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DEEP LEARNING FOR CAUSAL STRUCTURE LEARNING APPLIED TO

CANCER PATHWAY DISCOVERY

Jonathan D. Young, PhD

University of Pittsburgh, 2020

It is well appreciated that cancer is a disease of aberrant signaling and the state of a

cancer cell can be described in terms of abnormally functioning cellular signaling pathways.

Identifying all of the abnormal cellular signaling pathways causing a patient’s cancer would

enable more patient-specific and effective treatments. Here we interpret the cellular signaling

system as a causal graphical model and apply a modified deep neural network to learn latent

causal structure that represents cancer pathways. We address a problem for which it is known

that a set of variables X causes another set of variables Y (e.g., mutations in DNA cause

changes in gene expression), and these causal relationships are encoded by a causal network

among a set of an unknown number of latent variables. We develop a deep learning model,

redundant input neural network (RINN), with a modified architecture and an L1 regularized

objective function to find causal relationships between input (X), latent, and output (Y )

variables. RINN allows input variables to directly interact with all latent variables in a

neural network to influence the information latent variables encode. In a series of simulation

experiments, we show that RINN recovers latent causal structure from various simulated

datasets better than other models. We hypothesize that training RINN on omics data will

enable us to map the functional impacts of genomic alterations to latent variables in a deep

learning model, allowing us to discover the hierarchical causal relationships between variables

perturbed by different genomic alterations. Importantly, the direct connections between input

and latent variables in RINN make the latent variables partially interpretable, as they can be

easily mapped to input space. We apply RINN to cancer genomic data, where it is known

that genomic alterations cause changes in gene expression. We show that gene expression can

be predicted from genomic alterations with reasonable AUROCs. We also show that RINN is

able to discover real cancer signaling pathway relationships, especially relationships in the

PI3K, Nrf2, and TGFβ pathways, including some causal relationships. However, despite high
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regularization, the learned causal graphs are still somewhat too dense. We discuss promising

future directions for RINN, including differential regularization, autoencoder pretrained

representations, and constrained evolutionary strategies.
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1.0 Introduction

Understanding the cellular signal transduction pathways that drive cells to become

cancerous is fundamental to developing personalized cancer therapies that decrease the

morbidity and mortality of cancer. Ideally, a physician could obtain a sample of a patient’s

cancer tissue, extract gene expression and DNA mutation data from the sample, run these

data through an algorithm, and have the algorithm model the cellular signaling pathways that

are causing cancer. Having a personalized model of the cancer cellular signaling system for a

patient would be a first step toward finding an effective treatment for the patient. A physician

(or algorithm) could analyze the model and propose treatments to block or correct abnormal

signaling pathways. This dissertation is a step towards this future. Here we interpret the

cellular signaling system from within a causal framework and develop neural network-based

algorithms to postulate causal structure that represents the cellular signaling system.

1.1 The Problem

In general, the cellular mechanisms leading to cancer in an individual are nuanced and

not well understood. We know that cells function through cellular signaling pathways and

that cancer can be described in terms of abnormally functioning pathways. If we were able to

determine all of the abnormal cellular signaling pathways causing a patient’s cancer, we could

develop better, more patient-specific treatments—including targeting multiple abnormal

pathways during a single treatment regime. However, reliably inferring all abnormal cancer

cellular signaling pathways from genomics data is a very difficult and unsolved task. Most

current methods attempt to infer the status of a single or a few abnormalities that are causing

cancer, and do not attempt to find all abnormal pathways. In addition, we have an incomplete

understanding of the pathways that cause cancer. Moreover, treatments of known pathway

abnormalities remain limited.

Another reason that it is difficult to infer all abnormal cellular signaling pathways solely
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based on genomic data alone is because the majority of the genomic alterations observed

in a tumor are non-consequential with respect to cancer development and only a few are

drivers. Furthermore, even if the driver genomic alterations of a tumor are known, we need

to infer the activation state of other signaling proteins, which are not measured (latent

variables), to understand the disease mechanisms of an individual tumor and identify drug

targets. This requires us to study the causal relationships among latent (i.e., hidden or

unobserved) variables, such as large protein complexes or abstractions of different biological

processes within a cell, in addition to observed variables. Most causal discovery algorithms

have been developed to find causal structure and parameterizations of causal structure on the

observed variables of a dataset. A smaller number of causal discovery algorithms also find

latent causal structure, but these methods are often highly constrained, have difficulty with

high-dimensional data, or are less applicable to the problem explored here [Murray-Watters

and Glymour, 2015, Frot et al., 2019, Colombo et al., 2012, Kummerfeld and Ramsey, 2016]

(see Section 2.3). This suggests that new approaches to discovering latent causal variables are

needed. Applying such methods to discover cellular signaling pathways could have a large

impact on our understanding of biology and disease. The algorithms we develop here are

intended to address some of these problems and difficulties.

1.2 The Approach

In this dissertation, we will explore the utility of deep learning models in discovering causal

pathways. Deep learning models can theoretically represent the hierarchical organization of

signaling molecules in a cell, with latent variables as natural representations of unobserved

activation states of signaling molecules. We develop deep learning and evolution-based

algorithms to learn causal relationships from genomic data in such a way that the the causal

relationships can be interpreted as cellular signaling pathways. A major component of this

research involves developing simulated data from a known causal ground truth directed

acyclic graph (DAG), where the ground truth DAG represents a simplified cellular signaling

pathway. The simulated data addresses the problem of not having gold standard ground truth
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knowledge about abnormal cellular signaling pathways (i.e., gold standard causal relationships

between biological entities). In addition, we develop a deep learning visualization method

and a method for calculating precision and recall of causal structure. We use these methods

to explore the extent to which different algorithms can learn causal structure from simulated

data. We then use the best performing algorithm to find causal structure within genomic data

from human cancer (TCGA) and compare with known human cancer signaling pathways.

1.2.1 Hypothesis

We hypothesize that a redundant input neural network (RINN), a type of deep learning

model, can be used to discover latent causal relationships. Furthermore, we hypothesize

that training RINN on omics data will enable us to map the functional impacts of genomic

alterations to latent variables in a deep learning model, allowing us to discover the hierarchical

causal relationships between variables perturbed by different genomic alterations.

1.2.2 Specific Aims

This research will address the following specific aims:

1. Develop a deep learning model capable of learning causal relationships among input,

latent, and output variables.

2. Develop methods to evaluate the causal relationships learned by deep learning models

including, a ground truth causal structure, simulated datasets inspired by biological

signaling pathways, a deep learning visualization method, and a method for calculating

precision and recall of causal structure.

3. Apply the new deep learning model to discover cancer pathways.

1.3 Dissertation Overview

In Background, we present a literature review necessary for understanding the topics

in this dissertation and to discuss how the work presented here is different from previous
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research endeavors. In Unsupervised Deep Learning Applied to Cancer Data, we present

results and conclusions showing that deep learning models can learn biological relevant hidden

variables. These results motivated the remaining work in the dissertation. We next describe

our development of the RINN method for learning latent causal structure with a deep learning

model and evaluating the correctness of the learned causal structure in Deep Learning and

Causal Discovery Methods Development. In Experiment and Results Using Simulated Data,

we describe the results of experiments learning latent causal structure with simulated data.

We then apply the methods developed and lessons learned from the previous two chapters to

human cancer genomic data from The Cancer Genome Atlas (TCGA) in Using the RINN

to Study Cancer Cell Signaling. The last section of the dissertation discusses the major

conclusions of the dissertation and promising future work.
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2.0 Background

2.1 Deep Learning

Deep learning has experienced an explosion in popularity recently and has established

state of the art results in many domains, largely due to the ability of deep learning algorithms

to scale exceptionally well with large amounts of data and to parallelize across multiple

GPUs [Schmidhuber, 2015, LeCun et al., 2015, Raina et al., 2009]. Deep learning represents

a group of machine learning algorithms or strategies that originated from artificial neural

networks (ANN). ANNs represent a framework, loosely inspired by biological neurons, for

learning a function (represented as a set of parameters or weights) that maps inputs to

outputs. This function consists of iteratively calculating vector-matrix multiplication (i.e.,

linear combination) plus adding a vector of biases (i.e., affine transformation), followed by

an element-wise nonlinear function (i.e., activation functions such as the sigmoid function,

softplus function, or ReLU (rectified linear unit) function). The vector in "vector-matrix

multiplication" above is initially the input data, then the output of the first "vector-matrix

multiplication plus nonlinearity" represents the values for the first hidden layer. These

values are used as input to the next vector-matrix multiplication. The matrix in "vector-

matrix multiplication" is a matrix of weights (or coefficients, parameters) that represent

the parameters of the neural network function mapping input to output. An ANN, as just

described with many hidden layers, is considered a Deep Neural Network (DNN) [Goodfellow

et al., 2016].

In more detail, a DNN learns a function mapping inputs (x) to outputs (y) according to

f(x) = φ(...φ(φ(xW1)W2)...Wn) = ŷ (2.1)

where Wi represent the weight matrices between layers of a neural network, φ is some

nonlinear function (i.e., activation function such as ReLU or sigmoid), and ŷ is the predicted

output. This function represents our predicted value for y. DNNs also have bias vectors

added at each layer (i.e., at each hi−1Wi, where hi−1 is the previous layer’s output),
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which have been omitted from the above equation for clarity. Next, we compare ŷ to y

(ground truth) and measure the error, or how bad our function approximation is so far. The

equation above represents repeatedly performing vector-matrix multiplication and applying a

nonlinear function to the resulting vector. One performs these vector-matrix multiplications,

nonlinearities for each layer until the final output values have been calculated. This process

is called forward propagation through a neural network. After forward propagation, the

weight matrices are updated (moved closer to values that decrease the error function) using

backpropagation of errors to calculate the gradient of the error function with respect to the

weights, and stochastic gradient descent optimization to move the weights closer to values

that minimize the error function. This process should result in ŷ getting closer and closer

to y as the training proceeds, thus leading to a function that accurately maps inputs to

outputs. The left side of Figure 6, without the redundant input nodes and corresponding

redundant input weights, represents a simple neural network. For more details about DNNs,

see [Goodfellow et al., 2016] and Section 4.5.

An essential characteristic of deep learning models is their ability to learn alternate

representations of the data [Lee et al., 2008, LeCun et al., 2015]. This characteristic has

inspired researchers to explore imaginative uses for deep learning strategies. A deep learning

strategy is composed of multiple layers of latent variables (hidden nodes or units, in the

ANN jargon) [Deng et al., 2014, Goodfellow et al., 2016, LeCun et al., 2015], which learn

to represent the complex statistical structures embedded in the data, such that different

hidden layers capture statistical structure of different degrees of complexity. In other words,

deep learning strategies learn novel representations of the statistical structure of the input

data through hierarchical decomposition. For example, if one trains a convolutional neural

network (a deep learning strategy often used for image recognition) with three hidden layers

on a dataset of face images (in order to learn how to recognize a human face in an image),

the units in these three layers capture abstract representations at different levels. The model

may use the first hidden layer units (the layer that is closest to the input data) of the trained

network to capture edges of different orientations present in the original image [Lee et al.,

2008, Lee et al., 2011]. The second hidden layer units may learn representations of different

parts of a face [Lee et al., 2011] (e.g., nose, mouth, eye, ear), by combining edges of different
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orientations (represented by the units in the first hidden layer). Finally, units in the third

hidden layer may represent generic faces [Le et al., 2011, Lee et al., 2011], which can be

thought of, or represented as, combinations of parts of a face. In this way, deep learning finds

hierarchical structure in data by finding alternate representations (often of lower dimension)

that best encode the information in the original image. Once a deep learning model is trained,

it can be used to detect whether a new input image contains a human face, or it can be used

to generate new face images that mimic the distribution of the input images.

2.1.1 Architectures

Experimenting with different neural network architectures is a common theme in neural

network and deep learning research. Various versions of fully-connected neural networks (i.e.,

each node is connected to every other node in the network) have been studied since 1990

[Fahlman and Lebiere, 1990, Wilamowski and Yu, 2010]. The Dense Convolutional Network

(DenseNet) [Huang et al., 2017] is a more recent version of a fully-connected neural network

that improves prediction and helps to alleviate the vanishing-gradient problem [Bengio et al.,

1994, Glorot and Bengio, 2010] in very deep networks. DenseNets concatenate all previous

feature-maps (i.e., hidden layer values) into a single tensor and use this tensor as input

to the next hidden layer in the network. Related to the DenseNet, deep learning models

with different types of "skip" connections have also been developed to improve prediction

and help with the vanishing-gradient problem. These include Highway Networks [Srivastava

et al., 2015] and Deep Residual Networks (ResNets) [He et al., 2016]. Highway Networks and

ResNets allow the output of a previous hidden layer to directly influence the output of a

future hidden layer. This allows important information from as far back in the network as

the input to be propagated to a later hidden layer and/or the output layer. In general, the

new architectures discussed here were developed to improve the prediction ability of very

deep neural networks. In contrast, the RINN was developed to learn latent causal structure

and specifically direct relationships between the input and latent variables. Accordingly, a

major focus of the RINN architecture was on learning the parameters between the redundant

inputs and various hidden layers. Conversely, some of the algorithms discussed above do not
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learn parameters for the inputs to hidden layers or "skip" connections. Also, the RINN is not

a fully-connected network like DenseNet; the inputs do not directly connect to the outputs

and there are no hidden to hidden "skip" connections. The RINN is perhaps most closely

related to a Recurrent Neural Network (RNN). It may be simplest to think of a RINN as an

RNN with non-shared weights, time-invariant (i.e., static) input, and an output generated

only at the last time-step [Liao and Poggio, 2016].

2.2 Deep Learning and Signaling Pathways

A major aim of this dissertation is to use deep learning to find the hidden layer represen-

tations of genomic data that possibly represent the state of the signaling systems in cells.

More specifically, we hypothesize that the activation states of signaling pathways regulating

transcriptomic activities in cells can be learned using deep learning algorithms (Figure 1).

Consider cancer as an example to illustrate this hypothesis. Cancer is a multi-process disease,

in that a cancer cell usually has multiple aberrant pathways—each pathway consists of a set

of hierarchically organized signaling molecules (Figure 1A)—driving differentially expressed

genes (DEGs) that are involved in multiple oncogenic processes. A transcriptomic profile (i.e.,

gene expression data) of a tumor is a convoluted mixture of expressed genes regulated by

active pathways in tumor cells, but the information related to the hierarchical organization of

pathways is "collapsed" and distinct signals from different pathways become mixed (Figure

1B). Discovering aberrant signals in cancer cells requires deconvolution (decomposition) of

such signals, and deep learning is particularly well suited for such a task due to the ability to

perform hierarchical decomposition.

For example, the hierarchical structure of a signaling pathway (Figure 1A) could be

simulated by the hierarchical structure in a deep learning model trained on gene expression

data (Figure 1C). Since transcription factor (TF) activation dictates the finest covariance

structure of gene expression, which is at the bottom of the signaling pathway in Figure 1A,

the first hidden layer in our deep learning model (Figure 1C) may capture the signals encoded

by TFs. And just as there are different pathways being activated that regulate transcription
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Biological Process Deep AutoencoderExpression Data

Figure 1: Inferring the Activation States of Signaling Pathways with Deep Learning

(A) Example EGFR signaling cascade. (B) A microarray representing gene expression values. (C)
Representation of a Deep Belief Network (DBN), fine-tuning encoder network only, trained on gene
expression values. Hypothesized biological entities whose activation states may be represented by

units in the 1st, 2nd, and 3rd hidden layers are displayed on the right.
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factor activation in the middle of Figure 1A, the second hidden layer of our model may

represent the activation states of different biological pathways. Continuing with this analogy,

units in the third hidden layer could represent biological processes (e.g., inflammation or

metastasis) or combinations of pathways. In this way, we hope to learn the hierarchical

representation of the signals underlying cancer gene expression data with deep learning.

Recently, our research group demonstrated that deep learning could be used to learn and

represent the cellular signaling system [Chen et al., 2015, Chen et al., 2016]. In one study,

our group showed that deep learning, more specifically a multi-modal deep belief network

(DBN), can learn representations of the cellular signaling system shared by rat and human

cells [Chen et al., 2015]. In the same study, it was also demonstrated that a trans-species deep

learning model could accurately predict human cell responses to a set of unknown stimuli

based on data from rat cells treated with the same stimuli. In a more recent study, it was

shown that deep learning models can learn representations of the yeast transcriptomic system,

and that the hidden units of these deep learning models can be mapped to real biological

entities, such as transcription factors and well-known yeast signaling pathways [Chen et al.,

2016]. Another group, [Liang et al., 2015] integrated multiple types of genomic cancer data

with a multi-modal DBN and were able to use their model to identify cancer subtypes and

genes important for each of these subtypes. However, they did not attempt to learn cellular

signaling pathways as we do here.

A DBN [Hinton and Salakhutdinov, 2006] is another strategy under the deep learning

umbrella and is a type of autoencoder. An autoencoder is an unsupervised algorithm and

a type of ANN that learns a compressed representation of the input data by passing the

input data through a bottleneck (hidden layer with low number of hidden nodes) and then

attempting to regenerate the input data. A DBN consists of two parts, pre-training and

fine-tuning (see Figure 2). Pre-training involves training a stack of restricted Boltzmann

machines (RBM). An RBM is a two-layer undirected probabilistic network trained to learn a

lower dimensional representation of the input to the RBM that is best able to reconstruct that

input. RBMs are trained sequentially (i.e., layer-by-layer), using a training method known as

contrastive divergence [Hinton and Salakhutdinov, 2006], then the next RBM is stacked on

the previous one. Forcing the information through a lower dimensional representation creates

10



Figure 2: Deep Belief Network (DBN) with Two Phases: Pre-training and Fine-tuning

Each restricted Boltzmann machine (RBM) in the pre-training phase iteratively learns lower
dimensional representations of the input (gene expression microarray) one RBM at a time. These
lower dimensional representations are then used as input to the next RBM. The pre-training phase

learns a set of weights W = {w1, w2, w3} that is used to initialize the fine-tuning phase. The
fine-tuning phase globally optimizes the weights by minimizing the cross-entropy error.
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an information bottleneck at each layer. These lower dimensional representations must learn

the most salient features of the input data in order to best be able to reconstruct the input

data. After the stack of RBMs are fully trained, the weight matrices learned by the stack of

RBMs are used to initialize the weights of deep autoencoder (DA), which is an unsupervised

DNN (see Section 2.1) where the DA learns to reconstruct the input from lower dimensional

hidden layers—so the outputs, y values, for a DA are a copy of the corresponding x values.

Training the DA is referred to as fine-tuning (i.e., fine-tuning the pre-training weights). In

contrast to a stack of RBMs, where each RBM is trained to completion before moving to the

next RBM, the weights of a DA are updated globally, meaning all the weights are updated

at the same time. For more details on the DBN used in this dissertation, see Section 4.5.2.

For a more detailed explanation of a DBN and specifically its use in a biological context, see

[Young et al., 2017] (Appendix).

2.3 Deep Learning and Causal Discovery

Causal Discovery is a field of research broadly interested in identifying the causal struc-

ture and parameters among variables from data and possibly background knowledge, i.e.,

identifying which variables in a dataset are the causes of other variables in the dataset and

the strength of these causal relationships. In this context, a causal structure is represented

as a graph G = (V,E) containing a set of vertices V and a set of edges E, and the goal is

to infer the data-generating causal structure from data. There have been numerous algo-

rithms developed for this purpose (see [Spirtes et al., 2000, Cooper, 1999, Heinze-Deml et al.,

2018, Maathuis and Nandy, 2016, Peters et al., 2017] and specifically, [Lagani et al., 2016] for

causal discovery in systems biology), which will not be discussed here in detail. Please see

Section 4.7 for more information and a discussion of some of the common causal assumptions

necessary for causal discovery.

The work in this dissertation concentrates mostly on finding latent causal relationships

when the causal direction between inputs and outputs is known. There has been some

recent research in the causal discovery community that deals with this problem. Alexander
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Murray-Watters and Clark Glymour developed the DM (Detect MIMIC (Multiple Indicators

Multiple Input Causes)) algorithm [Murray-Watters and Glymour, 2015, Murray-Watters,

2014] for finding latent causal relationships between inputs and outputs, when the inputs

are known to cause outputs. First, if the input and output sets are unknown, they split the

data into input and output sets using the PC algorithm [Spirtes et al., 2000], which is a

constraint-based causal discovery algorithm that starts with a fully connected graph and

then removes edges and changes undirected edges to directed edges based on conditional

independence tests. Next, they used a group of heuristics based on conditional independence

and Sober’s criterion [Sober, 1998, Murray-Watters, 2014] (see Section 4.6) to identify latent

causal structure between the inputs and outputs. Sober’s criterion is used to determine

the presence of latent variables between inputs and outputs (i.e., causes and effects) when

inputs are known to cause outputs. If two outputs are independent of one another when

conditioned on their corresponding causal inputs, then there is no latent variable between

these inputs and outputs. If not conditionally independent, then there is a latent variable

present [Murray-Watters, 2014]. The DM algorithm is discussed in more detail, including the

causal assumptions it makes and how it relates to the algorithms developed in this dissertation,

in Section 4.6. A more constrained algorithm, relative to the DM algorithm, for finding

latent structure relevant to an input/output system is the FOFC (Find One Factor Clusters)

algorithm [Kummerfeld and Ramsey, 2016]. This algorithm in the input/output setting would

find clusters of output variables that are causally isolated from all other output variables in

the dataset. It then associates each of these clusters with one or a maximum of two latent

variables. Each latent variable can only have one input variable as its cause. FOFC is unable

to identify the causal direction between latent variables if an adjacency is detected between

latent variables. The DM and FOFC algorithms are some of the more recent algorithms for

finding latent structure that are relevant to this dissertation. In addition to the DM and

FOFC algorithms there are other algorithms developed to find latent structure, including

factor analysis algorithms, algorithms that use variations of the Expectation-Maximization

(EM) algorithm [Friedman et al., 1997, Elidan and Friedman, 2005], and algorithms based on

fast causal inference (FCI) [Spirtes et al., 1995, Colombo et al., 2012]. These algorithms are,

in general, highly constrained, intractable in high-dimensional spaces, return only a subset of
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the latent causal relationships, or don’t leverage prior knowledge that input variables cause

output variables. FCI, for example, only learns an abstraction of the latent variables and

little about the causal structure among the latents.

Recently, however, there has been an increased interest within the deep learning community

to combine deep learning with causal discovery to learn causal relationships. Some of this

interest has come, in part, from reasoned skepticism regarding deep learning’s ability to reach

artificial general intelligence (AGI), or human-like intelligence, without some means of causal

reasoning [Pearl, 2018].

A promising approach to learning causal relationships with deep learning (and related to

the approach presented in this dissertation) is explored in [Kalainathan et al., 2018], where

they developed an algorithm named the structural agnostic model or SAM. At a high-level,

the algorithm uses a modified version of a generative adversarial network (GAN) [Goodfellow

et al., 2014]—an unsupervised deep learning strategy. SAM trains multiple GANs, one

GAN to generate each variable in X (X denotes the measured variables or features in a

dataset). In brief, a GAN consists of a neural network representing a generator, G, that

generates a sample of the data from random noisy input, and a neural network representing

a discriminator, D, that is trained to learn the difference between real data (i.e., sampled

from the dataset) and fake data (i.e., generated by the learned generators). G is trained to

fool D, to encourage D to classify generated samples as real data instead of fake. SAM uses

an ensemble of GANs to generate samples of X; however, as mentioned previously, it uses a

unique GAN for each variable in X. This means that |X| GANs will need to be trained to

learn an entire Sout, which describes the causal relationships for each variable in X. Each

GAN uses X−j variables (i.e., all variables in X other than Xj) to generate Xj. Each of

these GANs could be referred to as a "leave-one-out" GAN, as it is similar to leave-one-out

cross-validation (leaving out an instance versus leaving out a variable for SAM).

Each of the GANs described above have two additional modifications to allow the algorithm

to be used for causal discovery. First, G’s objective function includes a sparsity penalty to

encourage only a small subset of X−j to be used to generate Xj . Second, an additional set of

parameters, a ∈ R|X|, is learned by the algorithm. a is a binary vector that is multiplied by

the input to each GAN at the very beginning of the generative process (Note: aj is set to 0,
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as we are not using Xj to predict itself), and can be thought of as a boolean mask applied to

the input to decide which inputs to use to generate the output. A unique a is learned for each

GAN, i.e., for each Xj. a represents the direct causal relationships between any variable in

X−j and Xj . All of the a vectors, once learned, describe the causal structure, or Sout, learned

by the algorithm. Note that this setup allows the algorithm to learn and represent cycles

in Sout. The sparsity penalty mentioned above is an L1 penalty on a and the a vectors are

called causal filters. SAM is trained through backpropagation and stochastic gradient descent

(SGD) just like a regular GAN. In a very recent paper and somewhat similar to SAM, [Ke

et al., 2019] also used boolean masks applied to inputs in an ensemble of neural networks to

model the causal relationship between observed variables and the observed variable’s parents.

They also used an interesting meta-learning objective by parameterizing the neural networks

into "fast" parameters and "slow" meta-parameters (related to the causal structure). SAM

and [Ke et al., 2019] are examples of some of the creative work being done using deep learning

strategies for causal discovery.

In addition to SAM and [Ke et al., 2019], other research groups have used deep learning

strategies to find causal relationships. [Lopez-Paz et al., 2017] used supervised CNNs to predict

the direction of the causal arrow between two variables in static images. Somewhat related,

[Harradon et al., 2018] also used CNNs in part of a methodology aimed at finding causal

relationships that can explain an image. However, they used autoencoder CNNs (unsupervised)

to learn salient concepts (features) in images (i.e., lower dimensional representations of the

image), then built a Bayesian causal model using these lower dimensional representations.

They were than able to visualize the features that had the most causal influence on image

classification [Harradon et al., 2018].

Some research in this space has even concentrated on counterfactual inference [Johansson

et al., 2016, Hartford et al., 2017, Shalit et al., 2017, Louizos et al., 2017], i.e., What would

have happened if something was changed? For example, [Johansson et al., 2016] used a

deep neural network to learn hidden layer representations especially suited for counterfactual

inference of the effects of alternative treatments on patients (using simulated data for the

counterfactuals). [Hartford et al., 2017], using different objective functions than above, also

used supervised deep neural networks to make counterfactual predictions. [Shalit et al., 2017]
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and [Louizos et al., 2017] used a deep neural network and a variational autoencoder (VAE),

respectively, for counterfactual or individual treatment effect (ITE) prediction.

Combining GANs with the ideas and methods from the domain of causality is a promising

research direction, as we have already seen with the SAM algorithm [Kalainathan et al.,

2018]. Another recent approach combining GANs and causality is the CausalGAN [Kocaoglu

et al., 2018]. This work explores methods for adding causal structure to generative models,

specifically GANs, of both observational and interventional distributions [Kocaoglu et al.,

2018]. Once these generative models are trained, researchers can augment data with samples

from the observational or interventional GAN. The major drawback of this work is that it

requires a known causal structure a priori. For most data and research problems, the causal

structure is unknown and often what is being searched for (i.e., causal structural discovery).

However, this is an interesting method for creating a generative model from known causal

structure that could lead to hybrid methods where only partial causal structure is known.

So far the approaches to combining deep learning and causal discovery have been diverse,

but still relatively limited. Few papers combining deep learning and causal discovery have

concentrated on using deep learning in a supervised manner to discover causal structure, or

have attempted to directly interpret the weights in a deep neural network in a causal manner.

Also, to our knowledge, there has not been any work using supervised deep learning to find

latent causal relationships. The algorithms presented in this dissertation use supervised deep

learning to learn latent causal relationships via direct interpretation of the weights.

2.4 Deep Learning and Evolutionary Algorithms

Evolutionary computation is a field of study that develops computational systems using

principles of evolution to solve complex problems [Eiben and Smith, 2015, De Jong, 2006].

Evolutionary algorithms is a common umbrella term given to the algorithms in this field

[Eiben and Smith, 2015, De Jong, 2006]. Some canonical paradigms of algorithms within

evolutionary computation include:

1. Genetic Algorithms: using evolutionary algorithms for optimization and search that
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traditionally represents individuals in a population as binary vectors

2. Evolutionary Strategies: using evolutionary algorithms to optimize real-valued functions,

where individuals in the population are traditionally represented as vectors of real numbers

3. Evolutionary Programming: using evolutionary algorithms to evolve finite state machines

4. Genetic Programming: using evolutionary algorithms to evolve computer programs

In contrast to the definitions above, in practice, there is significant overlap between these

paradigms, especially between genetic algorithms and evolutionary strategies.

Recently, there has been a increase in the number of studies using evolutionary algorithms

with deep learning strategies [Stanley et al., 2019], which is broadly referred to as neuroevo-

lution (i.e., evolving neural networks). Neuroevolution is not a new field (for example, see

[Xin, 1993, Stanley and Miikkulainen, 2002]), but evolving high-dimensional deep neural

networks is a relatively new endeavor [Stanley et al., 2019]. Deep learning and evolutionary

algorithms have been combined in many creative ways, for example: using genetic algorithms

to learn the weights of a deep neural network for deep reinforcement learning [Salimans

et al., 2017, Such et al., 2017, Conti et al., 2018], using evolutionary algorithms to optimize

the hyperparameters of a deep neural network, including the architecture of the network

[Miikkulainen et al., 2019, Real et al., 2018, Liang et al., 2019], finding "safe" mutations (e.g.,

based on the gradient of the output with respect to the weights) in the weights of supervised

and reinforcement learning tasks using deep neural nets and recurrent neural nets [Lehman

et al., 2018], using neuroevolution for unsupervised feature learning [Szerlip et al., 2015],

evolving neural networks (with an additional "plasticity" component) in a more diverse setting

in hopes of discovering adaptive behavior related to neural adaptation/learning/memory

[Soltoggio et al., 2017], evolving recurrent neural networks [Rawal and Miikkulainen, 2018],

and using evolutionary algorithms to evolve generators in GANs [Depeweg et al., 2016].

This has been a brief survey of some of the current research combining deep learning and

evolutionary algorithms. For more information and pseudocode for using an evolutionary

strategy to optimize a neural network, see Section 4.5.3. To our knowledge, no algorithms

have been developed that combine deep neural networks and evolutionary algorithms to infer

causal structure. We develop a constrained evolutionary strategy to optimize the weights of

a RINN in order to find latent causal structure in Section 4.5.3.
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2.5 Gene Regulatory Networks and Neural Networks

In this work, gene regulatory networks (GRNs) can be thought of as a subset of cellular

signaling pathways, as cellular signaling pathways include gene regulation, but also many

additional protein-protein interactions beyond what is typically considered with a GRN. The

reconstruction of GRNs—a graph with vertices representing biological molecules (e.g., DNA,

RNA, proteins) and edges representing connections or relationships between molecules—is

a research domain with many methods developed for this purpose, including: regression-

based methods, information-theoretic models, probabilistic graphical models (e.g., Bayesian

networks), methods based on clustering approaches, random forest-based methods, methods

for inferring dynamic networks, and even some methods based on artificial neural networks

(ANN) [Weaver et al., 1999, Zheng and Huang, 2018, Nguyen and Braun, 2017].

Relevant to the work presented in this dissertation, here we briefly describe some of

the studies that used neural network-based approaches to discover GRNs. A study in 1999

by Weaver and Stormo [Weaver et al., 1999] modeled the relationships in gene regulatory

networks as coefficients in weight matrices (using the familiar concepts of weighted-sums and

an activation function in their model). However, they only tested their algorithm on simulated

time series data as large gene expression datasets were not yet available and performing these

calculations on large amounts of data was quite challenging at the time. Similarly, [Vohradsky,

2001] and [Keedwell et al., 2002] also interpreted the weights of a quasi recurrent neural

network as relationships in gene regulatory networks. Again, time series simulated data was

used in these studies with reasonable results. A more recent study from 2015 [Mandal et al.,

2015], used a linear classifier with one input "layer" and one output "layer" (which they

called a neural network) to infer regulatory relationships (as represented by the weights of the

weight matrix in the linear classifier) between genes in lung adenocarcinoma gene expression

data. However, they did not evaluate their learned regulatory network, did not use DNA

mutation data (as we do in this dissertation), and did not use deep neural networks.

Interestingly, there have also been studies that used genetic algorithms (evolving a

weight matrix of regulatory pathways) to infer gene regulatory networks [Ando and Iba,

2001]. Like the studies above, this work was ahead of its time and they were only able to
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test their algorithm on simulated expression data. Improving upon [Ando and Iba, 2001],

[Keedwell and Narayanan, 2005] used the weights representing a single-layer ANN (trained

with gradient descent) to represent regulatory relationships between genes in gene expression

data. Interestingly, they also used a genetic algorithm for a type of feature selection to

make the task more tractable. They achieved good results on temporal simulated data and

also tested on real temporal expression data (112 genes over nine time points), but did not

have a ground truth to which to compare. In another study, [Narayanan et al., 2004] used

single-layer ANNs to evaluate real, non-temporal gene expression data in a classification

setting (i.e., they did not recover GRNs). However, the high-dimensionality of the problem

was again a major limiting factor.

Many of the studies discussed above used the weights of a neural network to represent

relationships in gene regulatory networks. However, it does not appear that these studies

attempted to use a neural network to identify latent causal structure at different hierarchical

levels (i.e., cellular signaling system) or to describe their methods within a causal framework

of assumptions, as we do in this work. In general, the studies above used very basic versions of

a neural network (without regularization—limiting the magnitude of the weights and thereby

the complexity of the learned function) and due to computing constraints and the absence of

large genomic datasets, were unable to train on high-dimensional data. Also, most of the

methods above required temporal data, as opposed to the static genomic (and simulated)

data that we utilize here. Overall, none of the studies discussed above, used a deep neural

network to predict expression data from mutation data and then recover causal relationships

in the weights of a deep neural network, as we do in this dissertation.
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3.0 Unsupervised Deep Learning Applied to Cancer Data

In [Young et al., 2017] (see Appendix), we showed that an unsupervised DBN can be used

to find meaningful low-dimensional representations of cancer gene expression data. Figure 3A

shows that consensus hierarchical clustering of glioblastoma (GBM) tumors (gene expression

data) using DBN hidden layer representations revealed more robust clustering results than

clustering based on the raw gene expression data. This suggests that the DBN representations

capture the information in gene expression data in a more relevant, digestible, or meaningful

form. Figure 3B shows that the representations contain information that is clinically relevant,

as the patients from the clusters in Figure 3A showed differential survival. We also found

that the DBN-based representations discovered a DNA methylation phenotype (relevant to

patient prognosis and GBM classification) despite not being trained on methylation data

(see Figure 4 and [Brennan et al., 2013]), suggesting again, that the representations capture

information or higher-level abstractions that are biologically and clinically relevant. Given

these results and results of other members of our research group [Chen et al., 2015, Chen

et al., 2016, Lu et al., 2018, Young et al., 2017, Tao et al., 2020], we hypothesize that deep

neural networks trained on gene expression data can be trained in such a way as to generate

representations that capture aspects of the cellular signaling systems (see Figure 1).

The work described above used a DBN to learn lower dimensional representations of gene

expression data. A DBN is a type of autoencoder that reconstructs the input data from a

lower dimensional representation, and a key aspect for the success of the experiments above

to work was that the representations were lower dimensional. Forcing the data through an

information bottleneck (a representation with decreased dimensionality) encourages the neural

network to learn the most salient features of the data so that the input data can be accurately

reconstructed from the bottleneck hidden layer (In general, this is the driving concept behind

how autoencoders work). In [Young et al., 2017], it was found that at least some of the

bottleneck hidden nodes had biological and/or clinical relevance. This bottleneck approach

constrains what the hidden nodes can represent and encourages a form of simplicity—an

alternative explanation of the data with fewer hidden nodes. Another technique for inducing
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Figure 3: GBM Consensus Clustering Ensemble Results and Corresponding Kaplan-Meier

Plot

(A) Heatmap and dendrogram for GBM consensus of consensus clustering results for six major
clusters (k=11). Dark green corresponds to samples that always clustered together (consensus value
= 1). White corresponds to samples that never clustered together (consensus value = 0). Lighter
shades of green are intermediate between 1 and 0. (B) Kaplan-Meier plot for six largest clusters in
part A. Each GBM cluster is represented by a colored curve in the plot. Top right of figure shows

the number of samples in each cluster.
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Figure 4: GBM Subtypes in each Cluster From Figure 3B Based on Molecular Subtyping

from Brennan et al., 2013

simplicity, or reducing the complexity of a model is regularization of the weights of a deep

learning model.

Going forward with the task of using deep neural networks to learn cellular signaling

pathways, we wanted a stronger signal for learning than what unsupervised learning provided,

and decided to leverage the power and success of supervised deep learning for this problem.

We also decided to add a regularization term to our objective function in order to learn

simpler models of genomic data instead of using a bottleneck, compression approach. We see

regularization (i.e., L1, L2 regularization) as a possibly more robust and controllable method

for inducing simplicity than relying on forcing the data through a bottleneck as described

above. The remaining sections of this dissertation discuss experiments using regularized,

supervised deep neural networks to learn cellular signaling pathways in genomic data. A

cellular signaling pathway represents causal relationships between biological entities (i.e.,

proteins, protein complexes, etc.).

For more information and convenience, [Young et al., 2017] is reproduced in its entirety

in the Appendix.
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4.0 Deep Learning and Causal Discovery Methods Development

4.1 Summary

Most causal discovery algorithms find causal structure among a set of observed variables.

In general, latent variable causal discovery methods have numerous assumptions, have difficulty

with high-dimensional data, or are less relevant to the input/output setting we explore in

this dissertation. Therefore, new approaches for discovering causal structures among latent

causal variables would be helpful to the field. In this chapter, we address a problem for

which it is known that inputs cause outputs, and these causal relationship are encoded by a

causal network among a set of an unknown number of latent variables. We developed a deep

learning model, referred to as redundant input neural network (RINN), and a regularized

objective function to find causal relationships between input, hidden, and output variables.

More specifically, our model allows input variables to directly interact with all latent variables

in a neural network to influence what information latent variables could encode in order

to generate the output variables accurately. In this setting, the direct connections between

input and latent variables makes the latent variables partially interpretable; furthermore,

this connectivity between latent variables in the neural network reveals potential causal

relationships among latent variables and their connected input variables.

4.2 Introduction

Causal discovery is a type of machine learning that focuses on learning causal relationships

from data, often solely from observational data. In this context, a causal structure is

represented as a graph G = (V,E) containing a set of vertices V and a set of edges E, and the

goal is to infer the data-generating causal structure from data. The majority of contemporary

causal discovery algorithms involve searching the space of possible structures to identify the

structure supported by the data, and there have been numerous algorithms developed for this
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purpose [Spirtes et al., 2000, Cooper, 1999, Heinze-Deml et al., 2018, Maathuis and Nandy,

2016, Peters et al., 2017, Lagani et al., 2016].

Most causal discovery algorithms find causal structure among the observed variables of a

dataset. Learning the causal structure among latent variables remains an important open

problem, particularly when using high-dimensional data or attempting to leverage a priori

knowledge that one set of observed variables causally influences a non-overlapping (disjoint)

set of observed variables (i.e., the input/output setting). Latent causal structure can provide

additional important insight into the causal mechanisms of a system or process. Thus, new

approaches to discovering latent causal structure are needed. In this chapter, we explore

the utility of using deep learning models for finding latent causal structure when the data

consist of two sets of variables and it is known a priori that one set ("inputs") causes the

other ("outputs")—and the causal path from inputs to outputs is mediated by a set of an

unknown number of latent variables, among which the causal structure is also unknown.

This computational problem has important applications, including its application to

cancer biology. Cancer results from somatic genomic alterations (SGAs) (e.g., mutations

in DNA) that perturb the functions of signaling proteins and cause aberrant activation

or inactivation of signaling pathways, which often eventually influences gene expression.

Typically, an SGA directly affects the function of only one signaling protein, and its impact

is transmitted through a cascade of signaling proteins to influence gene expression. Since

the functional states of signaling proteins in pathways are usually not measured, the whole

signaling system can be thought of as a set of hierarchically organized latent variables of

which we would like to infer how changed states of some signaling proteins causally influence

the state of others. In a cancer cell, when one signaling protein is perturbed by an SGA event

(an observed input variable), it may causally affect the functional states of the proteins in a

pathway (which are not observed) and eventually result in changed gene expression (observed

output variables). Thus, our task is to learn how a set of observed input variables causally

influence a set of observed output variables, through signals transmitted among a set of latent

variables.

The work in this chapter concentrates on finding latent causal relationships when the

causal direction between inputs and outputs is known. There has been some recent research
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in the causal discovery community that deals with this problem as discussed in Section

2.3. The DM (Detect MIMIC (Multiple Indicators Multiple Input Causes)) algorithm is a

causal discovery algorithm for finding latent causal relationships between inputs and outputs

[Murray-Watters and Glymour, 2015, Murray-Watters, 2014]. The DM algorithm uses a series

of heuristics based on conditional independence and Sober’s criterion [Sober, 1998, Murray-

Watters, 2014] to identify the latent causal structure. One limitation of the DM algorithm is

that it constrains each latent variable to be adjacent to at least one input and one output

variable. This limits the hierarchical and compositional relationships that DM can identify,

which makes it possibly less accurate for cellular signalling pathway discovery.

In contrast to traditional causal discovery methods, here we develop a modified deep

learning model to learn latent causal relationships. Deep learning has recently established

state of the art results in many domains, largely due to the ability of deep learning algorithms

to scale exceptionally well with large amounts of data and to parallelize across multiple GPUs

[Schmidhuber, 2015, LeCun et al., 2015, Raina et al., 2009]. Deep learning represents a group

of machine learning algorithms or strategies that originated from artificial neural networks

(ANN). ANNs represent a framework, loosely inspired by biological neurons, for learning a

function (represented as a set of parameters or weights) that maps inputs to outputs.

An essential characteristic of the proposed deep learning model for this work is their

ability to learn compositional representations of the data [Lee et al., 2008, LeCun et al., 2015].

A deep learning model is composed of multiple layers of latent variables (hidden nodes or

units) [Deng et al., 2014, Goodfellow et al., 2016, LeCun et al., 2015], which learn to represent

the complex statistical structure embedded in the data, such that different hidden layers

capture statistical structure of different degrees of complexity. In other words, deep learning

strategies learn novel representations of the statistical structure of the input data through

hierarchical decomposition (for additional discussion see [Young et al., 2017]). Researchers

have found that deep learning models can represent the hierarchical organization of signaling

molecules in a cell, with latent variables as natural representations of unobserved activation

states of signaling molecules [Chen et al., 2016, Young et al., 2017, Chen et al., 2015, Lu

et al., 2018, Tao et al., 2020].

Conventional neural networks behave like black boxes in that it is difficult to interpret what
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signal a hidden node in the network encodes. We hypothesize that with certain modifications

inspired by the biological problem mentioned above, one may learn a partially interpretable

deep neural network so that the relationships between latent variables can be interpreted as

part of causal chain from input to output variable. To this end, we designed a modified deep

neural network, the redundant input neural network (RINN) that allows each input variable

to directly connect to each latent variable within the deep learning hierarchy. This redundant

input structure allows one to learn direct causal relationships between an input variable

and any latent variable. We also developed a robust pipeline for testing an algorithm’s

ability to capture latent causal structure, including causal simulated data inspired by cellular

signaling pathways, a method for visualizing the weights of a neural network, and a method

for measuring precision and recall of the causal structure.

4.3 Simulating Data From Known Causal Structure

A major goal of this work was to find hidden causal hierarchical structure between

inputs and outputs. Ultimately, we are interested in biological cellular signaling systems and

constructing these causal signaling pathways from mutation and expression data. However,

accurate and complete ground truth cellular signaling pathway knowledge (i.e., causal

structure) is not available. Ultimately, we decided that the best approach to robustly

determine if a neural network can discover causal structure in its weights was to generate

simulated data from an artificial causal hierarchical structure.

To generate simulated data, we first needed a ground truth causal structure (GT ) to

generate data from. To accomplish this, we manually created a directed acyclic graph (DAG)

that fit the requirements mentioned previously (i.e., hierarchical structure between a set

of inputs and outputs). In the ground truth DAG (Figure 5a), the input layer is directly

connected to both the first and second hidden layers to allow us to recover direct causal

relationships between inputs and hidden variables. This structure is also the most biologically

plausible way that mutations would affect biological entities (assuming the latent variables

to be biological entities), as mutations can have an effect at any location in the signaling
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Figure 5: Ground Truth DAG for Simulated Data and Visualizing Output Space
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pathway hierarchy, not just at one level (i.e., hidden layer) of the hierarchy. The ground

truth DAG had 16 inputs x, 16 outputs y, and two hidden layers h1, h2, one with four

nodes and one with five nodes (Figure 5a). In addition, we wanted an easy way to visualize

the ground truth DAG, so we connected the nodes in a specific way to be able to generate

visibly recognizable patterns (relative to output space) for each node in the DAG (Figure 5

and Section 4.9). Given a specific node xi in GT , these patterns (heatmaps or visualizations)

indicate if an output node is affected by the value of xi, i.e., Which output nodes have xi as

an ancestor? (Figure 5c, 5d).

The ground truth DAG in Figure 5a also had a biological motivation. We constructed the

DAG with inputs x representing the presence or absence of DNA mutations or alterations

(somatic genome alterations (SGAs)) and the outputs y representing differentially expressed

genes (DEGs). Mutation and expression data are readily available from many sources, (e.g.,

The Cancer Genome Atlas (TCGA) [Weinstein et al., 2013]). Between these input and output

layers, we envisioned a biological signaling pathway [Young et al., 2017] with the hidden

layer h1 closest to the inputs representing major biological pathways and h2 representing

transcription factors. Biologically, mutations (i.e., input nodes x) directly target transcription

factors and proteins higher up in the hierarchy (e.g., cell membrane receptors). To reflect this

in our ground truth DAG, we allowed input mutations in x to directly connect to nodes in

h1 or h2. Each mutation affected only one node, but each node could be affected by multiple

mutations. This is similar to how biological mutations function. Our ground truth DAG,

GT , is a crude representation of a biological signaling pathway, and one obvious omission in

the DAG abstraction are feedback cycles, which are prevalent in biological cellular signaling

pathways.

Another goal with using simulated data in this research, was to see how well a neural

network learned causal relationships in its weight matrices when the simulated data was

binary versus continuous, and noisy versus non-noisy. This allowed us to make general

predictions about the limitations of these algorithms as a function of the characteristics of the

data. To accomplish the above, we generated six different simulated datasets. All datasets

had 16 inputs, 16 outputs, and 5,000 instances.
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4.3.1 Dataset 1: Matrix Multiplication with Interventions (no noise; binary

input; positive integer-valued output)

For Dataset 1, we simulated data from the ground truth DAG by having the inputs

intervene on their adjacent hidden nodes. An "active" (i.e., 1) input intervention node would

set the value of an adjacent hidden node to 0 for that sample (Algorithm 1). This idea for

simulating data was intended to capture the effect of a biological loss-of-function mutation

on the mutation’s associated transcription factor or protein complex.

We represented the ground truth causal DAG, GT (Figure 5a), as a set of weight matrices

(each matrix representing the edges between two adjacent layers of nodes in GT , similar to

how the weights of a neural network are typically represented). If an edge was present between

two nodes in GT , then the weight value between these two nodes in the corresponding weight

matrix would be set to 1, otherwise the weight is set to 0. The only exception to this was for

the weight matrix, Wx, relative to the input layer. Notice that the input layer is directly

connected to both the first and second hidden layers. We represented these edges also with a

single weight matrix (Wx), where the number of rows was the number of input nodes and the

number of columns was the number of nodes in h1 plus the number of nodes in h2. For GT ,

this means this weight matrix (Wx) would be 16× 9, and contain a value of 1 if there was an

edge between an input (rows) and a hidden node (columns). Each input x is connected to a

single hidden node. But the hidden nodes have multiple inputs connected to them.

We simulated data in this section by imagining the inputs as acting as interventions on

the hidden nodes they are connected to. An "active" intervention here would set the value of

a node to 0 for that sample.

To accomplish this, for each simulated instance, we sampled x (inputs) from a Binomial

distribution with Bernoulli success probability (probability that a mutation is present)

p = 0.10 and n = 16 (number of output values).

x ∼ B(n, p) (4.1)

Next, we set the values of the first hidden layer h1 to 1 (i.e., all nodes are "active").

Next, we looked to see if any of these values were intervened upon by looking at our sampled
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Algorithm 1 Simulate Data using Matrix Multiplication and Interventions
p is the Bernoulli success probability . probability that a mutation is present

s is the number of samples we want to generate

Data is a container for the simulated data

Wl is the weight matrix between hidden layer l − 1 and l

hl is the vector of values representing hidden layer l

p = 0.10

for i = 1 to s do

SAMPLE x ∼ B(16, p) . Bernoulli Trials

h1 = [1, 1, 1, 1]>

for j = 1 to 2 do

set nodes in hj targeted by x to 0 . use Wx

hj+1 = hjWj+1

end for

SAVE x and hj+1 in Data

end for
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x to see if any targeted h1. If yes, we clamped the targeted nodes to 0 to get a slightly

modified h1. Next, we vector-matrix multiplied h1 by W2 to get the values for h2. W2 is

the weight matrix between h1 and h2. We looked to see if any of the values in h2 were

intervened upon by the current x and if so, we clamped the targeted nodes in h2 to 0. And

as before, we vector-matrix multiplied h2 by W3 (weight matrix between h2 and y) to get y

(See Algorithm 1 for pseudocode). This method for simulating data leads to y values that

are positive integer-valued.

4.3.2 Dataset 2: Linear Gaussian SEM (high noise; input and output ∈ R)

b ∼ N (0, σ2) (4.2)

σ2 ∼ U(1, 3) (4.3)

W ∼ ±U(0.5, 1.5) (4.4)

Let GT be our ground truth DAG with nodes N (input, hidden, and output), N l
j be node

j at layer l, X l−1
i be the value of parent (i.e., direct cause) i in layer l− 1. Then we simulate

data using a structural equation model (SEM) to calculate the value of each node N l
j in GT

as

N l
j =

∑
i∈parentsGT

(jl)

W l
ijX

l−1
i + blj (4.5)

4.3.3 Dataset 3: OR Logical Operator (high noise; binary)

We found simulating noisy binary data challenging. To accomplish this, we modeled the

value of a node in our ground truth graph GT as the output of a logical OR applied to the

values of the parents of said node. First, we sampled a probability, p, to represent

P (X = 1|parentsGT
(X)) (4.6)
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(a Bernoulli distribution) for all possible binary combinations of a node’s parents’ values.

We sampled p from Beta distributions peaked close to 0.10 or 0.90 depending on the values

of the parents (i.e., OR operator applied to the values of the parents) to add noise to the

OR operations. This sampling from Beta distributions provided a collection of Bernoulli

distributions for all possible binary combinations of parents. We then used these Bernoulli

distributions to generate noisy data from OR operators. For example, to model an OR

operator with two parents, we would sample four p values, each representing a Bernoulli

distribution as follows,

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 1) ∼ Beta(90, 10) (4.7)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 1) ∼ Beta(90, 10) (4.8)

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 0) ∼ Beta(90, 10) (4.9)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 0) ∼ Beta(10, 90) (4.10)

where Pa1,GT
indicates parent 1 of node x in graph GT .

The distributions are noisy because P (X = 1|parentsGT
(X)) is not equal to 0 or 1, as it

normally would be for non-noisy OR operators. Also, the Bernoulli distributions are sampled,

meaning they are not all p = 0.10 or p = 0.90. This means that some operators will be

considerably noisier than others. After generating all Bernoulli distributions, we sample

values for each node in the ground truth DAG given the values of the parents for that node

and the corresponding Bernoulli distribution (See Algorithm 2 for pseudocode, but assume

all operators are OR operators).

4.3.4 Dataset 4: AND, OR, XOR Logical Operators (moderate noise; binary)

To increase the complexity of our simulated data, we added AND and XOR operators

to replace some of the OR operators in Section 4.3.3 (Algorithm 2) and followed the same
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procedure as Section 4.3.3. In contrast to dataset 3, we sampled p from Beta distributions

peaked close to 0.05 and 0.95 for dataset 4, meaning that dataset 4 is less noisy than dataset

3.

Just as in Section 4.3.3, we sampled a probability, p, to represent

P (X = 1|parentsGT
(X)) (4.11)

for all possible binary combinations of a node’s parents’ values, and considering what operator

the node represented (i.e., AND, OR, or XOR). Again, this sampling from Beta distributions

provided a collection of Bernoulli distributions for all possible binary combinations of parents.

We then used these Bernoulli distributions to generate noisy data from AND, OR, or XOR

operators. For example, to model an AND operator with two parents, we would sample four

p values, each representing a Bernoulli distribution as follows,

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 1) ∼ Beta(95, 5) (4.12)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 1) ∼ Beta(5, 95) (4.13)

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 0) ∼ Beta(5, 95) (4.14)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 0) ∼ Beta(5, 95) (4.15)

We chose to change the α and β values for the Beta distributions (making the data

less noisy) for these slightly more complex operators to evaluate the effect of noise on the

algorithms and to balance the complexity of the operators with the amount of noise (See

Algorithm 2 below for pseudocode for simulating this dataset).

4.3.5 Dataset 5: TCGA + OR

We wanted to test our algorithms on larger, biologically-related datasets, as we developed

the algorithms in this dissertation for eventual use on biological datasets. However, biological
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Algorithm 2 Simulate Data from AND, OR, XOR Logical Operators
GT = (V,E) . ground truth DAG with vertices V and edges E.

PARENTS(node) returns the binary values of the parents of node

X is a n×m matrix

Data is a n×m matrix

D is a container of Bernoulli distributions

s is the number of samples we want to generate

for node in V do

op = RANDOM_CHOICE(AND,OR,XOR)

for each possible binary combination, b, of the parents of node do

if op(b) is True then

SAMPLE Dnode,b ∼ Beta(95, 5)

else if op(b) is False then

SAMPLE Dnode,b ∼ Beta(5, 95)

end if

end for

end for

SAMPLE X ∼ U(0, 1)

for i = 1 to s do

for node in V do . start from input nodes and go to output nodes

b = PARENTS(node)

Datai,node = Dnode,b < Xi,node

end for

end for

return Data
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datasets with mutation and expression data; as well as, complete and accurate ground truth

causal structure, to our knowledge, do not exist. So our solution was to embed simulated data

within a larger biological dataset and see if the known ground truth causal structure could

still be discovered within the much larger dataset, and to also evaluate how the different

algorithms performed simply on the prediction task for this biologically related dataset (i.e.,

which algorithm had the lowest prediction error).

To accomplish this, we obtained mutation and expression data from The Cancer Genome

Atlas (TCGA) [Weinstein et al., 2013] and used an algorithm from [Cooper et al., 2018, Cai

et al., 2019] called TCI (Tumor-specific Causal Inference) to binarize the data and perform

feature selection on both the mutation and expression data. Please see [Cooper et al.,

2018, Cai et al., 2019] for a detailed explanation of how TCI works.

A benefit of this approach was that we could use the results on the embedded simulated

data to tune the regularization rate parameter for the entire dataset based on the precision

and recall for the embedded simulated data only. Determining the regularization rate is

nontrivial and may be the most important component of whether or not an algorithm can

learn the correct causal structure, so any guidance we can get to set this hyperparameter could

be of great benefit. As the purely biological data has no ground truth causal structure, we had

no way to calculate precision and recall for the biological data. Assuming the biological causal

structure is somewhat similar to the simulated data causal structure, tuning the regularization

rate hyperparameter based on the precision and recall of the embedded simulated data may

help us to more quickly identify the correct causal structure in biological data.

Briefly, after running the TCGA data through TCI, we obtained the following data for

each of the 5,000 cancer tissue samples: 1. the presence or absence of 634 gene mutations and

2. the differential expression for 10,120 genes. The 634 mutations were selected by TCI as

cancer driver (i.e., causing) mutations. And the 10,120 differentially expressed genes (DEGs)

represented the DEGs regulated by the 634 drivers. This dataset was still too large for our

purposes, so we performed feature selection by variance on the 10,120 DEGs to reduce the

number of DEGs down to 5,168. This was accomplished by removing any DEGs with a

variance (measured across the samples) less than

v = p(1− p) (4.16)
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with p = 0.8.

We hypothesized that the DEGs that are most relevant for this task are the DEGs that

vary the most across the dataset. Next, we ran a neural network classifier using the 634

mutations as input to predict the values of the 5,168 DEGs. We obtained Area Under

the ROC Curve (AUROC) values for each DEG and then ranked the DEGs based on the

AUROCs from highest to lowest. We selected the DEGs with AUROCs greater than 0.85.

This ultimately led to final dataset with 634 mutations and 68 DEGs for 5,000 tissue samples.

Next, we embedded simulated Dataset 3 (OR operator) into the feature-reduced TCGA

dataset described above, by simple concatenation. This generated a final dataset with 650

inputs and 84 outputs for 5,000 samples.

4.3.6 Dataset 6: TCGA + OR, XOR, AND

Following the same procedure detailed in Section 4.3.5 and using the same feature-reduced

TCGA data, we embedded simulated Dataset 4 (AND, OR, XOR operators) into the TCGA

data. Just like Dataset 5, Dataset 6 consisted of a 5000 × 650 input matrix (X) and a

5000× 84 output matrix (Y ).

4.4 Redundant Input Neural Network (RINN)

In this dissertation, we wanted to be able to model inputs that directly connected to any

hidden layer in a neural network (again, as this is closest to how mutations in DNA would

impact cellular-signaling pathways). To accomplish this, we developed the Redundant Input

Neural Network (RINN) (Figure 6 and Algorithm 3). The RINN has an extra copy of the

input x directly connected to all hidden layers after the first hidden layer. In contrast to the

RINN, the inputs of a conventional feedforward DNN are only connected to the first hidden

layer. Just like a DNN, the RINN is trained through backpropagation and stochastic gradient

descent (see Sections 2.1, 4.5.1), it just has many more weights in the network.
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Each hidden layer of a RINN with redundant inputs is calculated according to

h(i) = φ([h(i−1),x] ·Wi) + bi (4.17)

where h(i−1) represents the previous layer’s output vector, x is the vector input to the neural

network, [h(i−1),x] represents concatenation into a single vector, Wi represent the weight

matrix between hidden and redundant nodes in layer i− 1 and hidden layer i, φ is a nonlinear

function (e.g., ReLU), · represents vector-matrix multiplication, and bi represents the bias

vector for layer i. In contrast to a RINN, a plain DNN calculates each hidden layer as

h(i) = φ(h(i−1) ·Wi) + bi (4.18)

In order to use a neural network to capture the ground truth causal structure in the

weights, the weights needed to be regularized or constrained in some way. We evaluated

both L1 and L2 regularization and L1 provided far superior results for finding the causal

structure of our ground truth DAG (results not shown). The objective functions for all neural

network-based strategies used in this dissertation included L1 regularization of the weights.

Only the fine-tuning objective function for the DBN included L1 regularization.

Another difference between the RINN and a DNN in this research is that the RINN

was always trained with eight hidden layers (i.e., the number of hidden layers in a RINN

was always set to eight). This is because we hypothesize (for eventually using this in a

biological setting) that most biological pathways will not have more than an 8-level hierarchy.

Importantly, since copies of the input are available to use at each hidden layer (should the

algorithm decide to use it), we don’t need to determine the best number of hidden layers (as

a model selection hyperparameter)—this means less model selection is required for RINNs. If

the optimal way to learn the structure in the data with a RINN is by using a 3-hidden layer

network, the RINN will learn nonzero weights starting with the copy of the input that is

connected to hidden layer 6. This would create a 3-hidden layer network (hidden layers 6, 7,

and 8), with all weights in the network before the redundant input connected to hidden layer

6 being equal to 0.0. This happens because of the L1 regularization used in the objective

function, which constrains the RINN to map input to output using as few weights as possible.

This 8-level hierarchy constraint doesn’t necessarily just apply to biological pathway data,
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Figure 6: Simple Redundant Input Neural Network (RINN)

A RINN with four hidden layers (h(1), h(2), h(3), h(4), each with two nodes), two inputs (x1, x2 on
bottom), three outputs (y1, y2, y3), and three sets of redundant inputs (x1, x2 on right side). Each
node represents a scalar value and each edge represents a scalar weight. The weights between layers

are collected in weight matrices W1, W2, W3, W4, and W5.
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but might be sufficient for most data in general. However, if there is reason to think that

there may be more hierarchical levels in a particular dataset, the number of maximum hidden

layers can always be increased with a RINN, or treated as a hyperparameter.

Algorithm 3 Redundant Input Neural Network (RINN)
Wl,a is the weight matrix between hidden layer l − 1 and hidden layer l

Wl,b is the weight matrix between input l − 1 and hidden layer l

hl is the vector of values representing hidden layer l

xi is the input vector for instance i

yi is the output vector for instance i

s is the number of samples in the dataset

ERROR is the objective function to be optimized. In this case, binary cross-entropy.

for i = 1 to s do

a1 = ReLU(xi ·W0,b)

for j = 1 to num_hid_layers do

aj = CONCATENATE(aj,xi)

Wj = CONCATENATE(Wj,a,Wj,b)

aj+1 = ReLU(aj ·Wj)

end for

ŷi = sigmoid(aj+1 ·Wj+1,a) . for binary y

Update all W by descending their gradient:

∇WERROR(yi, ŷi)

end for
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4.5 Other Deep Learning Strategies

4.5.1 DNN

We compared the RINN with a feedforward DNN. A DNN learns a function mapping

inputs (x) to outputs (y) according to

f(x) = φ(...φ(φ(xW1)W2)...Wn) = ŷ (4.19)

where Wi represent the weight matrices between layers of a neural network, φ is some

nonlinear function (i.e., activation function such as ReLU, sigmoid, or tanh), and ŷ is the

predicted output. DNNs also have bias vectors added at each layer, which have been omitted

from the above equation for clarity. Each hidden layer of a DNN is calculated according to

h(i) = φ(h(i−1) ·Wi) + bi (4.20)

where h(i−1) represents the previous layer’s output vector, Wi represent the weight matrix

between hidden and redundant nodes in layer i − 1 and hidden layer i, φ is a nonlinear

function (e.g., ReLU), · represents vector-matrix multiplication, and bi represents the bias

vector for layer i.

For more details about DNNs, see Section 2.1 and [Goodfellow et al., 2016].

4.5.2 DBN

A deep belief network or DBN [Hinton and Salakhutdinov, 2006] is a type of autoencoder,

an unsupervised DNN. This means that the DBNs used here were trained with only y data,

i.e., DBNs learned to map y to a lower dimensional representation of y (in the hidden layers)

and then to reconstruct y from the lower dimensional representation. Error is measured by

comparing y to ŷ. We evaluated the trained "decoder" network only (i.e., the second half

of the network going from smallest hidden layer to y) for evidence of GT latent variables.

We had difficulty recovering any of the causal ground truth graph (Figure 5a) with a default

DBN, but adding L1 regularization to the fine-tuning step objective function allowed us to

recover at least some of the causal structure. For more details on what a DBN is, see Section
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2.2. For a more detailed explanation of a DBN (including a pre-training step not mentioned

here) and specifically its use in a biological context, see [Young et al., 2017].

4.5.3 Constrained Evolutionary Strategy

When using the RINN (or DNN) to find causal structure, it is necessary to look at

the values of all the weights in a trained network and, based on a threshold, decide which

weights are significant and which are not. This is necessary because neural networks are fully

connected, meaning that each input/hidden node is connected to each hidden node in the

next layer. Once a RINN is trained, we need to interpret the weights to generate a causal

graph. Using L1 regularization causes the network to set most of the values in the weight

matrices to a small number, but in our experiments very few of the weights are actually

zero—rather there are many weights with values in the interval [0.0001, 0.5]. This requires

that we set a threshold, above which weights will be interpreted as a causal edge (often this

threshold was near 0.1 for simulated data). This thresholding problem can be solved by using

a non-differentiable optimization procedure that limits the allowed values for weights in a

neural network (e.g., an extreme example would be restricting the weight values to 1 or 0

only).

Neural networks are trained using gradient descent optimization. This means that the

gradient of the loss function with respect to the weights of the network must be calculated

(this calculation uses the backpropagation algorithm), requiring that the loss function for

gradient descent-based optimization be differentiable. Genetic algorithms can be used to

optimize non-differentiable loss functions, allowing for more flexibility when choosing how to

best evaluate the models of an experiment.

Recently, there has been an increased interest in the application of evolution-based

optimization to deep learning and reinforcement learning with promising outcomes [Salimans

et al., 2017]. In particular, genetic algorithms have been used to successfully optimize

four million parameter deep neural networks with performance at or better than current

SGD based methods [Such et al., 2017]. In addition to having competitive performance on

reinforcement learning based tasks, evolutionary algorithms have additional benefits. I have
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already mentioned the benefit of using a non-differentiable fitness or loss function above, which

allow for constraints on weight values that can increase interpretability. Non-differentiable

function optimization opens up many possibilities for fruitful modifications to a fitness function

and neural network based-algorithm, thus dramatically increasing flexibility. Evolutionary

algorithms are also highly parallelizable, as the population of individuals can be evolved mostly

independently of other individuals. There is also some evidence that evolutionary algorithms

can estimate better structure and converge faster than typical Bayesian network structure

learning approaches [LarrañAga et al., 2013, Wong et al., 1999, van Dijk and Thierens, 2004].

It is also suggested that evolutionary algorithms "have been able to perform a more effective

and diverse search of the vast solution space of different problems." [LarrañAga et al., 2013].

The benefits, flexibility, and competitive performance of evolutionary algorithms suggest

that they are a reasonable alternative to gradient-based methods for causal structure search,

especially for the structure search algorithms presented in this dissertation.

We developed an evolutionary strategy (ES) to optimize the weights of a RINN (instead

of using gradient descent) in order to explore other optimization strategies that make it

easier to interpret the weights of a neural network as causal relationships. Specifically, we

developed a constrained evolutionary strategy (ES-C), where we constrained the possible

values for the weights (e.g., weight ∈ {−1,−0.5, 0, 0.5, 1}). We represented an individual

in the population to be evolved as a vector of weights. This vector of weights represents a

neural network. Initially these weights were set to all zeros, then if a weight was selected

for mutation (as dependent on a mutation rate), it was randomly changed to a weight in

the range of legal weight values. If a RINN optimized with an evolutionary strategy in this

way is able to successfully map the input to output, then interpreting the weights as causal

relationships will be much simpler—a nonzero weight represents a causal edge.

We performed model selection over multiple hyperparameters including, elite ratio (percent

of population saved to mate and produce the next generation), mutation rate, regularization

rate, and the legal weight values. The architecture of the neural network was set to eight

layers of eight hidden nodes (because we knew this would be sufficient based on previous

experiments with these simulated datasets). We used a population size of 200 and evolved

for up to 13,000 generations or epochs. For a fitness function, we used L1 regularization plus

42



either binary cross-entropy error or squared error depending on the dataset. The MATE

function involved choosing two individuals in the elite population and randomly combining

50% of the weights from one individual with 50% of the weights from the other individual.

The evolutionary strategy used in this work was not setup to be parallelized across processors,

as early prototyping experiments suggested that ES-C would not perform nearly as well

as RINN. This, unfortunately, reduced the amount of model selection we could perform in

a timely manner. To speed up ES-C, we also only trained on 20% of the data that was

used to train the other algorithms. Testing 500 sets of hyperparameters on one dataset took

approximately three weeks on a single desktop computer. Please see Algorithm 4 pseudocode

for the evolutionary strategy we used in this work.

Algorithm 4 Genetic Algorithm for Neural Network Weight Optimization
f is a vector of fitness values

Data represents all input and output data

Wi represents all the weights of neural network i reshaped into a vector

pw represents the set of all possible weight values (e.g., {−1,−0.5, 0, 0.5, 1})

for i = 1 to num_generations do . for each generation

for j = 1 to population_size do . for each neural network

fj = FITNESS(Wj, Data)

end for

elites = TOP_20_PERCENT(f) . get best performing neural nets

for k = 1 to p do

Wk = MATE(RANDOM_CHOICE(elites), RANDOM_CHOICE(elites))

Wk = MUTATE(Wk, pw) . change some weights to random value from pw

end for

end for

RETURN Wbest . neural network with highest fitness function
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4.6 DM Algorithm

The DM (Detect MIMIC—a psychological model with unmeasured latents between inputs

and outputs) algorithm is a fast causal discovery algorithm (with similar assumptions as

the RINN) that finds latent structure between input and output data [Murray-Watters,

2014, Murray-Watters and Glymour, 2015]. The DM algorithm needs to know which variables

are input variables and which are output variables (or it can run the PC algorithm to

determine which are input and which are output). Next, it performs routine statistical tests

to find out which input and output variables are dependent on one another. It then partitions

the input variables according to whichever inputs were found to be dependent on the same

set of output variables. For each of these partitions, it adds a latent variable between the

inputs and outputs, and adds edges from all inputs to the latent variable and from the latent

variable to all outputs. Next, it adds a directed edge between latent variables if one of the

latent variable’s dependent outputs is a subset of the other latent variables dependent outputs.

Finally, it prunes some of these edges based on conditional independence tests on the outputs

(Sober’s Criterion [Sober, 1998]—see The Steps of the DM Algorithm below).

As another comparison, we evaluated the performance of the DM (Detect MIMIC)

algorithm [Murray-Watters and Glymour, 2015] on the first four simulated datasets. This

will allow us to compare our neural network-based approaches for finding causal structure to

a very different and more traditional causal discovery based approach. The DM algorithm

requires that you specify which variables are input variables and which variables are output

variables, but does not require that you specify anything about the hidden variables. The

DM algorithm takes two tuning parameters: an alpha level for Fisher’s Z test of conditional

independence and an alpha level for Sober’s criterion.

We performed an abbreviated grid search selecting values for the first alpha level

α ∈ {0.05, 0.01, 0.001, 0.0001} motivated by [Ramsey and Andrews, 2017] and values for

the second alpha level α ∈ {0.1, 0.05, 0.01}. The best performing combination of tuning

parameters for the DM algorithm on each of the first four simulated datasets are reported and

compared against the other algorithms in Tables 2, 3. For a more detailed description of the

DM algorithm and its assumptions, see [Murray-Watters and Glymour, 2015, Murray-Watters,
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2014].

The Steps of the DM Algorithm:

(1) Separate data into input X and output Y variable sets.

(2) Routine statistical tests to determine dependence between subsets of X and subsets

of Y . This step separates the observed variables into partitions Pi = {Xi, Yi} of the

dataset with dependency between Xi and Yi, where Xi ⊂ X and Yi ⊂ Y .

(3) Latent variables L are added between X and Y for each partition.

(4) Add edges from X to corresponding L.

(5) Procedure to add edges from L to Y , with only one edge into each Y .

(6) Procedure to add edges from L to L.

(7) Use Sober’s criterion to remove edges. Sober’s criterion:

Y ← X → Z , Y ⊥⊥ Z|X

Y ← U → Z and X → U , Y 6⊥⊥ Z|X

(8) Return learned causal structure.

The assumptions required by the DM algorithm are somewhat similar to the assumptions

required for the RINN. Overall, both have restrictive assumptions (see Section 4.7 for RINN

causal assumptions). There are a few differences between the assumptions made by each

algorithm. The DM algorithm requires each latent variable to have have at least one observed

cause and one observed effect; however, the RINN can represent a latent variable without an

observed cause through the use of a nonzero bias node. The DM algorithm also assumes that

there is only one directed path between any two observed variables, meaning that each output

variable has only one directed edge into it. This is a very limiting assumption and the RINN

algorithm does not assume this. Biologically, this assumption is violated as there is often

redundancy in cellular signaling pathways and many ways to activate a given protein (e.g.,

transcription factor). The DM algorithm is also dependent on conditional independence tests,

which have additional hyperparameters that need to be set. In general, the DM algorithm

has more constraints than the RINN algorithm. However, the correctness of the RINN is
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dependent upon reaching the global optimum, which is unlikely when performing stochastic

gradient descent to optimize neural networks. So, in practice, it is difficult to prove correctness

with the RINN. Another major difference between the RINN and the DM algorithm is that

the DM algorithm only returns a causal structure (without parameterization), whereas the

RINN returns a causal structure and parameterization. The DM algorithm is available in

Tetrad (http://www.phil.cmu.edu/tetrad/, https://github.com/cmu-phil/tetrad).

4.7 Causal Assumptions (Neural Network)

The following are assumed to be true regarding the true graph and data generating

process. These assumptions allow the weights learned by a neural network to be interpreted

as causal relationships.

A1. Causal Markov Assumption: D-separation (a criterion for determining independence

between vertices in a causal graph) in the true data-generating graph GT implies

conditional independence in the data distribution.

A2. x→→ y: We assume it is known a priori that x causes y and that there is at least one

latent variable on the path from x to y. For example, mutations in DNA cause changes

in gene expression through modifications to cell signaling. The methods developed in

this study can be used with any datasets where the causal direction between two sets of

variables is known.

A3. Causal Sufficiency: Given x,y, the observed input and output variables (i.e., all observed

variables), there are no latent variables Z, Z /∈ x, Z /∈ y, such that Z causally influences

at least one variable in x and one variable in y (i.e., latent confounding). In a biological

context, with x = SGA and y = DEG, this assumption is generally true.

A4. We assume away selection bias.

A5. The true graph has no latent to latent cycles (acyclic): In a biological context, this

assumption is violated by almost all signaling pathways as feedback is a common

characteristic of molecular signaling pathways. Assuming acyclicity is a limitation of

using the methods in this study.
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A6. Faithfulness: Independence in the data distribution implies d-separation in the true

data-generating graph GT . This can be seen as an appeal to Occam’s razor—preferring

the most parsimonious graph over a denser graph. L1 regularization encourages learning

the most parsimonious graph.

A7. Latent Variable Identifiability: The latent variables are identifiable.

A latent variable is identifiable if, 1. the intersection of its ancestors in GT and x

is unique with respect to the other latent variables, AND 2. the intersection of its

descendants in GT and y is unique with respect to the other latent variables.

A8. The ground truth causal relationships can be modeled with one or multiple affine

transformations plus nonlinear functions (hidden layer calculations in a neural network).

The causal ground truth DAG in Figure 5a and simulated data adhere to these assumptions.

The structure learned by the RINN represents the underlying data generating DAG if the

RINN reaches the global optimum and the assumptions above are not violated. This means

that the weights of a RINN can be interpreted as edges in a causal graph, with all edges

oriented in the direction that is towards y, i.e., x→ h1 → h2 →, ..., hn → y, where n is the

number of hidden layers. We suspect that reaching the global optimum is not necessarily

required, and correct causal structure (but not necessarily correct causal parameters) could

still be recovered from models close to the global optimum.

4.7.1 Causal Assumption Examples

Given that x is found to be correlated with y by a neural network (i.e., there is a nonzero

weight between x and y), there are four possibilities for the true orientation of the edge

between x and y according to GT :

(1) x→ y

(2) x← y

(3) x↔ y

(4) x ⊥⊥ y

(2) violates our prior knowledge that x causes y, i.e., our known causal ordering. (3) represents

a latent confounding variable causing x and y and therefore violates the causal sufficiency
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assumption. (4) violates the faithfulness assumption. If x ⊥⊥ y in GT then a neural network

with L1 regularization and adhering to faithfulness should not learn an edge where there is

no dependency. This leaves (1) as the true orientation of the edge between x and y.

The following causal graphs would not be valid interpretations of the weights of a neural

network given the assumptions in this section:

(1) x← h1 ← h2 → h3 → y

(2) x→ h1 → h2 ← h3 → y

(1) violates causal sufficiency. (2) violates faithfulness—only h3 is necessary to predict y. If

this relationship, h3 → y, were actually present in the ground truth, the RINN would learn it

as a nonzero bias node.

4.8 Ranking Models Based on Balance Between Sparsity and Prediction Error

The major goal of this work was to learn neural networks that capture causal relationships

within their weight matrices. In order to achieve this goal, we needed to modify our approach

to model selection in order to best balance sparsity of weights and prediction error. After

training (RINN, DNN, DBN, and ES-C) with various combinations of hyperparameters, we

selected the models (sets of weight matrices for each trained network) that were relatively

sparse and had a relatively low prediction error. This meant we needed to find models that

achieved a good balance between sparsity and prediction error. We often observed prediction

error decreasing as sparsity decreased and attribute this to the model having more flexibility

(i.e., less sparsity) in how it learns to fit the function. This can lead to overfitting the

training set if a hold-out test set is not also evaluated. Increasing regularization constrains

the model, and over-regularizing leads to underfitting the data. To balance the trade-off

between prediction error and sparsity, in plots of prediction error versus sparsity (Figure 7),

we measured the Euclidean distance from each point (model) to the origin. In more detail, we

plotted the sum of all the weights in a model (our chosen measure of sparsity as we found the

regularization rate to be much more variable—i.e., the regularization rate merely encourages
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sparsity, but does not enforce it) on the x-axis and the prediction error on the y-axis. We

then measured the Euclidean distance from the origin to each point on the plot just described

according to

dx =

√√√√( m∑
i=1

ri∑
j=1

ci∑
k=1

|w(i)
j,k|

)2

+ L2 (4.21)

where L is the validation set loss for neural network x, m is the number of weight matrices

in neural network x, ri and ci are the number of rows and columns in matrix i respectively,

and w is a scalar weight. Prior to calculating the Euclidean distance (dx), we removed large

outliers by selecting values for the sum of weights and prediction error that were below the

95% quantile. We then performed min-max scaling (using sklearn’s MinMaxScaler [Pedregosa

et al., 2011]) on the prediction error and sum of weights. Min-max scaling scales each set of

values to within the interval [0, 1]. Models were then ranked according to shortest Euclidean

distance (smallest dx) and the ten models for each strategy with the smallest distance were

selected to be used to calculate average precision and recall. After selecting the ten best

models for each strategy and dataset combination, we retrained on the training plus validation

set, and tested on the hold-out test set.

4.9 Visualizing the Weights of a Neural Network

To increase our understanding of what the weights of a neural network capture after

training with L1 regularization, we developed a simple visualization technique. This technique

maps every hidden node (or input node) to a representation in output space, and gives us a

measure of how each node in the network changes the output values. To get the representations

in output space for a layer of nodes, we matrix multiply the weight matrices from that layer

going forward to output space. The representation in output space is then resized and

displayed as a heatmap. This allows us to quickly assess what the weights of a neural network

have captured. By carefully constructing a ground truth causal DAG (see Figure 5a) with

easily identifiable patterns in the weights when mapped to output space, we created ground

truth heatmaps (Figure 5e) that will be present in the weights of a neural network, if the
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weights captured the causal relationships in the ground truth DAG. We simply look at the

heatmaps calculated from a trained neural network to see if the weights captured any of the

known causal relationships.

This visualization algorithm intuitively visualizes the weights of a trained RINN, DNN,

or DBN. To create these visualizations, we need the learned weight matrices from a trained

neural network. Given these weight matrices (W1,W2, ...,Wn), we start with the first weight

matrix, W1 (dimensions: i× j), and matrix multiply by W2, then matrix multiply by W3,

and continue until we multiply by the final weight matrix, Wn (dimensions: r × s). The

result of this calculation is an i× s (number of first hidden layer nodes by number of output

DEGs) matrix that represents the change induced by each vertex/hidden node in the first

hidden layer on output space (y space), or the impact of the activation of a hidden node on

the final vector of output values. Just as we performed this calculation starting with W1, we

next perform the calculation starting with W2 and get a final matrix representing the change

induced by each of the second hidden layer nodes on output space. We iterate through all

weight matrices until we have matrix representations of output space for all nodes in a trained

neural network. This algorithm is equivalent to neural network forward propagation (starting

from each hidden layer individually) without using activation functions and biases. Using the

activations and biases would not allow us to isolate the effects of the weights alone.

Following the calculation of the visualization matrices as above, each row of these matrices

were resized to be 2-dimensional. For example, if a visualization matrix had dimensions

8× 16, meaning each row was a 16-dimensional vector, we could represent each row as a 4× 4

matrix simply by stacking the values, four at a time, of a single 16-D vector.

The visualizations were calculated according to

Mj = WjWj+1Wj+2, ...,Wh (4.22)

vj = reshape(Mj) (4.23)

where Mj is an m×n matrix for layer j, m is the number of nodes in layer j, n is the number

of nodes in the output y, Wj is the weight matrix between layer j and j + 1, and Wh is

the last weight matrix. Each row in Mj represents what a single node in layer j maps to in
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output space. reshape means to reshape each row of Mj to a 4× 4 matrix (assuming n = 16)

(Figure 5b). Therefore, vj is a list of 4× 4 matrices (visualizations/heatmaps) for all hidden

nodes in layer j. Next, the magnitude of each value in the 4× 4 matrices is interpreted as a

pixel intensity (or a heatmap intensity), and displayed as a given intensity of color (Figure

5d). In this way, we generated 2-D heatmaps for each hidden and input node in a trained

neural network. This visualization represents the weights connecting a node to output space,

or the influence of the activation of that node on the output values (Figure 5e). The heatmap

visualizations of all nodes’ effects in output space is a representation of the causal structure

learned by a neural network.
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5.0 Experiments and Results Using Simulated Data

5.1 Summary

In a series of simulation experiments, we show that the RINN model successfully recovered

latent causal structure and relationships between input variables from various simulated

datasets with different levels of noise better than other models. We compare the RINN with a

conventional feedforward deep neural network (DNN), a deep belief network (DBN), a RINN

optimized with a constrained evolutionary strategy, and the DM algorithm (a causal discovery

algorithm). In summary, the results here show that RINN is a partially interpretable deep

learning model that enhances the capability of learning complex relationships between input

and output variables, and reveals causal relationships among variables.

5.2 Model Selection

Given the input and output simulated data as described in Section 4.3, we used various

algorithms (see Sections 4.5, 4.6) to attempt to recover the ground truth causal structure

in Figure 5a. Each simulated dataset was separated into training, validation, and test sets

according to the following ratio 0.75/0.15/0.10, respectively. These ratios mean that 90% of

the data was used for model selection (training and validation) and 10% was reserved as a

final hold-out test set. We wanted to avoid the overfitting that often occurs if using a single

validation dataset, so using the 90% split described above, we randomly selected 15% for

one validation set (while training on the 75% remaining data) and a different 15% for the

other validation set (while again training on the remaining 75%). We then averaged over the

results for these two validation datasets to decide which models performed the best.

We used a combined random and grid search approach to select the hyperparameters

(learning rate, regularization rate, size of hidden layer, etc.) for the best models [Bengio,

2012, Hinton, 2012] with the main objective of finding the optimal balance between sparsity
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and prediction error to encourage the discovery of latent causal structure. See Table 1 for

a breakdown of the number of sets of hyperparameters that were evaluated for each deep

learning strategy.

A major goal of this work was to identify trained neural networks that had a high

probability of capturing causal relationships within their weight matrices. In order to achieve

this goal, we needed to modify our approach to model selection in order to best balance sparsity

of weights and prediction error, in addition to performing model selection on deep learning

strategies with different numbers of hyperparameters. A hyperparameter is any parameter

outside the weights of a deep learning strategy that has an effect on the prediction error and

needs to be "tuned" during training. Some examples are: learning rate, L1 regularization

rate, number of hidden layers, number of node in each hidden layer, batch size for updating

weights, number of training iterations, optimizer, activation function, and how to initialize

the weights.

Our search through hyperparameter space varied somewhat depending on the data and

the deep learning strategy being evaluated. Each set of hyperparameters in Table 1 was

evaluated on two different validation datasets, and the results were averaged across these two

datasets. Datasets 5 and 6 were considerably larger than the other simulated datasets as they

contained a large amount of real TCGA data. This increased the number of hyperparameters

to be evaluated (i.e., more hidden layer sizes to search through because the input was larger),

so we performed model selection on 100 more sets of hyperparameters for these larger datasets.

Also, DNNs, DBNs, and ES-C have additional hyperparameters to search through relative

to the RINN. For DNNs and DBNs, we need to find the optimal number of hidden layers

(whereas the structure of the RINN allows one to largely avoid determining the ideal number

of hidden layers—Section 4.4). For simplicity, we assumed all DNN hidden layers to be of the

same size. However, DBN model selection uses the decreasing nature of the hidden layers as

a driving force to learn the most salient aspects of the data. Therefore, DBN model selection

included searching over different sizes of the hidden layers for each of the hidden layers. This

means more hyperparameters to search through. ES-C also had additional hyperparameters,

including elite ratio, mutation rate, and set of legal weight values.

For binary outputs, binary cross-entropy plus L1 regularization was used as the objective
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Table 1: Number of Sets of Hyperparameters Evaluated for each Deep Learning Strategy and

Simulated Dataset

Strategy Datasets 1,2,3,4 (non-TCGA) Datasets 5,6 (TCGA)

RINN 440 540

DNN 732 832

DBN 940 1040

ES-C 500 NA

function. For non-binary outputs, mean squared error (MSE) plus L1 regularization was

used. Almost all of the best performing models used ReLU (Rectified Linear Unit) activation

functions, although we performed model selection using sigmoid and tanh activation functions

as well.

Figure 7 shows model selection results for RINNs on simulated Dataset 5. These are

typical model selection results across all deep learning strategies and datasets. Figure 7a

shows the validation set error and the sum of the absolute value of all weights in a network

for 1,080 (540 times two validation sets) fully trained RINNs. There is a concentration of

networks (shown as blue circles) in the lower left corner of this figure. It is within these

models that we hypothesize one will find the models with the highest probability of capturing

the causal structure of the data within their weights. Figure 7b shows a magnification of

the lower left of Figure 7a, and here it becomes apparent that model selection based solely

on prediction error or sparsity (sum of the absolute values of the weights) is inadequate.

We also don’t know, 1. Will deep learning strategies capture causal relationships in their

weights? and 2. If they do capture this structure in their weights, how can we identify them

during model selection (i.e., Where would these models be located in the plots in Figure 7?)?

We hypothesize that the models with best chances of capturing causal relationships in their

weights will be the models that optimally balance both prediction error and sparsity (i.e.,

the models in bottom left of Figure 7a). To quantify this hypothesis and provide a ranking
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of the most optimal models, we measured the distance between each model’s point location

in the plot in Figure 7b and the (0, 0) origin, and used this as a metric to rank the models

(Section 4.8 for more details). We hypothesize that the models closer to the origin (using the

distance metric described above) would better capture the ground truth causal structure in

their weights.

5.3 Visualizing the Weights of a Neural Network

In addition to evaluating the different deep learning strategies and distance metric (dx)

for finding causal structure, we also needed a method to quickly evaluate many networks

without relying on visual inspection. The solution to this problem came from our method to

visualize the weights of a neural network. Figure 8 shows visualizations of the weights for

two different DNNs (Section 4.9). Each square in these visualizations represents a specific

node in a neural network, and the change in the output values induced by the activation of

the node represented by the square. These visualizations are calculated by iteratively matrix

multiplying a vector of hidden values (or input values) by the next weight matrix, until there

are no weight matrices left going forward from a layer of nodes to the output values. The 16

dimensional output is then visualized as a heatmap (where different values are represented

as different colors). Figure 8a shows the ground truth patterns/visualizations based on the

ground truth DAG (Figure 5a). These are the patterns we are looking for in the weights of a

network to indicate the correct causal structure. The color of these heatmaps is of minimal

importance, while the pattern in the heatmaps is of maximal importance.

Figure 8b shows a visualization of the weights of a 3-hidden layer DNN trained on Dataset

1. The visualizations labeled as x show what each of the input nodes for this DNN map to in

output space. If we compare this vector of images to the ground truth input node patterns

in Figure 8a (bottom), we see that the input nodes 100% match with the ground truth input

node patterns. This example immediately suggests a possible method for evaluating how

well neural networks capture causal structure—by calculating precision and recall based on

the ground truth patterns that should be present within these visualizations for the causal
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Figure 7: Measuring Euclidean Distance to Rank Model Selection Results

56



Figure 8: Visualizing the Weights of DNNs and Calculating Precision and Recall

(x represents the input layer, hj represents hidden layer j).
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structure to be correct.

P =
TP

TP + FP
(5.1)

R =
TP

TP + FN
(5.2)

Here we show how we measured precision and recall for known hidden node and input

node patterns in the weight matrices of a trained neural network. To calculate precision and

recall of the causal structure, we ran the visualization algorithm (Section 4.9) on the first

input layer and each hidden layer in our trained RINN, DNN, DBN, or ES-C (referred to as

a trained network from here on), obtaining a vector for each node representing the influence

of that node on output space. We took the absolute value and then binarized these vectors

in order to match them to the ground truth, thus being able to calculate precision and recall.

This required setting a threshold, above which a value would be set to 1 and otherwise set

to 0. We chose this threshold by searching through our best models for a single threshold

that provided the best F1 score. The same threshold was used for all models. We obtained

precision and recall measurements for each hidden node by comparing this binary vector

to a known binary ground truth vector. Because the data used in these experiments were

simulated, we can easily calculate these ground truth vectors from the ground truth DAG

(see Figures 5e, 8a).

To calculate the ground truth, we used the same algorithm as in Section 4.9 applied to

the ground truth DAG and ground truth weight matrices. By matrix multiplying each of the

ground truth weight matrices all the way to output space, we obtained a ground truth vector

representing the known change in output values induced by each ground truth hidden node.

Next, we compared these ground truth vectors to the predicted vectors obtained from the

visualization algorithm applied to the weights of a trained network, and were able to calculate

precision and recall for all ground truth hidden nodes and all ground truth input nodes.

True positives (TP) here represent ground truth hidden nodes or input nodes (remember,

nodes are represented as vectors in output space) that were captured by the weights of the

trained network. False positives (FP) represent predicted vectors from the trained network

that did not match any of the ground truth nodes ±1 or the zero vector ±1. False negatives
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(FN) represent ground truth hidden nodes or input nodes that were not captured by the

weights of the trained network. When comparing a predicted output space vector to a ground

truth vector, we considered the predicted to match the ground truth if the binary vectors

were identical within ±1 value (i.e., pixel). Precision and recall for the TCGA+OR and

TCGA+OR, XOR, AND datasets were calculated based only on the recovery of the simulated

data ground truth—as we don’t know the ground truth for the TCGA part of the data and

therefore have no way to calculate precision and recall. The average test set error and AUC

however was calculated based on all output values, not just the simulated data output values.

The network in Figure 8b achieved 100% input node precision and recall.

After examining the vector of images labeled as h1, in Figure 8b, we see that this hidden

layer by itself captures six of the seven ground truth hidden node patterns from Figure 8a

(h2 and h3 do not find any additional ground truth hidden node patterns). The calculations

for hidden node precision and recall for this DNN would be as follow:

Precision =
TP

TP + FP
=

6

6 + 0
= 1.00 (5.3)

Recall =
TP

TP + FN
=

6

6 + 1
= 0.86 (5.4)

So despite regularization encouraging the DNN to represent patterns as simply as possible,

this DNN did not capture the ground truth hidden node that is a combination of the "plus

sign" and "little square" (second from the right in Figure 8a top). Nodes 17 and 19 in Figure

5a and 5e are referred to as "combination" nodes.

The first hidden layer of a DNN must capture all the hidden node patterns required to

completely map inputs to outputs, as it does not have another chance to capture information it

may have missed in the first hidden layer later in the network. The hidden layer representations

of a DNN are alternate representations of all the information in the input necessary to calculate

the output. This is in contrast to a RINN, which can simply learn the patterns at a later

hidden layer because a RINN has redundant inputs. So the hidden layers of a RINN are not

necessarily alternate representations of the input, but they capture salient aspects of the

input data in some way desirable to calculate the output.
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Figure 8c shows a visualization of a different DNN (2-hidden layers). This network did

not capture the causal structure as nicely as Figure 8b. The input nodes map correctly to

the ground truth input node patterns in Figure 8a. However, there are at least three false

positives (depending on threshold chosen) and only four true positives found within the

hidden layer nodes. The calculations for hidden node precision and recall would be as follow:

Precision =
TP

TP + FP
=

4

4 + 3
= 0.57 (5.5)

Recall =
TP

TP + FN
=

4

4 + 3
= 0.57 (5.6)

Figure 9 shows the visualizations for all weight matrices in two different trained RINNs.

The RINN visualized in Figure 9a is an example of a network that scores 100% precision and

recall for both input and hidden nodes. To evaluate the input nodes of a RINN, all input

node heatmaps for a particular node are summed together, and this final sum of heatmaps is

compared to the known ground truth for that input. We can see in Figure 9a that there is no

need to sum the heatmaps because the input nodes learned the correct mapping (Figure 8a

(bottom)) at only a single redundant input layer (for each input node). When we look at the

heatmaps for the hidden nodes, we see that all seven ground truth patterns from Figure 8a

(top) are present in either h5, h6, h7, or h8. Figure 9b shows the visualization of a different

RINN that doesn’t score as well as Figure 9a. The input nodes of this RINN achieve 100%

precision and recall. But the hidden nodes for this RINN show four false positives, six true

positives (although one of the combination nodes, i.e., nodes 17 and 19 in Figure 5a and 5e,

is very close to missing the threshold), and one false negative (7− 6 = 1). The final precision

and recall for the hidden nodes would be:

Precision =
6

6 + 4
= 0.60 (5.7)

Recall =
6

6 + 1
= 0.86 (5.8)
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Figure 9: Visualizing the Weights of RINNs and Calculating Precision and Recall

(x represents the input layer, hj represents hidden layer j).
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5.4 Precision and Recall of Causal Structure

The major purpose of this work was to compare the ability of different neural network-

based strategies to find causal structure in their weights. We were also interested in the

limitations of these strategies depending on the characteristics of the data. For example,

we were particularly interested in how well the various algorithms would perform on very

noisy data. Table 2 shows the input node precision and recall results across all datasets and

strategies used in this chapter. Table 2 also shows the average test set error and AUROC

(where appropriate) for all strategies and datasets. This table is best thought of as showing

how well the input mapped to output for all strategies and datasets without indicating

the exact causal structure in the weights, i.e., this metric does not indicate how the latent

variables interacted to achieve the output. For example, a high precision and recall for input

nodes is interpreted as the network correctly mapping each of the inputs to the correct

outputs. The precision and recall (as well as error and AUROC) were averaged across the

ten best models (as ranked by our distance metric) for each strategy and dataset for Tables 2

and 3.

Table 2 shows that both DNN and RINN performed quite well at mapping input to

output across all datasets, with the RINN performing a little better in terms of precision and

recall. The RINN performed noticeably better than the DNN on the Linear Gaussian and

TCGA+OR datasets. The test errors and AUROCs for DNN and RINN were almost identical.

This means that if one captures more causal structure than the other, it isn’t due to one

strategy being able to predict better than the other, but rather due to some other difference.

ES-C performed similar to DNN and RINN on the first three datasets, but markedly worse

on the OR, XOR, AND dataset in terms of precision and recall. ES-C had errors and

AUROCs that were similar to DNN and RINN (and on dataset 4 were better than RINN and

DNN). This is a promising result for future use of parallelized and possibly more advanced

evolutionary algorithms in this setting. The DM algorithm, despite getting 100% recall,

performed very poorly on all datasets. This is because the DM algorithm isn’t identifying

any false-negatives, just a lot of false-positives and maybe 1 or 2 true-positives. What is

happening is that the DM algorithm correctly finds a couple true-positives with the remaining
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Table 2: Average Input Node Precision and Recall Across Ten Best Models

The best values when the five strategies are compared on a specific dataset are bolded.

Input Mapping Test Set
Simulated Data Strategy precision recall F1 error AUROC

(1) Matrix mult. w/ interv.

DBN NA NA NA 0.05± 0.14 NA
DNN 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.01± 0.00 NA
RINN 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.00± 0.00 NA
ES-C 0.95± 0.07 1.00± 0.00 0.97± 0.04 0.03± 0.01 NA
DM 0.31 1.00 0.48 NA NA

(2) Linear Gaussian

DBN NA NA NA 1.82± 0.13 NA
DNN 0.94± 0.08 0.93± 0.02 0.93± 0.05 9.31± 0.19 NA
RINN 0.98± 0.03 1.00± 0.00 0.99± 0.02 9.19± 0.05 NA
ES-C 0.91± 0.11 0.91± 0.03 0.90± 0.05 10.12± 0.16 NA
DM 0.69 1.00 0.81 NA NA

(3) OR

DBN NA NA NA 0.55± 0.16 0.68± 0.21
DNN 0.99± 0.02 0.98± 0.05 0.98± 0.03 0.56± 0.00 0.75± 0.00
RINN 0.96± 0.06 1.00± 0.00 0.98± 0.03 0.56± 0.00 0.75± 0.00
ES-C 0.81± 0.16 0.95± 0.09 0.87± 0.12 0.57± 0.00 0.74± 0.00
DM 0.56 1.00 0.72 NA NA

(4) OR, XOR, AND

DBN NA NA NA 0.58± 0.13 0.57± 0.14
DNN 0.78± 0.15 0.99± 0.03 0.87± 0.11 0.45± 0.00 0.84± 0.00
RINN 0.92± 0.08 0.91± 0.13 0.91± 0.07 0.45± 0.00 0.84± 0.00
ES-C 0.46± 0.24 0.65± 0.17 0.53± 0.22 0.41± 0.00 0.87± 0.00
DM 0.44 1.00 0.61 NA NA

(5) TCGA+OR
DBN NA NA NA 0.34± 0.16 0.88± 0.11
DNN 0.90± 0.13 0.86± 0.15 0.88± 0.13 0.42± 0.01 0.86± 0.00
RINN 0.95± 0.08 0.98± 0.04 0.96± 0.05 0.40± 0.00 0.87± 0.00

(6) TCGA+OR, XOR, AND
DBN NA NA NA 0.53± 0.17 0.64± 0.20
DNN 0.79± 0.29 0.90± 0.32 0.84± 0.30 0.42± 0.01 0.86± 0.01
RINN 0.78± 0.05 0.98± 0.04 0.87± 0.04 0.43± 0.00 0.86± 0.00
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input nodes mapping to false-positives, meaning that it recorded zero false-negatives (with

zero false-negatives, having any true-positives yields 100% recall). The DBN doesn’t use x

at all, so input precision and recall could not be calculated for DBN. Also, the DBN is an

unsupervised algorithm while the DNN and RINN are supervised, so comparing their average

errors and AUCs doesn’t seem fair, but the DBN errors and AUCs were included here for

completeness.

The results in Table 3 are the main results of the work on simulated data and show how

well the ground truth causal structure was captured by each of the strategies for each dataset.

Again, the hidden node precision and recall values shown in Table 3 are the average over the

ten best models for each dataset and strategy. The RINN had a higher F1 score than all other

strategies for most datasets, and consistently had the highest recall across all datasets and

strategies. RINN and DNN had F1 scores within 0.01 of each other on datasets 4 and 6. The

RINN performed considerably better than any other strategy on the Linear Gaussian dataset.

The Linear Gaussian dataset was also the dataset with the most noise, so it is encouraging

that the RINN was able to considerably outperform all other strategies on this noisy dataset,

as we suspect that most real world biological data has a high amount of noise. There didn’t

seem to be much of a difference between continuous and binary datasets—the strategies were

still able to learn causal structure from completely binary inputs and outputs (Datasets 3 and

4). Rather, the most important characteristic of the datasets seemed to be the amount of

noise. The RINN outperformed all other strategies on the TCGA+OR dataset and performed

similarity to a DNN on the TCGA+OR, XOR, AND dataset. These datasets had inputs and

outputs of much higher dimensionality than any of the other simulated datasets, and shows

the RINNs utility even in a higher dimensionality setting.

ES-C performed moderately well, but was outperformed by DNN and RINN on all

datasets except Linear Gaussian, where ES-C outperformed DNN. This, again, suggests that

using a parallelized evolutionary algorithm is a direction worth pursuing for finding latent

structure, as ES-C performed well considering that we performed somewhat limited model

selection for ES-C as compared to the other neural network-based strategies—ES-C has more

hyperparameters to be tuned than RINN due to the evolutionary strategies optimization.

ES-C was also trained on significantly less data (20%) than the other strategies to decrease
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the runtime of ES-C even further. ES-C (unparallelized) wasn’t run on datasets 5 and 6

because of the very long running time it had on the small datasets, meaning that running on

the much larger datasets would be impractical. The DBN performed the worst of the deep

learning algorithms on recovering the ground truth hidden node patterns, but performed

better than the DM algorithm (causal discovery) on almost all datasets and performed

decently on Dataset 1. This is an interesting and encouraging result for the DBN considering

that it is an unsupervised algorithm and was still able to learn some of the ground truth

structure. The DM algorithm performed quite poorly across all datasets, and the worst on

most datasets (note that some of the DM algorithms assumptions are violated by GT ). The

DM algorithm wasn’t run on datasets 5 and 6 because of its poor performance on the smaller

datasets. Overall, the RINN was better able to recover the causal structure in Figure 5a than

any other strategy explored in this work. This means that it is the best choice going forward,

among the strategies considered here, when using neural networks to recover latent causal

structure.

5.5 Discussion

The results presented here show that both a RINN and DNN (with L1 regularized loss

function) can recover latent causal structure between inputs and outputs when using various

simulated datasets. Importantly, the RINN performed better than the DNN (and all other

algorithms) across almost all metrics measured for recovery of the ground truth hidden nodes

(Table 3), which is the task that is most relevant when attempting to recover latent causal

structure and biological cellular signaling pathways. Also, the RINN required less model

selection, performed better on noisy data, and its architecture allowed inputs to directly

act on hidden nodes (which simplified the interpretation of the underlying causal structure).

When it comes to pure prediction ability both the DNN and RINN perform similarly with

no real difference between their final test set average error values (Table 2). This suggests

that the reason the RINN performed better than the DNN at capturing the hidden node

causal structure is because of the differences between their architectures (i.e., the RINN has
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Table 3: Average Hidden Node Precision and Recall Across Ten Best Models

Do hidden nodes capture known causal structure in their weights when mapped to output space?
The best values when the five strategies are compared on a specific dataset are bolded.

Hidden Mapping

Simulated Data Strategy precision recall F1

(1) Matrix mult. w/ interv.

DBN 0.73± 0.32 0.61± 0.22 0.66± 0.26
DNN 0.97± 0.07 0.80± 0.07 0.87± 0.06
RINN 1.00± 0.00 0.93± 0.08 0.96± 0.04
ES-C 0.72± 0.08 0.80± 0.13 0.76± 0.08
DM 0.33 0.29 0.31

(2) Linear Gaussian

DBN 0.35± 0.13 0.57± 0.17 0.43± 0.14
DNN 0.34± 0.30 0.43± 0.24 0.37± 0.26
RINN 0.65± 0.11 0.87± 0.18 0.74± 0.13
ES-C 0.41± 0.10 0.54± 0.06 0.46± 0.09
DM 0.33 0.29 0.31

(3) OR

DBN 0.20± 0.30 0.16± 0.23 0.17± 0.25
DNN 0.88± 0.17 0.76± 0.15 0.81± 0.14
RINN 0.87± 0.19 0.83± 0.13 0.85± 0.15
ES-C 0.71± 0.22 0.57± 0.18 0.63± 0.19
DM 0.33 0.29 0.31

(4) OR, XOR, AND

DBN 0.38± 0.22 0.33± 0.19 0.33± 0.17
DNN 0.87± 0.18 0.79± 0.17 0.82± 0.16
RINN 0.81± 0.17 0.83± 0.11 0.81± 0.11
ES-C 0.44± 0.09 0.74± 0.16 0.55± 0.10
DM 0.29 0.29 0.29

(5) TCGA+OR
DBN 0.08± 0.17 0.06± 0.14 0.08± 0.15
DNN 0.29± 0.17 0.59± 0.26 0.33± 0.12
RINN 0.37± 0.25 0.63± 0.24 0.41± 0.19

(6) TCGA+OR, XOR, AND
DBN 0.04± 0.08 0.16± 0.22 0.07± 0.12
DNN 0.57± 0.26 0.74± 0.16 0.61± 0.20
RINN 0.53± 0.24 0.80± 0.10 0.60± 0.17
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redundant inputs). These are encouraging results for using the RINN in future experiments

on genomic data to discover cellular signaling pathways, and suggest that neural network-

based causal discovery algorithms may be helpful in discovering latent causal structure. The

constrained evolutionary strategy explored here provided promising results despite limited

model selection and training on a much smaller dataset—more sophisticated versions are

worth exploring in future experiments. The DM algorithm was not able to capture much of

the ground truth causal structure, but may perform well on the causal ground truth used

here if its constraint of requiring each latent variable to be adjacent to at least one output

variable could be relaxed, as this assumption was violated by our GT .

It has not escaped our notice that the RINN architecture simplifies the interpretability

of a deep learning model. The architecture of the RINN (i.e., inputs directly connected to

every hidden layer), allows hidden nodes to be easily mapped to a set of input variables. This

mapping is accomplished by representing a hidden node h42 by the set of input variables

with the largest weight values connected to h42 (often requiring a weight threshold). In

this way, a set of input variables can be used to represent a hidden node and the hidden

nodes become partially interpretable, assuming that the functions or identities of a set input

variables suggests a hypothesis for the identity of the hidden variable. We did not interpret

hidden nodes based on the connected input variables in this chapter using simulated data, as

the input variables don’t have any real meaning. However, in the next chapter we train the

RINN with human cancer data and map the hidden nodes to sets of input variables with

biological meaning.

In this work, we developed a neural network-based strategy (RINN) and causal framework

for latent causal discovery that allowed for the interpretation of the weights in a RINN as

causal relationships. We also created a robust pipeline for testing an algorithm’s ability

to capture latent causal structure and developed a variety of simulated data inspired by

cellular signaling pathways. In addition, we created a causal ground truth DAG with simple

patterns in the hidden nodes to enable quick visual verification of these patterns. Related

to this, we developed a simple algorithm to visualize the weights of a small neural network,

or part of a larger neural network, using the patterns that are known to be present in the

simulated data. This visualization algorithm allowed us to quickly verify whether or not a
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neural network-based algorithm was capturing any of the ground truth causal structure in

its weights. This technique was extremely valuable for quickly prototyping algorithms and

discovering modifications that encouraged a neural network to learn causal structure (e.g.,

this method allowed us to quickly determine that L1 regularization was much better than

L2 at capturing causal structure). This visualization technique also inspired a method for

validating the causal structure learned by any algorithm and especially neural network-based

algorithms.

There are some important limitations and constraints relevant to this work. When

interpreting the weights of a RINN (or DNN) as a causal graph, it is necessary to look at the

values of all the weights in a trained network and, based on a threshold, decide which weights

are significant (i.e., edges in a graph) and which are not. This is necessary because a layer in

a neural network is fully connected to the next layer, meaning that each input/hidden node in

a previous layer is connected to each hidden node in the next layer. Using L1 regularization

causes the network to set most of the values in the weight matrices to small numbers, but in

our experiments very few of the weights are actually zero—rather there are many weights

with values in the interval [0.0001, 0.5]. This requires that we set a threshold, above which

weights will be interpreted as a causal edge (often this threshold was near 0.1), in order to

generate a causal graph from the weight matrices. This thresholding problem can be solved

by using a non-differentiable optimization procedure (e.g., evolutionary strategies) that limits

the allowed values for weights in a neural network (e.g., restricting the weight values to 1 or

0 only).

Additionally, in order for the RINN to discover a direct causal connection between two

hidden nodes or an input and a hidden node, the true causal relationship that is being

modeled must be able to be approximated by ReLU(wx+ b), where all variables are scalar

values (as the relationship between two hidden nodes in different layers can be isolated, i.e.,

without the influence of other hidden nodes). The results in this work on the simulated data

support that the causal relationships in the simulated data can be adequately approximated

with ReLU(wx+ b). This lends minimal support for the current version of the RINN being

able to model causal relationships in biological data. If it turns out that direct biological

causal relationships (i.e., the hidden nodes in a neural network, trained on genomic data,
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all representing biological entities) cannot be approximated with ReLU(wx+ b) (or other

activation functions), then we hypothesize that causal relationships would still be learned

but actual biological entities may only be present in every other hidden layer—meaning that

a hidden layer between biological entities was required to perform a more complex function

between biological entities than just a ReLU(wx+ b). Another way to remedy this limitation

(and a possible path for future work) would be to replace each weight in the RINN with a

very small 1-hidden layer neural network, and then regularize the number of neural networks

within the RINN that have nonzero weights. Using a small neural network for each edge

would allow the RINN to learn a much more complicated function from hidden node to

hidden node or input node to hidden node, and thus be able to model more complex direct

causal relationships than the current RINN. An important and obvious limitation of this

work is that it must be known a priori that one set of variables causes another (i.e., inputs

cause outputs), which will limit the datasets where these methods are applicable.

Another limitation of this work is that calculating precision and recall did not take into

account the ordering of the nodes, so it is possible for a combination node (e.g., "big square"

ground truth node—node 17) to be learned in the last hidden layer of the network and still be

counted as a true positive even though it doesn’t branch into two brackets ("right bracket",

"left bracket" heatmaps) before connecting to y. In this case, the learned causal structure

would be missing a latent vertex and not be completely correct. This is an example of how

our method for calculating precision and recall is imperfect. However, after looking through

hundreds of trained networks, we observed that this phenomenon rarely happens, and the

vast majority of visualizations showed causal structure learned in the correct order. Using L1

regularization also encourages the network to learn nodes in the correct order and hierarchy,

as learning the ground truth causal structure represents the weight structure with the lowest

number of edges.

The results of this chapter illustrate two main characteristics (advances) brought forward

by the RINN model: the capability of learning a partially interpretable deep learning model

and the capability of learning latent causal relationships in cellular signaling pathway-inspired

simulated data. Considering the extreme rise in popularity of deep learning, using deep

learning for causal discovery or interpreting the weights of a neural network in a causal

69



framework could be beneficial to both communities and lead to fruitful hybrid methods

of causal discovery. Elaborating on the algorithms, especially more advanced and faster

evolutionary algorithms, and causal framework developed in this dissertation could lead

to improvements in the interpretability of deep neural networks and in the use of neural

network-based algorithms for the discovery of latent causal structure in the future.
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6.0 Using the RINN to Study Cancer Cell Signaling

6.1 Summary

Understanding cellular signaling pathways is essential to an in-depth understanding of cell

biology under physiological and pathological conditions. In general, the cellular mechanisms

leading to disease states in an individual are nuanced and not well understood. Reliably

inferring all abnormal cellular signaling pathways from data (e.g., omics data) is a very

difficult and unsolved task. Here we interpret the cellular signaling system as a causal

graphical model and apply a supervised deep neural network-based algorithm to learn latent

causal structure that represents the cancer cellular signaling system.

Most causal discovery algorithms have been developed to find causal structure and

parameterizations of causal structure relative to the observed variables of a dataset. Only a

small number of causal discovery algorithms also find latent causal structure, but these latent

causal discovery methods are often highly constrained, suggesting that new methods are

needed. In the previous two chapters, we developed a supervised deep neural network-based

algorithm for latent causal structure discovery, called the redundant input neural network

(RINN), that achieved high precision and recall of latent causal structure when trained on

simulated data. The RINN allows input data to directly connect to latent variables within

the deep learning hierarchy—to enhance the learning of causal relationships. For the RINN

to recover latent causal structure, it must be used on data where it is known a priori that

input variables cause output variables.

We hypothesize that training a RINN on multiple omics data will enable us to map the

functional impacts of genomic alterations to latent variables in a deep learning model, and

allow us further to discover the hierarchical causal relationships between variables perturbed

by different genomic alterations. For the work in this chapter, we applied the RINN algorithm

to cancer genomic data, where it is known that genomic alterations eventually cause changes

in gene expression. We found that 5259 differentially expressed genes can be predicted from

372 somatic genome alterations with reasonable AUROCs by a RINN (or DNN). We also
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found that a RINN trained with L1 regularization was able to discover many real cancer

signaling pathway relationships, especially relationships between genes in the PI3K, Nrf2,

and TGFβ pathways, including some causal relationships. However, despite relatively large

levels of regularization, the returned causal graphs were still somewhat too dense to be easily

and directly interpretable as causal graphs. Future versions of the RINN, with differential

regularization and other modifications, will have a good probability of capturing more easily

interpretable cancer cellular signaling pathways.

6.2 Introduction

In general, the cellular mechanisms leading to cancer in an individual are heterogeneous,

nuanced, and not well understood. It is well appreciated that cancer is a disease of aberrant

signaling, and the state of a cancer cell can be described in terms of abnormally functioning

cellular signaling pathways. Identifying all of the abnormal cellular signaling pathways causing

a patient’s cancer would enable more patient-specific and effective treatments—including

targeting multiple abnormal pathways during a treatment regime. Aberrant signaling in

cancer cells usually result from somatic genomic alterations (SGAs) that perturb the function

of signaling proteins. Although large-scale cancer genomic data are available, such as those

from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium

(ICGC), it remains a very difficult and unsolved task to reliably infer how the SGAs in a

cancer cell cause aberrations in cellular signaling pathways based on the genomics data of a

tumor. One challenge is that the majority of the genomic alterations observed in a tumor

are non-consequential (passenger genomic alterations) with respect to cancer development

and only a few are driver genomic alterations, i.e., genomic alterations that are causing

cancer. Furthermore, even if the driver genomic alterations of a tumor are known, it remains

challenging to infer how aberrant signals of perturbed proteins affect the activation states of

other signaling proteins, which are not measured (latent), in order to understand the disease

mechanisms of an individual tumor and identify drug targets. This requires one to study the

causal relationships among latent (i.e., hidden or unobserved) variables, such as large protein
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complexes or abstractions of different biological processes within a cell, in addition to observed

variables. Most causal discovery algorithms have been developed to find causal structure and

parameterizations of causal structure relative to the observed variables of a dataset [Spirtes

et al., 2000, Cooper, 1999, Heinze-Deml et al., 2018, Maathuis and Nandy, 2016, Peters et al.,

2017, Lagani et al., 2016]. Only a small number of causal discovery algorithms also find

latent causal structure, especially in high-dimensional data [Murray-Watters and Glymour,

2015, Frot et al., 2019].

Deep learning represents a group of machine learning strategies, based on neural networks,

that learn a function mapping input to output. The signals of input variables are processed

and transformed through many hidden layers of latent variables (i.e., hidden nodes) [Deng

et al., 2014, Goodfellow et al., 2016, LeCun et al., 2015]. These hidden layers learn hierarchical

or compositional statistical structure, meaning that different hidden layers capture structure of

different degrees of complexity [Lee et al., 2008, Lee et al., 2011, Le et al., 2011]. Researchers

have previously shown that deep learning models can represent the hierarchical organization

of signaling molecules in a cell [Chen et al., 2015, Chen et al., 2016, Young et al., 2017, Lu

et al., 2018, Tao et al., 2020], with latent variables as natural representations of unobserved

activation states of signaling molecules (e.g., membrane receptors or transcription factors).

In more detail, some recent work from our group used deep learning to simulate cellular

signaling systems that were shared by human and rat cells [Chen et al., 2015] and to recover

components of the yeast cellular signaling system, including transcription factors [Chen et al.,

2016]. These studies utilized unsupervised learning methods, in contrast to the supervised

methods used in this dissertation. Also, the previous studies from our group did not attempt

to find causal relationships representing the cellular signaling system. In general, deep

learning models have not been broadly used as a tool to infer causal relationships in the

computational biology setting.

In the previous two chapters we developed a deep learning algorithm, named redundant

input neural network (RINN), to learn causal relationships among latent variables from data

inspired by cellular signaling pathways. RINN solves a problem where a set of input variables

cause the change in another set of output variables, and this causal interaction is mediated

by a set of an unknown number of latent variables. The constraint of inputs causing outputs
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is necessary to interpret the latent structure as causal relationships (see Chapter 4.7 for more

details regarding the causal assumptions of the RINN). A key innovation of the RINN model

is that it is a partially transparent model allowing input variables to directly interact with all

latent variables in its hierarchy, such that it can constrain an input variable to be connected

to a set of latent variables that can sufficiently encode the impact of the input variable on

the output variables. We showed that the RINN outperformed other algorithms, including

neural network-based algorithms and a causal discovery algorithm known as DM (Detect

MIMIC (Multiple Indicators Multiple Input Causes)), at identifying latent causal structure

in various types of simulated data.

In this chapter, we take advantage of the partially transparent nature of the RINN model

and used the model to learn a representation of the cancer cellular signaling system. In

this setting, we interpret the cellular signaling system as a hierarchical causal model of

interactions between the activation states of proteins or protein complexes within a cell.

Based on the assumption that somatic genome alterations (SGAs) that drive the development

of a cancer often influence gene expression, we train a RINN using tumor SGAs as input to

predict cancer differentially expressed genes (DEGs) (outputs), and evaluated the learned

latent structure in the hidden layers of the RINN—in an attempt to learn components of

cancer cellular signaling system. The RINN architecture modifies a deep neural network

to allow inputs to directly act on any hidden node throughout the neural network latent

structure. Just as mutations can occur in the cell membrane receptor of a signaling pathway

or at the level of transcription factors (further downstream in the signaling pathway), we

hypothesized that the RINN modification described above will allow SGAs to act at different

hidden layers corresponding to the level in the signaling pathway hierarchy that they affect in

reality. More specifically, we hypothesize that since alterations in DNA cause changes in the

functions of the proteins they encode and that such changes eventually cause changes in gene

expression, we can train a supervised deep neural network with redundant inputs to predict

gene expression values from DNA mutation data and then interpret the connections within

this trained network as causal relationships. This means that by constraining the input data

to be data that is known to cause our output data, under appropriate causal assumptions

(Chapter 4.7), we can interpret the structure learned by the weights of a neural network as a
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causal graph. We applied the RINN model to a dataset derived from TCGA, and we show

that a RINN can capture cancer signaling pathway relationships within its hidden variables

and weights.

6.3 Methods

6.3.1 Data

The data used for this chapter was originally downloaded from TCGA [Weinstein et al.,

2013, Cai et al., 2019]. RNA Seq, mutation, and copy number variation (CNV) data over

multiple cancer types were used to generate two binary datasets. A differentially expressed

gene (DEG) dataset was created by comparing the expression value of a gene across tumor

samples against a distribution of the expression values of the gene across normal samples

from the same tissue of origin. A gene is deemed a DEG in a tumor if its value is outside

the 2.5% percentile on either side of the normal sample distribution, and then that gene’s

value was set to 1. Otherwise, the gene’s value was set to 0. A somatic genome alteration

(SGA) dataset was created by using mutation and CNV data. A gene was deemed to be

perturbed by an SGA event if it hosts a non-synonymous mutation, small insert deletion, or

copy number alteration (deletion or amplification). If perturbed, the value in the tumor for

that gene was set to 1, otherwise the value was set to 0.

We applied the tumor-specific causal inference (TCI) algorithm [Cai et al., 2019, Cooper

et al., 2018] to these two matrices to identify the SGAs that causally influence gene expression

in tumors and the union of their target DEGs. TCI is an algorithm that finds the SGAs that

are most likely causing changes in gene expression, i.e., finding causal relationships between

SGAs and DEGs in each individual tumor, without determining how the signal from the

SGA is propagated in the cellular signaling system [Cai et al., 2019, Cooper et al., 2018]. We

identified 372 SGAs that were deemed driver SGAs, as well as 5,259 DEGs that were deemed

as target DEGs of the 372 SGAs. Overall, this led to two datasets, each with 5,097 instances

(tumor samples). In this dissertation, the SGAs (inputs) are used to predict DEGs (outputs).
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6.3.2 Deep Learning Strategies: RINN and DNN

For this work, we used two deep learning strategies: RINN and DNN. A DNN is a

conventional supervised feed-forward deep neural network. A DNN learns a function mapping

inputs (x) to outputs (y) according to Equation 4.19. This function represents our predicted

value for y and, in words, represents vector-matrix multiplication followed by application of

a nonlinear function, repeated multiple times. An iterative procedure (stochastic gradient

descent) is used to slowly change the values of all Wi to bring ŷ closer and closer to y

(hopefully). The left side of Figure 10, without the redundant input nodes and corresponding

redundant input weights, represents a deep neural network. For a more detailed explanation

of DNNs, please see [Goodfellow et al., 2016].

We introduced the RINN for latent causal structure discovery in Chapter 4.4. A RINN

is similar to a DNN with a slight modification of the architecture. A RINN not only has

the input fully connected to the first hidden layer, but also has copies of the input fully

connected to each additional hidden layer (Figure 10). This structure allows a RINN to learn

direct causal relationships between an input SGA and any hidden node in the RINN. Forward

propagation through a RINN is performed as it is for a DNN with multiple vector-matrix

multiplications and nonlinear functions, except that a RINN has hidden layers concatenated

to copies of the input (Figure 10). Each hidden layer of a RINN with redundant inputs is

calculated according to Equation 4.17. In contrast to a RINN, a plain DNN calculates each

hidden layer according to Equation 4.20.

Backpropagation of errors and stochastic gradient descent for a RINN are the same as for

a DNN, but with additional weights to optimize. In addition to the architecture modification,

all RINNs in this dissertation importantly included L1 regularization of the weights as part

of the objective function. The other component of the objective function was binary cross-

entropy error. All DNNs also used L1 regularization of weights plus binary cross-entropy

error as the objective function to be optimized. All RINNs used in this dissertation had

eight hidden layers (with varying sizes of the hidden layers), as we hypothesized that cancer

cellular signaling pathways do not have more than eight levels of hierarchy. However, this

assumption can easily be updated if found to be false.
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Figure 10: Redundant Input Neural Network (RINN) for TCGA Data.
A RINN with eight hidden layers (h(1), ..., h(8), each with n nodes), m inputs (sga1, ..., sgam on bottom), p

outputs (deg1, ..., degp), and seven sets of redundant inputs (sga1, ..., sgam on right side). Each node
represents a scalar value and each edge represents a scalar weight. The weights between layers are collected
in weight matrices W1, ..., W9. Blue edges represent the weights used to create SGA weight signatures.
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6.3.3 Model Selection

To have any chance of finding correct causal structure with a RINN, we hypothesized that

our training would need to get close to the objective function’s global minimum. Therefore,

we performed an extensive amount of model selection. To this end, we performed model

selection over 23,000 different sets of hyperparameters (23,000 for RINN and 23,000 for DNN).

Model selection was performed using 3-folds of a 10-fold cross-validation. Using 3-folds of

a 10-fold cross-validation gives us multiple validation datasets so we avoid chance overfitting

that can occur with a single validation set. This setup also allows us to train on 90% of the

data (and validate on 10%) for each split of the data, which is important considering the

small number of instances relative to the number of output DEGs that we were trying predict.

Importantly, 3-folds of a 10-fold cross-validation takes significantly less time than training on

all 10-folds. Running time is especially important for this dissertation because of the large

number of hyperparameter sets to be evaluated. All metrics recorded in this chapter (i.e.,

AUROC, cross-entropy error, etc.) represent the mean across the three validation sets.

The hyperparameters searched over for this chapter include: learning rate, regularization

rate, training epochs, activation function, size of hidden layer, number of hidden layers (DNN

only; RINN set to eight), and batch size. We used a combined random and grid search

approach to find the best sets of hyperparameters [Bengio, 2012, Hinton, 2012] with the main

objective of finding the optimal balance between sparsity and cross-entropy as explained in

Section 6.3.4 and in Section 4.8.

6.3.4 Ranking Models Based on a Balance Between Sparsity and Prediction

Error

Model selection in this chapter is more complex then standard DNN model selection as

we needed to find a balance between the sparsity of the model (i.e., sets of weight matrices

for each trained network) and prediction error. In contrast, many DNNs are trained by

simply finding the model with the lowest prediction error on a hold-out dataset. As was

shown in Chapter 5, RINN models trained on simulated data with relatively high sparsity

and low cross-entropy error were able to recover much of the latent causal structure contained
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within the data. We followed the same procedure as in Section 4.8 for selecting the best

models (i.e., the models with the highest chance of containing correct causal structure). In

brief, we plotted prediction error versus sparsity (see Figure 12) and measured the Euclidean

distance from the origin to a set of hyperparameters, i.e., a unique trained neural network

(blue circles in the figure). This distance was measured according to Equation 4.21. The sets

of hyperparameters were then ranked according to shortest distance to the origin (smallest

dx) and then we retrained on all data for further analysis of the learned weights. Please see

Section 4.8 for a more detailed explanation.

6.3.5 AUROC and Other Metrics

Area Under the Receiver Operating Characteristics (AUROC) were calculated for each

DEG and then averaged over the three validation sets, leading to 5,259 AUROCs for each

classifier in Figure 13. k -nearest neighbors (kNN) was performed using sklearn’s KNeigh-

borsClassifier [Pedregosa et al., 2011]). Both Euclidean and Jaccard distance metrics were

evaluated and the best k values were 21 and 45, respectively. Other distance metrics were

evaluated with results worse than those using the Jaccard distance metric. For the random

control, we sampled predictions from a uniform distribution over the interval [0, 1) for each

of the validation sets. Then used these predictions to calculate AUROCs for each validation

set. As with the other AUROC calculations, we took the mean over the three validation sets.

For Table 6, the AUROCs were calculated as described above and then the mean over all

DEGs was calculated. The same procedure was followed for calculating cross-entropy error

and Area Under the Precision-Recall curve (AUPR). The same random predictions described

above were also used to calculate cross-entropy error and AUPR.

6.3.6 Ground Truth

Throughout this work, the results from [Sanchez-Vega et al., 2018] were used as ground

truth for comparison purposes. Specifically, Figures S1 and 2 were used as ground truth causal

relationships that we hypothesize the RINN may be able to find. Figure S1 is reproduced

here, with a minor formatting modification, as Figure 11 for convenience. Of the 372 genes in
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our SGA dataset there were 35 genes that overlapped with the genes in Figure 11. Therefore,

the causal relationships that we can find are limited to the relationships between these 35

genes (Table 4).

6.3.7 SGA Weight Signature

To better understand how a RINN learns to connect SGAs to hidden nodes, we analyzed

only the weights going from SGA nodes to hidden nodes. To accomplish this, we generated

an "SGA Weight Signature" for each SGA, which is the concatenation, into a single vector,

of all weights for a single SGA going from that SGA to all hidden nodes in all hidden layers.

This can be visualized as the concatenation of the blue weights in Figure 10 into one long

vector for each SGA. The end result is an SGA weight signature matrix of SGAs by hidden

nodes. The weight signatures for a DNN were generated using only a single weight matrix,

the weight matrix between the inputs and the first hidden layer (i.e., W1), as these are the

only weights in a DNN that are specific to individual SGAs.

Cosine similarity between SGA weight signatures was measured using the sklearn function

cosine_similarity [Pedregosa et al., 2011].

Hierarchical clustering using cosine similarity and average linkage was performed on the

SGA weight signatures using the seaborn python module function clustermap.

6.3.8 Community Detection

Cosine similarity community detection figures were generated using Gephi [Bastian et al.,

2009] and the cosine similarity between SGA weight signatures. Edges represented the highest

or three highest cosine similarities for a given SGA. After generating a graph where nodes

were SGAs and edges were highest cosine similarities, we ran the Modularity function in

Gephi to perform community detection. Modularity runs an algorithm based on [Blondel

et al., 2008, Lambiotte et al., 2008]. Next, we partitioned and colored the graph based on

community.
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Figure 11: Genes in SGA Dataset that Overlap with Sanchez-Vega et al., 2018
This is Figure S1 from Sanchez et al., 2018: "Curated Pathways Including Cross-Cross Pathway Interactions"
[Sanchez-Vega et al., 2018]. Circled in cyan are all genes from these pathways that are in our SGA dataset.
We are treating these pathways as ground truth for comparison purposes. The cyan circles have been added

to the original figure.
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Table 4: Genes in SGA Dataset that Overlap with Sanchez-Vega et al., 2018

Pathway from Figure 11 Genes in SGA Dataset and Figure 11

RTK/RAS EGFR, FGFR1, ERBB2, FGFR2, FGFR3, PDGFRA, KRAS, HRAS

Nrf2 KEAP1, NFE2L2

TGFβ ACVR2A, SMAD4

PI3K PTEN, PIK3CA, PIK3R1, AKT1, STK11

p53 MDM2, CDKN2A, TP53

Cell cycle CDKN2A, CDKN2B, CCNE1, CCND1, CDK4, RB1, E2F3

Notch NOTCH1, FBXW7, EP300

Hippo DCHS2, FAT1, NF2

Wnt RNF43, APC, CTNNB1

6.3.9 Visualizing a RINN as a Causal Graph

Let Gi,j = (V,E), where Gi,j is a causal directed acyclic graph with vertices V and edges

E for neural network i and set of SGAs j. For this work, V represents SGAs and hidden

nodes, and E represents directed weighted edges with weight values corresponding to the

weights of a RINN. The edges are directed from SGAs (input) to DEGs (output), as we

know from biology that SGAs cause changes in expression. Please see Section 4.7 for further

explanation of interpreting a RINN in a causal framework.

If we simply interpreted any nonzero weight in a trained RINN as an edge in a Gi,j , there

would be hundreds of thousands to millions of edges in the causal graph (depending on the

size of the hidden layers) as L1 regularization encourages weight values toward zero, but

weights are often not actually zero. This means that some thresholding of the weights was

required (Chapters 4 and 5).

Even after selecting models based on the best balance between sparsity and error (smallest

dx), our weight matrices were still very dense in terms of what can be readily interpreted

visually (even after rounding weights to zero decimals). Therefore, a threshold weight value
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was needed to limit weight visualizations to only the largest (and we suspect most causally

important) weights. To accomplish this, we first limited the weights to be visualized to only

those that are descendants (i.e., downstream) of any of the 35 SGAs from Figure 11. Next,

for each of the top ten RINN models (ten shortest dx), we found the absolute value weight

threshold that led to 300 edges in total, including all SGA to hidden and hidden to hidden

edges. This threshold varied slightly from model to model, ranging from 0.55 to 0.71. This

threshold was chosen as it seemed to give a biologically reasonable density of edges, and

allowed us to best recover some of the relationships in Figure 11.

After finding a threshold for each model, any weight whose absolute value was greater

then the threshold was added as an edge to the causal graph Gi,j for that model. The causal

graphs were then plotted as modified bipartite graphs (see Figure 16) with SGAs on one side

and all hidden nodes on the other. Hidden to hidden edges were included as arcing edges on

the outside of the bipartite graph. We labeled hidden nodes using a recursive algorithm that

found all ancestor or upstream SGAs (i.e., on a path to that hidden node) for a given hidden

node and graph Gi,j.

6.3.10 Finding Shared Hidden Nodes

To determine if similarly connected hidden nodes were shared across the best mod-

els, we needed a method to map hidden nodes to some meaningful label. To accomplish

this, we used the same recursive algorithm (described at the end of Section 6.3.9) to map

each hidden node in a causal graph Gi,j to the set of SGAs that were ancestors of that

hidden node. For this mapping, only the SGAs in the set j could be used to label a hid-

den node as these are the only SGAs in Gi,j. We performed this mapping using graphs

generated with j set to only the SGAs in the individual pathways from Figure 11 (e.g.,

j = {AKT1, P IK3CA,PIK3R1, PTEN, STK11} for the PI3K pathway). For each model

in the best ten models and each pathway in Figure 11, we mapped hidden nodes to a set

of SGAs. Next, we compared the labeled hidden nodes across models and determined the

number of models that shared identically labeled hidden nodes (see Table 9).

We compared the number of models that shared specific hidden nodes with random controls.
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The random controls were performed the same as described above for the experimental results,

except that j was not set to the SGAs in one of the pathways in Figure 11—rather j was

selected randomly from the set of SGAs including all 372 SGAs minus the 35 SGAs in Figure

11. Then ten Gi,j , one for each of the top ten RINN models, were generated using the random

SGAs. The number of models with shared hidden nodes was recorded. This procedure was

repeated 30 times for each possible number of SGAs in j. For example, the PI3K pathway

(in Figure 11) has five SGAs in it that are also in our SGA dataset. To perform the random

control for PI3K, we performed 30 replicates of randomly selecting five SGAs (from the set

of SGAs described above) and then recorded the mean number of models sharing an n-SGA

labeled hidden node, where n is the number of SGAs a hidden node mapped to using our

recursive algorithm for finding ancestors.

6.4 Results

6.4.1 Model Selection

We trained approximately 23,000 RINN and 23,000 DNN models on the TCGA training

dataset with distinct sets of hyperparameters (e.g., number of hidden nodes, activation

function, regularization rate, learning rate, etc.). We evaluated each trained model on multiple

validation datasets to evaluate how well it performed (Section 6.3.3). We hypothesized that

the models with the most parsimonious weight structure, while still maintaining the ability to

accurately capture the statistical relationship between SGAs and DEGs, likely have learned

optimal representations of the impact of SGAs in cancer cells. To reflect the balance between

these two objectives, we visualized the performance of all models on a scatter plot with

validation-set error and the sum of the absolute value of all weights as axes (Figure 12). Each

dot in this figure represents a neural network trained on a unique set of hyperparameters.

We ranked models based on their Euclidean distance to the origin (dx), and models with

the shortest dx were selected as the models with the best balance between sparsity and

validation-set error.
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The ten best RINN models (i.e., models with lowest dx) are shown in Table 5. Among

multiple activation functions studied, the softplus activation function overwhelmingly provided

the best results. This was also seen with the best DNN models. Overall, the number of

hidden nodes in each hidden layer for the RINN were relatively small (∼100) compared to

the dimensionality of output space (5,259). Despite being trained with eight hidden layers,

the best RINN models utilized only three or four of the eight hidden layers (see Figures 15,

16 for examples). All top ten DNN models had two hidden layers with hidden layer sizes

ranging from 50 to 644 hidden nodes.

6.4.2 Predicting DEG Status Given SGAs

We examined how well deep learning models can predict DEGs given SGAs as inputs,

using different metrics, including cross-entropy loss, AUROC, and AUPR. Cross-validation

model selection metrics for RINN and DNN are compared in Table 6. Table 6 shows the

mean and standard deviation of the metrics on all 5,259 DEGs. In general, RINN and DNN

performed identically across all metrics. RINN and DNN performed significantly better than

k -nearest neighbors or random controls. The best RINN and DNN models according to

shortest dx (meaning more regularized) performed similarly, but slightly worse, than the

much less regularized RINNs and DNNs.
∑8

1 |Wi| is a surrogate measure of the density of a

neural network, with higher values indicating higher density of edges.

To get a better idea of how well the models performed at predicting individual DEGs from

SGAs, we plotted DEG AUROC histograms for individual models and relevant control models

(Figure 13). Figure 13 shows AUROCs for all 5,259 DEGs for the best RINN and DNN

models. The RINN and DNN models had the highest AUROCs, greatly outperforming the

control models. Interestingly, the RINN and DNN models achieved AUROC > 0.8 for a large

number of DEGs. Again, DNNs and RINNs performed almost identically when compared

to each other. Importantly, there was not a large difference in the AUROC curves between

RINN (and DNN) models selected according to lowest CEL (cross-entropy loss) and those

selected using shortest ED (euclidean distance), despite the models selected according to

shortest ED being much more regularized.
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Figure 12: Model Selection Results
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Table 5: Best RINN Hyperparameters
Hyperparameters for the ten RINN models with lowest Euclidean distance to origin. Each row in the table

represents a set of hyperparameters that was used to fully train a RINN model. Also included are the
cross-entropy errors and sum of the absolute values of the weights. (Wi is a weight ma-

trix between hidden layers. LR: learning rate, RR: regularization rate, BS: batch size, CEL: cross-entropy loss)

Rank Train Epochs Nodes in Hidden LR RR BS Activation CEL
∑8

1 |Wi|
1 303 50 1E-03 5E-06 135 softplus 0.5073 4248
2 144 100 1E-03 6E-06 45 softplus 0.5081 3874
3 738 319 1.64E-04 6.37E-06 30 softplus 0.5089 3373
4 428 326 2.37E-04 5.59E-06 30 softplus 0.5079 4042
5 136 50 1E-03 6E-06 30 softplus 0.5082 4021
6 311 50 1E-03 6E-06 135 softplus 0.5090 3596
7 713 148 1.1E-04 5.17E-06 30 softplus 0.5083 4038
8 326 100 1E-03 6E-06 170 softplus 0.5088 3726
9 149 101 5.23E-04 4.49E-06 30 softplus 0.5057 5030
10 345 180 3.02E-04 5.66E-06 30 softplus 0.5085 3925

Table 6: Cross-Validation Model Selection Results
Comparing the two RINN and DNN models with the lowest mean cross-entropy validation set loss and

shortest euclidean distance to the origin after evaluating ∼23,000 different sets of hyperparameters. Values
represent mean across three validation sets. The four best models for each metric in bold. (Wi is a weight

matrix between hidden layers. CEL: cross-entropy loss, ED: Euclidean distance).

Description CEL AUROC AUPR
∑8

1 |Wi|
RINN 1 lowest CEL 0.5032± 0.0048 0.7316± 0.0051 0.5678± 0.0039 18899± 250
RINN 2 2nd lowest CEL 0.5032± 0.0047 0.7317± 0.0048 0.5677± 0.0036 16971± 53
DNN 1 lowest CEL 0.5033± 0.0052 0.7318± 0.0058 0.5676± 0.0041 24503± 124
DNN 2 2nd lowest CEL 0.5033± 0.0049 0.7307± 0.0056 0.5663± 0.0032 12739± 75

RINN ED 1 shortest ED 0.5073± 0.0054 0.7258± 0.0054 0.5607± 0.0040 4248± 18
RINN ED 2 2nd shortest ED 0.5081± 0.0058 0.7231± 0.0057 0.5569± 0.0038 3874± 48
DNN ED 1 shortest ED 0.5075± 0.0055 0.7238± 0.0057 0.5570± 0.0029 3491± 18
DNN ED 2 2nd shortest ED 0.5073± 0.0054 0.7240± 0.0054 0.5576± 0.0031 3704± 45

k -NN k = 21, euclidean 9.6289± 0.1889 0.5599± 0.0034 0.5396± 0.0022 NA
k -NN k = 45, jaccard 9.0740± 0.1579 0.5799± 0.0028 0.5719± 0.0027 NA
Random preds ∼ U(0, 1) 0.9994± 0.0003 0.5003± 0.0003 0.3257± 0.0052 NA
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6.4.3 Learning Shared Functional Impacts of SGAs Using the RINN

RINN allows an SGA to interact with all hidden nodes in the latent hierarchy. After

training with regularization, the majority of the weights from SGAs to hidden nodes were

set close to 0.0, thus the remaining weights (not close to 0) reflect how the impact of the

SGAs is propagated through the latent variables and eventually influences gene expression. In

other words, these remaining weights (edges) between the SGAs and hidden nodes serve as a

signature (or vector embedding) representing an SGA’s functional impact. One can compare

the functional impacts of two SGAs by comparing their weight signatures with cosine angle

similarity. Here, we assess whether the weight signatures learned by RINN truly reflect the

functional impact of SGAs. We hypothesized that if RINN correctly captures the functional

impact of SGAs, then the weight signature of a gene (SGA) should be more similar to genes

belonging to a common pathway than to genes from other pathways. To this end, we used

the well documented cancer pathways recently reported by the TCGA pan-cancer analysis

project [Sanchez-Vega et al., 2018] (Figure 11) to determine which genes shared a common

pathway.

For each of the 35 driver SGAs that are in the known pathways from the TCGA pan-

cancer study [Sanchez-Vega et al., 2018] (and also are in our SGA dataset), we calculated

the cosine similarity of its weight signature with respect to all other SGA weight signatures,

and listed the three most similar SGAs in Table 7. Clearly, many of the SGAs that had high

cosine similarities relative to the query SGA were in the same pathway as the query SGA

according to [Sanchez-Vega et al., 2018]. Most of the SGAs in the PI3K pathway had high

cosine similarities with the other SGAs in the PI3K pathway. KEAP1 and NFE2L2 (the

only members of the Nrf2 pathway in SGA dataset) were both found to be each other’s SGA

with highest cosine similarity. Also, SMAD4 and ACVR2A (only members of TGFβ pathway

in SGA dataset) were also found to be each other’s SGA with highest cosine similarity.

Additional cosine similarity relationships were found between members of the same pathway

for the remaining pathways, but these relationships were less frequent than the results for

PI3K, Nrf2, and TGFβ mentioned above. These cosine similarity results suggest that the

hidden nodes in our trained RINNs may represent biological entities or components of a
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cellular signaling system, meaning that the connectivity found in our trained RINNs are

related to cellular signaling pathways.

To compare the RINN with a DNN, we performed the same cosine similarity experiment

from Table 7, but with weights from the best three DNN models (Table 8). For this experiment,

we only used weights from the input SGAs to the first hidden layer, as these are the only

weights in a DNN that are specific to individual SGAs. In Table 8, many of the SGAs that

had high cosine similarities relative to the query SGA were in the same pathway as the query

SGA according to [Sanchez-Vega et al., 2018]. Overall, there were 28 genes in bold in Table

7 (RINN) and 27 genes in bold in Table 8 (DNN). These results indicate that the DNN

weight signature cosine similarities were very similar to the RINN weight signature cosine

similarities. The DNNs performed worse at capturing the relationships in the PI3K pathway,

but better at capturing pathway relationships in the RTK/RAS pathway (especially with

cosine similarities relative to FGFR3). Just as with the RINN, KEAP1 and NFE2L2 were

both found to be each other’s SGA with highest cosine similarity with the DNN. SMAD4

and ACVR2A were also found to be similar to one another, but not as highly similar as with

the RINN. It is also likely that some or many of the hidden nodes in trained DNNs represent

biological entities. Although, in a DNN the information is likely to be more convoluted, and

the RINN is an attempt to deconvolute the signal into relationships that are more easily

interpreted by a human. The similarities between Tables 7 and 8 are quite remarkable and

show that the RINN and DNN are capturing similar information overall, which is somewhat

expected as they both performed similarly on the same prediction task.

An alternative approach to illustrating the information provided by SGA weight signatures

is to visualize the highest cosine similarities between weight signatures as edges in a graph

and then apply a community discovery algorithm to identify closely related SGAs (Figure

14). In this figure, the discovered communities are shown as nodes and edges with the same

color. In Figure 14, a directed edge connects an SGA (at the tail) to another SGA (at the

head) that has high cosine similarity relative to the SGA at the tail of the edge; a bi-directed

edge indicates that two SGAs are mutually highly similar; the thickness of an edge represents

the amount of cosine similarity; the size of the SGA node represents the degree of that node.

Figure 14a is a visualization of the highest cosine similarities for each SGA and Figure 14b is
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Table 7: RINN Top Three SGA Weight Signature Cosine Similarity (CS)
SGAs from Figure 11 with highest cosine similarity relative to SGA x (mean CS across three best models ±

st. dev.). Bolded SGAs are in the same pathway (according to Sanchez-Vega et al., 2018) as SGA x.

x Highest CS (Mean ± SD) 2nd Highest 3rd Highest
PTEN PIK3R1 (0.8± 0.02) PDGFRA (0.4± 0.01) PIK3CA (0.4± 0.05)
PIK3CA PIK3R1 (0.6± 0.04) AKT1 (0.4± 0.06) PTEN (0.5± 0.05)
PIK3R1 PTEN (0.8± 0.02) PIK3CA (0.6± 0.04) CTNNB1 (0.4± 0.05)
AKT1 PIK3CA (0.4± 0.06) FGFR2 (0.4± 0.03) DCHS2 (0.3± 0.09)
STK11 KEAP1 (0.5± 0.05) FGFR1 (0.5± 0.05) NFE2L2 (0.4± 0.10)
KEAP1 NFE2L2 (0.6± 0.09) STK11 (0.5± 0.05) KRAS (0.4± 0.08)
NFE2L2 KEAP1 (0.6± 0.09) STK11 (0.4± 0.10) FGFR1 (0.3± 0.11)
ACVR2A SMAD4 (0.5± 0.04) RNF43 (0.4± 0.20) APC (0.2± 0.10)
SMAD4 ACVR2A (0.5± 0.04) APC (0.4± 0.06) DCHS2 (0.4± 0.02)
CDKN2A NOTCH1 (0.7± 0.09) HRAS (0.5± 0.07) FAT1 (0.4± 0.10)
CDKN2B RB1 (0.4± 0.14) EGFR (0.4± 0.18) CDK4 (0.4± 0.18)
CCNE1 E2F3 (0.5± 0.23) RB1 (0.3± 0.20) MDM4 (0.3± 0.20)
CCND1 FGFR2 (0.7± 0.05) DCHS2 (0.3± 0.11) FBXW7 (0.3± 0.14)
CDK4 PDGFRA (0.5± 0.10) EGFR (0.4± 0.11) CDKN2B (0.4± 0.18)
RB1 FGFR3 (0.5± 0.07) E2F3 (0.4± 0.04) CDKN2B (0.4± 0.14)
E2F3 CCNE1 (0.5± 0.23) FGFR3 (0.4± 0.10) RB1 (0.4± 0.04)
EGFR PDGFRA (0.5± 0.10) CDK4 (0.4± 0.11) CDKN2B (0.4± 0.18)
FGFR1 DCHS2 (0.6± 0.11) STK11 (0.5± 0.05) FBXW7 (0.5± 0.07)
ERBB2 EP300 (0.6± 0.08) FGFR3 (0.5± 0.21) RB1 (0.4± 0.08)
FGFR2 CCND1 (0.7± 0.05) FBXW7 (0.4± 0.09) DCHS2 (0.4± 0.11)
FGFR3 RB1 (0.5± 0.07) EP300 (0.5± 0.02) ERBB2 (0.5± 0.21)
PDGFRA CDK4 (0.5± 0.10) EGFR (0.5± 0.10) PTEN (0.4± 0.10)
KRAS CTNNB1 (0.5± 0.06) KEAP1 (0.4± 0.08) RNF43 (0.3± 0.15)
HRAS NOTCH1 (0.7± 0.05) FAT1 (0.6± 0.05) CDKN2A (0.5± 0.07)
MDM4 PDGFRA (0.3± 0.14) EGFR (0.3± 0.16) CCNE1 (0.3± 0.10)
TP53 E2F3 (0.4± 0.03) RB1 (0.3± 0.08) CCNE1 (0.3± 0.09)
RNF43 APC (0.4± 0.03) ACVR2A (0.4± 0.20) KRAS (0.3± 0.15)
APC FBXW7 (0.5± 0.06) DCHS2 (0.5± 0.04) SMAD4 (0.4± 0.06)
CTNNB1 KRAS (0.5± 0.06) PIK3R1 (0.4± 0.08) FBXW7 (0.4± 0.07)
DCHS2 FBXW7 (0.8± 0.04) EP300 (0.6± 0.04) FGFR1 (0.6± 0.11)
FAT1 NOTCH1 (0.8± 0.07) HRAS (0.6± 0.05) CDKN2A (0.4± 0.10)
NF2 EP300 (0.3± 0.16) FBXW7 (0.3± 0.10) NOTCH1 (0.3± 0.03)
FBXW7 DCHS2 (0.8± 0.04) EP300 (0.6± 0.08) APC (0.5± 0.06)
NOTCH1 FAT1 (0.8± 0.07) HRAS (0.7± 0.05) CDKN2A (0.7± 0.09)
EP300 FBXW7 (0.6± 0.08) DCHS2 (0.6± 0.04) ERBB2 (0.6± 0.08)
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Table 8: DNN Top Three SGA Weight Signature Cosine Similarity (CS)
SGAs from Figure 11 with highest cosine similarity relative to SGA x (mean CS across three best models ±

st. dev.). Bolded SGAs are in the same pathway (according to Sanchez-Vega et al., 2018) as SGA x.

x Highest CS (Mean ± SD) 2nd Highest 3rd Highest
PTEN PIK3R1 (0.7± 0.06) FGFR2 (0.5± 0.05) PDGFRA (0.4± 0.03)
PIK3CA AKT1 (0.7± 0.06) FGFR2 (0.5± 0.02) CCND1 (0.5± 0.10)
PIK3R1 FGFR2 (0.7± 0.07) PTEN (0.7± 0.06) CTNNB1 (0.6± 0.02)
AKT1 PIK3CA (0.7± 0.06) FGFR2 (0.5± 0.02) FGFR1 (0.4± 0.14)
STK11 KEAP1 (0.6± 0.02) FGFR1 (0.4± 0.12) NFE2L2 (0.4± 0.01)
KEAP1 NFE2L2 (0.7± 0.03) STK11 (0.6± 0.02) KRAS (0.4± 0.03)
NFE2L2 KEAP1 (0.7± 0.03) STK11 (0.4± 0.01) NOTCH1 (0.4± 0.04)
ACVR2A RNF43 (0.6± 0.03) SMAD4 (0.5± 0.03) CCNE1 (0.4± 0.15)
SMAD4 APC (0.5± 0.04) FBXW7 (0.5± 0.02) ACVR2A (0.5± 0.03)
CDKN2A NOTCH1 (0.8± 0.06) CDK4 (0.7± 0.02) HRAS (0.6± 0.02)
CDKN2B CDK4 (0.6± 0.04) RB1 (0.5± 0.07) EGFR (0.4± 0.03)
CCNE1 E2F3 (0.6± 0.08) TP53 (0.4± 0.07) ACVR2A (0.4± 0.15)
CCND1 FGFR2 (0.6± 0.06) PIK3CA (0.5± 0.10) CTNNB1 (0.5± 0.12)
CDK4 CDKN2A (0.7± 0.02) CDKN2B (0.6± 0.04) EGFR (0.5± 0.03)
RB1 FGFR3 (0.5± 0.05) TP53 (0.5± 0.02) CDKN2B (0.5± 0.07)
E2F3 CCNE1 (0.6± 0.08) FGFR3 (0.5± 0.06) RB1 (0.4± 0.06)
EGFR PDGFRA (0.6± 0.05) CDK4 (0.5± 0.03) MDM4 (0.5± 0.06)
FGFR1 FBXW7 (0.5± 0.10) DCHS2 (0.5± 0.18) STK11 (0.4± 0.12)
ERBB2 EP300 (0.6± 0.03) FGFR3 (0.5± 0.03) DCHS2 (0.5± 0.10)
FGFR2 PIK3R1 (0.7± 0.07) CCND1 (0.6± 0.06) CTNNB1 (0.6± 0.04)
FGFR3 ERBB2 (0.5± 0.03) HRAS (0.5± 0.07) EP300 (0.5± 0.08)
PDGFRA EGFR (0.6± 0.05) MDM4 (0.5± 0.14) PTEN (0.4± 0.03)
KRAS CTNNB1 (0.6± 0.07) APC (0.5± 0.04) SMAD4 (0.5± 0.02)
HRAS NOTCH1 (0.7± 0.03) CDKN2A (0.6± 0.02) EP300 (0.6± 0.10)
MDM4 PDGFRA (0.5± 0.14) EGFR (0.5± 0.06) CDKN2B (0.3± 0.17)
TP53 RB1 (0.5± 0.02) CCNE1 (0.4± 0.07) KRAS (0.4± 0.06)
RNF43 ACVR2A (0.6± 0.03) APC (0.4± 0.02) KRAS (0.3± 0.03)
APC FBXW7 (0.6± 0.02) SMAD4 (0.5± 0.04) KRAS (0.5± 0.04)
CTNNB1 PIK3R1 (0.6± 0.02) FGFR2 (0.6± 0.04) KRAS (0.6± 0.07)
DCHS2 FBXW7 (0.7± 0.08) EP300 (0.6± 0.06) FGFR1 (0.5± 0.18)
FAT1 NOTCH1 (0.8± 0.04) CDKN2A (0.6± 0.09) HRAS (0.5± 0.05)
NF2 EP300 (0.4± 0.05) FAT1 (0.4± 0.05) NOTCH1 (0.3± 0.04)
FBXW7 DCHS2 (0.7± 0.08) EP300 (0.7± 0.09) APC (0.6± 0.02)
NOTCH1 CDKN2A (0.8± 0.06) FAT1 (0.8± 0.04) HRAS (0.7± 0.03)
EP300 FBXW7 (0.7± 0.09) ERBB2 (0.6± 0.03) DCHS2 (0.6± 0.05)
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a visualization of the three highest cosine similarities for each SGA. The nodes and edges

are colored according to community after running a community detection algorithm. Many

of the communities that were discovered with this procedure correspond to the pathways in

Figure 11. For example, the green community in Figure 14a captures the majority of the

PI3K pathway, the darker blue community and brown community captures the TGFβ and

Nrf2 pathways respectively, and the purple community captures many of the genes (SGAs)

in the Wnt, Hippo, and Notch pathways. In Figure 14b the majority of the PI3K pathway

is part of the green community and a blue community emerges with many members of the

cell cycle pathway. Many other additional pathway relationships within the ground truth

pathways are seen in Figure 14, reinforcing the hypothesis that the latent structure of trained

RINNs contains cellular signaling pathway relationships.

We also visualized the weights from SGAs to hidden nodes (i.e., weight signatures) as a

heatmap, where each column represents an SGA and each row represents a hidden node, and

the weight from an SGA to a hidden node is represented as an element in the color-coded

heatmap. We performed hierarchical clustering on the weight signatures derived from a

single RINN model (the RINN with the shortest dx) as shown in Figure 15. Within this

clustering and dendrogram, we observe many relationships that are present in the ground

truth pathways. For example, the green cluster contains much of the PI3K pathway, the

orange cluster captures the TGFβ pathway, the purple cluster contains the two members of

the Nrf2 pathway, and the gray cluster contains the members of the Notch pathway and two

of the three members of the Hippo pathway.

In addition to the above clustering relationships, the heatmap also illustrates the capability

of RINN to automatically determine the "optimal" number of hidden layers that are needed

to encode information from SGAs to DEGs. Here, the hidden layers are numbered starting

from input (SGAs) to output (DEGs). This heatmap shows that all the weights before hidden

layer 5 have a value of 0.0, and only one hidden node in layer 5 has incoming weights with

nonzero values. All of the top ten models (including this one) utilized only three or four

hidden layers similar to what is seen in Figure 15. Hidden layer 7 seems to have the most

nonzero incoming weights. Interestingly, many of the most important cancer related SGAs

(e.g., EGFR, TP53, CDKN2A, APC, PIK3CA) have a larger number of weights and larger
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Figure 14: Cosine Similarity of SGA Weight Signatures and Community Detection
These edges do not represent causal relationships, rather cosine similarity (CS) relationships between SGAs,

where the head of an edge indicates an SGA with high CS relative to the SGA at the tail.
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valued weights than other SGAs in Figure 15, suggesting that this model is capturing relevant

biological information.

6.4.4 Inferring Causal Relationships Using RINN

One of the goals of this work was to discover latent causal structure relevant to cancer

cellular signaling pathways. We hypothesized that the RINN can reveal the causal relationships

among the proteins perturbed by SGAs. For example, if an SGA (intervention) i1 is connected

to a latent variable h1 and another SGA i2 is connected to another latent variable h2; if h1 is

connected directly upstream of h2 with a nonzero weighted edge in the latent hierarchy, it

would suggest that the signal of i1 is upstream of that of i2 and that the protein affected by

i1 causally regulates the protein affected by i2 in the cellular system. To examine this type of

relationship, we visualized the relationships among the SGAs from four TCGA pathways via

the latent nodes they are connected to, as a means to search for causal structure revealed by

RINN models (Figure 16). Overall, the learned causal graphs were much more complex and

dense than the graphs from the pan-cancer TCGA analysis (Figure 11) in that an SGA in the

RINN was often connected to multiple latent variables (depending on the cutoff threshold).

This suggests that there is still difficulty in directly interpreting the weights of a RINN

as causal relationships with the current form of the algorithm. It may also suggest that

the ground truth we used here is not detailed enough for our purposes, or may have some

inaccuracies, and thus is more of a "silver standard". In these graphs there are a large number

of false positive edges and redundant causal edges—where a single SGA will act multiple

times on the same path.

However, some true causal relationships are seen within these graphs. For example, both

models 0 and 1 have a directed path as follows: iKEAP1 → h1 → h2 ← iNFE2L2, where i

represents an intervention (i.e., SGA). If we assume that h1 is a representation of the KEAP1

protein and h2 is a representation of NFE2L2 protein, then we can interpret the above path

as, KEAP1 → NFE2L2, i.e., KEAP1 causing NFE2L2. This is consistent with the NRF2

pathway shown in Figure 11. Model 2 has the following directed path: KEAP1 → h1 ←

NFE2L2, which has a more ambiguous interpretation but does emphasize the correlation
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Figure 15: Hierarchical Clustering of RINN with Shortest Euclidean Distance
Heatmap shows all SGA to hidden node weight values for our best trained RINN model. The vertical axis
represents hidden node number (numbered in ascending order starting from hidden layer 1—closest to SGAs)
and has horizontal lines representing different hidden layer boundaries. The horizontal axis represents the 35

SGAs from Figure 11. The dendrogram and coloring on top show the clustering of the SGAs for one
particular clustering cutoff.
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between these two SGAs. Also, it is likely that if the weight threshold was decreased for

Model 2, there would be an edge between the green hidden node and the blue hidden node,

meaning that all three models would then capture the KEAP1→ NFE2L2 causal relationship.

This emphasizes the importance of finding a more robust means of thresholding for future

work.

All the RINNs represented in Figure 16 (and Figure 15) only utilized three or four hidden

layers to learn the function mapping SGAs to DEGs. Because we used L1 regularization,

RINNs learned to only use the number of hidden layers necessary to perform well on the

prediction task. For example, if only three hidden layers were needed to perform well on

prediction, the regularized objective function would set all the weights before the last three

hidden layers to 0.0. We set the number of hidden layers to eight (Section 6.3.2) as we

hypothesized that eight hidden layers was enough hierarchical complexity to capture cancer

cellular signalling pathways in a meaningful way. Figures 15 and 16 suggest that this was

a correct assumption in this setting for the data we used. As with other model selection

techniques, if our trained RINNs had utilized all eight layers during model selection, we could

easily increase the number of hidden layers to more then eight and perform another round of

model selection.

6.4.5 Shared Hidden Nodes Across Top Ten Models

As shown in Figure 16, SGAs perturbing members of a common pathway are closely

connected to a similar set of hidden variables, and often many SGAs are directly connected

to a common hidden node. This suggests that such hidden nodes encode a common signal

that is shared by the SGAs. We hypothesize that if SGAs from a pathway are connected to a

similar set of shared hidden nodes in multiple different RINN models, this would indicate

that the RINN can repeatedly detect the common impact of the SGAs, and therefore use a

common set of hidden nodes to encode their impact with respect to DEGs. In other words,

the RINN consistently encodes the shared functional impact of SGAs perturbing a common

pathway and the function of these hidden nodes in a specific RINN model become partially

transparent. We labeled hidden nodes based on their SGA ancestors (Section 6.3.10) and
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Figure 16: Visualizing the Weights of a RINN as Causal Graphs
Each graph represents the causal relationships for only the SGAs on the left of the graph.
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then examined whether such hidden nodes were conserved across models (Table 9). Indeed,

many hidden nodes were conserved across the top ten models. More specifically, Table 9

shows the number of models that shared a specific hidden node labeling and whether or not

this would be expected by chance. For example, a hidden node mapping to all five members

of the PI3K pathway, {AKT1, PIK3CA, PIK3R1, PTEN, STK11}, was found in all of our

top ten models. Given five random SGAs, the expected number of the top ten models to

share a hidden node mapped to all five random SGAs was 0.0 models (see Section 6.3.10 for

our random control methodology). This means that in our 30 replicates of the random control

with five random SGAs, none of the top ten models ever shared a hidden node mapped to all

five random SGAs. This also means that the result above for all five members of the PI3K

pathway is a very strong result and a definite pathway relationship discovered with the RINN

setup in this work. Many of the 4-SGA and 3-SGA labeled hidden nodes were also found in

many more models than the corresponding random control, such as the {AKT1, PIK3CA,

PTEN, STK11}, {PIK3CA, PIK3R1, PTEN, STK11}, {AKT1, PIK3CA, STK11}, {PIK3R1,

PTEN, STK11}, and {PIK3CA, PIK3R1, PTEN} labeled hidden nodes that were found.

A hidden node mapped to both members of the Nrf2 and TGFβ pathways was also found

in all ten models, which was much higher than the number of models expected given two

random SGAs. Given random SGAs, only 0.7± 1.2 models of the top ten would be expected

to share the same 2-SGA labeled hidden node. Also, a hidden node mapped to all three

members of the Notch pathway was shared by nine of the top ten models, which was also

well beyond the number of models expected given random SGAs.

6.5 Discussion

In this chapter, we show that deep learning models, RINN and DNN, can capture the

statistical relationships between genomic alterations and transcriptomic events in tumor cells

with reasonably high accuracy, despite our relatively small number of training cases and

the high dimensionality of the data. Our findings further indicate that a regularized deep

neural network with redundant inputs (i.e., the RINN model) can capture cancer signaling
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Table 9: Cancer Pathway Hidden Nodes Shared Across Top Ten Models
Hidden Node x Mapping represents SGAs that directly act on hidden node x or are ancestors of x. Models
are numbered 0 to 9. (n: number of SGAs mapping to a hidden node, m: number of SGAs in a pathway).

Pathway Hidden Node x Mapping Models (out of 10; num-
bered 0 to 9) that Share
Hidden Node x

Expected Number of
Models that Share an
n-SGA Hidden Node
Given m Random SGAs

PI3K

AKT1, PIK3CA, PIK3R1, PTEN, STK11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 0.0± 0.0 (n = 5, m = 5)
AKT1, PIK3CA, PTEN, STK11 0, 2, 5, 6, 7, 9 0.4± 1.4 (n = 4, m = 5)
PIK3CA, PIK3R1, PTEN, STK11 0, 4, 5, 7, 8 0.4± 1.4 (n = 4, m = 5)
AKT1, PIK3CA, PIK3R1, PTEN 1, 3, 6 0.4± 1.4 (n = 4, m = 5)
AKT1, PIK3R1, PTEN, STK11 2, 3 0.4± 1.4 (n = 4, m = 5)
AKT1, PIK3CA, STK11 1, 2, 3, 5, 6, 8 1.0± 1.4 (n = 3, m = 5)
PIK3R1, PTEN, STK11 2, 3, 6, 7, 8, 9 1.0± 1.4 (n = 3, m = 5)
PIK3CA, PIK3R1, PTEN 0, 2, 6, 7, 9 1.0± 1.4 (n = 3, m = 5)
AKT1, PIK3R1, PTEN 3, 9 1.0± 1.4 (n = 3, m = 5)
AKT1, PTEN, STK11 2, 3 1.0± 1.4 (n = 3, m = 5)
PTEN, STK11 0, 2, 3, 5, 6, 7, 8 3.4± 2.0 (n = 2, m = 5)
PIK3R1, PTEN 0, 2, 3, 6, 8, 9 3.4± 2.0 (n = 2, m = 5)
AKT1, PIK3CA 0, 3, 4, 6, 8 3.4± 2.0 (n = 2, m = 5)
PIK3CA, STK11 0, 1, 2, 4, 8 3.4± 2.0 (n = 2, m = 5)
AKT1, STK11 1, 2, 3, 4, 5 3.4± 2.0 (n = 2, m = 5)
PIK3CA, PTEN 5, 6, 8, 9 3.4± 2.0 (n = 2, m = 5)
AKT1, PIK3R1 2, 5 3.4± 2.0 (n = 2, m = 5)
PIK3R1, STK11 3, 9 3.4± 2.0 (n = 2, m = 5)
AKT1, PTEN 5, 9 3.4± 2.0 (n = 2, m = 5)

Nrf2 KEAP1, NFE2L2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 0.7± 1.2 (n = 2, m = 2)

TGFβ ACVR2A, SMAD4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 0.7± 1.2 (n = 2, m = 2)

Notch
EP300, FBXW7, NOTCH1 0, 1, 2, 3, 4, 5, 6, 7, 9 0.2± 0.6 (n = 3, m = 3)
FBXW7, NOTCH1 0, 2, 3, 6, 7, 8, 9 2.1± 2.2 (n = 2, m = 3)
EP300, FBXW7 0, 2, 3, 4, 6 2.1± 2.2 (n = 2, m = 3)
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pathway relationships within its hidden variables and weights. The RINN model correctly

captured much of the functional similarity between SGAs that perturb a common signaling

pathway as reflected by their similar interactions with the hidden nodes of the RINN model

(i.e., cosine similarity of SGA weight signatures). This shows that SGAs on the same pathway

have interactions with a similar set of latent variables. These are very encouraging results

for eventually using a future version of the RINN to find robust signaling pathways. Many

of the most well known cancer driver genes (EGFR, TP53, CDKN2A, APC, and PIK3CA)

were found to have dense SGA weight signatures and weights with larger values relative to

the other genes we analyzed, reinforcing the validity of our models and the importance of

these genes in driving cancer gene expression. Our results indicate that RINN consistently

employs certain hidden nodes to represent the shared functional impact of SGAs perturbing a

common pathway, although different instantiations of RINN could use totally different hidden

nodes. The capability of RINN to explicitly connect SGAs and hidden nodes throughout

the latent hierarchy essentially makes it a partially transparent deep learning model, so that

one can interpret which hidden nodes encode and transmit signals (i.e., functional impact)

of SGAs in cancer cells. Finally, we show that RINN is capable of capturing some causal

relationships (given our interpretation of the hidden nodes) between the signaling proteins

perturbed by SGAs. All these results indicate that by allowing SGAs to directly interact with

hidden nodes in a deep learning model, the RINN model provides constraint and information

to enable certain hidden nodes to encode the impact of specific SGAs.

The similarities between the cosine similarity tables for RINN and DNN are quite

remarkable and overall show that both RINN and DNN are capturing similar information in

their weights. This is a somewhat expected result, as both RINN and DNN were trained on

the same data to perform the same task and had similar AUROCs, meaning they both needed

to capture relevant cancer pathway information in their weights in order to perform well on

the prediction task. Although, in a DNN the information is likely to be more convoluted. The

redundant inputs of the RINN are an attempt to deconvolute the signal into relationships

that are more easily interpreted by a human, by giving the network more choices for when

to learn certain information (i.e., early in the network at the first hidden layer or sometime

later in the network). The hidden layers of a DNN are alternate representations of all the
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information in the input necessary to calculate the output, whereas each hidden layer of a

RINN does not need to capture all the information in the input necessary to predict the

output because there are multiple chances to learn what is needed from the input (i.e.,

redundant inputs). This difference gives the RINN more freedom in how it chooses to use

the information in the input. The last hidden layer of the RINN is the only hidden layer

that must contain all relevant information from the input (the last hidden layer also has

information from the previous hidden layers). The redundant inputs of the RINN attempt

to order the information necessary for the prediction task in a particular way so that more

human-recognizable pathway relationships can be generated. In contrast, the DNN must

order or combine the information in any convoluted way that best predicts the output, while

still constraining each hidden layer to represent and propagate all the necessary information

in the input required for the prediction task, as a DNN never has access to the input again

beyond the first hidden layer.

A DNN cannot capture the same causal relationships that a RINN can. By nature of its

architecture and design, a DNN can capture direct causal relationships (i.e., edges starting

from an observed variable) between the input and the first hidden layer only—DNNs cannot

capture direct causal relationships between the input and any other hidden layers. This

means that a DNN cannot be used to generate causal graphs like the ones shown in Figure 16.

If a DNN were used to generate causal graphs in the same format as Figure 16, the graphs

would have left-sided inputs connected to a single hidden layer and then cascading hidden

nodes and edges (between hidden nodes in different hidden layers only) for multiple hidden

layers on the right side of the figure. There would not be any edges from the input on the

left side to any hidden layers other then the first hidden layer. In addition, a DNN cannot

capture causal relationships among input SGAs as was described in Section 6.4.4, meaning

that one cannot infer the causal relationships among SGAs with a DNN. This is because

DNNs do not have edges between hidden nodes in the same layer. Consider pathKEAP1 and

pathNFE2L2 as the paths with KEAP1 or NFE2L2 as the source node, respectively, in a DNN.

In a DNN, to determine that there is a dependency between KEAP1 and NFE2L2, eventually

these two paths would need to collide on a hidden node. When these two paths collide on a

hidden node, the number of edges in each path will be the same, meaning that the direction
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of the causal relationship is ambiguous. This limitation of a DNN can be remedied by adding

redundant inputs (i.e., RINN) or by adding edges between nodes in the same hidden layer

in a DNN. Using the RINN architecture allows us to infer order to the causal relationships

among SGAs and allows SGAs to directly act on the latent hierarchy, similar to how SGAs

in vivo act on signaling pathways. The RINN can capture direct relationships between the

input and any hidden layer in the network, allowing one to also infer causal relationships

among the input variables—this design difference and extension of causal interpretability are

what set it apart from a DNN.

It is intriguing to examine further whether the hierarchy of hidden nodes can capture

causal relationships among the signals encoded by SGA-affected proteins. We have shown

that many of the pathway relationships and some known causal relationships were present

in the hierarchy reflected by the weight matrices of our trained models. However, we also

noticed that in our RINN models an SGA is often connected to a large number of hidden

nodes, which are in turn connected to a large number of other hidden nodes—meaning that

the current RINN model learns relatively dense causal graphs. While one can infer the

relationships between the signal perturbed by distinct SGAs of a pathway, our current model

cannot directly output a causal network that looks like ones commonly shown in the literature.

We plan to develop RINN into an algorithm that is able to find more easily interpretable

cellular signaling pathways when trained on SGA and DEG data. The following algorithm

modifications potentially will lead to better results in the future: 1. Incorporating differential

regularization of the weights, 2. Using constrained and parallelized versions of evolutionary

algorithms to optimize the weights and avoid the need to threshold weights, and 3. Training

an autoencoder with a bottleneck layer to encourage hidden nodes to more easily represent

biological entities and then using these weights (and architecture) to initialize a RINN.

An assumption implicit in this work in order to interpret the weights of a neural network

as causal relationships between biological entities is that we are assuming that the causal

relationships between biological entities can be approximated by a linear function combined

with a simple nonlinear function (e.g., activation(wx + b), where all variables have scalar

values and activation represents a simple nonlinear function such as ReLU or softplus). This

is a necessary assumption in order to interpret all nonzero hidden nodes as biological entities;
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however, it could also be the case that some hidden nodes are not biological entities, but

rather some intermediate calculation required to compute a relationship between biological

entities that cannot be modeled with activation(wx + b). Given the high density of the

models learned with TCGA data, it is possible that the relationships between some biological

entities cannot be modeled with activation(wx+ b), suggesting that more complex activation

functions are needed or that biological entities may be present at every other hidden layer. It

would be interesting to explore using more complex activation functions, and specifically using

an unregularized one hidden layer neural network as an activation function for each hidden

node in a RINN. This setup would account for even quite complex relationships between

biological entities captured as latent variables. See Section 5.5 for additional discussion of

this topic.

A cellular signaling system is a complex information encoding/processing machine, which

processes signals arising from extrinsic environment changes or perturbations (genetic or

pharmacological) affecting the intrinsic state of a cell. The relationships of cellular signals

are hierarchical and nonlinear by nature, and deep learning models are particularly suitable

to modeling such a system [Chen et al., 2015, Chen et al., 2016, Young et al., 2017, Lu

et al., 2018, Tao et al., 2020]. However, conventional deep learning models behave like "black

boxes", such that it is almost impossible to determine what signal a hidden node encodes,

with few exceptions in image analysis where human interpretable image patterns can be

represented by hidden nodes [Lee et al., 2008, Lee et al., 2011, Le et al., 2011]. Here, we took

advantage of our knowledge of cancer biology that SGAs causally influence the transcriptomic

programs of cells and we adopted a new approach that allows SGAs to directly interact with

hidden nodes in RINN. We conjecture that this approach forces hidden nodes to explicitly

and more effectively encode the impact of SGAs on transcriptomic systems. This hypothesis

is supported by the discoveries of this chapter that SGAs in a common pathway share similar

connection patterns to hidden nodes, and that there are hidden nodes that are connected

with multiple members of a pathway in different instances of the model. Essentially, our

approach allows certain hidden nodes to be "labeled" and "partially interpretable". An

interpretable deep learning model provides a unique opportunity to study how cellular signals

are encoded and perturbed under pathological conditions. Understanding and representing
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the state of a cellular system further opens directions for translational applications of such

information, such as predicting the drug sensitivity of cancer cells based on the states of their

signaling systems. To our knowledge, this is the first time that a partially interpretable deep

learning model has been developed and applied to study cancer signaling, and we anticipate

this approach laying a foundation for developing future explainable deep learning models in

this domain.
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7.0 Conclusions and Future Directions

In conclusion, a modified deep learning model (RINN with L1 regularization) can be

used to find causal relationships within the learned weights of the network when trained

on simulated data. When trained on cancer genomic data, genomic alterations impacting a

common cancer signaling pathway (PI3K, NRF2, and TGFβ) had similar interactions (i.e.,

connections) with the RINN hidden hierarchical structure, meaning they interacted with a

similar set of hidden nodes. This similarity of interactions with the latent hierarchy suggests

that similar genomic alterations found in this dissertation have related biological functions.

In this setting, having genomic alteration input variables directly connected to all latent

variables allowed us to label the latent variables with a set of genomic alterations, making

the latent variables partially interpretable. With this labeling, we were able to visualize the

weights of RINNs as causal graphs and capture at least some of the causal relationships in

known cancer signaling pathways. In general, however, the causal graphs learned by RINN

were somewhat too dense (despite large amounts of regularization) to compare directly to the

known cancer signaling pathways in Figure 11. A prerequisite to interpreting hidden nodes or

finding causal graphs with a RINN is robust training of an accurate classifier. Importantly, we

showed that differentially expressed genes can be predicted from somatic genome alterations

by a RINN (and DNN) with reasonably high AUROCs, especially after considering the very

high dimensionality of the prediction task relative to the number of input variables and

instances in the dataset. This is a very encouraging result for the future of deep learning

models trained on cancer genomic data. We were able to achieve notable results with a

relatively small dataset and very high dimensionality—imagine what might be possible with

two times to ten times more cancer data.

In this dissertation, we also developed a causal framework for the RINN model describing

the causal assumptions that are necessary to use the RINN for causal discovery. We created

a robust pipeline for testing an algorithm’s ability to capture latent causal structure and

developed a variety of simulated data inspired by cellular signaling pathways that might be

useful to others interested in discovering latent causal relationships. In addition, we created
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a causal ground truth DAG with simple patterns in the hidden nodes to enable quick visual

verification of these patterns. Related to this, we developed a simple algorithm to visualize

the weights of a small neural network, or part of a larger neural network, using the patterns

that are known to be present in simulated data. This visualization algorithm allowed us to

quickly verify whether or not a neural network-based algorithm was capturing any of the

ground truth causal structure in its weights. This visualization technique inspired a method

for calculating precision and recall of the causal structure learned by any algorithm, especially

neural network-based algorithms.

7.1 Future Directions

The weights of a RINN, after training on TCGA data, are not quite ready to be directly

interpreted as causal relationships, but with some modifications to our algorithm, future

versions could yield promising causal graphical models. Listed below are future research

directions for the RINN algorithm that address many of the limitations discussed in Sections

5.5 and 6.5.

1. Incorporating differential regularization of the weights.

2. Using constrained and parallelized versions of evolutionary algorithms to optimize the

weights and avoid the need to threshold weights.

3. Training an autoencoder with a bottleneck layer to encourage hidden nodes to more easily

represent biological entities and then using these weights to initialize a RINN.

4. Directly build a neural network causal graph using neuroevolution.

We describe each of these research directions in more detail here. Despite large amounts

of regularization and at times over-regularizing the RINN, the causal graphs learned by the

RINN were still somewhat too dense. By using regularization with the RINN, our goal was to

find an ideal balance where we weren’t overfitting or underfitting the data. Over-regularizing

leads to underfitting the data and under-regularizing leads to overfitting the data—both of

which lead to poor quality causal graphs with the RINN. The current version of the RINN
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only has a single regularization rate in the objective function applied to the L1 regularization

term. In this work, we think we found an ideal balance between sparsity and prediction

error with our Euclidean distance measure. However, the models returned were still too

dense, suggesting that the data is inadequate for the task, the true model is actually quite

dense, or that a more flexible regularization regime is needed. To explore this, we plan to

incorporate differential regularization into the RINN model. One way to accomplish this is

to have different regularization rates for the weights connecting input variables to hidden

variables, and the weights connecting hidden variables to hidden variables or hidden variables

to output variables. This would increase the amount of model selection needed, but may

generate a better causal graph by allowing for a more biologically correct model. SGAs act on

single proteins or at one location in a cellular signalling pathway. Differential regularization

as described above may allow the RINN to learn a higher regularization rate on the input

variable to hidden variable weights, to enforce this known biological constraint. It would also

be interesting to explore regularization techniques that place a hard constraint on each SGA,

by only allowing each SGA to have a single nonzero weight.

In Chapter 5, we showed that a RINN optimized with a constrained evolutionary strategy

(ES-C) performed moderately well at recovering latent causal structure when compared to a

conventional RINN and DNN. ES-C performed well on simulated data despite being trained

on significantly less data and only performing somewhat limited model selection as compared

to the other strategies (ES-C has more hyperparameters to tune than RINN due to the

evolutionary strategies optimization). ES-C has a great advantage relative to the other

strategies when it comes to interpretation of the learned model. Because ES-C limits the

possible values of the weights, it is much easier to determine a threshold for weight cutoffs

that are meaningful. Also, the causal graphs that are generated by a RINN optimized with

ES-C would be less dense than a RINN trained with gradient descent, which simplifies the

interpretability of the causal model.

The benefits of using ES-C are quite significant for the tasks discussed in this dissertation.

The long running times of evolutionary algorithms (and specifically ES-C) can be greatly

reduced through parallelization, as the population of individuals can be evolved mostly

independently of other individuals. We suspect that a parallelized version of a RINN
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optimized with ES-C and trained on the full dataset with as much model selection (or more)

than the other strategies would lead to results that are superior to what has been shown here.

Also, we have only experimented with a couple different sets of legal weight values for ES-C.

A more comprehensive search through this space is warranted. We hope to find a python

evolutionary algorithm library that allows for simple parallelization for ES-C or develop the

parallelization ourselves in-house. We think that using parallelized constrained evolutionary

strategies to optimize RINN is a very promising direction for further research.

As previously mentioned in this dissertation (Section 2.2) and shown in Chapter 3, a DBN

(or autoencoder) can learn hidden layer representations that are biologically meaningful, and

in some instances can be trained so that some of the hidden nodes represent transcription

factors [Chen et al., 2016]. Taking inspiration from this and from the hypothesis described

in Figure 1, we plan to combine a trained autoencoder with the RINN. Training a DBN or

other type of autoencoder (e.g., variational autoencoder) on TCGA gene expression data in a

similar manner as described in Chapter 3 would encourage the DBN to learn hidden layer

representations that we hypothesize would represent components of signaling pathways. Once

this DBN was completely trained after extensive model selection, we would then use the

"decoder" part of the DBN (see Section 4.5.2) to initialize a RINN of the same architecture,

but would then switch to a supervised task using genomic alterations to predict differentially

expressed genes.

We would need to learn a new matrix of weights from the genomic alterations to the

first hidden layer (i.e., the smallest hidden layer), as well as the weights between redundant

inputs and hidden layers. But we could use different learning rates for the different subsets

of weights in the DBN plus RINN model, possibly using a lower learning rate for the weights

learned by the DBN and using a higher learning rate for the new sets of weights added by the

RINN. We hypothesize that this setup would encourage the hidden nodes to represent parts

of a cellular signaling system [Chen et al., 2015, Chen et al., 2016, Young et al., 2017, Lu

et al., 2018, Tao et al., 2020], while the RINN components of the model would encourage

the learning of causal relationships between biological entities in the hidden layers. Overall,

this idea can be described as using an autoencoder with a bottleneck layer to initialize a

supervised RINN, and we think this approach may yield more accurate causal graphs than
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shown here with a simpler version of the RINN.

One of the most interesting directions for further development of the RINN is to combine

the RINN with neuroevolution, especially the Neuroevolution of Augmenting Topologies

(NEAT) algorithm [Stanley and Miikkulainen, 2002]. Neuroevolution encompasses the many

ways to evolve a neural network—including using evolutionary algorithms to optimize the

weights of the network (evolutionary strategies) or using evolutionary algorithms to learn

the topology/architecture of the network (e.g., NEAT algorithm). Considering their massive

computation requirements, evolutionary algorithms have been historically limited to low

dimensional spaces. However, with the cost of CPUs decreasing and the availability of CPUs

increasing, evolutionary algorithms are starting to become competitive, and sometimes even

outperform, deep learning algorithms in higher dimensional spaces [Wilson et al., 2018, Such

et al., 2017, Salimans et al., 2017, Conti et al., 2018, Miikkulainen et al., 2019]. This is

leading to an increase in interest in evolutionary algorithms and neuroevolution from the

deep learning community.

NEAT is an algorithm the evolves the topology of a neural network using evolutionary

computation [Stanley and Miikkulainen, 2002]. It starts with a population of very simple

topologies and, through mutation operators, adds complexity to the topologies (edges,

nodes, and eventually hidden layers) as the algorithm progresses. The topologies with the

highest fitness (based on some measure of fitness, often the objective function in deep learning

applications) reproduce (mating and recombination of topologies) to create new progeny. This

is one of the simplest versions of the NEAT algorithm. There are many other neuroevolution

techniques to add to the algorithm described above, such as speciation or novelty search

[Conti et al., 2018].

With NEAT, one starts with input and output variables, then using evolutionary algo-

rithms, starts to fill in hidden nodes, bias nodes, and edges between all nodes. Also, activation

functions for each hidden node can be evolved. This is a flexible method to generate the

latent structure between inputs and outputs using neural network-based calculations. NEAT

may even be able to add cycles into the topology. To optimize the parameters of the fit-

ness function (i.e., objective function) in neuroevolution applications, backpropagation and

stochastic gradient descent can be used as in deep learning, or evolutionary strategies can
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be used to search for the best set of weights for the network. Evolutionary strategies allow

extreme flexibility when choosing a fitness function, as the function need not be differentiable.

Therefore, one can choose a fitness function that is completely procedural as defined by some

algorithm.

We suggest that using NEAT to gradually build up a RINN-like architecture using

our simulated data first would be a very interesting future direction for the RINN model,

and possibly a better method for learning a causal graph than the RINN trained in this

dissertation. The RINN could then be optimized using stochastic gradient descent or

constrained evolutionary strategies. After training the NEAT algorithm on the simulated

data, we would then interpret the architecture and weights learned by NEAT as representing

causal relationships and calculate precision and recall as before. Using NEAT allows us to

directly build and evolve the causal structure within a neural network rather than using

fully-connected hidden layers and waiting for L1 regularization to prune unnecessary weights.

We are hopeful that modifying the RINN algorithm as described above will allow the

RINN to eventually be used to model cancer cellular signaling pathways at the level of the

individual patient, and look forward to the great impact that this could have on novel cancer

therapies.
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Appendix

Unsupervised Deep Learning Applied to Cancer Data
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Background
Understanding the cellular signal transduction pathways
that drive cells to become cancerous is fundamental to
developing personalized cancer therapies that decrease
the morbidity and mortality of cancer. Most research
studying cellular signaling pathways has concentrated on
a handful of signaling proteins in a hypothesis-driven
framework. This study uses a deep learning approach to
study cancer signaling systems in a large-scale data-
driven fashion, with an overall goal of understanding the
cellular signaling pathways that drive or cause cancer.
Towards this goal, we used unsupervised deep learning
to find meaningful structure and relationships in cancer
gene expression data.
Deep learning models (DLMs) originated from artifi-

cial neural networks (ANN) and learn alternate repre-
sentations of the original input data. A DLM is
composed of multiple layers of latent variables (hidden
nodes or units, in the ANN jargon) [1–5], which learn
to represent the complex statistical structures embedded
in the data, such that different hidden layers capture
statistical structure of different degrees of complexity. In
other words, DLMs learn novel representations of the
statistical structure of the input data through hierarch-
ical decomposition. For example, if one trains a convolu-
tional neural network (a type of DLM) with three hidden
layers on a dataset of face images (in order to learn how
to recognize specific people in images), the units in these
three layers capture abstract representations at different
levels. The model may use the 1st hidden layer units

(the layer that is closest to input data) of the trained net-
work to capture edges of different orientations present
in the original image [6, 7]. The 2nd hidden layer units
may learn representations of different parts of a face [7]
(e.g., nose, mouth, eye, ear), by combining edges of dif-
ferent orientations (represented by the units in the 1st
hidden layer). Finally, units in the 3rd hidden layer may
represent generic faces [4, 7], which can be thought of,
or represented as, combinations of parts of a face. In this
way, deep learning finds hierarchical structure in data by
finding alternate representations (often of lower dimen-
sion) that best encode the information in the original
image. Once a DLM is trained, it can be used to detect a
specific person in an image or, depending on the type of
model, it can be used to generate new face images that
mimic the distribution of the input images. In this study,
we aim to use DLMs to find the hidden layer representa-
tions of cancer gene expression data that likely represent
the state of the signaling systems in cancer cells.
More specifically, we hypothesize that the activation

states of signaling pathways regulating transcriptomic
activities in cancer cells can be learned using DLMs
(Fig. 1). Cancer is a multi-process disease, in that a can-
cer cell usually has multiple aberrant pathways—each
pathway consists of a set of hierarchically organized
signaling molecules (Fig. 1a)—driving differentially
expressed genes (DEGs) that are involved in multiple
oncogenic processes. A transcriptomic profile of a
tumor is a convoluted mixture of expressed genes regu-
lated by active pathways in tumor cells, but the

a b c

Fig. 1 Inferring the activation states of signaling pathways with deep learning. (a) Example EGFR signaling cascade. (b) A microarray representing
gene expression values. (c) Representation of a DBN (fine-tuning encoder network only) trained on gene expression values. Hypothesized
biological entities whose activation states may be represented by units in the 1st, 2nd, and 3rd hidden layers are displayed on the right
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information related to the hierarchical organization of
pathways is “collapsed” and distinct signals from differ-
ent pathways become inseparable (Fig. 1b). Discovering
aberrant signals in cancer cells requires de-convolution
(decomposition) of such signals, and DLMs are particu-
larly well suited for such a task due to their ability to
perform hierarchical decomposition. For example, the
hierarchical structure of a signaling pathway (Fig. 1a)
could be simulated by the hierarchical structure in a
DLM trained on gene expression data (Fig. 1c). Since
transcription factor (TF) activation dictates the finest
covariance structure of gene expression, which is at the
bottom of the signaling pathway in Fig. 1a, the 1st-
hidden layer in our DLM (Fig. 1c) may capture the sig-
nals encoded by TFs. And just as there are different
pathways being activated that regulate transcription fac-
tor activation in the middle of Fig. 1a, the 2nd hidden
layer of our DLM may represent the activation states of
different biological pathways. Continuing with this
analogy, units in the 3rd hidden layer could represent
biological processes (e.g., inflammation or metastasis) or
combinations of pathways. In this way, we aim to learn
the hierarchical representation of the signals underlying
cancer gene expression data with deep learning.
Recently, we demonstrated that DLMs could be

used to learn and represent the cellular signaling sys-
tem [8, 9]. In one study, we showed that a DLM,
more specifically a multi-modal deep belief network
(DBN) and a semi-restricted multi-modal DBN can
learn representations of the cellular signaling system
shared by rat and human cells [9]. In the same study,
we also demonstrated that a trans-species DLM could
accurately predict human cell responses to a set of
unknown stimuli based on data from rat cells treated
with the same stimuli. In a more recent study, we
showed that DLMs can learn representations of the
yeast transcriptomic system, and that the hidden units
of these DLMs can be mapped to real biological en-
tities, such as transcription factors and well-known
yeast signaling pathways [8]. Another group, Liang et
al., integrated multiple types of genomic cancer data
with a multi-modal DLM trained to regenerate the
observed data (the entire omics profile), but their goal
was not to infer aberrant signals, i.e., the differences
in signaling between normal and cancer cells [10], as
we did in this study.
In this study, we investigated the optimal architectures

of DBN-based models to learn accurate representations
of the signals underlying cancer transcriptomic changes
across 17 cancer types. We show that a DLM can pro-
vide novel abstract representations, enabling us to reveal
molecular subtypes of cancers, e.g., subtypes of glioblast-
oma multiforme (GBM), that exhibit significant differ-
ences in outcomes. Our analysis revealed different

potential disease mechanisms (major driver genes)
underlying these molecular subtypes.

Methods
Data
The data used in this study were obtained from The
Cancer Genome Atlas (TCGA) Data Portal [11], and in-
cluded transcriptomic data for 17 different cancer types
and non-cancer organ-specific tissue controls, all down-
loaded from the TCGA Data Portal (Table 1). The total
size of the dataset was 7528 samples by 15,404 genes.
We discretized the expression value of a gene in a

tumor to 1 or 0 based on whether or not the expression
value significantly deviated from the expression observed
in normal tissue. To achieve this, we fit the expression
values of each gene in each cancer type to a Gaussian
distribution based on the non-cancer control samples
only from the same tissue of origin. We then set the ex-
pression status of a gene in a tumor to 1 (aberrant) if it
was outside the 0.001 percentile of distribution of con-
trol samples (on either side), otherwise we set it to 0.
For genes with low expression variance in normal cells,
i.e., standard deviation of expression smaller than 0.2,
we used 3-fold change to determine whether the genes
were differentially expressed in tumor cells. Through
this discretization process, we identified genes that were
potentially relevant to the cancer process (aberrantly
expressed in cancer only) rather than just using the
whole gene expression profile of a cell, which includes
both physiological and pathological signals. The gene

Table 1 Number of samples for each cancer type in our dataset

Tissue Type Number of Samples

Bladder urothelial carcinoma (BLCA) 403

Breast invasive carcinoma (BRCA) 1073

Esophageal carcinoma (ESCA) 183

Colon adenocarcinoma (COAD) 283

Glioblastoma multiforme (GBM) 481

Head and neck squamous cell carcinoma (HNSC) 508

Kidney renal clear cell carcinoma (KIRC) 525

Kidney renal papillary cell carcinoma (KIRP) 288

Liver hepatocellular carcinoma (LIHC) 364

Lung adenocarcinoma (LUAD) 509

Lung squamous cell carcinoma (LUSC) 498

Ovarian serous cystadenocarcinoma (OV) 559

Prostate adenocarcinoma (PRAD) 491

Rectum adenocarcinoma (READ) 93

Stomach adenocarcinoma (STAD) 236

Thyroid carcinoma (THCA) 499

Uterine corpus endometrial carcinoma (UCEC) 535

Total 7528
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expression changes due to copy number alteration were
also masked; as such changes are not regulated by the
cellular signaling system, but are due to genomic alter-
ations. In each tumor, we identified the genes that had
expression changes and the genes that had copy number
alterations, i.e., GISTIC2.0 [12] score equal to +1
(amplification) and GISTIC2.0 score equal to −1
(deletion). When we discovered gene expression up-
regulation co-occurring with a corresponding copy num-
ber amplification, or a gene expression down-regulation
co-occurring with a corresponding copy number
deletion, we masked the gene expression change—as this
co-occurrence suggested that the expression changes
were caused by the DNA copy number alteration.

Preprocessing
Feature selection was performed to remove genes with
low Bernoulli variance because of their general lack of
information. We created datasets with different numbers
of features by using different variance thresholds for
feature selection. We identified genes that had an
expression status of 1 (or 0) in 90% (Bernoulli success
probability) of tumors and removed them from further
analysis due to their low variance. This resulted in a
dataset with 7160 features. We repeated this process
using a Bernoulli success probability of 0.95 to create a
dataset with 9476 features. We also removed any genes

that were highly correlated with a specific cancer type or
tissue type, by removing all genes with a Pearson correl-
ation coefficient, with respect to cancer or tissue type
labels, greater than 0.85.

Model specification
The specific deep learning strategy used for this study is
called a DBN (layer-by-layer pre-training followed by
“up-down” fine-tuning) [1, 13–15]. Although it may be
clearer and more explicit to refer to the strategy used in
this study as a stacked restricted Boltzmann machines–
deep autoencoder (SRBM–DA), we will use the more
traditional DBN terminology [1, 13–15] for the sake of
being consistent with the literature. Learning of a DBN
consists of two major phases: a pre-training phase and a
fine-tuning phase (Fig. 2).
In the pre-training phase, the hierarchical DBN model

is treated as multiple restricted Boltzmann machines
(RBMs) stacked on top of each other, such that the top
layer of an RBM is used as the bottom layer of another
RBM above it. Learning of the parameters (often referred
to as weights W) of the pre-training phase, starts with
the learning of the weights of each of the stacked RBMs
in a layer-by-layer fashion.
In more detail, the pre-training phase is a deep genera-

tive model consisting of a stack of RBMs. An RBM is a
2-layered undirected probabilistic network that seeks to

Fig. 2 Deep belief network (DBN) with two phases: pre-training and fine-tuning. Each RBM in the pre-training phase iteratively learns lower
dimensional representations of the input (gene expression microarray) one RBM at a time. These lower dimensional representations are then used
as input to the next RBM. The pre-training phase learns a set of weights (W = w1, w2, and w3) that is used to initialize the fine-tuning phase. The
fine-tuning phase optimizes the weights by minimizing the cross-entropy error
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learn a latent representation (often of lower dimension)
of the input data by optimizing the instantiation of the
latent variables (latent representation) and the weights
of the network in order to best allow the latent represen-
tation to regenerate the input data [14]. The objective of
an RBM is to find the parameters θ (including a weight
matrix W and offset vectors (biases) b, c) that maximize
the probability of the input data (visible layer, v) [1].

argmax
θ

P vð Þ ¼
X

h

P v; hð Þ ð1Þ

P v; hð Þ ¼ 1
Z
e−E v;hð Þ ð2Þ

E v; hð Þ ¼ −hTWv−cTv−bTh ð3Þ
The joint probability P(v, h) of the hidden h and visible

v layers is a function of the energy function E(.) [1]. Z is
a normalization factor or partition function.
In the fine-tuning phase, the DBN model is “unfolded”

(leading to a network often referred to as a deep autoen-
coder, DA) in order to learn to reconstruct the input
data using the weights learned during the pre-training
phase. The fine-tuning phase performs a global
optimization of all weights using stochastic gradient des-
cent and the backpropagation algorithm, with the goal
of minimizing the difference between the distribution of
the data and the distribution formed by the model’s re-
constructions of the data (cross-entropy error) [13, 14].
Deep networks can be somewhat difficult to train [16,
17]. Using the weights learned during pre-training to
initialize a DA, as opposed to random initialization,
seems to improve the generalization of the completely
trained DBN by minimizing the variance of all possible
solutions to the DBN [13, 18].
In more detail, a DA is a multi-layered network com-

posed of an encoder and decoder network [14]. The
encoder network learns multiple encodings (hidden layer
representations) of the input by propagating the input
forward through the network (as one would in a neural
network using a linear transformation and a nonlinear-
ity/squashing function), learning alternate representa-
tions of the input at each hidden layer [1, 14]. Once the
final hidden layer is computed, the decoder network
propagates in reverse [1, 14]. When propagating in re-
verse, the DA uses the final hidden layer of the network
to attempt to regenerate the original input data. The
output of fine-tuning (DA) is a reconstruction of the in-
put data based on decoder propagation through the net-
work. Cross-entropy error can be used to determine
how close these reconstructions are to the original input,
and the weights can be updated in the appropriate direc-
tion (trained using backpropagation of error derivatives
and stochastic gradient descent) [1, 14] in order to

minimize the cross-entropy error. Reconstruction error
(mean squared error between the data and the reconstruc-
tions of the data) is often used to monitor learning pro-
gress. More detailed descriptions of training DBNs can be
found in [8, 14, 15].
We implemented a DBN [14] using the Python pro-

gramming language and the Theano library (a symbolic
numerical computation python library) [19]. This
implementation is compatible with Mac OS or Linux
computing environments and is capable of utilizing
GPUs if available.

Model selection
In order to investigate the impact of the hyperpara-
meters (network architecture, learning rate, training dur-
ation) on modeling the cancer transcriptomic data, we
performed a series of model selection experiments.
Model selection was performed using a modified 8-fold
cross-validation. In order to speed up our model selec-
tion (allowing us to explore more sets of hyperpara-
meters), while still training on a large percentage of our
dataset (considering our dataset had a somewhat small
number of samples relative to the number of features),
we only performed four folds of an 8-fold split of the
data. Our strategies for deep learning model selection
were guided by articles from Bengio [20] and Hinton
[21]. A combined random and grid search approach [20]
were used with a goal of finding the set of hyperpara-
meters that minimized the average test set reconstruc-
tion error and prevented overfitting, while also
significantly reducing the dimensionality of the data (i.e.,
final (top) hidden layer with around 100 units). Please
see the Results and discussion section for more informa-
tion on model selection.

Consensus clustering
After model selection, we trained the deep learning
model and then computed and collected the top hidden
layer (the most abstract) representations for each sam-
ple. We performed consensus clustering on the top hid-
den layer representations (i.e., 3rd hidden layer
representations, meaning the final 100–200 dimensional
projections of the input data) of each tumor as calcu-
lated by our trained DBN models; as well as, on the
high-dimensional input data alone. Consensus clustering
was performed using the ‘ConsensusClusterPlus’ [22]
package from the R statistical programming language
[23], using agglomerative hierarchical clustering with
Euclidean distance and average linkage. Consensus
clustering performs multiple trials (in this case 100) of
clustering based on randomly sampling a subset of the
data (in this case 80%). Each sample is given a final
cluster assignment at the end of each trial. A consensus
matrix is created after all trials have completed. A
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consensus value is a number between 1 and 0 that repre-
sents how often two samples did or did not cluster
together, respectively.
The output of the consensus clustering was a dendro-

gram and an associated consensus matrix heatmap
(dimensions = number of samples by number of
samples), representing how often samples clustered to-
gether in repeated clustering trials. The DBN models
with the lowest percentage of ambiguous clustering
(PAC) [24] values and most visually informative heat-
maps were selected for further analysis. The PAC repre-
sents the proportion of data points in the consensus
matrix with intermediate (between 0.8 and 0.2) consen-
sus values, meaning that the two samples clustered
together in some runs of clustering, but not in others.

Kaplan-Meier survival analysis
A Kaplan-Meier plot was created using the clustering as-
signments from the consensus of consensus clustering
for GBM samples. Kaplan-Meier plots were created
using the ‘survival’ package in the R statistical comput-
ing language [23]. P-values were calculated using the
log-rank test.

Correlation between genes and clusters
Correlation studies were performed to find the differen-
tially expressed genes or mutations that correlated with
each GBM cluster. The Pearson correlation between
each differentially expressed gene (input features) and
GBM cluster was measured using the ‘cor’ function in R.
The Pearson correlation between each mutation (TCGA
GBM somatic mutation data version “2015-01-27”) and
GBM cluster was also measured using the ‘cor’ function
in R. Functions of example genes were obtained from
www.genecards.org and the Gene Ontology Consortium
(http://geneontology.org/).

Results and discussion
Model selection
This study concentrated on finding the network archi-
tecture of a DBN model that was capable of learning
“optimal” representations of cancer expression data,
which is a model selection task. We performed a series
of model selection experiments to find the best set of
hyperparameters (e.g., number of hidden layers, number
of units in each hidden layer, learning rates, training
epochs, batch size, etc.). Approximately 1500 different
sets of hyperparameters, including models with up to
five hidden layers, were evaluated by cross-validation,
representing approximately 1.5 months of computation
time on a single Tesla k40 GPU.
We started model selection by performing a random

search over all hyperparameters, in which hyperpara-
meters were randomly sampled from a range of values.

We performed this search subject to some constraints,
such as decreasing hidden layer size (e.g., hidden layer 1
always larger than hidden layer 2, etc.) and pre-defined
maximum unit thresholds for hidden layer sizes. Based
on these results, we selected a partial set of hyperpara-
meters (including pre-training and fine-tuning learning
rates, batch size, and pre-training and fine-tuning epochs
of training duration) that appeared to perform well over
a broad range of hidden layer architectures. Using this
partial set of hyperparameters, we performed an exten-
sive grid search over hidden layer architectures (from 1
to 5 hidden layers with varying number of hidden units
in each layer) and evaluated the resulting reconstruction
errors (Fig. 3). For all experiments in Fig. 3, only the
number of hidden layers and number of units in each
hidden layer varied. The other hyperparameters (i.e.,
learning rates, number of pre-training and training
epochs, and batch size) were fixed.
Figure 3a shows how reconstruction error changes

with respect to the size of the 1st hidden layer and train-
ing epochs for networks with only a single hidden layer,
i.e., a single RBM that is then fine-tuned. As expected,
the reconstruction error for a single hidden layer net-
work decreases as the size of the hidden layer increases,
and does not provide much insight into choosing the
size of the 1st hidden layer. A single hidden layer DBN
cannot learn the hierarchical relationships that we are
interested in discovering. Therefore, we explored DBNs
with multiple hidden layers.
Figure 3b shows the model selection results for differ-

ent two hidden layer architectures, where the number of
hidden units in the 1st hidden layer range from 100 to
3500 (across x-axis), and the number of units in the 2nd
hidden layer range from 50 to 3300 (indicated by color
code). Each circle in this graph (and Fig. 3c, d) repre-
sents the reconstruction error for a network architec-
ture. Figure 3b shows that, with a small number of
hidden units (50 – 100 units) in the top (2nd) hidden
layer, increasing the size of the 1st hidden layer beyond
1100 does not lead to a significant reduction in recon-
struction error. Indeed, as the size of the 1st hidden
layer increases beyond 1100 units, the reconstruction er-
rors remain flat and show a tendency to increase slightly.
In contrast, when the size of 2nd (top) hidden layer is
relatively large (> 500), the reconstruction errors con-
tinue to decrease as the size of the 1st hidden layer
increases.
We hypothesized that, since a DBN is an encoding

machine, an optimal model should be able to encode the
input data and pass it through an information bottle-
neck—a model with a very small number of hidden units
in the top layer of the network. Such a model would re-
quire each of the layers below this bottleneck to capture
as much information as possible in order to efficiently
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pass the bottleneck (i.e., maintaining a low reconstruc-
tion error). As such, one can search for an optimal
architecture by starting with a very small number of hid-
den units in the top layer and selecting the optimal
number of hidden units layer-by-layer starting from the
1st hidden layer (closest to input data).
Figure 3c shows how reconstruction error changes as

the sizes of the 1st, 2nd, and 3rd hidden layers change
(units in 2nd hidden layer ranged from 100 to 2300).
What really stands out in this graph is that overfitting
is observed when the 1st hidden layer is greater than
1300 and the number of hidden units in the top hidden
layer is set to 10 (overfitting indicated by a blue rect-
angle in the figure). Figure 3d shows how reconstruc-
tion error for four-hidden-layer DBNs changes as the
sizes of the 1st, 2nd, 3rd, and 4th hidden layers change
(2nd hidden layer ranged from 100 to 2100 and 3rd
hidden layer from 50 to 500). Similar to Fig. 3c, d also
shows overfitting when the top hidden layer size is set
to 10 and the 1st hidden layer is large. We also exam-
ined five-hidden-layer networks, which showed results
similar to Fig. 3d (results not shown).

In total, these results suggest that the DBN begins to
capture noise in the data when the 1st hidden layer size
is greater than 1300 units. Accordingly, a 1st hidden
layer size around 1300 units should provide the optimal
encoding of the data when the number of hidden units
in the top hidden layer (the information bottleneck) is
small. We hypothesized that the 1st hidden layer cap-
tures the signals encoded by TFs in human cells, and
our results suggest that 1300 hidden units most effect-
ively captures the covariance structure (hypothesized to
be signals of TFs) within the data at the level of abstrac-
tion of the 1st hidden layer. Interestingly, our hypothesis
agrees surprisingly well with the current consensus on
the number of human TFs (~1400) estimated through
analyzing the human genome [25]. These results also
correlate with Chen et al. [8], who found nearly a one-
to-one mapping between hidden units in the first hidden
layer and yeast transcription factors.
As previously mentioned, we searched for optimal hid-

den layer sizes by finding ‘elbows’ in the plot of recon-
struction error vs. hidden layer size, where the
reconstruction error decreases less rapidly (as can be

a b

c d

Fig. 3 Model selection cross-validation reconstruction error. For all plots in this figure, the y-axes represent reconstruction error. (a) Reconstruction error
for multiple sizes of a one hidden layer network. The size of the 1st hidden layer increases by 200 units for each consecutive curve. (b) Reconstruction
error for two hidden layer networks. (c) Reconstruction error for three hidden layer networks. The blue rectangle represents network architectures that
overfit the data. (d) Reconstruction error for four hidden layer networks
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seen in Fig. 3b, c, and d). We then set the top hidden
layer size to be 100 – 200 units to provide a relatively
rich representation, while avoiding unnecessary com-
plexity. We found that DBNs with four hidden layers
(Fig. 3d) or 5-hidden layer networks (not shown) didn’t
offer much, if any, improvement over a 3-layer network.
We selected four 3-hidden-layer network architectures
([1100-500-100], [1300-700-100], [1300-700-150],
[1400-1000-200]) with different combinations of hidden
units in the “optimal” range. Next, we performed a ran-
dom search over the learning rates for the four network
architectures selected above and evaluated the recon-
struction errors. Finally, we decided to use six different
sets of hyperparameters (including network architec-
ture) to test their ability to capture statistical structures
in cancer gene expression data (Table 2).

Clustering tumors based on DBN-derived representations
The purpose of training a DBN model with a large num-
ber of tumors of multiple cancer types was to use a large
amount of data to enhance our learning of statistical
structures—to potentially reveal different disease mecha-
nisms. Based on the assumption that the learned repre-
sentations reflect the state of cellular signaling systems,
it would be interesting to learn if these representations
can be used to reveal cancer subtypes that share a com-
mon pattern of pathway perturbation. To this end, we
represented each tumor using the states of the hidden
units in the top (3rd) layer and performed consensus
clustering. Figure 4 shows that the 3rd hidden layer rep-
resentations from a trained DBN (Fig. 4a) clustered dras-
tically better than the high-dimension raw gene
expression profiles (Fig. 4c, d). When tumors were
represented by the 9476 input gene features, consensus
clustering failed to find any meaningful clusters (i.e.,
multiple clusters consisting of a large number of
samples).
While it is tempting to use a clustering approach to

find common cancer subtypes across multiple cancer
types, this approach is complicated by the fact that
certain pathways exhibit tissue-specific expression, and

clustering will be dominated by these tissue-specific fea-
tures. This will eventually lead to the clustering of all
tumor samples according to tissue type, as demonstrated
in the study by Hoadley et al. [26]. Indeed, we also found
that virtually all of our tumor samples clustered accord-
ing to tissue type (Fig. 4a). For example, the top right
cluster in the heatmap in Fig. 4a (cluster 4, colored light
blue) consisted of all lung tissue samples (lung adenocar-
cinoma and lung squamous cell carcinoma) except for
two outliers.
This tissue-specific clustering occurred despite our

best attempts to remove all tissue-specific genes by
representing a tumor using only genes with extremely
high variance (Bernoulli success probability, 0.70) to
train DBNs, and then perform consensus clustering
(results not shown). Using these high variance genes
reduced our number of features (genes) to 2674, with
each of these genes being differentially expressed in
more than 2250 tumor samples. The genes in this 2674
set cannot be tissue-specific because most cancer/tissue
types in our data set have only ~500 tumor samples or
less (except breast cancer and lung tissue, which have
~1000 tumors). These results indicate that there are
tissue-specific pathway perturbation patterns that lead to
a tissue-specific covariance structure of DEGs, which
were captured by the DBN, and in turn recognized by
consensus clustering. These results illustrate the limita-
tions of using gene-expression-related features (e.g., gene
expression, copy number alteration, and DNA methyla-
tion) to study disease mechanisms shared by tumors
across different tissue types [26]. Therefore, different
approaches to studying disease mechanisms should be
explored.

Within tissue type clustering revealed clinically relevant
subtypes
Although it is difficult to search for common disease
mechanisms across multiple cancer types due to the
aforementioned limitations, we hypothesized that, within
a given tissue type, clustering using DBN-learned repre-
sentations may reveal distinct disease mechanisms. Since
the survival data for glioblastoma multiforme (GBM) pa-
tients from TCGA was relatively more complete than
other cancer types in our data set (allowing us to per-
form more robust survival analysis), we studied GBM in
more detail. Previously, Verhaak et al. [27] selected a set
of genes as features and performed clustering of GBM
tumors from TCGA based on their expression values.
However, manually selecting features may introduce
bias, and therefore we set out to investigate if an un-
biased representation of the data would lead to different
results. We first used the raw input gene expression data
as features and performed consensus clustering, but
failed to find any clusters (data not shown). These

Table 2 Model selection results. Six different hyperparameter
sets for final training of DBN

Set ID Hidden Layer Sizes Learning Rates Epochs Input
Size1st 2nd 3rd pretrain train pretrain train

1 1100 500 100 7.75E-05 2.41E-03 14 101 9476

2 1300 700 100 7.75E-05 2.41E-03 14 91 9476

3 1300 700 150 7.75E-05 2.41E-03 14 88 9476

4 1300 700 150 7.75E-05 2.41E-03 14 62 9476

5 1400 1000 200 3.03E-03 3.26E-03 14 40 7160

6 1300 700 150 7.75E-05 2.41E-03 14 97 7160
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results underscore the motivation for the feature-
selection approach adopted by Verhaak et al. [27].
We then set out to investigate whether an unbiased

representation learned by a DBN would reveal subtypes
(clusters) of GBM. We trained six DBN models with dif-
ferent architectures and hyperparameters (see Table 2),
performed consensus clustering using the results from
each model (top layer representations), and we pooled
the results to build a ‘consensus of consensus clustering’.
The heatmap in Fig. 5a shows the general agreement
across GBM cluster assignments as derived from the six

DBN models. This is a type of ensemble learning where
each of the six models gets to ‘vote’ for which samples
should be clustered together. Using PAC scores (see
Methods) as a selection criterion, we identified six major
clusters (Fig. 5a). We explored this six major cluster sep-
aration further to see if the learned clusters were clinic-
ally relevant.
Figure 5b shows the Kaplan-Meier plot for the samples

in the six major GBM clusters (Fig. 5a). There is a differ-
ence in survival between the patient clusters and in par-
ticular the red curve/cluster seems to have better

a

b

c

d

Fig. 4 Consensus clustering of all samples. (a) Consensus clustering of the 3rd hidden layer representations from our DBN model (model 5 in Table 2)
captured tissue-specific clustering. The cancer types within each cluster are shown on top. (b) Composition of each of the clusters learned in part a,
including the number of samples of each cancer type in each cluster. (c) Consensus clustering results when simply using the high-dimensional (9476
features/genes) raw data without any dimensionality reduction. (d) Consensus clustering results for high-dimensional (7160 features/genes) raw data
without any dimensionality reduction. All heatmaps evaluated at k = 14 (number of clusters). Dark blue corresponds to samples that always cluster
together (consensus value = 1). White corresponds to samples that never cluster together (consensus value = 0). Lighter shades of blue are intermediate
between 1 and 0

The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):381 Page 13 of 91



survival or prognosis relative to the other clusters. The
p-value for Kaplan-Meier plot using the log-rank test
was p = 0.00197.
GBM is a highly aggressive malignant brain tumor.

Previous molecular analysis of GBM tissue samples by
Verhaak et al. identified four molecular subtypes: mes-
enchymal, proneural, neural, and classical [27]. The
analysis of the four subtypes identified by Verhaak et al.
did not reveal significant differences in survival
between the four clusters, but the tumors did exhibit
different responses to treatments. More recently,
Brennan et al. further divided tumors within the

proneural subtype into G-C island methylation pheno-
type (G-CIMP) and non G-CIMP subtypes [28] based
on DNA methylation data. Here, our DBN-derived rep-
resentations separated GBM tumors into six clusters
(Fig. 5a), and our subtyping revealed significant differ-
ences in patient survival (Fig. 5b), indicating that our
novel representations provide more information than
using individual gene expression values as features. We
compared our subtyping (learned using deep learning
and consensus clustering) with the known subtyping of
our TCGA GBM samples (Fig. 6) as published by
Brennan et al. [28].

a b

Fig. 5 GBM consensus clustering ensemble results and corresponding Kaplan-Meier plot. (a) Heatmap and dendrogram for GBM consensus of
consensus clustering results for six major clusters (k = 11). Dark green corresponds to samples that always clustered together (consensus value = 1).
White corresponds to samples that never clustered together (consensus value = 0). Lighter shades of green are intermediate between 1 and 0. (b)
Kaplan-Meier plot for six largest clusters in part a. Each GBM cluster is represented by a colored curve in the plot. Top right of figure shows the
number of samples in each cluster

Fig. 6 GBM subtypes in each cluster from Fig. 5b based on molecular subtyping from Brennan et al. [28]
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Figure 6 shows the contents of our six GBM clusters
based on the subtype published by Brennan et al. [28].
Most of our GBM clusters included tumor samples be-
longing to multiple different known subtypes. Exceptions
to this were our black and red clusters (see Fig. 5b for
cluster colors). The black cluster consisted of mostly
mesenchymal subtype. The red cluster (cluster with best
prognosis) in the Kaplan-Meier plot consisted of almost
entirely proneural subtype samples. Interestingly, this
red cluster captured all of the samples with the G-CIMP
phenotype and the majority of the non G-CIMP pro-
neural tumors, but assigned the rest of non G-CIMP tu-
mors to the purple cluster. The G-CIMP phenotype
(samples with hypermethylation at CpG islands) sub-
group of GBM has been shown in previous studies to
have better survival [28–30]. These results indicate that
without utilizing DNA methylation data, DBN learned
representations accurately captured the impact of DNA

methylation on expression—an indication that our novel
representations may reflect disease mechanisms at the
pathway level.

Novel clusters provide information regarding disease
mechanisms
We investigated the six GBM clusters further using cor-
relation analysis to find DEGs and mutations that were
associated with each cluster. Figure 7 (left panel) shows
word clouds for the top 10 DEGs with the largest posi-
tive correlations with each GBM cluster. Each word
cloud of genes is colored according to their correspond-
ing cluster color in the Kaplan-Meier plot. For example,
the red colored genes represent the DEGs or mutations
with the largest correlations with the red cluster (cluster
with the best prognosis). We found genes in each of
these groups with functions relevant to cancer. For
example, CHD7 is highly correlated with the red cluster

Fig. 7 Word clouds for the top 10 DEGs or mutations with the largest correlations with each GBM cluster. Each GBM cluster is represented by a
word cloud of genes, colored according to the corresponding curve in the Kaplan-Meier plot (Fig. 5b). The size and color of each gene in each
word cloud correspond to the relative strength of the correlation for that gene. The largest and darkest words in the word clouds correspond to the
strongest correlations. Each cluster’s word cloud was created independently. Therefore, the differential sizes of each gene (representing correlations) is
only relevant when compared to other genes in that cluster. Gene sizes should not be compared across different clusters
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and is involved in DNA packaging and chromatin bind-
ing. CSPG5 and MPPED2 (highly correlated with the
black cluster) are involved in nervous system develop-
ment. BLM (blue cluster) is involved in DNA binding
and regulation of cell proliferation. VAV3 (light blue
cluster) is involved in GTPase activator activity. SPAG1
(green cluster) is known to be involved in epilepsy and
pancreatic cancer. PLVAP (purple cluster) may function
in microvascular permeability.
Figure 7 (right panel) shows word clouds for the top

10 mutations with the largest positive correlations with
each GBM cluster. This correlation analysis yielded
many well-known mutations involved in cancer and
GBM. IDH1 is the mutation with the strongest correl-
ation with the red cluster, which includes all tumors
belonging to G-CIMP subtype of GBM [28]. This finding
is biologically sensible in that it is known that mutations
in IDH1 lead to significant changes in DNA methylation,
which underlie the G-CIMP. Similarly, NF1 mutations
are strongly associated with the black cluster
(corresponding to the mesenchymal subtype) and are
known to be frequently mutated in the mesenchymal
subtype [27].
The above results reveal connections between genomic

alterations and DEGs specifically associated with each
subtype, which provide information about the disease
mechanisms for each subtype. It is reasonable to assume
that the genomic alterations associated with a cluster
likely perturb pathways underlying the subtype, and hid-
den units in our DBN models could potentially represent
the states of these pathways. Any aberration in these
pathways causes a change in the expression of the DEGs
associate with that cluster. Studying the potential causal
relationships between mutation events and the changing
states of hidden units may provide information about
how mutations affect signaling pathways in cancer cells.

Conclusions
In this study, we showed that an unsupervised DBN can
be used to find meaningful low-dimensional representa-
tions of cancer gene expression data. More specifically,
first, we designed a rigorous model selection scheme,
which enabled us to determine the optimal number of
hidden units in the 1st and 3rd hidden layers of our
model. We hypothesized that the 1st hidden layer likely
represented the TFs utilized by cancer cells and our re-
sults correlate with current knowledge of the number of
TFs. Second, we showed that consensus hierarchical
clustering of GBM tumors using the unbiased represen-
tations (the top (final) hidden layer units) revealed more
robust clustering results than clustering based on the
raw gene expression data. Third, we showed that clinic-
ally relevant information was encoded in the representa-
tions learned by our DBN. This was demonstrated

through the discovery of a subtyping of GBM with dif-
ferential prognosis, which previously was not discovered
by TCGA. Our methods identified a subtype of GBM
enriched with the G-CIMP phenotype without using
DNA methylation data, and our analysis can partially at-
tribute this subtype to the mutation of IDH1. This also
agrees with current knowledge. Further investigation
may reveal disease mechanisms underlying the different
GBM clusters. What role do these genes/mutations have
in GBM? What role do they play in survival?
This study represents a novel application of the deep

learning algorithm developed by Hinton and Salakhutdi-
nov [14] in the cancer bioinformatics domain. To our
knowledge, unsupervised deep learning has not been
used to find hidden structure within cancer gene expres-
sion data for the purposes of providing insight into dis-
ease mechanisms of tumors and patient survival. As for
the possible future enhancement of the model, we con-
jecture that a sparse version of our DBN may more
readily encode cellular pathways. A trained model needs
to be able to represent all cancer pathways in order to fit
the data from the thousands of tumors studied here,
however a given tumor likely only hosts a small number
of aberrant pathways. A sparse DLM can limit the num-
ber of active hidden units in a given layer representing a
tumor, thus it theoretically could perform better. This
will be investigated in future studies.
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