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Abstract 

Bayesian Networks for Diagnosing Childhood Malaria in Malawi 

 

Sanya Bathla Taneja, B.Tech. 

 

University of Pittsburgh, 2020 

 

 

 

 

Infectious diseases such as malaria are responsible for the majority of under-five deaths in 

low- and middle-income countries. Accurate diagnosis and management of illnesses can help in 

reducing the global burden of childhood morbidity and mortality. While trained healthcare workers 

deliver treatment for common childhood illnesses in healthcare facilities in Malawi, there is a 

significant lack of diagnostic support in rural health centers. With recent trends in artificial 

intelligence in global health, we hypothesize that a data-driven approach to diagnosis of childhood 

illnesses may address the challenges faced in health centers in low-resource countries. In this 

study, we aim to utilize Bayesian networks to diagnose cases of childhood malaria in Malawi. We 

develop two Bayesian network (BN) models for diagnosis of malaria using clinical signs and 

symptoms. The first model is created manually, while the other combines an Augmented Naïve 

Bayes approach with model editing by an expert. The models are learnt using a national survey 

dataset which contains sick child observations including patient information, diagnosis, and 

symptoms. The target malaria diagnosis is taken as the result of the malaria rapid diagnostic test 

(mRDT). The performance of the BN models is further compared to traditional machine learning 

classifiers on the basis of accuracy, area under the receiver operating characteristic curve (AUC), 

F1 score, sensitivity and specificity. We also present an experimental framework that can be used 

to model the malaria diagnostic support in the rural health centers. The manually created BN model 

achieves accuracy of 63.6% and AUC of 0.583. The Augmented Naïve Bayes model considers 

associations between the variables and achieves an accuracy of 62.7% and AUC of 0.581. BN 

models provide a powerful, efficient and data-driven tool for diagnosis of childhood illness that 

can lead to a more evidence-based clinical practice in Malawi. The simplicity and interpretability 

of BN models offers a unique approach to diagnostic support in low-resource countries. As BN 

models are representative of the population from which the data has been derived, this approach 

can be generalized to other childhood illnesses in different regions of the world. 
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1.0 Introduction 

Infectious diseases such as malaria are responsible for the majority of under-five deaths in 

low- and middle-income countries (LMIC). Accurate diagnosis and management of illnesses can 

help reduce the global burden of childhood morbidity and mortality. As per the Malaria Indicator 

Survey in 2017, the prevalence of malaria in children under five in Malawi is 24%, with this 

percentage being higher in rural areas (48%). The P. falciparum parasite accounts for 98% of 

malaria infections and all severe cases and malaria deaths (1). In Malawi, trained community-

based healthcare workers known as Health Surveillance Assistants (HSAs) deliver treatment for 

common childhood illnesses including malaria at under-five clinics or health posts. Rural health 

centers, staffed with a medical assistant or clinical officer, offer alternate treatment locations for 

children in rural areas. For the majority of the population, these sites serve as the primary points 

of care (1). This study aims to utilize Bayesian network (BN) models and machine learning 

classifiers to develop a data driven approach to diagnosis of childhood malaria that can be 

implemented in the health centers and health posts. 

The current standard for the management of childhood malaria is defined in a set of clinical 

guidelines developed by the World Health Organization (WHO) (2). Based on these guidelines, a 

child presenting with suspected malaria at a healthcare site should have a confirmatory diagnosis 

based on microscopy or the malaria rapid diagnostic test (mRDT). Historically, presumptive 

treatment of febrile illness with anti-malarial drugs has been a common approach. Following the 

national policy in 2010, use of mRDTs for suspected malaria is standard practice before 

administration of artemisinin combination therapy (ACT) drugs.  The scale up of ACT coverage, 

distribution of mRDTs, and significant efforts to provide community-based care for childhood 

malaria have led to a decline in the disease burden (3). However, there are still a number of 

challenges that hinder effective management of malaria in health facilities in the rural 

communities.  

Rural health posts are often characterized by limited availability of resources, 

unavailability of diagnostic testing facilities, and lack of expert clinicians (4). In a study conducted 

in 2017 in Malawi, Klootwijk et. al. reported lack of microscopy facilities in all the health centers 

surveyed (5). mRDTs and HIV tests are often the only diagnostic tests available at the health care 
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facilities (6). Even so, stock outs of mRDTs and first line ACT drugs are common, especially 

during the malaria season and in rural areas. The Malawi Service Provision Assessment (SPA) 

survey reported that mRDTs are only available in 85% of the facilities, with hospitals having the 

highest proportion available (95%) and health posts the lowest (19%) (6). Common reasons for 

stock outs include late and inaccurate reporting of supplies, drug pilferage and overprescribing of 

anti-malarial and antibiotic drugs (4,7). As HSAs are encouraged to focus on adherence to the 

guidelines, the unavailability of mRDTs leads to three common scenarios at the health posts. The 

child may be referred to a secondary health center or tertiary hospital, the HSA treats every child 

presenting with fever presumptively (if ACT drugs are in stock), or in the worst case, the health 

post remains closed while mRDTs are out of stock. More often than not, the guardians of the child 

cannot arrange transportation to the referral or alternate site and the child remains untreated (5). 

While diagnostic tests and essential drugs are provided free of cost to patients at all public health 

facilities in Malawi, data on availability and affordability of drugs shows that a single course of 

treatment is unaffordable for a major part of the population (8). This can be a problem if the 

guardians are advised to purchase drugs unavailable at the healthcare facilities. Given the high-

volume patient settings and increasing evidence of non-adherence to paper-based traditional case 

management guidelines (9), it is imperative to provide diagnostic and treatment support to the 

healthcare workers.  

Technological advances may help in tackling some of the challenges above. The promise 

of artificial intelligence (AI) and data-centric models for healthcare in LMIC has recently begun 

to see light (10). While decision support systems are common in many high-income countries, 

migration of the same technologies to LMIC is impossible due to the unique challenges in 

resource-constrained countries. The distinct needs, diseases, demographics, and standards of care 

call for a different approach for personalized medicine in LMIC by adopting tools specifically 

designed for use in these areas (11). Prior attempts to develop clinical decision support in Malawi 

have focused on implementing electronic versions of existing guidelines, rather than personalized 

evidence-based algorithms and data (12,13). There is a significant lack of diagnostic support for 

the healthcare workers in these applications. We propose to implement a diagnostic model for 

childhood malaria in Malawi to aid in treatment in cases where mRDT is unavailable or is in 

limited supply, with a goal toward sustainable use of both mRDTs and ACT drugs.  
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A recent review of electronic clinical decision algorithms (eCDA) in LMICs identifies the 

lack of effective, integrated diagnostic tools as a contributing factor to childhood morbidity and 

mortality (13). In addition to better diagnosis of diseases and support for rational use of drugs, the 

review identifies components of an eCDA that will be crucial in closing gaps in the primary care 

management systems in low-resource countries. These include algorithms for specific regions, 

openly available evidence-base and content, automated data collection for monitoring and 

evaluation, and syndromic-based surveillance systems (13). BN models can be aptly used for 

prediction and diagnosis of diseases using country or region-specific data. BNs are probabilistic 

graphical models that can use data to learn associations between variables such as a disease 

diagnosis and symptoms. Each variable or node has a conditional probability table that contains 

the parameters of the network, and this network is representative of the data and, as such, of the 

population from which the parameters have been obtained. BN models can be used for 

classification of diseases where they compute the posterior probability of the target (disease) node 

given the observed signs and symptoms (14). 

BNs have been developed for efficient diagnosis and risk prediction of many diseases (15–

17). In this study, we developed BN models for diagnosis of malaria in children under 5 years of 

age in Malawi. We evaluated two variations of BNs for this task, both utilizing a publicly available 

dataset from Malawi. We further compared the results of the BNs models to other machine learning 

classifiers. Finally, we demonstrated the integration of BN models with a decision-analytic 

framework that can be implemented at a typical rural health post in Malawi. 
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2.0 Methods 

We first give a description of the Malawi Service Provision Assessment (SPA) (6) data 

used in this study to develop and evaluate the models. We developed two BN models, one created 

manually with parameters learnt using the dataset, and the second with an automated learning 

approach known as Augmented Naïve Bayes to create the structure of the model and learn the 

parameters. The performance of these models was then compared to three machine learning 

methods for binary classification.  

2.1 Data Description 

We used the SPA data in this study to train and evaluate the models. The SPA survey was 

conducted between July 2013 and February 2014 by the Ministry of Health, with support from the 

Demographic and Health Survey (DHS) program, to assess the status of health facilities and quality 

of healthcare in Malawi. Data were collected from 977 facilities including 119 hospitals, 489 

health centers, 55 dispensaries, 369 clinics, and 28 health posts in the three major regions in the 

country, and are representative at the national level by facility type and managing authority (6). 

These data have been used previously in studies to assess the quality of care and treatment for 

pneumonia in Malawi (18). The data file is publicly available through the DHS program (19).  

The survey data contains observations of 3,441 children aged 2 to 59 months presenting 

with an illness complaint in outpatient facilities. This includes observations about the examination, 

guardian exit interview, and an expert healthcare provider’s re-examination recorded by an 

observer during the outpatient procedure for each child. The dataset contains information about 

the sick child, including demographic details (age, date of birth, gender), symptoms of disease 

(fever, diarrhea, anemia, etc.), test results (if any), and the provider’s diagnosis.  

We took the result of the mRDT for the children in the dataset as the gold standard malaria 

diagnosis for developing the models in this study. The test is known to have high sensitivity (0.997) 

and specificity (0.995) for diagnosis of malaria (20) and is the standard practice to obtain 
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parasitological confirmation of the disease as per both the WHO and national malaria treatment 

guidelines (21). Thus, it is an objective and appropriate indicator of the presence of the disease. 

To this effect, if the mRDT result for a child was positive, we considered malaria present, and 

absent if the test result was negative. The variable is also referred to as ‘malaria’ or ‘malaria 

diagnosis’ in the following sections. 

While it would be ideal to have the mRDT result for each child in the dataset, this is not 

the case. Only 1,139 children in the dataset had a reported mRDT result. Other cases either 

included a microscopy-based diagnosis or the provider’s diagnosis without any further details. We, 

thus, excluded all cases from our analysis without the mRDT result and used the observations from 

this subset to create and evaluate the models. Table 1 shows the variables from the dataset that 

were used in the models, along with their categories and values. These variables were chosen due 

to their presence in the childhood illness management guidelines (2) as well as expert domain 

knowledge. 
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Table 1: Variables included in the models, their categories and values 

Category Variable Values 

Diagnosis Malaria Positive 

Negative 

Patient Information Age Less than 2 months 

2-12 months 

13-24 months 

25-60 months 

Over 60 months 

Unknown 

Duration of Illness Less than or equal to 2 days 

3-15 days 

16-30 days 

Over 30 days 

Unknown 

Sign or Symptom Conscious Yes 

No 

Unknown 

Anemia 

Present 

Absent 

Unknown 

Convulsions 

Cough or Difficulty 

Breathing (CDB) 

Diarrhea 

History of Fever 

Fever (temperature>37.5 

C) 

Lethargic 

Malnutrition 

Unable to feed 

Vomiting 
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The dataset with all variables in Table 1 was split into 80% training set and 20% test set, 

stratified on the target variable i.e. the malaria diagnosis. The models were developed using the 

training set and we evaluated the performance of each model using the test dataset.  

2.2 Bayesian Network Models 

A BN is a probabilistic graphical model that consists of nodes representing variables and 

arcs depicting associations between the variables. Each node in the network has a conditional 

probability table, also referred to as the parameters of the node. BNs can function as classifiers 

where the classifier gives the posterior probability distribution of the target node (such as a disease 

diagnosis) given the values of all other nodes in the network (22). When learning a BN from data, 

the nodes represent the dataset variables. We can learn the parameters or both the structure and the 

parameters of the network using the dataset. This study used the Augmented Naïve Bayes method 

to learn the structure of the BN for malaria diagnosis and compared it to a manually constructed 

BN model. For each node X in the model, the parameters were computed by estimating the 

conditional probability of the node given its parents pa(X) from the dataset (14). 

2.2.1 Data Preprocessing 

We developed the models using the variables in Table 1. Continuous variables such as age 

and duration of illness were discretized. Age was divided by months (2-12, 13-24, 25-60). The 

intervals are based on the varying epidemiology of the disease in children of different ages. The 

duration of illness was discretized by number of days as shown in Table 1. All the signs and 

symptoms in the model can be ‘Present’, ‘Absent’ or ‘Unknown’. All variables, except the malaria 

diagnosis, can have an ‘Unknown’ value due to the missing observations of variables in the dataset. 

As mentioned previously, the malaria variable contains the mRDT result for each child. 
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2.2.2 Model Development and Evaluation 

We used the GeNIe modeler to create the two BNs. The variables in Table 1 formed the 

nodes of the network and both networks consisted of the malaria variable as the target node. An 

arc drawn from malaria to convulsions, with malaria as the parent node and convulsions as a child 

node, implies that malaria is associated with convulsions. 

For the first model, we created the nodes and linked the nodes in the network using domain 

knowledge of malaria from experts and literature. In this variation, all signs or symptoms were 

assumed to be independent of each other. We used the training data to learn the parameters of the 

network by populating the conditional probability tables of the nodes using conditional frequencies 

from the dataset. In the dataset, the marginal probability of malaria being “present” is 0.36. This 

corresponds to the dataset wherein 36% children have a positive malaria diagnosis. 

While the model created manually is simple and interpretable, the assumption of 

independence between the nodes often does not hold in the real world. It is important to model the 

relationships between the various symptoms to get an accurate diagnosis. Thus, for the second BN 

model, we developed a hybrid network by first learning an Augmented Naïve Bayes structure and 

then improving it with expert knowledge. As the algorithm may learn associations that are biased 

due to the dataset used, each arc in the Augmented Naïve Bayes structure is evaluated by an expert 

to assess its relevance and fit in the structure clinically.  

An Augmented Naïve Bayes (ANB) model (14) is an extension of the Naïve Bayes model, 

where the target variable forms the root of the network and all other nodes have an incoming arc 

from the root node. However, unlike the Naïve Bayes model, an ANB model allows associations 

between the nodes (other than the root node) that are learnt from the dataset and represented with 

arcs between them. In this structure, an arc from diarrhea to convulsions implies that the 

probability of convulsions depends both on the state of malaria and of diarrhea in a patient. This 

allows the model to account for the statistical associations between the variables present in the 

dataset. Learning an ANB model is akin to finding the best BN structure with the target variable 

as the root. Most studies involving ABNs focus on a special variant of the model known as Tree-

Augmented Naïve Bayes (TANB) (14) due to the efficiency with which it can be learned. 

However, the GeNIe modeler allows efficient learning of general associations between variables 

in an ANB model, and thus, we use it.  
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Once the BN models were created, we used them to classify the malaria diagnosis on the 

test dataset. We computed the accuracy, area under the Receiver Operating Characteristic curve 

(AUC), precision, F1 score, sensitivity, and specificity for each model. The AUC value indicates 

the diagnostic discrimination performance of the model, where perfect performance has an AUC 

of 1.  

2.3 Comparison to Machine Learning Classifiers 

We trained binary machine learning classifiers with the SPA dataset and compared their 

performance to that of the BN models. We used the same train and test split of the data after 

preprocessing. 

2.3.1 Data Preprocessing 

The variables described in Table 1 were used for training and evaluating the machine 

learning classifiers. Instead of discretizing the continuous variables, we used a standard scaler to 

scale the ‘age’ and ‘duration of illness’ to unit variance. We imputed the mean for both age and 

duration of illness for all observations when these values were missing. All the categorical 

variables were used in the same way as in the BN models, i.e. with 3 possible values – present, 

absent and unknown.  

2.3.2 Classification 

We trained three different binary classifiers, namely, logistic regression, random forest and 

Bernoulli Naïve Bayes to predict the malaria diagnosis. The Naïve Bayes model relies on the 

assumption of independence between all the variables (as in the first BN model above) except the 

target variable, while logistic regression and random forest do not work under this assumption. We 

trained the models using the scikit-learn library (23) in Python. We used the training data to obtain 

the best combination of parameters for each classifier over five folds of the training data using the 
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grid search method. We evaluated the models using the test dataset and derived the accuracy, AUC, 

precision, F1 score, sensitivity and specificity on a threshold equal to 0.5. 

2.4 Translation to Clinical Practice 

The BNs give the posterior probability of malaria after the nodes of the network have been 

observed. We present an experimental decision model in Figure 1 to use the predictions from the 

BN models for clinical decision support. A healthcare worker can use the decision model to decide 

whether or not to use the mRDT as well as prescribe ACT drugs to a sick child presenting with 

symptoms at a healthcare facility.  

 

 

Figure 1: Experimental decision model to use BN predictions for decision support. 
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The decision is driven by the expected cost values of the ‘mRDT?’ and ‘Treat’ nodes in 

Figure 1. This is a common approach to create decision models and influence diagrams (24). The 

expected cost value of the [mRDT=no] branch was calculated using the probability of malaria 

from the Bayesian network and costs associated with each decision as- 

 

Expected cost of [mRDT?=no] =  

min(1.0*P(malaria+|F) + 1.0*P(malaria-|F), 16*P(malaria+|F) + 0*P(malaria-|F)) 

 

In Figure 1, P(malaria+|F) is the probability from the BN model that the malaria diagnosis 

is positive given the findings of the patient. P(malaria-|F) is the probability from the Bayesian 

network that the malaria diagnosis is negative given the findings. The cost values (in hexagons) in 

the decision model reflect the perspective of the payer in healthcare system.  These costs depend 

on the resources used, namely, ACT for treatment and mRDT for diagnosis from the payer’s point 

of view. The cost of an mRDT kit in the model is US $0.60 (8) and drug cost per child dose for 

first line treatment of uncomplicated malaria is US $1.00 (25). There is a high cost (US $16.00) in 

the model associated with the decision to not treat a child with malaria, with the assumption that 

the cost may increase to 10 times the original cost of treatment and diagnosis for cases with 

unresolved malaria as the disease becomes severe. While treatment and tests are provided free of 

cost to patients at public health facilities in Malawi, sustainable resource utilization is driven by 

minimizing the costs of these resources from a payer’s perspective. 

 

The expected cost of the [mRDT=yes] branch was computed as - 

 

Expected cost of [mRDT?=yes] =  

P(mRDT+|F)*(Expected Cost of [Treat] when mRDT)+ + P(mRDT-|F)*(Expected Cost of [Treat] when mRDT-) 

 

where 

Expected cost of [Treat] when mRDT+ =  

min(1.6*P(malaria+|mRDT+, F)+1.6*P(malaria-|mRDT+, F), 16*P(malaria+|mRDT+, F)+0.6*P(malaria-|mRDT+,F)) 

 

Expected cost of [Treat] when mRDT- =  

min(1.6*P(malaria-|mRDT-, F)+1.6*P(malaria+|mRDT+, F), 0.6*P(malaria-|mRDT-, F)+0.6*P(malaria+|mRDT-, F)) 
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In the above equations, P(malaria+|mRDT+, F) is the probability that a child has malaria 

given that the mRDT result is positive and the findings of the patient, and P(malaria-|mRDT-, F) 

is the probability that a child does not have malaria given that the mRDT result is negative and the 

findings of the patient. P(mRDT+|F) and P(mRDT-|F) represent the probabilities of the mRDT 

being positive or negative respectively, given the findings of the patient. The probabilities in the 

above equations were calculated with Bayes’ theorem using sensitivity and specificity of the 

mRDT (0.997 and 0.995 respectively). The model in Figure 1 only utilized the cost of the test and 

drugs. These costs can be increased when the mRDT is in limited or no supply. We can then 

calculate the expected cost values of each branch and take a decision for testing and treatment 

based on which branch has a lower expected cost. 

While the decision model presented above are not complete or perfect, this process allowed 

us to perform a sensitivity analysis on the posterior probabilities computed by the BN models. To 

perform sensitivity analysis, we calculated the expected costs of the branches in Figure 1 by 

varying the value of the posterior probability of the malaria diagnosis from 0 to 1. We were thus 

able to find the thresholds for this decision model based on the test values.  
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3.0 Results 

3.1 Data Description 

The SPA dataset contains 3,441 observations. After excluding cases where the result of the 

mRDT was unknown, we used 1,139 observations with 14 variables (Table 1) to develop the 

models. The data characteristics for the variables are included in Table 2. Of note, 36.4% (415) of 

the total cases had a positive malaria diagnosis. The majority of the children were aged between 

24 to 60 months (35.7%). The duration of illness varied from 0 days to over 30 days, although the 

duration period of 0 to 2 days was the most common (51.7%). A large proportion of children 

presented with history of fever (69.3%) and CDB (62.8%). These were the most common 

complaints, followed by vomiting (29.1%) and diarrhea (26.3%). 

We found that every field in Table 2, except anemia and malnutrition, sometimes has 

missing values. These were coded as ‘Unknown’ in the BN models. The proportion of missing 

values ranged from 0 to 6.4%, with the highest missing values in ‘history of fever’ and the lowest 

missing values in the anemia and malnutrition variables.  

 

 

 

 

 

 

 

 

 

 



 14 

Table 2: Data characteristics in the SPA dataset (where mRDT result is available) 

Variable Number of 

children with 

mRDT result 

n = 1,139 

% 

(n = 1,139) 

Diagnosis – Malaria   

     mRDT positive 415 36.4 

     mRDT negative 724 63.6 

Patient Information   

Age (in months)   

     2-12 379 33.3 

     12-24 294 25.8 

     24-60 407 35.7 

     Other  21 1.8 

Duration of Illness (in days)   

     <=2 589 51.7 

     3 to 15 502 44.1 

     15 to 30 11 1.0 

     More than 30 37 3.2 

Sign or Symptom (Present)   

     History of Fever 789 69.3 

     Fever (temperature) 307 27.0 

     Diarrhea 299 26.3 

     Vomiting 331 29.1 

     Malnutrition 11 1.0 

     Convulsions 55 4.8 

     Unable to feed 137 12.0 

     Lethargic 228 20.0 

     Unconscious 12 1.1 

     CDB 715 62.8 

     Anemia 93 8.2 
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3.2 Bayesian Network Models 

Figure 2 shows the BN created manually with all the variables as nodes and the links 

between them. The variables duration of illness and age are parents of the malaria node, while the 

signs and symptoms are children of the malaria node. This is modeled so that the arcs represent 

the influence of patient characteristics (age in months, duration of illness) on the disease, and these 

are propagated through the network to influence the observed signs and symptoms. There is an arc 

from the malaria diagnosis to each sign or symptom in the model. This is a common approach to 

develop expert-elicited BN models (26). The model created in Figure 1 is simple and interpretable, 

and assumes conditional independence among signs and symptoms. 

Figure 3 shows the hybrid BN created using the ANB learning combined with expert 

knowledge. As this model learnt associations between the variables, there were several arcs 

between the nodes in addition to an arc from the malaria diagnosis to each of the other nodes. The 

model contained 42 arcs with the 14 variables as nodes. To illustrate the influences in the model, 

we present the model with only a subset of the arcs from the complete model in Figure 4. Figure 

4 shows the hybrid model with all nodes and arcs from the malaria node to all other nodes. In 

addition to these, we included the arcs with high ‘strength of influence’ values. For each arc in the 

complete model, the strength of influence measures the Euclidean distance between the conditional 

probability distributions of the nodes linked by that arc. This was calculated over each node 

conditional on the states of the parent node and implies a higher association between two nodes 

when the strength of influence is large (27). The red arcs in the model in Figure 4 had high strength 

of influence values calculated from the network parameters. These included association of 

consciousness of a child with lethargy, anemia, convulsions, diarrhea, and duration of illness, fever 

with cough or difficulty breathing (CDB), and the age of child with history of fever. 
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Figure 2:  Manually created BN in GeNIe Modeler 

 

 

Figure 3: Hybrid BN using ANB structure learning with expert knowledge 
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Figure 4: BN with subset of arcs with high strength of influence values 

 

Tables 3 and 4 present the contingency tables for classification of malaria by the BN 

models on the test dataset. Table 5 shows a set of performance statistics. The model created 

manually had accuracy of 63.6% and AUC of 0.581. The hybrid model had similar performance 

in terms of accuracy (62.7%) and AUC (0.583). The manual model achieved a higher F1 score of 

0.394 due to better precision (0.5) and recall (0.325) values as compared to the hybrid model. 

However, the hybrid model had higher specificity (0.848) at the default classification threshold of 

0.5 i.e. the ability to classify when malaria is absent. 

 

Table 3: Contingency table for classification of malaria on the test data using the manual BN model 

 Malaria Present Malaria Absent 

Predicted Present 27 27 

Predicted Absent 56 118 

Total 83 145 
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Table 4: Contingency table for classification of malaria on the test dataset using the hybrid BN model 

 Malaria Present Malaria Absent 

Predicted Present 20 22 

Predicted Absent 63 123 

Total 83 145 

 

Figures 5 (a) and (b) show the ROC curves for classification of malaria using the manual 

and hybrid BN models respectively. 

 

 

Figure 5: Figure 5: ROC curves for classification of malaria in test dataset using (a) manual BN model and (b) 

hybrid BN model 

 

3.3 Comparison to Machine Learning Classifiers 

Table 5 displays the performance of all models on the test dataset. The accuracy, precision, 

sensitivity and specificity were derived using a threshold equal to 0.5. While the AUC, accuracy 

and precision scores were similar for all the models, there was a substantial difference in the 

sensitivity and specificity values. The machine learning classifiers performed poorly on sensitivity 

(0.096 and 0.036 for logistic regression and random forest respectively), with low F1 (0.163 and 

0.067 respectively) scores as a result. Although the sensitivity was much lower than specificity for 

all models, the BN models (and the Naïve Bayes classifier) greatly outperformed the logistic 
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regression and random forest models in their ability to correctly classify cases of positive malaria 

diagnosis. 

 

Table 5: Performance metrics for all models on the test dataset 

Classifier AUC Accuracy Precision Sensitivity F1 Specificity 

Manual BN 

Model 0.581 0.636 0.500 0.325 0.394 0.814 

Hybrid BN 

Model 0.583 0.627 0.476 0.241 0.320 0.848 

Logistic 

Regression 0.600 0.640 0.533 0.096 0.163 0.952 

Random 

Forest 0.593 0.636 0.500 0.036 0.067 0.979 

Naïve Bayes 0.600 0.600 0.443 0.373 0.405 0.731 

 

3.4 Translation to Clinical Practice 

Figure 6 presents the sensitivity analysis of the decision model for implementing clinical 

decision support (Figure 1). We plotted the posterior probability of malaria given the patient 

findings from the BN (x-axis) against the expected cost from the decision model (y-axis). The blue 

and black lines represent the expected cost of the two branches, [mRDT?=yes] and [mRDT?=no], 

in the decision model respectively. While the expected cost of using the BN model (and not using 

mDRT) increased at first, it became stable at US $1.00 when the probability reached 0.1 and above. 

The expected cost of using the mRDT increased as the probability of the malaria diagnosis, 

P(malaria+|F), increased. When P(malaria+|F) exceeded 0.38, the expected cost of the 

[mRDT?=yes] branch surpassed that of the [mRDT?=no] branch in the model. The sensitivity 

analysis suggests that when the probability of malaria diagnosis is between 0 to 0.04 and between 

0.38 to 1.0, it is optimal to use the BN model for diagnosis based on the decision model in Figure 

1. This can be modified to include additional costs or even utilities for each decision depending on 

the clinical environment. The decision model and sensitivity analysis provide an effective way to 

determine the thresholds for decision-making for use of the mRDT and ACT drugs. 
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Figure 6: Sensitivity analysis of the decision model in Figure 1.  

x-axis is the probability of malaria given the findings (that can be obtaiend from a BN model) and y-axis is the 

corresponding expected cost of the decsion to use or not to use mRDT. The blue line represents the expected 

cost of using mRDT and the black line shows the expected cost of not using mRDT. In the probablity range 

0.04 to 0.38 (green lines) the expected cost of uisng mRDT is lower, and outside of that range the expected cost 

of using the BN model (and not using mRDT) is lower.  
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4.0 Discussion 

To the best of our knowledge, this study was the first attempt at developing BN models for 

diagnosis of childhood malaria in Malawi as well as an LMIC. We used clinical signs and 

symptoms from a publicly available dataset to predict the malaria diagnosis using models that can 

be utilized in resource-constrained settings. We implemented two variations of BNs, one created 

manually where the parameters are learnt from the dataset, and a hybrid model which combined 

an Augmented Naïve Bayes approach with expert knowledge, and learnt both the structure and the 

parameters using the dataset. 

The current practice for management of suspected malaria in children either involves the 

mRDT (if available) or prescription of ACT drugs for all children presenting with fever. With 

increasing evidence of the limited availability of both mRDTs and ACT drugs in rural health 

centers, this approach is not sustainable in terms of resource use. The BN models developed in this 

study for classification of malaria demonstrate a unique approach for clinical decision support for 

childhood illness. We envision the use of these models as an aid to HSAs in Malawi at under-5 

clinics and health posts. 

The BN models provide further advantages over the current malaria management approach. 

Fever alone has been found to be a poor indicator of childhood malaria (29), while CDB, anemia 

status, malnourishment and diarrhea have been previously associated with malaria risk (30,31). 

The BN models are enriched with variables with known associations to malaria in addition to fever 

to gain a more accurate picture of individual-level disease risk. These models are designed to work 

under uncertainty that is inherent in diagnosis of illnesses such as unavailability of certain 

information. Moreover, BNs take advantage of the value of information concept to reduce 

uncertainty in the probability of the disease diagnosis in the most efficient way (26). At each 

observation stage, the model orders nodes in the network such that observing the next node or 

variable will decrease the uncertainty (and thereby lead to a timely diagnosis) in the network the 

most. In addition to this, both BN models give interpretable diagnostic support such that the user 

is able to observe the evidence that leads to the diagnosis through the arcs between the various 

nodes. While both BN structures offer the above advantages, the choice of the model depends on 

the performance and the clinical environment for use.  
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The accuracy, precision and AUC scores are similar for all five models on the test dataset. 

While the logistic regression and random forest models achieved high specificity at the default 

threshold, their sensitivity values were extremely low at 9.6% and 3.6% respectively. This implies 

that these models are unable to correctly classify cases of positive malaria diagnosis as compared 

to the BN models. The Naïve Bayes model, which assumes independence between all variables, 

had good consistent performance across all the metrics, although its specificity was lower than that 

of the BNs. Between the two BNs that are the main focus of this study, we observed that these 

models were able to classify malaria diagnosis using clinical signs and symptoms with a 

reasonably good performance on the test dataset. The structure created manually outperformed the 

hybrid model on the basis of precision and sensitivity, while the hybrid model achieved a higher 

specificity value. There was no clear winner among the two BN models as each of them has 

advantages over the other. It is clear, however, that the poor sensitivity values across all the models 

(as compared to specificity) indicate that classification of positive malaria diagnosis is more 

challenging than classification of negative malaria cases in the given dataset. The accuracy and 

AUC scores likewise suggest that there is room for improvement in the models.  

While the manually created model is simple and interpretable with good performance, the 

hybrid model is advantageous in terms of the associations between the various signs and symptoms 

and is more representative of the clinical scenario. The model in Figure 3 gives the associations 

between the variables and has been confirmed to be clinically accurate for childhood malaria 

diagnosis. This model is able to incorporate the known influences of other variables when making 

a diagnosis. This may be more important in clinical practice when the performance of models is 

similar or varies only slightly such as in the study by Onisko et al. (15). 

Perhaps the greatest advantage of data-driven approaches such as BNs is the ability to do 

individual-level risk prediction (26). The experimental framework for a decision model in Figure 

1 shows a possible extension to the BN diagnostic model that can be used for decision support at 

the health posts. While we included speculative cost values in this framework, the translation of 

the BN model to clinical practice in this way allows us to analyze the potential use of the models 

based on threshold values and expected cost of the decisions. When the probability of malaria 

given the signs and symptoms of the patient lies between a certain threshold (0.04 to 0.38 with the 

test costs in Figure 1), and mRDTs and ACT drugs are sufficiently available at the health post, the 

lower branch in Figure 1 will have a lower expected cost value and the system will advise the 
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healthcare worker to use the mRDT in more cases (especially when the BN model is uncertain of 

the outcome). However, in case of limited or no supply of mRDTs (modeled through utility/cost 

values in the lower branch), the expected cost of the upper branch where mRDT is not used will 

be lower. In this scenario, the BN model informs the decision on whether or not to treat based on 

the symptoms observed and the probability of the outcome. Further, evidence against malaria from 

the model can be indicative of the need for a differential diagnosis of the illness. 

The costs in the decision model can be varied depending on the resources available at each 

healthcare facility. As previously developed tools have not focused on a data-driven approach to 

diagnosis (13), we believe that the BN model for malaria diagnosis in this study is the first step 

toward developing an evidence-based eCDA to provide diagnostic support at the primary points 

of care. Since the dataset used to learn the BN models was representative of the population in 

Malawi, the same approach can be generalized to any number of infectious diseases in other LMIC. 

The BN model provides a simple, interpretable and powerful way to diagnose diseases, and at the 

same time allows transparency in what goes into the model and how the decision is taken. 

Consequently, it also enables automated data collection for each child whose symptoms are 

reported using the model. We can further improve the model iteratively by updating the parameters 

and interactions based on the data collected during use and expert judgment. 

The models developed in this study, however, must be considered in light of data 

limitations. The choice of the mRDT result as the target diagnosis in the dataset reduced the size 

from the original dataset substantially. A smaller dataset produces more unreliable estimates of the 

parameters of the BN models as compared to models developed with larger datasets. Further, the 

selected dataset may yield biased predictions that are not representative of the outcomes in the 

remainder of the dataset. However, this is the only dataset that we know of with both gold-standard 

diagnosis and symptoms of childhood malaria available. Further, our choice of variables was 

constrained by the information collected in the SPA survey which did not include details such as 

the immunization and HIV status of the children. The proportion of children with malnutrition in 

the dataset was also much less than the reported prevalence in the country (32). Thus, there may 

exist latent associations in the models in this study. We believe that the choice of mRDT result as 

the gold standard diagnosis was the best possible decision given the dataset, and the WHO reported 

sensitivity and specificity of the test. As the type of mRDT and procedure of the test was not made 
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available with the dataset, we cannot verify the reported outcome. Information about prior 

exposure to anti-malarial drugs would also be useful in this context. 

While this study developed and validated the models with the same dataset, external 

validation with appropriate feedback from the healthcare providers in Malawi would be valuable 

to guide the next steps to refine and use the model for diagnosis. Additionally, incorporation of the 

model into an mHealth application will make it easier for the healthcare workers to access it along 

the patient’s clinical course. We further recognize that the model will be strengthened by adding 

more diseases in the differential diagnosis. We continue to search for datasets for other common 

childhood illnesses that will make it possible for us to do so. 
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