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Abstract 

Brain Age as a Measure of Brain Reserve in Neuropsychiatric Disorders 

 

Maria Ly, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Aging represents a highly heterogeneous process with highly variable clinical outcomes. 

Differential expression of risk and resilience factors may provide explanations for this variability. 

Gaining a better understanding of resilience in aging is critical as it will allow for improved 

individualized outcome prediction, as well as providing insight for targeted interventions that may 

improve the process of aging. Currently, the prevailing models of neurocognitive resilience are 

cognitive reserve and brain reserve. The theory of cognitive reserve suggests that those with greater 

cognitive reserve may better cope with loss of brain integrity through presence of more adaptable 

and efficient neural systems. Most studies utilize education level to assess cognitive reserve; 

however, many proxy measures are subjective and susceptible to hindsight bias. The concept of 

brain reserve overlaps with that of cognitive reserve but focuses instead on the biological 

characteristics that allow the brain to be resilient to the effects of aging and pathological insults. It 

is generally thought that with sufficient brain substrate (e.g., larger grey matter volumes, greater 

synaptic density, more elaborate network complexity), the brain is more capable of preserving 

normal functioning and maintaining homeostasis despite the presence of factors of 

neurodegeneration or trauma. Overall, the main goals of this dissertation are to demonstrate the 

impact of cognitive and brain reserve on neuropsychological outcomes and brain activation 

patterns (Aim 1, Chapters 2 and 3), to utilize machine learning brain age prediction as a novel 

proxy of brain reserve (Aim 2, Chapter 4), and to utilize brain age prediction in several 



 v 

neuropsychiatric disorders to predict outcome or gain a better understanding on the disease process 

(Aim 3, Chapters 5, 6, 7). 
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1.0 General Introduction 

This chapter provides a general introduction regarding brain aging, resilience, and age-

related neuropsychiatric disorders. Here we will discuss the major biological processes involved 

in aging, the homeostatic process of maintaining normal aging over time, factors that may provide 

resilience in healthy aging and disease, and examples of age-related neuropsychiatric disorders. 

 

This chapter contains excerpts from the following review papers that have been published 

previously:  

• Mizuno, A., Ly, M., Aizenstein, H.J. A Homeostatic Breakdown Model of Subjective 

Cognitive Decline (2018) Brain Sciences. 8(12), 228.  

• Ly, M., Andreescu, C. Advances and Barriers for Clinical Neuroimaging in Late-Life 

Mood and Anxiety Disorders (2018) Current Psychiatry Reports. 20(1): 7. 

 

My contributions to both of these review papers were literature review, interpretation of 

previous work, writing the manuscript, and revising the manuscript for publication.  
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1.1 Aging 

Due to the combination of declining fertility rates, improved survival, and increasing 

lifespan, the global population of older adults (60+) is rapidly increasing. It is estimated that by 

2030, older adults will outnumber children aged 10 years and younger. Notably, by 2050, older 

adults will outnumber individuals below 24 years of age. As such, it is becoming of increasing 

importance to mitigate the widespread impact of age-related functional decline and disease.  

1.1.1 Definitions and examples of aging 

Aging can be broadly defined as a progressive, time-dependent process in which living 

organisms accumulate cellular and molecular damage. The cumulative burden of cellular damage 

to tissues and organs may lead to compromised physiological integrity, functional impairment, and 

increased morbidity and mortality. Common examples of physiological changes that occur with 

aging include decreased cardiac output, accumulation of atherosclerotic plaque, impaired 

pulmonic gas exchange, decreased vital capacity, decreased creatinine clearance, reduction in lean 

body mass, and degenerative changes in many joints (Boss 1981). Critically, increased age has 

been demonstrated to be the primary risk factor for a wide range of diseases and disorders, such as 

but not limited to cancer, type 2 diabetes mellitus, cardiovascular diseases, coronary artery disease, 

and neurodegenerative diseases.  
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1.1.2 Theories of aging 

The prevailing theories of aging are generally split on the basis of the source of the 

accumulated cellular and molecular damage: extrinsic (stochastic) or intrinsic (developmental-

genetic) (Aalami 2003 et al.). The stochastic theories of aging primarily ascribe damage to extrinsic 

sources, such as environmental exposure to free radicals and radiation, lifestyle factors (e.g. 

excessive sunbathing, cigarette smoking), and long-term accumulation of errors (e.g. faulty 

splicing). On the other hand, developmental-genetic theories assert that cellular and molecular 

damage occur as part of a “planned obsolescence”—that physiological deterioration occurs as part 

of an intrinsic, pre-programmed, genetic process (Finch et al. 2001). It is important to note that 

these theories do not necessarily represent contradictory views, as it is likely that aging 

encompasses aspects from both extrinsic and intrinsic sources of cellular and molecular damage.  

1.1.3 The cellular and molecular hallmarks of aging 

In a seminal review paper, Lopez-Otin proposed nine potential cellular and molecular 

hallmarks of aging that were selected with the following criteria: 1) the phenomena must be 

observable during the process of non-pathological aging, 2) exacerbation of the mechanism must 

result in an accelerated aging, and 3) reversal of the process must slow down the process of aging 

(Lopez-Otin 2013). The hallmarks of aging include genomic instability, telomere attrition, 

epigenetic alterations, loss of proteostasis (protein homeostasis), deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular 

communication (Table 1). 
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Table 1: The hallmarks of aging.   

Hallmark Putative biomarker  

Genomic Instability Micronucleus assay • Examples: premature aging 

diseases (Werner syndrome, 

Bloom syndrome) 

• Exposure to exogenous 

physical, chemical, 

biological agents, UV/IR 

radiation 

• DNA replication errors, 

spontaneous hydrolytic 

reactions, reactive oxygen 

species 

• Point mutations, 

translocations, 

chromosomal gains and 

losses, telomere shortening, 

integration of viruses or 

transposons 

Telomere Attrition 

 

Telomere length • Examples: Telomerase 

deficiency associated with 

premature pulmonary 

fibrosis, dyskeratosis 

congenita, aplastic anemia 

• Most mammalian somatic 

cells lack telomerase 

Epigenetic Alterations DNA methylation 

clocks 

• Histone modifications, 

DNA methylation, 

chromatin remodeling 

Loss of Proteostasis 

 

Clusterin • Examples: Alzheimer’s 

disease, Parkinson’s 

disease, cataracts 

• Impaired chaperone-

mediated protein folding 

• Decreased proteolytic 

quality control (autophagy-

lysosomal system, 

ubiquitin-proteasome 

system) 
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Table 1 continued 

Deregulated Nutrient 

Sensing 

 

Sirtuin 1 • Converse example: dietary 

restriction increases lifespan 

• Anabolic signaling 

accelerates aging (GH, IGF-

1, PI3K, Akt, mTOR) 

Mitochondrial 

Dysfunction 

 

Growth Differentiation 

Factor 15, Apelin 

• Examples: cachexia, 

sarcopenia 

• Respiratory chain efficacy 

diminishes, leading to 

electron leakage, decreased 

ATP, increased ROS 

Cellular Senescence 

 

P16INK4A • Examples: frailty, disability 

• Accumulation of senescent 

cells increases with age 

• Senescence may be an 

adaptive response to 

minimize proliferation of 

damaged tissue; however, 

replacement in aged 

systems are limited 

Stem Cell Exhaustion 

 

Circulating osteogenic 

progenitors 

• Example: decreased 

hematopoiesis leads to 

increased anemia and 

myeloid malignancies 

• Deficient proliferation of 

stem cell and progenitor 

cells 

Altered Intercellular 

Communication 

Inflammasomes, IMM-AGE 

score 

• Inflammation deregulates 

neurohormonal signaling 

• Immunosurveillance 

declines 

• Peri- and extracellular 

environment altered 
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1.2 Brain Aging  

While age-related physiological changes may occur in all organ systems, the focus of this 

dissertation will be on the process of aging in the brain. The processes occurring in brain aging are 

consistent with the overall hallmarks of aging. Parallel cellular and molecular mechanisms include 

altered calcium ion signaling, decreased synaptogenesis and neurite outgrowth, excessive 

demyelination, inappropriate microglial activation, astrocytic hypertrophy, and decreased neural 

activity (Blalock 2003).  

1.2.1 Structural brain aging  

Aging of the brain is characterized by consistent, non-linear patterns of structural 

alterations that are detectable with conventional and advanced neuroimaging. In general, structural 

changes in the aging brain can be detected in-vivo with computed tomography (CT) and magnetic 

resonance imaging (MRI). However, MRI is more favored and more commonly utilized for the 

study of structure and function of the brain due to its low risk profile (non-ionizing, non-invasive), 

repeatability, high resolution, and broad range of available modalities for the study of different 

tissue types. Overall, structural changes that occur in the process of normal aging generally include 

decreased global cerebral volume with regional differences, decreased grey and white matter 

density, increased ventricular or cerebrospinal fluid volume, increased white matter hyperintensity 

burden, and decreased white matter tract integrity (Lockhart and DeCarli 2014). 

Decreases in grey matter density are generally thought to represent neuronal degeneration 

and synaptic density reduction (Lockhart and DeCarli 2014), while decreases in white matter 

density may represent a change in myelinated fiber size, demyelination, expansion in perivascular 



 7 

spaces (Virchow-Robin spaces), or gliosis (Meier-Ruge 1992). Alterations in grey matter and 

white matter density occur across the lifespan but with differing patterns. Grey matter volumes 

start decreasing somewhat linearly in adolescence or early adulthood and continue into late-life 

(Fotenos 2005). White matter volume increases until approximately age 40 and then declines with 

an accelerated quadratic rate (Fotenos 2005). Overall, the acceleration of whole brain volume 

reduction begins to be evident at approximately age 30 (Fotenos 2005).  

Age-related decreases in grey matter volume have been demonstrated to affect certain 

regions more than others. This seeming predilection has been traditionally ascribed to regional 

vulnerability to age-related changes or pathologies (Fjell 2014). Alternatively, it has also been 

suggested that the regions developed later during development (which also developed later in the 

context of mammalian nervous system evolution) are more susceptible to age-related changes 

(Fjell 2014). In general, grey matter volumes tend to decrease most in the frontal lobe followed by 

the temporal lobe, while volumes in the occipital and parietal lobe are largely preserved in the 

absence of other neurodegenerative causes (DeCarli 2005). Furthermore, rates of atrophy in the 

frontal lobe demonstrate a two-phase rate of change across the lifespan, with accelerated atrophy 

between age 20 and 40, a period of lower atrophy from 40-60, followed by a period of accelerated 

atrophy after age 60 (Pfefferbaum 2013). In general, the regions that are most commonly affected 

by decreased grey matter volume are the caudate nucleus, cerebellum, hippocampus, prefrontal 

cortex, orbitofrontal cortex, inferior temporal cortex, inferior parietal cortex, and the entorhinal 

cortex (Raz 2005). 

In comparison to the current literature on grey matter changes in aging, white matter 

changes are somewhat understudied in comparison. Similar to the pattern of grey matter atrophy, 

decreases in white matter integrity tend to follow the “last-in-first-out" hypothesis, in which 
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regions that myelinate later during development exhibit greater vulnerability to age-related 

changes or pathologies (Bennett and Madden 2014). The most prominent regions of age-related 

reduction of white matter integrity, as reflected by decreased fractional anisotropy (FA) and 

increased mean diffusivity (MD) on diffusion tensor imaging (DTI), are the genu of the corpus 

callosum, fornix, and the external capsule (Bennett and Madden 2014).  

Reductions in white matter integrity can be explained by the presence of white matter 

atrophy and the formation of white matter hyperintensities (Vernooij 2008). White matter 

hyperintensities (WMH) are lesions that appear bright on fluid attenuated inversion recovery 

(FLAIR) images in deep or periventricular white matter regions. WMHs are commonly detected 

in asymptomatic older adults, occurring in approximately 10% - 20% of 60-year olds to 

approximately 90% - 100% of 90-year olds (Merino 2019). WMHs represent a manifestation of 

small vessel disease and result from chronic, subclinical levels of ischemia. Risk factors for WMH 

include diabetes, hypercholesterolemia, smoking, carotid artery disease, atrial fibrillation, and 

heart failure. 

1.2.2 Cognitive brain aging 

As part of the process of brain aging, healthy older adults demonstrate decline in some 

cognitive domains while maintaining normal performance in other domains. This pattern is highly 

consistent with the pattern of structural changes in aging. As compared with younger adults, older 

adults most commonly demonstrate decline in the following aspects of cognition: attention, 

executive functioning, non-verbal/visuospatial processing, processing speed, working memory, 

and episodic memory (Dumas 2015, Lockhart and DeCarli 2014). However, older adults are able 

to maintain their performance or even demonstrate improvement in cognitive abilities that rely on 
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wisdom or general knowledge (e.g. fluency, verbal ability). Cognitive ability is commonly 

assessed through neuropsychological testing, and a sample comprehensive neuropsychological 

battery can be seen in Chapter 2.  

1.3 Resilience 

1.3.1 Heterogeneity of brain aging 

Despite the fact that the major biological processes and structural changes associated brain 

aging follow consistent patterns, aging represents a highly heterogeneous process with a wide 

range of intra-individual variability. By nature of the definition of aging, there is a large variety of 

potential sources of cellular and molecular damage that different individuals accumulate over the 

period of their lifetime. The genetic diversity of the human species also provides differential 

patterns of risk and resilience in different populations. In some cases, certain individuals are able 

to retain their cognitive ability and brain volume despite advancing into their eighth decade 

(Wilson 1999, DeCarli 2005b).  

The wide range of heterogeneity in aging leads us to the necessary discussion of 

nomenclature in aging (i.e. the differentiation between healthy and normal aging). Normal brain 

aging is characterized by typical patterns of age-related decline in structure and function in the 

absence of clinically significant impairment (or neurodegeneration attributable to other causes). 

On the other hand, healthy brain aging represents the more uncommon pathway characterized by 

preserved structure and function in light of advanced age (Lockhart and DeCarli 2014). It is 

presumed that the individuals who experience healthy brain aging have certain characteristics that 
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render them resilience to the ravages of time. In the following section, we will discuss the 

prevailing theories of cognitive and brain reserve that contribute to resilience in the context of 

brain aging.  

1.3.2 Reserve 

Cognitive reserve represents the ability of an individual to resist functional impairment in 

light of brain injury (Stern 2009, Stern 2012, Stern 2018). This theory suggests that those with 

higher cognitive reserve may better cope with brain damage through presence of higher premorbid 

cognitive abilities and more efficient recruitment of compensatory processes. Traditionally, these 

compensatory processes have been elicited through task-based functional MRI (fMRI), as 

discussed below.  

Cognitive reserve is commonly estimated by proxy measures, such as levels of education, 

occupational attainment, occupational complexity, lifetime socioeconomic status, bilingualism, or 

lifetime scholarly leisure activities. These proxies have been demonstrated to be associated with 

higher cognitive performance and/or delayed onset to Alzheimer’s disease as compared with age-

matched controls (Stern 1994, Scarmeas 2001, Amieva 2014, Wang 2017, Vermuri 2011, Soldan 

2015).  

Due to its complex nature, it is difficult to capture all aspects of cognitive reserve. It is 

critical to recognize that proxies of cognitive reserve only represent limited aspects of reserve 

itself. Most studies utilize education level and premorbid IQ to assess cognitive reserve; however, 

there are individuals with low education and high cognitive reserve (and vice versa). A significant 

limitation of many proxy measures for cognitive reserve are their subjective nature and 

susceptibility to hindsight bias. 
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Brain reserve represents the structural characteristics that allow the brain to be resilient to 

the effects of aging and pathological insult (Stern 2009, Stern 2012, Stern 2018). It is generally 

thought that with sufficient brain substrate (e.g. larger grey matter volumes, greater synaptic 

density, more elaborate network complexity), the brain is more able to preserve normal functioning 

despite the presence of factors of neurodegeneration. Theoretically, an individual with high brain 

reserve has more to lose before cognitive or functional deficits may become evident. Brain reserve 

has traditionally been estimated with different modalities of structural neuroimaging. Some 

common proxies for brain reserve include intracranial volume, grey matter volume, grey matter 

density, cortical thickness, white matter volume, and white matter integrity. 

The concepts of cognitive reserve and brain reserve can sometimes be difficult to 

disentangle due their fundamental similarities. The most common theoretical distinctions refer to 

brain reserve as the “hardware,” while cognitive reserve is represented as the “software.” Brain 

reserve has clear biological substrates, while cognitive reserve refers to how the substrate may be 

utilized differently. However, this can be further complicated by the idea that higher structural 

integrity is necessary for more efficient processes.  

Brain maintenance refers to the process of maintaining or improving brain reserve over 

time. Examples of brain maintenance include behavioral changes that improve an individual’s 

modifiable risk factors: physical exercise, change to a healthier diet, smoking cessation, adherence 

to therapeutic interventions.  

1.3.3 Compensatory mechanisms  

Functional changes in brain aging can be thought of as compensatory mechanisms 

employed by the brain to maintain cognitive performance in light of age-related structural changes. 
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The extent and efficacy of these compensatory mechanisms can provide resilience and is 

represented as the concept of cognitive reserve. Age-related functional changes can be detected 

with a wide range of imaging modalities, such as electroencephalography (EEG), 

magnetoencephalography (MEG), functional MRI (fMRI), positron emission tomography (PET), 

or optical imaging (e.g. fNIRS). 

The major themes of compensatory mechanisms in brain aging are compensatory 

hyperactivation, dedifferentiation, and posterior-anterior shift. Compensatory hyperactivation 

refers to the phenomenon where older adults demonstrate greater regional activity than younger 

adults in task-based fMRI studies while maintaining the same level of behavioral performance 

(Dumas 2015). Alternatively, dedifferentiation refers to older adults recruiting more brain regions 

than younger adults in task-based fMRI studies while maintaining the same level of behavioral 

performance (Cabeza 2002). Posterior-anterior shift refers to the tendency of older adults to 

increasingly activate anterior regions relative to posterior during task-based fMRI studies.  

1.3.4 Homeostatic model of brain maintenance 

Homeostatic regulation may serve as a potential model of brain maintenance. Homeostasis 

is the ability to maintain stability and equilibrium of a biological system. As a classical example, 

the stability of our body temperature is a consequence of homeostatic processes that coordinate 

the activity of muscles, blood vessels, and sweat glands. When a cold environment decreases body 

temperature, the hypothalamus releases a signal to the skeletal muscles, promoting shivering as a 

mechanism of thermogenesis and a signal to the blood vessels to increase resistance of blood flow 

(i.e., vasoconstriction). Both of these responses minimize heat loss, helping to maintain body 

temperature.  
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Homeostatic dysregulation in multiple systems occur in aging and may also serve as a key 

contributor to the biological mechanisms of aging (Li 2015). While the authors have provided 

evidence in the systems of lipids, immune function, oxygen transport, liver functioning, vitamin 

levels, and electrolyte levels, they suggest that homeostatic dysregulation is not limited to these 

systems and may occur in other systems in aging. Thus, compensatory hyperactivation may 

represent a homeostatic process that serves to maintain the stability of cognition in a changing 

neurobiological environment. Homeostasis in the context of cognition serves to maintain cognitive 

functioning, despite the presence of neurodegeneration.  

However, homeostatic processes can have adverse effects. For example, extreme 

vasoconstriction for an extended period of time can lead to vascular cell loss. Similarly, 

compensatory hyperactivation may lead to glutaminergic excitotoxicity, which may lead to 

neuronal death (Dodd 1994) or the production of Aβ (Palop 2007). Thus, although homeostasis 

can slow the onset of cognitive decline, this may come at the cost of negative side effects that 

weaken the core cognitive infrastructure.  

1.4 Neuropsychiatric Disorders 

While common in older age, certain neuropsychiatric disorders, such as late-life mood and 

anxiety disorders and Alzheimer’s disease, do not represent the normal process of aging. Those 

who become the oldest-old are not necessarily destined to experience these disorders. Instead, 

these age-related neuropsychiatric disorders may reflect different pathological branches in aging.  
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1.4.1 Late-life depression 

Late-life depression (LLD) is a leading contributor to psychiatric and medical morbidity 

and mortality in older adults (Valiengo 2016). Often treatment resistant and recurrent (Lenze 

2000), LLD results in highly prevalent cognitive impairment (~50%) that is persistent even after 

remission of depressive symptoms (Bhalla 2006, Bhalla 2009). Specifically, LLD has been 

associated with a two-fold increase in risk for development of multiple types of dementia, 

including Alzheimer’s and vascular dementia (Diniz 2013, Green 2003).  

 Etiology of LLD is divided into sub-types based on the pattern and age of onset, namely 

late-onset and early-onset LLD. Late-onset refers to the first lifetime episode of depression 

occurring after the age of 65, while early-onset refers to the first lifetime episode of depression 

occurring earlier in life, with potential for longitudinally recurring episodes. The differences 

between late-onset and early-onset depression hold different implications with regards to etiology 

and pathophysiology in their respective cases (Aizenstein 2016, Taylor 2013, Riddle 2017). 

More specifically, early-onset LLD has been associated with a genetic predisposition to 

depressive episodes, as well as potential external stressors such as adverse life events. These 

patients may also have a family history of lifelong depression, and also have an increased lifetime 

cumulative of time spent in depression compared to late-onset LLD patients, and therefore are 

potentially at greater risk for pathophysiologic changes such as hippocampal atrophy and 

decreased brain reserve. 

Late-onset LLD patients on the other had may have greater vascular disease burden as 

explained by the vascular depression hypothesis, which proposes that changes in mood and 

increases in depressive symptoms may arise directly due to cerebrovascular disease leading to 

damage in relevant structural circuits and pathways (Aizenstein 2016, Taylor 2013). Other 
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pathologic processes contributing to late-onset LLD may exist as well, but generally a family 

history of lifelong depression is absent, although genetic predisposition to cerebrovascular disease 

or vascular disease in general may be present. 

1.4.2 Late-life generalized anxiety disorder 

Late-life generalized anxiety disorder (LLGAD) is a difficult disorder to fully characterize 

epidemiologically due to the diverse nature of the disorder among the wide range of experiences 

and presentations which older adults (especially adults in ethnic and racial minority groups) may 

have. However, current estimates suggest that the 1-year prevalence of LLGAD may be as high as 

11.6% for all older adults in the US (Reynolds 2015, Kessler 2005). As with LLD, patients with 

LLGAD are at significantly greater risk for poorer quality of life including increased cognitive 

decline, risk for dementia, and exacerbation of other medical comorbidities. LLGAD itself is also 

associated with increased risk for depression, and represents a significant public health burden, all 

while being significantly underdiagnosed and undertreated (Zhang 2015).  

Reasons for difficulties in identifying and treating LLGAD include camouflage of LLGAD 

symptoms as generalized physiological associations with the aging process, such as decreased 

sleep, difficulty focusing on tasks, and a sense of restlessness. Polypharmacy and medical 

comorbidities may also disguise and confound successful management of these symptoms. Other 

factors include the imprecise nature of patient descriptions of LLGAD symptoms, often resulting 

in psychological, subjective terms being used, as well as the presence of other neurocognitive 

disorders which share significant overlap with LLGAD in symptomology and have comorbidity 

rates up to 71% of all neurocognitive disorder patients (Seignourel 2008). 
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Current management for LLGAD includes a combination of pharmacologic and 

psychosocial approaches. Typical prescribed agents for LLGAD include selective serotonergic 

reuptake inhibitors as well as benzodiazepines, which are accompanied by serious risks for adverse 

events associated with a loss of motor coordination such as falls and motor vehicle accidents and 

are therefore recommended for short-term use only when possible. Psychosocial management of 

LLGAD commonly involves use of cognitive behavioral therapy, which is focused on goal-

oriented, mental thought pattern changing efforts to self-correct maladaptive behaviors in the 

patient. This may often be accompanied with adjuvant therapies including relaxation techniques. 

1.4.3 Alzheimer’s disease  

Alzheimer’s disease (AD) is the most common form of dementia, affecting approximately 

5.8 million people and is the 6th leading cause of death in the United States (Alzheimer’s 

Association 2019). Significant public investment has been made for development of research and 

patient care improvements. There are currently no therapeutic interventions available to treat or 

delay progression of AD. Multiple promising pharmaceutical agents that have reversed the effects 

of AD in animal studies have failed in human clinical trials in AD patients. These trials may have 

been unsuccessful due to the presence of irreversible damage in later stages of AD; thus, it is 

possible that therapeutic intervention applied earlier in the course of AD may be more effective in 

disease modification and/or prevention (Sperling 2011).  

Notably, the pathophysiological processes contributing to AD begin decades prior to the 

onset of clinical symptoms. The period of AD pathophysiological progression prior to cognitive 

symptom presentation is referred to as preclinical AD. Preclinical AD represents a window of 

opportunity for therapeutic intervention given the absence of irreversible damage as seen in the 
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later stages of AD. It is important to note that preclinical AD does not necessarily imply ultimate 

progression to an AD dementia diagnosis. However, should preclinical AD progress in severity, it 

is followed by early mild cognitive impairment (eMCI), late cognitive impairment (lMCI), and 

Alzheimer’s disease (AD). 

There are many reported risk factors for AD, with advanced age serving as the primary risk 

factor in late-onset AD. Conversely, early-onset AD is associated with genetic predispositions to 

AD, as represented by the mutations in amyloid precursor protein (APP), presenilin1 (PSEN1), 

and presenilin2 (PSEN2). Other risk factors for late-onset AD include presence of the 

apolipoprotein E allele, hypertension, hypercholesterolemia, physical inactivity, insulin resistance, 

obesity, poor sleep, traumatic brain injury, epilepsy, late-life depression, and late-life anxiety.  
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2.0 Demonstration of The Effect of Reserve: Late-Life Depression and Increased Risk Of 

Dementia 

This chapter is a modified version of the following manuscript that is currently in submission:  

• Ly, M., Karim, H.T., Becker, J.T., Lopez, O.L., Aizenstein, H.J., Reynolds, C.F. III., 

Zmuda, M.D., Butters, M.A. Late-life depression and increased risk of dementia: a 

longitudinal cohort study.  

 

This work was intended to support Aim 1 as a demonstration of the effect of reserve. In 

this study, our results suggest that the reduction of reserve in patients with late-life depression 

(LLD) increases their risk for developing dementia earlier than their age-matched never-depressed 

healthy controls. My contributions to this project were: analyses, interpretation of the results, and 

drafting and revising the manuscript.  

2.1 Introduction 

Late-life depression (LLD) is a leading contributor to psychiatric and medical morbidity 

and mortality in older adults (Valiengo 2016). Often treatment resistant and recurrent, LLD results 

in highly prevalent cognitive impairment (~50%) that is persistent even after remission of 

depressive symptoms (Bhalla 2006, Bhalla 2009). Specifically, LLD has been associated with a 

two-fold increase in risk for development of multiple types of dementia, including Alzheimer’s 

and vascular dementia (Diniz 2013, Green 2003). However, it is not clear whether individuals with 
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a history of LLD experience a more rapid rate of cognitive decline in light of their increased risk 

of developing dementia. Clarification of the rate of cognitive decline in LLD may provide valuable 

clinical insight into risk stratification and possible prevention of future dementia.  

The heterogeneous and multifactorial etiologies involved present a significant challenge in 

the process of predicting long-term neurocognitive and other outcomes in the course of LLD 

(Alexopoulos 2011, Morimoto 2015). Individuals with LLD present with a wide range of 

variability in neuropathological changes, brain structural abnormalities, and levels of cognitive 

functioning at baseline and following an episode of depression. It is unclear whether these 

abnormalities are related to the etiology of LLD or whether they represent the consequences of 

LLD itself. Clinical attributes, such as depression exposure (length of and number of depressive 

episodes), education level, and medical comorbidity, are also sources of wide variability. A 

potential avenue to reduce heterogeneity in LLD is through stratification of LLD into separate 

phenotypes.  

Age of onset of the first depressive episode is highly related to depression exposure and 

may represent a useful phenotypic distinction. Early-onset depression (EOD) is thought to stem 

from genetic predisposition and adverse life events, while late-onset depression (LOD) is more 

associated with the accumulation of vascular burden and other pathologic aging processes in the 

absence of family history (Aizenstein 2016, Taylor 2013). EOD patients may experience cognitive 

decline due to longer time in depression or more lifetime depressive episodes, which lead to 

hippocampal atrophy, increased allostatic load, and decreased brain reserve. In contrast, cognitive 

decline in LOD patients may result directly from vascular and neurodegenerative risk factors  

(Aizenstein 2016, Taylor 2013). If EOD and LOD represent distinct phenotypes of LLD, it is 

critical to investigate whether cognitive trajectories differ between the two groups over time.   
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Previous investigations of the long-term cognitive trajectories in LLD have largely been 

cross-sectional, while longitudinal studies often did not exceed five years in duration, thereby 

limiting their ability to delineate longer neurocognitive trajectories. Other limitations of prior 

studies include small sample sizes, limited use of highly replicable neurocognitive batteries, and 

lack of measurement and/or statistical control of baseline cognitive functioning. In addition, many 

studies did not differentiate between EOD and LOD in reporting LLD subgroups. One study did 

stratify outcomes in EOD and LOD patients using a robust longitudinal design, but obtained 

baseline neuropsychological measurements while patients were depressed, which potentially 

confounds the interpretation of cognitive performance (Riddle 2017). 

The primary purpose of this longitudinal study was to determine whether individuals with 

a history of LLD experience more rapid cognitive decline than those without a depression history. 

Participants with a history of LLD and never-depressed control (NDC) participants underwent 

annual neuropsychological assessments for up to ten years. Most assessments were made while 

LLD participants were in a state of remission. Baseline cognitive performance and rate of cognitive 

decline were compared between the LLD and NDC groups. We hypothesized that individuals with 

a history of LLD would have more cognitive impairments at baseline and exhibit a more rapid 

decline in multiple domains of cognitive performance compared with the NDC group. We also 

investigated whether dichotomization of the LLD group into EOD and LOD phenotypes revealed 

differing rates of cognitive decline.  
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2.2 Methods  

2.2.1 Participants  

Participants with LLD were recruited from the University of Pittsburgh Late-Life 

Depression Prevention and Treatment Center (N=185), while NDC (N=114) were recruited from 

the local Pittsburgh community. Recruitment occurred on a rolling basis which allowed for more 

data acquisition and longer follow-up from participants recruited in the early years of the study 

and higher retention rates. Inclusion criteria for LLD participants stipulated age 60 or older at 

baseline visit, meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

(DSM-IV) criteria for unipolar major depression, English language fluency, and visual and 

auditory acuity adequate to undergo neuropsychological assessment. Exclusion criteria included 

major unstable medical illness, diagnosis of psychiatric disorders other than unipolar major 

depression or anxiety disorders, neurologic disorders or injuries with direct effects on cognitive 

functioning, and clinical diagnosis of dementia. Control participants met the same inclusion and 

exclusion criteria, with the exception that they had no lifetime history of psychiatric disorder. 

Lifetime antidepressant exposure was reported in 93.5% (N=173) of individuals with history of 

LLD and 9.6% (N=11) of NDCs for indications other than depression. Over the duration of this 

study, approximately 70% of the LLD group and approximately 10% of the NDC group were 

taking antidepressant medication. LLD participants were further categorized into early-onset 

(EOD, N=85) and late-onset subgroups (LOD, N=100), with early-onset defined as having lifetime 

depressive episode at age 59 or younger and late-onset defined as first lifetime depressive episode 

at age 60 or older. All participants provided informed consent under a protocol approved by the 

University of Pittsburgh Institutional Review Board.  
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2.2.2 Procedures 

At baseline and annual follow-up visits, participants were assessed for depressive 

symptoms (17-item Hamilton Depression Rating Scale, HDRS-17), medical comorbidity 

(Cumulative Illness Rating Scale for Geriatrics, CIRSG), and cardiovascular risk factor status (risk 

factors derived from Probability of Stroke Risk Profile from the Framingham Study). In order to 

ensure that cognitive assessments occurred during a period of reduced depressive symptoms, we 

aimed to test only participants whose HDRS-17 score was ≤ 10 for neuropsychological testing. 

Participants with HDRS-17 score > 10 were referred to treatment, with study visits postponed until 

symptomatic improvement had occurred (postponed by up to 3 months as needed). However, some 

individuals did not remit at one or more visits but were still assessed. Approximately 21% of visits 

[376 out of 1774 total visits across all participants] had a participant with a HDRS-17 score greater 

than 7 (criteria for remission). Amongst those visits, participants had on average 2.3 (SD 1.5) visits 

with a HDRS-17 greater than 7.  

The neuropsychological battery utilized in this study has been well-validated in assessing 

cognitive function across multiple domains in older adults, as detailed in our prior work (Butters 

2004). The raw scores of each neuropsychological test were converted to standard scores using the 

distribution of the comparison group. Composite scores for each cognitive domain 

(Attention/Processing Speed, Visuospatial Ability, Verbal Ability, Executive Functioning, and 

Delayed Memory) were then calculated by averaging the standard scores across tests in Table 2. 

Selection of cognitive domains was guided by factor analysis, conceptual groupings, and 

Cronbach’s alphas. The Cronbach’s standardized alpha values ranged from 0.55-0.75. The 

cognitive diagnosis for each participant was then determined through consensus conferences 

affiliated with the University of Pittsburgh Alzheimer’s Disease Research Center. 



 23 

Table 2. Neuropsychological battery 

Domain Tests Outcome Measure 

Attention/Processing 

Speed 

Digit Symbol Number of correct symbols in 90 

seconds 

Grooved Pegboard Time in seconds to complete for both 

hands 

Trail Making A Time in seconds to completion 

Finger Tapping Average number of taps in 10 seconds 

for both hands 

Visuospatial Ability 

Block Design Score calculated from total number of 

accurate patterns and time to 

completion 

Clock Drawing Number of features drawn correctly 

Modified Rey Osterreith 

Figure 

Copy, number of features drawn 

correctly 

Simple Drawings Number correct 

Verbal Ability 

Semantic Fluency Number of appropriate words listed in 

60 seconds 

Boston Naming Number correct 

Spot the Word Total number of errors 

Letter Fluency Number of appropriate words listed in 

60 seconds 

Executive Functions 

Trail Making B Time in seconds to complete 

Executive Interview Total score 

Stroop Color Word 

Inhibition 

Number of items correct in Color-

Word condition in 45 seconds 

Wisconsin Card Sorting Percentage of errors (total, 

perseverative, and non-perseverative), 

number of categories completed 

Delayed Memory 

Logical Memory Delayed recall, number of details 

correct 

California Verbal Learning 

Test 
Delayed recall, number correct 

Modified Rey Osterreith 

Figure 

Delayed recall, number of features 

drawn correctly 

 

2.2.3 Statistical Analysis 

Prior to any analysis, we examined data distributions to assess normality and the presence 

of outliers. We calculated descriptive statistics for baseline demographics and clinical measures of 
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the NDC and LLD groups, using t-tests to test for group differences on the continuous variables 

and chi-square tests for categorical variables.  

We plotted cognitive domains over time for both groups to examine individual domain 

trajectories as well as the mean (and standard error) for each group. After reviewing the graphs, 

we chose to use 10 years of data in all analyses to maximize clinical relevance and to minimize 

bias estimates due to drop off in sample size and increased variability after 10 years. Baseline date 

and yearly visit dates determined the time variable for all analyses. We employed a mixed-models 

approach to compare domain trajectories and to test for group, time, and group by time differences. 

When fitting the model, we controlled for baseline domain score since the two groups differed at 

baseline. Baseline age, baseline medical comorbidity, education, and sex were also included in the 

model as covariates since these are known to affect cognitive function. Models first considered a 

quadratic effect to test for nonlinear trajectories. When the quadratic component was not 

significant, we moved to a linear model. Best fit model was determined by comparing Bayesian 

Information Criterion (BIC) values between models.  

Attention/processing speed, verbal ability, delayed memory, and global cognitive function 

included both linear and quadratic time as both fixed and random effects. Executive function and 

visuospatial ability included only linear time as fixed and random effects. For comparing between 

subtypes of depression (EOD vs. LOD), only delayed memory had both linear and quadratic time 

as both fixed and random effects, while other domains included only linear time as fixed and 

random effects.  
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2.3 Results 

The demographic and clinical characteristics of the study participants comparing LLD and 

NDC are displayed in table 3. The LLD group compared to NDC was older, had a greater 

percentage of female participants, and had greater medical comorbidity and vascular risk factors 

as determined by the CIRS-G and CVRF, respectively.  

The demographic and clinical characteristics of the study participants comparing LOD, 

EOD, and NDC are displayed in table 4. The LOD group was older than both EOD and NDC; 

there were more women in the EOD group compared to both the LOD and NDC groups; LOD and 

EOD groups had greater medical comorbidity (CIRS-G) than NDC; LOD group had greater 

vascular risk factors than the NDC; and LOD had lower length of follow-up than NDC and EOD.  

 

2.3.1 Comparing LLD and NDC 

At baseline, the LLD group compared to the NDC performed worse in all domains except 

for the visuospatial domain (figure 1). The LLD declined more rapidly than the NDC only in the 

verbal domain, however this difference appears to be related to a lack of a practice effect among 

LLD compared with NDC rather than actual decline – lack of a practice effect is often due to 

cognitive impairment (figure 1).  
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2.3.2 Comparing LOD, EOD, and NDC 

At baseline, the LOD group performed significantly worse than the NDC group in all 

domains. At baseline, all three groups differed (NDC > EOD > LOD) in the attention/processing 

speed and global function domains (figure 2). The LOD group declined more rapidly over time 

compared to the NDC group in verbal ability and delayed memory (figure 2).  
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Table 3. Comparison of LLD and NDC Baseline demographics/follow-up information 

 

 

*Transformation used in analyses.  Means (STD) reported in original units.**Satterwaite 

method used due to unequal variances. Values in bold are statistically significant (p<0.05) 
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Table 4. Comparison of LOD, EOD and NDC Baseline demographics/follow-up information.  
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*Transformation used in analyses.  Means (STD) reported in original units.; Values in 

bold are statistically significant (p<0.05) 
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Figure 1. Graph of cognitive trajectories comparing NDC vs. LLD. 
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There were baseline differences between LLD and NDC in all domains except visuospatial ability. LLD group 

differed over time compared to the NDC in the verbal ability only – this may be due to lack of practice effect 

rather than cognitive decline. 
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Figure 2. Graph of cognitive trajectories comparing NDC vs. LOD vs. EOD. 

Graph of cognitive trajectories comparing NDC vs. LOD vs. EOD. At baseline, the LOD group performed 

worse than NDC in all domains while all three groups differed in the attention/processing speed and global 
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function domains (NDC > EOD > LOD). The LOD group declined more rapidly than both the NDC and EOD 

groups in the verbal ability and delayed memory domains. 

2.4 Discussion 

To our knowledge, this study represents one of the first longitudinal studies to utilize a 

broad-based, comprehensive neuropsychological battery to assess cognitive decline in remitted 

late-life depression. We found that at baseline, those with a history of LLD showed cognitive 

impairment across multiple domains and further that those with LOD showed even greater 

cognitive impairment compared to EOD compared to NDC. We also found that those with LOD 

had a more rapid rate of decline in verbal ability and delayed memory compared to NDC.  

Although individuals with a history of LLD did not exhibit a steeper rate of decline 

compared to NDC, they did exhibit significantly greater baseline cognitive impairment. This 

difference could account for the increased incidence or risk of dementia and reflect mixing of EOD 

and LOD subtypes. The prevalent baseline impairment may reflect decreased brain and/or 

cognitive reserve. Brain and cognitive reserve represent protective factors, such as greater cortical 

thickness or high level of educational/occupational attainment, that provide resilience to age-

related decline and other pathological processes (Stern 2012, Stern 2018). LLD has been associated 

with numerous neuropathological abnormalities, including increased inflammation and elevated 

glucocorticoids, which contribute to cerebrovascular injury, amyloid deposition, hippocampal 

atrophy, and reduced volume in the basal ganglia and prefrontal regions (Byers 2011). These 

pathological processes contribute to greater levels of lowered brain and cognitive reserve, thus 

potentially leading those with LLD to cross the threshold of clinical dementia sooner than NDCs.  
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Stratification of LLD into separate phenotypes based on age of onset demonstrated 

different patterns of cognitive impairment and decline. Individuals with EOD, while not exhibiting 

more rapid decline over 5-10 years, did exhibit significant impairment in the attention/processing 

speed and global cognitive function at baseline. Impairment in global cognitive functioning 

provides evidence of the neurotoxicity of depression: repeated, cumulative depression exposure 

can have a significant impact on brain reserve and cognitive function (Byers 2011). In contrast, 

individuals with LOD performed worse than NDC in all domains at baseline and experienced more 

rapid decline in verbal ability and delayed memory than both NDC and EOD. The progressive 

decline in memory performance is especially salient, as it may represent the leading clinical sign 

of impending dementia. Thus, our findings are consistent with the hypothesis that LOD may 

represent a prodromal phase of dementia (Bennett 2014). This provides support to theories that 

suggest LOD may be due a result of aging-related neuropathology, e.g., amyloid, gray matter 

atrophy, and cerebrovascular disease (Aizenstein 2016, Taylor 2013).  

Our findings differ from those reported by Riddle, et al (Riddle 2017). In their study, Riddle 

and colleagues reported that individuals with LLD exhibited more cognitive impairment at 

baseline and greater subsequent decline in all cognitive domains compared with NDC, with EOD 

individuals experiencing greater decline than LOD and NDC groups. Of note, their participants 

were depressed at baseline—possibly a source of unexplained variance in subsequent measures of 

trajectory. Our neuropsychological battery was more broad-based and comprehensive, especially 

in the executive functioning and verbal domains. The Riddle et al.  participants may have 

experienced a different cognitive trajectory than our study sample, being younger (e.g. higher brain 

reserve) and more educated (e.g. higher cognitive reserve) on average than our participants. We 

suggest that the findings in our study are complementary to those of Riddle et al., rather than 
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contradictory, and may capture different perspectives reflecting differences in study samples, as 

well as in content and timing of neurocognitive assessment.  

Our study has several limitations. Although most of the neuropsychological assessments 

were performed while the LLD participants were in a state of remission, a small subset of 

participants had not achieved full remission but were still included in our analyses. Hindsight bias 

in self-reported age of first depressive episode may also limit the accuracy of stratification of LLD 

into EOD and LOD phenotypes. Incorporation of other imaging or metabolic biomarkers (e.g. 

white matter hyperintensities, cortisol levels) may allow for more optimal differentiation between 

EOD and LOD participants. Our study sample was predominantly Caucasian, and thus did not 

reflect the greater medical comorbidity and attendant effects on brain health and cognitive function 

to which African Americans are subject. Differences between groups may be due to sampling bias 

since the depressed participants were recruited from an academic research center, while some of 

the NDC were recruited from the local Pittsburgh community. Consistent with prior studies, effect 

sizes for cognitive decline were modest. While LLD and NDC showed no differences in follow-

up, the individuals with LOD (compared to EOD and NDC) had a shorter average follow-up, which 

may affect the results and is a limitation of our study. Further study with longer follow-up or with 

a lifespan approach may provide insight toward the critical stages of cognitive decline.  

In conclusion, we observed that patients with a history of LLD did not experience an 

accelerated rate of cognitive decline over 5-10 years as compared with NDC. Instead, we observed 

LLD to be associated with greater baseline cognitive impairment, providing a possible explanation 

for the association of LLD with development of dementia. Dichotomization of LLD based on age 

of depression onset yielded different cognitive trajectories over time, suggesting that EOD and 

LOD may represent different neural substrates that increase their risk for development of 
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subsequent dementia. Future studies should focus on the pathophysiological changes that may 

lower brain reserve in individuals with EOD, when cognitive differences are small, and later-life, 

when they are substantial. Furthermore, elucidation of the various neurobiological mechanisms 

that underlie cognitive impairment in EOD (e.g., allostatic load, chronic inflammation) vs. LOD 

(subclinical microvascular disease, Lewy bodies, AD pathology) could inform earlier intervention 

to reduce risk for future dementia.  
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3.0 Demonstration of The Effect of Reserve: Cognitive Reserve Effect in the Extended 

Memory Encoding Network in Subjective Cognitive Decline 

This chapter is a modified version of the following manuscript that is currently under 

review:  

• Mizuno, A., Karim, H.T., Rangarajan, A., Ly, M., Cohen, A.D., Lopresti, B.J., Mathis, 

C.A., Klunk, W.E., Aizenstein, H.J., Snitz, B.E. Cognitive reserve effect in the extended 

memory encoding network in subjective cognitive decline: a functional MRI and 

amyloid-PET study.  

 

This work was intended to support Aim 1 as a demonstration of the effect of reserve. In 

this study, we demonstrated that level of cognitive reserve altered the patterns of functional MRI 

activation during a memory-encoding task in individuals with subjective cognitive decline (SCD). 

These results support the theory that level of cognitive reserve may be a determinant of which 

neural compensatory responses to pathological processes may be employed. My contributions to 

this study were: interpretation of the results, drafting portions of the manuscript, and revising the 

manuscript.  
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3.1 Introduction 

Subjective cognitive decline (SCD) refers to self-experienced decline in cognitive capacity, 

despite objectively measured normal cognitive functioning. It has been suggested that SCD may 

represent an early transition state from normal aging to mild cognitive impairment (MCI) and 

eventually Alzheimer’s Disease (AD) (Buckley et al., 2017; Vogel et al., 2017). SCD symptoms 

are associated with amyloid-β (Aβ) deposition (Amariglio et al., 2012; Perrotin et al., 2012; Snitz 

et al., 2015b). However, the neural characteristics of SCD and the associations with the risk of 

future progression are not well understood.  

SCD is commonly characterized by subjective memory complaints or impairment (Jessen 

et al., 2014). Prior fMRI studies of SCD have largely focused on memory encoding (Erk et al., 

2011; Hayes et al., 2017; Rodda et al., 2009) and have shown SCD-associated hippocampal 

hypoactivation (Erk et al., 2011) and dorsolateral prefrontal cortex (DLPFC) hyperactivation (Erk 

et al., 2011; Rodda et al., 2009). Along with positive associations between DLPFC activation and 

task performance (Erk et al., 2011; Rodda et al., 2009), DLPFC hyperactivation may represent a 

secondary resource to compensate for hippocampal hypoactivation in SCD. Neural compensation 

is postulated to be a process by which additional neural resources are recruited in response to some 

trigger (Stern, 2012). Hyperactivation in SCD may thus occur in response to early AD 

neuropathology (e.g., Aβ) (Garcia-Ptacek et al., 2016). However, the relationship between task-

induced hyperactivation and AD neuropathology has not been directly investigated in SCD.  

To explain individual differences in resilience against risks of dementia, Stern (Stern, 2009; 

Stern, 2012) postulated the cognitive reserve theory: individuals vary in effective maintenance of 

cognitive ability in the face of neural pathology. Cognitive reserve is approximated by proxy 

measures such as education, IQ, literacy, and occupational complexity. The role of education on 
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risk for disease progression in SCD has inconsistent findings in the literature. Fewer years of 

education in SCD was associated with risk of progressing to MCI or AD in a research clinic setting 

(Reisberg et al., 2010). However, in a large population-based study (van Oijen et al., 2007), higher 

education in SCD was associated with greater risk of progression to AD, in contrast to the 

protective effect of education widely observed in other studies (see Sharp and Gatz, 2011 for a 

review).  

This study aimed to 1) characterize the neural basis of SCD symptoms using functional 

magnetic resonance imaging (fMRI) during a well-known memory-encoding task; 2) examine the 

role of Aβ using positron emission tomography (PET) to better understand brain activation in 

relation to emerging AD pathology; and 3) explore how education, a proxy for cognitive reserve, 

may moderate the relationship between brain activation and indices of AD risk (SCD symptoms 

and Aβ). We selected the associative memory encoding (face-name) task because this well- 

validated task has been extensively used to characterize (e.g., (De Vogelaere et al., 2010; Edelman 

et al., 2017; Sperling et al., 2009)) neural functional alterations in AD-related disease.  

3.2 Methods 

3.2.1 Study Design and Participants  

Data for these analyses came from 66 cognitively normal older (mean age = 73.3) 

individuals with varying SCD symptoms. Participants came from two study samples: self-referred 

patient volunteers at an academic memory clinic (n=22) and community-based volunteers for a 

neuroimaging study (n=44). Participants from the memory clinic were approached and recruited 
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after they self-referred for evaluation at the University of Pittsburgh Alzheimer Disease Research 

Center (ADRC). The inclusion criteria for memory clinic participants were: 1) age 60 and older; 

2) clinically significant subjective concern about cognitive changes; 3) normal objective cognitive 

function; and 4) fluent in English. Normal cognitive function was defined as no more than two 

scores falling one standard deviation below age-adjusted norms on a neuropsychological battery, 

and adjudication of normal cognitive function in a diagnostic consensus conference. Community-

based volunteers were recruited through advertisements, and their inclusion criteria were: 1) age 

65 and older; 2) normal objective cognitive function; and 3) fluent in English. All participants 

completed a multi-domain neuropsychological assessment and were reviewed by a diagnostic 

consensus conference that included at least two of the same investigators (authors BES and WEK) 

as the ADRC setting. Exclusion criteria for all participants were: 1) diagnosis of MCI or dementia; 

2) history of significant neurologic or major psychiatric conditions; 3) current medical condition 

or medications that may affect cognitive function; 4) current clinical depression (scored above the 

common clinical cutoff of 15 on Geriatric Depression Scale); and 5) contraindications for MRI or 

PET scans. More detailed descriptions of participants’ criteria were reported previously (Snitz et 

al., 2015a). We excluded one participant due to a poor fMRI coverage in the inferior temporal 

region, with the final sample of n=66. All participants provided written informed consent 

according to protocols approved by the University of Pittsburgh Institutional Review Board.  

3.2.2 Self-Report, Neuropsychological, and Demographic Assessments  

Three measures of self-reported SCD symptoms were used: the Memory Functioning 

Questionnaire (MFQ) (Zelinski et al., 1990); the Cognitive Failures Questionnaire (CFQ) 

(Broadbent et al., 1982); and the Subjective Cognitive Complaint Scale (SCCS) (Snitz et al., 2012). 
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Each scale was transformed into Z-scores using age-adjusted means from published studies 

(Gilewski et al., 1990; Knight et al., 2004; Snitz et al., 2015b) and standard deviations (SD) from 

current participants’ responses. After inverting the MFQ (such that higher values indicate worse 

SCD symptoms), we computed a mean of Z-scores. We defined this composite score as “SCD 

symptoms” and included it in analyses as a continuous variable indicating the SCD symptom 

severity. This continuous measure approach was used in a previous fMRI study in SCD (Hayes et 

al., 2017), and we employed the same approach here to measure brain activation during memory 

encoding associated with the degree of SCD severity.  

We employed modified Rey-Osterrieth complex figure immediate and delayed recall 

scores (Becker et al., 1987) as an index of objective memory performance to complement our 

visual memory- encoding task for the fMRI data. We transformed both scores to Z-scores using 

age-adjusted means from previously published studies (Wolk et al., 2009) and SD from current 

participants’ responses. Then, we defined an objective memory score as a mean of Z-scores. Five 

participants were missing memory test scores due to a change in the neuropsychological test 

battery; these participants were excluded from the corresponding analyses but included for the 

main fMRI analysis.  

Participants self-reported years of education. For post-hoc analysis, we created three 

groups: high school (≤12 years, n=24), some college (>12 and ≤16 years, n=24), and post college 

(>16 years, n=18). Additionally, we measured neuroticism with the NEO Five-Factor Inventory 

(FFI-3) (McCrae and Costa, 2007) and included it as a covariate to account for the influence of 

previously reported high neuroticism in SCD (Kliegel et al., 2005) (details below).  
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3.2.3 Face-Name Association fMRI Task  

We employed the “face-name” association task, which elicits paired associative memory 

encoding (De Vogelaere et al., 2010; Edelman et al., 2017; Sperling et al., 2009) (Supplemental 

Figure S1). Participants saw a face-name pair for 5 seconds and decided whether the name “fit” 

the face – there is no correct answer. Participants responded with their right/left index finger if the 

name fit or not, respectively. Participants were given the following instructions: “Try to remember 

these face-name combinations; you will be quizzed after the scan.”  

During encoding blocks, participants were presented with eight novel face-name pairs, 

while recognition blocks were identical except with familiar face-name pairs (one female and 

one male) learned during a pre-scan session. Faces were presented for 5 seconds each and a 

white plus sign was presented for 1 second after each face. Blocks lasted 48 seconds each and were 

alternated with a 25-second fixation period. Each block repeated twice (5 minutes for 1 run). 

Participants repeated the task three times (i.e., 3 runs) and saw 50 face-name pairs: two familiar 

and 48 novel pairs.  

During the post-fMRI scan test, participants saw a face with two names, one seen in the 

scanner and one new, and were asked to choose the name seen in the scanner. We assessed the 

accuracy of recognition memory as a post-scan recognition score. Two participants were missing 

this score, and for the participants that did not complete all sessions, we ensured that their post- 

scan test used only the faces they saw in the scanner.  
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3.2.4 PET Data Acquisition  

PET data were acquired on Siemens/CTI ECAT HR+ scanner. 15mCi of high specific 

activity (~2.1Ci/μmol at EOS) [11C]PiB was injected intravenously over 20sec. Transmission 

imaging was performed using rotating 
68

Ge/
68

Ga rod sources for attenuation correction. PET 

emission data was reconstructed using filtered back projection with corrections for attenuation, 

scatter, and radionuclide decay.  

3.2.5 MRI Data Acquisition  

MRI data were collected using a 3T Siemens Trio TIM scanner with a 12-channel head 

coil. The whole brain structural sequences were collected: sagittal 3D MPRAGE, axial 2D FLAIR, 

axial 3D T2-weighted sequence (see methods supplement for parameters). An axial EPI BOLD 

(blood oxygen-level dependent) sequence during the face-name association task was collected with 

echo time=32ms, repetition time=2000ms, flip angle=90 , field-of-view=128x128, 2x2x4mm 

resolution with no gap, and GRAPPA (GeneRalized Autocalibrating Partial Parallel Acquisition) 

factor 2. Due to poor coverage and placement, scans covered above the cerebellum up to the motor 

cortex.  

3.2.6 PET Data Analysis  

After inspection for interframe motion, the automated image registration (AIR) algorithm 

(parameters optimized for PET to PET registration) was applied to the dynamic [
11

C]PiB image. 

A summed PET image over the 50-70 minute post-injection interval was calculated for PET-MR 
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image co-registration using AIR after manual reorientation of MRI to AC-PC line (Woods et al., 

1993). The resulting spatial transformation was applied to the summed PiB image and interpolated 

in the MR image space. Six ROIs were separately hand-drawn on a co-registered MRI (Cohen et 

al., 2013; Rosario et al., 2011). Regional radioactivity concentrations from ROIs were transformed 

into units of standardized uptake value (SUV) using the injected dose of PIB and the participant’s 

mass. The SUV was normalized to non-specific uptake (cerebellum as reference), yielding an SUV 

ratio (SUVR) measure that compares favorably to fully quantitative measures of specific 

radiotracer retention (Lopresti et al., 2005). SUVRs were partial volume-corrected using a 

previously validated method (Price et al., 2005). We defined “Aβ deposition” as a global SUVR 

that we computed as the average of six SUVRs, resulting in a continuous variable. We also defined 

participants’ Aβ status as a categorical variable. We classified participants as Aβ positive or 

negative with a sparse k-means cluster analysis method (cutoff = 1.51 global SUVR) (Cohen et 

al., 2013). Three participants were missing PiB-PET data, and these participants were excluded 

from the corresponding.  

3.2.7 MRI Data Analysis 

3.2.7.1 Preprocessing.  

Statistical Parametric Mapping (SPM12) toolbox in MATLAB2016b (MathWorks) was 

used to preprocess MRI data. Structural sequences were co-registered to the MPRAGE, bias-

corrected, segmented into multiple tissue classes that generated a deformation field to normalize 

images to MNI (Montreal Neurological Institute) space. An automatic intracranial volume mask 

was generated using a threshold of 0.1 on gray/white/CSF (cerebrospinal fluid) followed by image 

filling and closing in MATLAB and applied to the MPRAGE to remove skull.  
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Functional data was motion-corrected, co-registered to the skull-stripped MPRAGE, 

normalized (2mm isotropic resolution), and smoothed using a Gaussian kernel with FWHM of 

8mm. We computed five summary measures of motion using ArtRepair toolbox 

(http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html).  

We computed the mean volume of the left and right hippocampus using FIRST in FSL 

(FMRIB Software Library) on the skull-stripped MPRAGE. FIRST uses a model-based approach 

to segment subcortical structures using Bayesian shape and appearance models.  

3.2.7.2 Modeling task effect.  

We modeled encoding and recognition tasks (convolved with the canonical hemodynamic 

response function; all runs input into a single model) as well as the mean of the signal and six 

motion parameters from the alignment (independently modeled for each session). The model 

included a high-pass filter (1/128Hz to account for drift, using a series of cosines) as well as an 

autoregressive filter to account for serial correlations due to aliased biorhythms/unmodeled 

activity. We computed the contrast encoding minus recognition. We then conducted a voxel-wise 

one-sample t-test on the parameter estimates in statistical non-parametric mapping toolbox 

(SnPM13). We generated a mask based on this contrast, which was used in subsequent statistical 

analyses to limit the number of statistical tests computed to only regions that were activated by the 

task.  

3.2.7.3 The main effects of indices of AD risk (SCD Symptoms, Aβ deposition).  

We tested voxel-wise associations between brain activation during memory encoding and 

both SCD symptoms and Aβ deposition separately. We used SnPM13 to conduct all voxel-wise 

statistical analyses. This toolbox uses a non-parametric permutation test to calculate p-values for 

http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
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each voxel. We controlled the voxel-wise false discovery rate (FDR) at α<0.05. As an additional 

analysis to assess the effect of task-performance, we tested the voxel-wise association between 

brain activation during memory encoding and post-scan recognition scores.  

3.2.7.4 Moderating role of education (interaction effects).  

We examined whether education moderated the relationship between brain activation 

during memory encoding and either SCD symptoms or Aβ deposition. We tested (voxel-wise) 

interactions between SCD symptoms and education (mean-centered scores) and between Aβ 

deposition and education (FDR at α<0.05 for both). To test the robustness of each interaction to 

nuisance variables (age, objective memory scores, neuroticism, sex, post-scan recognition scores, 

hippocampal volume, recruitment methods, and five in-scanner motion measures), we ran 

regression analyses (in R, https://www.r- project.org) with extracted mean activation (encoding-

recognition contrast) from significant regions with an interaction. In this analysis, participants who 

had missing data in any of these variables were excluded from the robustness testing.  

3.2.7.5 Exploratory analyses.  

By using the same extracted mean activation values, we tested the SCD symptoms by 

education interaction separately for participants classified as Aβ positive (n=27) and those 

classified as Aβ negative (n=36) to explore the effect of Aβ (and an additional 3-way interaction) 

in R.  

To further understand the role of Aβ in SCD symptoms and memory encoding, we 

computed the Pearson’s correlations to assess the association of Aβ deposition with SCD 

symptoms, objective memory, and post-scan recognition scores (and within the two recruitment 

method groups) in R.  

https://www.r-project.org/
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Table 5. SCD Study: Demographic information 

 

3.3 Results 

3.3.1 Hippocampal Activation for Memory Encoding (Task Effect)  

We observed increased activation in the bilateral hippocampus in anterior (peak coordinate: 

right [24,-10,-12], left [-22,-10,-14]) and posterior (peak coordinate: right [30,-26,-4], left [-26,-

24,-4]) during encoding compared to recognition.  
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3.3.2 No Main Effects of Indices of AD Risk (SCD Symptoms, Aβ deposition)  

We found no significant direct associations between activation and either SCD symptoms 

or Aβ deposition. There was no association between activation and post-scan recognition scores.  

3.3.3 Moderating Role of Education on Activation and SCD Symptoms  

In participants with higher education, greater SCD symptoms were associated with greater 

activation; while in participants with lower education, greater SCD symptoms were associated 

with lower activation. The moderation effect was found in the executive control network (ECN), 

salience network (SN), and subcortical regions (Figure 3 left). For the ECN, we observed 

activations in bilateral DLPFC extending to inferior frontal gyrus (IFG), left inferior parietal lobule 

(IPL) extending to angular gyrus, and dorsomedial prefrontal cortex (dmPFC). For the SN, we 

observed three core clusters of this network [bilateral insula, dorsal anterior cingulate cortex 

(dACC)]. Subcortical regions included the midbrain, vermis, ventral tegmental area 

(VTA)/Substantia nigra (SN), caudate/pallidum, thalamus, and putamen. Education did not 

moderate the association between activation and Aβ deposition.  

Figure 3 plots the associations between activation and SCD symptoms for each education 

group. The highest education group (post-college) had the highest slope, the lowest education 

group (high school only) had the most negative slope. This moderation effect (SCD symptoms by 

education) remained significant when controlling for all nuisance variables [R
2 

=0.37, 

F(15,44)=2.21 p= 0.01]. To check the normality assumption required for the linear regression, we 

ran the Shapiro-Wilk test on the regression residuals, finding them to be compatible with normality 

(W=0.98, p=0.37).  
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3.3.4 Exploratory Analysis: Further Moderating Role of Aβ Deposition  

We found that participants who were Aβ positive showed the same interaction [R
2 

=0.43, 

F(3,24)=2.24 p= 0.002] with similar slopes of association between SCD symptoms and activation 

(Figure 2). However, participants who were Aβ negative did not show a similar interaction [R
2 

=0.15, F(3,31)=0.14 p= 0.17]. The 3-way interaction with Aβ in the linear model was not 

statistically significant [R
2 
=0.37, F(7,55)=0.06 p= 0.73].  

Aβ deposition was positively associated with SCD symptoms [r(61)=0.30, p=0.02] but not 

objective memory [r(58)=0.05, p=0.74] (the same results per recruitment method group; 

Supplemental Result 1). Aβ deposition did not correlate with post-scan recognition [r(60)= -0.05, 

p=0.72].  
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Figure 3. Moderating role of education on memory encoding activation and SCD symptoms. 

Left: The significant moderation effect by education on the association between SCD symptoms and brain 

activation was found in the salience network, executive control network, a set of subcortical regions 

(threshold: p < 0.05, FDR). Right: To visualize the moderation effect by education, we plotted the results by 

categorizing education levels (“High School”12, 12<“Some College”16, and 16<“Post College”). The slope 

was positive for the highest education group, and negative for the lowest education group. 
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Figure 4. Moderation effect of education, separated by amyloid status.  

Analyses for the moderation effect by education on the association between SCD symptoms and brain activation, 

separately for Aβ positive (left) and Aβ negative groups (right). The same significant interaction was found only 

among participants who were Aβ positive interaction [R2 =0.43, F(3,24)=2.24 p= 0.002] but not in Aβ negative 

participants [R2 =0.15, F(3,31)=0.14 p= 0.17]. 

3.4 Discussion 

We examined brain activation during memory encoding and its association with SCD 

symptoms and Aβ, as well as the role of education – a proxy for cognitive reserve. In participants 

with higher reserve (education), greater SCD symptoms were associated with greater activation in 

the executive control network (ECN), salience network (SN), and subcortical regions; however, in 

participants with lower reserve (education), greater SCD symptoms were associated with lower 

activation in the same regions. This interaction was observed in participants who were Aβ positive 

but not Aβ negative. Aβ was not associated with activation during memory encoding. Similar to 

previous findings (Amariglio et al., 2012; Snitz et al., 2015b), greater Aβ deposition was associated 

SCD Symptoms

Aβ	Positive	(n=27)	 Aβ	Negative	(n=34)	

SCD Symptoms
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with greater SCD symptoms but not with objective memory. These findings suggest that 

individuals with higher cognitive reserve may recruit an extended neural network in the context of 

emerging signs of AD risk (i.e., SCD symptoms and Aβ).  

3.4.1 Cognitive Reserve in Extended Neural Networks  

Previous fMRI studies using this memory-encoding task have observed engagement of 

extended networks along with hippocampus (Edelman et al., 2017; Sperling et al., 2009). While 

the hippocampus plays a central role in encoding (De Vogelaere et al., 2010), we found an 

extended neural network that may coordinate other aspects of information processing during 

encoding. The ECN is involved in attention, inhibition, and shifting (Niendam et al., 2012). The 

SN selectively transmits subjectively relevant sensory information to higher-order cognitive 

regions (Menon, 2015), facilitating flexible executive functioning. Regarding subcortical regions, 

the thalamus may belong to an extended memory system by connecting frontal cortex and 

hippocampus (Jin and Maren, 2015); basal ganglia is a core structure for reward learning (Schultz 

et al., 2000); and both SN and VTA are involved in detection of salient signals for learning (Menon, 

2015). The combinations of these regions may constitute the conflict monitoring network by 

integrating incoming sensory information and providing feedback control based on outcomes in 

order to produce successful adaptive goal-directed behaviors (2014). In SCD, the subjective 

experience of cognitive decline in daily cognitive activities may reflect higher cognitive load of 

continuously adjusting errors (i.e., conflict) between one’s prediction and outcomes (Mizuno et 

al., 2018).  
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3.4.2 Moderating Role of Education and Possible Neural Compensation  

We investigated the neural basis of SCD symptoms, focusing on the cognitive reserve 

theory to understand individual differences. Greater activation was observed among participants 

with greater SCD symptoms and higher education (Figure 1). This heightened neural recruitment 

during memory encoding may suggest a compensatory process in response to emerging 

pathological changes of brain (Erk et al., 2011; Rodda et al., 2009), manifested as SCD symptoms 

that were positively correlated with Aβ deposition in this study. It may be that lower education 

(lower cognitive reserve) is associated with lower capacity to mount a compensatory response.  

Previous SCD studies (Erk et al., 2011; Rodda et al., 2009) described increased activation 

as neural “compensation” because performance was positively associated with brain activation, 

suggesting that greater activation facilitated memory task performance. Our study did not find an 

association between task performance and activation. However, due to the cross-sectional nature 

of these studies (including this study), it is unclear whether individuals with greater SCD 

symptoms would have had better performance or higher baseline activation prior to onset of SCD 

symptoms. Thus, we cannot distinguish whether greater activation represents neural 

compensation, disrupted over–activation known as dedifferentiation (Han et al., 2009) or 

excitotoxic neuronal damage (Palop et al., 2007). Nonetheless, our study is the first to our 

knowledge to report an indirect relationship between brain activation and Aβ deposition in SCD. 

Figure 3 displays a conceptual model of variables investigated in these analyses and theorized 

directions of influence.  
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3.4.3 Limitations  

In this study, education was the sole index of cognitive reserve, which may limit the 

generalizability of our results. Education is commonly used as a proxy for cognitive reserve (Evans 

et al., 1997; Karp et al., 2004); however, other estimates of cognitive reserve (e.g., literacy (Manly 

et al., 2005), cognitively-engaging leisure activities (Stern, 2012)) should be investigated. 

Moreover, power was limited to detect a significant SCD x education x Aβ 3-way interaction. 

Furthermore, most participants in our ‘lower’ education group were high school graduates. Present 

results, therefore, should be confirmed with larger samples with a broader range of education levels 

and other measures of cognitive reserve. Finally, combining participants from two recruitment 

methods (memory clinic and community study settings) ignores any qualitative differences in 

meaning and significance of SCD symptoms between two samples (Jessen et al., 2014). Future 

studies can address the important factors underlying medical help-seeking behavior as an index of 

AD risk (Slot et al., 2018; Snitz et al., 2015a). 

3.5 Conclusions 

The current study investigated the neural basis of SCD symptom and Aβ deposition effects 

on memory encoding, observing that brain activation depended neither on SCD symptoms nor Aβ 

directly. Rather, level of education moderated the association between brain activation and SCD 

symptoms. Individuals with higher education and greater SCD symptoms displayed greater 

activation, whereas those with lower education and greater SCD symptoms displayed lower 

activation. Greater SCD symptoms may reflect a saturation of neural compensation in individuals 
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with greater cognitive reserve, while it may reflect diminishing neural resources in individuals 

with lower cognitive reserve.  
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4.0 Improving Brain Age Prediction Models: Incorporation of Amyloid Status in 

Alzheimer's Disease 

This chapter is a modified version of the following manuscript that has been published:  

Ly, M., Yu, G.Z., Muppidi, N.R., Karim, H.T., Mizuno, A., Klunk, W.E., Aizenstein, H.J. 

for the Alzheimer’s Disease Neuroimaging Initiative. Improving Brain Age Prediction Models: 

Incorporation of Amyloid Status in Alzheimer’s Disease (In press) Neurobiology of Aging.  

 

This work was intended to support Aim 2 by creating a novel proxy measure of brain 

reserve. In this study, we demonstrated that amyloid status is a critical feature of brain age 

prediction models in the context of Alzheimer’s disease. By training a brain age prediction model 

in amyloid negative individuals, we were able to demonstrate the greatest differences in brain age 

between Alzheimer’s disease diagnostic groups, especially in preclinical Alzheimer’s disease. My 

contributions to this project were: design, analyses, interpretation, and drafting and revising of the 

manuscript.    

4.1 Introduction 

Neuroimaging-based brain age prediction may serve as a promising, individualized 

biomarker of brain health (Cole and Franke, 2017) to understand the highly heterogeneous 

biological changes that occur in aging. Machine learning brain age prediction models learn the 

association between age and neuroimaging data in healthy individuals, where brain age is 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib6
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approximately equal to chronological age (CA) in healthy individuals. Once trained, the brain age 

model may be used in independent samples as a marker of brain health. If the resulting brain age 

is lower than CA, that individual may have a “younger” brain than expected and may be more 

resistant to or have accumulated less pathology. Alternatively, if predicted brain age is greater than 

CA, that individual may have an “older” brain than expected, and may have a genetic 

predisposition, or have experienced a higher cumulative exposure to brain insults. These 

individuals may have been more impacted by pathological insults because of less effective 

homeostatic mechanisms compared with their age-matched peers. Brain age prediction models 

have demonstrated the association of increased brain age with cognitive impairment, Alzheimer's 

disease (AD), traumatic brain injury, Down's syndrome, HIV, and more (Beheshti et al., 

2018, Cole et al., 2015, Cole et al., 2017, Gaser et al., 2013, Liem et al., 2017). 

Prior brain age models have been limited because of the inclusion of amyloid-positive older 

participants in the training sets. It has been demonstrated that amyloid beta (Aβ) deposition, which 

is a hallmark of AD, may occur decades prior to the clinical onset of AD (Jack et al., 2013, Sperling 

et al., 2011). However, the neurotoxic effects of amyloid may be exerted on the brain for years 

before manifestation of overt cognitive impairment (Aizenstein et al., 2008). In this period of time 

before cognitive symptoms appear, Aβ(−) and Aβ(+) individuals demonstrate subtle structural or 

functional differences, such as gray matter (Mattsson et al., 2014) and white matter atrophy (Vipin 

et al., 2019), cerebral hypometabolism (Bozoki et al., 2016), disruptions in gray matter networks 

(Ten Kate et al., 2018), default mode network, and the central executive network (Lim et al., 2014). 

It is possible that brain age models not accounting for amyloid status in the training set (Aβ-

insensitive models) may not detect these very subtle differences and distinguish between 

individuals in these stages.  

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib2
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib2
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib7
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib5
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib8
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib10
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib9
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib13
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib13
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib1
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib12
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib17
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib17
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib4
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib16
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib11
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Therefore, we trained a brain age model with only cognitively normal (CN), Aβ (−) 

individuals to potentially improve the utility of brain age as a biomarker in the context of aging 

and AD. We then applied multivariable regression modeling to examine for differences between 

AD cognitive diagnostic stages, as well as amyloid status among cognitively healthy participants. 

In addition, we compared our results against brain ages obtained from a well-known but amyloid-

insensitive brain age model (Cole et al., 2015, Cole et al., 2017). We hypothesized that the 

association between brain age and CA would be moderated by the group—specifically we 

hypothesized that the Aβ(+) group would have a greater positive association between brain age 

and chronological age as compared with the Aβ(−) group indicating a more rapid aging process 

(cross-sectionally). We further hypothesized that more severe diagnostic groups (CN < early mild 

cognitive impairment [EMCI] < late mild cognitive impairment [LMCI] < AD) would have more 

rapid associations between brain and CA. 

4.2 Methods 

4.2.1 Data cohorts 

This study included a total of 1256 structural magnetic resonance imaging (MRI) scans 

from a combination of publicly available databases. All scans were acquired using standard T1-

weighted sequences.   

Databases used for this study were: [Alzheimer’s Disease Neuroimaging Initiative (ADNI); 

Information eXtraction from Images (IXI); Open Access Series of Imaging Series: Longitudinal 

Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer’s Disease 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib7
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib5
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(OASIS-3)] and data acquired at the University of Pittsburgh [“Amyloid Pathology and Cognition 

in Normal Elderly” (AG025516; PI: Klunk, Aizenstein)].  

ADNI was designed to test whether serial MRI, positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessments could be combined to 

measure the progression of mild cognitive impairment (MCI) and early AD (www.adni-info.org). 

The IXI dataset consists of nearly 600 MR images from healthy individuals across the life span 

and was collected as part of the project EPSRC GR/S21533/02 (https://brain-development.org/ixi-

dataset). OASIS-3 is a retrospective compilation of data for over 1000 participants that were 

collected across several ongoing projects through the Washington University in Saint Louis Knight 

ADRC over the course of 30 years (https://www.oasis-brains.org). 

The cohort of participants from the University of Pittsburgh were cognitively normal 

individuals between the ages of 60-85 recruited from the local community (previously described 

in Aizenstein 2008). These participants are currently followed longitudinally to assess progression 

in amyloid and tau deposition, alterations in structural and functional MRI, and cognitive 

functioning. All participants provided informed consent, with the approval of the Human Use 

Subcommittee of the Radioactive Drug Research Committees and the Institutional Review Board 

of the University of Pittsburgh. 

4.2.2 Training set 

The training set consisted of 757 images from healthy, Aβ(−) individuals from the ADNI 

(n = 92, mean age: 73.9, range: 60–85, 3T), Information eXtraction from Images (n = 264, mean 

age: 34.9, range: 20–49, 1.5 and 3T), and OASIS-3 (n = 401, mean age: 66.0, range: 42–85, 3T) 

data sets. Inclusion criteria were the age range of 20–85, normal cognitive function, and sustained 

https://brain-development.org/ixi-dataset
https://brain-development.org/ixi-dataset
https://www.oasis-brains.org/
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global amyloid negativity on positron-emission tomography (PET) over at least 3 years (only for 

participants of age 50+ years because detectable amyloid deposition is almost nonexistent in 

individuals without genetic mutations aged <50 years). The earliest corresponding T1 with 

negative amyloid status was selected for use in the training set. Participants were excluded for 

cognitive impairment, memory complaint, dementia, history of psychosis or neurologic disorders, 

and contraindications to MRI and PET imaging. 

4.2.3 Test sets 

The test sets (Table 6, 7) consisted of 491 3T T1 images from 6 groups: (1) CN and Aβ(−) 

individuals from the ADNI data set (CN-Aβ(−), n = 51); (2) CN, Aβ(−) individuals from the 

Pittsburgh community data set (CN-Aβ(−) PITT, n = 32); (3) ADNI CN, Aβ(+) individuals (CN-

Aβ(+), n = 51); (4) ADNI EMCI individuals (n = 195); (5) ADNI LMCI (n = 88); and (6) ADNI 

AD individuals (AD, n = 74). The CN-Aβ(−) group was used as an independent validation set for 

the model. All participants were between the age of 60 and 85 years. All CN-Aβ(−) individuals 

sustained Aβ-PET negativity over 3 years, whereas CN-Aβ(+) individuals demonstrated Aβ-PET 

positivity. The CN-Aβ(−) PITT cohort was included as an additional community-based 

comparison against the ADNI CN cohorts. All CN cohorts were matched by age (mean age 

matched). EMCI, LMCI, and AD groups were all Aβ(+) and are described in ADNI protocols. No 

test set participants were used in training of the model. 
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Table 6. Diagnostic test set characteristics. 

Demographic characteristics and predicted brain ages for both brain age models for cognitive stage test groups are 

shown. Demographic features were compared between groups with one-way analysis of variance or chi-square 

analysis. The EMCI group is younger than the LMCI, who are younger than the AD, who are younger than the CN 

groups. 

 

 

4.2.4 Image preprocessing 

Using the Statistical Parametric Mapping (SPM12) software package, structural images 

were segmented into tissue classes (gray, white, cerebrospinal fluid, skull, soft-tissue, and air). We 

used the nonlinear DARTEL (fast diffeomorphic registration) algorithm to register images to the 

Montreal Neurological Institute space and then generated a template per cohort, and then smoothed 

with a 4 mm smoothing kernel. 

4.2.5 Machine learning model creation and validation 

The Pattern Recognition for Neuroimaging Toolbox (Schrouff et al., 2013) was used to 

create the machine learning model. Whole brain, voxel-wise gray matter densities were mean-

centered and then were used to compute a similarity matrix kernel—in particular we used the 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib14
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simple dot product (this is an N × N matrix that estimates the distance or similarity between any 2 

participants). This matrix was used in a Gaussian Processes Regression model with the similarity 

matrix as the independent variable and chronologic age as the dependent variable with cohort (i.e., 

ADNI, Information eXtraction from Images, or OASIS-3) as a covariate. Accuracy of the machine 

learning model was assessed by running a 10-fold cross-validation on the training set. We 

permuted CA (500 permutations) to assess the significance of the model prediction. Because each 

fold may result in slightly different models, the final overall model was an average of the 10-fold 

cross-validation. This average model was then tested on a separate independent test set of CN-

Aβ(−), which served as a hold-out test set. We also assessed the validity of brain age prediction by 

comparing brain age between CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+), EMCI, LMCI, and AD 

participants. The CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+), EMCI, LMCI, and AD participants were 

not part of the training in any way. 

4.2.6 Comparison against amyloid insensitive brain age model 

We also computed brain age using a model that has been previously described, validated, 

and widely implemented in previous literature which does not account for amyloid status in its 

training (Cole et al., 2015, Cole et al., 2017). Code for the model was downloaded 

from https://github.com/james-cole/brainageR. This was used to estimate predicted brain age 

based on each participant's gray matter and white matter data. We used this brain age measure as 

an amyloid-insensitive brain age compared with our model that accounted for amyloid. 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib7
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib5
https://github.com/james-cole/brainageR
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4.2.7 Statistical analysis 

All statistical analyses were conducted in JMP Pro 14.1.0 (SAS Institute Inc, 2018). 

Multivariable regression modeling was used to determine the effects of CA, group, and CA-group 

interactions on brain age. This was performed for the AD cognitive diagnostic stages (CN, EMCI, 

LMCI, and AD), as well as CN subgroups of differing amyloid status (CN-Aβ(−), CN-Aβ(−) PITT, 

CN-Aβ(+)). Nonsignificant interactions were removed from the final model. Values of r, R2, and 

mean absolute error (MAE) were evaluated for the goodness of fit of the model. The same analyses 

were performed on the results of the amyloid-insensitive model. 

Difference between brain age and CA has been previously used to identify differences; 

however, recently it has been shown that the strength of the correlation between brain age and CA 

does not guarantee that the difference will be estimated accurately (Smith et al., 2019). 

Furthermore, the difference between brain age and CA is not orthogonal to CA—this means that 

factors correlated with age may be falsely associated with difference between brain and CA (Smith 

et al., 2019). By modeling brain age statistically with CA as a predictor, we circumvent the need 

to compute this brain age and CA difference. This also allows for quadratic associations with CA 

to be modeled (we did not do this here). 

4.2.8 Cross-validated prediction of groups using logistic classifier 

To help understand the predictive potential of these features, we trained a simple logistic 

classifier for predicting the groups (CN-β(−), CN-Aβ(+), EMCI, LMCI, and AD) using the 

following: CA alone; brain age alone; and CA and brain age. Because there are a high number of 

individuals in the EMCI group, we decided to include 30 participants from each group to help 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib15
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib15
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib15
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balance our logistic classifier (as to not overfit on EMCI). We conducted following analysis 500 

times: (1) choose a random set of 30 participants from each group; (2) train the logistic classifier 

on this training set of 150; and (3) output predictions on other individuals not in training set. We 

then computed the average prediction for each participant across the 500 repetitions. We then 

evaluated the model's performance based on area under the curve (AUC), accuracy, sensitivity, 

and specificity. Because the number of participants in the EMCI group is large, we needed a 

baseline model to help understand what performance we need to improve on. We used the ZeroR 

model, which predicts groups by choosing the most common category (i.e., each participant is 

identified as EMCI)—this is a baseline model that evaluates how good of an accuracy, sensitivity, 

and specificity we need to improve on chance prediction. We describe this model in Figure 5. We 

conducted the same predictions using the Cole model as well. 
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Figure 5. Cross-validated logistic classifier model. 

We fit a cross-validated logistic classifier model for each of the following features: chronological age alone, brain 

age alone, and both features combined to evaluate their performance in predicting group. For each feature set, we 

conducted the following analysis 500 times: 1. choose 30 participants per group randomly (to equally represent 

groups); 2. Fit simple logistic classifier; 3. Predict group on held out test set; 4. Model outputs a single probability 

per group (class) across all repetitions (except for repetitions where participant was part of training set); 5. Calculate 

average probability per group (class); and 6. Evaluate model performance metrics. Once this is done for each feature 

set, the last step is to 7. Compare the feature sets predictive capacity (i.e., identify which features are most ideally 

suited for predicting groups). 

4.3 Results 

Cognitive groups differ by sex, CA, and education. The CN-Aβ(−), CN-Aβ(−) PITT, and 

CN-Aβ(+) groups do not differ by CA but do differ by education. 
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4.3.1 Brain age model prediction: training and independent validation sets 

In our training set, our model accurately predicted brain age (r (756) = 0.94, p < 0.002; 

R2 = 0.88; and MAE = 4.9 years) (Figure 6). We also show that this model does not violate any 

assumptions (Figure 7). In the ADNI CN-Aβ(−) independent validation set, our model also 

accurately predicted brain age (r (50) = 0.64, R2 = 0.42, and MAE = 3.7 years). The model also 

accurately predicted brain age in the entire test set (r (490) = 0.60; R2 = 0.36; and MAE = 

4.65 years). The voxel-wise coefficients of the model that predict CA are shown in Figure 8. 
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Figure 6. Cross-validated brain age predictions for the training set. Plot of 10-fold cross-validated brain age 

with chronological age. 

Depiction of accurate brain age prediction in a training set of cognitively normal, Aβ(-) participants (n=757), with 

r(756) = 0.94, R2 = 0.88, and mean absolute error (MAE) = 4.9 years. Dotted black line indicates identity (brain age 

= chronological age). 
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Figure 7. Diagnostic plots for association between brain age and chronological age in the training set. 

(Top Left) Predicted values vs. standardized residuals indicate that our assumption for linearity is met, however 

there is a dip near age 50 due to the poor number of participants in that age range. (Top Right) Spread-location plot 

with predicted values vs. square root of the absolute value of the standardized residuals indicates homoscedasticity. 

(Bottom Left) Probability–probability plot (P-P plot) which indicates that our residuals are normally distributed. 
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Figure 8. Cross-validated (average) coefficients for the brain age model. 

Voxel-wise coefficients that predict chronological age. Positive values (red to yellow) indicate small to large 

positive associations with chronological age and negative values (dark blue to light blue) indicate small to large 

negative associations with chronological age. There is a supplementary file that contains voxel-wise coefficients that 

can be visualized with imaging software. 

 

4.3.2 Multivariable linear regression model between brain age and CA with group effects 

For the Aβ (−) trained model results, the diagnostic group (CN, EMCI, LMCI, and AD) 

was significantly associated with BA even after adjusting for race, sex, and education (F (3, 487) = 

62.3, p < 0.0001, Figure 9, Table 7). Pairwise post hoc group comparisons identified significant 

differences between groups: (1) the CN had a lower brain age compared with EMCI, LMCI, and 

AD; (2) EMCI had a greater association between chronological and brain age compared with 

-1 1
x103
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LMCI and AD [age by group interaction]; and (3) LMCI had a lower brain age compared with 

AD. For the Aβ(−) trained model results, CN subgroups (CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+)) 

were significantly associated with BA even after adjusting for race, sex, and education (F (2, 

131) = 3.3, p = 0.04, Figure 9, Table 7). The CN-Aβ(−) PITT had a lower brain age compared with 

CN-Aβ(+), but there were no differences between CN-Aβ(−) and CN-Aβ(+) (Figure 9). 

For the Aβ-insensitive model results, the diagnostic group (CN, EMCI, LMCI, and AD) 

was also significantly associated with BA (F (3, 487) = 6.9, p < 0.0001, Figure 9). However, post 

hoc group comparisons showed that EMCI had greater brain age compared with CN, LMCI, and 

AD. Although there were significant differences between CN and EMCI, incremental differences 

between stages did not follow AD progression (CN to EMCI to LMCI to AD). In addition, there 

were no significant differences between CN subgroups (F (2, 131) = 0.4, p = 0.68). 
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Figure 9. Multivariable linear regression for brain age models show benefits of Aβ(-) training. 

Plots for the test group regression lines of brain age over chronological age for both the Aβ insensitive and Aβ(-) 

trained models are shown for AD diagnostic groups (top) and amyloid status in the CN group (bottom). An identity 

line is also provided (dotted black). The Aβ(-) trained model shows incremental differences between diagnostic 

groups and CN subgroups following AD progression while the Aβ insensitive model does not. 
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Table 7. Aβ(-) trained brain ages show significant differences between AD diagnostic groups and amyloid 

status in CN participants. 

Results of the multivariable linear regression analysis of the Aβ(-) trained model are shown for cognitive diagnostic 

groups and amyloid status as a sub-analysis of the CN group. The reference test group was CN for comparison 

between diagnostic groups and CN-Aβ(-) PITT for CN subgroups. (CA = chronological age) 

 

4.3.3 Cross-validated simple logistic classifier 

The baseline model (ZeroR), which predicts groups by choosing the most common 

category, had an accuracy of 42%, sensitivity of 21%, and specificity of 80%. We found that CA 

alone has an accuracy of 32%, sensitivity of 24%, and specificity of 82% with an AUC of 0.61. 

We found that brain age alone improves on this with an accuracy of 41%, sensitivity of 34%, and 

specificity of 84% with an AUC of 0.66. Finally, those 2 features together had an accuracy of 42%, 

sensitivity of 42%, and specificity of 85% with an AUC of 0.71. We have plotted receiver-

operating characteristic curves in (Figure 10). Using brain age from the Cole model, we found an 

accuracy of 17%, sensitivity of 19%, and specificity of 80% with an AUC of 0.56. Using brain age 
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from the Cole model combined with CA, we found an accuracy of 32%, sensitivity of 22%, and 

specificity of 82% with an AUC of 0.62. 

 

Figure 10. ROC curve. 

ROC curves for the three logistic models fit: (Top Left) Chronological Age alone as a feature; (Top Right) Brain 

Age Alone as a feature; and (Bottom Left) Both Chronological and Brain Age as features. The dotted black line 

indicates uninformative classifiers. There are as many ROC curves as there are comparisons between groups (i.e., 

each curve represents a comparison between two groups). The total AUC is calculated by averaging across groups. 
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4.4 Discussion 

We trained a brain age model on individuals without significant amyloid pathology to 

improve the utility of brain age as a potential biomarker in aging and AD. Our model predicted 

brain age with similar accuracy as compared with previous brain age models (Beheshti et al., 

2018, Cole and Franke, 2017), both in cross-validation and in the independent test set. The 

resulting brain ages significantly distinguished between diagnostic stages of AD (CN, EMCI, 

LMCI, and AD). 

Although our model distinguished between all stages of AD diagnoses, later stages showed 

increasing differences in BA over CA, suggesting that later AD progression results in exacerbated 

structural changes (as supported by Jack et al., 2013, Sperling et al., 2011). 

The slope of the EMCI line was significantly higher than those of LMCI and AD, 

suggesting that in this stage specifically, BA reflects the greatest extent of structural change over 

time relative to other diagnostic stages. The other stages with similar slopes may reflect 

incrementally increased disease burden or diminished reserve rather than “accelerated aging,” 

although a longitudinal study would be needed for further interpretation. 

For the CN groups, our model was able to significantly distinguish between the CN-Aβ(−) 

PITT and CN-Aβ(+) groups, but not the CN-Aβ(−) and CN-Aβ(+) groups. This may be attributed 

to the Pittsburgh cohort being recruited from community-dwelling older adults for a normal aging 

study, whereas the ADNI cohort has been recruited from Alzheimer's Disease Research Centers 

Alzheimer A, which may include individuals with subjective cognitive decline or other factors not 

accounted for in exclusion criteria, which may warrant additional study. 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib2
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib2
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib6
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib9
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib13
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To our knowledge, our model demonstrates the greatest incremental differences in BA over 

CA between diagnostic stages of AD disease progression. In addition, it is the first to consider 

amyloid status in defining the BA prediction model. Notably, a prevailing amyloid-insensitive 

brain age model was not able to correctly order the diagnostic stage test groups or distinguish 

between any CN subgroups. Although comparisons between additional amyloid-insensitive 

models are warranted, these preliminary results show strong potential for the consideration of 

amyloid status in training of brain age models. 

In addition, our results demonstrate that there is potential clinical utility of machine-

learning brain age models in the monitoring of AD. When considering that MRI is relatively 

inexpensive and noninvasive relative to PET and is commonly obtained in cases of subjective 

cognitive concern without objective memory impairment, more developed models may offer 

benefits in tracking disease progression and informing decision making regarding PET imaging. 

Our two-feature (CA and brain age) simple logistic classifier was capable of predicting groups, 

indicating their capacity as predictive features. We noted that brain age improved classification of 

groups with CA. 

One limitation of this study is the diminished correlation coefficient in the independent 

validation set (r = 0.64, compared with r = 0.94 in the training set). The diminished value may be 

explained by the lower number of participants in the test set (51 vs. 757 in the training set) and the 

restricted age range of the test sample (60–85 years compared with 20–85 years in the training 

sample), which reduced the total variability that can be explained by the model (Bland and Altman, 

2011). We also did not evaluate longitudinal changes in cognitive function or amyloid positivity—

future longitudinal studies are needed to evaluate these associations. 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib3
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib3
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Regardless, the MAE of our independent validation set is comparable to previously 

published brain age models (Cole and Franke, 2017), which is a better indicator of model accuracy. 

Furthermore, a prior study demonstrated a similar diminished correlation coefficient and preserved 

MAE (Beheshti et al., 2018) with a similar age range. Another limitation of this study is the 

sparsity of participants between the ages of 45 and 55 years as compared with other age groups. 

This is expected, as amyloid-PET is not often acquired in those younger than 60 years. 

4.5 Conclusions 

Our Aβ(−) trained model performed superior to a contemporary Aβ-insensitive model in 

both fitting BA for CA and distinguishing between groups of different stages of AD progression. 

Overall, incorporation of amyloid status in brain age prediction models may improve model 

performance and the utility of brain age as a biomarker of aging and AD. 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib6
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S019745801930394X?via%3Dihub#bib2
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5.0 Application of Brain Age: Accelerated Brain Aging in Chronic Low Back Pain 

This chapter is a modified version of the following manuscript that is currently in 

submission:  

Yu, G.Z.*, Ly, M.*, Karim, H.T., Muppidi, N., Aizenstein, H.J., Ibinson, J.W. Accelerated 

brain aging in chronic low back pain. *co-first authors. 

 

This work was intended to support Aim 3 by applying the brain age prediction model in 

cohorts with age-related neuropsychiatric disorders. In this study, we demonstrated that with 

increasing participant age, greater differences in brain age were found between individuals with 

chronic low back pain (CLBP) and healthy participants. These results suggest that CLBP may be 

associated with a form of accelerated brain structural aging. My contributions to this study were: 

design, analyses, interpretation, drafting and revising the manuscript.  

5.1 Introduction 

Low back pain (LBP) is the leading cause of disability worldwide. Most adults are likely 

to suffer from LBP during some point in their lives, and the number of years lost to disability from 

this condition has increased by 54% since 1990 (Hartvigsen et al., 2018). LBP is highly prevalent 

and challenging to manage clinically. In most cases, the specific source of pain cannot be 

identified, resulting in classification as non-specific LBP (Buchbinder et al., 2018). In addition, 

LBP is often accompanied by and exacerbates medical comorbidities, requiring additional care for 
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poorer treatment response (Foster et al., 2018). Lastly, LBP is highly persistent, with 

approximately two-thirds of patients still reporting pain after twelve months (Meucci et al., 2015). 

There is a mounting body of literature suggesting that chronic LBP (CLBP) may have 

detrimental effects on brain structure. These alterations in brain structure may result in symptoms 

that extend beyond nociception, leading to impairment in attention, mental flexibility, language 

skills, and emotional decision making (Buckalew et al., 2010; Ivo et al., 2013; Malfliet et al., 2017; 

Wand et al., 2011).  

Specifically, CLBP has been associated with changes in gray matter density in multiple 

regions, namely the prefrontal cortex, thalamus, brainstem, corpus callosum, and total gray matter 

volume, although the direction of these changes has been conflicting in various studies (Apkarian 

et al., 2004; Buckalew et al., 2010; Ivo et al., 2013; Kregel et al., 2015; Schmidt-Wilcke et al., 

2006). Past studies have shown that these differences in gray matter are normalized following 

treatment (Seminowicz et al., 2013; Seminowicz et al., 2011).  

We have previously developed and validated a machine-learning based approach to analyze 

global gray matter density to generate a predicted brain age (BA). BA indicates the relative 

structural discrepancy between the subject compared to age-matched healthy peers and has 

recently been shown to have significant promise as a surrogate measure of brain health and 

structural integrity (Ly et al., 2019). This measure may be more sensitive to small changes in 

anatomy and may help in the monitoring and treatment of patients.  

Previously, application of brain age prediction to general chronic pain has shown 

significant differences in predicted age discrepancies between chronic pain patients and healthy 

participants (Cruz-Almeida et al., 2019). However, whether these differences hold true specifically 

in CLBP patients is yet unexplored. Therefore, in this study we applied our brain age prediction 
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model to a cohort of CLBP patients without depression. Since it has been suggested that chronic 

pain may result in “accelerated aging” of the brain, we hypothesized that CLBP patients would 

present with higher BA for their actual chronologic age than healthy controls. In addition, we 

investigated the association between BA and factors of CLBP duration and pain severity at the 

time of imaging for CLBP group.  

5.2 Methods 

5.2.1 Study Design and Participants. 

This study included data from 63 participants, with 31 having CLBP and 32 healthy 

controls (HCs), from the Pain and Interoception Imaging Network 

(https://www.painrepository.org/repositories/). Participants with CLBP were included if they 

(state inclusion and exclusion criteria). (symptoms, other comorbidities, medications, substance 

abuse, volunteer consenting information).  

5.2.2 Data Collected.  

CLBP duration was self-assessed in years. The visual analog pain scale was used to assess 

pain on the day of the MRI scan. Depressive symptoms were self-scored using the Beck Depression 

Inventory (Beck et al., 1996). 

 

https://www.painrepository.org/repositories/
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5.2.3 MRI Data Collection.  

All scanning was conducted at the Northwestern University Feinberg School of Medicine 

by the Apkarian lab on a 3T Siemens Trio TIM research-dedicated scanner (Munich, Germany) 

with an 8-channel head coil. An axial whole brain high-resolution (1mm3 isotropic) T1-weighted 

sequence (magnetization prepared rapid gradient echo, MPRAGE) was collected (TR = 2300 ms, 

TE = 3.43 ms, TI = 900 ms, FA = 9°) with a field of view 256 × 256 with 160 slices. 

5.2.4 MR processing.  

All processing was conducted in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Structural MRI scans skull signal had been 

manually removed for de-identification. After bias correction, we conducted segmentation into 

three tissues: gray matter, white matter, and cerebrospinal fluid. We then used the nonlinear 

DARTEL (fast diffeomorphic registration) algorithm to register images to the Montreal 

Neurological Institute (MNI) space then generated a template for this cohort, and then smoothed 

with a 4 mm smoothing kernel (Ashburner, 2007). This process generates a gray matter density 

map – a factor associated with both gray matter volume and cortical thickness.  

5.2.5 Brain Age Model and Estimation.  

We have previously developed a BA estimation algorithm that estimated chronological age 

from gray matter density maps (Ly et al., 2019). Additional details regarding the model and 

databases used in the model training set may be found in the supplement. Brain age for each 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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participant in the CLBP and HC groups was calculated using our algorithm and mean-centered for 

each group. 

5.2.6 Statistical Analysis.  

All statistical analyses were conducted in JMP Pro 14.1.0 (SAS Institute Inc., 2018). 

Outliers were identified as values outside 1.5 interquartile ranges for age or having an absolute 

studentized residual of predicted brain age greater than 3.5 years. As a result, three participants in 

the CLBP group and two in the healthy controls (HC) group were not included for statistical 

modeling. To test for the effect of CLBP on the association between chronological age and 

predicted brain age, a multivariable linear regression was used. We also tested if sex moderated 

this association, as sex has been a significant distinguishing factor in the etiology, prevalence, and 

risk of disability from CLBP (DePalma et al., 2012; Dixon and Gatchel, 1999; Munce and Stewart, 

2007).  Additionally, due to possible interactions of sub-clinical depressive symptoms with CLBP, 

we tested if pain duration in years, current pain (VAS), or depressive symptoms (as characterized 

by the Beck Depression Inventory) moderated the association between chronological age and 

predicted brain age specifically within the CLBP group.  

5.3 Results 

Compared to the healthy control group, the CLBP group was not significantly different in 

participant age or sex, but had significantly greater current pain, pain duration, and depressive 

symptoms (Table 8).  
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Overall, the multivariable linear model predicted BA well (r(62) = 0.57, R2 = 0.32, RMSE 

= 3.46). Group moderated the association between chronological age and BA (corrected model – 

F(5,62) = 6.93, p < 0.001, Table 9). There was a significant interaction effect between CLBP status 

and chronological age on predicted brain age (p = 0.031, Table 9, Figure 11). Sex was not 

associated with BA and did not moderate the association between chronological and brain age.  

Within the CLBP group, none of these factors were directly associated with BA: sex, 

current pain, pain duration, and depressive symptoms (Table 10).  

 

Table 8. Demographic information and differences between experimental groups are shown. 

CLBP – Chronic low back pain; HC – healthy controls; VAS – Visual analog scale for pain; BDI – Beck Depression 

Inventory. 

 

Table 9. Statistical results for multivariable linear regression model testing the effect of group on the 

association between chronological age and predicted brain age. 

The dependent variable was brain age and the healthy control group was used as reference. 
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Table 10. Statistical results for multivariable linear regression model testing the association between the 

difference between brain and chronological ages and factors of sex, current pain, pain duration, and 

depressive symptoms for the CLBP group. 

 

 

Figure 11. Association between chronological age and predicted brain age in healthy controls (HC, blue) and 

those with chronic lower back pain (CLBP, red). 

Trendlines and 95% confidence intervals (shaded areas) are shown. 
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5.4 Discussion 

In this study we sought to apply a machine learning-based brain age prediction model to a 

CLBP cohort without depression with age and sex matched healthy controls. Given the various 

documented deleterious effects of CLBP on brain structure, we hypothesized that the CLBP group 

would have older predicted BA for a given chronological age compared to the HC group. Our 

results supported this hypothesis, as CLBP participants showed an additional 0.145 years in 

predicted brain age per chronological year of life compared to their healthy counterparts.  

Although the precise source of this difference is not known, the greater slope of the CLBP 

brain age to chronological age trendline against the HC line (and therefore a greater discrepancy 

between the two at greater ages) supports previous models regarding CLBP as a form of 

accelerated aging. Many of the changes in brain structure seen in CLBP, such as decreased gray 

matter density in the prefrontal cortex, thalamus, and brainstem, are also seen in the natural aging 

process (Apkarian et al., 2004; Ivo et al., 2013; Kregel et al., 2015). In addition, the upward 

translational shift in the CLBP relationship between brain age and chronological age likely 

indicates the greater disease burden similar to that previously seen in our application of the model 

to cognitive stages in Alzheimer’s disease (Ly et al., 2019). 

In addition, due to the greater slope of the CLBP trendline, the discrepancy in brain age 

between the two groups would theoretically be larger at greater chronological ages, although this 

was not followed longitudinally in this study. This possibly suggests that older adults with CLBP 

are at risk for the greatest brain morphometric changes given their longitudinal pain burden. As 

emphasized by previous studies, there are numerous significant differences in brain structure and 

function in older adults with CLBP compared to their healthy counterparts (Buckalew et al., 2010). 

Especially relevant to the present study is that changes in brain structure associated with late-onset 
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depression were seen even in non-depressed CLBP participants, suggesting that an absence of 

depression does not preclude the structural changes and increased vulnerability to psychiatric 

comorbidities. Previous literature has also shown that degenerative brain changes in older CLBP 

patients are distinct from younger CLBP patients, and that older adults are unable to effectively 

respond to pain due to age-related changes in areas of central pain regulation (Apkarian et al.; J. 

Karp et al.).   

We found that sex, depressive symptoms, duration of pain, and current pain were not 

significantly associated with brain age, suggesting an alternative driving factor not encompassed 

by these variables. One aspect to consider is that total duration of pain and current pain level may 

be imperfect quantifiers of a patient’s trajectory with CLBP. Not only is it possible for pain 

intensity to change over time, the duration in which a patient experiences higher levels of pain may 

also be significant factor for the activation and possible enhanced response of various pain-related 

brain regions (Flor et al.; Wand et al., 2011). Previous literature has also suggested that both normal 

and pathologic structural brain changes themselves may contribute toward a patient’s experience 

of CLBP due to impairment of descending inhibition, implicating a bi-directional relationship 

between structural brain changes and chronic pain (J. Karp et al.). All these factors suggest that 

the trajectory of CLBP and its relationship to brain changes are more complex than may be 

characterized by measurements of only duration and pain at one instance (Flor et al.).  

Additionally, while BDI scores were taken as a measure of depressive symptoms in 

participants, most scores for CLBP participants were below the clinical threshold for major 

depressive disorder (BDI = 16). Although there is an extensive relationship between CLBP and 

depression, with overlap in their underlying neurobiology and impact on brain structure, our results 

suggest that there are also significant effects of CLBP on brain structure in the absence of Major 
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Depressive Disorder (Gerhart et al.; Hung et al.; J. F. Karp et al.). However, two participants 

excluded as outliers had BDI scores of 17 and 19, with brain ages 15 and 21 years older than their 

chronological ages, respectively. A general positive trend between BDI scores in the major 

depressive disorder levels and greater brain aging in CLBP patients is suggested by the few 

participants which meet the clinical BDI threshold in the present study; however, further 

investigation of CLBP patients with major depressive disorder would be needed to draw a more 

definitive conclusion regarding brain age.  

A recent study of chronic pain and the discrepancy between predicted brain age and actual 

age has shown significant differences between chronic pain patients and healthy participants 

(Cruz-Almeida et al., 2019). While our results are overall corroboratory, there are several key 

distinctions to note, aside from this study’s specific focus on CLBP. Our present study features a 

much younger patient cohort, with mean ages of 50 years, versus the previous study’s mean age 

of 70 years. In addition, we investigated a larger HC group (n = 32) versus the previous study’s 

sample size of 14 individuals without chronic pain. However, many of the additional parameters 

investigated by the previous study, including therapeutic interventions for pain, psychological 

function, and somatosensory function, were not available in the present participant cohort, and 

therefore may further modulate the relationship between predicted brain age and chronological age 

in this study.  

The main limitations of this study are the limited sample sizes for CLBP and HC 

participants, as well as its cross-sectional nature. Conclusions regarding trends in brain age would 

be strengthened by a longitudinal analysis with multiple instances of participant imaging to 

construct trajectories with the development and treatment of CLBP. Additional measures of both 

pain intensity and duration at multiple time points would also allow for more sophisticated 
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measures of a cumulative pain burden. A limitation of the brain age model used is its holistic mode 

of analysis of overall gray matter density. In addition, the training set of the brain age model was 

not specifically screened for CLBP status in its participants. Therefore, the predicted brain age is 

not generated against a healthy control population, but rather a general, mixed population. A 

potential direction of future investigation may be to delineate the contributions of specific brain 

regions to accelerated aging. 

In this study we have demonstrated that brain age prediction using a machine-learning 

based model shows accelerated brain aging in CLBP patients. This measure may serve as a future 

clinical tool in tracking and possibly predicting a patient’s trajectory in brain changes with CLBP 

as well as an indicator for treatment response. 
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6.0 Application of Brain Age: Increased Brain Age in Non-Remitters Compared To 

Remitters Following Open-Label Treatment Of Late-Life Depression 

This chapter is a modified version of the following manuscript that is currently in 

submission:  

Yu, G.Z.*, Karim, H.T.*, Ly, M., Andreescu, C., Karp, J.F., Butters, M.A., Reynolds, C.F. 

III., Aizenstein, H.J. Increased brain age in non-remitters compared to remitters following open-

label treatment of late-life depression. *co-first authors. 

 

This work was intended to support Aim 3 by applying the brain age prediction model in 

cohorts with age-related neuropsychiatric disorders. In this study, we investigated pre- to post-

treatment changes in brain age in a cohort of participants with late-life depression (LLD) who 

received 12 weeks of open-label venlafaxine. We demonstrated that non-remitters demonstrated a 

significant increase in brain age over the intervention period while remitters showed no significant 

change in brain age over the same period. My contributions to this study were: design, analyses, 

interpretation, drafting and revising the manuscript.  

6.1 Introduction 

Late life depression is a leading source of disability in older adults, occurring in up to 38% 

of the population [1]. In addition to being highly prevalent, the clinical trajectory of LLD is often 

complicated by increased time to treatment response and higher rates of treatment resistance [2, 
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3]. This results in worsened patient outcomes and increased risk for suicide, dementia, 

exacerbations of medical comorbidities, and overall mortality [4, 5]. The biological mechanisms 

linking LLD with these health consequences have previously been attributed to chronic stress and 

inflammatory hypotheses in which high systemic levels of glucocorticoids and pro-inflammatory 

cytokines mediate neurodegenerative changes in brain structure [6-8].  

In support of these hypotheses, many cross-sectional studies have established relationships 

between changes in brain structure with LLD and its treatment response. Compared to healthy 

controls, LLD individuals have lower grey matter volumes in regions contributing to cognitive 

performance [9-11]. Furthermore, severity of grey matter volume differences in LLD patients have 

been associated with LLD symptomatic severity, decreased cognitive function, and decreased 

likelihood of LLD remission after treatment [12, 13]. However, these previous investigations have 

mostly been cross-sectional, using brain structure as a predictor rather than a longitudinal measure 

of disease progression or improvement. Few studies have examined structural brain changes over 

the course of treatment. ECT studies have reported only scarce evidence for the reverse of this 

disease-structure relationship, with increases in grey matter volume reported after 

electroconvulsive therapy [14]. However, no volumetric differences were reported between 

remitters and non-remitters following antidepressant monotherapy [14-16].  

Given that the pathophysiology of LLD as explained by the chronic stress and 

inflammatory hypotheses has been likened to accelerated aging, and that aging-associated brain 

genetic profiles have been found to contribute to LLD vulnerability, we sought to investigate the 

relationship between longitudinal structural brain changes and treatment response in LLD using 

our previously developed brain age prediction model [17-19]. 
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Our brain age prediction model contextualizes whole brain structural information of a test 

cohort against structural information from a large healthy participant cohort spanning a wide range 

of ages (20 to 85) to generate a machine learning-based prediction of the test participant’s 

chronological age. In this way, discrepancies between actual chronological age and predicted brain 

age in test groups may indicate pathological disruption or acceleration of the aging process [20]. 

Past studies have also shown that other neuropsychiatric diseases, including traumatic brain injury, 

schizophrenia, and epilepsy, have been associated with increases in brain age [21-23]. In our 

previous work, we have demonstrated the capacity of our grey matter density-based brain age 

model in distinguishing between the various cognitive stages of Alzheimer’s disease given the 

pivotal connection between structural changes and disease progression [24].  

Given the potential for brain age prediction to provide insight into the nature of structural 

changes in LLD, we aimed to investigate whether changes in brain age differed between remitters 

and non-remitters to treatment in LLD patients. We investigated pre- to post-treatment changes in 

brain age in a cohort of LLD participants (N = 46) who received open-label treatment with 

venlafaxine. Change in brain age pre- and post-treatment was compared between remitters and 

non-remitters. To our knowledge, this is one of the first studies applying the brain age metric to 

LLD following treatment and also one of the first studies to utilize longitudinal changes in brain 

age in a clinical context. We hypothesized that non-remitters may show an increase in brain age 

(pre- to post-treatment) greater than remitters. We further hypothesized that the extent of 

symptomatic persistence in non-remitters would correlate with greater increases in brain age. 
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6.2 Methods 

6.2.1 Participants and Study Design 

As part of a treatment study of LLD (NCT00892047 and NCT01124188), we collected 

neuroimaging data, which has also been described elsewhere [25, 26]. Data was collected from 

January 2012 until June 2016. Participants were included if they were 55 years and older, met 

Diagnostic and Statistical Manual of Mental Disorders IV criteria of major depression, and had a 

Montgomery-Asberg Depression Rating Scale (MADRS) of at least 15 at baseline. Participants 

were excluded if they had a history of mania or psychosis, alcohol or substance abuse within last 

3 months, or dementia or neurodegenerative disease as well as conditions that affect mood or the 

brain (e.g., stroke, vasculitis, unstable hypertension etc.). All participants gave written informed 

consent. The study was approved by the University of Pittsburgh Institutional Review Board.  

Participants underwent an open-label phase of treatment with venlafaxine XR – a 

serotonin-norepinephrine reuptake inhibitor. During this phase, we collected neuroimaging data at 

five time points: pre-treatment, after a placebo lead-in, after a single dose of venlafaxine (37.5mg), 

a week after starting venlafaxine, and post-treatment (~12 weeks). Structural MRI scans were only 

collected at pre- and post-treatment therefore we will only discuss processing of this data.  

During the first 6 weeks, participants returned for weekly/biweekly visits and dosage as 

increased up to 150mg/day per severity and tolerability. Participants who were still symptomatic 

(i.e., MADRS > 10) by week 6, the dose was increased per protocol to 300mg/day. Remission was 

defined as MADRS<10 for at least two visits during course of treatment. Participants were treated 

for 12-14 weeks but protocol guidelines allowed for a longer trial (up to 24 weeks) to clarify 

remission status.  
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We recruited a total of 63 participants into our study: 1 did not meet criteria for major 

depression, 2 had metallic implants, and 1 did not fit in the scanner. A total of 59 participants were 

treated with open-label venlafaxine XR: 2 discontinued communication and 4 discontinued 

treatment due to side effects (n=2), worsening of symptoms (n=1), or other medical conditions not 

related to treatment (n=1). To be included in our analysis, a pre- and post-treatment MRI scan was 

need, however some participants were excluded due to: claustrophobia in MR scanner after one 

scan (n=1), discomfort in MR scanner after one scan (n=1), continued treatment but refused 

follow-up imaging after second scan (n=1) or fourth scan (n=1). This resulted in a sum total of 49 

participants who completed treatment and MR scanning and who were included in our analysis.  

We also collected following data: demographic (age, sex, education, race), recurrent/single 

episode depression, and cumulative illness rating scale for geriatrics (CIRSG).  

 

6.2.2 MRI Data Acquisition 

Scanning was conducted at the University of Pittsburgh Medical Center on a 3T Siemens 

Trio TIM scanner (Munich, Germany). Structural MRI scans were collected at pre-treatment and 

post-treatment visits, while functional imaging scans (not described here) were collected at each 

visit. We collected an axial, whole brain 3D magnetization prepared rapid gradient echo 

(MPRAGE) was collected with repetition time (TR)=2300ms, echo time (TE)=3.43ms, flip angle 

(FA)=9 degrees, inversion time (TI)=900ms, field of view (FOV)=256x224, 176 slices, 1mm 

isotropic resolution and with GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 

factor=2. An axial, whole brain 2D fluid attenuated inversion recovery (FLAIR) was collected 
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with TR=9160ms, TE=90ms, FA=150 degrees, TI=2500ms, FOV=256x212, 48 slices, and 1x1x3 

mm resolution. 

6.2.3 Structural Processing 

Processing was conducted using statistical parametric mapping (SPM12 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MatLab (2016b, The MathWorks, Natick). 

Interpolation was done with 4th degree B-spline interpolation and normalized mutual information 

similarity metric was used for coregistration between different image types. The FLAIR was 

coregistered to the MPRAGE, and both were then input into a multispectral segmentation which 

bias corrects the images and segments them into gray matter, white matter, cerebrospinal fluid, 

skull, soft-tissue, and air [27]. Due to high white matter hyperintensity burden the number of 

Gaussians used to identify white matter was set to two to improve identification of gray and white 

matter [28]. The gray and white matter maps are input into a process to generate a study specific 

template for estimation of gray matter density.  

We used DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie 

Algebra) to generate study specific gray and white matter templates – we conducted a specialized 

pipeline for longitudinal data analysis [29, 30]. DARTEL uses an iterative process of averages 

templates and coregistration to improve normalization to a standard anatomical space within a 

study. We leveraged longitudinal data by first generating a gray and white matter template for each 

participant using the pre- and post-treatment MRI. Those templates are then used to generate study-

specific templates of the gray and white matter. We can then multiply the Jacobian of the 

transformations to this study-specific template space to generate a gray matter density image [29]. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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The gray matter density images were smoothed using a Gaussian kernel of full-width at half-

maximum of 6mm.  

6.2.4 Brain Age Estimation 

We have previously developed a brain age estimation algorithm for late-life populations 

[24]. Briefly this used the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) to predict 

chronological age using gray matter density and machine learning [31]. Whole brain, voxel-wise 

grey matter densities were mean-centered and used to calculate a similarity matrix kernel (dot 

product), which was input into a Gaussian Processes Regression model with the similarity matrix 

as the independent variable and chronologic age as the dependent variable. The training set (n=757 

individuals) and inclusion criteria have been described previously [24]. Our current dataset was 

not a part of the training of this model. We then used this previously validated model to estimate 

brain age per time point in the 49 participants who were included in our analysis.  

6.2.5 Statistical Analysis 

All statistical analyses were performed in JMP Pro 14.1.0 (SAS Institute Inc., 2019). Three 

outliers were identified and removed on the basis of having change in brain age or MADRS score 

greater than 1.5 interquartile range above the third quartile (for a final cohort size of N = 46). 

Paired t-tests were used to compare pre- and post-treatment brain ages for the entire cohort 

followed by remitters and non-remitters separately. Multivariable regression modeling was used 

to determine the effect of remission status on change in brain age while adjusting for chronological 

age, sex, race, education, disease burden (CIRSG), and pre-treatment depression severity 
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(MADRS). This was also performed for all LLD non-remitters to determine the effect of change 

in brain age on change in depression severity (MADRS). As an additional exploratory analysis, 

baseline brain age was regressed against baseline depression severity (MADRS), age, and their 

interaction effect. 

6.3 Results 

 

Table 11 shows demographic and clinical information for both remitters and non-remitters. 

Non-remitters had lower pre- and post-treatment brain age as compared to remitters (t(44)=2.44, 

p=0.019 and t(44)=2.19, p=0.034 respectively). There were no differences in chronological age, 

sex, race, education, depression type (recurrent/single episode), cumulative illness burden 

(CIRSG), or pre-treatment depression severity (MADRS). As expected, remitters have a lower 

post-treatment MADRS.  

We found no change between pre- and post-treatment in brain age when we looked at the 

entire sample (t(45)=1.6, p=0.123, mean difference 0.09 and standard error of difference 0.06). 

However, we found that while remitters show no change in brain age pre- to post-treatment 

(t(23)=-0.5, p=0.602, mean difference -0.04 and standard error of difference 0.08), non-remitters 

showed an increase in brain age from pre- to post-treatment (t(21)=2.9, p<0.01, mean difference 

0.23 and standard error of difference 0.08) (see figure 12). A change in 0.23 years corresponds to 

approximately 11.96 weeks, the approximate duration between pre- and post-treatment MRI scans.  

We found that the change in brain age was associated with remission status and 

chronological age, but not sex, race, education, cumulative illness burden (CIRSG), and pre-
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treatment depression severity (MADRS) (F(7, 37)=2.45, p=0.036, r2=0.32) (see table 12). 

Individuals with the lowest improvement in depression severity following treatment had the largest 

increases in brain age (see figure 13).  

In addition, there was a strong association between change in brain age and change in 

depression severity (MADRS) for non-remitters (F(6, 14)=2.51, p=0.073, r2=0.52) (see table 13). 

Non-remitted individuals with less improvement in depression severity following treatment had 

larger increases in brain age. 

There was also a strong moderating effect of baseline depression severity on the 

relationship between age and baseline brain age for all participants (F(3,42)=3.20, p=0.033). The 

interaction effect between baseline depression severity and age was trending on significance as 

shown in table 14. 

 

Table 11. Demographic and clinical differences between remitters and non-remitters. 
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Table 12. Association between change in brain age and remission status adjusting for pre-treatment 

chronological age, sex, race, education, cumulative illness burden. 

 

Table 13.Association between change in depression severity (MADRS) for non-remitters and change in brain 

age adjusting for pre-treatment chronological age, sex, race, education, and cumulative illness burden 

(CIRSG). 
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Table 14. Association between baseline brain age and participant chronological age, baseline depression 

severity (pre-MADRS), and their interaction effect. 

 

Figure 12. Change in brain age in remitters (red, square) and non-remitters (blue, triangle).  

Median and standard errors plotted as well as each individual participant’s change.  
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Figure 13. Association between change in depression severity (pre- minus post-treatment MADRS) and 

change in brain age (post- minus pre-treatment). 

Note that positive values in ∆ MADRS indicate improvement of depression severity while negative values in ∆ 

brain age indicate increased brain age from pre- to post-treatment. All participants (including remitters are 

shown). 

6.4 Discussion 

To our knowledge, this is the first study applying brain age prediction to LLD. In this study, 

brain age prediction was applied pre- and post- venlafaxine treatment in LLD patients. Our results 

showed that non-remitters demonstrated a significant increase in brain age over the intervention 

period while remitters showed no significant change in brain age over the same period. We found 

that change in brain age was significantly associated with remission status even after adjusting for 
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demographic and clinical features. For non-remitters, less improvement in depression severity 

(MADRS) was associated with larger increases in brain age.   

As previous literature has established a connection between regional grey matter atrophy 

and LLD, our results suggest that there may be subacute processes affecting brain structure on the 

same timescale as remission over the 12-week period of intervention [32-38]. The mean difference 

in brain age for non-remitters was approximately 0.23 years, or ~12 weeks older (matching the 

intervention period), while there was not a statistically significant change in remitters.  

One manner of interpretation is that LLD patients experience brain aging at the same rate 

as chronological aging, which in perspective with our previous experience with our brain age 

model, is a pathologically accelerated rate compared to the healthy population. The remitted group, 

in comparison, would have brains that have not appeared to have aged, as the intervention period 

would be too short to detect significant changes associated with normal aging.  

An alternative interpretation is that the non-remitted group experienced a rate of brain 

aging closer to normal, while the remitted group actually experienced a pause in brain aging (due 

to their brain ages having no significant change over the 12-week intervention period). This may 

be representative of a recovery respite from gray matter atrophy associated with LLD pathology 

(and in this case, normal aging as well), and therefore appear relatively younger as a result of 

remission. Current study design and data analysis does not allow us to distinguish between these 

interpretations.  

Both interpretations are suggestive of different processes in the context of LLD. 

Degenerative structural changes have been well documented and even associated with disease 

severity, with many past studies demonstrating lower gray matter volumes in LLD individuals 

compared to healthy controls, and even LLD non-remitters against remitters [32-38].  
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However, a 4-year study using serial MR imaging showed that the longitudinal increases 

in grey and white matter lesion sizes of LLD individuals did not differ significantly from the 

trajectory seen in normal aging, albeit being larger in size at baseline [39]. Whether the trajectory 

observed belonged to remitted or non-remitted individuals is unclear, however, as the authors note 

that remission status and symptomatic improvement were not followed in a controlled trial 

environment.  

Another longitudinal study which evaluated hippocampal volume at multiple time points 

after electroconvulsive therapy showed a transient increase in volume one week after treatment 

which normalized to baseline levels at 6 months post-treatment with no coevolution against 

symptomatic improvement [40]. It is also possible that our remitted group results are following a 

similar trend in which increases in gray matter volume are translated into apparently arrested brain 

aging which may not persist over a longer time course, for which a longer observation interval 

would be required to confirm. Potential mechanisms for these structural changes include increased 

neurogenesis in the dentate gyrus, increased neurotrophic factors such as brain-derived 

neurotrophic factor: BDNF), and reduction of stress/allostatic burden which in turn reduces HPA-

axis-mediated suppression of neurogenesis.  

While the association between treatment response and change in brain age seen in the linear 

modeling is expected given the increase in brain age exclusive to the non-remitted group, there 

was still a statistically significant improvement in disease severity (MADRS) for non-remitters 

(t(21) = -5.51, mean difference = -7.55, standard error of the mean difference = 1.37, p < 0.0001). 

Not only did individual non-remitters differ in the lessening of their disease severity, but there was 

a strong association between the extent of this change and the change in their individual brain age, 

suggesting that brain age may also serve as a quantitative measure of improvement. An alternative 
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interpretation is that the extent of remaining LLD pathology for those patients could be explained 

by the increase in brain age experienced by each individual. 

In all, these results suggest there is significant potential in the utility of brain age prediction 

model when applied to LLD, and that structural brain changes seen in LLD may indeed be 

contextualized by the aging process. Brain age prediction is in some ways a simplification or 

aggregate measure of overall morphometric brain changes and loses the regional specificity of 

many previous studies. However, its quantitative nature provides a longitudinal metric that may 

help consolidate morphometric brain changes that are sensitive to even a 12-week period. Our 

results also offer additional supporting evidence for potentially significant morphometric changes 

accompanying symptomatic improvement in LLD, although a longer follow-up period would help 

confirm that these changes are not transient.  

6.4.1 Limitations 

There are several limitations and areas for future improvement. In our study, the remitters 

and non-remitters were not matched for pre-treatment brain age. As mentioned earlier, 

interpretation of our results, while showing significant relative differences between remitters and 

non-remitters, lacks an absolute comparison which longitudinal brain age measurements of a 

healthy cohort would provide. Our brain age model was trained on cross-sectional measurements 

of a healthy population and shares this limitation. 

Generalizability of our results and utilization of brain age differences for prediction of 

disease remission are also limited by the small sample size of this treatment trial. Our study is an 

open-label trial and it is unclear whether these changes would be present in a randomized placebo-

controlled study. It is unclear whether this generalizes to mid-life samples or is characteristic of 
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late-life depression. Potential future improvements may also include intervention with other 

antidepressant interventions and an extended period of evaluation or follow-up imaging. Other 

factors potentially contributing to changes in disease severity and brain age not considered in this 

study may include neurocognitive testing and functional MR imaging, which have previously been 

investigated elsewhere in the current cohort [3, 25, 26, 41]. 

6.4.2 Conclusions 

This study demonstrated the potential utility of brain age prediction in resolving the 

differences in structural trajectories between remitted and non-remitted LLD individuals and 

shows a strong relationship between the extent of persisting symptomology and brain age changes 

in non-remitted individuals. This marker could help us understand the potential long-term 

consequences of extended periods of depression. Future studies should investigate whether brain 

age predicts incident depression; whether depression history (i.e., number of episodes and extent 

of symptoms) predicts greater brain age; and whether these changes indicate long-term changes 

(i.e., brain age continues to increase in non-remitters and is slowed to the rate of remitters in never-

depressed individuals). 
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7.0 Application of Brain Age: Brain Aging Associated With Greater Worry And 

Rumination In Late-Life 

This chapter is a modified version of the following manuscript that is currently in 

submission:  

Karim, H.T., Ly, M., Yu, G., Khan, F., Krafty, R., Tudorascu, D.L., Aizenstein, H.J., Gross, 

J., Andreescu, C. Brain aging associated with greater worry and rumination in late life.  

 

This work was intended to support Aim 3 by applying the brain age prediction model in 

cohorts with age-related neuropsychiatric disorders. In this study, we demonstrated that worry and 

rumination may drive accelerated aging in late-life generalized anxiety (LLGAD). My 

contributions to this study were: analyses, interpretation, and drafting and revising the manuscript.  

7.1 Introduction 

“Age is an issue of mind over matter. If you don’t mind, it doesn’t matter.” Mark Twain 

 

In the last decade, several studies have reported an independent effect of anxiety on aging. 

Clinically, anxiety and its disorders have been described as risk factors for multiple age-related 

medical conditions 1-4.  More specifically, pathologic worry in particular is associated with the 

development of coronary heart disease 3 and a higher burden of anxiety symptoms was associated 

prospectively with increased risk for incident stroke, independent of other risk factors (including 
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depression) 4. In the Nurses’ Health Study, a 4-year longitudinal study of community-dwelling 

older women (N=16,351), higher midlife anxiety was related to worse later-life overall cognition 

and verbal memory5. Chronic anxiety has been also associated with a higher beta amyloid burden6, 

as well as with a moderating effect of the impact of beta amyloid on cognitive decline 7,8. In a 2-

year observational study, older adults with mildly elevated worry symptoms performed worse on 

measures of visual learning and memory than older adults with no/minimal worry symptoms9. 

Multiple animal studies reported impaired neurogenesis in anxiety 10, and several human studies 

described brain structural changes associated with anxiety in midlife (e.g. reduced hippocampal 

volumes and reduced gray matter density in the amygdala and hippocampus11). Our previous 

reports in a geriatric anxiety sample describe structural grey matter changes such as thinning of 

the orbital frontal cortex and rostral anterior cingulate cortex in late-life Generalized Anxiety 

Disorder (GAD)12 and a potential effect of cerebrovascular burden in impairing emotion regulation 

in late-life GAD 13.  

All these studies indicate that anxiety and/or worry contribute to accelerated aging. The 

putative mechanisms enlist molecular aging markers [e.g. shorten telomere 14] and increased 

stress-response [chronic inflammatory stress, increased HPA activity and excessive autonomic 

responses 15-17]. However, research in this area is still in early stages and the pathway linking 

anxiety or worry with brain aging remains unclear.  

Most of the studies available regarding the potential effect of late-life anxiety in accelerated 

aging use heterogenous and often non-specific measures for anxiety. Anxiety and its disorders 

encompass multiple clinical constructs such as worry, rumination, somatization [ref] and it is 

highly comorbid with both depression and neuroticism [refs]. It is thus more difficult to detangle 

the specific effect of various phenotypes on accelerated aging 18. Additionally, the highly 
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heterogenous changes that occur in aging make it difficult to interpret various correlation studies 

that point toward an association between anxiety and aging.  

Brain age prediction is a machine learning method that estimates chronological age from 

brain scans. Thus, brain age may indicate a potential discrepancy between biological and 

chronological age, suggesting that pathological neuroprogression (combination of 

neurodegeneration, neurotoxicity and lowered neuroplasticity) is associated with accelerated aging 

15.  These models have been used recently to demonstrate the associated of increased brain age 

with cognitive impairment, Alzheimer’s disease, schizophrenia or traumatic brain injury (refs). In 

a previous report 19, our group has described a machine learning method for estimating brain age 

from neuroimaging scans while accounting for amyloid status. Our brain age prediction model 

contextualizes whole brain structural information of a test cohort against structural information 

from a large healthy participant cohort spanning a wide range of ages (20-85) to generate a machine 

learning-based prediction of the test participant’s chronological age. In this way, discrepancies 

between actual chronological age and predicted brain age in test groups may indicate pathological 

disruption or acceleration of the aging process. We reported that our model was able to delineate 

significant differences in the brain age relative to chronological age between cognitively normal 

individuals with and without amyloid beta deposition in the brain 19. 

In the current study, we aimed to test if any of the multiple anxiety phenotypes (worry, 

global anxiety, rumination) as well as their more frequent comorbidities (depression severity, 

neuroticism) are predictive of brain aging. Given the hypothesis regarding the role of increased 

stress response we also included the Perceived Stress Questionnaire20 in the model. Also, as our 

previous reports regarding emotion regulation deficits in late-life anxiety 13,21,22, we also included 
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in the current model the Emotion Regulation Questionnaire (ERQ), a self-report measure of two 

emotion regulation strategies (cognitive reappraisal and expressive suppression) 23.  

7.2 Methods 

7.2.1 Participants and Study Design 

We recruited participants (n=78) who were 50 years and older and were recruited in along 

the spectrum of worry, such that worry was normally distributed. We recruited individuals with 

and without anxiety (generalized anxiety disorder, panic disorder, social phobia, etc.) and/or mood 

disorders (e.g., major depressive disorder, persistent depressive disorder, or unspecified depressive 

disorder). Participants were excluded if they were: diagnosed with autism spectrum disorders, 

intellectual development disorder, or any form of psychosis or bipolar disorder. Other exclusion 

criteria were: a diagnosis of major neurocognitive disorder (e.g., dementia), a 3MS (modified mini-

mental) score < 84, a diagnosis of personality disorder, have suicide risk, use of antidepressants 

within the last five to fourteen days (participants were allowed to washout), history of drug/alcohol 

abuse within last six months, use of high doses of benzodiazepines (greater than equivalent to 2mg 

of lorazepam), uncorrected vision problems to would preclude neuropsychiatric testing, below 6th 

grade level of reading, clinical diagnosis of cerebrovascular accident or Multiple Sclerosis or 

vasculitis or significant head trauma, ferromagnetic objects in body, claustrophobia, or too large 

to fit in MR scanner.  

When appropriate, participants underwent an adequate washout on antidepressants 

determined by the primary psychiatrist on the study (CA). For fluoxetine, the washout interval was 
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6 weeks. Participants who are prescribed low dose psychotropics for pain, sleep disturbances, 

and/or medical conditions were allowed to continue them in most circumstances. The following 

common antidepressants were allowed at particular doses due to medical reasons: amitriptyline 

(50mg/day), doxepin (50mg/day), trazodone (100mg/day), and imipramine (50mg/day). 

Participants were recruited from the Pittsburgh area via Pitt+Me (website resource from the 

university), in-person recommendations, flyers around the city, and radio/television 

announcements. This study was approved by the University of Pittsburgh Institutional Review 

Board. All participants gave written informed consent prior to participating in the study.  

7.2.2 Assessments  

Along with demographic information (age, sex, race, and education), we assessed the 

following: worry (PSWQ, Penn State Worry Questionnaire), overall anxiety (HARS, Hamilton 

Anxiety Rating Scale), depression (MADRS, Montgomery-Asberg Depression Rating Scale), 

rumination subscale (RSQ, Response Style Questionnaire), neuroticism subscale (FFI, Five-Factor 

Inventory), perceived stress (PSS, Cohen’s Perceived Stress Scale), and the habitual use of 

cognitive reappraisal and suppression subscale (ERQ, Emotion Regulation Questionnaire). We 

also collected data on illness severity (CIRS-G, cumulative illness rating scale for geriatrics).  

7.2.3  MRI Data Acquisition 

MRI scans were obtained at the MR Research Center of the University of Pittsburgh using 

a 3T Siemens MAGNETOM Prisma scanner and a 32-channel head coil. A sagittal, whole-brain 

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) was collected with repetition 
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time (TR)=2400ms, echo time (TE)=2.22ms, flip angle (FA)=8deg, field of view (FOV)=320x300 

with 208 slices, 0.8mm3 isotropic resolution, 0.4mm slice gap, and GeneRalized Autocalibrating 

Partial Parallel Acquisition (GRAPPA) with acceleration factor of 2 (total time 6.63min). A 

sagittal, whole-brain T2-weighted Sampling Perfection with Application optimized Contrasts 

using different flip angle Evolution (SPACE) was also collected with TR=3200ms, TE=563ms, 

FA=120deg, FOV=320x300 with 208 slices, 0.8mm3 isotropic resolution, no slice gap, and 

GRAPPA with acceleration factor of 2 (total time 5.95min). An axial, whole-brain T2-weighted 

Fluid Attenuated Inversion Recovery (FLAIR) was also collected with TR=10,000ms, TE=91ms, 

FA=135deg, FOV=320x320 with 104 slices, 0.8mm x 0.8mm x 1.6mm resolution, no slice gap, 

and GRAPPA with acceleration factor of 2 (total time 5.95min). 

7.2.4 Structural Processing 

Processing was conducted in statistical parametric mapping toolbox (SPM12)24 in MatLab 

2018b (MathWorks, Natick, MA). All interpolation was done with a 4th degree B-spline and the 

similarity metric used for coregistration between different image types was normalized mutual 

information. The T2-SPACE and FLAIR were first independently coregistered to the MPRAGE. 

All three were input into a multispectral segmentation which bias corrects each image and 

segments them into gray matter, white matter, cerebrospinal fluid, skull, soft-tissue, and air25. Due 

to high white matter hyperintensity, we adjusted the number of Gaussians used to identify white 

matter to two to improve identification of gray and white matter26. The gray and white matter maps 

are inputs into a process to generate a study-specific template to estimate gray matter density.  

We used DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie 

Algebra) to generate study-specific templates27. DARTEL uses an iterative process of averages 
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across participants and iterative coregistration to improve normalization to a standard anatomical 

space. Once a study-specific template is generated (an iterative average across participants), each 

image is normalized and then transformed into a gray matter density image by multiplying the 

Jacobian of the transformations27. The gray matter density images were smoothed using a Gaussian 

kernel of full-width at half-maximum of 6mm. These gray matter density images are input into the 

brain age estimation model.  

7.2.5 Brain Age Estimation 

We have previously validated a brain age estimation algorithm that predicts chronological 

age with gray matter density maps19 using the Pattern Recognition for Neuroimaging Toolbox 

(PRoNTo)28. Whole brain, voxel-wise gray matter densities were mean-centered and used to 

calculate a similarity matrix kernel (dot product) that was input into a Gaussian processes 

regression to predict chronological age. The training set, which includes 757 adult MRI’s of 

individuals without any psychiatric or neurological disorder as well as Alzheimer’s pathology as 

measured by positron emission tomography, has been previously described19. The current study’s 

participants were not part of the training set. Using this pre-trained model, we can estimate the 

brain age of each participant in the current study.  

7.2.6 Statistical Analysis 

We conducted a linear regression analysis in SPSS 26 (IBM, Armonk, NY). We used brain 

age as the outcome and the following as independent predictors: chronological age, sex, education 

(years), worry (PSWQ), anxiety (HARS), depression severity (MADRS), rumination (RSQ), 
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neuroticism (FFI-Neuroticism), reappraisal (ERQ, reappraisal subscale), suppression (ERQ, 

suppression subscale), and stress (PSS). The models conducted all had variance inflation factor 

(VIF) below 5, showed normally distributed standardized residuals (based on a histogram and QQ-

plot), and did not violate the assumption of homoscedasticity.  

A total of 69 participants (88.5%) had all data available, however there were missing values 

for: HARS (2 lost questionnaires), MADRS (3 not collected, 2 lost questionnaire), RSQ (1 

participant error, 1 not collected), FFI (2 refused, 4 participant error), ERQ (1 refused, 3 participant 

error), and PSS (1 refused, 3 participant error). We conducted multiple imputations analysis29,30 

(500 imputations) to impute missing values using the Markov Chain Monte Carlo method31 and 

fully conditional specification with linear regression since our values were missing at random and 

showed no structure in the way the data were missing.  

Every variable used in the regression as well as the outcome (brain age) was used in the 

model, as this has been shown to improve the imputation and is not ‘self-fulfilling prophecy,’ but 

rather “replays the strength of associations between predictors and outcomes present in the 

complete cases, to enable valid analyses32.” All variables were constrained to their appropriate 

values (e.g., HARS ranges from 0 to 56 thus values may not be imputed outside this range). We 

report both the imputed pooled results as well as the estimates from the original model with missing 

data (n=68).  

Each variable was inspected for outliers and the following variables had some outliers: 

HARS (n=1), MADRS (n=4), RSQ (n=1), brain age (n=2), and reappraisal ERQ subscale (n=1). 

We conducted the regression with those participants removed (not shown) and found that the 

estimates did not differ from when they were included in the model.  
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7.3 Results 

We report the characteristics of the sample in table 1. Of note worry is normally distributed 

around a mean worry severity of 47.6. Racial demographics match that of the surrounding 

Pittsburgh area.  

We found that brain age was significantly associated with several factors that explained 

72% of the variance in brain age [F(11,57)=13.3, p<0.001, r2=0.72]. We found the following: (1) 

for every one chronological year participant’s brain age went up by approximately 0.57 years (~6.8 

months); (2) women were younger by ~3.4 years compared to men; and (3) for every one point 

greater on the RSQ, brain age was greater by 0.14 years (~1.7 months) (see table 2 and figure 1).  

However, after imputing values that were missing for 9 participants (see table 1), we 

reconducted our regression and found the following (pooled results): (1) for every one 

chronological year participant’s brain age went up by approximately 0.53 years (~6.4 months); (2) 

women were younger by ~4.1 years compared to men; (3) for every one point greater on the 

PSWQ, brain age was greater by 0.11 years (~1.3 months); (4) for every one point greater on the 

RSQ, brain age was greater by 0.11 years (~1.3 months); and (5) for every one point greater on 

the ERQ suppression scale, brain was lower by 0.17 years (~2.0 months). The imputed models 

explained 68 to 72% (range) of the variance in brain age across imputations (variance is not a 

pooled metric; thus, we report the range). We show associations between these factors in figure 1 

using non-imputed data.  
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Table 15. Characteristics of the LLGAD sample 

-Means and standard deviations are reported unless otherwise noted  

-Means for both the original data and imputed values (see number of missing data) are reported 
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Table 16. Regression model explaining variance in brain age using imputed data. 

-B indicate unstandardized coefficients. We also report 95% confidence intervals and indicate significant 

associations in bold. 

 

 

7.4 Discussion 

Our results indicate that worry and rumination drive the accelerated aging effect of anxiety 

in late-life. Surprisingly, there was no effect of perceived stress and the propensity to use 

suppression rather than reappraisal seems to have a protective effect on brain aging. 

Although sharing common phenomenological features (difficult to control repetitive 

thinking), worry and rumination have been usually described as two distinct symptoms, one 

(worry) usually associated with generalized anxiety and the other one (rumination) usually 

associated with depression33. Classically, rumination theories consider rumination is triggered by 

sad mood and it maintains depressive symptoms by promoting negative cognitive biases 34. 

Similarly, classic worry theoretical models such as Borkovec’s cognitive avoidance model, posit 

that worry serves a cognitive avoidance strategy that inhibits the emotional processing of highly 
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anxiogenic material 35. However, newer theories propose a transdiagnostic approach that 1) 

includes both worry and rumination under the umbrella of negative repetitive thoughts (NRT) and 

2) describe the detrimental effect of NRTs throughout multiple categorical diagnoses including 

major depression, GAD, Social Phobia, Bipolar disorder, Obsessive compulsive Disorder, Eating 

disorders and PTSD36,37. Several authors have proposed NRT as the core of anxiety-depression 

comorbidity38,39, while others emphasized the association of NRT with worse psychological, 

physical and cognitive health in older adults 40. 

Recently, NRTs have been “imported” in the aging and dementia field. Thus, in 2015, 

Marchant & Howard have advanced a model of Cognitive Debt that would involve certain 

symptoms/disorders actively depleting cognitive reserve and increase vulnerability to AD 41. Thus, 

there is building evidence that depression, anxiety, sleep disorders, neuroticism and PSTD increase 

risk for AD and the authors suggest that RNT are the process common to these factors which may 

drive the acquisition of Cognitive Debt through diverting cognitive and emotional resources to 

distressing thought processes41. The neurobiological signature of Cognitive Debt and AD might 

rely on the relationship between hippocampus, PFC and the amygdala, and the HPA stress 

response 41.  

Our results, that single out both worry and rumination as predictive of accelerated aging, 

would fit well in the overall model of NRTs as contributing to increased Cognitive Debt. These 

results also emphasize the need for preventative interventions targeting NRTs in older adults (e.g. 

mindful meditation, cognitive behavioral therapy or positive reappraisal therapy – a newer attempt 

to incorporate mindful meditation into cognitive therapy 42). 

Regarding the protective role of expressive suppression, a response-focused form of 

emotion regulation that seeks to prevent the outward expression of an already-generated emotion43, 
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several studies have indicated the positive association between expressive suppression and 

volumes of the anterior insula, dorsomedial PFC and dorsal ACC 44-47. Although there is data 

linking expressive suppression to anxious and depressive symptoms 23 as well as memory 

impairment48, we may cautiously interpret these results through the use-dependent brain plasticity 

theory 44,49 that posits a ‘use it or lose it’ approach. Thus, chronic preferential use of expressive 

suppression may maintain a higher volume in prefrontal brain regions counterbalancing thus the 

thinning effect of aging. An additional explanation involves the age group used in the current study 

– emotion regulation strategies effective in younger adults may become less effective with age50 

and although older adults report using cognitive reappraisal more than younger adults, it is possible 

that older adults may rely less on a resource-demanding strategy such as reappraisal and use 

simpler techniques such as distraction or suppression 51. 

Our study has several limitations: we do not have longitudinal data to follow-up on the 

effect of the predictive factors described above, we do not have any other biological markers of 

aging to corroborate the current results (e.g. inflammatory cytokines, cortisol levels, cerebral beta-

amyloid burden). Most participants had mild if any depressive symptoms, thus we cannot make 

inferences about the effect of clinical depression on accelerated aging. 

In conclusion, we present novel data suggesting a deleterious effect on aging of both worry 

and rumination in older adults as well as a potential protective effect of using expressive 

suppression. There results also emphasize the role of preventative interventions in reducing 

accelerated aging by targeting modifiable factors such as worry and rumination in late-life. 
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8.0 Summary and Discussion 

 

The work of this dissertation mainly involves exploring the role of brain reserve and 

cognitive reserve in neuropsychiatric pathologies and then utilizing brain age prediction as a means 

of quantifying and exploring relationships between brain reserve and pathologic progression or 

severity. Although currently we have a variety of neuropsychiatric batteries and clinical 

biomarkers for various diseases, there is still significant variation between individuals which 

cannot be explained for by existing biomarkers alone. This was demonstrated in the work involving 

LLD such that LLD patients and healthy controls did not have significant differences in the rate of 

their cognitive decline, but LLD patients had decreased baseline levels of cognitive function which 

are thought to represent the diminished brain or cognitive reserve associated with disease burden. 

This was also demonstrated in functional imaging of participants with subjective cognitive decline, 

where higher educated individuals (representing individuals with increased cognitive reserve) had 

significantly different patterns of neural activation when faced with a memory encoding task 

compared to less educated individuals, suggesting that cognitive reserve is a significant factor in 

differentiating compensatory mechanisms of neural activation in light of age-related cognitive 

decline. Both of these studies demonstrate different aspects of significance for cognitive reserve. 

 

In light of these conclusions and the overarching potential for cognitive and brain reserve 

to contribute toward clinical understanding of neuropsychiatric disease progression, we developed 

a novel model of brain age prediction through machine learning-based training on an amyloid 

negative healthy population. Not only did this novel model result in significantly improved 
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performance in delineating between different cognitive stages of AD progression compared to 

previously published models, it also provided an opportunity for more sophisticated analysis of 

pathologic contexts relevant to brain reserve.  

 

As such, we applied our brain age prediction model to settings of LLGAD, CLBP, and 

depression. In these works, we demonstrated that there is significant capacity for brain age 

prediction to quantify changes in brain reserve associated with these pathologies and various 

pathologic features. In LLGAD, we found that increased brain age (representing diminished brain 

reserve) was associated with increased worry and rumination patient characteristics, while 

suppression, a defense mechanism of LLGAD, was associated with mitigation of the effects of 

increased brain age. In CLBP, we found that LBP patients had significantly increased trends of 

brain age versus chronological age compared against healthy participants, representative of 

accelerated brain aging that was independent from commonly utilized traits of CLBP such as pain 

duration and pain severity. Given the importance and implications of brain structural reserve in 

cognitive function and mood, brain age prediction offers a potential biomarker to track CLBP 

progression and increased risk for psychiatric comorbidities common to chronic pain such as 

depression. In depression we found that longitudinal measurement of brain reserve showed 

significant differences between disease remitters and non-remitters in a direct link between 

structural brain changes and successful reduction of symptomatic disease severity. As a predictive 

measure, brain age holds significant potential as a distinct measure for evaluation of antidepressant 

therapy efficacy as well as disease progression given its successful longitudinal application. 
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In all, brain age prediction remains a promising concept for the characterization and 

prediction of a wide range of pathological contexts. Brain age prediction also offers a holistic 

impression of the entire brain and its structural changes in which pre-determined regional analysis 

lacks. Given the significant variation which exists between the age-related structural changes in 

different individuals, fitting an individual’s structural imaging against a vast dataset of healthy 

individuals is a quantifiable measure which may identify key differences (as demonstrated) which 

may be missed by more localized analyses. Further refining of the model through adaptive training 

set selection and more extensive longitudinal data collection may not only improve its capacity for 

predicting disease progression and remission as well as offer additional information for clinical 

decision making. Of course, other future directions for brain age prediction studies include 

increasing sample sizes to allow for increased model complexity and power for statistical analyses 

of results. 
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