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Abstract 

Exploration of Nanoscale Electromechanical Couplings 

 

Nathaniel Charles Miller, Ph.D. 

 

University of Pittsburgh, 2020 

 

 

 

 

This dissertation explores the electromechanical properties of organic piezoelectric 

materials and the measurement systems used to determine their unique properties. The project 

focus was to gain experimental insight into previously predicted piezoelectric molecules and 

develop new methods to accurately determine the electromechanical properties of their self-

assembled monolayers.  

Using atomic force microscopy, the nanoscale properties of organic self-assembled 

monolayers were studied to compare previous computational predictions with experiment. Piezo 

force microscopy (PFM), was used to quantify the magnitude of sample deformation by an applied 

electric field across monolayers of a set of macromolecules (peptides and peptoids) to determine 

their effective piezo coefficient (deff). This resulted in small but differentiable responses been the 

peptides and peptoids. Through the study of these macromolecular monolayers, conventional PFM 

methods were found to be lacking sensitivity for these soft-flexible SAMs.  

These insights lead to the development of a new method leveraging the physics of dual AC 

resonance tracking PFM (DART-PFM) to simultaneously increase the sensitivity of the 

measurement system and reduce the sources of error. A new DC-sweep DART-PFM methodology 

allowed for the accurate determination of piezo response in soft macromolecular monolayers, plus 

several small molecule and crystalline reference materials. The method adds an additional DC field 

sweep to the classical AC field sweep DART-PFM to determine the in-situ point where the 

electrostatic component of the tip response is minimized. This new method should provide 



 v 

accurate determination of the vast library of “soft” piezoactive materials, as well as those with 

negative piezo coefficients, in which the material compresses under an applied field instead of 

expanding. 

The newly developed DC-sweep DART-PFM method was implemented to study 

piezoactive “buckybowl” organic ferroelectric materials, in which the net polarization of the film 

can be flipped with a coercive field. The deff of a corannulene derivative was determined and 

hysteresis loops were observed via scanning Kelvin probe force microscopy, suggesting 

ferroelectric behavior near room temperature. 
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1.0 Introduction 

The goal of the research here in was to establish routes to soft-flexible organic-based 

molecular monolayers with high conversion efficiencies between electrical and mechanical 

energy. The following chapter will serve as an introduction and overview of materials whose 

response to electrical and mechanical stressors are invariably coupled and form the foundation for 

this thesis.  

1.1 General Background 

1.1.1  Basics of Electromechanical Coupling 

At the nanoscale, the response of a material to outside stressors are often coupled. 

Piezoelectric materials are a class of these coupled materials in which their response to mechanical 

and electrical stressors are linked. This phenomenon has led to a wide range of applications from 

sensing, to high precision motors, and energy harvesting devices.1-6 These applications have 

divided piezoelectric materials into three classes of materials: ceramics and inorganic crystals with 

polar unit cells, synthetic or natural polymers with polar domains, and solid forms of polar organic 

molecules.2, 4, 7-10 The degree of polarization and electromechanical coupling within these materials 

determines the magnitude of their piezo activity. 
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1.1.1.1 Piezoelectricity 

Piezo activity rises from electromechanical coupling in non-centrosymmetric polar 

materials. This phenomenon arises as either a direct-piezo effect, in which an applied mechanical 

stress induces an internal strain which is released in the form of an electrical current (pC/N) or the 

converse effect, in which the developed internal strain from an applied electrical stress causes 

mechanical deformation of the material (pm/V).4, 7, 8 Therefore, the larger the mechanical or 

electrical stressor, the larger the internal strain and correlating piezo response will be.  Both effects 

should match one another, but unless otherwise indicated the piezo response of a material will be 

measured from the converse effect and reported in pm/V. Equation 1.1 highlights that 

interconversion between the two sets of units in which C is coulombs, N is the mechanical force 

in newtons, V is the electrical stress in volts, F is farads, J in joules, and m is meters. 

 

𝑝𝐶

𝑁
=

𝑝𝑉∗𝐹

𝑁
=

𝑝𝑉∗𝐽

𝑁∗𝑉2
=

𝑝𝐽

𝑁∗𝑉
=

𝑝𝑚

𝑉
                                                                                        Eq. 1.1 

 

This coupling is represented by the piezoelectric charge constant dij. Here i is the direction 

of the applied stressor and j is the direction of the resulting stress inside the material. In example 

when both the stress and developed strain are in the z-axis the piezoelectric coefficient is 

represented as d33.  

 A related metric is the piezoelectric voltage constant gij in volt meters per newton (Vm/N), 

in which i and j are derived based on the directions of the applied stress and resulting internal 

strain, is the ratio of the magnitude of the piezo response to the stress applied.7   

𝑔𝑖𝑗 =  
𝑑33

𝜀
                                                                                                                                Eq. 1.2 
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In which d33 is the piezoresponse in the z-axis to an applied stress in the z-axis over the relative 

permittivity of the material, ε. When gij is large, a higher voltage difference will be created 

compared to materials that simply have a high dij. The difference between the two coefficients 

lends a high dij materials to be better suited for actuator type applications and high gij to be best 

applied in sensing applications, such as strain indicators.1, 7  

  

 

Figure 1 Schematic of the piezoelectric effect from left to right: the direct piezoelectric effect, 

steady state, and converse piezoelectric effect; in which the arrows represent individual dipoles.7 

1.1.1.2 Classical Piezoelectric Materials 

Classical piezoelectric materials include hard ceramics and polymers, for example lead 

zirconium titanate (PZT), zinc oxide (ZnO), and polyvinylidene difluoride (PVDF). Here the 

application of mechanical stress causes strain developed through the repulsions within the aligned 

dipoles of their polar unit cells resulting in the generation of an electrical field known as the direct 

piezoelectric effect.2, 4, 7, 8 Inversely, when an electrical field driven stress is applied to these polar 

materials a mechanical deformation is generated to reduce the strain generated by the stressor, the 

indirect piezo effect.7 The magnitude of the piezoelectric response is dependent on the degree of 

alignment of the material’s dipoles and the Young’s modulus of the material.11, 12 
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1.1.1.3 Piezoelectricity in Ceramic and Crystalline Materials 

For polar and non-polar ceramic/crystalline materials to exhibit piezoelectric 

electromechanical coupling, the material’s crystalline structure must be non-centrosymmetric, 

poorly conducting, and exhibit a net polarization under an applied stress.2, 7, 8 Twenty of the thirty-

two crystal classes exhibit direct piezoelectric response to applied mechanical stressors. For most 

of these materials to exhibit piezoelectric response a net overall polar order must be induced. This 

net polarization is accomplished through a polling process; where a large directional electric field 

is applied to the material to induce and align the dipole moments of the unit cells. Once this process 

is completed the polarization of the unit cells are collectively aligned within the crystalline 

structure. This generates a net dipole moment within material.2 This process has been exhibited in 

perovskite crystalline materials such as lead zirconium titanate (PZT) and its copolymers. Zinc 

oxide (ZnO) and silicon dioxide (quartz) are examples of natural non-centrosymmetric crystalline 

materials that exhibit intrinsic piezo response without polling.2 

 

Figure 2 Illustration of lead zerconmium titanate (PZT) P4mm cryatal lattice under zero field on 

the left and example deformation under an applied electric field on the right. In which the grey 

spheres represent lead atoms, red represents the oxygen atoms, and light blue represent eirther 

zerconium or titanium.2 
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1.1.1.4 Piezoelectricity in Organic Materials 

As mentioned above, there are many organic polymers that can be poled to yield net polar 

order giving rise to piezoelectric character. There are many naturally occurring piezoactive 

materials; who’s piezo character stems from either the natural dipole of the material or inter/intra 

molecular bonding such as hydrogen bonding, examples including cellulose, collagen, 

polyvinylidene difluoride (PVDF), etc.1, 7, 11, 13, 14 

1.1.1.5 Ferroelectricity 

Ferroelectric materials like piezoelectric materials posses’ directional polarization of their 

dipoles. This subset of piezoelectric materials carries a net dipole moment whose direction can be 

manipulated by a threshold electrotonic field termed a coercive field.2, 6 This threshold field allows 

the spontaneous flipping of the material’s net dipole moment. This dipole moment manipulation 

results in a hysteresis loop in which the direction of the net dipole manipulation remains after the 

field is removed. The progression from dielectric (linear response to applied field with no dipole 

memory), to paraelectric (nonlinear response to applied field with no dipole memory), to 

ferroelectric (nonlinear response to applied field with remnant dipole memory) is demonstrated in 

the Figure 3.2, 6 

 

Figure 3 Example responses from (a) dielectric materials, (b) paraelectric materials, and (c) 

ferroelectric materials. 2 
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 6 

 

Figure 4 Schematic of ferroelectricity were the net polarizastion is manipulated by the application 

of an external electric field, in which the grey arrows represent individual dipoles. 2, 7 

1.1.1.6 Alternative Forms of Electromechanical Coupling 

Electrostriction 

Electrostriction is the nonlinear coupling between an applied electric-field stress and 

material response. This quadratic response, developed strain, to an applied stress is present in many 

dielectric materials. In this case the application of stress causes the unaligned dipoles of the 

material to become increasingly aligned with the increasing magnitude of the applied stress, 

illustration below.1, 7 This effect, though present in piezoelectric materials, is generally small and 

inconsequential in comparison to the piezoelectric effect, which is linear in nature distinguishing 

it from electrostriction. 
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Figure 5 Schematic of electrostricition in which an applied electic field induces a tempory 

allignment of the polar units in a material creating a macrodipolmemonet in the materal by which 

the material deforms in realtion to, in which the arrows represent individual dipoles.7 

Flexoelectricity 

Flexoelectricity is a non-linear coupling between an applied mechanical stress and material 

response, in which a stress-stain gradient is established by the non-uniform deformation of a 

material. This gradient induces electromechanical coupling by either breaking centrosymmetry of 

a material or bringing the dipoles into a net alignment, Figure 6. Unlike piezoelectricity and 

electrostriction flexoelectricity is size-dependent, from an insignificant effect in large bulk scale 

materials  mm3 moving to becoming a sizable effect in some nano-scale materials such as lipid 

bilayers.7 

 

Figure 6 Schematic of flexoelectricity, in which the arrows represent individual dipoles.7 
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Electrostatic 

The electrostatic effect (triboelectric effect) is the mechanical deformation in a material 

resulting from the Coulombic force generated between two separated charges. This non-linear 

effect can occur when two different materials are brought into close contact with each other 

generating a local electric field.  The electrostatic effect can contribute to the magnitude of the 

measured piezoelectric effect but can be deconvoluted from the measurement due to its non-

linearity and small contribution to the overall response.7 

 

Figure 7 Schematic of the electrostatic effect.7 
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1.2 Self-Assembled Monolayers 

Self-assembled monolayers (SAMs) are widely used with applications in electronic 

devices.3, 4, 7, 11, 15 SAMs are a subset of organic thin films where a single layer of organic molecules 

are deposited on a substrate generally by direct deposition from solution or by chemical vapor 

deposition (CVD).4, 7 We will focus on SAMs that are grown from solution onto a solid substrate 

(the defining difference between SAMs and Langmuir-Blodgett films).4, 7  

SAMs are prepared from solution when a solute, with a terminal group possessing a high 

affinity for the submerged substrate, chemisorbs to the substrate.3, 4, 7, 11, 16 For most of this work, 

we will focus on thiol terminated alkanes which have a high affinity for evaporated Au (111) 

substrates. The Au (111) is the lowest energy surface of Au which can have minor crystalline 

defects caused by deposition and annealing treatments, but these defects should not affect analysis 

by atomic force microscopy (AFM).1  The sulfur atoms will assemble from solution into a √3x√3 

superlattice on top of the Au surface.16, 17  

SAMs grow from solution in three steps as illustrated in Fig. 8. First, the molecule absorbs 

to the surface in a lying down fashion. During the initial phase (1), molecular surface density is 

approximately 30% of a final fully packed monolayer because the molecules are mostly “lying 

down” on the surface. Next (phase 2), the high-affinity head group chemisorbs to the surface and 

the molecules begin to stand up.  

 

Figure 8 Schematic of the phases for the formation of self assembled monolayers (SAMs).16 
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The molecules assemble “standing up” along the surface normal opening additional surface 

sites allowing more molecules to bond, thus increasing the packing density. The final step (phase 

3) occurs when the molecules reorganize across the surface, due to imperfect substrates, creating 

molecular “islands” depositing on the edges. Step one occurs in a matter of seconds while steps 2 

and 3 will occur over several minutes to several hours respectively.16 Allowing time for all three 

phases to complete provides for a uniform monolayer with calculable packing densities and film 

thicknesses. Hence, part of the attraction of SAMs is their simplicity to be grown directly from 

solution while only requiring a clean substrate and relatively dilute millimolar-range solutions. 
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1.3 Methodology Overview 

1.3.1  Scanning Probe Microscopy 

The first scanning probe microscope (SPM) invented by Binning and Rohrer in 1981-1982, 

Nobel Prize 1986, was a scanning tunneling microscope (STM). SPMs use a sharp probe brought 

within near contact to a surface to probe atomic scale properties of materials.12 

1.3.1.1 Topography 

Topographical SPM is characterized by the treatment of the probe during the experiment. 

In contact topographic SPM the probe is brought into near contact with the surface of the sample 

and is rastered across it in the x- and y-axis.  Here the probe is not driven, and the magnitude of 

the force required to maintain constant pressure of the cantilever in the z-axis is recorded as the 

magnitude of the variance in the topography of the sample. In contrast tapping topographic SPM 

again brings the probe into near contact with sample surface but instead of dragging the probe 

across the surface like a record player and recording the deflection of the probe, instead the probe 

is driven by a piezoelectric actuator at the fundamental resonance frequency of the probe. The 

change in the frequency of the driven probe is then correlated to changes in the topography of the 

sample. With ideal conditions these mechanisms garner SPM atomic scale resolution of 

topographic features.12 
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1.3.1.2 Scanning Kelvin Probe Microscopy 

Scanning Kelvin Probe Microscopy (sKPFM) incorporates the principles of topographical 

SPM with an additional raster scan of the surface; during which the conductive probe is held at a 

set delta height above the surface. During the secondary raster a static DC field is established 

between the offset probe and the surface. As the probe is scanned over the sample changes in the 

surface potential of the sample will cause the probe to deflect. This deflection is then processed 

through a feedback loop where the DC field applied to the probe is adjusted to cancel out this 

deflection. The magnitude of the field required to cancel out the deflection of the probe is 

proportional to the surface potential of the sample. Additionally, if the work function, the minimum 

energy needed to move an electron from the sample to vacuum space outside of the sample, of the 

probe is known sKPFM can be used to determine the work function of the sample as well.12 

1.3.1.3 Piezo Force Microscopy  

Piezoresponse force microscopy (PFM) was developed to probe the nano-scale 

morphological response of a sample to an applied electrical field.11, 12, 18 PFM evaluates the 

converse piezoelectric effect by measuring sample deformation under an applied bias. The bias 

(generally AC) is applied through a conductive lever that induces periodic displacements in the 

material due to the converse piezoelectric effect. Traditionally this is known as single-frequency 

PFM (SF-PFM) where a lock-in amplifier is tuned to a single frequency either the amplitude or 

phase signal channels. Single frequency PFM suffers from low sensitivity and poor frequency 

tracking from crosstalk arising from the material’s topography.11, 18 This hindrance was initially 

compensated for by using large field constants to induce large responses from materials to boost 

the signal to noise ratio creating more stable measurements. Though this technique increases 

sensitivity it can suffer from the dielectric break down of either the target material or the cantilever 
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effectively reducing the reproducibility of experiments. To increase sensitivity and avoid dielectric 

breakdown of materials dual AC resonance tracking PFM (DART-PFM) was developed by Kalinin 

to allow the use of small bias voltages while maintaining good frequency tracking despite varying 

topographical features.18, 19 Building on the principles of SF-PFM DART-PFM uses contact 

resonance to enhance the sensitivity of the PFM measurement coupled with a dual frequency 

feedback loop that tracks the variation in the amplitude of the contact resonance peak. Though an 

improvement over SF-PFM DART-PFM is still subject to distortions from electrostatics hindering 

the ability to acquire purely quantitative measurements.11, 12, 18, 19 

1.3.2  X-Ray Photoelectron Spectroscopy 

X-Ray photoelectron spectroscopy (XPS) utilizes x-ray photons of a characteristic energy 

impeding on a surface. The massless photons interact with core electrons of the atoms in the sample 

surface. Upon collision the photons induce an ionized state in the atoms from which a 

photoelectron is ejected upon the return to the ground state. The ejected photoelectron carries a 

kinetic energy that is equivalent to the difference between the energy of the impeding photon and 

the binding energy of the ejected electron. XPS is primarily a surface sensitive technique with a 

maximum sampling depth of only a few nanometers. This is due to the short attenuation length of 

the incident photon and the high probably of an energy loss event, e.g. reabsorption of the ejected 

photoelectron. Though limited in sampling depth XPS is a very powerful analytical method 

allowing for the determination of even the most minute changes in the chemical environment 

surrounding an individual atom.20 
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1.3.2.1 XPS for Packing Density Determination in Self Assembled Monolayers 

The XPS methodology for the determination of surface packing density in SAMs was 

developed by Weidner et al. Here Weidner describes the use of a SAM with a known packing 

density and similar distinctive characteristics to the unknown sample to establish the attenuation 

of the substrate signal based on surface coverage. An example implemented later in chapter 2 is 

the use of a dodecanethiol SAM on Au with a known packing density of 4.62 * 1014 molecules per 

cm2
 as the refence material for unknown systems utilizing the same characteristic Au-Thiol 

anchoring motif. This allows the assignment of the known packing density of DDT to the ratio of 

the sulfur and gold peak maxima, at 162 eV and 84 eV respectively. This ratio establishes the 

attenuation of the Au signal for given surface coverage. The Au/S ratio of the unknown can then 

be compared to the refence ratio of the known sample allowing for the determination of the surface 

packing density of unknown sample.20, 21 
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2.0 Influence of Molecular Structure on a Self-Assembled Monolayer’s Piezoresponse 

This chapter has been adapted with permission from: 

• Marvin, C. W.*; Grimm, H. M.*; Miller, N.C.; Horne, W. S.; Hutchison, G. R. 

Interplay Among Sequence, Folding Propensity, and Bio-Piezoresponse in Short 

Peptides and Peptoids. J Phys. Chem. B 2017, 121(44), 10269-10275 (* equal 

author contribution) 

2.1 Contributions 

A collaborative effort with Christopher W. Marvin, Haley M. Grimm, and Geoffrey R. 

Hutchison whose individual contributions are as follows: 

Christopher W. Marvin developed and applied the AC voltage DART-PFM sweep methodology to 

the self-assembled monolayers to determine the piezo coefficients of the design materials. Haley 

M. Grimm isolated the synthesis protocols for the development of tailored peptide and peptoid 

sequences. Geoffrey R. Hutchison carried out density functional theory calculations on peptide 

and peptoid helices to ascertain the net macrodipole of the tailored organic molecules. 
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2.2 Introduction to Tailored Organic Molecular based Piezoelectric Materials 

Piezoelectric materials interconvert between electrical and mechanical energy, generating 

electric charge in response to mechanical stress (the direct piezoelectric effect) and undergoing 

deformation under an applied field (the converse piezoelectric effect).1 Because piezoelectric 

materials allow direct mechanical to electrical conversion, they find wide use in touch and force 

sensors,2 microscale actuators,3 and related components. Devices utilizing such components have 

applications in areas from consumer to medical to military.4,5 

Many bulk inorganic materials are piezoelectric, including lead zirconate titanate (PZT) 

perovskites,6 zinc oxide,7 and quartz.8 Piezo response has also been shown in organic polymers 

such as polyvinylidene difluoride (PVDF).9 While most applications have focused on the above 

materials due to their high responsiveness, the piezoelectric effect is a common molecular 

property10 and is found in a number of biomaterials. As an example, proteins and their assemblies 

can show dramatic motion in response to environmental changes (e.g., redox, pH, chemical 

gradient), and this characteristic extends to applied electric fields. Prior work has shown the 

piezoelectric effect in collagen,11,12 viruses,13 aligned peptide crystals,14,15 isolated peptide 

nanotubes,16 as well as fibrils based on α-helices.17  

Despite widespread potential applications, limitations exist that hinder the advance of 

piezoelectric materials. From a practical standpoint, there is an unmet need for biocompatible 

materials that possess strong, stable piezo-coefficients and can be scaled to fit small devices. From 

a fundamental perspective, there are open questions as to what molecular properties give rise to a 

strong piezoelectric response. These issues are interrelated. Enhanced understanding of the 

mechanisms giving rise to piezo response will enable the bottom-up design of new systems that 

address practical needs. 
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2.3 Methods 

2.3.1  General Information 

All Fmoc α-amino acids and resins used for solid phase synthesis were purchased from 

Novabiochem. All solvents and submonomer synthesis reagents were purchased from Sigma-

Aldrich and used without further purification. Reverse phase HPLC was carried out using 

Phenomenex Luna C18 columns. Products were eluted using gradients between 0.1% TFA in water 

[solvent A] and 0.1% TFA in acetonitrile [solvent B], monitored by UV detection at 220 nm and 

280 nm. MALDI-TOF MS experiments were performed on a Voyager DE Pro (Applied 

Biosystems) or an ultrafleXtreme (Bruker) using α-cyano-4-hydroxy cinnamic acid as the 

ionization matrix 

2.3.2  Peptide Synthesis 

Peptides 1-3 were synthesized by microwave-assisted Fmoc solid phase methods on a CEM 

MARS 5 microwave using NovaPEG rink amide resin (0.05 mmol scale). Resin was swelled in 

DMF for 15 min prior to the first coupling reaction. For a typical cycle, a 0.1 M solution of HCTU 

in NMP (4 equiv relative to resin, 2 mL, 0.20 mmol) was added to Fmoc-protected amino acid (4 

equiv, 0.20 mmol), followed by DIEA (6 equiv, 0.30 mmol). After a 2 min preactivation, the 

solution was transferred to resin, and the mixture heated to 90 °C over 1.5 min, followed by a 2 

min hold at that temperature. Fmoc deprotection was carried out by treatment with 20% 4-

methylpiperidine in DMF (4 mL), and the mixture was heated to 90 °C over 2 min, followed by a 

2 min hold at that temperature. The resin was washed 3 times with DMF after each coupling and 
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deprotection cycle. For Aib residues and those coupled to it, PyAOP (4 equiv, 0.20 mmol) was 

used in place of HCTU. The N-terminus of each peptide was capped with S-trityl-3-

mercaptopropionic acid using the standard HCTU coupling described above. After the final 

coupling, the resin was washed 3 times each with DMF, DCM, and MeOH, and the resin was dried 

under vacuum for at least 20 min. Peptides were cleaved from resin by treatment with a solution 

of TFA/EDT/H2O/TIS (92.5%/3%/3%/1.5% by volume) for 3 hours followed by precipitation in 

cold ether. The pellets were collected by centrifugation and re-dissolved in 90:10 solvent A / 

solvent B for purification by preparative HPLC. The identity and purity of final products were 

confirmed by analytical HPLC (Figure S1) and MALDI-TOF MS (Table S1). Peptide stock 

solution concentrations were quantified by UV spectroscopy (Hewlett Packard 8452A Diode Array 

Spectrometer, ε276 = 1450 cm-1 M-1 from the single Tyr in each sequence). 

2.3.3  Peptoid Synthesis 

Peptoids 4-6 were synthesized using a microwave-assisted submonomer solid phase 

approach on a CEM MARS 5 microwave using cysteamine 2-chlorotrityl resin (41.4 mg, 0.06 

mmol). Resin was swelled in DCM for 30 min, then washed with DMF prior to the synthesis. In a 

typical cycle, a solution of 1.2 M bromoacetic acid in dry DMF (1.0 mL, 1.2 mmol) was added to 

resin, followed by DIC (188 µL, 1.2 mmol). The reaction was heated to 35 °C over 2 min, followed 

by a 2 min hold at that temperature. The resin was washed three times with DMF, followed by 

addition of a 1.5 M solution of primary amine (R-(+)-α-methylbenzylamine or 2-

methoxyethylamine) in NMP (1.6 mL, 2.4 mmol). The mixture was then heated to 90 °C over 2 

min, followed by a 2 min hold at that temperature. The resin was washed again with DMF (3x) 

prior to the next cycle. The N-terminus of each peptoid was capped by treatment of resin with a 
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solution of DMF (800 µl), DIEA (200 µl), and acetic anhydride (100 µl) and stirring at ambient 

temperature for 20 min. The resin was then washed 3 times each with DMF, DCM, and MeOH, 

and dried under vacuum for at least 20 min. Each peptoid was cleaved from resin by treatment 

with a mixture of TFA/H2O/TIS (95%:2.5%:2.5% by volume) for 30 min. The cleaved peptoid 

solution was diluted in H2O, lyophilized, and re-dissolved in 50:50 solvent A / solvent B for 

purification by preparative HPLC. The identity and purity of final products were confirmed by 

analytical HPLC (Figure S1) and MALDI-TOF MS (Table S1). Peptoid stock concentrations were 

determined by weight followed by dilution to a desired concentration. 

2.3.4  Circular Dichroism 

CD measurements were performed on an Olis DSM17 circular dichroism 

spectrophotometer. Scans were performed at 20 °C from 200-260 nm with 1 nm increments, a 

bandwidth of 2 nm, and a 5 sec integration time. Cells with a 2 mm path length were used. Peptide 

solutions (50 µM as determined by UV absorbance) were prepared in 10 mM phosphate buffer 

(pH 7.2).  Peptoid solutions (50 µM as determined by accurate weighing) were prepared in 

acetonitrile (HPLC grade). Percent helical population was calculated using a previously described 

method1 that uses the assumption that the population only consists of two states, helical and 

random coil, and that the contribution to ellipticity from the random coil population is negligible 

at 222 nm. Fraction helical population was estimated by dividing the observed ellipticity at 222 

nm, [ƟobsH]222, in deg cm2 dmol-1 by the limiting value for ellipticity for a 100% helical backbone. 

The latter was calculated via the equation [ƟH]222 = 43000(1-[x/n]), in which n is the number of 

residues and x is a factor that accounts for end effects, for which a value of 2.5 was used. 
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2.3.5  Self-Assembled Monolayer Formation 

Gold-thiol self-assembled monolayers (SAMs) were prepared using 1.0 mM dodecanethiol 

in ethanol, 1.0 mM peptide in distilled water, or 1.0 mM peptoid in acetonitrile. These solvents 

were chosen due to solubility of the molecule being deposited and have no impact on the 

production of the monolayers. Substrates consisted of gold metal deposited on glass (Thermo 

Scientific BioGold substrates produced by Electron Microscopy Sciences). Prior to SAM 

formation, substrates were cleaned by washing with ethanol and water, followed by sonication for 

10 min in the corresponding solvent used for deposition (ethanol for DDT, water for 1-3, 

acetonitrile for 4-6). After cleaning, the substrates were dried with compressed air or N2 and 

submerged into the solution of thiol ligand for 24 h at room temperature. The substrates were then 

taken out of the solution, rinsed three times with the respective solvent, blown dry, covered with 

aluminum foil, and placed in a desiccator for at least 1 h prior to analysis. Samples not measured 

immediately were stored in a desiccator, protected from light exposure. 

2.3.6  X-Ray Photoelectron Spectroscopy (XPS) 

XPS measurements were collected on a Thermo Scientific ESCALAB 250XI XPS 

spectrometer. Peptide, peptoid, and DDT monolayers were deposited on Thermo Scientific 

BioGold substrates produced by Electron Microscopy Sciences. A survey spectrum was collected 

at a pass energy of 150 eV and a dwell time of 10 ms. Au4f and N1s were averaged over 50 scans 

with a pass energy of either 100 eV for peptides 1-3 or 150 eV for peptoids 4-6 and a dwell time 

of 50 ms. S2p spectra were taken as an average of 100 scans with a pass energy of either 100 eV 

for peptides 1-3 or 150 eV for peptoids 4-6 and dwell time of 50 ms. Standard baseline subtraction, 
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normalization, and peak fits were performed. The surface density of each SAM was estimated 

using a previously published method,2 in which ratio of the sulfur and gold peak maxima, at 162 

eV and 84 eV respectively, were averaged across three different spots on a single SAM. The 

average peak ratio for a given SAM was compared to that of the measured DDT SAMs. DDT has 

a known packing density of 4.62 * 1014 molecules per cm2, which allows the surface density of 

each monolayer to be estimated by comparison. 

2.3.7  Atomic Force Microscopy (AFM) and Piezo Force Microscopy (PFM) 

AFM and PFM measurements were performed using an Asylum Research MFP-3D SPM. 

PFM experiments were carried out using the dual-AC resonance tracing (DART-PFM) mode. 

Asyelec.01-R2 (Asylum Research) iridium-coated, conductive silicon probes were used for the 

characterization of the surface. These tips have a free-air resonance frequency of 70 kHz, but a 

contact resonance of ~280 kHz. The low spring constant of 2.8 N/m was used due to the soft nature 

of the organic and biomaterial monolayers. Multiple tip-sample voltages from 1.5 - 4.5 V were 

applied for each sample, as described below. The deflection was set to -0.30 and the humidity in 

the sample box maintained below 30%. If ambient relative humidity was above 30%, the 

instrument was flushed with dry nitrogen during the measurement. For each sample, a 1 µm x 1 

µm area was scanned with a scan rate of 1.0 Hz. Topography, piezoresponse amplitude, and phase 

images were recorded. The recorded amplitudes were q-corrected to take the tip-sample resonance 

amplification used by DART-PFM into account. This q-correction was performed using the default 

analyzing software. A histogram of the q-corrected amplitude scan was generated. The median 

value of the distribution was plotted versus the appropriate voltage. The slope from a linear 

regression of this plot for the same sample measured on the same day was used to determine a 
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single d33 value for a given compound. Multiple independent experiments performed for different 

samples and days provided multiple d33 values for each compound. These values were averaged to 

generate the statistics reported in Table 1. 

2.3.8  Calculation of Dipole Moment for Model Helicies 

Gaussian 09 revision D.013 was used to perform geometry optimizations using density 

functional theory (DFT), with the dispersion-corrected ωB97X-D functional4 and the 6-31G(d) 

basis set to optimize all computed structures. Initial geometries were generated using PyMol 

version 1.8.45 with idealized backbone dihedral angles for α-helix (peptide) or PPI (peptoid) 

secondary structure. Computed dipole moments from DFT have been found to be highly accurate 

with errors in the 0.1-0.2D range.6 

2.4 Results and Discussion  

To gain insight into the molecular basis for electromechanical response in organic 

scaffolds, we have previously applied computational methods to probe the piezo effect of 

individual molecules10 and hydrogen-bonded assemblies.18,19 These results suggest that the two 

key features necessary for piezo response at the molecular level are (1) a dipole moment to couple 

to the applied electric field and (2) a deformable conformation along a low energy vibrational 

mode. Using standard solution self-assembly techniques, one can easily create monolayers with 

intrinsic polar order to screen molecules for the above properties (Figure 9A).20 As a proof of 

concept for the above method, we recently demonstrated piezo response in simple oligo-alanine 



 23 

peptide monolayers.20 Comparison of the oligoalanine peptide monolayer to simple alkane 

monolayers indicated the conformational flexibility of the polypeptide backbone was essential for 

piezo response.20 Not clear was the potential role of peptide folding in this effect. One possibility 

is that the α-helix (Figure 9B), likely favored in the Ala-rich sequence, can act as a polar 

“molecular spring” that undergoes conformational deformation in an applied field. If true, this 

would imply a correlation between peptide helicity and the magnitude of piezo response. Here, we 

systematically probe the interplay among peptide chemical structure, folding propensity, and 

piezoelectric properties, uncovering in the process new insights into the origin of peptide 

electromechanical response. 

 

Figure 9 (A) Schematic depicting nanoscale piezo response of a self-assembled monolayer on 

gold upon applying an electric field. (B) Backbone chemical structures alongside models of the α-

helix and PPI-helix folds formed by peptide and peptoid oligomers, respectively. 

To evaluate the effect of helicity, and thus the molecular basis of peptide piezoresponse, 

we designed a series of peptides (1-3) of identical length but varying folding propensity (Figure 

10). Keeping the molecule size comparable among the series focuses the analysis of structure-
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function relationship on folding behavior. Peptide 1 is based on a previously reported sequence 

that is among the shortest known to show appreciable helical folded population in aqueous 

solution.21 This characteristic results from the presence of three aminoisobutyric acid (Aib, U) 

residues that restrict backbone conformational freedom and promote the helical fold. We replaced 

the three Aib residues in 1 with either alanine (Ala, A) or glycine (Gly, G) to generate peptides 2 

and 3, respectively. Ala is also helix promoting, though to a lesser degree than Aib, while Gly is 

strongly helix disrupting. Each peptide was functionalized with a thiol group at the N-terminus to 

provide an anchor point for attachment to gold in the fabrication of polar monolayers.  

 

Figure 10 Peptides 1-3, peptoids 4-6, and control small molecule dodecanethiol (DDT).  

A powerful strategy complementary to sequence modification for controlling folding in 

peptides is to alter the chemical structure of the backbone. Many backbone compositions differing 

from nature can give rise to discrete folding motifs.22-25 One of the first artificial scaffolds shown 
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to manifest such behavior is the peptoid, a variant of the α-peptide backbone in which each side 

chain is transposed from Cα to N.26,27 Peptoids are intrinsically more flexible than peptides; 

however, incorporation of α-chiral aromatic side chains such as the (R)-α-methylbenzyl moiety in 

residue X (Figure 10) gives rise to highly rigid chains that adopt polyproline-I (PPI) helical folds.26 

Following logic analogous to that applied in peptides 1-3, we designed a series of peptoids 

(4-6) of identical length but systematically altered helicity by combining known structure-

promoting (X) and structure-disrupting (Z) residues in varying fractions.28,29 The macrodipole of 

the PPI helix (δ+ toward C-terminus) is oriented opposite that of a the α-helix (δ+ toward N-

terminus). To keep the alignment of the helix dipole the same in the polar monolayers across the 

oligomers examined, we placed the thiol for anchoring to gold at the C-terminus in the peptoid 

series through incorporation of a terminal cysteamine. Density functional theory calculations 

indicate the macrodipole for a 12-residue peptide α-helix (54 D) is approximately double that of a 

7-residue peptoid PPI helix (27 D). These values assume fully folded helical states, and the 

magnitude of the macrodipole will vary greatly with folded structure.  

Peptides 1-3 and peptoids 4-6 were prepared by standard solid-phase methods (Fmoc 

strategy for the peptides, submonomer approach for the peptoids). Each oligomer was purified by 

preparative reverse phase HPLC, and the identity and purity of the final products were confirmed 

by analytical HPLC and MALDI-TOF mass spectrometry (see Supporting Information [SI] for 

details on synthesis and purification).  

To establish that relative solution folding propensity in 1-6 followed the intended trends, 

we used circular dichroism (CD) spectroscopy (Figure 11). Solvent conditions for CD 

measurements were selected based on the solutions used for monolayer preparation (aqueous for 

the peptides, acetonitrile for the peptoids). The CD spectrum of peptide 1 showed minima at 222 
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and ~208 nm, characteristic of right-handed helical secondary structure. Moving through the series 

1-3, the band at 222 nm decreased in magnitude and the lower wavelength signal blue shifted to 

~200 nm. These changes are both diagnostic of an increase in random coil character and support 

our design hypothesis regarding the relative helicity across the series (1 > 2 > 3). Qualitative 

features of the CD spectra of the peptoids were consistent with the expected left-handed PPI helical 

fold. The decrease in the intensity of the band at 222 nm with increasing fraction of flexible Z 

residues supported the relative trend in helical character 4 > 5 > 6. On an absolute scale, estimated 

folded populations (Table 1) vary from 3% for the least helical peptide (3) to ~100% for the most 

helical peptoid (4).  

 

Figure 11 CD spectra of peptides 1-3 (50 μM in 10 mM phosphate pH 7.2) and peptoids 4-6 (50 

μM in acetonitrile). Estimated helical folded population for each compound is indicated in 

parentheses. 
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To compare the electromechanical response of the peptides and peptoids, monolayer films 

were deposited by solution self-assembly on gold substrates. Using dual AC resonance tracking 

piezoresponse force microscopy (DART-PFM), we determined the change in thickness (Δt) of 

each film over a series of applied voltages (1.5 to 4 V) averaged across a 1 µm2 area. The slope 

from a linear fit to a plot of Δt vs. applied voltage provides a measure of the piezoelectric response 

along the polarization axis (d33). Ideally, the intercept of this line would pass through zero (i.e., no 

mechanical response with no applied field); however, due to electrostatic and tip-sample 

interactions, that is rarely the case. We repeated this experiment for each oligomer across 

independently prepared films on multiple days using different tips (Figure 12, Table 1). 

Averaging across multiple samples and tips minimizes artifacts arising from tip-surface 

interactions; and averaging across a large area (rather than a single point) for each measurement 

samples an ensemble of different molecular conformations and monolayer packing motifs. The 

validity of the methodology was supported by of the determination of the piezo response of quartz 

by the same approach, yielding a d33 (3.8 pm V-1) close to the known value for d11 (2.3 pm V-1).8 

We note that in general, across all monolayers of 1-6, the distribution of piezo response showed 

high positive skewness, which did not have a clear trend with voltage. On the other hand, for five 

out of six compounds (1-3, 4, and 6) the distributions yielded voltage-dependent increases in peak 

width and standard deviation. For peptoid 5, three out of four samples showed slight broadening 

with increasing voltage.  
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Figure 12 Summary of DART-PFM methodology used to determine piezoelectric response (see 

Supporting Information for details) and the resulting d33 values obtained from replicate 

independent experiments with peptides 1-3, peptoids 4-6, dodecanethiol (DDT), and quartz. Error 

bars are the SEM from 4-8 independent experiments (see Table 1). 
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Table 1 Solution folding and monolayer properties for peptides 1-3 and peptoids 4-6. 

Compound d33 (pm V-1)a na 
Monolayer density 

(molecules cm-2 x 1014) 

Fraction  

helical (%)b 

1 1.53 ± 0.27 8 3.3 ± 0.4 19 

2 1.48 ± 0.29 6 4.0 ± 0.4 9 

3 1.75 ± 0.32 6 3.9 ± 0.4 3 

4 1.12 ± 0.23 4 4.1 ± 0.1 100 

5 0.97 ± 0.31 4 4.2 ± 0.1 42 

6 0.89 ± 0.13 4 4.3 ± 0.2 24 

DDT 1.12 ± 0.25 4 4.6c – 

quartz 3.80 ± 0.50 2 – – 

a Average ± SEM for piezo coefficient (d33) as determined from n independent PFM experiments 

(see supporting information for details). b Fraction helicity as estimated by CD (see supporting 

information for details) in solution (water for 1-3, acetonitrile for 4-6). c From ref.30 

Comparing the two different backbone compositions, the average response from 

monolayers of peptides 1-3 was significantly greater than that of monolayers made up of DDT or 

peptoids 4-6 (p 0.016 for peptides vs peptoids). On average, peptides 1-3 yielded PFM response 

~41% larger than DDT and ~59% larger than peptoids 4-6. Interestingly, no statistically significant 

trends beyond experimental uncertainty were discernable within a given backbone (i.e., among 1-

3 or among 4-6). While one might expect both peptides 1-3 and peptoids 4-6 to yield much greater 

conformational flexibility than a straight-chain alkane such as DDT, the high packing density in 

the monolayers may diminish this difference. Placing these results in context of known bulk 

biomaterials that are piezoactive, the d33 of the peptide monolayers, while small, is greater than 

the response of bulk collagen (0.8 pm V-1),11 bone (0.29 pm V-1),31 and wood (0.04 pm V-1).32 It is 

likely that the alignment and parallel arrangement of molecular dipole moments in the monolayer 

samples enhances piezo response. Still, the magnitudes are modest compared to crystalline 
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piezoelectric polymers, such as PVDF (~30 pm V-1),1 molecularly-doped polyurethane foams 

(~150-250 pm V-1),33 or PZT ceramics (~300-500 pm V-1).6 

To rule out the possibility that differences in piezo response observed resulted from 

differences in monolayer packing density rather than molecular structure, we carried out X-ray 

photoelectron spectroscopy (XPS). We determined the ratio of XPS peak intensities for sulfur 

versus gold signals for representative monolayers of 1-6 and DDT (Figure A2-A3). Calibrating 

against a reported packing density for DDT,30 we estimated the surface coverage density for the 

peptides and peptoids (Table 1). Variation among the observed packing densities were small and 

not sufficient to explain the observed differences in piezo response. Moreover, no significant trend 

was apparent based on backbone composition (peptides vs peptoids) or helicity in solution. The 

XPS data also served to show the chemical integrity of the peptide and peptoid monolayers and 

that sulfur-gold linkages were not oxidized over the course of sample preparation and storage.  

2.5  Conclusions 

In summary, the results suggest that peptide-based materials exhibiting piezo response 

have regions of highly aligned flexible backbones. Our initial hypothesis on the molecular basis 

for piezoelectric response focused on the effect of helical conformational preferences and the 

magnitude of the piezo response. That is, as “molecular springs,” an unstructured peptide 3 would 

show low response. The data here argue the opposite is true and that a balance between helicity 

and flexibility is needed for increased molecular piezoelectric response. Small changes in helical 

secondary structure between peptides 1-3 results in no statistical difference in measured piezo 

response; however, more rigid peptoids 4-6 show significantly lower response, on par with the 
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control DDT alkane thiol monolayer. Since any molecular monolayer will have intrinsic order and 

thus piezo response, we believe that combining systematic synthesis, PFM monolayer 

characterization, and computational design will unlock new avenues to highly responsive 

piezoactive materials. 
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3.0 Optimization of Nanoscale Electromechanical Coupling Evaluation Methods 

This chapter has been adapted with permission from: 

• Miller, N.C.; Grimm, H. M.; Horne, W. S.; Hutchison, G. R. Accurate 

Electromechanical Characterization of Soft Molecular Monolayers Using Piezo 

Force Microscopy. Nanoscale Adv. 2019, 1, 4834-4843 

3.1 Contributions 

A collaborative effort with Haley M. Grimm whose individual contributions are as follows: 

Haley M. Grimm isolated the synthesis protocols for the development of tailored peptide and 

peptoid sequences.  

3.2 Introduction 

Since the discovery of piezoelectric activity in muscle tissue and other biological materials, 

the molecular origin of the electromechanical response has been a topic of interest. At the 

nanoscale, the electrical and mechanical properties of materials are often linked – for example 

giving rise to phenomena such as piezo-, flexo-, and ferroelectricity.1-5 These phenomena, in turn, 

enable a wide range of applications from sensing to optoelectronics.3, 4, 6-15 The piezoelectric effect 

(PE) comprises two effects: a direct effect, in which mechanical stress generates an electric charge. 
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Inversely, the converse PE generates a mechanical response to an applied electric field. Materials 

exhibiting piezoelectric response are generally non-centrosymmetric, polar, and poorly 

conductive. A range of materials exhibit piezoelectric properties including lead zirconate titanate 

(PZT), quartz, and various polymers such as polyvinylidene difluoride (PVDF). At the nanoscale 

the lack of centrosymmetry coupled with high polarities give rise to piezoelectric response, 

yielding a vast diversity of piezoelectric materials. For example, self-assembled monolayers, in 

which the attachment of target molecules to surfaces inherently breaks symmetry and generates a 

polar system, have been shown recently to be inherently piezoelectric.16  

Accurate and reliable methods to measure piezoelectric outputs from a given material are 

vital to investigating these phenomena and realizing their potential range of applications. Atomic 

force microscopy (AFM) was initially developed to map the morphological variations in materials 

at the nanoscale.6,17 Beyond simple topology and morphology, functional AFM methods have been 

developed to map properties including surface potential, charge transport, magnetic response, and 

piezoresponse.17-21 The latter, piezo force microscopy (PFM), determines the mechanical response 

of materials to an applied electrical field by measuring the converse piezoelectric effect. However, 

classical single frequency PFM suffers from low sensitivity and poor frequency tracking due to 

crosstalk in the phase feedback loop between material topology and electromechanical response. 

To increase sensitivity and avoid dielectric breakdown of materials, dual AC resonance tracking 

(DART) was developed by Kalinin to allow the use of small bias voltages while maintaining good 

frequency tracking despite varying topological features.4, 6, 18, 20-24 Building on the principles of 

PFM, DART drastically improved the sensitivity of PFM measurements and helped move the field 

towards more quantitative piezoelectric measurements. Beyond DART, the band excitation (BE) 

method was intended to overcome distortions associated with tip-sample interactions experienced 
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in DART, in which the lever is excited at multiple frequencies around the fundamental frequency 

to alleviate shifts in the fundamental, due to topography.25 More recently, several groups have tried 

to reduce/eliminate these distortions by using high spring-constant (kl) levers, with or without a 

fixed external DC field, or by creating new lever technologies, such as “inner paddled levers”.2, 3, 

26-28 These techniques reduce the electrostatic component of the measurement for specific cases; 

however, this may not be true for systems, such as organic polymers and biomaterials, in which 

the electrostatic component is quite large or in which the Young’s modulus of the material is small 

in comparison to the lever.  

The above methods, particularly the use of high spring-constant levers, perform best with 

materials in which the elastic modulus is significantly higher than that of the lever. Unfortunately, 

when the modulus of the material under study is small in comparison to modulus of the lever, such 

as organic and biomaterials, the lever may deform the target surface, reducing or eliminating the 

sensitivity enhancements garnered by DART or band excitation techniques.  

In this work, we describe a method for improved accuracy in measurements of the piezo-

response (d33, the response of a material in the z-axis to a field applied in the same axis) of soft 

organic monolayers. The method entails the use of a soft (low-kl) lever, coupled with the 

quantification of the electrostatic component of tip response by completing a DC field sweep in 

addition to the AC field sweep already employed to measure the independent lever electrostatics. 

By compensating for the electrostatic component, the true d33 of the material can be established. 
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3.3 Methods 

3.3.1  Monolayer Formation 

Solvents and reagents were purchased from Sigma-Aldrich without further purification. 

BioGold substrates were purchased from Thermo Scientific and consist of a glass substrate with a 

titanium (10 nm) adhesion layer and gold (100 nm). The peptide and peptoid were synthesized and 

purified following procedures described previosly.16 Gold-thiol based self-assembled monolayers 

were prepared from 1.0 mM solutions of dodecane thiol (DDT) or mercaptoundecanoic acid 

(MUA) in ethanol, a peptide in water, and peptoid in acetonitrile. The various solvents were used 

to ensure maximum solubility of target molecules and have no bearing on SAM formation.  

Substrates were prepared for SAM formation by multiple ethanol and water washings followed by 

a 15-minute sonication in the solvent used for deposition (ethanol for MUA/DDT, water for 

peptide and acetonitrile for peptoid). After the corresponding solvent wash, substrates were rinsed 

with solvent and dried with N2. SAMs were formed by placing clean/dry substrates into 1.0 mM 

thiol ligand solution for 24 hours in ambient conditions. After the deposition period, samples were 

removed from solution rinsed, dried with N2, covered and placed in a desiccator for a minimum of 

one hour before analysis. All samples were stored under vacuum conditions in a UV blocking 

container to prevent thiol oxidation. 

 



 36 

3.3.2  Equipment 

All atomic force microscopy (AFM), scanning Kelvin probe force microscopy (sKPFM), 

piezo force microscopy (PFM), and amplitude modulated force microscopy (AMFM) experiments 

were carried out on an Asylum Research model MFP-3D SPM.  PFM experiments were conducted 

using dual-AC resonance tracking (DART-PFM) mode. Three sets of cantilevers consisting of six 

individual probes of varying spring constants were used: ASYELEC-01 R2 (R2), Asylum 

Research, are iridium-coated conductive silicon probes with a 70.0 ± 19.5 kHz free air resonance 

frequency, and a ~280 kHz contact resonance. The R2 has a free air spring constant of 2.8 ± 1.4 

N/m. HQ: NSC36/PT (NSC: A, B, and C), MikroMash, are platinum-coated conductive silicon 

probes with three independent levers per chip. The levers have a 90 ± 65, 130 ± 98, 65 ± 45 kHz 

free air resonance frequency for levers A, B and C respectively, giving a ~340, 520, and 260 kHz 

contact resonance for each lever. The NSC levers have a free air spring constant of 1.0 ± 2, 2.0 ± 

4.5, and 0.6 ± 1.25 N/m. TR400PB (TR: S and L), Asylum Research, are gold-coated conductive 

silicon nitride probes with a 32.0 ± 14.5 and 10.0 ± 7 kHz free air resonance frequency, but a ~120 

and 40 kHz contact resonance. The TR levers have a free air spring constant of 0.09 ± 0.12 and 

0.02 ± 0.02 N/m respectively. 
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3.3.3  Dual AC Resonance Tracking Piezo Force Microscopy (DART-PFM) 

DART experiments were conducted at multiple tip-sample AC, and DC biases ranging 

from |0-4| V. Deflection was set to -0.30 V with a tune z-voltage of ~15 V and a scan z-voltage of 

~ -7.0 V, to maximize signal and ensure stable contact between probe and sample during scanning, 

unless otherwise stated. Relative humidity was maintained below 30 % with a dry N2 purge inside 

the AFM enclosure. Each sample was examined in a 1.0 m x 1.0 m area with a rate of 0.75 Hz 

at a 90o scan angle to minimize topological artifacts. The topography, piezo-response amplitude 

and phase images were recorded and q-corrected to account for tip-sample resonance amplification 

using the built-in simple harmonic oscillator (SHO) function.16, 24 Histograms of the resulting q-

corrected piezo-response amplitude were generated, and the mean value of the distribution was 

extracted and correlated with the appropriate applied DC and AC fields, as discussed below. 

3.3.4  Scanning Kalvin Probe Force Microscopy (sKPFM) 

SKPFM measurements were conducted solely with the R2 levers to attain the contact 

potential difference (Vcpd) of each target material. Deflection was set to ~0.0 V via tuning, with a 

scan z-voltage of 100 V. Start and delta heights were set to 10 nm for all contact potential images 

(NAP scanning in Asylum software) with a trigger voltage of 800 mV. A static 1.0 V DC field was 

established for each measurement with no sample grounding due to the dielectric nature of the 

monolayers being examined. The implemented scan rate was 0.5 Hz at a 90o scan angle. 
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3.3.5  Amplitude Modulated Force Microscopy (AMFM) 

AMFM measurements were conducted with R2 and TRS levers to represent the contact 

stiffness across the range of the cantilever k values represented. Mirroring conditions used in 

DART scans a deflection of -0.30 V with tune/scan z voltages of ~15.0 V and -7.00 V respectively 

were used. The manufacture provided tip radius for TRs = 42 nm and 25 nm for R2 were used to 

model tip-sample interactions assuming spherical contact. Scan areas of 10.0 m x 10.0  m at a 

1.0 Hz scan rate were used to maximize sampling area, despite resolution loss.  

3.4 Results and Discussion 

We recently measured the piezoresponse of fixed polar molecular self-assembled 

monolayers, anchored by gold-thiol interactions to gold-coated glass substrates.16 These well-

formed monolayers represent model systems for the investigation and development of soft, 

flexible, fixed polar organic piezoelectric materials.29 In that work, piezoresponse was determined 

using DART-PFM by sweeping the applied AC electric field and plotting the corresponding 

measured response against it. The slope of the linear regression should yield the effective d33 (deff), 

in recognition of the lack of direct measurement of the true fields experienced by the material and 

minor yet contributing electromechanical effects, of the material under study, as illustrated in 

Figure 13A. Unfortunately, the regression rarely passes through the origin due to electrostatic 

effects present when the tip is brought into contact with the surface; resulting in a sizeable inherent 

error in the measurement regardless of the care taken in the data acquisition.  
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Figure 13 (a) Traditional determination of piezoresponse using piezo-force microscopy by varied 

VAC – the slope of the trend line should reflect the deff piezoresponse (pm/V). (b) Suggested VDC 

sweep technique to determine the piezo response in soft-organic piezo in soft-organic piezo 

materials – the crossing point reflects the deff piezoresponse, and the slope reflects the electrostatic 

contribution of the material.  

The tip response can be determined as in Equation 3.117, 24 

𝑅 = 𝑑𝑒𝑓𝑓𝑉𝐴𝐶 + 𝑘𝐶
−1 ⋅

𝜕𝑐

𝜕𝑧
⋅ 𝑉𝐴𝐶[𝑉𝐷𝐶 − 𝑉𝐶𝑃𝐷]                                                                            Eq. 3.1 

in which cantilever response R is equal to the deff (effective piezo coefficient) at the applied AC 

field (VAC) plus the contact stiffness (kc) augmented by the differential capacitance in the z-axis, 

VAC, and the electrostatics at the surface composed of any applied or established DC field (VDC) 

and the contact potential voltage VCPD.17, 24 This equation relates the observed tip response to the 

piezoelectric response of the material combined with response due to tip-sample electrostatic 

interactions. Naturally, a conventional sweep of VAC to determine the piezo response (e.g., Figure 

13A), does not compensate for the electrostatic component – the second term of Eq. 3.1. Recent 
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efforts have attempted to minimize this electrostatic response using high kl AFM levers to drive kc 

towards zero. This effectively reduces the electrostatic component but does not eliminate it.27 

Unfortunately, while using stiff, high kl, AFM levers lowers the electrostatic component with 

conventional ceramic-based piezoelectric materials, it is only effective in cases in which (1) the 

electrostatic component is small compared to the effective piezoresponse from the material and 

(2) the elastic modulus of the surface is much greater than the tip.  

In the case of soft materials, such as organic and biomaterials, using stiff, high kl levers 

will likely cause significant deformation of the target material. Since DART-PFM uses contact 

resonance for signal enhancement, the mismatch between the soft surface and stiff AFM lever 

leads to small tune amplitudes even under large applied fields and thus poor signal to noise. An 

apt analogy to this situation would be measuring the response of grass with a hammer 

– compressing the plant and limiting the observable response. Consequently, as proposed in the 

introduction, softer, low kl levers should minimize surface deformation in soft organic and 

biomaterials; however, they bring additional complications in the form of significant electrostatic 

contributions to the observed deff. Unlike in traditional AC sweep methods here the electrostatic 

component is expected to be non-zero at zero applied field highlighting the effects of electrostatics 

on the measurement system. To account for this electrostatic effect, we envisioned sweeping the 

DC field to accurately determine the electrostatic component of the observed response, as well as 

the VDC point at which the electrostatic response is minimized (Figure 13B). If successfully 

realized, we hypothesized this new technique would allow for increased quantitative accuracy in 

determining the deff piezo response even in soft materials.  
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Figure 14 Scheme of  compounds under study.16 

To test the proposed DC field sweeping DART-PFM technique, five different levers were 

chosen with spring constants (kl) varying from 0.02 to 2.8 N/m and used to determine the 

electromechanical response of four organic self-assembled Au-S monolayers (Figure 14). These 

organic SAM systems were chosen due to their innate polar alignment; thus, reducing or 

eliminating any electrostriction or flexoelectric response of the films in conjunction with being 

non ferroelectric. The SAMs tested included small molecule ligands (DDT, MUA) as well as bio-

inspired peptide and peptoid oligomers (A and B) examined in our prior work.16 The response of 

each target film was measured at varying piezo stack voltages, generating varying effective kl 

values. Figure 14 illustrates the resulting experiment, in which the recorded response for a given 

target material increases exponentially as the effective kl value of the lever used in the 

measurement decreases. The results confirm that for soft materials like SAMs, using levers with 

spring constants comparable to the modulus of the material’s leads to increased response. In some 
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cases, experimental tip responses reach 250 pm/V, far exceeding previously reported 

electromechanical response in these soft materials. Though the overall electromechanical response 

is high, as discussed below, these responses are influenced more by electrostatics than the intrinsic 

piezo response of the materials (d33). While the spring constant of the lever (kl) is shown to 

influence the response of the films, it is merely contributing to changes in the contact stiffness 

(kc).
17, 20, 24 

 

Figure 15 Relationship between tip response (kl and kc as calculated using Equation 3.2) for 

various SAMs using AFM levers with spring constant from 0.02-2.8 N/m, for (a) DDT, (b) MUA, 

(c) peptide A and (d) peptoid B respectively. The best-fit line is to y = a + bxc. 
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Table 2 Summary of contact-dependent (kc) response across four organic self-assembled 

monolayers, indicating best-fit parameters from the fits in Figure 15. 

Material Constant (a) Coefficient (b) Power (c) R2 

DDT 2.53 293 -1.30 0.948 

MUA 2.56 206 -1.44 0.959 

Peptide A 2.32 187 -1.47 0.985 

Peptoid B -2.42 327 -1.07 0.993 

 

As Equation 3.1 illustrates, while stiffer levers affect the response, it is the contact stiffness 

(kc) that directly influences the measurement.24 While the distinction may seem subtle, kl is merely 

a single component of the contact. Thus, the spring constant of the contact derives from the lever, 

the mechanical response of the material in the x, y, and z-axis, influence of surface electrostatics, 

and any tip-sample meniscus that may be present (e.g., in ambient conditions).  Fortunately, these 

factors can be estimated by applying Equation 3.2 to the already measured kl values (as part of 

tip-sample tuning in DART-PFM).17 

𝑘𝑐 = 𝑘𝑙 [(
𝑤1

𝑤𝑜
)

2

− 1]                                                                                                               Eq. 3.2 

Equation 2 approximates the spring constant of contact (kc) from the spring constant of 

the lever (kl) by taking the ratio of the resonance frequency of the free lever (0) to the lever in 

contact with the sample (1) used in the DART experiment.17  

While the use of stiffer levers is correlated to an increased contact stiffness, using the 

calculated kc values to model tip response, yield better fits (Table 2), reflecting the correct physics 

due to the higher spring constant of the contact stiffness dominating. The comparable fits of tip 
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response to kl values, found in Table S1, qualitatively maintain the same trend – decreased spring 

constant yields increased electromechanical tip response, albeit with lower quality of fit (R2).  

However, as indicated in Equation 3.1, an ideal dependence would yield an exponent of 

kc
-1 (example plot in SI), but the values determined by fits in Figure 14 and Table 2 deviate 

significantly. In all the organic monolayers, the tip response falls off faster than predicted (i.e., 

exponents closer to ca. -1.3) with increasing contact stiffness. We speculate that this derives from 

the stiffer levers distorting the monolayers instead of remaining at the interface. The only exception 

is for the peptoid B SAMs, in which the tip-response curve yields an exponent close to -1.0, 

suggesting that the peptoid film is significantly stiffer than the other films, as confirmed by AMFM 

measurements discussed below, and consistent with expectations of a peptoid PPI helix.27  

While Equation 3.2 allows an approximate conversion of kl to kc values, assuming a 

uniform shift from the fundamental frequency of the lever to the measured frequency of the lever 

while interacting with surface, kc was also measured directly using amplitude modulated force 

microscopy (AMFM).10, 30-32 Due to the trends observed in the original kl measurements, the kc 

was not directly measured by AMFM for all levers. Only the ASYELEC.01 R2 and the TR400PB 

(S) levers, 2.8 and 0.09 N/m respectively, were chosen as the relative extremes of contact 

stiffnesses observed in the initial study, (Table in SI).  We note that the measured kc values deviate 

substantially from Equation 3.2 for stiffer levers, again suggesting that the stiffer levers are 

distorting the monolayers, effectively limiting the ability of the soft materials to mechanically 

respond to the applied electric fields.  

As mentioned above, while soft levers give higher tip response, they also suffer from 

greater levels of electrostatic interference than stiffer levers. One way to account for this effect 

would be to apply a VDC to the tip that is equal to VCPD, thus eliminating the electrostatic term in 
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Equation 3.1. Intuitively one simple solution would be to measure the VCPD by sKPFM, and then 

apply that VDC, as has been previously implemented.27 The problem arises from the nature of the 

DART measurement in which a VAC is applied on top of the VDC, altering the electrostatic 

environment around the contact, modulating the intrinsic VCPD of the sample. Instead, we swept 

the DC field to find the point of minimal tip response at which the contact potential equals the 

applied DC field under a constant VAC (Figure 13B). 

The tip response (R) is the measured output of the DART experiment after the simple 

harmonic oscillator (SHO) calculation corrects for the tip-sample resonance enhancement. This tip 

response can be separated, using Equation 3.1, into the intrinsic piezoresponse of the material and 

the electrostatic response. When VDC is equal to VCPD, the electrostatic component of the 

measurement will go to zero leaving only the mechanical response of the material under the applied 

field. The organic SAM films are intrinsically polar, permanent piezoelectric materials, since one 

end is attached via an Au-S bond. Consequently, one expects no ferroelectric hysteresis from 

sweeping VDC, only two intersecting lines of equal slope proportional to kc-1 dC/dz (Figure 13B). 

The intersection point will represent the piezoelectric response deff • VAC. The results are 

highlighted in Figure 15 and summarized in Table 3, in which three different AFM levers are 

used on two different organic SAMs. 
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Figure 16 Influence of cantilever contact stiffness on measured film response as a function of DC 

field. Inset plots highlight the noise floor of the tip response (~1 pm) when the kl is far greater than 

the modulus of the material. (a) Response of the DDT to varied DC field with three levers 

Asyelec.01 R2 (R2, 2.8 N/m), TR400PBS (TRS, 0.09 N/m), and TR400PBL (TRL, 0.02 N/m). (b) 

Response of peptide A to varied DC field with three levers Asyelec.01 R2 (R2), TR400PBS (TRS), 

and TR400PBL (TRL). 

Table 3 Coefficient values and calculated deff from tip response as a function of applied DC voltage 

at constant VAC of 4.0 V. 

Material kl (N/m) VCPD (V) Slope (A) R2 deff (pm/V) 

DDT 2.8 -0.369 0.827 0.818 0.12 

DDT 0.09 0.001 75.1 0.998 -0.28 

DDT 0.02 -0.419 360 0.999 -0.32 

Peptide A 2.8 -0.245 0.979 0.921 0.12 

Peptide A 0.09 -0.111 56.3 0.995 -0.16 

Peptide A 0.02 -0.153 373 0.987 3.2 
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Figure 15 establishes that the proposed new method works for fixed polar molecular 

monolayer films. The technique is demonstrated on two SAMs: one piezo activepeptide16 and a 

control of DDT, used to highlight the natural polarization of organic SAMs when adsorbed to a 

metallic surface. The high electrostatic component of the low kl levers is easily compensated 

through the new method. The results point to a piezoresponse range of -0.33 to 0.11 pm/V for DDT 

and -0.16 to 3.2 pm/V for peptide A. The measured deff of peptide A using the 0.02 N/m lever is 

significantly larger than the values determined with the stiffer levers.   

Further, by highlighting three different spring constant levers ranging from 0.02 to 2.8 N/m 

the results from Figure 14 can be reaffirmed. Here, film response increases with decreasing kl due 

to electrostatic effects, reducing the maximal response at 2.0 VDC and 4.0 VAC from near 1000 pm 

to ~3 pm. These results represent a greater than 300-fold decrease in measured response; moreover 

the inset charts in Figure 15 demonstrate that at high kc, relative to the sample material, the 

instrument sensitivity bottoms out, effectively identifying the noise floor of the measurement 

technique. The inset charts emphasize the trend towards higher R2 values in which at high kc and 

kl, response is sporadic and hard to model in contrast to the low kl levers. The increase in sensitivity 

is further confirmed by the changes in the tune amplitude, at the described set points, from <2 V 

to >50 V. These, results reflect the benefits of the new method by demonstrating increased 

precision in the determination of the deff for soft monolayers through enhanced signal to noise 

ratios.    

Based on the evidence in Figures 14-15, the use of soft, low-spring-constant the TRS 

levers (0.09 N/m) are less likely to perturb organic monolayers, and the DC-sweep DART-PFM 

technique enables separation of inherent piezoelectric response of a material from the electrostatic 

components to tip response. Consequently, TRS levers were used with DC-sweep DART-PFM 
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across four organic SAMs and a quartz crystal microbalance (QCM. The latter serves as a non-

ferroelectric control with known piezoresponse (d33), while DDT and MUA SAMs were used as 

control organic monolayers with low expected piezoresponse, but varying hydrophobicity. If the 

contact stiffness depends on the effects of a meniscus at the tip sample interface under ambient 

conditions, modulating from a hydrophobic DDT monolayer to a hydrophilic MUA monolayer 

should reveal such effects on measured electromechanical response. Peptide A and peptoid B 

represent helical piezoactive materials with different backbone motifs that give rise to differences 

in helical propensity.16 
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Figure 17 PFM tip response from sweeping the DC field of several materials using TRS levers, 

and an applied AC field of 3.0 V. Response of (a) quartz crystal microbalance surface; inset 

provides rescaled y-axis, (b) DDT, (c) MUA, (d) Peptide A, and (e) Peptoid B. Note that all four 

organic monolayers show profoundly greater DC-field (electrostatic) response than the QCM 

surface as reflected in the slope of the DC-dependent response. 
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Table 4 Coefficient values and calculated deff from tip response as a function of applied DC voltage 

at constant VAC of 3.0 V using 0.09 N/m kl levers. 

Material VCPD (V) Slope (A) R2 deff (pm/V) 

QCM -1.06 6.40 0.993 1.68 

DDT -0.022 119 0.999 0.100 

MUA -0.249 63.9 0.991 -0.560 

Peptide A 0.157 94.1 0.975 -6.42 

Peptoid B 0.165 134 0.999 -1.35 

 

The DC-sweep DART-PFM response of these films under a constant 3.0 VAC field is 

illustrated in Figure 17 and compiled in Table 5. The resulting field plots yield deff
 of the varying 

materials. QCM stands out with a deff value consistent with literature (i.e. 1.68 pm/V vs 2.3 

pm/V),19 but the observed tip response is small compared to the other monolayer samples. The low 

slope indicates that the magnitude of the deff in quartz is not significantly different from that of the 

monolayers, but its electrostatic component is minimal compare to the monolayer films. This likely 

indicates that the ability of quartz to build a large differential capacitance in the z-axis is 

compromised in comparison to the SAMs. Further, these results reconfirm previously reported 

conclusions that the helix forming peptide and peptoid have higher piezo electric coefficients than 

DDT and MUA.16 
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More significant than the magnitude of the tabulated piezo coefficients in Table 5 is the 

sign. Noticeably three out of four SAMs have a negative deff, indicating that they compress under 

an applied field. Only DDT produced a positive deff, albeit close to zero. This negative piezo 

response differs from conventional piezo ceramics such as ZnO or PZT, but is similar to that 

observed in PVDF and a variety of piezoelectric materials.33-35 Thus, the new method not only 

determines positive, but also negative piezoresponse, even at low applied voltages. 

 

Figure 18 (A) Effect of applied DC field on peptoid B film response at various AC fields using 

0.09 N/m levers. (B) DC-dependent response. (C) PFM response as a function of VAC with 

specified constant DC fields. (d) Measured surface potential as a function of applied VAC. 
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We note both the deff and VCPD from the peptide A monolayer shifts by applying different 

VAC between Figure 15 and Figure 16 (4.0 VAC and 3.0 VAC respectively). To test if the VCPD and 

deff is subject to shifting under various experimental conditions a film of peptoid B was tested 

against four different AC voltages sweeping through six DC voltages at each AC voltage. 

Extracting the surface potential under experimental conditions from Figure 18A and comparing it 

to the applied AC field a linear trend emerges. As the applied electric field increases under the 

experimental conditions so does the VCPD. This indicates that a static VDC determined by sKPFM 

cannot be used directly to eliminate the electrostatic component of the measured response, as has 

been previously suggested.27 Further Figure 5A represents the equivalent of eight experimental 

runs on one sample using the more traditional AC sweep method, thus confirming the repeatability 

of the new measurement system and the lack of dielectric brake down of the films due to the 

applied fields.  

Figure 18A highlights that the maximal response of the film increases with increasing VAC 

as suggested in conventional piezoelectric materials and measurement techniques. To confirm this, 

a map was extracted from Figure 18A to generate 18C in which the response of the film is plotted 

against the applied VAC at each DC voltage, recreating the conventional approach to the 

determination of deff by DART-PFM. This exercise emphasizes the ability of the new DC sweep 

method to remove the effects of electrostatic response and thereby reduce the variation in the 

measured deff.  The new method gives the deff of peptoid B to be -0.24 ± 1.36 pm/V in comparison 

to the traditional method with the electrostatics unaccounted for at 188.50 ± 39.25 pm/V. To 

supplement these conclusions the points at each VDC in Figure 18A were averaged with VAC 

removed to generate Figure 18B. In Figure 18B the variation at each point is so insignificant that 

the error does not show on the plot. As expected, the calculated deff from Figure 18B agrees with 
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Figure 18A at -0.223 pm/V. Though, these figures are not identical to the deff values determined 

in Figure 17, they are within error of each other.  

Table 5 Coefficient values and calculated deff from tip response as a function of applied DC voltage 

on peptoid B at constant kl of 0.09 N/m. 

VAC (V) VCPD (V) Slope (A) R2 deff (pm/V) 

3.0 0.403 277.6 0.999 0.360 

2.0 0.225 184.9 0.999 -2.18 

1.0 0.192 85.99 0.996 3.37 

0.5 0.079 43.86 0.999 -2.51 

NA 0.227 89.67 0.999 -0.223 

     

The comparison between the molecular monolayers and quartz highlights a significant shift 

of material response to an applied field. The slopes of the plots in Figure 15 represent the 

electrostatic component of the material response. When comparing the materials there is a 

significant shift in the slope of the fits indicating a variation in the effect of electrostatics on the 

reported response. Quartz has a fundamentally shallower slope than any of the molecular films. 

Likely the applied AC field or the differential capacitance in the z-axis are the influencing factors. 

The AC field however is uniformly applied at 3.0 V across all samples and accounted for when 

the final response is computed. In addition, a humidity-controlled chamber held at approximately 

20 % provides no likely outside source for field augmentation, ensuring little to no variation in the 

meniscus formed at the tip-sample interface. Hence, the contribution from the differential 

capacitance in the z-axis is likely the source of the discrepancy in the overall measured response. 
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This difference in capacitance is likely due to a difference between the relatively high dielectric 

constant of quartz (ε ~ 4) compared to the lower dielectric constant of the SAMs (MUA ~ 2).36, 37 

To test this hypothesis, several conventional hard-ceramic piezoelectric materials were 

tested, in addition to the non-ferroelectric quartz material sampled above, including: ferroelectric 

PZT (~1 cm thick), PPLN (~1 mm thick), and a second non-ferroelectric material ZnO (~1 mm 

thick), and (results in SI). Only ZnO gave responses signaling significant influence of electrostatics 

on the reported response (see SI). The testing of PZT and PPLN mirrored the results of quartz, in 

which the slopes of the fits are shallow, but present higher baseline piezo response. These results 

confirm that soft-molecule based piezoelectric materials are fundamentally different from classical 

ceramic based materials and must be analyzed with new methods that allow for operation at higher 

signal to noise ratios while simultaneously removing the electrostatic component of the response. 

This has been demonstrated to be achievable by alternatively sweeping the VDC instead of the VAC 

and finding the point of inflection in which the VDC is equal to the VCPD and extracting the deff 

from that point instead of the slope of the fit.  
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3.5 Conclusions 

This work has coupled multiple AFM techniques together to establish and validate a new 

method for quantitatively separating the electrostatic component from the purely piezoelectric 

response of low Young’s modulus piezo-active materials using DART-PFM. We find that organic 

monolayers, and other soft electromechanical materials, require the use of low spring constant tips 

to better match the elastic modulus of the materials. In turn, this increases the electrostatic 

component of the tip response, which can be minimized by sweeping the DC voltage until the 

minimum response is found. In principle, this point should reflect the contact potential of the film. 

We find through scanning Kelvin probe microscopy that the potentials are close, but effects of 

applied fields during the DART-PFM experiment modulate the VDC potential that minimizes the 

electrostatic tip response. Elastic AMFM results established the necessity to match lever stiffness 

(kl) with the modulus of the material under study. Simultaneously, AMFM results confirmed that 

the contact stiffness (kc) is directly influenced by the kl, yet kc is the optimal parameter for the 

accurate determination of the piezoelectric coefficient, unlike previous reports.27  

We find incredibly large electromechanical tip responses, nearing 250 pm/V, which derive 

from large differential capacitance of the films rather than the innate piezoresponse. This large 

electrostatic component from organic monolayers is in stark contrast to a range of inorganic 

materials studied, which may show greater intrinsic piezoresponse, but much lower electrostatic 

components. We speculate that while the organic monolayers have lower dielectric constants than 

piezo ceramics such as PZT, the differential capacitance is high due to their lower elastic modulus 

and thin layer thickness (e.g., ~2 nm). 
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The new method of DC-sweep DART-PFM was used to determine the deff piezoresponse 

and electrostatic components of four organic monolayers and four conventional inorganic piezo 

materials. The method finds peptide and peptoid SAMs with both positive and negative piezo 

response and, coefficients in agreement with previously reported values.16 Control molecular 

SAMs composed of DDT and MUA show close to zero piezoresponse. While scans across multiple 

films and different AC voltages do affect the measurement somewhat, the DC-sweep DART-PFM 

technique shows much improved reproducibility relative to previous efforts using varied AC 

voltages with DART-PFM. 

We believe this new technique will improve accurate measurements of electromechanical 

response in organic and biomaterials. Moreover, the large electrostatic component of 

electromechanical response found in organic materials can likely be utilized for sensing or other 

applications. 
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4.0 Exploration of Organic-Molecular Based Ferroelectric Materials 

4.1 Contributions 

A collaborative effort with Allison Rice of the Shustova group at the University of South 

Carolina and Keith Werling whose individual contributions are as follows: Allison Rice isolated 

the synthesis protocols for the development of 4,4’,4”,4”’–(dibenzo[ghi,mno]fluoranthene-

1,2,5,6-tetrayl)tetrabenzoic acid and provided materials for testing and Keith Werling provided 

the computational predictions for the target materials.  

4.2 Introduction 

Organic molecular materials possess highly tailorable properties at the nanoscale. These 

tunable properties include, but are not limited to, the net polarization, capacitance, breakdown 

voltage, and piezoresponse of the resulting material.1-6 Within these properties lies a subset of 

materials that exhibit spontaneous electric polarization of the molecular dipoles upon the 

application of an external electric field.1, 4 These ferroelectric materials are related to piezoelectric 

materials, examined previously, with the additional property that their net polarization can be 

manipulated by the application of an external field.  

The degree of polarization manipulation is dependent on the magnitude and direction 

(positive/negative) of the applied field. The resulting remnant polarization hysteresis allows for 

unique applications of ferroelectric materials such as non-volatile memory, sensing, tunnel 
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junctions, and even some catalysis.1, 6-8 In classical ceramic materials, this phenomenon manifests 

in a displacement of ions within the unit cell. For organic materials such as polymers and solids, 

the applied field can either induce a reorientation of the polymer, often liquid crystals, with the 

applied field or a dynamic proton transfer within an organic solid.1, 2, 9-11 In our previous work with 

molecular piezoelectric materials, field-induced conformational changes, the molecular dipole 

moment remained fixed in direction, determined by the direction of the molecular attachment to 

the surface of the substrate.  

Quan et al. computationally predicted that organic molecules based on corannulene, 

sumanene, pyrene, and perylene structures could produce both piezoelectric and ferroelectric 

response in the presence of an applied electric field.11 Furthermore, the degree of response and the 

required coercive field for the inflection of the directional polarization can be influenced by the 

type and placement of substituents on the core molecule.  These substituents influence the bowl 

depth of these "buckybowl" structures, thus modulating the energy required for inversion. The 

ability to control the inversion energy enabled the discovery of new derivatives of corannulene 

with inversion energies below the dielectric break down voltage. The decrease in the inversion 

energy barrier, through the destabilization of the ground state energy, was achieved through 

electron-withdrawing substituents inducing a significant dipole moment coupled with a reduction 

in the molecular-bowl depth.1, 11-15 
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4.3 Methods 

4.3.1  Sample Preparation 

Solvents and reagents were purchased from Sigma-Aldrich without further purification. 

BioGold and indium tin oxide (ITO) substrates were purchased from Thermo Scientific and consist 

of a glass substrate with a 100 nm ITO layer or a titanium (10 nm) adhesion layer and gold (100 

nm). 4,4’,4”,4”’–(dibenzo[ghi,mno]fluoranthene-1,2,5,6-tetrayl)tetrabenzoic acid (H4DFT) was 

synthesized by a previously outlined method.7 One hundred percent pure ethanol was used to 

ensure maximum solubility of target molecules and have no bearing on SAM film formation.  

Substrates were prepared for drop casting by multiple ethanol and water washings followed by a 

45-minute sonication in the solvent used for deposition. After the corresponding solvent wash, 

substrates were rinsed with solvent and dried with N2. The films were formed by taking the 

clean/dry substrates and drop-casting an optimized concentration of the target molecule on the 

surface. Samples were then covered and placed in a desiccator under vacuum for a minimum of 

one hour before analysis. All samples were stored under vacuum conditions in a UV blocking 

container to prevent film degradation. 

4.3.2  Dual AC Resonance Tracking Piezo Force Microscopy (DART-PFM) 

DART-PFM measurements were conducted on an Asylum Research MFP3D AFM with 

BL-TR400PB levers, purchased from Asylum Research. Experiments were conducted at multiple 

tip-sample AC, and DC biases ranging from ±0-4 V. The cantilever deflection was set to -0.30 V 

with a tune z-voltage of ~15 V and a scan z-voltage of ~ -7.0 V, to maximize signal and ensure 
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stable contact between probe and sample during scanning, unless otherwise stated. Relative 

humidity was maintained below 25 % with a combination of a dry N2 purge and desiccant inside 

the AFM enclosure. Each sample was examined in 1.0 m x 1.0 m areas with a rate of 0.75 Hz 

at a 90o scan angle to minimize topological artifacts. The topography, piezo-response amplitude, 

and phase images were recorded and q-corrected to account for tip-sample resonance amplification 

using the built-in simple harmonic oscillator (SHO) function within the Asylum Research 

software, version 14.16 Histograms of the resulting q-corrected piezo-response amplitude were 

generated, and the mean value of the distribution was extracted and correlated with the appropriate 

applied DC and AC fields. The correlated points are then plotted against the applied DC field to 

find the point in which the applied DC is equal to the surface potential of the sample under 

experimental conditions. This point is then used to find the effective piezo coefficient, deff, of the 

sample with the electrostatic component of the measured response removed.17 

4.3.3  Scanning Kelvin Probe Force Microscopy (sKPFM) 

SKPFM measurements were conducted with Asyelec.01 R2 levers, purchased from 

Asylum Research, to attain the contact potential difference (Vcpd) of each target material on an 

Asylum Research MFP3D. Relative humidity was maintained below 25 % with a combination of 

a dry N2 purge and desiccant inside the AFM enclosure. The deflection was set to ~0.0 V via 

tuning, with a scan z-voltage of 100 V. Start and delta heights were set to 20 nm for all contact 

potential images (NAP scanning in Asylum software) with a trigger voltage of 600-800 mV 

depending on the tune of the lever. A static 1.0 V DC field was established for each measurement 

with sample grounding due to the large applied fields before measurement. The implemented scan 

rate was 0.8 Hz at a 90o scan angle with a 500 x 500 nm scan area. Prior to the measurement of the 
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surface potential, the sample was exposed to a DC field applied via the substrate using the MFP3D 

scan head. 

4.4 Results and Discussion  

Quan et al. used computational methods to predict the ferroelectric properties of 

corannulene and its substituted derivatives.11 Corannulene is a bowl-shaped molecule that can be 

tailored with electron-withdrawing substituents to manipulate the molecular-bowl depth and, thus, 

the energy of the inversion barrier, when anchored to a substrate. A lower inversion barrier 

accesses a pathway for a bowl to bowl inversion of a corannulene derivative below the dielectric 

breakdown voltage of the material.11, 13, 18 If a bowl to bowl inversion becomes possible below the 

dielectric break down voltage, it is likely the molecular film will then have a conformational 

memory to an applied electric field. This "conformational memory" is known as ferroelectric 

character, Figure 20C, where the molecular film undergoes a conformational change in relation 

to the magnitude and direction of the applied field. If this conformational change is retained over 

time the material can be considered ferroelectric. This "conformational memory" for corannulene 

is illustrated in Figure 19B, where the molecule displays three separate states of bowl up or down 

and a flat transition state between the two.11  

Here in a model corannulene derivative, 4,4',4",4"’–(dibenzo[ghi,mno]fluoranthene-

1,2,5,6-tetrayl)tetrabenzoic acid referred to as H4DFT, Figure 19A, is used to assess the 

ferroelectric nature of these bowl-shaped molecules as a well-formed monolayer under ambient 

conditions.7, 11 The benzoic acid substituted derivative of corannulene was chosen as the electron-
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withdrawing groups give a large overall dipole moment, as well as an attachment point for oxide 

surfaces.2, 12, 14, 19-23 

 

 
Figure 19 Schematic of 4,4’,4”,4”’–(dibenzo[ghi,mno]fluoranthene-1,2,5,6-tetrayl)tetrabenzoic 

acid “H4DFT” (A). Schematic of the bowl to bowl inversion of a model corannulene molecule (B).  

Figure 20 highlights the difference in film response to an applied field when the material 

is (a) dielectric, (b) paraelectric, or (c) ferroelectric. Here a dielectric material would display a 

linear change in polarization to an applied field with no net change in polarity over time. Similarly, 

a paraelectric material presents no net polarization shift with time but instead has a nonlinear shift 

in polarization to an applied field. In contrast, a ferroelectric material not only displays a nonlinear 

change in polarization to an external field but a remnant polarization to that field, i.e., there is a 

“memory” to the change in polarization in the material to an applied electric field.1, 24 

  

 

Figure 20 Schematic of example electromechanically coupled responses from (A) dielectric 

materials, (B) paraelectric materials, and (C) ferroelectric materials.1, 15  
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As stated previously, most ferroelectric materials demonstrate piezoelectric coupling in 

addition to the ferroelectric character at the nanoscale.  To investigate the piezoelectric response, 

H4DFT was deposited onto an indium tin oxide (ITO) surface in which the terminal acid groups 

should serve as anchoring points to the substrate in addition to an Au surface where there should 

only be absorption to the surface.20, 21, 23, 25-27 Figure 21 illustrates decreasing aggregate formation 

and surface roughness with decreasing H4DFT solution concentration. Ideal monolayer formation 

requires low surface coverage with little to no aggregate formation after sample washing.25, 28, 29 

Figure 21 indicates that the threshold solution concentration for these conditions occurs at a 

solution concentration of 0.125mM. Here, the appearance of aggregates on the Au surface is 

sufficiently suppressed, ensuring all measured responses are derived from a near single monolayer, 

not an unknown aggregate.  

 

Figure 21 AFM amplitude topography of the resulting films from the exposure to decreasing 

H4DFT solution concentrations on a clean Au surface. The plot represents the correlation of 
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decreasing route mean square (RMS) roughness of the Au/ H4DFT surface with decreasing 

solution concentration.  

The organic molecular nature of the H4DFT film should yield a soft, flexible material 

requiring the implementation of the recently developed and above described DC sweep dual AC 

resonance tracking piezo force microscopy (DC-Sweep DART-PFM).17 By sweeping the DC field, 

the electrostatic response of the film can be separated from the piezoresponse (deff) under ambient 

conditions. Here the electromechanical response was measured under three different AC fields 

from 2.0 up to 3.0 VAC. The responses were then corrected for the VAC and averaged, the resulting 

deff of H4DFT was recorded to be 26.49 pm/V on ITO, Figure 23B. In contrast, when H4DFT is 

solution deposited on an Au surface, where the acid termini do not provide sufficient molecular 

anchoring to the substrate, the recorded deff
 of the molecular film is 7.71 pm/V, Figure 22B. These 

results correlate with computational predictions computed by Keith Werling and literature 

predictions of molecular confirmation on the substrate surface.  

A previous study of similar low coverage corannulene based molecular films on Au by 

STM confirm the molecular bowl to favors a bowl down confirmation, conjugated pi system down, 

on the Au surface.2 In this confirmation the computed piezoelectric constant, d33, is ~9 pm/V. The 

correlation between the predicted d33 of ~9 pm/V and the measured deff of ~8 pm/V indicates the 

H4DFT molecule is likely in a bowl down confirmation on the Au surface.  Stockl et al provided 

a systematic study for the standing up of molecular bowls on a metallic surface.23 Based on 

Stockl’s predictions the carboxylic acid termini of H4DFT should provide sufficient anchoring, 

chemisorption, to the ITO substrate to stand the molecular bowl up on its edge on the surface. The 

computationally predicted d33 for H4DFT in a standing conformation is ~20 pm/V. At roughly 20 

pm/V the computationally predicted value is lower than the experimentally determined effective 
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constant but does not include the possibility of a waging type motion of the unanchored benzoic 

acid groups. Thus, illustrating the possible effect of molecular orientation on resulting 

electromechanical response of the molecular based film. 

 

Figure 22 (A) Effect of applied DC field on H4DFT film on Au response at various AC fields 

using 0.09 N/m levers. (B) DC-dependent response after removal of the AC field and averaging at 

each DC field.   

 

 

Figure 23 (A) Effect of applied DC field on H4DFT film on ITO response at various AC fields 

using 0.09 N/m levers. (B) DC-dependent response after removal of the AC field and averaging at 

each DC field.   
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To ensure the sizeable measured response from the H4DFT film is due to the 

conformational changes of the bowl shaped molecular film  and not an effect of the substituents or 

the conjugated pi system, a control molecule, 1-pyrenecarboxylic acid Figure 24 A, was tested 

based on its similar pi system and acid termination. These features should allow the 1-

pyrenecarboxlic acid to adopt the same confirmation as H4DFT on the ITO surface. The resulting 

response curve from the DC Sweep DART-PFM experiment, Figure 24C, gives a deff 

electromechanical response of 0.291 pm/V when deposited on an ITO surface from a 0.125 mM 

solution. Thus, confirming the large piezoelectric response of the H4DFT film is likely due to its 

molecular bowl confirmation, not the conjugated pi system or the anchoring carboxylic acid. 

 

Figure 24 (A) Schematic of 1-pyrenecarboxylic acid (B) Effect of applied DC field on 1-

pyrenecarboxylic acid film on ITO with responses at various AC fields using 0.09 N/m levers. (C) 

DC-dependent response after removal of the AC field and averaging at each DC field.    
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Figure 25 Schematic of planned experimental procession for the confirmation of ferroelectric 

properties of  H4DFT.2 

With the confirmation of the piezoelectric properties of H4DFT, a schematic of the 

experimental plan to isolate its ferroelectric properties is outlined in Figure 25.10 Here, it is 

hypothesized that when H4DFT is drop cast on to a clean ITO surface, the molecules are initially 

randomly oriented. Once a directional DC field is applied to the substrate, the molecular film will 

reorient, creating a uniform orientation of the molecules on the surface, akin to the polling process 

for classical piezoelectric materials.2, 12 This reorientation can then be enhanced by applying fields 

of increasing magnitudes until the maximum field possible, ±10 VDC via the standard orca holder 

for the MFP3D, is reached, at which point the magnitude of the applied field is inversed until the 

opposite magnitude field is achieved. During this process, after each time a new field is applied to 

the substrate, the surface potential of the film is measured by sKPFM to quantify any changes in 

the electronic structure of the film.  
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Figure 26 SKPFM surface potential of H4DFT on ITO after an applied DC field to substrate (A) 

0.5 minute poling, (B) 1.0 minute poling, and (C) 2.0 minute poling, error bars represent the 

distribution of measured surface potentials over at least four samples. 

Figure 26 illustrates the resulting hysteresis loops from the sweeping of the applied DC 

field to the conductive substrate at different dwell times. Here the “memory” of the molecular film 

to the applied field increases with increasing poling periods. The most significant conformational 

memory occurred at a two-minute poling period under negative DC fields; but a minute poling 

period represents the most uniform remnant polarization. The effect of poling duration on the 

surface potential memory of the material is not unique to this material system. With traditional 

ferroelectric materials, the reorganization of the net polarization should occur on a vibrational time 

scale upon the application of an electric field but often requires a poling period to elucidate.1, 2, 15, 

24, 30 This change in polarization is generally affected by the magnitude and frequency of that field, 

not the duration.1, 24 

Unlike traditional ceramic materials, like lead zirconium titanate (PZT) where the 

ferroelectric character is determined by the degrees of displacement of the central atom in the unit 

cell, the polarization effect in H4DFT is derived from conformational changes in the molecular 

film. Likened to the poling process used with classic piezoelectric materials in which the duration 

of the applied field plays a pivotal role in the net polarization of the material. Since the molecular 

monolayer must reorient under the applied field to generate a change in the net polarization, a 
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likely hindrance in the reorientation exists. This hindrance is likely caused by intermolecular 

interactions, molecule-molecule binding within the monolayer. Additionally, the samples are 

grounded during and after the application of the applied field, indicating that the memory effect 

witnessed in the differing surface potentials of the material is likely due to a conformational change 

in the molecular film, not a charging effect. This is further confirmed by the duration of the 

experimental process in which each point in Figure 25 requires approximately thirty minutes to 

collect, allowing enough time for charge dissipation of the film. This indicates that the effect of 

the poling duration is likely due to steric type hindrances due to the high packing densities of a 

well-formed monolayer. 

The resulting magnitude of the film memory, how open the hysteresis loop is, for the 

H4DFT film on ITO is low under ambient conditions. This is likely due to the film being at a more 

paraelectric state than ferroelectric.1, 15 Ferroelectricity is a temperature-dependent phenomenon 

in which the magnitude of the macro dipole memory will increase with decreasing temperatures—

indicating that ambient conditions are near or above the requirements for the optimal ferroelectric 

character of the H4DFT film to be measurable by the surface potential methodology. 

 

Figure 27 SKPFM surface potential of a bare ITO surface, blue, and a monolayer of 1-pyrene 

carboxylic acid, red, after applied DC field, to substrate with a b 1.0 minute poling period, error 

bars represent the distribution of measured surface potentials over multiple samples. 
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Using the above outlined experimental procedure, a bare ITO surface and a 1-

pyrenecarboxylic acid film on ITO were tested as controls for the H4DFT molecular film. These 

samples demonstrated little to no change in surface potential at maximal applied fields, ±10 VDC, 

further indicating the observed response in H4DFT is due to its para/ferroelectric nature not an 

artifact of the substrate or a charging mechanism as illustrated in Figure 27. 

 

Figure 28 SKPFM surface potential of H4DFT on ITO after an applied DC field to the substrate 

at (A) 17.0 oC, (B) 21.0 oC, and (C) 28.0 oC after a 1.0 min. dwell time; error bars represent the 

distribution of measured surface potentials over at least two samples. 

To isolate the onset of ferroelectric character in the H4DFT film, a set of temperature-

dependent experiments were conducted using a 1.0 min dwell time, representing the most 

consistent remnant polarization in Figure 26. Figure 28 illustrates the increase in remnant 

polarization, witnessed by the change in surface potential, with decreasing temperature. This trend 

towards increasing remnant polarization with decreasing temperature is consistent with classical 

ferroelectric behavior.1, 24, 31 Here, the molecular film’s response to the external stressor moves 

from a more paraelectric state to a more ferroelectric with decreasing temperature.  These results 

indicate that the H4DFT film is undergoing a conformational change to the applied field and not a 

redox mechanism, as this would result in no temperature effect. Additionally, the shift in surface 

potential from native conditions to the initial application of an electric field increases with 
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decreasing temperature. Thus, indicating that the initial reorganization of the film to the applied 

field becomes more uniform with the decrease in temperature.  

4.5 Conclusions 

Here in a predicted ferroelectric material, H4DFT, was tested and confirmed to likely be 

in a transition state from a more paraelectric to more ferroelectric state near ambient conditions. 

The molecular film’s remnant polarization to an applied field, optimized at a 1-minute poling 

period, indicates the film's ferroelectric character. However, long poling times are required to 

generate this conformational change in the film. Suggesting that the molecular dipoles of the film 

are not free to reorganize spontaneously, likely due to the chemisorption of H4DFT to the ITO 

surface through the acid terminated substituents on the corannulene, indicated through the 

correlation of the measured piezoresponse with the computationally predicted values. Further, 

H4DFT displays changes in the magnitude of the remnant polarization with a corresponding 

change in temperature. Indicating that the ten-degree window tested represents the transition from 

a paraelectric to a more ferroelectric state for H4DFT film on ITO. Moreover, H4DFT was 

confirmed to be piezoelectric with a significant piezo coefficient, > 26 pm/V, more than eight 

times higher than previously reported molecular films.6, 8, 17, 24, 32  

Finally, the H4DFT molecular film represents a new class molecular structures that are 

both highly responsive and biocompatible. Still, further testing is required to isolate the conditions 

necessary for a sizeable conformational memory and to isolate the mechanism responsible for the 

long poling periods needed for the exhibition of ferroelectric character.  
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5.0 Lab Scale Manipulation of Single and Multilayer Organic Self Assembled Structures 

This chapter has been adapted with permission from: 

• Miller, N.C.; Hutchison, G. R. Robust Photopatterning of Gold-Thiol Self-

Assembled Monolayers. ChemRxiv. Preprint. 

5.1 Introduction 

Nanoscale materials are prized for their unique and tailorable surface properties. To control 

surface properties, self-assembled monolayers (SAMs) are often implemented as model systems 

based on their ability to form highly tailorable, organized, and precise structures.1-9 These 

attributes have driven the development of many patterning approaches for SAMs, in pursuit of 

increased tailorability for various applications such as nanoscale electronics.2, 3, 5, 10-12 Patterning 

techniques have included  micro-contact printing (µ-CP), subtractive transfer printing, scanning 

probe-based lithography, energetic beam lithography, and many others.2, 7, 8, 11, 13-16 These 

techniques though adaptable, are often limited in scalability and ease of adaptation to new 

systems.7, 17 Alternatively, photolithography, specifically UV photolithography (UVPL), has been 

shown to be a robust and scalable technique for patterning nanoscale soft materials.3, 14, 17-20 

Photolithography, as a non-contact method, minimizes potential for contamination and enables the 

production of arbitrarily complex architectures. UVPL uses a photomask placed on or above a 

SAM, which serves as the photoresist for UV photons. The exposed area of the SAM is 
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photooxidized (e.g., thiols to sulfoxides)21-23 and can be removed or replaced by a secondary SAM 

either through sonication or an exchange mechanism.9, 14, 19, 24-26 

In this work, we will quantify the kinetics controlling the photooxidation of Au-thiol SAMs 

serving as photoresists and gain insight into the stability of the resulting patterned SAM for future 

device implementation. These aspects will be probed using scanning Kelvin probe force 

microscopy (sKPFM) and x-ray photoelectron spectroscopy (XPS).  Previous work has indicated 

that a minimum threshold of intermolecular forces must be achieved for SAMs to remain stable 

during the photooxidation process.22, 23, 27-29 This threshold can be reached via long backbones or 

substituents that generate increased intermolecular interactions such as hydrogen bonding.7 

Additional, research has probed the mechanism for photooxidation with some results showing that 

the presence of ozone is not required for the oxidation of the Au-thiol bond but is a likely 

cataylist.22, 23, 28, 30 Although previous work has generated insights into the reactions occurring at 

the Au-thiol interface, it has yet to quantify the kinetics required for the photooxidation process to 

occur. Additionally, the long-term stability of SAMs and the induced patterns must be tested. 
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5.2 Experimental Methods 

5.2.1  Materials 

SAMs were formed from 16-mercaptohexadecanoic acid (MHDA) (90%), 11-

mercaptoundecanoic acid (MUA) (95%) and 1-dodecanethiol (DDT) (>98%) in pure ethanol 

purchased from Sigma Aldrich and used without further purification. Au-thiol SAMs were formed 

on Bio Gold substrates (90 nm Au with 10 nm Ti adhesion layer on glass)31, which were purchased 

from Thermo Fisher Scientific. TEM grids were used as low-cost, robust photomasks. Grids were 

purchased from TED PELLA Inc. with three different mesh types to give multiple local aperture 

sizes: glider 2000 mesh Cu grids, glider extra fine 2000 circular mesh Cu grids, and glider 400 

mesh Cu grids (~56 m2, 33 m2, and 1370 m2 feature sizes respectively). 

 

5.2.2  Sample Preparation Protocols  

Substrates were used after a cleaning process consisting of multiple ethanol and ultrapure 

water (generated from a Millipore Synergy system, resistivity = 18.2 MΩcm) washings before 

sonication in ethanol for 15 min followed by drying under a N2 flow. Monolayer samples were 

prepared by placing the clean substrate in 1 mM ethanolic solutions of the target material for a 

period of 24 h to ensure maximum uniformity of the resulting monolayer. After the incubation 

period the sample were rinsed with ethanol and water then dried under an N2 flow before being 

placed in a UV blocking container and stored under vacuum. 
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5.2.3  Scanning Kelvin Probe Force Microscopy (sKPFM) 

Atomic force microscopy (AFM) measurements were carried out on an Asylum Research 

MFP-3D atomic force microscope with an N2 gas purge to maintain relative humidity in the 

research chamber below 30%. Scanning Kelvin probe force microscopy (sKPFM) measurements 

were conducted with ASYELEC.01 R2 (R2) silicon cantilevers with an iridium/platinum (5/20) 

coating on the tip/lever (purchased directly from Asylum Research).32, 33 R2 probes have a spring 

constant (kl) of 2.8 ± 1.4 N/M, a tip radius of 25 ± 5 nm, and a resonant frequency of 70 Hz. 

SKPFM mode on the MFP-3D utilizes a conductive probe that is maintained at a set delta height 

(distance above the sample based on the frequency tune of the tip and the initial topography scan) 

and not driven at its resonant frequency. Instead, a DC field is established between the tip and 

sample where a feedback loop cancels out tip vibrations caused by variations in the contact 

potential difference (VCPD) of the sample surface. To maintain scan stability while increasing 

resolution, the delta, and scan heights were kept at 40.0 nm.33 No sample grounding is required 

due to the low dielectric nature of the organic monolayers being investigated.33 All resulting 

sample data were processed using Asylum Research software version 14.23.153 using Igor Pro 

version 6.37. 

5.2.4  X-Ray Photoelectron Spectroscopy (XPS) 

All XPS measurements were conducted on a Thermo Fisher Scientific ESCALAB 250XI 

XPS utilizing an Al k x-ray source (1486 eV) in constant analyzer energy mode. The use of 

maximum allowable spot size, 900 µm, and sample surface neutralization (via an ion gun) were 

implemented to overcome the low density and insulating nature of the SAMs under study. 



Additionally, the samples were analyzed at higher pass energies and longer dwell times with 

increased averaging to optimize the signal to noise ratio.30 

5.2.5  Transmission Electron Microscopy (TEM) 

An FEI-Morgagni transmission electron microscope (TEM) was used to image the mesh 

photomasks. Collected images were then processed using Image J software version 1.48 to 

calculate photomask parameters.  

5.2.6  Photolithography 

UV induced soft photolithography was carried out using a 175 W GE47760 metal halide 

bulb held at variable distances from the sample surface. The radiation dosage was optimized to 

ensure minimum exposure period while maintaining a wide exposure window to allow for 

precise pattern manipulation. The optimization was performed by measuring the intensity at 

variable distances and then converting the intensity to total energy exposure to the exposure 

period. The incident intensity was measured using a Coherent Field Mate laser power meter 

coupled with a Coherent Power Max PM10 detector. After exposure, the resulting SAM can then 

be exposed to a secondary SAM material for replacement or sonicated to be removed from the 

surface to fully develop the pattern (it is noted that a patterned monolayer does exist before this 

step).28 
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5.3 Results and Discussion 

 UV photolithography (UVPL) is a low cost, robust, and scalable technique for introducing 

desired patterns into soft organic materials. Previous work has focused onapplications of UVPL 

for the patterning of Au-thiol SAMs, but not focused on calibration and quantification of the 

lithography process for this application.18, 28, 29 A photodetector was implemented to 

quantify the parameters of the lithography system. Specifically, to ascertain the magnitude 

of the incident irradiation (dosage) present at various source-sample distances. To maintain 

system simplicity, thus allowing for greater ease of application, columnated light was 

not implemented in the lithography system, but a short pass UV filter was 

implemented to reduce sample heating from stray IR radiation.  

It is well known that the incident intensity from the radiation source decreases at a rate of 

r-2.14 In Figure 29A a calibration of incident intensity, 175 W source measured at center of the 

UV emission peak λ ~ 380 nm , vs. source-sample distance gives a relation of r-1.33. This result 

deviates from theory in part due to the reflective nature of the shielding used as an 

engineering safety barrier, generating an increase in background radiation impeding on the 

detector. This coupled with localized heating of the detector, from other reflected unfiltered 

wavelengths, gives rise to the slower drop off in incident intensity over space. Beyond 

quantifying the incident intensity, the total energy exposure was calculated as a function of time, 

at a source-sample separation of 5.0 cm (Figure 29B) after an initial warming period.  
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Figure 29 (a) Rate of change in the incident intensity over a change in source-sample distance 

for a 175 W metal halide light source measured at λ = 380 nm after filtration. (b) Calibration 

curve for the total energy exposure to a sample surface with a source-sample distance of 5.0 cm 

from a 175 W source for a given period. 

Given an accurate calibration of radiation dosage, the relation between the local aperture 

size of the mask and the resulting SAM pattern size can be considered.  The local aperture size in 

this case is determined by the mesh of the transmission electron microscope (TEM) grid used as 

a photomask. While any photomask could be used, commercial TEM grids provide a wide 

variety of choices at minimal cost with robust feature sizes. As photomasks, the precise 

feature sizes associated with each TEM grid mesh type was determined using a TEM. 

Representative samples of each grid were viewed under high magnification with at least eight 

holes in each image. After collection, each image was processed using ImageJ software to 

precisely calculate the width of the bar and the area of each hole in the grid, considering the 

rounded corners of the square mesh grids. Table 7 lists the measured feature sizes, averaged 

over at least ten grids sampled from multiple 
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lots. Unless otherwise noted, these dimensions will be the assumed feature sizes used for pattern 

calibrations below.  

 

Table 6 TEM grid feature sizes with expected specification sizes, and TEM-measured average 

feature sizes including standard errors over at least ten samples. 

Grid Type 
Specified Hole 

Area (m2) 

Hole Area 

(m2) 

Specified Bar 

Width (m2) 

Bar Width 

(m) 

400 Square 1369.0 2038.3 ± 57.5 25.0 28.61 ± 0.42 

2000 Square 56.3 70.01 ± 1.31 5.0 5.92 ± 0.08 

2000 Circular 33.2 52.16 ± 0.85 6.0 5.04 ± 0.13 

 

Photopatterning of SAMs consists of a photon source (UV light), a photo mask (TEM 

grids), and a photoresist (SAM). The photon source is generally a metal halide bulb capable of 

emitting UV photons.4, 20, 26, 28 The UV light generates localized radical oxygen species that 

detectably oxidize the thiol terminus of the SAM. Hindering this technique is the localized heating 

of the SAM by infrared radiation present from the light source causing degradation of the film.  

Zhou et al. previously reported a threshold of intermolecular interactions necessary for stable UV 

photooxidation of Au-Thiol SAMs by using alkane thiols with a backbone length of   12 carbons 

or a tail group capable of hydrogen bonding.28 With a stable oxidized SAM exchange or removal, 

via exposure to a fresh thiol solution or sonication respectively, is possible due to the lower bond 

energy between the oxidized thiol and the Au surface.21, 28 Given the previous exploration of this 

system we chose to use 16-mercaptohexadecanoic acid (MHDA) and 11-mercaptoundecanoic acid 

(MUA) as the photoresist SAMs ensuring both the stability of long alkane backbone and from the 

intermolecular hydrogen bonding from the carbocyclic acid tail group.  
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MUA SAMs were formed on Au coated glass substrates from a 1 mM MUA ethanol 

solution and exposed to varying amounts of UV radiation, using a 2000 square mesh TEM grid as 

the photomask. Once photooxidized, the films were placed in a 1 mM 1-dodecanethiol (DDT) 

ethanol solution for exchange. 

To visualize the patterned SAMs, sKPFM was used to provide surface potential contrast 

between the MUA and DDT regions – the two SAM ligands are similar in height (15 Å vs 15 Å 

for MUA and DDT respectively) so that minimal topographic or phase contrast is present.34 In 

particular, the sKPFM images can be used to determine optimal exposure times in which the 

resulting patterns match the expected feature size from the TEM photomask itself. A film is thus 

defined as underexposed when the resulting surface feature is smaller than the local-aperture 

dimensions and overexposed when the surface feature exceeds the dimensions of the aperture.17, 

19, 35 The relationship between the onset of photooxidation and optimal exposure is illustrated in 

Figure 30. In the sKPFM images, the darker background represents the unphotooxidized MUA 

SAM used as the photoresist, and the brighter regions represent the DDT replacement of 

photooxidized MUA. 



 81 

 

Figure 30 SKPFM images illustrate the influence of total energy exposure and incident intensity 

on pattern formation. The inset times represent the exposure period at a given source-sample 

distance. 

These results in Figure 30 indicate that a dosage equivalent to 1.5 J is required for robust 

pattern formation with this Au-Thiol system. When the incident intensity is high (e.g., 2.5 cm 

source-sample distance), the period needed to reach 1.5 J is short (~0.69 hr); and the exposure 

window between under and overexposure is equally limited. In comparison, when incident 

intensity is low (e.g., at 10.0 cm source-sample distance), the exposure window becomes so large 

that after six hours of UV exposure the photoresist is still underexposed. An optimized balance 
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between controllable exposure and minimal operation time is at an approximate incident intensity 

of 38 W/m2, correlating to a source sample distance of 5.0 cm. In addition to using sKPFM, 

topographic contrast was attempted by exposing 16-mercaptohexadecanoic acid (MHDA) 

monolayers and exchanging with DDT (i.e., an expected height of 20 Å and 15 Å for MHDA and 

DDT, respectively), but greater contrast between the two regions was still found with sKPFM than 

with topology. 

Using an optimal dosage of 38.20 W/m2, the relationship between local aperture size and 

resulting film features was determined. Figure 31 illustrates how the pattern feature size is affected 

by local aperture size for an MUA/DDT system. Both a 2000 square mesh and 2000 circular mesh 

were used, resulting in pattern features to be varied from the smallest reported feature size 45 m2 

up to 80 m2
 before the resulting pattern is overexposed. In contrast, the shift in local aperture size 

from 52 to 70 m2 does not increase the sample dosage for the onset of pattern wash, where the 

film is wholly oxidized resulting in no discernable pattern after ligand exchange. There is a notable 

shift between the two types of mesh for the point at which the patterned feature sizes equals the 

aperture size (i.e., ~2.2 J for the 2000 square mesh vs. ~1.8 J for the 2000 circular mesh). This 

difference is likely due to the square mesh grids having 16.7% larger bar areas. The larger surface 

area of the square mesh itself absorbs more of the incident photons requiring a higher dosage to 

achieve equivalent feature sizes in the SAMs. This confirms that resulting feature size and pattern 

quality is ultimately controlled by quantifying and tuning the incident intensity, not the photomask.  
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Figure 31 Calibration curves for the average relation between total energy exposure and pattern 

hole area for a given aperture size in which the error bars represent the standard error from at least 

eight features.  (a) Change in pattern hole area for an MUA SAM patterned and backfilled with 

DDT using a 2000 square mesh TEM grid as the photomask. (b) Change in pattern hole area for 

an MUA SAM patterned and backfilled with DDT using a 2000 circular mesh TEM grid as the 

photomask. The blue lines represent the pattern hole areas of the TEM grid masks used (Table 7). 

The red lines represent the line of best fit for which the equation of the line and the R2 are provided 

within in the individual plot. 

Finally, the long-term stability of the resulting patterned films must be tested. It has 

previously been shown that alkane-thiol monolayers can oxidize in atmospheric conditions.36 

Figure A26 illustrates that, when properly stored, the autoxidation of the films can be mitigated. 

By using XPS to monitor the oxidization in the S2p lines, the effectiveness of various storage 

conditions can be examined. In Figure A26 a notable shift in the unoxidized S2p peak at 162 eV 

to an oxidized S2p peak at 168 eV occurs when films are left in environmental conditions, but no 

shift in the S2p line occurs when films are placed in UV protected containers and stored under 
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vacuum.30 Therefore, if samples placed in UV blocking containers (e.g., aluminum foil wrapped 

Petri dishes) and stored under vacuum, there is no detectable oxidation of the Au-thiol bond by 

XPS after one week. Indicating the autooxidation of the Au-Thiol bond can be easily prevented; 

resulting in increased stability derived from the removal of atmospheric oxygen (oxidation source) 

and UV photons (catalyst), thus providing long-term stability of the films.  

 

Figure 32 (a) Example sKPFM potential scan of a patterned monolayer of MHDA/DDT using 

2000 square mesh TEM grid as the photomask. (b) Resulting line scan from (a) indicating how the 

slope of the pattern interface is determined. (c) The migration of the pattern hole edge through the 

monitoring of the slope of an MHDA/DDT interface in a patterned film by sKPFM. (d) Example 

histogram of sKPFM potential scan of a patterned monolayer of MHDA/DDT using 2000 square 

mesh TEM grid as the photomask, all histograms SI figure 7. (e) the change in the VCPD of the 

pattern with the sample age as monitored by sKPFM in which blue represents the VCPD of the 

MHDA and DDT respectively.  
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Beyond photo-oxidation of the SAMs, the long-term stability of the patterns themselves 

were examined by monitoring edge migration along a hole/bar interface by sKPFM and the 

variation of the VCPD in both regions over time, Figure 32. Figure 32 A-C walks through the 

process used to determine the slope of the interface between the hole/bar features of the resulting 

patterned monolayer. Here the potential scan of the sKPFM experiment is extracted and a line scan 

is preformed to get the variation across the scan. A flattened base and maximal line are determined 

by averaging points in each region. Once these lines are established, the slope between the terminus 

of one region and the start of the other region is determined. This slope analysis is repeated for 

four-line scans and features on each potential scan, as illustrated in Figure 32B. Figure 32C 

indicates that the slope of the interface between the two the components of the patterned film 

(MHDA and DDT, respectively) increases over time. If entropic mixing between the two patterned 

areas were occurring, the slope of the interface would decrease with time; establishing an 

interfacial region with intermediate surface potential. Instead, the slope of the interface increases 

with time, generating a more well-defined interface as the two materials self-segregate over time.12, 

24, 37 

To confirm the results from the slope measurements the VCPD was tracked via histograms 

as well, as illustrated in Figure 32A, D, and E. Here the trend toward a higher ordered monolayer 

causes an increased separation in the bimodal distribution of surface charges, as witnessed by the 

increased asymmetry in the histograms of the potential scans, Figure 32C and A25. This increase 

signifies that the surface potentials are self-segregating into two distinct populations, rather than 

becoming more homogenous due to increased intermixing.12. 
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5.4 Multilayer Formation 

Controllable patterned multilayer thin films are of critical importance for device 

development for the creation of nanocircuitry and tunable film response. Additionally, multilayers 

can enhance the contrast of uniform thickness patterned monolayers making the pattern observable 

using contact and or tapping topography modes on a standard AFM. 

5.4.1  Multilayer Development Stage 1 

Figure 33 shows the establishment of a patterned monolayer developed to form an 

hexadecanethiol (HDT) monolayer and backfilled with MHDA to establish a mixed alkane/acid 

surface. There is approximately 0.13 nm molecular length difference between HDT and MHDA; 

hence there is no visible pattern in the topography scan by AFM. The KPFM scan reveals the 

pattern due to a difference in the Vcpd between the HDT (Vcpd = 4.0 mV) and MHDA (Vcpd = -11.2 

mV); which can be further monitored for additional reactions.  
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Figure 33 (A) Amplitude heat map after step 1 of patterned multilayer development and (B) KPFM 

heat map, both of an HDT monolayer patterned and backfilled with MHDA using the standard 

procedure. 

5.4.2  Multilayer Development Stage 2 

Once the mixed terminal surface was confirmed the acid terminated molecules could be 

activated through deprotonation by EDC and attachment of PFP to create a selectively reactive 

film.  Figure 34 shows that the film and pattern will remain intact after further reaction at the 

surface. The topography scan still displays no visible pattern which is related to the fact that the 

height difference between the two sections of the pattern should only be approximately 0.4 nm. 

Though this height difference is greater than that after step 1 it is still at the resolution limit of the 

AFM. Again, the maintenance of the pattern and the activation of the acid-terminated molecules 

can be confirmed by KPFM. The KPFM images show a change in the Vcpd from -11.2 mV to -10.9 

mV at the acid terminated sites. 
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Figure 34 (A) Amplitude heat map after step 2 of patterned multilayer development and (B) 

sKPFM potential map, both of an HDT monolayer patterned and backfilled with MHDA using 

the standard procedure. The acid terminated sections of the patterned monolayer are then activated 

with PFP. Giving rise to an HDT/MHDA-PFP film. 

5.4.3  Multilayer Development Stage 3 

After the activation of the acid terminated molecules, they are further reacted with DAH to 

replace the PFP with a diamine. This generates an amine terminated layer that is still Boc- 

protected to prevent further reactions at the terminus until desired. The topography scan in Figure 

35 does not confirm the attachment of the diamine even though the height difference between the 

two sections of the pattern should be approximately 0.8 nm. However, the KPFM image in Fig. 14 

does confirm the maintenance of the film and the attachment of the diamine through a change in 

the Vcpd at the acid terminated molecules from -10.9 mV to -5.2 mV.  
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Figure 35 (A) AFM amplitude and (B) SKPFM surface potential of an HDT monolayer patterned 

and backfilled with MHDA using the standard procedure: the acid terminated sections of the 

patterned monolayer activated with PFP, followed by reaction with DAH to form an 

HDT/MHDA-DAH film.  

5.4.4  Multilayer Development Confirmation 

The step by step development of the multilayer was also monitored by XPS. Figure 36 

shows the N1s and F1s XPS lines (all other recorded spectral lines can be found in the appendix). 

The N1s no observable signal through the first two steps which involves the addition of an acid 

terminated molecule to the monolayer (black) and its activation by PFP (red), both of which result 

in a film without nitrogen present. But, step three (blue) involves the addition of a diamine to the 

film surface which is why there is the appearance of a peak in the N1s line at that step indicating 

a successful multilayer formation. The F1s line further confirms the progression of the multilayer 

development by showing the appearance of a peak at step 2 (red) and its disappearance at step 3 
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(blue), corresponding to the attachment and replacement of PFP on the film surface. It has now 

been confirmed that it is possible to selectively develop a multilayer on a patterned film making it 

available for different chemistries down the road. Unfortunately, there is no evidence that the 

attachment of a single multilayer grants access to film analysis by standard AFM techniques. 

 

Figure 36 XPS confirmation of the patterned multilayer development. (A) is the N1s, and (B) is 

the F1s lines for an HDT monolayer that was patterned and backfilled with MHDA (black line), 

then the acid terminated molecules are activated with PFP (red line), and then reacted with DAH 

(blue line). C1s, Au4f, S2p and O1s can be found in the appendix. 
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5.5 Conclusions 

Photolithographic patterning is widely used in inorganic materials because of the high 

reproducibility. Through careful calibration, UV photopatterning can be a facile, reliable method 

for organic SAMs. Using inexpensive TEM grids as shadow masks with well-defined feature sizes 

and quantifying the impeding energy at the sample surface, it is possible to correlate the resulting 

pattern features with total energy exposure, allowing a predictive model for the desired feature 

size. Both underexposure and overexposure can be minimized using well-defined source-sample 

spacing. 

Quantitative pattern control also confirms the stability of the patterned film, both through 

proper storage and the monitoring of pattern migration at the interfaces across 4 months. Instead 

of entropic mixing, phase segregation is found, at a slow rate not directly obvious by sKPFM 

images. Instead, the change in the slope of the surface potential across interfaces can be monitored 

to confirm pattern stability.12 Based on this careful calibration of exposure and pattern stability, 

UV photopatterning of organic monolayers can be used widely, not only for lab-scale processes, 

but also integrated into micro-nano electronics for future device applications2, 3, 9, 17.  

Further, with well-defined pattern formations the drive toward well tailor devices can be 

realized through the formation of multilayer SAMs. The demonstration of in situ multilayer 

formation, confirmed by XPS and sKPFM, provides an additional tool for the future evaluation of   

previously studied piezoactive materials and the assessment of new materials. 
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6.0 Conclusion and Future Directions 

6.1 Conclusion 

This dissertation has explored the electromechanical properties of molecular-based 

piezoelectric materials and the measurement systems used to determine their unique properties. 

The goal of the above-outlined research was to leverage previously computationally predicted 

insights into the origins of the electromechanical coupling properties in organic molecules to gain 

experimental insight and create a feedback loop to develop new methods to accurately determine 

the electromechanical properties of self-assembled monolayers of these predicted materials. 

Enhancing the accuracy and predictability of future work and drive toward device scale 

implementation of new materials. 

Utilizing atomic force microscopy (AFM), organic molecular self-assembled monolayers 

(SAMs) were investigated to elucidate their nanoscale properties. A set of tailored macromolecules 

(peptides and peptoids) was determined to be piezoactive. The lower Young’s modulus of the 

peptide-based monolayers resulted in statistically higher effective-piezo coefficients (deff) than the 

higher modulus peptoid motif. Interestingly, the control SAM of dodecane thiol was determined 

to have similar piezoresponse to the molecular spring structured macromolecules.  This 

phenomenon indicates that the polarization induced by the anchoring of these organic molecules 

to a metallic surface could likely be a contributing factor to their measured response to applied 

voltages. Though this is a possible mechanism it is unlikely that these three vastly different 

molecular structures would give similar response due to the large variance in the theoretical 

Young’s modulus of these films. Due, to this, difficulties with reproducibility, and the large 
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percentage of error points in all the collected data, due to poor frequency tracking,  it was 

determined that a new method with increased sensitivity to these low-response soft materials 

needed to be developed to confirm these trends hold true.  

Through contact resonance enhancement of the tip-sample interface by dual AC resonance 

tracking piezo force microscopy (DART-PFM) it is possible to simultaneously increase the 

sensitivity of the measurement system while reducing the sources of error in the measurement 

system. This contact resonance enhancement can be further leveraged to enhance the signal to 

noise ratio of the experiment by using low spring constant levers. With the implementation of 

lower spring constant levers the molecular films are no longer being restricted by the force applied 

by the in-contact lever when an electric field is applied. The drawback to this increased freedom 

is the electrostatic component of the measured film response is no longer being restricted by the 

lever and must be accounted for to attain the true electromechanical response of the films. Based 

on the physics controlling the measurement system a new DC-Sweep DART-PFM methodology 

was developed allowing for the accurate determination of the deff of the previously studied 

macromolecules, plus several small-molecule controls and crystalline based reference materials. 

The addition of a DC field sweep to the classical AC field sweep method allows for the 

determination of the in-situ point in which the electrostatic component of the resulting measured 

electromechanical response is at absolute zero. By implementing this new methodology, we were 

able to determine that the previously reported responses were attained at the noise floor of the AC 

sweep methodology and the root cause of the high error density in the collected data. With the 

retesting of a representative peptide and peptoid, from the previously reported experiments in 

chapter 2, it was determined that not only were the peptides more responsive than the peptoids; 

but the likely have a negative effective piezo coefficient.  
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Further, we confirmed that the dodecane thiol and mercaptoundecanoic acid films have 

effective piezocoefficients close to zero which is more in line with their small macrodipoles and 

lack of a low resistance mechanism for molecular deformation.   These findings will open the door 

to the accurate determination of the vast library of “soft” piezoactive materials, as well as those 

with negative piezo coefficients (meaning the material compresses under an applied field opposed 

to expanding) that were previously inaccessible by PFM methods. 

Leveraging the newly developed DC-sweep DART-PFM methodology in chapter 3 the 

scope of the possible organic-macromolecular based films that can be tested for piezoelectric 

character was expanded to include potentially ferroelectric organic materials in which the net 

polarization of the film can be manipulated with the application of a coercive field. The deff of an 

example corannulene derivative, tetrabenzoic corannulene (H4DFT), was determined and strides 

towards the confirmation of its ferroelectric properties were made.  As stated in chapter 3 for a 

material to have ferroelectric character it will additionally possess piezoelectric character. Thus, 

the effective piezoelectric coefficient of H4DFT and a control molecule were determined. The 

effective piezo coefficient of H4DFT was found to be much higher, ~26 pm/V, than that of the 

not only the pyrene control molecule but the molecular-spring based peptides/peptoids.  

At ~26 pm/V the H4DFT film represents an approximately ten-fold increase in 

piezoresponse for this bowl-shaped molecule when compared to the molecular spring-based 

molecules. With the establishment of the piezoelectric nature of H4DFT we could progress to the 

investigation of its possible ferroelectric properties. Under ambient conditions it was determined 

that H4DFT was likely operating at a near paraelectric state in which there is minimal remnant 

polarization, but still a nonlinear response to an applied electrical field.  This response is likely 

due to ambient conditions being too high in energy for the ferroelectric properties of the film to 
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persist. Further temperature-controlled investigations revealed that the H4DFT film moves from 

ferroelectric to paraelectric at near room temperature conditions. Here the remnant polarization of 

the film was maintained/increased with decreasing temperature, consistent with classical 

ferroelectric materials. With the likely confirmation of ferroelectric character and relatively high 

effective piezocoefficients these new bowl-shaped materials, represent a new class of 

macromolecular based films in the drive toward record organic-based electromechanical materials. 

The work conducted in chapters 2 through 4 has steadily expanded the understanding of 

the design principles necessary for the optimization of organic molecular-based piezoelectric 

materials. Though important, these strides are useless without the ability to harness these materials 

and turn them into usable devices. In chapter 5 we explored lab-scale UV photolithography to 

introduce precise nanoscale patterns into the films. Using representative films formed from small 

thioalkanes, allowed us to establish the energy requirements to selectively oxidize the gold-thiol 

bond and replace the oxidized portion of the film with a secondary monolayer. The ability to 

selectively oxidize parts of a monolayer not only opens the pathway to future device 

implementation, but a more quantitative assessment of novel piezo and ferroelectric materials by 

garnering the ability to place control molecules within a molecular-based film. Building upon the 

successful introduction of patterns to the representative SAMs, we looked to selectively form 

multilayers within the patterned films.  The oxo-amine coupling mechanism was selected for its 

selectivity for acid terminated molecules allowing for precise control over reaction location and 

the ease of monitoring reaction progression by sKPFM.  This mechanism was demonstrated to 

garner the ability to control reaction location and form a bilayer by sKPFM and XPS for the first 

time.  
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In conclusion, the work represented within this document has proved to further the 

collective knowledge of the electromechanical coupling characteristics of organic-based 

molecular films at the nanoscale. Demonstrating the need for a flexible yet well-ordered molecular 

film for an optimal piezoelectric response from the organic biocompatible materials. Thus, 

severing as the foundation for the design of more responsive materials and providing 

methodologies to for the quantitative determination of their nanoscale electromechanical 

properties. 

6.2 Future Directions 

This section serves as a reference and a starting location for the future investigation of 

electromechanical coupling in organic-based molecular films at the nanoscale. 

The development of a new highly quantitative methodology for the determination of the 

converse piezoelectric response in soft organic materials in chapter 3 of this document requires the 

reassessment of the influence of sequence and folding of peptides and.1, 2 By circular dichromatism 

(CD) there is a trend in both the peptides and peptoids, in chapter 2, for increasing percent helical 

population in solution. This trend indicates that there should be a gradient from “softer” molecular 

springs to “stiffer” molecular springs present in the resulting monolayer films of these tailored 

molecules. The initial investigation of organic molecular spring-based films, implementing known 

methodologies of the time, was inconclusive towards the effect of this gradient. With the enhanced 

resolution of the new DC Sweep methodology it may become possible to elucidate the effect of 

this gradient. The results of which, accurate experimental determination of deff, will enhance the 

feedback loop between experimentation and computational property prediction by confirming 



 97 

what molecular properties garner the greatest influence over the resulting properties of the 

molecular films. 

Additionally, in chapter 2 Haley Grim established synthetic pathways to tailorable peptide 

and peptoid motifs.2 The piezoelectric response of these molecular springs indicates that softer 

more flexible backbones lead to higher effective piezocoefficients, peptides ~ 41 % higher than 

the control DDT and ~ 59 % higher than the peptoids. Artificial peptoids are naturally more 

flexible then peptoids, but in chapter 2 a R-2-methylbenzyl motif was used in high ratios to 

increase the backbone rigidity of the synthesized peptoids above that of the peptides.2-7 With a 

sequence containing the methylbenzyl motif at lower ratios or the substitution of it for less helical 

forming side chains such as R-2-cyclohexylmethyl could lead to higher piezoelectric constants.5-8 

The pursuit of more flexible and polar peptoid sequences is advisable considering Gayatri’s et. al 

investigation into the computational determination of the origin of negative piezoresponse in 

peptides witnessed in chapter 3.9, 10 Gayatri found, based on Werling et al work illustrating the 

negative piezoelectric response of hydrogen bounding to an applied field, that the hydrogen bonds 

in the backbone of an -helical peptide contract under applied fields.9, 10 This contraction of the 

hydrogen bonds can be overcome by a large macro dipole assuming there is little steric hindrance 

in the breathing mode of the molecule.9 Unlike, -peptides the helical forming nature of the 

peptoids is driven by steric clash and electrostatic repulsions in the side chains rather than 

hydrogen bonding effectively eliminating the counter active motion of the hydrogen bonding under 

an applied field.2, 6, 7 This coupled with higher macro dipoles, achievable through the 

implementation of more residues in the peptoid, could lead to molecular springs with higher 

piezocoefficients.    
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Chapter 5 of this document lays the foundation for the investigation of ferroelectricity on 

the nanoscale. This work has established a new class of piezoelectric materials with tailorable 

properties via the foundation of the conformable molecular bowl shape or the constituents placed 

upon the bowl.8, 11-14 These synthetic knobs augment the molecular bowl depth, the anchoring 

motif of the molecule to the desired surface, or both simultaneously. Previous work has shown this 

class of molecules to invert their macrodipoles under an applied electrical  field, but no complete 

experimental hysteresis loop has been established to ascertain the true ferroelectric character of 

these molecules.12, 15 Here, we have established methodologies to extract the ferroelectric 

hysteresis of molecular films of these materials. H4DFT was proven to display para/ferroelectric 

character around ambient conditions. Quan et al computationally predicted the ferroelectric 

character of corannulene and several other molecular bowls, Figure 38. Here, they demonstrated 

that a fourfold decrease in inversion energy with decreasing molecular bowl depth in corannulene. 

This is essential since the unsubstituted corannulene and sumanene with bowl depths of ~ 0.86Å 

will not invert in fields less than ± 10V/nm. In contrast shallower bowl depths found in the 

unsubstituted pyrene and perylene structures, with bowl depths of 0.632 Å and 0.512 Å, display a 

bowl to bowl inversion at fields of ± 2.83 V/nm and ±2.8 V/nm, respectively. This indicates with 

the addition of electron withdrawing groups to the bowl lip of the pyrene and perylene in Figure 
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37, a molecular film with pure ferroelectric character near or at room temperature maybe 

achievable.12, 14, 15 

 

Figure 37 Scheme of corannulene 1, sumanene 2, 1,4-dihydro-as-inaceno[2,1,8,7-cdefg]pyrene 3, 

and 1,6-dihydrodicyclopenta[ghi,pqr]perylene 4. Reproduced with promission from author.12  

Chapter 6 investigates the implementation of UV-photolithography was optimized for 

molecular films and the stability of the resulting patterned films was confirmed. This system for 

pattern introduction must now be expanded to more complex molecular confirmations, such as the 

direct patterning of molecular springs and bowls, to allow for future device implementation of 

piezoelectric molecular films. The achievement of controlled pattern introduction in complex 

molecular films should then be leveraged for the development of films with built-in controls to 

further enhance the accuracy of the DC-Sweep DART-PFM method developed in chapter 3.  

Thereby, increasing the accuracy and precision in the screening of new molecular piezoelectric 

materials.  

The controlled photooxidation of gold-thiol bonds can be leveraged to measure the in situ 

dielectric constants of novel materials at the nanoscale. The selectively oxidized gold-thiol bonds 

can be cleaved through extensive sonication generating patterns of monolayer vs bare gold. The 

bare gold can then be used as the reference material for the measurement of the dielectric constant 

of the monolayers.16, 17 

𝜖𝑟(𝐷) = 2ℎ[−2𝑧 − 𝑅1 + ((2𝑧 + 𝑅1)2 − 4𝑧(𝑧 + 𝑅1) + 4 (
(𝑉−𝑉𝑠𝑝)

2
𝜋𝜀0𝑅𝑅1

𝐾(𝐷−𝐷0)
)

−
1

2

]−1             Eq. 6.116 
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By applying Eq. 6.1 to an sKPFM scan on a patterned sample of bare Au and monolayer 

the dielectric constant of the monolayer (ϵr) with respect to cantilever deflection can be determined. 

Here h is the thickness of the monolayer, z is the initial delta height of the scan over the bare gold 

minus the cantilever deflection and film thickness (h). R1 represents the tip radius (R) minus the 

product of 1 minus the sine of the tips cone angle. The spring constant of the lever is represented 

by K and Do is the initial cantilever deflection over the bare Au surface. By obtaining the dielectric 

constants for piezoactive molecular-based films the classical d33 can be effectively converted to 

the g33 of the material.16 The g33 is the piezoelectric voltage constant, equal to the d33 over the 

dielectric constant ϵr, which quantifies a material’s ability to generate an electric field under applied 

stress.3, 18 This value gives insight into the suitability of a material for sensing applications in 

contrast to the energy harvesting applications of the piezoelectric charge constant d33. 

Lastly, the ability to selectively produce multilayer films can be garnered to enhance the 

magnitude of film response from low piezo coefficient materials. The formation of a multilayer 

simultaneously increases the signal to noise ratio of the experiments (accuracy) while establishing 

the relationship between film thickness and the resulting piezo coefficient. This additional tunable 

parameter garners insight into an additional experimental variable to put back into property 

prediction of future optimal organic molecular-based materials.  
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Appendix A Supplementary Information for the Influence of Molecular Structure on a 

Self-Assembled Monolayer’s Piezoresponse 

Appendix Table  1 MALDI-TOF MS data for peptides 1-3 and peptoids 4-6. 

 m/z (monoisotopic) 

# Calculated  Observed  

1 1262.7a 1263.7 

2 1220.7a 1221.4 

3 1178.6a 1179.5 

4 1269.6b 1269.5 

5 1131.6b 1131.8 

6 1039.5b 1039.6 

a [M+H]+ ion; b [M+Na]+ ion 
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Appendix Figure 1 Analytical HPLC chromatograms of purified peptides 1-3 and peptoids 4-6. 
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Appendix Figure 2 Representative N1s, S2p, and Au4f XPS spectra for peptides 1-3. 
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Appendix Figure 3 Representative N1s, S2p, and Au4f XPS spectra for peptoids 4-6 and control 

dodecanethiol (DDT). 
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Appendix Figure 4 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of DDT on gold. (A) Chemical structure of DDT. (B) Height image from DART-PFM 

measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART amplitude 

(Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in panel (C). (E) 

Linear regression of the histograms in panel (D) vs applied voltage; equation for the best-fit line 

is shown, in which d33 is the slope. 
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Appendix Figure 5 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptide 1 on gold. (A) Chemical structure of peptide 1. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix Figure 6 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptide 2 on gold. (A) Chemical structure of peptide 2. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix Figure 7 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptide 3 on gold. (A) Chemical structure of peptide 3. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix Figure 8 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptoid 4 on gold. (A) Chemical structure of peptoid 4. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix Figure 9 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptoid 5 on gold. (A) Chemical structure of peptoid 5. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix Figure 10 Representative raw DART PFM data for analysis of a self-assembled 

monolayer of peptoid 6 on gold. (A) Chemical structure of peptoid 6. (B) Height image from 

DART-PFM measurement at an applied voltage of 1.5 V. (C) Images depicting q-corrected DART 

amplitude (Δt) at the indicated applied voltage. (D) Histogram analysis of the images shown in 

panel (C). (E) Linear regression of the histograms in panel (D) vs applied voltage; equation for the 

best-fit line is shown, in which d33 is the slope. 
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Appendix B Supplementary Information for the Optimization of Nanoscale 

Electromechanical Coupling Evaluation Methods 

 

Appendix Figure 11 Suggested VDC sweep technique on non-fixed polar piezoelectric materials 

in which the remnant polarization switches under the coercive field. 
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Appendix Figure 12 Relationship between tip response and kl for various SAMs using AFM 

levers with spring constants from 0.02-2.8 N/m, for (a) DDT, (b) MUA, (c) peptide A and (d) 

peptoid B respectively. The best-fit line is to y = a + bxc. 

Appendix Table 2 Summary of tip-dependent (kl) response across four organic self-assembled 

monolayers, indicating best-fit parameters of tip response to a + bxc. 

Material Constant (a) Coefficient (b) Power (c) R2 

DDT -0.786 6.35 -0.901 0.886 

MUA 0.973 2.52 -1.21 0.903 

Peptide A 2.51 0.899 -1.83 0.965 

Peptoid B 1.73 3.57 -1.52 0.988 
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Appendix Figure 13 Relationship between tip response and kc for various SAMs using AFM 

levers with spring constants from 0.02-2.8 N/m, for (a) DDT, (b) MUA, (c) peptide A and (d) 

peptoid B respectively. The best-fit line is to y = a + bx-1.  

Appendix Table 3 Summary of tip-dependent (kc) response across four organic self-assembled 

monolayers, indicating best-fit parameters of tip response to a + bx-1. 

Material Constant (a) Coefficient (b) R2 

DDT 0.342 247 0.932 

MUA 0.239 162 0.927 

Peptide A -1.02 207 0.944 

Peptoid B -4.24 331 0.992 
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Appendix Figure 14 Relationship between tip response and kc for various SAMs using AFM 

levers with spring constants from 0.02-2.8 N/m, for (a) DDT, (b) MUA, (c) peptide A and (d) 

peptoid B respectively. The best-fit line is to y = a + bxc. A replotting of Figure 2 from the main 

text but in log linear scaling to emphasize the asymptotic nature of the fits. 
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Appendix Table 4 AMFM results for the measurement of kc with corresponding kl based on 

implemented lever. 

Material Lever kl (N/m) kl (N/m) k* (N/m) k* Error (N/m) 

QCM 

2.8 1.66x106 1684 165 

0.09 4.41x104 132.9 54.1 

DDT 

2.8 1.69x106 1937 162 

0.09 3.69x104 131.3 35.0 

MUA 

2.8 1.66x10e6 1272 197 

0.09 3.51x104 103.5 35.8 

Peptide A 

2.8 1.68x106 1174 158 

0.09 3.59x104 26.77 8.13 

Peptoid B 

2.8 1.73x106 1244 140 

0.09 3.41x104 65.10 26.4 

Appendix Table 5 Coefficient values and calculated d33 from tip response as a function of VAC on 

peptoid B using 0.09 N/m kl levers at varying VDC. 

VDC (V) R2 Intercept (pm) deff (pm/V) 

3.0 0.998 7.19 241 

2.0 0.995 13.9 148 

1.0 0.956 22.8 50.6 

-1.0 0.991 -32.6 137 

-2.0 0.996 -35.7 229 

-3.0 0.999 -38.0 325 
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Appendix Figure 15 PFM tip response from VDC sweep technique on PZT at 3.0 VAC with R2 

levers (2.8 N/m). The resulting slope of the fit was 5.51 pm/VDC with an R2 value of 0.704. With 

a calculated deff of 143 pm/VAC. 
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Appendix Figure 16 (a) PFM tip response from VDC sweep technique on ZNO with TRS levers 

(0.09 N/m) at varying VAC. (b) DC- dependent response. (c) PFM response from VAC at indicated 

VDC. (d) Measure VCPD as a function of VAC. 
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Appendix Table 6 Coefficient values and calculated d33 from tip response as a function of VDC on 

ZNO using 0.09 N/m kl levers at varying VAC. 

VAC (V) VCPD (V) Slope (A) R2 deff (pm/V) 

4.0 0.480 278 0.999 0.040 

3.0 0.412 185 0.999 1.61 

2.0 0.356 86.0 0.996 -1.54 

1.0 0.343 43.9 0.999 -0.291 

NA 0.401 87.5 0.999 1.90 

Appendix Table 7 Coefficient values and calculated d33 from tip response as a function of VAC on 

ZNO using 0.09 N/m kl levers at varying VDC. 

VDC (V) R2 Intercept (pm) deff (pm/V) 

3.0 0.996 -27.5 247 

2.0 0.997 0.675 144 

1.0 0.980 12.2 47.3 

0.5 0.996 0.740 12.3 

-0.5 0.995 -41.9 100 

-1.0 0.997 -50.3 151 

-2.0 0.999 -62.7 248 

-3.0 0.999 -62.8 336 



 120 

 

Appendix Figure 17 PFM tip response from VDC sweep technique on PPLN at various VAC using 

R2 levers (2.8 N/m). (a) and (b) represent measured response of PPLN with phase up (+180o) and 

phase down (-180o) respectively. 

Appendix Table  8 SKPFM results for the measurement of VCPD for various materials using 2.8 

N/m levers. 

Material VCPD (mV) Error (mV) 

DDT 172 5.95 

MUA -198 19.6 

Peptide A -139 16.2 

Peptoid B -362 23.6 

QCM 1100 161 

ZnO -745 160 
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Appendix C Supplementary Information for the Lab Scale Manipulation of Single and 

Multilayer Organic Self Assembled Structures  

 

Appendix Figure 18 Calibration curve for the total energy exposure to a sample surface with a 

source-sample distance of 2.5 cm from a 175 W source for a given period. 
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Appendix Figure 19 Calibration curve for the total energy exposure to a sample surface with a 

source-sample distance of 10.0 cm from a 175 W source for a given period. 

 

Appendix Figure 20 TEM images of three mesh type TEM grids used as photomasks (a) 400 

square mesh, (b) 2000 square mesh, and (c) 2000 circular mesh. 
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Appendix Figure 21 Rate of change in the incident intensity over a change in source-sample 

distance for a 175 W metal halide light source measured at  = 380 nm fitted to a fixed exponent 

of -2. 
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Appendix Figure 22 SKPFM surface potential (VCPD) images of a MUA SAM patterned and 

backfilled with DDT using a 2000 square mesh TEM grid as the photomask. 

 

 

Appendix Figure 23 SKPFM surface potential (VCPD) images of a MUA SAM patterned and 

backfilled with DDT using a 2000 circular mesh TEM grid as the photomask. 
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Appendix Figure 24 SKPFM amplitude scans of a MHDA SAM patterned and backfilled with 

DDT using a 2000 square mesh TEM grid as the photomask as a factor of sample age with (a) 1 

day, (b) 7 days, (c) 30 days, (d) 57 days, (e) 91 days, (f) 127 days, and (g) 171 days. 
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Appendix Figure 25 SKPFM surface potential (VCPD) scans of a MHDA SAM patterned and 

backfilled with DDT using a 2000 square mesh TEM grid as the photomask as a factor of sample 

age with (a) 1 day, (b) 7 days, (c) 30 days, (d) 57 days, (e) 91 days, (f) 127 days, and (g) 171 days. 
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Appendix Figure 26 SKPFM surface potential (VCPD) histograms of a MHDA SAM patterned 

and backfilled with DDT using a 2000 square mesh TEM grid as the photomask as a factor of 

sample age with (a) 1 day, (b) 7 days, (c) 30 days, (d) 57 days, (e) 91 days, (f) 127 days, and (g) 

171 days. 
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Appendix Figure 27 XPS S2p spectrum for monitoring the oxidation of S in an Au-thiol SAM of 

DDT. The black trace relates to a freshly prepared DDT SAM, and the red track is the same SAM 

after one week of exposure to ambient conditions. The blue trace represents a freshly prepared 

DDT SAM with the pink trace correlating to the same SAM after one week in an evacuated 

desiccator shielded in an Al foil wrapped Petri dish. 
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Appendix Figure 28 C1s lines for multilayer confirmation by XPS. 

 

Appendix Figure 29 Au4f lines for multilayer confirmation by XPS. 
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Appendix Figure 30 S2p lines for multilayer confirmation by XPS. 

 

Appendix Figure 31 O1s lines for multilayer confirmation by XPS. 
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