 

molecular crowding (i.e. Dextran/PEG) to initiate this process that may draw into question the 

relevance of these findings in the context of human cells (see also Chapter 4). However, recent 

intracellular models have begun to recapitulate some of these findings (Mackenzie et al., 2017; 

Ray et al., 2019, see also Chapter 2), suggesting that similar liquid-to-solid transitions may be at 

work within cellular environments in disease. 

Additional work suggests that similar mechanisms can be observed in the phase behavior 

of TDP-43. Interestingly, over 85% of the 45+ mutations in TARDBP that have been identified and 

linked to the development of ALS and FTLD fall within the protein’s PrLD (Prasad et al., 2019). 

Although many of these mutations have been reported to enhance aggregation and toxicity of TDP-

43, until recently the role for TDP-43 LLPS in the formation of pathological inclusions and the 
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impact of disease-linked PrLD mutations on this behavior had yet to be elucidated (Johnson et al., 

2009). Largely due to difficulties associated with purifying full-length TDP-43, many in vitro 

investigations have focused on LLPS of the TDP-43 PrLD in isolation. However, the TDP-43 

PrLD alone has been reported by multiple groups to undergo homotypic LLPS in vitro (Babinchak 

et al., 2019; Conicella et al., 2020; Li et al., 2018), and this LLPS has recently been reported to 

enhance the aggregation rate of the TDP-43 PrLD when compared to incubation conditions in 

which LLPS is not observed (Babinchak et al., 2019). Furthermore, in a manner analogous to FUS 

and hnRNPA1 mentioned above, fibril-like assemblies of the TDP-43 PrLD were subsequently 

shown to emerge from these liquid-like droplets upon extended incubation times, potentially 

representing a liquid-to-solid transition (Babinchak et al., 2019). Interestingly, other in vitro 

studies of the TDP-43 PrLD in isolation have shown that certain ALS-linked mutations can have 

varied effects on TDP-43 PrLD self-assembly, with some mutations actually antagonizing LLPS 

and encouraging direct aggregation of these regions (Conicella et al., 2016). This effect was 

proposed to result from disruption of a unique -helical structure that seems to be important for 

mediating the self-association of these TDP-43 PrLD fragments (Conicella et al., 2016).  

Importantly, it has recently been recognized that the N-terminal oligomerization domain of 

TDP-43 also plays a critical role in mediating full-length TDP-43 LLPS, likely through the 

enhancement of multivalency and/or promoting PrLD intermolecular interactions (Wang et al., 

2018a). Taking this notion into consideration, an artificial model of intracellular TDP-43 phase 

separation involving this N-terminal oligomerization domain along with the C-terminal PrLD has 

reported that both wildtype and similar ALS-linked mutant versions of these proteins form droplet-

like structures within cells, highlighting the role of the N-terminal domain in phase separation of 

full-length TDP-43 (Schmidt and Rohatgi, 2016). This observation may suggest that, in an 
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analogous manner to FUS, full-length TDP-43 and the PrLD alone may undergo phase separation 

through distinct molecular mechanisms. When next examining the material properties of droplets 

formed in this system, ALS-linked mutants were shown to exhibit a more static, less dynamic state 

when compared to wildtype assemblies, possibly representing a solid-state transition promoted by 

disease-causing mutations (Schmidt and Rohatgi, 2016). Interestingly, this study also showed that 

replacement of a highly-conserved portion of the TDP-43 PrLD, which included this proposed -

helical structure, with a stretch of PrLD-like amino acids led to the formation of solid, fibril-like 

structures emerging from a spherical core (Schmidt and Rohatgi, 2016). More recent in-depth 

investigations into full-length TDP-43 oligomerization and aggregation in vitro have also proposed 

that higher-order oligomerization of TDP-43 is associated with maturation of an initial droplet 

phase following extended incubation and that this higher-order oligomerization is accelerated by 

similar ALS-linked mutations within the PrLD (French et al., 2019). From a physiological 

perspective, RNA transport granules containing mutant TDP-43 have been reported by multiple 

groups to exhibit diminished dendritic or axonal transport rates (Alami et al., 2014; Gopal et al., 

2017; Liu-Yesucevitz et al., 2014), which has been proposed to be due to an increased viscosity 

and reduced dynamics of these normally liquid-like granules (Gopal et al., 2017). Together, these 

observations may suggest that this conserved -helical region important for PrLD self-assembly 

may assist in the coordination of proper PrLD intermolecular contacts during physiological phase 

separation to encourage liquid-like behavior of full-length TDP-43 and that enhanced protein 

concentration or disease-linked mutations in this region may conversely encourage interactions 

that alter molecular dynamics and/or promote solid-state transitions within these assemblies. 
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1.3.5  Stress granules as physiological incubators for aberrant phase transitions of disease-

linked RBPs 

The above-mentioned investigations certainly point to LLPS as an initial nucleation step 

preceding subsequent solid-state transitions and the deposition of insoluble inclusions of different 

RBPs implicated in neurodegenerative disease. However, the physiological context(s) in which 

these initial phase transitions arise, as well as the pathological conditions that promote aberrant 

solid-state conversion, have remained open questions in the field. One emerging hypothesis has 

centered around one type of MLO called stress granules. In simplified terms, stress granules are 

cytoplasmic granules that form in response to the inhibition of translation initiation, due either to 

cellular stressors or pharmacological/genetic intervention, and contain a large abundance of RBPs, 

translation initiation factors and nontranslating mRNAs (Buchan and Parker, 2009; Protter and 

Parker, 2016). These granules exhibit liquid-like properties in cells and are thus presumed to arise 

through the process of LLPS. Functionally, stress granules have been proposed to function in 

translational regulation and mRNA homeostasis, given the presence of stalled mRNP complexes 

and the global translational arrest observed in conditions triggering their formation (Wolozin and 

Ivanov, 2019). However, these granules also seem to sequester a number of other non-RNA 

binding proteins involved in various signaling pathways and thus may participate in additional or 

alternative functions (Wolozin and Ivanov, 2019). 

Recently, stress granules have become a major focus in neurodegeneration following the 

discovery that both TDP-43 and FUS could be observed as components of these structures under 

certain conditions (Dewey et al., 2012). Additional links have arisen from observations that these 

proteins may have some regulatory capacity over stress granule formation and that disease-linked 

mutations in TDP-43 and FUS may lead to enhanced recruitment into stress granules (Li et al., 
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2013). Furthermore, familial disease-linked mutations have also been identified in other stress 

granule components, some of which have been shown to alter stress granule assembly and/or 

dynamics (Wolozin and Ivanov, 2019). For example, ALS-linked mutations in the stress granule-

associated protein TIA-1 have recently been reported to both promote TIA-1 LLPS and delay the 

dissolution of stress granules following stress removal (Mackenzie et al., 2017).  

Together, these observations have led to the hypothesis that during the physiological stress 

response, proteins like TDP-43 and FUS shuttle out to the cytoplasm and are incorporated into 

stress granules. In normal conditions, these granules are then disassembled or cleared by autophagy 

during stress recovery, allowing for translational restart of stalled mRNPs and degradation or 

return to normal function of other RBP components (Protter and Parker, 2016). Conversely, during 

pathological conditions in which stress granule clearance or disassembly is delayed, these liquid-

like structures could serve as “reaction crucibles” to promote the aggregation of proteins like TDP-

43 and FUS in a similar mechanism to that observed in vitro (Li et al., 2013). In this sense, the 

prolonged incubation of these aggregate-prone proteins present at high local concentrations within 

these assemblies could promote a “maturation” of stress granules and ultimately result in their 

deposition into insoluble inclusions capable of driving disease (Wolozin and Ivanov, 2019). 

However, while one might expect other stress granule components to co-aggregate with TDP-43 

or FUS in patient inclusions as a result of this process, postmortem analyses of TDP-43 or FUS 

proteinopathy patient tissue has yielded largely negative results (Hirsch-Reinshagen et al., 2017). 

Even in ALS patients harboring TIA-1 mutations shown to delay stress granule disassembly in 

cellular models, no evidence of TIA-1-positive inclusions nor co-localization of TIA-1 with TDP-

43 pathology was observed in postmortem tissue (Hirsch-Reinshagen et al., 2017; Mackenzie et 

al., 2017). Still, the possibility does exist that initial TDP-43 or FUS aggregate formation may 



 23 

occur within stress granules, which may persist following disassembly of other stress granule 

components. However, direct evidence for this notion is lacking and thus it is still unclear whether 

these proposed mechanisms, based on observations in extreme cellular models, may be truly 

representative of pathogenic processes occurring in human disease. 

1.3.6  Other factors modulating physiological and aberrant PrLD-driven phase transitions 

While it appears that inherited genetic factors can have a strong effect on the phase 

behavior of TDP-43 and other PrLD-containing RBPs in various systems, it is important to note 

that mutations in genes encoding these proteins only represent a small fraction of patients that 

exhibit RBP pathology in disease. Taking TDP-43 for example, it has been estimated that only 5-

10% of familial ALS patients, who themselves only represent ~10% of the entire ALS patient 

population, exhibit mutations in the TARDBP gene (Prasad et al., 2019). However, as mentioned 

above, ~97% of all ALS patients (both familial and sporadic) present with TDP-43 proteinopathy 

upon postmortem examination (Prasad et al., 2019). This suggests that other pathways or factors 

that dynamically regulate the phase behavior of these proteins, as well as various MLOs they are 

components of, may be altered in disease states and ultimately result in their aberrant deposition 

within pathological inclusions. 

Likely due to certain pathological signatures of protein inclusions in postmortem patient 

tissue, one of the best characterized regulators of phase separation of various disease-linked 

proteins, including these PrLD-containing RBPs, has been alterations in post-translational 

modifications. Furthermore, when considering the typical amino acid composition of IDRs, and 

the enrichment of typically-modified amino acids like arginine, serine, and tyrosine, it is not hard 

to imagine that alterations in post-translational modification patterns within these regions could 
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have profound effects on phase separation and aggregation of these proteins (Hofweber and 

Dormann, 2019).  

Interestingly, certain post-translational modifications, for example phosphorylation, have 

been shown to have opposing effects on phase separation of different proteins (Hofweber and 

Dormann, 2019). For instance, DNA-PK-mediated phosphorylation of the FUS PrLD, as well as 

phosphomimetic substitutions within this region, seem to oppose LLPS and subsequent 

aggregation (Monahan et al., 2017; Murray et al., 2017). This effect has been proposed to be due 

to electrostatic repulsion between PrLDs due to the introduction of negatively-charged phosphate 

groups to the normally uncharged, polar PrLD (Monahan et al., 2017). Similar reports have 

emerged from investigations of hnRNPA2 phase behavior, where tyrosine phosphorylation was 

shown to antagonize LLPS and aggregation of both wildtype and disease-linked mutant versions 

of hnRNPA2 in vitro (Ryan et al., 2020). Conversely, phosphorylation of the intrinsically-

disordered protein Tau, which is often found within hyperphosphorylated neurofibrillary tangles 

in Alzheimer’s Disease and other tauopathies (Götz et al., 2019), has been shown to enhance LLPS 

and subsequent fibrillization of both the microtubule-binding repeat regions and full-length Tau 

protein (Ambadipudi et al., 2017; Wegmann et al., 2018). This enhancement has been 

hypothesized to be due to similar charge-based mechanisms, involving effects like neutralization 

of the positively-charged proline-rich regions of tau and/or conformational changes also associated 

with the introduction of negatively-charged phosphate groups that may lead to Tau phase 

separation (Wegmann et al., 2018). Promotion of LLPS by phosphorylation may also be at play in 

the aggregation of Parkinson’s Disease-associated protein -synuclein, as it has been recently 

reported that a single phosphomimetic substitution at serine 129, a site that is often observed to be 
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phosphorylated within Lewy bodies in patient tissue (Oueslati, 2016), leads to an enhancement of 

-synuclein phase separation and aggregation (Ray et al., 2019).  

Another major post-translational modification that can have a striking impact on phase 

behavior, particularly in proteins with RG-rich domains, is arginine methylation (Hofweber and 

Dormann, 2019). Considered a relatively more stable modification than other post-translational 

modifications like phosphorylation, many reports have recently emerged centered upon the 

suppression of phase separation of FUS (Hofweber and Dormann, 2019). In these studies, arginine 

methylation within FUS RGG domains was shown to antagonize long-range cation-π interactions 

between these arginines and the tyrosine-rich PrLD, thereby decreasing FUS LLPS (Qamar et al., 

2018). Methylated FUS droplets also were shown to exhibit much more dynamic properties than 

un-methylated assemblies formed at the same concentration (Hofweber et al., 2018). Furthermore, 

de-methylation of FUS with the methylation inhibitor AdOx led to a strong enhancement of LLPS 

that resulted in the formation of assemblies that exhibited some gel- and potentially amyloid-like 

properties when compared to methylated FUS droplets, suggesting a potential liquid-to-solid state 

transition in these structures (Qamar et al., 2018). Similar mechanisms have separately been 

described for the homotypic phase separation of the hnRNPA2 and Ddx4 IDRs, which both rely 

on cation-π interactions between arginine and aromatic residues and are also suppressed by 

arginine methylation in these regions (Nott et al., 2015; Ryan et al., 2018). While most 

observations point to arginine methylation as a general inhibitor of LLPS, particularly in proteins 

that rely on cation-π interactions for phase separation, it has been shown that arginine methylation 

within the Lsm4 RGG domain enhances the formation of P-bodies, a type of liquid-like MLO 

thought to function in mRNA turnover, in mammalian cells (Arribas-Layton et al., 2016). 

However, this effect could result from altered interactions with other factors important for P-body 
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assembly, as in-depth investigations into the effect of methylation on the phase behavior of Lsm4 

have yet to be reported.  

While phosphorylation and arginine-methylation may be the most characterized post-

translational modifications in the regulation of RBP LLPS, other modifications like acetylation, 

PARylation, O-GlcNAcylation, SUMOylation, and ubiquitination have also been reported to 

affect the phase behavior of various proteins, including TDP-43 (Hofweber and Dormann, 2019). 

Given the common observations of hyperphosphorylation of the TDP-43 PrLD within inclusions 

in postmortem patient tissue (Scotter et al., 2015), as well as the enrichment of serine residues in 

the TDP-43 PrLD, the role of phosphorylation in the regulation of TDP-43 LLPS and aggregation 

has been the focus of many research investigations in recent years. However, reports have been 

varied and this question remains relatively unclear. For example, multiple investigations studying 

the effects of phosphorylation at pathology-linked residues on the aggregation of C-terminal 

truncations of TDP-43 have proposed phosphorylation as a defense mechanism against 

pathological aggregation, reporting a reduction in aggregation of these fragments with 

phosphorylation-mimetic mutations (S>D/E) and an enhancement of aggregation with 

phosphorylation-dead (S>A) mutations (Brady et al., 2011; Li et al., 2011). Importantly, these 

effects were not observed when examining aggregation of full-length TDP-43, potentially 

suggesting a distinct effect of phosphorylation on the self-assembly of C-terminal fragments (Li 

et al., 2011).  

In support of this notion, similar investigations of phospho-dead mutations at these residues 

have conversely shown a reduction of ALS-linked mutant TDP-43 toxicity associated with 

insoluble TDP-43 aggregation in C. elegans models (Liachko et al., 2010). Furthermore, multiple 

studies have linked increased phosphorylation by various casein kinases, including CKI, CKI, 
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and CKII, to enhanced aggregation of TDP-43 in various in vitro and in vivo systems (Carlomagno 

et al., 2014; Choksi et al., 2014; Nonaka et al., 2016). One of these investigations additionally 

reported that phospho-dead mutations at residues not typically associated with TDP-43 

proteinopathy (S393/S395) ameliorated this effect, suggesting that the role of phosphorylation at 

other sites within the PrLD on TDP-43 LLPS and aggregation may be worthy of further study 

(Nonaka et al., 2016). While it has been shown that a single phospho-mimetic mutation at S48 in 

the N-terminal oligomerization domain seems to antagonize TDP-43 LLPS (Wang et al., 2018a), 

surprisingly direct investigations of the effect of PrLD phosphorylation on LLPS of TDP-43 have 

yet to be reported. However, one potential clue could be found in recently-determined atomic 

structures of various segments of the TDP-43 PrLD (Guenther et al., 2018a). Here, the authors 

describe a number of identified LARKS (Low-complexity Aromatic-Rich Kinked Segments), 

previously proposed to mediate reversible hydrogel-like assembly of low-complexity domains in 

proteins like FUS and hnRNPA1 (Hughes et al., 2018), within the TDP-43 PrLD and show that 

disease-associated mutations in one of these LARKS may promote irreversible aggregation 

through the stabilization of beta-sheet interactions (Guenther et al., 2018a). Interestingly, these 

specific mutations (A315E/A315T) were hypothesized to have direct relevance to 

phosphorylation, as the A>E mutation mimics a constitutively-phosphorylated residue and the 

A>T introduces a novel phosphorylation site that when phosphorylated (A315pT) showed 

enhanced stability compared to its unphosphorylated counterpart (A315T) (Guenther et al., 2018a). 

In addition to post-translational modifications, many other extrinsic factors, such as salt, 

pH, temperature, and metal ions, have been shown to modulate phase separation and aggregation 

of PrLD-containing RBPs. In addition to the inclusion of molecular crowding agents, such as 

polyethylene glycol (PEG) or dextran, many of these in vitro experiments have utilized alterations 
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in salt concentrations to trigger LLPS of these proteins (Alberti et al., 2018). Interestingly, different 

proteins have displayed varying degrees of salt-dependence in their phase behavior, which likely 

reflects the particular interaction types responsible for driving phase separation across proteins. 

For example, LLPS of FUS, which seems to rely on charge-based cation-π interactions, is strongly 

inhibited by increasing salt (Patel et al., 2015), while TDP-43 LLPS, which has been proposed to 

utilize aromatic and hydrophobic interactions for phase separation, seems to be stimulated by 

increased salt concentrations (McGurk et al., 2018). Similar observations have also been reported 

for alterations in temperature and pH in various systems (Franzmann et al., 2018; Riback et al., 

2017). Another often-neglected factor in the regulation of RBP phase behavior is the influence of 

divalent metal ions, such as Zn2+, and Ca2+. Although the free concentration of these ions are 

typically low within cells, certain cellular events such as oxidative stress (McCord and Aizenman, 

2014) or action potentials (Ross, 2012) can cause dramatic spikes in the intracellular concentration 

of these ions and thus may serve as rapid signals to induce or antagonize phase separation. 

Interestingly, Zn2+ has been linked to enhanced TDP-43 aggregation, both in vitro and 

intracellularly (Caragounis et al., 2010; Garnier et al., 2017), and has recently been shown to 

promote the in vitro LLPS of the similar PrLD-containing RBP TIA-1 and enhance its recruitment 

to liquid-like stress granules (Rayman et al., 2018). Unfortunately, little is currently known 

regarding the direct effects of Ca2+ on TDP-43, or other RBP, phase behavior. However, there have 

been reports of various indirect mechanisms of calcium-induced TDP-43 aggregation, including 

calpain-mediated c-terminal fragmentation (Berning and Walker, 2019), casein-kinase-induced 

phosphorylation (Hicks et al., 2019) and alternative splicing driven by hyperexcitability (Weskamp 

et al., 2020).  
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Overall, our increasing understanding of the intricate molecular grammar governing the 

phase behavior of various proteins will be crucial in the effort to elucidate the biological 

mechanisms underlying membraneless organelle formation/function, as well as in the 

identification of targetable components within these systems for drug development in disease. 

Furthermore, determination of the intrinsic and extrinsic factors responsible for the regulation of 

these processes may provide some additional clues into vulnerable pathways that may be 

dysregulated upstream of pathological protein aggregation, especially in sporadic forms of disease. 

Still, while the causal role of aberrant phase transitions in neurodegeneration is a continued subject 

of debate, the common pathology shown across patients and diseases remains a critical 

observation. For example, the identification of unmethylated FUS inclusions as a pathological 

hallmark in sporadic FTLD has led to the subsequent discoveries of dysregulation of various 

protein arginine methyltransferases (PMRTs) in other neurodegenerative diseases like 

Alzheimer’s Disease, Huntington’s Disease, spinobulbar muscular atrophy and other 

polyglutamine-expansion disorders (Blanc and Richard, 2017). In this sense, even if protein 

inclusions were a secondary by-product and dispensable for neuronal toxicity, the identification of 

dysregulated pathways that promote this behavior will still provide invaluable information 

regarding other potential toxic mechanisms at work in disease outside of protein aggregation.  
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1.4 RNA as a key regulator of RNA-binding protein phase behavior 

1.4.1  RNA as a scaffold for promoting physiological phase transitions and MLO formation 

In addition to the above-mentioned intrinsic/extrinsic factors, such as protein sequence, 

post-translational modifications, and environmental conditions, regulating the phase behavior of 

various proteins, another critical determinant of these processes is the participation of natural 

ligands like RNA (Fay and Anderson, 2018). This notion appears to be particularly true for multi-

component MLOs, as well as heterotypic phase separation in vitro, and has recently been 

conceptually described in terms of “client-scaffold” relationships (Ditlev et al., 2018). In 

simplified terms, this framework describes the formation and composition of phase-separated 

compartments as being dictated by the interactions between multivalent “scaffold molecules”, 

RNA for example, and “client molecules”, such as RNA-binding proteins (Banani et al., 2016; 

Ditlev et al., 2018). The enhanced multivalency afforded by interactions between RNA-binding 

regions within RBPs and specific binding motifs encoded within RNA nucleotide sequence can 

thus in theory drive heterotypic phase separation (i.e. through lowering a protein’s Csat) in these 

systems and provide some specificity in the recruitment of particular RBPs to membraneless 

ribonucleoprotein (RNP) granules (Langdon and Gladfelter, 2018) (Figure 1). Of course, other 

factors such as relative scaffold/client concentrations, client affinity/valency, and additional 

multivalent interactions between different scaffold and client molecules play a large role in 

determining this behavior for naturally occurring MLOs containing a diverse array of protein 

and/or RNA components (Boeynaems et al., 2018). However, many recent in vitro studies have 

begun to uncover some of the basic mechanisms underlying the variable effects of RNA on RBP 

phase behavior in more simplified systems. For example, one of the first direct investigations of 
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RNA’s effect on RBP phase separation reported a strong enhancement of LLPS observed of 

artificial fusion proteins containing RNA-binding elements from the PTB protein along with IDRs 

from various other RBPs (including FUS, hnRNPA1, TIA-1, and others) upon addition of RNA 

(Lin et al., 2015). This effect seemed to be strongly dependent upon the presence of IDR regions, 

as phase separation of PTB alone with RNA only occurred at very high protein concentrations 

( alone versus 1.25-2.5M with IDRs) (Lin et al., 2015). Similarly, addition of RNA in these 

studies did not seem to promote LLPS of IDR regions alone (without PTB RNA-binding regions), 

suggesting a synergistic effect of PTB:RNA and IDR:IDR interactions in the driving of phase 

separation in these systems (Lin et al., 2015). Similar results have been reported for full-length 

RBPs like FUS (Burke et al., 2015; Han et al., 2012) and hnRNPA1 (Lin et al., 2015; Molliex et 

al., 2015), which has in part led to the hypothesis that this scaffolding characteristic of RNA may 

encourage a high local concentration of IDR-containing RBPs that, upon binding to RNA, 

contribute the additional multivalent interactions required to drive phase separation of these RNP 

structures.  

Additional investigations into the formation of naturally-occurring MLOs within 

intracellular systems has also supported this notion, as the presence of certain RNAs within a cell 

seems to be required for the assembly of many different cellular RNP compartments like P-bodies 

(Teixeira et al., 2005), nucleoli (Berry et al., 2015; Falahati et al., 2016), bacterial BR-bodies (Al-

Husini et al., 2018), paraspeckles (Clemson et al., 2009) and nuclear A-bodies (Audas et al., 2016). 

Furthermore, a number of these MLOs, such as stress granules, nuclear speckles, paraspeckles, 

Cajal bodies and nuclear stress bodies, can be formed de novo by the introduction of excess RNA 

substrates into the cell (Bounedjah et al., 2014; Kaiser et al., 2008; Shevtsov and Dundr, 2011). 

Binding to RNA has also been reported to be required for the recruitment of certain protein 
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components to RNP granules. For example, the incorporation of RBPs like FUS and TDP-43 

within stress granules, or NPM1 within nucleoli, seems to be dependent upon functional RNA-

binding domains, as deletion or mutation of these domains has been shown to antagonize their co-

localization with these structures (Bentmann et al., 2012; Colombrita et al., 2009; Daigle et al., 

2013; Mitrea et al., 2016). Global RNA degradation has shown a similar effect, with RNase I-

treated cells exhibiting significantly reduced enrichment of hnRNPA2B1, FUS, and TDP-43 

within stress granules (Fang et al., 2019).  

1.4.2  Distinct RNA species differentially regulate RBP phase behavior 

Interestingly, while many of these initial studies focused on the effect of total RNA or bulk 

mRNA samples on LLPS of more promiscuous RNA-binding proteins, recent investigations into 

RBP phase behavior with specific target RNA molecules have uncovered a more intricate 

regulatory capacity for RNA. For example, in many cases it seems as though high affinity RNAs 

can be more efficient in driving condensation of their cognate RBPs (Langdon et al., 2018; 

Maharana et al., 2018; Zhang et al., 2015a). In the case of Whi3, it has been shown that the 

endogenous target mRNA CLN3 can nucleate Whi3 droplets at concentrations at which DNA or 

total yeast RNA was ineffective (Zhang et al., 2015a). Similar observations have been reported in 

the phase behavior of TDP-43 and FUS, which have both been separately shown to undergo LLPS 

upon the addition of the long noncoding RNA NEAT1 into reactions containing high background 

concentrations of tRNA incapable of driving phase separation of these proteins (Maharana et al., 

2018; Wang et al., 2019). Importantly, while RNA can potentially act as a molecular crowder to 

drive LLPS in certain in vitro reactions involving low-affinity proteins (Nguemaha and Zhou, 

2018), these effects seemed to be dependent upon proper RBP:RNA interactions, as deletion of 
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the Whi3 RRM or TDP-43 RRM1 seemed to abrogate the ability of these specific RNAs to drive 

phase separation (Wang et al., 2019; Zhang et al., 2015a). 

In addition to promiscuous versus specific RNA binding, it is becoming increasingly clear 

that different properties of RNA molecules can have distinct effects on the formation, as well as 

material properties, of these RNP assemblies (Zhang et al., 2015a). RNA length is one such 

variable, and although direct comparisons are limited it has been proposed that longer RNAs may 

exhibit an enhanced ability to drive protein phase separation, as has been observed with the RBP 

PGL-3 in vitro (Saha et al., 2016). Recent smFRET studies of LAF-1 and FUS interactions with 

synthetic oligonucleotide sequences of varying lengths have suggested a similar mechanism, with 

longer oligonucleotides promoting multimerization of these proteins with RNA and dynamic 

RBP:RNA interactions that may be representative of the initiation of phase separation (Kim and 

Myong, 2016; Niaki et al., 2020). Observations regarding the RNA content of various intracellular 

MLOs, such as stress granules and various nuclear bodies, have also supported this notion, albeit 

indirectly. For example, transcriptomic investigations into the RNA content of cytoplasmic stress 

granules have revealed CDS/UTR or overall length as one common feature of enriched transcripts 

across various stressors (Khong et al., 2017; Namkoong et al., 2018). Furthermore, alternative 

isoforms of the long noncoding RNA NEAT1 have differing effects in nucleating paraspeckle 

assembly, with replacement of only the longer of the two isoforms (NEAT1_2) shown to recover 

paraspeckle assembly in NEAT1 knockout MEF cells (Fox et al., 2018; Naganuma et al., 2012). 

This unique ability of the longer NEAT1_2 isoform has been proposed to be driven by the 

recruitment and resulting phase separation of PrLD-containing RBPs, like FUS and RBM14, 

through functionally-redundant elements not present in the shorter NEAT1_1 isoform (Chujo and 

Hirose, 2017; Yamazaki et al., 2018). A similar mechanism has been proposed to underlie the 
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formation of nuclear stress bodies, where the heat-induced transcription of highly-repetitive 

satellite III (HSATIII) long noncoding RNA has been linked to the recruitment of various IDR-

containing RBPs and nucleation of these droplet-like structures (Biamonti and Vourc’h, 2010; 

Metz et al., 2004; Ninomiya et al., 2020).  

Importantly, while these observations have both directly and indirectly suggested that 

increased length of RNAs might afford for additional valency between RNAs and various IDR-

containing RBPs to drive phase separation, recent investigations into the phase behavior of Whi3 

with various target RNAs have suggested that additional characteristics of specific RNA molecules 

may play a key role in modulating this process (Langdon et al., 2018; Zhang et al., 2015a). Initial 

studies focusing on two separate target RNAs, CLN3 and BNI1, containing the same number of 

predicted Whi3 binding sites but differing in overall length (CLN3 = 1596bp; BNI1 = 6590bp) 

have shown that while both transcripts could drive phase separation of Whi3 in physiological 

conditions, presence of the longer BNI1 mRNA seemed to increase the optimal RNA:protein molar 

ratio for Whi3 droplet formation, in comparison to the shorter CLN3 transcript, and shift the phase 

boundary towards higher RNA concentration (Zhang et al., 2015a). Furthermore, phase separation 

driven by these different RNAs significantly altered the material properties of Whi3 assemblies, 

with Whi3/BNI1 droplets exhibiting increased fusion rates and decreased viscosity when compared 

to Whi3/CLN3 condensates formed at the same concentration (Zhang et al., 2015a). Increasing the 

concentration of CLN3 RNA in these reactions seemed to exacerbate this hardening, producing 

droplets with further decreased dynamics and increased viscosity, while increasing Whi3 protein 

concentration seemed to have the opposite effect. Interestingly, subsequent studies of similar 

reactions between Whi3 and these target RNAs showed that BNI1-driven assemblies incorporated 

significantly more Whi3 protein into condensates than CLN3 at equivalent concentrations 
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(Langdon et al., 2018), which is in agreement with these initial findings that higher protein:RNA 

ratios promoted fluidity in Whi3/CLN3 droplets (Zhang et al., 2015a). Given that the effective 

valency of these RNAs for Whi3 binding were predicted to be equivalent, the authors proposed 

these effects could be due to factors like binding site density (more clustered for CLN3/evenly 

distributed for BNI1) or differing secondary structures formed by these distinct RNA species. 

Follow-up smFRET studies of these two mRNA targets have supported this notion, with CLN3 

showing a higher baseline FRET signal than BNI1, indicative of a more compacted structural 

conformation, in the absence of Whi3 protein (Langdon et al., 2018). Furthermore, while 

broadening of FRET peaks was observed with CLN3 mRNA, FRET fluctuations were much more 

rapid for the less-compacted BNI1 mRNA upon addition of Whi3, indicating a much more dynamic 

nature of Whi3/BNI1 complexes that could reflect the increased fluidity observed of these droplets 

in initial studies (Langdon et al., 2018; Zhang et al., 2015a). Certain structural elements of various 

RNAs have also been reported to promote proper interactions and phase separation with RBPs 

shown to be important for the formation and function of intracellular MLOs, including low-

complexity regions of rIGSRNA for A-bodies (Wang et al., 2018c) and “zipcode” elements 

encoded within UTR-regions of mRNAs in transport RNP granules (Jambhekar and Derisi, 2007). 

Another critical finding that emerged from these studies was that in addition to modulating 

interactions with Whi3 protein alone, RNA structure seemed to determine heterotypic RNA:RNA 

interactions and resulting RNA partitioning into Whi3 droplets formed with other RNA species 

(Langdon et al., 2018). Interestingly, while structurally-intact CLN3 mRNA was not incorporated 

into pre-formed BNI1/Whi3 assemblies, thermal unfolding or point mutations induced to disrupt 

CLN3 structure and expose BNI1 complementary regions did allow for CLN3 partitioning into 

BNI1/Whi3 droplets (Langdon et al., 2018). Incorporation into BNI1/Whi3 condensates was also 
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observed for another mRNA, SPA2, which contains complementary BNI1 regions in its native 

structure and is found to be co-localized with BNI1 within Ashbya gossypii polarity granules in 

vivo (Langdon et al., 2018). These effects were also re-created in the absence of Whi3 protein, 

with BNI1 and SPA2 co-assembling into gel- or liquid-like RNA condensates, highlighting the role 

for RNA:RNA interactions in the sorting of functionally-related RNAs into specific RNP 

assemblies (Langdon et al., 2018).  

These findings are especially interesting in light of recent work that has demonstrated the 

role of RNA self-assembly in the formation of other physiological RNA-containing MLOs like 

stress granules. It has long been known that a variety of RNA species can self-assemble into 

different higher-order structures (Grabow and Jaeger, 2014; Van Treeck et al., 2018). However, 

recent work has demonstrated that RNA homopolymers (particularly polyU sequences), as well as 

total yeast RNA, can self-assemble into liquid-like droplets that are capable of recruiting RNA-

binding proteins like hnRNPA1 (Van Treeck et al., 2018). Furthermore, sequencing of RNAs 

enriched within total RNA assemblies created in vitro revealed a striking similarity to the stress 

granule-enriched transcriptome mentioned above, showing overlaps in both RNA characteristics 

(longer RNAs enriched) and specific RNA transcripts contained within these assemblies (Van 

Treeck et al., 2018). In addition to these observations, it has also been noted that alterations in 

osmotic conditions that favor RNA:RNA interactions (i.e. hyperosmotic stress) (Bounedjah et al., 

2012) or the introduction of G-quadruplex-forming RNAs can separately promote stress granule 

assembly within a cell (Fay et al., 2017), which together has led to the hypothesis that 

intermolecular interactions between these longer, potentially more-structured, RNAs play an 

active role in physiological RNP assembly (Van Treeck and Parker, 2018).  
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Homotypic RNA phase separation has also been recently suggested to participate in the 

formation of pathological RNA foci in repeat expansion disorders like Huntington’s Disease (HD) 

and C9ORF72-ALS/FTD. Specifically, it has been shown that disease-associated repeat RNA 

(CAGn for HD/GGGGCCn for C9ORF72-ALS/FTD) can phase separate in vitro and in cells to 

form liquid- or gel-like RNA assemblies in a length-dependent manner (Fay et al., 2017; Jain and 

Vale, 2017). This effect importantly was proposed to arise from the long GC-rich tracts contained 

within these repeats that allow for multivalent base-pairing and the formation of structural 

elements, such as hairpins and/or G-quadruplexes, as foci formation was reversed by interrupting 

complementary base-pairing interactions with blocking antisense oligonucleotides or the nucleic 

acid intercalator doxorubicin (Jain and Vale, 2017). Another similar repeat-expansion (CGGn) in 

the FMR1 5’UTR linked to Fragile-X associated tremor ataxia syndrome (FXTAS) has also been 

shown to drive the formation of nuclear RNA foci (Cid-Samper et al., 2018). In a similar manner 

to CAG/GGGGCC repeats described above, these CGGn repeats were capable of recruiting RBPs 

in cellular models that are often observed to be sequestered within foci in patient tissue (Cid-

Samper et al., 2018; Jain and Vale, 2017). Disruption of distinct hairpin structures formed by these 

repeats prevented both nuclear foci formation and RBP recruitment (Cid-Samper et al., 2018; Jain 

and Vale, 2017), again highlighting the role of RNA structure in mediating homo- and heterotypic 

RNA/RBP phase separation. Some of this behavior can also be observed in non-disease contexts, 

as other G-quadruplex-forming nucleic acids, such as regions of the SHR mRNA and ssDNA from 

the c-myc promoter region, have similarly been shown to undergo LLPS that is highly sensitive to 

structural perturbations and can recruit proteins like linker histone H1 to condensates (Mimura et 

al., 2020; Zhang et al., 2019b).  
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In addition to features like sequence, length, and secondary structure, post-transcriptional 

modifications like methylation (i.e. N6-methyladenosine (m6A), 2′‐O‐methylation, 5‐

methylcytidine (m5C)) could also have profound effects on RNA-mediated modulation of phase 

separation and MLO formation/function. While many of these modifications have been reported 

to modulate RNA structure and protein interactions through a variety of mechanisms (Drino and 

Schaefer, 2018), m6A is currently the only modification that has been directly investigated in the 

context of RBP phase transitions (Ries et al., 2019). Specifically, it was shown that LLPS of m6A-

binding proteins like YTHDF2, which is a PrLD-containing RBP capable of in vitro phase 

separation in the absence of RNA, can be strikingly enhanced by the addition of m6A-modified 

RNA oligonucleotides in a valency-dependent manner (Ries et al., 2019; Wang et al., 2020). 

Incorporation of YTHDF2 into MLOs seems to be similarly dependent upon m6A RNA binding, 

as knockout of the Mettle14 methyltransferase or YTHDF2 mutation to reduce m6A binding 

affinity resulted in reduced localization within p-bodies and stress granules (Ries et al., 2019). 

Interestingly, subsequent transcriptomic analysis revealed an enrichment of polymethylated RNAs 

within these structures, leading the authors to propose m6A RNAs as novel multivalent scaffolds 

that can be utilized to regulate the phase behavior of various RNA-binding proteins (Ries et al., 

2019). 

Together, these observations suggest that RNA can play a crucial role in tuning the phase 

behavior of different membraneless organelles, both through interactions with proteins and other 

RNA components of these structures. In this way, specific characteristics of these RNAs, 

especially architectural noncoding RNAs like those observed in paraspeckles and other MLOs, 

have likely evolved along with other regulators of phase separation, such as RBP 

sequence/structure and post-translational modifications, to dynamically regulate the formation of 
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specific types of assemblies for various functions. However, these regulatory mechanisms at work 

during normal physiology can likely also go awry during pathological conditions and thus may 

provide clues into the dysregulated pathways playing a role in the pathogenesis of diseases 

characterized by aberrant phase behavior of these RBPs. 

1.4.3  RNA can antagonize phase transitions of RBPs at physiological concentrations 

In addition to influencing the formation and material properties of various membraneless 

assemblies, many investigations have made it clear that RNA can certainly promote RBP phase 

separation and incorporation into these structures both in vitro and in cellular environments. This 

effect has often been recognized as heavily dependent upon RNA:protein molar ratios, with lower 

RNA concentrations promoting phase separation of excess protein concentrations in most in vitro 

experiments (Maharana et al., 2018; Zhang et al., 2015a). However, in a cellular environment 

under physiological conditions, many of these RBPs reside in the nuclear compartment where 

these molar ratios are generally reversed (Maharana et al., 2018). FUS for example, which has 

been predicted to be endogenously expressed at ~7M within the nucleus (Maharana et al., 2018), 

has been shown to readily undergo LLPS at these concentrations in vitro (Burke et al., 2015; 

Monahan et al., 2017), but remains largely soluble within the nuclear compartment in cells 

(Maharana et al., 2018). While addition of low concentrations of total RNA (~0.4:1 RNA:FUS 

ratio) have been reported to enhance this in vitro LLPS, multiple studies have also noted that 

increasing RNA concentrations to excess, thus mimicking the native intracellular environment, 

seemed to reverse this effect and actually prevent FUS phase separation in some of these reactions 

(Burke et al., 2015; Maharana et al., 2018; Schwartz et al., 2013) (Figure 1). This kind of biphasic 

effect of RNA on phase separation in vitro has also been demonstrated for specific mRNA targets 
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of RBPs in proteins like Whi3 (Zhang et al., 2015a). However, the precise molar ratios at which 

phase separation was opposed in these experiments varied across mRNA species (Zhang et al., 

2015a), suggesting that specific RNA characteristics such as those described above may also 

influence RNA-mediated antagonization of RBP phase transitions.  

 

 

 

Figure 1. Varying effects of RNA on in vitro RBP phase separation. 

(A) At protein concentrations and/or reaction conditions in which homotypic phase separation is not observed, addition 

of low concentrations of longer RNA species may promote RBP LLPS through the facilitation of protein 

multimerization on single RNA species. (B) In conditions in which homotypic RBP LLPS is observed in vitro (i.e. 

due to enhanced protein concentration or addition of molecular crowders), excess concentrations of RNA (particularly 

shorter sequences) may act as molecular buffers to antagonize RBP multimerization and phase separation.  
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1.4.4  Implicated pathways in ALS/FTD may converge on RNA-regulated formation and 

clearance of aberrant RBP inclusions 

Considering the largely soluble nature of these RBPs in the RNA-rich nuclear 

compartment, it is interesting to note that the aberrant inclusions observed in postmortem tissue 

are almost exclusively observed to be localized in the cytoplasm where RNA concentrations have 

been predicted to be ~36.5-fold lower than that of the nucleus (Maharana et al., 2018). 

Furthermore, a majority of in vitro and in vivo models utilizing TDP-43 or FUS overexpression to 

produce aberrant aggregation have shown a similar preferential accumulation of inclusions in the 

cytoplasmic compartment (Hergesheimer et al., 2019; Nolan et al., 2016), which may reflect a 

lower saturation concentration (Csat) required for the nucleation of RBP phase transitions in the 

RNA-depleted cytoplasm. In support of this notion, artificial impairment of the nuclear import of 

TDP-43 and FUS, through mutation of their respective nuclear localization sequences (NLS), 

seems to promote the formation of cytoplasmic inclusions (Elden et al., 2010; Shiihashi et al., 

2016; Walker et al., 2015; Winton et al., 2008), suggesting that cytoplasmic mislocalization might 

precede aggregation of these proteins in disease. Clues from studies of various genetic ALS/FTD 

subtypes associated with TDP-43 proteinopathy have provided further evidence for this idea, as 

signs of altered nucleocytoplasmic transport, such as irregular nuclear morphology, altered 

localization of nuclear transport factors, and/or disrupted Ran gradients, have been observed in a 

number of cellular models and postmortem tissue samples of these patients (Boeynaems et al., 

2016; Kim and Taylor, 2017) (Figure 2). Furthermore, other stimuli or cellular events previously 

associated with ALS/FTD pathogenesis, such as hyperactivity, stress granule assembly, and aging, 

have been shown to either directly trigger the nuclear egress of TDP-43 and FUS or disrupt 

nucleocytoplasmic transport in a way that may promote their cytoplasmic mislocalization 
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(Sugiyama et al., 2017; Tischbein et al., 2019; Weskamp et al., 2020; Zhang et al., 2018). Together, 

these observations have led to the general hypothesis that redistribution of RBPs like TDP-43 and 

FUS, due to enhanced export or impaired nuclear import, from the RNA-rich nucleus to the RNA-

depleted cytoplasm may precede and promote their eventual aggregation into insoluble inclusions 

observed in disease.  

Another key pathway that has been identified as playing a pivotal role in ALS/FTD 

pathogenesis and may also converge on this RNA-dependent regulation of TDP-43 and FUS 

aggregation is RNA processing and homeostasis (Ling et al., 2013; Nussbacher et al., 2019) 

(Figure 2). In addition to TDP-43 and FUS themselves, disease-linked mutations in several other 

genes encoding proteins regulating various aspects of RNA splicing and stability have been 

identified, including MATR3, SETX, TIA-1, TAF15, EWSR1, hnRNPA1, hnRNPA2B1, and ANG 

(Nussbacher et al., 2019; Taylor et al., 2016). Interestingly, while several of the proteins encoded 

by these genes have been shown to undergo LLPS and associate with various MLOs, direct 

analysis of postmortem tissue of patients harboring some of these mutations, such as TIA-1, SETX, 

and ANG, has often shown classical TDP-43 proteinopathy in the absence of aggregation of these 

mutated proteins (Bennett et al., 2018; Hirsch-Reinshagen et al., 2017; Mackenzie et al., 2017; 

Seilhean et al., 2009). Furthermore, recent Bru-seq analysis has shown widespread alterations of 

RNA stability and synthesis in fibroblasts and iPSCs derived from sporadic and C9ORF72-ALS 

patients, who typically also exhibit characteristic TDP-43 proteinopathy but not direct mutation of 

RNA processing proteins (Tank et al., 2018). Unbiased, genome-wide screens have also identified 

an enrichment of proteins involved in this process of RNA metabolism as modifiers of TDP-43 

and FUS toxicity in yeast (Elden et al., 2010; Sun et al., 2011), and together these observations 
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suggest that dysregulation of RNA homeostasis may be a common pathogenic mechanism 

upstream of TDP-43 or FUS aggregation in ALS/FTD and other neurodegenerative disorders.  

In addition to nucleocytoplasmic transport and RNA processing, another major subset of 

genes implicated in ALS/FTD pathogenesis have been functionally linked to protein quality 

control pathways like the ubiquitin/proteasome system (UPS) and autophagy (Taylor et al., 2016) 

(Figure 2). Both of these systems seem inherently linked to the aggregation of TDP-43 and FUS, 

as inhibition of proteasomal and/or autophagic protein degradation leads to the accumulation of 

these proteins in a variety of models (Scotter et al., 2014; Sun et al., 2011; van Eersel et al., 2011). 

However, a recent investigation has proposed that these systems may display some selectivity in 

their degradation these proteins, with the UPS being responsible for the turnover of mostly soluble 

TDP-43 and autophagy conversely handling insoluble, aggregated forms of the protein (Scotter et 

al., 2014). Other studies have similarly shown that selective activation of the autophagy pathway 

is capable of promoting the clearance of accumulated TDP-43 and FUS and reducing toxicity 

associated with these proteins in neuronal models (Barmada et al., 2014; Marrone et al., 2019). 

These proposals are in agreement with current hypotheses related to the process of “aggrephagy”, 

in which large, insoluble protein aggregates are selectively engulfed by autophagosomes and 

degraded through the macroautophagy pathway (Lamark and Johansen, 2012). Considering these 

observations, it is important to note that a majority of the ALS/FTD-linked mutations in 

proteostasis-related genes, including PRGN, SQSTM1/p62, VCP, OPTN, TBK1, and C9ORF72, 

have been predominantly connected to disruption of the autophagic system (Shahheydari et al., 

2017), which may implicate these causative mutations with a failure to clear aggregated species of 

TDP-43 and FUS. Interestingly, it has also long been established that this proteostasis network 

seems to decline during aging (Hipp et al., 2019; Kaushik and Cuervo, 2015), especially in long-
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lived/post-mitotic cells like neurons, which has been proposed to play a significant role in the 

accumulation of insoluble protein inclusions in various other age-related neurodegenerative 

disorders like Parkinson’s Disease, Alzheimer’s Disease and Huntington’s Disease (Kurtishi et al., 

2019).  

These genetic studies and observations from sporadic ALS/FTD and other 

neurodegenerative disorders have provided invaluable clues into the major dysregulated pathways 

that may underlie the pathogenesis of TDP-43 and FUS proteinopathies. Interestingly, while 

dysregulation all of these pathways can have numerous detrimental effects on the vulnerable 

population of cells affected in these disorders, one common convergence point can be found in the 

accumulation of aggregate-prone RBP inclusions. Of course, it is still possible that these 

pathological hallmarks are themselves simply a signature of dysregulated RNA homeostasis, 

nucleocytoplasmic transport and/or proteostasis that drive neurodegeneration independent of 

protein inclusions. However, evidence connecting disruption of these protein inclusions with 

reduced toxicity in various models may suggest a viable therapeutic strategy in the direct targeting 

of RBP aggregation in these diseases (Guo et al., 2018; Tariq et al., 2019). Thus, additional studies 

into the regulatory mechanisms governing RBP phase behavior will hopefully provide 

opportunities for the discovery and development of novel therapeutics for neurodegenerative 

disorders like ALS/FTD. 
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Figure 2. Perturbed pathways in familial ALS/FTD may converge on RBP mislocalization and aggregation. 

Implicated genes in ALS/FTD have been associated with three major pathways directly related to RNA binding protein 

aggregation: (1) RNA homeostasis, in which mutations have been linked to global RNA processing/expression 

changes (i.e. C9ORF72) or fall within RNA-binding proteins themselves (i.e. TIA-1, MATR3, hnRNPA1); (2) 

Nucleocytoplasmic transport, in which mutations have been linked to impaired nuclear import of disease-linked 

proteins (i.e. C9ORF72) or reduced mRNA export (i.e. GLE1); and (3) Protein quality control, in which mutations in 

genes are associated with autophagic (i.e. SQSTM1/p62, VCP, OPTN) and proteosomal (i.e. UBQLN2) protein 

degradation.  

1.5 Summary and aims of dissertation 

In summary, intracellular aggregation of the RNA-binding proteins (RBPs) TDP-43 or 

FUS is a common neuropathological feature in ALS and FTD. In vitro investigations of these 

proteins have suggested that prion-like domains (PrLDs) are responsible for the nucleation of TDP-
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43/FUS aggregation through the process of liquid-liquid phase separation (LLPS), which is also 

thought to underlie the physiological assembly and function of membraneless organelles. The 

phase behavior of TDP-43, FUS and other RBPs have been shown to be modulated by a variety of 

intrinsic and extrinsic factors, including natural ligands like RNA. Current cellular and animal 

models of ALS/FTD rely on enhanced expression of wildtype or rare mutant variants of these 

proteins to initiate pathological aggregation; however, this approach lacks critical spatio-temporal 

control over the aggregation process required to uncover the precise intra- and inter-molecular 

interactions regulating intracellular TDP-43/FUS inclusion formation. Furthermore, these 

strategies are unable to directly test whether aggregation of these proteins are innately neurotoxic 

devoid of overexpression-related confounds.  

This dissertation aims to address these questions by utilizing novel optogenetic models of 

intracellular TDP-43/FUS phase transitions along with established cellular and in vitro assays. In 

the following chapters, we will first describe the development of these models to directly test the 

inherent neurotoxicity of RBP inclusions and to investigate the contribution of PrLDs and RNA in 

regulating these aberrant phase transitions. We will also discuss our efforts to determine the role 

of RNA in modulating physiological phase transitions of TDP-43 into stress granules and 

determine whether recruitment to these membraneless organelles may promote insoluble inclusion 

formation. We will additionally describe the development of short RNA oligonucleotide molecules 

capable of preventing and reversing aberrant phase transitions of TDP-43 and FUS and explore 

the molecular mechanisms and properties of these molecules responsible for these effects. Lastly, 

we will determine whether this RNA oligonucleotide-mediated antagonization of TDP-43 and FUS 

inclusion formation is capable of rescuing cellular toxicity associated with aberrant phase 

transitions of these proteins and thus may represent a novel therapeutic strategy for ALS/FTD. 
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2.0 RNA binding antagonizes neurotoxic phase transitions of TDP-43 

This chapter is adapted from: Mann, J. R., Gleixner, A. M., Mauna, J. C., Gomes, E., DeChellis-

Marks, M. R., Needham, P. G., Copley, K. E., Hurtle, B., Portz, B., Pyles, N. J., Guo, L., Calder, 

C. B., Wills, Z. P., Pandey, U. B., Kofler, J. K., Brodsky, J. L., Thathiah, A., Shorter, J., & 

Donnelly, C. J. (2019). RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. 

Neuron, 102(2), 321–338.e8. https://doi.org/10.1016/j.neuron.2019.01.048. 

2.1 Introduction 

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are fatal 

neurodegenerative disorders characterized by the progressive loss of motor neurons of the spinal 

cord and motor cortex or cortical neurons of the frontal and temporal lobes, respectively. No 

effective treatments currently exist to halt ALS or FTD progression and the cause(s) of these 

disorders remain unknown. Significant overlap of clinical, genetic, and neuropathological features 

among patients suggests that ALS and FTD exist on a neurodegenerative disease spectrum (Ling 

et al., 2013), and a number of familial ALS and/or FTD causing mutations have been identified 

(Nguyen et al., 2018). Despite this vast genetic heterogeneity, 97% of ALS patients and up to 45% 

of FTD patients exhibit a common neuropathological feature called TDP-43 proteinopathy. TDP-

43 proteinopathy is characterized by the cytoplasmic deposition and nuclear clearance of the 

transactivation response element DNA-binding protein 43 kDa (TDP-43; TARDBP) (Neumann et 

al., 2006).  

TDP-43 is a ubiquitously-expressed, tightly-regulated, and predominantly nuclear 

DNA/RNA-binding protein that contains two RNA-Recognition Motifs (RRMs) and a C-terminal 
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glycine-rich, low complexity domain (LCD) (Scotter et al., 2015). TDP-43 preferentially binds 

UG-rich RNA intronic sequences or 3UTR stem loop structures and influences a variety of RNA 

processing events including alternative splicing, RNA trafficking, and RNA stability (Ling et al., 

2013). In ALS and FTD, the protein is found in cytoplasmic inclusions that are detergent-insoluble, 

hyperphosphorylated, p62-positive, and ubiquitinated (Scotter et al., 2015). Cytoplasmic 

inclusions also contain truncated TDP-43 species resulting from its N-terminal cleavage (Neumann 

et al., 2007). This neuropathological hallmark correlates well with regions of neurodegeneration 

in ALS/FTD patient tissue (Baloh, 2011) and is found in postmortem tissue from patients 

diagnosed with Alzheimer’s Disease (60%) (Youmans and Wolozin, 2012), and Chronic 

Traumatic Encephalopathy (80%) (McKee et al., 2010). Thus, TDP-43 proteinopathy might serve 

as a convergence point of pathogenesis despite the diverse upstream mechanisms responsible for 

disease etiology across several neurodegenerative disorders. 

Over 50 ALS/FTD-causing missense mutations have been identified in the TARDBP gene 

(Harrison and Shorter, 2017). While rare in the total patient population, these mutations occur 

more frequently in fALS patients (5%) as compared to patients with familial FTD (Ling et al., 

2013). The majority of known ALS/FTD-causing TARDBP mutations cluster within the TDP-43 

LCD, although others have been identified within the RRMs (Harrison and Shorter, 2017). The 

location and functional impact of these mutations likely reflects the importance of these regions in 

disease pathogenesis. LCDs are common in RNA-binding proteins (RBPs) and mediate protein 

and RNA interactions through a process termed liquid-liquid phase separation (LLPS). LLPS 

involves the condensation of molecules into liquid-like compartments and is driven by weak, 

transient interactions between LCD regions and other multivalent protein/nucleic acid interaction 

domains (Harrison and Shorter, 2017). Following specific protein:protein, protein:RNA and/or 
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RNA:RNA nucleating interactions, this de-mixing process allows for intracellular 

compartmentalization, as observed with membraneless organelles such as nucleoli, P-bodies, and 

stress granules (SGs) (Shin and Brangwynne, 2017). Many of these biological condensates contain 

high local concentrations of LCD-containing proteins, which contribute to the properties of these 

structures through a combination of specific and non-specific heterotypic protein/nucleic acid 

interactions (Harrison and Shorter, 2017; Shin and Brangwynne, 2017). Interestingly, ALS-

associated mutations in the TDP-43 LCD alter LLPS behavior and enhance aggregation of the 

protein (Conicella et al., 2016; Johnson et al., 2009; Schmidt and Rohatgi, 2016). Similar 

observations have been reported of other RBPs implicated in neurodegeneration, where disease-

linked LCD mutations or aging of droplets promotes the maturation and fibrillization of initially 

reversible protein assemblies (Harrison and Shorter, 2017). While the physical processes 

underlying droplet solidification is unknown, these findings suggest that aberrant phase transitions 

drive the formation of pathological inclusions of RNA-binding proteins observed in 

neurodegenerative disease. 

The cellular pathway(s) that promote aberrant TDP-43 phase transitions remain unclear, 

but evidence suggests that altered SG homeostasis contributes to the seeding of pathological 

inclusions. SGs are membraneless organelles that assemble in the cytoplasm via LLPS during 

periods of cellular stress and may reversibly inhibit non-essential protein synthesis (Anderson and 

Kedersha, 2008; Harrison and Shorter, 2017). In addition to mRNA, ribosomal subunits, and 

translation initiation factors, SGs sequester a number of RBPs mutated in fALS, including TDP-

43 (Boeynaems et al., 2016). The nucleation and phase separation of these various proteins and 

RNAs into liquid-like droplets is required for cellular compartmentalization of SGs and alterations 

of intermolecular dynamics may promote an irreversible gel-like state or fibrillization of prion-
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like protein components of these structures. The high local concentration of aggregate-prone 

proteins, like TDP-43, within SGs is thought to enhance protein self-interactions that subsequently 

mature into pathological inclusions (Harrison and Shorter, 2017). Supporting the role of SGs in 

seeding TDP-43 proteinopathy, recent work has also revealed that antisense oligonucleotide-

mediated depletion of SG components ameliorates neurotoxicity in a TDP-43 rodent model 

(Becker et al., 2017).  

Modeling TDP-43 proteinopathy has proven challenging. Current cellular and animal 

models rely on enhanced expression of wildtype or rare mutant variants of TDP-43 to initiate 

pathological aggregation; however, this approach is unreliable and many models fail to develop 

inclusions that recapitulate ALS/FTD phenotypes (Philips and Rothstein, 2015). Furthermore, the 

lack of control over intracellular TDP-43 interactions impedes the ability to test whether 

cytoplasmic phase separation precedes inclusion formation and whether this process, or these 

inclusions themselves, are neurotoxic. A mechanistic understanding of the molecular processes 

that drive the formation of TDP-43 inclusions may reveal avenues for therapeutic intervention and 

uncover the underlying pathobiology of ALS/FTD and related neurodegenerative disorders. To 

this end, we developed an optogenetic method to induce TDP-43 proteinopathy with blue light and 

examine the mechanisms that drive the formation of intracellular inclusions. We found that homo-

oligomerization of the TDP-43 LCD mediates light-induced phase separation (LIPS)  capable of 

driving the formation of pathologically-relevant inclusions. We also show that RNA-binding 

regulates these aberrant phase transitions and TDP-43 residence in SGs. Finally, we demonstrate 

that aberrant TDP-43 phase transitions drive neurodegeneration, and that treatment of neurons with 

oligonucleotides comprised of TDP-43 binding sequences inhibits inclusion formation and are 

neuroprotective.  
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2.2 Materials and methods 

2.2.1  Cell culture 

HEK293 cells were maintained in DMEM (Thermo Fisher Scientific) supplemented with 

10% HyClone Bovine Growth Serum (GE Healthcare Life Sciences) and 1X GlutaMAX (Thermo 

Fisher Scientific) at 37 °C and 5% CO2. Cells were seeded onto coverslips or plates coated with 

collagen (50 g/mL, Gibco) and allowed to incubate overnight prior to transfections 

(Lipofectamine 3000, Thermo Fisher Scientific) with 100 ng of DNA performed according to 

manufacturer’s instructions. Cells were plated on collagen-coated glass bottom plates for live-cell 

imaging, high throughput screening, and FRAP analysis. All manipulations of cells expressing 

optogenetic constructs were performed under red lamp illumination to avoid ambient light 

exposure. 

2.2.2  Neuronal progenitor maintenance and differentiation 

ReNcell VM (Millipore) were maintained and differentiated according to previously 

described protocols but with minor modifications (Donato et al., 2007). In brief, cells were 

maintained in proliferation media (DMEM/F-12, 1x GlutaMAX™ supplemented with 1x B27 

(Gibco), 2 ng/mL heparin (Sigma), 20 g/mL bFGF (Millipore) and 20 ug/mL hEGF (Millipore). 

Differentiation was initiated by plating ReNcell VM onto low attachment plates in proliferation 

media in order to establish neurosphere production. Neurospheres were then mechanically 

dissociated and grown to full confluency. Cells were further differentiated in DMEM/F-12, 

supplemented with 1x GlutaMAX™, 1x B27, 2 ng/mL GDNF (PeproTech) and 1 mM diburtyrl-
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cAMP (Tocris) for one week and then maintained in DMEM/F-12 supplemented with 1x 

GlutaMAX™, 1x B27, and 2 ng/mL GDNF.  

2.2.3  Lentiviral production and transduction 

Lentiviral transfer vectors encoding optoTDP43, Cry2-mCh or iRFP670 were co-

transfected with packaging plasmids (OriGene) into HEK293T cells using the Turbofectin 

transfection reagent (OriGene) according to manufacturer’s instructions. Following an initial 

media change, lentiviral supernatant was collected at 24 and 48 hr post-transfection prior to 

filtration and overnight incubation at 4℃ with 1X Lentivirus concentration solution (OriGene). 

The following day, concentrated lentiviral supernatant was centrifuged at 3,500 x g for 25 min at 

4℃. The resulting pellet was recentrifuged at 3,500 x g for 5 min prior to re-suspension in ice-

cold, sterile PBS. Pellets were then allowed to dissolve for 1-2 days at 4℃. Resuspended lentiviral 

particles were then aliquoted and titers were determined utilizing the One-Wash Lentivirus Titer 

Kit, HIV-1 p24 ELISA (OriGene). Neuron transductions were performed by diluting lentiviral 

particles at an MOI of 5 in neuronal differentiation media. Media changes were performed after 

48 hr of incubation and all experiments were initiated at 96 hr post-transduction. 

2.2.4  Stress treatments 

Sodium arsenite (0.5 mM, 30 min) and heat shock (43 °C, 45 min) treatment were used to 

induce stress granule formation where indicated.  
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2.2.5  Blue light treatments 

Blue light stimulation was performed in 24-well or 6-well plates using custom-built LED 

arrays designed to fit plate dimensions and withstand common temperature/humidity requirements 

of cell culture incubators. Individual LED diodes were positioned ~3.0 cm above the culture 

surface to provide a range of ~0.1-0.3 mW/cm2 of 465 nm light stimulation to the cultured cells.  

2.2.6  RNA and oligonucleotide treatments 

Total HEK293 RNA was extracted utilizing the miRNeasy RNA isolation kit (Qiagen) 

according to manufacturer’s instructions. RNA oligonucleotides with 2’OMe modifications were 

synthesized by GenScript. For experiments utilizing HEK293 cells, total RNA (2.5g) or RNA 

oligonucleotides (200nM-1M as indicated) were transfected into cells using the Lipofectamine 

RNAiMAX reagent (Thermo Fisher) according to manufacturer’s instructions. For ReNcell 

neuron experiments, oligonucleotides were diluted into normal differentiation medium at the 

indicated concentrations prior to direct addition to cells.   

2.2.7  Bacterial growth and protein expression 

For purification of MBP-tagged TDP-43 WT and 5FL proteins, BL21 (DE3) E. coli cell 

cultures were grown at 37°C to an OD600 of 0.6–0.9 as previously reported (Wang et al., 2018a). 

Protein expression was induced by IPTG (1mM) prior to overnight incubation at 16°C. Cells were 

then harvested by centrifugation. 
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2.2.8  Cloning 

All full-length and truncated optoTDP43 plasmids were constructed by inserting PCR-

generated fragments at the SmaI restriction enzyme site by Gibson Assembly (HiFi DNA 

Assembly Master Mix, NEB) of Cry2olig-mCh and Cry2PHR-mCh base vectors (Plasmids 60032 

and 26866, Addgene). TDP43-mCh was generated by inserting full-length TDP-43 CDS 

(synthesized by Genecopoeia) between the NheI and SmaI restriction enzyme sites of the Cry2olig-

mCh backbone. All wild-type optoTDP43 vectors were constructed using the same TDP-43 insert. 

optoTDP43 constructs containing the TDP43cyto, 5FL and/or M337V point mutations were 

generated from mutant TDP43 plasmids (Plasmids 84912, 84914, 98674, Addgene). Constructs 

containing the fusRRM (WT or 4FL) were generated by three-fragment Gibson Assembly, 

inserting the fusRRM fragment and TDP-43 LCD simultaneously into the Cry2olig-mCh 

backbone at the SmaI restriction site. The plasmid encoding TDP as a C-terminal MBP-tagged 

protein (TDP43-MBP-His6) was purchased from Addgene (Plasmid 104480) and the 5FL mutant 

was generated via QuikChange Multi Site-directed Mutatagenesis (Agilent). EGFP-TDP43 

constructs were generated by inserting the wild-type or mutant TDP-43 fragments between the 

HindIII and KpnI restriction enzyme sites of EGFP-alpha-synuclein vector (Plasmid 40822, 

Addgene). G3BP1-mCh was generated through the insertion of the full-length G3BP1 CDS 

(synthesized by Genecopoeia) into the mCherry2-C1 backbone (Plasmid 54563, Addgene) at the 

SmaI restriction site.  
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2.2.9  Detergent solubility assay 

Solubility of TDP-43 was assessed as previously described with minor modifications (van 

Eersel et al., 2011). In brief, cells were washed once with ice-cold PBS, lysed with modified RIPA 

buffer (25mM Tris-HCl pH 7.6 (Sigma-Aldrich), 150 mM NaCl (Millipore Sigma), 5 mM EDTA 

(Sigma-Aldrich), 1% Triton X-100 (Sigma-Aldrich), 1% sodium deoxycholate (Sigma-Aldrich), 

0.1% SDS (Fisher Scientific), protease inhibitor cocktail (Sigma-Aldrich), 1 mM PMSF (Thermo 

Fisher Scientific), phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich)) and incubated on ice 

for 10 min. Following brief sonication on ice, lysates or homogenates were centrifuged for 1 hr at 

100,000 x g at 4 °C. Supernatants were collected as the detergent-soluble fraction. Protein 

concentrations were determined using the RC DC protein assay (Bio-Rad). Pellets were then 

resuspended in RIPA buffer and re-sonicated and re-centrifuged. The resulting supernatant was 

discarded and pellets were resuspended in urea buffer (30 mM Tris pH 8.5 (Sigma-Aldrich), 7 M 

urea (Sigma-Aldrich), 2 M thiourea (Sigma-Aldrich), 4% CHAPS (Thermo Fisher Scientific), 

protease inhibitor cocktail (Sigma-Aldrich), 1 mM PMSF (Thermo Fisher Scientific), phosphatase 

inhibitor cocktails 2 and 3 (Sigma-Aldrich)). Following brief sonication on ice, lysates were 

centrifuged for 1 hr at 100,000 x g at 22°C. This final supernatant was then collected as the 

detergent-insoluble, urea-soluble fraction. Proteins from each fraction were then separated by 

SDS-PAGE and analyzed by western blot analysis.  

2.2.10  Nuclear/cytoplasmic fractionation 

Nuclear/cytoplasmic subcellular fractionation was performed utilizing NE-PER Nuclear 

and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific) according to manufacturer’s 
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instructions. Protein concentrations for individual fractions were determined using the Pierce BCA 

Protein Assay Kit (Thermo Fisher Scientific) and subsequently analyzed by western blot.  

2.2.11  Size-exclusion chromatography 

A 90 mL Sephacryl S-300 column equilibrated in 25 mM Tris pH 7.8, 150 mM NaCl, 5 

mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate was calibrated with the size standards Blue 

Dextran (2000 kDa), Catalase (232 kDa), and Hemoglobin (60 kDa). Lysates from cells expressing 

optoTDP43 which had been subjected to blue light stimulation or darkness were loaded in a 0.5 

mL volume and the column was run at a flow rate of 0.3 mL/min at 4°C. An initial volume of 30 

mL was passed through the column, which corresponded to the column void volume, then 2.5 mL 

fractions were collected. A sample from each fraction was mixed with SDS sample buffer and 

subjected to SDS-PAGE, followed by western blotting as described below. 

2.2.12  SDS-PAGE/Western blotting 

Prior to SDS-PAGE, protein concentrations were determined using the Pierce BCA Protein 

Assay (Thermo Fisher Scientific) or RC DC Protein Assay (Bio-Rad). Samples were separated by 

SDS-PAGE (4-20% Mini-PROTEAN TGX Precast Gels, Bio-Rad) and transferred to PVDF 

membranes (Immobilon-FL, EMD Millipore) using the Trans-Blot Turbo Transfer System (Bio-

Rad). Following water and TBS washes, membranes were blocked in Odyssey Blocking Buffer 

(Li-Cor) for 1 hr at room temperature. Membranes were then washed and incubated with primary 

antibodies in TBS-T (0.1% Tween) supplemented with 50% blocking buffer overnight at 4 °C. 

Primary antibody dilutions used were as follows: rabbit anti-TDP43 (Proteintech, 1:1000), mouse 
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anti-α-tubulin (Sigma-Aldrich, 1:10000), rabbit anti-Lamin B1 (Abcam, 1:5000), rabbit anti-

GAPDH (Sigma-Aldrich, 1:10000), mouse anti-mCherry (Novus Biologicals, 1:1000). Following 

TBS-T washes, membranes were incubated with secondary antibodies (Li-Cor, IRDye 680/800, 

1:10000) for 1 hr at room temperature. Membranes were then washed with TBS-T and bands were 

visualized using the Odyssey CLx imaging system.     

2.2.13  Immunofluorescence 

For standard immunofluorescence analysis, cells were then fixed with 4% PFA for 15 min 

at room temperature following one PBS wash. Following three additional PBS washes, cells were 

blocked with 5% normal donkey serum (NDS) in 0.3% Triton X-100 for 1 hr at room temperature. 

Primary antibodies were prepared in 1X PBS supplemented with 0.3% Triton X-100/5% NDS and 

cells were incubated in antibody solution overnight at 4°C. Primary antibody dilutions used were 

as follows: mouse anti-SQSTM1/p62 (Abcam, 1:100), rabbit anti-SQSTM1/p62 (Abcam, 1:500), 

rat anti-phospho TDP-43 (S409/410), Clone 1D3 (EMD Millipore, 1:200), rabbit anti-G3BP1 

(Proteintech, 1:500), mouse anti-eIF4G (Santa Cruz, 1:300), rabbit anti-ATXN2 (Proteintech, 

1:400), rabbit anti-TIAR (Santa Cruz, 1:300), mouse anti-digoxin (Jackson ImmunoResearch, 

1:200), mouse anti-ubiquitin (Santa Cruz, 1:200). Following three PBS washes, secondary 

antibodies were diluted in 0.3% Triton X-100/5% NDS and incubated with cells for 1-2 hrs at 

room temperature. Cells were then washed and coverslips were mounted onto slides (ProLong 

Diamond Antifade Mounting Media with DAPI, Invitrogen) to be visualized by confocal 

microscopy. 

For total RNA staining, cells were fixed in 100% methanol for 15 min at -20°C. Following 

three PBS washes, cells were incubated in SYTO® RNASelect™ Green Fluorescent Cell Stain 
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(Thermo Fisher Scientific) staining solution (500 nM in PBS) for 20 min at room temperature. 

Cells were then washed three additional times in PBS prior to blocking and counterstaining as 

described above.  

2.2.14  Immunohistochemistry  

Formalin-fixed, paraffin-embedded human hippocampus and cervical spinal cord sections 

of ALS/FTLD subjects retrieved from the Neurodegenerative Brain Bank at the University of 

Pittsburgh, following protocols approved by the University of Pittsburgh Committee for Oversight 

of Research and Clinical Training Involving Decedents (CORID). Following antigen retrieval with 

Target Retrieval Solution, pH 9 (Dako Agilent), immunofluorescence staining was performed 

using the following primary antibodies: TIA1 (1:1000, Abcam), Ataxin 2 (1:50, Proteintech), 

G3BP1 (1:100, Proteintech) and pTDP-43 (1D3, 1:500, kindly provided by Manuela Neumann, 

Helmholtz Zentrum, Munich, Germany). Immunofluorescence signal was visualized using Alexa 

Fluor 488 and Cy3 labeled secondary antibodies (both 1:200, Jackson ImmunoResearch) and 

DAPI nuclear counterstain (1:1000, Thermo Scientific). 

2.2.15  RNA Fluorescent In Situ Hybridization (RNA FISH) 

RNA-FISH using PolyT (TTTTTTTTTTTTTTTTTTTTTTTTTVN/3Dig_N) (Exiqon) or 

scramble control (5DigN/GTGTAACACGTCTATACGCCCA) (Batch 233334, Exiqon) probes 

was conducted as previously described but with minor modifications (Zhang et al., 2015b). In 

short, cells were fixed in 3.2% PFA (Electron Microscopy Science), permeabilized for 10 min in 

0.3% Triton X-100 (Sigma-Aldrich), equilibrated for 10 min in 1X SSC (Thermo Fisher Scientific) 
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and then incubated in 40% formamide (Sigma-Aldrich) at 55°C for 10 min. Hybridization buffer 

(100% formamide, 1 mg/mL BSA Fraction V (Fisher Scientific), 20 mM ribonucleoside vanadyl 

complex (Sigma-Aldrich), 0.1M NaPO4, 20X SSC) and then probe mixture (10 g/L salmon sperm 

(Thermo Fisher Scientific), 20 mg/mL E. Coli tRNA (Thermo Fisher Scientific), 80% formamide, 

25 µM RNA-Probe preheated to 85 °C) were added to the cells for 2 hrs at 55°C. Next, the cells 

were washed with 40% formamide, 1X SSC, TBS-50 pH 7.4, 5M NaCl (Thermo Fisher Scientific 

Scientific) 1M Tris pH 7 (Thermo Fisher Scientific), 1M Tris, pH 8 (Thermo Fisher Scientific 

Scientific)), and then 1X PBS. Following a cross-linking step with 3.2% PFA and 0.3% Triton X-

100, the cells were immunostained and washed with IF Buffer (TBS-50, 0.5 g BSA Fraction V, 

Protease-free BSA (Fisher Scientific)) and then incubated in blocking buffer (TBS-50, BSA 

Fraction V, 5% Normal Donkey Serum). Finally, the cells were incubated with primary antibodies 

at 4°C overnight, and the following day were washed with IF buffer and incubated with secondary 

antibodies for 1 hr at room temperature. Additional washes with IF Buffer, TBS-50, MgCl2, and 

1X PBS were performed prior to mounting coverslips with ProLong Diamond Antifade Mounting 

Media and visualized by confocal microscopy. 

2.2.16  Cell viability assays 

Analysis of cell viability was performed utilizing the CellTiter Glo Luminescent Cell 

Viability Assay (Promega) according to manufacturer’s instructions. Treatment of cells with 0.1% 

Triton X-100 for 1 hr served as negative viability controls. Raw luminescence values were 

normalized to control group means and compared across experimental conditions.  
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2.2.17  Live-cell imaging 

All live-cell imaging experiments were performed on a Nikon A1 laser-scanning confocal 

microscope system outfitted with a Tokai HIT stagetop incubator utilizing 40X and/or 60X oil 

immersion objectives (CFI Plan Apo Lambda 60X Oil, Nikon; CFI Plan Fluor 40X Oil, Nikon). 

Following transfections and/or treatments, medium was changed to phenol red-free growth 

medium (Gibco) and cells were allowed to equilibrate on the preheated (37°C and 5% CO2) 

stagetop incubator for 10 min prior to imaging. Acute blue light stimulation was achieved by 

utilizing the 488nm laser line and the stimulation module within Nikon Elements imaging 

software. Activation duration varied from 1-8 sec and laser power ranged from 1-20% as indicated 

in different experiments. Stimulation regions of interest (ROIs) were drawn over fields of view 

prior to image acquisition. Following 2-5 baseline images, laser stimulation was performed and 

cells were imaged for up to 1 hr post-activation.  

2.2.18  Fluorescence Recovery After Photo-bleaching (FRAP) Imaging 

Initially, granules or inclusions were identified using a 60X oil immersion objective by 

confocal microscopy and a 2x2 µm2 bleaching ROIs were drawn over objects of interest. Reference 

ROIs of the same size were drawn in adjacent, non-bleached cells to control for photo-bleaching. 

Following 2-5 baseline images, objects were bleached for 500 ms using 50% laser power (488nm 

or 594 nm laser lines) and cells were imaged for up to 5 min post-bleaching without delay.  
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2.2.19  High-throughput LED Screening 

Following transfection or transduction, plates were placed into a pre-warmed Tokai HIT 

stage-top incubator and allowed to equilibrate for 30 min prior to imaging. Custom 96-well LED 

arrays were positioned above wells to provide blue light stimulation (~0.3 mW, 465 nm) and were 

interfaced with Nikon Elements imaging software to cooperate with imaging protocols. 

Communication between the LED array and microscope occurred through a 5 V analog output 

transmitted from a Texas Instruments BNC-2110 triggering device. Voltage signals were 

interpreted by a microcontroller by taking real-time voltage measurements corresponding to a 

specific light group combination. Through the use of a map function, the software was able to 

assign a value to each light group and turn the group on or off following the reading of the 

corresponding value by the microcontroller. Automated imaging protocols were designed and 

executed utilizing the Jobs module within Nikon Elements imaging software. In brief, the 

microscope was first programmed to perform three sequential baseline plate scans prior to light 

exposure. Epifluorescent images were acquired with a Prime 95B CMOS camera (Photometrics) 

using the ET-dsRED filter set (Chroma). Nine fields of view were imaged over time per well in 

duplicate per experiment per condition. Baseline images were acquired every 10 min for 30 min 

in total. This was followed by simultaneous blue light stimulation and image acquisition for up to 

24 hrs. Every 10 min during the stimulation period, LED diodes were programmed to sequentially 

switch off and allow for image acquisition. Following completion of imaging within wells, LED 

diodes were programmed to switch back on to resume light stimulation and a subsequent set of 

diodes was programmed to turn off to allow for imaging. This pattern was repeated throughout the 

remainder of the imaged wells to complete the plate scan.  
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2.2.20  Recombinant protein purification 

MBP-tagged TDP-43 WT and 5FL proteins were purified as previously reported (Wang et 

al., 2018a). In brief, cells were harvested by centrifugation, resuspended in TDP‐43 binding buffer 

(20mM Tris–Cl pH 8.0, 1 M NaCl, 10mM imidazole, 10% (v/v) glycerol, 1mM DTT), 

supplemented with complete EDTA‐free protease inhibitor cocktail, and lysed via sonication. The 

protein was purified over Ni-NTA agarose beads (Qiagen) and eluted from the beads using 20mM 

Tris–Cl pH 8.0, 1 M NaCl, 300mM imidazole, 10% (v/v) glycerol, 1mM DTT. The eluate was 

further purified over amylose resin (NEB) and eluted using 20mM Tris–Cl pH 8.0, 1 M NaCl, 

10mM maltose, 10% (v/v) glycerol, 1mM DTT. The protein was concentrated, flash frozen in 

liquid N2, and stored as aliquots in -80°C until further use.  

2.2.21  In vitro phase separation and aggregation assays 

To induce formation of droplets, the proteins were first buffer exchanged into 20mM 

HEPES (pH 7.4), 150mM NaCl, and 1mM DTT using a Micro Bio-Spin P-6 Gel column (Bio-

Rad). The protein was then centrifuged at 16,000 rpm for 10 min to remove any preformed 

aggregates and the protein concentration was measured via a Bradford assay. LLPS was initiated 

with the addition of 10% dextran (final buffer conditions of 5M TDP43, 15mM Hepes (pH 7.4), 

150mM NaCl, and 1mM DTT with the indicated amounts of total yeast RNA) and droplets were 

imaged using DIC microscopy.     

To measure aggregation kinetics, TDP-43 was thawed and centrifuged at 16,000 rpm for 

10 min. Protein concentration was measured via Bradford and TDP-43 WT or 5FL were diluted to 

a final concentration of 5M (in 20mM Hepes (pH 7.0), 150mM NaCl, 1mM DTT, with indicated 
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quantities of RNA). Aggregation was initiated by cleavage of the MBP tag using 5g/mL TEV 

protease and monitored via turbidity measurements using a TECAN M1000 plate reader.  

2.2.22  Electron Microscopy 

Transmission electron microscopy (TEM) of purified TDP-43 WT and 5FL aggregates was 

performed as described previously (Guo et al., 2018). In brief, following the aggregation assays 

described above, 10µL of each sample was adsorbed onto 300-mesh Formvar/carbon-coated 

copper grids (Electron Microscopy Sciences, Hatfield, PA) and stained with 2% (w/v) uranyl 

acetate. Excess uranyl acetate solution was removed prior to drying of the grids. Samples were 

then imaged using a JEOL-1010T12 transmission electron microscope. 

2.2.23  Image quantification and analysis 

All image visualization and quantification was performed utilizing Nikon Elements 

Imaging Software and analyses were performed in a double-blind fashion. For fixed-cell image 

quantification of stress granule co-localization and granule size, 4-5 fields of view were analyzed 

per condition. EGFP-TDP43 granules were examined and percentages of granules co-localizing 

with stress granule markers (G3BP1, eIF4G) were calculated. Maximum intensity projections for 

each field of view were generated and granule area was determined using automated object 

detection.  

For FRAP imaging experiments, mean fluorescence intensity was tracked within bleaching 

ROIs over time. Intensity values were corrected for photo-bleaching utilizing reference ROIs 

drawn within adjacent, non-bleached cells in the imaging field. Fluorescence intensity values were 
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converted to percentages of baseline (pre-bleach) fluorescence intensity means, with minimum 

fluorescence intensity values collected throughout the imaging period set to 0%, and percentage 

fluorescence recovery to baseline values was plotted over time.  

Time-lapse image sequences acquired during high-throughput LED screening were 

analyzed utilizing automated object recognition to identify intracellular optoTDP43 particles and 

inclusions. Objects were defined by fluorescence intensity and object area thresholding. The 

number of cells containing detected objects were tracked over time and divided by the total number 

of cells within the imaging field to generate percentage of cells with inclusions for each timepoint 

within the imaging sequence. Analysis of neuronal survival in longitudinal imaging datasets was 

performed through monitoring of the far-red iRFP670 fluorescent reporter. Cell death was defined 

by somatic rounding, neurite retraction/blebbing and loss of fluorescence signal. Times-of-death 

were recorded as the last timepoint at which neurons were observed to be alive and were used to 

generate Kaplan-Meier survival curves.  

Quantification of light-induced granule formation and dissociation was performed using 

the spot detection function within Nikon Elements imaging software. Granules were identified 

according to size and contrast thresholding. Granule number per cell was monitored over time in 

pre-identified cells that were labeled by an ROI. Raw granule number per cell values were first 

normalized to baseline values per cell over time. In order to calculate normalized granule number 

per cell over time, a weighted baseline intensity and cell area was determined. Baseline cell 

fluorescence intensity and area were determined from the image acquired prior to light stimulation 

and from this means were calculated across all experimental groups to control for differences in 

protein concentration and cell size. Total group baseline mean fluorescence intensity and cell area 

were then used to weight granule number values per cell by dividing individual cell values by total 
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group means. For granule dissociation rate quantification, raw granule number per cell values were 

first normalized to baseline values. Normalized granule number values were then converted to 

percentages of each individual cell’s maximum granule number per stimulation cycle. Mean 

percentages of cell maximum granule number were then plotted over time for each stimulation 

cycle.  

2.2.24  Statistics 

Statistical significance was calculated by Graphpad Prism software (Version 7.03) and 

resulting P values less than or equal to 0.05 were deemed to be significant. Unpaired Student’s t-

tests were used to determine statistical significance in data sets comparing two variables. Two-

way ANOVAs with Sidak Post-hoc analysis was used for comparisons of FRAP and granule 

formation/intracellular inclusion screening curves. Pearson’s correlations were performed to 

determine r2 values between data sets. Exponential decay nonlinear regression analysis was 

performed to compare optoLCD dissociation curves across groups. For survival analysis, Kaplan-

Meier estimates were used to generate survival curves and Gehan-Breslow-Wilcoxon tests were 

used to compare across groups. Cumulative risk-of-death curves were generated as described 

previously (Malik et al., 2018) using custom scripts in RStudio.    
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2.3 Results 

2.3.1  Optogenetic modulation of TDP-43 inclusions 

We generated an optogenetic Cry2olig-TDP-43-mCherry expression construct 

(optoTDP43) to selectively induce TDP-43 proteinopathy under the spatiotemporal control of light 

stimulation. Cry2olig is a variant of the Photolyase-Homologous Region (PHR) of the 

Cryptochrome 2 protein from Arabidopsis thaliana that undergoes reversible homo-

oligomerization (~5 min) in response to blue light (Taslimi et al., 2014) (Figure 3A, top). Due to 

recent findings, suggesting the importance of N-terminal oligomerization in promoting higher-

order assembly and LLPS of TDP-43 (Afroz et al., 2017; Chang et al., 2012; Mompeán et al., 

2017; Wang et al., 2018a), we positioned the Cry2olig domain on the N-terminus of the full-length 

TDP-43 protein. We first tested whether Cry2olig-mediated increases in focal concentrations of 

optoTDP43 protein leads to intracellular TDP-43 proteinopathy upon light exposure (Figure 3A, 

bottom). To monitor this event, we performed automated epifluorescence imaging of live HEK293 

cells expressing the mCherry-tagged optoTDP43 protein (Figure 3B, top). Cells were 

intermittently imaged during a persistent blue light treatment using a 96-well LED array positioned 

within a stage-top incubator. optoTDP43-expressing cells exposed to blue light showed a 

progressive depletion of nuclear optoTDP43 signal and developed significantly more cytoplasmic 

inclusions relative to optoTDP43-expressing cells kept in the dark over a 24 hr live-imaging 

session (Figure 3B-C, Appendix Video 1). TDP-43 was not mislocalized in cells expressing 

Cry2olig-mCh alone with or without light exposure, as assessed by immunofluorescence and 

subcellular fractionation/western blotting (Figure 3A-B). TDP-43 inclusions were absent from 

TDP-43-mCh-expressing cells with or without light exposure during the imaging period indicating 
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that optoTDP43 inclusion formation is selectively driven by light-induced oligomerization of 

TDP-43 and not TDP-43 overexpression (Figure 3C). Consistent with this observation, size-

exclusion chromatography confirmed that light treatment induced the formation of higher-order 

optoTDP43 protein oligomers (Figure 5A-B, top bands). Together, these data indicate that light 

treatment initiates intracellular oligomerization of the optoTDP43 protein independent of 

overexpression-induced aggregation.  

We next evaluated whether the features of optoTDP43 inclusions recapitulate the 

biochemical and neuropathological hallmarks of TDP-43 proteinopathy seen in patient tissue, 

including detergent-insolubility, N-terminal cleavage, C-terminal hyperphosphorylation, p62 co-

localization, and the formation of ubiquitin-enriched inclusions (Al-Sarraj et al., 2011; Scotter et 

al., 2015). We first performed fluorescence recovery after photo-bleaching (FRAP) analysis of 

light-induced optoTDP43 inclusions to first assess the material state of light-induced optoTDP43 

inclusions. While the Cry2-mCh signal recovered immediately, the optoTDP43 inclusions 

exhibited minimal signal recovery following photobleaching, indicating the formation of immobile 

intracellular protein assemblies (Figure 3D-E; Appendix Video 2). In addition, detergent-solubility 

fractionation and immunoblotting for TDP-43 and mCherry proteins showed that light induced a 

dramatic shift in optoTDP43 to the insoluble fraction and promoted N-terminal cleavage (Figure 

3F, Figure 5C), mimicking the biochemical profile observed in ALS/FTLD patient tissue (Figure 

5D). TDP-43-mCh-expressing cells did not display a similar shift in solubility or cleavage in the 

presence or absence of light when examined at the same timepoint (Figure 3F). Endogenous TDP-

43 was also detected in the insoluble fraction and exhibited enhanced N-terminal cleavage in 

optoTDP43-expressing cells exposed to light (Figure 3F). Size-exclusion chromatography 

similarly revealed a shift of endogenous TDP-43 species to heavier fractions relative to cells in the 
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dark (Figure 5A). These combined data suggest that optoTDP43 sequesters non-optogenetic TDP-

43 proteins into light-induced insoluble fraction. This phenomenon is likely due to TDP-43-

specific interactions, as Cry2olig-mCh expression did not affect endogenous TDP-43 solubility or 

cleavage regardless of light exposure (Figure 5E).  

We next confirmed the ability of optoTDP43 to directly recruit other non-optogenetic TDP-

43 species into light-induced inclusions by co-expressing an EGFP-tagged TDP-43 construct along 

with optoTDP43 or Cry2-mCh alone. We found that EGFP-TDP-43 co-localized with the light 

activated optoTDP43 inclusions, while no such co-localization was observed with Cry2-mCh 

(Figure 5F). Furthermore, optoTDP43 inclusions are p62-positive (Figure 3G, 82.9%), 

hyperphosphorylated in the C-terminal domain (Figure 3H, 85.7%), and colocalize with ubiquitin 

(Figure 5G) as seen in patient tissue (see for example Figure 3I-J).  Together, these data indicate 

that light-activated optoTDP43 inclusions exhibit the biochemical and pathological hallmarks of 

TDP-43 proteinopathy and may seed endogenous TDP-43 aggregation. 



 69 

 

Figure 3. optoTDP43 is a light-inducible model of TDP-43 proteinopathy.  

(A) Schematic of light-inducible TDP-43 proteinopathy approach using the Cry2olig photoreceptor and TDP-43 

protein. (B) optoTDP43 fusion protein and representative images of HEK293 cells expressing optoTDP43 exposed to 

blue light stimulation (bottom; ∼0.3 mW/cm2; 465 nm) or darkness (top). Cell nuclei are circled. Arrow indicates 

optoTDP43 inclusion formation with light treatment. (C) Percentage of cells exhibiting optoTDP43 inclusions over 

time using automated longitudinal live-imaging. n = 494–791 cells. (D) Representative images of FRAP analysis 

images of Cry2-mCh or light-induced optoTDP43 inclusions. (E) Quantification of FRAP analysis shows lack of 

signal recovery for optoTDP43 inclusions. n = 18–22 cells. (F) Detergent-solubility fractionation and western blotting 

for TDP-43 of optoTDP43-expressing cells with and without light stimulation. ∗ indicates full-length exogenous 

optoTDP43; + indicates optoTDP43 cleavage product; ∗∗ indicates full-length endogenous TDP-43; ++ indicates 
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endogenous TDP-43 cleavage product. (G–J) Immunofluorescence analysis of optoTDP43 inclusions (G and H) and 

ALS patient spinal cord (I and J) for pathological hallmarks p62 (G and I) and C-terminal hyperphosphorylated TDP-

43 (H and J). Data shown are mean ± SEM. ∗∗∗∗ p < 0.0001. Scale bars represent 10 μm. 

 

 

 

 

Figure 4. Chronic blue light stimulation alone does not induce mislocalization or aggregation of endogenous 

TDP-43.  

(A-B) HEK293 cells expressing Cry2olig-mCh were exposed to chronic blue light stimulation (16h, ~0.3 mW/cm2, 

465 nm) and analyzed for mislocalization of endogenous TDP-43. (A) Cells exposed to chronic blue light stimulation 

(bottom) or darkness (top) both show no cytoplasmic mislocalization of endogenous TDP-43 (green) by 

immunofluorescence. Cell nuclei are circled. (B) Cell lysates were collected following chronic blue light stimulation 

(lanes 3-4) or darkness (lanes 1-2) and separated into nuclear (N; lanes 1, 3) and cytoplasmic (C; lanes 2, 4) fractions. 

Western blot analysis of endogenous TDP-43 shows no cytoplasmic mislocalization of TDP-43 with or without blue 

light stimulation. Scale bar = 10 µm. 
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Figure 5. Chronic blue light stimulation promotes the formation of high-molecular-weight optoTDP43 

oligomers and recruitment of non-optogenetic TDP-43 to inclusions. 
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(A-B) Cell lysates from HEK293 cells expressing optoTDP43 were collected and analyzed by size exclusion 

chromatography. Samples were collected from cells either exposed to stimulation with blue light (16h, ~0.3mW/cm2, 

465 nm, bottom) or kept in darkness (top). The void volume of the column was determined with blue dextran (2000 

kDa). Column fractions were subjected to SDS-PAGE and western blot analysis for TDP-43. The molecular weight 

standards are indicated to the right of the representative blots. The elution peak of column size standards (232 kDa 

and 60 kDa) are indicated by arrows at the bottom of the gel. (B) optoTDP43 proteins exposed to blue light stimulation 

demonstrate a shift towards higher-molecular weight species (fractions 1-3, indicated by asterisks), indicating light-

induced oligomerization. (C) Lysates from optoTDP43-expressing cells exposed to chronic blue light treatment (16h, 

~0.3mW/cm2, 465 nm) or darkness were collected and separated into detergent-soluble (lanes 1, 3) and RIPA-

insoluble, urea-soluble (lanes 2, 4) fractions. Western blot analysis of mCherry proteins shows an enhanced shift of 

full-length and N-terminal cleaved optoTDP43 products in the detergent-insoluble fraction. (D) ALS/FTLD patient 

tissue from the hippocampus and spinal cord was separated into detergent-soluble (lanes 1, 3) and RIPA-insoluble, 

urea-soluble (lanes 2, 4) fractions prior to western blot analysis of TDP-43. (E) Cell lysates collected from Cry2-mCh-

expressing cells following chronic blue light stimulation (lanes 2, 4) or darkness (lanes 1, 3) were separated into 

detergent-soluble (lanes 1, 2) and RIPA-insoluble, urea-soluble (lanes 3, 4) fractions. Western blot analysis probing 

for endogenous TDP-43 shows no recruitment of TDP-43 to the insoluble fraction with or without chronic blue light 

stimulation. (F) To confirm the ability of optoTDP43 to recruit non-optogenetic TDP-43 species into light-induced 

inclusions, HEK293 cells were co-transfected with either optoTDP43 (bottom) or the photoreceptor-only control 

Cry2olig-mCh (top) and EGFP-TDP43. optoTDP43-expressing cells exposed to chronic blue light stimulation (16h, 

~0.3mW/cm2, 465 nm) show co-localization of light-induced inclusions with EGFP-TDP43 (indicated by arrows). 

Light-induced Cry2olig-mCh clusters show no co-localization with EGFP-TDP43 signal, indicating a TDP-43:TDP-

43 interaction-dependence of recruitment to induced optoTDP43 inclusions. Cell nuclei are circled. Scale bar = 10 

µm. (G) Cells expressing optoTDP43 were exposed to chronic blue light stimulation (16h, ~0.3mW/cm2, 465 nm, 

bottom) or darkness (top) and immunostained for ubiquitin (green). Light-induced optoTDP43 inclusions strongly co-

localize with ubiquitin signal (indicated by arrows). Cell nuclei are circled. Scale bar = 10 µm. 
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2.3.2  Aberrant LCD interactions drive the formation of TDP-43 inclusions 

Recent studies indicate that LCDs mediate the homo- and hetero-oligomerization of LCD-

containing proteins through LLPS (Elbaum-Garfinkle et al., 2015; Molliex et al., 2015; Nott et al., 

2015) and aberrant interactions between these low-complexity regions are hypothesized to 

promote the maturation/fibrillization of phase-separated droplets (Harrison and Shorter, 2017). To 

determine whether the TDP-43 LCD mediates the formation of optoTDP43 inclusions, we 

employed the optoDroplet approach (Shin et al., 2017) to study intracellular TDP-43 LCD phase 

separation behavior using the WT Cry2 PHR domain (Cry2PHR). This photoreceptor has a higher 

saturation concentration as compared to the lower-threshold, and more potent, Cry2olig 

photoreceptor used to produce optoTDP43 inclusions, and  allows us to detect subtle changes in 

droplet properties. We first generated an optogenetic construct containing the Cry2PHR 

photoreceptor fused to the TDP-43 LCD (optoLCD) and found that optoLCD proteins readily 

underwent reversible light-induced phase separation (LIPS) in response to brief pulses of blue light 

in HEK293 cells (Figure 6A-B, Appendix Video 3). These findings are consistent with studies 

reporting that purified TDP-43 LCD protein undergoes LLPS in vitro (Conicella et al., 2016; Sun 

and Chakrabartty, 2017). Light-induced clustering of the Cry2PHR photoreceptor alone did not 

induce droplet formation, indicating that the TDP-43 LCD drives LIPS (Figure 6A-B). Light-

activated optoLCD granules also displayed classical properties of phase-separated liquid-like 

protein droplets (Brangwynne et al., 2015, 2009), undergoing fusion upon granule contact (Figure 

7A) and exhibiting concentration- (Figure 6C, Figure 7B) and light-dependent droplet formation 

(Figure 7C). These data are consistent with light-activated optoDroplet formation of the LCDs of 

other RNA-binding proteins, including FUS, HNRNPA1 and DDX4 (Shin et al., 2017). 
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To determine whether aberrant LCD interactions promote the formation of intracellular 

inclusions, we next examined the effects of repetitive and chronic LIPS on optoLCD droplet 

dynamics in live cells. We tested the wildtype TDP-43 LCD and optoLCD proteins containing 

three ALS-causing mutations (M337V, Q331K, A321V), which alter LLPS properties and 

promote aggregation of TDP-43 in diverse in vitro and cellular models (Gopal et al., 2017; Johnson 

et al., 2009; Schmidt and Rohatgi, 2016). Using a 10-minute cycling blue light stimulation protocol 

to induce repetitive LIPS of the LCD, we observed gradual maturation of optoLCD granules over 

successive cycles of droplet formation (Figure 6D-E; Appendix Video 4). optoLCD droplets 

exhibited a progressive increase in the number of persistent, irreversible optoLCD granules with 

each successive cycle, an effect that was exacerbated by ALS-linked mutations (Figure 6E-F). 

Mutant optoLCD proteins displayed more rapid conversion to stable droplets upon successive 

LIPS, as determined by an increased number (Figure 6F) and size (Figure 6G) of persistent 

granules, compared to WT optoLCD droplets despite similar protein level as determined by 

Western blot analysis (Figure 7D). We next employed a chronic blue light stimulation paradigm 

to investigate whether the WT optoLCD droplets matured into pathologically-relevant inclusions 

with prolonged LCD oligomerization. Interestingly, a 4 hr chronic blue light stimulation resulted 

in hyperphosphorylated and p62-positive optoLCD inclusions (Figure 6H) that were immobile as 

evaluated by quantitative FRAP analysis (Figure 6I). These results indicate that TDP-43 LCD 

undergoes intracellular phase separation upon self-oligomerization and that maturation of LCD 

droplets, either through repetitive/chronic phase transitions or ALS-linked mutations, drives LCD 

inclusion formation.  
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Figure 6. Optogenetic phase transitions of the TDP-43 LCD drives inclusion formation. 
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(A) Representative images of HEK293 cells expressing Cry2PHR-mCh (top) or optoLCD (bottom) exposed to acute 

blue light stimulation (1 sec, 1% laser power, 488 nm).  (B) Quantification of normalized granule number per cell in 

response to acute stimulation. n = 26-48 cells. (C) Quantification of protein concentration-dependence of optoLCD 

phase transitions. r2 was determined by Pearson’s correlation. Data points represent individual cells. n = 66 cells. (D) 

Representative images of repetitive light-induced phase transitions of WT and ALS-linked mutant (M337V, Q331K, 

A321V) optoLCD proteins during a cycling light stimulation protocol consisting of a single blue light pulse (1 sec, 

1% laser power) every 10 min for 40 min. Images shown are the final images acquired per cycle prior to subsequent 

light stimulation. (E) Quantification of granule disassembly dynamics following cycling stimulation protocol shown 

in (D). n = 21-31 cells per construct. (F-G) Quantification of irreversible optoLCD number (F) and area (G) per cycle 

with repeated phase transitions. (H) Immunofluorescence analysis of optoLCD inclusions formed following chronic 

blue light stimulation (4 hrs, ~0.3mW/cm2, 465 nm) for hyperphosphorylated TDP-43 (green) p62 (purple).  (I) 

Quantification of fluorescence recovery after photobleaching of optoLCD inclusions formed by chronic light 

stimulation. n = 16 cells per construct. Data points shown are mean +/- S.E.M. ****, p < 0.0001. Scale bars = 10 µm. 
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Figure 7. optoLCD granules display properties of phase-separated droplets and full-length optoTDP43 does 

not form optoDroplets. 

(A) Representative images of individual optoLCD granules showing fusion events following acute blue light 

stimulation (1 sec, 1% laser power, 488 nm). optoLCD granules underwent fusion and subsequent relaxation upon 

granule:granule contact, suggesting a liquid-like state of light-induced LCD granules. (B) Representative images of 

optoLCD particle formation following acute blue light stimulation (1 sec, 1% laser power, 488 nm) in cells expressing 

increasing concentrations of optoLCD proteins (as determined by relative fluorescence intensity). (C) Cells expressing 

optoLCD were exposed to acute blue light stimulation of increasing laser intensity (1 sec, 1-10% as indicated, 488 

nm) and normalized granule number per cell was tracked over time. optoLCD proteins displayed enhanced phase 

transition responses following acute blue light stimulation of increasing light input, indicating a tunable property of 

light-induced LCD phase transitions as a function of activated photoreceptor molecules. n = 25-67 cells per laser 

setting. (D) Western blot analysis of WT and mutant optoLCD protein expression levels. (E) Full-length optoTDP43 
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was expressed in HEK293 cells exposed to acute blue light stimulation (1 sec, 10% laser power, 488 nm) to determine 

whether full-length TDP-43 could undergo LIPS. No optoTDP43 granule formation was observed in response to acute 

blue light stimulation. Data shown are mean +/- S.E.M. Scale bars = 10 m. 

2.3.3  RNA-binding inhibits homotypic phase separation and pathological aggregation of 

the TDP-43 LCD 

While the TDP-43 LCD undergoes intracellular LIPS with acute blue light treatment 

(Figure 6A), the same light stimulation paradigm did not induce a phase transition of full-length 

optoTDP43 (Figure 7E; Appendix Video 5), even when fused to the more potent homo-

oligomerizing Cry2 photoreceptor domain (Cry2olig) (Taslimi et al., 2014). Given the ability of 

full-length purified TDP-43 to undergo rapid LLPS (McGurk et al., 2018; Molliex et al., 2015; 

Wang et al., 2018a), we suspected there may be components within the intracellular environment 

which oppose TDP-43 LLPS in our model. The presence of the prominent TDP-43 RNA-binding 

domains (or RNA-recognition motifs, RRMs), along with reports of an increased aggregation 

propensity of C-terminal cleavage products lacking these domains (Zhang et al., 2009), led us to 

hypothesize that RNA-binding inhibits the ability of the full-length optoTDP43 protein to homo-

oligomerize via its LCD.  

To test this notion, we fused the Cry2olig photoreceptor domain to the TDP-43 RRMs and 

evaluated the ability of the RRM domains to oligomerize in response to light. The enhanced homo-

oligomerization of the Cry2olig photoreceptor domain allowed us to ensure that any observed 

inhibition of LIPS was likely a result of endogenous TDP-43 properties and not due to insufficient 

Cry2 activation. While the TDP-43 LCD fused to Cry2olig domain (Cry2olig-LCD) underwent 

LIPS in response to blue light and mimicked the droplet-like properties seen with optoLCD 
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assemblies (Figure 8A-B, top row; Figure 9A-E; Appendix Video 6), light treatment did not 

stimulate TDP-43 RRM phase separation (Figure 8A-B, bottom row; Appendix Video 6). We next 

generated fusion proteins containing both the TDP-43 RRMs and Cry2olig-LCD (RRMs + LCD 

WT) to test whether the RRM domains affect TDP-43 LCD LIPS. Strikingly, the RRMs 

completely inhibited LIPS of the LCD, even when the potent Cry2olig photoreceptor was 

employed (Figure 8C-D, top row; Appendix Video 6). To test whether RNA binding to the RRMs 

inhibits TDP-43 LCD oligomerization, we introduced five point phenylalanine to leucine 

mutations within the RRM domains (5FL), which were previously shown to significantly impair, 

but not abolish, TDP-43 RNA-binding (RRMs + LCD 5FL) (Elden et al., 2010). Remarkably, 

robust induction of LIPS is observed following light stimulation (Figure 8C-D, bottom row; 

Appendix Video 6). Since Cry2olig fusion proteins containing mutated RRMs alone (RRMs 5FL) 

did not show any light-induced droplet formation (Figure 9F), the recovery of LIPS in the RNA-

binding deficient construct is mediated by the LCD. To ensure that RNA-binding activity, and not 

a conformational change in the construct, inhibited LIPS, we assessed whether the TDP-43 LCD 

can drive phase separation of the FUS RRM (fusRRM WT + LCD). Like the TDP-43 RRMs, the 

FUS RRM fusion to the TDP-43 LCD failed to undergo LIPS (Figure 8E-F, top row; Appendix 

Video 6). However, when similar phenylalanine to leucine point mutations that compromise the 

RNA-binding ability of the FUS RRM were introduced (Daigle et al., 2013) (fusRRM 4FL + 

LCD), the FUS RRM + TDP-43 LCD fusion protein underwent rapid LIPS (Figure 8E-F, bottom 

row; Appendix Video 6). These data indicate that RNA-binding dictates the ability of the TDP-43 

LCD to homo-oligomerize and drive LIPS.  

To determine whether RNA-binding also plays a role in the formation of pathological 

inclusions of full-length TDP-43, we performed RNA fluorescent in situ hybridization (FISH) and 
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used an RNA dye to assess whether RNA resides within the light-induced optoTDP43 inclusions. 

Interestingly, RNA was absent in light-induced optoTDP43 inclusions (Figure 8G; Figure 10A). 

Supporting the notion that RNA-binding dictates the ability of the LCD to drive pathological 

oligomerization of TDP-43, longitudinal imaging also revealed that RNA-deficient optoTDP43 

5FL formed inclusions at a significantly enhanced rate and frequency than the RNA-binding 

competent optoTDP43 in live cells (Figure 10B).  

Since our data suggest that RNA-binding inhibits LCD-driven phase-transitions of TDP-

43, we hypothesized that addition of exogenous RNA substrates might inhibit optoTDP43 

inclusion formation. To test this hypothesis, we treated optoTDP43-expressing HEK293 cells with 

blue light for 16 hr to induce inclusions and transfected cells with total HEK293 cell RNA 4 hr 

after illumination. Surprisingly, there was a measurable reduction (28%) of optoTDP43 inclusion 

formation in cells treated with purified RNA, as compared to mock-treated cells, following light 

stimulation (Figure 8H-I). To determine whether mRNA colocalizes with TDP-43 inclusions in 

patients, we performed RNA FISH using a poly-T probe in ALS/FTLD patient tissue and examined 

TDP-43/mRNA colocalization. TDP-43 inclusions lacked mRNA signal in both sporadic ALS 

(sALS) spinal cord (Figure 8J, Figure 10C) and FTLD hippocampus (Figure 8K, Figure 10C). 

Taken together, we propose that RNA-binding to the TDP-43 RRM domains inhibits LCD:LCD 

interactions, thus blocking aberrant TDP-43 phase transitions and the formation of pathological 

inclusions.  
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Figure 8. RNA-binding prevents light-induced phase separation and aggregation of TDP-43. 



 82 

(A-F) HEK293 cells expressing the Cry2olig photoreceptor fused to the TDP-43 LCD (A), TDP-43 RNA-binding 

regions (RRMs) (A), TDP-43 LCD and functional (WT) RRMs (C), TDP-43 LCD and RNA-binding deficient (5FL) 

RRMs (C), TDP-43 LCD fused to the functional (WT) FUS RRM (E), or TDP-43 LCD fused to FUS RNA-binding 

deficient (4FL) RRM (E) were exposed to acute light stimulation (1-8 sec, 10% laser power, 488 nm) and normalized 

granule number per cell quantification is shown in right hand column (B, D, F). n = 33-59 (A-B), 24-36 (C-D) and 

31-45 cells (E-F). Data shown are mean +/- S.E.M. (G) mRNA within full-length optoTDP43 inclusions was assessed 

by RNA fluorescence in situ hybridization (FISH) for Poly-A tails. Arrow indicates absence of mRNA signal within 

inclusion. (H) Representative images of HEK293 cells expressing optoTDP43 that received mock or RNA (2.5 g 

HEK293 total mRNA) treatment 4 hours into a 16 hour chronic blue light treatment. (I) Quantification of optoTDP43-

expressing cells with cytoplasmic inclusions. Data points correspond to individual fields of view. n = 662-673 cells. 

(J-K) RNA FISH analysis of ALS/FTLD patient tissue targeting Poly-A mRNA. TDP-43 inclusions (green, bottom 

rows) in spinal cord (J, sALS) and hippocampal (K, FTLD) sections both show no co-localization with mRNA signal 

(red). Data shown are mean +/- S.E.M. **, p < 0.01. Scale bars = 10 µm. 
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Figure 9. Cry2olig-LCD confers an enhanced phase separation response to light. 

(A-B) HEK293 cells expressing either optoLCD (top) or the Cry2olig modified photoreceptive domain fused to the 

TDP-43 LCD (Cry2olig-LCD, bottom) were subjected to acute blue light stimulation (1 sec, 1% laser power, 488 nm) 

and granule formation was tracked over time. (B) Quantification of normalized granules per cell over time shows an 

enhanced phase transition response to light when the TDP-43 LCD is fused to the Cry2olig domain versus the WT 

Cry2PHR domain. n = 25-48 cells per construct. Data shown are mean +/- S.E.M. (C) Representative images of 

individual Cry2olig-LCD granules undergoing fusion events following acute blue light stimulation (1 sec, 1% laser 

power, 488 nm). As was observed with optoLCD droplets, Cry2olig-LCD granules underwent fusion and relaxation 

upon granule:granule contact. (D) A Pearson’s correlation was executed to analyze the protein concentration-

dependence of Cry2olig-LCD phase transitions in response to acute blue light stimulation (1 sec, 10% laser power, 

488 nm). Baseline fluorescence intensity was plotted against maximum granule number per cell during the imaging 
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period. Data points shown are representative of individual cells. n = 26 cells. (E) Cry2olig-LCD-expressing cells were 

exposed to acute blue light stimulation of increasing laser intensity (1 sec, 1-10% as indicated, 488 nm) and normalized 

granule number per cell was quantified post-stimulation. Again, an enhanced phase separation response was observed 

following blue light stimulation of increasing intensity. n = 50-81 cells per laser setting. (F) Cells expressing a protein 

containing the TDP-43 RRMs with RNA-binding mutations fused to the Cry2olig photoreceptor (RRMs 5FL) were 

exposed to acute blue light stimulation (1 sec, 10% laser power, 488nm). No droplet formation is observed following 

light stimulation, suggesting the TDP-43 LCD is necessary for LIPS behavior. Data shown are mean +/- S.E.M. Scale 

bars = 10 m. 
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Figure 10. TDP-43 inclusions in patient tissue and optoTDP43 system show an absence of RNA. 

(A) optoTDP43 was expressed in HEK293 cells that were exposed to chronic blue light stimulation (16h, 

~0.3mW/cm2, 465 nm) to induce optoTDP43 inclusion formation. Cells were then fixed in ice-cold methanol and 

stained with SYTO RNAselect non-selective RNA dye to determine whether optoTDP43 inclusions contained any 

RNA species, in addition to mRNA. optoTDP43 inclusions do not appear to co-stain with SYTO RNAselect dye, 
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suggesting there are no RNA species contained within inclusions. (B) HEK293 cells expressing WT optoTDP43 

(blue), RNA-binding-deficient optoTDP43 5FL (red), or non-optogenetic TDP43-mCh (black) were chronically 

stimulated with blue light (~0.3mW/cm2, 465 nm) and simultaneously imaged over time in an automated microscopy 

screen to assess whether RNA-binding affects full-length TDP-43 inclusion formation. Quantification of percentage 

of cells with inclusions over time shows a significantly increased rate of light-induced inclusion formation with 

reduced RNA-binding efficiency (optoTDP43 5FL, red). n = 113-239 cells per construct. (C) Additional representative 

images of mRNA FISH analysis of ALS/FTLD patient tissue. Hippocampal and spinal cord sections from two FTLD 

cases (C9ORF72-FTLD, top left; FTLD-TDP43, top right) and one ALS case (sporadic ALS, bottom left) were 

examined by immunohistochemistry and RNA FISH. In all cases, no co-localization was observed between mRNA 

and pTDP-43 signal. Data shown are mean +/- S.E.M. ****, p < .0001. Cell nuclei are circled. Scale bars = 10 m. 

2.3.4  RNA antagonizes TDP-43 phase transitions in vitro and in cells 

We next utilized purified WT TDP-43 and a TDP-43 protein with identical RRM point 

mutations (TDP-43 5FL, henceforth referred to as RNA-binding deficient TDP-43) to examine 

whether RNA-binding alters TDP-43 LLPS and aggregation in vitro. In the absence of RNA, C-

terminal MBP-tagged TDP-43 WT and 5FL formed liquid-like droplets at physiological salt 

concentrations that did not form in the presence of 1,6 hexanediol, which disrupts weak contacts 

between LCDs that drive LLPS (Gopal et al., 2017; Patel et al., 2007) (Figure 11A). However, in 

the presence of increasing concentrations of total RNA, WT TDP-43 LLPS was inhibited in a dose-

dependent manner (Figure 11B). In contrast, the RNA-binding deficient TDP-43 5FL species was 

unaffected by exogenous RNA (Figure 11B). Upon selective cleavage of the MBP tag with TEV 

protease, TDP-43 WT and 5FL form solid-phase aggregates (Figure 11C). While WT and RNA-

binding-deficient TDP-43 displayed similar aggregation kinetics in the absence of RNA, the 

addition of RNA completely inhibited WT TDP-43 aggregation (Figure 11C-D). The aggregation 
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kinetics of TDP-43 5FL was initially delayed in the presence of RNA, likely due to residual RNA-

binding (Figure 11D), but the final extent of aggregation was identical to TDP-43 in the absence 

of RNA upon further incubation (Figure 11C-D). Moreover, the addition of RNase A (2.5g) 90 

min after TEV cleavage reversed the initial inhibition of WT TDP-43 aggregation conferred by 

RNA addition (Figure 11E). 

If RNA-binding prevents aberrant phase separation and TDP-43 inclusion formation, then 

RNA-binding deficient protein expression should generate TDP-43 proteinopathy. We therefore 

expressed (non-optogenetic) EGFP-tagged TDP-43 constructs containing wildtype or RNA-

binding-reduced RRM domains in HEK293 cells (Figure 11F). Surprisingly, mere expression of 

the RNA-binding-deficient TDP-43 protein (EGFP-TDP43 5FL) generated large nuclear 

inclusions that were hyperphosphorylated and p62-positive (Figure 11G). When the protein’s NLS 

was mutated (EGFP-TDP43cyto 5FL), the RNA-binding-deficient protein localized to the 

cytoplasm and formed hyperphosphorylated and p62-positive inclusions that resembled the 

neuropathology observed in ALS/FTLD (Figure 11H). This finding suggests that cytoplasmic 

mislocalization is an upstream event preceding formation of RNA-deficient cytoplasmic 

inclusions. FRAP analysis revealed that RNA-deficient TDP-43 inclusions in both the nucleus and 

cytoplasm did not recover from photo-bleaching (Figure 11I-J). Nuclear RNA-binding deficient 

TDP-43 inclusions also exhibited slightly enhanced fluorescence recovery after photo-bleaching 

compared to the cytoplasmic RNA-deficient TDP-43. This may be due to the abundance of 

accessible RNA species in the nucleus whereas RNAs destined for the cytoplasm are pre-

assemblied into heterogenous RNP complexes (Köhler and Hurt, 2007). Overall, these findings 

indicate that RNA-binding dictates the propensity for TDP-43 to form pathologically-relevant 

inclusions. 
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Figure 11. TDP-43 LLPS and aggregation is inhibited by RNA-binding. 
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(A) Purified TDP43-MBP WT or 5FL (5M) were incubated for 2 hours (10% dextran buffer, 150 mM NaCl) in the 

absence or presence of 1,6 hexanediol (10% w/v). Scale bar = 50 m. (B) Representative DIC images of purified 

TDP43-MBP WT or 5FL following incubation with increasing concentrations of yeast total RNA. Scale bar = 50 m. 

(C) Representative electron micrographs of TDP-43 WT and 5FL following TEV cleavage in the absence (left) or 

presence (right) of yeast total RNA (15 g). Scale bars = 4 m.  (D) Turbidity changes (normalized OD395 readings) 

of TDP-43 WT (blue) and 5FL (red) following TEV cleavage in the absence (open circles) or presence (solid circles) 

of yeast total RNA (15 g). (E) Turbidity changes (normalized OD395 readings) of TDP-43 WT proteins following 

TEV cleavage in the presence of yeast total RNA-only (25 g) (green) or yeast total RNA (25g) followed by RNase 

A addition (2.5g) at 90 min post-TEV cleavage (red prior to/purple following RNase A). (F) Construct designs for 

non-optogenetic TDP-43 vectors containing functional (WT) or RNA-binding deficient (5FL) RRMs. TDP-43cyto 

constructs contain point mutations in the nuclear localization sequence to mimic cytoplasmic mislocalization. (G-H) 

Immunofluorescence analysis of cells expressing EGFP-TDP-43 constructs (G) or EGFP-TDP43cyto constructs (H) 

with/without functional RRMs (WT/5FL) for hyperphosphorylated TDP-43 (red) and p62 (purple). Scale bars = 10 

m. (I-J) FRAP analysis of EGFP-TDP43 5FL (G) and EGFP-TDP43cyto 5FL (H) inclusions. n = 14-23 (I) and 20-

24 cells (J). Data shown are mean +/- S.E.M. Scale bars = 10 µm. 

2.3.5  RNA-deficient phase separation relies upon aromatic residues in the TDP-43 low-

complexity domain 

Given the contribution of aromatic interactions to the phase separation of related RBPs like 

FUS (Lin et al., 2017; Murthy et al., 2019; Wang et al., 2018b), we next sought to determine 

whether LLPS of RNA-deficient TDP-43 might arise through similar mechanisms. To first test the 

contribution of these amino acids in the phase behavior of the TDP-43 LCD, we performed serine 

substitutions at all 8 phenylalanine residues within our optoLCD construct (F>S) (Figure 12A), a 

strategy that has been used successfully to mitigate the contribution of tyrosine-driven cation-pi 

interactions in the LLPS of FUS (Lin et al., 2017; Wang et al., 2018b). While the WT optoLCD 
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readily undergoes light-induced phase separation (LIPS), phenylalanine substitutions result in a 

complete inhibition of droplet formation in response to light stimulation (Figure 12B). To next 

determine whether these phenylalanine residues play a similar role in LLPS of full-length TDP-

43, we performed the same F>S substitutions within the LCD of EGFP-tagged TDP-43 constructs 

with RNA-binding mutations (5FL) shown to promote intracellular droplet formation (Figure 11G-

H). As expected, expression of EGFP-TDP43 5FL resulted in enhanced nuclear droplet formation 

compared to WT TDP-43 proteins (Figure 12C-D). However, F>S mutations in the LCD of EGFP-

TDP43 5FL reduces droplet formation back to levels of EGFP-TDP43 WT, as measured by mean 

fluorescence intensity variation (Figure 12C-D). FRAP analysis was then performed on EGFP-

TDP43 5FL and EGFP-TDP43 5FL F>S droplets to determine whether phenylalanine substitutions 

may also alter the biophysical properties of these TDP-43 condensates. Both whole (Figure 12E) 

and partial bleach (Figure 12F) experiments showed an increased fluorescence recovery of EGFP-

TDP43 5FL proteins with F>S mutations, possibly suggesting a role for interactions involving 

these phenylalanine residues in driving maturation of TDP-43 droplets.  
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Figure 12. Phenylalanine residues in the LCD may contribute to TDP-43 droplet formation and maturation. 

(A) Amino acid composition of the TDP-43 LCD (a.a. 274-414). The most abundant aromatic residue within this 

region is phenylalanine (highlighted in red). (B) Representative images of HEK293 cells expressing optoLCD WT 

(top) or optoLCD F>S (bottom) exposed to acute blue light stimulation (1 sec, 1% laser power, 488 nm). (C) 

Representative images of HEK293 cells expressing EGFP-tagged full-length TDP-43 WT (top), TDP-43 5FL 

(middle), or TDP-43 5FL F>S (bottom). (D) Quantification of mean intensity variation within the nucleus of cells 

expressing the indicated constructs. (E) Whole-bleach FRAP analysis of EGFP-TDP-43 5FL (top) or EGFP-TDP-43 
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5FL F>S nuclear droplets. (F) Partial-bleach FRAP analysis of EGFP-TDP-43 5FL (top) or EGFP-TDP-43 5FL F>S 

nuclear droplets. Data points shown are mean +/- S.E.M. Scale bars = 10 µm. 

2.3.6  Impaired SG recruitment promotes aberrant TDP-43 phase transitions  

SG components are modifiers of toxicity and pathological aggregation associated with 

TDP-43-overexpression in yeast, fly, and mouse models (Becker et al., 2017; Elden et al., 2010; 

Kim et al., 2014). SGs are composed of high concentrations of LCD-containing proteins and form 

through LLPS (Shin and Brangwynne, 2017), and maturation of TDP-43-containing SGs may seed 

pathological inclusions (Harrison and Shorter, 2017). Since RNA-binding dictates the ability of 

TDP-43 to undergo LLPS and inclusion formation, we asked whether reducing the RNA-binding 

ability of TDP-43 would confer enhanced SG recruitment and subsequent maturation into 

insoluble inclusions. Because cytoplasmic mislocalization is required for TDP-43 recruitment to 

SGs (Bentmann et al., 2012), we first induced SG formation in cells expressing cytoplasmic TDP-

43 (EGFP-TDP43cyto) with functional (WT) or RNA-binding deficient (5FL) RRMs and 

examined co-localization with known SG markers. Notably, RNA-binding-deficient TDP-43 

(TDP43cyto 5FL) was excluded from endogenous SGs upon heat shock or sodium arsenite-

induced cell stress, whereas RNA-binding-competent TDP-43 was recruited to SGs (TDP-43cyto 

WT; SG+ granules) (Figure 13A-C). However, during our analysis we discovered a subset of 

cytoplasmic WT TDP-43 granules that formed under stress conditions did not co-localize with SG 

markers (SG- granules) (Figure 13A-B). Further investigation revealed that these TDP-43 granules 

(SG- granules) lacked mRNA (Figure 13D) and were enlarged (Figure 13E). In contrast, 

cytoplasmic TDP-43 recruited to SGs (SG+) co-localized with mRNA signal (Figure 13D). FRAP 

analysis of these two subsets of cytoplasmic TDP-43 granules in live cells similarly revealed that 
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TDP-43 recruited to RNA-containing stress granules (SG+) remained dynamic, whereas the 

excluded TDP-43 species (SG-) were static (Figure 13F-G, Appendix Video 7). Furthermore, 

TDP-43 residing in SG- inclusions were hyperphosphorylated and p62-positive (Figure 14A), thus 

exhibiting pathological hallmarks of TDP-43 proteinopathy. This result suggests that TDP-43 

recruitment to SGs requires RNA binding and that localization to acutely-formed, RNA-rich SGs 

promotes TDP-43 solubility, whereas TDP-43 outside of these RNA-containing assemblies are 

insoluble.  

In support of this notion, TDP-43 5FL inclusions due to RNA-binding deficiencies did not 

co-localize with SG proteins in the nucleus or in the cytoplasm in HEK293 cells (Figure 14B). 

Furthermore, although optoTDP43 proteins were recruited to SGs upon sodium arsenite treatment, 

optoTDP43 inclusions of all sizes were devoid of key stress granule components (Figure 14C-D) 

(Boeynaems et al., 2016) after illumination. Neuropathological analysis of ALS/FTLD patient 

tissue similarly revealed an absence of co-localization between TDP-43 inclusions and 

G3BP1/ATXN2 (Figure 13H, Figure 14E).  
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Figure 13. RNA-binding and stress granule localization prevents TDP-43 inclusions. 

(A) Cytoplasmic EGFP-TDP43 constructs were expressed with functional (WT, top) or RNA-binding deficient (5FL, 

bottom) RRMs in HEK293 cells prior to heat shock or sodium arsenite treatment and immunostaining for G3BP1 

(red) and eIF4G (not shown). (B-C) Percentage of EGFP-TDP43 granules that co-localized with G3BP1/eIF4G were 

calculated (SG+/-). n = 99-316 granules. (D) RNA FISH targeting Poly-A tails was performed to assess mRNA 

presence in SG+/- TDP-43 granules following sodium arsenite treatment. Scale bar = 10 µm. (E) Mean granule area 

for SG+ and SG- TDP-43 granules following heat shock and sodium arsenite treatment was determined by 
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immunofluorescence. n = 24-68 granules per condition. (F-G) HEK293 cells were co-transfected with cytoplasmic 

EGFP-TDP43cyto and G3BP1-mCh and exposed to sodium arsenite treatment to induce stress granule formation. 

FRAP analysis of TDP-43 granules that co-localized (SG+) or did not co-localize (SG-) with G3BP-mCh was 

performed to assess material state of SG+/- granules. n = 17-27 cells. (H) Immunohistochemical analysis of 

ALS/FTLD spinal cord tissue was performed to determine whether patient TDP-43 inclusions contain SG proteins. 

Arrows or insets indicate a lack of co-localization between TDP-43 inclusions (red) and the SG components G3BP1 

(top) and ATXN2 (bottom) (green). Scale bar = 20 µm. Data shown are mean +/- S.E.M. ****, p < 0.0001. 



 96 

 

Figure 14. RNA-deficient TDP-43 inclusions do not co-localize with stress granule components. 

(A) HEK293 cells expressing EGFP-TDP43cyto were immunostained for hyperphosphorylated TDP-43 (top row, red) 

or p62 (bottom row, red) and G3BP1 (purple) following sodium arsenite treatment. (B) Representative images of cells 
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containing TDP-43 5FL and TDP-43cyto 5FL inclusions immunostained for stress granule proteins G3BP1 (red) and 

eIF4G (purple). (C-D) HEK293 cells expressing optoTDP43 were subjected to sodium arsenite treatment (top row), 

chronic blue light stimulation (16 hr, ~0.3 mW/cm2, 465 nm) (bottom row), or darkness (middle row) and 

immunostained for known stress granule components G3BP1 (green) and eIF4G (purple) (C) or ATXN2 (green) and 

TIAR (purple) (D). Cells treated with sodium arsenite (top row) show that optoTDP43 can be recruited to stress 

granules through the activation of endogenous cellular stress pathways. However, optoTDP43 inclusions (indicated 

by arrows) induced with blue light stimulation do not co-localize with any of the tested stress granule markers. Scale 

bars = 10 m. Cell nuclei are circled. (E) Representative images of neuropathological examination of TDP-43 

inclusions and SG component proteins (G3BP1, top rows; ATXN2, bottom rows) in FTLD-TDP and ALS/FTLD 

hippocampal sections. Arrows indicate lack of co-localization between SG components and TDP-43 inclusions. Scale 

bars = 50 m. 

2.3.7  Optogenetic induction of aberrant TDP-43 phase transitions is neurotoxic 

TDP-43 proteinopathy correlates with regions of neurodegeneration in ALS/FTD patients 

(Mackenzie et al., 2013). To determine whether the formation of TDP-43 inclusions is toxic to 

human neurons, we differentiated human ReNcell VM neural progenitor cells into cortical-like 

neurons and obtained highly-enriched neuronal cultures (Figure 16A-C) (Donato et al., 2007). We 

then utilized a lentiviral expression system to selectively express optoTDP43 and a far-red 

fluorescent reporter (iRFP670) in human ReNcell cortical neuron cultures under the control of the 

human synapsin promoter (hSyn) (Figure 15A) prior to induction of optoTDP43 inclusion 

formation with chronic light stimulation. Longitudinal live-imaging at 30 min intervals revealed 

no significant neuronal loss in optoTDP43-expressing neurons kept in the dark (Figure 15B-C, 

Appendix Video 8). However, optoTDP43 neurons exposed to blue light exhibited progressive 

blebbing and loss of iRFP670 fluorescent signal in the soma after ~28 hr of light exposure 
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(determined by Chi-Square analysis) (Figure 15B-C, Appendix Video 8). At the final 90 hr 

timepoint, we observed a 4.3-fold increase in cell death in optoTDP43-expressing neurons exposed 

to light in comparison to those maintained in darkness (Figure 15B-C). No significant decrease in 

cell survival was recorded in neurons expressing the Cry2-mCh photoreceptor alone regardless of 

light treatment (Figure 15C, Appendix Video 9). Light stimulation alone also failed to induce 

alterations in neuron morphology (Figure 16D) or cell viability (Figure 16E), indicating no 

phototoxicity due to the light exposure. Subsequent analyses revealed a striking cytoplasmic shift 

of optoTDP43 signal in dying cells ~1 hr before cell death (Figure 15D) that was followed by 

formation of either large optoTDP43 inclusions (inclusions) or smaller, more circular assemblies 

(particles) (Figure 15B). No significant differences were observed in either the overall survival 

patterns (Figure 15E) or the time-to-death following detection of either of these assembly types in 

individual neurons (Event-Death) (Figure 15F). Importantly, neurons harboring either optoTDP43 

assemblies exhibited reduced survival as compared to those with diffuse nuclear signal throughout 

the imaging period (Figure 15E). Immunofluorescence analysis of neurons at the 48 hr timepoint 

confirmed the presence of hyperphosphorylated and p62-positive optoTDP43 inclusions in the 

cytoplasm of ReNcell neurons exposed to light (Figure 15G). However, examination of the smaller 

and equally toxic optoTDP43 particles revealed no co-localization with these markers (Figure 

15G). These observations suggest that aberrant cytoplasmic phase transitions drive 

neurodegeneration and exert toxic downstream effects independent of S409/S410 phosphorylation 

or p62-colocalization status.   
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Figure 15. Light-induced optoTDP43 phase transitions are neurotoxic. 
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(A) Diagrams of lentiviral expression vectors used in neuronal survival experiments. optoTDP43 or the Cry2-mCh 

photoreceptor alone were expressed along with a far-red fluorescent reporter (iRFP670) under the control of the human 

synapsin promoter (hSyn). (B) Representative images of ReNcell cortical neurons expressing optoTDP43 kept in 

darkness (top row) or exposed to blue light (bottom two rows) (~0.3 mW/cm2, 465 nm) during longitudinal toxicity 

screening. The iRFP670 reporter is shown (purple) to visualize cell bodies and neurites. Insets show optoTDP43 signal 

(white) in the same neurons. Cell nuclei are circled. Loss of signal and neurite blebbing indicates cell death (bottom 

rows, 48-60 hr). (C) Survival curves of ReNcell neurons during longitudinal toxicity screening. n = 74-89 cells. Data 

are presented as mean percent survival. (D) Nuclear-cytoplasmic (N/C) ratios of optoTDP43 signal were analyzed at 

baseline (prior to light exposure) and endpoints (last frame prior to cell death or conclusion of imaging session) in 

neurons exposed to light (red) or maintained in darkness (blue). n = 25 cells per light condition. Data is presented as 

fold-changes in N/C ratios normalized to baseline values. Inset shows raw N/C values and data points represent 

individual neurons. Dotted lines indicate population mean at baseline. (E) Survival curves of optoTDP43-expressing 

neurons exposed to light stimulation stratified by optoTDP43 assembly phenotype. n = 13-28 cells. (F) Time-to-death 

between event onset (particle or inclusion formation) and cell death were analyzed between neurons showing either 

optoTDP43 assembly subtype. n = 17-28 cells. (G) Immunofluorescence analysis of light-induced optoTDP43 

assemblies in ReNcell neurons for pathological hallmarks p62 (green) and hyperphosphorylated TDP-43 (purple). 

Data shown are mean +/- S.E.M. ****, p < 0.0001. Scale bar = 10 µm. 



 101 

 

Figure 16. ReNcell VM differentiation yields a highly neuronally-enriched culture. 

(A) ReNcell VM neuronal differentiation protocol schematic. (B) Representative immunofluorescence images of 

ReNcell VM neurons (differentiation day 18) following the differentiation protocol outlined in (A). MAP2 (green) 

and III-tubulin (red) are shown at 20X (top) and 60X (bottom) magnification. (C) Quantification of the percentage 

of MAP2/BIII-tubulin double-labeled cells shows a highly enriched neuronal population following the outlined 

differentiation protocol. n = 260 cells. (D-E) ReNcell neurons were exposed to chronic blue light stimulation (48 hr, 

~0.3 mW/cm2, 465 nm) or darkness prior to examination of neuronal morphology (D) and cell viability, as assessed 

by measurements of ATP levels (E) (CellTiter-Glo, Promega). No differences in morphology (D) or cell viability (E) 
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were observed between neurons in blue light or darkness conditions. Treatment with 0.1% Triton X-100 served as a 

positive death control. Scale bars = 20 µm. 

2.3.8  Bait oligonucleotides rescue aberrant TDP-43 phase transitions and neurotoxicity 

To investigate whether the neurotoxicity associated with aberrant optoTDP43 phase 

transitions could be mitigated through enhanced RNA binding, we designed a 2'OMe-modified 

RNA oligonucleotide based on a well-characterized TDP-43 binding sequence (Clip_34nt) 

previously shown to exhibit a high affinity for TDP-43 RRMs and a Kd of 112 nM (Ayala et al., 

2011; Bhardwaj et al., 2013). We next employed the Clip_34nt to assess the ability of these bait 

oligonucleotides (bONs) to prevent light-induced optoTDP43 phase transitions in HEK293 cells.  

Cells expressing optoTDP43 were treated with either Clip_34nt or a scrambled oligonucleotide of 

equal length and nucleic acid composition prior to an 8 hr light stimulation protocol (Figure 17A). 

Similar to the effect produced by total HEK293 RNA, treatment with the bONs resulted in a dose-

dependent reduction in cytoplasmic optoTDP43 assemblies (Figure 17B) in contrast to the non-

targeting scrambled control. To test whether preventing light-induced optoTDP43 phase 

transitions enhanced neuronal survival, we next performed automated longitudinal imaging of 

optoTDP43-expressing ReNcell cortical neurons following a 4 hr pre-treatment with either 

Clip_34nt or the control oligonucleotide (Figure 17C). While no significant differences were 

observed in cumulative risk-of-death, we observed a significant and dose-dependent reduction in 

neurotoxicity during light treatment following treatment with the bONs (Figure 17D-E). Decreased 

toxicity was associated with similar dose-dependent reductions in light-induced optoTDP43 phase 

transitions, both inclusions and particles (Figure 17F), and nuclear-cytoplasmic redistribution of 

the optoTDP43 protein (Figure 17G). Consistent with results presented above, these studies 
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suggest that the neuroprotective effect of a TDP-43-binding oligonucleotide occurs through the 

prevention of aberrant and neurotoxic cytoplasmic TDP-43 phase transitions. 

 

Figure 17. Bait oligonucleotides inhibit aberrant phase transitions of TDP-43 and rescue associated 

neurotoxicity. 
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(A-B) HEK293 cells expressing optoTDP43 were pre-treated with non-targeting scrambled or targeting Clip_34nt 

RNA oligonucleotides for 30 min prior to chronic blue light stimulation (8 hr, ~0.3 mW/cm2, 465 nm). Arrows indicate 

cytoplasmic optoTDP43 assemblies. (B) Quantification of percentage of cells showing light-induced cytoplasmic 

optoTDP43 assemblies following indicated oligonucleotide treatments. n = 578 – 943 cells. (C) Diagram representing 

timeline of oligonucleotide treatments and neuronal survival screening. optoTDP43-expressing ReNcell neurons were 

treated with indicated oligonucleotides 4 hr prior to blue light exposure and automated longitudinal imaging. (D) 

Representative images of neurons treated with 1M scrambled or Clip_34nt oligonucleotides prior to light exposure. 

Insets show optoTDP43 signal. Cell nuclei are circled. (E) Cumulative risk-of-death plots generated from Kaplan-

Meier survival curves of ReNcell neurons over time following treatment with increasing doses of scrambled (blue) or 

targeting Clip_34nt (red) oligonucleotides. Shades of traces indicate treatment concentration (light = 500nM; dark = 

1M). n = 78-121 cells. (F) Automated object detection was utilized to determine percentage of ReNcell neurons 

showing optoTDP43 assemblies over time following the indicated oligonucleotide treatments. n = 37-39 cells. (G) 

Nuclear-cytoplasmic (N/C) ratios of optoTDP43 signal were calculated over time in neurons exposed to the indicated 

oligonucleotide treatments. n = 34-45 cells. *, p < 0.05; **, p < 0.01; ***, p < .001; ****, p < 0.0001. + indicate 

comparisons between 500nM treatment groups; * indicate comparisons between 1000nM treatment groups. Data 

shown are mean +/- S.E.M. Scale bars = 10 µm. 

2.4 Discussion 

TDP-43 proteinopathy is a pathological hallmark in several neurodegenerative disorders. 

Modeling this pathology has proven challenging and no standard currently exists to reliably 

reproduce TDP-43 inclusions in live cells. To address this problem, we developed a photokinetic 

system to selectively induce TDP-43 proteinopathy that recapitulates pathological features 

observed in ALS/FTD and other neurodegenerative diseases. This system allowed us to study the 

intracellular mechanisms driving pathological phase separation. We show that the intracellular 
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phase transitions of TDP-43 are mediated by the LCD, and events which promote homo-

oligomerization of the TDP-43 LCD seed neuropathological inclusions. RNA-binding status 

dictates TDP-43 LCD-mediated oligomerization and RNA treatment blunts LLPS, aggregation of 

purified TDP-43, and light-induced optoTDP43 inclusion formation in live cells. Given recent 

evidence suggesting a role for SGs in seeding TDP-43 inclusions (Fernandes et al., 2018), we 

hypothesized that the heightened ability of RNA-binding deficient TDP-43 to undergo LLPS and 

aggregation confers enhanced recruitment to phase-separated SGs. Surprisingly, RNA-binding 

deficient TDP-43 is excluded from acutely-induced SGs and instead found in inclusions devoid of 

SG components. In contrast, TDP-43 recruited to SGs remained dynamic within these RNA-rich, 

liquid-like compartments. Since RNA binding inhibits aberrant phase transition of TDP-43, we 

tested whether a TDP-43-binding oligonucleotide sequence inhibits a pathogenic event. 

Remarkably, treatment with the oligonucleotide mitigated the cytoplasmic mislocalization and 

aberrant phase transition of optoTDP43 in response to light and rescued neurotoxicity.  

Therefore, we propose that RNA-binding dictates the ability of optoTDP43 to form light-

induced inclusions. In this model, LCD oligomerization of RNA-bound optoTDP-43 is blocked 

upon Cry2-mediated increases in local protein concentration while RNA-binding deficient 

optoTDP43 LCDs associate, thereby promoting inclusion formation (Figure 18A). This 

phenomenon could arise from a conformational change associated with nucleic acid binding, as 

shown for other RNA-binding proteins (Williamson, 2000). Nucleic acid binding also maintains 

the TDP-43 dimer and promotes solubility, potentially through an allosteric prevention of 

LCD:LCD interactions (Afroz et al., 2017; Sun et al., 2014). It is also possible that RNA-binding 

impedes TDP-43 homo-oligomerization through competitive inhibition. While the LCD appears 

to be dispensable for RNA binding (Buratti and Baralle, 2001), it contains an RGG motif that can 
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mediate RNA interactions (Conicella et al., 2016). Consistent with this, RNA depletion results in 

the in vitro oligomerization and aggregation of a C-terminal TDP-43 cleavage product lacking 

RRM1 and a portion of RRM2 (TDP-25) (Kitamura et al., 2016). Contacts within the TDP-43 

RRMs themselves may also cooperate and play a distinct role in the TDP-43 aggregation process, 

as both RRM1 and RRM2 can form tetrameric assemblies in vitro (Kuo et al., 2009), and the 

RRM2 contains various segments capable of forming amyloid-like conformations (Guenther et al., 

2018b). Overall, interactions between these domains and RNA may block regions that mediate 

aberrant TDP-43 phase transitions. Similarly, FUS LLPS is inhibited by the nuclear import 

receptor Karyopherin-2 due to competitive interactions within domains that drive self-association 

(Guo et al., 2018; Yoshizawa et al., 2018). 

Our work and other observations suggest that an altered TDP-43:RNA ratio creates an 

aggregation-prone environment for TDP-43 and serves as an upstream event in TDP-43 

proteinopathy. This may occur due to disease causing mutations such as C9orf72 ALS/FTD that 

disrupt nuclear transport dynamics resulting in elevated cytoplasmic TDP-43 protein (Zhang et al., 

2015b) and retention of RNA in the nucleus (Freibaum et al., 2015). Disease-causing mutations in 

the TDP-43 RRMs that abolish RNA binding have not yet been described. However, disease 

associated mutations within the TDP-43 LCD likely promote aberrant phase transitions of RNA-

deficient TDP-43 proteins. This RNA-dependent model explains the aggregation of TDP-43 

observed in overexpression models, in which insoluble inclusions may result from concentration-

dependent phase transitions of cytoplasmic TDP-43 due to a lack of RNA substrates, as well as 

the cytoplasmic localization of TDP-43 inclusions observed in patient tissue (Scotter et al., 2015). 

Furthermore, this phenomenon likely serves as the convergence point for a number of pathways 

proposed to contribute to ALS/FTD including: altered TDP-43 expression, half-life and clearance; 
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disrupted nucleocytoplasmic transport;  and abnormal RNP assembly and trafficking (Boeynaems 

et al., 2016; Gopal et al., 2017; Ling et al., 2013). A TDP-43:RNA imbalance is further supported 

by a recent study indicating that RNAs are buffers to inhibit LLPS of nuclear RNA binding proteins 

(Maharana et al., 2018). 

SG-mediated seeding may underly the formation of TDP-43 inclusions. For example, the 

modulation of SG components alleviates TDP-43 inclusion formation and toxicity in 

overexpression models (Becker et al., 2017; Elden et al., 2010; Kim et al., 2014). While previous 

studies show that both the TDP-43 RRMs and LCD are necessary for SG targeting (Colombrita et 

al., 2009), we show that TDP-43 RNA binding is required for SG localization. This is consistent 

with previous reports describing the RNA-dependent recruitment of ALS/FTD-linked FUS protein 

to SGs (Daigle et al., 2013). Furthermore, we observed that cytoplasmic TDP-43 excluded from 

acute SGs forms pathological inclusions lacking mRNA, whereas TDP-43 recruited to SGs is 

dynamic and mobile. This is likely due to the abundance of RNA and other LCD-containing RBPs 

within SGs. RNA itself has been shown to alter the properties of protein-rich droplets (Zhang et 

al., 2015a) and reduces droplet viscosity through dynamic protein:RNA interactions within LAF-

1 droplets (Elbaum-Garfinkle et al., 2015). These dynamic protein:protein, protein:RNA, and 

RNA:RNA interactions within SGs likely contribute to the liquid-like properties of these structures 

and may convey a diminished propensity to initiate pathological maturation/fibrillization as 

compared to a more homogenous, protein-rich granule.  Therefore, our findings may delineate 

between normal, physiological LLPS interactions, specifically in the formation of 

heterogeneously-composed membraneless organelles, and pathological homogeneous LLPS 

interactions prone to seed disease-associated protein inclusions (Figure 18B). However, this does 

not eliminate the possibility that altered SG dynamics contribute to the aggregation of TDP-43. 
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For example, whereas RNA-containing SGs may initially inhibit TDP-43 proteinopathy, shifts in 

the SG composition to a more protein-saturated state might be capable of directly promoting TDP-

43 LCD:LCD interactions. Consistent with this, prolonged stress was recently observed to elicit 

TDP-43-positive SGs that dissolve leaving phosphorylated TDP-43 (McGurk et al., 2018). Thus, 

there may be many roads to TDP-43 aggregation only some of which involve SGs (Boeynaems 

and Gitler, 2018). 

It is unclear whether aberrant phase transitions or inclusions themselves are inherently 

neurotoxic and/or capable of driving neurodegeneration. ALS-linked mutations in TDP-43 that 

increase aggregation propensity result in enhanced toxicity in a variety of in vitro and in vivo 

models (Janssens and Van Broeckhoven, 2013). In contrast, neurodegeneration has also been 

characterized prior to significant accumulation of detergent-insoluble TDP-43 species in other 

systems (Arnold et al., 2013). TDP-43 sequestration within artificial inclusions recapitulates loss-

of-function phenotypes (Prpar Mihevc et al., 2016) and TDP-43 knockout is embryonic lethal 

while conditional knockdown models produce ALS-like phenotypes in vivo (Xu and Yang, 2014). 

This suggests that perturbations in TDP-43 function, such as RNA processing, may also drive 

neurotoxicity. Our data indicate that cytoplasmic mislocalization precedes light-induced TDP-43 

particle or inclusion formation and neuronal death, while neuroprotective oligonucleotide 

treatment delays/prevents these events. Thus, it is possible that cytoplasmic sequestration in the 

form of aberrant TDP-43 assemblies may produce neurodegeneration through both gain- and loss-

of-function mechanisms. 

In sum, we describe an optogenetic-based method to induce controlled TDP-43 

proteinopathy in live cells and establish that RNA regulates the formation of TDP-43 inclusions. 

Our studies indicate that aberrant phase transitions are toxic to human cortical-like neuronal cells 
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and future work will dissect the properties of toxic TDP-43 assemblies and the downstream 

processes that contribute to neurodegeneration. Finally, our data suggest bONs or bait nucleic acid 

(bNA) strategies can inhibit aberrant phase transitions of TDP-43, providing a potential therapeutic 

approach for future study. 
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Figure 18. RNA dependent model of TDP-43 proteinopathy. 

(A) Schematic of light-induced optoTDP43 inclusion formation. Cry2 photoreceptor reversibly homo-oligomerizes 

upon illumination (upper right corner). In the cytoplasm, light-induced increases in the focal concentration of RNA-

unbound optoTDP43 (yellow) result in aberrant phase transitions that mature into insoluble inclusions capable of 

recruiting endogenous TDP-43 protein. LCD interactions of RNA-bound optoTDP43 (blue) are blocked upon 

illumination, maintaining optoTDP43 solubility and inhibiting inclusion formation. Addition of TDP-43 target RNA 

binding sequences and bNAs inhibit aberrant phase transitions of optoTDP43. (B) Proposed role of SG localization 

and intracellular TDP-43 LLPS. Physiological LLPS: RNA-bound TDP-43 localizes to SGs and the LCD promotes 

physiological phase separation into a heterogeneous RNP environment. The abundance of additional LCD-containing 

RBPs and RNA species promotes transient hetero-molecular interactions and rapid exchange of molecules, which 

maintains the liquid-like state and solubility of the granule. Pathological LLPS: An altered stoichiometric balance of 

TDP-43:RNA substrates promote RNA-deficient TDP-43 interactions. These aberrant homo-molecular interactions 

through the LCD may initiate aberrant TDP-43 phase transitions into insoluble inclusions. Loss of SG RNA may also 

promote the liquid-to-solid transition of TDP-43. 
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3.0 Diverse short RNA species inhibit, reverse, and remodel aberrant FUS self-assemblies 

This chapter is adapted from: Guo, L.*, Mann, J.*, Gomes, E., Portz, B., Gleixner, A., Mauna, J., 

Gale, J., Donnelly, C.#, Shorter, J# (2020). Diverse short RNA species inhibit, reverse and remodel 

aberrant FUS self-assemblies. In preparation. 

 

(*Authors shared equal contribution*) (# Co-corresponding authors #) 

3.1 Introduction 

Protein aggregates and inclusion body formations are common characteristics of many 

neurodegenerative diseases and are suggested to cause neuronal damage (Taylor et al., 2002). 

Numerous RNA binding proteins (RBPs) with Prion-like Domains (PrLD) including TDP-43, 

FUS, TAF15, EWSR1, TIA1, hnRNPA1, and hnRNPA2, have been found to be mislocalized and 

aggregated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), 

frontotemporal dementia (FTD), and multisystem proteinopathy (MS) (Andersen and Al-Chalabi, 

2011; Couthouis et al., 2011; Kim et al., 2013; King et al., 2012; Lagier-Tourenne et al., 2010; 

Mackenzie et al., 2017). Further studies showed these disease-linked proteins are intrinsically 

aggregation-prone and are highly toxic upon accumulation in cytoplasmic inclusions (Fang et al., 

2014; Gitler and Shorter, 2011; Johnson et al., 2008, 2009). Although it is not yet clear how 

cytoplasmic accumulation induces toxicity, a link between accumulation of pathological 

inclusions formed by these RBPs and persistent stress granules has been indicated (Dewey et al., 

2012; Molliex et al., 2015; Monahan et al., 2016). Indeed, all of the RBPs implicated in ALS are 

components of RNP granules (Alberti et al., 2017). Emerging evidence suggests that the RNP 
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granules are membrane-less organelles that behave like dynamic liquid droplets that rapidly 

assemble through liquid-liquid phase separation (LLPS) (Boeynaems et al., 2018; Shin and 

Brangwynne, 2017). In vitro, purified RBPs with PrLDs form liquid droplets that resemble 

biophysical properties of RNP granules and upon incubation these droplets mature into 

irreversible, solid-like hydrogel and fibrillar aggregates (Lin et al., 2015; Molliex et al., 2015; 

Murakami et al., 2015; Patel et al., 2015). In a cellular context, it has been hypothesized that 

persistence of RNP granules, caused by either failure of granule removal or disease-causing 

mutation in RBPs, can lead to similar aberrant phase transitions, which may induce neurotoxicity 

by sequestering RNP cargo and impairing RNP granule function (Elbaum-Garfinkle and 

Brangwynne, 2015; Lin et al., 2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015).  

Previously, we and others have shown that toxicity associated with aberrant FUS phase 

transitions can be rescued by overexpression of the nuclear import receptor Kapβ2, which can 

function as a protein chaperone and disaggregase to prevent and reverse FUS aberrant phase 

transitions (Guo et al., 2018; Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018). 

However, since the major binding site for Kapβ2 is the PY-NLS of FUS, its activity is reduced 

when there is a disruption in the PY-NLS, which harbors most of the disease-causing mutations 

that impair Kapβ2-FUS interactions (Da Cruz and Cleveland, 2011; Dormann and Haass, 2011; 

Dormann et al., 2010; Guo et al., 2018; Ito et al., 2011; Mackenzie et al., 2011). Therefore, 

disaggregating agents targeting areas outside of the PY-NLS are needed for these mutants. 

Although the PrLD may be the major driving force of LLPS and aggregation, the RNA-binding 

domains provide additional regulation of FUS LLPS as RNAs can modulate the biophysical 

properties of liquid-like RBP droplets and modulate their aging process (Burke et al., 2015; Lin et 

al., 2015; Monahan et al., 2017; Zhang et al., 2015a). Therefore, here we have focused on 
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developing FUS-binding RNA molecules that can stabilize the liquid phase of the RBP assembly 

or reverse the aberrant phase transition process. 

RNA binding is essential for FUS function, cellular localization, cytotoxicity and 

incorporation into stress granules (Bentmann et al., 2012; Daigle et al., 2013; Liu et al., 2013; 

Shelkovnikova et al., 2013a; Sun et al., 2011; Vance et al., 2013; Yu et al., 2015). FUS binds RNA 

through its RNA Recognition Motif (RRM), Zinc Finger Motif (ZnF), and 2 RGG domains (Burd 

and Dreyfuss, 1994; Ito et al., 2011; Ozdilek et al., 2017; Prasad et al., 1994; Schwartz et al., 2013). 

FUS is a promiscuous binder of RNA whose aggregation can be prevented by recruitment into 

RNP granules (Hoell et al., 2011; Nakaya et al., 2013; Shelkovnikova et al., 2013b; Wang et al., 

2015). Consistent with these in vivo results, in vitro studies show that RNA binding can affect 

RBP liquid droplet formation, viscoelasticity and molecular dynamics in a variety of ways, 

suggesting it may be possible to regulate RBP phase behavior with RNA (Lin et al., 2015; Molliex 

et al., 2015; Murakami et al., 2015). For example, while initial addition of low concentrations of 

RNA can promote the formation of liquid droplets of proteins like FUS, higher concentrations of 

RNA seem to conversely inhibit liquid droplet formation (Burke et al., 2015). RNA has also been 

shown to differentially tune the material properties of RBP condensates, with some RNA species 

enhancing and some decreasing droplet fluidity in different protein/RNA contexts (Elbaum-

Garfinkle et al., 2015; Zhang et al., 2015a). However, these earlier studies did not provide in-depth 

characterization of how individual RNA motifs or species may regulate the formation and 

biophysical properties of their cognate RBPs in different ways. Moreover, it was not clear whether 

RNA can reverse pre-formed RBP aggregates, which is more relevant in disease contexts where 

patient cells likely already contain inclusion bodies prior to disease presentation. Therefore, in 
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order to develop agents with therapeutic potential, it is important to define short RNA motifs that 

can both prevent and reverse FUS aberrant phase transitions and aggregation.  

There are several identified FUS-binding RNA motifs. For example, the first published 

preferred FUS-binding motif (GGUG) was identified via in vitro SELEX analysis (Lerga et al., 

2001). More recently, high throughput sequencing has discovered many RNA targets of FUS in 

the mouse and human genome (Hoell et al., 2011; Ishigaki et al., 2012; Lagier-Tourenne et al., 

2012; Qiu et al., 2014). Included within these sequences are the GUGGU motif, U1 snRNA, and 

several regions in the BDNF (brain-derived neurotrophic factor) pre-mRNA. Most of these RNA 

targets contain G/U rich segments; however, not all FUS-binding RNAs contain these motifs. For 

example, the 48-nucleotide RNA prD from the DNMT3b promoter contains none of these G/U 

motifs but has been shown to interact with FUS and seed its aggregation (Schwartz et al., 2013). 

In addition to sequence-specificity, FUS also recognizes RNA through specific secondary 

structures such as AU-rich stem-loop structures (Hoell et al., 2011). Although it is widely accepted 

that FUS binds many different RNA targets to perform its function, it is not clear whether these 

FUS-binding RNA motifs can modulate the phase behavior of FUS and reverse aberrant FUS 

assemblies, and how this process might regulate FUS function. 

Here we identify multiple FUS-binding short RNA sequences, several of which appear to 

be strong inhibitors of FUS aggregation and LLPS, while others exist as weak inhibitors that only 

inhibit FUS aggregation and not LLPS. Moreover, two of the FUS-binding RNA oligonucleotides, 

one from the 3’UTR of BDNF and one from Escherichia coli, can completely solubilize aberrant 

phase transitions of FUS. Conversely, other identified strong inhibitor oligonucleotides can reverse 

the formation of large FUS aggregation by remodeling them into smaller solid-like assemblies. 

The varying function of these inhibitors was found to be dependent upon RNA oligonucleotide 
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length, sequence and structure, as well where and how they interacted with the FUS protein. The 

RRM and RGG domains of FUS have been identified to be the regions that are particularly 

important for FUS-RNA interaction, but the ZnF domain also binds weakly to RNAs and might 

provide important cooperativity upon RNA binding. Interestingly, here we show a strong 

interaction between strong RNA inhibitors and the RRM/RGG regions, in addition to weak 

contacts within the ZnF domain. We also show that mutation of the RRM seemingly mitigates 

strong inhibitors’ ability to prevent/reverse aberrant FUS assemblies in vitro and furthermore 

seems to promote FUS LLPS in mammalian cells using the optogenetic Corelets system (Bracha 

et al., 2018). While binding of the ZnF domain appears to be nonessential for the ability of strong 

inhibitors to prevent/reverse FUS aggregation, mutation of this domain did effect the function of 

weak inhibitors in vitro and seemed to further promote FUS LLPS in mammalian cells when 

combined with RRM mutations. 

To test the efficacy of these inhibitors in mammalian cells, we also generated a novel 

optogenetic model of full-length FUS proteinopathy (optoFUS) based on previous methods used 

to control aggregation of TDP-43 (Chapter 2). Based on the strongest inhibitor identified in vitro 

from the BDNF 3’UTR, we designed an RNA analogue able to prevent and reverse light-induced 

FUS aggregation in this system that seems to reduce cellular toxicity upon inclusion disassembly. 

We further show that this therapeutic strategy could potentially be expanded to other RBP 

proteinopathies, such as TDP-43, using similar small RNA oligonucleotides to reduce the burden 

of pre-formed optogenetic TDP-43 inclusions (ssTDP43) and achieve a similar cytoprotective 

effect. Thus, it is possible that individual or a combination of RNAs defined in this study could be 

important therapeutic agents to restore RBP homeostasis in several fatal neurodegenerative 

disorders.  
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3.2 Materials and methods 

3.2.1  Protein purification 

GST-TEV-FUS, GST-TEV-FUS1-214, GST-TEV-FUSC428A:C433A:C444A:C447A, GST-TEV-

FUSF305L:F341L:F359L:F368L, GST-TEV-FUS371X were purified as described (Sun et al., 2011). Briefly, 

N-terminally tagged GST-TEV-FUS was overexpressed in BL21(DE3)-RIL E. coli. The E.coli 

cells were then lysed by sonication on ice in PBS and protease inhibitors (cOmplete, EDTA-free, 

Roche Applied Science). The protein was purified over Glutathione Sepharose 4 Fast Flow beads 

(GE Healthcare) and eluted from the beads using FUS assembly buffer (50mM Tris-HCl pH 8, 

200mM trehalose, 1mM DTT, and 20mM reduced glutathione). RNA and fluorescein labeled RNA 

were purchased from Dharmacon (GE).  

3.2.2  RNA-Seq 

RNA that was bound to GST-TEV-FUS during protein purification was extracted by 

adding DNase I and then Protease K to the sample followed by phenol-chloroform extractions, and 

precipitation in 100% ethanol with 70% ethanol wash. For preparing cDNA libraries for high- 

throughput sequencing, we used the NEBNext® Small RNA Library Prep Set for Illumina® and 

followed manufacturers' instructions. Library quality was checked with the Agilent 2100 

BioAnalyzer. The sample was sequenced on the Illumina HiSeq2000 platform. The resulting 

sequences were aligned to human and E. coli genome using Bowtie and the annotated peaks were 

analyzed by a program HOMER for motif finding (Heinz et al., 2010; Langmead et al., 2009). 
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3.2.3  Fibril assembly 

For GST-TEV-FUS, GST-TEV-FUSC428A:C433A:C444A:C447A, and GST-TEV-

FUSF305L:F341L:F359L:F368L, fibrillization was initiated by addition of TEV protease to GST-TEV-FUS 

(5µM) in FUS assembly buffer (50mM Tris-HCl pH 8, 200mM trehalose, 1mM DTT, and 20mM 

glutathione) in the presence or absence of RNasin and 20µM RNA (Couthouis et al., 2011, 2012; 

Sun et al., 2011). Fibrillization reactions were incubated at 25°C for 90min without agitation. 

FUS371X took longer to fibrillize, and its fibrillization was initiated by addition of TEV protease to 

GST-TEV-FUS371X (10µM) in the presence or absence of RNasin and 40µM RNA at 25°C for 20h 

with agitation at 1200rpm. 

Turbidity was used to assess fibrillization by measuring absorbance at 395nm. The 

absorbance was then normalized to that of FUS plus buffer control to determine the relative extent 

of aggregation. For sedimentation analysis, reactions were centrifuged at 16,100g for 10 min at 

4°C. Supernatant and pellet fractions were then resolved by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS–PAGE) and stained with Coomassie Brilliant Blue, and 

the amount in either fraction (% total) determined by densitometry in comparison to known 

quantities of the RBP in question. For electron microscopy, fibrillization reactions (10μl) were 

adsorbed onto glow-discharged 300-mesh Formvar/carbon coated copper grids (Electron 

Microscopy Sciences) and stained with 2% (w/v) aqueous uranyl acetate. Excess liquid was 

removed, and grids were allowed to air dry. Samples were viewed by a JEOL 1010 transmission 

electron microscope. 
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3.2.4  Fibril disassembly 

Fibrils were assembled as above and used for disassembly reactions. 20µM RNA were 

added to preformed GST-TEV-FUS, GST-TEV-FUSC428A:C433A:C444A:C447A, and GST-TEV-

FUSF305L:F341L:F359L:F368L fibrils and 40µM RNA were added to preformed GST-TEV-FUS371X 

fibrils to disassemble fibrils. Turbidity, sedimentation, and EM were used to monitor the progress 

of disaggregation. For turbidity, the absorbance was normalized to that of the fully assembled FUS 

fibrils before addition of RNA to determine the relative extent of disaggregation. Sedimentation 

analysis, and EM were performed as described above.  

3.2.5  Droplet formation 

FUS droplets were formed by incubating GST-TEV-FUS at indicated concentration in FUS 

assembly buffer (50mM Tris-HCl pH 8, 200mM trehalose, 1mM DTT, and 20mM glutathione) for 

2 to 4 hours. Protein samples were then spotted onto a coverslip and imaged by Differential 

interference contrast (DIC) microscopy.  

3.2.6  Anisotropy assay 

8nM fluorescein labeled RNA were added into GST-TEV-FUS, GST-TEV-

FUSC428A:C433A:C444A:C447A, GST-TEV-FUSF305L:F341L:F359L:F368L, or GST-TEV-FUS371X at indicated 

concentration in FUS assembly buffer (50mM Tris-HCl pH 8, 200mM trehalose, 1mM DTT, and 

20mM glutathione) in the presence of RNasin. 
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3.2.7  Cell culture and treatments 

HEK293 cells (purchased from ATCC) were maintained at 37°C and 5% CO2 in DMEM 

(high glucose, pyruvate) (Thermo Fisher Scientific) supplemented with GlutaMAX (Thermo 

Fisher Scientific) and 10% FBS. Transfections were performed using Lipofectamine 3000 

(Thermo Fisher Scientific) according to manufacturer’s instructions following cell seeding onto 

coverslips or culture plates coated with 50mg/mL collagen (Gibco) and overnight incubation at 

37°C/5% CO2. ReNcell VM (purchased from Millipore) cells were maintained at 37°C and 5% 

CO2 in DMEM/F12 (Thermo Fisher Scientific) supplemented with GlutaMAX, B27 (Gibco), 

2ng/mL heparin (Sigma), 20ng/mL bFGF (Millipore) and 20ng/mL hEGF (Millipore). Neuronal 

differentiation was performed as previously described (Chapter 2) and differentiated neurons were 

maintained at 37°C and 5% CO2/5% O2 prior to lentiviral transduction.  

3.2.8  Cloning 

All doxycycline-inducible expression constructs, including FUS-SspB mutants, optoFUS 

and ssTDP43, were generated through Gibson Assembly (HiFi DNA Assembly Master Mix, NEB) 

of PCR-generated fragments inserted at the NotI/EcoRI restriction enzyme sites of a Tet3G base 

vector (synthesized by GeneWiz). Synthesized gBlocks (IDT) containing 4FL and 4CA point 

mutations were used as templates for PCR of fragments used to assembly FUS-SspB mutants. 

Plasmids containing MBP-tagged FUS (Plasmid #98651, Addgene) were used as templates to 

generate WT FUS-SspB and optoFUS constructs. Previous-generation optoTDP43 constructs 

containing TDP-43 coding sequences were used as PCR templates to generate ssTDP43 constructs. 

For generation of lentiviral transfer vectors, PCR-generated fragments were inserted at the 
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BsrGI/BamHI restriction enzyme sites by Gibson Assembly of a third-generation base lentiviral 

vector described previously (Chapter 2) for human synapsin promoter-driven expression of target 

proteins.  

3.2.9  Detergent solubility fractionation 

For assessment of relative optoFUS and ssTDP43 detergent solubility, cell lysate 

fractionation was performed as described in Chapter 2 with minor modifications. Briefly, cells 

were first lysed with RIPA buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 2mM EDTA, 1% NP-

40, 1% sodium deoxycholate, 0.1% SDS) supplemented with cOmplete Protease Inhibitor Cocktail 

(Roche) and phosphatase inhibitor cocktails 2/3 (Sigma-Aldrich) following one wash in ice-cold 

1X PBS. After brief sonication (five 3 second pulses at 30% amplitude), lysates were then 

centrifuged at 17,000 x g at 4°C for 45 minutes and the resulting supernatant was collected as the 

RIPA-soluble fraction. Protein concentration was determined using the Pierce BCA assay (Thermo 

Fisher Scientific). Pellets were then washed in RIPA buffer prior to re-centrifugation at 17,000 x 

g at 4°C for 45 minutes. The resulting supernatants were then discarded and pellets were re-

suspended in urea buffer (30 mM Tris pH 8.5, 7 M urea, 2 M thiourea, 4% CHAPS) supplemented 

with cOmplete Protease Inhibitor Cocktail (Roche) and phosphatase inhibitor cocktails 2/3 

(Sigma-Aldrich) and sonicated briefly prior to centrifugation at 17,000 x g at room temperature. 

The resulting supernatant was then collected as the RIPA-insoluble, urea soluble fraction and 

samples were separated by SDS-PAGE prior to western blot analysis.  
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3.2.10  SDS-PAGE/Western blotting 

Prior to SDS-PAGE, samples were first diluted in 4X Laemmli sample buffer (Bio-Rad) 

supplemented with 2-mercaptoethanol (Bio-Rad) and heated at 70°C for 10-15 minutes. Samples 

were then loaded into 12% or 4-20% Mini-PROTEAN TGX Precast gels (Bio-Rad) and separated 

by SDS-PAGE. Separated samples were next transferred to PVDF membranes (Bio-Rad) prior to 

washing (1X TBS) and blocking with 1X Odyssey Blocking Buffer (Li-Cor). Membranes were 

then incubated with primary antibodies diluted in 1X Odyssey Blocking Buffer supplemented with 

0.2% Tween-20 overnight at 4°C. Primary antibody dilutions consisted of: mouse anti-mCherry 

(Novus Biologicals, 1:1000), rabbit anti-mCherry (Abcam, 1:1000), rabbit anti-FUS (Proteintech, 

1:1000), rabbit anti-TDP43 (Proteintech, 1:1000), mouse anti-a-tubulin (Sigma, 1:10000). The 

next day, membranes were washed with TBS-T (0.1% Tween-20) and incubated with secondary 

antibodies (Li-Cor, IRDye 680/800, 1:10000) for 1 hour at room temperature prior to TBS-T 

washes and imaging (Odyssey CLx imaging system).  

3.2.11  Immunofluorescence 

For immunofluorescent characterization of optoFUS and ssTDP43 inclusions, cells seeded 

onto collagen-coated coverslips (Thermo Fisher, 50 μg/mL) were first fixed for 15 minutes at room 

temperature in 4% PFA following one 1X PBS wash. Three additional PBS washes were then 

performed prior to a 1-hour incubation in blocking buffer (0.3% Triton-X100/5% NDS in PBS) at 

room temperature. Cells were then incubated overnight at 4°C with primary antibodies diluted in 

blocking buffer at the following concentrations: rabbit anti-TAF15/TAFII68 (Bethyl Labs, 1:500), 

mouse anti-EWSR1 (Santa Cruz, 1:200), rat anti-methylated TLS/FUS (Clone 9G6, Sigma-
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Aldrich, 1:100), guinea pig anti-MAP2 (Synaptic Systems, 1:1000), rabbit anti-G3BP1 

(Proteintech, 1:500), rat anti-phospho-TDP43 (S409/410) (Clone 1D3, Biolegend, 1:200), rabbit 

anti-SQSTM1/p62 (Abcam, 1:500). The following day, primary antibodies were removed and cells 

were exposed to three 1X PBS washes prior to a 1-hour incubation with secondary antibodies 

(AlexaFluor 488/594/647, 1:1000) diluted in blocking buffer at room temperature. Three 

additional PBS washes were then performed prior to mounting coverslips onto slides using 

ProLong Diamond Antifade Mountant with DAPI (Invitrogen). Slides were allowed to cure 

overnight prior to visualization by confocal microscopy.  

3.2.12  Live-cell imaging 

Live-cell imaging experiments were performed on a Nikon Eclipse Ti2 inverted 

microscope equipped with an X-Light V2 (CrestOptics) spinning disk unit using CFI Plan Apo 

Lambda 40X dry or CFI Plan Apo VC 60X water immersion objectives (Nikon) and a Prime 95B 

CMOS camera (Photometrics). Cells were maintained at 37°C and 5% CO2 in a Tokai HIT STX 

stagetop incubator throughout the imaging process. For chronic stimulation paradigms, wells were 

illuminated using custom-built 96-well LED panels (~0.3mW, 465nm) in between image 

acquisition periods using a 5V analog output from a Texas Instruments BNC-2110 triggering 

device as described in Chapter 2. For acute LIPS experiments, cells expressing iLID cores along 

with FUS-mCh-SspB mutants were first imaged using only the 594nm laser line to establish 

baseline FUS-SspB fluorescence intensity and spontaneous condensate assembly. Acute activation 

sequences (30 sec or less) were then achieved through dual-channel imaging with the 594nm and 

488nm (75% power) laser lines, followed by post-activation image sequences for up to 10 minutes 

acquired using only 594nm lasers to avoid further activation. 
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3.2.13  Fluorescence recovery after photo-bleaching (FRAP) 

For FRAP analysis of optoFUS and ssTDP43 assemblies, cells expressing these constructs 

were first imaged prior to light activation of optogenetic proteins to acquire baseline fluorescence 

recovery rates due to diffusion. Cells were then exposed to light activation for the indicated times 

and relative dynamics of light-induced condensates/inclusions were determined by FRAP. All 

imaging was performed on a Nikon A1 laser-scanning confocal microscope utilizing a 60X oil 

immersion objective (Nikon, CFI Plan Apo Lambda 60X Oil) and Tokai HIT stagetop incubator 

to maintain cells at 37°C and 5% CO2. In brief, 2m diameter bleaching regions-of-interest (ROIs) 

were drawn within nuclear compartments (for dark or pre-activation conditions) or around light-

induced assemblies. 2-3 baseline images were then acquired prior to photo-bleaching within 

bleaching ROIs using the 488nm laser line (500ms, 50% power). Post-bleaching image sequences 

were then acquired for up to five minutes and fluorescence recovery within bleaching ROIs was 

measured over time. Fluorescence intensity values were normalized to intensities within reference 

ROIs of the same size drawn in non-bleached cells to control for fluorescence loss resulting from 

post-bleach imaging. These values were then normalized to each ROI’s minimum and maximum 

intensities and were plotted as mean recovery rates per condition.  

3.2.14  Automated image analysis 

All automated image analysis was performed in NIS-Elements Advanced Research 

software (Nikon) using built-in analysis packages. For analysis of FUS-SspB condensate 

formation following acute light activation protocols, individual regions-of-interest (ROIs) were 

first drawn around all cells expressing both iLID cores and FUS-SspB mutant constructs in each 
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field-of-view. Baseline FUS-SspB fluorescence intensity was determined in frames prior to light 

activation. Automated Spot Detection was then used to identify and quantify the number of FUS-

SspB droplets within each ROI during and following light activation sequences and the Time 

Measurement tool was used to export the number of objects per cell over time to Microsoft Excel. 

Object number values were then normalized to baseline values (prior to light activation), weighted 

based on baseline FUS-SspB fluorescence intensity (compared to population mean), and plotted 

over time. For graphs comparing threshold FUS-SspB concentrations required for LIPS, baseline 

fluorescence values were plotted against the maximum number of objects observed in each 

individual cell over the time-course of the experiment. Cthresh values were determined by 

calculating the mean baseline fluorescence intensity of the five lowest-expressing cells in each 

mutant condition that underwent LIPS (defined as the formation of >10 condensates in response 

to light activation). For quantification of granule dissociation kinetics, the number of objects 

identified in each individual cell in the first frame following light removal (T0) was set at 100% 

and values in each successive frame were normalized as a percentage of initial T0 values and mean 

dissociation values were plotted over time. One-phase exponential decay curves were then fit and 

T½ values for each FUS-SspB mutant were determined using Graphpad Prism 8 software.  

For automated analysis of optoFUS normalized aggregation area, individual z-stacks were 

acquired in 9-16 randomized fields-of-view and maximum intensity projections were generated 

for analysis. First, binaries for cell nuclei and optoFUS inclusions were generated through 

fluorescence intensity thresholding of DAPI and mCherry signals respectively (see Appendix 

Figure 1 for example). Binary subtraction operations were then performed to generate a new binary 

layer consisting of mCherry signal with nuclear signal subtracted to remove confounding nuclear 

optoFUS signal from analysis. The total area of this resulting binary layer (optoFUS inclusions 



 125 

only) was then calculated and normalized to total optoFUS cell area (determined by cell masks 

based upon mCherry fluorescence) and was presented as normalized aggregation area. Mean 

aggregation area values were then determined across fields-of-view and plotted as fold-change 

from control.  

For automated quantification of light-induced formation of ssTDP43 inclusions, maximum 

intensity projections were first generated from z-stacks acquired over at least 6 individual fields-

of-view per condition. Automated Spot Detection was then utilized to identify and quantify the 

number of light-induced granules per field-of-view over time. These values were then normalized 

to baseline (prior to light activation) values and plotted as mean increase from baseline over the 

course of light stimulation. For quantification of ssTDP43 and optoFUS inclusion disassembly, 

individual inclusions from 6-8 fields-of-view were identified and tracked over time. Here, baseline 

inclusion area was first determined through automatically or manually-drawn ROIs in the first 

frame acquired following RNA treatments (T0). ROI areas were then determined for subsequent 

frames every two hours for up to 10 hours, normalized to baseline values and presented as fold 

change from T0 over time. Survival of these inclusion-bearing cells was also manually tracked and 

Graphpad Prism 8 was used to generate and compare Kaplan–Meier survival curves between 

treatment groups. All above analyses were performed blinded.  

3.2.15  Minigene and splicing assays 

For monitoring of TDP-43 splicing function, the CFTR exon 9 minigene assay was 

performed as previously described (Pagani et al., 2000) with minor modifications. In brief, 

HEK293 cells transfected with the CFTR minigene plasmid were treated with siRNA (25nM) or 

RNA inhibitor oligonucleotides (2.5M) for 72 hours prior to cell lysis and RNA extraction using 
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the miRNA Easy Kit (Qiagen). The iScript cDNA Synthesis Kit (Bio-Rad) was then used to 

generate cDNA from RNA samples and PCR reactions were then performed using cDNA 

templates and primers flanking exon 9 of the CFTR minigene prior to separation on a 1% agarose 

gel. Primer sequences are as follows: Fwd: 5’-CAACTTCAAGCTCGTAAGCCACTGC-3’; Rev: 

5’-TAGGATCCGGTCACCAGGAAGTTGGTTAAATCA-3’. Bands were then visualized and 

imaged using the Chemidoc MP Imaging System (Bio-Rad). 

3.3 Results 

3.3.1  Identification of RNA sequence motifs that inhibit and reverse FUS phase transitions 

We first aimed to identify RNA sequence motifs that can inhibit and reverse FUS aberrant 

phase transitions. We found that while extracting recombinant GST-FUS from E. coli, purified 

GST-FUS was RNA-bound (Figure 19A) and RNA removal by RNase A strongly promoted FUS 

aggregation, suggesting that these FUS-bound RNAs can inhibit FUS from forming aberrant 

assemblies in vitro (Figure 19B). Therefore, we first sought to identify enriched RNA motifs in 

this FUS-bound RNA population. The A260/A280 ratio of the GST-FUS purified from E. Coli was 

1.8, indicating 38% (w/w) nucleic acid in the sample. Gel electrophoresis and bioanalyzer showed 

an RNA population with size ranging from 50-100bp (Figure 19C). A cDNA library was 

constructed from this RNA population and was sequenced on Illumina’s HiSeq system. We 

identified 42 enriched motifs between 8-12nt in our RNA library. 16 RNA motifs were then 

selected for testing based on the ranking of enrichment and diversity of these sequences. RNA 

oligonucleotides containing 2 or 4 repeats of individual enriched motifs were synthesized (Table 
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1) and first tested in in vitro FUS aggregation assays. An RNA oligo (RNA C2) that does not 

interact with FUS was used as a negative control. Remarkably, one of the RNAs tested (RNA S2) 

completely inhibited FUS aggregation (Figure 20A-C). Moreover, for 10 other tested RNAs, when 

20 μM RNA was added to 5 μM FUS in the presence of TEV protease, we observed an elongated 

lag time to aggregation and reduction in final turbidity measurements to different extents when 

compared to control RNA (Figure 21A). 5 other tested RNAs did not show activity compared to 

the control RNA in these assays (Figure 21B).  

Since these results indicate that FUS-bound RNA oligonucleotides have the ability to 

inhibit and delay FUS aggregation, we decided to test other published FUS-binding RNAs in our 

in vitro assays. 11 additional short RNA sequences that promote FUS binding, as well as a (UG)6 

RNA that binds TDP-43, were tested61. Within this group of RNAs, 7 showed strong inhibition 

activity where FUS was completely prevented from aggregating (Figure 20A-C). Conversely, 

addition of other RNAs, such as (UG)6 (RNA W2) and the GGUG containing RNA (RNA W3), 

resulted in only modest reduction of FUS aggregation (Figure 21A). Depending on the extent of 

aggregation inhibition, we then divided the RNAs into two groups: strong inhibitors (Figure 20A-

C), and weak inhibitors (Figure 21A). 

It is curious what differences between strong and weak inhibitors underlie the different 

degrees of turbidity changes upon the cleavage of the protective GST tag in this assay. One 

possibility is that strong inhibitors prevent the assembly of all FUS protein and weak inhibitors 

antagonize only a fraction of FUS from aggregating. However, sedimentation analysis showed that 

nearly 100% of FUS was pelleted in reactions including weak RNA inhibitors, indicating the 

higher-order assembly of all FUS protein (Figure 21C-D). It thus may be the case that in the 

presence of weak inhibitors, FUS assembles into unique structures that scatter light differently 
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than fibrous aggregates formed in the absence of RNA when performing our turbidity 

measurements. Due to evidence that FUS aggregation begins with initial phase transition to form 

liquid-like droplets (liquid-liquid phase separation, LLPS) that subsequently mature into solid-

state aggregates (Elbaum-Garfinkle and Brangwynne, 2015; Lin et al., 2015; Molliex et al., 2015; 

Murakami et al., 2015; Patel et al., 2015), we hypothesized that these different RNA 

oligonucleotide inhibitors may antagonize different stages of this process. Since turbidity 

measurements and sedimentation assays were not able to distinguish liquid droplet formation from 

solid-state aggregation, we next used electron microscopy (EM) to visualize FUS assemblies 

formed with/without strong and weak RNA oligonucleotides. Here we observed that FUS forms 

large aggregates in the absence of RNA, but addition of strong inhibitors completely blocked the 

formation of both droplet-like structures and solid aggregates (Figures 20C, 21E). Interestingly, 

while the assembly of large aggregates was prevented upon addition of weak inhibitors, we were 

able to detect numerous spherical assemblies exhibiting high-density stain representative of 

distinct phases with high protein concentration (Figure 20C). We hypothesized that these spheres 

were in fact liquid-like droplets whose formation via LLPS could not be prevented by weak RNA 

inhibitors. To test this idea, we next used DIC imaging to more closely investigate the formation 

and dynamics of FUS droplets in the presence of strong and weak RNA inhibitors. In the absence 

of RNA oligonucleotides, GST-FUS formed dynamic droplets that exhibited classic liquid-like 

behavior such as fusion and surface wetting (Figure 20D). Consistent with our aggregation assays 

and EM images, RNA oligonucleotides that strongly inhibited FUS aggregation also completely 

inhibited initial FUS droplet formation (Figures 20D, 21F). Conversely, weak inhibitors did not 

prevent the formation of FUS liquid droplets (Figure 20D), suggesting that strong and weak 

inhibitors selectively antagonize different stages of aberrant FUS phase transitions. While strong 
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inhibitors prevent both initial FUS LLPS and aggregation, weak inhibitors appear to allow for 

liquid droplet formation but inhibit subsequent solid-state aggregation. 

In order to be developed as effective therapeutic agents, it is advantageous that these 

molecules not only prevent FUS aggregation, but also disassemble any aberrant protein assembly 

that has already formed. Therefore, we next tested whether the identified RNA inhibitors able to 

prevent aberrant FUS phase transitions could also reverse pre-formed FUS assemblies (Figure 

20E). Remarkably, following FUS fibrillization upon incubation with TEV protease, addition of 

all strong inhibitors to pre-formed FUS aggregates resulted in the complete disassembly of FUS 

aggregates within 20 minutes of addition (Figure 20E-F). Similar effects of these RNAs were 

observed when added following the formation of GST-TEV-FUS droplets, where strong inhibitors 

completely and quickly disassembled these pre-formed FUS droplets and weak inhibitors had little 

effect on droplet persistence in these reactions (Figure 20G). The rate of disassembly in these 

assays was also seemingly dependent upon RNA concentration and motif, with RNA S2 being the 

fastest-acting and RNA S1 showing the most complete disaggregation activity (Figure 20E-G). 

Interestingly, when other strong inhibitors were added to pre-formed FUS aggregates, we observed 

a slow recovery of turbidity upon further incubation (120 min) after an initial rapid decrease (20 

min post-addition) corresponding with the disassembly of FUS aggregates (Figure 20F). We 

attributed this slow increase in turbidity to remodeling of FUS aggregates by RNA and thus 

monitored the morphology change by EM and DIC at these time points. EM images showed that 

20 minutes after addition of RNAs, when turbidity is at the lowest point, all strong inhibitors 

completely disassembled large aggregates (Figures 20F, 22A). However, 2 hours after addition of 

RNAs, when turbidity increases recovered, dense protein phases were observed by EM for samples 

including RNA S3, RNA S7 and RNA S8 (Figures 20F, 22A). Moreover, these dense phases 
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showed porous structures that resembled a hydrogel state (Figure 22A). DIC imaging confirmed 

the remodeling of FUS aggregates into smaller hydrogel phases, with observation of small FUS 

droplets that did not fuse (Figure 22B). Combining these observations, our data indicate that RNA 

S1 and RNA S2 are the most potent FUS inhibitors among all strong inhibitors. They completely 

reversed the aggregation and phase transition of FUS, while other strong inhibitors only reverse 

the formation of large aggregates but could not prevent aberrant phase transitions to a hydrogel 

state.  

Surprisingly, identified weak RNA inhibitors also showed various disaggregation activity. 

For example, RNA W8 and RNA W9 showed disaggregating activity comparable to some of the 

strong inhibitors (Figure 22C). Other weak RNA inhibitors (RNA W2 and RNA W2) alternatively 

showed an initial disaggregation phase followed by a delayed increase in turbidity, indicating their 

inefficiency in preventing FUS from undergoing aberrant phase transitions. Several additional 

weak inhibitors did not show any disaggregating activity compared to that of control RNA (Figure 

22D), while intriguingly 3 other RNAs that did not show inhibiting activity in initial assays were 

observed here to disaggregate pre-formed FUS aggregates to an extent that is stronger than control 

RNA (Figure 22D). These results thus indicate that while strong inhibitory activity may be 

sufficient to disaggregate FUS aggregates, inhibitory characteristics do not appear to be necessarily 

required for certain RNAs to be able to disassemble pre-formed FUS aggregates. A closer 

comparison of the weak inhibitors that did show disaggregating activity to those that did not 

revealed that longer RNAs have stronger disaggregating activity (Table 1). Together, these 

observations of varying inhibiting and disaggregating activities of RNA inhibitors may reflect their 

unique interaction patterns with FUS protein that result in these differential effects. 



 131 

 

Figure 19. Preparation of RNA-seq sample. 

(A) Agarose gel shows the RNA in GST-TEV-FUS purified from E. Coli. (B) GST-TEV-FUS (5µM) was incubated 

without TEV protease in the presence or absence of RNase A. Turbidity measurement was used to monitor the 

aggregation kinetics. (C) Bioanalyzer was used to determine the size of the extracted RNA. Experiments were 

performed by Guo, L., Shorter, J., et al. at the University of Pennsylvania.  
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RNA Sequence 
Length 

(nt) 

Inhibit 

aggregation? 

Reverse 

aggregation? 

C2 UGUAUUUUGAGCUAGUUUGCUGAU 24 No No 

S1 CUAGGAUGGAGGUGGGGAAUGGUAC 25 Total Total 

S2 
GAGGUGGCUAUGGAGGUGGCUAUGG

AGGUGGCUAUGGAGGUGGCUAUG 
48 Total Total 

S3 
AUUGAGGAGCAGCAGAGAAGUUGGA

GUGAAGGCAGAGAGGGGUUAAGG 
48 Total Partial 

S4 GACUGAAAAAGGUGGGUUUCUUUU 24 Total Partial 

S5 
AUUGAGGAGCAGCAGAGAAGUUGGA

AAAAAAAAAAAAAAAAAAAAAAA 
48 Total Partial 

S6 
AAAAAAAAAAAAAAAAAAAAAAAAA

GUGAAGGCAGAGAGGGGUUAAGG 
48 Total Partial 

S7 
ACCAUGAUCACGAAGGUGGUUUUCC

CAGGGCGAGGCUUA 
39 Total Partial 

S8 
CUCCGGAUGUGCUGACCCCUGCGAU

UUCCCCAAAUGUGGGAAA 
43 Total Partial 

W1 
GAAAAUUAAUGUGUGUGUGUGGAAA

AUU 
28 Partial No 

W2 UUGUAUUUUGAGCUAGUUUGGUGAU 25 Partial No 

W3 UCAGAGACAUCAUCAGAGACAUCA 24 Partial No 

W4 GGUGAGCACAGAGGUGAGCACAGA 24 Partial No 

W5 CCAAUCUUCCUUCCAAUCUUCCUU 24 Partial No 

W6 GAUGGAUUCCAGGAUGGAUUCCAG 24 Partial No 

W7 AAACGGUCUGAUAAACGGUCUGAU 24 Partial No 

W8 
AUGUCGCAGAAUGUCGCAGAAUGUC

GCAGAAUGUCGCAGA 
40 Partial Partial 

W9 
AACCUUCGUAAACCUUCGUAAACCU

UCGUAAACCUUCGUA 
40 Partial Partial 

W10 CGCUGGCAUCCACGCUGGCAUCCA 24 Partial No 

W11 AAAGCGGCGAUGAAAGCGGCGAUG 24 Partial No 

W12 UAUUGAUCCGGUUAUUGAUCCGGU 24 Partial No 

Table 1. List of tested RNA oligonucleotides. 
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Figure 20. Strong RNA inhibitors inhibit and reverse FUS aggregation and liquid-liquid phase separation. 
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(A) Schematic of in vitro aggregation inhibition assay. GST-TEV-FUS (5µM) was incubated with TEV protease in 

the presence or absence of strong inhibitor (20µM) for 0–100 min. (B) Turbidity measurements were taken every 

minute to assess the extent of aggregation. Shown is the representative results of at least three repeats. (C) 

Fibrillization reactions were performed as in (A-B) and processed for EM at the end of the reaction. Arrows points to 

spheres with high-density stain that indicates formation of protein phases that have high protein concentration. Bar, 

10μm. (D) DIC images of GST-TEV-FUS (5µM) droplets formed in the presence and absence of indicated RNAs 

(20µM). Bar, 20μm. (E) Schematic of in vitro aggregation reversal assay. Fibrillization reactions were performed as 

in (A-B) and at the end of the reaction, water or strong RNA inhibitor (20µM) were added to the reaction. Turbidity 

measurements were taken every minute to assess the extent of disaggregation. Shown is the representative results of 

at least three repeats. (F) Disaggregation reactions were performed as in (E) and processed for EM at indicated time. 

(G) DIC images of GST-TEV-FUS (5µM) droplets before and after addition of RNA (20µM). Bar, 10μm. Two-way 

ANOVA with Dunnett’s correction were used to compare all groups to control RNA treatments. **** p < 0.0001. 

Experiments were performed by Guo, L., Shorter, J., et al. at the University of Pennsylvania. 
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Figure 21. Weak inhibitors prevent FUS aggregation but not liquid-droplet formation. 

(A) 12 weak inhibitors: GST-TEV-FUS (5µM) was incubated with TEV protease in the presence or absence of weak 

inhibitor (20µM) for 0–100 min. Turbidity measurements were taken every minute to assess the extent of aggregation. 
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Shown is the representative results of at least three repeats. (B)  RNA that did not inhibit FUS aggregation: GST-

TEV-FUS (5µM) was incubated with TEV protease in the presence or absence of indicated RNA (20µM) for 0–100 

min. Turbidity measurements were taken every minute to assess the extent of aggregation. Shown is the representative 

results of at least three repeats. (C) GST-TEV-FUS (5 µM) was incubated with TEV protease in the presence or 

absence of with indicated RNA (20µM) for 0–90 min. At 90 minutes, reactions were processed for sedimentation 

analysis. Pellet and supernatant fractions were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue. 

The amount of FUS in the pellet fraction was determined by densitometry in comparison to known quantities of FUS 

and the result are shown. (D) GST-TEV-FUS (5 µM) was incubated with TEV protease in the presence or absence of 

with indicated RNA (20µM) for 0–90 min. At the indicated times, reactions were processed for sedimentation analysis. 

Pellet and supernatant fractions were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue. The amount 

of FUS in the pellet fraction was determined by densitometry in comparison to known quantities of FUS. (E) 

Fibrillization reactions were performed as in (A) and processed for EM at the end of the reaction. Bar, 10μm. (F) 

DIC images of GST-TEV-FUS (5µM) droplets formed in the presence and absence of indicated RNAs (20µM). Bar, 

20μm. Two-way ANOVA with Dunnett’s correction were used to compare all groups to control RNA treatments. ** 

p < 0.01, **** p < 0.0001. Arrows indicate direction of relative change in turbidity compared to control RNA. 

Experiments were performed by Guo, L., Shorter, J., et al. at the University of Pennsylvania. 
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Figure 22. Reversing and remodeling of FUS aggregation by RNA. 

(A) Fibrillization reactions were performed as in Figure 20A and at the end of the reaction, water or indicated RNA 

(20µM) were added to the reaction. At indicated time, samples were processed for EM. The right images show higher 

magnification of the dense protein phase observed in the middle panel, where the porous structure is indicative 

hydrogel formation. (B) DIC images of the hydrogel sample observed in (A) indicating they are small solid-like drops 
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that do not fuse. (C) Weak inhibitor does not reverse FUS aggregation in general. Fibrillization reactions were 

performed as in (A) and at the end of the reaction, water or indicated RNA (20µM) were added to the reaction. 

Turbidity measurements were taken every minute to assess the extent of disaggregation. (D) Long RNAs have some 

activity in reversing FUS aggregation. Fibrillization reactions were performed as in (A) and at the end of the reaction, 

water or indicated RNA (20µM) were added to the reaction. Turbidity measurements were taken every minute to 

assess the extent of disaggregation. Two-way ANOVA with Dunnett’s correction were used to compare all groups to 

control RNA treatments. * p < 0.05, *** p < 0.001, **** p < 0.0001. Arrows indicate direction of relative change in 

turbidity compared to control RNA. Experiments were performed by Guo, L., Shorter, J., et al. at the University of 

Pennsylvania. 

3.3.2  Activity of RNA inhibitors depends on length, sequence, and structure 

In order to design RNA-based oligonucleotides with enhanced activity in mitigating FUS 

toxicity and aberrant phase transitions, it is important to elucidate the mechanism(s) of action 

underlying these effects. To begin to investigate how these various RNA inhibitors differ in their 

interaction with FUS, we first tried to identify the intrinsic characteristics of these various RNA 

inhibitors that may determine their inhibitory and disaggregation activities. We hypothesized that 

the length, sequence, and secondary structure are potential determinants in this regard. To examine 

how RNA length may effect oligonucleotides’ ability to disrupt aberrant FUS assembly, we 

selected a strong inhibitor (RNA S2), which consists of 4 repeats of an enriched motif identified 

in our RNA-seq studies (G.A.G.G.U.G.G.C.U.A.U.G), and synthesized RNA S2/2, which only 

contains 2 repeats of the same enriched motif (Figure 23A). We also selected a weak inhibitor 

RNA W1, which contains two repeats of another identified motif (U.C.A.G.A.G.A.C.A.U.C.A.), 

and synthesized RNA W1*2, which doubles the length and valency of RNA W1 (Figure 23B). As 

we expected, shortening the length of strong inhibitor RNA S2 (RNA S2/2) reduces its ability to 
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prevent FUS phase transitions following TEV cleavage in vitro (Figure 23C), while doubling the 

length and valency of weak inhibitor RNA W1 (RNA W1*2) strengthens its inhibition activity 

(Figure 23D). We next performed assays involving addition of these RNAs after the formation of 

FUS aggregates to examine how RNA length effects disaggregation activity (Figure 23E-F). Here 

again we observed that while RNA S2 can completely disaggregate pre-formed FUS aggregates, 

the shortened RNA S2/2 does not show significant disaggregation activity compared to control 

RNA C2 (Figure 23E). Similarly, doubling the length of the weak inhibitor RNA W1 that 

previously did not show disaggregation activity renders it able to disaggregate pre-formed FUS 

aggregates (Figure 23F).  

Although RNA S2 and RNA W1*2 have the same length (48nt), they have markedly 

different inhibition/disaggregation activity (Figure 23A-F). Therefore, we hypothesized that the 

sequence of the RNA is also important for its inhibition activity. To test this hypothesis, we 

introduced a single A to U mutation in RNA S2/2 in order to introduce a known FUS binding motif 

(G.U.G.G.U) into the sequence (RNA S2/2 (A-U)) (Figure 23A). Surprisingly, while seemingly 

increasing the valency of this RNA inhibitor, this single mutation significantly weakened the 

inhibition and disaggregation activity of RNA S2/2 (Figure 23C, E). This result indicates that 

containing FUS-binding motifs alone does not guarantee RNA inhibition activity and suggests that 

other effects of RNA sequence, such as RNA secondary structure, may also play a role in 

determining inhibitory efficacy.  

We have used single molecule Fӧrster Resonance Energy Transfer (smFRET) to study the 

effect of RNA structure on protein LLPS as well as the interaction between FUS and RNA (Niaki 

et al., 2020). Here, we chose to examine both an unstructured polyU50 RNA and a strong RNA 

inhibitor with similar length (RNA S2) to investigate how RNA oligonucleotides with varying 
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structural content interact with FUS differently. Indeed, as predicted by M-Fold, polyU50 is 

unstructured and the strong inhibitor RNA S2 can fold to a stem loop structure with folding energy 

of -16.40 kcal/mol (Figure 23G). As expected, unstructured polyU50 RNA showed weak inhibition 

activity in our turbidity assay (Figure 23H) and, much like other weak RNA inhibitors, did not 

appear to inhibit FUS LLPS when droplet formation was examined in the presence of polyU50 or 

RNA S2 by DIC imaging (Figure 23I). To next characterize how these differently-structured RNAs 

interacted with FUS to promote or inhibit LLPS by smFRET, we prepared FRET pair-labeled RNA 

substrates such that the FRET pair dyes (Cy3 and Cy5) were separated by the sequence of polyU50 

or RNA S2 (Figure 23J-K). The resulting FRET value of labeled polyU50 is approximately 0.2 

(Figure 23J), shown as a single FRET peak, consistent with an unstructured RNA oligonucleotide. 

Conversely, the resulting FRET value of labeled RNA S2 is distributed around a single peak 

centered at 0.8, indicating a rigid structured RNA (Figure 23K) and consistent with M-Fold 

predictions. 

We then added FUS to labeled RNA substrates to examine how increasing concentrations 

of FUS would alter FRET efficiency. For polyU50, addition of low FUS concentration (5nM) 

immediately shifted the low FRET (0.2) to a single high FRET peak (0.8) with single molecule 

traces displaying stable high FRET signal (Figure 23J), reflecting that FUS induced a tight 

compaction of the long, unstructured ssRNA. As FUS concentration increased (50-500nM), the 

high FRET population diminished, while a broad mid FRET peak (~0.5) emerged (Fig. 21J, left 

panel) with smFRET traces showing increasing level of fluctuations (Fig 21J, middle panel). The 

mid FRET peak indicates an extended RNA structure allowing dynamic interaction between 

multimeric FUS and a single RNA oligo (Fig 23J, right panel), consistent with the fact that this 

weak RNA inhibitor allows FUS droplets to form. Removal of the excess protein by a buffer wash 
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brought the RNA to the stable high FRET state observed at lower (5nM) concentration (Figure 

23J, bottom row), suggesting that the dynamic state (50-500nM FUS) is a weakly engaged, 

transient state of FUS-RNA complex, consistent with the dynamic nature of liquid-like FUS 

droplets. In contrast, for strong inhibitor RNA S2, which has a compact structure with a FRET 

efficiency of 0.8 in the absence of FUS, addition of low FUS concentration (5nM) does not result 

in shift in FRET efficiency (Figure 23K). Even with increased FUS concentration (50-500nM), 

only modest decreases of FRET efficiency to 0.6-0.7 were observed and the smFRET traces are 

highly static without dynamic fluctuation (Figure 23K). This static FRET signal suggests that, in 

contrast to the unstructured polyU50 RNA, the structured nature of the strong inhibitor RNA S2 

may render it unable to expand upon binding of FUS, thus inhibiting the formation of dynamic 

multiple FUS:RNA complexes and resulting in inhibited LLPS (Figure 23K, right panel). In 

summary, it appears that longer, unstructured RNA oligonucleotides can allow for remodeling upon 

interaction with FUS that promotes the additional multimerization of FUS and RNA within 

dynamic, potentially liquid-like complexes. Conversely, more structured RNA oligonucleotides 

may inhibit multimerization and phase separation through binding to monomeric FUS molecules 

and resisting this remodeling that would allow for the binding of additional FUS proteins.  
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Figure 23. RNA length, sequence, and structure determine activity in preventing/reversing FUS aggregation. 

(A-B) Schematics of RNA molecules used in these experiments. Red bars indicate predicted FUS binding sites. (C-

D) GST-TEV-FUS (5µM) was incubated with TEV protease in the presence or absence of indicated RNA (20µM) for 

0–100 min. Turbidity measurements were taken every minute to assess the extent of aggregation. Shown is the 
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representative results of at least three repeats. (E-F) Fibrillization reactions were performed as in (C-D) and at the end 

of the reaction, indicated RNA (20µM) were added to the reaction. Turbidity measurements were taken every minute 

to assess the extent of disaggregation. (G) Predicted secondary structure of polyU50 and RNA S2 by RNA-Fold. (H) 

GST-TEV-FUS (5µM) was incubated with TEV protease in the presence or absence of polyU50 (blue) or RNA S2 

(green) (20µM) for 0–150 min. Turbidity measurements were taken every minute to assess the extent of aggregation. 

Shown is the representative results of at least three repeats. (I)  DIC images of GST-TEV-FUS (5µM) droplets formed 

in the presence and absence of indicated RNAs (20µM). (J) FRET representative traces of polyU50 and histograms 

for varying FUS concentrations (5-500nM) and after wash. (K) FRET representative traces of RNA S2 and 

histograms for varying FUS concentrations (5-500nM). Two-way ANOVA with Tukey’s correction were used to 

compare across all groups. **** p < 0.0001. Experiments were performed by Guo, L., Shorter, J., et al. at the 

University of Pennsylvania. 

 

3.3.3  Strong and weak RNA inhibitors have different interacting patterns with the FUS 

RRM, RGG and ZnF domains 

While our data suggest that certain characteristics of RNA oligonucleotides, including 

sequence, length and structure, can be strong determinants of their ability to buffer aberrant FUS 

phase transitions, we next sought to further define the mechanism of RNA-based aggregate 

inhibition based upon RNA engagement with specific domains of the FUS protein. We selected 

three RNAs with the strongest in vitro activities (RNA S1, RNA S2, and RNA S3) and one weak 

inhibitor (RNA W1) for the following studies. Previously, we showed that Kapβ2 couples binding 

energy to the PY-NLS of FUS to disaggregate FUS aggregates (Guo et al., 2018). We hypothesize 

that RNA binding is also is important for its function in inhibiting/reversing aberrant FUS phase 

transitions. Consistent with this hypothesis, strong inhibitors bind to FUS tightly (RNA S1: Kd = 

40.82 nM; RNA S2: Kd = 104.7 nM; RNA S3: Kd = 101.5 nM) and weak inhibitor RNA W1 binds 
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to FUS with a Kd that is not detectable by fluorescence anisotropy (Figure 24A-D). We and others 

have shown that mutating four conserved phenylalanines (F) in FUS RRM to leucine (L) rescues 

FUS toxicity by abolishing RNA binding (Daigle et al., 2013; Sun et al., 2011). Therefore, we 

hypothesize that the FUS RRM is the primary site of interaction for the function of RNA inhibitors. 

Fluorescence anisotropy experiments confirmed that four F to L mutations (FUS 4FL) significantly 

reduced binding affinity between FUS and strong RNA inhibitors (Figure 24A-C). Upon addition 

of TEV protease, this mutant protein interestingly aggregated slower than WT FUS, suggesting 

these mutations in the RRM also may disrupt self-interaction between FUS molecules (data not 

shown) and is consistent with our previous observation that the RRM is important for FUS 

aggregation (Daigle et al., 2013; Sun et al., 2011). 

Thus, we next tested whether disrupting the interaction between RNA inhibitors and the 

FUS RRM would abolish the ability of RNA to inhibit and reverse FUS phase transitions. 

Although aggregating slower, FUS 4FL formed aggregates with similar morphology compared to 

WT FUS upon extended incubation (Figure 24F). Interestingly, when we next examined 

aggregation of FUS 4FL in the presence of RNA inhibitors, we found that strong RNA inhibitors 

effective in buffering WT FUS phase transitions could no longer prevent (Figures 24G, 23A), or 

reverse pre-formed FUS 4FL aggregates (Figures 24H, 23B). Combining these results with the 

reduced binding affinity of FUS 4FL to RNA (Figure 24A-C), our data could suggest a model in 

which RNA binding to the RRM results in the steric hinderance of intermolecular contacts between 

FUS RRM regions that are required for FUS aggregation. Surprisingly, some strong RNA 

inhibitors not only lost the ability to inhibit FUS 4FL fibrillization, but actually promoted the 

aggregation of FUS 4FL (Figure 25A). This observation could indicate that there are additional 

binding sites where strong inhibitors can interact with and facilitate aggregation of FUS, which is 
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consistent with the result that even with 4F-L mutation, RNAs bind to FUS 4FL with Kd in the 

nM range. 

To next identify other potential domains in FUS that may be playing a role in RNA-

mediated antagonization of aberrant phase transitions, we used nuclear magnetic resonance (NMR) 

to determine the interaction patterns of various RNA inhibitors with the FUS protein (Figure 25C). 

Since the PrLD domain does not bind to RNA, here we used a construct consisting of known RNA-

interaction domains (RRM, RGG and Zinc Finger (ZnF) domains) without the PrLD (FUS269-494) 

that has been used previously to investigate FUS/RNA interactions. NMR spectrum of FUS269-494 

with and without RNA oligonucleotides was determined. As expected, most strong chemical shift 

perturbations are observed in the RRM region, suggesting that this is the major binding site of 

RNA inhibitors (Figure 25C). RNA S1 (bottom panels) induces much higher chemical shifts 

overall and the most intensity decrease of the signal, indicating that it binds very tightly compared 

to the other RNAs and is consistent with our Kd measurement (Figures 22A-D, 23C). Interesting, 

chemical shift perturbations are also present in the ZnF and RGG domain, indicating weak 

interaction throughout these regions (Figure 25C), prompting us to next investigate how the ZnF 

and RGG domains effect the activity of RNA oligonucleotides in inhibiting and disaggregating 

FUS assemblies.  

To test this, we next generated a FUSC428A:C433A:C444A:C447A (FUS 4CA) mutant which 

disrupts the C4 type Zinc coordination scheme (Figure 25D-E). FUS 4CA aggregation kinetics 

and morphology are similar to that of WT-FUS, reflecting the fact that FUS1-422 is the region that 

is particularly important for FUS aggregation (Figure 25D). Surprisingly, when we next tested this 

FUS 4CA mutant in our turbidity assays, it appeared that disrupting the ZnF domain did not 

interrupt the inhibition (Figure 25D) and disaggregation (Figure 26A) activity of strong RNA 
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inhibitors. Consistent with this result, the binding affinities of strong RNA inhibitors to FUS 4CA 

did not show measurable decreases when compared to their binding to WT FUS (Figure 24A-C). 

In comparison, these ZnF mutations seemed to have much more pronounced effect on the activity 

of weak RNA inhibitors, which could neither inhibit nor reverse the aggregation of FUS 4CA 

(Figures 23E, 24B) compared to reactions with FUS 4CA alone. These alternative effects of ZnF 

mutations on the activity of strong and weak RNA inhibitors could be due to different interacting 

patterns with FUS, as NMR data showed strong RRM binding and weak ZnF binding for strong 

RNA inhibitors (RNA S1) and weak binding between the weak RNA inhibitor (RNA W1) and 

both the RRM and ZnF domains (Figure 25C). Together, these observations suggest that the 

activity of weak inhibitors rely more heavily upon interaction with the ZnF domain, while strong 

RNA inhibitors may be more dependent upon interaction with the RRM region.  

In addition to the RRM and ZnF regions, our NMR data suggested that FUS RGG domains 

also interacted with various RNA inhibitors (Figure 25C). Therefore, to begin to investigate the 

relative contribution of RNA:RGG domain interactions to inhibition and reversal of FUS 

aggregation, we created another FUS mutant construct consisting of the N-terminal FUS PrLD and 

RRM regions with C-terminal deletions of the RGG-ZFN-RGG domains (FUS 371X) (Figure 25F-

G). As expected, after deleting the RGGs that are important for FUS assembly (Hofweber et al., 

2018; Qamar et al., 2018; Wang et al., 2018b), FUS 371X aggregated much slower than WT FUS, 

taking up to 24 hours to fully assemble into fibrous aggregates (Figure 26C). Moreover, when the 

C-terminal RGG domains are deleted, we observed that binding of various RNAs to the protein 

was interrupted to different degrees depending on the individual inhibitor (Figure 24A-C). For 

example, the most significant change was observed for RNA S2, where Kd increased from 

104.7±9.2 nM to N/A. Deleting the C-terminal RGG domains induced moderate changes in 
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binding of RNA S1 to FUS, with Kd increasing from 40.82±8.32 nM to 106.5±58.92 nM. On the 

other hand, the we found that binding of RNA S3 to FUS without the C-terminal RGG domains 

was comparable to proteins with C-terminal RGG domains included. Consistent with these trends 

in binding affinity, deleting the two RGG domains completely abolished the activity of all RNAs 

to inhibit and reverse the aggregation of FUS (Figure 25F-G) except for RNA S3, which inhibited 

the aggregation of FUS 371X by ~50%. These results thus suggest that that while RGG domains 

seem to be important for RNA S2 binding and activity, they appear to be nonessential for the 

binding of RNA S3 to FUS protein and resulting inhibitory activity, indicating different binding 

specificity and functional mechanisms for individual RNA oligonucleotides. 

Our analysis on the FUS RRM mutant (4FL), FUS ZnF mutant (4CA), and FUS RGG 

deletion mutant (371X) indicates that RNA binding to different FUS domains is important for its 

ability to inhibit and reverse FUS phase transition and aggregation. In general, stronger binding 

indicates stronger activity. However, even with tight binding (Kd in the nM range), strong RNA 

inhibitors were not able to inhibit the aggregation of FUS 4FL nor FUS 371X (Figures 23A-B, 

23F-G). This result indicates that in addition to binding, other factors, such as interaction between 

FUS domains, also play important roles in RNA inhibitors’ activity. For example, binding to the 

RRM by RNA may elicit a long-range allosteric conformational change in the RGGs that breaks 

intermolecular contacts responsible for maintaining the fibril. Alternatively, initial binding to the 

RRM may enable RNA to engage secondary binding sites in the RGGs that rapidly break 

intermolecular contacts directly. In both cases, we would expect to observe cooperativity in RNA 

function. Indeed, both strong inhibitors and weak inhibitors showed strong cooperativities with H-

coefficient range from 2 to 4.5 (Figure 25H). Specifically, the inhibiting activity of weak inhibitor 

RNA W1 showed stronger cooperativity (H-coefficient of 4.5) than strong inhibitors (H-
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coefficient of ~2). This is consistent with our results that all three regions (i.e. RRM, ZnF, and 

RGGs) are important for the activity of weak RNA inhibitors and that mutating any one of them 

would abolish the ability of weak RNA inhibitors to prevent/reverse FUS aggregation. 

Alternatively, only two regions (RRM and RGGs) seem to participate in the activity of strong 

inhibitors. Therefore, in addition to RNA binding to individual domains, the cooperativity between 

FUS domains seems to also be important for RNA inhibitor function. This cooperativity is most 

important for weak RNA inhibitors because they bind weakly across the three regions. Support for 

this notion could be drawn from a recently proposed bipartite model of FUS:RNA binding 

(Loughlin et al., 2019) involving both structure- and sequence-specific binding of RNA by the 

FUS RRM and ZnF domains with additional sequence-independent cooperativity from RGG 

domains. 
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Figure 24. Mutation of FUS RRM affects RNA affinity and inhibitory activity. 

(A-D) Anisotropy of 8nM fluorescein-labeled RNA binding to GST-TEV-FUS WT, 4FL, 4CA or 371X at indicated 

concentration. Values represent means ± SEM (n = 3). Binding curve was fitted by Prism. Solid line represents the fit 
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and the fitted Kd was reported on the figure. (E) GST-TEV-FUS 4FL does not form droplets even at 100µM after 2 

hours of incubation. (F-G) GST-TEV-FUS 4FL fibrillization reactions were performed in the presence of the indicated 

RNAs and were processed for EM at the end of the reaction. (H) 100µM GST-TEV-FUS 4FL aggregates were 

formed by 24 hours of incubation and addition of strong inhibitor RNA S1 does not reverse the formation of the 

aggregates. Experiments were performed by Guo, L., Shorter, J., et al. at the University of Pennsylvania. 
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Figure 25. FUS RRM and RGG domains affect cooperative RNA binding and inhibition of FUS aggregation. 
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(A) GST-TEV-FUS FUS 4FL (5µM) was incubated with TEV protease in the presence or absence of strong inhibitor 

(20µM) for 0–180 min. Turbidity measurements were taken every minute to assess the extent of aggregation. Shown 

is the representative results of at least three repeats. (B) Fibrillization reactions were performed as in (A) and at the 

end of the reaction, water or indicated RNA (20µM) were added to the reaction. Turbidity measurements were taken 

every minute to assess the extent of disaggregation. (C) NMR spectrum and chemical shift perturbation of FUS (269-

494) with and without the addition of the indicated RNA. (D) GST-TEV-FUS 4CA (5µM) was incubated with TEV 

protease in the presence or absence of strong inhibitors (20µM) for 0–180 min. Turbidity measurements were taken 

every minute to assess the extent of aggregation. Shown is the representative results of at least three repeats. (E) 

GST-TEV-FUS 4CA (5µM) was incubated with TEV protease in the presence or absence of weak inhibitors (20µM) 

for 0–180 min. Turbidity measurements were taken every minute to assess the extent of aggregation. Shown is the 

representative results of at least three repeats. (F) GST-TEV-FUS 371X (10µM) was incubated with TEV protease in 

the presence or absence of strong inhibitor (40µM) at 25°C for 20h with agitation at 1200rpm. Aggregated protein 

was quantified by sedimentation assay. Values represent means ± SEM (n = 3). (G) Fibrillization reactions were 

performed as in (F) and at the end of the reaction, water or indicated RNA (40µM) were added to the reaction. 

Sedimentation assays were performed at 24 hours after addition of RNA to monitor the progress of disaggregation. 

(H) GST-TEV-FUS (5µM) was incubated with TEV protease in the presence or absence of strong (RNA S1-S3) or 

weak (RNA W1) inhibitors at indicated concentration for 0–100 min. Turbidity measurements (absorbance at 395nm) 

were taken every minute to assess the extent of aggregation. At the end of the fibrilization reaction, the absorbance 

was then normalized to that of FUS plus buffer control to determine the relative extent of aggregation. Values represent 

means ± SEM (n = 3). Two-way ANOVA with Dunnett’s correction were used to compare all groups to control RNA 

treatments in turbidity assays. One-way ANOVA with Tukey’s correction was used to compare pellet fractions across 

all treatment groups. *** p < 0.001, **** p < 0.0001. Experiments were performed by Guo, L., Shorter, J., et al. at 

the University of Pennsylvania. 
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Figure 26. Mutation in FUS ZnF domain affect the activities of weak, but not strong, RNA inhibitors. 

(A-B) Fibrillization reactions were performed as in Figure 25D for GST-TEV-FUS 4CA and at the end of the reaction, 

water or strong inhibitors (20µM) were added to the reaction. Turbidity measurements were taken every minute to 

assess the extent of disaggregation. Shown are representative traces of at least three replicates. (C) Fibrillization 
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reactions were performed for FUS 371X as in Figure 25F and at the end of the reaction, sample was processed for 

EM. FUS 371X forms fibrils similar to WT FUS, although the kinetics are much slower. Two-way ANOVA with 

Dunnett’s correction were used to compare all groups to control RNA treatments. **** p < 0.0001. Experiments were 

performed by Guo, L., Shorter, J., et al. at the University of Pennsylvania. 

 

3.3.4  The RRM and ZnF domains mediate endogenous RNA buffering of intracellular 

FUS phase transitions 

As it has recently been demonstrated that endogenous intracellular RNAs, particularly 

within the nuclear compartment, have the ability to buffer aberrant phase transitions of FUS within 

physiological environments (Maharana et al., 2018), we next sought to determine whether the short 

RNA oligonucleotide inhibitors identified here function in a similar manner to endogenous RNA 

inhibitors within a cell. To test this hypothesis, we adapted the recently developed Corelet system 

used to map intracellular phase behavior of the FUS PrLD and other intrinsically disordered 

regions (IDRs) under the tight control of blue light (Bracha et al., 2018) (see Chapter 4.1.2 for 

description). Here, we first generated constructs consisting of FUS coding sequences (amino acids 

1-453) containing wildtype RNA-binding regions, mutated RRM (4FL), mutated ZnF domain 

(4CA), or double RRM/ZnF mutants (4FL/4CA) with C-terminal SspB peptide tags (Figure 27A). 

RGG3 and PY-NLS regions were omitted to prevent spontaneous phase separation of full-length 

FUS proteins with mutated RNA-binding regions (Daigle et al., 2013), as well as to avoid potential 

confounds associated with endogenous buffering of FUS phase separation by nuclear import 

receptors (Guo et al., 2018; Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018). 

Cells co-expressing these FUS-SspB constructs along with photo-activatable seeds (iLID-EGFP-
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FTH1, described in (Bracha et al., 2018)) were then exposed to acute (30 second) blue light 

activation sequences and condensate formation/dissolution were examined across these mutants 

(Figure 27B). Interestingly, mutations within the RRM region (4FL, red trace) led to a significantly 

enhanced formation of light-induced FUS-SspB condensates compared to WT (black trace), while 

mutations within the ZnF domain (4CA, blue trace) had only a modest effect on LIPS (Figure 27B-

C). However, when ZnF mutations were combined with RRM mutations (4FL/4CA, purple trace), 

a further enhancement of FUS-SspB condensate formation was observed when compared to either 

RRM or ZnF mutations alone (Figure 27B-C). A similar pattern was observed when we next 

examined light-induced phase behavior as a function of relative FUS-SspB protein expression 

levels (Figure 27D-E). Here, ZnF mutations (4CA) again only slightly lowered the threshold 

protein concentration (Cthresh) required within a cell to allow for observable condensate formation, 

while RRM (4FL) and dual RRM/ZnF (4FL/4CA) mutations greatly reduced Cthresh under these 

light activation conditions (Figure 27D-E). RRM (4FL) and dual RRM/ZnF (4FL/4CA) mutations 

also led to a slowed dissolution of light-induced condensates when compared to WT and ZnF-only 

(4CA) mutants following light removal (Figure 27F), potentially indicating an increased stability 

of these membraneless structures. Together, these results suggest that while endogenous RNA 

contacts within the RRM may be most important for the buffering of aberrant phase transitions 

within an intracellular environment, weak or cooperative binding by the ZnF domain likely also 

plays a role in preventing intracellular aggregation of FUS under physiological conditions.  
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Figure 27. The RRM and ZnF domains cooperate in mediating intracellular RNA buffering of FUS phase 

separation 

(A) Schematic of iLID cores and FUS-SspB mutant constructs used in (B-F). (B) Representative images of HEK293 

cells co-expressing iLID cores (green) and the indicated mutant FUS-SspB protein (red) prior to and during a 

30 second light activation protocol (488nm, 75% laser power). Insets show cytoplasmic area at baseline and 

following 30 second activation. Scale bar = 10m. (C) Quantification of the average number of FUS-SspB 

assemblies formed per cell during and following a 30 second light activation period. n = 68-91 cells per 

condition. Two-way ANOVA with Tukey’s post-hoc test was used to compare across groups. (D) Diagram of 

maximal light response (number of condensates during the activation period) in (C) plotted against baseline 

FUS-SspB concentration. Data points represent individual cells. (E) Quantification of representative threshold 
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concentrations required for cells to undergo LIPS. n = the lowest-expressing 5 cells with >10 granules post-

activation per condition. Fluorescence intensity values are normalized to WT and shown as fold-change. One-

way ANOVA with Tukey’s post-hoc test was used to compare across groups. (F) Quantification of granule 

dissociation kinetics following conclusion of light activation. Number of granules per cell were plotted over time 

as a percentage of granules in the first frame following light removal (T0). One-phase exponential decay curves 

were fit and T½ was calculated for each condition and plotted in the inset (top right). n = 20-76 cells per group. 

Data shown are mean +/- S.E.M. **** p < 0.0001. 

3.3.5  Generation of a light-inducible model of FUS-ALS proteinopathy 

To next test whether these RNA oligonucleotides can also prevent and reverse FUS 

aberrant phase transitions and aggregation in mammalian cells, we developed a light-inducible 

model of FUS proteinopathy based on a previous model developed to control the aggregation of 

TDP-43 (Chapter 2). To this end, we generated a doxycycline-inducible optogenetic Cry2-FUS 

(optoFUS) construct to selectively induce FUS proteinopathy under the spatiotemporal control of 

light stimulation (Figure 28A). Cry2olig is a variant of the Photolyase-Homologous Region (PHR) 

of the Cryptochrome 2 protein from Arabidopsis thaliana that undergoes reversible homo-

oligomerization (~5 min) in response to blue light (Taslimi et al., 2014). We first tested whether 

Cry2olig-mediated increases in focal intracellular concentrations of optoFUS protein can seed 

intracellular FUS proteinopathy upon chronic light exposure. HEK293 cells treated with 10 ng/mL 

doxycycline to express optoFUS protein were exposed to 8 hours of blue light (∼0.1-0.3 mW/cm2, 

465 nm) or darkness and were first examined by immunofluorescence. Interestingly, cells 

expressing optoFUS that were exposed to blue light stimulation exhibited a significant depletion 

of nuclear optoFUS signal and enhanced formation of cytoplasmic inclusions relative to optoFUS-

expressing cells kept in the dark (Figure 28C-E). Fluorescence recovery after photo-bleaching 
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(FRAP) analysis of light-induced optoFUS inclusions revealed minimal recovery after photo-

bleaching, indicating limited dynamics and solid-like property of the optoFUS inclusions resulting 

from aberrant phase transition (Fig. 28F). Sedimentation assay also confirmed that light-induced 

optoFUS inclusions were detergent-insoluble and seemed to slightly increase the amount of 

insoluble endogenous FUS relative to cells kept in darkness (Figure 28G). To next determine 

whether optoFUS inclusions more closely resembled FUS-ALS or FTLD-FUS pathology observed 

in postmortem patient tissue, we performed immunofluorescence analysis of co-localization 

between light-induced inclusions and common pathological hallmarks seen in these diseases. 

While optoFUS inclusions did co-stain positively with the methylated FUS antibody 9G6, we did 

not observe co-localization with fellow FET family proteins EWSR1 and TAF15 (Figure  26H-I), 

two proteins that typically co-deposit with FUS inclusions in FTLD but not in ALS patients 

(Mackenzie et al., 2010; Neumann et al., 2011, 2012). In addition, optoFUS inclusions do not co-

localize with stress granule marker G3BP1 (Figure 29A) or TDP-43 (Figure 29B). This 

immunocytochemical profile was also observed when optoFUS inclusions were induced in human 

ReNcell VM neurons (Figure 29C-D), suggesting a consistency across human cell line and 

neuronal models. Taken together, these data indicate that light-activated optoFUS inclusions 

exhibit the hallmarks of FUS pathology observed in ALS.  
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Figure 28. optoFUS is a novel light-inducible model of FUS-ALS pathology. 

(A) Schematic of the optoFUS construct used in these experiments, where an N-terminal Cry2olig-mCherry fusion to 

the full-length FUS protein is expressed under the control of the doxycycline-inducible pTRE3G promoter. (B) Light-

induction paradigm used to induce optoFUS inclusion formation. (C) Representative images of cells optoFUS-

expressing cells exposed to 8 hours of darkness or light. Cell nuclei are circled. Scale bar = 10m. (D) 

Immunofluorescence analysis of optoFUS nuclear/cytoplasmic signal following light induction protocol. n = 45 cells 

per group. (E) Quantification of the percentage of cells containing cytoplasmic optoFUS inclusions following 8 hours 

of darkness or light. n = 128-147 cells per group. (F) Fluorescence recovery after photobleaching (FRAP) analysis of 

light-induced inclusions or nuclear optoFUS signal in cells kept in darkness. n = 15-23 cells. (G) Detergent-solubility 
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fractionation of optoFUS cell lysates collected following 16 hours of darkness or light. (H-I) Immunofluorescence 

analysis of optoFUS inclusions for co-localization with (H) FTLD-FUS pathological hallmarks TAF15 (green) and 

EWSR1 (purple) or (I) the ALS-FUS-associated methylated FUS antibody 9G6 (green). Cell nuclei are circled. Scale 

bars = 10m. Data shown are mean +/- S.E.M. Unpaired Student’s t-tests were used to compare across groups. **** 

p < 0.0001. 
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Figure 29. optoFUS inclusions in human neurons also resemble FUS-ALS pathology. 

(A-B) HEK293 cells expressing optoFUS were exposed to 8 hours of blue light stimulation prior to fixation and 

immunofluorescence analysis of stress granule marker G3BP1 (A) and ALS-related protein TDP-43. Arrows indicate 

optoFUS inclusions. Cell nuclei are circled. Scale bars = 10m. (C-D) Human ReN neurons expressing optoFUS 

under the control of the human synapsin promoter (hSyn) were exposed to 72 hours of blue light stimulation prior to 

immunofluorescence analysis of FUS pathological hallmarks. Similar to inclusions formed in HEK293 cells, optoFUS 

inclusions in human neurons are positive for methylated FUS (9G6), negative for stress granule protein G3BP1 (C) 

and negative for fellow FET family proteins TAF15 and EWSR1 (D), suggesting a closer resemblance to FUS-ALS 

than FTLD-FUS pathology. Arrows indicate optoFUS inclusions. Cell nuclei are circled. Scale bars = 10m. 
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3.3.6  FUS-binding RNA oligonucleotides can mitigate aberrant phase transitions of FUS in 

mammalian cells 

We then tested whether the RNA motifs that we discovered in vitro can prevent the 

formation of intracellular FUS inclusions in our optoFUS system (Figure 30A). Experiments using 

a 6-FAM-labeled RNA S1 oligonucleotide revealed that short RNA inhibitors seemed to 

accumulate predominantly in the cytoplasm of HEK293 cells ~2 hours after transfection (Figure 

31A-C). We thus first pre-treated optoFUS-expressing HEK293 cells with the oligonucleotide that 

showed strongest activities in our in vitro assays (RNA S1), in addition to a control oligonucleotide 

(RNA C2), for two hours prior to light induction of optoFUS inclusions (Figure 30A). optoFUS 

inclusion burden was then quantified by automated immunofluorescence analysis of cells fixed 

following RNA treatment and a 6-hour light stimulation protocol (see Appendix Figure 1 for 

details). Remarkably, pre-treatment with RNA S1 resulted in a dose-dependent reduction in 

optoFUS inclusion formation when compared to treatment with control oligonucleotides (Figure 

30B-C). Interestingly, while two strong inhibitors RNA S1 and RNA S2 seemed to show similar 

efficacies in vitro, the longer of the two (RNA S2) seem to be less effective in preventing optoFUS 

inclusions within an intracellular environment (Figure 31D). Because RNA oligonucleotides are 

relatively quickly digested by ribonucleases in cell, we also designed RNA analogues with higher 

stability to test in our intracellular optoFUS model. Using RNA S1 as a template, we designed 

RNA analogues with different combinations of 2’O-Me and PS bond modifications (Figure 31E-

G) to test both in vitro and in cells. Both RNA analogues show similar inhibition and 

disaggregation activity compared to the template RNA S1 in our in vitro turbidity assays (Figure 

31E-F). However, while the 2’OMe-modified RNA oligonucleotide showed slightly enhanced 

inhibition of optoFUS inclusion formation (Figure 30D), the RNA analogue with both 2’O-Me 
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and PS bond modifications did not show any activity in inhibiting optoFUS inclusion formation in 

HEK293 cells relative to unmodified oligonucleotides (Figure 31G). This disparity could 

potentially be attributed to changes in RNA secondary structure or non-specific protein binding 

associated with phosphorothioate substitutions (Smith and Nikonowicz, 2000) that may be 

sufficient to significantly alter FUS interaction patterns within the crowded cellular environment, 

but have less of an effect within purified in vitro reactions. Detergent-solubility fractionation of 

optoFUS cell lysates exposed to the same light stimulation conditions also confirmed a reduction 

in the amount of detergent-insoluble optoFUS protein in cells pre-treated with unmodified and 

2’OMe-modified S1 relative to control oligonucleotides (Figure 30E-F).  

We next sought to determine whether treatment with RNA inhibitors following the 

formation of optoFUS aggregates could be similarly effective in reducing inclusion burden, as this 

may represent a more therapeutically-relevant time course of intervention in patients at later stages 

of disease progression. Thus, here we designed a paradigm in which optoFUS-expressing cells 

were first subjected to chronic light stimulation to induce the formation of optoFUS aggregates 

prior to RNA treatments and doxycycline washout to eliminate further optoFUS expression during 

a 6-hour dark “disassembly” period (Figure 30G). Remarkably, while a small decrease in optoFUS 

aggregation was observed in control oligonucleotide-treated cells during the disassembly period, 

treatment with unmodified and 2’OMe-modified RNA S1 oligonucleotides resulted in a significant 

reduction in optoFUS inclusion burden towards levels observed in optoFUS-expressing cells kept 

in darkness throughout the experiment (Figure 30H-I). This effect was confirmed by sedimentation 

analysis of optoFUS cell lysates collected following the same light induction and treatment 

paradigm (Figure 30J-K). Together, these data suggest that these RNA inhibitors identified 

through in vitro assays can be utilized to aid in the prevention and reversal of aberrant FUS phase 
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transitions in human cells. Furthermore, common modifications used in antisense oligonucleotide 

therapies can have differing effects on target engagement in cellular contexts when focusing on 

RNA-binding protein rather than nucleic acid targets, perhaps due to effects on specific secondary 

RNA structures that seem to be important for the inhibitory effects of these short RNA 

oligonucleotides. 
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Figure 30. Strong RNA inhibitors can prevent aberrant phase transitions and reduce inclusion burden of pre-

formed optoFUS aggregates in mammalian cells. 

(A) Schematic of preventative RNA pre-treatment and light-induction protocol used in (B-F).  (B) Representative 

images of optoFUS-expressing HEK293 cells pre-treated with control (Ctrl) or strong RNA inhibitor (S1) at 

concentrations ranging from 500nM-2.5M for 2 hours prior to exposure to 6 hours of light activation. Scale bar = 

10m. Arrows indicate cytoplasmic optoFUS assemblies. (C) Automated immunofluorescence analysis of optoFUS 

aggregation area (see Appendix Figure 1 for details) in light-activated cells pre-treated with Ctrl or S1 RNA at the 

indicated concentrations. Data points represent individual experiments, n = 3-4 individual experiments, 620-904 cells 
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across 9 randomized fields-of-view per experiment. Values are normalized to control treatments within each treatment 

concentration group and presented as percentage of control per experiment. (D) Automated immunofluorescence 

analysis of optoFUS-expressing cells pre-treated with 1M Ctrl, S1 and a 2’OMe-modified S1 oligonucleotide prior 

to the light-induction protocol outlined in (A). n = 9 randomized fields-of-view, 144-323 cells per field. Values are 

normalized to control treatments and presented as fold-change from control. (E) Detergent-solubility fractionation of 

cells pre-treated with 2.5M Ctrl, S1 and 2’OMe-modifed S1 oligonucleotides prior to light-activation. (F) 

Quantification of ratios of detergent-insoluble to detergent-soluble band intensities in each treatment group described 

in (E). n = 3 biological replicates per condition. (G) Schematic of light-activation paradigm used for pre-formation of 

optoFUS inclusions and post-inclusion RNA treatment used in (H-K). (H) Representative images of optoFUS-

expressing cells exposed to the light-induction protocol outlined in (G) before addition of RNA (left panel) and 

following a 6-hour treatment with 1M Ctrl, S1 or 2’OMe-modified S1 oligonucleotides (right panels) in the absence 

of further light stimulation. Scale bar = 10m. Arrows indicate cytoplasmic optoFUS assemblies. (I) Automated 

immunofluorescence analysis of optoFUS aggregation area prior to (left bar) and following RNA treatment (middle 

bars) with the indicated oligonucleotides. Aggregation values from cells kept in darkness throughout the experiment 

(22h OFF) are included for reference. Values are normalized to groups fixed immediately following light activation 

and prior to RNA treatment. n = 9 randomized fields-of-view, 79-275 cells per field. Comparisons shown are between 

control and targeting RNA treatments. (J) Detergent-solubility fractionation of cells treated with 2.5M of the 

indicated oligonucleotides for 6 hours in the absence of light following pre-formation of light-induced optoFUS 

aggregates as in (G). (K) Quantification of ratios of detergent-insoluble to detergent-soluble band intensities in each 

treatment group described in (J). n = 3 biological replicates per condition. Data shown are mean +/- S.E.M. Unpaired 

Student’s t-tests were used to compare between control and experimental groups. *p < 0.05, ** p < .01, *** p < .001, 

**** p < 0.0001. 
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Figure 31. RNA sequence and modifications affect inhibitory activity within an intracellular environment. 

(A) Representative images of HEK293 cells treated with 2.5M of a 6-FAM-labeled S1 oligonucleotide for the 

indicated time periods. Scale bar = 10m. (B) Quantification of percentage of 6-FAM S1 oligonucleotide signal 
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present in the cytoplasm of cells treated for the indicated time periods. n = 50-86 cells per treatment time. (C) 

Quantification of mean whole-cell fluorescence intensity of 6-FAM S1 oligonucleotide present within cells treated for 

the indicated time periods. n = 34-47 cells per treatment time. (D) Normalized aggregation area of optoFUS-expressing 

HEK293 cells pre-treated with 1M of the indicated oligonucleotides for two hours prior to a 6-hour light activation 

period. Data points represent individual experiments. n = 3 individual experiments, 1236-2835 cells across 9 

randomized fields-of-view per experiment. One-way ANOVA with Tukey’s post hoc test was used to compare across 

groups. (E) In vitro fibrillization assay with GST-TEV-FUS was performed as in Figure 20B in the presence of the 

indicated RNA S1 analogues and turbidity measurements were taken over time. (F) GST-TEV-FUS fibrillization was 

induced as prior to addition of the indicated RNA S1 analogues, as in Figure 20E, and turbidity measurements. (G) 

Normalized aggregation area of optoFUS-expressing HEK293 cells pre-treated with 0.5-2.5M of control, unmodified 

S1 and PS/2’OMe-modified S1 (*PS*-S1) oligonucleotides for two hours prior to a 6-hour light activation period. 

Values are normalized to control treatments within each treatment concentration group and presented as percentage 

of control per experiment. n = 9 randomized fields-of-view, 138-381 cells per field. Data shown are mean +/- S.E.M. 

** p < .01, **** p < 0.0001. 

3.3.7  Short RNA-based buffering of aberrant phase transitions can extend to other RNA-

binding proteins and enhance cellular survival 

In addition to FUS, aggregation of other RNA-binding proteins has been reported in patient 

postmortem tissue in a variety of neurodegenerative diseases, including proteins like TAF15, 

EWSR1 (Neumann et al., 2011), hnRNP R, hnRNP Q (Gittings et al., 2019), and perhaps most 

notably TDP-43. While we have previously shown that short RNA sequences can prevent aberrant 

phase transitions of TDP-43 and rescue associated neurotoxicity (Chapter 2), here we sought to 

determine whether delayed RNA intervention could assist in the reduction of pre-formed TDP-43 

inclusions in a similar manner to FUS and reduce cellular toxicity.  
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To test this hypothesis, we developed a new optogenetic model of full-length TDP-43 

aggregation again based upon the Corelets system described above (Bracha et al., 2018). In this 

system, cytoplasmic iLID-FTH1 cores were co-expressed with full-length TDP-43 proteins N-

terminally tagged with mCherry-SspB (ssTDP43) in HEK293 cells under the control of the 

doxycycline-inducible Tet3G promoter (Figure 32A). HEK293 cells expressing these constructs 

were then exposed to 10ng/mL doxycycline treatment and chronic blue light activation (Figure 

32B-C) to induce condensation and aggregation of TDP-43. Automated light activation and live-

cell imaging of these cells revealed a significant enhancement of ssTDP43 assembly formation in 

cells exposed to chronic blue light when compared to cells kept in the darkness throughout the 

experiment (Figure 32B-C). Interestingly, cells expressing ssTDP43 alone (without iLID cores) 

exposed to the same light activation conditions showed a similar lack of ssTDP43 phase 

transitions, indicating a specific effect of light-induced Corelet association on TDP-43 assembly 

rather confounds associated with light exposure itself (Figure 32B-C).  

Due to increases in assembly number and size in response to light activation over time 

(Figure 32B-C), we next sought to determine the effect of increased light exposure on the material 

state of induced ssTDP43 condensates. FRAP analysis was performed on HEK293 cells expressing 

iLID cores and ssTDP43 both before light exposure and on ssTDP43 assemblies in response to 

increasing lengths of blue light activation (Figure 32D). Remarkably, initial assemblies of 

ssTDP43 formed in response to 30 minutes of blue light displayed nearly full fluorescence 

recovery following bleaching, suggesting a dynamic or liquid-like material state of these droplets 

(Figure 32D). However, a progressive decrease in recovery was observed of condensates exposed 

to increasing lengths of blue light activation, indicating arrested dynamics of these structures over 

time that seemed to remain stable for at least 12 hours following light removal (Figure 32D). Thus 
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it appears that much like in vitro reactions (Elbaum-Garfinkle and Brangwynne, 2015; Lin et al., 

2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015), light-induced ssTDP43 

aggregate formation in a cellular context begins with an initial LLPS stage followed by maturation 

of these droplets into more solid-state gels and/or inclusions over time. Furthermore, these more 

solid-state assemblies formed after chronic (8 hour) blue light activation seemed to co-stain with 

the pathological hallmarks phospho-TDP43 (Figure 32E) and p62 (Figure 32F) commonly 

observed with TDP-43 inclusions in ALS/FTD postmortem patient tissue (Kawakami et al., 2019; 

Neumann et al., 2006), suggesting a similar cellular response to light-induced aggregation as 

endogenous TDP-43 aggregation during disease.  

To next determine whether short RNA-based treatment could similarly be utilized to aid in 

the disassembly of pre-formed TDP-43 inclusions in mammalian cells, we next designed a 

paradigm in which HEK293 cells transfected with both iLID cores and ssTDP43 subjected to 

chronic light stimulation to induce the formation of ssTDP43 inclusions were treated with control 

(Ctrl) and TDP-43-specific RNA oligonucleotides shown in Chapter 2 to reduce TDP-43 

aggregation in neuronal models (Clip34) prior to live-cell tracking of ssTDP43 inclusion 

persistence and cellular survival (Figure 32G). Remarkably, we observed that treatment with 

Clip34 oligonucleotides resulted in a significant decrease in inclusion size over time when 

compared to control oligonucleotide treated cells (Figure 32H-I). Furthermore, treatment with 

Clip34 oligonucleotides seemed to significantly extend cellular survival in cells containing 

ssTDP43 inclusions at the onset of imaging (Figure 32J). This cytoprotective effect was also 

observed in cells expressing optoFUS subjected to identical paradigms, where treatment with the 

strong RNA inhibitor RNA S1 both reduced inclusion size (Figure 32K-L) and resulted in 
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enhanced cellular survival (Figure 32M) in cells containing optoFUS aggregates when compared 

to control oligonucleotide-treated cells.  

Importantly, treatment of HEK293 cells with either of these short RNA inhibitors did not 

alter the localization of endogenous FUS (Figure 33A-B) or TDP-43 (Figure 33C-D) and did not 

disrupt endogenous TDP-43 splicing function (Figure 33E-G) as assessed by the CFTR minigene 

assay described previously (Ayala et al., 2006; Buratti and Baralle, 2001; Flores et al., 2019). 

These results thus suggest that RNA-based aggregate disruption may be a broadly applicable and 

viable therapeutic strategy across a number of disorders associated with aberrant RNA-binding 

protein assemblies. 
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Figure 32. Short RNA oligonucleotides can reduce burden of pre-formed TDP-43 inclusions and promote 

cellular survival. 

(A) Schematic of Corelet-based ssTDP43 system. (B) Representative images of HEK293 cells co-expressing iLID 

cores and ssTDP43 (top panels) or ssTDP43 alone (bottom panel) during simultaneous live imaging and light 

stimulation. Scale bar = 10m. Cell nuclei are circled. (C) Automated quantification of number of ssTDP43 assemblies 

per field-of-view during time course of live imaging. n = 6 fields-of-view, 171-408 cells per field. Two-way ANOVA 
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with Tukey’s post hoc test was used to compare across groups. (D) FRAP analysis of ssTDP43 assemblies formed in 

HEK293 cells co-expressing iLID cores over increasing lengths of blue light stimulation (0.1-0.3mW/cm2, 465 nm). 

(E-F) Immunofluorescence analysis of co-localization between ssTDP43 inclusions formed following 8 hours of blue 

light stimulation and the pathological hallmarks phospho-TDP43 (E) and p62 (F). Cell nuclei are circled. Arrows 

indicate light-induced inclusions. Scale bars = 10m. (G) Schematic of light-activation paradigm used for pre-

formation of ssTDP43 and FUS inclusions prior to RNA treatments and live imaging used in (H-M). (H) 

Representative live images of HEK293 cells co-expressing iLID cores and ssTDP43 pre-exposed to 10 hours of blue 

light stimulation following treatment with 2M of the indicated oligonucleotides. Arrows indicate inclusions and X’s 

indicate cell death. Cell nuclei are circled. Scale bar = 10m. (I) Quantification of mean inclusion size over time 

following treatment with the indicated oligonucleotides. Values shown are normalized to areas of individual inclusions 

at the onset of imaging and are presented as fold-change from T0. n = 25-37 inclusions per treatment. (J) Survival 

curves of cells containing ssTDP43 inclusions at the onset of imaging treated with the indicated oligonucleotides. n = 

23-26 cells. (K) Representative live images of HEK293 cells expressing optoFUS pre-exposed to 10 hours of blue 

light stimulation following 2M treatment with the indicated oligonucleotides as in (G-J). Arrows indicate inclusions 

and X’s indicate cell death. Cell nuclei are circled. Scale bar = 10m. (K) Quantification of mean optoFUS inclusion 

size over time following treatment with the indicated oligonucleotides. Data are presented as in (I). n = 26-29 

inclusions per treatment. (M) Survival curves of cells containing optoFUS inclusions at the onset of imaging treated 

with the indicated oligonucleotides. n = 27-29 cells per treatment. Data shown are mean +/- S.E.M. ** p < .01, **** 

p < 0.0001. 
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Figure 33. RNA oligonucleotides do not effect endogenous FUS or TDP-43 localization and splicing function. 

(A-B) HEK293 cells were treated with 2.5M of the indicated oligonucleotides for 24 hours prior to 

immunofluorescence analysis of endogenous FUS localization. Scale bar = 10m. (B) Mean nuclear/cytoplasmic 
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ratios of FUS fluorescence intensity in cells treated with the indicated oligonucleotides. n = 41-66 cells per group. (C-

D) HEK293 cells were treated with 2.5M of the indicated oligonucleotides for 24 hours prior to immunofluorescence 

analysis of endogenous TDP-43 localization. Scale bar = 10m. (D) Mean nuclear/cytoplasmic ratios of TDP-43 

fluorescence intensity in cells treated with the indicated oligonucleotides. n = 25-39 cells per group. (E) The CFTR 

minigene assay was used to assess endogenous TDP-43 splicing function in cells treated with the indicated siRNA 

(25nM) or RNA oligonucleotides (2.5M) for 72 hours. Top bands indicate loss of TDP-43 splicing function (exon 9 

inclusion). TDP-43 knockdown (siTDP43) was used as a positive control in these assays. (F) Western blot analysis of 

HEK293 cells treated with 25nM of non-targeting (siCtrl) or TDP-43-targeting (siTDP) siRNA to confirm efficient 

TDP-43 knockdown at the time points of these experiments. 

3.4 Discussion 

In this study, we identify a variety of short RNAs that modulate FUS phase transitions in 

different ways. Specifically, we identified two strong inhibitors (RNA S1 and RNA S2) that 

completely inhibit and reverse FUS phase transition and aggregation. We also identified other 

strong inhibitors that completely prevent FUS phase separation and fibrillization, but seem to 

remodel pre-formed large FUS aggregates into smaller hydrogel states when added after initial 

formation. In addition, we also identified weak RNA inhibitors that inhibit FUS aggregation but 

not LLPS and droplet formation. We showed that the function of RNA inhibitors in this regard is 

dependent upon their concentration, sequence, length, and secondary structure. We also 

determined that the FUS RRM and RGG domains seem to be the major binding sites for strong 

inhibitors, and that reducing RNA binding efficiency within the RRM impairs RNA’s ability to 

prevent and reverse aberrant FUS assembly. In addition to individual domain binding, 

cooperativity between FUS domains also appeared to be crucial for proper function of RNAs to 
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inhibit FUS phase transitions, especially for weak inhibitors. Finally, through the utilization of 

novel light-inducible models of FUS and TDP-43 proteinopathies, we demonstrated that RNA 

inhibitors can modulate both FUS and TDP-43 phase transitions and rescue the toxicity induced 

by aberrant assemblies of these proteins in cellular models of ALS/FTD.    

3.4.1  Factors affecting RNA’s modulation of FUS LLPS and aggregation 

While several of the RNAs identified in the present study were observed to have the ability 

to prevent FUS phase transitions, only a subset of these RNAs were able to effectively reverse pre-

formed FUS aggregates. Interestingly, several of these RNAs instead remodeled these FUS 

aggregates into solid-like hydrogels. We propose that these RNAs were not able to revert 

aggregated FUS back to a monomeric state, but they may alternatively disassemble FUS into 

smaller oligomers, not detectable by turbidity and EM, which proceed to form a gel-like phase 

phase. In this regard, it is not clear what factors underlie these differing effects of RNA on FUS 

phase behavior. In the case of another RNA-binding protein Whi3, it was recently shown that low 

concentrations of two distinct mRNA targets, varying in length but containing the same number 

of Whi3 binding sites, could differentially promote the formation and tune the biophysical 

properties of Whi3:RNA coacervates (Zhang et al., 2015a). Interestingly, the same study also 

showed that higher concentrations of these RNAs conversely inhibited Whi3 phase separation and 

differed in the molar ratio at which this change was observed  (Zhang et al., 2015a). Here we 

showed that for FUS, diverse RNA sequences can inhibit phase transitions and aggregation of the 

protein, which is consistent with the fact that FUS is a promiscuous RNA binder and binds to a 

wide range of RNA partners to function (Wang et al., 2015). However, we found that the factors 

affecting RNA affinity, such as sequence specificity, are not entirely the same as the factors 
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affecting RNA’s ability to inhibit and reverse FUS aggregation. For example, although the two 

strongest RNA inhibitors we observed (RNA S1 and RNA S2) both contain the FUS binding motif 

GGUG, some of the strong RNA inhibitors, such as prD RNA (RNA S3), do not contain any 

known FUS binding motif. Furthermore, when we generated single point mutations to introduce 

an additional GUGGU FUS binding motif into a weak inhibitor (RNA S2/2), we paradoxically 

observed reduced inhibition and disaggregation activity. This result demonstrates that there are 

likely other effects of the sequences of strong inhibitors that are very specific and simply inserting 

a FUS binding motif is not sufficient for inhibition function alone. Indeed, a recent NMR study 

identified ZnF as the major binding site for GGU motif (Loughlin et al., 2019). However, for our 

strong inhibitors with the GGU motif, ZnF mutations do not affect their binding or activity, 

indicating the binding motifs are not sole determinants of these RNA’s activity.  

Secondary structure of RNA targets is another recognition mechanism for FUS binding, 

and our results demonstrate that the structure of RNA can be important for its regulation of FUS 

phase transitions. For example, while both polyU50 RNA and RNA S2 are strongly bound by FUS, 

we only observed complete inhibition of LLPS and aggregation by the more structured RNA S2 

that prevented scaffolding and multimerization of FUS on single RNA molecules. The 

unstructured nature of polyU50 RNA conversely allowed for multiple FUS binding and subsequent 

LLPS at low RNA:protein molar ratios, highlighting the importance of secondary structure on 

short RNA regulation of RBP phase separation. However, with high enough RNA:protein ratios, 

weak RNA inhibitors like polyU50 can also completely inhibit FUS LLPS, which may partially 

explain the solubility of FUS and other RBPs in the nuclear compartment with an abundance of 

different RNA species (Maharana et al., 2018). In the case of polyU50, our results suggest this is 

likely due to the compaction of RNA induced by interacting with a single FUS molecule when 
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present at excess concentrations. This biphasic effect of RNA on FUS LLPS has also been reported 

before for total yeast RNA, prD RNA, and the GGUG RNA, where lower concentrations of RNA 

can promote self-assembly while higher concentrations of RNA instead antagonize FUS phase 

separation (Burke et al., 2015; Kang et al., 2019; Schwartz et al., 2013). Our smFRET study 

suggests a model where RNA adopts different structures at different RNA:FUS ratios, thus 

resulting in differing effects in the regulation of FUS LLPS. Therefore, it would be interesting to 

determine the optimal structure and concentration of RNA that can inhibit FUS aggregation. One 

example can be found with the SON RNA, where it has been shown that FUS binds through 

recognition of its distinct stem-loop structure (Loughlin et al., 2019). However, in our assays the 

SON RNA did not show inhibition or disaggregation activity, again pointing to a differing 

molecular language governing FUS:RNA binding and RNA’s activity as inhibitor and/or 

disaggregase. 

3.4.2  Mechanisms underlying RNA-mediated antagonization of FUS phase transitions 

In order to design specific RNA inhibitors for therapeutic purposes, it is important to 

determine the mechanism by which RNAs inhibit and reverse FUS aberrant phase transitions. FUS 

phase transitions and aggregation seem to be in part mediated by the PrLD, as it has been shown 

that interrupting intermolecular interaction between FUS PrLDs disrupts phase separation (Lin et 

al., 2017; Monahan et al., 2017; Murakami et al., 2015; Murray et al., 2017; Patel et al., 2015). 

However, we have found that RNAs do not interact with the PrLD and our NMR studies indicate 

that RNA inhibitors identified here seem to interact with FUS in the RRM, ZnF, and RGG region, 

consistent with previous studies (Burd and Dreyfuss, 1994; Ito et al., 2011; Loughlin et al., 2019; 

Ozdilek et al., 2017; Prasad et al., 1994; Schwartz et al., 2013). Long-range contacts between the 
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tyrosine-rich PrLD and arginine-rich RGG domains have also been recently proposed to strongly 

contribute to full-length FUS phase separation, as disruption of these interactions by truncation, 

mutagenesis or arginine methylation have been shown to disrupt self-assembly of the protein 

(Hofweber et al., 2018; Qamar et al., 2018; Wang et al., 2018b). Thus, it is possible that RNA may 

act through competitive inhibition by binding to these regions and limiting accessibility for the 

inter- and intramolecular interactions between these regions that are important for promoting 

LLPS. 

In general, we found that RNA activity is correlated with its affinity to FUS. In support of 

this notion, 4FL mutations within the FUS RRM that most significantly decreased FUS binding 

affinity to strong RNA inhibitors also seemed to completely eliminate their ability to prevent and 

reverse FUS aggregation. Interrupting RNA binding to RGG regions by C-terminal truncation also 

seemed to abolish RNA activity in this regard. Consistent with these results, we also observed a 

strong enhancement of light-induced FUS phase separation resulting from mutation of the RRM 

in our cellular Corelet-based optogenetic model. Together, these results suggest that the RRM may 

be the primary engagement site mediating the inhibitory effects of short RNA inhibitors and 

endogenous RNA buffering of aberrant FUS phase transitions within a cellular environment. 

However, even with mutations in RRM and RGG, RNA:FUS binding is still relatively strong in 

the absence of inhibitory activity, suggesting additional factors may contribute to certain RNA’s 

antagonization of FUS phase transitions.  

We also found that mutations in the ZnF domain did not reduce RNA binding affinity or 

activity for strong inhibitors, indicating the interaction between the ZnF domain and RNA is weak 

and transient. However, disrupting the ZnF fold did seem to disrupt the activity of weak inhibitors, 

eliminating their ability to inhibit FUS aggregation. A similar pattern emerged when we examined 
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the phase behavior of ZnF mutants within a cellular environment. While ZnF mutations alone did 

not produce a significant increase of FUS-SspB phase separation in response to light activation, 

we did observe a further enhancement of FUS-SspB LIPS when ZnF mutations were added to the 

RRM mutants. This again provides evidence for the hypothesis that ZnF domain binding 

cooperativity may be a crucial component of RNA-mediated buffering of FUS phase transitions. 

For example, while the engagement of the RRM still may remain the primary source of inhibition, 

additional weak or transient contacts between the ZnF domain and a number of diverse RNA 

species within the cell may still provide some additional modulation of FUS phase behavior. 

Additionally, cooperativity provided by the intact ZnF region may allow for enhanced binding of 

RNAs by the mutated RRM and/or RGG domains, with corresponding enhanced inhibition, that is 

abolished upon mutation of the ZnF domain.  

Combining these mutation analyses with observations from NMR experiments, we propose 

that strong inhibitors and weak inhibitors engage FUS with different patterns and thus function 

through distinct mechanisms. For stronger inhibitors, which are also strongly bound by FUS, the 

binding energy to RRM and RGG is sufficient to break the intra-molecular interactions involved 

in forming and stabilizing FUS aggregates. For weak inhibitors, binding to RRM and RGGs may 

not provide enough energy to prevent or break fibril formation, where additional cooperative 

binding involving the ZnF is then required to disrupt FUS:FUS interactions. This notion is further 

supported by the finding that the activity of weak inhibitor RNA W1 exhibits increased 

cooperativity when compared to strong RNA inhibitors. Furthermore, the ZnF domain might 

provide important cooperativity for weak RNA inhibitors’ function via long-range allosteric 

communication, as it has been shown that RNA can accelerate the folding of a variety of nucleic 

acid binding proteins up to 30-fold upon binding (Rentzeperis et al., 1999). 
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3.4.3  Short RNA oligonucleotides as therapeutic agents to mitigate neurotoxicity by 

regulating RBP phase separation 

Our in vitro studies determined that unique RNA species have the capacity to inhibit and 

reverse aberrant FUS phase transitions to varying degrees. Considering these differing effects of 

RNAs on FUS phase behavior and the diversity of endogenous FUS-binding RNA molecules 

found within a cell (Lagier-Tourenne et al., 2012; Qiu et al., 2014; Wang et al., 2015), it is quite 

plausible that RNA, in addition to other factors like nuclear import receptors and post-translational 

modifications (Monahan et al., 2017; Murray et al., 2017), could serve as an essential factor 

regulating RNP granule dynamics during normal physiology and in response to changes in the 

intra- and extracellular environment. For example, in the case of osmotic stress, FUS has been 

reported by multiple groups to redistribute from the nuclear compartment out to the cytoplasm 

where it incorporates into stress granules (SGs) along with numerous other RNA-binding proteins 

(Hock et al., 2018; Sama et al., 2013). However, we and others have shown that RNA binding may 

be a pre-requisite for FUS, as well as TDP-43, to be incorporated into these membraneless 

organelles (Daigle et al., 2013; Fang et al., 2019; Shelkovnikova et al., 2013b) (see also Chapter 

2). As a result, during pathological conditions in which RNA homeostasis is disturbed, proteins 

like FUS or TDP-43 could go through aberrant phase transitions into solid gels that induce 

cytotoxicity by sequestering other RNP components and further disturbing RNP homeostasis 

(Murakami et al., 2015). This notion could also draw support from a recent study indicating that 

RNAs often act as buffers within the nucleus to inhibit aberrant LLPS of nuclear RNA-binding 

proteins (Maharana et al., 2018). In fact, our results are in agreement with a proposed model in 

which RNA and RBP quality control are inextricably linked during normal cellular physiology, 

requiring balanced RNA/RBP crosstalk to maintain RBP homeostasis (Ishiguro et al., 2017). Thus, 



 182 

perturbation in either RNP component could lead to an imbalance between RNAs and RBPs 

resulting in neurodegeneration. Interestingly, dysregulation of RNA processing and metabolism 

has long been considered a potential common pathological mechanism across both ALS and FTD, 

largely due to observations from genetics and various disease models (Butti and Patten, 2018; 

Mandrioli et al., 2020). It has also been well established that overexpression of RNA-binding 

proteins like TDP-43 and FUS can produce toxic effects in a number of different in vitro and in 

vivo model systems (Hergesheimer et al., 2019; Prasad et al., 2019; Wegorzewska and Baloh, 

2011), again suggesting that disrupting this delicate RNA/RBP balance may serve as a crucial step 

in ALS/FTD pathogenesis.  

Importantly, our results suggest that restoring RNA homeostasis could be a potential 

therapeutic strategy for ALS/FTD and other RBP proteinopathies. Along these lines, it has been 

shown that increased expression of TDP-43-binding intronic lariat RNAs can suppress TDP-43 

overexpression toxicity by inhibiting its sequestration of essential endogenous RNAs (Armakola 

et al., 2012). Moreover, while UGGAAexp repeat expansion RNA associated with Spinocerebellar 

ataxia type 31 (SCA31)  co-aggregates with TDP-43 in the disease, the short non-toxic UGGAA22 

exerts protective effects against TDP-43 toxicity through a proposed mechanism of suppressing 

TDP-43 aggregation in disease models (Ishiguro et al., 2017). Our group has also recently shown 

that pre-treatment of neurons with short RNA oligonucleotides comprised of TDP-43 binding 

sequences can antagonize inclusion formation and rescue associated neurodegeneration driven by 

aberrant TDP-43 phase transitions in an optogenetic model of TDP-43 proteinopathy (Chapter 2), 

suggesting that oligonucleotide-based inhibition of aberrant phase transitions could be a viable 

therapeutic strategy in disease. In the current study, we discovered similar FUS-binding RNA 

oligonucleotides that could not only prevent, but also promoted the disassembly of pre-formed 
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optogenetic FUS inclusions in mammalian cells. This RNA-based disassembly further proved able 

to effectively mitigate the toxicity associated with initial inclusion formation of both FUS and 

TDP-43 in our optogenetic models. We thus propose the RNA-based oligonucleotides could be 

capable of mitigating neurodegeneration by eliminating: (1) any toxic gain of function of the 

misfolded form; and (2) any loss of function due to sequestration in cytoplasmic aggregates. In an 

ideal scenario, disaggregated FUS and TDP-43 would then be allowed to be transported back to 

the nucleus by their corresponding nuclear import receptors and perform their normal nuclear 

function. It would be important to test combinations of nuclear import receptors and these RNAs 

to determine how they might synergize to modulate the properties of FUS/TDP-43 droplets and 

corresponding toxicity. Interestingly, the most effective RNA oligonucleotide in reversing 

optoFUS inclusions in our cellular model is derived from the 3’UTR of BDNF. We propose that 

the 3’UTR region might harbor other RNA sequences that mitigate FUS neurotoxicity. In fact, we 

searched in a FUS CLIP-seq data set obtained using human brain and mouse neurons differentiated 

from embryonic stem cells (Lagier-Tourenne et al., 2012) and found that 65% of the total peaks 

are located on 3’UTR. Interestingly, the RNA oligonucleotide used to disrupt optogenetic TDP-43 

inclusions here was also derived from a 3’UTR sequence (from the TARDBP gene) (Bhardwaj et 

al., 2013) and similar datasets have shown an enrichment of 3’UTR targets of TDP-43 in cortical 

neurons (Sephton et al., 2011). 

For further development of oligonucleotides capable of disrupting RBP inclusions in 

patient cells, RNA analogues with increased cellular stability are desired from a therapeutic 

perspective. The 2’O-Methyl (2’-OMe) modification is best characterized as an RNA analogue 

that offers stability against general base hydrolysis and nucleases, as well as increased Tm 

(Khvorova and Watts, 2017; Majlessi et al., 1998). Another common modification used in current 
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oligonucleotide-based therapies is the phosphorothioate (PS) bond. The PS modification 

substitutes a sulfur atom for a non-bridging oxygen in the phosphate backbone of an oligo, which 

renders the internucleotide linkage resistant to nuclease degradation (Wan et al., 2014). In the 

present study, we tested different combinations of 2’O-Me and PS modifications in our in vitro 

assays and cellular models. Although RNA oligos with either or both modifications showed similar 

activity compared to the template in the in vitro assays, RNA oligos with the PS modifications lost 

their activity to prevent and reverse optoFUS inclusion formation in the cellular model. As we 

have shown that structure is important for inhibitory activity of RNA oligonucleotides, it is 

possible structural alterations associated with excessive PS modification could alter their 

interaction with RBP targets in a cellular context (Chen et al., 2015), leading to a reduction in 

efficiency. It is also plausible that while irrelevant in a purified in vitro reaction, PS modifications 

may increase off-target binding in the crowded cellular milieu, as they have been shown to enhance 

non-specific protein binding (Brown et al., 1994). In future studies, it will be important to explore 

other RNA modifications and their effect on RNA’s stability and activity.  

Here, we established that distinct short RNA species regulate FUS phase transition in 

different ways. We propose disturbed RNA homeostasis might contribute to RNP dysregulation in 

ALS/FTD pathogenesis and have demonstrated RNA-based oligonucleotide can be designed to 

fine tune FUS phase behavior and mitigate FUS toxicity. Therefore, it would be important to test 

if RNAs that are up- or down- regulated in ALS can modify FUS LLPS. Special focus should be 

on the 3’UTR region. It would also be important to determine if RNA can also regulate the phase 

transition of other RNP proteins that aggregated in ALS including TDP-43, hnRNPA1, hnRNPA2, 

TAF15, EWSR1, and TIA1.  
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4.0 Conclusions 

The work described in this dissertation aimed to further elucidate the intrinsic and extrinsic 

factors responsible for the initiation and regulation of aberrant aggregation of the ALS/FTD-linked 

RNA-binding proteins TDP-43 and FUS. Earlier in vitro investigations into these and similar RBPs 

had suggested that the process of liquid-liquid phase separation (LLPS) could represent an initial 

nucleation event in this process, utilized during normal physiology to allow for self-assembly and 

partitioning of these proteins into membraneless compartments for a variety of functions (Alberti 

and Hyman, 2016). These experiments have also highlighted the role of both intrinsically 

disordered and/or PrLD domains and RNA in promoting initial LLPS of RBPs, which has been 

proposed to subsequently lead to the formation of solid-state inclusions upon extended incubation 

(Verdile et al., 2019). Such aberrant liquid-to-solid phase transitions seem to be promoted by 

enhanced protein concentration, as well as disease-linked mutant proteins, within in vitro 

assemblies and have led to the presumption that excess or untimely phase separation of these 

proteins in patient cells, such as within chronic or persistent stress granules, ultimately underlie 

the deposition of insoluble inclusions seen in neurodegenerative disease (Patel et al., 2015). While 

these in vitro studies have revolutionized the field of cell biology and provided invaluable insight 

into the phase behavior of molecules found all over the cell, it will be imperative moving forward 

to complement these approaches with unique intracellular models of these events in order to 

deepen our knowledge of the prevalence and regulation of phase separation in physiology and 

disease. 

Experiments outlined in Chapter 2 represent initial efforts towards this end, where we first 

describe the development of novel optogenetic methods to selectively induce the phase separation 
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of TDP-43 under the spatiotemporal control of light stimulation. Using these systems, we highlight 

the role of the TDP-43 low-complexity PrLD in mediating phase separation in an intracellular 

environment, demonstrating the importance of aromatic interactions and ALS-linked mutations 

within this region for driving LLPS and subsequent liquid-to-solid state transitions. This study also 

describes the first model able to selectively induce the formation of pathologically-relevant TDP-

43 inclusions in neuronal cultures and to directly connect aberrant intracellular phase transitions 

of the protein to cellular toxicity. Furthermore, experiments in this chapter utilize these systems to 

uncover the importance of intracellular RNA in the buffering of aberrant phase transitions of TDP-

43, as well as in promoting recruitment of TDP-43 to stress granules that maintain its solubility 

during cellular stress. Lastly, this study describes a novel potential therapeutic strategy for 

targeting aberrant phase transitions of TDP-43, in which short RNA “bait” oligonucleotides were 

shown to both antagonize optogenetic TDP-43 aggregation and rescue associated neurotoxicity.  

In Chapter 3, we move on to demonstrate that this short RNA-mediated inhibition of 

aberrant phase transitions can also be observed with the related ALS/FTD-linked RNA binding 

protein FUS and describe the specific properties of RNAs that may be mediating this effect. 

Interestingly, this study shows that in addition to preventing aberrant phase transitions, certain 

RNAs are also capable of reversing LLPS and fibrillization of these proteins. Properties such as 

sequence, length and secondary structure seem particularly important in mediating the prevention 

and disaggregation activity of these RNAs, and RNAs that engage the FUS RRM regions seem to 

be particularly potent inhibitors in this regard. We also describe improved optogenetic systems to 

induce aberrant intracellular FUS and TDP-43 phase transitions in this study and show that these 

short RNAs are able to reverse pre-formed inclusions in cells and rescue resulting cellular toxicity.  
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Together, the work included in this dissertation provides evidence that in addition to 

promoting the phase separation and assembly of various proteins and membraneless organelles, 

various RNA species, particularly within the cellular environment, can also play an important 

physiological role in the buffering or prevention of aberrant phase transitions of ALS/FTD-linked 

RNA binding proteins. These studies additionally suggest that from a therapeutic perspective, we 

may be able to harness this evolved trait of certain RNAs to design novel RNA-based molecules 

aimed at the direct disruption of aberrant RBP assemblies to counter neurodegeneration in these 

diseases. Furthermore, future studies utilizing the novel optogenetic methods developed in these 

experiments may provide invaluable insight into additional intracellular modifiers of RBP and 

other protein phase behavior and might similarly uncover new therapeutic approaches to target 

aberrant protein aggregation observed in other neurodegenerative disorders.  

The following discussion will address: (1) the advantages and limitations of these new 

optogenetic approaches and comparisons with existing/future models, (2) the mechanisms, 

implications and potential breakdown of RNA-mediated buffering of aggregation-prone RBPs in 

physiological and pathological states, and (3) the therapeutic potential of RNA-based 

antagonization of RBP inclusions in the context of existing strategies to treat ALS/FTD and other 

disorders.  
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4.1 Novel optogenetic models of intracellular phase transitions 

4.1.1  Current models of phase separation in molecular biology 

Following initial demonstrations of phase separation at work in biological systems, a 

majority of studies investigating the phase behavior of various proteins and other biological 

molecules have relied upon various in vitro assays to assess the formation and material properties 

of biomolecular condensates (Alberti et al., 2019). In general, this in vitro reconstitution usually 

involves the dilution of proteins-of-interest, first purified from bacterial or insect expression 

systems, at a range of concentrations into physiological buffer solutions of varying ionic strength 

(Alberti et al., 2018). Often times, these solutions are incubated for certain lengths of time at 

differing temperatures prior to measurement of turbidity changes or microscopic analysis of 

droplet assembly in these different conditions (Alberti et al., 2018). This kind of reductionist 

approach offers many benefits in the assessment of modulators of phase separation. In contrast to 

the intracellular environment, these simplified systems allow for the direct testing of single 

components or variables within these reactions, such as protein/salt concentration, molecular 

crowding reagents, and/or the presence of RNA or other ligands (Alberti et al., 2018). Furthermore, 

a number of very sophisticated methods have been developed to thoroughly interrogate the 

material properties of these assemblies that are not possible to execute in cellular systems (Bracha 

et al., 2019). Overexpression of fluorescently-tagged proteins has also been commonly used to 

complement these in-depth in vitro analyses, allowing for the assessment of the assembly and 

dynamics of phase separated compartments in the intracellular environment. However, these 

overexpression approaches do not provide the tight control over these events that may be required 

to test specific hypotheses related to the phase behavior of proteins in certain conditions. Recently 
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developed chemically-inducible systems, such as the rapamycin-dependent iPOLYMER 

dimerization system (Nakamura et al., 2018), have started to move towards inducible assembly of 

various synthetic condensates, but these systems generally require the use of global 

pharmacological agents with unavoidable off-target effects for assembly and lack the rapid 

kinetics, reversibility and spatial control afforded by the emerging optogenetic techniques 

discussed below. 

4.1.2  Advantages of optogenetic phase separation models 

As mentioned above, recent efforts in the development of optogenetic-based induction of 

intracellular phase transitions, such as our work outlined in Chapters 2 and 3, have begun to 

achieve some levels of control over this process that were previously unattainable in various in 

vitro and intracellular model systems. The first iterations of these models, presented by Shin, et al. 

in 2017 (Shin et al., 2017) and our group shown here in Chapter 2, utilized the light-responsive 

oligomerization (PHR) domain from the Arabidopsis thaliana Cryptochrome-2 (Cry2) protein to 

drive phase separation of IDR regions of various proteins or the TDP-43 PrLD and full-length 

TDP-43 respectively. The light-triggered oligomerization of this domain thus served as a rapidly 

inducible multivalent interaction domain able to promote homotypic IDR contacts responsible for 

driving droplet assembly upon light stimulation in these systems. In addition to rapid induction of 

phase separation, the reversibility and second-order kinetics of the Cry2 oligomerization domain 

has additionally provided a novel fine-tuning of protein phase behavior achieved through varying 

light dosage and activation intervals. This light-based tuning has importantly allowed for the direct 

intracellular testing of hypotheses arising from in vitro observations of droplet maturation and 

liquid-to-solid state transitions. For example, enhancement of the concentrations of the FUS (Shin 
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et al., 2017) or TDP-43 PrLDs (Chapter 2) within the dense phase of these droplets, due to either 

enhanced light intensity or chronic/repetitive activation, seemed to result in the arresting of droplet 

dynamics and formation of more solid-like structures. These liquid-to-solid state transitions 

seemed to be accelerated by ALS-linked mutations in the TDP-43 PrLD (Chapter 2), in a similar 

manner to that observed of the mutant FUS PrLD in purified reactions (Patel et al., 2015), 

suggesting that these in vitro observations may be relevant for the intracellular behavior of these 

proteins as well. These systems have similarly overcome technological limitations in the direct 

investigations of stress granule maturation, where similar intermittent activation protocols were 

used to test the effects of chronic and repetitive optogenetic stress granule (optoGranule) formation 

on cellular toxicity (Zhang et al., 2019a). Second generation models, such as Corelets system 

(originally described by Bracha, et al. in 2018 and adapted here in Chapter 3), PixELLs, and 

CasDrop systems, have further improved the temporal control and spatial patterning of these 

optogenetic phase separation models for various additional biological applications like genomic 

restructuring and analysis of spatial “memory” in intracellular condensate formation (Bracha et 

al., 2018; Dine et al., 2018; Shin et al., 2019). 

In addition to the tight spatiotemporal control over biomolecular condensation 

demonstrated by these systems, the ability to perform these assays intracellularly also offers certain 

advantages over purified protein preparations. For example, while in vitro reconstitution of various 

protein self-assemblies can mimic intracellular conditions, many proteins have been shown to 

require a deviation from these conditions, for example through dropping salt concentration or 

temperature, to induce LLPS in these systems (Alberti et al., 2019). Furthermore, in many cases 

the proteins utilized in these in vitro assays are purified from bacterial cells that lack the enzymes 

responsible for normal post-translational modifications occurring within their native environments 
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(Alberti et al., 2018), which have been shown to drastically affect the phase behavior of proteins 

like TDP-43 and FUS (Hofweber and Dormann, 2019). The direct expression of these optogenetic 

tools in mammalian cells also ensures proper folding and chaperoning of proteins-of-interest, as 

many of these proteins are very aggregation prone during purification and often require the use of 

large solubility tags and/or denaturing agents to ensure solubility prior to phase separation assays. 

The intracellular use of these tools also offers a unique opportunity to uncover endogenous 

regulatory mechanisms and functional outcomes of phase separation at work in the native cellular 

environment. In this sense, investigating the phase behavior of these proteins within relevant 

subcellular localizations may provide some novel clues regarding the propensity of proteins to 

undergo various phase transitions in the presence of different physiological interaction partners. 

Our observations here in Chapters 2 and 3, as well as other studies discussed below, that RNA 

ligands in a cell can act as an antagonist to aberrant TDP-43/FUS phase transitions illustrate this 

notion and may serve as an example for the different behavior of some these proteins in vitro and 

in cellular environments. Beyond RNA-based mechanisms, this strategy could also be utilized for 

other disease-linked proteins like tau or alpha-synuclein, which have both been recently shown to 

undergo LLPS in vitro and in cells (Ray et al., 2019; Wegmann et al., 2018). For example, tau is 

a microtubule-binding protein in neurons that has been shown to undergo complex coacervation 

with tubulin dimers in vitro, which seemed to promote microtubule assembly and growth in these 

purified reactions (Hernández-Vega et al., 2017). However, while tau droplet formation seemed to 

be enhanced by the presence of tubulin in these studies, it is unclear how interactions with 

microtubules within a cellular environment may affect the propensity for pathological aggregation 

observed in disease. This notion has also been hinted at in recent in vitro investigations of the 

phase behavior of the synaptic protein alpha-synuclein (Ray et al., 2019). Here, certain 
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environmental factors and interaction partners, such as metal ions and liposomes, typically 

associated with aggregation of the protein in disease were shown to promote LLPS and liquid-to-

solid state transitions of alpha-synuclein in vitro (Ray et al., 2019). Thus, further models utilizing 

similar optogenetic strategies to control the phase behavior of these, as well as other disease-linked 

proteins, within the native intracellular environment could serve as a critical complement to 

interrogate the precise mechanisms controlling phase separation in the cell under normal and 

pathological conditions.  

Along with the ability to uncover novel regulators of protein phase behavior, the 

spatiotemporal control afforded by these systems also allows for more precise investigations into 

the downstream effects of aberrant phase transitions in cellular and in vivo models. In this respect, 

the work described in Chapters 2 and 3 has demonstrated the direct testing of aberrant phase 

transitions of TDP-43 and FUS on cellular toxicity, which had been previously difficult to 

demarcate from other gain-of-function toxicity resulting from enhanced production of these 

proteins in various overexpression models (Hergesheimer et al., 2019). Although not included in 

this dissertation, future studies aimed at determining the downstream mechanisms underlying this 

assembly-specific toxicity have the potential to identify targetable pathways to antagonize 

neurodegeneration and slow disease progression in patients exhibiting aberrant phase transitions 

of these proteins. This optogenetic strategy has also been utilized successfully in vivo to determine 

the contribution of TDP-43 pathology to neurodegeneration, with observations of myofiber 

denervation and axonal shrinkage in zebrafish spinal motor neurons following light-induced TDP-

43 oligomerization (Asakawa et al., 2020). Future in vivo models based upon this approach will 

also offer additional advantages over current overexpression models in the study of intercellular 

transmission and spreading of aggregate pathology. In this sense, the spatial and temporal control 
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of these systems should allow for the selective induction of pathology in particular regions of the 

nervous system and/or specific developmental time points to investigate the patterns and 

mechanisms of prion-like propagation observed of these aggregated proteins and may uncover 

novel therapeutic avenues to halt disease progression.  

4.1.3  Limitations of optogenetic models and future directions 

As is true of any other model in biological applications, these systems of course exhibit 

their own set of limitations that should be carefully considered in the design and interpretation of 

data resulting from these experiments. Perhaps the most obvious potential drawback of these 

strategies can be found in the artificial nature of condensate nucleation, where light-responsive 

molecules like Cry2 are responsible for the initial interactions driving phase separation of these 

proteins (Mann et al., 2019; Shin et al., 2017). However, the alterations in phase separation 

resulting from particular sequence modifications, for example aromatic- or disease-linked 

mutations (Chapter 2), that have been shown to affect phase behavior of these proteins in other 

models may suggest similar interaction modes giving rise to assembly of these structures in these 

Cry2-based systems. Nonetheless, second-generation models, such as the Corelets system, have 

begun to address this issue through the use of the iLID-SspB heterodimers (Bracha et al., 2018). 

Rather than inducing artificial initial protein oligomerization, as is observed with Cry2-based 

systems, here light activation results in the recruitment of proteins-of-interest to spherical core 

molecules, where resulting intra- and intermolecular interactions between IDR and other regions 

of these proteins are subsequently responsible for phase separation (Bracha et al., 2018). This 

strategy thus removes the potential contribution of Cry2 homotypic interactions to the formation 

and material state of light-induced condensates, presumably relying on more “natural” modes of 
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phase separation of these proteins. However, it should be recognized that all of these systems 

driving phase separation through light-responsive domains or modules may be “skipping” certain 

endogenous events that precede condensation of these proteins, such as post-translational 

modifications or interactions with specific binding partners, in physiological and pathological 

states. While this may be limiting in terms of mimicking exact pathological cascades preceding 

aberrant protein aggregation in disease, selective modulation of upstream pathways or interaction 

partners may result in alterations in the propensity for these proteins to undergo optogenetic phase 

transitions, as was the case for RNA in Chapters 2 and 3, and thus may provide a platform to 

identify novel modulators of this process.  

Another potential limitation of these optogenetic modes of phase separation relates to the 

final conformation or structures of induced inclusions. A number of recent studies that have 

highlighted the role of distinct “strains” of aggregated proteins like TDP-43 and tau in differential 

patterns of spreading and toxicity observed across subtypes of these proteinopathies (Gibbons et 

al., 2019; Karikari et al., 2019; Laferrière et al., 2019). Unfortunately, in-depth structural 

comparisons of optogenetically-induced inclusions versus those observed in patient tissue have yet 

to be performed. It thus remains an open questions as to whether inclusions formed in these 

optogenetic systems, containing a number of artificial elements and fluorescent tags, result in 

pathologically-relevant aggregate species and, if so, which specific subtype(s) of these 

proteinopathies might be best recapitulated. However, it is important to note the similarities of 

inclusions formed through both Cry2- and iLID-based systems to those observed in patient tissue 

(Chapters 2 and 3), in terms of immunohistochemical and biochemical profiles, which may suggest 

a comparable cellular response to optogenetic inclusions as those at work in disease. Furthermore, 

while the conformations of these optogenetic aggregates are currently unknown, these systems do 
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provide an opportunity in future studies to screen for modulators of the formation of specific 

inclusion strains that may exhibit unique toxicity and/or spreading profiles, thus opening another 

potential therapeutic window.  

Although current models have shown recruitment of endogenous or non-optogenetically 

active proteins into light-induced assemblies, another shortcoming of these models is the use of 

exogenous expression strategies to produce these light-responsive systems in cells. Thus, these 

current systems are generally limited to testing gain-of-function toxicity associated with inclusion 

formation, rather than the full disease state observed in postmortem tissue consisting of a 

combination of nuclear clearance and aberrant cytoplasmic aggregation of these proteins. To 

address these issues, hopefully future efforts will utilize recent technological advancements in the 

field of genetic editing to produce knock-in optogenetic models in various cellular and animal 

models of these proteinopathies. In this sense, the targeted insertion of these light-responsive 

modules into endogenous loci of various proteins of interest should allow for a full recapitulation 

of both loss- and gain-of-function mechanisms presumed to underlie TDP-43, FUS, and other 

proteinopathies. Similarly, expression of these fusion proteins from endogenous promoters would 

allow for native expression levels and regulation that may prove to be additionally relevant to 

disease pathogenesis.  

Together, these new optogenetic tools have provided a number of new opportunities to 

investigate these biological phenomena in their native intracellular environment. These 

technological advancements have not only allowed for the direct intracellular testing of hypotheses 

gleaned from pioneering in vitro studies, but have also brought forth additional methods to 

interrogate and identify novel modulators of the phase behavior of these proteins that may be 

relevant to both physiology and disease. While these systems certainly exhibit their own inherent 
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limitations, recent and future efforts have already begun to address some of these issues and will 

hopefully work towards the generation of the most relevant, translatable models to recapitulate 

physiological and pathological phase transitions of these proteins in order to facilitate the 

development of novel therapeutics for neurodegenerative disease.  

4.2 RNA as an antagonist of aberrant RBP phase transitions 

4.2.1  RNA as an intracellular buffer system to prevent aberrant phase transitions of 

disease-linked RBPs 

When considering the abundance of RNA-binding proteins that have been shown to 

undergo phase separation and incorporation into various MLOs around the cell, it is not surprising 

that many previous studies have investigated the role of RNA in modulating this process (Langdon 

and Gladfelter, 2018). Most observations from these studies have pointed to a general promotion 

of RBP phase separation by the presence of RNA ligands, presumably acting as additional 

multivalent scaffolds to enhance protein self-assembly and MLO formation (Langdon and 

Gladfelter, 2018). However, many of these experiments have utilized low RNA:protein molar 

ratios that may not represent physiological concentrations of these molecules, particularly in the 

native subcellular compartments where these proteins normally reside (Burke et al., 2015; Lin et 

al., 2015; Maharana et al., 2018). In fact, a few of these early investigations, as well as more recent 

reports, have shown that reversing this molar ratio to higher RNA concentrations seems to actually 

prevent phase separation of proteins like FUS and TDP-43 (Maharana et al., 2018; Mann et al., 

2019) (see also Chapter 2). Thus, our work outlined in this dissertation and other recent 
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investigations have focused on directly investigating the effects of RNA on the propensity for these 

proteins to undergo aberrant phase transitions in a more physiological, intracellular environment 

(Maharana et al., 2018). Through the use of optogenetic tools described above and various 

deletion/mutagenesis studies, we and others have since proposed that the phase behavior of TDP-

43, FUS and other PrLD-containing RBPs within a cell is strongly dependent upon their interaction 

with intracellular RNA (Maharana et al., 2018). Specifically, these experiments have shown that a 

loss of RNA interactions, through mutations or intracellular RNase injection, seems to promote 

phase separation and subsequent aggregation of these proteins into pathologically-relevant 

inclusions (Maharana et al., 2018). We have also shown here that intracellular addition of specific 

RNA substrates of these proteins can conversely prevent aggregation and, in some cases, actually 

reverse pre-formed inclusions in our optogenetic systems (Chapters 2 and 3). Further support for 

the role of RNA binding in antagonizing TDP-43 aggregation can be found in the recent discovery 

of novel ALS/FTD-linked mutations adjacent to the RRM regions of the protein 

(D169G/K181E/K263E) (Chen et al., 2019). Interestingly, two of these mutations (K181E/K263E) 

were shown to disrupt RNA binding and promote the intranuclear aggregation of TDP-43, while 

the D169G mutation neither affected RNA binding or intracellular aggregation of the protein 

(Chen et al., 2019).  

Recent proteomic analysis of cell and tissue lysates subjected to RNase treatment has 

additionally demonstrated that this phenomenon may not be restricted to a small subset of disease-

linked RBPs, as over 1300 individual proteins were shown to lose their solubility following cellular 

RNA degradation (Aarum et al., 2019). In addition to expected RBPs like TDP-43 and FUS, other 

disease-associated proteins not typically associated with RNA binding, such as Tau and 

Huntingtin, also became aggregated upon RNase digestion, which may suggest RNA dysregulation 
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as a common mechanism at work across these neurodegenerative disorders. Another key 

observation of this study was the over-representation of proteins associated with the Gene 

Ontology (GO) terms of “RNA binding” and “translation initiation” that became aggregated upon 

RNase treatment, which mirrors the major protein composition of stress granules as determined by 

similar proteomic analysis (Aarum et al., 2019; Markmiller et al., 2018). These results are 

especially interesting in light of recent work, including our observations in Chapter 2, that has 

begun to suggest a protective role for stress granules in the maintenance of TDP-43 and FUS 

solubility during periods of cellular stress (Gasset-Rosa et al., 2019; Hans et al., 2020; McGurk et 

al., 2018; Shelkovnikova et al., 2013b). Here, acute sequestration of proteins like TDP-43, FUS 

and others within these RNA-rich structures may actually prevent their aggregation during 

environmental conditions that could trigger protein misfolding or damage in a similar manner to 

that proposed for the yeast prion protein Sup35 during pH stress (Franzmann et al., 2018). In 

support of this notion, it has recently been demonstrated that osmotic stress conditions that are 

typically used to initiate stress granule assembly can directly trigger TDP-43 insolubility and 

ubiquitination independently of these structures, through use of pharmacological inhibitors of 

stress granule formation (Hans et al., 2020).  

Thus, together these results suggest that intracellular RNA may exist as an endogenous 

buffering system evolved to maintain the solubility of proteins like TDP-43 and FUS under 

physiological conditions (Figure 33). In this sense, RNA could act in concert with other molecular 

chaperones that have been previously linked to the prevention of aberrant RBP aggregation, such 

as various heat-shock proteins (HSPs) and nuclear import receptors (Carlomagno et al., 2014; Chen 

et al., 2016; Guo et al., 2018). Interestingly, predictions of interactors for a number of HSPs in 

yeast have shown an enrichment for RNA binding proteins (Klus et al., 2015), and certain 
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mammalian HSPs like DNAJB2, HSP70, and HSP90 have been proposed to inhibit TDP-43 

aggregation in different contexts (Carlomagno et al., 2014; Chen et al., 2016). While the 

mammalian disaggregase machinery is less understood, engineered versions of the yeast Hsp104 

have been shown to disaggregate pre-formed TDP-43 and FUS fibrils in a similar manner to that 

previously shown by these proteins’ cognate nuclear import receptors and short RNA 

oligonucleotides presented here in Chapter 3 (Guo et al., 2018; Tariq et al., 2019). Given the 

cytoplasmic roles of TDP-43 and FUS in the processes of mRNA transport and translational 

regulation (Birsa et al., 2020), which in involve dynamic RNA binding and release, it would not 

be surprising if other buffering systems have evolved to prevent aberrant aggregation of these 

proteins outside the RNA-rich nucleus. Direct evidence for this notion is admittedly lacking, but 

it is interesting to note that the nuclear import receptors for TDP-43 have been found in the post-

synaptic density of rat hippocampal neurons (Thompson et al., 2004), where TDP-43 has also been 

reported to function along with FMRP in local translation (Chu et al., 2019). Thus, breakdown of 

any of these systems in pathological states, such as the disrupted interaction between ALS-linked 

mutant FUS and its nuclear import receptor Kap2 (Hofweber et al., 2018), thus may result in the 

deposition of insoluble inclusions of these proteins observed in disease (Figure 33). 
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Figure 34. Possible breakdown of RNA buffering system resulting in pathological aggregation of RBPs. 

(A) Under normal conditions, high concentrations of RNA within the nucleus may work to keep RBPs soluble to 

perform essential nuclear functions (i.e. regulation of alternative splicing, transcriptional regulation), whereas low 

concentrations of particular RNAs in the cytoplasm may facilitate physiological MLO assembly. (B) However, in 

certain pathological conditions observed in ALS/FTD (i.e. nuclear transport deficits, RNA misprocessing), the 

disruption of proper RBP:RNA interactions and/or molar ratios could lead to aberrant RBP assembly in the cytoplasm. 

Failure to clear these aberrant assemblies due to age- or mutation-related disruption of proteostasis may thus result in 

the deposition of pathological inclusions observed in disease and may further deplete RBPs from the nucleus.  

4.2.2  Possible mechanisms of RNA-mediated antagonization of aberrant phase transitions 

These recent intracellular and in vitro findings have shed new light on the complex 

regulatory role of RNA on the phase behavior of various RBPs. However, considering the variety 

of RNA species present within the intracellular environment and total RNA preparations used for 

many of these in vitro assays, it has been difficult to determine the specific RNA species that are 

particularly efficient inhibitors of aberrant phase transitions, as well as the mechanisms by which 

they may be exerting their effects. In a similar manner to RNAs promoting phase separation and 
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MLO incorporation, our work presented in this dissertation, as well as other recent investigations, 

have begun to highlight the importance of particular molecular characteristics like length and 

secondary structure in determining the inhibitory activities of these RNAs. These properties in turn 

have started to uncover potential mechanisms underlying the antagonization of RBP aggregation, 

which hopefully will prove beneficial in future efforts to develop RNA-based therapeutics 

targeting aberrant protein inclusions in disease. 

Perhaps the most documented property of RNAs that seem able to prevent phase transitions 

of cognate RBPs has been overall RNA length. While direct comparisons between RNAs of 

differing length but similar valence and affinity are lacking, recent investigations of the buffering 

capacity of different types of RNAs (tRNA, NEAT1 lncRNA and rRNA) has shown an interesting, 

near-linear relationship between RNA length and antagonization of FUS phase separation 

(Maharana et al., 2018). Specifically, it was shown that the shorter RNA species (tRNA) were the 

most efficient solubilizers of FUS droplets, with the longer NEAT1 and rRNAs requiring much 

higher concentrations in solution for effective inhibition of FUS LLPS (Maharana et al., 2018). 

These short tRNA species were interestingly also shown to outcompete other, presumably longer 

RNAs to bind and prevent FUS assembly within stress granules (Maharana et al., 2018). Recent 

smFRET studies of FUS multimerization with polyU RNA of different lengths has echoed this 

notion, with longer polyU species allowing for FUS multimerization and dynamic FRET 

fluctuations potentially representative of condensate formation (Niaki et al., 2020). Conversely, 

shorter polyU tracts (U10-U30) seemed to only allow binding of single FUS monomers and did 

not promote FUS multimerization or dynamic RNA interactions in these assays (Niaki et al., 2020). 

This kind of 1:1 protein/RNA binding stoichiometry also seems important in the regulation of Pab1 

phase behavior by polyA RNA, in which a 19-mer designed to promote monomeric Pab1 binding 
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was shown to antagonize thermally-induced phase transitions of Pab1 in a dose-dependent manner 

(Riback et al., 2017). In addition to our work presented here in Chapters 2 and 3, similar studies 

have also shown that TDP-43 self-assembly can be antagonized by short, specific RNA 

oligonucleotides (French et al., 2019; Maharana et al., 2018), but interestingly seems to be 

promoted in certain conditions by long RNAs like NEAT1 lncRNA and titin mRNA that contain 

multiple binding sites for these proteins on single transcripts (Tollervey et al., 2011; Vogler et al., 

2018). Thus, it may be the case that the ability of shorter oligonucleotides to inhibit higher-order 

assembly of these RBPs may be intrinsically linked to the low-occupancy binding capacity of these 

molecules, in contrast to longer multivalent RNA molecules that act as scaffolds for RBP 

multimerization and subsequent phase separation (Figure 35). 
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Figure 35. Differential effects of long RNAs and short oligonucleotides on RBP phase behavior. 

(A) Longer RNAs may drive RBP phase separation and MLO assembly through a combination of mechanisms, 

including: 1) enhancement of RBP multimerization on single RNA molecules through the binding to multiple binding 

sites; and 2) increased potential for RNA:RNA interactions (i.e. complementary base-pairing) that may directly 

contribute to phase separation and/or aid in the formation of scaffolding networks for additional RBP recruitment to 

condensates. While some RBPs require structural elements for RNA binding, lower overall structure of these RNAs 

may increase the likelihood of RNA:RNA interactions and/or provide important flexibility to encourage dynamic 

RBP:RNA interactions to drive phase separation. (B) Conversely, short oligonucleotides may antagonize phase 

separation by limiting RBP binding occupany and multimerization that is required for phase separation. Structural 

elements of these oligonucleotides similarly might encourage single RBP binding and resist RNA remodeling and/or 

RNA:RNA interactions that contribute to the formation of these assemblies.  
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Our investigations described in Chapter 3 have also suggested a strong role for RNA 

secondary structure in this antagonization of protein phase transitions by short RNAs. In a similar 

manner to the smFRET studies described above, here the unstructured polyU50 RNA allowed for 

multiple FUS binding and subsequent LLPS, while the defined secondary structure of the S2 RNA 

inhibitor restricted binding to monomeric FUS and prevented this multimerization and phase 

separation. The importance of secondary structure has also been noted in the capacity of short 

synthetic oligonucleotides to solubilize protein aggregation induced by RNA digestion in whole 

cell lysate, with the most effective molecules containing single-stranded motifs like loops or bulges 

interspersed by double stranded regions (Aarum et al., 2019). Similar results have also been 

demonstrated following biotinylated isoxazole (b-isox) treatment in HeLa cell lysate, which has 

been shown to preferentially precipitate IDR-containing RBPs through currently unclear 

mechanisms (Han et al., 2012; Kato et al., 2012; Sanchez de Groot et al., 2019). Mass spectrometry 

analysis of aggregated proteins in this assay showed a preferential antagonization of aggregation 

following incubation with highly-structured RNAs, while low-structure RNAs seemed to produce 

results similar to background controls (Sanchez de Groot et al., 2019). These findings may seem 

relatively confusing when considering the importance of structural elements of certain RNAs 

shown to conversely promote phase separation and MLO assembly (Clemson et al., 2009; 

Maharana et al., 2018; Yamazaki et al., 2018), but it is important to consider the additional 

contribution of RNA length in determining the effects of these RNAs on RBP phase behavior. As 

the relative abundance of RNA structure has been shown to positively correlate with the number 

of protein interactions, and increased RNA length in turn seems to correlate with enhanced 

structure (Sanchez de Groot et al., 2019), it could be the case that these longer, structured RNAs 

drive multiple interactions with different RBPs to promote multimerization and RNP assembly. 
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On the other hand, the structural components in short RNAs may result in specific binding of a 

limited number of molecules to antagonize multimerization, as many RBPs have been shown to 

recognize RNAs through both sequence and structure-specific mechanisms (Dominguez et al., 

2018).  

It is also plausible that certain structural elements of these short RNAs may differentially 

engage various RNA binding regions of RBPs to exert their antagonizing effects through 

competitive inhibition of interactions important for driving phase separation. For example, while 

we did not observe binding of RNA inhibitors by the FUS PrLD, we did demonstrate strong 

contacts within both the FUS RRM and RGG-ZnF regions. This is consistent with a recent bipartite 

model of FUS RNA recognition, in which both structure-specific interactions by the RRM region 

and sequence-specific binding by the ZnF domain contribute to RNA binding, with additional 

RGG contacts providing further RNA interactions (Loughlin et al., 2019). A similar cooperative 

binding mechanism has been proposed for RRM1 and RRM2 to achieve the sequence-specific 

binding of TDP-43, but the exact contributions of each domain and role of structural specificity 

are still unclear (Flores et al., 2019; Furukawa et al., 2016; Zacco et al., 2018). Interestingly, while 

the RGG domains of FUS have been known to be major drivers of phase separation, via long-term 

cation-π interactions with the tyrosine-rich PrLD, the RRM regions of both FUS and TDP-43 have 

also been implicated in playing a role in the self-assembly of these proteins (Lu et al., 2017; Qamar 

et al., 2018; Wang et al., 2018b; Zacco et al., 2018). Specifically, it has been suggested that these 

regions may participate in solid-state aggregation of TDP-43 and FUS, as they have all been shown 

to homo-oligomerize and form amyloid fibrils in vitro (Agrawal et al., 2019; Lu et al., 2017; Shodai 

et al., 2013; Zacco et al., 2018). A similar mechanism has been proposed for Pab1, in which 

multimerization of the protein, which requires both the P domain and RRM region, seems to 
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actively compete with polyA RNA binding (Yao et al., 2007). Thus, it may be the case that the 

binding of RNA may directly compete with interactions involving these regions responsible for 

driving phase separation, thereby inhibiting liquid- or solid-state phase transitions of these 

proteins. This mode of antagonization would be quite analogous to that described in the buffering 

of aberrant FUS phase transitions by its nuclear import receptor, in which stable binding of Kap2 

to the PY-NLS of FUS allows for weak, distributed contacts in other regions of the protein (PrLD, 

RRM, ZnF, and RGG domains) that result in the inhibition of these regions to drive phase 

separation (Guo et al., 2018; Yoshizawa et al., 2018). Hsp27 has also been recently shown to 

antagonize FUS phase transitions through a similar mechanism, involving weak contacts 

distributed throughout the FUS PrLD that resulted in a reduction of FUS assembly within stress 

granules and inhibition of FUS PrLD phase separation in vitro (Liu et al., 2020). Interestingly, 

stress-related phosphorylation or phosphomimetic substitutions in these studies led to co-phase 

separation of Hsp27 with FUS within stress granules and in vitro droplets and seemed to preserve 

the liquid-like state of these assemblies by discouraging subsequent fibrillization (Liu et al., 2020). 

This behavior is quite similar to that observed of weak RNA inhibitors in our studies (Chapter 3), 

which allowed for initial LLPS but antagonized FUS aggregation, and may suggest that some 

aspects of these buffer systems may have evolved to specifically discourage pathological 

aggregation of these proteins while not interfering with physiological LLPS. 

In addition to competitive inhibition, these RNAs could also potentially exert their 

inhibitory effects on RBP phase transitions through allosteric modulation. In this sense, binding of 

RNA could induce or stabilize certain conformations of these proteins that prevent the interactions 

necessary to drive phase separation. RNA binding-induced conformational changes have been 

reported for FUS, which interestingly seems to be modulated by RNA properties like sequence 
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and length in a similar manner to the inhibitory efficiency of different RNAs in our studies (Hamad 

et al., 2020). Specifically, it was shown that conformational changes associated with binding 

shorter RNAs was highly sequence-specific, while both specific and non-specific sequences were 

capable of inducing these changes with longer RNAs (Hamad et al., 2020). Structure was also 

identified to be critical determinant of binding-induced conformational alterations for shorter 

oligonucleotides, echoing our arguments for the importance of structure in short RNA-mediated 

inhibition of FUS phase separation (Chapter 3). These kinds of conformational changes have also 

been reported for other RBPs like hnRNPA1 (Ding et al., 1999), HuR (Wang et al., 2013), UA1 

(Leulliot and Varani, 2001) and PABP (Deo et al., 1999) upon binding of target RNA, suggesting 

that this may be a common mechanism across various proteins and RNA substrates. While in-

depth investigations of possible TDP-43 conformational changes resulting from binding to 

different RNA species have yet to be reported, it has been suggested that the RRMs of TDP-43 in 

isolation do not significantly alter their conformation upon binding to short RNA oligonucleotides 

(Bhardwaj et al., 2013). However, similar investigations of the RRMs along with the N-terminal 

domain have shown that RNA molecules that promote the solubility of this truncated TDP-43 seem 

to stabilize the native conformation of the protein upon extended incubation (Zacco et al., 2019). 

Thus, it is possible that binding to RNA may promote and/or stabilize the functional conformation 

of TDP-43 required for things like splicing regulation, which has been proposed to involve “head-

to-tail” oligomerization of the N-terminal domain (Afroz et al., 2017). Supporting this idea, the 

orientation of TDP-43 resulting from this mode of oligomerization is thought to antagonize its 

pathological aggregation by spatially separating the C-terminal PrLDs of adjacent molecules, as 

disruption of the N-terminal interaction interface disrupts splicing function and promotes inclusion 

formation (Afroz et al., 2017). However, another contrasting study has proposed a different model 
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in which N-terminal oligomerization encourages PrLD interactions, showing that alteration of this 

N-terminal interaction by phosphomimetic substitution interferes with polymerization, splicing 

function and phase separation of TDP-43 (Wang et al., 2018a). While these opposing models have 

yet to be resolved, it should be noted that phase separation of TDP-43 has recently been shown to 

be dispensable for proper splicing regulation (Schmidt et al., 2019). Thus, it is possible that the 

phosphomimetic mutation described above may disrupt oligomerization/splicing and LLPS of 

TDP-43 through independent mechanisms. However, the notions presented here are merely 

speculative, and future in-depth structural analyses will be needed to determine the exact 

mechanisms mediating the inhibition of TDP-43 and other RBP phase transitions by short RNA 

oligonucleotides. 

4.2.3  The role of RNA binding in TDP-43-dependent neurotoxicity 

While these recent observations have strongly suggested a role for intracellular RNA in the 

prevention of aberrant aggregation of proteins like TDP-43 and FUS, the implications of this 

concept on cellular toxicity associated with current models of ALS/FTD have proven slightly more 

complicated. For example, while mutations shown to disrupt the RNA binding efficiency of TDP-

43 or FUS have been shown to result in nuclear aggregation of these proteins upon expression in 

cells (Cohen et al., 2015; Daigle et al., 2013; Flores et al., 2019) (see also Chapter 2), multiple 

groups have reported a reduction in overexpression toxicity associated with these RNA binding 

deficient mutants when compared to overexpression of wildtype proteins (Daigle et al., 2013; 

Elden et al., 2010; Flores et al., 2019; Ihara et al., 2013; Voigt et al., 2010). These results may 

seem paradoxical when considering the hypothesized relationship between aberrant protein 

aggregation and cell death in disease. However, these experiments highlight the importance for 
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careful consideration of the exact mechanisms of toxicity involved in various disease models, 

particularly in the extrapolation of results to complex pathological processes at work in disease. 

For example, a majority of TDP-43 overexpression models fail to reproduce key pathological 

hallmarks of these proteinopathies, such as nuclear depletion or cytoplasmic aggregation of the 

protein, yet still seem capable of driving cellular toxicity in most systems (Hergesheimer et al., 

2019). Thus, it is possible that toxicity achieved in these systems may occur through separate 

mechanisms as those experienced in disease, such as gain-of-function RNA homeostasis changes 

associated with overproduction of these proteins. In support of this notion, one of these studies 

showed widespread RNA expression and splicing changes resulting from wildtype TDP-43 

overexpression, which were largely not observed upon expression of RNA binding deficient 

mutant proteins associated with reduced toxicity (Flores et al., 2019). Another of these 

investigations reported that mutation of the TDP-43 nuclear localization signal (NLS) reduced 

toxicity to a similar degree as RNA binding mutations when compared to wildtype TDP-43 

overexpression, which might similarly disrupt its ability to over-regulate target RNAs through 

nuclear depletion of the protein (Voigt et al., 2010). This idea is also supported by previous work 

that has identified knockdown of the lariat-debranching enzyme Dbr1 as a strong suppressor of 

TDP-43 overexpression toxicity, which was proposed to result from the accumulation of TDP-43-

binding intronic lariats acting as “decoys” to buffer excess TDP-43 away from binding other 

essential cellular RNAs (Armakola et al., 2012).  

Interestingly, various genetic manipulations of the TDP-43 homologue in C. elegans, TDP-

1, has provided additional insight into the contrasting results associated with these overexpression 

models. In a similar manner to the observations mentioned above, overexpression of TDP-43 has 

proven to produce neurotoxicity and locomotor defects in C. elegans that can be reversed by 
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deletion of either RRM of the protein (Ash et al., 2010). However, CRISPR/Cas9-mediated 

mutagenesis of the endogenous TDP-1 protein to reduce RNA binding efficiency has recently 

shown an analogous phenotype, in terms of locomotor deficits, to that observed in TDP-1 knockout 

C. elegans (Flores et al., 2019). This mutation was also associated with a lack of RNA processing 

alterations induced by overexpression of wildtype TDP-43, further suggesting that the reduced 

toxicity of RRM mutants in overexpression models may be due to a diminished ability to exert 

toxic gain-of-function splicing changes (Flores et al., 2019).  

This kind of widespread alteration in RNA splicing profiles has also been reported upon 

depletion of TDP-43, as well as in knock-in ALS-linked mutant models (Arnold et al., 2013; Fratta 

et al., 2018; Klim et al., 2019; Ling et al., 2015; Melamed et al., 2019), which may indicate that 

any alteration in TDP-43 expression can have profound effects on general RNA homeostasis. 

Direct comparison of splicing changes associated with TDP-43 loss- and gain-of-function 

mutations in mouse models has proposed opposing effects on RNA processing, specifically in the 

aberrant inclusion of “cryptic” exons in loss-of-function models and exclusion of “skiptic” exons 

corresponding to gain-of-function mutations (Fratta et al., 2018; Ling et al., 2015). However, while 

splicing changes associated with TDP-43 loss-of-function have been confirmed in sporadic and 

genetic forms of ALS-FTD associated with TDP-43 proteinopathy (Ling et al., 2015; Melamed et 

al., 2019), it is still unclear whether these gain-of-function effects can be detected in human 

patients harboring these mutations. Recent investigations directly comparing TDP-43-depleted 

human cell lines or iPSC neurons to cells harboring disease-linked mutations have interestingly 

shown RNA expression changes in both conditions, with a significant overlap between reduced 

and mutant TDP-43, suggesting some potential loss-of-function mechanisms resulting from these 

genetic forms of disease as well (Klim et al., 2019; Melamed et al., 2019). Other studies have 
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identified additional transcripts whose expression is normally sustained by TDP-43 but are 

downregulated in sporadic ALS postmortem tissue, specifically in inclusion-bearing motor 

neurons of these patients, pointing to a similar loss-of-function in the regulation of RNA stability 

resulting from aberrant aggregation of TDP-43 (Lagier-Tourenne et al., 2012). Supporting this 

notion, sequestration of endogenous TDP-43 within artificial TDP-43-12XQ/N inclusions seems 

to produce splicing changes that mimic RNAi-mediated depletion of the protein (De Conti et al., 

2015). Thus, while it seems that alterations in RNA homeostasis caused by overexpression or 

reduction of functional TDP-43 can be toxic in many systems, it will be important moving forward 

to be mindful of the precise mechanisms at work in patients and focus research efforts on 

developing models to fully recapitulate human disease.  

As mentioned above, our optogenetic efforts may represent initial efforts towards this end. 

However, while we have shown specific toxicity associated with aberrant phase transitions of 

TDP-43 and FUS in these systems, the exact mechanisms of toxicity in these models remain 

unknown. It is possible that splicing changes due to endogenous protein sequestration may play a 

role, as we have shown both recruitment of endogenous TDP-43/FUS and some preliminary 

evidence for altered TDP-43 regulation of the CFTR minigene following inclusion formation, but 

future in-depth investigations will be needed to truly determine whether these loss-of-function 

mechanisms may be exerting toxic effects. Other future efforts devoted to the development of 

knock-in and other models aimed at teasing apart the relative contribution of gain- and loss-of-

function mechanisms resulting from aberrant TDP-43 and FUS inclusion formation will hopefully 

provide additional clarity into these outstanding questions in the field. 
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4.3 Final remarks 

The study of biomolecular condensation and protein aggregation is a rapidly evolving field. 

Novel roles for phase separation are being defined all over the cell for a wide array of biological 

functions and have been accompanied by the emergence of cutting-edge tools to control and 

interrogate these assemblies. As our understanding of the regulatory mechanisms and molecular 

grammar governing this process has grown, so too has the recognition that RNA may be a key 

modulator of phase separation in physiology and disease. The work described in this dissertation 

represents efforts encompassing both these notions. In this sense, the development and intracellular 

use of optogenetic models to control phase separation has allowed for the discovery of the role for 

RNA in countering pathological phase transitions of disease-linked RBPs, in a similar manner to 

other recently proposed aggregation-buffering systems at work in the cell. Supporting this notion, 

observations of perturbed pathways in genetic and sporadic ALS/FTD has suggested that many 

upstream pathological mechanisms may converge on aberrant RBP aggregation, through 

dysregulation of these endogenous buffering or clearance systems, which may explain the common 

pathologies observed in these diseases (Ling et al., 2013). This work has also demonstrated that 

this buffering capacity of RNA could perhaps be harnessed through the use of short “bait” RNA 

oligonucleotides to directly antagonize aberrant RBP phase transitions and promote cellular 

survival, which may represent a novel therapeutic opportunity in the treatment of ALS/FTD and 

other disorders affected by pathological RBP aggregation. Support for the feasibility of this 

strategy can be found in the emergence of other short oligonucleotide-based therapeutics, most 

notably antisense oligonucleotides (ASOs), that have been recently developed for the treatment of 

a variety of neurological disorders (Rinaldi and Wood, 2018). Several of these ASO-mediated 

therapies have already been FDA-approved, with many more currently undergoing clinical trials, 
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and the continual evolution of these molecules to improve safety, delivery, and efficacy through 

this process may provide invaluable insight for the design and development of other 

oligonucleotide-based therapies for treatment of human disease (Rinaldi and Wood, 2018). While 

our work presented here may represent initial efforts towards this end, future in vitro and in vivo 

studies aimed at the identification of oligonucleotide properties and modifications that may 

enhance efficacy and specificity of these molecules in the disruption of pathological inclusions 

will be needed to truly determine the therapeutic potential of this strategy.  
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Appendix A 

CW # CW13-097 CW13-021 CW16-098 

Age at death 62 78 60 

Sex F M M 

Primary diagnosis Familial ALS-FTLD 

(C9ORF72) 

FTLD-TDP Sporadic ALS 

Sections examined Hippocampus,  

Cervical spinal cord 

Hippocampus Cervical spinal cord 

pTDP-43 inclusions + + + 

mRNA co-localization - - - 

G3BP1 co-localization - - - 

ATXN-2 co-localization - - - 

Appendix Table 1. ALS/FTD patient information and scoring, related to Chapter 2. 
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Appendix B 

 

Appendix Video 1. optoTDP43 Chronic Stimulation Longitudinal Imaging, Related to Figure 3 

 

 

Appendix Video 2. optoTDP43 Inclusion FRAP Analysis, Related to Figure 3 

 

 

Appendix Video 3. Cry2PHR versus optoLCD Light-Induced Phase Separation, Related to Figure 6 

https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/1b5cf238-13f7-4ba0-9d6f-a1a783952d51/mmc4.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/cb0c59ca-b9f0-42bb-8862-1039222fe9c2/mmc5.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/f454ca8d-8b2b-46d9-8447-81e35ffa2a31/mmc6.mp4
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Appendix Video 4. optoLCD versus optoLCDM377V, optoLCDQ331K, and optoLCDA321V Repetitive Light-

Induced Phase Separation, Related to Figure 6 

 

 

Appendix Video 5. Lack of optoTDP43 Light-Induced Phase Separation, Related to Figure 7 

 

 

Appendix Video 6. Cry2olig LCD RRMs and FUS RRM + LCD Light-Induced Phase Separation, Related to 

Figure 8 

 

https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/dbaee8a1-cac0-4436-9898-cdb64fcbfbb7/mmc7.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/dbaee8a1-cac0-4436-9898-cdb64fcbfbb7/mmc7.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/4d0c73b6-480b-4f2c-9008-0a81d0f37b6b/mmc8.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/1a0a48fd-530b-4bef-9f2e-734f5e78033e/mmc9.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/1a0a48fd-530b-4bef-9f2e-734f5e78033e/mmc9.mp4
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Appendix Video 7. TDP-43 FRAP Within and Outside of G3BP+ Stress Granules, Related to Figure 13 

 

 

Appendix Video 8. optoTDP43 Neuronal Survival Imaging, Related to Figure 15 

 

 

Appendix Video 9. Cry2-mCh Neuronal Survival Imaging, Related to Figure 15 

https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/e5f5ac4b-0da8-4c7f-81fa-8701cd9e9b09/mmc10.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/e06d93d7-acfd-4710-83b8-b73b6378375b/mmc11.mp4
https://www.cell.com/cms/10.1016/j.neuron.2019.01.048/attachment/02321c64-dadf-4015-b228-84bdb1aaaa1e/mmc12.mp4
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Appendix C 

 

Appendix Figure 1. Workflow of automated optoFUS aggregation analysis, related to Chapter 3. 

(A) Automated confocal microscopy was used to acquire z-stacks from at least nine fields-of-view of fixed cells 

mounted on coverslips. (B) Maximum intensity projections were generated from each field-of-view and (C) binaries 
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were applied based upon fluorescence intensity to define nuclear area (DAPI) and optoFUS inclusion area (mCherry). 

(D) Nuclear binaries were then subtracted from mCherry signal to remove confounding strong nuclear optoFUS signal. 

(E) Whole-cell masks were then used to (F) normalize optoFUS inclusion area to whole-cell area and calculate 

“normalized aggregation area” for each field-of-view. 
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