Wild snakes harbor West Nile virus

C.R. Dahlin a,b, D.F. Hughes b, W.E. Meshaka Jr. c, C. Coleman a, J.D. Henning a

a Department of Biology, University of Pittsburgh at Johnstown, Johnstown, PA 15904, United States
b Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
c Section of Zoology and Botany, State Museum of Pennsylvania, 300 North Street, Harrisburg, PA 17120, United States

Abstract
West Nile virus (WNV) has a complex eco-epidemiology with birds acting as reservoirs and hosts for the virus. Less well understood is the role of reptiles, especially in wild populations. The goal of our study was to determine whether a wild population of snakes in Pennsylvania harbored WNV. Six species of snakes were orally sampled in the summer of 2013 and were tested for the presence of WNV viral RNA using RT-PCR. Two Eastern Garter Snakes, Thamnophis sirtalis sirtalis tested positive for viral RNA (2/123, 1.62%). These results indicate a possible role for snakes in the complex transmission cycle of WNV.

Article history:
Received 14 July 2016
Received in revised form 20 September 2016
Accepted 21 September 2016
Available online 22 September 2016

Keywords:
West Nile virus
Snake
RNA
Flavivirus
Reptile
Virus

West Nile virus (WNV) has posed enormous health problems both to the public and wildlife since it arrived in the United States in 1999. Costs to wildlife have been arguably higher as compared to humans; millions of birds have died from WNV and for some species and locales >50% of the population has perished [1]. Although the importance of birds in WNV transmission is well-understood, the eco-epidemiology of WNV is complex and the role that other vertebrates might play in the transmission cycle is virtually unknown. It has been shown that reptiles play a role in the transmission cycle of other flaviviruses, such as western and eastern equine encephalitis virus and St. Louis encephalitis virus [2–10]. In laboratory settings, several species including Green Iguanas (Iguana iguana), Eastern Garter Snakes, Red-Ear Sliders (Trachemys scripta elegans), North American Bullfrogs (Liobates catesbeianus) and Western Fence-Lizards (Sceloporus occidentalis) develop detectable viremia titers of WNV [11–13], and snakes have died after developing high titers of WNV [12]. Among the herpetofauna, WNV has been shown to be most pathogenic in Crocodilians, causing high titer viremias in several countries (For a review see [14]). Despite the mounting evidence that reptiles may indeed play a role in WNV ecology, knowledge of WNV in reptiles generally comes from experimental infections or farmed individuals rather than wild populations. Nevertheless, a recent study found that WNV antibodies in wild Morelet’s crocodiles (Crocodylus moreletii) in Mexico were as high as 41%, indicating that studies on wild animals can provide novel insights into the eco-epidemiology of WNV [15].

In order to better understand the eco-epidemiology of WNV in non-avian wildlife, we set out to assess the presence of WNV RNA in wild snakes. We conducted our study in Pennsylvania, a state that has harbored WNV since 2000 and exhibits fluctuating levels of WNV [16]. For example, 2003 represented a high year with all 67 counties testing positive for WNV, while 2013, the year of our study, was intermediate with 42 positive counties and 5.9% of mosquito pools testing positive. West Nile virus increased again in 2015 with 56 positive counties and 14.5% of mosquito pools testing positive [16]. The presence of WNV in Pennsylvania’s wildlife has been only monitored through sporadic testing of live birds [17] and to our knowledge there are no reports on WNV testing in Pennsylvania reptiles.

Snakes were sampled between May and July 2013 at one wetland site and various grassland sites at Powdermill Nature Reserve (PNR), which is a field station owned and operated by the Carnegie Museum of Natural History (40°10’N, 79°16’W; elevation 400 m). The reserve is 856.2 ha in size and located in Rector, Westmoreland County, Pennsylvania. Snake populations have been monitored at PNR since 2002 using 1 × 3 m corrugated metal cover boards [18]. In the 2013 sampling season snakes were being monitored for ecological purposes under Permit No. 119 of the Pennsylvania Fish and Boat Commission, which also allowed us to opportunistically sample snakes for WNV. All captured snakes have been fitted with AVID Passive Integrated Transponder Tags [18], which allowed for individual identification of previously captured and new snakes. Captured snakes were individually marked, species and sex identified, and orally swabbed with a long sterile cotton swab.
Nerodia sipedon sipedon
Water Snake, species with sample sizes that were calculated adjusted Wald intervals and LaPlace point estimates for all Borne Infectious Diseases, Centers for Disease Control and Prevention from the reference collection maintained at the Division of Vector- was analyzed by agarose gel electrophoresis and the DNA was visual-

Northern Ringneck Snake, (5/9 individuals became viremic with up to 105 PFU/mL serum), and indicated this species can reach detectable viremia titers once infected (5.9 individuals became viremic with up to 105 PFU/mL serum), and that some individuals can sustain viremia for up to 11 days [12]. These findings suggest that Eastern Garter Snakes may not only harbor WNV, but may also serve as competent hosts for the Culex mosquitoes that live in the East [26]. An 11 day period of viremia [12] is longer than the 1–4 day periods that have been observed in other vertebrates [11,27–29], which may increase the potential for transmission from infected snakes, highlighting the need for further research [26]. In addi-

Teeth. Five microliters of RNA and 50 pmol of each primer were used in a 50-

Vital RNA was converted to cDNA by utilizing the PowRSbyr One-Step RNA to CT Kit from Life Technologies. The RNA we found is evidence of persistence, for which WNV are so low in Westmoreland County, it raises the possibility that the RNA we found is evidence of persistence, for which WNV RNA was extracted from oral samples by using the QIAamp viral RNA kit (QIAGEN, Valencia, Calif.) [19,20]. RNA was eluted from the Qiagen columns in a final volume of 100 μl of elution buffer and was stored at − 20 °C to preserve viral RNA.

Table 1
Sampling information and WNV positivity for snake species sampled at the Powdermill Nature Reserve, Westmoreland County, Pennsylvania, USA, in 2013.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample size</th>
<th>Sex of snake</th>
<th>WNV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diadophis p. punctatus</td>
<td>7</td>
<td>Male</td>
<td>0</td>
</tr>
<tr>
<td>Nerodia s. sipedon</td>
<td>6</td>
<td>Female</td>
<td>0</td>
</tr>
<tr>
<td>Scotophis spiloides</td>
<td>4</td>
<td>Unknown</td>
<td>0</td>
</tr>
<tr>
<td>Storeria d. dekayi</td>
<td>2</td>
<td>Male</td>
<td>0</td>
</tr>
<tr>
<td>Storeria o. occipitomaculata</td>
<td>30</td>
<td>Female</td>
<td>0</td>
</tr>
<tr>
<td>Thamnophis s. sirtalis</td>
<td>73</td>
<td>Male</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>Female</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

To assess the confidence of no infection in the absence of disease, we calculated adjusted Wald intervals and LaPlace point estimates for all species with samples sizes that were > 10 individuals [22].

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>N WNV positive</th>
<th>Low CE</th>
<th>High CE</th>
<th>Margin of Error</th>
<th>Point Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storeria s. occipitomaculata</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Thamnophis s. sirtalis</td>
<td>73</td>
<td>2</td>
<td>0.002</td>
<td>0.1</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Conflct of interest statement

Conflicts of interest: none.

Acknowledgements

Thanks are due to the staff of PNR and the Carnegie Museum of Natural History, especially Luke DeGroote, for his tireless support of our collaborative projects, the Director of PNR, John Wenzel, and PNR’s Operations Coordinator, Cokie Lindsay, for their support throughout all research projects conducted at the station. We also acknowledge PNR’s previous GIS Manager, James Whitacre, for his cartographical efforts. We would like to thank Frank Jenkins of the University of Pittsburgh for providing laboratory space and assistance with sample processing. Corinne Bozich assisted with sample processing. Statistical advice was provided by Luis Bonachela. Special thanks are due to Robert Leberman for his invaluable insight and companionship throughout many PNR projects. Funding for this project was provided by the Central Pittspurgf for providing laboratory space and assistance with sample processing.

PNR’s previous GIS Manager, James Whitacre, for his cartographical efforts. We would like to thank Frank Jenkins of the University of Pittsburgh for providing laboratory space and assistance with sample processing. Corinne Bozich assisted with sample processing. Statistical advice was provided by Luis Bonachela. Special thanks are due to Robert Leberman for his invaluable insight and companionship throughout many PNR projects. Funding for this project was provided by the Central Resource Development Fund (9009626) from the University of Pittsburgh and by the Alice Waters Thomas Fund and the Mentorship Fund from the University of Pittsburgh at Johnstown.

References


