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Yasemin Basdogan, PhD

University of Pittsburgh, 2020

Molecular level understanding and characterization of solvation environments is often

needed across chemistry, biology, and engineering. In many cases, the explicit interactions

between molecules with nearby solvents are crucial for molecular-scale understanding. To-

ward practical modelling of local solvation effects of any solute in any solvent, we developed

a general, all-QM, cluster-continuum approach. This approach uses a global optimization

procedure to identify low energy molecular clusters with different numbers of explicit sol-

vent molecules and then employs a machine learning algorithm with the help of the Smooth

Overlap of Atomic Positions (SOAP) kernel to quantify the similarity between different low-

energy solvent environments. From these data, we use a sketch-map non-linear dimension-

ality reduction technique to obtain a visual representation of the similarity between solvent

environments in differently sized microsolvated clusters. After studying the evolution of

the local solvation environment around the molecules, we systematically explore reaction

pathways using Growing String Method. Without needing either dynamics simulations or

an a priori knowledge of the local solvation structure, this procedure was used to calculate

reaction energies, solvation free energies and barrier heights in solvated systems. We now

use this approach to model reaction mechanisms in more complicated reaction environments

that are relevant for renewable fuels and chemicals. We reliably predict CO2 hydrogenation

pathways and calculate barrier heights under electrochemical environments. This approach

can be used to study physically significant solvation environments in any solvated system

where the solvent molecules affects the quantum level nature of reaction mechanisms.
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1.0 Advances and Challenges in Modeling Solvated Reaction Mechanisms

This work has been published as Basdogan, Y., Maldonado, A. M., & Keith, J. A. (2020).

Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and

chemicals. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(2), e1446.

1.1 Introduction

Developing sources of renewable energy is paramount to long-term human sustainabil-

ity. [3, 4, 5] For instance, CO2 emissions correlate with severe weather patterns[6] and

global climate change,[7] but more than 78% of the world’s energy consumption through

the year 2040 is expected to come from fossil fuels.[8] Thus, many are interested in recy-

cling anthropogenic CO2 into fuels and chemicals[9, 10, 11, 12, 13] as well as sustainably

producing ammonia[14, 15] and/or hydrogen.[16, 17] Unfortunately, most of these are cur-

rently unfeasible on large scales due to low conversion efficiency and/or high electrochemical

overpotentials. For CO2 electroreductions into fuels and chemicals, selectivity and energy

efficiency remain as major challenges for proton and electron transfers.[18] These challenges

are also present in other fundamental transformations such as N2 reduction for ammonia

synthesis[19] and H2O oxidation for H2 generation.[20]

Computational quantum chemistry modeling can help interpret and guide experimental

work in this area by providing insights into chemical reaction mechanisms. Advances in

algorithms and hardware make it easier to computationally model larger scale systems with

higher accuracy, but the central challenges of understanding what processes to model and how

to physically model them in a reliable way still remain. Indeed, many chemical reactions have

intermediate states that are stabilized by different degrees of solvating environments, and

neglecting or incorrectly modeling these environments can significantly impact the quality

of predictions from computational modeling. We begin this section by summarizing how one

can use computational modeling to explore the chemical and materials space of renewable

1



energy catalysis through the lens of identifying energetically efficient hydrogenation pathways

for CO2 reduction catalysis. We will then summarize different approaches to model solvating

environments in reaction mechanism studies while also reviewing knowns and unknowns from

recent literature.

1.2 The Chemical Space of Hydrogenation Reaction Mechanisms

At a fundamental level, any hydrogenation (or dehydrogenation) process for any reaction

might occur as:

1. One or more covalent hydrogen atom (H·) transfers (e.g. with thermal heterogeneous

catalytic processes).[21]

2. Stepwise or coupled proton and electron transfers that originate from different sites within

the system (e.g. with electrochemical processes).[22]

3. Formal hydride (H−) transfers that may also be coupled with a proton transfer (e.g. with

biomimetic processes).[23]

Analogous classifications have been used by many others to distinguish different modes for

hydrogenation,[24, 25, 26, 27, 28, 29, 30] and each class has been studied in different contexts

of homogeneous,[31] heterogeneous,[32] or biological catalysis.[33] Clearly, the local chemical

environment (especially a solvating environment) will play a role in determining the nature

of the hydrogenation mechanism.

To understand how environmental conditions can influence multistep processes, we can

start by defining a map of elementary electrochemical processes using a ‘square-scheme’ or

‘schemes of squares’[34] and draw analogies to moves on a chessboard (see Figure 1). Here,

a generic molecule A can undergo elementary steps to form a new reduced, hydrogenated

state (AHn). Individual proton transfer steps are normally represented as horizontal steps,

individual electron transfer steps are then represented as vertical steps, and proton-coupled

electron transfer steps are diagonal steps, i.e. all possible moves that a king piece is allowed

to make in a chess game. Alternatively, an elementary hydride transfer would be an ‘L’-

2



Figure 1: A “square-scheme” of hypothetical pathways for a multistep (de)hydrogenation

process.

shaped step that involves two electron transfers and one proton transfer, i.e. a possible move

that a knight piece can make. Before going too far, some aspects warrant mention. First, it

is usually rare to find a reaction intermediate having a charge with an absolute magnitude

of two or more unless there is a polarizing solvent and/or counterions nearby.[35] Thus, it is

usually not likely (though not impossible) to move two or more steps away from the diagonal

line depicting neutral intermediate states. Second, this square-scheme shows that several

different pathways may exist for any multistep process, just like there are multiple paths a

chess piece might move from one corner of a board to another. It requires confirmations

from experiment and reliable computational modeling to assess which pathways are relevant

under specific conditions. We will now describe how computational quantum chemistry can

be leveraged to accelerate the discovery of energetically efficient reaction steps.

1.2.1 Theoretical Phase Diagrams

If hypothetical reaction intermediates can be identified, one can then use computational

quantum chemistry to calculate the absolute free energies of each species using the standard

ideal gas, rigid rotor, and harmonic oscillator approximations. From these data, one can
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then make phase diagrams that are functions of parameters (e.g. solution pH, an electrode

potential, and/or partial pressures of molecular species) that can be used to navigate chemical

and/or materials space.[36] For instance, one can define a generic reaction that refers to

intermediates from Figure 1 using Equation 1.1:

A +
n

2
H2 → AHn (1.1)

The corresponding free energy for this reaction at an arbitrary standard state (◦) is simply

the difference of the free energies of the individual products and reactants:

∆G◦rxn = G◦AHn
−G◦A −

n

2
G◦H2

(1.2)

Note that the free energy of H2 is also related to the definition for the standard hydrogen

electrode (SHE) potential,

H+ + e− ⇀↽
1

2
H2 E = 0 V vs. SHE (1.3)

while the free energy for protons, electrons, or other species such as A or AHn can be ex-

pressed as linear functions of a local environmental parameters such as pH, applied potential

φ, or the relative difference in chemical potential from its standard state ∆µX , respectively.

Note that SHE is a commonly used reference electrode which is a hypothetical electrode

immersed in a 1 M aqueous solution of proton with unit activity and no ionic interactions.

Other reference electrode systems (SCE, NHE, RHE, etc.) can be computationally modeled

as well, and some discussion is found in the perspective paper by Marenich et al.[37] Using

the SHE reference electrode model, one could define the reaction free energy from Equation

1.2 in an expanded form of several different species, each having a corresponding parameter

(all expressed in eV units):

∆Grxn =
(
G◦AHn

+ ∆µAHn

)
− (G◦A + ∆µA)−

(
G◦H+ − 0.059 pH

)
− (G◦e− − eUSHE) (1.4)

Note that values such as G◦AHn
and G◦A can be straightforwardly calculated using quantum

chemistry codes. G◦
H+ and G◦e− correspond to absolute free energies of a proton and electron

in some environment and can be referenced from the literature.[37] The remaining ∆µX terms
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are treated as linear variables that describe environmental factors, e.g. partial pressure of a

specific species, a solution pH, or an applied potential.

Considering large numbers of hypothetical reactions and determining the most favor-

able state at any given set of environmental conditions in this general framework begets “ab

initio” atomistic thermodynamics phase diagrams that would show any ∆G for any hypo-

thetical reaction at a specified set of conditions. For instance, if pH (x-axis) and φ (y-axis)

were used as parameters, one would create a Pourbaix diagram, i.e. a phase diagram that

depicts the thermodynamically most stable state for a system at a given pH and φ.[38] A

representative set of Pourbaix diagrams is given in Figure 2.

Figure 2: a) Pourbaix diagram showing stable states of the reactant, CO2; b) Pourbaix

diagram showing stable states of a hypothetical molecular catalyst, 1,10-phenanthroline; c)

overlaid Pourbaix diagrams from a) and b) showing similar boundaries for hydrogen shuttling

and CO2 reduction. Vertical lines represent pKas, the horizontal lines represent the pH-

independent standard redox potentials and the diagonal lines represent the pH-dependent

proton-coupled electron transfer steps.

While Pourbaix diagrams only provide insights into the thermodynamics of different in-

termediate states, they are still quite useful. First, they are a convenient representation of

pKas, pH-independent standard redox potentials, and pH-dependent proton-coupled electron

transfer steps by separating the regions of the Pourbaix diagram with vertical, horizontal,

and diagonal boundary lines, respectively. These properties can be useful thermodynamic

descriptors for catalysis. Second, the boundaries between different regions of a Pourbaix
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diagram define theoretical electrochemical conditions where free energies of reaction for a

(de)hydrogenation step are zero, and thus at those electrochemical conditions the process

should be highly reversible and thus energetically efficient. Pourbaix diagram boundary lines

therefore show theoretical electrochemical conditions that a species would facilitate energeti-

cally efficient shuttling of protons and electrons. One step further, if one considers a Pourbaix

diagram for a reactant such as CO2 (Figure 2a) and another Pourbaix diagram for a hypo-

thetical catalyst (Figure 2b), one could then overlay the one on top of the other (Figure

2c). Regions where boundaries of the two Pourbaix diagrams overlap signify electrochemical

conditions where one species (i.e. a hypothetical catalyst) would facilitate shuttling of pro-

tons and electrons to another species (i.e. a reactant). This can be thought as an extension

to the Sabatier principle of catalysis, where optimal catalyst activity is achieved when the

substrate binds strongly enough to be activated but also weakly enough that it can still

be removed and not poison the catalyst. Thus, Pourbaix diagram analyses allow one to

search for the catalyst state under specific electrochemical environments that would provide

the lowest hypothetical overpotential.

Our group has used Pourbaix diagram analyses to study a variety of homogeneous and

heterogeneous catalysis systems for CO2 reduction. Interestingly, we have predicted that

reaction conditions for several CO2 electroreduction processes ranging from homogeneous

pyridinium[39, 40] and homogeneous ruthenium-complexes[41] as well as heterogeneous N-

doped nanocarbons[42] and partially reduced SnO2 oxides.[43] All coincidentally share a

similar characteristic, all have Pourbaix boundary lines showing the formation of a new

intermediate state near the conditions where CO2 electrocatalysis has been reported. Ex-

perimentally validating these computational predictions has been difficult, in part due to

difficulties reproducing experimental data that has been reported in the literature.[44, 45]

However, other experimental studies have implicated transiently formed hydride-containing

species in CO2 reduction that are intermediates predicted to be thermodynamically stable

by Pourbaix diagram analyses.[46, 47] We see opportunities to use computational modeling

to discover new catalysts in chemical and materials space and synergistically guide exper-

imental design with high-throughput screening. However, numerous hurdles pertaining to

modeling reaction mechanism under solvating reaction conditions must be overcome first.
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1.2.2 Challenges of Modeling Electrochemical Reaction Mechanisms

As stated earlier, Pourbaix analyses require that all the salient reaction intermediate

states to be correctly identified. When modeling catalytic reactions on surfaces, especially

gas phase reactions on conducting surfaces, standard Kohn-Sham density functional theory

(DFT) is normally suitable for reliably modeling charge neutral reaction intermediates. Ad-

ditionally, modeling electrochemical reactions using the computational hydrogen electrode

model[48] (i.e. modeling electrochemical proton and electron transfers as a 1/2 H2 transfer

coupled to a linear potential correction) can bring helpful and testable insights into electro-

catalysis. However, as illustrated by Exner and Over[49] as well as Janik and Asthagiri,[50]

modeling reaction mechanisms without accounting for barriers provides an incomplete pic-

ture and can result in qualitatively different outcomes that might be wrong and/or misguide

future research efforts.

Carrying out thorough computational investigations is easier said than done. Calculat-

ing barrier heights requires substantial computational effort, and these efforts would all be

for nothing if an unphysical model system were used. First, simplistic models are never

guaranteed to represent the actual atomistic environment, though understanding model sys-

tems can provide useful insight into which pathways are feasible and which are unlikely.

Adding to this complexity, it is well known that commonly used DFT approaches have

self-interaction errors that make them sometimes unphysically model charged intermedi-

ate states and/or highly correlated systems,[51, 52, 53] and so higher-level theories are re-

quired. Today, we see most development and applications in this area are using models

that 1) enable enhanced sampling of reaction mechanisms to identify meaningful reaction

pathways;[54, 55, 56] 2) enable physical modeling of electrochemical (i.e. potential depen-

dent) reaction mechanisms;[57, 58, 59, 60, 61, 62, 63, 64] and 3) improve the quality of

continuum solvation energies of static systems.[65, 66, 67, 68] There is a growing under-

standing that solvation is important not just in homogeneous catalysis but also heteroge-

neous catalysis.[69] Also, solvation modeling treatments are sometimes revealed to not be as

reliable as generally believed.[1] While some computational studies are starting to explicitly

account for potential-dependent reaction mechanisms in different forms, there has been little
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consensus of the best practices for doing so. All of these challenges are important, and the

pathway to addressing them will likely be coupled. To better understand these challenges

through the lens of solvation, we briefly summarize different solvation modeling techniques.

1.3 Implicit Solvation

Continuum solvation models have been used for many decades and there are many de-

tailed reviews in the literature explaining the theory and the applications.[70, 71, 72, 73, 74,

75] We only briefly overview how continuum solvation models work and how they are used

to describe renewable energy catalysis. Figure 3 shows a cartoon model representation of

implicit solvation of a methanol molecule with cluster and surface calculations.

Figure 3: a) Illustration of a methanol molecule modeled within a cavity of a non-periodic

continuum solvation model. b) Illustration of a methanol molecule modeled at a surface

within a cavity of a periodic continuum solvation model.

Continuum solvation models were first developed for non-periodic systems of small and

neutral molecules, and most treat the solvent as a structure-less, homogeneous medium us-

ing a polarizable dielectric described by a dielectric constant ε. In the most commonly used

methods, a solute cavity is created around a solute to represent a boundary surface that

allows a semiempirical calculation of a solvation energy based on the electronic structure of

the system of interest. The subtle differences in defining the cavity, the theoretical foun-
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dations, and the boundary conditions are what gives rise to the various implicit solvation

models.[76, 77, 78, 79, 80, 81, 82, 83, 84] For instance, one of the first and most widely used

continuum solvation model is the conductor-like screening model (COSMO),[85] which dif-

fers from other models by employing a scaled conductor instead of exact dielectric boundary

condition, and this approximation considerably simplifies the mathematics. Also, COSMO

uses a Green’s function as the dielectric operator, and that enabled it to be the first contin-

uum solvation model that was implemented with analytical gradients and used a real cavity

shape.[86]

Expanding the applicability of implicit models to periodic systems requires treatment

of the ionic response of charged species and interfaces.[87] Fattebert and Gygi were the

first to make an isodensity continuum model adaptable to periodic systems that would be

appropriate for modeling solvation on surfaces.[88] The simplest way to treat the ionic re-

sponse is by using Poisson-Boltzmann (PB) theory which considers ions as point particles

with mean-field interactions.[87] There are many other ways to treat a solvent implicitly

on surfaces and still account for ionic responses. For example, joint DFT was developed

to combine typical electronic DFT with a classical DFT description of the liquid environ-

ment in order to reduce computational costs of large periodic systems.[89] This was first

described by a modified polarizable continuum model (PCM) that has a linear dielectric

response for the solvent (linearPCM).[90] The linear dielectric response approximation tends

to fail with systems containing strong electric fields like ionic surfaces and electrochemical

systems, so Gunceler et al. developed an improved model by using a nonlinear dielectric

response (nonlinearPCM).[90] Alternatively, the self-consistent continuum solvation (SCCS)

was developed to extend the utility of implicit solvation to plane–wave codes with improved

robustness.[91, 92, 93] More recently, the CANDLE method was explicitly developed to han-

dle charged species because it takes into account the charge asymmetry in the solvation

structure. In this method the cavity is defined by a nonlocal functional of the solute electron

density and potential that enables modeling the system’s asymmetric solvent charge.[94]

Additionally, separate field–aware approaches are being developed for cavity descriptions

that can account for charged species without the need of continued modulation of cavity

definitions to improve experimental fitting.[95]
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There are several open challenges associated with applying implicit solvation models for

periodic systems. In particular, it remains challenging to reliably determine electrochemi-

cal interfacial structures as well as reaction energetics. For example, some models cannot

capture the local field variations from cations and in some cases default parametrization

can place the ionic countercharge unphysically close to the surface.[96] Recently, there has

been a number of exciting developments in implicit solvent modeling by improving numerical

stability and reducing unphysical artifacts of cavities to better describe the electrochemical

environments. For example, Fisicaro et al. used a continuous permittivity to model com-

plex dielectric environments or electrolytes that should be accurate for neutral and charged

systems.[97] Also, Andreussi et al. have developed an improved continuum solvation model

that eliminated unphysical cavity “pockets” by smoothly varying solute cavities.[98]

Overall, one of the main purposes for an implicit solvation model is to avoid the com-

plexity and computational cost of explicitly modeling solvent molecules. The computational

expense for these systems is low and thus these methods are among the most used in applied

studies of reaction mechanisms. Continuum solvation models such as COSMO, PCM, and

the more recent solvation model based on density (SMD)[84] are highly cited because they

are often used in diverse applications including reaction mechanism studies. We now will

discuss a few applied studies in detail, but mention several others studies that have employed

implicit solvation models to study aqueous CO2 reduction.[99, 100, 101, 102, 103, 104, 105,

106, 107, 108]

Note that modeling extended surfaces are more physically representative of an actual

surface, but being able to model surfaces as clusters can sometimes make it easier to intro-

duce high level theory. However, finite clusters can also have complicated spin states that

need to be accounted for (e.g. Ref. [109]) while periodic analogs to these systems may not

have significant spin polarization. To understand the extent that continuum solvation mod-

els can and should be used in applications of surface cluster models, Gray and co-workers

computationally modeled adsorbate binding energies under the presence of continuum solva-

tion on both periodic slab and large cluster models.[110] They modeled the Pt(111) surface

with a variety of adsorbates: H*, O*, and OH* at different binding sites. It was found that

sufficiently large model clusters captured similar gas phase binding energies as those ob-
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tained using periodic calculations and having relatively low surface coverages. Since the two

fundamentally different models gave similar gas phase binding energies, it showed promise

for future work modeling heterogeneous catalyst sites using modern QM-in-QM embedding

models.[111, 112]

Once the gas phase energies were benchmarked for these systems, the energy contribu-

tions from continuum solvent methods could then be accounted for. Interestingly, using the

COSMO model on the finite cluster resulted in calculated solvation energies ranging from

−0.6 eV to −0.9 eV, and these were quite different in magnitude compared to the VASPsol

energy contributions using the periodic systems that ranged from +0.1 eV to −0.35 eV. This

should not be surprising since the surface cluster model had unphysical corners and edges

that were being solvated while the periodic slab model had no unphysical corners or edges.

The net effect of this was significantly different solvated adsorbate binding energies even

though the gas phase adsorbate binding energies between the two models had been found to

be similar. However, we also found that the relative solvated adsorbate binding energies were

similar across different sites for both the surface cluster and periodic slab models. Since the

relative energetics were similar, we concluded that reaction mechanism studies using con-

tinuum solvated surface cluster models probably will give similar insights as studies using

continuum solvated periodic slab models. The salient point is that if reaction mechanism

studies necessitate the use of solvated surface cluster models, it will likely be the case that

continuum solvation energies will be less physically relevant, but error cancellations can be

leveraged to give useful insights. However, when an intermediate state is being modeled that

is different from the rest, the results from a continuum solvation model should be considered

with more suspicion and thus warrant additional care to ensure that the solvation model is

appropriate for that case.

Another important aspect with continuum solvation models is their cavity definitions.

Programs such as GAUSSIAN allow the user to select different cavities based on different

empirical radii, and Yang compared some of these models on homogeneous metal complexes

for CO2 hydrogenation.[113] Yang modeled PNP-ligated metal pincer complexes for forma-

tion of formic acid from CO2 and H2. To model solvation effects the integral equation

formalism polarizable continuum model (IEFPCM) was used with van der Waals (i.e. Bondi
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radii[114]) atomic radii–for geometric optimizations–and United Atom Topological Model

(UAKS)–for electronic energy corrections–to describe the cavity. UAKS is based on a model

where hydrogen atoms are always enveloped within the molecular cavity while hydrogen

atoms from Bondi radii cavities will appear in the cavity surface. Yang compared solvation

energies of small ions and found that solvation energies using the UAKS radii were more

accurate than energies using Bondi atomic radii. It was found that UAKS cavity data were

within 5 kcal/mol of experimental data while Bondi radii cavity data had an error of 16

kcal/mol. While UAKS radii have been shown to be useful in many applications, for in-

stance when predicting pKa values,[115] most benchmarking has been done for assessments

of thermodynamic properties and reaction energies, but much less work has been done in

understanding their applicability for determining kinetic barriers. In the cases of model-

ing (de)hydrogenation processes, it is not yet understood whether one should use a solvent

model that explicitly accounts for hydrogen atoms or not. What is understood is that highly

parameterized continuum solvation models are clearly very sensitive to cavity definitions,

and tuning any specific radii for any specific application should be avoided.

Koper has also studied numerous mechanisms for CO2 and N2 reduction.[116, 117, 118,

119, 120] For example, his group has studied CO2 reduction mechanisms involving cobalt

porphyrins,[121] and they identified CO as being the main product from this reaction mech-

anism and CO –
2 as the key intermediate. Co(P) guided the formation of CO through

decoupled proton and electron transfers; however, additional concerted proton–coupled elec-

tron transfers involving CO resulted in minor CH4 formation. This work was made possible

using the COSMO implicit solvation model to account for solvation effects. One complex

modeled during the reaction, [Co(P)—(CO2)]−, was only stable when solvation treatments

were included; however, another complex was still not stable when implicit solvation was

included in the calculations ([Co(P)—(CO2)]0). An analogous observation was also seen in

work by Carter,[35] who modeled an anionic complex, [Re(bpy)(CO)3-(CO2)]− , and found

it was only stable with an explicit counter ion or under the presence of a continuum solvent

method. Thus, continuum solvation models have been and will likely continue to be used

to assess metastable (and potentially zwitterionic) reaction intermediates in homogeneous

reaction mechanisms.
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With the success of implicit models in previous studies, many researchers are attempting

to apply these techniques to reactions involving solvent mixtures. Garza et al. studied

a tetraaz [CoIIN4H]2+ catalyst to understand the selective reduction of CO2 to CO.[122]

Those authors used PCM to include the solvent effects. They used pure acetonitrile in their

calculations although the experimental contributions used a wet (10 M water) acetonitrile

environment. Mixed solvents present a challenge for computational modeling since only a

few models such as COSMO-RS can be used to model mixed solvents, and this model has

not yet been as extensively used for mechanistic investigations as the conventional COSMO

approach.[123] Garza et al. modeled both pure H2O and acetonitrile systems and noted

that their calculated reaction energies do not differ significantly between these two solvents.

Those authors then inferred that mixed solvents would also not be significantly different even

though experimental data has shown that mixed solvents can bring peculiar and non-intuitive

solvation energies depending on the solute and the mixed solvent composition.[124, 125] From

our perspective, since continuum solvation models generally cannot be trusted to recognize

the significance of an explicitly bonded solvent molecule, they should not be assumed to be a

physical model for any mixed solvent in an arbitrary solvent composition. It is true, however

that any errors arising from an insufficient solvation treatment of any one intermediate might

cancel out with errors from a different intermediate, and thus the relative energy difference

between the two would be reasonably accurate due to fortuitous error cancellation.

Another study by Cao et al. considered Ir(III) pincer dihydrides as electrocatalysts for

CO2 reduction to formate (or formic acid) in acetonitrile/H2O mixtures.[126] They used

IEFPCM with UAKS radii and cavity-dispersion-solvent-structure terms from the SMD sol-

vation model to describe the solvation effects using the GAUSSIAN code. Experiments show

that the reaction does not happen in anhydrous acetonitrile and that a water concentration

of 5% or more is needed. As with the study by Garza et al, these authors used continuum

solvation models to gain insights into chemical reactivity in pure H2O and acetonitrile sol-

vents. They mainly discuss reaction pathways under acetonitrile because the experimental

conditions had a higher percentage of acetonitrile; however, almost all of the calculated bar-

riers are very similar in magnitude compared to calculated barriers in pure H2O. The barrier

for formation of the formate anion appears to have lower energy when it is modeled in water,
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which indicates that water explicitly plays an important effect in this reaction mechanism

by forming hydrogen bonds with the formate.

To summarize this section, we note that continuum solvation models are very useful, but

they are sometimes unreliable and thus should be used cautiously when making predictions.

Users should be aware that modeling and comparing different solvents, such as water and

acetonitrile, generally only involve a slightly different cavity definition and dielectric constant

that may result in a relatively small solvation energy difference. As a result, it should not

be surprising when a continuum solvation model gives similar solvation energies for different

solvent systems. However, mixed solvent systems are known to exhibit non-linear effects as

a function of solvent composition, and standard continuum solvation models have not yet

reproduced this behavior.[124, 125]

1.4 Mixed Implicit/Explicit Solvation

Figure 4: A model cluster with three explicit solvent molecules and implicit solvation.

One technique to improve the performance of continuum solvation models is with so-

called mixed implicit/explicit or cluster–continuum solvation modeling, which has been used

in practice in an ad hoc manner for decades.[127] Instead of a lone solute being considered,

some number of explicit solvent molecules are added to the system, and the resulting clus-

ter of molecules is placed into the dielectric medium. In periodic systems of face-centered

cubic metals, explicit solvent molecules are generally added as one or more layers of solvent
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molecules and then an implicit solvation model can be used on top of that. On other surfaces

one or more solvent molecules need to be added to the system in an ad hoc manner to build

up an interfacial solvation structure. Mixed implicit/explicit solvation approaches usually

used in calculations where an implicit solvation model is not sufficient to model a system

of interest. For instance, mixed implicit/explicit solvation is used to predict energy calcula-

tions of ions and/or small molecules,[128, 129] though it is also used for studying reaction

mechanisms that involve the participation of the solvent molecule. A model cluster is shown

in Figure 4 with three explicit solvent molecules and implicit solvent.

The main challenge of mixed implicit/explicit solvation modeling is to know how many

solvent molecules are required to capture the crucial solvation effects and where to place

those solvent molecules in a meaningful way. The most commonly used way to overcome

this challenge is to place solvent molecules according to chemical intuition and/or with

trial and error attempts. This requires a priori knowledge of the reaction mechanism and

the active sites that need to be stabilized. Even if one can place the solvent molecules with

chemical intuition, there is still the open question of how many solvent molecules are needed.

Furthermore, one should keep in mind that an entropic penalty would be expected when

forming solvent clusters, and that might play an important role in interpreting calculated

energies.

Different research groups show different preferences about determining how many solvent

molecules are needed for an accurate calculation. Some will only add a single solvent molecule

at the site of interest while others may add more solvent molecules until a desired result is

achieved. Ahlquist studied CO2 hydrogenation with a homogeneous iridium catalyst using

two explicit water molecules together with Poisson-Boltzmann self-consistent reaction field

as defined in the Jaguar simulation package.[130] Ahlquist reported agreement with the

experimental values only when both implicit solvation and two water molecules are present

in the system. Groenenboom et al. modeled thermodynamic descriptors for a large set of

aromatic N-heterocycle molecular catalysts for electrochemical CO2 reduction.[40] Across

27 different molecular catalysts, using one explicit water molecule located at the relevant

hydrogen bonding site for each molecule improved direct pKa calculations to reasonably low

errors of about 1 pKa unit.
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For reaction mechanisms, including explicit solvent molecules plays an important role as

well. Lim et al. studied hydride transfer pathways from dihydropyridine to CO2 by including

one or two explicit water molecules together with CPCM model in their system.[131] Those

authors found that this was an adequate treatment of the solvent because the resulting

polar transition state structure was substantially stabilized by explicit solvent molecules

that also facilitated a proton shuttle mechanism. Those authors also looked at a similar

system where they used pyridine to catalyze CO2 reduction by using different degrees of

solvation. In this study they considered up to three solvent molecules as participating in

their reaction mechanism as well as up to ten more solvent molecules to further solvate the

reaction-relevant molecules, and the entire cluster was then embedded in CPCM implicit

solvation model. The authors reported good agreement with experimental values when they

used three solvent molecules in the active reaction mechanism and ten solvent molecules to

solvate the core structure (calculated: 13.6 kcal/mol; experimental: 16.5 kcal/mol). While

the computational results may or may not reflect the actual mechanism, they do highlight

the important role of proton shuttling networks that standard continuum solvent models (as

well as explicit solvent molecule using classical force fields) would not be able to physically

model.[132]

Lim et al. also revisited the pteridine molecule [133] that had been proposed as a potential

CO2 reduction catalyst with some controversy.[44, 134] The authors’ model system included

seven water molecules and the entire cluster embedded in the CPCM model. They then

benchmarked results from this implicit/explicit solvation modeling treatment to QM/MM

simulations (vida infra) where the seven water molecules were kept in a QM region and

the rest of this cluster was explicitly solvated with 200 water molecules treated using a

classical force field. The authors found that the two solvation treatments resulted in very

similar energies, and they also found that the reaction barrier was consistently too high to

be valid for a reaction that would be expected to occur at room temperature (QM/MM:

29.7 kcal/mol, QM: 30.9 kcal/mol). Savéant has commented that QM calculations were

not necessary to rule out some pathways,[44] but Lim et al.’s work is nevertheless useful

because it demonstrates that simpler cluster continuum models can provide similar results as

far more computationally intensive QM/MM simulations and thus suggesting other means
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forward for modeling these systems besides computationally costly QM/MM simulations.

The important role of solvent molecules in reaction mechanisms is not only limited to just

H2O. Rohmann et al. studied CO2 reduction to formate with a homogeneous ruthenium

complex. They modeled their system in DMSO solvent using 10 explicit solvent molecules

together with SMD solvation model. They show DMSO solvent molecules are vital for the

mechanistic study because the hydrogen bonding between the formate (the end product)

and the solvent results with a thermodynamic driving factor for desirable concentrations of

the products.[135]

There are far fewer studies on mixed implicit/explicit solvation on periodic surfaces.

Carter has studied CO2 reduction on GaP (110) surface by modeling it as a cluster that can

be straightforwardly solvated with a non-periodic solvation model,[136] similar to the work

by Gray et al. mentioned previously. Their treatment used structures arising from a full

monolayer of half-dissociated water molecules together with the SMD solvation model. They

identified 2-pyridinide as an active intermediate in Py-cocatalyzed CO2 reduction at p-GaP

photoelectrodes.

As stated before, there is no easy way to determine how many solvent molecules are

needed for an accurate and reliable treatment of mixed implicit/explicit solvation. As a

test to deconvolute the relative energy contributions of electronic correlation, explicit solva-

tion, as well as the presence of a counter ion in a reaction mechanism, Groenenboom and

Keith followed work by Johnson[137] who studied borohydride hydrolysis using a procedure

involving high temperature Born–Oppenheimer molecular dynamics (BOMD) simulations

to observe an elementary hydrogenation process and then characterized that pathway us-

ing nudged elastic band methods.[138] Groenenboom and Keith used a similar procedure to

model CO2 reduction by NaBH4 and NaBH3OH. Molecular clusters from the NEB calcula-

tions were then used with different analyses using high-level single point energy calculations

and implicit solvation. In general, it was found that the full first solvation shell along with

COSMO implicit solvation resulted in an energy profile almost identical to the fully explicit

solvated case. Somewhat surprisingly, a range of different levels of theories found calculated

barriers differing by only 0.1 eV while using a continuum solvation model without the first

solvation shell resulted in differences as large as 1 eV. This study points out the importance
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of the solvation treatment however using BOMD simulations together with NEB calculations

can become very computationally expensive. It would be especially interesting if there were

ways to sufficiently solvate reaction intermediates without the need for dynamics or even

fully explicit solvation models.

1.5 Explicit Solvation

Many research groups explicitly solvate their systems to gain detailed information not

available from implicit methods. Studies typically use Monte Carlo (MC) or molecular dy-

namics (MD) to treat the entire solvent box as shown in Figure 5. Still, complications

could arise when studying polarizing systems or significant electron density changes. Born-

Oppenheimer molecular dynamics (BOMD) and its variant Car-Parrinello Molecular Dy-

namics (CPMD)[139] have been critical in broadening the scope of systems we could study

explicitly. Both use real-time electronic structure calculations to describe the system’s be-

havior instead of parameterized force fields or potentials; however, they are only meaningful

if the run time is long enough for the system to visit all energetically relevant configura-

tions. For complicated systems, large energy barriers could separate chemically relevant

configurations and severely limit sampling.

Currently there are a couple of ways to avoid the high computational costs of BOMD.

First is to use simulation schemes that are computationally faster. These methods often

depend on reducing the frequency of full electronic structure calculations or simply reduc-

ing the region being treated quantum mechanically and employing a classical treatment for

the remaining system. The latter solution is referred to as quantum mechanics/molecular

mechanics (QM/MM) which is a hybrid method that combines QM and MM frameworks to

make simulations faster than BOMD and more accurate than MM. In QM/MM simulations,

the system is divided into primary and secondary subsystems.[140] The primary system is

the QM region which contains the reaction-relevant molecules under investigation. The sec-

ondary subsystem is the environmental zone where the other solvent molecules are modeled

with forcefields to capture the bulk solvation effects.
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Figure 5: A methanol molecule being explicitly solvated by water.

It is common practice to include solvent molecules from the first solvation shell in the

QM region to capture the crucial solvation effects using a higher level of theory. Although

difficulties can arise when trying to keep the simulation as physically realistic as possible.

Solvent molecules, in real solutions, will migrate towards and away from solute regions. This

poses a problem in garnering expensive and highly accurate data on short-ranged solvation

effects when a solvent molecule drifts away. Researchers sometimes employ constrained

QM/MM; in which a bias is applied to keep solvent molecules from leaving the predefined

QM region.[141, 142, 143] While this provides reasonable accuracy, the fundamental issue

with this type of modeling is its unphysical treatment of an essentially frozen solvent shell.

Alternatively, a method of switching the subsystem designation (QM or MM) of solvent

molecules based on the proximity to the solute in real time can be used and is common

practice today.[140, 144, 145] This adaptive QM/MM scheme is very useful, but it could still

benefit from a reduction of spatial artifacts that affect multiscale modeling.[146] We expect

to see substantially more applications of these methods in the coming years as they can allow

higher levels of QM theory for improved insights into catalytic reactions.[147, 148]
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1.5.1 Sampling Techniques

QM/MM free energy simulations are commonly used to sample free energy surfaces. In

renewable energy catalysis, a reaction often needs to be modeled by bond breaking or forming.

In order to model such catalysis one needs to treat the system with quantum chemistry.

However, the calculations will become very expensive if the entire system is treated with

quantum chemistry, i.e. using some variant of BOMD. To overcome this challenge, algorithms

are applied to enhance the sampling of reaction-relevant areas of free energy surfaces. These

algorithms can vaguely be distinguished into two categories as, methods that introduce

additional degrees of freedom along which the free energy is calculated (metadynamics)

or methods that sample the system in equilibrium (umbrella sampling). In the following

sections we will broadly introduce one technique from each category.

1.5.1.1 Metadynamics Metadynamics is a sampling technique that is based on adding

an additional bias potential that acts on a selected number of collective variables (CV). For

reactive systems, bond breaking or bond forming are two examples of widely used collective

variables.[149, 150, 151, 152, 153] To accomplish this, Gaussian potentials are placed on

the free energy surface in order to flatten the energy wells and reduce oversampling of

local minima. A very simplified representation is shown in Figure 6. It is an accelerated

sampling technique of rare events that is based on pushing the system away from the local

minima. Metadynamics is generally used to explore new reaction pathways without a priori

knowledge of the free energy surface. However, one must be careful to identify a set of

CVs appropriate for describing complex processes.[154] CVs should be a function of the

microscopic coordinates of the system and should distinguish between the initial and final

states while also describing relevant intermediates. If one can come up with CVs that

meet all the requirements then metadynamics should work effectively to model free energy

surfaces.[150]

There are handful of examples where ab initio metadynamics is used to study CO2 reduc-

tion or any reaction mechanism. Urakawa et al. was exploring a ruthenium dihydride catalyst

and its ability to hydrogenate CO2.[155] Their work demonstrated that a trans isomer route
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Figure 6: A model metadynamics simulation profile. Gaussian functions are placed on the

free energy surface to flatten the energy wells over time during the simulation (lighter to

darker curves). This is used to reduce oversampling of the local minima and pushes the

system away from it.

was more energetically favorable (higher stability intermediates) while the rate-limiting step

was the insertion of H2 into formate, but there were no explicit solvent molecules included

in this study that would account for their role in the reaction mechanism. Ghoussoub et

al. studied the effect of temperature on frustrated Lewis pairs on nanoparticles for hetero-

geneous catalytic reduction of CO2.[156] They concluded that at higher temperatures, CO2

adsorbed more easily on the surface which suggests an adsorptive reaction mechanism may

be relevant. This study also did not consider how solvation can affect the reaction mecha-

nism, but they investigated H2O adsorption on the surface at different temperatures. Gallet

et al. used metadynamics to simulate the reaction of CO2 with one, two, or three explicit

solvent molecules in the gas phase.[157] This work provides a useful and thorough protocol

to study relatively small systems. Future advances of computation resources will continue

to allow more extensive studies to be carried out.

There are few studies on CO2 chemistry that used metadynamics with fully explicit sol-

vation models. Stirling studied the free energy barriers of reversible bicarbonate formation

in water at high pH.[158] It was determined that the free energy barrier of CO2 + OH– −−→

HCO –
3 was 13.8 kcal/mol, which coincides with the 11.5 kcal/mol experimental value. Inter-

estingly, the forward reaction free energy barrier was mostly entropic while the reverse barrier
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was mostly enthalpic. This conclusion was only possible because extensive metadynamics

simulations had been performed with explicit solvent. This study outlines an accurate way

to calculate free energy barriers of other processes in solvated systems; however, the number

of reacting atoms that need to be considered will be a limiting factor. Galib et al. also

examined the mechanistic and energetic effects of solvent cluster size on the decomposition

of H2CO3.[159] They selected atoms to form two small (6 and 9) and two large (20 and 45)

water clusters around a H2CO3 molecule in a Car–Parrinello molecular dynamics simulation.

Metadynamics then allowed sufficient sampling to demonstrate that the small and large clus-

ters led to a concerted and stepwise mechanism, respectively. Thus, H2CO3 decomposition

likely follows a stepwise mechanism in bulk-like water, but it might be different in other en-

vironments like an air/water interface. Goddard and co-workers have investigated multiple

aspects of CO reduction on copper surfaces and copper nanoparticles with explicit water

layers at different pH levels.[59, 160, 161, 162, 163] Their studies of solvated systems were

carried out using reactive force fields which significantly decrease the computational time

required. However, even well-parameterized reactive potentials should be assumed to be less

accurate than the QM calculation, and thus interpretations based on predictions from these

model warrant more caution than all-QM methodologies.

1.5.1.2 Umbrella Sampling Umbrella sampling is another technique to calculate the

free energy profile of reaction mechanisms.[164] The main idea behind umbrella sampling

relies heavily on splitting the reaction pathway into windows and sampling each window

individually. However sampling a full momentum space is difficult, and that is why a bias

potential is introduced as an additional term to the energy expression as shown in Equation

1.5.

Eb(r) = Eu(r) + ωi(ξ) (1.5)

This additional term ensures efficient sampling along the reaction pathway by allowing the

reaction variable to vary along a biased potential (restrain) and not limiting the variable

to a constant value (constrain). The most commonly used biased potential is the harmonic

potential as shown in Equation 1.6.

ωi(ξ) = K/2 ∗ (ξ − ξrefi )2 (1.6)
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Harmonic potentials are appealing because they contain only few parameters: K (spring

constant), the number of images (i), and a reference point of the respective window i (ξrefi ).

One needs to decide on the K value before starting the simulations, and make sure it is

large enough to drive the system over the energy barrier.[165, 166] This is important be-

cause if K is too large there will be too narrow sampling and thus sufficient overlap between

the windows will not be achieved. An example of overlapping windows is shown in Figure

7. Having adequate overlap is required to analyze umbrella sampling with weighted his-

togram analysis (WHAM) or umbrella integration which depends less on overlap but is still

advantageous.[167, 168, 169]

Umbrella sampling is widely used for physical transformations from ion solvation to pro-

tein folding with force fields;[170] however, modeling chemical reactions is more computation-

ally extensive since it generally requires BOMD simulations. Leung et al. computationally

examined a cobalt porphyrin catalyst for CO2 reduction to CO in water.[171] First they

used DFT calculations with implicit solvation and then validated their results with BOMD

simulations with an explicit aqueous environment. These simulations demonstrated that the

water molecules stabilized the reaction intermediates. With the use of potential of mean

force (PMF) calculations they were able to identify the rate limiting step as the transfer of

electrons between the polymerized catalyst and the gas diffusion electrode. This study is a

good example of how to use umbrella sampling to calculate free energy barriers, however it

is very computationally expensive and it limits the number of reactions that can be studied.

Figure 7: Simplistic view of umbrella sampling along a hypothetical constrained variable.
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Several studies have been dedicated to understanding the hydrophobicity of aqueous

CO2; however, many employ classical force field methods which demonstrate the sensitivity

to Lennard-Jones parameters.[172] To reduce parameter dependence, Leung et al. performed

BOMD simulations to investigate the solvation shell of CO2 and other dissolution species in

water.[173] Ultimately their computations supported the previously observed hydrophobic

nature of CO2 in water. Furthermore, they calculated the free energy change of bicarbonate

formation from CO2 and H2O to be -9.8 kcal/mol which agrees with the -9.4 kcal/mol

experimental value.

In work related to the previously mentioned CO2 reduction with sodium borohydride,

Groenenboom and Keith calculated reaction energy barriers from NEB calculations at 0 K

and compared them to free energy barriers obtained at 300 K using PMF calculations from

umbrella sampling simulations. They show two different free energy barriers with NEB and

PMF calculations which suggests both temperature effects and solvent molecules would play

an important role in this reaction mechanism. The NEB pathway obtained at 0 K only

slightly differed from the PMF pathway, but energies along the two pathways were found

to vary by as much as 0.25 eV. The overall barrier heights from the 0 K NEB calculations

and the 298 K PMF calculations for three different elementary steps were quite similar as

well. However, the overall reaction energies from the NEB and PMF calculations differed

by as much as 0.6 eV when the NEB pathway was based on local minima and the PMF

calculations sampled lower energy states.[174] Thus, PMF calculations based on umbrella

sampling simulations appear to be more reliable for insights than NEB calculations alone,

but PMF calculations are also far more costly.
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1.6 Conclusion

We have given a review of recent and legacy approaches that are used to model reaction

mechanisms under solvating environments. It will be critical to integrate solvation energy

contributions and other environmental parameters into future high-throughput screening

approaches, and so we give an overview of implicit, mixed implicit/explicit, and explicit

solvation modeling approaches that would be needed to do so. Though already widely used,

continuum solvation models still have room for improvement. Notably, few if any can reli-

ably treat explicit solute-solvent bonding or solvation effects, and they should not be used to

glean insights into systems involving solvent mixtures. There are still paths forward for com-

putational modeling to use more robust (though computationally cumbersome) techniques

that incorporate explicit solvation at least in part. In the absence of accurate forcefield

parameters and/or computational resources to run lengthy BOMD simulations, mixed im-

plicit/explicit procedures are a promising route for studying reaction mechanisms in complex

environments. Future directions continue to point toward more mixed implicit/explicit mod-

eling as well as the development of more accurate and physical continuum solvation models

and explicit solvation models. These advances will help improve the quality of computa-

tional predictions that would guide the development of technologies for renewable fuels and

chemicals.
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2.0 A Paramedic Treatment for Modeling Explicitly Solvated Chemical

Reaction Mechanisms

This work has been published as Basdogan, Y., and Keith, J. A. (2018). A paramedic

treatment for modeling explicitly solvated chemical reaction mechanisms. Chemical science,

9(24), 5341-5346.

2.1 Introduction

Computationally modeling atomic scale chemical reaction mechanisms in solvents is of-

ten not trivial. Plata and Singleton’s detailed study of the Morita-Baylis-Hillman (MBH)

reaction[1] has underscored poor performances of CSM-based quantum chemistry modeling

without explicit solvation. Harvey and Sunoj have since evaluated various quantum chem-

istry modeling schemes and assembled a mechanistic picture that agrees well with Plata and

Singleton’s reported mechanism.[2] Their calculations used the high-level correlated wave-

function method DLPNO-CCSD(T)[175, 176, 177, 178] for electronic energies and usually an

explicit solvation treatment with molecular mechanics. These two important studies have ex-

plained the elementary steps of the acid catalyzed MBH reaction mechanism, demonstrated

the importance of critically evaluating computational theory to experiment, and discussed

the extent that computational modeling can be predictive.

Building from those studies, we show how one can model such a mechanism with an

automatable and paramedic modeling procedure that is enhanced with chemical intuition

but also lessens the need for it. The paramedic and static quantum chemistry procedure

will be more computationally demanding than static studies using a CSM with no explicit

solvent, but it can also be expected to require less computational effort than many dynamics-

based schemes. We formulated the procedure by calibrating to previously reported studies

on the MBH reaction in order to understand how to navigate modeling pitfalls that face

static models for reaction mechanisms in solvents.
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We first assumed that high-level DLPNO-CCSD(T) theory with a relatively large triple-

zeta basis set should provide fairly accurate gas phase reaction energies. Thus, any apparent

errors larger than a few kcal/mol in any reaction step would indicate significant errors in

solvation energies. We note that interpreting results from CSMs is not trivial, and some

have explained that special care is needed.[179] A standard remedy for inaccurate CSM

calculations is the modeler to add one or more explicit solvent molecules to the modeled

system to more physically describe charge densities and solute solvent interactions.[128, 127,

180] Unfortunately, knowing how many and where solvent molecules should be added is also

not trivial unless one makes a priori assumptions about local solvent environments. Below,

we show that the paramedic model is an automatable way to overcome these challenges.

We hypothesized that solvation energies from CSM models would improve if we system-

atically added explicit methanol molecules around each solute while taking special care to

ensure that each microsolvated state was a reasonable approximation of a thermodynamically

low energy structure. To test this, we modeled each intermediate from Plata and Singleton’s

MBH reaction (Figure 8) as a microsolvated cluster of solutes with n = 1, 2, 3, 4, 5, and 10

methanol molecules.

Figure 8: Mechanistic steps for the alcohol mediated MBH reaction, analogous to steps given

in ref. [1].
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2.2 Computational Methodology

In our study of the Morita Baylis-Hillman (MBH)[1] reaction mechanism, we used a

filtering procedure where a global optimization code (ABCluster[181]) automatically gener-

ated 1,000 low energy candidates using CHARMM forcefield parameters from MacKerell’s

CGenFF website.[182] The 100 lowest energy structures from these cases were further opti-

mized using semiempirical PM7[183] optimizations with MOPAC.[184] The five lowest energy

structures from these cases were then optimized using Kohn-Sham density functional the-

ory (DFT) at the BP86-D3BJ[185, 186]/Def2-SVP[187] level of theory with ORCA.[188]

From now on, ‘-D3BJ’ is shortened to ‘-D3’. We then compared the lowest energy QM-

optimized structure using single point electronic energies at the same BP86-D3 level of the-

ory, a hybrid functional (B3LYP[189]-D3[190]), and a high level ab initio method (DLPNO-

CCSD(T)),[175, 176, 177, 178] each using the relatively large Def2-TZVP[187] basis set.

Calculations made use of RI[191] and RIJCOSX[191] approximations when appropriate. We

tested calculations accounting for extended solvation contributions using the SMD model

(using B3LYP/Def2-TZVP calculations).

Our calculated reaction energies with no explicit solvent molecules followed an analogous

procedure used by Plata and Singleton, where continuum solvation models were used and

where thermal and entropic contributions for each solute was obtained using the full standard

ideal gas, rigid rotor, and harmonic oscillator approximations. Low energy clusters with

explicit solvent molecules were made for the six intermediates shown in Figure 8. Vibrational

frequency calculations were carried out for the clusters with different number of methanol

molecules to confirm there were no imaginary frequencies. Since each clustered intermediate

had the same number and type of atoms, the vibrational, thermal, and entropic energy

contributions from standard ideal gas, rigid rotor, and harmonic oscillator approximations

can be expected to largely cancel out. In general, ∆E and ∆G values agree within about

6 kcal/mol, and these are differences that are much smaller than deviations shown from

quantum chemistry modeling that does not account for explicit solvation.
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All molecular dynamics (MD) simulations for the umbrella sampling were carried out

using the TINKER[192] software. The simulations were carried out at 298 K in the NVT

ensemble for 2 ns with 1 ps step size where the first 400 ps were used for equilibration

and the remaining 1600 ps were used for data collection. In total 60 MD simulations were

performed to scan the potential energy surface. In these simulations two constraints were

in place: the distances between p-nitrobenzaldehyde and MA and p-nitrobenzaldehyde and

DABCO. This was done by defining a harmonic potential between the center of masses of

these molecules using a force constant of 100 kcal/mol. For each simulation, the distance

between the molecules were varied between ∼4 to ∼15 Åwith a step size of 0.2 Å. At the end

of the simulations, the distances were then calculated and the WHAM[193] analyses were

carried out.

2.3 Results and Discussion

One might assume that intermediate 1 (shown in Figure 8) is not a good initial reference

point for a reaction mechanism since reactant molecules are not infinitely separated and thus

are interacting. To determine the free energy to form the cluster 1 from separated reactants

in methanol solvent, we started with the lowest energy structure of 1 and then performed um-

brella sampling simulations with classical forcefields using TINKER[192] simulation package

to determine a quasi-static pathway that resulted in separated intermediates. Simulations

used a cubic box starting with 500 solvent molecules. Dynamics simulations were run where

the three intermediates were constrained at incremental intermolecular distances ranging

from about 4 to 15 Å(see Figure 9). We then used the two-dimensional weighted histogram

analysis method[193] to calculate the free energy profile along this pathway. We found a

negligible free energy difference of about 1 kcal/mol to separate the three solvated reactants

across this range of distances (see Figure 10). This confirms that this microsolvated clus-

ter is in fact an appropriate reference point for the MBH reaction mechanism study. Future

studies will help show if this is generally true for other microsolvated clusters of intermediate

states in other reactions.
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Figure 9: Overlap between US windows for aggregating different molecules together. Dis-

tances are defined as the distance between centers of mass for the three different molecules.

The overlap of each window shows adequate sampling along the pathway.

Figure 10: Free energy plot for aggregating three reactant species together. Distances

are defined as the distance between centers of mass for p-nitrobenzaldehyde and MA,

but simulations constrained distances between p-nitrobenzaldehyde and MA as well as p-

nitorbenzaldehyde and DABCO simultaneously.

30



Figure 11 shows static quantum chemistry calculation data for each MBH reaction in-

termediate with different numbers of explicit methanol molecules. States labeled in red use

a free energy calculation scheme with SMD continuum solvation and no explicit methanol

molecules, analogous to the CSM-based model used in Plata and Singleton’s study but

now using DLPNO-CCSD(T)/Def2-TZVP electronic energies. We tested both SMD[84] and

COSMO[85] solvation models and both provided effectively similar results. Figure 12 shows

that differences between SMD and COSMO solvation models in these cases are small. En-

ergies in Figure 11 are Gibbs free energies referenced to 1. We note that once intermediates

are clustered together, the relative free energies are quite similar to their respective relative

electronic energies because the zero-point energies and other free energy contributions from

IGRRHO approximations with the same number of atoms are similar (see Figure 13 for

comparison of electronic and free energies).

Figure 11: Free energies for MBH reaction intermediates (not including barriers) relative to

intermediate 1. Experimental data (black line) taken from ref. [1]. Data with ‘0’ explicit

solvent used a calculation scheme with SMD continuum solvation energies, analogous to ref.

[1]. Relative free energies of clustered intermediates (a) without continuum solvation and

(b) with continuum solvation. Mean absolute deviations (MAD, in kcal/mol) compared to

experiment are reported in the table on the right. Energies are also tabulated in Tables 1

and 2.
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Figure 12: Energies for MBH reaction intermediates (not including barriers) relative to

intermediate 1. Experimental data (black line) taken from Ref. [1]. Relative (a) free energies

with COSMO continuum solvation and (b) free energies with SMD continuum solvation.

Mean absolute deviations (MAD, in kcal/mol) compared to experiment are reported in the

right table.

Figure 13: Energies for MBH reaction intermediates (not including barriers) relative to in-

termediate [1]. Data with ‘0’ explicit solvent used a calculation scheme with SMD continuum

solvation energies, analogous to Ref.[1]. All remaining calculations are in gas phase. Rela-

tive (a) free energies and (b) electronic energies of clustered intermediates. Mean absolute

deviations (MAD, in kcal/mol) compared to experiment are reported in the right table.
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Table 1: Free energies of clustered intermediates for microsolvated clusters relative to inter-

mediate 1.

# of explicit MeOH
Intermediate

1 2 3 4 5 6

0 0 12.1 26.5 152.7 18.0 3.5

1 0 8.12 14.0 14.9 5.2 -1.4

2 0 7.3 18.7 8.0 6.3 -4.6

3 0 10.0 6.3 4.9 7.0 -2.9

4 0 6.6 6.8 3.7 7.5 -3.2

5 0 11.5 0.7 4.8 4.5 -0.8

10 0 12.6 -8.5 -9.7 10.0 -8.0

Table 2: Free energies of clustered intermediates for clusters solvated using the SMD con-

tinuum solvation model relative to intermediate 1.

# of explicit MeOH
Intermediate

1 2 3 4 5 6

0 0 17.2 29.8 42.4 28.5 10.9

1 0 19.1 -19.9 13.1 12.6 0.0

2 0 11.7 18.1 8.8 6.8 0.0

3 0 12.8 8.1 8.7 15.7 0.0

4 0 8.5 3.9 6.7 16.2 0.0

5 0 6.1 -1.9 2.5 5.9 0.0

10 0 14.7 -5.9 -6.4 13.2 0.0
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Figure 11 thus showed that our initial hypothesis of gradually adding more solvent

molecules into the system would improve agreement to experiment was categorically false.

In fact, different numbers of explicit solvent molecules affect different states inconsistently.

Furthermore, we unexpectedly found that including solvation energies via CSMs generally

did not lower mean absolute deviation (MAD) to experimental data in any case compared to

their respective gas phase calculations. Gas phase clusters with just three explicit methanol

molecules had the smallest overall MAD, but we assumed this was due to error cancellation

since adding more methanol molecules usually resulted in less agreement with experiment.

We then tested what might be causing errors that we attributed to solvation energy

contributions. We hypothesized that different microsolvated clusters might have significantly

different solute structures that then reflected different energies shown in Figure 11. To

determine this, we analyzed the geometric similarities of solute structures using the Glosim

[194] algorithm and the ReMatch-SOAP[194] kernel. Figure 14 shows the SOAP analysis for

intermediates 2 and 3. The SOAP analysis of different structures for 2 (Figure 14a) shows

very high geometric similarities for all solute structures when gas phase optimizations were

run with two or more explicit methanol molecules or when the structure with no explicit

solvent was optimized using the SMD model.

In these cases, the C-N bond formed in the initial reaction step had a similar length

(RC−N = 1.60 Å). The gas phase optimized structures with and without one explicit methanol

molecule had a significantly longer and unrealistic C-N bond length (RC−N = 2.72 Å), show-

ing those states had fallen downhill in energy into states best described as higher energy

conformations of structure 1. The SOAP analysis of structures for 3 (Figure 14b) showed

the solute geometries within all the microsolvated clusters were highly similar regardless of

solvent model. For the intermediate states 4 and 6, the solute structures having two or

more explicit methanol molecules were geometrically very similar to each other. The solute

structures for 5, however, were all found to be dissimilar across all cluster sizes (See Figure

15) and could not be interpreted. Apart from this exception, intermediates 2, 3, 4, and 6

all had very similar respective solute structures (regardless of their respective microsolvated

cluster sizes ranging from two to 10 methanol molecules). This shows that the 10 to 30

kcal/mol scatter in energies for each intermediate shown in Figure 11 is due to modeling
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errors in solvation energy contributions that arise in static quantum chemistry calculations

that all involve relatively small numbers of explicit solvent. Errors are present whether or not

CSM modeling is used, but errors appear to be usually be larger when CSM models are used.

Figure 14: ReMatch-SOAP analysis on the solutes for clusters 2 and 3 with 0 methanol

molecules (‘G’ represents a gas phase optimized structure and ‘S’ represents a structure

optimized with SMD model), as well as 1, 2, 3, 4, 5, and 10 explicit methanol molecules.

Colored boxes quantify similarities in different geometric structures (darker colors represent

more similar structures).

Figure 15: ReMatch-SOAP analysis on the solutes for clusters 4 and 5 with 0 methanol

molecules (‘G’ represents a gas phase optimized structure and ‘S’ represents a structure

optimized with SMD model), as well as 1, 2, 3, 4, 5, and 10 explicit methanol molecules.

Colored boxes quantify similarities in different geometric structures.
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To minimize errors in solvation energies arising from dissimilar local solvation structures,

we then modeled the first bond-formation step of the MBH mechanism using Zimmerman’s

single-ended growing string method (GSM).[195, 196, 197, 198] We modeled pathways arising

from the lowest energy configurations at each specific degree of solvation that was found

using our filtering approach. Of course, one could also straightforwardly use this approach

to model multiple pathways starting from different configurations of a single intermediate at

the same specific degree of solvation (preferably with the smallest number of explicit solvent

molecules). The only limitation to doing this is the higher computational cost of running

multiple GSM calculations for each elementary step instead of just one.

All GSM pathway searches were performed with BP86-D3/Def2-SVP calculations with

no CSM. We then calculated DLPNO-CCSD(T)/Def2-TZVP gas phase energies for the struc-

tures obtained from GSM calculations. Interestingly, transition states for systems with n

= 1, 3, 4, and 10 methanol molecules each resulted in unreasonably large barriers (∼40

kcal/mol), indicating an unphysical aspect with those microsolvated models for this step

(more discussion below). Recall that the case with three methanol molecules also had the

lowest MAD in reaction energies in Figure 11. In cases with n = 2 and 5 methanol molecules,

more reasonable barriers of 23.6 kcal/mol and 17.6 kcal/mol were found.

Closer analysis revealed two points. First, the calculations with two and five methanol

molecules both had explicit solvation interactions simultaneously at the two O atoms in 2

that undergo a tautomerization when forming 3, while the other cases did not simultaneously

solvate these two O atoms. (Note that these two atoms were also intuitively solvated by

Harvey and Sunoj in their microsolvation models). Second, not only was the barrier with

five methanol molecules is lower in energy, but it yielded the correct (S,R) isomer that was

discussed in recent mechanism studies. The reaction with two methanol molecules had a

higher barrier and resulted in an (S,S) isomer. Thus, the model with five explicit methanol

molecules was the only case out of all solvation models considered that reasonably agreed

with known experiment, and this model also resulted in a barrier height in reasonably close

agreement with experiment (our calculation: 17.6 kcal/mol, experiment: 20.2 kcal/mol). For

these reasons, this model system was the only microsolvated system used further.
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We find that explicit solvation interactions are essential for an energetically feasible re-

action pathway. However, modeling these interactions does not guarantee an experimentally

observable pathway. Using this automatable modeling procedure allows one to see how and

the degree that different explicit solvent configurations affect the same reaction step. It

is also quite promising that the configuration resulting in the lowest energy pathway also

yielded the same stereochemistry as found in previous studies. We see no reason why the

configuration involving five methanol molecules is uniquely suited for this step, and one

should at this point expect that alternate configurations with different numbers of explicit

solvent molecules would also be in play and result in similar energy profiles.

Interestingly, this model for 2 → 3 resulted in a product state, 3′, that was significantly

higher in energy (+7.5 kcal/mol) relative to 3, the state that was found from our global

optimization procedures. Not only was the barrier for 2 → 3′ (TS2→
′
3) is in reasonable

agreement with experiment, but the overall energy of 3′ was also in better agreement with

experiment (calculated = 2.4 kcal/mol, experiment = 6.1 kcal/mol). Another single-ended

GSM calculation starting from 3′ was run to model the proton shuttling reaction that Plata

and Singleton rationalized to be very fast, and this yielded a nearly barrier-less process lead-

ing to 4′, which had reasonable energetics in agreement with experimental data (calculated

= 3.5 kcal/mol, experiment = 6.8 kcal/mol). An additional single-ended GSM calculation

found the pathway that tautomerized 4′ into its enol form 5′ . The calculated barrier (TS4

→
′
5, calculated = 17.3 kcal/mol) was also in reasonable agreement with experimental data

(experiment = 21.2 kcal/mol), and the tautomerizing O atoms were again simultaneously

interacting with explicit methanol molecules in this model. The relative energy of 5′ was

in reasonable agreement with experiment (calculated = 11.0 kcal/mol, experiment = 8.1

kcal/mol), while the energy of intermediate 6 was in very close agreement with experiment

(calculated = 3.9 kcal/mol, experiment = 3.9 kcal/mol). Figure 16 summarizes our calcu-

lated pathway using five explicit methanol molecules and compares these data to the best

calculated data from Harvey and Sunoj’s study that used a combination of data from explicit

and CSM solvation models. Hence, we have demonstrated a non-conventional, static, and

automatable modeling scheme that identifies a complicated reaction mechanism with com-

parable accuracy as models using computationally demanding explicit solvation methods.
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Figure 16: Reaction pathways obtained from GSM calculations (in red) compared to exper-

imental data from ref. [1] (in black) and calculated energies from static and dynamics-based

studies from ref. [2] (in blue).

Figure 17: Structures for the MBH reaction pathway (2 → TS(2-3′) → 3′ → 4′ → TS(3′-

5) → 5) highlighting the importance of local solvation stabilizing tautomerizing O groups.

Though 3′ is calculated to be higher in energy than 3, explicit hydrogen bonding opens a

kinetically feasible pathway for C —C coupling. Reaction energies are reported relative to

1.
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As another test for this MBH mechanism, we also ran double ended GSM calculations

to identify barriers for 3′ → 3 and 4′ → 4 processes. Both barriers were greater than 28

kcal/mol and would be considered kinetically prohibited within this model. Figure 17 & 18

summarize these reaction intermediates and calculated data. Lastly, Figure 19 shows that

reaction energies obtained using BP86-D3/Def2-TZVP (MAD = 3.7 kcal/mol) and B3LYP-

D3/Def2-TZVP (MAD = 3.1 kcal/mol) single point energies are actually respectably similar

to DLPNO-CCSD(T)/Def2-TVP calculations (MAD = 2.5 kcal/mol) as well as far less com-

putationally demanding. We have thus shown calculation schemes using three very different

levels of computational theory that are all consistent with each other and are significant

improvements over results using a CSM with no explicit solvation. Consistent with our

previous study on CO2 reduction by borohydride in water[199], when modeling sufficiently

microsolvated intermediates and transition states, there are only small differences between

generalized gradient approximation (GGA) density functional theory, hybrid density func-

tional theory, and high level wavefunction theory calculations. This suggests that even in

solution phase reactions as complex as the MBH reaction mechanism, solvation energies are

the most critical while electronic energy contributions from high level and computationally

intensive methods may be less critical.
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Figure 18: Reaction pathways relative to intermediate 1 with different intermediates and

transition states obtained from GSM calculations compared to experimental data from Ref.

[1]. The red line corresponds to the computationally predicted active pathway for the MBH

reaction, and the blue line corresponds to a computationally predicted inactive pathway

involving low energy (but kinetically inaccessible) intermediates.

Figure 19: Red line is DLPNO-CCSD(T)/Def2-TZVP//BP86-D3/Def2-SVP, blue line is

B3LYP-D3/Def2-TZVP//BP86-D3/Def2-SVP, the green line is BP86/Def2-TZVP//BP86-

D3/Def2-SVP model chemistries with cluster modeling using five methanol molecules.
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2.4 Conclusions

We have demonstrated a new, automatable, and paramedic, modeling scheme that rea-

sonably models the MBH reaction mechanism and should be applicable for studying other

challenging reaction mechanisms where CSM models can fail. No dynamics simulations are

needed in this model, and transition states are automatically and efficiently found using

GSM methods. Four points warrant consideration:

1. As has been stated before by others, CSMs can inadequately model significant local

solvation effects in reaction mechanisms, and this affects not only proton shuttling mech-

anisms but also intramolecular charge transfers or tautomerizations. Remedying this

requires some degree of explicit solvation.

2. The degree of explicit solvation required can be probed using this paramedic method

that takes advantage of a globally optimized reactant state and error cancellation when

modeling reaction pathways as a chronological sequence of GSM pathways.

3. The local solvent environment around a solute plays a critical role in stabilizing reaction

intermediates, but any particular solvent environment should neither be assumed to be

the same for all intermediates in a reaction mechanism nor easily transferable to different

intermediates. We therefore encourage future efforts to report pathways that involve a

globally optimized intermediate state followed by a sequence of reaction paths calculated

using the growing string method.

4. Once a complete reaction pathway is found using the paramedic method, there appears

to be only a marginal gain in accuracy when using high level methods, so a relatively

efficient approach such as BP86-D3/Def2-TZVP//BP86-D3/Def2-SVP is likely adequate

for qualitatively accurate mechanism predictions and comparison to experiment.

We now summarize steps taken for the paramedic method and recommend that others

consider using it to model other reaction mechanism in solvents where CSM models appear

to fail. Note that we do not use CSMs in any step of the procedure used here, but in other

situations using a CSM might help.
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• Step 1: identify globally optimized clustered states for hypothetical reactant states with

different numbers of solvent molecules. Our umbrella sampling simulations using explicit

solvent models suggest these are adequate representations of reactant states.

• Step 2: systematically explore reaction pathways using single-ended GSM calculations

and eliminate models that give unrealistic barriers for processes known to occur and iden-

tify a microsolvation model that yields reasonable reaction profiles using energies from

a trusted level of computational theory, e.g. BP86-D3/Def2-TZVP//BP86-D3/Def2-

SVP or DLPNO-CCSD(T)/Def2-TZVP // BP86-D3/Def2-SVP when higher accuracy is

needed.

• Step 3 (optional): use double-ended GSM calculations to identify any barrier heights

between metastable intermediate states of interest for a complete mechanistic picture.

When successful, this paramedic treatment should be a robust and automatable way to

model other challenging reaction mechanisms that involve explicit solvent molecules. Though

the paramedic treatment is a multistep process that involves testing variable numbers of ex-

plicit solvent molecules, the static quantum chemistry calculations used here are significantly

fewer and less computationally demanding than reaction dynamics simulation methods using

quantum chemistry. In fact, the slowest step on our study were the single point DLPNO-

CCSD(T) calculations. Furthermore, by clustering all atoms into a single microsolvated

state, relative free energies (based on IGRRHO approximations) can usually be assumed

to closely parallel electronic energies. Thus, hessian calculations might be considered un-

necessary as long as GSM calculations (which do not involve hessian calculations) correctly

identify stationary points. This paramedic approach appears to capture essential physical

chemistry of chemical reactions involving solvent molecules, it appears relatively insensitive

to levels of theory used, and it should be considered as a practical alternative to dynamics

based computational studies in future studies.
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3.0 Understanding Solvation Effects on Hydrogenation Barriers for CO2

Reduction on Carbon Based Materials

3.1 Introduction

Society’s continued consumption of fossil fuels results in increasing levels of CO2 in the

atmosphere, and the concentration of CO2 in Antarctica recently passed 400 ppm, a level

that has not been reached for four million years. Since CO2 is correlated with extreme

weather and global climate change, there have been efforts toward developing sources for

renewable and sustainable energy that would supplant fossil fuels. In particular, there is

great interest in converting CO2 into value-added chemicals and fuels such as formic acid,

CO, or methanol.[200, 201] Progress has been made in CO2 reductions to useful products

based on chemical,[202] thermal,[203] electrochemical,[204, 205, 206, 207], or photochemical

means,[208, 209] or via combinations of different approaches.[210, 211, 212] Electrochemical

and photochemical processes operating at room temperature show promise for scalability and

favorable energetic efficiency, but it remains challenging to design electro- and photocatalysts

with low overpotentials and high faradaic efficiencies for proton and electron transfers.[213,

214] Improved guidelines would be helpful for understanding how to effectively and selectively

control proton and electron transfers within generalized proton coupled electron transfer

(PCET) reactions.[215, 216, 217]

Computational quantum chemistry modeling can help interpret and guide experimental

work in this area by providing insights into chemical reaction mechanisms. Advances in

algorithms and hardware make it easier to computationally model larger scale systems with

higher accuracy, but the central challenges of understanding what processes to model and

how to physically model them in a reliable way still remain. Indeed, many chemical reactions

have intermediate states that are stabilized by different degrees of solvating environments,

and neglecting or incorrectly modeling these environments can significantly impact the qual-

ity of predictions from computational modeling. We have previously used thermodynamic

Pourbaix diagram analyses to study a variety of homogeneous and heterogeneous catalysis
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systems for CO2 reduction. Interestingly, we have predicted that reaction conditions for

several CO2 electroreduction processes ranging from homogeneous pyridinium[39, 40] and

homogeneous ruthenium[41]-complexes as well as heterogeneous N-doped nanocarbons[42]

and partially reduced SnO2 oxides[43]. Pourbaix diagram analyses give us ideas about the

thermodynamics but they do not offer any information about the kinetic barriers of a given

reaction. As illustrated by many different research groups, modeling reaction mechanisms

without accounting for barriers provides an incomplete picture and can result in qualitatively

different outcomes that might be wrong and/or misguide future research efforts.

In this project we model electrochemical hydrogenation barriers for CO2 with various

pyridine-derived catalysts. We model covalent hydrogen atom (H·) transfers, stepwise or

coupled proton and electron transfers, and hydride (H−) transfers that is coupled with a

proton transfer while accounting for solvation and salt ions effects in our systems. We use

both QM/MM simulations and potential of mean force calculations (PMF) as well as a calcu-

lation scheme that has previously developed in our group called ”paramedic treatment”[218]

which relies on mixed implicit/explicit modeling. We report barrier heights for different

hydrogenation pathways and discuss the role of solvent molecules and salt ions.

3.2 Computational Methodology

All cluster calculations are performed with ORCA[188] simulation package. Cluster

structures are optimized using Kohn-Sham density functional theory (DFT) at the BP86-

D3BJ[185, 186]/Def2-SVP[187] level of theory. Starting from a fully optimized structure,

we performed single-ended Growing String Method (GSM)[195, 196, 197, 219] calculations

to model different reaction pathways. We then computed single point electronic energies

using hybrid functionals (B3LYP[189]-D3[190], and ωB97X-D3[220]) and a high level ab

initio method DLPNO-CCSD(T)[221, 222, 223, 224] each using the relatively large (Def2-

TZVP[187]) basis set. Calculations made use of the RI[191] and RIJCOSX[191] approxi-

mations when appropriate. To treat outer-shell solvation effects we used CPCM implicit

solvation with both geometry optimizations and single point energy calculations. Since each
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clustered intermediate had the same number and type of atoms, the vibrational, thermal, and

entropic energy contributions from standard ideal gas, rigid rotor, and harmonic oscillator

approximations can be expected to largely cancel out.

The quantum mechanical/molecular mechanics–molecular dynamics (QM/MM-MD) sim-

ulations have been implemented to describe the free energy surfaces of the chemical reactions

in solutions by applying the umbrella sampling technique. The simulations were performed

on the spherical boundary condition surrounded by 285-290 water molecules to form a water

sphere with 11 Å radius. To keep the volume of the sphere constant during simulations,

we applied a harmonic restraint potential with a force constant of 2.0 kcal/mol/Å2. The

QM regions are described with ωB97X-D3[220]/def2-TZVP[187] level of theory and TIP5P

water model has been applied to the MM regions. The NVT simulations were performed on

each window at 300 K by the Nose-Hoover thermostat. Initially, 20 ps of NVT simulation is

performed on the each window to equilibrate the systems with a time step of 1 fs. Next, 50

ps of NVT simulations are performed on the final structures from the equilibration step for

the production runs. The PMF from the umbrella sampling simulations were obtained using

the weighted histogram analysis method (WHAM).[193] GAMESS[225] simulation package

is used to run the QM/MM-MD simulations.

3.3 Results and Discussion

First, we start by modelling single proton transfer from pyridinium cation to the CO2

molecule. Reaction profile with GSM calculations and QM/MM calculations are shown in

Figure 20. Different levels of theories showed similar energetics and the calculted reaction

barrier with GSM calculations is ∼60 kcal/mol as shown in Figure 20a. Analogous PMF

calculations based on QM/MM simulations are shown in Figure 20b. Calculated reaction

barrier with this modeling scheme is ∼30 kcal/mol. Reaction energy calculated with both

approaches agree well and is ∼ 20 kcal/mol. Even thought there is a significant difference

with barrier heights, both calculation schemes suggest single proton transfer from pyridinium

cation to CO2 molecule is not favorable and not likely to happen under standard conditions.
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Figure 20: Single proton transfer from pyridinium cation to the CO2. a) GSM calculations

with zero explicit water molecule. Single point energy calculations on GSM geometries.

To treat the outer-shell solvation effects CPCM implicit solvation is used with single point

energy calculations. b) QM/MM calculations with zero explicit water molecule in the QM

region.

Next, we have modeled single hydrogen atom transfer from pyridinyl radical to CO2

molecule. Calculated reaction barrier for this mechanism is ∼30 kcal/mol with GSM calcu-

lations. Figure 21a shows the calculated reaction mechanism with different levels of theo-

ries on GSM pathway. B3LYP[189]-D3[190])/def2-TZVP[187] level of theory underestimates

the reaction barrier compared to ωB97X-D3[220]/def2-TZVP[187] calculations. Calculated

reaction barrier with ωB97X-D3[220]/def2-TZVP[187] agrees very well with the high level

DLPNO-CCSD(T),[221, 222, 223, 224]/def2-TZVP[187] calculations. When we calculate the

same reaction pathway with QM/MM simulations, we get a barrier height of ∼25 kcal/mol.

GSM and PMF calculations show reasonable agreement with for both the barrier height and

the reaction energy. Overall, both approaches show hydrogen atom transfer from pyridinyl

radical to CO2 molecule is again not likely to happen under standard conditions.

46



Figure 21: Hydrogen atom transfer from pyridinyl radical to the CO2. a) GSM calculations

with zero explicit water molecule. Single point energy calculations on GSM geometries.

To treat the outer-shell solvation effects CPCM implicit solvation is used with single point

energy calculations. b) QM/MM calculations with zero explicit water molecule in the QM

region.

Then, we have considered hydride (H−) transfer coupled with a proton transfer from

dihydropyridine to CO2 molecule. We have modeled hydride (H−) coupled proton trans-

fer using zero, one, and two explicit water molecules with our GSM calculations. Fig-

ure 22 shows different degrees of solvation treatments. When we use zero explicit water

molecules in the GSM calculations, calculated reaction barrier with DLPNO-CCSD(T) cal-

culations resulted with 25.1 kcal/mol barrier height. Figure 22a shows using B3LYP[189]-

D3[190])/def2-TZVP[187] level of theory underestimates the reaction barrier compared to

ωB97X-D3[220]/def2-TZVP[187] calculations and high level DLPNO-CCSD(T)),[221, 222,

223, 224]/def2-TZVP[187] calculations. Yellow line shown in Figure 22a is the gas phase

calculations with DLPNO-CCSD(T) level of theory and it shows significant differences with

the remianing data. Adding implicit solvation in this caluclation scheme plays a significant

role by stabilizing the intermediate structures. When we add one explicit solvent molecule

in our calculation scheme, calculated barrier heights decreased for all level of theories (as

shown in Figure 22b). For all different level of theories, transition state structure is stabilized
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Figure 22: Hydride (H−) transfer coupled with a proton transfer from dihydropyridine to the

CO2 molecule a) zero explicit water molecule, a) one explicit water molecule, c)two explicit

water molecules in the cluster calculations.

by 5 kcal/mol resulting with 19.4 kcal/mol reaction barrier, as shown with the red data in

Figure 22b. Finally when we increased the number of solvent molecules to two explicit water

molecules, calculated barrier height increased to 25.kcal/mol. The second water molecule

in the cluster calculation does not play an active role in the reaction but it forms hydrogen

bonding network with first water molecule thus stabilizing the overall system. In all cases

(Figure 22a, b, and c) B3LYP[189]-D3[190])/def2-TZVP[187] level of theory underestimates

the reaction barriers proving higher level of theories are needed when modeling this reac-

tion. Gas phase calculations demonstrate implicit solvation treatment is necessary when

calculating hydrogenation barriers.

We have also calculated hydride (H−) transfer coupled with a proton transfer with the

PMF calculations and compared the results with the GSM calculations. To keep the calcu-

lations consistent we included one explicit water in the QM region and compared with the

cluster calculations that included one explicit water molecule. Figure 23a shows the PMF

pathway which resulted with ∼15 kcal/mol barrier height. When we use the same level of

theory (ωB97X-D3[220]/def2-TZVP[187]) with our cluster approach, the calculated barrier

height is 15.5 kcal/mol (Figure 23b). This shows we can calculate barrier heights as accu-

rately as much more expensive PMF calculations using our clustering approach with mixed

implicit/explicit modeling.
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Figure 23: Hydride (H−) coupled proton transfer from dihydropyridine to CO2 molecule a)

Reaction free energies with PMF calculations based on QM/MM simulations with one explicit

water molecule in the QM region, b) GSM calculations with one explicit water molecule in

the cluster. Single point energy calculations on GSM geometries. To treat the outer-shell

solvation effects CPCM implicit solvation is used with single point energy calculations.

Finally, we have investigated how having a salt ion in the system effects the reaction en-

ergetics. We included a Na+ ion in our cluster calculations with two explicit water molecules

and performed another set of GSM calculations. Figure 24a shows the cluster calculations

where we do not have the Na+ ion in our system and Figure 24b shows the cluster cal-

culations when we included the Na+ ion near the dihydropyridine catalyst. Our original

hypothesis of having the Na+ ion in the cluster will stabilize the hydride transfer process

with electrostatic interactions turned out to be false for this reaction mechanism. The cal-

culated reaction barriers for these two cases are very similar (23.5 kcal/mol without Na+

and 22.4 kcal/mol with Na+ ion in the cluster using ωB97X-D3[220]/def2-TZVP[187] cal-

culations.) When we compare the barriers heights for two cases using high level DLPNO-

CCSD(T),[221, 222, 223, 224]/def2-TZVP[187] calculations, we see having the Na+ ion the

cluster actually results with a higher barrier.
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Figure 24: Hydride (H−) coupled proton transfer from dihydropyridine to CO2 molecule.

GSM calculations with two explicit water molecules in the cluster. Single point energy

calculations on GSM geometries. To treat the outer-shell solvation effects CPCM implicit

solvation is used with single point energy calculations. a) Does not have a Na+ ion in the

cluster calculations whereas in b) the cluster has a Na+ ion.

We have also performed PMF calculations to validate the effect of having an ion in

the calculation scheme. Figure 25 shows the PMF results with and without the Na+ ion.

Calculated free energy barriers are almost exactly the same for two different cases. In the

QM/MM simulations the Na+ ion is completely solvated with MM waters and does not really

interacts with the reactants. This shows having a salt ion in the system does not play an

important role for this reaction pathway.
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Figure 25: Hydride (H−) coupled proton transfer from dihydropyridine to CO2 molecule.

Reaction free energies with PMF calculations based on QM/MM simulations with one explicit

water molecule in the QM region. The red data does not have the Na+ ion in the solvent

box whereas the blue data has a Na+ ion in the solvent box.

These analyses show CO2 hydrogenation is most likely to occur as hydride (H−) coupled

proton transfer from the dihydropyridine catalyst. All other calculated barriers (proton

transfer or hydrogen atom transfer) resulted with very high energies meaning they are not

likely to occur under standard conditions. We also show having one explicit water molecule

in the calculations play an important role in the reaction by stabilizing the intermediate

structures. We point out using implicit solvation to treat the outer-shell solvation effects is

also crucial for this reaction pathway. Finally, we look at the salt ion effect on the reaction

mechanism and conclude having an ion in the system does not make a significant difference

in the reaction energetics.
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3.4 Conclusion

We have calculated barrier heights for different hydrogenation pathways for electrochem-

ical CO2 reduction. He have considered three main reaction mechanisms; proton transfer,

hydrogen atom (H·) transfer and hydride (H−) coupled proton transfer from pyridine-derived

intermediates to the CO2 molecule. We use two different calculation schemes; one based on

mixed implicit/explicit modeling with different numbers of explicit solvent molecules other

is more expensive PMF calculations based on QM/MM simulations. We show in most cases

two different calculation schemes result with similar reaction pathways. In cases where

the reaction is physically irrelevant two calculation schemes resulted with different barrier

heights however both of them were able to identify that reaction will not likely to take place.

We have considered number of different solvation treatments together with the effect of a

salt ion in the system. We show one should be cautious when considering solvation effects

and include explicit water molecules in the calculation scheme to model physically relevant

states. Finally, we have investigated the salt ion effect and showed it does not play a sig-

nificant role in the electrochemical CO2 reduction with pyridine-derived catalyst materials.

This approach is automatable and could be applied to any reaction mechanism where the

solvent molecules affects the quantum level nature of reaction mechanisms.
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4.0 Machine Learning Guided Approach for Studying Solvation Environments

This work has been published as Basdogan, Y., Groenenboom, M. C., Henderson, E., De,

S., Rempe, S. B., & Keith, J. A. (2019). Machine Learning Guided Approach for Studying

Solvation Environments. Journal of Chemical Theory and Computation.

4.1 Introduction

Solvation plays an essential role in chemical and biological processes ranging from ho-

mogeneous catalysis to ion channel transport to energy storage. In many cases, the explicit

interactions between small ions with nearby solvent molecules are crucial for molecular-scale

understanding. In such cases, single-ion solvation free energies can be several hundreds of

kcal/mol (or greater than 10 eV), which can make accurate predictions quite challenging.

Molecular dynamics (MD) or Monte Carlo (MC) simulations have been used, notably for sys-

tems that have anions and complex small molecules,[226, 227, 228] but the accuracy of these

simulations depends on the availability of high-quality force field parameters. In the absence

of reliable parameters, MD simulations involving quantum mechanics (QM) calculations can

be accurate, but they are far more computationally laborious. Semi-empirical continuum

solvation models (CSMs)[70, 78, 229, 85, 230, 84] have been developed to efficiently deter-

mine solvation free energies, but CSMs can sometimes result in large errors, especially with

systems that have non-uniform charge distributions. Such errors can significantly impede

predictions of thermodynamic properties and severely bias mechanistic predictions[1].

A standard approach to address these problems has been to include explicit solvent

molecules with the QM calculation of the solute, using cluster-continuum or mixed im-

plicit/explicit modeling, since this often provides better solvation free energies from ther-

modynamic cycles. Of these methods, the cluster formulation of quasi-chemical theory

(QCT), developed by Pratt, Rempe, and colleagues, is a rigorous treatment that uses an

electronic structure calculation on the ion with one or more solvation shells.[231, 232, 233]
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This approach has produced accurate predictions of solvation free energies for hydration of

alkali metal ions (Li+, Na+, K+, Rb+),[234, 235, 236, 237, 238, 239] alkaline earth metals

(Mg2+, Ca2+, Sr2+, Ba2+),[240, 241, 242, 243] transition metals,[244, 245] halide ions (F−,

Cl−),[246, 247, 248] small molecules (Kr, H2, CO2),[249, 250, 251, 252] ion solvation from

non-aqueous solvents,[253, 242] and binding sites of proteins and other macromolecules,[254,

255, 256, 257, 258, 259, 260] generally to within 5% error.[243] However, the correct use of

QCT requires determining an appropriate solvation shell for the system, and this can be

non-trivial.[261, 262]

Adding to the complexity of single-ion free-energy solvation predictions is that there are

two different free energy scales that are frequently misunderstood or not acknowledged in the

literature. One is often called the ‘absolute’ scale, while the other is called the ‘real’ scale.

The real scale includes the phase potential[263] or surface potential,[264, 265, 266] which

is the total reversible work to move an ion across the vacuum-liquid interface, whereas the

absolute scale does not. The absolute scale is associated with data from Marcus, who studied

and reported experimental solvation free energies for a large number of ions.[267] Those

data rely on the ‘classical’ extra-thermodynamic assumption, referred to as the tetraphenyl-

arsonium/tetraphenyl-borate (TATB) hypothesis, that two specific ions of opposite charges

have similar absolute free energies. That hypothesis assumes the system is independent of

any interfacial potential that arises from the anisotropic distribution of the solvent molecules

near the interface.[268] In a real physical system, a solvation free energy will also include

a phase potential contribution that depends on the interfacial potential at the air-water

interface. The real scale can be associated with data from Tissandier et al., who have

extrapolated conventional free energy measurements on small ionic hydrates to obtain real

solvation free energies of ions in bulk phase.[269] This idea is often referred as the cluster

pair-based (CPB) approximation.

The absolute solvation free energy scale can be converted into the real solvation free

energy scale by incorporating the phase potential using the following equation:

∆Greal
solv = ∆Gabs

solv + zFφ (4.1)

54



where F is the Faraday constant, z is the atomic charge and φ is the interfacial potential.

Table 3 compares Marcus’s data with data from Tissandier et al., and it highlights the phase

potential contribution in real solvation free energy calculations, which is about −10 kcal/mol

for alkali metals and about +12 kcal/mol for halides. With two sets of experimental data

to compare to, there has often been a lack of consensus on which calculation schemes result

in which solvation free energy scale and why. It is generally understood that free energy

calculations using periodic boundary conditions (such as MD and MC simulations) do not

include the phase potential contribution, and thus represent absolute solvation data because

there is no physical vacuum-liquid interface.[270]

Table 3: Comparison of different solvation scales in kcal/mol.

Ion TATB [a] CPB [b] Difference

Li+ −117.3 −126.5 −9.2

Na+ −91.0 −101.3 −10.3

K+ −74.3 −84.1 −9.8

F− −114.9 −102.5 12.4

Cl− −85.0 −72.7 12.3

Br− −79.1 −66.3 12.8

[a] Data taken from Ref. [267]

[b] Data taken from Ref. [269]

For cluster-based calculations this is murkier. Specifically, QCT literature cites the

absence of phase potentials in theoretical predictions and reports data in closest agreement

with the absolute solvation data of Marcus,[243] while other computational studies using a

similar thermodynamic cycle and cluster-continuum approach have reported closer agreement

with the real solvation scale.[271, 272] Of course, solvation energies will depend on how many

solvent molecules are used and where they are placed. Kemp and Gordon demonstrated the

effective fragment potential (EFP) method coupled with Monte Carlo simulations can be

used to study the solvation of F− and Cl− anions.[273] Their approach showed that 15

water molecules in this model were required to fully solvate a single F− anion while 18
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water molecules were required to completely solvate a Cl− anion. Merz and coworkers also

used molecular dynamics simulations to identify the first solvent shell that can be used

in calculations using continuum solvation methods.[129] It would be beneficial to have a

general and automatable way to model local solvation environments (of any solute in any

general solvent) without using molecular dynamics simulations that can be computationally

prohibitive.

This work elucidates the theory between two different thermodynamic cycles (Schemes 1

and 2) and how they result in two different solvation free energy scales. To automatically gen-

erate microsolvated clusters, we used a global optimization code called ABCluster [181, 274].

We then calculated the real solvation free energies with cluster-continuum modeling using

the thermodynamic cycle outlined in Scheme 2. We initially hypothesized that solvation

free energies will improve if we systematically add explicit water molecules around each ion

while ensuring that each microsolvated state is a reasonable approximation of a thermody-

namically low energy structure. A similar idea was previously studied by Bryantsev and

co-workers by increasing water cluster sizes to 18 explicit solvent molecules around the Cu2+

ion, which significantly decreased the error compared to the CSM-computed solvation free

energy.[128] Here, we introduce a way to leverage machine learning (ML) to study local sol-

vation structures. Unlike other studies that use supervised ML to predict solvation energies

with algorithms like random forest,[275] decision tree,[276] or artificial neural networks,[277]

we are using unsupervised ML to study how similarities between microsolvated structures

coincide with solvation energies so that one can learn the inherent arrangement of our data

without using explicitly provided labels. We first assemble our data-set of microsolvated

structures and then use dimensionality reduction algorithms to study microsolvation struc-

tures. One of the main challenges in applying ML techniques to chemistry problems is to

find the best representation of the system so that it is complete and concise. In this study we

use Smooth Overlap of Atomic Positions (SOAP) descriptors[278] to represent our microsol-

vated structures. Next we use sketch-maps to reduce the dimensions of our feature vectors

and to study similar patterns.[194] By using the combination of SOAP and sketch-map ML

algorithms we demonstrate that low energy molecular clusters produced by our procedure

have structurally similar local solvation environments.
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4.2 Theory

Cluster-continuum modeling has been used in different formulations to calculate solvation

free energies of small ions.[127, 279, 180, 280, 129] These methods involve different approxi-

mations, ranging from including a single solvent molecule to using MD simulations to obtain

physical solvent structures at room temperatures. This hybrid approach has received further

developments in the theory (e.g. by using cluster expansion treatments).[281, 282, 283] QCT

is the most robust approach of these because it is based on statistical mechanics,[284] and

it has been proven to be reliable in different applications.[244, 254, 233, 253, 247, 248, 243,

234, 235, 236, 240]

The starting point for QCT is to partition the region around the solute into inner- and

outer-shell solvent domains. Akin to cluster-continuum modeling schemes, the inner shell

is typically treated quantum mechanically, while the outer shell is treated with a dielectric

continuum model. When applied to the hydration of an ion X having a charge m±, the

inner-shell reaction is given as a cluster association equilibrium:

Xm± + nH2O ⇀↽ X(H2O)m±n (4.2)

A clustering algorithm is applied to identify the populations of the clusters on the right side

of Eq. 4.2, namely the X(H2O)m±n species. One normally identifies inner-shell configurations

for an ion by defining waters within a distance λ from the ion as an inner-shell partner.

With n water ligands in the cluster, the excess chemical potential, or hydration free energy,

consists of several terms,

µ
(ex)
X = −kT ln

[
K(0)

n ρH2O
n
]

+ kT ln [pX(n)] +
(
µ

(ex)
X(H2O)n

− nµ(ex)
H2O

)
(4.3)

The terms in Eq. 4.3 describe contributions to the total ion hydration free energy from the

inner and outer-shell solvation environments. The first term gives ion association reactions

with water molecules in the inner shell taking place in an ideal gas phase. The association

reactions are scaled by the water density, ρH2O, to account for the availability of water

ligands to occupy the inner shell. The second term accounts for the thermal probability that

a specific ion has n inner-shell partners in solution. The last terms describe the solvation
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of the X(H2O)m±n cluster and the de-solvation of n individual water molecules from aqueous

solution in the outer-shell environment.

A judicious selection of λ and n in Eq. 4.3 can simplify the free-energy analysis. Even

though Eq. 4.3 does not depend explicitly on λ, by considering a specific λ, we can identify

the the most probable n, denoted as n̄. When n̄ is used in Eq. 4.3, the kT ln [pX(n)] term

can be dropped to result in Eq. 4.4

µ
(ex)
X ≈ −kT ln

[
K

(0)
n̄ ρH2O

n̄
]

+
(
µ

(ex)
X(H2O)n̄

− n̄µ(ex)
H2O

)
(4.4)

Alternatively, the magnitude of the contribution, kT ln [pX(n)] from Eq. 4.3 can be esti-

mated from molecular simulation results for any n. Second, CSMs can be used to determine

outer-shell contributions. With most CSMs, the external boundary of the model cavity is

defined by spheres centered on each of the atoms. Typically, CSM results are sensitive to

the radii of the spheres that define the solute cavity, but when the ion is surrounded by a

full shell of solvating ligands, the sensitivity is lessened (when the radii for the ligands are

adequate), and this results in a fortuitous error cancellation in the last terms of Eq. 4.3 and

4.4. Third, selecting clusters with small n generally results in stronger solute-solvent interac-

tions, which helps ensure that vibrational motions are characterized by small displacements

from equilibrium, which is required when assuming a harmonic potential energy surface for

the analysis of a free energy. Prior work suggests that anharmonic vibrational motions be-

come prominent with clusters as small as n=5 for Na+ and K+ ions in clusters with water

molecules,[257] and they can be even smaller sizes for anion-water clusters.[248]

As an aside, the solvation energy represented in Eq. 4.4 can also be equivalently repre-

sented using the thermodynamic cycle shown in Scheme 1 (Figure 26) which is mathemat-

ically expressed (using different notation) with Eq 4.5. This alternative notation is based

on the observable macroscopic quantities coming from thermodynamics and is often used in

chemistry and engineering communities (e.g. see Refs. [180] and [128]). We note that when

Eq. 4.5 and Eq. 4.6 are written in per mole basis they are equivalent to chemical potentials.

∆G∗solv(Xm±) = ∆G◦g,bind − n̄∆G◦→∗ + ∆G∗solv(X(H2O)m±n̄ )− n̄∆G∗solv(H2O)− n̄RT ln[H2O]

(4.5)
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Figure 26: Monomer cycle (Scheme 1) for calculating an absolute solvation free energy.

Scheme 1 is sometimes called the ’monomer cycle’ since it involves individual water monomers

rather than a water cluster. The free energy of binding a gas-phase cluster is expressed as

∆G◦g,bind, where the circle denotes the free energy difference at a gas-phase standard state

of 1 bar. The solvation free energies (∆G∗solv) are labeled with asterisks to denote energies

conventionally expressed at an aqueous standard state of 1 M, and they are calculated here

using SMD implicit solvation. Additional corrections (∆G◦→∗, each having a magnitude of

1.9 kcal/mol or 0.08 eV) are needed to account for the change from a gas-phase standard

state to an aqueous-phase standard state. Here, we use Scheme 1 to map the QCT theory on

macroscopic variables. Solvation energies calculated using Scheme 1 are comparable to the

Marcus scale and thus will be comparable to MD/free energy perturbation or QCT studies

that do not have the phase potential contribution.[285]

Of the different cluster-continuum procedures that do not require dynamics, the proce-

dure by Bryantsev et al. is promising since it appears to yield solvation free energies that

agree well with the experimental data for both the proton and Cu2+, and with results that

appear to match the real solvation scale. Their cycle, outlined in Scheme 2, is similar to the

monomer cycle in Scheme 1, but it involves pre-formed water clusters containing n inter-

acting water molecules that have been optimized at 0 K and free energy contributions are

obtained using standard ideal gas, rigid rotor, and harmonic oscillator approximations. The

single-ion solvation free energy from the Scheme 2 cluster cycle is calculated with Eq. 4.6:

∆G∗solv(Xm±) = ∆G◦g,bind −∆G◦→∗ + ∆G∗solv(X(H2O)m±n )−∆G∗solv(H2O)n −RTln([H2O]/n)

(4.6)
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Figure 27: Cluster cycle (Scheme 2) for the calculation of real solvation free energy.

Scheme 2 also evaluates the same QCT theory shown in Eq. 4.3, but by applying QCT to

both the water dehydration problem (µ
(ex)
H2O) as well as the ion hydration problem (µ

(ex)
X ). This

dual QCT approach has advantages due to anticipated error cancellations.[252] Successful

use of CSM is known to require properly chosen CSM parameters since results can vary

greatly with surface type, cavity size, and continuum model used.[286] However, by using

similar sizes of clusters for ion hydration and water dehydration, the boundary λ between

inner and outer-shells is approximately balanced on both sides of the equation, leading to a

cancellation of errors to the outer-shell solvation contribution from a CSM model.

The same balance in cluster sizes may also lead to an approximate cancellation of an-

harmonic contributions in the inner-shell contributions to the solvation free energy. Eq. 4.3

depends on using the most probable n to eliminate the kT ln [pX(n)] term (as done in Eq.

4.4), or requires molecular simulations to explicitly evaluate that term. It also needs a filled

inner-shell occupancy so that the CSM model is minimally dependent on specific radii used

to compute the outer-shell contribution to hydration free energy. Scheme 2 approximately

eliminates these constraints through error cancellations. With Scheme 2, large n values can

be used; however, care must be applied when the cavity radius is around 6 Å. In such length

scales and above, the surface or phase potential contributions to the solvation free energy, φ,

should be included in the calculation.[287, 288, 289, 290, 291] In the analysis here, outer-shell

contributions to the solvation free energy go to zero as cluster size increases,[240, 243] and

then the phase potential enters into the calculation and then is accounted for naturally. This

explains why results from Scheme 2 agree better with the real solvation scale.
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To identify the degree of solvation necessary we employ unsupervised ML algorithms to

assemble and then study the similarities between the microsolvated structures. The main

challenge in using ML based algorithms, particularly with chemistry applications, is to come

up with an appropriate representation that gives a complete description of the system. The

SOAP kernel expresses the atomic neighborhood of a specific atom using a local expansion

of a gaussian-smeared atomic densities. Previously, it has been used to study different

geometries of fullerene, amorphous silicon, pentacene, and ice structures.[292, 194, 293, 294,

295] SOAP is also a good representation for microsolvated systems because it is invariant

to rotations, translations, and permutations. Assembling techniques like SOAP identify

an agglomeration of data in chemical space, but they do not offer a Euclidian relationship

between different structures. Such relations can be determined and represented using maps

that represent geometrically similar structures as data points that are adjacent to each other.

Here, we use sketch-map non-linear dimensionality reduction technique to construct a two-

dimensional representation of the free energy surface. Given a certain cutoff radius, this

algorithm identifies structures that show similar local solvation motifs, e.g. if two points are

close to each other on the sketch-map then the local solvation environments from the two

data points are relatively similar.

In this study, we will apply Scheme 2 to systematically model microsolvated ions and

water clusters using n = 1−20 water molecules. Below, we will show a modeling scheme that

involves modern computational tools such as ABCluster, dispersion-corrected Kohn-Sham

density functional theory, and the SOAP algorithm to analyze this thermodynamic cycle

to quantify energy contributions, assess likely causes for errors, and understand the local

structures of water molecules in these solvation environments. While more calculations are

required for Scheme 2 than would be needed for Scheme 1, we find that the former scheme

provides reasonably accurate single ion solvation free energies while also eschewing the need

for a priori knowledge of the solvation environment. Thus, calculations from such cycles

should be generalizable and easily automatable for any solute in any solvent environment.
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4.3 Computational Methodology

We generated microsolvated structures using the rigid molecular optimizer module of

the ABCluster program.[181, 274] We generated 1,000 low energy candidate structures using

CHARMM force field parameters from MacKerell’s CGenFF website together with TIP4P

water parameters.[182] All force field parameters used in this study are reported in Table 4.

The thermodynamic cycle reported in Scheme 2 also requires calculations on water clusters.

To generate the water clusters, we followed the same procedure outlined above using TIP4P

parameters for the water molecules.[296] We found that ABCluster can reliably identify

Wales’ low energy water clusters [297], but caution is still recommended in future work to

ensure that meaningful microsolvated structures are obtained. Cluster geometries were then

optimized at the same level of QM theory as the solute-solvent clusters, as discussed below.

The five lowest energy structures obtained from ABCluster then further optimized us-

ing computationally efficient BP86[185]-D3BJ[190]/def2-SVP[187] or B3LYP[189]-D3BJ[190]

/def2-SVP[187] level of theory, as implemented in ORCA[188] using the RI-J or RIJCOSX

approximations. To treat outer-shell solvation effects we used SMD implicit solvation with

both geometry optimizations and single point energy calculations. Free energy contributions

were calculated using the ideal gas, rigid rotor, and harmonic oscillator approximations at

the same level of theory as the geometry optimizations. Finally, to assess the significance of

higher levels of theory, we calculated single point energies on fully optimized geometries at

the B3LYP[189]-D3BJ[190]/def2-TZVP[187] and ωB97X-D3[220]/def2-TZVP[187] levels of

theory. Every energy reported in this manuscript is the Boltzmann-weighted average of the

five lowest energy structures from our filtering procedure.

Finally, we compared our microsolvated structures with structures obtained from MD

trajectories using the AMEOBA force field[298] as implemented in the TINKER[192] software

package. First, we performed NPT simulations with a water box of 500 water molecules and

equilibrated it for 200 picoseconds at 298.15 K and 1 atm. Next, we inserted an ion into

the system (while removing one water molecule) and then performed NVT simulations for

another 200 picoseconds. Finally, we extracted 100 structures from the NVT trajectory and

compared them with the structures generated with our clustering approach.
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Table 4: CGENFF parameters used with ABCluster [a]

Ions q epsilon (kJ/mol) [b] sigma (Å)[c]

Li+ +1.00 0.0097 2.31

Na+ +1.00 0.1962 2.51

K+ +1.00 0.3640 3.14

F− −1.00 0.3611 3.48

Cl− −1.00 0.6276 4.04

Br− −1.00 0.7606 4.76

Mg2+ +2.00 0.0628 2.11

Ca2+ +2.00 0.0502 2.44

Zn2+ +2.00 0.0125 1.96

SO2−
4

+2.40 1.0455 3.55

−1.10 1.0455 3.15

TIP4P

+0.00 0.6485 3.15

−1.04 0.0000 0.00

+0.52 0.0000 0.00

+0.52 0.0000 0.00

CO2−
3

+0.161 0.0680 2.09

−0.786 0.1921 1.76

−0.786 0.1921 1.76

−0.589 0.1650 1.69

[a] Parameters used in ABCluster algorithm. Following conversions needed to be performed

to use CGENFF force field parameters in ABCluster:

[b] εABCluster = εCHARMM x (−4.184)

[c] σABCluster = σCHARMM x (25/6)
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4.4 Results and Discussion

We first benchmarked low energy water clusters generated from ABCluster to global

minimum energy water clusters from the Cambridge Cluster Database that also used the

TIP4P forcefield.[297] In all cases (n = 1, 2, 4, 8, 12, 16, 20), the energy differences between

our structures and the reference structures from the database were all at most +1.2 kcal/mol

(Table 5). This agreement demonstrates that ABCluster is an effective tool for identifying

low energy structures and that our water clusters are comparable to well-established and

globally optimized water cluster structures.

Table 5: Comparison of calculated electronic energies of water clusters in kcal/mol. [a]

n Globally optimized clusters [b] ABCluster clusters [c] Difference

2 -95924.5 -95924.1 0.4

4 -191852.8 -191852.1 0.7

8 -383710.1 -383708.9 1.2

12 -575564.3 -575564.0 0.3

16 -767420.3 -767420.2 0.1

20 -959279.6 -959279.0 0.6

[a] Single point electronic energies calculated using ωB97X-D3/def2-TZVP.

[b] Geometries taken from Ref. [297] and then reoptimized using BP86-D3BJ/def2-SVP.

[c] Geometries obtained using the procedure stated in the main text.

Next, we calculated solvation free energies of (H2O)n clusters using the thermodynamic

cycle outlined in Figure 28 and compared it with solvation energy calculations using the

SMD solvation model. Table 6 shows solvation free energies for water clusters derived using

the thermodynamic cycle shown in Figure 28, solvation free energies calculated directly using

a CSM, and the difference between the two calculation schemes. For cases where n = 2, 4, 8,

the difference in the two sets of solvation free energies is less than 5 kcal/mol. However,

for larger clusters (n = 12, 16, 20), the difference in free energies from these two calculation

schemes significantly increases by as much as 30 kcal/mol. This trend shows that when
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Table 6: Energy contributions (in kcal/mol) used in solvation free energy calculations of

(H2O)n clusters at T = 298.15 K in kcal/mol.

n [a] [b] [c] [d] ∆G∗solv(cycle) [e] ∆G∗solv(CSM) [f] Difference

2 −12.6 8.5 3.4 3.8 −11.4 −14.7 −3.3

4 −25.2 17.0 5.6 3.4 −17.3 −16.7 0.6

8 −50.5 34.1 11.0 3.0 −30.5 −24.8 5.7

12 −75.7 51.1 19.6 2.8 −47.0 −29.1 17.9

16 −100.9 68.1 26.3 2.6 −61.8 −30.0 31.8

20 −126.2 85.2 27.9 2.5 −71.4 −38.9 32.2

[a] n∆G∗solv(H2O) energies: n∆G∗solv(H2O) was calculated by taking the experimentally

derived ∆G∗solv(H2O) (see Ref. [299]) and then multiplying by n.

[b] Energy correction terms for the n water monomers: n∆G◦→∗ + nRTln([H2O])

[c] G◦g,bind energies calculated using

DLPNO-CCSD(T)/def2-TZVP//B3LYP-D3BJ/def2-SVP.

[d] Energy correction terms for the water cluster: ∆G◦→∗ + RTln([H2O]/n)

[e] ∆G∗solv(cycle) values: Experimentally derived solvation energies using the

thermodynamic cycle outlined in Figure 28. ∆G∗solv(H2O)n = n∆G∗solv(H2O)−

(∆G◦g,bind − (n− 1)∆G◦→∗) + RTln(n[H2O]n−1).

[f] ∆G∗solv(CSM) values: Solvation energies calculated using the SMD solvation model.

relatively large clusters of water are solvated with a CSM, the model appears to introduce

significant errors that would then make them less reliable if used for calculations with Scheme

2. The observation also in part justifies the use of QCT methods that use Scheme 1 and

relatively small cluster sizes. The lowest error arises with n = 4 because it is the most

probable size for water clusters, making the ln [pX(n)] term in Eq. 4.3 approach to zero.
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Figure 28: Thermodynamic cycle for the formation of water clusters.

We then benchmarked calculated gas-phase binding free energies of water molecules to

different ions against experimental data.[300, 301] Table 7 shows gas-phase binding free

energies for one water molecule and different ions. For all the ions (Li+, Na+, K+, Cl−, Br−,

F−), calculations are in good agreement with the experimental data, and our errors are mostly

under 5 kcal/mol. We further compared the Na+ and K+ binding free energies with one

water molecule to other computational studies, and Table 7 shows that different calculations

agree reasonably well with experimental data [239, 237]. We also calculated binding free

energies involving four water molecules using Schemes 1 and 2, and compared them with both

experimental and other computational studies (Table 8). The reference experimental data

used for comparison add water molecules one by one to the system.[300, 301] Using Scheme 1,

we get very good agreement with the experimental values and our errors are under 5 kcal/mol

for all ions (Li+, Na+, K+, F−, Cl−, Br−). The data are also in relatively close agreement with

gas-phase binding free energies calculated by Rempe and coworkers.[244] However, when we

used Scheme 2 to calculate binding of ions to four water molecules, we obtained free energies

that differ from the prior work by 10 kcal/mol. This difference is anticipated on the basis

that Scheme 2 applies to solvation reactions, not gas-phase association reactions.
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Table 7: Comparison of gas phase binding free energies for [X(H2O)] in kcal/mol. [a]

Ions Experiment [b] Literature ∆G◦g,bind [e]

Li+ −27.2 ≈ −25[c] −31.8

Na+ −18.8 −18.6[d] −21.7

K+ −11.8 −12.0[d] −15.6

F− −19.1 ≈ −20[c] −24.0

Cl− −8.6 - −11.8

Br− −7.3 - −9.0

[a] Free energies calculated using ωB97X-D3/def2-TZVP//B3LYP-D3BJ/def2-SVP.

[b] Ref [269]

[c] Ref [247] (calculated using B3LYP), [d] Ref [237] (calculated using B3LYP).

[e] This work.

Table 8: Gas phase binding free energies of [X(H2O)4] in kcal/mol. [a]

Ions Experiment [b] Literature ∆G◦g,bind [e] ∆G◦g,bind [f]

Li+ −66.9 ≈ −65[c] −62.5 −77.1

Na+ −46.9 −49.4[d] −41.0 −53.3

F− −46.3 ≈ −45[c] −49.8 −52.0

Cl− −23.7 - −24.2 −29.5

Br− −20.3 - −18.2 −26.3

[a] Free energies calculated using ωB97X-D3/def2-TZVP//B3LYP-D3BJ/def2-SVP.

[b] Ref [269]

[c] Ref [247] (calculated using B3LYP), [d] Ref [237] (calculated using B3LYP).

[e] ∆G◦g,bind values are calculated using Scheme 1.

[f] ∆G◦g,bind values are calculated using Scheme 2.
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After benchmarking our calculations, we calculated hydration free energies using Eq.

4.6, which relies on the cluster cycle in Scheme 2. We considered a data set of ions having

different sizes and charges of 2+, 1+, 1−, and 2−. Figures 29 and 30 show hydration free

energies for Na+, Mg2+, Cl−, SO2−
4 . Table 9 shows hydration free energies for all the solutes,

and the percent error calculated by taking absolute hydration free energies from Marcus’s

study and adding the phase potential contribution taken from Lamoureux and Roux,[270]

using Eq. 4.1 or comparing with experimental values from Tissandier et. al.[269] We also

calculated and compare hydration free energies for ion pairs. Table 10 shows hydration free

energies for ion pairs and how they agree with both Marcus et al. [267] and Tissandier et

al.[269] For all ions, we report solvation free energies with both BP86-D3BJ and B3LYP-

D3BJ geometries to compare the importance of including exact exchange in these systems. In

all cases, B3LYP-D3BJ geometries result with more consistent solvation energies compared

to BP86-D3BJ geometries.

In Figure 29a and 29c, for Na+ and Mg2+ cations, respectively, the hydration free energies

appear to get closer to the experimental data when we gradually increase the number of

water molecules in the system. For Na+ starting with eight water molecules we get good

agreement with the experimental data. All monovalent cations we have considered (Li+,

Na+, K+) have errors under 5% percent which corresponds to ∼3 kcal/mol error. Similarly,

for Mg2+ starting with 12 water molecules we get good agreement with the experimental

data. All divalent cations in our library (Mg2+, Ca2+, Zn2+) have errors under 2% which

corresponds to ∼7 kcal/mol error. In summary, using Scheme 2 with increasing cluster sizes

consistently decreases the errors for cation systems.

In Figures 30a and 30c, for Cl− and SO2−
4 anions, respectively, the data is not as straight

forward. The anion hydration free energies are not particularly sensitive to water cluster

size, and hydration free energies begin to deviate more from experiment when using 16 and

20 water molecules. When we looked at three 1− charged anions, we observed larger percent

errors (∼10% percent for Cl− and Br−) relative to the cation data. Lastly, we considered

two 2− charged anions and calculated errors are around ∼4%, which corresponds to ∼10

kcal/mol error in the hydration free energy. Thus, our initial hypothesis that adding more

solvent molecules into the system should improve the accuracy was true only for the cations.
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Table 9: Comparison of experimental and calculated solvation free energies in kcal/mol. [a]

Ions Experiment [b] Experiment [c] Cluster Size ∆Gsolv [f] Error [g] % Error

Li+ −117.3 −126.5 [d] 8, 12 −124.4 2.1 1.7

Na+ −91.0 −101.3 [d] 8, 12 −103.3 −2.0 2.0

K+ −74.3 −84.1 [d] 8, 12 −80.2 3.9 4.6

F− −114.9 −102.5 [d] 8, 12 −106.0 −3.5 3.4

Cl− −85.0 −72.7 [d] 8, 12 −77.7 −5.0 6.8

Br− −79.1 −66.3 [d] 8, 12 −72.0 −5.7 8.5

Mg2+ −441.2 −466.1 [e] 12, 16 −460.0 6.1 1.3

Ca2+ −363.4 −388.4 [e] 12, 16 −381.8 6.6 1.6

Zn2+ −471.0 −495.9 [e] 12, 16 −487.3 8.6 1.8

SO2−
4 −261.9 −237.0 [e] 12, 16 −245.3 -8.3 3.5

CO2−
3 −318.1 −293.2 [e] 12, 16 −282.4 10.8 3.7

[a] Free energies calculated using ωB97X-D3/def2-TZVP//B3LYP-D3BJ-def2-SVP.

[b] Experimental free energies taken from Ref.[267]

[c] Experimental free energies taken from Ref.[267] and then corrected using the air/water

interface potential.

[d] Experimental free energies taken from Ref.[269] (Free energies taken from Ref.[267] and

corrected using the phase potential correction (i.e. difference) listed in Table 3.

[e] Corrected using the phase potential correction (-12.45 kcal/mol) from Ref.[270].

[f] ∆G∗solv calculated in this work.

[g] Error is calculated with respect to column Experiment[c].
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Table 10: Comparison of experimental and calculated solvation free energies for ion pairs in

kcal/mol. [a]

Ions Experiment [b] Experiment [c] ∆Gsolv [d]

Li+ - F− −232.2 −229.0 −230.4

Li+ - Cl− −202.3 −199.2 −202.1

Li+ - Br− −196.4 −192.8 −196.4

Na+ - F− −205.9 −203.8 −209.3

Na+ - Cl− −176.0 −174.0 −181.0

Na+ - Br− −170.1 −167.6 −175.3

K+ - F− −189.2 −186.6 −186.2

K+ - Cl− −159.3 −156.8 −157.9

K+ - Br− −153.4 −150.4 −152.2

[a] Free energies calculated using ωB97X-D3/def2-TZVP//B3LYP-D3BJ-def2-SVP.

[b] Experimental free energies taken from Ref.[267]

[c] Experimental free energies taken from Ref.[269]

[d] ∆G∗solv calculated in this work.
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Next we considered that different microsolvated clusters might have significantly differ-

ent solute structures, which result in different hydration free energies, as shown in Figures

29 and 30. To test this idea, we studied geometric similarities in cluster sizes. We used

the SOAP kernel to quantify the similarity between solute environments.[278, 194] For the

high-dimensional pair-similarity data, we used ’sketch-maps’, a non-linear dimensionality

reduction technique.[302, 303] Sketch-maps allow us to obtain a two-dimensional map that

provides a visual representation of the similarity between solvent environments.

We define the local solvation environment as a sphere of radius r+2 Å, centered at the

solute atom, where r is the atomic radius. For complex anions, the environment center was

chosen to be the position of the central atom, and r was taken to be the average central

atom-oxygen distance plus the atomic radius of the oxygen atom. This cutoff was chosen

to capture the evolution of the local solvation environment around the ion as increasing

numbers of water molecules were added, while disregarding solvent molecules further from

the ion. The atoms within the cutoff distance (including those of the solute) contribute to

a smooth representation of the atom density, which is used to define a similarity measure

between structures invariant to permutation of atom indices as well as rigid translations and

rotations.

In our previous study using SOAP, we applied the pairwise similarity between config-

urations to comment on structural analogies.[218] To provide an intuitive representation

of the relationships between all pairs within a group of structures, we used a sketch-map

based on the SOAP metric. Each point on the map represents a solute environment. Data

points in close proximity indicate systems with high similarity in local solvent environments.

The sketch-map algorithm follows a non-linear optimization procedure where the discrep-

ancy between pairwise Euclidean distances in low dimension and the kernel-induced metric

is minimized. A sigmoid function is applied to focus the optimization on the most relevant

range of distances, e.g. disregarding thermal fluctuations. The parameters of this “filter”

are in the format, sigma-a-b. In all cases, we used a=3 and b=8, while sigma values were

adapted to different systems following the heuristics described in Ref [304].
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Figure 29: Hydration free energy plots and sketch-maps for Na+ and Mg2+. Plots show

(a) hydration free energies calculated with Eq.4.6 for Na+, (b) SOAP/sketch-map analysis

for Na+, (c) hydration free energies calculated with Eq.4.6 for Mg2+, (d) SOAP/sketch-map

analysis for Mg2+. Data are from ωB97X-D3/def2-TZVP calculations on BP86-D3BJ/def2-

SVP or B3LYP-D3BJ/def2-SVP geometries. Color bar shows the number of water molecules

in the system.
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Figure 30: Hydration free energy plots and sketch-maps for Cl− and SO2−
4 . Plots show (a)

hydration free energies calculated Eq.4.6 for Cl−, (b) SOAP/sketch-map analysis for Cl−,

(c) hydration free energies calculated with Eq.4.6 for SO2−
4 , (d) SOAP/sketch-map analysis

for SO2−
4 . Data are from ωB97X-D3/def2-TZVP calculations on BP86-D3BJ/def2-SVP or

B3LYP-D3BJ/def2-SVP geometries. Color bar shows the number of water molecules in the

system.
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Figure 29b demonstrates that models for Na+ starting with eight or more water molecules

give good agreement with the experimental values and all structures exhibit a similar solvent

environment around the ion. Similarly for Mg2+, Figure 29d shows a similar set of results

except models should have 12 or more water molecules. Given the short-range cutoff for the

SOAP descriptors, the results of this static calculation scheme with the cations indicate that

hydration free energies gradually become more accurate while the local solvation environment

around the cation also gradually becomes more similar with increasing cluster size.

However, this correspondence between structures and energetics is not observed for the

anions (Cl−, SO2−
4 ). The sketch-map for Cl− in Figure 30b shows that local solvation en-

vironments start becoming progressively similar with n = 8, but solvation free energies for

larger clusters deviate by about 10 kcal/mol for clusters with 16 or more water molecules.

A similar trend is seen on the sketch-map for SO2−
4 in Figure 30d. We see the local sol-

vation structures start to become more similar with about n = 12, but the solvation free

energies for the 16 and 20 molecule water clusters are inaccurate by 15 kcal/mol compared

to experimental values. It is unlikely that the errors with the anions arise from not hav-

ing a globally optimized X(H2O)m±n cluster since Eq.4.6 tells us that a more stable cluster

would generally result in a more negative solvation energy. This can explain for calculated

underpredictions of solvation energies (Table 9), and even more sampling of microsolvated

structures might further improve these data. However, the calculated overpredictions seen

with anions suggests that the errors shown in Figure 30 with the 16 and 20 molecule water

clusters may arise from an imbalance in anharmonic effects in Scheme 2 because the ion-

water clusters have more anharmonicity than the water-water clusters. Nevertheless, we can

still use sketch-maps to identify the number of solvent molecules needed to see a analogous

solvent arrangements. For example with Cl−, the local solvation environment starts becom-

ing similar with n = 8, and when we calculate the hydration free energy with eight water

molecules we get a relatively good agreement with the experimental data without introduc-

ing errors we are currently attributing to anharmonicity. Similarly with SO2−
4 , we identify

12, 16, and 20 water clusters have similar solvent arrangements, but the smallest of these

structures will have the least anharmonicity and thus lowest error. Table 9 summarizes

all of our calculations and compares calculated hydration free energies with experimental
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data. Thus, the sketch-map analysis appears to be useful for identifying how many solvent

molecules are needed to calculate an accurate hydration free energy. Similar analysis is done

for every ion in our library and shown in Figures 31-37.

Figure 31: Hydration free energy plot and sketch-map for Li+. Figure 31a shows hydration

free energies calculated with Eq. 4.6 for Li+. Figure 31b is the SOAP/sketch-map analysis

for Li+.

Figure 32: Hydration free energy plot and sketch-map for K+. Figure 32a shows hydration

free energies calculated with Eq. 4.6 for K+. Figure 32b is the SOAP/sketch-map analysis

for K+.
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Figure 33: Hydration free energy plot and sketch-map for F−. Figure 33a shows hydration

free energies calculated with Eq. 4.6 for F−. Figure 33b is the SOAP/sketch-map analysis

for F−.

Figure 34: Hydration free energy plot and sketch-map for Br−. Figure 34a shows hydration

free energies calculated with Eq. 4.6 for Br−. Figure 34b is the SOAP/sketch-map analysis

for Br−.
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Figure 35: Hydration free energy plot and sketch-map for Ca2+. Figure 35a shows hydration

free energies calculated with Eq. 4.6 for Ca2+. Figure 35b is the SOAP/sketch-map analysis

for Ca2+.

Figure 36: Hydration free energy plot and sketch-map for Zn2+. Figure 36a shows hydration

free energies calculated with Eq. 4.6 for Zn2+. Figure 36b is the SOAP/sketch-map analysis

for Zn2+.
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Figure 37: Hydration free energy plot and sketch-map for CO3
2−. Figure 37a shows hydration

free energies calculated with Eq. 4.6 for CO3
2−. Figure 37b is the SOAP/sketch-map analysis

for CO3
2−.
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To obtain a more detailed understanding of where the errors come from, we performed

MD simulations using the AMEOBA force field[298] with the TINKER[192] software pack-

age to account for both chemical and thermal energy scales. We performed simulations for

Na+ and Cl− and used a cubic box starting with 500 solvent molecules. We picked 100

frames from the trajectory and carved out clusters containing eight water molecules. Figure

38 shows SOAP/sketch-map analysis for these 100 structures and our DFT optimized struc-

tures. For Na+, DFT optimization resulted in similar structures as those found from the

MD simulation regardless of the functional used in the optimization. However for Cl−, DFT

optimization resulted in quite different structures than those found from the MD simulation.

Again, we attribute this result to enhanced anharmonic effects in ion-water clusters with

anions. The lack of error cancellation in Scheme 2 with anions suggests that one should per-

form dynamics simulations within Scheme 1 to capture the correct geometry for outer-shell

contributions and correct for anharmonicity contributions in the inner-shell contributions to

hydration free energy, as demonstrated recently.[248, 247, 250]

Figure 38: SOAP/sketch-map analysis for Na+ and Cl− with eight water clusters. Yellow

data points are obtained from an MD trajectory, purple and green data points are obtained

from a full QM optimization in this work.

Therefore, in the absence of well-parameterized force fields or computationally intensive

BOMD simulations, we propose the following practical treatment (that exploits error can-

cellations) for automated calculations of real solvation free energies: 1) Calculate solvation
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free energies using the thermodynamic cycle in Scheme 2 for various values of n. 2) Use

a SOAP/sketch-map analysis to identify a relatively similar local solvent environment. 3)

Use the smallest possible cluster to calculate solvation free energy contributions. In most

cases, particularly with cations, using larger cluster sizes improves the calculated solvation

free energies. However, for anions (as demonstrated above) there may be unbalanced errors

that are known to arise from a CSM analysis of outer-shell contributions combined with har-

monic analysis of inner-shell contributions, and using cluster sizes with more than 15 water

molecules may cause errors as high as 10 kcal/mole. By using unsupervised machine learning

(i.e. the SOAP/sketch-map analysis) we identify salient solvation environments needed for

solvation free energy calculations using static microsolvated clusters.

4.5 Conclusions

We have demonstrated an automatable cluster-continuum (i.e., mixed implicit/explicit)

modeling approach that leverages unsupervised machine learning to calculate solvation free

energies of ions and small molecules. We showed that Scheme 1 has practical applications for

small values of n when CSM models are correctly accounting for outer-shell contributions,

and these results correspond more to absolute solvation free energies that do not contain

surface potential contributions. In contrast, Scheme 2 has practical applications for larger

values of n, and error cancellation from this scheme gives results that appear to correspond

to real solvation energies. We also showed how adding explicit solvent molecules improves

calculated solvation free energies by creating a more physical local solvation environment

around cations, but adding too many solvent molecules can lead to significant errors due to

an imbalance in anharmonic and harmonic energy contributions that are more predominant

for solvated anions. Overall, we show a generalizable approach to systematically investigate

atomic scale microsolvation environments and predict solvation free energies of ions in water

and presumably other general solvents.
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5.0 Publications and Future Work

5.1 Publications

5.1.1 Current Publications

1. Basdogan, Y., Maldonado, A and Keith, J. (2020). Advances and challenges in mod-

eling solvated reaction mechanisms for renewable fuels and chemicals. Wiley Interdiscip.

Rev. Comput. Mol. Sci. DOI: 10.1002/wcms.1446

2. Basdogan, Y., Groenenboom, M. C., Rempe, S., and Keith, J. (2019). Machine Learn-

ing Guided Approach for Studying Solvation Environments. J. Chem. Theory. Comp.

3. Basdogan, Y., and Keith, J. A. (2018). A paramedic treatment for modeling explicitly

solvated chemical reaction mechanisms. Chem. Sci, 9(24), 5341-5346.

4. Vo, M. N., Basdogan, Y., Derksen, B. S., Kowall, C., ... and Johnson, J. K. (2018).

Mechanism of Isobutylene Polymerization: Quantum Chemical Insight into AlCl3/H2O-

Catalyzed Reactions. ACS Catal., 8(9), 8006-8013.

5. Ilic, S., Basdogan, Y., Keith, J. A., and Glusac, K. D. (2018). Thermodynamic hydric-

ities of biomimetic organic hydride donors. J. Am. Chem. Soc., 140(13), 4569-4579.

6. Groenenboom, M. C., Anderson, R. M., Horton, D. J., Basdogan, Y., Roeper, D. F.,

Policastro, S. A., and Keith, J. A. (2017). Doped amorphous Ti oxides to deoptimize

oxygen reduction reaction catalysis. J. Phys. Chem. C., 121(31), 16825-16830.

7. Saravanan, K., Basdogan, Y., Dean, J., and Keith, J. A. (2017). Computational

investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr

dopants for improved catalysis. J. Mater. Chem. A, 5(23), 11756-11763.
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5.1.2 Expected Publications

8. Wang Y*., Basdogan, Y.*, Keith, J. A. and Gilbertson L. M. (2020). Identifying the

role of different oxygen functional groups in the graphene mediated glutathione oxidation

reaction. Submitted (co-first authorship)

9. Maldonado, A., Basdogan, Y., Rempe, S., and Keith, J. (2020). Modeling reactions

in mixed solvents: Where to go from here? Submitted to an invited issue of J.

Chem Phys.

10. Basdogan, Y., Choi, T. H., and Keith, J. A. (2020). Understanding solvation effects on

hydrogenation barriers for CO2 reduction on carbon-based materials. In Preparation.

11. Maldonado, A., Basdogan, Y., and Keith, J. (2021). Using machine learning to model

reactions in mixed solvents. In Preparation.

12. Choi, T. H., Basdogan, Y., and Keith, J. A. (2021). Modelling CO2 Reduction using

aromatic N-heterocycles. In Preparation.
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5.2 Future Work

5.2.1 Using Machine Learning and First Principles Modeling of Chemistry in

Mixed Solvents

Mixed solvents (i.e. binary or higher order mixtures of ionic or non-ionic liquids) play

crucial roles in chemical syntheses, separations, and electrochemical devices because they can

be tuned for specific reactions and applications. Apart from fully explicit solvation treat-

ments that can be difficult to parameterize or computationally expensive, there is currently

no well-established first-principles regimen for reliably modeling atomic-scale chemistry in

mixed solvent environments. The approach demonstrated in this thesis should be applicable

to study mixed solvent systems and calculate solvation free energies of any ion in any compli-

cated solvation environment. The theoretical foundation and robustness of QCT effectively

splits the problem of mixed solvents into inner and outer contributions as with pure solvents.

The dual QCT approach in the cluster cycle should make solvation free energies tractable in

mixed solvents without explicit simulations. Standard implicit solvation models treat mixed

solvents as a homogeneous medium which should be appropriate for the outer shell contri-

bution where there is no preferential solvation. Then, the SOAP and sketch-map analysis

will guide selection of microsolvated clusters. We have started studying mixed solvents by

using ABCluster as a global cluster optimization tool, imposing a local solvent environment

selection criteria through SOAP/sketch-map analysis, and using a dual QCT approach with

the cluster thermodynamic cycle. We believe that this approach is promising because it com-

bines the theoretical rigour of QCT with a state-of-the-art automatable solvation analysis

that should be extendable to mixed solvents.
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[20] J Li, R Güttinger, R Moré, F Song, W Wan, and GR Patzke. Frontiers of water
oxidation: the quest for true catalysts. Chem. Soc. Rev., 46(20):6124–6147, 2017.

[21] Wenhui Li, Haozhi Wang, Xiao Jiang, Jie Zhu, Zhongmin Liu, Xinwen Guo, and Chun-
shan Song. A short review of recent advances in CO2 hydrogenation to hydrocarbons
over heterogeneous catalysts. RSC Adv., 8(14):7651–7669, 2018.

[22] Qi Lu and Feng Jiao. Electrochemical CO2 reduction: Electrocatalyst, reaction mech-
anism, and process engineering. Nano Energy, 29:439–456, 2016.

[23] James T Muckerman, Patrick Achord, Carol Creutz, Dmitry E Polyansky, and Etsuko
Fujita. Calculation of thermodynamic hydricities and the design of hydride donors
for CO2 reduction. Proc. Nat. Acad. Sci., 109(39):15657–15662, 2012.

[24] Sharon Hammes-Schiffer. Theory of proton-coupled electron transfer in energy con-
version processes. Acc. Chem. Res., 42(12):1881–1889, 2009.

[25] Sharon Hammes-Schiffer and Alexei A Stuchebrukhov. Theory of coupled electron
and proton transfer reactions. Chem. Rev., 110(12):6939–6960, 2010.

[26] Sharon Hammes-Schiffer and Alexander V Soudackov. Proton-coupled electron trans-
fer in solution, proteins, and electrochemistry. J. Phys. Chem. B, 112(45):14108–
14123, 2008.

[27] Jeffrey J Warren, Tristan A Tronic, and James M Mayer. Thermochemistry of proton-
coupled electron transfer reagents and its implications. Chem. Rev., 110(12):6961–
7001, 2010.

[28] James M Mayer. Proton-coupled electron transfer: a reaction chemist’s view. Annual
Review of Physical Chemistry, 55:363–390, 2004.

[29] Cyrille Costentin, Marc Robert, and Jean-Michel Savéant. Catalysis of the electro-
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