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Krista L. Kutina, PhD

University of Pittsburgh, 2020

Gait dysfunction in those with trans-femoral and trans-tibial limb loss can lead to
degradation of the intact and surgical limb, causing a risk of osteoarthritis and decreased bone
density. Those affected with lower limb loss are still rising in number, and gait deviations
remain a significant factor in function and quality of life for these individuals. Chronic
compensation from dysfunctional gait patterns have been shown to have additional
consequences of low back pain and increased energy cost. Real time visual feedback follows
the motor learning theory that internalization of a new neuromuscular pattern is enhanced when
the patient’s focus is directed externally. We developed a system to provide real time mobile
visual feedback (MOVISU-FIT) for gait training using kinetic data derived from the user’s
prosthetic limb itself and displayed wirelessly to smart glasses. Creating mobility in
combination with real time knowledge of performance during gait training with MOVISU-FIT
enhanced automaticity therefore retention beyond the initial frame of rehabilitation.

Our goal was to develop, and assess the feasibility and efficacy of, a gait training system
that provided real time visual feedback derived from kinetic sensor data within the prosthetic
limb and was mobile and wearable for those with lower limb loss. The development then
allowed preliminary pilot data analysis of the efficacy of this type of training on gait
performance (symmetry and frontal plane pelvic motion), pain and functional measures. In

addition, this project and its findings expanded our ability to assess the impactful factors on
v



not only this type of training and feedback, but also on gait parameters that were retained

beyond the end of training in this patient population.
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1.0 Introduction

1.1 Motivation

Gait dysfunction is an impairment that can affect multiple patient populations, both
neurologic and orthopedic, and become chronic and linger for years [1-7]. There are subsets of the
patient population that are particularly vulnerable to problematic and chronic gait dysfunction such
as; People with Parkinson’s, Stroke, Osteoarthritis (OA), and Limb Loss [6, 8-13]. In 2007,
patients with limb loss compiled approximately 1.7 million people and it has been estimated that
by 2050, this rate will more than double to 3.6 million in the United States [14-17]. A five-year
study following those with lower limb loss reported almost 34% of participants not being able to
walk two years after surgery [18]. This is of clinical concern in that forced compensations from
the loss of sensory feedback, neuromuscular control, and along with a rise in concomitant pain that
affect forward propulsion and weight acceptance throughout the gait cycle, could have the
consequence of destructive secondary joint issues and increased energy cost [19]. In addition, lack
of plantar flexion and normal ankle motion in artificial limbs are linked to most gait deviations in
those with limb loss, including asymmetrical gait timing. Other typical deviations include trunk
shifts, which can result in low back problems as well as increased misdirected loads through the
ankle, knee and hip of both the surgical and intact limbs, putting the patient at higher risk of
cartilage degradation and secondary complications of arthritis [19].  Recent studies have
demonstrated that not only can the kinematic variables that are a part of these dysfunctional lower
extremity movement patterns be retrained, but also retained [8, 20-24]. Therefore, if an improved

gait pattern can be re-trained, perhaps we could not only avoid further degradation of the low back
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or contralateral limb, but also restore neuromuscular support and appropriate load bearing on the
affected side. @Gait retraining as an intervention has demonstrated promise in many of the
aforementioned populations, including the limb loss population [8, 25-28]. This could lead to
improved lower extremity function, which leads to improved energy consumption and extended
life of the prosthesis as well [23]. Several studies have investigated the use of treadmill training
and treadmill training combined with real-time feedback, including visual feedback, and have
demonstrated positive results [29-31]. However, of the studies that have been performed on gait
retraining very few have been performed on the limb loss population, and it does not appear that
there have been any recent studies performed utilizing real-time visual feedback that is originating
from the user’s prosthesis itself. Symmetry has been an issue in gait in those with limb loss, and
as analysis has evolved from only qualitative to quantitative measurements of temporal, kinetic
and kinematic variables and combinations of all, the most prominent asymmetries have been
determined as shortened stance times and decreased ground reaction forces [31-33].

Real time Visual Feedback with feedback parameters derived from the user’s prosthesis
itself has allowed new insights into gait rehabilitation in this population and facilitate the
investigation into potential biomechanical variables that could be provided as feedback to improve
gait. Feedback and training using derived quantitative feedback, if successful, could allow
increased efficiency in identifying problematic regions of biomechanical dysfunction, improve
patient compliance as it is tailored to the patient specifically and not based solely on clinical
observation, and also provide a new gateway of remote training. The clinician will have the
possibility of identifying parameters that have not been available to be provided as feedback thus
far and determine their potential effects, whether harmful, counterproductive, or whether they may

improve patient function. Improved portable methods of gait training have been reported as highly



desirable by current Physical Therapists attending a large APTA Conference during our own
customer discovery and surveying during the development phase. This was performed via the 1%
Gear Program through the National Science Foundation (NSF) program for innovation and
development within the University of Pittsburgh. Additional surveys were acquired from other
leaders in the limb loss rehabilitation field locally and Veterans’ Association Rehabilitation, as
well as sports and outpatient orthopedics for a variety of settings and populations. Many Clinicians
reported they are forced to use apps on their own mobile phones, which delineated for us how
clinicians are forced to devise this treatment on their own currently and demonstrates their desire
for improved quantitative data output for gait analysis.

The overall goal of this research was to develop and test the efficacy of a real time mobile
visual feedback (RTMVF) gait training system for those with lower limb loss on the primary
outcome measures gait symmetry, pain and function (as measured by the Six Minute Walk Test.
A secondary purpose of this study was to examine the effects of the program on improving gait
performance as measured by frontal plane pelvic motion, and patient reported function as
measured by the Health and Quality of Life, Functional Status Measure, and Lower Extremity
Capabilities Index-5 (LCI-5) surveys. Findings of this project will expand the knowledge of how
well this form of training can affect the retention of retrained neuromuscular patterns gained via
the RTMVF gait retraining program in this patient population, its usability, and it’s potential as an
augmentation to improve current treatment strategies.

The work described here is innovative in that it progresses from the previous limitations
noted in the literature and combines two mobile implementations. In this research study we
implemented a technique that has not been evaluated previously, combining mobile assessment of

outcomes and real time visual feedback that is delivered directly from the user’s prosthesis. The



results from this work will have significant applications and potential, in that it is implementing
extrinsic feedback, which has previously been reported to increase motivation and retention, as
well as internalization of motor learning [27, 29, 34, 35]. This was displayed on smart glasses,
creating a mobile environment in which the training can occur with novel feedback from the
integrated sensor. The integrated sensor being utilized has been currently found valid for the
measurement of joint forces and moments [36]. This, in combination with mobile assessment of
kinematic and temporal-spatial gait outcomes, completes a novel way of training and assessing
improvements in dysfunctional gait kinematics. It has been demonstrated that those with limb loss
have greater difficulty on unlevel surfaces, and truly mobile gait retraining allowing for real time
visual feedback while walking outside of the clinic has not been tested [37]. It is our goal that the
visual feedback be individualized per patient and simplified as appropriate. To reach this point of
integration and success, it is critical for the patient to understand what gait corrections provide the
desired feedback and learn to self-correct. Through this work remote training can be an option
and patients may be able to take the system home which could improve compliance and as a result,
functional outcomes. Therefore, the ultimate knowledge gained from this study will provide a
foundation for the appropriate application and use of these new technologies in the rehabilitation

of gait dysfunction.

1.2 Clinical Complications and Gait Dysfunction

Mobility, return to function, and return to normal gait is an ever-prevalent issue amongst
variable populations. Gait dysfunction is known to occur with many underlying health conditions.

Prominent risk factors for gait deviation have been noted, such as; hypertension, stroke, and
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arthritis, and every year about 795,000 Americans suffer a stroke, and 185,000 undergo major limb
amputation [34, 38-40]. In 2007 it was estimated that among adults in the United States (US)
adults, “nearly 27 million have clinical osteoarthritis and another 5.0 million have fibromyalgia”
[41, 42]. For example, a previous study determined knee osteoarthritis (OA) presents as a risk to
nearly 50% of the population [16, 43]. However, when a traumatic lower limb loss occurs, the
prevalence of knee OA was found to be as high as 27% (men 28.3%, women 22.2%) and of hip
OA as high as 14% (men 15.3%, women 11.1%) when compared with the sample cohort of the
general population [44]. This previous study compared the prevalence of such issues in age-
adjusted men and women in this cohort of healthy individuals from the general population and the
findings of knee OA were far lower than those with traumatic lower limb loss (men 1.58% and
women 1.33%) as well as hip OA (men 1.13% and women 1.33%) [44]. It was not found that the
level of limb loss decreased the risk and implies that clinical practices and prevention to reduce
the risks of OA are prudent in the limb loss community.

Gait dysfunction is lingering after current rehabilitation programs and treatment.
Deviations after Total Hip Replacement, a common intervention for hip OA, have been reported
to linger for one to four years [4, 6, 45-47]. Gait deviations after perceivably less complex injuries,
such as Achilles tendon repairs, are noted greater than 10 years after surgery [5]. Novice runners
are increasing in the US by approximately one million per year, and of those with lower extremity
injury and knee pain, 60% are returning to their doctor within a three to five-year period even if
they have received one of the current rehabilitation programs [48, 49]. However notably, a recent
study of runners with lower extremity injury demonstrated training with real time visual feedback

reduced the risk of injury one year later by 62% [49].



There are a variety of additional conditions which have been associated with problematic
and chronic gait dysfunction, such as; Parkinson’s, Anterior Cruciate Ligament (ACL) injury,
Patellofemoral Joint Pain (PFJP) and Limb Loss [8, 30, 33]. Individuals with limb loss, who
compile approximately two Million people in the US, present with similar deviations to the other
populations at risk of gait dysfunction mentioned previously [14]. Inappropriate load bearing or
asymmetry during gait in people with limb loss has been shown to increase the risk of OA
predominantly of the involved limb [44].

With the expected aging of society and increasing prevalence of obesity and other lifestyle
diseases, the number of people in need of gait training will further rise. For example, older adults
now comprise a much greater component of the population than ever before, and factors associated
with assessment and treatment of mobility issues are critical. In a recent study of 488 community-
residing men and women aged 60 and older, 32.2% of participants presented with impaired gait
[13]. In an earlier study of similar adults, gait abnormalities were associated with greater risk of
institutionalization and increased mortality rates [16]. Regardless of the patient’s age, gait
deviations increase the risk of joint degeneration [50, 51], accidental falls and reduced gait
economy [52], thus limiting mobility and participation. In a 2007 study, 59 Million Americans
reported back pain within the last three months [53], and chronic back pain is a risk factor

associated with gait deviations.

1.3 Gait Dysfunction in the Limb Loss Population

Gait dysfunction in those with trans-femoral and trans-tibial limb loss can lead to

degradation of the intact and surgical limb, causing a risk of OA and decreased bone density.
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Chronic compensation from dysfunctional gait patterns has been shown to have additional
consequences of low back pain and increased energy cost. Annually, 185,000 upper or lower
extremity (LE) amputations are performed [40, 54]. According to a 2010 survey, of the service
members with traumatic limb loss from Vietnam War and Operation Iraqi /Enduring Freedom,
78.2% and 90.5% respectively are using prosthetic devices to improve functional mobility [55-
57].

Evidence suggests that fewer than half of individuals with transfemoral limb loss meet or
exceed pre-injury levels of mobility within a year [58]. This denotes a significant need to provide
additional modes of Physical Therapy (PT) gait interventions to maximize and maintain gait
performance [1, 14]. More than half of lower limb prosthesis users suffer from pathological back
pain, with 63% reporting gait difficulties and 49% reporting pain in the non-surgical limb [59-61].
Fall risk is increased in prosthesis users, with 52% reporting one or more falls in the preceding
year [62]. Inefficient gait patterns, if left unchecked, can cause increased energy consumption and
decreased gait speed [23]. Once functional impairments begin to occur, including decreased gait
speed needed for crossing the street and decreased walking endurance to perform shopping tasks,
psychological consequences are not far behind [1, 63].

Rehabilitation following limb loss is a complex process involving physical and
psychological components [57, 64]. Rehabilitation of walking, and in those with gait difficulties,
involves the re-education of motor timing, and recreating automatic unconscious patterns. Pain-
related neuromuscular deviations can also become destructive.

Changes in spatiotemporal patterns frequently create inherent gait asymmetries in this
population. Musculoskeletal structures may be involved increasingly in performing roles in

stabilization or weight transfer during walking that they were not designed to perform, secondary



to the gait deviation. Therefore, of consideration should be the impact these gait deviations have
on pain. If these imbalances can cause overuse syndromes in the intact limb, as well as chronic
muscular and joint integrity issues throughout the trunk and hip, pain must be considered as a
possible consequence. = Accommodating the prosthesis, through hip hiking or vaulting for
example, can put patients at risk for pain in the intact limb, residual limb, as well as their back. In
a 2016 literature review of gait training interventions in those with limb loss >60%, report they
have experienced back pain secondary to these issues and almost 50% report pain in their intact
limb (IL) [65]. Nearly 95% of the individuals with limb loss surveyed reported experiencing more
than one type of pain in the previous four weeks, which was not limited to gait-related pain.
Phantom limb pain (PLP), as well as residual limb pain (RLP) that is a consequence of overuse
injuries from gait compensation, is highly reported and can be disruptive to gait training [59, 61,
66]. PLP was reported most often (79.9%) [65]. In this systematic review, the pain is not
inconsequential with those who reported pain rating it severe (7-10) on a 10-point scale. [65]. In
addition, 25% of those, regardless of the pain cause or type, reported it to be extremely bothersome
[65]. The frequency, duration and intensity of both PLP and RLP are related to levels of disability
reported by the Chronic Pain Grade [66]. One study reported that back pain may be an overlooked
problem after amputation, stating that 71% of their participants reported it as an issue [67].
Typically, these symptoms are seen in the preceding four weeks and this should inform follow-up
periods in research studies.

The long-term consequences of asymmetric gait and improper joint loading that have been
documented in patients with lower limb loss carry over into functional activities as well [1].

Decreased gait speed can also be a consequence of pain and asymmetrical gait. This begins to



deplete quality of life (QOL) as pain, whether PLP or RLP has been directly linked to decreased
prosthetic use [63].

However, very few studies have examined loading of the lower limb as a method of
intervention or feedback and training, to also improve deficits in symmetry [1, 68, 69]. Auditory
feedback as an augmentation to training has been applied to make the prosthesis user aware of
successful and more functional loading of their involved limb however, this was only discussed in

two additional studies [70, 71].

1.4 Gait Training and Rehabilitation

Gait performance and modification based on real time feedback of kinetic variables, versus
raw video or mirror, has been demonstrated to significantly improve problematic gait parameters
in patient populations with lower extremity orthopedic issues such as knee OA, and PFJPS [8, 21,
29, 30, 68]. Previous promising work on gait retraining has included the OA population, both of
the knee and hip, and the limb loss population [23, 31]. It is important to note that intervention
upon a gait deviation either in a healthy patient (eliciting more toe out motion during loading to
unload the medial compartment) or one with severe impairment can elicit meaningful effects, for
example a significant reduction in knee abduction moment for OA patients, or decreased pain and
dynamic valgus in those with PFJPS, all related to problematic biomechanical dynamics [6, 23,
72]. Therefore, if a dysfunctional gait pattern can be re-trained, perhaps we could not only avoid
further degradation of the low back or contralateral limb, but also restore neuromuscular support

and appropriate load bearing on the effected side [73].



It now appears critical to examine what mode of motor learning pattern may be most
effective. A recent review of different learning approaches highlighted observational practice,
focus of attention, feedback and self-controlled practice [74-78]. However, it has been reported
that learning theories are not typically practiced within the limb loss rehabilitation population [79].
Historically, the treatment paradigm has been device-driven and predominantly trial and error
without data related to optimization that end-users seek to maximize their return to function.

This study is addressing a reported need to close this gap between design, research, and
clinical treatment as it will test an intervention that is multidisciplinary in design and
implementation. The end-users in this case, those with limb loss, require expertise from a
multitude of disciplines, and although this may be more difficult, to collaborate in this way, it does
present a large potential for translational impact [80]. In summary, movement-related goals are
necessary when considering the training for use of the device and rehabilitation of these

individuals.

1.4.1 Gait Training and the Use of Feedback During Rehabilitation

Gait retraining with augmented sensory feedback has demonstrated the ability to improve
dysfunctional LE impairments and resultant gait deviations that can cause secondary
musculoskeletal issues [8, 23, 31]. Traditional sensory approaches include haptic feedback,
auditory and visual feedback, including mirror retraining, as well as raw video and large-scale

optical systems with instrumented treadmills (Figure 1) [22, 39, 44].
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Figure 1 Real Time Visual Feedback Constrained to Mirror Retraining. This demonstrates the limit and lack

of realism, and distraction the participant experiences.

Real time feedback, to enhance ecither kinematic or kinetic variables, has demonstrated
immediate and with longer-term and more rapidly acquired effects on several gait biomechanical
variables among various populations. However, very few studies have been performed within the
limb loss population [24, 31]. Studies including sports medicine injuries and/or OA have
demonstrated success with gait retraining using auditory feedback, as well as mirror retraining [22,
73, 81, 82]. Several studies have demonstrated retention of the pattern up to three to six months
[29, 83, 84]. However, in a recent systematic review regarding real-time kinematic, temporospatial
and kinetic biofeedback during gait retraining, only three out of seven studies reported follow-up
testing [85]. In addition, due to the expense and tightly controlled laboratory conditions of many
of these studies, the training is not being performed in a realistic environment where injuries or

gait deviations typically take place such as ramps, slopes, or unlevel surfaces. The use
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instrumented treadmills and motion capture systems to assess gait kinematic and temporal-spatial
outcomes of gait retraining interventions have also been a limitation of previous work as it limits
clinical translation.

With the continued influx of wearable sensors that have been deemed reliable and valid to
measure patient gait performance outcomes, we used commercially available technology to
provide gait evaluation, not only in a mobile fashion but also less expensive manner. This project
has assisted in development towards clinical usage with the advancements in the wireless mobile
application. This added functionality has the potential to provide clinicians with more accurate
and easier reassessments of clinical outcomes by providing additional functionality of remote
capabilities and quantitative data beyond qualitatively assessing gait when a patient returns

between visits.

1.4.2 Gait Training and Real Time Visual Feedback

Gait training with real-time visual feedback has demonstrated significantly positive results
as this allows the patient to receive immediate knowledge of their performance [8, 21, 86]. Visual
feedback has been revealed as the fastest integration into the motor learning system [74-76]. Real
time visual feedback follows the motor learning theory that internalization of a new neuromuscular
pattern is enhanced when the patient’s focus is directed externally. Video and mirror feedback can
be used; however, limitations include the lack of mobility, realism, and enough quantity of steps
the patient can review. It has been found that if a patient is being given cues that direct their
attention inward (versus externally to a color cue), such as “think about how your leg is swinging

forward” or “tighten your hip muscles”, that this actually hinders and neurologically “constrains”
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[87] motor learning (Figure 2). The patient literally becomes more self-conscious, at a

physiological level.

Figure 2 Illustration of PI (DPT) Applying Verbal CuesThis Figure Depicts the Participant’s Attention
Becoming Internally Focused, Slowing Him Down. This is Demonstrating the Deterioration of Automaticity

Secondary to Creating an Internal Focus of Attention (RTMVF Prototype V1).

Providing an external focus of attention, in a wearable mobile fashion, could facilitate the
patient to develop more rapid improvement in their error detection and correction mechanisms
which then more effectively become more automatic. Gait/running retraining with real time visual
feedback as an intervention has demonstrated promise in populations including those with Athletic
Overuse Injuries, OA, Parkinson’s Disease as well as Limb Loss with findings of improvement

within three weeks and retention of up to six months to a year [8, 26, 28, 88, 89]. This form of
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feedback has again traditionally been generated using a laboratory instrumented treadmill and

optical system (Figure 3).

Figure 3 Real Time Biofeedback Set-up for Training and Gait Modification TrialsPhoto M.A Hunt et al.

2011.

One recent study using a Head Up Display noted immediate effects on multiple parameters.
However, the population was heterogeneous and there was no longer-term follow-up [90]. This
form of feedback has demonstrated immediate effects from kinetic changes to more symmetrical
stance times during the gait cycle and improved energy consumption in individuals with limb loss
[91]. Real time visual feedback has been compared to raw video, mirror retraining and
computerized real-time visual feedback however, instrumented treadmills were used with no
longitudinal follow-up. Many studies in this arena were on healthy individuals and not a
symptomatic population, whereas our study examined a limb loss population that is truly

demonstrating a gait deviation.
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Rehabilitation training for individuals with limb loss typically involves gait retraining with
verbal and tactile cues from a PT [92]. This may also include modes of learning, such as
observation and demonstration as well as repeated practice or positive imagery. Typically,
clinicians in outpatient clinics are limited to the use of a mirror or video for visual feedback, which
have limitations in that only a limited portion of gait can be assessed for error and corrected by
the patient [8, 21, 22, 73, 93-97]. For more continuous or timed feedback, a treadmill must be used
however, this is not representative of a natural surface for training.

Real time feedback visual regarding peak vertical ground force and stance phase symmetry
has yielded improvements in gait symmetry in the limb loss population. However, as shown in
Figures 4, this was on an instrumented treadmill with a screen, and additional work has been scarce

[31].

Lab Floor

Building Foundation

Figure 4 Cleveland Clinic Foundation (CCF) Treadmill Set-Up for Real-Time Gait Analysis and Visual

FeedbackPhoto Dingwell et al, 1996

Improved function after shorter durations of RTVF training, such as two to six weeks, for

the Patellofemoral Joint Pain Syndrome (PFJPS) patient population has also been previously
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reported [29, 30]. All of these findings support the theory of an external focus of attention leading
to greater internalization of motor learning [74-78, 98]. Symmetry has been an issue in gait for
those with limb loss and as analysis has evolved from only qualitative to quantitative
measurements of temporal, kinetic and kinematic and combinations of all, the most prominent
asymmetries have been previously determined as shortened stance times and decreased ground
reaction forces [33]. The feedback variables of choice considered for this project follow this prior

evidence.

1.4.3 Feedback and Motor Learning During Gait Training

A primary criticism of recent studies is the lack of understanding as to what may allow a
greater internalization of the retrained gait and a resultant “naturalized” pattern [24, 84, 99]. This
study builds on the evidence found prior, by removing the feedback in a fade-out pattern to
improve internalization [30], as well as implantation of a systematic training protocol and an
external focus of attention (the effects of movement seen on the feedback display). These have
both been demonstrated as training strategies to improve motor learning, however, have not been
widely used in the limb loss population for gait retraining. If patients are relearning how to move,
they are recovering previously learned strategies or possibly acquiring new compensatory
movements [100]. Deliberate practice is advised to be combined with additional technological
innovations [79]. However, in the field of prosthetics, both in rehabilitation and research, it
appears the focus may be on advancing prosthetic technology, not on the training strategies [79].

With the previous evidence of improved function with decreased frequency and duration
of training, and greater internalization of motor learning, these studies demonstrated that the

external focus of attention has positive effects. They also found that it can increase retention of
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up to three months post RTVF treadmill training when a systematic training protocol is used with
the feedback and with a fade-out feedback approach to decrease dependency [29, 30] [74-78, 98]
[30]. It has been demonstrated in the literature that providing continuous real time feedback leads
to a decrease in actual learning and retention of motor skills. In these prior works, this decrease
occurs secondary to the learner becoming dependent upon that feedback. It becomes a substitute
for his or her own innate error-detection and error-correction capabilities [87]. Therefore, in this
study the faded feedback approach as demonstrated by Noerhen et al in the PFJPS population [29]
was implemented to avoid this dependence.

These approaches implementing real time feedback have both been demonstrated as
training strategies to improve motor learning. However, they have not been widely used for those
with limb loss for gait retraining [79]. At the time of a 2012 review, no published guidelines
existed for a consistent paradigm of care for those with lower limb loss, including how to use their
prostheses [79]. In another systematic review of exercise programs for patients with lower limb
loss, there was a trend towards increased improvement of resisted exercises and walking, however,
augmented therapy and feedback was not emphasized [101]. Rehabilitation studies for those with
limb loss have focused on individual tasks, or strength and flexibility. In addition, few have
utilized learning theories, particularly focus of attention, but rather practice, strength and
conditioning, and specific tasks [28, 68, 92]. If more variable practice is performed versus training
focused on individual skills, like donning or doffing the prosthesis, learners will become more
adaptable, and their ability to recognize patterns and make corrections will increase. However, no
published research at the time has assessed the feasibility and efficacy of applying variable versus
constant practice in individuals with lower limb loss [79]. Clinicians could use various types of

surfaces during gait training to create a more variable practice structure and that is a potential
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direction, if feasible, this intervention could proceed [79]. Physical Therapists commonly use
physical guidance in application of rehabilitation during gait training, which may be appropriate
in patients with limb loss for safety considerations initially, however this could hinder retention of
locomotor skills by creating dependence [79]. More importantly, no studies have been performed
to truly assess how feedback should be gradually reduced, or in what fashion, in this population
[79].

As stated earlier, an important criterion for motor learning and physical rehabilitation is
the transfer of motor skills to contexts beyond those originally practiced [102]. It was noted that
for continuous activities such as walking, variable practice has greater effects on internalization of
motor learning [79]. Given the research that demonstrates that those with lower limb loss have
difficulty adapting to uneven terrain, it seems reasonable to suggest that applying these theories of
variable practice, would be quite appropriate [78]. In addition, mobilizing the training may allow
for further progression to gait training involving varying speeds and terrain and will encourage the
learner to compare and contrast the methods and strategies used at each session [103].

When considering motor learning, focus of attention has become an important aspect to
training. The advantage of focusing on the outcome of one’s movements (external focus) is that
the performer’s attention is shifted away from his or her own movements and toward the effects
of those movements. The “constrained hypothesis theory” states that the focus of movement on
one’s own extremities promotes a more conscious type of control that constrains the motor system
and decreases or disrupts utilization of unconscious or automatic processes. An external focus
directs the attention of the learner on the effects of their movements (different walking strategies
changing the colors in their display vs. focusing on their own extremity alignments) and reduces

their attentional demands [74-78].
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1.5 Conclusion

With the introduction of wireless abilities to provide sensing feedback from the prosthesis,
rehabilitation research using RTVF could be projected into a multitude of exciting avenues. Ease
of use and restoration of ambulation significantly predicted continued use of the prostheses in past
studies and therefore implies the importance of the knowledge of gait retraining. [104]. Thus, we
hypothesized that providing practice of adapting a participant’s gait in response to visual cues,
outside of controlled settings, would improve walking, particularly symmetry and endurance.
Previous methods of providing the external visual cue have been mirrors, projection onto a screen,
while on a treadmill or in a lab setting. Our system, we hypothesized, may demonstrate feasibility,
and efficacy in providing these cues in a more realistic manner and independent of the
environment. In preparation for future larger trials, our aim was to preliminarily test the efficacy

of delivering real time visual feedback for feasibility and calculating potential sample sizes.
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2.0 Development of Real Time Mobile Visual Feedback (RTMVF) System

2.1 Introduction

The primary goals of the initial prototype RTMVF VO were to design a system that
provided a patient visual feedback cues that were derived from an integrated load cell within the
limb. The integrated load cell had available wireless, or very low profile and modest wired
capabilities. The overall goal was to design a system based on the iPecs Sensor (College Park
Industries, Fraser, MI) to provide real time feedback based on the kinetic data the sensor could
provide. Discussions were conducted with the engineering team of the iPecs and many
modifications were considered to obtain the high-quality data from the sensor. The purpose of the
development included how to efficiently apply custom algorithms to the data, in real time, without
creating excessive overhead in terms of computing burden and delaying the system. Figure 5
delineates the decisions that were conducted in the development process. The first step in the

process was to have our first participant to train with and without verbal cues and gait corrections.
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Figure 5 Initial Conceptual Framework Challenges and Connectivity

The goal was to then analyze the data compared to the cues and to determine what variables
could not only be derived, but also be used as visual feedback. Real time feedback should not be
overly complicated, nor should it demand upon the physiology to adjust too many training
parameters at once. The initial idea was to compare what variables changed significantly when
the clinician noted “good” on the video of the gait trials and to find ranges in corroborating kinetic
data from the sensor that could be used as a feedback variable. If the range was determined to
signify too low of an amount (for example Fz/axial force), too high (overcompensation) or the
ideal range this would inform the decision to trigger the visual feedback cue. The color would
then be chosen to signify a meaningful cue to the patient. For instance, if a variable related to
loading the limb was too low, the color would be red, ideal would be green, and initially it was

decided yellow would be a warning of overcompensation. There were issues that occurred with
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this ambitious development, as the sensor did not have a time stamp and it was very difficult to
synchronize the participant’s steps with a graph of the vertical ground reaction force (Fz).

Initially, to determine the timing and accuracy of the color changes on the glasses display
(based on step detection and the %stance calculated from that step) and wireless connectivity
potential, the iPecs sensor was connected via Universal Serial Bus (USB) cable to the ultra-mobile
portal computer (UMPC) where the real time calculation for gait events was performed. The Vuzix
Smart Glasses (M100, Vuzix, West Henrietta, NY) were connected via Wi-Fi and screen sharing
was implemented to determine if the glasses would change color appropriately with the change in
Y%stance and to quantify delay (Figure 6). The connectivity of the Wi-Fi was inconsistent and the
was a delay (greater than 800milliseconds) from the timing of the calculation shown on the screen,
to the time the color was changed on the glasses and this was deemed too long (greater than 1
step). However, it has been reported that motor learning can be improved when knowledge of
results (KR) is provided with a slight delay following the completion of the movement. It is stated
that this allows the learner sufficient time to first evaluate his or her own movement strategy before
then producing their own error estimates [79]. Therefore, some delay was not altogether harmful
to the potential efficacy per these reports.

This prototype did allow us to see that we could provide rudimentary communication to
the glasses from changes in loading the prosthesis integrated system. Furthermore, it was
demonstrated successfully that changes in colors in the glasses could occur secondary to
corroborating steps detected by Fz and calculations of %stance This was completed using a JAVA
application with a C++ pipeline from the sensor to the JAVA program that communicated changes
in colors in the glasses based on the single threshold algorithm using a 10N singular lower

threshold crossing. The 10N threshold was based by previous work using the iPecs Sensor where
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heel strike during stepping was found reliable at a lower threshold of 7N [36]. Give the exploratory
nature of the initial prototype the lower threshold was raised to ensure the prosthesis was being
loaded during a heel loading event. It was deemed early on by the PI that the color change was
easily seen, not distracting, and the screen of the glasses did not obscure the patient’s vision and
potentially obscure foot placement obscure foot placement [105].

In the next iteration of testing, the step detection algorithm was tested for reliability and
accuracy by testing on a prosthesis modified to be worn on the bent knee of several able-bodied

testers.

Integrated i1Pecs
Sensor Fiedler et
al 2014

UMPC and the glasses. Real time feedback was relayed from the iPecs sensor after transformation by our
custom algorithm into percent stance warnings. The PI was in parallel bars for safety only, secondary to

kneeling on the pseudo-prosthesis, whereas the goal end-users were fully immersed in prosthesis.
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2.2 Development of V1 Prototype

2.2.1 Data Flow, Hardware Design, and Connectivity

There were many design considerations that were considered towards the development of
a prototype that could move beyond screen sharing given the limitations of Wi-Fi use (Figure 7).
In addition, the algorithm appeared to have a delay greater than 800ms and need additional
criterion to improve accuracy of detection of gait events. Therefore, progression was made to
Prototype V1. Both prototypes receive data from the iPecs sensor, however given the testing
outlined in subsection 2.1, using Wi-Fi was not a tenable solution given the need for a self-
contained system that could be truly mobile. BT would provide this. In addition, screen sharing
was going to create too long of a delay (greater than 800ms) and the %stance calculations using

the single lower threshold was not depicting acceptable color ranges.

24



Wireless (BT, Wifi)
screen change -

Figure 7 Design Concept Diagram of Proposed V1 Prototype.

An integrated sensor may allow more expansive gait analysis than qualitative or mobile
phone based programs, or basic software options available currently in the clinic and creating a
system where the feedback is provided on smart glasses, may provide even more individualized
training than relying on data that is collected externally and post hoc from accelerometers, or
pressure sensitive mats. The iPecs consists of a lightweight, small (4.57cm H x 7.1cm W x 8.1cm
D) [36], six degrees of freedom (three forces and three moments) force transducer designed to fit
easily into a lower limb prosthesis.  The first step was to determine connectivity options based
on the design criteria:
e Hardware connectivity must not be restrictive or cumbersome to users.
e Connectivity between sensor and the smart glasses (M100, Vuzix)must allow for real time

speed
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e Application of calibration matrix without extra debugging hardware needed to be included.

e User software must facilitate adequate computing speed, as well as modifiability and
accessibility for the clinician to adjust parameters for feedback to user and data collection.

e Variables should be detectable by sensor and meaningful for the patient

e Data processing and feedback generation must, when calculating the variable and feedback
signal, not create too much of a delay (e.g., waiting until next heel strike is confirmed)

e Have an ideal range from which intuitive feedback that is simple given smart glasses
design, can be provided to the user.

Figures 8 illustrates the decision-making process to meet the above criteria.

Second Raw Data
Wireless Connectivity Test Subject 1 Tested time domain

Real Time RealTime Program
Implementation Development Development
: -
Accomplished [
s
- -~
ST T T T T T - -
) _ | Initial Raw Fz Data 1
implemented finding | Algorithm | Raw Fz from
eaks in c++ to use ;
inftiated protocol |!11Eu|t £2 ue feedback -h, Develogm&nt I Unknown Subject
draft for program |
reguirements during | s d I
evaluation channe ,dw?re rea |
in and time |
computed, sampling I
. 100Hz I
initially read 1 '
sample packetata ;
time
o — I Real time code - g
mplemented sample Hardware Options | required Windows7
from RTC 1o read and Development and C++
sensor data off the

sensor using C++

only in visual studic \ Initisted Coding in

C++ (Matlab would
not load G++matrix
uired by sensor)

]

G++ libraries from

RTC
E—

Communication from
Sensor in Real Time

Figure 8 Development of custom software and connectivityFz (axial force), RTC (iPecs manufacturer).
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To achieve that goal, a connection system had to be devised to most quickly assemble a
prototype yet remain as unobtrusive as possible in connectivity between the sensor, data processor,
and the visual display. The traditional use of the system uses a Data Collection Module (DCM)
amplifier that is connected to a computer, and the software from the iPecs software graphs of the
six signals. The six signals include the three degrees of freedom and therefore three torques (about
the medial, lateral, axial planes) and three Forces (X, y, and z planes).

The device is semi-permanently installed as part of the load-bearing structure of the limb

prosthesis connecting to the rest of the device using standard adapters (Figure 9).

Figure 9 PI Turning on the Sensor for Testing after Prosthetist Installation.

The orientation of the axes for the sensor are vertically pointing axis (Z+ upward and
parallel to the pylon), anterior and posterior pointing Y-axis (Fy+ forward and perpendicular to

the pylon) and a X-axis that is Fx+ to the right and Fx- to the left perpendicular to the pylon
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(Figure 10). Moments are produced and calculated using Right Hand Rule. For example, a
positive Mx+ was considered as counterclockwise as viewed from the left (during toe push off) an
Mx- is produced by heel loading. A My+ is counterclockwise when viewed from the front (Knee
abduction if right leg as above) and Mz+ was considered counterclockwise from above. Data
collected by the sensor originates from a coordinate system located at the center of the sensor and

therefore the system rotates and translates with movement of the prosthesis [36].

Mz+ counterclockwise when Proximal

viewed from above

Posterior (Fy-)

My+ during entire time foot planted

Fx+ (Lateral Right) 'e /S]]

Anterior (Fy+)

Fx- (Lateral

Left)

Mzx+ counterclockwise toe off My- at toe off

Fz- Distal

Figure 10 Coordinate System of the iPecs

Data can be streamed to the PC, but only processed post-hoc. Therefore, the protocols for
accessing the live data from the sensor itself had to be procured and a program to retrieve these,
process them, and determine a variable to provide feedback upon, had to be designed. The design

goal was met by creating a neoprene slim fitting pouch that contained the UMPC and fit snugly at
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the low back. A single, lightweight USB cord extended from the sensor to the UPMC.Connectivity
between the different components is via a USB cable between the load cell and the ultramobile
PC, and via BT to the smart glasses. In this configuration, the lightweight computer is being carried

in a pouch on a waist belt by the user (Figure 11).

A\l P
Figure 11 Application of Dell Ultrabook in Neoprene Waist Pouch

2.2.2 Feedback Design and Display V1

Initially the Google Glass (Explorer Model, 2015) was proposed, and initial concepts
included screen sharing the graphs from iPecs Lab software, however it was found that Google
Hangout no longer existed for screen sharing, and the glasses design in itself was prohibitive of
allowing forced visual information. Initial findings were that no screen sharing applications were
available. In addition, since the google glass design was not that of a virtual reality view but rather
in essence a peripheral screen, it did not seem feasible to provide what had been demonstrated in

previous literature as a more immersive experience, with large screens.
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Initial research of smart glasses alternatives and choices to be used was based on the
following criteria:
e Battery Life
e Wireless connectivity preferably BT
e Not dependent on external device/controller such as a phone
e Android Application Programing Interface (API) level to allow for ease in development of
image user would see
e Ability to change display placement over (right or left eye)
e Lack of reflection — Usability in bright environments
e Unobstructed view of foot placement (some glasses had inferior placement of screen)
e Promising future of progression
The final choice of Vuzix M100(Vuzix, West Henrietta, NY) was made because the model
fit the above criteria, were award winning and a more advanced powerful design was going to be
released within a reasonable timeframe with significant functionality and user upgrades
These smart glasses contain, positioned at the fringe of the user’s normal field of view, a
small-sized display, the contents of which are signaled to change via BT based on the step data
calculations regarding the primary variable of interest (in this case percent stance). The display
has a resolution that is comparable with small computer screens, yet its position and intended
purpose in our context advises against the conveyance of very complex visual information.
Therefore, the simple color warnings were used.
A “warning” approach was determined to be the ideal method of feedback delivery in that
it was simple, intuitive (red, yellow, green) so as to cue the participant if they were starting to

ambulate in a manner that was not loading involved limb correctly. Given concerns related to
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providing real time visual feedback that did not create cognitive overload, and that it was a
peripheral placement, the idea of a simple color-coded signal of harmful gait was undertaken.
Other ideas included hardwiring the glasses to the UMPC as a second screen, but this was found

to be too risky for the hardware integrity.

2.2.3 Algorithm Development

The algorithms for step detection and assessment were initially hardcoding of peaks and
lower threshold crossings in Fz using the programming language C++. However, due to error and
difficulty with visualization, which limited the immediate ability to determine the generation of
the gait curve and its accuracy, and given this would require extensive initial programming in the
C++ language, a post processing analysis was performed to determine which algorithms would
provide the least error. Given this kinetic data and force and moment curves, MATLAB
(MathWorks 2015b), was chosen to first develop the algorithms as large amounts of data can be
easily visualized and complicated calculations can be performed quite quickly. Initial algorithms
were based on axial Fz (in the time domain ) as this variable has been validated against force plate
data [36].

Data from a previous study [36] was analyzed post-hoc for patterns to determine the best
method to create a step detection algorithm. Approximately 10 steps of Fz raw data from an
unknown subject was analyzed with MATLAB for mean Fz over the duration of walking. Then
the mean value was designated as threshold and subtracted from the peak values to create a zero
axis. The program was written to find where Fz crosses this threshold and then find the slopes
(derivative of Fz) at those points. Steps were detected based on the rising slope and falling slopes

of Fz data points about these zero crossings. Peaks were identified as the local maxima located
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above the zero crossing behind the mid-point and in front of the midpoint. The slopes at this mean
point (zero crossing) were then used to find the lower threshold crossings (initially set at 7n based
on previous work by Fiedler et al. [36] This threshold was refined and increased to 15n.
Interpolated values of 15N could be found and this time would be the heel strike. Toe off was
found in the same way by finding the location of the first falling slope and interpolated to 15N and
the time of that final fall was deemed Toe off.

Initial calculations done without interpolation of exact 15N crossing over estimated percent
stance phase by 1.5-2.46% overall. Oscillations in the force signal during swing phase would be
classified as threshold crossings and this was not valid. Interpolation to exact 15N and
implementing a second higher threshold improved specificity of step detection. If a sliding average
was used over the whole Fz signal, the % stance variable would increase in variability by 2-3%.
Therefore, interpolation was implemented over initial smoothing of the raw data. The onboard
sensor software was performing averaging of readings before each data packet was sent from the
sensor at the selected sampling rate, and the data was filtered enough that with interpolation our
step detection events were able to be identified. The noise peak to peak amplitude was quantified
at approximately + 3N. Therefore, the lower threshold when raised for initial algorithm testing to
15N, ensured gait events at the lower thresholds were more reliably detected given the initial
exploratory phase of algorithm testing. Established methods were implemented to validate the
detection of steps by the real time program however, the low pass filter that exists on the iPecs is
akin to force plate filtering. It was decided that with the hardware and software filters that were in
place, no additional filtering was used in the real time program.

After Institutional Review Board (IRB)approval (# PRO15120426), an initial participant

was asked to walk under several conditions with and without guided feedback, with the iPecs
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sensor installed. The iPecs sensor was calibrated. Data received from sensor over iPecs data
transmission protocols was stored in Comma Separated Variable (CSV) format. Initial analysis
was done on raw data using MATLAB to determine heel strike, loading, and toe off from the iPecs
Fz Channel. The second iteration of algorithms tried to be predictive in when steps would occur,
(for example trying to assume every 0.5 second a heel strike would be found), and we would
display a certain number of seconds of data at a time on the screen graphically. We started with
five seconds of data was displayed at a time to allow steps to be correlated with video (Figure 10).
However, this did not work as the sensor was operating over radio frequency, which could cause
some drift, and drop out (which later was rectified in further development described below) and
there was no initial time stamp on the sensor where we could identify as specifically with a video
time stamp. In addition, the video frame rate was 30 frames per second and the sensor was
sampling at 100Hz and the steps were difficult to correlate. In addition, this logic would cause
some large steps to be erroneously detected as more than 1 step and when multiple peaks would
be found this would also create this erroneous detection. Therefore, the algorithm for step

detection was then re-evaluated and rewritten based on new data (Figure 12).
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Fz versus Time
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Figure 12 Second Iteration of Gait Event Detection SystemCorroborating Steps as Measured by Fz Data to

Video

The algorithm was changed to ignore steps if no area under the curve was calculated, or if
any of the step detection times were equal, the step be ignored. This eliminated 11 artifacts that
were single peaks, and the error rate improved from >10% to 3% (Figure 13). Video and written

documentation of “good” steps was used to validate step detection.
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Figure 13 Sample of gait training trial 3 with MATLAB Fz graph output The heel strikes (red) and toe off

(green) and peaks (black) are demarcated as determined by algorithm 1. Red arrows indicate Fz artifacts

removed from algorithm calculation and detection.

The architectural framework of the final system that was RTMVF is depicted in Figure 14.
The work on the development was published for the International Society for Prosthetics and

Orthotics World Congress [106].
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Real Time Feedback Framework
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Figure 14 Architectural Framework of V1 Prototype RTMVF System The colors above correspond to <
58% overall decreased stance on the limb - Red (Percent Stance Phase calculation), between 58% and 63% -

Green “ideal”, >63% - Orange “excessive double limb stance”. These colors correspond to percent Stance

Phase calculations. Development Prototype V2 (Android Wireless prototype)
2.3.1 Introduction

The primary function of the RTMVF prototype was to enable unencumbered gait training

in a self-contained system that could be used by the individual over realistic terrain. To fill the
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gap in the current research and training paradigms, the purpose of this development was to progress
the system to one that can become truly mobile and apply the methods of motor learning “in the
wild”. The purpose then of this development was to fully realize the potential of wireless gait
training. Therefore, a similar integrated load cell (sensor) that was also installed within the
prosthesis, however, was wireless and provided data streaming over BT versus USB was procured.
We replaced the iPecs with the Europa+ (Orthocare Innovations, Seattle, WA) a wireless integrated
load cell. The Europa, is a lighter, and smaller integrated force and moment sensor measuring

37.5mm x 64mm x 79mm (1.48”x 2.52”x 3.11”’) and weighing 275g (9.68 oz) (figure 15).

In conjunction with the migration to a wireless integrated force sensor, a mobile application
(app) was developed that could downsize the data processing and implement clinician and user

preferences. This also included the possibility of remote accessibility and training.

Figure 15 Installation of Europa+ Sensor into Pylon by Prosthetist (Co-I)
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2.3.2 Design Criteria

Listed below are the design and development goals of the V2 (Version 2) wireless

prototype.

Usability and Patient and Clinician Preferences

e Refinement of system in response to initial feedback from outpatient Physical Therapists
(PT)s, and Beta subject testers

e User-friendly functionality implemented in mobile app for patient.

e Usability testing and iterative design refinement with eight new subjects to achieve

usability of at least 68% on a System Usability Scale (SUS).

Mobile App Functions

e Transfer code to mobile application as interface to remove middle processing component
on patient.

e Bluetooth (BT) communication

e Mobile ability to start/stop program, store step/raw data at the end of training session or
evaluation session.

e Physical Therapist (PT) evaluation tool for initial option to set individual “good” steps for
each patient to be their own gold standard

e User-friendly mobile interface with options to adjust the program, algorithms, thresholds,

and patient specific anthropometric data for accuracy of feedback.
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e Confirmation Tool of feedback color participant is viewing simultaneously for

PT/Clinician during training to ensure PT guidance is correlated to desired visual feedback.

2.3.3 Methods

To assess step detection, percent stance, stance time and step time, the MOVIUFIT
prototypes V1 and V2 migrated to a wireless integrated sensor (Europa, Orthocare Innovations,
Seattle WA) for the axial force component needed in the algorithm. Collecting and processing
the data was performed by our custom-made application (MOVISUFIT) designed for a mobile
android phone. This algorithm and data processing were migrated from the previously validated
and reliability tested C code into a Java program to run on a phone. The raw axial force data and
the subsequent calculations were stored locally on the device via Bluetooth and remotely on a
server through WIFI communication. The MOVISUFIT app performs analysis in real time and

stores the data once “stop” is initiated on the phone.

2.3.4 V3 (Version 3) Algorithm Refinement

The initial migration from C++ to Java caused some errors in the assignment of the states
defined in our algorithm. There were two issues — regarding the lower threshold and the most
accurate detection of the gait events captured with initial contact or final loss of contact from the
floor. Initially, immediately following the migration to Java, if during the time phase between toe
off, and heel strike, if the force travelled above the lower threshold and then back down again, (as
could happen secondary to the weight of the prosthetic through the swing phase of gait creating
false rises above the lower threshold) this was being assigned as either to a zero, or back to the

39



initial state of the state machine of the algorithm. Therefore, to create the algorithm to be robust
to this noise at low signal levels, the state machine was altered to simply reset to the previous state
it was 1in, rather than assuming a “zero” state. This is essentially telling the algorithm to wait and
stay in the state for which the criteria have been met, and once all the events occur, then further
criterion was in place to accept or toss the resultant step. This allowed the algorithm to be able to
handle the transitions from loading to unloading. Figure 14, portrays visually the required
corrections and the resultant smoother system of states. It was corrected to be able to detect that
if the lower threshold was crossed upward then downward, both in transition from states 3 to 4 and
4 to 5 (Figures 16-17) the algorithm would reset to the previous state and wait for the rules of the

next state versus assigning the gait events to 0 which was occurring.

Cross Upper Cross Upper
threshold threshold down

Cross Lower Cross lower

Threshold up Cross lower threshold up
threshold down

Initial State 0, data
begins streaming

Heel Strike Heel Strike

Figure 16 Step Transition diagramDefinition of States as Fz Travels Through Gait Cycle.
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The solution was also to create an initial state and define that as the beginning of the gait
detection cycle. By including this state, the algorithm predicted a spike in the signal that occurred
very early in the data streaming from the Europa sensor. To not have this erroneously counted as
the initiation of step, this new “initial state” definition assisted with filtering out erroneous steps.
As seen in the diagram below more specifically, it was necessary to differentiate between state 0
and 4. Also, state 4 could be assigned as an initial state, as it is down near the lower threshold.
However, this will not work because if you are in the stepping sequence where in the loop you
have arrived at state 6, and we define our initial state as state 4, then the load has crossed the

double thresholds, and the algorithm would incorrectly conclude that a step has occurred.

Upper threshold

Lower threshold

Figure 17 State transition DiagramDiagram Depicts the Improvements in Detection of Steps from the Fz or

Axial Loading Force

Another example is if the system is in section 6 of a step loading cycle, and you do not

have any initial state defined, then the algorithm may consider the interval between 1 — 4 as a
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candidate step. This was solved by this definition of the initial state as well and another check was
put in place during state 4 of the gait cycle detected by Fz. The algorithm is continuously needing
to check the candidate step against the criterion that we have designed, to ignore steps that are not

walking or should not get feedback.

2.4 Results

2.4.1 Visual Feedback

The smart glass model was updated to the Vuzix 400, (Vuzix, West Henrietta, NY) which
provided more adjustability and battery life (Figure 18). In addition, the feedback color for the
increased stance phase (too long) was adjusted from yellow to orange secondary to reports it
looked lime green and orange was preferable. Also, when participants were producing steps that
were not actual steps or did not meet our criterion, grey was provided as feedback instead of the
visual feedback remaining the same color as the previous step unless triggered to a different color.

This correction made the feedback more accurate and less confusing.
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Figure 18 Participants Testing Updated Vuzix Smart GlassesPI adjusting glasses and starting custom app on

the glasses. B-C) participants adjusting and starting their glasses for gait training, D) Co-I as he is adjusting

the sensor in prosthesis. This diagram illustrates the participants wearing and adjusting the latest version of
Vuzix smart glasses which improved portability comfort and usability. The new M400 model glasses by

Vuzix could be used on either side right or left, were more balanced in weight, and more easily adjustable.

2.4.2 Algorithm Adjustment

Figures 19 and 20 portray the new Fz or axial force curve, and step detection with the
wireless sensor. The heel strike and toe off interpolated times are delineated in orange and grey —
orange is heel strike. This sensor measured in KgF (Kilogram force) units versus N (Newtons)
and even though it appears the detection of events is satisfactory, here the sensor was not tared
correctly. A development priority was to ensure the step detection and determine the appropriate
signaling required to calibrate the sensor as a zero baseline would provide more accurate time of

lower threshold gait events.  This could have affected the calculations of some of the stance
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duration times, creating increased variability. The improvement in the tare function lowered the

thresholds (Figures 19 to 20) so gait event detection became more accurate.
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Figure 19 Axial force vs. Time Graphical Display Reliability and Validity Data Axial Force vs. Time Gait
Testing Data from a Participant During Reliability and Validity Testing with Heel Strike and Toe Off Times
Being Validated Graphically. The Heel Strike and Toe Off Interpolated Times are delineated in Orange and

Gray — Orange is Heel Strike.
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Figure 20 Interpolated times to 5 KgF with the zero baselineCorrect Zero Baseline Function Working in
Software, the Detection Events are Improved in Accuracy as Seen by the Orange Heel Strikes and Grey Toe

Off Time Much Closer to the Lowest Point of Actual Increase in Loading on the Sensor Increasing the Curve.

2.4.3 Evaluation Methods

The wireless system was extensively tested by the PI and team members using a pseudo-
prothesis as seen with the development of the VO prototype. This was used to first establish the
transmission of the data wirelessly in the new programming language (JAVA) and then applying
the appropriate hex code provided by the Orthocare Innovations company to communicate with
the sensor and calibrate. We built the app from there using the pseudo prosthesis to establish step
detection and communication from the phone to the smart glasses using the same BT
communication as previously established. The new algorithm was tested in this way with team
members extensively and absence of delay after heel strike for triggering the color in the glasses
to change was ensured prior to participant testing.

Once this was established two individuals, both with transfemoral limb loss, assisted with

the development of the connectivity and algorithm testing in the V2 wireless prototype. In
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addition, through the training process, the output (step data) from the algorithm was repeatedly
assessed to ensure accurate step detection and calculations of %stance. Patient preferences
towards user interface on the android screen were accounted for and implemented. Participants
underwent the initial baseline assessment as described in chapter 3 which included walking at a
self-selected speed for short 30m distances in a level hallway. The addition of the screen for the
clinician allowed confirmation of each step detected and the color provided, and the DPT was able
to ensure that the step counter matched the steps taken. Once it was determined that the algorithm
was detecting steps accurately and connectivity was able to be maintained, the participant returned
for their training which is outlined in chapter 4.

The Europa+ sensor was installed in the prosthesis and the android phone was connected
over BT to initiate data streaming. The participant was instructed on how to use the glasses, and
the colors they would see. A DPT walked with the patient first, through level hallways only, to
determine that the system was detecting steps by observing the rate of detection on the android
phone app screen (custom MOVISUFIT app). This was to ensure that the color change was not
delayed from the second heel strike of the involved leg (with the integrated sensor) and that the
colors appeared correct given the expertise of the DPT in gait analysis.

Initially, this first session of training with the new prototype was accomplished with a
standardized set of instructions explaining to the participant what the red, green, and orange
signified when displayed in their smart glasses. This was associated with apparent gait deviations
depicted initially. In this first session, the DPT employed verbal cues, demonstration, and clinician
guided tactile cues. The end of the first session (15 minutes) was concluded with practice trials by

the participant to ensure safety and continuity of the feedback system.
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Post-hoc analysis of the data processed by the app which included custom “step data”, was
performed to ensure the calculations were accurate and corroborated with the raw data from the
sensor’s Fz output which was used for step detection. Time stamps of the gait detection events

output by the android app were corroborated with the raw data.

2.4.4 Development of Mobile Android Application

The improvements to the mobile phone app touch screen user interface significantly
improved ease of use, and notably, patient enthusiasm. A function was added to the interface, as
initially there was no method for participants to see if they had made progress that day. Therefore,

29 <¢

a new application was made computing averages of “reds” “greens” and “yellows” for the

participants to immediately see their progress from the previous session (Figure 21).

Figure 21 Improved User Interface of Android AppImproved user interface of Android app in response to
participant feedback. The number of reds, greens, and oranges can be seen by the participant, or clinician
which was reported as “motivating”. In addition, below are %/’s of each color and were totaled once each

session was completed so participant could receive feedback regarding their performance.
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No longer having to carry a computer at the low back was much easier and felt more natural

for the participants (Figure 22).

Figure 22 Participant Training with Wireless Capacity.

The ability to change thresholds and parameters in midst of training was extremely helpful
toa clinician to ensure that the participant is receiving appropriate feedback. The participants have
different prostheses and they had different gait deviations. Therefore, it was required to be able to

adjust their step detection thresholds during training (Figure 23).
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Figure 23 PI adjusting thresholds

2.4.5 Limitations

Bluetooth connectivity was a key issue and noted complaint in the usability surveys. The
sensor software was initially advertised as open source to be able to stream and process the data
live. However, the libraries were not provided for true wireless connectivity without a dongle. A
basic BT connection was established connectivity was still not as consistent as desired and is a

focus for future development.

2.5 Cloud and Web Portal Development V2

The goal of further developing the system was to achieve the ability to receive and modify

that participant data and feedback remotely, and not rely on the phone memory and lay the
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groundwork for potential future studies that would allow the participant to try the system at home.
In addition, through customer discovery related to commercialization efforts it had been
discovered that clinicians desired a way to remotely monitor and check in on how their patients

are doing with office visits frequently having to be spread over time (Figure 24).
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Figure 24 Design for cloud abilities and remote training.

Cloud storage was added to the Mobile Visual Feedback In real Time (MOVISUFIT)
system as a solution to storage limitations, automaticity of data visualization and feedback
effectiveness monitoring, but also with the goal in mind that a website could be created in the
future that ran calculations the patient desired to see about their progress. The cloud database
enabled the MOVISUFIT system to be adjustable remotely by clinicians, and in the future, there
will be the possibility for patients to log in and have access to graphs and visualization of their
progress. The cloud database was designed and built to visualize the data and patient performance
quickly and easily. The advantages of using a cloud database are that it 1) allows the system to

expand storage easily and perform backup and 2) facilitates a web application that is accessed by
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participants and researchers to perform data analyses and visualization from remote locations.
Potential limitations with this method, however, are ensuring security is strict enough that HIPAA
violations would not occur, and therefore only research team members had access to the data, and
it was identified by subject ID only. To also thwart this issue, no personal information was stored,
only kinetic or kinematic data.

In previous prototypes, the researchers needed to extract the files from the computer as csv
files and convert them to excel files to perform analyses. In the V2 prototype the data was all stored
on the Samsung phone device and needed to be extracted in the same manner. A disadvantage to
the earlier versions is the demand to have the user and the clinician physically in the same location
post training, to access the data within the computer (V0) or smartphone (V2). Also, once the
dataset becomes large, offline analysis requires extensive time to compile and perform
calculations. However, in the V3 prototype with the cloud data base added to the software, settings
were developed to better enable clinicians to perform subjective gait analysis, to identify potential
feedback variables, and retain patient-specific parameters for the gait feedback variable and
adjustable threshold settings, for example, facilitate this functionality. The MOVISUFIT app can
upload the gait training and feedback data into a server for data storage and backup. The web
service can be used to extract the data from the server and perform the data visualization on a
webpage for clinicians. This web service would enable the clinicians to adjust the feedback

parameters in the MOVISUFIT app remotely.

2.5.1 Methods Cloud Database Development

Google Firebase is the web service where the prototype website was constructed for

the MOVISUFIT portal, which runs on google cloud platform behind the scenes therefore, we used
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the operating system provided by that system. The data transmission method between the google
cloud firebase and the MOVISUFIT app was a web protocol with reasonable restrictions for initial
development. Google provides a high level of operational abilities therefore it was a simpler level
to initiate this type of database storage and remote abilities for this prototype. The Android app
stores different variables into different tables in the database system, which was created in order
to allow the team to customize coaching parameters remotely. The MOVISUFIT app creates the
original coaching parameters and this file is uploaded to the server when the app first executes. On
the server side, the clinicians may adjust the feedback parameter and step detection threshold
information as well as adjust the thresholds that determined the color and quality feedback seen
by the patient. We saved the feedback parameters and other clinician settings on the database as
well as the app.

The app checks the file on the server each day, and the feedback and step detection
thresholds and parameter will refresh if the file on the server is different than the file in the
MOVISUFIT app. When the app starts, it will fetch the clinician parameters from firebase and
update the values on the app. If the clinicians change the values of the parameters on the app, they
can “save & upload” to save the parameters to the firebase. The variables selected to present
with the website portal included all of the gait variables we calculated through previous
prototypes including: Heel Strike and Toe off times, Step number, %Stance, Stride Time Duration,
Stance Duration, Peak Axial Force, Peak Medial or Lateral Torque, Area under the Force Curve,
and if the system was paused, the reason for the pause was inserted in the table. The calculations

and processing for these values are performed in the mobile app during the gait training.

52



2.6 Conclusion

The development of the wireless prototype was successful in implementing the design
criteria and acting upon the trends of patient preferences. The findings of this development and
beta testing gave us imperative information on preferences for training, feedback, and usability.
The ability to quickly accommodate to differences in gait was critical to build the prototype system.
Future work goals are to apply improved connectivity solutions and potential upgrades in smart
glasses where the visual feedback is more integrated into the lenses themselves potentially
reducing cognitive demand. In addition, considerations towards one participant’s suggestions such
as a game-like application which does have promise. During Customer discovery via Second Gear
during an APTA conference, many new applications were applying this game approach, and it was
motivating to use this type of feedback that was more of a game-like experience. It continues to
be determined however, if this is applicable in the gait or running rehabilitation or performance

setting.
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3.0 Reliability and Validity

3.1 Introduction

Gait Analysis provides clinicians valuable quantitative information beyond what is
subjectively and qualitatively possible. Typically, Physical Therapists rely on observational gait
analysis or mobile apps that have not been validated, to provide some form of assessment or in the
case of mobile apps quantitative data. Based on extensive customer discovery during a three-day
conference with the American Physical Therapy Association (APTA), we found that the majority
of PTs are either interested in using, or are already using, mobile app-based systems for gait
analysis. Observational or subjective gait analysis has poor to moderate reliability and validity
[107]. Gait Analysis can provide valuable information to indicate areas of improvement when
justifying treatment protocols towards reimbursement, or to gain understanding of a patient’s area
of dysfunction and target the treatment appropriately. Gait analysis and its feedback can provide
relevant outcomes for the limb loss population, particularly spatial-temporal outcomes such as gait
speed and symmetry, as well as energy conservation [23, 31]. Temporal-spatial gait parameters
have been shown to be significant indicators of injury/disease, falls, and quantification of the effect
of interventions which allows clinicians to justify and measure treatment efficacy [108]. In
addition, wearable systems consisting of inertial motion sensors, in-shoe force sensors, smart
glasses, and integrated sensors, have been developing quickly in the last five years [109-111]. In
order to interpret clinical and research findings from the MOVISUFIT prototype and its processed
gait data and draw comparisons with published works, the reliability and validity of the processing

algorithm was assessed.
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The purpose of this work was to assess reliability and validity of the spatiotemporal
measurements of %stance, stride time (s) and stance phase duration (ms) of the MOVISUFIT
system during walking over ground at a self-selected speed. We hypothesized the that the results
would demonstrate excellent test-retest reliability (ICC 3, k) > 0.80) for stance duration (ms), %
Stance, and stride time (s). The validity was established by performing Bland-Altman plots
performed to determine the level of agreement between the MOVISUFIT algorithm as compared
to the inertial wearable sensor G-Walk. We hypothesized good to excellent levels of agreement

amongst calculations of %stance, stride time (s), and stance duration (ms).

3.2 Methods

3.2.1 Participants

Subjects for this study were recruited from the prosthetics and orthotics clinic and
department within the University of Pittsburgh and via established relationships with UPMC
Physical Medicine. Inclusion criteria for this test were use of a trans- tibial or trans-femoral
prosthesis for ambulation, absence of acute or chronic health conditions that would affect
prosthesis use.

The criteria also included that the prosthesis was used for ambulation and contained
modular components to allow for installation of the integrated load cell within the components
below the joint, and the ability to walk without aids for at least 30 minutes. Patients were excluded

if they had had surgery < one year prior, history of seizures, or uncontrolled medical conditions
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that would impact exercise. This work was approved by the IRB of the University of Pittsburgh

and the subjects gave informed consent prior to testing.

3.2.1.1 Instrumentation
MOVISUFIT

Collection and data processing were performed by our custom-made application
(MOVISUFIT) designed for a mobile android phone. To assess the spatiotemporal parameters
Y%stance, stance duration time (ms), and stride time (s), data collection and processing were
performed by our custom-made application (MOVISUFIT). The gait data source was a prosthesis-
integrated load cell (Europa, Orthocare Innovations, Seattle, WA.) which can measure kinetic gait
variables in lower limb prostheses (Figure 25). The device is semi-permanently installed as part of
the load-bearing structure of the limb prosthesis connecting to the rest of the device using standard
adapters. This is referenced in figure 15 chapter 2.The raw axial force data and subsequent
calculations were stored locally on the device via BT and remotely on a server through WIFI
communication.

The MOVISUFIT app performs analysis in real time and stores the data locally on the
Android mobile device.

The calculations for the MOVISUFIT variables were as follows:

1) MOVISUFIT Stride Time = Next heel strike time — Previous heel strike time

toe of f time—previous heel strike time

2) MOVISUFIT %stance = x 100

next heel strike time—previous heel strike time

3) MOVISUFIT stance duration (ms) = toe of f time — previous heel strike time
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G-Walk: To validate the MOVISUFIT systems measurements, spatial-temporal data was
concurrently collected by the inertial triaxial sensor (G-Walk, BTS Engineering). The collection
rate is 100Hz and the data is streamed via BT and stored locally on a PC the PI carried alongside
the subject as they performed their walking. The G-Walk is a 70x40x18mm sensor unit weighing
37g, which contains an accelerometer, gyroscope, and magnetometer (Figure 25).

Triaxial sensors, worn at the waist, have demonstrated consistent reliability and validity in
many populations and have been used in gait studies with success for the last 10 years [112].
Triaxial accelerometers alone, have been found reliable and valid in many studies, with Intraclass
Correlation Coefficients (ICC)s, 0.77 to 0.96, and the G-Walk adds a triaxial gyroscope and
magnetometer decreasing the risk of error from drift in any one plane of acceleration [113-116].

It has been reported that the G-Walk has excellent intertrial reliability (ICC values between
0.84 and 0.99). Concurrent validity of the G-Walk was examined against the GAITRite (CIR
Systems Inc, Havertown, PA) and demonstrated excellent levels of agreement for speed, cadence,
stride length, and stride duration (range = 0.88-0.97).

The G-Walk has been found to be reliable and valid for gait symmetry and balance
measures in older adults, people with cerebellar ataxia, and individuals with limb loss [117-120].
In a study assessing the reliability and validity of a single triaxial accelerometer worn at the waist,
it was surmised that it was a valid instrument for mean spatiotemporal parameters in prosthetic
gait [119]. Small errors in detecting heel contact were found to be systematic and therefore,

inconsequential for gait symmetry.
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3.2.2 Procedures

Testing was performed in the Department of Rehabilitation Science and Technology at the
University of Pittsburgh. The MOVISUFIT system was provided to the participants, which
included placing the Europa integrated sensor into the prosthetic limb of the subject by a certified
Prosthetist. To insert the sensor and integrate it with the pylon, their modular prosthesis was fitted
with the sensor by shortening or replacing the standard pylon adapter in the endoskeletal prosthesis
[36]. Leg length measurements, markings, and photographs were performed pre and post
installation to ensure the prosthesis was not aligned differently than the participant’s original
alignment, to create consistency between the two gait assessments and to preserve an alignment

acceptable to the subject [121].

3.2.2.1 Protocol Reliability

To assess Reliability, each participant was instructed to walk at a self-selected comfortable
speed. The four participants performed five trials over a level hallway measuring 50m on two
occasions at least five days apart. The sensor was installed and removed for the testing sessions.
On these same days, the participants also performed walking tasks that were not avoiding
distractions, ramps, or turns. The data was collected in real time on the app, and calculations were
also performed in real time, then the custom app creates two files, a “step data” file and a “raw”
data file, which are stored locally on the phone and on the cloud database, when the app is stopped,
The step data includes the calculations below. Data was collected on the mobile phone app and in
the G-Walk G-Studio software and was analyzed post hoc. Subjects wore the same pair of shoes
on both test days. The following temporal gait measurements were evaluated: stride time (s),

stance duration (ms), and Percent Stance (out of 100% gait cycle).
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The following are the equations for those calculations:

MOVISUFIT Stride Time = Next heel strike time — Previous heel strike time

Toe of f time—Previous heel strike time

MOVISUFIT %stance =

Next heel strike time—previous heel strike time

MOVISUFIT stance duration (ms) = toe of f time — previous heel strike time

Based on research conducted by comparing similar force detected temporal parameters and
a triaxial accelerometer, the reliability was considered as excellent when the ICC was >0.75, good
if between 0.40-0.75, and poor if < 0.40 [122]. In previous work using accelerometry as the
primary method to detect symmetry issues in those with transfemoral limb loss a minimum of 20

strides was recommended [119, 123]. Mean values for each gait parameter were calculated.

3.2.2.2 Protocol Validity

Validity between the MOVISUFIT system and the G-Walk were evaluated using Pearson
correlation coefficients (r) and Bland-Altman 95% limits of agreement (LoA). To assess validity,
participants were fitted with the G-Walk sensor which is worn around the waist in an elastic belt
at L5-S1 spinal levels (Figure 25). Percent Stance (%Stance), stance phase duration milliseconds
(ms), and stride time duration (seconds), were extracted from the G-Walk data to serve as the
validation standard for the respective variables. For each trial, these spatiotemporal gait
characteristics were concurrently recorded by the MOVISUFIT system and the G-Walk inertial
sensor and software. Each participant performed five trials, only steps that could be congruently
matched between G-Walk and MOVISUFIT were used with the goal of 20 steps. The step data

was averaged over these trials.
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Figure 25 Participant Conducting Over Ground Validity AssessmentInstalled is the Wireless Europa Sensor

and the G-Walk Inertial Sensosr is Worn at the Low Back.

3.2.3 Data Analysis

Our system detected all the actual steps whereas the inertial sensor, due to its reliance on
acceleration, drops steps at the beginning and end of each trial or if any turning was detected.
Therefore, we removed the steps that did not get detected by the G-Walk in our analysis and only
included synchronous steps. Outcomes were calculated from initial contact of the involved heel

to the next heel strike of the same heel per steps confirmed by raw data analysis (Axial Force in
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the Europa and Accelerometry in the G-Walk), and timing. The calculations for the MOVISUFIT
variables were as follows:

1) MOVISUFIT Stride Time = Next heel strike time — Previous heel strike time

toe of f time—previous heel strike time

x 100

2) MOVISUFIT %stance =

next heel strike time—previous heel strike time

3) MOVISUFIT stance duration (ms) = toe of f time — previous heel strike time

The G-Walk G-Studio software does not display step by step calculations of %stance or
automatically of stride time only averages over the steps captured. Therefore, in the Bland-Altman
plots for those comparisons, in terms of stance phase duration, %stance, and stride times, averages
of the steps taken during over ground walking on a level surface were used to compare measures.
Stride time was manually calculated from the G-Walk G-Studio output for one participant and
those comparisons are demonstrated. Lastly, G-Walk measures were always subtracted from the

MOVISUFIT measures, so a negative bias indicates the MOVISUFIT measures were smaller.

3.2.3.1 Statistical Analysis Reliability

Reliability was determined by ICC’s, and the (3, k) model with absolute agreement was
used with 95% confidence intervals [124]. The final statistic was performed by compiling the
averages across 5 trials, per subject, between two testing days at least 5 days apart for a total of 10
trials. The final average calculated was then compared between day one and day two, with a single

mean for each participant from the averaged trials on each day.

3.2.3.2 Statistical Analysis Validity
Concurrent validity of the MOVISUFIT system was assessed by comparing stride

duration(s), stance duration(ms), and %stance as measured simultaneously with the GWALK
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sensor. To assess the disbursement and level of agreement, first Bland-Altman plots were used
with four initial participants as were used for the reliability testing. The Bland-Altman plots were
constructed from five trials of concurrently collected data, where steps could be matched from the
G-Walk and MOVISUFIT for four participants. The data was averaged over each trial, trial
providing 5 data samples per subject for 20 data samples for each plot. In consideration for the
Pearson’s measure of agreement to assess validity, each variable was collected and averaged across
20 steps over 5 trials for four additional participants for a total of eight samples. An alpha of .05
was used for all statistical testing as well as 95% confidence intervals. All statistical analysis was

performed using SPSS, Version 29 (IBM Corporation, Armonk, NY).

3.2.4 Results

Four participants were included in the Reliability study (Table 1).

Table 1 Subject Demographics Reliability Study

TT = transtibial, Gend Age Weisht (k Heioht Prosthesi
N ender (years) eight (kg) eight (m) rosthesis
1 F 56 113.0 1.67 TT
2 M 60 83.0 1.70 TT
3 M 47 65.3 1.70 TF
4 M 48 81.6 1.52 TF
Mean+SD | 1F,3M 52+6 85.7+19.8 1.65 £ .08 2TT,2TF

(F = Female, M = Male, kg = kilogram, m = meters, TT = transtibial, TF = transfemoral, SD = standard

deviation)
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3.2.4.1 Test-retest Reliability

At preferred walking speed, the ICC’s for all gait measures tested were 0.8 or higher, except
for stance phase durations, which had an ICC of 0.728, (Tables 2 and 3). When assessed during
walking in busy hallways and not avoiding distractions, turns or ramps, the parameters were also

highly reproducible, apart from Stance Phase Duration.

Table 2 Test retest ICC values MOVISUFIT controlled self-selected speed flat over ground walking (ICC =
Intraclass Correlation Coefficient, SD = Standard Deviation, a = 0.05, ms = milliseconds, s = seconds, CI =
Confidence Interval) The averages of all the steps collected on Day 1 were averaged across 5 trials, and

compared to the average calculations across all the steps calculated per subject across the S trials on Day 2.

Day 1 Day2 |ICC(3,k)[95% CI]| pValue | N
Gait Variables Mean = SD | Mean = SD
Stride Time (s) 1.21+£0.10 | 1.23 £0.10 0.96 [0.76-0.99] p <0.001 4
Stance Phase 4

Duration (ms) 750.0 £46.6 | 750.0 = 50.9 0.73[0.61-0.89] p <0.001

Percent Stance (%) | 61.7+23 | 614+26 | 095[0.65099] | p=0.002 | 4
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Table 3 Test-retest ICC Values MOVISUFIT Normal Walking Over Ground with Challenges (ICC =

Intraclass Correlation Coefficient, SD = Standard Deviation, a = .05, ms = milliseconds, s = seconds, CI =

Confidence Interval). The averages of all the steps collected on Day 1 were averaged across 5 trials and

compared to the average calculations across all the steps calculated per subject across the 5 trials on Day 2.

Day 1 Day 2 ICC 3, k) [CI] p Value | N
Gait Variables Mean £ SD | Mean + SD
Stride Time (s) 1.25+0.08 |1.26+0.09 | 0.785[ 0.406 - .993] P= 4
Stance Duration (ms) 715.62 721 + 0.697 [0.496 -0.827] P= 4
Percent Stance (%) 61.2+2381 61.83 + 0.907 [0 .394 - P< 4

3.2.4.2 Validity and Bland-Altman Plots

Bland-Altman plots with 95% LoA were used for the analysis of the agreement between

the two measures comparing MOVISUFIT measures to G-Walk measures and for investigation

into the presence of bias. The same 4 participants as detailed in the test-retest reliability performed

5 trials each and the parameters were averaged across the steps during each trial providing 5

samples per participant for the plots.
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Table 4 Summary of Results Obtained from Four Subjects who Performed S Trials The Summary variables
displayed in the Bland-Altman Plots are listed and the results include the mean differences (&) and Standard
Deviation of the Diff (SDdiff), with the Limits of Agreement (LoA) calculated comparing MOVISUFIT

versus G-Walk on level ground. The 95% LoA was computed by calculating (d) £ (1.96xSDdiff) for the

upper and lower boundaries. *Negative differences indicate MOVISUFIT higher than G-Walk

Gait Variable @ | SDdiff Lowe9r5% L"‘; — N
Stance Phase duration (ms) 0.86 31.22 -60.34 62.06 20
stride time (s) -0.014* | 0.06 -0.14 0.12 20
%stance (out of 100% gait cycle)| 0.47 1.88 -3.21 4.16 20

Stance Phase Duration

Figure 26 demonstrates the Bland-Altman plot comparing all four participants stance phase
duration times (ms) across 5 trials with 20 steps per trial for a total of 20 data samples per plot.
There is a slight positive bias of 0.86 indicating that MOVISUFIT systematically calculated a
higher stance duration than G-Walk G-Studio output. Greater than 95% of the samples do not fall
within the LoA however it appears to be a single outlier. The steps per participant were matched
between their MOVISUFIT and G-Walk steps, and the compiled into two columns where the (¢ )
and SDdiff was calculated. A one sample t-test was performed comparing the differences of the
(d ) against zero, and the results were not significant with p = 0.903. This indicates there is
agreement and it was reasonable to proceed with the Bland-Altman plot. The LoA were calculated

by adding and subtracting 1.96 x SDdiff from the (¢ ). The LoA were -60.34 to 62.06.
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Figure 26 Bland-Altman Plot for Stance Duration Phase for 4 SubjectsEach data point represents an average
of the 5 trials per participant. With 4 participants there are 5 samples each for a total of 20 samples. The
solid red line is the bias, or mean of the mean difference, and the green dashed lines are the upper and lower

LoA.

Stride Time Subject 3 Only - Step by Step Comparison:

Figure 27 demonstrates the levels of agreement amongst stride times for subject 3, over 18
steps during one testing trial. The derivation of the stride times per step from G-Walk data was
exceedingly tedious as the graphs from the accelerometer and gyroscope had to be engineered
carefully to determine what G-Studio considered a heel strike and toe off. There were two separate
times they provided toe to toe and heel to heel. These were noted from the G-Studio output and
heel to heel times were added manually, and a stride time was calculated and compared to the
corresponding steps from MOVISUFIT during that 50m distance. There was extreme difficulty

secondary to the issue that they calculated steps, it appeared, from toe off to toe off and the lower
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thresholds were difficult to determine. Figure 27 demonstrates the LoA between the stride times
for these corresponding steps calculated by MOVISUFIT versus G-Walk.

The points that are above the upper confidence interval imply that 95% of the stride times
do not fit within the LoA and implies lack of agreement potentially. These appear to be outliers
however, because the bulk of the other step times appear grouped primarily around or below the
(d ) which was -0.008, nearly zero indicating good agreement between the two measures. The
mean difference was also negative, meaning G-Walk calculated systematically higher stride times
than MOVISUFIT however this is negligible at -0.008. A linear regression demonstrated a B
unstandardized coefficient of the mean stride time close to zero (0.007) and the test was not
statistically significant. Therefore, there was no proportional bias. There is a small amount of
cluster at the lower mean stride times and the differences are negative with differences from the
values above the 95% confidence interval and overall implies there may be systematic lower stride

times provided by MOVISUFIT than the G-Walk.
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Figure 27 A Bland-Altman plot displaying the mean difference and 95%LoA over a total of 18 steps for
subject 3The solid red line is the 4, and the green solid lines above and below represent the 95% limits of

agreement.

Validity Stride Time All Four Participants

Figure 28 shows the Bland-Altman plot displaying the mean difference and 95% LoA for
stride times over five trials and all four participants. The & and SDdiff are displayed in table 5.
The stride times have excellent agreement with a € of -0.014 which is very close to a zero
difference, all of the stride times fall within the LoA. A one sample t-test was not significant with
p = 0.87, when comparing the mean difference to zero. The mid-range stride times cluster about
the zero difference, and it appears increased variability begins with higher and much lower stride

times.
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Figure 28 Bland-Altman plot showing d of stride times and 95% limits of agreementMean stride times
calculated from four participants averaged over 5 trials each for 20 samples. All stride times were compiled
from corresponding MOVISUFIT and G-Walk steps and an average of total MOVISUFIT versus G-Walk

steps are displayed. The solid red line is the ¢ and green dashed lines are the 95% limits of agreement.

Validity % Stance

Figure 29 shows a Bland-Altman plot of the &—between the %stance calculations across
five trials with all four participants totaling 20 samples. The plot does indicate the two measures
do not agree with the outlier beyond the LoA, however further analysis indicates this is secondary
to the taring issue creating systematic difference with that participant of larger differences between
the two measures. This was corrected, therefore leaving the other measures within the LoA. The
bias was 0.47 and this is clinically reasonable however this does indicate bias demonstrating
MOVISUFIT systematically calculates higher % stance than G-Walk. All but one sample fall
within the LoA which ranged from 3.21 to 4.16. This upper limit is higher than desired at greater

than 2% however the mean difference is far less, and this larger upper lower limit appear to be due
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to the first two data points. It was commonly witnessed that at the initiation of the gait trial,
participants would have much higher or lower steps than the middle portion of the trial. This could
be secondary to a natural uncertainty or nervousness of feeling stable or walking in an unfamiliar
setting. Initiating a gait test could naturally cause some decrease in symmetry until a self-selected
gait speed which is comfortable is found. A linear regression was performed given the bias, and
the unstandardized coefficient was close to zero B = -0.043, and the result was not statistically

significant indicating no proportional bias, p = 0.762.
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Figure 29 Bland-Altman Plot Displaying Mean Difference and 95% LoA for % Stance Between
MOVISUFIT and G-Walk Data points represent averages of 5 trials for each of the four participants for a

total of 20 samples. The solid red line is the mean and green dashed lines are the 95% LoA.

3.2.4.3 Validity Pearson Correlation
Pearson correlation coefficients were used for additional analysis of the agreement between
the two measures comparing MOVISUFIT measures to G-Walk measures for 4 additional

participants for a total of 8 subjects. Table 5 demonstrates the characteristics of the 8 participants.
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Table 5 Subject Demographics Pearson Correlation Testing(F = Female, M = Male, kg = kilogram, m =

meters, TT = transtibial, TF = transfemoral, SD = standard deviation)

Participant| Gender Age (years) | Weight (kg) Height (m) Prosthesis

1 F 58 59 1.49 TT

F 56 113 1.67 TT

3 M 60 83 1.70 TT

4 M 47 65.3 1.70 TF

5 M 48 81.6 1.52 TF

6 M 46 124.7 2.00 TF

7 M 36 94.8 1.83 TF

8 M 55 80.3 1.80 TF
Mean=SD| 2F,6 M 50+8 87.71 £22.36 | 1.71+£0.17 3TT,5TF

Pearson correlation Coefficients indicated strong associations (r > 0.80) (Table 6).

Table 6 Pearson Correlations Between MOVISUFIT as Compared to G-WalkAs Tested During Controlled

Self-Selected Speed Flat Over Ground Walking

Gait Variable G-Walk MOVISUFIT | Pearson Correlation r (p value) | N
Stance Phase 8
727.42 £62.22 | 729.71 £ 69.45 0.86 (p =0.007)
Duration(ms)
Stride Time (s) 1.18+0.11 1.21 £0.08 0.85 (p =0.008) 8
Percent Stance | 60.89 £1.63 60.26 + 2.52 0.86 (p =0.007) 8

The results of the averaged trials for the 8 participants were assessed graphically for linear

agreement comparing MOVISUFIT versus G-Walk. These are displayed in Figures 30 — 32.
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Figure 30 Graphical display MOVISUFIT Average Step Times Versus G-WalkIllustrated are the average

step times across 5 trials or each of 8 participants. The line is fit to demonstrate the correlation.
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Figure 31 Graphical Display MOVISUFIT Average % Stance versus G-WalkAverage step times across 5

trials or each of 8 participants. The line is fit to demonstrate the correlation.

72



850.00

500.00

T50.00

y=35.21+0.95%

700.00

650.00

MOVISUFIT Stance Phase Duration (ms)

£00.00

650.00 700.00 750.00 800.00

G-Walk Stance Phase Duration (ms)

Figure 32 Graphical display MOVISUFIT Average Stance Phase Duration Time (ms) Versus G-
WalkAverage stance phase duration time (ms) across 5 trials or each of 8 participants. The line is fit to

demonstrate the correlation.

3.3 Discussion

The current data provide early and innovative evidence that a system such as MOVISUFIT,
collecting kinetic data from within a prosthetic load cell and deriving spatiotemporal parameters
is a reliable measure for step detection, detection of gait events, %stance, Stride Duration, and
Stance Duration. %stance demonstrated a good low level of bias with a mean difference of 0.475,
however the first two data points did increase the LoA to a larger amount. It was commonly
witnessed that at the initiation of the gait trial, participants would have much higher or lower steps
than the middle portion of the trial. This could be secondary to a natural uncertainty or nervousness

of feeling stable or walking in an unfamiliar setting. Initiating a gait test could naturally cause
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some decrease in symmetry until a self-selected gait speed, which is comfortable, is found. On
average % stance differences did not go above 3% which is clinically acceptable [125].

Stride time durations demonstrated almost zero bias with mean difference of -0.002 and
also overall mean differences +0.05 which is clinically acceptable [125]. Different patients have
different stride times, and those with transfemoral limb loss tended to have longer strides. This
could bias the results and future work should separate the two groups. Based on previous work
this is explained by evaluation of temporal parameters and inertial measurement units (IMU), worn
at the lower back and the results indicated identification of the initial foot contact is critical for
accuracy and robustness [126]. Our system uses first contact of the heel at the beginning and end
of a stride and stance duration, whereas the G-Walk does not appear to, however the exact
algorithm is unknown and proprietary. This previous work found that temporal parameters were
less accurate when final foot contact was the basis for determining parameters which is also what
the G-Walk uses differently than our algorithm [126].

Stance duration detection was subpar, however, in terms of reliability in distracted settings
as well as agreement with G-Walk. It has been reported however, that although the G-Walk
demonstrated high levels of agreement for stride time and cadence, it has however only moderate
levels (0.47) of association for determining gait cycle phases single versus double limb support
and swing stance duration [125]. This is a potential explanation to the reduced ability to find
agreement particularly with stance phase duration times. This is addressed in potential for future
work.

The step by step variability was high, and this needs to be considered along with the
variability that is inherent in amputee gait. There may have also been adjustment period to the

change in their prosthesis after installing the sensor, and a longer time should have been provided.
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Stance duration was our initial priority to validate, as this is the portion of the gait cycle which our
feedback parameter is derived and it was the only variable that could be provided as step by step
comparisons readily by the G-Studio system. However, the difficulties described with G-Walk
detecting toe off events made this more difficult. However, it was positive that other measures
were more robust and corroborated this previous finding that stance times were more difficult to
assess validity and like this previous work our findings also demonstrated strong agreement of
other the other parameters stride time, and %stance, which the latter was our feedback variable
[125]. Initially, it was a concern that the G-Walk does tend to drop steps, if a participant is turning
or slowing down or accelerating, and corroborating matching steps was not going to be possible.
However, if the sample steps were determined to be assessed within the same time and duration
the validity was determined to be assessable. .

Stance phase duration was correlated strongly between sensors with r = 0.894 when
walking over ground on a flat surface with a very specific distance. It does provide evidence that
the system can calculate stance duration time accurately from which the feedback variable can be
derived. There did exist a bias in earlier trials of estimating % stance (systematically higher than
the G-Walk) however this was improved with the algorithmic adjustment referenced in chapter
two regarding the calibration to a zero baseline and lower threshold detection. The bias still exists
however is 3.15 which is acceptable as a mean difference [125].

Stride times were strongly reliable (ICC > 0.8) for both conditions. Stride times are an
important variable as those are determined by the lower threshold gait events. It was unexpected
that these would be more strongly correlated than the other parameters, given the G-Walk G-Studio
software calculates them differently than our force derived time points. However, being internally

consistent provides confidence that we can assess future improvement in symmetry of stride times.
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Initially, it was concerning that %Stance was correlated only modestly with the G-Walk with a
Pearson’s R = 0.702. However, the difference in methods also is an explanation.

Our findings suggest that MOVISUFIT is a reliable and valid tool to measure stride time,
% stance, and stance duration during walking. This is promising for future designs and iterations

to progress the innovation to more complex feedback.

3.4 Limitations

Limitations of the current study are that we are unaware of the algorithm that G-Walk uses
which is prohibitive in determining an underlying exact explanation for the results. Furthermore,
we measured spatiotemporal parameters on those with TT and TF and this could affect the
accuracy of the results, however a system should be able to tolerate those differences. Also,
validity in this study was examined at a self-selected speed, and not over other terrain and turns as
reliability was, and speed can affect accuracy [127]. This is demonstrated in these Bland-Altman
plots . In addition a recent study compared the G-Walk’s validity against the GAITRite system
and it was found in their results that gait measures that rely on final foot contact such as toe off,
which stance duration does, should be cautiously interpreted and revealed poorer validity. This is
an explanation of our difficulty to statistically agree with that measure from G-Walk as well.

Given the small sample size, this study could have limited internal and external validity.
With lower external validity, our findings could not be as generalizable beyond the specifications
of this study sample [128]. An additional limitation is in measuring validity and reliability,
additional measures could have been used, such mean differences or Standard Error of Mean.

Order effects, such as fatigue, can make the interpretation of the data difficult. In this instance,
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the interventions were not randomized. However, participants would obviously remember the
previous time they underwent the test, and this could cause boredom, and decreased effort during
the test. It could also affect their outcomes that if, for example, each time the 6MWT was
performed before the G-Walk tests. This could cause fatigue therefore we performed G-Walk tests
prior to the 6MWT. This sequence was intended to not fatigue the patient prior to a test that
examines quality of gait, although it could bias the results given that the sequence is predictable.
Also, simply doing repeated testing could lead to improved performance or increased skill as the
participant becomes more familiar with the measurement.

One of the most difficult limitations of the study is synchronizing the force-based timing
data against an inertial sensor using an accelerometry based algorithm. When analyzing our raw
data against G-Walk for both prototypes, it was very difficult to align them step to step, particularly
if any turns were taking place. Our %stances initially, with the MOVISUFIT prototype, were
systematically biased higher than G-Walk data for most participants, and that was discovered to
be a software taring issue. As the app became more sophisticated, the timing of the taring needed
to be during the live data streaming. With the interface advancements of pausing during training,
which was extremely helpful for the clinician to document a reason for the pause for later post hoc
analysis, the taring was not being performed for several trials, resulting in elevated lower threshold
event detections. However, when examined on gait trials performed within five days, the

reliability was excellent.
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3.5 Future Work

Given the findings of moderate to excellent reliability of the MOVISUFIT system and the
finding of strong correlations with G-Walk stride time indicates the system is reliable and valid
for measuring stride times and calculating % stance. As this is a marker of a potential feedback
variable or indicator of improvement that the system can accurately measure, these findings are
promising. Future research should investigate MOVISUFIT’s validity and reliability in clinical
populations during different gait conditions or activities once a new feedback variable is
introduced as well. In addition, future work could validate the system against an instrumented
treadmill, GAITRite, or a more robust inertial sensor system such as XSens (XSens Technologies

B.V., The Netherlands).
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4.0 Efficacy of the RTMVF and MOVISUFIT Systems

4.1 Introduction

In the limb loss population, there is a documented inadequate reorganization of the
functional motor pattern and deficits such as loss of active plantar flexion must be accommodated.
Evaluation of clinical biomechanics offers the possibility of investigating the consequences of
compensatory actions but also potentially the treatment of them. Whereas in prior treatment
protocols and applied research the training was task specific and based on other evidence and on
the evidence in this project, the direction of focus and attention can expand beyond traditional
forms of training and practice. To improve adaptability to new gait patterns, it is well established
that specifically practicing step and stride parameters in clinical settings does improve mobility
outcomes [101]. However, evidence from studies of motor learning indicate a potentially superior
method of motor learning, or re-educating motor skills, and that is when practice is in response to
external cues. These responses to external cues enhance and access directories of motor control
within our physiology. Visual cues, in this realm, have been demonstrated as more critical than
auditory cues in the control of gait training, particularly when training gait adjustments in response
to the environment. Thus, we hypothesized that providing practice of adapting a participant’s gait
in response to visual cues, outside of controlled settings, would improve walking symmetry and
endurance. As stated earlier previous methods of providing the external visual cue have been
mirrors, projection onto a screen, while on a treadmill or in a lab setting. Our system, has the
advantage of providing these cues in a more realistic manner and not limited to space. In

preparation for future larger trials, our aim was to preliminarily test the efficacy of delivering real
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time visual feedback in a method that was not limited to clinical settings. The study aimed to
establish feasibility and effect size for calculating potential sample sizes.

The purpose of this study was to develop and examine the efficacy of a the RTMVF and
MOVISUFIT gait training systems for those with lower limb loss on improving gait performance
as defined by; Gait symmetry, pelvic symmetry in the frontal plane, and additional functional
measure 6MWT. A secondary purpose of this study was to examine pain and function as defined
by the patient reported outcome measures LCI-5, OPUS HQOL, Functional Status Measure, and
the Chronic Pain Grade. It was expected that the training will trigger earlier self-modification,
within the participants, of overexertion and poor mechanics resulting in the chronic pain

syndromes caused by load imbalances.

4.2 Methods

4.2.1 Subjects

A-priori sample size was estimated based on limited previous works involving similar
outcomes and treatment interventions. Based on a study by Dingwell et al., who used real time
visual feedback and measured symmetry as an outcome, a training intervention yielded a mean
difference in symmetry of 4% resulting in an effect size of 0.53 with 12 subjects (however six
healthy, six amputees) [31]. Therefore, with an a-priori power analysis of « = 0.05 and 3 = 0.20
we proposed to recruit eighteen individuals allowing for an attrition rate of 20%.

Prior to the baseline measurements or any research procedures, goals, contents and
methods of the study were explained to the subjects. All subjects provided written informed
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consent in accordance with the (IRB# PRO15120426). After signing the consent form, participants
were scheduled to perform baseline testing.

Participant recruitment followed the approach outlined in chapter 3.2.2.1 recruited by
flyers in the MSPO clinic, web-based postings, print media and direct contact with potential
subjects that were seen in local lower limb loss rehabilitation focused clinics. Initial screening was
performed by the Co-I or PI when a participant contacted them regarding the study. If the potential
participant passed the screening, they were invited to complete the consent form as described
above, and once consent was provided, attend a testing session. Participants were compensated
for their time.

Participants with unilateral transtibial (TT) or transfemoral (TF) limb loss were enrolled
regardless of the type of prosthesis. However, the prosthesis had to be modular to accommodate
the sensor. The participants were included if they were over 18 years of age, wore their prosthesis
for at least one year, could perform at least 15 minutes of walking without an assistive device and
had a gait deviation per the licensed Doctor of Physical therapy who was also the PI for this study.

Exclusion criteria consisted of bilateral lower limb amputations, the use of an assistive
device to ambulate, undeclared medical conditions that presuppose proper prosthesis use, vision
impairments incompatible with smart glass use, history of seizures and any co-morbidities that

prevent the participant from walking for 15 minutes.

4.2.2 Study Design

The study design was a single cohort prospective repeated measures design to evaluate the
efficacy of the RTMVF/(MOVISUFIT) system during gait training.  The repeated measures

allowed the investigation of changes over time, to provide preliminary effect sizes for a larger
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conformational trial. The trainer was a licensed physical therapist, the PI, therefore blinding to the
intervention was not possible.

In order to identify differences, pre and post tests were performed with an additional
datapoint one month following the conclusion of training (one-month follow-up) to determine
retention of training gains. Qualitative and quantitative assessments were performed at three
time-points, at baseline, post training and at a one-month follow-up. Tests and interventions were
undertaken in the MSPO and RST departments in the Bakery Square location of the University of

Pittsburgh.

4.2.3 Evaluation and Assessments

Participants did not receive any other treatment of rehabilitation program throughout the
duration of the study. In each testing session, participants were fit with the iPecs integrated load
cell or the Europa integrated load cell. Photographs, leg length measurements, evaluation by one
or two Prosthetists as well as markings were made to ensure alignment matched their pre-training
alignment. They then were fitted with the glasses and instructed how to place the screen in a
manner in which it did not obstruct their vision but allowed them to see the color displayed

comfortably and safety.

4.2.4 Outcome Variables

4.2.4.1 Quantitative
The variables chosen as outcome variables were done so for their demonstrated association
with various downstream secondary orthopedic issues seen in this population. Gait symmetry,
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chosen as the primary outcome variables for gait quality. The proprietary symmetry index from
GWALK was used, where the perfect symmetry is defined as 100%. Percent stance, and pelvic
obliquity in the frontal planes were considered as secondary outcome variables related to gait
quality. Pelvic motion and obliquity have been reported to be significantly different pre and post
training with real time feedback [22, 70]. Pelvic obliquity has also been listed as a significant gait
deviation in those with lower limb loss in systematic reviews [90, 129]. G-Walk reports a Pelvic
Obliquity Index which they report is a quantification of how much the accelerometry curves from
the left to the right in the frontal plane are similar in profile. It is computed using cross-correlation
and applied to the two curves. Ifthey perfectly overlap, the index is 100, because the curves would
have the same value for every frame captured (Gabe Glasser, G-Walk, BTS, Bioengineer).

The other Proprietary Symmetry Index from the mobile Gait Lab G-Walk was used as the
outcome measure to determine gait symmetry improvements. It is calculated the same way as the
pelvic obliquity index, in that it quantifies how much the profile of the right curve is similar to the
profile of the left curve. The number is computed using the mathematical function cross-
correlation applied to the two curves. If the curves perfectly overlap, the index is 100 and it means
that the two curves have the same value for every frame, however in this case it is right versus left
legs.

The Functional test (6MWT) was chosen as it is a strong predictor of accuracy and totality
of step counts accounting for 38-54% variance [12, 130]. An individual’s self-selected walking
speed has been reported as a reliable measure “validated in this population”, and a strong predictor

of disability [131-134].
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4.2.4.2 Self-Reported Data

Four validated questionnaires were used to assess pain and function. Pain has been
correlated to gait deviation and decreased prosthetic use [1, 63]. Therefore, the first, the Chronic
Pain Grade, (CPG) was used to assesses both disability and the varying forms of pain that occur
within this population. The CPG has demonstrated good internal consistency. Cronbach’s alpha
was 0.9132, and the item-total correlations ranged from 0.69 to 0.82 against the 36-Item Short
Form Survey (SF-36)which has been validated in the amputee population [66, 135]. The three
additional patient-reported measures were regarding function and quality of life. The Orthotic and
Prosthetic User Survey (OPUS) was garnered for its Lower Extremity Functional Survey (FSM),
and its Health and Quality of Life Survey (HQOL) . Disability Points were calculated converting
the scores to four ranges of points. A conversion of Question 4 was made to points from a 3-level
rating of the statement “Days in last six months are you kept from usual activities because of your
pain?”. The disability points were then added to this converted question 4 and created a total point
scale.

The Lower Extremity Capabilities Index — 5 (LCI-5) was chosen as a disease-specific, self-
administered instrument for assessing locomotor abilities generally considered essential for basic
and advanced Activities of Daily Living (ADLs) of people with lower-limb amputation. The
ability to perform ADLs are an enabling factor associated with long-term prosthetic use [104]. It
is a 4-level ordinal scale (0-3 points; ranging from “not able” to “able to accomplish the activity
alone”) scores the degree of a person’s perceived independence in performing each of 14 activities
while wearing the prosthesis with a possible maximum score of 56. Higher scores reflect greater
locomotor capabilities with the prosthesis and less dependence on assistance. The LCI-5

correlated in all criterion measures (p range, 0.61-0.76) with the Rivermead Mobility Index and
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Function Independence Measure (FIM)instrument, but the LCI-5 shows larger effect size and a

lower ceiling effect [136].

4.2.5 Gait Retraining

Participants participated in a standardized gait training program ( 4 weeks, 2 times per
week), which successively increased its level of endurance by progressing from 15 to 30 minutes
of training time over the first 4 sessions, then maintained30 minutes over the last 4 sessions (Table
7). The participants received real time visual feedback, as outlined in Chapter 2, from either the
MOVISUFIT or RTMVF prototypes. The participants either used the iPecs integrated sensor with
USB connection to a Surface Pro or Ultramobile PC, and wireless Vuzix smart glasses to receive
the red, yellow, or green visual feedback, or the MOVISUFIT prototype using the wireless Europa
sensor, and Android phone for data processing and feedback transmission to the Vuzix Smart
glasses (M100 - M300). Both sensors provided an Axial Force (Fz)which was incorporated into
the same algorithm to define the feedback parameters.

During the first visit, participants were trained by the Doctor of Physical Therapy
(DPT)(PI) using verbal cues, and demonstration and education, to assist the participant in
associating the feedback colors with their gait pattern and compensatory mechanisms observed by
the therapist (Figure 33). Each participant was videotaped to assess their gait deviation and
provide a reference during training for the DPT, and upon initial screening previous surgeries and
history were documented. There were a few key gait deviations that presented across the cohort
including ipsilateral trunk lean to affected side, excessively long stride on the uninvolved side,
decreased heel strike, and arm swing and negotiating slopes without significant decreased time on

the involved limb. Once the participants presented with a stable walking pattern, data was
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collected at 100Hz throughout the training sessions and processed into feedback provided per step.
If the participant needed to rest, the system could be paused, and data collection could continue

again once training ensued at the same sampling rate.

Figure 33 PI Training participant with RTMF system visit 1 associating colors to gait mechanics

Participants received the gait retraining by the PI (DPT) as outlined in Table 7. Each
session was approximately 30 minutes to 1 hour and included fitting the sensor and subsequent
RTMVF/MOVISUFIT gait training. The training was systematically increased from 15 minutes
to 30 minutes over the first 4 visits. We utilized a faded feedback protocol over the last four

sessions to help internalize motor learning [23, 26, 29, 137]. (Table 7, Figure 34.).
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Figure 34 Faded feedback and Systematic Training ProtocolBased on Noerhen et al 2013 for Reference

http://dx.doi.org/10.1136/bjsm.2009.069112.

An external focus directs the attention of the learner on the effects of their movements
(different walking strategies changing the feedback they see on the screen vs. focusing on their
own extremity alignments) and reduces their attentional demands [8, 73, 78, 99]. Training over a
brief accommodation period at the initial training session included educating the patient on what
the red, yellow, and green feedback colors indicated about their gait pattern, and the first session
did include verbal cues and training to assist the patient in learning adjustments that could be made

to trigger the color changes.
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Table 7 Intervention and Data Collection Protocol

Baseline Visit (Time 1):Informed Consent, Baseline Gait Assessment' Patient
Reported Outcome Measures!

Traini Visit 2: 15 min Gait Training
ng Week 1 Visit 3: 20 min Gait Training'

Traini Visit 4: 25 Min Gait Training
ng Visit 5: 30 min Gait Training
Week 2

Traini Visit 6: 30 min Gait Trainingla with feedback first 20 min
ng Visit 7: 30 min Gait Trainingla feedback first 15 min only'®

Week Visit 8: 30 min Gait Training with feedback first 7 min only'®
4 Visit 9: 30 min Gait Training with feedback first 2.5 min only

Traini Visit Time 5: (Minimum of two to five days after visit 9
ng 10: Gait Trial Gwalk2, 6MWTt, ) CPG, LCI — 5, OPUS HQOL
Week 5 Post Training | and FSM LCI-5

Testing
Weeks 6-10 Independent Practice of New Pattern without Device
& PT

1 Visit 1 Month Post Gait Training Intervention
Month 11: Reassessment®
Follow-up

! Baseline Prosthesis Alignment, Physical Therapy Evaluation (Strength, ROM),
Baseline Walk Trial (3 sessions of 1 min Standardized Distance Level Hallway, 5 min rest in-
between or until discomfort is <3/10), NPRS, 6-minute Walk Test (6 MWT), LCI-5

12 Gait Training with Mobile Device with Verbal (VC) and tactile cues (TC) from
licensed PT (PI) for over ground training of patient of associated neuromuscular patterns with
associated changes in visual display.

'’ Fade out of feedback, decreasing feedback each session to internalize pattern begins
and incrementally is decreased each session.

2 G-Walk Trial Patient walks (3 sessions, Standardized Distance Level Hallway next to
Physical Therapist while wearing GWALK and data is collected on laptop.

> Independent

6 One-Month Post Gait Trial Reassessment:
1) G-Walk Sensor standardized distance of level hallway (to assess retention)
2) 6 MWT
3) CPG
4) LCI — 5
5) OPUS HQOL and FSM
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Subjects navigated a variety of level hallways, level sidewalk, and lobbies and elevators.
Data was collected (raw data of time, all spatiotemporal variables, Fz, moment(M) produced in 3
planes (My, Mz, Mx), peak Fz, range and max Mz) throughout training for further post hoc analysis

on biomechanical risk factors and assessment of potential feedback parameters.

4.2.6 Statistical Analysis

Histograms, Boxplots, and Shapiro-Wilk tests were utilized to test assumptions of
normality and no extreme outliers in the dependent variable. Mauchly’s Test of Sphericity was
also performed. Repeated Measures Analysis of Variance (ANOVA) was conducted to assess if
there was a change in the parameters of interest over three time points, with the last being a one-
month follow-up to assess retention. If there were significant differences, pairwise comparisons
were performed. Sidak corrections were performed amongst the repeated pairwise comparison
and paired sample T tests were performed, however. even though there can be risk of Type I error,
if the alpha is not adjusted, however in this case they were deemed appropriate  given the
exploratory nature of the study. If there were results containing ordinal data, a Wilcoxon Signed

Rank Test was used,

4.3 Results

The a-priori power analysis stated 18 would be recruited with 20% attrition rate. The
previous work prior to this study at the time was limited to one study that was similar in Dingwell

et al. Their study consisted of 12 participants, however 6 were with limb loss, and their effect size
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was our goal. 18 subjects recruited with a 20% attrition rate is 12 subjects. We recruited and
tested 14, with 10 able to complete the full one month of training, therefore this is a higher sample
size than previous work. Fourteen subjects participated in the study, four were involved in the
development and feasibility aspect described earlier. Ten participants completed the entirety of
the gait training but two did not complete the one-month follow-up for different reasons which
were assessed post-hoc. One participant was not able to complete follow-up because funding
expired. For the other participant, the reasons are unknown. Therefore, eight participants with
unilateral trans-femoral or trans-tibial lower limb loss completed this study.

All participants exhibited at least a K3 level of walking (based on Medicare’s functional
classification level) and characteristics, including, age, height, mass and time in prosthesis can be
found in Table 8. As referenced in the subject section of chapter 3, subsection 3.2.1, the first three
participants were involved in development and feasibility testing. Subjects four to eight

participated in the training study, but subjects 11 and 14 did not complete the one-month follow-

up.

90



Table 8 All participant demographics, Kg = Kilogram, M = male, F = female, m = meters, BK (below knee),

AK (above Knee)
Time
ID | Age (years) | Mass Kg | Height (m) | Gender | Prosthesis InIYiOILVbe d ss:'l;iy
(years)
1 59 81 1.8 M BK left 23
2 67 59.1 1.82 M BK right 15
3 22 124 1.85 M BK left 5
4 58 59 1.49 F BK right 12
5 46 94.43 1.7 F BK right 8
6 57 114.3 1.68 F BK left 2
7 69 113.4 1.78 F BK right 8
8 66 59 1.52 F BK right 8
9 46 124.7 2.01 M AK left 1
11 61 83 1.7 M BK right 35
12 49 65.3 1.69 M AK right 26
13 36 94.8 1.83 M AK left 2
14 55 80.3 1.8 M AK left 10

4.3.1 Gait Symmetry

Results are seen in Table 9. Three GWALK trials were averaged at each time point for

each subject for an n of 16. averaged across each participant.

Table 9 Descriptive Statistics of the Gait Symmetry Index Provided by G-Walk

Mean = SD N
Symmetry Index Baseline 82.58 +10.05 8
Symmetry Index Final 90.30 +7.32 8
Symmetry Index One -Month Follow-up 88.38 £7.92 8

The main effect of training was significant (F (2,14) = 5.38, p < 0.05, n2 =0.435). Using

Sidak’s correction, pairwise comparisons were conducted, and further pairwise comparisons were
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not significant. However, given the experimental nature of the study a paired samples t-test was
performed and baseline to post training was significant with t (7) = 2.45, p < .05 and a Mdiff of
6.47 and SD=7.5. From Baseline to Post Training, Cohen’s f =0.88, which is very large. Using
the mean of the difference, (Mdiff) and the baseline SD, which is done in some conventions if
there is no control group, the effect size is d = 0.77 which is large. The difference between
Baseline to One-Month Follow-up was examined experimentally with a paired-samples t-test and
was not significant but is worthwhile to report with t(7) = 2.35 and p=.05 precisely. The mean
difference (Mdiff) was 4.7, and the effect size = 0.823 if we use the SDdiff. This is a greater than
a moderate effect. The difference from Post Training to One-Month follow-up was not significant,

p=0.577, with a Md of 1.955 and an effect of 0.24 which is small.

4.3.2 Six Minute Walk Test (6MWT)

A one-way repeated measures ANOVA was conducted to compare the effects of
RTMVEF/MOVISUFIT training on the 6MWT measured in Meters. There was a significant effect
of training (F (2,14) = 7.345, p = 0.007, n2 = 0.512), which translates to a Cohen’s f(V) = 1.024,

which is very large (Table 10).

Table 10 Descriptive Statistics 6MWT-Distance in meters (m)

Mean = SD N
Baseline 6MWT Distance (m) 303.82 + 64.62 8
Final 6MWT Distance (m) 394.17 £ 120.52 8
One Month Follow-Up 6MWT Distance (m) 396.95 + 138.64 8
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Pairwise comparisons found a significant difference between Baseline and Post Training
with Mdiff = 90.35, p=0.024, d=1.29 using the baseline SD. There was no significant difference
between baseline and the One Month Follow-up. The Mean difference was even larger than the
Baseline to Final difference, (Mdiff = 93.13) However, the variability of the mean difference was
larger with SDDiff = 102.34. An individual paired-samples T-test was conducted and yielded t(7)
=2.547,p=0.037, (Mdiff = 93.13, SDDiff = 102.34). This effect size then was f(v) = 0.94 which
is large. There was no significant difference from post training to the One Month Follow up with

a Mdiff = 2.781, SDDiff =54.39, p = 0.999.

4.3.3 Pelvic Obliquity in the Frontal Plane

The pelvic obliquity in the frontal plane is measured as an index referenced in section
4.2.4.1 where a cross correlation is applied to the two accelerometry curves from either side of the
pelvis and an index is generated depending on how much they overlap. 100 would be they overlap
perfectly. Therefore, it is a unitless measure from 0-100 where 100 is perfectly overlapping
without asymmetry. A repeated Measures ANOVA did not find a significant effect of training (F
(2,14) = 1.60, p >.051, n2 = 0.186). However, this translates to a Cohen’s D effect size f(V) =

0.48 which is a moderate effect size. The means and SDs are shown in Table 11.

Table 11 Mean and Standard Deviation (mean + SD) of the Pelvic Symmetry Index

Mean + SD N
Baseline 44,96 + 15.64 8
Post Training 54.07£ 17.36 8
One Month Follow-up 53.08 £ 19.31 8
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The Pelvic Symmetry Index was provided by G-Walk in the frontal plane and measured at
the three time points. The baseline to post training means increased in symmetry by 20.3%
however it was not significant with p = 0.08, however the effect size using Mdiff and SD diff
resulted in a Cohen’s d of 0.57 which is moderate. The effect size from baseline to one-month
follow-up was calculated using the Mdiff and SDdiff was also moderate with Cohen’s d = 0.44.

The increase in symmetry remained greater than 18% at the one-month follow-up.

4.3.4 OPUS Health and Quality of Life Index (HQOL)

HQOL scores were converted to Rasch Scores per the OPUS guidelines, and the means
and SD for the three time points can be seen in Table 12. A repeated measures ANOVA did not
find significant results,( p = 0.148). However, the mean difference from one month to baseline
was 3.99. When n2 = 0.271 was converted to Cohen’s f, the effect size was 0.609. A paired-
samples t-test was not significant, however, the Cohen’s D calculated from the Mdiff and the

SDdiff was 0.56 which is a moderate effect.

Table 12 Mean and Standard Deviations (Mean £+ SD) Health Quality of Life (HQOL) Survey Rasch Scores

Mean £ SD N
Baseline 58.85+8.91 8
Post Training 61.08 +8.25 8
One Month Follow-Up 62.84 + 7.64 8
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4.3.5 Chronic Pain Grade

A repeated measures ANOVA including the three assessments did not find significant
differences (p = 0.0322) however, paired-samples t-tests were conducted at the pre to post training

level to illuminate apparent improvements (Figure 35).
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Figure 35 Mean of Pain IntensityA) baseline average across participants, B) post training mean across

participants.

When examined more closely, on average, participants did have lower Pain Intensity post
training (M= 44.16, SD = 23.41) than pre training (M =53.33 , SD = 17.457) which was not

statistically significant. However, Cohen’s D was 0.40 which is moderate (Table 13).
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Table 13 Mean £ SD of Pain Intensity at the Three Time Points.

Mean £+ SD N
Baseline Pain Intensity 53.33+17.45 8
Post Training Pain Intensity 44.16 £23.41 8
Pain Intensity One Month Follow- 42.91 £24.19 8

There was a significant difference in the repeated measures pre training and post training

with t =-2.687 (1,19) p = 0.007. The negative indicates a reduction in pain (Figure 36).
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Figure 36 Reduction in Disability Scores Pre to Post Training with 95% CI.

However, secondary to the fact the points are all added, a ratio outcome can be considered,
and a repeated measures ANOVA was also executed. On average the participants did reduce their
total disability points from pre training (M= 2.4, SD = 1.35) to post training (M =0 .5, SD = 0.97)

and it was significant F (1,7) =25.186, p = 0.001.
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4.3.6 OPUS Functional Status Measure

The means and standard deviations for the pre and post treatment results of the OPUS
Functional Status Measure (FSM) are show in in Table 14. The raw scores were converted to

Rasch Scores to allow for analysis in ratio/scale measures.

Table 14 Mean and Standard deviation (SD) OPUS Functional Status Measure Rasch Scores

Mean = SD N
Baseline 53.08 +£3.75 8
Post Training 55.40 +4.44 8
One Month Follow-up 55.68 £4.01 8

A repeated measures ANOVA resulted in an F (2,14) = 3.334, p = 0.065, n2 = 0.323.
Cohen’s definitions of effect size based on 12 indicates there is a large effect, f=0.69. Given the
borderline alpha result and the experimental nature of the study, a post hoc paired-samples t-test
was used to compare the mean differences pre training and post training on the OPUS Functional
Status Measure (FSM). A Cohen’s d was calculated as 0.7. Differences from baseline to One
Month follow-up were not statistically significant. However, with a mean difference of 2.6, and

SD =4.05, Cohen’s D was 0.64 which is a large effect size.

4.3.7 Lower Extremity Capabilities Index — S (LCI-5)

On average ,the participants improved their LCI advanced level sub scores from pre

training (M= 24.9, SD = 6.98) to Post Training (M = 26.7, SD = 2.31)but the difference was not
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statistically significant p > 0.05. However, the mean difference exhibited a Cohen’s D of 0.39
which is a moderate effect size. Figure 37 depicts the before and after values in the functional

Score.
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Figure 37 Mean differences in total C=LCI scores from pre to post training (N = 8).

4.4 Discussion

This study provided gait training with real time visual feedback for over-ground walking in
a more naturalistic environment to assess the efficacy of the treatment on the parameters Gait
Quality as measured by Symmetry and Pelvic Obliquity, as well as Pain and Function as measured
by CPG, 6MWT, OPUS FSM, HQOL and LCI-5. Studies have compared real time visual feedback

in this population prior, however currently it is not known if those have been effective beyond the
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laboratory setting with virtual reality, treadmill training, or with visual feedback. This environment
and type of training might encourage a greater internalization of the new motor patterns.

It was found that most of the parameters measured were maintained at an improved level
than at the baseline level, which is a critical finding of the pilot data. This included Symmetry
which has the most significant improvement of the outcome measures with a 9.4% increase from
pre to post training and maintained a 7% increase at one month. Dingwell at al found a 4%
improvement as an effect size of 0.56 [31]. Our intervention achieved that result at one month
and double that immediately post training. One study with auditory feedback found almost a
26.5% improvement in symmetry, however this was demonstrated in one subject out of a total
sample size of three [70]. The total mean % change of the three subjects pre to post, was 9.9% =+
14.5 which we were able to achieve within 2% at the one-month follow-up post the conclusion of
training. They similarly trained with repeated visits with a total of 6 over 3 weeks, which is a
higher intensity than our program [70]. We implemented a lower intensity program and
maintained similar results for a month post training.

The findings related to the 6MWT are the most encouraging of the findings as the 6MWT
has been directly correlated to higher functionality [131]. The risk factors related to gait speed are
also well documented as decreased endurance and increase energy expenditure in those with limb
loss, so this finding is considered clinically relevant [133]. Also, that the results continued to
progress at the one month follow up indicated that the new more efficient patterns were
internalized to a greater degree than with traditional training with an improvement of 9Imeters
from pre to post training and 93 meters at one month. The MDC of the 6BMWT was reported as
1.47m, and clinically meaningful differences are results >45m, and our results demonstrate twice

that elevation [138].
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Pelvic Obliquity was also improved by 20% and maintained at an 18% improvement at the
one month follow up. Previous studies found that Pelvic Obliquity effect sizes were -0.68 for the
intact limb, and -0.82 for the prosthetic limb with an average of -0.70 [139]. Initially, based on
limited previous work such as this, we considered that our findings would be meaningful if the
effect size was >0.6. Our effect size was an improvement in obliquity not negative and Cohen’s
D was 0.57 which is bordering on the originally hypothesized outcome. Further analysis would
have to be performed to elucidate the findings here secondary to the post hoc findings were not a
part of the initial aims related to the pelvis. Previous data in the mentioned study was collected
regarding the intact versus the prosthetic limb and the findings appeared influential in the
improvement of symmetry [139]. This is potential future work from this study in that the pelvic
obliquity should be assessed in different activities, as well as potentially involved versus
uninvolved limbs. In a systematic review of spinal, pelvic and hip movement asymmetries in
people with lower limb loss, it was stated that those studies that did compare pelvic obliquity in
the frontal plane against healthy controls noted a total increase in pelvic obliquity [90, 129]. Our
findings support this with significant differences however, further investigation is recommended
comparing the intact versus involved limb and potentially other planes. Previous research
predominantly, although limited, reported a mean difference of two degrees[90]. It is a significant
finding, however, that changes from our training protocol were sustained from baseline to post
training with a mean difference of 20%, and then to one month with 18%. Given the conflicting
evidence regarding intact versus involved limb, these results are interpreted carefully.

The reported MDC for the LEFS subscale of OPUS is reported as 10.3. Our results
regarding the change in LEFS scores were not statistically significant. However, our findings

demonstrated an effect size of f = 0.69 which is greater than moderate, but this was with a mean
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difference in Rasch score of 2.4 which is less than the MDC and therefore most likely not clinically
significant.

The OPUS also contains the HQOL scale which was assessed in this study and the MDC
is 9.2 and our result from pre to post training was 3.08 and the difference to one month was 4.01
reaching half the MDC [138]. However, this is of relevance in that the improved HQOL score
continued to improve after the conclusion of training which provides evidence of retention with
this type of intervention.

Our findings show reduction of pain with pre to post training, which was also retaining this
decrease, at the one-month follow-up. The mean differences were not statistically significant,
with Mdiff = 9.17 from pre to post training and 10.41 from baseline to one month. However, in
previous studies it was found that the pain scale was sensitive to change with an effect size of 0.41
and our effect size was 0.40 using a paired-samples t-test [140]. This implies a potentially

clinically relevant finding, particularly with continued retention at one month.

4.4.1 Limitations

This study did lose two subjects to follow-up and sample size was reduced to eight. With
a lower sample size, we are less able to control if some other extraneous factor is responsible for
the change [128]. Small sample size reduces the power of the study, which is its ability to detect
an effect if there is one. The power of a study gauges our ability to avoid type II errors, which is
when the null is not rejected when it should have been. This depends on the size of the effect
because large effects are easier to notice and increase the power of the study.

Repeated Measures ANOVA has its advantages in that it can require fewer participants and

eliminates the issues of differences on an individual basis between participants than independent
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samples. However, disadvantages exist as well. If there are inconsistent treatment effects, there
is no longer consistent individual differences between the participants. The differences could
potentially reverse, and if this occurs, it could appear as though there is no difference. If there are
consistent treatment effects from on participant to another, t this will produce a larger value for F.

Finding participants with enough of a deviation to improve with self-report questionnaires
and still recruit participants that can walk and tolerate the training was difficult. Given this
conflict, the choice of the LCI-5 did not appear appropriate, and even though it was touted to not
have a ceiling effect, it provided inconsistent results here. Secondary to the data not being
normally distributed and being ordinal data, several different tests were performed. First, as this
is another repeated measure test, and the sums of the Survey data can be considered ratio data in
some instances, a repeated measures ANOVA was attempted. This did not find significant
differences; however, the data was not normally distributed. A Wilcoxon Ranked test was
attempted, and results were also not significant. It may be argued that this survey did not
adequately quantify the participant function.

Due to the varying deviations many of the participants, presented with, and considering the
variability that ensued with training and the participant working on their adaptation to the
feedback, future work could look at the individual’s outcomes versus pooled data. Normative data
exists in small amounts for gait variability in the limb loss population however, this variability
could provide a necessary conduit to assessing that outcome. It was determined after the data
analysis that there were approximately three key gait deviations. Too short of stance time both in
single and double limb stance, and too short single limb stance amid prolonged double limb stance
would benefit from further examination and delineation as a feedback variable. It was determined

that both too short of single limb and double limb stance were occurring by examining the raw
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data Fz force curves, and to receive a red in the glasses, the stance had to be < 58%. When
examining the force curves and the amount of area under the curve outside of the peak to peak
area, it was not likely that a red could be received with increased double limb stance as well. When
participants would receive a yellow predominantly, this was based on too long of a total percent
stance. It was determined post hoc looking at the raw force curves that the peak to peak area was
still low, but the overall area under the curve was large. Development was initiated to determine
the ratio of peak to peak time versus the time outside of this single limb loading phase, given the
published ratios, and this was established in one of the android apps. It was not able to be
implemented at this time, however, would be a prudent progression. Some concern did regard the
level of changing feedback and not to incite cognitive overload, however the timeline and funding
period did not allow for further development in this direction. To be able to detect which issue is
occurring could be impactful in this population as a feedback variable but for clinicians to know
which deviation it is, would be a fairly simple calculation of the peak to peak time of the force
curve over the total stance time. We provided orange feedback color, when %stance was too high,
but it is likely, and preliminarily appeared to be the case, that single limb stance was still too short,
and double limb stance was too high. Post hoc analysis may continue regarding the stance on the
unaffected side and the potential for future feedback parameters exists. The final deviation was a

significant trunk lean causing a decrease in %stance that was clearly below the lower boundary.

4.4.2 Future Work

Given the results of this pelvic obliquity finding, it would be prudent future work to
examine the involved side and the frontal plane pelvic drop opposite the trunk lean and determine

if changes occur in the specific angle versus a proprietary measure. Also, a clinical single limb
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stance test for Gluteus Medius weakness would be a good clinical screen to determine if there is a
drop initially at baseline.

Following the guidelines of levels of evidence, the most prudent next step would be to
compare this intervention to the standard of care. At this time, it is not recommended to compare
against a sham intervention, as we want to understand how this intervention is comparable to what
we are currently practicing as an intervention in the clinic. In addition, methods to preserve
alignment and weight could be better standardized when the sensor is installed, and this would
ensure any changes or instability in the variability in the participants’ gait are not due to
accommodating to changes in the prosthesis. This work is also critically delving into the issues of
cognitive demand during real time visual feedback. There are many variables that can effect, both
positively and negatively, the effects of providing such feedback, and strategies should be
investigated, for example, in terms of how the glasses provide the feedback (not in the periphery,
in the lens of the glasses, which is available now). It is key to not have the participant become
dependent on the feedback, and this could be avoided by also programming the system to
automatically interrupt the feedback at varying amounts of time. A study to assess multiple
variables of feedback could also research effects of the treatment. By performing a study that
investigates the predictors of feedback color change from the kinetic data collected throughout this
study, a more predictive model could be tested. An additional direction and possibility is there
could be a more effective variable to provide as feedback, or perhaps it does need to be
individualized per patient.

Of course, further studies could also investigate this method providing the kinetic data from
a source not integrated in the prosthetic but located in a different location, thus perhaps lowering

variability at each visit while getting accustomed to any change. A unique study would be to
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compare whether this made a difference in the outcomes. The choice of functional outcome

measures would also be a suggested change for the next work.

4.4.3 Conclusion

Traditionally, clinicians do not have a system allowing over-ground real time feedback
training at their clinic and are left to qualitatively assess gait based on scales or (as was found via
customer discovery at an APTA conference) use gait analysis apps from their own mobile phones
that have not been validated. Being able to train participants over ground is also critical in that it
has been documented that for patients with transtibial or transfemoral amputations, walking on the
treadmill was about two and a half times more energetically costly than walking over ground [12].
This study provides a foundation for sample size estimation for a larger study, particularly for the
outcomes of symmetry, six-minute walk distance, and pain. The retention of all the outcomes at
an improved level is a promising finding for this method of feedback, suggesting the facilitation

of automaticity of new motor patterns with real time visual feedback.
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5.0 Usability

5.1 Introduction

The evaluated feedback system was designed with those with limb loss in mind, with the
integrated sensor and a design that is least cumbersome. However, for any future designs a sensor
system that is downsized would logically be a design criterion.

The initial prototype included the smallest yet high-powered Dell Ultrabook that could be
used, to provide the power for real time feedback and not have any delays or processing issues,
and yet be just around one kg The neoprene waist belt could be snug and lightweight
polypropylene plastic was added for stiffness in one plane to improve the comfort and stability
while the participant was walking. A single micro USB cable connected the sensor to the
computer, and the glasses were programmed to be wireless, which took research and
developmental effort, as we could easily have pursued a wired alternative. A surface laptop
(Microsoft, 2017) was then used to make the system even lighter, which was also appreciated. The
first outcome from the experimental activities is that all the subjects could easily wear the system
and successfully walk, and only one reported that they would like to not have to wear the computer
around the waist, however they could tolerate it. Also, the participant was only 1.49m and this did

make space for it difficult.
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5.2 System Usability Scale

To assess usability, a standard System Usability Scale (SUS) was used as a Likert scale
from strongly agree to strongly disagree. In addition, some specialized questions were added. The
initial questions included “Would I use the system frequently?”, “Is it unnecessarily complex?”,
and “Was it easy to use?”. All of these are important factors of a feasible or usable system. Eighty-
one and one-third percent reported they strongly or slightly agreed they would use it frequently,
87.5% reported they strongly or slightly disagreed that the system was too complex, and 86.8%
reported they strongly or slight agreed the system was easy to use.

Understanding the technical aspects and frustrations in developing the system was also key
and the usability survey facilitated any frustrations by the participants to be clearly resourced. In
terms of needed Tech support to use, 46% disagreed, 25% were unsure, while 30% slightly or
strongly agreed they would. Eighty-seven- and one-half percent found the various functions well
integrated. In terms of whether there was too much inconsistency in the system, 12.5% slightly
agreed, and 68% disagreed, with 18% being unsure. Overall, this is a satisfactory result, given the
difficulty of development and that some participants were more than S50years old and were not
familiar with smart glasses technology. Eighty-seven and one half of the participants felt that other
people would learn to use the system quickly. Appendix A contains the responses to the SUS

survey and the frequencies.

5.2.1 Scoring the SUS

Based on previous research using this scale in this department and from literature searches,

it was decided a-priori that good usability score was greater than70 [141]. To score the SUS, the
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odd items were subtracted by one, and the even numbered items were subtracted by five. This
normalizes all the values from 0 to 4 (with four being the most positive response). These were
then added and multiplied by 2.5, which converts the possible values from 0 to 100 instead of from
0 to 40. Based on previous findings, using the scores as a percentile rank and treating the score as
a “grade” is the most efficacious method to process the responses. This normalizes the scores.
The SUS sore is not to be considered a percentage but rather interpreted as a grade, and a study of
500 uses of the survey on developed products reports that a score > 80.3 is required to get an A,
and this is also a point where users are more likely to be recommending the product to a friend
[142-144]. Scoring at the mean score of 68, for instance, is equivalent to a C grade, and below 51
is an “F”, which places your product in the bottom 15%. The distribution of scores from 0 to 100

can be seen in Figure 38.

Frequency
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System Usablity Survey AdjustedScores
Figure 38 Distribution of the adjusted SUS Scores 0 — 100 at 20th Percentiles.
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The total average score was 78.59 which is better than the average score of 68% when
scoring using the adjusted scores and percentiles [142-144]. Therefore, we can reject our null
hypothesis and report we did achieve usability. The goal at the outset of the study was to create a
system that scored greater than 70%, and if the score is > 80.3 the subject is likely to recommend

the product to a friend and we are < 2% from that score.

5.2.2 Custom Survey Questions

The following custom questions were added to the survey “Would you take the system
home?”, “Do you think it is appropriate for Gait Training in a PT environment for Prosthetic
Users?”, ”Why would it be helpful to have this in the clinic for gait training?”, “Did you feel safe
using the system?”, What did you like best?”, and “What did you like least?”. The answers were

grouped, and the frequency of responses demonstrated as nominal data are shown in tables

15-16.
Table 15 Would You Take the System Home?
Frequency Percent Valid Percent | Cumulative Percent
Valid |no 2 14.3 14.3 14.3
yes 11 78.6 78.6 92.9
not sure 1 7.1 7.1 100.0
Total 14 100.0 100.0

Interestingly, in Table 16, the answer was overwhelmingly yes, that subjects felt this

system was appropriate for PT clinics.
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Table 16 Is it Appropriate to Use for Gait Training in PT Environment for Prosthetic Users?

Frequency | Percent | Valid Percent | Cumulative Percent
Valid | yes 14 100.0 100.0 100.0

In Figure 39, regarding safety (a critical part of feasibility and usability), 78.6% reported
they agree or slightly agree that they do feel safe using the system, and only 11.4% reported they

did not feel safe. In future work, it would be prudent to determine what caused an issue of feeling

unsafe.

Histogram

Frequency

.00 1.00 2.00

Figure 39 Did you feel safe using the system?

5.2.3 Smart Glasses

Most interestingly, the response to the glasses was positive, in that they were quickly
adapted to by most. A specialized question was added to the survey “What did you like About

Using Smart Glasses for This Training?”” The most common responses are summarized in Table
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17. The instant feedback and seeing that they were walking correctly appeared to be the most

popular features.

Table 17 Percent responses to the survey question “What do I like about Using smart glasses for this

training?”
Common Variables in Responses: Frequency Percent
Instant Feedback 3 214
See If I am Walking Correctly 4 28.6

[\9)

Color System 14.3
Lightweight 1 7.1
Colors define walking, So I can see how I am

3 21.4

Doing

In terms of what subjects did not like about the system, the overwhelming response was
connectivity at 35.7%. This is understandable and addressed in the next chapter with Future Work.
Twenty-eight and two-thirds percent reported “nothing” and there was one answer each to “weight
of glasses”, “tech issues”, and “design of glasses”.

The final custom question was “What did you like Best About the System?” The

frequencies and %Responses are seen in Table 18.

Table 18 What did you like Best about The System?

Frequency | Percent

Teaches me about my walking, improves my walking 5 35.7
Improving my weightbearing on prosthesis 6 42.9
Hill and ramp training 1 7.1
Helped me work on my Step length 1 7.1
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5.3 Conclusion

The SUS results indicate that the participants felt that this was a usable system. Participants
responded in majority that “improving the weightbearing” on their limb, and the “real time
feedback™ as well as the “colors” were the best parts of the system. We feel this demonstrates
promising results in that, even though the system was under development as participants were
using it and did have issues with connectivity, users overall still reported that the system provided
them with useful and helpful information about their walking. Most importantly, on the question

of whether to include this training in the clinical environment all responses were “yes” .
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6.0 Dissertation and Study Conclusion

6.1 Summary

Based on the results from the research project described in this dissertation, the RTMVF
and MOVISUFIT systems significantly increased Gait Symmetry, Pelvic Obliquity, Gait speed,
and clinically decreased pain and improved function in lower limb prosthetic users. The findings
from this study at the One Month Follow-up are relevant as they support the hypothesis that this
type of training does improve retention of improved biomechanical parameters, pain, function,
walking speed, and endurance. It was challenging to progress the prototype, and work through
developmental delays or connectivity issues. However, this experience supported the need to
revise the system to perhaps migrate to a sensor that is developed by our lab or other methods of
collecting the kinetic data. The study participants demonstrated different responses to the HQOL
and FSM outcome measures, which may motivate a different mode of measuring these outcomes.
With a larger sample size, the observed effect is expected to not only be clinically significant but
statistically significant as well.

Findings from the development study in Chapter 2 demonstrated that the algorithm and the
speed of feedback, as well as the mobile app functionality are important issues related to training
compliance. Individual preferences for types of feedback were considered. A potential conclusion
from the results of this work related to development and usability is that heightened interest in the
novel concept was a beneficial factor. However, that does not diminish the potential positive
impact this new approach may have, as with physical therapy training, compliance and enthusiasm

for the training and trust in the clinician patient relationship are all key factors in improving
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perceptions of how successful training has been. The recommendations from clinicians (which
were not included here) primarily focused on remote training, and an app-based system, which we
have developed. The feedback from the patients regarding a wireless system, downsizing the
system, and improving the app functionality in terms of what information regarding the session is
immediately available to them for knowledge of results, was implemented in updates to the system
for improvement.

Findings from Chapter 3 demonstrated that RTMVF and MOVISUFIT have excellent
reliability in terms of stride time, % stance, and stance duration, however with curved and
distracted testing, the system had decreased reliability of stance duration. Some explanations for
this include the tendency for a person with limb loss to employ protective mechanisms, when
there are surprises, for example, in the in a hallway, the sudden opening, or closing, of doors into
their path. This could lead to an overcompensation of protecting the involved limb and a wide
variability in step parameters until normalcy is reached again. The design of the glasses may need
to change to a more centralized “within lens” type of feedback, which may allow patients to feel
they are not looking away from their central vision. It may also decrease cognitive demand. We
are in discussions with Vuzix currently with promising potential to determine a potential
collaboration.

Findings from Chapter 4 indicate that those who received the training program significantly
improved their symmetry, pelvic obliquity and gait speed/endurance. They also reduced their
level of pain, with a clinical effect size of 0.40 which is moderate. Unfortunately, some portions
of the Chronic Pain grade were not yet analyzed, and it would be prudent future work to examine
the other levels of disability more closely. A participant’s perception and view of their own

function and quality of life is frequently key to beginning or maintain rehabilitation programs.
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Two participants were excluded from the analysis because they did not complete the one-
month follow-up. This may also have affected the results. One participant who was lost to follow-
up did improve his 6MWT-distance from 459.94 meters at baseline to 552.5m post training. As
outlined in chapter 4, changes are considered clinically relevant if they are >45m. This participant
improved by 92.56m therefore, they demonstrated double the clinically significant threshold as
well. The other participant did not provide a reason for not attending a one-month follow-up. He
was not as accustomed to technological solutions and did not have a smart phone, therefore perhaps
the intervention was not comfortable for him. However, they did remarkably well and improved
in all areas of measurement. His symmetry improved from 86.07 to 94.3, which is greater than
the MCID of 4-9% at 13%. His 6MWT-distance improved from 324.95 to 371.36 meters, which
is just over the MCID, and his pain intensity score was reduced from 40 to 6.67. His pelvic
obliquity index provided by G-Walk as a cross correlation of the accelerometry planes, improved
from 73.53 to 81.03. He reported on his usability surveys that he felt the training “improved his
posture” and that he liked the real time feedback and learning how to put more weight on his
prosthetic leg. This was facilitated by the feedback secondary to it providing him information that
he was not spending as much time on that limb. It is believed this was his way of incorporating
the feedback into his own mechanism of improved symmetry because it worked for him, he
significantly improved. The one other participant that was loss to follow-up secondary to the
closing of the funding period, significantly improved his 6 MW T-distance, however their symmetry
decreased. This participant’s gait deviation was not as pronounced as some of the other
participants’ and a different feedback variable may have been more appropriate for his gait

deviation as it was more specific to pelvic motion and weight transfers.
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7.0 Future Work

Examining other variables that were also collected while the patients were gait-training
including medial and lateral torque, anterior posterior torque, and other calculated spatial-temporal
variables could greatly benefit feedback choice. Future work in this population should focus on
determining single limb stance duration from the sensor data to investigate which deviation is
being elicited and whether feedback regarding that decreased stance could be beneficial.

Future work would also benefit from employing machine learning and perhaps a more
sophisticated form of feedback that incorporates more than one channel. However, motor learning
theories do address that it is prudent not to challenge the patient with adjusting too many
parameters at once. In addition, the data that was collected in terms of the other biomechanical
and kinetic variables could use a regression analysis to find predictors of poor step quality. These
could not only be involved as different feedback variables but also could be a part of prosthetic
prescription and modification as it entails quantitative, not qualitative, gait assessment and

feedback.
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Appendix A System Usability

Strongly Slightly Unsure Slightly Strongly
Disagree Disagree Agree Agree

I think I 0 0 2 7 4
would Use
This System
Frequently

I found 5 7 1 0 0
system
Unnecessarily
Complex

I thought 0 0 1 6 7
System was
Easy to Use

I would need 1 5 3 2 3
Tech support
to use

I found 0 0 1 7 5
function well
integrated

Too much 4 7 2 1 0
Inconsistence
in the System

I would 0 1 1 7 5
imagine most
people would

learn to use
quickly

I found the 7 3 2 1 1
system
cumbersome
to use

I felt Very 1 0 1 4 8
confident
Using System

I needed to 4 7 3 0 0
Learn A lot
of Things
Before 1
could Get
Going with
The System
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Feasibility of a mobile feedback system
for gait retraining in people with lower
limb loss—A technical note

Goeran Fiedler and Krista Kutina

Abstract

Gait retraining in people with musculoskeletal and/or neurclogical impairments requires sustained dedicated efforts by
the patient and the rehabilitation therapist. Various technical approaches have been proposed and utilized to improve the
effectiveness of training interventions. Among the most promising approaches is the provision of real-time feedback
information to the patient, which has been used with success on treadmill-based interventions in the past. Ve are
describing a mobile visual feedback system that is intended to work in the user's everyday-life environment. The data are
captured by a small mobile load cell, processed in a wearable computer, and displayed to the user via smart-glasses.
Preliminary testing of the initially selected feedback variable stance/step ratio (i.e., the duration of a step's stance phase in
relation to the overall step's duration) confirmed that data quality is sufficient for purposes of generating feedback
information and that the chosen variable is responsive to changes in gait symmetry. The presented work may inform

future studies and developments on the topic of mobile visual feedback for gait rehabilitation.

Keywords

Gait deviation, gait training, load cell, smart glasses, visual feedback

Date received: 31 July 2017; accepted: 22 Ocwber 2018

Introduction

Gait deviations are frequently observed as a symptom
in patients with musculoskeletal and/or neurological
impairments. They are very prevalent among people
with lower limb loss, where they can be mostly attrib-
uted to the inevitable differences between sound and
prosthetic leg. For users of lower limb prostheses, gait
deviations can be the cause and the symptom of gait
instability, falling and fear of falling, overuse injuries,
and impaired mobility.

However, gait deviations and the associated acute and
chronic medical problems are not limited to individuals
with lower limb loss, and gait retraining has the potential
to benefit a great number of patients beyond this popu-
lation. Due to the range of possible underlying patho-
logical conditions'? and the wide spectrum of individual
coping strategies, gait deviations manifest themselves in
a variety of forms. These include fairly minor bilateral
asymmetries of step pattern or arm swing, as well as
severe favoring of one leg over the other with associated
compensatory trunk and arm motions.

It has been (inconclusively) debated which level of
asymmetry constitutes a pathological gait deviation,*
since it was found that even healthy able-bodied
people present gait asymmetries either because it is func-
tional to utilize legs differently or because of laterality
(limb dominance). Accordingly, the prevalence of gait
deviations can only be roughly estimated based on the
known prevalence of some underlying conditions. So it is
known that every year about 795,000 Americans suffer a
stroke,” 1.4 million are diagnosed with traumatic brain
injury,® and 185,000 undergo major limb amputation.
A study from 2007° estimated that

among US adults, nearly 27 million have clinical osteo-
arthritis ..., 711,000 have polymyalgia rheumatica,
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228,000 have giant cell arteritis, up to 3.0 million have
had self-reported gout in the past year ..., 50 million
have fibromyalgia. .. [and] 59 million have had low
back pain in the past 3 months

Old age is associated with many of the discussed
pathologies, and therefore with a propensity to gait
deviations. One respective study found abnormal gait
in 35% of community-residing adults aged 70 years and
older.” Gait deviations’ prevalence and severity in this
population was correlated with a greater risk of insti-
tutionalization and death. Regardless of the patient’s
age, gait deviations increase the risk of joint degener-
ation,? accidental falls,” and reduced gait economy,'”
thus limiting mobility and participation.

Untreated, gait dysfunction can become chronic,
even after the wunderlying pathology has been
addressed. Physical therapy for gait retraining is there-
fore commonly prescribed to patients recovering from
stroke, limb amputation, or other pertinent conditions.
Such training typically comprises, in addition to
strengthening and range-of-motion exercises, a
number of therapy sessions. These sessions are typically
spaced out over several weeks in which the therapist
observes the patient’s gait and provides corrective feed-
back. While generally effective, this approach is very
time- and personnel-intensive, which often necessitates
a limitation on the duration of such provided training.
After the cessation of training sessions, and even in
between training sessions, patients are at risk of revert-
ing to their abnormal gait pattern, especially in cases
where the treated gait deviation has manifested itself
over long periods of time already. To mitigate this
risk, patients may be advised to continue practicing in
front of a mirror which provides a simple form of visual
feedback.

More sophisticated approaches that have been pro-
posed include augmented sensory feedback, which has
been reported to improve dysfunctional lower extremity
impairments and related gait patterns including in those
with lower limb loss'': The patient walks on an instru-
mented treadmill, while stationary gait analysis equip-
ment generates pertinent gait data that are displayed
to the patient via a computer screen in real time.
A common criticism of these previous studies is based
on the associated expense and tightly controlled labora-
tory conditions. These circumstances may limit trans-
latability of the approach to realistic clinical
environments, as the required equipment (instrumented
split-belt treadmills), gait analysis personnel, and time
are often unavailable in clinical settings.

More recently, mobile data collection and feedback
systems have been utilized to overcome some of these
shortcomings. One such approach is based on an array
of wearable accelerometer sensors, attached to trunk,

legs, and arms of the user, a processing unit, and an in-
ear speaker that provides standardized verbal feedback
corresponding to the gait deviation that is detected by
the sensors.'? Notable limitations of providing feed-
back in that manner are that the voice commands
may be perceived as interfering with regular communi-
cation, and—importantly—that the specificity of the
commands is not conducive to effective motor learning.
By obeying commands such as “increase right step
length!™, “swing arms!”, or “tighten your hip mus-
cles!”, the user focuses on the internal mechanisms of
proper gait. It has been shown that providing an exter-
nal instead of internal focus of attention yields better
motor learning success. '

Overall goal of our research is to design a system
that provides real-time mobile wisual feedback
(RTMVF) for gait training. The feasibility of such a
system is currently being investigated in a cohort of
people with lower limb loss, a population that was
selected because use of limb prostheses is often asso-
ciated with gait deviations and because the mechanical
limb provides an ideal platform for the necessary sensor
equipment. Even though people with limb loss make up
only part of the overall population with gait deviations,
they offer unique opportunities to test and refine the
technology before it will subsequently be applied
more generally. We describe here the development of
the system components, the selection of meaningful
feedback wvariables from the available sensor output,
and the initial validation of the measured and processed
gait data.

Methods

The RTMVF system was developed utilizing
commercially available and/or previously wvalidated
componentry (Figure 1). Gait data source is a prosthe-
sis-integrated load cell (i-Pecs, RCT Electronics,
Dexter, MI) capable of measuring precisely kinetic
gait variables in lower limb prostheses. The device is
semi-permanently installed as part of the load-bearing
structure of the limb prosthesis connecting to the rest of
the device using standard adapters. Ground reaction
forces and moments of force data can be collected up
to 850Hz and transferred wirelessly or by cable connec-
tion to a laptop computer for further processing.
In order to provide visual feedback to the patient, a
wearable head-up display (M300, Vuzix, West
Henrietta, NY) was used. These “smart glasses” con-
tain, positioned at the fringe of the user’s normal field
of view, a small-sized display, the contents of which are
retrieved from the computer via Wi-Fi or Bluetooth
connection.'*!'® The display has a resolution that is
comparable with small computer screens, yet its pos-
ition and intended purpose in our context advises
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Smart glasses
Neoprene

pouch carrying
ultra-compact PC

Wire connection

Prasthesis-integrated
load cell

Figure 1. Mobile gait feedback system in use. PC: personal
computer.

against the conveyance of wvery complex visual
information.

Connectivity between the different components is cur-
rently realized using cable connection between load cell
and laptop computer, and Bluetooth to the smart
glasses. In this configuration, the lightweight computer
is being carried in a pouch on a waist belt by the user.

Feasibility of the system was evaluated using the
feedback variable “‘Stance/step time ratio,” (i.e., the
duration of a step’s stance phase (From initial ground
contact to toe-off) in relation to the overall step’s dur-
ation measured from one initial ground contact to the
next initial ground contact on the same side). This par-
ameter correlates with some typical gait deviations in
lower limb prosthesis users, and it lends itself to easy
capturing by lower cost, prosthesis-independent sensor
equipment for potential translation into the clinic and/
or adaptation for different patient populations. Stance
and swing components of step cycles were derived by an
algorithm that analyzed various components of the
axial force curve (the sensor’s Fz is roughly equivalent
to vertical ground reaction force in an external coord-
inate system'”) to determine the appropriate crossings
of a 15 N and 100 N threshold (Visual Studio
Community 2015). For examining the sensor data
graphically and quantitatively, different strategies
were tested to harden the algorithm to outliers and
measuring  artefacts.'”® Timing parameters were

established to help the algorithm detect transition
steps and turns as non-representative steps for gait ana-
lysis and feedback purposes.

A target window of stance/step ratio was established
between (.59 and 0.63, resulting in three discrete output
states: Too short stance phase (below 59% of step cycle),
desirable stance phase (59%—63%), and too long stance
phase (above 63%). The three states were represented by
different feedback colors, displaying a red (for too short
stance phase), green (desirable stance phase), or yellow
(too long stance phase) screen to the user. The most
accurate calculation of stance phase duration with
respect to the total step cycle requires the entire step
cycle in question to be timed. This makes the feedback
information available only after a given analyzed step is
completed. Accounting for this inevitable latency, the
validity of the system in generating feedback variables
was investigated in a small sample of steps.

Inclusion criteria for this test were use of a trans-
tibial prosthesis for ambulation, absence of acute or
chronic health conditions that would affect prosthesis
use, and ability to walk without aids for at least 30min.
Demographic data and mobility score (PLUS-M'?)
were recorded. The test participant was equipped with
the RTMVF system and a waist-worn “mobile gait
lab™ (G-Walk, BTS Engineering, Milan, ITA) and
was asked to traverse in self-selected walking speeds
repeatedly across a 30-m level walkway. Step phase
durations were extracted from the G-Walk data to
serve as the validation standard for the respective vari-
ables computed from the prosthesis sensor data by our
algorithm. Gait symmetry index, a proprietary variable
output by the G-Walk software, was recorded as well
and correlated to the i-Pecs derived stance/step ratio in
order to investigate its appropriateness as feedback
variable for gait training. The variable is a composite
index that is based on acceleration and gyroscope data
through the step cycle. An index of 100 signifies perfect
symmetry between the left and the right step with
respect to ground contact forces, trunk tilt, and tem-
poral parameters. Bivariate correlation analysis was
conducted using IBM SPSS Statistics (Version 24).

Results

The participant was a 6l-year-old female, weighing
58.5kg and 1.49m tall, who had been using trans-
tibial prostheses for 12 years and had a PLUS-M
score at the 79th percentile.

A total of 67 steps were analyzed. Correlation
between RTMVF step ratio data and reference data
was strong, with a Pearson correlation coefficient of
R =0.813 (p <= 0.001).

Correlation between variables stance/step ratio and
overall gait symmetry index (Figure 2) across eight data
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5.050
Variation of Ground Reaction Force Measurements Across different Prosthesis-integrated Load
Cells

Krista Kutina, Goeran Fiedler
University of Pittsburgh, Pittsburgh, USA

BACKGROUND

With miniaturized electronic components becoming more readily available, their integration into artificial limbs
has become increasingly common. Load cells can help clinicians and researchers obtain a comprehensive
picture of the effects of prosthetic alignment changes and other interventions.[1, 2] In recent years, a number of
dedicated load cells for such purposes has been developed and marketed, making it conceivable that their data
is interpreted equivalently across devices.

AIM
The aim of this study was to quantify any differences in force data put out concurrently by two different
commercially available prosthesis-integrated load cells.

METHOD
Two load-cells for integration into lower limb prostheses (ipecs, RTC electronics, Dexter, MI,[3] and Europa,
Orthocare Innovations, Tahoma, WA [4]) were installed into the same knee-bent prosthesis simulator (Figure 1,
left). Both streamed force data at 100 Hz during a 10-meter walk test, including a sharp turn. In post-processing,
the collected vertical ground reaction force data was time-synchronized by aligning the first peaks of both plots
with each other. A bivariate correlation analysis was conducted across a sample of 1000 data points (i.e., 10
seconds of gait data). Likewise,
root mean squared error
(RMSE) was computed acrass
the same sample.

RESULTS

Visual inspection confirmed the
generally good correlation
between force data from both
devices (Figure 1, right). The "
correlation efficient was 0.819

(p<0.001), and the RMSE was .-/"

164 N. Figure 1: (Left) Data collection setup. Europa (proximal) and ipecs (distal) are part
of the load bearing structure. (Right): Visualization of ground reaction force data

DISCUSSION AND

CONCLUSION

Our findings illustrate the inevitable differences in equipment when measuring the same variable, in this case
vertical ground reaction force. Without a gold standard, it cannot be determined which of the devices was more
accurate, but the deviation between two instruments that may commonly be assumed to deliver identical data
was guantifiable. For a cursory gait assessment in the clinic, this deviation may be negligible. In research, limited
external validity can be of greater consequence.
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CORRELATION BETWEEN UNILATERAL STEP TIMING VARIABLES
AND GAIT SYMMETRY IN USERS OF LOWER LIMB PROSTHESES

Krista Kutina', Goeran Fiedler'
University of Pittsburgh'

INTRODUCTION

Gait deviations may be caused by a number of
different underying conditions, including lower limb
loss, which affects approximately 2M Americans’. The
effectiveness of physical therapy for gait retraining is
often challenged by logistical constraints, such as the
limited number of therapy sessions a patient may be
able to attend.

In order to enhance and sustain training effects, it
feedback training has been utilized with good
success, for instance by having patients observe their
gait in a mirror. More pertinent kinetic variables are
available for feedback in treadmill based training?.
Recently, mobile feedback systems have been
proposed, deriving the respective data from wearable
sensor equipment and using, for instance,
headphones to convey the comesponding feedback
information®.

We have developed a mobile system that combines a
prosthesis-integrated load cell, a portable computing
unit, and smart-glasses to provide realtime visual
feedback in an unobstructed, intuitive and effective
way to the patient. The nature of the visual feedback
mode allows the application of learning theory that
recommends an external focus of attention for best
training effects and retention of same.

Preliminary data from ongoing feasibility testing was
analyzed to investigate which gait parameters are
most suitable as feedback variables for the
improvement of gait symmetry.

METHOD
Subject: Data from one subject, active enough to walk
pain free for at least 30 minutes, is reported here.

Apparatus: The realtime mobile visual feedback
system was realized using a load cell (iPecs, RTC
Electronics, Dexter, MI) that can be temporarily
installed into the pylon structure of a prosthesis, an
ultra-mobile PC, worn in a waist pouch, and a
wearable head-up display (M300, WVuzix, West
Henrietta, NY), connected by a single USB cable and
Bluetooth. The variable of stance/step ratio was
derived from the iPecs data and used for feedback
information.

Procedures: Over the course of several fraining
sessions with the feedback system, spanning multiple
appointments in a five-week-span, iPecs and G-Walk
symmetry data were collected.

Data Analysis: Bivariate correlation between
stance/step ratio and overall gait symmetry index was
calculated using data points from 8 different sessions.

RESULTS

The test subject was a 61 years old, female, weighing
58.5 kg and 1.49 m tall, who had been using trans-
tibial prostheses for twelve years.

Stance/step ratio was strongly correlated to Gait
symmetry (Figure 1), with a comelation coefficient of R
=0.735. The system was also validated against the
G-Walk sensor with correlations between stance
phase duration over 67 steps r = .814, p<.05.

Oventll gt symemetey

0200
w00

salho o0

'm = .
Stance/Step ratio derivad from load cell
Figure 1. Scatter plot with linear trend line, illustrating
relationship between variables stance/step ratic and gait
symmetry index.

DISCUSSION

Qur results suggest good utility of the chosen variable
stance/step ratio for the purposes of generating gait
training feedback. The nature of this variable, which is
comparably easily measurable with a variety of
equipment options, would allow adoption of this
method for other populations with gait deviations,
including those who do not need artificial limbs. Our
findings, though preliminary, should motivate the
analysis of a larger data sample that will be necessary
to improve statistical and clinical significance.

CONCLUSION
Stance/step ratio is correlated to gait symmetry.

CLINICAL APPLICATIONS

Improved method for gait retraining, as the one here
investigated, will allow users of prostheses to
maximize the benefit of their devices for rehabilitation
success.
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3. Aliseits, etal. J Biomech. 2017,56:27-33.

American Academy of Orthotists & Prosthetists
44t Academy Annual Meeting &
Scientific Symposium
February 14 - 17, 2018



Appendix B.4 Kutina, K. Fiedler, G. “Providing Mobile Visual Feedback to Lower limb Prosthesis

Users”

PROVIDING MOBILE VISUAL FEEDBACK TO LOWER LIMB PROSTHESIS USERS

Krista Kutina, Katie Coleman', Goeran Fiedler'?
"University of Pittsburgh Departmentof Rehabilitation Science and Technology, *University of Pittshurgh Prosthetics & Orthotics

INTRODUCTION

In many situations it is important to provide up-to-date
feedback or other relevant information to users of lower limb
prostheses. Such information may be directly or indirectly
safety-relevant or simply desired out of self-consciousness [1],
and includes anything from the batiery status in a
microprocessor-controlled knee (MPK) to the symmetry of the
gait pattern [2]. The former is usually communicated through
vibration alarm units that many MPKs have been equipped
with, while the latter may be assessed by the prosthesis user
observing their own gait in reflective surfaces, such as shop
windows. Other important information, such as on the spatial
position of the artificial limb and the bending angle of joints,
is gauged either by proprioception, direct observation (usually
requiring some kind of accommodative posture}, or a
combination of both.

There are notable limitations to all these approaches. Vibration
alarms cannot convey a very large spectrum of information,
and they are known to lose effectiveness if used too
frequently. Visual observation requires more or less
pronounced body contortions, that may result in adverse
effects by themselves. Use of reflective surfaces is limited to
the few sites where such surfaces are available.

With the advent of wearable head-up displays in recent years,
most prominently, the Google Glass device, it should become
possible to provide relevant information on prosthesis status
and gait pattern, as well as other helpful feedback, to users of
lower limb prosthesis. The declared purpose of “smart
glasses”™ of most any kind is to display useful contextual
information in an unobtrusive and convenient manner to the
user [3]. Hereby, substantial differences exist, depending on
the intended main use and the ideal user profile.

Goal of this research was to compare the utility of several
commercially available “smart glass™ models for use in the
limb loss population.

METHOD

Three different smart glass devices (Figure 1) were obtained
and evaluated by the authors according to a number of pre-
defined criteria, including how severely the glasses obstructed
the relevant field of view, on a scale from 0 to 10. Other
comparison variables included the glasses” weight, battery life,
and connectivity (rated 0 to 10). Descriptive statistics were
applied to report the findings.

Figure 1: Tested “smart glasses™ from left to right: Google G lass
(Google, Mountain View, CA), Recon Jet (Recon Instruments,
Yancouver, BC), and M 100 {Vuzix, West Henrietta, NY).
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RESULTS
The found differences between devices are illustrated in

Figure 2.
10
| I I I
0
FOV Battery
size/100mADL

Figure 2: Comparison of smart glasses

DISCUSSION

Based on our findings, the Vuzix M100 is most suitable for
the purposes of providing prosthesis-related information to
users of lower limb prostheses. The biggest drawbacks with
the other tested devices were the restriction of the important
lower portion of the field of view (Recon Jet) and the technical
complexity of connecting to a computer or smart phone
(Google Glass). While the Recon Jet is optimized for use in
competitive bicyclists (who view the road through the upper
portion of their glasses) and the Google Glass is designed to
work in an environment of manu facturer-provided apps, they
cannot very well be adopted for other uses.

The small number of testers for this data collection limits the
generalizability of our findings. Yet, it appears likely that the
identified differences between devices would be the same for
other users. Evaluating other outcome variables may have led
to different findings. Also, the tested devices may not be
representative of other devices of the same model, due to
manufacturing tolerances, battery age, or model updates.
Generally, this technology can be expected to mature rapidly
over the next years, resulting in the increased availability of
upgraded or entirely new models.

m Google Glass
Recon Jet
® Vuzix M100

Weight/10g Comnectivity

CONCLUSION
Of the tested devices, the Vuzix M100 is the best option for
provision of visual feedback information to prosthesis users.

CLINICAL APPLICATIONS

Wearable head-up displays, or “smart glasses™ may soon be
used to enhance the capacities of artificial limbs and optimize
the way users are interacting with them.
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DEVELOPING A MOBILE FEEDBACK SYSTEM FOR GAIT RETRAINING IN PEOPLE WITH
LOWER LIMB LOSS

Krista Kutina', Goeran Fiedler'
"University of Pittsburgh

BACKGROUND

Gait dysfunction is an impairment that can effect multiple
patient populations [1, 2], both neurologic and orthopedic,
including those with limb loss, and become chronic and
linger for years. It has been frequently reported that gait
retraining with augmented sensory feedback improves
dysfunctional lower extremity impairments and related gait
patterns including those of amputees [3]. However, a primary
criticism of these previous studies is due to the expense and
tightly controlled laboratory conditions, conducted with
instrumented treadmills and optical systems, many of the
findings have had difficulty being applied to realistic clinical
environments.

AIM

Progressing from this previous limitation, the overall goal
is to design a system based on an integrated load cell sensor
to provide real time mobile visual feedback (RTMVF) to
transtibial amputees for gait training. We describe here our
first prototype.

METHOD

Translating current positive findings of real time visual
feedback into a clinical application was attempted by
providing the visual real time feedback directly from the
patient’s limb displayed on smart glasses. Objective here is
to create a mobile more realistic environment in which the
training can occur.

Our work took advantage of existing and validated
technology in the form of a prosthesis-integrated load
cell (ipecs, RCT Electronics, Dexter, MI) and a variety of
commercially available wearable head-up displays. After
testing several models, including the Google glass system
(Google, Mountain View, CA) and the Recon jet (recon
instruments, Vancouver, BC), we implemented Vuzix M100
smart glasses (Vuzix, West Henrietta, NY) in our prototype.
Establishing connectivity between the different components
posed continuing challenges. The current prototype uses
cable connections between the load cell, a laptop computer,
and the smart glasses. Given that all those components have
Bluetooth capabilities; an updated wireless prototype is
anticipated for future iterations of the development project.

RESULTS

Our initial protoype (Figure 1) allows the capturing,
processing and displaying of load cell gait data in close to
real time. Initial feasibility tests suggest that a patient can
be fitted with the system in about 30 minutes, most of which
time is required for the installation of the load cell into the
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prosthesis structure. Battery life of the head-up display is
currently the limiting factor in use time, though without
affecting the commonly allocated one-hour time frame for
gait therapy sessions.
o
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Figure 1. Schematic of the integrated wearable feedback system

DISCUSSION & CONCLUSION

The presented effort is anticipated to provide the groundwork
for subsequent research to determine how to best convert the
raw data to the visual warning signal resulting in a (RTMVF)
gait training system for transtibial amputees.

Long term goals are the effective supplementation of
traditional therapist-based gait retraining with a wearable
“assistant™ that can provide comparable feedback on a
patient’s gait deviations. This should help improve outcomes
for patients who have limited access to specialized health
care, and who are therefore at risk of adapting habitual gait
deviations following limb loss and prosthesis provision.

In order to achieve this, our group is working to develop and
test algorithms for the detection of individual gait deviations
and feedback modalities next.

In conclusion, a mobile gait analysis and feedback system as
described provides the technical prerequisites for enhanced
gait retraining approaches in people with lower limb loss.

REFERENCES

[1] Prince, et al. Gait & Posture 5.2 (1997): 128-135.

[2] Perry and Burnfield. “Gait analysis: normal and
pathological function.” (1992): 271-279.

[3] Dingwell, Davis, and Frazder. Prosthetics and Onthotics
International 20.2 (1996): 101-110.

ACKNOWLEDGEMENTS
This work is supported by a Milbank Grant by the PM&R
Foundation

HOME

125



Appendix B.6 “The Use of an integrated Load Cell as A Mobile Gait Analysis System to

Detect Gait Events in People with Lower Limb Loss”

paper number 587 | page 594

THE USE OF AN INTEGRATED LOAD CELL AS A MOBILE GAIT ANALYSIS SYSTEM TO DE-
TECT GAIT EVENTS IN PEOPLE WITH LOWER LIMB LOSS

Krista Kutina', Goeran Fiedler'
"University of Pittsburgh

BACKGROUND

Gaitimpairments can effect patients with various health conditions
[1, 2], including neurologic pathologies and musculoskeletal
disabilities such as lower limb loss. Uncorrected, gait deviations
can become chronic and cause additional comorbidities. Gait
retraining with augmented sensory feedback was shown to improve
gait patterns in people with lower limb prostheses [3]. A noted
limitation of the respective studies is the lacking transferability
of findings from tightly controlled laboratory conditions into real-
life conditions, as the required equipment (instrumented split-belt
treadmills), gait analysis personnel, and time are often unavailable
in clinical settings. Mobile gait data collection equipment offers
the opportunity of addressing this shortcoming, which requires
the development of adapted data post-processing and analysis
methods.

AIM

The purpose of this work was to investigate the utility of a validated
prosthesis-integrated load cell (IPECs, RCT Electronics, Dexter,
MI) to detect deviations from healthy gait based on kinetic data
in transtibial amputees. In this work, we investigated the effect of
verbal cueing and time on kinetic output from the IPECs to inform
future choice of variables for feedback.

METHOD

Initially raw data (6 values, Fx,Fy,FzMxMyand Mz) from a
single transtibial amputee test subject, weighing 188lbs and 54yo,
with an apparent clinical gaitdeviation of dynamic Valgus (KAbM)
and Varus (KAdM) in the frontal plane was used to design a step
detection algorithm (Matlab 2015b, Mathworks). The patient was
asked to ambulate with the IPECs sensor under several conditions,
including a trial with and without guided feedback. The sensor
data was examined graphically then quantitatively to develop
algorithms to accurately detect steps and gait parameters to be
used as feedback to the patient. Four variables were calculated
including; #steps, Stance Duration, Peak Fz, and My. Transition
steps, and turms were not removed from the analysis at this time as
the IPECs sensor is to be used as a “mobile gait lab™.

RESULTS

162 (158 correct) total steps during the feedback trial were derived
from specialized Matlab algorithms placing the accuracy > 95%.
The cueing by the Therapist regarding KAbM and KAdM with
verbal and tactile cues in the sagittal plane and frontal plane,
did not result in changes kinetically in the variable My (p=.66).
Clinical judgement was used to determine improvements.
However, the clinically judged improved steps were found to have
significantly (p<.05) less %stance (M=50.9+25.6) than those not
deemed improved (M=59.6+14.29). The Peak Fz was significantly
different between ideal stance (58-63%) and over ideal ( > 63%)
during Baseline and Video Taped trials (p<.05).
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DISCUSSION & CONCLUSION

This case subject presented with apparent significant valgus
moment during stance, however this variable from the IPECs
does not seem appropriate for feedback as his MaxMy apparently
stabilized the most from stride length feedback (Fig 1.). Therefore,
other variables/modifications to the algorithm may be needed. From
initial baseline testing, the subject’s average peak Fz decreased by
almost 150 N overall. Therefore, the variable chosen for feedback
may not be individualized per patient deviation, but rather based
on previous findings [3] that providing Peak Fz feedback can
improve stance symmetry. In order to determine variables that are
correlated to typical gait deviations and thus suitable as feedback
to improve gait, further testing is required. This should include
investigating how the parameters calculated would respond to a
different gait deviation and improving the accuracy of the step
detection algorithm for a mobile system.
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DEVELOPING A GAIT EVENT DETECTION FRAMEWORK FOR
IMPLEMENTATION INTO A REAL TIME FEEDBACK SYSTEM BASED
ON DATA FROM A PROSTHESIS INTEGRATED LOAD CELL.

Kutina K, Fiedler, G.
University of Pittsburgh, Department of Rehabilitation Science and Technology

INTRODUCTION

Gait dysfunction is an impairment that can effect multiple
patient populations (Prince,et al 1997; Perry and Burnfield,
1992), including those with limb loss, and become chronic
and linger for years. It has been frequently reported that
gait retraining with augmented sensory feedback improves
dysfunctional lower extremity impairments and related gait
patterns including those of amputees (Dingwell, et al,
1996). However, these previous studies have been
criticized for the expense and tightly controlled laboratory
conditions, which made translating findings to realistic
clinical environments limited.

Overall goal of our research is to design a system to
provide real time mobile visual feedback (RTMVF) to
lower limb amputees for gait trining. Feedback variables
should be detectable by a prosthesis-integrated sensor and
be meaningful for the user. Low latency in calculating
feedback variables was another objective. We report on the
development of mathematical algorithms to accurately
detect gait events from a prosthesis-integrated sensor
providing kinetic data only. The algorithms and mathematic
models are an important first step in the process of
integrating both hardware and programmatic components
into a RTMVF system.

METHOD

The current prototype consists of load cell (ipecs, RCT
Electronics, Dexter, MI), a laptop computer, and smart
glasses (M100, Vuzix, West Henrietta, NY), connected by
cables and WiFi. Initial algorithms based on raw sensor
data from one subject with gait deviations unknown,
determined what could be calculated given raw output.
Detecting step cycles entailed sensing slopes at the
approximate mean of Fz (the sensor’s equivalent to vertical
ground reaction force) and a lower 10N threshold crossing.
Proximal and distal forces and moments of interest were
exfracted as possible feedback variables as well.

RESULTS

It was found that all variables of interest could be
determined from the data, such as; the Peak proximal and
distal moments, Peak Fz Peak My, and range and Peak of
Mz. Loading and toe off peaks were found efficiently,
however refinement was needed as it was found that
oscillations during swing phase were counted emroneously.
For Prototype V.0 (Figure 1) a single threshold was
implemented, for feasibility and latency testing. The delay
is less than 1sec, however algorithms needed to be refined
by the addition of several criterion including a double
threshold for sufficient accuracy in detecting actual gait
events.

Figure 1. Prototype of Feedback Device: Real Time kinetic
feedback as relayed from sensor regarding percent stance.

DISCUSSION

The prototype allowed the evaluation of several potential
feedback variables. Finding peak to peak values was
insufficiently accurate (>5%) and required non-automated
method to improve. Conversely, % stance suggests itself as
easily calculated in real time and providing potentially
meaningful information. Further testing is needed to assess
the value of additional variables and to determine the
appropriate target window for feedback purposes

CONCLUSION

Our findings suggest that generating and conveying
RTMVF on gait variables is possible using our approach.

CLINICAL APPLICATIONS

The potential is to utilize the positive cument findings
regarding real-time visual feedback, to mobilize this type of
training over ground, outside of the clinic, or even at home.
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SYSTEM AND METHODS FOR GAIT AND
RUNNING FUNCTIONAL IMPROVEMENT
AND PERFORMANCE TRAINING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001]  This application claims the benefit of U5, Provi-
sional Patent Application No. 62/576,339, filed Oct. 24,
2017, which is incorporated herein by reference in its
entirety.

[0002] The present disclosure relates to devices, systems,
and methods for gait and running analysis and training of an
individual based on sensed information relayed in real time
in a wearable fashion.

[0003]  Gait dysfunction is an impairment that can effect
multiple patient populations, both neurologic and orthope-
dic, and become chronic and linger for years. There are
subsets of the patient population that are particularly vul-
nerable to problematic and chronic gait dysfunction such as
Parkinson’s disease, stroke, ostecarthritis (OA), and limb
loss. In 2007 patients with limb loss compiled approxi-
mately 1.7 million people and it has been estimated that by
2050, this rate is expected to double to 3.6 million in the
United States. This is of clinical concern in that forced
compensations from the loss of sensory feedback, neuro-
museular control, and pain that affect forward propulsion
and weight acceptance throughout the gait evcle, could have
the consequence of destructive secondary joint issues and
increased energy cost. [n addition, lack of plantar flexion and
normal ankle motion are linked to most amputee gait devia-
tions, including asymmetrical gait timing. Other typical
deviations include trunk shifts which can result in low back
problems as well as increased misdirected loads through the
ankle, knee and hip of both the surgical and intact limbs
putting the patient at higher risk of cartilage degradation and
secondary complications of arthritis. Not only can the kine-
matic variables that are a part of these dysfunctional lower
extremity movement patterns be retrained, but they also can
be retained. Gait retraining as an intervention has demon-
strated promise in many populations, including the amputee
population. This could lead to improved lower extremity
function, which leads to improved energy consumption and
to extended prosthesis life as well. Symmetry alse has been
an issue in amputee gait, and, as analysis has evolved from
only qualitative to quantitative measurements of’ temporal,
kinetic and kinematic, and combinations of all. the most
prominent asymmetries have been determined as shortened
stance limes and decreased ground reaction forces.

[0004]  Additional populations are at risk for gait or lower
extremity loading issues if biomechanical discrepancies are
present. Once chronic compensations begin, it is not hard to
imagine how this triggers a cascade of secondary musculo-
skeletal issues. These compensations can become stubborn
ingrained patterns, These chronic compensations then cause
degradation of secondary joint tissues and can increase the
already staggering 50% risk of osteoarthritis (OA) that we
have in our lifetime. These secondary complications can be
costly, cause increased energy costs, cause secondary inju-
ries. and loss of function and quality of life,

[0005] When the pathological gait pattern has become
habitual, gait retraining and associated physical therapy can
help mitigate the adverse effects, A persisting problem with
this objective has been the lack of effective methods that
promote motor learning and retention. The traditional

Apr. 25,2019

approach is to use demonstration, verbal cues, targeted
strengthening in a non-dynamic manner. This includes pro-
viding instructions to the patients on how to change their
motion patterns and is limited by the time constraints that
come with scheduled appointments, as well as by the nature
of the feedback, which almost inevitably focuses the atten-
tion of the patient internally (e.g., by giving instructions on
how to move an extremity or load the limb with landing
cues).

[0006] Methods and devices uselul for training or retrain-
ing a gait or running pattern are desirable, not only to avoid
further improper compensations that can cause secondary
injuries or degradation to other orthopedic structures, but to
improve recovery times, and improve prevention strategies.

SUMMARY

[0007] Inone aspect, a gait analysis, training. and retrain-
ing system comprising: a sensor configured to measure one
or more attributes of gait of a patient; and a controller in
communication with a sensory output device, the controller
configured to, repeatedly, monitor a patient’s gait in real-
time and to provide real-time feedback to the patient receive
and process information from the sensor representative of
one or more attributes of the gait of the patient; generate a
data set corresponding to the information from the sensor
representative of one or more attributes of the gait of the
patient; compare the generated data set to reference data
indicating optimal values for a data set corresponding to the
information from the sensor representative of one or more
attributes of the gait of a patient; and cause the display to
provide feedback comprising gait analysis based, at least in
part, on the comparison between the generated data set and
the reference data and at least indicating in the feedback if
the generated data set 1s within defined tolerances relative to
the reference data.

[0008] In another aspect, a method of analyzing andfor
training gait in a patient, the method comprising, using a
computer-implemented process, repeatedly, receiving and
processing, in a computer, information from a sensor on the
patient configured to measure one or more attributes of gait
of a patient representative of one or more attributes of the
gait of the patient during one or more physical actions
relating to gait, performed by the patient: generating. in the
computer, a data set corresponding to the information from
the sensor representative of one or more attributes of the gait
of the patient: comparing. in the computer, the generated
data set to reference data indicating optimal values for a data
set corresponding to the information from the sensor repre-
sentative of one or more attributes of the gait of a patient;
and generating, with the computer, an output causing a
sensory output device to provide feedback comprising gait
analysis based. at least in part. on the comparison between
the generated data set and the reference data and at least
indicating in the feedback if the generated data set is within
defined tolerances relative 1o the reference data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] These and other features and characteristics of the
present disclosure, as well as the methods of operation and
functions of the related elements of structures and the
combination of parts and economies of manufacture, will
become more apparent upon consideration of the following
description and the appended claims with reference to the
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accompanying drawings. all of which form a part of this
specification, wherein like reference numerals designate
corresponding  parts in the various figures. It is to be
expressly understood. however, that the drawings are for the
purpose of illustration and description only and are not
intended as a definition of the limit of the invention.

[0010] FIG. 1A is a schematic drawing of an exemplary
wearable sensor device including an inertial measurement
unit according to an aspect of the disclosure; FIG. 1B is a
schematic drawing of intemal circuitry of one version of the
exemplary wearable sensor device of FIG. 1A, FIG. 1C is a

schematic drawing of internal circuitry of another version of

the exemplary wearable sensor device of FIG. 1A;

[0011] FIG. 2 is a schematic drawing of a trans-tibial
prosthesis with an integrated sensor.

[0012] FIG. 3 is a schematic drawing of a movement
analysis system including the wearable sensor device of
FIG. 1A:

[0013] FIG. 4 is a low chart of an exemplary process for
data collection from a wearable sensor device with an F/T
sensor, or inertial measurement unit, according 1o an aspect
of the disclosure.

[0014] FIG. 5: Exemplary architectural framework of pre-
liminary real time system to be tested. The described colors
correspond to Red (Percent Stance Phase calculation<58%,
Green “ideal, Percent Phase Calculation between 58% and
63%, and Orange “overcompensation” corresponds to per-
cent Stance Phase calculations=063% however a cut off is set
to 80%.

[0015]  FIG. 6 provides graphs showing an exemplary data
set obtained from and/or caleulated from an F/T sensor in
prosthesis (trans-tibial amputation) including Fx, Fy, Fz
values, distal Mx (dMx. at ankle), proximal My (pMy, at
knee), and proximal Mz (pMz, at knee).

[0016] FIG. 7 is a flow chart of a process for analyzing a
data set abtained from an F/T sensor, or inertial measure-
ment unit, according to an aspect of the disclosure,

[0017] FIG. 8 provides real time ground reaction force
teedback as relayed from i-Pecs™ sensor.

[0018] FIG. 9 is a schematic of an integrated wearable
feedback system.

[0019]  FIG. 10: Correlation between stance/step ratio (the
feedback variable) and overall gait symmetry.

a

DETAILED DESCRIPTION OF THE
INVENTION

[0020] The use of numerical values in the various ranges
specified in this application, unless expressly indicated
otherwise, are stated as approximations as though the mini-
mum and maximum values within the stated ranges are both
preceded by the word “about™. In this manner, slight varia-
tions above and below the stated ranges can be used to
achieve substantially the same results as values within the
ranges. Also, unless indicated otherwise, the disclosure of
these ranges is intended as a continuous range including
every value between the minimum and maximum values.
[0021]  As used herein, the singular form of “a”, “an”, and
“the” include plural referents unless the context clearly
dictates otherwise.

[0022]  As used herein, the terms “right™, “left”, “top™,
“hottom™, and derivatives thereof shall relate to the inven-
tion as it is oriented in the drawing figures. However, it is to
be understood that the invention can assume various alter-
native orientations and, accordingly, such terms are not to be
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considered as limiting. Also, it is to be understood that the
invention can assume various alternative variations and
stage sequences, except where expressly specified to the
contrary. It is also to be understood that the specific devices
and processes illustrated in the attached drawings, and
described in the following specilication, are examples.
Hence, specific dimensions and other physical characteris-
tics related to the embodiments disclosed herein are not to he
considered as limiting,

[0023] A *patient”, “athlete™, or “subject” is a human, and
those terms do not imply or require any clinician-patient
relationship.

[0024] As used herein, the terms “communication”™ and
“communicate” refer to the receipt or transfer of one or more
signals, messages, commands, or other type of data. For one
unit or component io be in communication with another unit
or component means that the one unit ar component is able
to directly or indirectly receive data from and/or transmit
data to the other unit or component. This can refer to a direct
or indirect connection that can be wired and/or wireless in
nature. Additionally, two units or components can be in
communication with each other even though the data trans-
mitted can be modified. processed, routed. and the like.
between the first and second unit or component. For
example, a first unit can be in communication with a second
unit even though the first unit passively receives data, and
does not actively transmit data to the second unit. As another
example, a first unit can be in communication with a second
unit i an intermediary unit processes data from one unit and
transmits processed data to the second unit. It will be
appreciated that numerous other arrangements are also pos-
sible.

[0025]  As used herein, the term “gait” refers to the manner
of locomotion, and in the term of humans, includes the
manner of bipedal locomaotion, including, for example and
without limitation, walking, jogging, running, or sprinting.
This includes, in humans, dynamic lower extremity move-
ment patlern in a weight-bearing position with forward
movement, The gait cycle includes a stance phase and a
swing phase. “Stance™ refers to that portion or phase of the
zait cyele during which the foot contacts the ground, and can
be referred to in terms of a percentage (e.gz. stance %) of the
gait cycle. *“Swing” refers to that portion or phase of the gait
cycle where the foot is not in contact with the ground.
[0026] As indicated above, when a patient’s focus is
directed to their extremities as described, this drives their
attention internally and increases self-consciousness about
body movements and performance which neurologically
constrains motor learning, The preponderance of evidence
suggests that changing the atiention to an external focus
where the patient is looking to the eflects of their movements
on an external feedback cue enhances motor learning,
[0027] Real time visual feedback (RTVF) applies and
follows this motor learning theory that internalization ol a
new neuromuscular pattern is enhanced when the patient’s
focus is directed externally. The patient receives immediate
knowledge of their performance, and their atiention is
directed externally, to the effect their gait patlern changes
have on an external cue.

[0028] Patients and elinicians, upon early customer dis-
covery, are requesting the ability to extend their training
beyond the visit. Clinicians also are asking for dynamic, not
static immobile interventions that are more realistic to how
a patient really moves and experiences their pain. Clinicians
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report a desire to know when their patients are having gait
trouble out in the world, to better be able to prioritize
treatment and be more effective.

[0029]  Performance at higher levels, including mnning,
benefits from real time visual feedback from sensed infor-
mation on the user themselves. Training running perfor-
mance with real-time visual feedback has demonstrated
significantly positive results in reducing forces that cause
overuse loading injuries, as well as re-educating patterns
that could lead to injury and also provide [aster responses
during rehabilitation. When lefl unaddressed. it has been
reported that 70-90% of those individuals return to their
medical providers within 5 years. Real-time visnal feedback
allows the runner to receive immediate knowledge of their
performance and 1s the fastest integration into the motor
leaming system versus other forms of bio feedback which do
not provide long-lasting results, Video and mirror feedback
can be used. however, limitations include the lack of mohil-
ity, realism, and provide only a limited quantity of steps the
athlete can review.

[0030] A wearable system that provides real time feedback
for gait functional improvement and running performance
addresses the limitations of conventional approaches by
providing immediate, specific, and intuitive feedback, which
directs the user’s focus of attention externally as is recom-
mended according to established learning theory.

[0031]  According to aspects and embodiments ol the
invention, provided herein is a gait or running analysis,
manitoring, remote training, training in the athlete’s envi-
ronment or patients natural environment or realistic sur-
faces, functional and performance improvements, reductions
in recovery time and rapid detection of prevention strategies,
retraining, mobile and portable real time visual feedback gait
and optionally monitoring system for a patient, the system
comprising: a sensor configured to measure one or more
attributes of gait or lower extremity load bearing dynamic
function or performance of a patient or athlete: and a
controller in communication with a visual. e.g., any wear-
able (e.g., smart) display, such as a head up display (HUD)
output component, the coniroller configured 1o, repeatedly
(e.g.. two or more times), monitor a patient’s gait in real-
time and to provide real-time feedback to the patient: receive

and process information from the sensor representative of

one or more attributes of the gait of the patient or athlete;
generate a data set corresponding to the information from
the sensor representative of one or more attributes of the gait
of the patient; compare the generated data set to reference
data indicating optimal values for a data set corresponding
1o the information from the sensor representative of one or
more attributes of the gait of a patient or athlete; and cause
the display to provide feedback comprising gait analysis
based. at least in part, on the comparison between the
generated data set and the reference data or the patient/
athlete’s own baseline data and at least indicating in the
feedback if the generated data set is within defined toler-
ances relative to the reference data.

[0032]
analyvzing andfor training for functional and performance
improvements in gait, running, and dynamic lower extremity
loading in a patient or athlete is provided. The method
comprises: placing a sensor configured to measure one or
more attributes of gait of a patient on the patient; and,
repeatedly, 10 monitor a patient’s gait in real-time and to
provide real-time feedback to the patient: receiving and

In other aspects or embodiments, a method of
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processing information from the sensor representative of one
or more attributes of the gait of the patient during one or
more physical actions relating to dynamic loading of the
lower extremities during activities including gait, walking or
running, and optionally, standing performed by the patient;
generating a data set corresponding to the information from
the sensor representative of one or more attributes ol the gait
of the patient; comparing the generated data set to reference
data indicating optimal values for a data set corresponding
to the information from the sensor representative of one or
more attributes of the gait of a patient; and causing a
wearable display to provide feedback comprising gait analy-
sis based, ai least in part, on the comparison between the
generated data set and the reference data and at least
indicating in the feedback il the generated data set is within
defined tolerances relative to the reference data.

[0033] In vet another aspect or embodiment, a smart
device processor implemented method for analyzing and/or
training gait in a patient based on information received from
a sensor configured to measure one or more attributes of gait
of a patient on the patient adapted to be performed on a
portable computing device is provided. The method com-
prises, repeatedly, to monitor a patient or athlete’s dynamic
lower extremity movement pattern or gait in real-time and to
provide real-time feedback to the patient or athlete: receiv-
ing and processing information from the sensor representa-
tive of one or more attributes of the gait of the patient or
athlete during one or more physical actions relating to
dynamic lower extremity movement pattern, gait or walking,
and optionally, standing performed by the participant; gen-
erating a data set corresponding to the information from the
sensor representative ol one or more attributes of the gait of
the patient; comparing the generated data set to reference
data indicating optimal values for a data set corresponding
1o the information from the sensor representative of one or
more attributes of the gait of a patient; and causing a
wearable display to provide feedback comprising gait analy-
sis based, at least in part, on the comparison between the
generated data set and the reference data and at least
indicating in the feedback il the generated inertial, spa-
tiotemportal, force or moment data set is within defined
tolerances relative to the reference data.

[0034] According to an aspect of the disclosure, feedback
devices and systems are provided for training (including
retraining) and improving the performance and function of
dynamic lower extremity overground movement patterns as
well as gait and running movement of a patient. The devices
and systems provide a signal, based on sensor data, that
serves as an external focus of attention through, e.g.. a visual
display or through other sensory input able to provide a
signal that can serve as an external focus of attention, such
as an audio or haptic signal. In aspects, a visual signal may
be used as an external focus of attention, to avold desensi-
tization, which can accur with haptic or causing an excessive
cognitive demand such as audio signals. The visual signal
can be provided by a head up display (HUD), but for mobile
devices and systems the visual signal may be provided by
specialized glasses including a visual display, eg., as
described below. In aspects, the sensor device is a force/
torque sensor (F/T sensor) and/or a biometric device con-
figured to obtain acceleration, positioning, and/or angular
motion data for the subjeet. Sensor data is provided by a
sensor that is wom or otherwise incorporated inte a pros-
thesis or other device placed on the body or in a weight
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bearing location from the lower extremities of the patient
(that is the sensor is a “wearable sensor”), for example,
under the foot, on a foot, ankle, knee. leg, hip. or back of a
patient. Data is obtained from the sensor, and 1s converted by
a processor or other computing device to a simple signal,
e.g., a binary or ternary, string, or integer, signal indicative
of the gait of the patient being within or outside of toler-
ances. For example, the sensor can include commercially
available F/T sensors, or motion and movement sensors,
such as an inertial measurement unit or in-shoe pressure
unit.

[0035] Because the device is vsed for gait training and the
improvement of function and performance of dynamic lower
extremity over-ground movement patterns, the action and
activity includes, for example, walking, jogging, running, or
sprinting. In a rehabilitative context, such as after an illness,
injury, condition, amputation, or treatment that affects an
individual’s gait. In aspects, the device and system are
maobile, meaning they are configured to be wornon a patient,
and can be used in settings outside a clinic. For example. a
system may include a foree sensor, a computer, and smart
glasses. The sensor may be incorporated into a prosthetic or
otherwise is worn on or affixed to the patient’s body, or
under the foot to capture loading patterns, the glasses are
worn by the patient, and the computer is carried in a pouch,
pack, backpack, or any other suitable carrier on the patient’s
body or is entirely wireless, and communication is through
a smart device for processing. The sensor and glasses are in
communication with the computer or handheld processing
device. via any suitable interface. wired or wireless, e.g.. as
described in further detail below.

[0036] An F/T sensor is a device that measures compo-
nents of force and torque (moment) in more than one axis
and communicates that data to a computer, e.g., a processor.
A common type of F/T sensor is a six-axis sensor that
measures all components of force, including force in three
axes (Fx, Fy, and Fz) and moment or torque in three axes
(Mx, My, and Mz, alternatively Tx, Ty, and Tz). Multi axis
F/T sensors are described in the art and are commercially
available, such as the i-Pecs Tech Sensor System load cell

sensor (commercially available from RTC Electronics of

Dexter, Mich. See, Fiedler et al. Criterion and Construct
Validity of Prosthesis-Integrated Measurement of Joint
Moment Data in Persons with trans-tibial Amputation. J
Appl Biomech. 2014 June; 30(3): 431-438) or F/'T transduc-
ers or sensors from ATT Industrial Automation of Apex,
N.C., among many others). F/T' sensors can be configured
into a prosthesis as described herein, or into a shoe, eg., as
an attachment, or as an insert for a shoe, permitting acqui-
sition and output of force and moment data. Although in
many instances a six-axis F/T sensor may be preferred for
the detailed data produced, sensors that have lower capa-
bilities (such as Fz only) may be utilized, so long as
meaningful data that can be used to determine the presence
and/or quality of steps and other relevant activities can be
derived from the output data from the sensor. Data can be
transmitted from the F/T sensor by wire (eg., USB, Ether-
net, etc.), or wirelessly (e.g., by Bluetooth).

[0037] An inertial measurement unit is an electronic
device that measures and reports movement and positioning
data (e.g.. an inertial data set), velocity, acceleration, and
angular rate using a combination of accelerometers and
gyroscopes. [nertial measurement units are commonly used
in inertial navigation systems for aircrafts. When vsed in an
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aircraft, an inertial measurement unit is used for detecting a
current rate of acceleration in multiple axis (e.g., accelera-
tion in the x, ¥, and 7z directions) with one or more linear
accelerometers, and for detecting rotational attributes like
pitch, roll, and yaw, using one or more or angular acceler-
ometers and/or gyroscopes. Measurements from the accel-
erometers and gyroscopes can also be used for calculating
changes in position of the device. In one example, a com-
monly used inertial measurement unit design includes three
accelerometers positioned to measure acceleration along
three axes which are orthogonal to one another (e.g., the x,
v, and z axes). The inertial measurement unit also includes
three gyroscopes placed in a similar arthogonal pattern for
measuring rotational position of the sensor device around
each of the axes. Information from the six sensors can be
combined together using diflerent positioning algorithms to
determine an absolute or relative position of the wearable
sensor device.

[0038] While acceleration and angular momentum infor-
mation can also be collected from multipurpose electronic
devices, such as smart phones, which use the innate mobile
device accelerometer technology to obtain angular motion
data, such smartphone devices are not meant o be wom on
the person’s torso and therefore require assistance of an
additional person to collect movement data, thus requiring at
least a specialized hamess. In addition. data received from
accelerometers on smart phone devices generally do not
have the requisite level of accuracy provided by the wear-
able sensor devices disclosed herein. For example. the innate
accelerometer technologies used by smartphone devices
may not have an appropriate range or specificity to measure
data Tor some assessments. As will be appreciated by one of
ordinary skill in the art, accuracy and precision of the
assessments are needed to identify proper gait and dynamic
lower extremity over-ground movement patterns from mea-
sured movement data,

[0039] The sensor device desirably is sufficiently light-
weight and of small enough size to not interfere with a
patient’s range of motion. The sensor device allows for
real-time data acquisition and analysis of the subject to
produce real-time output to a patient without needing input
and/or analysis of collected data by a clinician. Another
advantage is that assessments based on information mea-
sured by the sensor device can be performed at any location,
meaning that individuals do not need to travel to a special-
ized lab or clinic to perform training activities. In addition,
they do not rely on subjective visual analysis of movement
patterns.

[0040] In aspects. the sensor device communicates, e.g.,
wirelessly, with a nearby computing or communication
device (referred to herein as an intermediary device), such as
a portable computing device, cellular telephone, smart
phone, or Internet gateway device. to drive data collection,
analysis and output to a wearable display, such as a smart
display or an HUD, or any other wearable visual smart
display technology. Visual cues directed to training are
superior to audible and haptic feedback as they are the
quickest to be sensed by patients, and are not subject to
desensitization and interference. This intervention correctly
applies the true desired external focus of attention that
provides a direct “effect™ of the incorrect movements and
correct patterns on an external display versus simply pro-
viding raw data. This improves the individual's ability to
integrate the training into their own automatic error detec-
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tion processes. In aspects, the intermediary device comprises
a controller configured to implement software for receiving
and processing information from the sensor device and for
providing feedback that indicates to the user the effect of
their movements, e.g., via a wearable visual display, e.g., an
HUD, or other wearable visual smart technology, based on
the movement information. In aspects, feedback includes
displaying indicia on the display indicative of the quality of
the patient’s gait, which is a real time use of the motor
learning theory external focus of attention and provides the
“effect™ of the patient’s movements qualitatively on an
external cue wversus displaying raw sensor data. In one
aspect, the indicia indicates proper gail within predeter-
mined or on the individual’s own baseline tolerances and
indicates improper gait dynamic lower exiremily over-
ground movement patterns falling outside those tolerances,
for example, with a red signal indicating improper gait and
a green signal indicating proper gait, for example, displayed
on a display in the peripheral vision of the patient in a
completely portable fashion untethered or requiring the
patient to be indoors. In other aspects, the indicia indicates
proper zait within predetermined tolerances, and indicates
improper gait, specific deficiencies, and/or specific correc-
tive actions 10 be taken to correct the improper gait. For
example, providing a green signal indicating proper gait, and
one or more additional signals, such as solid red signal if a
parameter is below ideal, and a solid yellow signal if a
parameter is above ideal. That said, in training, in aspects, it
may be preferable to provide the simplest feedback.
[0041] Inone aspect, the signal is binary or ternary, but the
system provides a graded transition between signals as the
patient’s activity approaches optimal. For example, in a
binary system, the out of tolerance signal may be yellow, and
the in-tolerance signal may be green, with a stepwise tran-
sition from yellow to green, for example, in two, four, eight,
16, 32, 64, or 128 graded steps. as the patient’s walking or
running, motion approaches an appropriate gait.

[0042]  In one aspect, the signal to the patient provides an
external focus of attention. Audible corrective measures or
feedback typically drives a patient’s focus to internally
regard their limb and corrective measures, and specifically
how a limb is moving. Haptic signals often are missed.
Therefore, in one aspect, the signal to the patient is visual,
and in aspects, the signal provided to the patient via the
display 15 binary (that is, providing only two signals, such as
two different color signals), indicaling the effect of their
corrections and directing them to that eflect on the colors on
the wearable screen within tolerances or outside of toler-
ances. In other aspects, the signal is ternary, e.g.. sending
three different colors 1o the display. one color indicating
“above tolerances”, a second color indicating “below toler-
ances”, and a third eolor indicating “within tolerances™, such
as the above-mentioned red, yellow, and green scheme.
[0043]  The described colors are merely illustrative of the
multitude of possible indicia available to those of ordinary
skill, including: colors, flash patterns, shapes, positioning on
the display. text, or any other shape, icon, pattern, sounds
(e.g.. in a built in speaker, ear-bud or any sound transducer),
vibrations, etc., that can be indicative of any measurable
feature relating to gait. The focus is directed to the effect of
movement on an external feedback cue, versus isolating
limb actions which is internally directed focus,

[0044]  According to one aspect of the disclosure, baseline
data is obtained from one or more sources, including param-
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eters obtained from literature, parameters from one or more
individuals other than a patient. and‘or from the patient
walking in a correct manner, e.g., as determined hy a
clinician. The baseline also may be detected via processing
at that individuals baseline for the desired dynamic lower
extremity over-ground movement pattern that needs train-
ing. Data is then obtained from the sensor, such as from an
F/T sensor in a prosthetic or in a wearable device, such as a
shoe, e.g., in the sole of a shoe, for example, as a shoe insole,
shoe outsole, cover, or other attachment. or from an inertial
measurement unit worn by the patient or incorporated into a
prosthetic device.

[0045] The sensor device and feedback system is worn
either in a clinic, or in the real world, and provides direct,
real-time feedback to the patient, thereby training the patient
to walk, jog, run, or sprint with a proper dynamic lower
extremity over-ground movement patterns. Measured results
can be stored in a database ol inertial data sets (e.g., .csv or
similar files) either automatically or mannally at the request
of a clinician, programmer, or system administrator. In some
instances, measurement is performed on the subject two or
more times, such as during an initial patient evalvation and
after the training has been followed for a few days or weeks.
Baseline data, or a data set acquired at the earlier or initial
time point can be compared to a data set acquired at the later
time. The deviation between the data sets at different time
points can be analyzed either automatically by a computing
device (e.g., the intermediary device), or by a user, techni-
cian or administrator, fo decide whether actions or activities
(eg.. a recommended treatment regimen) or tolerances of
the device (e.g., the criteria used to distinguish gait falling
within specifications or outside of specifications) need to be
changed to achieve a desired outcome, such as improvement
in gait. Results of the analysis are used to improve future
treatment recommendations either for a particular subject or
for all subjects using the devices and systems described
herein.

[0046] In the examples provided herein, the quality of a
patient’s gait 1s measured by or represented by the stance %
criteria. That is, raw sensor data, e.g., Fz data, 15 converted
by one or more computer processes to produce a stance %
value, An optimal stance % range of values for a desired gait
is determined. and during a therapeutic session, when a
patient walks or runs, a signal is sent to the patient when the
patient’s gait is within the optimal range, and a different
signal is sent when the patient’s gait is outside the optimal
range. Stance % is one of many criteria that may be used as
a measure of the quality of the patient’s gait, Raw data tfrom
the sensors, e.g., spatial-temporal force or moment data, can
be used to generate values including, without limitation:
stride (heel to heel), stride length, cadence, force (e.g., ['z),
torque of knee, and any other useful measure of gait quality.
Criterion, such as cadence and stance %, can be combined.
Two or more sensors can be placed on a patient’s hody
and/or incorporated into a device, to generate useful data,

Sensor Device

[0047] FIGS. 1A-1C show an exemplary sensor device 10
for collecting movement information for a subject. In some
examples, the device includes a housing 12 enclosing cir-
cuitry for collecting force, torgue, and/or movement nfor-
mation. The housing 12 can be formed from a lightweight,
rigid material such as plastic or brushed aluminum. In some
instances, the heusing 12 can include various removable
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covers or other openings for accessing interior components
of the device 10, such as batteries, sensors, memory cards,
and other items. The housing 12 can also include one or
more ports 14, such as a USB, Ethemet, Thunderbolt, or
Firewire port, for wired connection between the sensor
device 10 and other computing devices. In some instances,
the device 10 can include one or more visual indicators 16,
such as LEDs, on or extending through the housing 12 for
conveying information to a user. For example, a green-color
LED 18 can be tumed on when the device s ready to use.
A red or yellow colored LED 20 can be turned on to indi
to the vser that the device 10 is not ready to collect data if,
for example, the device battery is depleted or if’ the device
10 does not include sufficient memory to record assessment
measurements. In some instances, a visual indicator 16 can
also be used to indicate when the device 10 is in wireless
communication with another computer device and/or when
the device 10 is uploading data to another computer device.
[0048] In some examples, the sensor device 10 includes a
harness, band. adhesive patch, or another connection mecha-
nism for affixing or mounting the sensor device 10 to the
patieni. In other examples, the sensor device 10 may be
incorporated into a prosthetic or wearable device, such as a
shoe. In one aspect, device 10 includes a strap lor attaching
the device 10 to the user’'s waist. torso, or hips, The strap
includes a connector, such as a buckle or hook and loop
fastener (e.g., Velero™), for attaching ends of the strap
together to hold it in place, €.g.. around the subject’s waist.
In other examples. the sensor device 10 can be attached to
a necklace or collar and worn around the subject’s neck. In
still other examples, the device 10 can be aflixed to the
individual’s clothing using a clip, clasp, or similar fastener.
[0049]  With specific reference to FIG. 1B, internal cir-
cuitry of a sensor device 10 is illustrated. The sensor device
10 includes electronic circuitry, such as an F/T sensor 30,
enclosed within the housing 12 for measuring movement
information of the subject wearing the device 10. The device
10 alse includes a storage module 36, comprising transitory
or non-transitory computer readable memory for storing
information collected by the F/T sensor 30.

[0050] The F/T sensor 30 comprises movement sensors,
such as a three-axis force sensor 32 and a three-axis torque
sensor 34 of a six-axis F/'T sensor. In some examples, the F/T
sensor 30 includes three orthogonally positioned accelerom-
eters and gyroscopes. With specific reference to FIG. 1C,
internal circuitry of @ sensor device 10 is illustrated. The
sensor device 10 includes electronic circuitry, such as an F/'T
sensor 30, enclosed within the housing 12 for measuring
movement information of the subject wearing the device 10.
The device 10 also includes a storage module 36, comprising
transitory or non-transitory computer readable memory for
storing information collected by the F/T sensor 30.

[0051] With specific reference to FIG. 1C, internal cir-
cuitry of a sensor device 10 1s illustrated. The sensor device
10 includes electronic circnitry, such as an inertial measure-
ment unit 40, enclosed within the housing 12 for measuring
movement information of the subject wearing the device 10.
The device 10 also includes a storage module 36, comprising
transitory or non-transitory computer readable memory for
storing information collected by the inertial measurement
unit 40,

[0052]  The inertial measurement unit (IMU) 40 comprises
movement sensors, such as one or more single axis or
multi-axis accelerometer(s) 42 and one or more gyroscope
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(s) 44. In some examples, the inertial measurement unit 40
ineludes three orthogonally positioned accelerometers and
gyrnscnpes. An HCCE]E]'C]]]]E'EF measures HCCE‘IETE![IIC'.IITI. Most
accelerometers can also measure tilt. The accelerometer was
originally a large device, but with the continued advances in
the field of micro-electromechanical systems (MEMS) tech-
nology, accelerometers are presently awvailable in sizes of
less than 1 or 2 mm, with 3-axis measurements. A gyroscope
measures orentation. In one aspect ol the device 10, a
gvroscope 15 used to determine changes in the orientation of
the subjects’ body to help identify the physical activity being
performed. Gyroscopes based on MEMS technology are
now also widely commercially available. Commercial chips
that combine a 3-axis accelerometer and a 3-axis gyroscope
are commercially available. One non-limiting example of a
useful device is the WAXY IMU, commercially available
from Axivity Ltd. of York, UK. having accelerometer and
gyvro functionality as well as Bluetooth connectivity, a
magnetomeler, a barometric sensor, a lemperature sensor, a
micro-USB connector, suitable firmware, and a processor.

[0053] In some examples, the sensor device 10 also
ineludes a timer or clock. The timer is used to record a time
when certain data is collected. The acquisition time can be
stored by the storage module 36 along with the collected
data for providing a time-stamped record of physical activi-
ties performed by the subject.

[0054]  Asshown in FIGS. 1B and 1C, the sensor device 10
also includes a communications module 38 for wired or
wireless communication with an external computing device.
In some examples, the communications module 38 transmits
collected data from the device 10 to another computer
device automatically substantially in real time. In other
examples, sensed information is collected and stored in the
storage module 36 and uploaded to the computer device as
a batch file transfer. Uploads can occur periodically accord-
ing to a predetermined schedule or, for example, in response
to an event, such as a request from the external computer
device or when the sensor device 10 is in proximity (e.g.,
within range for file transfer via short-range wireless data
transmission) to the computer device. In some examples, the
communications module 38 is a wireless transceiver, such as
a ftransceiver employing IEEE 802 wireless networking
standards, by Bluetooth®, 1. ZigBee, LAN., WAN, or
cellular connection, or combinations thereof. Wired data
transmission may occur via USB, Firewire, or Ethemet
networking standards.

[0055] Inaspects, the wearable sensor device also includes
power management components, such as a rechargeable
battery 50 and associated control circuitry. For example, the
control cireuitry can monitor battery parameters such as
charge remaining. In some examples, the device 10 provides
output to a user when the battery 50 needs to be recharged
or when the battery 50 is too depleted to continue data
collection.

Prosthesis

[0056] With reference to FIG. 2, in aspects, a trans-tibial
prosthesis device 51 is depicted in schematic and not in scale
for ease of depiction. The device 51 comprises: a socket 52,
configured to receive a stump of a patient, an interface 53,
apylon 54, and a foot portion 56. A sensor 58, such as an F/T
sensor, as described herein, is provided in-line with the
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pylon 54. Sensor 58, such as an i-Pecs™ sensor, may
comprise a wired or wireless communications interface as
described herein.

Movement Analysis System

[0057] A movement analysis system 100 including one or
more sensor devices 10 is shown in FIG. 3. The movement
analysis system 100 can be configured to obtain data from
the sensor device(s) 10 for the purpose of sensing, analyz-
ing, and training the gait of a patient. Data for the patient can
be transmitted either directly or indirectly to a central device
or server. For example, as shown in FIG. 3, the data is
received by an external computer network 110 comprising
one or more computing devices (computers) 112 in com-
munication with storage devices 114 comprising compuler
readable memory comprising databases of movement results
for various subjects.

[0058] Intermediary Dewvi
[0059]  Tn some examples, data from the sensor device(s)
10 is first transmitted to an intermediary device 116, which
receives data from the one or more sensor devices 10 and
transmits the data to the computer network 110. The inter-
mediary device 116 can be a dedicated electronic device
comprising non-transitory computer readable memory with
instructions for receiving, processing, comumunicating/trans-
mitting, and providing feedback about the information from
the one or more sensor devices 10.

[0060]  In other examples, the intermediary device 116 is a
multipurpose electronic or computer device capable of per-
forming processes for data collection and analysis (referred
to herein as a computer). In the context of computing, a
process is, broadly speaking, any computer-implemented
activity that generates an outcome, such as implementation
of a mathematical or logical formula, operation, or algo-
rithm. For example, the intermediary device 116 can be a
portable computer device, laptop computer, tablet, micro-
computer (e.g.. Raspberry Pi or Arduino), or smartphone
(such as an Apple iPhone or a Samsung Galaxy), Other
examples include a worksiation, a server, a lapiop, a tablet,
a smart device, a web-enabled telephone, a web-enabled
personal digital assistant (PDXA), a microprocessor, an inte-
grated circuit, an application-specific integrated circuit, a
microprocessor, a microcontroller, a network server, a
Java™ virtual machine, a logic artay, a programmable logic
array, a micro-computer, a mini-computer, a large frame
computer, or any other component, machine, tool, equip-
ment, or some combination thereof capable of responding to
and executing instructions. The portable computer device
can be configured to execute instructions from a software
application (e.g., an App) which controls health monitoring
and collection of data from the sensor device(s) 10. For
example. an App can be one or more of an operating system
(e.2.. a Windows™ hased operating system), browser appli-
cation, client application, server application, proxy applica-
tion, on-line service provider application, and/or private
network application, The App can be implemented by ufi-
lizing any suitable computer language (e.g., C\C++, MAT-
LAB, UNIX SHELL SCRIPT, PERL. JAVA™,
JAVASCRIPT, HTML/DHTML/XML, FLASH, WIN-
DOWS NT. UNIX/LINUX, APACHE. RDBMS, including
ORACLE, INFORMIX, and MySQL). The App can com-
prise health, fitness, and/or physical movement analysis
software. In some instances, the App can be downloaded to
the device 116 from an external source, such as the external
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computer network 110, Following initial installation of the
App. the device 116 can be configured to receive instruc-
tions, vpdates, or additional software from the external
source either according to instructions mcluded with the App
or in response to a request from the external source.
[0061] In other examples, the intermediary device 116 is
another medical, exercise. or puﬁenl |'|mm'1nrir|5 device
located in close proximity to the subject. For example,
various types of exercise and medical equipment may
include microprocessors for controlling device function.
Instructions for receiving, processing. and providing feed-
back about sensed movement information from the one or
more sensor device(s) 10 can be loaded or downloaded to
any such devices for implementing the patient monitoring
and feedback systems discussed herein.

[0062] Controller

[0063] In some examples, the intermediary device 116
comprises a controller 118 for executing functions related to
receipt, analysis, and transmission of sensed movement data.
In some examples, a controller is a central processing engine
including a baseline processor, memory, and communica-
tions capabilities, For example, the controller 118 can be any
suitable processor comprising computer readable memory
120 and configured to execute instructions either stored on
the memory 120 or received from other sources. Computer
readable memory 120 can be, for example, a disk drive, a
solid-state drive, an optical drive, a tape drive. flash memory
(e.g.. a non-volatile computer storage chip), cartridge drive,
and control elements for loading new software.

[0064] In some examples, the controller 118 includes a
program, code., a set of instructions, or some combination
thereof, executable by the device 116 for independently or
collectively instructing the device 116 to interact and operate
as programmed. referred 1o herein as “programming instruc-
tions™. In some examples, the controller 118 is configured to
issue instructions to one or more of the sensor devices 10 to
mitiate data collection and to select types of measurement
information that should be recorded. In other instances, the
sensor device(s) 10 s configured to automatically transmit
all sensed movement data to the intermediary device 116
either in real time or at periodic intervals without first
receiving initiation instructions from the controller 118 to
initiate sensing and data transmission,

[0065] In either case, as will be discussed herein. the
controller 118 is configured to receive and process move-
ment information from the sensor device(s) 10 for activities
performed by the subject. Processing can include applying
filters and other techniques for removing signal artifacts,
noise, baseline waveforms, or other items from captured
signals to improve readability. As discussed in greater detail
in connection with the discussion of FIGS. 4 and 5, pro-
cessing information includes data analysis techniques, such
as quantifying varions movement parameters based on
received data, corroborating or calibrating data from mul-
tiple sources, and/or analyzing generated movement param-
eters to draw conclusions about the subject.

[0066] In one example lor analyzing received data, the
controller 118 is configured to compare one or more inertial
data sets obtained from the sensor device(s) 10 with refer-
ence data comprising one or more reference inertial data sets
stored on the computer readable memory or received from
external sources, such as the computer network 110. For
example, the reference inertial data sets can be stored on the
storage device 114 and transmitted to the intermediary
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device 116 via the computer network 110, In some
examples, the reference inertial data sets include average
parameter values or target parameter values for individuals
having similar physical characteristics to the subject. The
controller 118 can be configured to determine one or more
deviations, if any, between the inertial data set(s) and the
reference inertial data set(s), and, if one or more deviations
is present, generate a list of one or more activities or actions
(e.g., a recommended treatment regimen) that the subject
could perform as a corrective measures to address the
identified deviations between the subject’s inertial data set
and the average or target data set for similarly situated
individuals. Possible corrective actions, in the form of a
treatment regimen or treatment protocol, can also be stored
on a database on the storage device 114 and transmitted to
the intermediary device 116 by the computing network 110
when required.

[0067] Communications Module

[0068] In some examples, the intermediary device 116
comprises a communications module 122 associated with
the controller 118. In that case, the controller 118 is config-
ured 1o cause the communications module 122 to transmit
the raw. processed, or analyzed data from the wearable
sensor device(s) to remote sources, such as the external
computer network 110, In other examples, the data is
uploaded from the intermediary device 116 to an internet
webpage or other remotely accessible database.

[0069] The communications module 122 comprises a
short range data transceiver for communication with the
communications module 38 (shown in FIG. 3) of the sensor
device(s) 10. For example, the short range data transceiver
may be a Bluetooth® transceiver, Zighee transceiver, or
similar data transmission device, as are known in the art. In
other examples, the short range data transceiver can be a
radio-frequency (RF) near-field communication device. In
other examples, the communications module 122 comprises
a wired data transmission interface. In that case, the sensor
device 10 can be connected to the intermediary device 116
using a USB cable or similar data transmission cable, The
communications module 122 can also include a long-range
wireless data transceiver 124 for communication with the
computers 112 of the external computer network 110, For
example, long range data transmission can use WikFi, cellu-
lar, radio frequency, satellite, and other known data transfer
devices and protocols. Communication between the sensor
device(s) 10, the external computer network 110, and, if
present, the intermediary device 116 can be encrypted by
any useful method. In that case, the communications module
122 can be configured to receive encrypted data from the
sensor device 1 and process the encrypted data to remove
encryption so that the received device can be analyzed. The
communications module 122 can also be configured to
encrypt data prior to long-range data transmission 1o the
external computer network 110. For example, the devices
10, 112, 116 can use encryption, data redaction, and/or
security mechanisms to ensure data privacy and that the
system comports with privacy standards, such as the .S,
Health Insurance Portability and Accountability Act
(HIPAA) standards.

[0070]  Input/Cutput Components

[0071] In some examples, the intermediary device 116
further comprises an input component 126 and an output
component 128 in communication with the controller 118,
which allow the user to interact with and receive feedback
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from the intermediary device 116. The input component 126
mncludes one or more of a keyword, touchpad, computer
mouse, trackball, or other data entry accessory, as are known
in the art. In other examples, input components 126 include
a microphone for capturing audio data entry by a user or
optical or motion sensors for capturing gestures performed
by the user. The inpul component 126 can be used to enter
information about the subject which can be used to analyze
the measurement data and/or to assist in gait analysis and
training regimens. For example, information about the sub-

jeet’s gender, age, height, weight, activity level (e.g.. rec-

reationally active, occupationally active, soldier, elite ath-
lete), and other relevant information can be entered via the
nput component 126. The input compenents 126 can also be
used to interact with a user interface by, for example, being
able to toggle through instruction screens for positioning the
sensor device 10 on the subject and for performing different
types of activity assessments. User interface screens that can
be shown on a visual display and used for entering infor-
mation and guiding a user in collecting information about a
subject are shown in FIGS. 6A to 6E and discussed herein.
[0072] In some examples, the input/output components
126, 128 is a touch screen display. In other examples, output
component 128 includes a visual display, speakers, haptic
output devices, and/or other types of feedback devices as are
known in the art. The output component 128 can provide
feedback to the clinician or subject about the subject’s
physical condition and, in particular, feedback based on
movement information captured by the sensor device 10 to
guide the patient to reproduce a proper gait.

[0073] In one aspect, the output components 128 include
a “head up display™ (HUD), as are broadly-known in the art,
or any wearable visual display or smart display technology.
Commercial examples of such displays include: Google
Glass 2.0, Recon Jet™ (Recon Instruments), Glass (X,
Mountain View, Calill), and Vuzix M100 or M300 (Vizix
Corporation, West Henrietta, N.Y.). Wearable displays can
be any form. so long as they place a visible display, e.g., on
glasses or another wearable device, capable of producing an
indicia of the status of a patient’s gait. Depending on the
nature of the indicia desired and/or necessary to guide the
patient, the display may be as simple as providing small
LEDs or similar structures, or fiber optic displays, or as
complex as a color display capable of displaying complex
images. Optionally, haptic (e.g., vibration) sensations or
audible signals also may be produced by the display device,
or a connected transducer. such as an earbud or vibrator.
Certain display devices also are capable of producing input
data relating to movement and position of the patient,
inchuding accelerometer and gyroscope functionality, which
can be used in addition to a dedicated sensor device worn on
the waist, hips or torso——so long as a relevant measurement
of one or more aspects of the gait of the patient can be
ascertained from such input data.

[0074] In addition to providing feedback, in some
examples, the controller 118 is configured o cause the
output component 128 to provide visual or audio instruc-
tions 1o the user or subject related to the movement assess-
ment being performed, such reminders that assist the patient
to remember what to focus on when walking. More than one
output component 128 may be utilized. such as a screen for
a clinician in addition to the display device.

[0075] The components of the sensor device 10, interme-
diary device 116, and external computer devices 112 can be
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combined in various manners with various analog and
digital cirenitry, including controllers. filters, ADCs (analog-
digilal chips), memaory, commumcation devices and/or ;idap-
tors. Especially, but not exclusively with respect to the
sensor device 10, as devices become smaller and processors
become more powerful and vse less energy, it is possible to
integrate many more sensors, such as microelectromechani-
cal systems (MEMS) or nancelectromechanical systems
(NEMS). onto single chips. MEMS accelerometers, gyro-
scopes, gas sensors, thermometers, humidity sensors, and
magnetometers are readily available from  comnercial
sources andfor are abundantly described in the art, Tech-
nologies such as package on package (PoP) and system on
a chip (SoC) integrated circuit packages allow manufacture
of wvery small devices with significant capacities. For
example. smart phones use PoP technologies to stack
memory and processors in a very small volume. One
example of a S50C 15 a microcontroller (MCU), which is a
small computer on a single iniegrated circuit typically
containing a processor core, memory, and programmable
input/output peripherals. MCUs also may include timer
module(s) and analog-to-digital converter(s) for, e.g., con-
verting analog sensor output to a digital signal.

[0076] External Database

[0077] With continued reference to FIG. 3, in some
examples, the intermediary device 116 is in communication
with the storage device 114 of the external computer net-
work 110. For example, the intermediary device can receive
information including patient information and reference data
sets from databases stored on the storage device 114, For
example, the storage device 114 can comprise a database of
patient electranic health records for subjects. A health record
contains personal information for the subject such as a
subject’s name, age, weight, height, body mass index (BMI),
and blood pressure. A health record can also contain infor-
mation about assessments previously pertormed by the
subject or about a subject’s history of past injuries. The
intermediary device 116 can, for example and without
limitation, store, communicate the personal information, and
combine the personal information with the inertial data set
information for communication to other external computer
devices, such as the computer device 112, In some examples,
the intermediary device 116 is also configured to redact
private information from the personal information prior to
communication of the personal information. The received
patient information is used by the computer device 112 to
improve analysis of the sensed movement information.
[0078]
reterence data sets with movement information for a wide
range of subjects. or parameters based on other sources, such
as from research studies. The database can be used to obtain
reference datasets for other individuals with similar charac-
teristics (e.g.. physical characteristics, occupational or activ-
ity level, and/or medical history) as the subject. Physical
measurements for the subject can be compared with refer-
ence data sets for improve specificity and accuracy in gait
analysis and feedback. In some instances, reference data sets

are based on statistical (e.g., average) values for segments of

a population (e.g.. segments of the overall population with
physical characteristics similar to the subject) or for the
population generally. In other examples, a set of reference
data sets is provided from the database for individuals with
varying degrees of proper or improper gait. In one example,
the database includes a reference data set or individual
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classified sets for an individual with fully- and properly-
functional legs (no injury history), as well as for individuals
with one or two prosthetic lower extremities, different types
of prosthetics (above the knee, below the knee, below the
ankle, etc.), and/or classified by one or more motions
characteristic of a proper or improper gait. The measured
inertial data set for the patient can be compared to inertial
data sets for others. or other reference values, to assess
progress or to assess the type of corrections needed to
achieve a desired target motion. As information for different
subjects is oblained. processed. and analyzed, the database
can be expanded in an ilerative manner to improve speci-
ficity and accuracy in gail training.

Information Collection Processes

[0079] FIGS. 4, 5, and 7 are flow charts illustrating
processes for monitoring movement of the subject using the
sensor device, processing and analyzing information sensed
by the sensor device, and providing feedback to a patient via
the display relating to gait, as described above. These
processes are performed using the wearable sensor device
(), intermediary device, and external computer network,
e.g., as shown in FIG, 3. The processing and data analysis
techniques discussed herein can be performed by the inter-
mediary device and/or by remote computer devices of the
external computer network, [ some mstances, pmuesning
and data analysis functions are distributed between multiple
computer processors on different devices, In one example,
initial processing and data analysis, is performed by the
controller of the infermediary device and feedback is sent
directly to the display. More sophisticated data analysis and
reporting functions can be performed on remote computer
devices of the external computer network (e.g., in the cloud).
[0080] As shown in FIG. 4, the sensor device or interme-
diary device guides the user or subject through an initial
setup process. [n the example shown by box 210, during the
setup process, the user is instructed to input patient demo-
graphic information about the subject’s physical condition
and other information. For example, in response to requests
by the wearable sensor device or the intermediary device,
the user or subject provides demographic information (e.g..
age, weight, height, dominant limb) and/or activity level/
type information for the subject. The subject can also be
identified as a member of a particular group of interest. For
example, the subject may identify that he or she is a member
of a particular sports team, military branch, cohort, etc.
Assessment results for identified members of a group can he
compared together during data analysis.

[0081] Based on the entered information, as shown at box
212, the sensor and/or intermediary device is configured to
select a battery of evidence-based assessments 1o collect
movement data for the subject. For example, one or more
faree or torgue value {e.g., Fx, Fy, Fz. Mx. My, and/or Mz).
is obtained from the sensor and/or a parameter is calculated
{e.g.. percent of time foot is contacting the ground (%
stance), AUC of any value, peak forces or moments, range
of any force or moment, proximal (e.g., knee) forces, such
as pMy or pMz, or distal (e.g., ankle) forces, such as dMx)
from the raw data. As illustrated in the flowchart of FIG. 5.
based on input from the sensor, a step is identified from one
or more parameters, and 15 distinguished from motions (or
lack thereof) that does not indicate stepping. For example,
periodic fluctuations in Fz might indicate a step motion (see,
exemplary data in FIG. 6).
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[0082]  As with distinguishing stepping motions from non-
stepping motions, any combination of measured or calcu-
lated forces during stepping can be compared to reference
values, and if such measured or calculated forces fall within
predetermined tolerances based on the reference values, a
signal is passed to the HUD indicating the patient’s walking
maotion is within tolerances. If such measured or calculated
forces during stepping fall outside predetermined tolerances,
a signal is passed to the HUD indicating the patient’s
walking motion s outside tolerances, indicating that the
patient should self-correct. As training advances, and a
patient spends increased time within tolerances, a clinician
or a software process can decrease the range of tolerable
maotions so that the patient can further fine-tune her gait.
[0083] A process for analyzing the quantified or normal-
ized values to provide feedback to the user or subject for
injury prediction and treatment recommendation is shown in
FIG. 5. As shown in FIG. 7, the obtained parameter value(s)
may be analyzed by comparing the derived values to mea-
surements obtained from other subjects, the patient, or other
sources, such as from published data or parameters, and
stored in a database. In some examples, the other subject
data includes average values based on measurements for a
group of similarly sitnated individuals. In other examples,
reference values are calculated or derived from data for the
general population.

[0084] Referring to FIG. 7. as shown at box 310, the

process begins when the values for the measurements of

interest are received. As described herein. the values are
derived from movement data collected by the sensor device
(s) worn by the subject while performing the assessmentis).
In one example, the received values include values derived
trom multiple data sets, such as a first data set and a second
data set. The process also includes identifving characteris-
tics of the subject so that reference values may be obtained,
as shown at box 312, Subject characteristics include the
subject’s age, history of previous injuries, and/or the sub-
ject’s activity level and/or level of ceccupational activity. In
one example, this characteristic information is provided by
the user or subject as discussed above, In other examples,
subject information is automatically downloaded from a
remole source, such as a patient health record.

[0085]  As shown at box 314, benchmark or reference data
sets are obtained from external sources, stored on cne or
more databases of the computer network, and downloaded to
the computer device or intermediary device as needed. In
one example, derived force, torque or stance measures are
compared to benchimarks determined through analysis of
collected normative data. Specific entries or values from the
database or dala set are selecled based on the provided
demographic information about the subject.

[0086]  As shown at box 316, the measured reference
values for the subject are then compared to the reference
values from the database. The results of the comparison can
be used to determine a derivation between the measured data
and reference data sets. Comparison of one data set to
another can be accomplished by any method, for example

and without limitation, by differencing methods. A variety of

other methods and data formats are amenable to such
comparisons. For example, a computer process, such as a
table, a matrix, a statistical representation, an ohject, an
equation, an image, compressed data, and combinations
thereof can be used in manners which are apparent to those
of ordinary skill in the art.
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[0087]  As shown at box 318, the derived data set and/or
results of the comparison between the data set and reference
values are used for gait analysis and training, and thus output
15 transmitied to an HUD so that the patient can self-correct
il outside of tolerances during walking or other activity
relating to gait. For example, reference values can be viewed
as cutofl’ points for folerances associated with a certain
training activity.

[0088] As shown in box 320, the training process is
repeated as necessary, and as shown in box 322, a report can
be generated.

EXAMPLE 1

[0089] It is the purpose of this example to develop and
examine the effects of a real time mobile visual feedback
(RTMWF) gait training system for individuals with ampu-
tation. A secondary purpose 1s to examine the effects of this
program on improving gait performance (symmetry and
frontal plane pelvic mation) pain and functional measures.
In addition, findings of this project will expand the knowl-
edge of how well this form of training can atfect the
retention. Removal of feedback in a fade out pattern to
improve internalization, as well as a systematic training
protocol and an external focus of attention (the effects of
movement seen on the feedback display) can be vsed. These
have both been demonsirated as (raining siralegies o
improve motor learning, however have not been widely used
in the amputee population for gail refraining. One of the
primary criticisms of the previous studies is limitation due to
the expense of instrumented treadmills and motion capture
systems to assess pait kinematic and temporal-spatial out-
comes of gait retraining interventions. With the advent of
wearable sensors that have been deemed reliable and valid
o measure patient gait performance outcomes commercially
available elements are utilized to provide gait evaluation not
only in a mobile fashion but also in a less expensive manner.
This could also have important implications towards further
clinical usage as clinicians could benefit from further knowl-
edge beyond qualitatively assessing gait when a patient
returns between visits.

[0090] This work is innovative in its use of current posi-
tive findings of real time visual feedback by providing the
visual real time feedback directly from the patient’s pros-
thetic limh. This is displayed on smart glasses creating a
mobile environment in which the training can occur with
novel feedback from the integrated sensor. The integrated
F/T sensor being utilized has been found wvalid for the
measurement of joint forces and moments. This, in combi-
nation with mobile assessment of kinematic and temporal-
spatial gait outcomes completes a novel way of training and
assessing improvements in dysfunctional gait kinematies. It
has been demonstrated that amputees have greater difficulty
on non-level surfaces. Truly mobile gait retraining, allowing
for real time visual feedback while walking outside of the
clinig, has not before been tested.

[0091] For initial testing, the patient ambulates with the
integrated i-Pecs™ sensor (RTC Electronies, Dexter, Mich.)
(see, e.g., sensor 58 of FIG. 2) which is programmed to
commuincate directly with sinart glasses via Bluetooth to
provide the RTMVE of wvertical ground reaction force
(VGRF) feedback to the patient as they walk (FIG. 8). The
i-Pecs™ has been demonstrated as valid for ground reactive
loree and joint moment data collection data in this popula-
tion. Amputees have been demonstrated to have decreased
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VGRF through the involved limb which has been demon-
strated to relate to decreased stance time. Therefore, we will
initially utilize VGRF data as the display and ask the patient
to match their curve with the normal curve (see, eg., FIG.
8). Participants will undergo gait retraining. Upon initial
evaluation, a standardized checklist of gait deviations will
be utilized to review at each subsequent session. These then
will remain the standardized deviations for that patient for 8
visits, and the same cues will be used, per deviation, across
patients. These cues will be used 1o associate their gait
changes to the feedback changes they are seeing on the
display of their smart glasses, Each session will include 1
hour. twice a week for 4 weeks and will include RTMVF
training and gait focused physical therapy. It will be ran-
domized how each patient starts their 1-hour session. A
faded feedback protocol will be utilized over the last four
session to help intemalize motor leaming. An external focus
directs the attention of the learner on the effects of their
movements (different walking strategies changing the force
curves they seen on the screen versus focusing on their own

extremity alignments) and reduces their attentional
demands.
[0092] While several examples and embodiments of the

sensor device, movement analysis and training system, and
processes for providing real-time gait training based on
sensed movement data are shown in the accompanying
figures and described hereinabove in detail, other examples
and embodiments will be apparent to, and readily made by,
those skilled in the art without departing from the scope and
spirit of the mvention. For example, it is to be understood
that this disclosure contemplates that, to the extent possible,
one or more features of any embodiment can be combined
with one or more features of any other embodiment. Accord-
ingly, the foregoing description is intended to be illustrative
rather than restrictive.

EXAMPLE 2

[0093]  Gait dysfunction is an impairment that can effect
multiple patient populations. both newrologic and orthope-
dic. including those with limb loss, and become chronic and
linger for yvears. It has been frequently reported that gait
retraining with augmented sensory lfeedback improves dys-
functional lower extremity impairments and related pait
patterns including those of amputees. However, a primary
eriticism of these previous studies is due w the expense and
tightly controlled laboratory conditions, conducted with
instrumented treadmills and optical systems, many of the
findings have had difliculty being applied to realistic clinical
environments. Progressing from this previous limitation, a
system is provided based on an integrated load cell sensor to
provide real time mobile visual feedback (RTMVE) to
trans-tibial amputees for gait training.

[0094]  Translating current positive findings of real time
visual feedback into a clinical application was accomplished
by providing the visual real time feedback directly from the
patient’s limb displayed on smart glasses, with the objective
of creating a mobile more realistic environment in which the
training can occur. The system included a prosthesis-inte-
grated load cell {ipecs, RCT Electronics, Dexter, Mich.) and
a variety of commercially available wearable head-up dis-
plays. After testing several models, including the Google
glass system (Google, Mountain View, Calif’) and the Recon
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jet {recon instruments, Vancouver, BC) we implemented
Vuzix M100 smart glasses (Vuzix, West Henrletta, N.Y.) in
the prototype (see FIG. 9).

[0095]  Establishing connectivity between the different
components is an ongeing process. The current prototype
uses cable connections between the load cell, a laptop
computer, and the smart glasses. Given that all those com-
ponents have Bluetooth capabilities: an updated wireless
prototype is anticipated for future iterations of the develop-
ment project.

[0096] The initial prototype (FIG. 9) allows the capturing,
processing and displaying of load cell gait data in close o
real time. Initial feasibility tests suggest that a patient can he
titted with the system in about 30 minutes, most of which
time is required for the installation of the load cell into the
prosthesis structure. The prototype is anticipated to provide
the groundwork for subsequent work to determine how 1o
best convert the raw data to the wvisual warning signal
resulting in an RTMVFE gait training system for trans-tibial
amputees,

[0097]  Long term goals are the effective supplementation
of traditional therapist-based gait retraining with a wearable
“assistant” that provides comparable feedback on a patient’s
gait deviations. This should help improve oulcomes for
patients who have limited access to specialized health care,
and who are, therefore, at risk of adapting habitual gait
deviations following limb loss and prosthesis provision.

EXAMPLE 3

Methods

[0098] The RTMVF system was developed utilizing com-
mercially available andfor previously validated componen-
try, essentially as described in FIG. 9. Gait data source is a
prosthesis-integrated load cell (i-Pecs, RCT Electronics,
Dexter, Mich.) capable of measuring precisely kinelic gail
variables in lower limb prostheses. The device is semi-
permanently installed as part of the load-bearing structure of
the limb prosthesis connecting to the rest of the device using
standard adapters. Ground reaction forces and moments of
foree data can be collected at up to 850 Hz and transferred
wirelessly or by cable connection 10 a laptop computer for
turther processing. In order to provide visual feedback to the
patient, a wearable head-up display (M300, Vuzix, West
Henrietta, N.Y.) was vsed. These “smart glasses™ contain,
positioned at the tringe of the vser’s normal field of view, a
small sized display, the contents of which are retrieved from
the computer via Wi-Fi or Bluetooth connection. The display
has a resolution that is comparable with small computer
screens, yet its position and intended purpose in our context
advises against the conveyance of very complex visual
information.

[0099]  Connectivity between the different components is
currently realized using cable connection between load cell
and laptop computer, and Bluetooth to the smart glasses, In
this configuration, the lightweight computer is carried in a
pouch on a waist belt by the user.

[0100] Feasibility of the system was evaluated using the
feedback wariable “Stancefstep time ratio™, (that is, the
duration of a step’s stance phase (from initial ground contact
to toe=0fT) in relation to the overall step’s duration measured
from one initial ground contact to the next initial ground
contact on the same side), This parameter correlates with
some typical gait deviations in lower limb prosthesis users,
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and it lends itself to easy capturing by lower-cost, prosthe-
sis-independent sensor equipment for potential translation
into the clinic and/or adaptation for different patient popu-
lations, Stance and swing components of step cycles were
derived by an alporithm that analysed various components
of the axial force curve (the sensor's Fz is ronghly equiva-
lent to vertical ground reaction force in an external coordi-
nate system, Fiedler G, et al. Criterion and Construct Valid-
ity of Prosthesis-Integrated Measurement of Joint Moment

Data in Persons With Trans-Tibial Amputation. Jowrnal of

Applied Biomechanics. 2014; 30{3):431-438) to determine
the appropriate crossings of a 15N and 100N threshold.
Examining the sensor data graphically and quantitatively,
different strategies were tested to harden the algorithin to
outliers and measuring artefacts (Kutina K. Fiedler G. The
Use of an Integrated Load Cell as a Mobile Gait Analysis
System to detect (Gait Events in People with Limb Loss.
Paper presented at: [SPO 16th World Congress 2017; Cape
Town, South Africa). Timing parameters were established to
help the algorithm detect transition steps and turns as
non-representative steps for gait analysis and feedback pur-
poses.

[0101] A rarget window of stance/step ratio was estab-
lished between (.59 and 0.63, resulting in three discrete
oulpul states: oo short stance phase (below 59% of siep
cycle), desirable stance phase (59-63%), and too long stance
phase (above 63%), The three states were represented by
different feedback colors, displaying a red (for too short
stance phase), green (desirable stance phase), or vellow (too
long stance phase) screen to the user. The most accurate
caleulation of stance phase duration with respect 10 the iotal
step cvele requires the entire step cvele in question to be
timed, This makes the feedback information available only
after a given analysed step is completed. Accounting for this
inevitable latency, the validity of the system in generating
feedback variables was investigated in a small sample of
steps.

[0102] Inclusion criteria for this test was use of a trans-
tibial prosthesis for ambulation, absence of acute or chronic
health conditions that would affect prosthesis use, and ability
to walk without aids for at least 30 minutes. Demographic
data and mohility score (PLUS-M'®) were recorded. The test
participant was equipped with the RITMVFE svstem and a
waist-worn “mobile gait lab™ (G-Walk, BTS Engineering,
Milan, ITA), and was asked to traverse in self-selected
walking speeds repeatedly across a 30-m level walkway.
Step phase durations were extracted from the G-Walk data
to serve as the validation standard for the respective vari-
ables computed from the prosthesis sensor data by our
algorithm. Gait symmetry index, a proprietary variable
output by the G-Walk sottware, was recorded as well and
correlated to the i-Pecs derived stance/step ratio in order to
investigate its appropriateness as feedback variable for gait
training. The variable is a composite index that is based on
acceleration and gyroscope data through the step cycle. An
index of 100 signifies perfect symmetry between the left and
the right step with respect to ground contact forces, trunk tilt,
and temporal parameters, Bivariate correlation analysis was
conducted using IBM SPSS Statistics (Version 24).
Results

[0103] The participant was a 61-year-old female, weigh-
ing 58.5 kg and 1.49 m tall, who had been using trans-tibial
prostheses for twelve years and had a PLUS-M score at the
79" percentile.
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[0104] A total of 67 steps were analyzed. Correlation
between RTMWVF step ratio data and reference data was
strong, with a Pearson correlation coeflicient of R=0813
(p=0.001).

[0105] Correlation between variables stancefstep ratio and
overall gait symmetry index (FIG. 10) across eight data
collection sessions was strong as well (R=0.733), indicating
that the feedback variable is a good proxy for the primary
outcome of interest,

[0106]
was not perceived as problematic by the test subject, The test
suggests that a patient can be fitted with the system in about
30 minutes, most of which time is required for the installa-
tion of the load cell into the prosthesis structure.

[0107] Findings suggest that our system measures step
cyele components with sufficient validity. Mone of the
analyzed steps were classified improperly, and deviations
between the two utilized data capture systems did on aver-
age not exceed 66 milliseconds or 10.2 percent, a discrep-
ancy that can be deemed accepiable, and may be atiributable
to the difference in generating kinetics data based on accel-
erometry (G-Walk) and strain gages (i-Pecs). This leaves the
slight delay in displaying the feedback information that is
owed to the processing of load cell gait data, as potentially
the most relevant difference to treadmill based feedback
systems for gait training. Whether the mobile feedback may
still be considered “quasi real-time”, and may thus allow the
assumption that the function mechanism of the tested meth-
odology is in principle comparable o more conventional
approaches, should be tested in a larger scale study.

[0108] Owur pilot data collection illustrated the advantages
of providing real time visual feedback with a mobile sysiem,
in terms of efficiency, clinical applicability, and representa-
tiveness of data. Once the short preparations, involving
attachment and calibration of the equipment, were con-
cluded, collecting gait data on a substantial number of steps
required not more time than the participant spent taking
those steps. One person was able to administer the test
session, as the patient was able o walk safely and in her
regular fashion without being notably encumbered by the
wearahle equipment. The environment in which the training
and data collection can eccur is very realistic, as the system
can be used on most any indoor and outdoor walking
surface, including slopes, stairs, and uneven terrains. Even
though only one simple variable was extracted and analyzed
for the enrrent study, more of the sensor’s raw data (3-axial
forces and moments} may prospectively be harvested to
refine the detection of gait deviations and to inform better
feedback displayed to the patient.

[0109]  Our single subject pilot study did not allow inves-
tigating which modifications to the algorithm may be needed
on an individual basis. It may be assumed that other users
require slightly different feedback information, depending
on the severity of their gait deviation and their ability to
make the prescribed corrections. Such wsers may, for
instance, benefit from adjustments to the size and location of
the “target window™ for the proper stance/step ratio,
[0110] TFindings of the current study support the goal of
effectively supplementing traditional therapist-based gait
retraining. By expanding patients’ exposure to gait therapy
interventions bevond the limited sessions with their thera-
pist, training effects should onset swifter and should be
better sustainable. In conclusion, a mobile gait analysis and
teedback system holds promise for enhanced gait retraining

Latency of feedback was less than 1 second and
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approaches in people with lower limb loss, training or
retraining of people with gait abnormalities, and training and
rehahilitation of athletes.

[0111]  The following numbered clavses describe various
aspects of the invention:

[0112] 1. A gait analysis, training, and retraining system
comprising:

a sensor configured to measure one or more attributes of gait
of a patient; and

a controller in communication with a sensory auiput device,
the controller configured to, repeatedly. monitor a patient’s
gail in real-time and to provide real-time feedback to the
patient: receive and process information from the sensor
representative of one or more attributes of the gait of the
patient:

generate a data set corresponding to the information from
the sensor representative of one or more attributes of the gait
of the patient;

compare the generated data set to reference data indicating
optimal values for a data set corresponding to the informa-
tion from the sensor representative of one or more attributes
of the gait of a patient; and

cause the display to provide feedback comprising gait analy-
sis based, at least in part, on the comparison between the
generated data set and the reference data and at least
indicating in the feedback if the generated data set is within
defined tolerances relative to the reference data.

[0113] 2. The system of clause 1, wherein the sensory
ouipui device is a wearable display, such as a wearable smart
display device or head up display (HUD).

[0114] 3. The system of clause 1, wherein the sensory
output device is a sound transducer, such as a headphone, or
a haptic device, such as a vibration motor.

[0115] 4. The system of clause 1, wherein the sensor is a
force, or a force and torgue (F/T sensor) configured to
measure Torces and torque applied 1o a leg of a patient.
[0116] 5. The system of clause 4, wherein the F/T sensor
is a six-axis F/T sensor.

[0117] 6. The system of clause 4, wherein the force sensor
measures at least Fz (force applied in a superior direction
toward the head of a patient).

[0118] 7. The system of clause 4, wherein the F/T sensor
is provided in a leg prosthesis, such as a trans-tibial, or a
trans-femoral prosthesis.

[0119] 8. The system of clause 4, wherein the F/T sensor
is configured to be wearable by a patient.

[0120] 9. The system of clanse B, wherein the wearable
FIT sensor is provided in a shoe, a shoe insert, a shoe
outsole, or a shoe attachment.

[0121] 10. The system ol clause 1. wherein the sensor is a
wearable inertial measurement unit configured to be worn by
the patient comprising at least one accelerometer and/or at
least one gyroscope.

[0122] 11. The system of clause 10, wherein the inertial
measurement wnit comprises three orthogonally positioned
accelerometers for measuring acceleration along the x, vy,
and z axes and three gyroscopes oriented along the X, v, and
z axes respectively.

[0123] 12, The system of any one of clauses 1-11, wherein
the sensory output device is a display providing a binary
signal comprising a first visual signal when the generated
data set is within defined tolerances relative to the reference
data and a second visual signal different from the first visual
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signal when the generated data set is not within defined
tolerances relative to the reference data.

[(0124] 13. The system of clause 12, wherein the display
provides a color signal indicating when the generated data
set is not within defined tolerances relative to the reference
data.

[0125] 14, The system of clause 1, wherein the controller
and the sensory output device communicate wirelessly.
[0126] 15. The system of any one of clauses 1-14, wherein
the reference data is obtained from:

a patient performing the one or more physical actions in an
optimal, desirable, or clinically acceptable manner, for the
one Or more p]]}'ﬁiuul actions: and/or

one or more other patients, including statistical data, algo-
rithms, or other values derived from data obtained from
other patients.

[0127] 16. A method of analyzing and/or training gait in a
patient. the method comprising, using a computer-imple-
mented process, repeatedly:

receiving and processing, in a computer, information from a
sensor on the patient configured to measure one or more
attributes of gait o a patient representative of one or more
attributes of the gait of the patient during one or more
physical actions relating to gait, performed by the patient:
generating, in the computer, a data set corresponding to the
information from the sensor representative of one or more
attributes of the gait of the patient:

comparing, in the computer, the generated data set to ref-
erence data indicating optimal values for a data set corre-
sponding to the information from the sensor representative
of one or more attributes of the gait of a patient; and
generating, with the computer, an outpul causing a sensory
output device to provide feedback comprising gait analysis
based, at least in part, on the comparison between the
generated data set and the reference data and at least
indicating in the feedback if the generated data set is within
defined tolerances relative to the reference data.

[0128] 17. The method of clavse 16, wherein the sensory
output device is a wearable display device.

[0129] 18, The method of clause 16 or 17, wherein the
patient has a lower extremity amputation having a leg
prosthesis, such as a trans-tibial, or a trans-femoral prosthe-
sis, and the sensor is integrated into the prosthesis.

[0130] 19. The method of clause 16 or 17, wherein the
patient is missing a leg or a portion thereof below the hip.
femur, knee, or ankle.

[0131] 20. The method of clause 16 or 17, wherein the
patient has a gait imbalance, such as from injury, surgery,
congenital defect, disease or condition, such as, without
limitation, from an ankle, leg, hip, or spine injury, multiple
sclerosis, osteoarthritis, cerebral palsy, spinal cord injury.
post-polio syndrome, post-stroke conditions, old age.
[0132] 21. The method of any one of clauses 16-20,
wherein the sensor is a force and torque (F/T sensor)
configured to measure forces and torque applied to a leg of
a patient.

[0133] 22. The method of clause 21, wherein the F/T
sensor 18 a six-axis F/T sensor.

[0134] 23. The method of clause 21, wherein the force
sensor measures Fz (force applied in a superior direction
toward the head of a patient).

[0135] 24. The method of clause 21, wherein the F/T
sensor is provided in a leg prosthesis, such as a trans-tibial,
or a trans-femoral prosthesis.
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[0136] 25. The method of clause 21, wherein the F/T
sensor is provided in a shoe, a shoe insert, a shoe outsole. or
a shoe attachment.

[0137]
wherein the sensor is a wearable inertial measurement unit
configured to be worn by the patient comprising at least one
accelerometer andfor at least one gyroscope, e.g.. wherein
the inertial measurement unit comprises three orthogonally
positioned accelerometers for measuring acceleration along
the x, v, and z axes and three gyvroscopes orented along the
Xy, and z axes respectively.

[0138] 27. The method of any one of clauses 17-26,
wherein the display provides a first visual signal when the
generated data set is within defined tolerances relative to the
reference data and a second visual signal different {rom the
first visual signal when the generated data set is not within
defined tolerances relative to the reference data.

[0139] 28, The method of any one of clauses 17-27,
wherein the display provides a color signal indicating when
the generated data set is not within defined tolerances
relative to the reference data.

26, The method of any one of clauses 16-25,

[0140] 29, The method of any one of clauses 17-28,
wherein the controller and the display communicate wire-
lessly.

[0141] 30. The method of any one of clauses 12-25,

wherein the reference data 1s obtained from:
the patient when performing the one or more physical
actions in an optimal, desirable, or clinically acceptahle
manner, for the one or more physical actions; and/or
one or more other patients or sources, including siatistical
data, algorithms. or other values derived from data obtained
from other patients or sources.
[0142] The present invention has been described with
relerence to certain exemplary embodiments, dispersible
compositions and uses thereof. However, it will be recog-
nized by those of ordinary skill in the art that various
substitutions, modifications or combinations of any of the
exemplary embodiments may be made without departing
from the spirit and scope of the invention, Thus, the inven-
tion is not limited by the description of the exemplary
embodiments, but rather by the appended claims as origi-
nally filed.
What is claimed is:
1. A gait analysis, training, and retraining system com-
prising:
a sensor configured to measure one or more attributes of
gait of a patient; and
a controller in communication with a sensory output
device, the controller configured to, repeatedly. monitor
a patient’s gait in real-time and to provide real-time
feedback to the patient:
receive and process information from the sensor rep-
resentative of one or more attributes of the gait of the
patient;
generate a data set corresponding to the information
from the sensor representative of one or more attri-
butes of the gait of the patient;
compare the generated data set to reference data indi-
cating optimal values for a data set corresponding to
the information from the sensor representative of one
or more attributes of the gait of a patient; and
cause the display to provide feedback comprising gait
analysis based, al least in part, on the comparison
between the generated data set and the reference data
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and at least indicating in the feedback if the gener-
ated data set 1s within defined tolerances relative to
the reference data,

wherein the controller and the sensory output device

optionally communicate wirelessly.

2. The system of claim 1, wherein the sensory output
device is a wearable display, such as a wearable smart
display device or head up display (HUD) or a sound trans-
ducer, such as a headphone, or a haptic device, such as a
vibration motor.

3. The system of claim 1, wherein the sensor is a force, or
a foree and torque (F/T sensor) configured to measure forces
and torque applied to a leg of'a patient, such as a six-axis F/T
SENSOr.

4. The system of claim 3, wherein the force sensor
measures at least Pz,

5. The system of claim 3, wherein the F/T sensor is
provided in a leg prosthesis, such as a trans-tibial, or a
trans-femoral prosthesis.

6. The system of claim 3, wherein the F/T sensor is
configured to be wearable by a patient, such as in a shoe, a
shoe insert, a shoe outsole, or a shoe attachment.

7. The system of claim 1, wherein the sensor is a wearahle
inertial measurement unit configured to be worn by the
patient comprising at least one accelerometer and/or at least
one gyroscope, such as three orthogonally positioned accel-
erometers for measuring acceleration along the x, v, and z
axes and three gyroscopes oriented along the x, y. and 7 axes
respectively.

8. The system of claim 1, wherein the sensory output
device is a display providing a binary signal comprising a
first visual signal when the generated data set is within
defined tolerances relative to the reference data and a second
visnal signal different from the first visual signal when the
generated data set 15 not within defined tolerances relative to
the reference daia, optionally the display provides a color
signal indicating when the generated data set is not within
defined tolerances relative to the reference data.

9. The system of claim 1, wherein the reference data is
obtained from:

a patient performing the one or more physical actions in

an optimal, desirable, or clinically acceptable manner,
for the one or more physical actions; and/or

one or more other patients, including statistical data,
algorithms, or other values derived from data obtained
from other patienis.

10. Amethod of analyzing and/or training gait in a patient,
the method comprising, using a computer-implemented pro-
cess, repeatedly:

receiving and processing, in a computer, information from

a sensor on the patient configured to measure one or
more aliributes of gait of a patient representative of one
or more attributes of the gait of the patient during one
or more physical actions relating to gait, performed by
the patient:

generating, in the computer, a data set corresponding to

the information from the sensor representative of one or
more attributes of the gait of the patient;

comparing, in the computer, the generated data set to

reference data indicating optimal values for a data set
eorresponding to the information from the sensor rep-
resentative of one or more attributes of the gait of a
patient; and
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generating, with the computer, an output causing a sen-
sory output device to provide feedback comprising gait
analysis based, at least in part. on the comparison
between the generated data set and the reference data
and at least indicating in the feedback if the generated
data set is within defined telerances relative to the
reference data,

wherein the controller and the display optionally commu-

nicate wirelessly.

11. The method of claim 10, wherein the sensory output
device is a wearable display device.

12. The method of claim 10, wherein the patient has a
lower extremily amputation having a leg prosthesis, such as
a trans-tihial, or a trans-femoral prosthesis, and the sensor is
integrated into the prosthesis.

13. The method of claim 10, wherein the patient has a gait
wnbalance, such as from injury, surgery, congenital defect,
disease or condition, such as, withont limitation, from an
ankle, leg, hip, or spine injury, multiple sclerosis, osteoar-
thritis, cerebral palsy. spinal cord injury, post-polio syn-
drome, post-stroke conditions, or old age.

14. The method of claim 10, wherein the sensor is a force
and torque (F/T sensor) configured to measure forces and
torque applied to a leg of a patient. such as a six-axis F/T
SEINSOL.

15. The method of claim 14, wherein the force sensor
measures Fz.

16. The method of claim 14, wherein the F/T sensor is
provided in a leg prosthesis, such as a trans-tibial, or a
trans-femoral prosthesis,
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17. The method of claim 14, wherein the F/'T sensor is
provided in a shoe, a shoe insert, a shoe outsole, or a shoe
attachment.

18. The method of claim 10, wherein the sensor is a
wearable inertial measurement unit configured to be worm by
the patient comprising at least one accelerometer and/or at
least one gyroscope, e.g., wherein the inertial measurement
unit comprises three orthogonally positioned accelerometers
for measuring acceleration along the x, y, and z axes and
three gyvroscopes oriented along the x. vy, and z axes respec-
tively.

19. The method of claim 10, wherein the display provides
a first visual signal when the generated data set is within
defined tolerances relative to the reference data and a second
visual signal ditferent from the first visual signal when the
generated data set is not within defined tolerances relative to
the reference data. wherein the display opticnally provides
a color signal indicating when the generated data set is not
within defined tolerances relative to the reference data.

20 The method of claim 10, wherein the reference data is
obtained from:

the patient when performing the one or more physical
actions in an optimal, desirable, or clinically acceptable
manner, for the one or more physical actions; and/or

one or more other patients or sources, including statistical
data, algorithms, or other values derived from data
obtained from other patients or sources.
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