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Abstract 

Development and Efficacy of a Mobile Real Time Visual Feedback System for Gait 
Training in Lower Extremity Limb Loss 

 
 

Krista L. Kutina, PhD 
 

University of Pittsburgh, 2020 
 
 
 
 

Gait dysfunction in those with trans-femoral and trans-tibial limb loss can lead to 

degradation of the intact and surgical limb, causing a risk of osteoarthritis and decreased bone 

density.  Those affected with lower limb loss are still rising in number, and gait deviations 

remain a significant factor in function and quality of life for these individuals.  Chronic 

compensation from dysfunctional gait patterns have been shown to have additional 

consequences of low back pain and increased energy cost.  Real time visual feedback follows 

the motor learning theory that internalization of a new neuromuscular pattern is enhanced when 

the patient’s focus is directed externally.  We developed a system to provide real time mobile 

visual feedback (MOVISU-FIT) for gait training using kinetic data derived from the user’s 

prosthetic limb itself and displayed wirelessly to smart glasses.  Creating mobility in 

combination with real time knowledge of performance during gait training with MOVISU-FIT 

enhanced automaticity therefore retention beyond the initial frame of rehabilitation.    

Our goal was to develop, and assess the feasibility and efficacy of, a gait training system 

that provided real time visual feedback derived from kinetic sensor data within the prosthetic 

limb and was mobile and wearable for those with lower limb loss.  The development then 

allowed preliminary pilot data analysis of the efficacy of this type of training on gait 

performance (symmetry and frontal plane pelvic motion), pain and functional measures.   In 

addition, this project and its findings expanded our ability to assess the impactful factors on 
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not only this type of training and feedback, but also on gait parameters that were retained 

beyond the end of training in this patient population.  
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1.0 Introduction 

1.1 Motivation 

Gait dysfunction is an impairment that can affect multiple patient populations, both 

neurologic and orthopedic, and become chronic and linger for years [1-7]. There are subsets of the 

patient population that are particularly vulnerable to problematic and chronic gait dysfunction such 

as; People with Parkinson’s, Stroke, Osteoarthritis (OA), and Limb Loss [6, 8-13].  In 2007, 

patients with limb loss compiled approximately 1.7 million people and it has been estimated that 

by 2050, this rate will more than double to 3.6 million in the United States [14-17].  A five-year 

study following those with lower limb loss reported almost 34% of participants not being able to 

walk two years after surgery [18].  This is of clinical concern in that forced compensations from 

the loss of sensory feedback, neuromuscular control, and along with a rise in concomitant pain that 

affect forward propulsion and weight acceptance throughout the gait cycle, could have the 

consequence of destructive secondary joint issues and increased energy cost [19].  In addition, lack 

of plantar flexion and normal ankle motion in artificial limbs are linked to most gait deviations in 

those with limb loss, including asymmetrical gait timing.  Other typical deviations include trunk 

shifts, which can result in low back problems as well as increased misdirected loads through the 

ankle, knee and hip of both the surgical and intact limbs, putting the patient at higher risk of 

cartilage degradation and secondary complications of arthritis [19].   Recent studies have 

demonstrated that not only can the kinematic variables that are a part of these dysfunctional lower 

extremity movement patterns be retrained, but also retained [8, 20-24]. Therefore, if an improved 

gait pattern can be re-trained, perhaps we could not only avoid further degradation of the low back 
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or contralateral limb, but also restore neuromuscular support and appropriate load bearing on the 

affected side.  Gait retraining as an intervention has demonstrated promise in many of the 

aforementioned populations, including the limb loss population  [8, 25-28]. This could lead to 

improved lower extremity function, which leads to improved energy consumption and extended  

life of the prosthesis as well [23].  Several studies have investigated the use of treadmill training 

and treadmill training combined with real-time feedback, including visual feedback, and have 

demonstrated positive results [29-31].  However, of the studies that have been performed on gait 

retraining very few have been performed on the limb loss population, and it does not appear that 

there have been any recent studies performed utilizing real-time visual feedback that is originating 

from the user’s prosthesis itself. Symmetry has been an issue in gait in those with limb loss, and 

as analysis has evolved from only qualitative to quantitative measurements of temporal, kinetic 

and kinematic variables and combinations of all, the most prominent asymmetries have been 

determined as shortened stance times and decreased ground reaction forces [31-33]. 

Real time Visual Feedback with feedback parameters derived from the user’s prosthesis 

itself has allowed new insights into gait rehabilitation in this population and facilitate the 

investigation into potential biomechanical variables that could be provided as feedback to improve 

gait.  Feedback and training using derived quantitative feedback, if successful, could allow 

increased efficiency in identifying problematic regions of biomechanical dysfunction, improve 

patient compliance as it is tailored to the patient specifically and not based solely on clinical 

observation, and also provide a new gateway of remote training.  The clinician will have the 

possibility of identifying parameters that have not been available to be provided as feedback thus 

far and determine their potential effects, whether harmful, counterproductive, or whether they may 

improve patient function.  Improved portable methods of gait training have been reported as highly 
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desirable by current Physical Therapists attending a large APTA Conference during our own 

customer discovery and surveying during the development phase.  This was performed via the 1st 

Gear Program through the National Science Foundation (NSF) program for innovation and 

development within the University of Pittsburgh.  Additional surveys were acquired from other 

leaders in the limb loss rehabilitation field locally and Veterans’ Association Rehabilitation, as 

well as sports and outpatient orthopedics for a variety of settings and populations. Many Clinicians 

reported they are forced to use apps on their own mobile phones, which delineated for us how 

clinicians are forced to devise this treatment on their own currently and demonstrates their desire 

for improved quantitative data output for gait analysis.   

The overall goal of this research was to develop and test the efficacy of a real time mobile 

visual feedback (RTMVF) gait training system for those with lower limb loss on the primary 

outcome measures gait symmetry, pain and function (as measured by the Six Minute Walk Test.  

A secondary purpose of this study was to examine the effects of the program on improving gait 

performance as measured by frontal plane pelvic motion, and patient reported function as 

measured by the Health and Quality of Life, Functional Status Measure, and Lower Extremity 

Capabilities Index-5 (LCI-5) surveys. Findings of this project will expand the knowledge of how 

well this form of training can affect the retention of retrained neuromuscular patterns gained via 

the RTMVF gait retraining program in this patient population, its usability, and it’s potential as an 

augmentation to improve current treatment strategies. 

The work described here is innovative in that it progresses from the previous limitations 

noted in the literature and combines two mobile implementations.  In this research study we 

implemented a technique that has not been evaluated previously, combining mobile assessment of 

outcomes and real time visual feedback that is delivered directly from the user’s prosthesis.  The 
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results from this work will have significant applications and potential, in that it is implementing 

extrinsic feedback, which has previously been reported to increase motivation and retention, as 

well as internalization of motor learning [27, 29, 34, 35]. This was displayed on smart glasses, 

creating a mobile environment in which the training can occur with novel feedback from the 

integrated sensor. The integrated sensor being utilized has been currently found valid for the 

measurement of joint forces and moments [36]. This, in combination with mobile assessment of 

kinematic and temporal-spatial gait outcomes, completes a novel way of training and assessing 

improvements in dysfunctional gait kinematics.  It has been demonstrated that those with limb loss 

have greater difficulty on unlevel surfaces, and truly mobile gait retraining allowing for real time 

visual feedback while walking outside of the clinic has not been tested [37]. It is our goal that the 

visual feedback be individualized per patient and simplified as appropriate.  To reach this point of 

integration and success, it is critical for the patient to understand what gait corrections provide the 

desired feedback and learn to self-correct.  Through this work remote training can be an option 

and patients may be able to take the system home which could improve compliance and as a result, 

functional outcomes.  Therefore, the ultimate knowledge gained from this study will provide a 

foundation for the appropriate application and use of these new technologies in the rehabilitation 

of gait dysfunction. 

1.2 Clinical Complications and Gait Dysfunction 

Mobility, return to function, and return to normal gait is an ever-prevalent issue amongst 

variable populations.  Gait dysfunction is known to occur with many underlying health conditions. 

Prominent risk factors for gait deviation have been noted, such as; hypertension, stroke, and 
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arthritis, and every year about 795,000 Americans suffer a stroke, and 185,000 undergo major limb 

amputation [34, 38-40].  In 2007 it was estimated that among adults in the United States (US) 

adults, “nearly 27 million have clinical osteoarthritis and another 5.0 million have fibromyalgia” 

[41, 42]. For example, a previous study determined  knee osteoarthritis (OA) presents as a risk to 

nearly 50% of the population [16, 43].  However, when a traumatic lower limb loss occurs, the 

prevalence of knee OA was found to be as high as 27% (men 28.3%, women 22.2%) and of hip 

OA as high as 14% (men 15.3%, women 11.1%) when compared with the sample cohort of the 

general population [44].  This previous study compared the prevalence of such issues in age-

adjusted men and women in this cohort of healthy individuals from the general population and the 

findings of knee OA were far lower than those with traumatic lower limb loss (men 1.58% and 

women 1.33%) as well as hip OA (men 1.13% and women 1.33%) [44].   It was not found that the 

level of limb loss decreased the risk and implies that clinical practices and prevention to reduce 

the risks of OA are prudent in the limb loss community.   

Gait dysfunction is lingering after current rehabilitation programs and treatment.  

Deviations after Total Hip Replacement, a common intervention for hip OA, have been reported 

to linger for one to four years [4, 6, 45-47].  Gait deviations after perceivably less complex injuries, 

such as Achilles tendon repairs, are noted greater than 10 years after surgery [5].  Novice runners 

are increasing in the US by approximately one million per year, and of those with lower extremity 

injury and knee pain, 60% are returning to their doctor within a three to five-year period even if 

they have received one of the current rehabilitation programs [48, 49]. However notably, a recent 

study of runners with lower extremity injury demonstrated training with real time visual feedback 

reduced the risk of injury one year later by 62% [49].   
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There are a variety of additional conditions which have been associated with problematic 

and chronic gait dysfunction, such as; Parkinson’s, Anterior Cruciate Ligament (ACL) injury, 

Patellofemoral Joint Pain (PFJP) and Limb Loss [8, 30, 33].  Individuals with limb loss, who 

compile approximately two Million people in the US, present with similar deviations to the other 

populations at risk of gait dysfunction mentioned previously [14]. Inappropriate load bearing or 

asymmetry during gait in people with limb loss has been shown to increase the risk of OA 

predominantly of the involved limb [44]. 

With the expected aging of society and increasing prevalence of obesity and other lifestyle 

diseases, the number of people in need of gait training will further rise.   For example, older adults 

now comprise a much greater component of the population than ever before, and factors associated 

with assessment and treatment of mobility issues are critical.  In a recent study of 488 community-

residing men and women aged 60 and older, 32.2% of participants presented with impaired gait 

[13].  In an earlier study of similar adults, gait abnormalities were associated with greater risk of 

institutionalization and increased mortality rates [16].  Regardless of the patient’s age, gait 

deviations increase the risk of joint degeneration [50, 51], accidental falls and reduced gait 

economy [52], thus limiting mobility and participation.  In a 2007 study, 59 Million Americans 

reported back pain within the last three months [53], and chronic back pain is a risk factor 

associated with gait deviations.   

1.3 Gait Dysfunction in the Limb Loss Population 

Gait dysfunction in those with trans-femoral and trans-tibial limb loss can lead to 

degradation of the intact and surgical limb, causing a risk of OA and decreased bone density.   
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Chronic compensation from dysfunctional gait patterns has been shown to have additional 

consequences of low back pain and increased energy cost. Annually, 185,000 upper or lower 

extremity (LE) amputations are performed [40, 54].  According to a 2010 survey, of the service 

members with traumatic limb loss from Vietnam War and Operation Iraqi /Enduring Freedom, 

78.2% and 90.5% respectively are using prosthetic devices to improve functional mobility [55-

57]. 

Evidence suggests that fewer than half of individuals with transfemoral limb loss meet or 

exceed pre-injury levels of mobility within a year [58].  This denotes a significant need to provide 

additional modes of Physical Therapy (PT)  gait interventions to maximize and maintain gait 

performance [1, 14].   More than half of lower limb prosthesis users suffer from pathological back 

pain, with 63% reporting gait difficulties and 49% reporting pain in the non-surgical limb [59-61].  

Fall risk is increased in prosthesis users, with 52%  reporting one or more falls in the preceding 

year [62]. Inefficient gait patterns, if left unchecked, can cause increased energy consumption and 

decreased gait speed [23].  Once functional impairments begin to occur, including decreased gait 

speed needed for crossing the street and decreased walking endurance to perform shopping tasks, 

psychological consequences are not far behind [1, 63].   

Rehabilitation following limb loss is a complex process involving physical and 

psychological components [57, 64].  Rehabilitation of walking, and in those with gait difficulties, 

involves the re-education of motor timing, and recreating automatic unconscious patterns.  Pain-

related neuromuscular deviations can also become destructive.   

Changes in spatiotemporal patterns frequently create inherent gait asymmetries in this 

population.  Musculoskeletal structures may be involved increasingly in performing roles in 

stabilization or weight transfer during walking that they were not designed to perform, secondary 
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to the gait deviation.  Therefore, of consideration should be the impact these gait deviations have 

on pain.  If these imbalances can cause overuse syndromes in the intact limb, as well as chronic 

muscular and joint integrity issues throughout the trunk and hip, pain must be considered as a 

possible consequence.   Accommodating the prosthesis, through hip hiking or vaulting for 

example, can put patients at risk for pain in the intact limb, residual limb, as well as their back.  In 

a 2016 literature review of gait training interventions in those with limb loss >60%, report they 

have experienced back pain secondary to these issues and almost 50% report pain in their intact 

limb (IL) [65].  Nearly 95% of the individuals with limb loss surveyed reported experiencing more 

than one type of pain in the previous four weeks, which was not limited to gait-related pain.  

Phantom limb pain (PLP), as well as residual limb pain (RLP) that is a consequence of overuse 

injuries from gait compensation, is highly reported and can be disruptive to gait training [59, 61, 

66].   PLP was reported most often (79.9%) [65].  In this systematic review, the pain is not 

inconsequential with those who reported pain rating it severe (7-10) on a 10-point scale. [65].  In 

addition, 25% of those, regardless of the pain cause or type, reported it to be extremely bothersome 

[65]. The frequency, duration and intensity of both PLP and RLP are related to levels of disability 

reported by the Chronic Pain Grade [66].  One study reported that back pain may be an overlooked 

problem after amputation, stating that 71% of their participants reported it as an issue [67].  

Typically, these symptoms are seen in the preceding four weeks and this should inform follow-up 

periods in research studies. 

The long-term consequences of asymmetric gait and improper joint loading that have been 

documented in patients with lower limb loss carry over into functional activities as well [1].  

Decreased gait speed can also be a consequence of pain and asymmetrical gait. This begins to 
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deplete quality of life (QOL) as pain, whether PLP or RLP has been directly linked to decreased 

prosthetic use [63]. 

However, very few studies have examined loading of the lower limb as a method of 

intervention or feedback and training, to also improve deficits in symmetry [1, 68, 69].  Auditory 

feedback as an augmentation to training has been applied to make the prosthesis user aware of 

successful and more functional loading of their involved limb however, this was only discussed in 

two additional studies [70, 71]. 

1.4 Gait Training and Rehabilitation 

Gait performance and modification based on real time feedback of kinetic variables, versus 

raw video or mirror,  has been demonstrated to significantly improve problematic gait parameters 

in patient populations with lower extremity orthopedic issues such as knee OA, and PFJPS [8, 21, 

29, 30, 68].  Previous promising work on gait retraining has included the OA population, both of 

the knee and hip, and the limb loss population [23, 31].  It is important to note that intervention 

upon a gait deviation either in a healthy patient (eliciting more toe out motion during loading to 

unload the medial compartment) or one with severe impairment can elicit meaningful effects, for 

example a significant reduction in knee abduction moment for OA patients, or decreased  pain and 

dynamic valgus in those with PFJPS, all related to problematic biomechanical dynamics  [6, 23, 

72].  Therefore, if a dysfunctional gait pattern can be re-trained, perhaps we could not only avoid 

further degradation of the low back or contralateral limb, but also restore neuromuscular support 

and appropriate load bearing on the effected side [73].  
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It now appears critical to examine what mode of motor learning pattern may be most 

effective.  A recent review of different learning approaches highlighted observational practice, 

focus of attention, feedback and self-controlled practice [74-78].  However, it has been reported 

that learning theories are not typically practiced within the limb loss rehabilitation population [79].  

Historically, the treatment paradigm has been device-driven and predominantly trial and error 

without data related to optimization that end-users seek to maximize their return to function.   

This study is addressing a reported need to close this gap between design, research, and 

clinical treatment as it will test an intervention that is multidisciplinary in design and 

implementation.  The end-users in this case, those with limb loss, require expertise from a 

multitude of disciplines, and although this may be more difficult, to collaborate in this way, it does 

present a large potential for translational impact [80].  In summary, movement-related goals are 

necessary when considering the training for use of the device and rehabilitation of these 

individuals.   

1.4.1 Gait Training and the Use of Feedback During Rehabilitation 

Gait retraining with augmented sensory feedback has demonstrated the ability to improve 

dysfunctional LE impairments and resultant gait deviations that can cause secondary 

musculoskeletal issues [8, 23, 31]. Traditional sensory approaches include haptic feedback, 

auditory and visual feedback, including mirror retraining, as well as raw video and large-scale 

optical systems with instrumented treadmills (Figure 1) [22, 39, 44].  
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Figure 1 Real Time Visual Feedback Constrained to Mirror Retraining.  This demonstrates the limit and lack 

of realism, and distraction the participant experiences. 

 

Real time feedback, to enhance either kinematic or kinetic variables, has demonstrated 

immediate and with longer-term and more rapidly acquired effects on several gait biomechanical 

variables among various populations.  However, very few studies have been performed within the 

limb loss population [24, 31].  Studies including sports medicine injuries and/or OA have 

demonstrated success with gait retraining using auditory feedback, as well as mirror retraining [22, 

73, 81, 82].  Several studies have demonstrated retention of the pattern up to three to six months 

[29, 83, 84].  However, in a recent systematic review regarding real-time kinematic, temporospatial 

and kinetic biofeedback during gait retraining, only three out of seven studies reported follow-up 

testing [85].   In addition, due to the expense and tightly controlled laboratory conditions of many 

of these studies, the training is not being performed in a realistic environment where injuries or 

gait deviations typically take place such as ramps, slopes, or unlevel surfaces.  The use 
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instrumented treadmills and motion capture systems to assess gait kinematic and temporal-spatial 

outcomes of gait retraining interventions have also been a limitation of previous work as it limits 

clinical translation.   

With the continued influx of wearable sensors that have been deemed reliable and valid to 

measure patient gait performance outcomes, we used commercially available technology to 

provide gait evaluation, not only in a mobile fashion but also less expensive manner. This project 

has assisted in development towards clinical usage with the advancements in the wireless mobile 

application.  This added functionality has the potential to provide clinicians with more accurate 

and easier reassessments of clinical outcomes by providing additional functionality of remote 

capabilities and quantitative data beyond qualitatively assessing gait when a patient returns 

between visits.  

1.4.2 Gait Training and Real Time Visual Feedback 

Gait training with real-time visual feedback has demonstrated significantly positive results 

as this allows the patient to receive immediate knowledge of their performance [8, 21, 86].  Visual 

feedback has been revealed as the fastest integration into the motor learning system [74-76]. Real 

time visual feedback follows the motor learning theory that internalization of a new neuromuscular 

pattern is enhanced when the patient’s focus is directed externally.  Video and mirror feedback can 

be used; however, limitations include the lack of mobility, realism, and enough quantity of steps 

the patient can review.  It has been found that if a patient is being given cues that direct their 

attention inward (versus externally to a color cue), such as “think about how your leg is swinging 

forward” or “tighten your hip muscles”, that this actually hinders and neurologically “constrains” 
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[87] motor learning (Figure 2). The patient literally becomes more self-conscious, at a 

physiological level.  

 

 

Figure 2 Illustration of PI (DPT) Applying Verbal CuesThis Figure Depicts the Participant’s Attention 

Becoming Internally Focused, Slowing Him Down.  This is Demonstrating the Deterioration of Automaticity 

Secondary to Creating an Internal Focus of Attention (RTMVF Prototype V1). 

  

Providing an external focus of attention, in a wearable mobile fashion, could facilitate the 

patient to develop more rapid improvement in their error detection and correction mechanisms 

which then more effectively become more automatic. Gait/running retraining with real time visual 

feedback as an intervention has demonstrated promise in populations including those with Athletic 

Overuse Injuries, OA, Parkinson’s Disease as well as Limb Loss with findings of improvement 

within three weeks and retention of up to six months to a year [8, 26, 28, 88, 89]. This form of 
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feedback has again traditionally been generated using a laboratory instrumented treadmill and 

optical system (Figure 3).   

 

 

Figure 3  Real Time Biofeedback Set-up for Training and Gait Modification TrialsPhoto M.A Hunt et al. 

2011. 

 

One recent study using a Head Up Display noted immediate effects on multiple parameters.  

However, the population was heterogeneous and there was no longer-term follow-up [90]. This 

form of feedback has demonstrated immediate effects from kinetic changes to more symmetrical 

stance times during the gait cycle and improved energy consumption in individuals with limb loss 

[91].  Real time visual feedback has been compared to raw video, mirror retraining and 

computerized real-time visual feedback however, instrumented treadmills were used with no 

longitudinal follow-up.  Many studies in this arena were on healthy individuals and not a 

symptomatic population, whereas our study examined a limb loss population that is truly 

demonstrating a gait deviation. 
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Rehabilitation training for individuals with limb loss typically involves gait retraining with 

verbal and tactile cues from a PT [92].   This may also include modes of learning, such as 

observation and demonstration as well as repeated practice or positive imagery.  Typically, 

clinicians in outpatient clinics are limited to the use of a mirror or video for visual feedback, which  

have limitations in that only a limited portion of gait  can  be assessed for error and corrected by 

the patient [8, 21, 22, 73, 93-97]. For more continuous or timed feedback, a treadmill must be used 

however, this is not representative of a natural surface for training.  

Real time feedback visual regarding peak vertical ground force and stance phase symmetry 

has yielded improvements in gait symmetry in the limb loss population. However, as shown in 

Figures 4, this was on an instrumented treadmill with a screen, and additional work has been scarce 

[31].   

 

 

Figure 4  Cleveland Clinic Foundation (CCF) Treadmill Set-Up for Real-Time Gait Analysis and Visual 

FeedbackPhoto Dingwell et al, 1996 

 

Improved function after shorter durations of RTVF training, such as two to six weeks, for 

the Patellofemoral Joint Pain Syndrome (PFJPS) patient population has also been previously 
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reported [29, 30].  All of these findings support the theory of an external focus of attention leading 

to greater internalization of motor learning [74-78, 98]. Symmetry has been an issue in gait for 

those with limb loss and as analysis has evolved from only qualitative to quantitative 

measurements of temporal, kinetic and kinematic and combinations of all, the most prominent 

asymmetries have been previously determined as shortened stance times and decreased ground 

reaction forces [33]. The feedback variables of choice considered for this project follow this prior 

evidence. 

1.4.3 Feedback and Motor Learning During Gait Training 

A primary criticism of recent studies is the lack of understanding as to what may allow a 

greater internalization of the retrained gait and a resultant “naturalized” pattern [24, 84, 99].  This 

study builds on the evidence found prior, by removing the feedback in a fade-out pattern to 

improve internalization [30], as well as implantation of a systematic training protocol and an 

external focus of attention (the effects of movement seen on the feedback display). These have 

both been demonstrated as training strategies to improve motor learning, however, have not been 

widely used in the limb loss population for gait retraining.  If patients are relearning how to move, 

they are recovering previously learned strategies or possibly acquiring new compensatory 

movements [100].  Deliberate practice is advised to be combined with additional technological 

innovations [79].  However, in the field of prosthetics, both in rehabilitation and research, it 

appears the focus may be on advancing prosthetic technology, not on the training strategies  [79]. 

With the previous evidence of improved function with decreased frequency and duration 

of training, and greater internalization of motor learning, these studies demonstrated that the 

external focus of attention has positive effects.  They also found that it can increase retention of 



17 

up to three months post RTVF treadmill training when a systematic training protocol is used with 

the feedback and with a fade-out feedback approach to decrease dependency [29, 30] [74-78, 98] 

[30]. It has been demonstrated in the literature that providing continuous real time feedback leads 

to a decrease in actual learning and retention of motor skills.  In these prior works, this decrease 

occurs secondary to the learner becoming dependent upon that feedback.  It becomes a substitute 

for his or her own innate error-detection and error-correction capabilities [87].  Therefore, in this 

study the faded feedback approach as demonstrated by Noerhen et al in the PFJPS population [29] 

was implemented to avoid this dependence. 

These approaches implementing real time feedback have both been demonstrated as 

training strategies to improve motor learning.   However, they have not been widely used for those 

with limb loss for gait retraining  [79].    At the time of a 2012 review, no published guidelines 

existed for a consistent paradigm of care for those with lower limb loss, including how to use their 

prostheses [79].  In another systematic review of exercise programs for patients with lower limb 

loss, there was a trend towards increased improvement of resisted exercises and walking, however, 

augmented therapy and feedback was not emphasized [101].  Rehabilitation studies for those with 

limb loss have focused on individual tasks, or strength and flexibility.  In addition, few have 

utilized learning theories, particularly focus of attention, but rather practice, strength and 

conditioning, and specific tasks [28, 68, 92].  If more variable practice is performed versus training 

focused on individual skills, like donning or doffing the prosthesis, learners will become more 

adaptable, and their ability to recognize patterns and make corrections will increase.  However, no 

published research at the time has assessed the feasibility and efficacy of applying variable versus 

constant practice in individuals with lower limb loss [79].  Clinicians could use various types of 

surfaces during gait training to create a more variable practice structure and that is a potential 
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direction, if feasible, this intervention could proceed [79].  Physical Therapists commonly use 

physical guidance in application of rehabilitation during gait training, which may be appropriate 

in patients with limb loss for safety considerations initially, however this could hinder retention of 

locomotor skills by creating dependence [79].  More importantly, no studies have been performed 

to truly assess how feedback should be gradually reduced, or in what fashion, in this population 

[79].   

As stated earlier, an important criterion for motor learning and physical rehabilitation is 

the transfer of motor skills to contexts beyond those originally practiced [102].  It was noted that 

for continuous activities such as walking, variable practice has greater effects on internalization of 

motor learning [79].  Given the research that demonstrates that those with lower limb loss have 

difficulty adapting to uneven terrain, it seems reasonable to suggest that applying these theories of 

variable practice, would be quite appropriate [78].  In addition, mobilizing the training may allow 

for further progression to gait training involving varying speeds and terrain and will encourage the 

learner to compare and contrast the methods and strategies used at each session [103].   

When considering motor learning, focus of attention has become an important aspect to 

training.  The advantage of focusing on the outcome of one’s movements (external focus) is that 

the performer’s attention is shifted away from his or her own movements and toward the effects 

of those movements.   The “constrained hypothesis theory” states that the focus of movement on 

one’s own extremities promotes a more conscious type of control that constrains the motor system 

and decreases or disrupts utilization of unconscious or automatic processes. An external focus 

directs the attention of the learner on the effects of their movements (different walking strategies 

changing the colors in their display vs. focusing on their own extremity alignments) and reduces 

their attentional demands [74-78].   
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1.5 Conclusion 

With the introduction of wireless abilities to provide sensing feedback from the prosthesis, 

rehabilitation research using RTVF could be projected into a multitude of exciting avenues.  Ease 

of use and restoration of ambulation significantly predicted continued use of the prostheses in past 

studies and therefore implies the importance of the knowledge of gait retraining.  [104]. Thus, we 

hypothesized that providing practice of adapting a participant’s gait in response to visual cues, 

outside of controlled settings, would improve walking, particularly symmetry and endurance.  

Previous methods of providing the external visual cue have been mirrors, projection onto a screen, 

while on a treadmill or in a lab setting.  Our system, we hypothesized, may demonstrate feasibility, 

and efficacy in providing these cues in a more realistic manner and independent of the 

environment.  In preparation for future larger trials, our aim was to preliminarily test the efficacy 

of delivering real time visual feedback for feasibility and calculating potential sample sizes.  
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2.0 Development of Real Time Mobile Visual Feedback (RTMVF) System 

2.1 Introduction 

The primary goals of the initial prototype RTMVF V0 were to design a system that 

provided a patient visual feedback cues that were derived from an integrated load cell within the 

limb.  The integrated load cell had available wireless, or very low profile and modest wired 

capabilities.  The overall goal was to design a system based on the iPecs Sensor (College Park 

Industries, Fraser, MI) to provide real time feedback based on the kinetic data the sensor could 

provide.  Discussions were conducted with the engineering team of the iPecs and many 

modifications were considered to obtain the high-quality data from the sensor.  The purpose of the 

development included how to efficiently apply custom algorithms to the data, in real time, without 

creating excessive overhead in terms of computing burden and delaying the system.  Figure 5 

delineates the decisions that were conducted in the development process.  The first step in the 

process was to have our first participant to train with and without verbal cues and gait corrections.  
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Figure 5  Initial Conceptual Framework Challenges and Connectivity 

 

The goal was to then analyze the data compared to the cues and to determine what variables 

could not only be derived, but also be used as visual feedback.  Real time feedback should not be 

overly complicated, nor should it demand upon the physiology to adjust too many training 

parameters at once.  The initial idea was to compare what variables changed significantly when 

the clinician noted “good” on the video of the gait trials and to find ranges in corroborating kinetic 

data from the sensor that could be used as a feedback variable.  If the range was determined to 

signify too low of an amount (for example Fz/axial force), too high (overcompensation) or the 

ideal range this would inform the decision to trigger the visual feedback cue.    The color would 

then be chosen to signify a meaningful cue to the patient.  For instance, if a variable related to 

loading the limb was too low, the color would be red, ideal would be green, and initially it was 

decided yellow would be a warning of overcompensation.   There were issues that occurred with 
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this ambitious development, as the sensor did not have a time stamp and it was very difficult to 

synchronize the participant’s steps with a graph of the vertical ground reaction force (Fz).   

Initially, to determine the timing and accuracy of the color changes on the glasses display 

(based on step detection and the %stance calculated from that step) and wireless connectivity 

potential, the iPecs sensor was connected via Universal Serial Bus (USB) cable to the ultra-mobile 

portal computer (UMPC) where the real time calculation for gait events was performed.  The Vuzix 

Smart Glasses (M100, Vuzix, West Henrietta, NY) were connected via Wi-Fi and screen sharing 

was implemented to determine if the glasses would change color appropriately with the change in 

%stance and to quantify delay (Figure 6).  The connectivity of the Wi-Fi was inconsistent and the 

was a delay (greater than 800milliseconds) from the timing of the calculation shown on the screen, 

to the time the color was changed on the glasses and this was deemed too long (greater than 1 

step).  However, it has been reported that motor learning can be improved when knowledge of 

results (KR) is provided with a slight delay following the completion of the movement.  It is stated 

that this allows the learner sufficient time to first evaluate his or her own movement strategy before 

then producing their own error estimates [79].  Therefore, some delay was not altogether harmful 

to the potential efficacy per these reports.   

This prototype did allow us to see that we could provide rudimentary communication to 

the glasses from changes in loading the prosthesis integrated system.  Furthermore, it was 

demonstrated successfully that changes in colors in the glasses could occur secondary to 

corroborating steps detected by Fz and calculations of %stance  This was completed using a JAVA 

application with a C++ pipeline from the sensor to the JAVA program that communicated changes 

in colors in the glasses based on the single threshold algorithm using a 10N singular lower 

threshold crossing.  The 10N threshold was based by previous work using the iPecs Sensor where 
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heel strike during stepping was found reliable at a lower threshold of 7N [36].  Give the exploratory 

nature of the initial prototype the lower threshold was raised to ensure the prosthesis was being 

loaded during a heel loading event.   It was deemed early on by the PI that the color change was 

easily seen, not distracting, and the screen of the glasses did not obscure the patient’s vision and 

potentially obscure foot placement obscure foot placement [105].   

In the next iteration of testing, the step detection algorithm was tested for reliability and 

accuracy by testing on a prosthesis modified to be worn on the bent knee of several able-bodied 

testers.   

 

  
Figure 6  Prototype V0 of Initial Feedback Loop  This initial prototype used screen sharing between the 

UMPC and the glasses. Real time feedback was relayed from the iPecs sensor after transformation by our 

custom algorithm into percent stance warnings.  The PI was in parallel bars for safety only, secondary to 

kneeling on the pseudo-prosthesis, whereas the goal end-users were fully immersed in prosthesis. 

Integrated iPecs 
Sensor Fiedler et 
al 2014 
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2.2 Development of V1 Prototype 

2.2.1 Data Flow, Hardware Design, and Connectivity 

There were many design considerations that were considered towards the development of 

a prototype that could move beyond screen sharing given the limitations of Wi-Fi use (Figure 7).  

In addition, the algorithm appeared to have a delay greater than 800ms and need additional 

criterion to improve accuracy of detection of gait events. Therefore, progression was made to 

Prototype V1.  Both prototypes receive data from the iPecs sensor, however given the testing 

outlined in subsection 2.1, using Wi-Fi was not a tenable solution given the need for a self-

contained system that could be truly mobile.  BT would provide this.  In addition, screen sharing 

was going to create too long of a delay (greater than 800ms) and the %stance calculations using 

the single lower threshold was not depicting acceptable color ranges.   
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Figure 7  Design Concept Diagram of Proposed V1 Prototype. 

 

An integrated sensor may allow more expansive gait analysis than qualitative or mobile 

phone based programs, or basic software options available currently in the clinic and creating a 

system where the feedback is provided on smart glasses, may provide even more individualized 

training than relying on data that is collected externally and post hoc from accelerometers, or 

pressure sensitive mats.  The iPecs  consists of a lightweight, small (4.57cm H × 7.1cm W × 8.1cm 

D) [36],  six degrees of freedom (three forces and three moments) force transducer designed to fit 

easily into a lower limb prosthesis.    The first step was to determine connectivity options based 

on the design criteria: 

• Hardware connectivity must not be restrictive or cumbersome to users.  

• Connectivity between sensor and the smart glasses (M100, Vuzix)must allow for real time 

speed 
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• Application of calibration matrix without extra debugging hardware needed to be included. 

• User software must facilitate adequate computing speed, as well as modifiability and 

accessibility for the clinician to adjust parameters for feedback to user and data collection.  

• Variables should be detectable by sensor and meaningful for the patient 

• Data processing and feedback generation must, when calculating the variable and feedback 

signal, not create too much of a delay (e.g., waiting until next heel strike is confirmed) 

• Have an ideal range from which intuitive feedback that is simple given smart glasses 

design, can be provided to the user. 

Figures 8 illustrates the decision-making process to meet the above criteria. 

 

 

Figure 8  Development of custom software and connectivityFz (axial force), RTC (iPecs manufacturer). 
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To achieve that goal, a connection system had to be devised to most quickly assemble a 

prototype yet remain as unobtrusive as possible in connectivity between the sensor, data processor, 

and the visual display.  The traditional use of the system uses a Data Collection Module (DCM) 

amplifier that is connected to a computer, and the software from the iPecs software  graphs of the 

six signals.  The six signals include the three degrees of freedom and therefore three torques (about 

the medial, lateral, axial planes) and three Forces (x, y, and z planes).    

The device is semi-permanently installed as part of the load-bearing structure of the limb 

prosthesis connecting to the rest of the device using standard adapters (Figure 9). 

 

 

Figure 9  PI Turning on the Sensor for Testing after Prosthetist Installation. 

 

The orientation of the axes for the sensor are vertically pointing  axis (Z+ upward and 

parallel to the pylon), anterior and posterior pointing Y-axis (Fy+ forward and perpendicular to 

the pylon) and a X-axis that is Fx+  to the right and Fx- to the left perpendicular to the pylon 
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(Figure 10).  Moments are produced and calculated using Right Hand Rule.  For example, a 

positive Mx+ was considered as counterclockwise as viewed from the left (during toe push off) an 

Mx- is produced by heel loading.  A My+ is counterclockwise when viewed from the front (Knee 

abduction if right leg as above) and Mz+ was considered counterclockwise from above.  Data 

collected by the sensor originates from a coordinate system located at the center of the sensor and 

therefore the system rotates and translates with movement of the prosthesis [36].  

 

 

Figure 10  Coordinate System of the iPecs 

 

Data can be streamed to the PC, but only processed post-hoc.  Therefore, the protocols for 

accessing the live data from the sensor itself had to be procured and a program to retrieve these, 

process them, and determine a variable to provide feedback upon, had to be designed.  The design 

goal was met by creating a neoprene slim fitting pouch that contained the UMPC and fit snugly at 

Fz+ 

Proximal Mz+ counterclockwise when 

viewed from above 

Fx+ (Lateral Right) 
Fx- (Lateral 

Left) 

Fz- Distal 

Anterior (Fy+)  
My- at toe off Mx+ counterclockwise toe off 

My+ during entire time foot planted 

Posterior (Fy-)  
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the low back.  A single, lightweight USB cord extended from the sensor to the UPMC.Connectivity 

between the different components is via a USB cable between the load cell and the ultramobile 

PC, and via BT to the smart glasses. In this configuration, the lightweight computer is being carried 

in a pouch on a waist belt by the user (Figure 11).  

 

 
Figure 11  Application of Dell Ultrabook in Neoprene Waist Pouch 

2.2.2 Feedback Design and Display V1 

Initially the Google Glass (Explorer Model, 2015) was proposed, and initial concepts 

included screen sharing the graphs from iPecs Lab software, however it was found that Google 

Hangout no longer existed for screen sharing, and the glasses design in itself was prohibitive of 

allowing forced visual information.  Initial findings were that no screen sharing applications were 

available. In addition, since the google glass  design was not that of a virtual reality view but rather 

in essence a peripheral screen, it did not seem feasible to provide what had been demonstrated in 

previous literature as a more immersive experience, with large screens.   
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Initial research of smart glasses alternatives and choices to be used was based on the 

following criteria: 

• Battery Life 

• Wireless connectivity preferably BT 

• Not dependent on external device/controller such as a phone 

• Android Application Programing Interface (API) level to allow for ease in development of 

image user would see 

• Ability to change display placement over (right or left eye) 

• Lack of reflection – Usability in bright environments  

• Unobstructed view of foot placement (some glasses had inferior placement of screen) 

• Promising future of progression  

The final choice of Vuzix M100(Vuzix, West Henrietta, NY) was made because the model 

fit the above criteria, were award winning and a more advanced powerful design was going to be 

released within a reasonable timeframe with significant functionality and user upgrades 

These smart glasses contain, positioned at the fringe of the user’s normal field of view, a 

small-sized display, the contents of which are signaled to change via BT based on the step data 

calculations regarding the primary variable of interest (in this case percent stance). The display 

has a resolution that is comparable with small computer screens, yet its position and intended 

purpose in our context advises against the conveyance of very complex visual information.  

Therefore, the simple color warnings were used.   

A “warning” approach was determined to be the ideal method of feedback delivery in that 

it was simple, intuitive (red, yellow, green) so as to cue the participant if they were starting to 

ambulate in a manner that was not loading involved limb correctly.  Given concerns related to 
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providing real time visual feedback that did not create cognitive overload, and that it was a 

peripheral placement, the idea of a simple color-coded signal of harmful gait was undertaken.  

Other ideas included hardwiring the glasses to the UMPC as a second screen, but this was found 

to be too risky for the hardware integrity.   

2.2.3 Algorithm Development 

The algorithms for step detection and assessment were initially hardcoding of peaks and 

lower threshold crossings in Fz using the programming language C++.  However, due to error and 

difficulty with visualization, which limited the immediate ability to determine the generation of 

the gait curve and its accuracy, and given this would require extensive initial programming in the 

C++ language, a post processing analysis was performed to determine which algorithms would 

provide the least error.  Given this kinetic data and force and moment curves, MATLAB 

(MathWorks 2015b), was chosen to first develop the algorithms as large amounts of data can be 

easily visualized and complicated calculations can be performed quite quickly.  Initial algorithms 

were based on axial Fz (in the time domain ) as this variable has been validated against force plate  

data  [36]. 

Data from a previous study [36] was analyzed post-hoc for patterns to determine the best 

method to create a step detection algorithm.  Approximately 10 steps of Fz raw data from an 

unknown subject was analyzed with MATLAB for mean Fz over the duration of walking.  Then 

the mean value was designated as threshold and subtracted from the peak values to create a zero 

axis.  The program was written to find where Fz crosses this threshold and then find the slopes 

(derivative of Fz) at those points.  Steps were detected based on the rising slope and falling slopes 

of Fz data points about these zero crossings.  Peaks were identified as the local maxima located 



32 

above the zero crossing behind the mid-point and in front of the midpoint.  The slopes at this mean 

point (zero crossing) were then used to find the lower threshold crossings (initially set at 7n based 

on previous work by Fiedler et al. [36]  This threshold was refined and increased to 15n.  

Interpolated values of 15N could be found and this time would be the heel strike.  Toe off was 

found in the same way by finding the location of the first falling slope and interpolated to 15N and 

the time of that final fall was deemed Toe off.   

Initial calculations done without interpolation of exact 15N crossing over estimated percent 

stance phase by 1.5-2.46% overall.  Oscillations in the force signal during swing phase would be 

classified as threshold crossings and this was not valid.  Interpolation to exact 15N and 

implementing a second higher threshold improved specificity of step detection. If a sliding average 

was used over the whole Fz signal, the % stance variable would increase in variability by 2-3%.  

Therefore, interpolation was implemented over initial smoothing of the raw data.  The onboard 

sensor software was performing averaging of readings before each data packet was sent from the 

sensor at the selected sampling rate, and the data was filtered enough that with interpolation our 

step detection events were able to be identified.  The noise peak to peak amplitude was quantified 

at approximately ± 3N.  Therefore, the lower threshold when raised for initial algorithm testing to 

15N, ensured gait events at the lower thresholds were more reliably detected given the initial 

exploratory phase of algorithm testing.  Established methods were implemented to validate the 

detection of steps by the real time program however, the low pass filter that exists on the iPecs is 

akin to force plate filtering. It was decided that with the hardware and software filters that were in 

place, no additional filtering was used in the real time program. 

After Institutional Review Board (IRB)approval (# PRO15120426), an initial participant 

was asked to walk under several conditions with and without guided feedback, with the iPecs 
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sensor installed. The iPecs sensor was calibrated.  Data received from sensor over iPecs data 

transmission protocols was stored in Comma Separated Variable (CSV) format. Initial analysis 

was done on raw data using MATLAB to determine heel strike, loading, and toe off from the iPecs 

Fz Channel.   The second iteration of algorithms tried to be predictive in when steps would occur, 

(for example trying to assume every 0.5 second a heel strike would be found), and we would 

display a certain number of seconds of data at a time on the screen graphically.  We started with 

five seconds of data was displayed at a time to allow steps to be correlated with video (Figure 10).  

However, this did not work as the sensor was operating over radio frequency, which could cause 

some drift, and drop out (which later was rectified in further development described below) and 

there was no initial time stamp on the sensor where we could identify as specifically with a video 

time stamp.  In addition, the video frame rate was 30 frames per second and the sensor was 

sampling at 100Hz and the steps were difficult to correlate.  In addition, this logic would cause 

some large steps to be erroneously detected as more than 1 step and when multiple peaks would 

be found this would also create this erroneous detection.  Therefore, the algorithm for step 

detection was then re-evaluated and rewritten based on new data (Figure 12).    
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Figure 12  Second Iteration of Gait Event Detection SystemCorroborating Steps as Measured by Fz Data to 

Video 

 

The algorithm was changed to ignore steps if no area under the curve was calculated, or if 

any of the step detection times were equal, the step be ignored.  This eliminated 11 artifacts that 

were single peaks, and the error rate improved from >10% to 3% (Figure 13).  Video and written 

documentation of “good” steps was used to validate step detection.    
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Figure 13  Sample of gait training trial 3 with MATLAB Fz graph output The heel strikes (red) and  toe off 

(green) and peaks (black) are demarcated as determined by algorithm 1.  Red arrows indicate Fz artifacts 

removed from algorithm calculation and detection. 

 

The architectural framework of the final system that was RTMVF is depicted in Figure 14.  

The work on the development was published for the International Society for Prosthetics and 

Orthotics World Congress [106].   
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Figure 14  Architectural Framework of V1 Prototype RTMVF System   The colors above correspond to < 

58% overall decreased stance on the limb - Red (Percent Stance Phase calculation), between 58% and 63% - 

Green “ideal”, >63% - Orange “excessive double limb stance”.  These colors correspond to percent Stance 

Phase calculations. Development Prototype V2 (Android Wireless prototype) 

2.3.1 Introduction 

The primary function of the RTMVF prototype was to enable unencumbered gait training 

in a self-contained system that could be used by the individual over realistic terrain.  To fill the 
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gap in the current research and training paradigms, the purpose of this development was to progress 

the system to one that can become truly mobile and apply the methods of motor learning “in the 

wild”.   The purpose then of this development was to fully realize the potential of wireless gait 

training. Therefore, a similar integrated load cell (sensor) that was also installed within the 

prosthesis, however, was wireless and provided data streaming over BT versus USB was procured.   

We replaced the iPecs with the Europa+ (Orthocare Innovations, Seattle, WA) a wireless integrated 

load cell. The Europa, is a lighter, and smaller integrated force and moment sensor measuring 

37.5mm x 64mm x 79mm (1.48”x 2.52”x 3.11”) and weighing 275g (9.68 oz) (figure 15).  

In conjunction with the migration to a wireless integrated force sensor, a mobile application 

(app) was developed that could downsize the data processing and implement clinician and user 

preferences.  This also included the possibility of remote accessibility and training.  

 
Figure 15  Installation of Europa+ Sensor into Pylon by Prosthetist (Co-I) 



38 

2.3.2 Design Criteria 

Listed below are the design and development goals of the V2 (Version 2) wireless 

prototype.   

Usability and Patient and Clinician Preferences 

• Refinement of system in response to initial feedback from outpatient Physical Therapists 

(PT)s, and Beta subject testers 

• User-friendly functionality implemented in mobile app for patient. 

• Usability testing and iterative design refinement with eight new subjects to achieve 

usability of at least 68% on a System Usability Scale (SUS). 

 

 

 

Mobile App Functions  

• Transfer code to mobile application as interface to remove middle processing component 

on patient. 

• Bluetooth (BT) communication  

• Mobile ability to start/stop program, store step/raw data at the end of training session or 

evaluation session. 

• Physical Therapist (PT) evaluation tool for initial option to set individual “good” steps for 

each patient to be their own gold standard  

• User-friendly mobile interface with options to adjust the program, algorithms, thresholds, 

and  patient specific anthropometric data for accuracy of feedback. 
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• Confirmation Tool of feedback color participant is viewing simultaneously for 

PT/Clinician during training to ensure PT guidance is correlated to desired visual feedback. 

2.3.3 Methods 

To assess step detection, percent stance, stance time and step time, the MOVIUFIT 

prototypes V1 and V2 migrated to a wireless integrated sensor (Europa, Orthocare Innovations, 

Seattle WA) for the axial force component needed in the algorithm.   Collecting and processing 

the data was performed by our custom-made application (MOVISUFIT) designed for a mobile 

android phone.  This algorithm and data processing were migrated from the previously validated 

and reliability tested C code into a Java program to run on a phone. The raw axial force data and 

the subsequent calculations were stored locally on the device via Bluetooth and remotely on a 

server through WIFI communication.  The MOVISUFIT app performs analysis in real time and 

stores the data once “stop” is initiated on the phone.   

2.3.4 V3 (Version 3) Algorithm Refinement 

The initial migration from C++ to Java caused some errors in the assignment of the states 

defined in our algorithm.  There were two issues – regarding the lower threshold and the most 

accurate detection of the gait events captured with initial contact or final loss of contact from the 

floor.  Initially, immediately following the migration to Java, if during the time phase between toe 

off, and heel strike, if the force travelled above the lower threshold and then back down again, (as 

could happen secondary to the weight of the prosthetic through the swing phase of gait creating 

false rises above the lower threshold) this was being assigned as either to a zero, or back to the 
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initial state of the state machine of the algorithm.  Therefore, to create the algorithm to be robust 

to this noise at low signal levels, the state machine was altered to simply reset to the previous state 

it was in, rather than assuming a “zero” state.  This is essentially telling the algorithm to wait and 

stay in the state for which the criteria have been met, and once all the events occur, then further 

criterion was in place to accept or toss the resultant step.   This allowed the algorithm to be able to 

handle the transitions from loading to unloading.  Figure 14, portrays visually the required 

corrections and the resultant smoother system of states.  It was corrected to be able to detect that 

if the lower threshold was crossed upward then downward, both in transition from states 3 to 4 and 

4 to 5 (Figures 16-17) the algorithm would reset to the previous state and wait for the rules of the 

next state versus assigning the gait events to 0 which was occurring.   

 

Heel Strike Toe Off Heel Strike

Initial State 0, data 
begins streaming

Cross Lower 
Threshold up

Cross Upper 
threshold

Peaks of Fz full 
loading of limb

Cross Upper 
threshold down

Cross lower 
threshold down

Cross lower 
threshold up

Cross Upper 
Threshold Up

1

2

3

4

5

6

 

Figure 16  Step Transition diagramDefinition of States as Fz Travels Through Gait Cycle. 
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The solution was also to create an initial state and define that as the beginning of the gait 

detection cycle.  By including this state, the algorithm predicted a spike in the signal that occurred 

very early in the data streaming from the Europa sensor.  To not have this erroneously counted as 

the initiation of step, this new “initial state” definition assisted with filtering out erroneous steps.  

As seen in the diagram below more specifically, it was necessary to differentiate between state 0 

and 4.  Also, state 4 could be assigned as an initial state, as it is down near the lower threshold.  

However, this will not work because if you are in the stepping sequence where in the loop you 

have arrived at state 6, and we define our initial  state as state 4, then the load has crossed the 

double thresholds, and the algorithm would incorrectly conclude that a step has occurred.   

 

 

Figure 17  State transition DiagramDiagram Depicts the Improvements in Detection of Steps from the Fz or 

Axial Loading Force 

 

Another example is if the system is in section 6 of a step loading cycle, and you do not 

have any initial state defined, then the algorithm may consider the interval between 1 – 4 as a 
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candidate step.  This was solved by this definition of the initial state as well and another check was 

put in place during state 4 of the gait cycle detected by Fz.   The algorithm is continuously needing 

to check the candidate step against the criterion that we have designed, to ignore steps that are not 

walking or should not get feedback.  

2.4 Results 

2.4.1 Visual Feedback 

The smart glass model was updated to the Vuzix 400, (Vuzix, West Henrietta, NY) which 

provided more adjustability and battery life (Figure 18). In addition, the feedback color for the 

increased stance phase (too long) was adjusted from yellow to orange secondary to reports it 

looked lime green and orange was preferable.  Also, when participants were producing steps that 

were not actual steps or did not meet our criterion, grey was provided as feedback instead of the 

visual feedback remaining the same color as the previous step unless triggered to a different color.  

This correction made the feedback more accurate and less confusing.   
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Figure 18  Participants Testing Updated Vuzix Smart GlassesPI adjusting glasses and starting custom app on 

the glasses.  B-C) participants adjusting and starting their glasses for gait training, D) Co-I as he is adjusting 

the sensor in prosthesis.  This diagram illustrates the participants wearing and adjusting the latest version of 

Vuzix smart glasses which improved portability comfort and usability.  The new M400 model glasses by 

Vuzix could be used on either side right or left, were more balanced in weight, and more easily adjustable. 

2.4.2 Algorithm Adjustment  

Figures 19 and 20 portray the new Fz or axial force curve, and step detection with the 

wireless sensor.  The heel strike and toe off interpolated times are delineated in orange and grey – 

orange is heel strike.  This sensor measured in KgF (Kilogram force) units versus N (Newtons) 

and even though it appears the detection of events is satisfactory, here the sensor was not tared 

correctly.  A development priority was to ensure the step detection and determine the appropriate 

signaling required to calibrate the sensor as a zero baseline would provide more accurate time of 

lower threshold gait events.    This could have affected the calculations of some of the stance 

A B 

C 
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duration times, creating increased variability.  The improvement in the tare function lowered the 

thresholds (Figures 19 to 20) so gait event detection became more accurate. 

 

 
Figure 19  Axial force vs. Time Graphical Display Reliability and Validity Data Axial Force vs. Time Gait 

Testing Data from a Participant During Reliability and Validity Testing with Heel Strike and Toe Off Times 

Being Validated Graphically.  The Heel Strike and Toe Off Interpolated Times are delineated in Orange and 

Gray – Orange is Heel Strike. 

Axial 
  

Time (seconds) 
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Figure 20  Interpolated times to 5 KgF with the zero baselineCorrect Zero Baseline Function Working in 

Software, the Detection Events are Improved in Accuracy as Seen by the Orange Heel Strikes and Grey Toe 

Off Time Much Closer to the Lowest Point of Actual Increase in Loading on the Sensor Increasing the Curve. 

2.4.3 Evaluation Methods 

The wireless system was extensively tested by the PI and team members using a pseudo-

prothesis as seen with the development of the V0 prototype.  This was used to first establish the 

transmission of the  data wirelessly in the new programming language (JAVA) and then applying 

the appropriate hex code provided by the Orthocare Innovations company to communicate with 

the sensor and calibrate.  We built the app from there using the pseudo prosthesis to establish step 

detection and communication from the phone to the smart  glasses using the same BT 

communication as previously established.  The new algorithm was tested in this way with team 

members extensively and absence of delay after heel strike for triggering the color in the glasses 

to change was ensured prior to participant testing.   

Once this was established two individuals, both with transfemoral limb loss, assisted with 

the development of the connectivity and algorithm testing in the V2 wireless prototype.  In 

Time (seconds) 

Axial 
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addition, through the training process, the output (step data) from the algorithm was repeatedly 

assessed to ensure accurate step detection and calculations of %stance.  Patient preferences 

towards user interface on the android screen were accounted for and implemented.  Participants 

underwent the initial baseline assessment as described in chapter 3 which included walking at a 

self-selected speed for short 30m distances in a level hallway. The addition of the screen for the 

clinician allowed confirmation of each step detected and the color provided, and the DPT was able 

to ensure that the step counter matched the steps taken.  Once it was determined that the algorithm 

was detecting steps accurately and connectivity was able to be maintained, the participant returned 

for their training which is outlined in chapter 4.   

The Europa+ sensor was installed in the prosthesis and the android phone was connected 

over BT to initiate data streaming.  The participant was instructed on how to use the glasses, and 

the colors they would see.  A DPT walked with the patient first, through level hallways only, to 

determine that the system was detecting steps by observing the rate of detection on the android 

phone app screen (custom MOVISUFIT app).  This was to ensure that the color change was not 

delayed from the second heel strike of the involved leg (with the integrated sensor) and that the 

colors appeared correct given the expertise of the DPT in gait analysis.   

Initially, this first session of training with the new prototype was accomplished with a 

standardized set of instructions explaining to the participant what the red, green, and orange 

signified when displayed in their smart glasses.  This was associated with apparent gait deviations 

depicted initially.  In this first session, the DPT employed verbal cues, demonstration, and clinician 

guided tactile cues.  The end of the first session (15 minutes) was concluded with practice trials by 

the participant to ensure safety and continuity of the feedback system.   
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Post-hoc analysis of the data processed by the app which included custom “step data”, was 

performed to ensure the calculations were accurate and corroborated with the raw data from the 

sensor’s Fz output which was used for step detection.  Time stamps of the gait detection events 

output by the android app were corroborated with the raw data. 

2.4.4 Development of Mobile Android Application 

The improvements to the mobile phone app touch screen user interface significantly 

improved ease of use, and notably, patient enthusiasm.  A function was added to the interface, as 

initially there was no method for participants to see if they had made progress that day.  Therefore, 

a new application was made computing averages of “reds” “greens” and “yellows” for the 

participants to immediately see their progress from the previous session (Figure 21).   

 

 

Figure 21  Improved User Interface of Android AppImproved user interface of Android app in response to 

participant feedback.  The number of reds, greens, and oranges can be seen by the participant, or clinician 

which was reported as “motivating”.  In addition, below are %’s of each color and were totaled once each 

session was completed so participant could receive feedback regarding their performance. 
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No longer having to carry a computer at the low back was much easier and felt more natural 

for the participants (Figure 22). 

 

 

Figure 22  Participant Training with Wireless Capacity. 

 

The ability to change thresholds and parameters in midst of training was extremely helpful 

toa clinician  to ensure that the participant is receiving appropriate feedback.  The participants have 

different prostheses and they had different gait deviations.  Therefore, it was required to be able to 

adjust their step detection thresholds during training (Figure 23). 

 



49 

 

Figure 23  PI adjusting thresholds 

2.4.5 Limitations 

Bluetooth connectivity was a key issue and noted complaint in the usability surveys.  The 

sensor software was initially advertised as open source to be able to stream and process the data 

live.  However, the libraries were not provided for true wireless connectivity without a dongle.  A 

basic BT connection was established connectivity was still not as consistent as desired and is a 

focus for future development. 

2.5 Cloud and Web Portal Development V2 

The goal of further developing the system was to achieve the ability to receive and modify 

that participant data and feedback remotely, and not rely on the phone memory and lay the 
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groundwork for potential future studies that would allow the participant to try the system at home.     

In addition, through customer discovery related to commercialization efforts it had been 

discovered that clinicians desired a way to remotely monitor and check in on how their patients 

are doing with office visits frequently having to be spread over time (Figure 24). 

 

 

Figure 24  Design for cloud abilities and remote training. 

 

Cloud storage was added to the Mobile Visual Feedback In real Time (MOVISUFIT) 

system as a solution to storage limitations, automaticity of data visualization and feedback 

effectiveness monitoring, but also with the goal in mind that a website could be created in the 

future that ran calculations the patient desired to see about their progress.  The cloud database 

enabled the MOVISUFIT system to be adjustable remotely by clinicians, and in the future, there 

will be the possibility for patients to log in and have access to graphs and visualization of their 

progress.  The cloud database was designed and built to visualize the data and patient performance 

quickly and easily.   The advantages of using a cloud database are that it 1) allows the system to 

expand storage easily and perform backup and 2) facilitates a web application that is accessed by 
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participants and researchers to perform data analyses and visualization from remote locations.  

Potential limitations with this method, however, are ensuring security is strict enough that HIPAA 

violations would not occur, and therefore only research team members had access to the data, and 

it was identified by subject ID only.  To also thwart this issue, no personal information was stored, 

only kinetic or kinematic data. 

In previous prototypes, the researchers needed to extract the files from the computer as csv 

files and convert them to excel files to perform analyses. In the V2 prototype the data was all stored 

on the Samsung phone device and needed to be extracted in the same manner. A disadvantage to 

the earlier versions is the demand to have the user and the clinician physically in the same location 

post training, to access the data within the computer (V0) or smartphone (V2).  Also, once the 

dataset becomes large, offline analysis requires extensive time to compile and perform 

calculations.  However, in the V3 prototype with the cloud data base added to the software, settings 

were developed to better enable clinicians to perform subjective gait analysis, to identify potential 

feedback variables, and retain patient-specific parameters for the gait feedback variable and 

adjustable threshold settings, for example, facilitate this functionality.  The MOVISUFIT app can 

upload the gait training and feedback data into a server for data storage and backup. The web 

service can be used to extract the data from the server and perform the data visualization on a 

webpage for clinicians. This web service would enable the clinicians to adjust the feedback 

parameters in the MOVISUFIT app remotely. 

2.5.1 Methods Cloud Database Development 

Google Firebase is the web service where the prototype website was constructed for 

the MOVISUFIT portal, which runs on google cloud platform behind the scenes therefore, we used 
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the operating system provided by that system.    The data transmission method between the google 

cloud firebase and the MOVISUFIT app was a web protocol with reasonable restrictions for initial 

development.   Google provides a high level of operational abilities therefore it was a simpler level 

to initiate this type of database storage and remote abilities for this prototype.  The Android app 

stores different variables into different tables in the database system, which was created in order 

to allow the team to customize coaching parameters remotely.  The MOVISUFIT app creates the 

original coaching parameters and this file is uploaded to the server when the app first executes. On 

the server side, the clinicians may adjust the feedback parameter and step detection threshold 

information as well as adjust the thresholds that determined the color and quality feedback seen 

by the patient.  We saved the feedback parameters and other clinician settings on the database as 

well as the app.  

The app checks the file on the server each day, and the feedback and step detection 

thresholds and parameter will refresh if the file on the server is different than the file in the 

MOVISUFIT app.  When the app starts, it will fetch the clinician parameters from firebase and 

update the values on the app. If the clinicians change the values of the parameters on the app, they 

can “save & upload” to save the parameters to the firebase.  The  variables  selected  to  present   

with   the   website   portal   included  all of the gait variables we calculated through previous 

prototypes including:  Heel Strike and Toe off times, Step number, %Stance, Stride Time Duration, 

Stance Duration, Peak Axial Force, Peak Medial or Lateral Torque, Area under the Force Curve, 

and if the system was paused, the reason for the pause was inserted in the table.  The calculations 

and processing for these values are performed in the mobile app during the gait training. 
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2.6 Conclusion 

The development of the wireless prototype was successful in implementing the design 

criteria and acting upon the trends of patient preferences.  The findings of this development and 

beta testing gave us imperative information on preferences for training, feedback, and usability.  

The ability to quickly accommodate to differences in gait was critical to build the prototype system.  

Future work goals are to apply improved connectivity solutions and potential upgrades in smart 

glasses where the visual feedback is more integrated into the lenses themselves potentially 

reducing cognitive demand.  In addition, considerations towards one participant’s suggestions such 

as a game-like application which does have promise.  During Customer discovery via Second Gear 

during an APTA conference, many new applications were applying this game approach, and it was 

motivating to use this type of feedback that was more of a game-like experience.  It continues to 

be determined however, if this is applicable in the gait or running rehabilitation or performance 

setting. 
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3.0 Reliability and Validity  

3.1 Introduction 

Gait Analysis provides clinicians valuable quantitative information beyond what is 

subjectively and qualitatively possible.  Typically, Physical Therapists rely on observational gait 

analysis or mobile apps that have not been validated, to provide some form of assessment or in the 

case of mobile apps quantitative data.  Based on extensive customer discovery during a three-day 

conference with the American Physical Therapy Association (APTA), we found that the majority 

of PTs are either interested in using, or are already using, mobile app-based systems for gait 

analysis.  Observational or subjective gait analysis has poor to moderate reliability and validity 

[107].  Gait Analysis can provide valuable information to indicate areas of improvement when 

justifying treatment protocols towards reimbursement, or to gain understanding of a patient’s area 

of dysfunction and target the treatment appropriately.  Gait analysis and its feedback can provide 

relevant outcomes for the limb loss population, particularly spatial-temporal outcomes such as gait 

speed and symmetry, as well as energy conservation [23, 31].  Temporal-spatial gait parameters 

have been shown to be significant indicators of injury/disease, falls, and quantification of the effect 

of interventions which allows clinicians to justify and measure treatment efficacy [108].  In 

addition, wearable systems consisting of inertial motion sensors, in-shoe force sensors, smart 

glasses, and integrated sensors, have been developing quickly in the last five years [109-111].  In 

order to interpret clinical and research findings from the MOVISUFIT prototype and its processed 

gait data and draw comparisons with published works, the reliability and validity of the processing 

algorithm was assessed.   
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The purpose of this work was to assess reliability and validity of the spatiotemporal 

measurements of %stance, stride time (s) and stance phase duration (ms) of the MOVISUFIT 

system during walking over ground at a self-selected speed.  We hypothesized the that the results 

would demonstrate excellent test-retest reliability (ICC  3, k) > 0.80) for stance duration (ms), % 

Stance, and stride time (s).  The validity was established by performing Bland-Altman plots 

performed   to determine the level of agreement between the MOVISUFIT algorithm as compared 

to the inertial wearable sensor G-Walk.  We hypothesized good to excellent levels of agreement   

amongst calculations of %stance, stride time (s), and stance duration (ms).   

3.2 Methods 

3.2.1 Participants 

Subjects for this study were recruited from the prosthetics and orthotics clinic and 

department within the University of Pittsburgh and via established relationships with UPMC 

Physical Medicine.   Inclusion criteria for this test were use of a trans- tibial or trans-femoral 

prosthesis for ambulation, absence of acute or chronic health conditions that would affect 

prosthesis use.  

The criteria also included that the prosthesis was used for ambulation and contained 

modular components to allow for installation of the integrated load cell within the components 

below the joint, and  the ability to walk without aids for at least 30 minutes.  Patients were excluded 

if they had had surgery < one year prior, history of seizures, or uncontrolled medical conditions 



56 

that would impact exercise. This work was approved by the IRB of the University of Pittsburgh 

and the subjects gave informed consent prior to testing. 

3.2.1.1 Instrumentation  

MOVISUFIT 

Collection and data processing  were performed by our custom-made application 

(MOVISUFIT) designed for a mobile android phone. To assess the spatiotemporal parameters 

%stance, stance duration time (ms), and stride time (s), data collection and processing  were 

performed by our custom-made application (MOVISUFIT).  The gait data source was a prosthesis-

integrated load cell (Europa, Orthocare Innovations, Seattle, WA.) which can measure kinetic gait 

variables in lower limb prostheses (Figure 25). The device is semi-permanently installed as part of 

the load-bearing structure of the limb prosthesis connecting to the rest of the device using standard 

adapters.  This is referenced in figure 15 chapter 2.The raw axial force data and subsequent 

calculations were stored locally on the device via BT and remotely on a server through WIFI 

communication.   

The MOVISUFIT app performs analysis in real time and stores the data locally on the 

Android mobile device.    

The calculations for the MOVISUFIT variables were as follows: 

1) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 

2) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 %𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 =  𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

× 100 

3) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 𝑆𝑆𝑃𝑃𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠 (𝑇𝑇𝑠𝑠) =  𝑆𝑆𝑃𝑃𝑆𝑆 𝑃𝑃𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 
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G-Walk:  To validate the MOVISUFIT systems measurements, spatial-temporal data was 

concurrently collected by the inertial triaxial sensor (G-Walk, BTS Engineering).  The collection 

rate is 100Hz and the data is streamed via BT and stored locally on a PC the PI carried alongside 

the subject as they performed their walking.  The G-Walk is a 70x40x18mm sensor unit weighing 

37g, which contains an accelerometer, gyroscope, and magnetometer (Figure 25).  

Triaxial sensors, worn at the waist, have demonstrated consistent reliability and validity in 

many populations and have been used in gait studies with success for the last 10 years [112]. 

Triaxial accelerometers alone, have been found reliable and valid in many studies, with Intraclass 

Correlation Coefficients (ICC)s,  0.77 to 0.96, and the G-Walk adds a triaxial gyroscope and 

magnetometer decreasing the risk of error from drift in any one plane of acceleration [113-116].   

It has been reported that the G-Walk has excellent intertrial reliability (ICC values between 

0.84 and 0.99).  Concurrent validity of the G-Walk was examined against the GAITRite (CIR 

Systems Inc, Havertown, PA) and demonstrated excellent levels of agreement for speed, cadence, 

stride length, and stride duration (range = 0.88-0.97).  

The G-Walk has been found to be reliable and valid for gait symmetry and balance 

measures in older adults, people with cerebellar ataxia, and individuals with limb loss [117-120].     

In a study assessing the reliability and validity of a single triaxial accelerometer worn at the waist, 

it was surmised that it was a valid instrument for mean spatiotemporal parameters in prosthetic 

gait [119].  Small errors in detecting heel contact were found to be systematic and therefore, 

inconsequential for gait symmetry.  
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3.2.2 Procedures 

Testing was performed in the Department of Rehabilitation Science and Technology at the 

University of Pittsburgh.  The MOVISUFIT  system was provided to the participants, which 

included placing the Europa integrated sensor into the prosthetic limb of the subject by a certified 

Prosthetist.  To insert the sensor and integrate it with the pylon, their modular prosthesis was fitted 

with the sensor by shortening or replacing the standard pylon adapter in the endoskeletal prosthesis 

[36]. Leg length measurements, markings, and photographs were performed pre and post 

installation to ensure the prosthesis was not aligned differently than the participant’s original 

alignment, to create consistency between the two gait assessments and to preserve an alignment 

acceptable to the subject [121].  

3.2.2.1 Protocol Reliability   

To assess Reliability, each participant was instructed to walk at a self-selected comfortable 

speed. The four participants performed five trials over a level hallway measuring 50m on two 

occasions at least five days apart. The sensor was installed and removed for the testing sessions.  

On these same days, the participants also performed walking tasks that were not avoiding 

distractions, ramps, or turns.   The data was collected in real time on the app, and calculations were 

also performed in real time, then the custom app creates two files, a “step data” file and a “raw” 

data file, which are stored locally on the phone and on the cloud database, when the app is stopped, 

The step data includes the calculations below.  Data was collected on the mobile phone app and in 

the G-Walk G-Studio software and  was analyzed post hoc.  Subjects wore the same pair of shoes 

on both test days.  The following temporal gait measurements were evaluated:   stride time (s), 

stance duration (ms), and Percent Stance (out of 100% gait cycle).   
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The following are the equations for those calculations: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 %𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 = 𝑇𝑇𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑡𝑡𝑛𝑛𝑡𝑡 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 𝑆𝑆𝑃𝑃𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠 (𝑇𝑇𝑠𝑠) =  𝑆𝑆𝑃𝑃𝑆𝑆 𝑃𝑃𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 

 
Based on research conducted by comparing similar force detected temporal parameters and 

a triaxial accelerometer, the reliability was considered as excellent when the ICC was >0.75, good 

if between 0.40-0.75, and poor if  < 0.40 [122].  In previous work using accelerometry as the 

primary method to detect symmetry issues in those  with transfemoral limb loss  a minimum of 20 

strides  was recommended [119, 123].    Mean values for each gait parameter were calculated.  

3.2.2.2 Protocol Validity 

Validity between the MOVISUFIT system and the G-Walk were evaluated using Pearson 

correlation coefficients (r) and Bland-Altman 95% limits of agreement (LoA).  To assess validity, 

participants were  fitted with the G-Walk sensor which is worn around the waist in an elastic belt 

at L5-S1 spinal levels (Figure 25).  Percent Stance (%Stance), stance phase duration milliseconds 

(ms),  and stride time duration (seconds), were extracted from the G-Walk data to serve as the 

validation standard for the respective variables.  For each trial, these spatiotemporal gait 

characteristics were concurrently recorded by the MOVISUFIT system and the G-Walk inertial 

sensor and software.  Each participant performed five trials, only steps that could be congruently 

matched between G-Walk and MOVISUFIT were used with the goal of 20 steps.  The step data 

was averaged over these trials.   
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Figure 25  Participant Conducting Over Ground Validity AssessmentInstalled is the Wireless Europa Sensor 

and the G-Walk Inertial Sensosr is Worn at the Low Back. 

3.2.3 Data Analysis  

Our system detected all the actual steps whereas the inertial sensor, due to its reliance on 

acceleration, drops steps at the beginning and end of each trial or if any turning was detected.  

Therefore, we removed the steps that did not get detected by the G-Walk in our analysis and only 

included synchronous steps.   Outcomes were calculated from initial contact of the involved heel 

to the next heel strike of the same heel per steps confirmed by raw data analysis (Axial Force in 
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the Europa and Accelerometry in the  G-Walk), and timing.  The calculations for the MOVISUFIT 

variables were as follows: 

1) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 

2) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 %𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 =  𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ℎ𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

× 100 

3) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆 𝑆𝑆𝑃𝑃𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠 (𝑇𝑇𝑠𝑠) =  𝑆𝑆𝑃𝑃𝑆𝑆 𝑃𝑃𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑠𝑠 ℎ𝑆𝑆𝑆𝑆𝑒𝑒 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 

 
The G-Walk G-Studio software does not display step by step calculations of %stance or 

automatically of stride time only averages over the steps captured.  Therefore, in the Bland-Altman 

plots for those comparisons, in terms of stance phase duration, %stance, and stride times, averages 

of the steps taken during over ground walking on a level surface were used to compare measures.  

Stride time was manually calculated from the G-Walk G-Studio output for one participant and 

those comparisons are demonstrated.  Lastly, G-Walk measures were always subtracted from the 

MOVISUFIT measures, so a negative bias indicates the MOVISUFIT measures were smaller.   

3.2.3.1 Statistical Analysis Reliability 

Reliability was determined by ICC’s, and the (3, k) model with absolute agreement was 

used with 95% confidence intervals [124]. The final statistic was performed by compiling the 

averages across 5 trials, per subject, between two testing days at least 5 days apart for a total of 10 

trials.  The final average calculated was then compared between day one and day two, with a single 

mean for each participant from the averaged trials on each day.   

3.2.3.2 Statistical Analysis Validity 

Concurrent validity of the MOVISUFIT system was assessed by comparing stride 

duration(s), stance duration(ms), and %stance as measured simultaneously with the GWALK 
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sensor.  To assess the disbursement and level of agreement, first Bland-Altman plots were used 

with four initial participants as were used for the reliability testing. The Bland-Altman plots were 

constructed from five trials of concurrently collected data, where steps could be matched from the 

G-Walk and MOVISUFIT for four participants.  The data was averaged over each trial, trial 

providing 5 data samples per subject for 20 data samples for each plot.     In consideration for the 

Pearson’s measure of agreement to assess validity, each variable was collected and averaged across 

20 steps over 5 trials for four additional participants for a total of eight samples. An alpha of .05 

was used for all statistical testing as well as 95% confidence intervals.  All statistical analysis was 

performed using SPSS, Version 29 (IBM Corporation, Armonk, NY). 

3.2.4 Results 

Four participants were included in the Reliability study (Table 1).   

 

Table 1  Subject Demographics  Reliability Study

TT = transtibial, 

TF  

  

  

 

  

 
 
 
 

 

Gender Age 
(years) Weight (kg) Height (m) Prosthesis 

1 F 56 113.0 1.67 TT 

2 M 60 83.0 1.70 TT 

3 M 47 65.3 1.70 TF 

4 M 48 81.6 1.52 TF 

Mean ± SD 1 F, 3 M 52 ± 6 85.7 ± 19.8 1.65 ± .08 2 TT, 2 TF 
(F = Female, M = Male, kg = kilogram, m = meters, TT = transtibial, TF = transfemoral, SD = standard 

deviation) 
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3.2.4.1 Test-retest Reliability 

At preferred walking speed, the ICC’s for all gait measures tested were 0.8 or higher, except 

for stance phase durations, which had an ICC of 0.728, (Tables 2 and 3).  When assessed during 

walking in busy hallways and not avoiding distractions, turns or ramps, the parameters were also 

highly reproducible, apart from Stance Phase Duration. 

 

Table 2  Test retest ICC values MOVISUFIT controlled self-selected speed flat over ground walking (ICC = 

Intraclass Correlation Coefficient, SD = Standard Deviation, α = 0.05, ms = milliseconds, s = seconds, CI = 

Confidence Interval)  The averages of all the steps collected on Day 1 were averaged across 5 trials, and 

compared to the average calculations across all the steps calculated per subject across the 5 trials on Day 2.   

  Day 1 Day 2 ICC (3, k) [95% CI] p Value N 
Gait Variables Mean ± SD Mean ± SD    
Stride Time (s) 1.21 ± 0.10 1.23  ± 0.10 0.96 [0.76-0.99] p < 0.001 4 
Stance Phase 
Duration (ms) 750.0 ± 46.6 750.0 ± 50.9 0.73 [0.61-0.89] p < 0.001 

4 

Percent Stance (%) 61.7 ± 2.3 61.4 ± 2.6 0.95 [0 .65-0.99] p = 0.002 4 
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Table 3  Test-retest ICC Values MOVISUFIT Normal Walking Over Ground with Challenges  (ICC = 

Intraclass Correlation Coefficient, SD = Standard Deviation, α = .05, ms = milliseconds, s = seconds, CI = 

Confidence Interval).  The averages of all the steps collected on Day 1 were averaged across 5 trials and 

compared to the average calculations across all the steps calculated per subject across the 5 trials on Day 2. 

  Day 1 Day 2 ICC (3, k) [CI] p Value N 

Gait Variables Mean ± SD Mean ± SD 
  

 

Stride Time (s) 1.25 ± 0.08 1.26 ± 0.09 0.785 [ 0.406 - .993] P = 

 

4 

Stance Duration (ms) 

 

715.62 

 

721 ± 

 

0.697 [0.496 -0.827] P = 

 

4 

Percent Stance (%) 61.2 ± 2.81 61.83 ± 

 

0.907 [0 .394 - 

 

P < 

 

4 

3.2.4.2 Validity and Bland-Altman Plots 

Bland-Altman plots with 95% LoA were used for the analysis of the agreement between 

the two measures comparing MOVISUFIT measures to G-Walk measures and for investigation 

into the presence of bias.  The same 4 participants as detailed in the test-retest reliability performed 

5 trials each and the parameters were averaged across the steps during each trial providing 5 

samples per participant for the plots.    
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Table 4  Summary of Results Obtained from Four Subjects who Performed 5 Trials  The Summary variables 

displayed in the Bland-Altman Plots are listed and the results include the mean differences (d) and Standard 

Deviation of the Diff (SDdiff), with the Limits of Agreement (LoA) calculated comparing  MOVISUFIT 

versus G-Walk on level ground.  The 95% LoA was computed by calculating (d) ± (1.96×SDdiff) for the 

upper and lower boundaries. *Negative differences indicate MOVISUFIT higher than G-Walk 

Gait Variable (d) SDdiff 95% LoA N 
Lower Upper 

Stance Phase duration (ms) 0.86 31.22 -60.34 62.06 20 

stride time (s) -0.014* 0.06 -0.14 0.12 20 

%stance (out of 100% gait cycle)  0.47 1.88 -3.21 4.16 20 

 
 
Stance Phase Duration 

Figure 26 demonstrates the Bland-Altman plot comparing all four participants stance phase 

duration times (ms) across 5 trials with 20 steps per trial for a total of 20 data samples per plot.  

There is a slight positive bias of 0.86 indicating that MOVISUFIT systematically calculated a 

higher stance duration than G-Walk G-Studio output.  Greater than 95% of the samples do not fall 

within the LoA however it appears to be a single outlier.  The steps per participant were matched 

between their MOVISUFIT and G-Walk steps, and the compiled into two columns where the (d ) 

and SDdiff was calculated.  A one sample t-test was performed comparing the differences of the 

(d ) against zero, and the results were not significant with p = 0.903.  This indicates there is 

agreement and it was reasonable to proceed with the Bland-Altman plot.  The LoA were calculated 

by adding and subtracting 1.96 × SDdiff from the (d ).    The LoA were -60.34 to 62.06.  
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Figure 26  Bland-Altman Plot for Stance Duration Phase for 4 SubjectsEach data point represents an average 

of the 5 trials per participant.  With 4 participants there are 5 samples each for a total of 20 samples.  The 

solid red line is the bias, or mean of the mean difference, and the green dashed lines are the upper and lower 

LoA. 

 

Stride Time Subject 3 Only - Step by Step Comparison: 
 

Figure 27 demonstrates the levels of agreement amongst stride times for subject 3, over 18 

steps during one testing trial.  The derivation of the stride times per step from G-Walk data was 

exceedingly tedious as the graphs from the accelerometer and gyroscope had to be engineered 

carefully to determine what G-Studio considered a heel strike and toe off.  There were two separate 

times they provided toe to toe and heel to heel.  These were noted from the G-Studio output and 

heel to heel times were added manually, and a stride time was calculated and compared to the 

corresponding steps from MOVISUFIT during that 50m distance.  There was extreme difficulty 

secondary to the issue that they calculated steps, it appeared, from toe off to toe off and the lower 
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thresholds were difficult to determine.   Figure 27 demonstrates the LoA between the stride times 

for these corresponding steps calculated by MOVISUFIT versus G-Walk.   

The points that are above the upper confidence interval imply that 95% of the stride times 

do not fit within the LoA and implies lack of agreement potentially.   These appear to be outliers 

however, because the bulk of the other step times appear grouped primarily around or below the 

(d ) which was -0.008, nearly zero indicating good agreement between the two measures.  The 

mean difference was also negative, meaning G-Walk calculated systematically higher stride times 

than MOVISUFIT however this is negligible at -0.008.  A linear regression demonstrated a B 

unstandardized coefficient of the mean stride time close to zero  (0.007) and the test was not 

statistically significant.  Therefore, there was no proportional bias.   There is a small amount of 

cluster at the lower mean stride times and the differences are negative with differences from the 

values above the 95% confidence interval and overall implies there may be systematic lower stride 

times provided by MOVISUFIT than the G-Walk.   
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Figure 27  A Bland-Altman plot displaying the mean difference and 95%LoA over a total of 18 steps for 

subject 3The solid red line is the d , and the green solid lines above and below represent the 95% limits of 

agreement. 

 
 
Validity Stride Time All Four Participants 

Figure 28 shows the Bland-Altman plot displaying the mean difference and 95% LoA for 

stride times over five trials and all four participants.   The d and SDdiff are displayed in table 5.  

The stride times have excellent agreement with a d of -0.014 which is very close to a zero 

difference, all of the stride times fall within the LoA.  A one sample t-test was not significant with 

p = 0.87, when comparing the mean difference to zero.  The mid-range stride times cluster about 

the zero difference, and it appears increased variability begins with higher and much lower stride 

times. 
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Figure 28  Bland-Altman plot showing d of stride times and 95% limits of agreementMean stride times 

calculated from four participants averaged over 5 trials each for 20 samples.  All stride times were compiled 

from corresponding MOVISUFIT and G-Walk steps and an average of total MOVISUFIT versus G-Walk 

steps are displayed.  The solid red line is the d  and green dashed lines are the 95% limits of agreement. 

 

Validity % Stance  

Figure 29 shows a Bland-Altman plot of the d  between the %stance calculations across 

five trials with all four participants totaling 20 samples.  The plot does indicate the two measures 

do not agree with the outlier beyond the LoA, however further analysis indicates this is secondary 

to the taring issue creating systematic difference with that participant of larger differences between 

the two measures.  This was corrected, therefore leaving the other measures within the LoA.  The 

bias was 0.47 and this is clinically reasonable however this does indicate bias demonstrating 

MOVISUFIT systematically calculates higher % stance than G-Walk.  All but one sample fall 

within the LoA which ranged from 3.21 to 4.16.  This upper limit is higher than desired at greater 

than 2% however the mean difference is far less, and this larger upper lower limit appear to be due 
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to the first two data points.  It was commonly witnessed that at the initiation of the gait trial, 

participants would have much higher or lower steps than the middle portion of the trial.  This could 

be secondary to a natural uncertainty or nervousness of feeling stable or walking in an unfamiliar 

setting.  Initiating a gait test could naturally cause some decrease in symmetry until a self-selected 

gait speed which is comfortable is found.  A linear regression was performed given the bias, and 

the unstandardized coefficient was close to zero B = -0.043, and the result was not statistically 

significant indicating no proportional bias, p = 0.762.   

 

 
Figure 29  Bland-Altman Plot Displaying Mean Difference and 95% LoA for % Stance Between 

MOVISUFIT and G-Walk Data points represent averages of 5 trials for each of the four participants for a 

total of 20 samples.  The solid red line is the mean and green dashed lines are the 95% LoA. 

3.2.4.3 Validity Pearson Correlation 

Pearson correlation coefficients were used for additional analysis of the agreement between 

the two measures comparing MOVISUFIT measures to G-Walk measures for 4 additional 

participants for a total of 8 subjects.    Table 5 demonstrates the characteristics of the 8 participants.   
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Table 5  Subject  Demographics Pearson Correlation Testing(F = Female, M = Male, kg = kilogram, m = 

meters, TT = transtibial, TF = transfemoral, SD = standard deviation) 

Participant Gender Age (years) Weight (kg) Height (m) Prosthesis 
1 F 58 59 1.49 TT 
2 F 56 113 1.67 TT 
3 M 60 83 1.70 TT 
4 M 47 65.3 1.70 TF 
5 M 48 81.6 1.52 TF 
6 M 46 124.7 2.00 TF 
7 M 36 94.8 1.83 TF 
8 M 55 80.3 1.80 TF 

Mean ± SD 2 F, 6 M 50 ± 8 87.71 ± 22.36 1.71 ± 0.17 3 TT, 5 TF 
 
Pearson correlation Coefficients indicated strong associations (r > 0.80) (Table 6).    
 

 

Table 6  Pearson Correlations  Between MOVISUFIT as Compared to G-WalkAs Tested During Controlled 

Self-Selected Speed Flat Over Ground Walking 

Gait Variable G-Walk MOVISUFIT Pearson Correlation r (p value) N 

Stance Phase 

Duration(ms) 
727.42 ± 62.22 729.71 ± 69.45 0.86 (p = 0.007) 

8 

Stride Time (s) 1.18 ± 0.11 1.21 ± 0.08 0.85 (p = 0.008) 8 

Percent Stance 

 

60.89 ± 1.63 60.26 ± 2.52 0.86 (p = 0.007) 8 

The results of the averaged trials for the 8 participants were assessed graphically for linear 

agreement comparing MOVISUFIT versus G-Walk.  These are displayed in Figures 30 – 32.   
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Figure 30  Graphical display MOVISUFIT Average Step Times Versus G-WalkIllustrated are the average 

step times across 5 trials or each of 8 participants.  The line is fit to demonstrate the correlation. 

 

 
Figure 31  Graphical Display MOVISUFIT Average % Stance versus G-WalkAverage step times across 5 

trials or each of 8 participants.  The line is fit to demonstrate the correlation. 
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Figure 32  Graphical display MOVISUFIT Average Stance Phase Duration Time (ms) Versus G-

WalkAverage stance phase duration time (ms) across 5 trials or each of 8 participants.  The line is fit to 

demonstrate the correlation. 

3.3 Discussion 

The current data provide early and innovative evidence that a system such as MOVISUFIT, 

collecting kinetic data from within a prosthetic load cell and deriving spatiotemporal parameters 

is a reliable measure for step detection, detection of gait events, %stance, Stride Duration, and 

Stance Duration. %stance demonstrated a good low level of bias with a mean difference of 0.475, 

however the first two data points did increase the LoA to a larger amount.   It was commonly 

witnessed that at the initiation of the gait trial, participants would have much higher or lower steps 

than the middle portion of the trial.  This could be secondary to a natural uncertainty or nervousness 

of feeling stable or walking in an unfamiliar setting.  Initiating a gait test could naturally cause 
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some decrease in symmetry until a self-selected gait speed, which is comfortable, is found.  On 

average % stance differences did not go above 3% which is clinically acceptable [125]. 

Stride time durations demonstrated almost zero bias with mean difference of -0.002 and 

also overall mean differences ±0.05 which is clinically acceptable [125].  Different patients have 

different stride times, and those with transfemoral limb loss tended to have longer strides.  This 

could bias the results and future work should separate the two groups.  Based on previous work 

this is explained by evaluation of temporal parameters and inertial measurement units (IMU), worn 

at the lower back and the results indicated identification of the initial foot contact is critical for 

accuracy and robustness  [126].  Our system uses first contact of the heel at the beginning and end 

of a stride and stance duration, whereas the G-Walk does not appear to, however the exact 

algorithm is unknown and proprietary.  This previous work found that temporal parameters were 

less accurate when final foot contact was the basis for determining parameters which is also what 

the G-Walk uses differently than our algorithm [126].   

Stance duration detection was subpar, however, in terms of reliability in distracted settings 

as well as agreement with G-Walk.  It has been reported however, that although the G-Walk 

demonstrated high levels of agreement for stride time and cadence, it has however only moderate 

levels (0.47) of association for determining gait cycle phases single versus double limb support 

and swing stance duration [125]. This is a potential explanation to the reduced ability to find 

agreement particularly with stance phase duration times.  This is addressed in potential for future 

work.   

The step by step variability was high, and this needs to be considered along with the 

variability that is inherent in amputee gait.  There may have also been adjustment period to the 

change in their prosthesis after installing the sensor, and a longer time should have been provided.  
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Stance duration was our initial priority to validate, as this is the portion of the gait cycle which our 

feedback parameter is derived and it was the only variable that could be provided as step by step 

comparisons readily by the G-Studio system.  However, the difficulties described with G-Walk 

detecting toe off events made this more difficult.  However, it was positive that other measures 

were more robust and corroborated this previous finding that stance times were more difficult  to 

assess  validity and like this previous work our findings also demonstrated strong agreement of 

other the other parameters stride time, and %stance, which the latter was our feedback variable  

[125].  Initially, it was a concern that the G-Walk does tend to drop steps, if a participant is turning 

or slowing down or accelerating, and corroborating matching steps was not going to be possible.  

However, if the sample steps were determined to be assessed within the same time and duration 

the validity was determined to be assessable.  .   

Stance phase duration was correlated strongly between sensors with r = 0.894 when 

walking over ground  on a flat surface with a very specific distance. It does provide evidence that 

the system can calculate stance duration time accurately from which the feedback variable can be 

derived.  There did exist a bias in earlier trials of estimating % stance (systematically higher than 

the G-Walk)  however this was improved with the algorithmic adjustment referenced in chapter 

two regarding the calibration to a zero baseline and lower threshold detection.  The bias still exists 

however is 3.15 which is acceptable as a mean difference [125].   

Stride times were strongly reliable (ICC > 0.8) for both conditions.  Stride times are an 

important variable as those are determined by the lower threshold gait events.  It was unexpected 

that these would be more strongly correlated than the other parameters, given the G-Walk G-Studio 

software calculates them differently than our force derived time points.  However, being internally 

consistent provides confidence that we can assess future improvement in symmetry of stride times.   
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Initially, it was concerning that %Stance was correlated only modestly with the G-Walk with a 

Pearson’s R = 0.702.  However, the difference in methods also is an explanation.   

Our findings suggest that MOVISUFIT is a reliable and valid tool to measure stride time, 

% stance, and stance duration during walking.  This is promising for future designs and iterations 

to progress the innovation to more complex feedback.   

3.4 Limitations 

Limitations of the current study are that we are unaware of the algorithm that G-Walk uses 

which is prohibitive in determining an underlying exact explanation for the results.  Furthermore, 

we measured spatiotemporal parameters on those with TT and TF and this could affect the 

accuracy of the results, however a system should be able to tolerate those differences.  Also, 

validity in this study was examined at a self-selected speed, and not over other terrain and turns as 

reliability was, and speed can affect accuracy [127].  This is demonstrated in these Bland-Altman 

plots .  In addition a recent study compared the G-Walk’s validity against the GAITRite system 

and it was found in their results that gait measures that rely on final foot contact such as toe off, 

which stance duration does, should be cautiously interpreted and revealed poorer validity.  This is 

an explanation of our difficulty to statistically agree with that measure from G-Walk as well.   

Given the small sample size, this study could have limited internal and external validity.  

With lower external validity, our findings could not be as generalizable beyond the specifications 

of this study sample [128].  An additional limitation is in measuring validity and reliability, 

additional measures could have been used, such mean differences or Standard Error of Mean.  

Order effects, such as fatigue, can make the interpretation of the data difficult.  In this instance, 
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the interventions were not randomized. However, participants would obviously remember the 

previous time they underwent the test, and this could cause boredom, and decreased  effort during 

the test.  It could also affect their outcomes that if, for example, each time the 6MWT was 

performed before the G-Walk tests.  This could cause fatigue therefore we performed G-Walk tests 

prior to the 6MWT.  This sequence was intended to not fatigue the patient prior to a test that 

examines quality of gait, although it could bias the results given that the sequence is predictable. 

Also, simply doing repeated testing could lead to improved performance or increased skill as the 

participant becomes more familiar with the measurement.   

One of the most difficult limitations of the study is synchronizing the force-based timing 

data against an inertial sensor using an accelerometry based algorithm.  When analyzing our raw 

data against G-Walk for both prototypes, it was very difficult to align them step to step, particularly 

if any turns were taking place.    Our %stances initially, with the MOVISUFIT prototype, were 

systematically biased higher than G-Walk data for most participants, and that was discovered to 

be a software taring issue.  As the app became more sophisticated, the timing of the taring needed 

to be during the live data streaming. With the interface advancements of pausing during training, 

which was extremely helpful for the clinician to document a reason for the pause for later post hoc 

analysis,  the taring was not being performed for several trials, resulting in elevated lower threshold 

event detections.  However, when examined on gait trials performed within five days, the 

reliability was excellent.   
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3.5 Future Work 

Given the findings of moderate to excellent reliability of the MOVISUFIT system and the 

finding of strong correlations with G-Walk stride time indicates the system is reliable and valid 

for measuring stride times and calculating % stance.  As this is a marker of a potential feedback 

variable or indicator of improvement that the system can accurately measure, these findings are 

promising.  Future research should investigate MOVISUFIT’s validity and reliability in clinical 

populations during different gait conditions or activities once a new feedback variable is 

introduced as well.  In addition, future work could validate the system against an instrumented 

treadmill, GAITRite, or a more robust inertial sensor system such as XSens (XSens Technologies 

B.V., The Netherlands).   
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4.0 Efficacy of the RTMVF and MOVISUFIT Systems 

4.1 Introduction 

In the limb loss population, there is a documented inadequate reorganization of the 

functional motor pattern and deficits such as loss of active plantar flexion must be accommodated.  

Evaluation of clinical biomechanics offers the possibility of investigating the consequences of 

compensatory actions but also potentially the treatment of them.  Whereas in prior treatment 

protocols and applied research the training was task specific and based on other evidence and on 

the evidence in this project, the direction of focus and attention can expand beyond traditional 

forms of training and practice.  To improve adaptability to new gait patterns, it is well established 

that specifically practicing step and stride parameters in clinical settings does improve mobility 

outcomes [101].  However, evidence from studies of motor learning indicate a potentially superior 

method of motor learning, or re-educating motor skills, and that is when practice is in response to 

external cues.  These responses to external cues enhance and access directories of motor control 

within our physiology.  Visual cues, in this realm, have been demonstrated as more critical than 

auditory cues in the control of gait training, particularly when training gait adjustments in response 

to the environment.  Thus, we hypothesized that providing practice of adapting a participant’s gait 

in response to visual cues, outside of controlled settings, would improve walking symmetry and 

endurance.  As stated earlier previous methods of providing the external visual cue have been 

mirrors, projection onto a screen, while on a treadmill or in a lab setting.  Our system, has the 

advantage of providing these cues in a more realistic manner and not limited to space.  In 

preparation for future larger trials, our aim was to preliminarily test the  efficacy of delivering real 



80 

time visual feedback in a method that was not limited to clinical settings.  The study aimed to 

establish feasibility and effect size for calculating potential sample sizes.  

The purpose of this study  was to develop and examine the efficacy of a the RTMVF and 

MOVISUFIT gait training systems for those with lower limb loss on improving gait performance 

as defined by; Gait symmetry, pelvic symmetry in the frontal plane, and additional functional 

measure 6MWT.   A secondary purpose of this study was to examine pain and function as defined 

by the patient reported outcome measures LCI-5, OPUS HQOL, Functional Status Measure, and 

the Chronic Pain Grade.   It was expected that the training will trigger earlier self-modification, 

within the participants, of overexertion and poor mechanics resulting in the chronic pain 

syndromes caused by load imbalances. 

4.2 Methods  

4.2.1 Subjects 

A-priori sample size was estimated based on limited previous works involving similar 

outcomes and treatment interventions.  Based on a study by Dingwell et al.,  who used real time 

visual feedback and measured symmetry as an outcome, a training intervention yielded a mean 

difference in symmetry of 4% resulting in an effect size of 0.53 with 12 subjects (however six 

healthy, six amputees) [31].  Therefore, with an a-priori power analysis of ∝ = 0.05 and β = 0.20 

we proposed to recruit eighteen individuals allowing for an attrition rate of 20%.    

Prior to the baseline measurements or any research procedures, goals, contents and 

methods of the study were explained to the subjects.  All subjects provided written informed 
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consent in accordance with the (IRB# PRO15120426). After signing the consent form, participants 

were scheduled to perform baseline testing.  

Participant recruitment followed the approach outlined in chapter 3.2.2.1 recruited by 

flyers in the MSPO clinic, web-based postings, print media and direct contact with potential 

subjects that were seen in local lower limb loss rehabilitation focused clinics. Initial screening was 

performed by the Co-I or PI when a participant contacted them regarding the study.  If the potential 

participant passed the screening, they were invited to complete the consent form as described 

above, and once consent was provided, attend a testing session.  Participants were compensated 

for their time. 

Participants with unilateral transtibial (TT) or transfemoral (TF) limb loss were enrolled 

regardless of the type of prosthesis.  However, the prosthesis had to be modular to accommodate 

the sensor.  The participants were included if they were over 18 years of age, wore their prosthesis 

for at least one year, could perform at least 15 minutes of walking without an assistive device and 

had a gait deviation per the licensed Doctor of Physical therapy who was also the PI for this study.   

Exclusion criteria consisted of  bilateral lower limb amputations, the use of an assistive 

device to ambulate, undeclared medical conditions that presuppose proper prosthesis use, vision 

impairments  incompatible with smart glass use, history of seizures and any co-morbidities that 

prevent the participant from walking for 15 minutes. 

4.2.2 Study Design 

The study design was a single cohort prospective repeated measures design to evaluate the 

efficacy of the RTMVF/(MOVISUFIT) system during gait training.    The repeated measures 

allowed the investigation of changes over time, to provide preliminary effect sizes for a larger 
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conformational trial.  The trainer was a licensed physical therapist, the PI, therefore blinding to the 

intervention was not possible.   

In order to identify differences, pre and post tests were performed with an additional 

datapoint one month following the conclusion of training (one-month follow-up) to determine 

retention of  training  gains.  Qualitative and quantitative assessments were performed at three 

time-points, at baseline, post training and at a one-month follow-up.   Tests and interventions were 

undertaken in the MSPO and RST departments in the Bakery Square location of the University of 

Pittsburgh.   

4.2.3 Evaluation and Assessments 

Participants did not receive any other treatment of rehabilitation program throughout the 

duration of the study.  In each testing session, participants were fit with the iPecs integrated load 

cell or the Europa integrated load cell. Photographs, leg length measurements, evaluation by one 

or two Prosthetists as well as markings were made to ensure alignment matched their pre-training 

alignment.  They then were fitted with the glasses and instructed how to place the screen in a 

manner in which  it did not obstruct their vision but allowed them to see the color displayed 

comfortably and safety.   

4.2.4 Outcome Variables  

4.2.4.1 Quantitative 

The variables chosen as outcome variables were done so for their demonstrated association 

with various downstream secondary orthopedic issues seen in this population.  Gait symmetry, 
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chosen as the primary outcome variables for gait quality.  The proprietary symmetry index from 

GWALK was used, where the perfect symmetry is defined as 100%.  Percent stance, and pelvic 

obliquity in the frontal planes were considered as secondary outcome variables related to gait 

quality.  Pelvic motion and obliquity have been reported to be significantly different pre and post 

training with real time feedback [22, 70].  Pelvic obliquity has also been listed as a significant gait 

deviation in those with lower limb loss in systematic reviews [90, 129].  G-Walk reports a Pelvic 

Obliquity Index which they report is a quantification of how much the accelerometry curves from 

the left to the right in the frontal plane are similar in profile.  It is computed using cross-correlation 

and applied to the two curves.  If they perfectly overlap, the index is 100, because the curves would 

have the same value for every frame captured (Gabe Glasser, G-Walk, BTS, Bioengineer).    

The other Proprietary Symmetry Index from the mobile Gait Lab G-Walk was used as the 

outcome measure to determine gait symmetry improvements.  It is calculated the same way as the 

pelvic obliquity index, in that it quantifies how much the profile of the right curve is similar to the 

profile of the left curve. The number is computed using the mathematical function cross-

correlation applied to the two curves. If the curves perfectly overlap, the index is 100 and it means 

that the two curves have the same value for every frame, however in this case it is right versus left 

legs. 

The Functional test (6MWT) was chosen as it is a strong predictor of accuracy and totality 

of step counts accounting for 38-54% variance [12, 130].  An individual’s self-selected walking 

speed has been reported as a reliable measure “validated in this population”, and a strong predictor 

of disability [131-134]. 
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4.2.4.2 Self-Reported Data 

Four validated questionnaires were used to assess pain and function.  Pain has been 

correlated to gait deviation and decreased prosthetic use [1, 63].  Therefore, the first, the Chronic 

Pain Grade, (CPG) was used to assesses both disability and the varying forms of pain that occur 

within this population.  The CPG has demonstrated good internal consistency.  Cronbach’s alpha 

was 0.9132, and the item-total correlations ranged from 0.69 to 0.82 against the 36-Item Short 

Form Survey (SF-36)which has been validated in the amputee population [66, 135].  The three 

additional patient-reported measures were regarding function and quality of life.  The Orthotic and 

Prosthetic User Survey (OPUS) was garnered for its Lower Extremity Functional Survey (FSM), 

and its Health and Quality of Life Survey (HQOL) .  Disability Points were calculated converting 

the scores to four ranges of points.  A conversion of Question 4 was made to points from a 3-level 

rating of the statement “Days in last six months are you kept from usual activities because of your 

pain?”.  The disability points were then added to this converted question 4 and created a total point 

scale.   

The Lower Extremity Capabilities Index – 5 (LCI-5) was chosen as a disease-specific, self-

administered instrument for assessing locomotor abilities generally considered essential for basic 

and advanced Activities of Daily Living (ADLs) of people with lower-limb amputation.  The 

ability to perform ADLs are an enabling factor associated with long-term prosthetic use [104].  It 

is a 4-level ordinal scale (0–3 points; ranging from “not able” to “able to accomplish the activity 

alone”) scores the degree of a person’s perceived independence in performing each of 14 activities 

while wearing the prosthesis with a possible maximum score of 56. Higher scores reflect greater 

locomotor capabilities with the prosthesis and less dependence on assistance.  The LCI-5  

correlated in all criterion measures (p range, 0.61-0.76) with the Rivermead Mobility Index and 
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Function Independence Measure (FIM)instrument, but the LCI-5 shows larger effect size and a 

lower ceiling effect [136].   

4.2.5 Gait Retraining 

Participants participated in a standardized gait training program ( 4 weeks, 2 times per 

week), which successively increased its level of endurance by progressing from 15 to 30 minutes 

of training time over the first 4 sessions, then maintained30 minutes over the last 4 sessions (Table 

7).  The participants received real time visual feedback, as outlined in Chapter 2, from either the 

MOVISUFIT or RTMVF prototypes.  The participants either used the iPecs integrated sensor with 

USB connection to a Surface Pro or Ultramobile PC, and wireless Vuzix smart glasses to receive 

the red, yellow, or green visual feedback, or the MOVISUFIT prototype using the wireless Europa 

sensor, and Android phone for data processing and feedback transmission to the Vuzix Smart 

glasses (M100 - M300).  Both sensors provided an Axial Force (Fz)which was incorporated into 

the same algorithm to define the feedback parameters.    

During the first visit, participants were trained by the Doctor of Physical Therapy 

(DPT)(PI) using verbal cues, and  demonstration and education, to assist the participant in 

associating the feedback colors with their gait pattern and compensatory mechanisms observed by 

the therapist (Figure 33).  Each participant was  videotaped to assess their gait deviation and 

provide a reference during training for the DPT, and upon initial screening previous surgeries and 

history were documented.  There were a few key gait deviations that presented across the cohort 

including ipsilateral trunk lean to affected side, excessively long stride on the uninvolved side, 

decreased heel strike, and arm swing and negotiating slopes without significant decreased time on 

the involved limb.  Once the participants presented with a stable walking pattern, data was 
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collected at 100Hz throughout the training sessions and processed into feedback provided per step.  

If the participant needed to rest, the system could be paused, and data collection could continue 

again once training ensued at the same sampling rate. 

 

 

Figure 33  PI Training participant with RTMF system visit 1 associating colors to gait mechanics 

 

Participants received the gait retraining by the PI (DPT) as outlined in Table 7.  Each 

session was approximately 30 minutes to 1 hour and included fitting the sensor and subsequent 

RTMVF/MOVISUFIT gait training.  The training was systematically increased from 15 minutes 

to 30 minutes over the first 4 visits.  We utilized a faded feedback protocol over the last four 

sessions to help internalize motor learning [23, 26, 29, 137].  (Table 7, Figure 34.).   
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Figure 34   Faded feedback and Systematic Training ProtocolBased on Noerhen et al 2013 for Reference  

http://dx.doi.org/10.1136/bjsm.2009.069112. 

 
An external focus directs the attention of the learner on the effects of their movements 

(different walking strategies changing the feedback they see on the screen vs. focusing on their 

own extremity alignments) and reduces their attentional demands [8, 73, 78, 99].  Training over a 

brief accommodation period at the initial training session included educating the patient on what 

the red, yellow, and green feedback colors indicated about their gait pattern, and the first session 

did include verbal cues and training to assist the patient in learning adjustments that could be made 

to trigger the color changes.     

http://dx.doi.org/10.1136/bjsm.2009.069112
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Table 7  Intervention and Data Collection Protocol 

  Baseline Visit (Time 1):Informed Consent, Baseline Gait Assessment1 Patient 
Reported Outcome Measures1 

Traini
ng Week 1 

Visit 2:  15 min Gait Training 
Visit 3:  20 min Gait Training1  

Traini
ng 
Week 2 

Visit 4: 25 Min Gait Training 
Visit 5: 30 min Gait Training 

 

Traini
ng 

  

Visit 6: 30 min Gait Training1a with feedback first 20 min 
 Visit 7: 30 min Gait Training1a feedback first 15 min only1c   

Week 
4 

Visit 8: 30 min Gait Training with feedback first 7 min only1c 
Visit 9: 30 min Gait Training with feedback first 2.5 min only 

Traini
ng 
Week 5 

Visit 
10: 
Post Training 
Testing 

 Time 5: (Minimum of two to five days after visit 9 
Gait Trial Gwalk2, 6MWTt, ) CPG, LCI – 5, OPUS HQOL 
and FSM LCI-5 

Weeks 6-10 Independent Practice of New Pattern without Device 
& PT 

1 
Month 
Follow-up 

Visit 
11: 

1 Month Post Gait Training Intervention 
Reassessment6  

1 Baseline Prosthesis Alignment, Physical Therapy Evaluation (Strength, ROM), 
Baseline Walk Trial (3 sessions of 1 min Standardized Distance Level Hallway, 5 min rest in-
between or until discomfort is <3/10),  NPRS, 6-minute Walk Test (6 MWT), LCI-5 

1a Gait Training with Mobile Device with Verbal (VC) and tactile cues (TC) from 
licensed PT (PI) for over ground training of patient of associated neuromuscular patterns with 
associated changes in visual display. 

1bFade out of feedback, decreasing feedback each session to internalize pattern begins 
and incrementally is decreased each session. 

2 G-Walk Trial Patient walks (3 sessions, Standardized Distance Level Hallway next to 
Physical Therapist while wearing GWALK and data is collected on laptop. 

5a Independent  
6 One-Month Post Gait Trial Reassessment: 

1) G-Walk Sensor standardized distance of level hallway (to assess retention) 
2) 6 MWT 
3) CPG 
4) LCI – 5 
5) OPUS HQOL and FSM 
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Subjects navigated a variety of level hallways, level sidewalk, and lobbies and elevators. 

Data was collected (raw data of time, all spatiotemporal variables, Fz, moment(M) produced in 3 

planes (My, Mz, Mx), peak Fz, range and max Mz) throughout training for further post hoc analysis 

on biomechanical risk factors and assessment of potential feedback parameters. 

4.2.6 Statistical Analysis 

Histograms, Boxplots, and Shapiro–Wilk tests were utilized to test assumptions of 

normality and no extreme outliers in the dependent variable.   Mauchly’s Test of Sphericity was 

also performed.    Repeated Measures Analysis of Variance (ANOVA) was conducted to assess if 

there was a change in the parameters of interest over three time points, with the last being a one-

month follow-up to assess retention.  If there were significant differences, pairwise comparisons 

were performed.  Sidak corrections were performed amongst the repeated pairwise comparison 

and paired sample T tests were performed, however.  even though there can be risk of Type I error, 

if the alpha is not adjusted, however in this case they were deemed appropriate   given the 

exploratory nature of the study.  If there were results containing ordinal data, a Wilcoxon Signed 

Rank Test was used, 

4.3 Results 

The a-priori power analysis stated 18 would be recruited with 20% attrition rate.  The 

previous work prior to this study at the time was limited to one study that was similar in Dingwell 

et al.  Their study consisted of 12 participants, however 6 were with limb loss, and their effect size 
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was our goal.    18 subjects recruited with a 20% attrition rate is 12 subjects.  We recruited and 

tested 14, with 10 able to complete the full one month of training, therefore this is a higher sample 

size than previous work.  Fourteen subjects participated in the study, four were involved in the 

development and feasibility aspect described earlier.  Ten participants completed the entirety of 

the gait training  but two did not complete the one-month follow-up for different reasons which 

were assessed post-hoc.   One participant was not able to complete follow-up because funding 

expired.  For the other participant, the reasons are unknown.  Therefore, eight participants with 

unilateral trans-femoral or trans-tibial lower limb loss completed this study.  

All participants exhibited at least a K3 level of walking (based on Medicare’s functional 

classification level) and characteristics, including, age, height, mass and time in prosthesis can be 

found in Table 8.  As referenced in the subject section of chapter 3, subsection 3.2.1, the first three 

participants were involved in development and feasibility testing.  Subjects four to eight 

participated in the training study, but subjects 11 and 14 did not complete the one-month follow-

up.    
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Table 8  All participant demographics, Kg = Kilogram, M = male, F = female, m = meters, BK (below knee), 

AK (above Knee) 

ID Age (years) Mass Kg Height (m) Gender Prosthesis Involved 
Limb 

Time 
since 

surgery 
(years) 

1 59 81 1.8 M BK left 23 
2 67 59.1 1.82 M BK right 15 
3 22 124 1.85 M BK left 5 
4 58 59 1.49 F BK right 12 
5 46 94.43 1.7 F BK right 8 
6 57 114.3 1.68 F BK left 2 
7 69 113.4 1.78 F BK right 8 
8 66 59 1.52 F BK right 8 
9 46 124.7 2.01 M AK left 1 
11 61 83 1.7 M BK right 35 
12 49 65.3 1.69 M AK right 26 
13 36 94.8 1.83 M AK left 2 
14 55 80.3 1.8 M AK left 10 

4.3.1 Gait Symmetry 

Results are seen in Table 9.  Three GWALK trials were averaged at each time point for 

each subject for an n of 16.  averaged across each participant.  

 

Table 9  Descriptive Statistics of the Gait Symmetry Index Provided by G-Walk 

 Mean  ± SD N 

Symmetry Index Baseline 82.58  ± 10.05 8 

 Symmetry Index Final 90.30  ± 7.32 8 

Symmetry Index One -Month Follow-up 88.38  ± 7.92 8 

  

The main effect of training was significant (F (2,14) = 5.38, p < 0.05,  η2 = 0.435).  Using 

Sidak’s correction, pairwise comparisons were conducted, and further pairwise comparisons were 
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not significant.  However, given the experimental nature of the study a paired samples t-test was 

performed and baseline to post training was significant with t (7) = 2.45, p < .05 and a Mdiff of 

6.47 and SD=7.5.    From Baseline to Post Training, Cohen’s f =0.88, which is very large.  Using 

the mean of the difference, (Mdiff) and the baseline SD, which is done in some conventions if 

there is no control group, the effect size is d = 0.77 which is large.   The difference between 

Baseline to One-Month Follow-up was examined experimentally with a paired-samples t-test and 

was not significant but is worthwhile to report with t(7) = 2.35 and p=.05 precisely.  The mean 

difference (Mdiff) was 4.7, and the effect size = 0.823 if we use the SDdiff.  This is a greater than 

a moderate effect.  The difference from Post Training to One-Month follow-up was not significant, 

p = 0.577, with a Md of 1.955 and an effect of 0.24 which is small.     

4.3.2 Six Minute Walk Test (6MWT) 

A one-way repeated measures ANOVA was conducted to compare the effects of 

RTMVF/MOVISUFIT training on the 6MWT measured in Meters. There was a significant effect 

of training (F (2,14) = 7.345, p = 0.007, η2 = 0.512), which translates to a Cohen’s f(V) = 1.024, 

which is very large (Table 10).   

 

Table 10  Descriptive Statistics 6MWT-Distance in meters (m) 

 Mean ± SD N 

Baseline 6MWT Distance (m) 303.82 ± 64.62  8 

Final 6MWT Distance (m) 394.17 ± 120.52 8 

One Month Follow-Up 6MWT Distance (m) 396.95 ± 138.64 8 
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Pairwise comparisons found a significant difference between Baseline and Post Training 

with Mdiff = 90.35, p=0.024, d=1.29 using the baseline SD.  There was no significant difference 

between baseline and the One Month Follow-up.  The Mean difference was even larger than the 

Baseline to Final difference, (Mdiff = 93.13)  However, the variability of the mean difference was 

larger with SDDiff = 102.34.  An individual paired-samples T-test was conducted and yielded t(7) 

= 2.547, p = 0.037, (Mdiff = 93.13, SDDiff = 102.34). This effect size then was f(v) = 0.94 which 

is large.  There was no significant difference from post training to the One Month Follow up with 

a Mdiff = 2.781, SDDiff =54.39, p = 0.999.  

4.3.3 Pelvic Obliquity in the Frontal Plane 

The pelvic obliquity in the frontal plane is measured as an index referenced in section 

4.2.4.1 where a cross correlation is applied to the two accelerometry curves from either side of the 

pelvis and an index is generated depending on how much they overlap.  100 would be they overlap 

perfectly.  Therefore, it is a unitless measure from 0-100 where 100 is perfectly overlapping 

without asymmetry.  A repeated Measures ANOVA did not find a significant effect of training (F 

(2,14) = 1.60, p >.051, η2 = 0.186).  However, this translates to a Cohen’s D effect size f(V) = 

0.48 which is a moderate effect size.  The means and SDs are shown in Table 11.  

 

Table 11  Mean and Standard Deviation (mean ± SD)  of the Pelvic Symmetry Index 

 Mean ± SD N 

Baseline  44.96 ± 15.64 8 

Post Training  54.07± 17.36 8 

One Month Follow-up 53.08 ± 19.31 8 
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The Pelvic Symmetry Index was provided by G-Walk in the frontal plane and measured at 

the three time points. The baseline to post training means increased in symmetry by 20.3% 

however it was not significant with p = 0.08, however the effect size using Mdiff and SD diff 

resulted in a Cohen’s d of 0.57 which is moderate.  The effect size from baseline to one-month 

follow-up was calculated using the Mdiff and SDdiff was also moderate with Cohen’s d = 0.44.  

The increase in symmetry remained greater than 18% at the one-month follow-up.   

4.3.4 OPUS Health and Quality of Life Index (HQOL) 

HQOL scores were converted to Rasch Scores per the OPUS guidelines, and the means 

and SD for the three time points can be seen in Table 12.  A repeated measures ANOVA did not 

find significant results,( p = 0.148).  However, the mean difference from one month to baseline 

was 3.99.  When 𝛈𝛈2 = 0.271 was converted to Cohen’s f, the effect size was 0.609.  A paired-

samples t-test was not significant, however, the Cohen’s D calculated from the Mdiff and the 

SDdiff was 0.56 which is a moderate effect.   

 

Table 12  Mean and Standard Deviations  (Mean ± SD)   Health Quality of Life (HQOL) Survey Rasch Scores 

 Mean ± SD N 

Baseline 58.85 ± 8.91 8 

Post Training 61.08 ± 8.25 8 

One Month Follow-Up 62.84 ± 7.64 8 
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4.3.5 Chronic Pain Grade 

A repeated measures ANOVA including the three assessments did not find significant 

differences (p = 0.0322) however, paired-samples t-tests were conducted at the pre to post training 

level to illuminate apparent improvements (Figure 35).  

 

 

Figure 35  Mean of Pain IntensityA) baseline average across participants, B) post training mean across 

participants. 

 

When examined more closely,  on average, participants did have lower Pain Intensity post 

training (M= 44.16, SD = 23.41) than pre training (M =53.33 , SD = 17.457) which was not 

statistically significant.  However,  Cohen’s D was 0.40 which is moderate (Table 13). 
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Table 13  Mean ± SD of Pain Intensity at the Three Time Points. 

 Mean ± SD N 

Baseline Pain Intensity 53.33 ± 17.45 8 

Post Training Pain Intensity 44.16 ±23.41 8 

Pain Intensity One Month Follow-

 

42.91 ±24.19 8 

 
 
There was a significant difference in the repeated measures pre training and post training 

with t = -2.687 (1,19) p = 0.007.  The negative indicates a reduction in pain (Figure 36). 

 

 
 

Figure 36  Reduction in Disability Scores Pre to Post Training with 95% CI. 

 

However, secondary to the fact the points are all added, a ratio outcome can be considered, 

and a repeated measures ANOVA was also executed.  On average the participants did reduce their 

total disability points from pre training (M= 2.4, SD = 1.35) to post training (M =0 .5, SD = 0.97) 

and it was significant F (1,7) = 25.186, p = 0.001.  

Baseline Post-



97 

4.3.6 OPUS Functional Status Measure 

The means and standard deviations for the pre and post treatment results of the OPUS 

Functional Status Measure (FSM) are show in in Table 14.  The raw scores were converted to 

Rasch Scores to allow for analysis in ratio/scale measures.   

 

Table 14  Mean and Standard deviation (SD) OPUS Functional Status Measure Rasch Scores 

 Mean ± SD N 

Baseline  53.08 ± 3.75 8 

Post Training  55.40 ±4.44 8 

One Month Follow-up  55.68 ± 4.01 8 

 

A repeated measures ANOVA resulted in an F (2,14) = 3.334, p = 0.065, 𝛈𝛈2 = 0.323.  

Cohen’s definitions of effect size based on 𝛈𝛈2 indicates there is a large effect, f = 0.69.  Given the 

borderline alpha result and the experimental nature of the study, a post hoc paired-samples t-test 

was used to compare the mean differences pre training and post training on the OPUS Functional 

Status Measure (FSM).  A Cohen’s d was calculated as 0.7.  Differences from baseline to One 

Month follow-up were not statistically significant. However, with a mean difference of 2.6, and 

SD = 4.05, Cohen’s D was 0.64 which is a large effect size. 

4.3.7 Lower Extremity Capabilities Index – 5 (LCI-5) 

On average ,the participants improved their LCI advanced level sub scores from pre 

training (M= 24.9, SD = 6.98) to Post Training (M = 26.7, SD = 2.31)but the difference was not 
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statistically significant  p > 0.05.  However, the mean difference exhibited a Cohen’s D of 0.39 

which is a moderate effect size.  Figure 37 depicts the before and after values in the functional 

score. 

 

 

Figure 37  Mean differences in total C=LCI scores from pre to post training (N = 8). 

4.4 Discussion 

This study provided gait training with real time visual feedback for over-ground walking in 

a more naturalistic environment to assess the efficacy of the treatment on the parameters Gait 

Quality as measured by Symmetry and Pelvic Obliquity, as well as Pain and Function as measured 

by CPG, 6MWT, OPUS FSM, HQOL and LCI-5.  Studies have compared real time visual feedback 

in this population prior, however currently it is not known if those have been effective beyond the 

Baseline Post training 
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laboratory setting with virtual reality, treadmill training, or with visual feedback. This environment 

and type of training might encourage a greater internalization of the new motor patterns.   

It was found that most of the parameters measured were maintained at an improved level 

than at the baseline level, which is a critical finding of the pilot data.  This included Symmetry 

which has the most significant improvement of the outcome measures with a 9.4% increase from 

pre to post training and maintained a 7% increase at one month.  Dingwell at al found a 4% 

improvement as an effect size of 0.56 [31].  Our intervention achieved  that result at one month 

and double that immediately post training.  One study with auditory feedback found almost a 

26.5% improvement in symmetry, however this was demonstrated in one subject out of a total 

sample size of three [70].  The total mean % change of the three subjects pre to post, was 9.9% ± 

14.5 which we were able to achieve within 2% at the one-month follow-up post the conclusion of 

training. They similarly trained with repeated visits with a total of 6 over 3 weeks, which is a 

higher intensity than our program [70].  We implemented a lower intensity program and 

maintained similar results for a month post training.  

The findings related to the 6MWT are the most encouraging of the findings as the 6MWT 

has been directly correlated to higher functionality [131].  The risk factors related to gait speed are 

also well documented as decreased endurance and increase energy expenditure in those with limb 

loss, so this finding is considered clinically relevant [133].  Also, that the results continued to 

progress at the one month follow up indicated  that the new more efficient patterns were 

internalized to a greater degree than with traditional training with an improvement of  91meters 

from pre to post training and 93 meters at one month.  The MDC of the 6MWT was reported as 

1.47m, and clinically meaningful  differences are results >45m, and our results demonstrate twice 

that elevation [138].   
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Pelvic Obliquity was also improved by 20% and maintained at an 18% improvement at the 

one month follow up.  Previous studies found that Pelvic Obliquity effect sizes were -0.68 for the 

intact limb, and -0.82 for the prosthetic limb with an average of -0.70 [139].  Initially, based on 

limited previous work such as this, we considered that our findings would be meaningful if the 

effect size was >0.6.   Our effect size was an improvement in obliquity not negative and Cohen’s 

D was 0.57 which is bordering on the originally hypothesized outcome.  Further analysis would 

have to be performed to elucidate the findings here secondary to the post hoc findings were not a 

part of the initial aims related to the pelvis.  Previous data in the mentioned study was collected 

regarding the intact versus the prosthetic limb and the findings appeared influential in the 

improvement of symmetry  [139].  This is potential future work from this study in that the pelvic 

obliquity should be assessed in different activities, as well as potentially involved versus 

uninvolved limbs.  In a systematic review of spinal, pelvic and hip movement asymmetries in 

people with lower limb loss, it was stated that those studies that did compare pelvic obliquity in 

the frontal plane against healthy controls noted a total increase in pelvic obliquity [90, 129].  Our 

findings support this with significant differences however, further investigation is recommended  

comparing the intact versus involved limb and potentially other planes. Previous research 

predominantly, although limited, reported a mean difference of two degrees[90]. It is a significant 

finding, however, that changes from our training protocol were sustained from baseline to post 

training with a mean difference of 20%, and then to one month with 18%.  Given the conflicting 

evidence regarding intact versus involved limb, these results are interpreted carefully. 

The reported MDC for the LEFS subscale of OPUS is reported as 10.3.  Our results 

regarding the change in LEFS scores were not statistically significant.  However, our findings 

demonstrated an effect size of f = 0.69 which is greater than moderate, but this was with a mean 
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difference in Rasch score of 2.4 which is less than the MDC and therefore most likely not clinically 

significant.   

The OPUS also contains the HQOL scale which was assessed in this study and the MDC 

is 9.2 and our result from pre to post training was 3.08 and the difference to one month was 4.01 

reaching half the MDC [138].  However, this is of relevance in that the improved HQOL score  

continued to improve after the conclusion of training which provides evidence of retention with 

this type of intervention. 

Our findings show reduction of pain with pre to post training, which was also retaining this 

decrease, at the one-month follow-up.   The mean differences were not statistically significant, 

with Mdiff = 9.17 from pre to post training and 10.41 from baseline to one month.  However, in 

previous studies it was found that the pain scale was sensitive to change with an effect size of 0.41 

and our effect size was 0.40 using a paired-samples t-test [140].  This implies a potentially 

clinically relevant finding, particularly with continued retention at one month. 

4.4.1 Limitations 

This study did lose two subjects to follow-up and sample size was reduced to eight.  With 

a lower sample size, we are less able to control if some other extraneous factor is responsible for 

the change  [128].  Small sample size reduces the power of the study, which is its ability to detect 

an effect if there is one.  The power of a study gauges our ability to avoid type II errors, which is 

when the null is not rejected when it should have been.  This depends on the size of the effect 

because large effects are easier to notice and increase the power of the study. 

Repeated Measures ANOVA has its advantages in that it can require fewer participants and 

eliminates the issues of differences on an individual basis between participants than independent 



102 

samples.   However, disadvantages exist as well.  If there are inconsistent treatment effects, there 

is no longer consistent individual differences between the participants.  The differences could 

potentially reverse, and if this occurs, it could appear as though there is no difference.  If there are 

consistent treatment effects from on participant to another, t this will produce a larger value for F.  

Finding participants with enough of a deviation to improve with self-report questionnaires 

and still recruit participants that can walk and tolerate the training was difficult.  Given this 

conflict, the choice of the LCI-5 did not appear appropriate, and even though it was touted to not 

have a ceiling effect, it provided inconsistent results here.  Secondary to the data not being 

normally distributed and being ordinal data, several different tests were performed.  First, as this 

is another repeated measure test, and the sums of the Survey data can be considered ratio data in 

some instances, a repeated measures ANOVA was attempted.  This did not find significant 

differences; however,  the data was not normally distributed.  A Wilcoxon Ranked test was 

attempted, and results were also not significant.  It may be argued that this survey did not 

adequately quantify the participant function. 

Due to the varying deviations many of the participants, presented with, and considering the 

variability that ensued with training and the participant working on their adaptation to the 

feedback, future work could look at the individual’s outcomes versus pooled data.  Normative data 

exists in small amounts for gait variability in the limb loss population however, this variability 

could provide a necessary conduit to assessing that outcome.  It was determined after the data 

analysis that there were approximately three key gait deviations.  Too short of stance time both in 

single and double limb stance, and too short single limb stance amid prolonged double limb stance 

would benefit from further examination and delineation as a feedback variable.  It was determined 

that both too short of single limb and double limb stance were occurring by examining the raw 
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data Fz force curves, and to receive a red in the glasses, the stance had to be < 58%.  When 

examining the force curves and the amount of area under the curve outside of the peak to peak 

area, it was not likely that a red could be received with increased double limb stance as well.  When 

participants would receive a yellow predominantly, this was based on too long of a total percent 

stance.  It was determined post hoc looking at the raw force curves that the peak to peak area was 

still low, but the overall area under the curve was large.  Development was initiated to determine 

the ratio of peak to peak time versus the time outside of this single limb loading phase, given the 

published ratios, and this was established in one of the android apps.  It was not able to be 

implemented at this time, however, would be a prudent progression.  Some concern did regard the 

level of changing feedback and not to incite cognitive overload, however the timeline and funding 

period did not allow for further development in this direction.  To be able to detect which issue is 

occurring could be impactful in this population as a feedback variable but for clinicians to know 

which deviation it is, would be a fairly simple calculation of the peak to peak time of the force 

curve over the total stance time.  We provided orange feedback color, when %stance was too high, 

but it is likely, and preliminarily appeared to be the case, that single limb stance was still too short, 

and double limb stance was too high.  Post hoc analysis may continue regarding the stance on the 

unaffected side and the potential for future feedback parameters exists.  The final deviation was a 

significant trunk lean causing a decrease in %stance that was clearly below the lower boundary. 

4.4.2 Future Work 

Given the results of this pelvic obliquity finding, it would be prudent future work to 

examine the involved side and the frontal plane pelvic drop opposite the trunk lean and determine 

if changes occur in the specific angle versus a proprietary measure.  Also, a clinical single limb 
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stance test for Gluteus Medius weakness would be a good clinical screen to determine if there is a 

drop initially at baseline.   

Following the guidelines of levels of evidence, the most prudent next step would be to 

compare this intervention to the standard of care.  At this time, it is not recommended to compare 

against a sham intervention, as we want to understand how this intervention is comparable to what 

we are currently practicing as an intervention in the clinic.  In addition, methods to preserve 

alignment and weight could be better standardized when the sensor is installed, and this would 

ensure any changes or instability in the variability in the participants’ gait are not due to 

accommodating to changes in the prosthesis.  This work is also critically delving into the issues of 

cognitive demand during real time visual feedback.  There are many variables that can effect, both 

positively and negatively, the effects of providing such feedback, and strategies should be 

investigated, for example, in terms of how the glasses provide the feedback (not in the periphery, 

in the lens of the glasses, which is available now).  It is key to not have the participant become 

dependent on the feedback, and this could be avoided by also programming the system to 

automatically interrupt the feedback at varying amounts of time.  A study to assess multiple 

variables of feedback could also research effects of the treatment.   By performing a study that 

investigates the predictors of feedback color change from the kinetic data collected throughout this 

study, a more predictive model could be tested.  An additional direction and possibility is there 

could be a more effective variable to provide as feedback, or perhaps it does need to be 

individualized per patient.   

Of course, further studies could also investigate this method providing the kinetic data from 

a source not integrated in the prosthetic but located in a different location, thus perhaps lowering 

variability at each visit while getting accustomed to any change.  A unique study would be to 
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compare whether this made a difference in the outcomes. The choice of functional outcome 

measures would also be a suggested change for the next work.   

4.4.3 Conclusion 

Traditionally, clinicians do not have a system allowing over-ground real time feedback 

training at their clinic and are left to qualitatively assess gait based on scales or (as was found via 

customer discovery at an APTA conference) use gait analysis apps from their own mobile phones 

that have not been validated.   Being able to train participants over ground is also critical in that it 

has been documented that for patients with transtibial or transfemoral amputations, walking on the 

treadmill was about two and a half times more energetically costly than walking over ground [12].  

This study provides a foundation for sample size estimation for a larger study, particularly for the 

outcomes of symmetry, six-minute walk distance, and pain.  The retention of all the outcomes at 

an improved level is a promising finding for this method of feedback, suggesting the facilitation 

of automaticity of new motor patterns with real time visual feedback. 
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5.0 Usability 

5.1 Introduction 

The evaluated feedback system was designed with those with limb loss in mind, with the 

integrated sensor and a design that is least cumbersome.  However, for any future designs a sensor 

system that is downsized would logically be a design criterion.   

The initial prototype included the smallest yet high-powered Dell Ultrabook that could be 

used, to provide the power for real time feedback and not have any delays or processing issues, 

and yet be just around one kg  The neoprene waist belt could be snug and lightweight 

polypropylene plastic was added for stiffness in one plane to improve the comfort and stability 

while the participant was walking.  A single micro USB cable connected the sensor to the 

computer, and the glasses were programmed to be wireless, which took research and 

developmental effort, as we could easily have pursued a wired alternative.  A surface laptop 

(Microsoft, 2017) was then used to make the system even lighter, which was also appreciated.  The 

first outcome from the experimental activities is that all the subjects could easily wear the system 

and successfully walk, and only one reported that they would like to not have to wear the computer 

around the waist, however they could tolerate it.  Also, the participant was only 1.49m and this did 

make space for it difficult.   
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5.2 System Usability Scale 

To assess usability, a standard System Usability Scale (SUS) was used as a Likert scale 

from strongly agree to strongly disagree.  In addition, some specialized questions were added.  The 

initial questions included “Would I use the system frequently?”, “Is it unnecessarily complex?”, 

and “Was it easy to use?”.  All of these are important factors of a feasible or usable system.  Eighty-

one and one-third percent reported they strongly or slightly agreed they would use it frequently, 

87.5% reported they strongly or slightly disagreed that the system was too complex, and 86.8% 

reported they strongly or slight agreed the system was easy to use.   

Understanding the technical aspects and frustrations in developing the system was also key  

and the usability survey facilitated any frustrations by the participants to be clearly resourced. In 

terms of needed Tech support to use, 46% disagreed, 25% were unsure, while 30% slightly or 

strongly agreed they would. Eighty-seven- and one-half percent found the various functions well 

integrated. In terms of whether there was too much inconsistency in the system, 12.5% slightly 

agreed, and 68% disagreed, with 18% being unsure.  Overall, this is a satisfactory result, given the 

difficulty of development and that some participants were more than  50years old and were not 

familiar with smart glasses technology.  Eighty-seven and one half of the participants felt that other 

people would learn to use the system quickly.   Appendix A contains the responses to the SUS 

survey and the frequencies.   

5.2.1 Scoring the SUS 

Based on previous research using this scale in this department and from literature searches, 

it was decided a-priori that good usability score was greater than70 [141].  To score the SUS, the 
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odd items were subtracted by one, and the even numbered items were subtracted by five.  This 

normalizes  all the values from 0 to 4 (with four being the most positive response).  These were 

then added and multiplied by 2.5, which converts the possible values from 0 to 100 instead of from 

0 to 40.  Based on previous findings, using the scores as a percentile rank and treating the score as 

a “grade” is the most efficacious method to process the responses.  This normalizes the scores.  

The SUS sore is not to be considered a percentage but rather interpreted as a grade, and a study of 

500 uses of the survey on developed products reports that a score > 80.3 is required to get an A, 

and this is also a point where users are more likely to be recommending the product to a friend 

[142-144].  Scoring at the mean score of 68, for instance, is equivalent to a C grade, and below 51 

is an “F”, which places your product in the bottom 15%.  The distribution of scores from 0 to 100 

can be seen in Figure 38. 

 

 
Figure 38  Distribution of the adjusted SUS Scores 0 – 100 at 20th Percentiles. 
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The total average score was 78.59 which is better than the average score of 68% when 

scoring using the adjusted scores and percentiles [142-144].  Therefore,  we can reject our null 

hypothesis and report we did achieve usability.  The goal at the outset of the study was to create a 

system that scored greater than 70%, and if the score is > 80.3 the subject is likely to recommend 

the product to a friend and we are < 2% from that score.   

5.2.2 Custom Survey Questions 

The following custom questions were added to the survey “Would you take the system 

home?”,  “Do you think it is appropriate for Gait Training in a PT environment for Prosthetic 

Users?”, ”Why would it be helpful to have this in the clinic for gait training?”,  “Did you feel safe 

using the system?”,  What did you like best?”, and “What did you like least?”.  The answers were  

grouped, and the frequency of responses demonstrated as  nominal data are shown in tables 

15-16.   

 

Table 15  Would You Take the System Home? 

  Frequency Percent Valid Percent Cumulative Percent 
Valid no 2 14.3 14.3 14.3 
 yes 11 78.6 78.6 92.9 

not sure 1 7.1 7.1 100.0 
Total 14 100.0 100.0  

 

 

Interestingly, in Table 16, the answer was overwhelmingly yes, that subjects felt this 

system was appropriate for PT clinics. 
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Table 16 Is it Appropriate to Use for Gait Training in PT Environment for Prosthetic Users? 

 Frequency Percent Valid Percent Cumulative Percent 
Valid yes 14 100.0 100.0 100.0 

 

 

In Figure 39, regarding safety (a critical part of feasibility and usability), 78.6% reported 

they agree or slightly agree that they do feel safe using the system, and only 11.4% reported they 

did not feel safe.  In future work, it would be prudent to determine what caused an issue of feeling 

unsafe.   

 

 
Figure 39  Did you feel safe using the system? 

5.2.3 Smart Glasses 

Most interestingly, the response to the glasses was positive, in that they were quickly 

adapted to by most.  A specialized question was added to the survey “What did you like About 

Using Smart Glasses for This Training?” The most common responses are summarized in Table 
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17.  The instant feedback and seeing that they were walking correctly appeared to be the most 

popular features. 

 

Table 17  Percent responses to the survey question “What do I like about Using smart glasses for this 

training?” 

Common Variables in Responses:  Frequency Percent 
 Instant Feedback 3 21.4 
See If I am Walking Correctly 4 28.6 
Color System 2 14.3 
Lightweight 1 7.1 
Colors define walking, So I can see how I am 
Doing 

3 21.4 

 

In terms of what subjects did not like about the system, the overwhelming response was 

connectivity at 35.7%.  This is understandable and addressed in the next chapter with Future Work.  

Twenty-eight and two-thirds percent reported “nothing” and there was one answer each to “weight 

of glasses”, “tech issues”, and “design of glasses”.   

The final custom question was “What did you like Best About the System?” The 

frequencies and %Responses are seen in Table 18.   

 

Table 18  What did you like Best about The System? 

 Frequency Percent 
 Teaches me about my walking, improves my walking 5 35.7 
Improving my weightbearing on prosthesis 6 42.9 
Hill and ramp training 1 7.1 
Helped me work on my Step length 1 7.1 
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5.3 Conclusion 

The SUS results indicate that the participants felt that this was a usable system.  Participants 

responded in majority that “improving the weightbearing” on their limb, and the “real time 

feedback” as well as the “colors” were the best parts of the system.  We feel this demonstrates 

promising results in that, even though the system was under development as participants were 

using it and did have issues with connectivity, users overall still reported that the system provided 

them with useful and helpful information about their walking.  Most importantly, on the question 

of whether to include this training in the clinical environment all responses were “yes” . 
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6.0 Dissertation and Study Conclusion 

6.1 Summary 

Based on the results from the research project described in this dissertation, the RTMVF 

and MOVISUFIT systems significantly increased  Gait Symmetry, Pelvic Obliquity, Gait speed, 

and clinically decreased pain and improved function in lower limb prosthetic users.  The findings 

from this study at the One Month Follow-up are relevant as they support the hypothesis that this 

type of training does improve retention of improved biomechanical parameters,  pain, function, 

walking speed, and endurance.  It was challenging to progress the prototype, and work through 

developmental delays or connectivity issues.  However, this experience supported the need to 

revise the system to perhaps migrate to a sensor that is developed by our lab or other methods of 

collecting the kinetic data.  The study participants demonstrated different responses to the HQOL 

and FSM outcome measures, which may motivate a different mode of measuring these outcomes.   

With a larger sample size, the observed effect is expected to not only be clinically significant but 

statistically significant as well.  

Findings from the development study in Chapter 2 demonstrated that the algorithm and the 

speed of feedback, as well as the mobile app functionality are important issues related to training 

compliance.  Individual preferences for types of feedback were considered.  A potential conclusion 

from the results of this work related to development and usability is that heightened interest in the 

novel concept was a beneficial factor.   However, that does not diminish the potential positive 

impact this new approach may have, as with physical therapy training, compliance and enthusiasm 

for the training and trust in the clinician patient relationship are all key factors in improving 
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perceptions of how successful training has been.  The recommendations from clinicians (which 

were not included here) primarily focused on remote training, and an app-based system, which we 

have developed.   The feedback from the patients regarding a wireless system, downsizing the 

system, and improving the app functionality in terms of what information regarding the session is 

immediately available to them for knowledge of results, was implemented in updates to the system 

for improvement.   

Findings from Chapter 3 demonstrated that RTMVF and MOVISUFIT have excellent 

reliability in terms of stride time, % stance, and stance duration, however with curved and 

distracted testing, the system had decreased reliability of stance duration.  Some explanations for 

this include the tendency for a person with limb loss  to employ protective mechanisms, when 

there are surprises, for example, in the in a hallway, the sudden opening, or closing, of doors into 

their path.  This could lead to an overcompensation of protecting the involved limb and a wide 

variability in step parameters until normalcy is reached again.  The design of the glasses may need 

to change to a more centralized “within lens” type of feedback, which may allow patients to feel 

they are not looking away from their central vision.  It may also decrease cognitive demand.  We 

are in discussions with Vuzix currently with promising potential to determine a potential 

collaboration. 

Findings from Chapter 4 indicate that those who received the training program significantly 

improved their symmetry, pelvic obliquity and gait speed/endurance.   They also reduced their 

level of pain, with a clinical effect size of 0.40 which is moderate.  Unfortunately, some portions 

of the Chronic Pain grade were not yet analyzed, and it would be prudent future work to examine 

the other levels of disability more closely.  A participant’s perception and view of their own 

function and quality of life is frequently key to beginning or maintain rehabilitation programs.    
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Two participants were excluded from the analysis because they did not complete the one-

month follow-up.  This may also have affected the results.  One participant who was lost to follow-

up did improve his 6MWT-distance from 459.94 meters at  baseline to 552.5m post training.  As 

outlined in chapter 4, changes are considered clinically relevant if they are >45m.  This participant  

improved by 92.56m therefore, they demonstrated double the clinically significant threshold as 

well.  The other participant did not provide a reason for not attending a one-month follow-up.  He 

was not as accustomed to technological solutions and did not have a smart phone, therefore perhaps 

the intervention was not comfortable for him.  However, they did remarkably well and improved 

in all areas of measurement.  His symmetry improved from 86.07 to 94.3, which is greater than 

the MCID of 4-9% at 13%.  His 6MWT-distance improved from 324.95 to 371.36 meters, which 

is just over the MCID, and his pain intensity score was reduced from 40 to 6.67.  His pelvic 

obliquity index provided by G-Walk as a cross correlation of the accelerometry planes, improved 

from 73.53 to 81.03.  He reported on his usability surveys that he felt the training “improved his 

posture” and that he liked the real time feedback and learning how to put more weight on his 

prosthetic leg. This was facilitated by the feedback secondary to it providing him information that 

he was not spending as much time on that limb.  It is believed this was his way of incorporating 

the feedback into his own mechanism of improved symmetry because it worked for him, he 

significantly improved.  The one other participant that was loss to follow-up secondary to the 

closing of the funding period, significantly improved his 6MWT-distance, however their symmetry 

decreased.    This participant’s gait deviation was not as pronounced as some of the other 

participants’ and a different feedback variable may have been more appropriate for his gait 

deviation as it was more specific to pelvic motion and weight transfers.   
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7.0 Future Work 

Examining other variables that were also collected while the patients were gait-training 

including medial and lateral torque, anterior posterior torque, and other calculated spatial-temporal 

variables could greatly benefit feedback choice.  Future work in this population should focus on 

determining single limb stance duration from the sensor data to investigate which deviation is 

being elicited and whether feedback regarding that decreased stance could be beneficial. 

Future work would also benefit from employing machine learning and perhaps a more 

sophisticated form of feedback that incorporates more than one channel.  However, motor learning 

theories do address that it is prudent not to challenge the patient with adjusting too many 

parameters at once.  In addition, the data that was collected in terms of the other biomechanical 

and kinetic variables could use a regression analysis to find predictors of poor step quality. These 

could not only be involved as different feedback variables but also could be a part of prosthetic 

prescription and modification as it entails quantitative, not qualitative, gait assessment and 

feedback.   
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Appendix A System Usability 

 Strongly 
Disagree 

Slightly 
Disagree 

Unsure Slightly 
Agree 

Strongly 
Agree 

I think I 
would Use 

This System 
Frequently 

0 0 2 7 4 

I found 
system 

Unnecessarily 
Complex 

5 7 1 0 0 

I thought 
System was 
Easy to Use 

0 0 1 6 7 

I would need 
Tech support 

to use 

1 5 3 2 3 

I found 
function well 

integrated 

0 0 1 7 5 

Too much 
inconsistence 
in the System 

4 7 2 1 0 

I would 
imagine most 
people would 
learn to use 

quickly 

0 1 1 7 5 

I found the 
system 

cumbersome 
to use 

7 3 2 1 1 

I felt Very 
confident 

Using System 

1 0 1 4 8 

I needed to 
Learn A lot 
of Things 
Before I 

could Get 
Going with 
The System 

4 7 3 0 0 
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Appendix B Publications and Conference Abstracts 

 Kutina, K. Fiedler, G. “Feasibility of a Mobile Feedback System for Gait 

Retraining in People with Lower Limb loss – A technical Note” 
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 Kutina, K. Fiedler, G. “Variation of Ground Reaction Force Measurements 

Across Different Prosthesis-integrated Load Cells.” 
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 Kutina, K. Fiedler, G. “Correlation between unilateral step timing variables 

and gait symmetry in users of lower limb prostheses” 
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 Kutina, K. Fiedler, G. “Providing Mobile Visual Feedback to Lower limb Prosthesis 

Users” 
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 Kutina, K. Fiedler, G. “Developing a Mobile Feedback System for Gait 

Retraining in People with Lower Limb Loss” 
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 “The Use of an integrated Load Cell as A Mobile Gait Analysis System to 

Detect Gait Events in People with Lower Limb Loss” 
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 “Kutina, K. Fiedler, G. Developing a Gait Event Detection Framework for 

Implementation into A Real Time feedback System Based on Data from a Prosthesis 

Integrated Load Cell” 
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Appendix C Patent Application 
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