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Abstract 

Judith L. Yanowitz, PhD 
 
 

Investigating Genetic Interactions Between Two Key Meiotic Genes 

xnd-1 and him-17, in C. elegans 

Lingling Chen, MS 
 

University of Pittsburgh, 2020 
 
 

Abstract 
 

Meiotic chromosomes segregation errors in the oocyte are the principal risk factor in 

miscarriage, congenital birth defects and age-related fertility decrease. Aneuploidy from meiotic 

chromosomes segregation is a major underlying cause for human chromosomal abnormalities. 

Previous studies identified several key DNA recombination genes in meiosis and mitosis in both 

human and other species, including but not limited to SPO-11, MRE-11, RAD-50 etc. Mutations 

in these genes associate with cancers in human. Although mutations or variations of some meiotic 

genes in species, such as Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis 

elegans, are discovered to function in DNA recombination, no specific genes were studied in 

human meiotic nondisjunction. 

Public Health Significance: Miscarriages, infertility and trisomy pregnancies are among 

the most common public health issues around the world. The goal of this research is to understand 

potential mechanism of meiotic chromosomal nondisjunction with C. elegans model. This research 

shows that HIM-17 and XND-1 interact in the same pathway when double-strand breaks (DSBs) 

are formed. Further studies should investigate how HIM-17 and XND-1regulate HIM-5 in this 

pathway and other pathways in regulating HIM-5.    
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1.0 Introduction 

Aneuploidy related infertility, miscarriage, congenital birth defects and age-related fertility 

decrease is a widespread medicine problem in the global community. Miscarriage is when an 

embryo and/or fetus is arrested by 20 weeks pregnancy. About half of all cases of miscarriage are 

caused by aneuploidy. Edwards syndrome, also known as Trisomy 18, occurs at an incidence rate 

of 1 in every 5,000 babies in the United States; Patau syndrome, also known as Trisomy 13, occurs 

at an incidence rate of 1 in every 16,000 babies in the United States and Turner syndrome, also 

known as Monosomy X, occurs at an incidence rate of 1 in 5,000 girls. Age-related fertility 

decrease relates to an increased rate of aneuploidy.  A retrospective study on aneuploidy with 

comprehensive screening on 15,169 patients with blastocysts available for biopsy showed 

aneuploidy rates slightly increased from 2% to 6% in women aged 26 to 37 and the aneuploidy 

rates in women aged 42 and 44 are 33% and 53% respectively. The lowest aneuploidy rate is in 

the group of women aged 26 to 30. Both younger and older groups have higher aneuploidy rates 

(Franasiak et al.,2014).   

The general fertility rate in the U.S. has gradually decreased from 1970 to 2018  to a fertility 

rate of lower than 60%. Birth rates in the U.S. decreased in women aged 15 to 34 and increase in 

women aged 35 to 44 from 1990 to 2018 (Martin et al., 2019). As more and more women give 

birth after age 30, aneuploidy-related infertility, miscarriage, congenital birth defects and age-

related fertility decrease is emerging as a worldwide public health problem. 

To reduce the rates of aneuploidy in human pregnancy, laboratory technologies have been 

developed in prenatal screening from the earliest Maternal Serum Alpha Fetoprotein (MSAFP) to 

the latest Cell-free Fetal DNA, chorionic villus sampling (CVS) and Amniocentesis. Unfortunately, 
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no therapies or preventions have been discovered to treat or decrease the rate of aneuploidy.  

Scientists have attempted to use different animal models to disclose the mechanism of 

nondisjunction. Mice, Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis 

elegans are the most used animal models. Over 83% of C. elegans proteins have human homologs 

(Lai et al., 2000). C. elegans is a self-fertilizing hermaphrodite, which means that they are easy to 

manipulate genes in studies and mutant alleles can be maintained through self-reproduction in 

generations without mating. 

This research study shows interactions of two key meiotic genes in meiotic process in C. 

elegans and may throw a light on chromosome nondisjunction in human beings. 

1.1 Epidemiology of Aneuploidy in Human Pregnancy 

Over 10% of human pregnancies result in chromosome aberrations and aneuploidy 

(Nagaoka et al., 2012). The incidence of chromosome aberrations and aneuploidy may exceed 50% 

when women are at an advanced age, over 40. Nondisjunction during meiosis results in the main 

chromosome aberrations: monosomy, trisomy, triploidy or tetrasomy. In 1890, German pathologist 

von Hansemann discovered aneuploidy in cancer cells. As early as 1907, German zoologist 

Theodor Boveri reported aneuploidy in his experiment with Double Fertilized Sea Urchin Eggs. 

The most common disease of aneuploidy, Down Syndrome, was described in a painting in 1515. 

In 1866, John Langdon Down named Down Syndrome as a disorder. However, it was not until 

1956 that French physician Jérôme Lejeune observed 47 chromosomes in each cell of patients with 

Down Syndrome instead of the normal number of 46. Besides Down Syndrome, a handful of other 

disorders result from meiotic chromosomal nondisjunction, but most aneuploidies are 
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incompatible with embryonic survival. Clinical diagnostic techniques have been developed to 

screen for aneuploidies. In 2014, a comprehensive chromosomal screening, via quantitative 

polymerase chain reaction (qPCR) or single nucleotide polymorphism (SNP) array, was performed 

on 15,169 blastocysts from 2,701 patients in 3,392 cycles. There were 9,001 euploid results and 

6,168 aneuploid results from 15,169 blastocysts (Table 1) (Franasiak JM.et al., 2014). Maternal 

age closely correlates to the incidence of aneuploidies in blastocysts(Figure 1) (Franasiak JM.et 

al., 2014). The lowest incidence of aneuploidies is from age 26 to 30. After age 30, there is a steady 

rise of incidence of aneuploidies which reaches 100% at age 47. 

 
Table 1. Distribution of samples evaluated relative to the age of the female partner and the ensuing 

comprehensive chromosomal screening results. 

 
（Franasiak JM et al., 2014) 
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Figure 1. Aneuploidies and Maternal Ages. 

（Franasiak JM et al., 2014) 
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1.2 DNA Double-Strand Breaks and Meiotic Repair 

Meiosis is a highly conserved process among species. Meiosis includes two cycles of 

division – meiosis I and meiosis II- and results in four daughter cells with only one copy of each 

parental chromosome (haploid). Both meiosis I and meiosis II include four stages, named as 

prophase I, metaphase I, anaphase I and telophase I & cytokinesis and prophase II, metaphase II, 

anaphase II, telophase II & cytokinesis respectively. The accurate chromosomal segregation in 

meiosis I and meiosis II are required to prevent abnormal aneuploid daughter cells.  

Briefly described, meiosis I starts with DNA replication. This is followed by sister 

chromatids connection, homolog pairing, the formation of double-strand breaks (DSBs), 

synaptonemal complex (SC) and DNA repair into crossovers (CO). Meiosis I ends with telophase 

I & cytokinesis where a parental cell divides into two daughter cells with half the number of 

chromosomes consisting of a pair of chromatids. Meiosis II occurs without DNA replication and 

ends up with four daughter cells each containing a haploid set of chromosomes (Figure 2). 
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Figure 2. Meiosis I and Meiosis II. 

(Credit: Ali Zifan, via Wikimedia Commons, CC BY-SA 4.0) 

 

In most organisms, meiosis requires the accurate exchange of DNA between paternal and 

maternal chromosomes through homologous recombination. To start homologous recombination, 

DNA double-strand breaks (DSBs) must be created (Keeney, 2001). DSBs are formed by the 

action of a conserved meiosis-specific protein, Spo11, which functions like a topoisomerase and 

becomes covalently attached to the DNA end. In meiosis, cells have to generate at least one DSB 

https://creativecommons.org/licenses/by/4.0/
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before crossover. After DSB formation, Spo11 is removed from DNA ends allowing the DNA 

ends to be chewed away, a process called resection. The overhanging 3’ end of DSB invades a 

similar or identical homologous chromosome without a DSB to form a D-loop strand-exchange 

intermediate. After the invasion, two resolution pathways lead to different outcomes: crossover or 

non-crossover. In the crossover pathway, the homologous chromosome serves as a template to 

initiate DNA synthesis. The newly synthesized DNA strand is attached to the resected strand’s end, 

forming a Holliday junction and indicating the crossover pathway (Figure 3).  

 

 

Figure 3. Model Depicting the Key Events of Meiotic Recombination. 

(Hillers KJ. Meiosis. Wormbook, 2017) 
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1.3 Caenorhabditis Elegans as a Research Tool 

C. elegans（Caenorhabditis elegans) is a member of the phylum Nematoda and an ideal 

animal model for molecular genetic studies because of it short and rapid life span and convenience 

of culture at 20℃ in the laboratory. They are grown on agar plates and fed bacteria Escherichia 

coli. A single wide type of C. elegans can produce 200 to 300 progenies. C. elegans is a self-

fertilizing hermaphrodite with five autosomal chromosomes and one sex chromosome. Females or 

hermaphrodites have five pairs of autosomes and two X chromosomes (XX), while males have 

five pairs of autosomes and one X chromosome (XO).  

 

Figure 4. Diagram of Meiotic Events During Oogenesis in the C. elegans Germ Line. 

(Hillers KJ. Meiosis. Wormbook, 2017) 
 

C. elegans is a powerful animal model for reproduction research as its body is transparent, 

allowing visualization of the germ line, and it has reproducible cell positions that can be observed 
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during all stages of meiosis (Figure 4). Genetic balancers C. elegans have specific phenotypes for 

easy selection from the standard wild-type strain (called N2). Because meiosis is evolutionarily 

conserved across the species, C. elegans share at least 83% homologous genes in human (Lai et 

al., 2000), which makes C. elegans a powerful model organism in studying meiotic processes. In 

addition, the ease to freeze and recover C. elegans makes it possible to preserve mutant strains 

without losing important mutations or acquiring unwanted mutations. 

1.4 Nondisjunction in C. elegans  

As we discussed in 1.2, meiosis is crucial for population diversity. Meiosis is initiated by 

the formation of DNA double strand breaks (DSBs) by the conserved enzyme SPO-11, which is a 

member of topoisomerase II superfamily ((Dernburg et al., 1998), followed by crossovers (COs) 

between homologous chromosomes. Defects in formation and repair of DSBs promote genome 

instability. At least one CO is formed to ensure normal meiosis. In C. elegans, most chromosomes 

undergo only one CO in each meiosis. Distribution of COs does not occur randomly in C. elegans. 

COs occur in gene-poor regions towards the autosome ends (Barnes et al., 1995) and are few in 

the middle, gene-rich region in C. elegans. The X chromosome has a more even distribution of 

COs in C. elegans. At a local level, there are hotspots for COs (Nicolas et al., 1989; Baudat et al., 

2010). These hotpots imply there are is genetic regulations for CO formation both in human and 

C. elegans.  

Males account for 0.1% of C. elegans population which results from sex chromosomal 

nondisjunction during meiosis. Higher male progeny rates represent higher sex chromosomal 
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nondisjunction rates. Lower hatching rates may indicate higher autosomal chromosomal 

nondisjunction rates.  

1.5 XND-1 and HIM-17 in C. elegans  

X nondisjunction factor 1 (xnd-1) encodes an autosomally-localized protein, XND-1, an 

AT-hook containing protein with 702 amino acids, which is required for normal global CO 

distribution in C. elegans. XND-1 is involved in DSBs formation on the X chromosome through 

effects on chromatin structure genome-wide. In wild type, COs tend to occur towards chromosome 

ends, which contain fewer genes than centers. However, in xnd-1 mutants, the distribution of COs 

is inverted, with more COs occurring towards chromosome centers. The loss of XND-1 function 

also decreases the number of DSBs, and hence COs, on the X chromosome, which in turn leads to 

increased frequency of males in progeny populations (Wagner, et al.,2010). This is called a High 

Incidence of Males or “him” phenotype and is characteristic of a group of meiotic mutations that 

increase X chromosome nondisjunction. 

In addition to its role in meiosis, XND-1 also appears to function early in germ cell 

development. In the germline lineage, primordial germ cells (PGCs) are the precursor of sperm 

and eggs. XND-1 appears among the earliest proteins in new PGCs. Loss of xnd-1 causes defects 

in PGC specification and differentiation (Mainpal et al., 2015), although the underlying cause of 

these defects are not well understood. 

HIM-17 is a chromatin-associated protein that has roles in meiosis and more generally in 

the germ line. HIM-17 is required for DSB formation but not for homolog synapsis. SPO-11 

dependent COs are inhibited in him-17 null mutants and can be rescued by γ-irradiation induced 
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DSBs indicating that him-17 is defective in making meiotic DSBs (Reddy and Villeneuve.,2004). 

Missense mutations also exhibit lower egg hatching rates and a high incidence of males among 

survivors, indicating a partial impairment of its meiotic functions. There are five him-17 mutants 

reported: him-17(ok424), him-17(me9), him-17(me24), him-17(e2806) and him-17(e2707) (Figure 

5, Reddy and Villeneuve,2004). Among these five mutants, him-17(ok424) is homozygous sterile, 

indicating it is null. 

 

 

Figure 5. Modular Organization of the HIM-17. 

(Reddy and Villeneuve.,2004) 

 

Both him-17 and xnd-1 mutants show abnormal post-translational modifications of histones 

and impaired DSB formation (Reddy and Villeneuve.,2004); Wagner et al.,2010). Localization of 

HIM-5 is dependent on XND-1 and HIM-17 (Meneely et al., 2012).  

HIM-5 is a protein of 252 amino acids and promotes DSB formation. HIM-5 plays a role 

in crossover distribution on both the X chromosome and autosomal chromosomes. Like XND-1, 

HIM-5 influences DSB formation mainly on the X chromosome (Meneely et al., 2012).  

In this project, we studied the interactions between him-17 and xnd-1, which 

collaboratively regulate him-5, to determine if they function in together to regulate meiotic 

crossovers.  
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1.6  Genetic Balancers  

Many homozygous mutations are lethal or sterile to C. elegans. C. elegans strains carrying 

homozygous lethal or sterile mutations are hard to maintain and study. Genetic balancers are 

heterozygous chromosomes with significant rearrangements that can be maintained in the 

laboratories for researches. Balancers usually have unique phenotypes that allow them to be easily 

selected.  

In this project, we used qC1 as a balancer for xnd-1(ok709), written as 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

, and 

ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

. qC1 is a very stable dominant crossover suppressor to use for strain maintenance. It is marked 

with a mutation that make the animals Roll (a helically left or right twisted body) on the plate. hT2 

is a stable reciprocal translocation between chromosome I and chromosome III and therefore 

balances parts of each chromosome including where xnd-1 maps. (Figure 6, Wormbook).  ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

 has 

a phenotype of rolling behavior (associated with qC1) with pharyngeal GFP element (green, on 

hT2).  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 has a phenotype of rolling behavior, whereas the wild type and xnd-1(ok709) 

homozygous genotype do not roll.  
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Figure 6. Balancers on Chromosome III. 
 
(Hillers KJ. Meiosis. Wormbook, 2017) 

1.7 The Project Goals 

Evidence suggests both XND-1 and HIM-17 regulate him-5 and are involved in DSB 

formation.  

HIM-5 is a member of High Incidence of Males proteins in C. elegans. HIM-5 has strong 

effects on X chromosome exchange and recombination (Hodgkin et al. 1979; Broverman and 

Meneely, 1994). him-5 mutations also alter recombination distribution and frequency. Previous 

studies showed that HIM-5 functions in the same pathway as xnd-1 and that localization of HIM-

5 is impaired in xnd-1(ok709) and him-17(ok424) mutant animals (Meneely et al., 2012). XND-1 

has specific timing windows in DSB formation, regulates germ line cell cycle and primordial germ 

cell (PGC) specification and plays a role in histone modifications. xnd-1 CO formation role is 
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through regulating him-5 expression (Figure 7, McClendon et al.,2016). HIM-17 has overlapping 

functions with XND-1. Both HIM-17 and XND-1 have functions on histone modification and DSB 

formation and are required for HIM-5 localization. 

 

 

Figure 7. XND-1 Regulations and Mediators. 

(McClendon et al.,2016) 

 

HIM-17, by contrast, has no role in regulating the timing of DSB formation (Reddy and 

Villeneuve, 2004) and no known roles in PGC specification. However, no study shows 

mechanisms of relationships between him-17 and him-5 so far (Meneeley et al 2012).  

Prior studies in the lab have suggested that these xnd-1 and him-17 may interact and work 

together for DSB formation (Meneely et al., 2012; McClendon et al.,2016). We are currently 

examining how these two genes work together to control various aspects of germ line development 

in C. elegans. We hypothesize that xnd-1 and him-17 work together to regulate him-5 and influence 

the DSB formation in C. elegans. The him-17(e2806) mutant genotype has a weak phenotype in 

contrast to him-17(e2707). To test this hypothesis, we have constructed double mutant strains with 

xnd-1(ok709) and two different partial loss-of-function alleles of him-17(e2707) and him-
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17(e2806). We will evaluate clutch sizes, brood sizes, egg hatching rates, male incidence, and 

meiotic chromosome structures in xnd-1(ok709); him-17(e2806) and xnd-1(ok709); him-17(e2707) 

double mutant strains. 
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2.0 Materials and Methods 

2.1 C. elegans Strain Information 

Five strains of C. elegans are used in this project: N2, him-17(e2707), him-17(e2806), 

𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

, and ℎ𝑇𝑇2
𝑞𝑞C1

 to create double mutated strains: 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

;  him-17(e2707), 

 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2806). 

N2 is a wild type of C. elegans. him-17(e2707) is a homozygote of him-17(e2707), named 

and stocked as QP 0567. him-17(e2806) is a homozygote of him-17(e2806), named and stocked 

as QP 0446. 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 is a xnd-1(ok709) mutation balanced with qC1 with a phenotype of 

rolling behavior, named and stocked as QP 1042. ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

 is a strain originally made from a cross of 

 𝑥𝑥𝑑𝑑𝑑𝑑−28
𝑞𝑞𝑞𝑞1

 strain and  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
ℎ𝑇𝑇2

 strain with a phenotype of rolling behavior and pharyngeal 

expressed GFP transgene (green). 

In this project, gene names without “+” and “-” represent mutated genes. “+” represents a 

wild type. Being unsure about a mutant was noted as “[ ]”. 

2.2 C. elegans Culture Maintenance 

Petri plates with Nematode Growth Medium (NGM) agar is mostly used in C. elegans 

maintenance in the laboratory (Brenner, 1974). In this project, small petri plates (35 mm diameter) 
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were used to cross, large petri plates (60 mm diameter) were used to maintain strains. Commercial 

NGM was used (HIMDIA). 5 mg/mL cholesterol in 100% ethanol was added to the medium base 

solution to a final concentration of cholesterol in the NGM at 5 mg/L prior to autoclaving. 

Escherichia coli (E. coli), OP50, was used as a feeder host for C. elegans. 

Two worm transferring methods were used in this project: 1) single worm or multiple 

worms transferred with a platinum worm pick and 2) “chunking” where a sterilized scalpel was 

used to move a chunk of agar with starved worms from an old plate to plate with fresh OP50. 

Transfer frequency depends on the purpose of experiment. For worm maintenance, I transferred 

worms before they were starved. For progeny counting, I transferred worms every 18 to 24 hours.  

C. elegans can be maintained between 16°C and 25°C, but grows faster at higher 

temperatures, 2.1 times faster at 25°C than at 16°C, and 1.3 times faster at 20°C than at 16°C 

(Maniatis et al., 1982). However, maximum progeny production is at 20°C, so for this project, all 

C. elegans strains were maintained at 20℃. him-17 mutants also have mitotic proliferation defects 

the higher temperature (Bessler JB et al., 2017), so we used the permissive temperature of 20°C.  

The original stocks used from thaws of frozen stocks maintained in liquid nitrogen. After 

thawing from liquid nitrogen, worms in cryotubes were poured to plates with one cryotube with 

one plate. The plates then were put into 20℃ in incubator for one day to recover. Alive worms 

were transferred to fresh plates after recovery.  

The genetic and phenotype information of all new created strains of C. elegans from this 

project were recorded into the lab “NEMASTOCK” database with unique names starting with 

“QP”. All these strains were stored in 1.8 ml cryotubes (Thermo scientific) and frozen at −80 °C 
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2.3 C. elegans Crosses 

To create  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2707),  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2806) , xnd-1(ok709); 

him-17(e2707) and xnd-1(ok709); him-17(e2806) double mutant strains, three strains were used 

for outcross: 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 , him-17(e2707),  him-17(e2806) and ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

. 

For outcross, three adult males and one L4 hermaphrodite were picked to each small cross 

plate in each outcross step, 3 to 5 plates for each outcross. For self-cross, one L4 C. elegans was 

placed to one plate, 24 to 30 plates for each self-cross. For outcross, a higher rate of males in 

progenies indicates a success cross.  

After cross, hatched single L4 hermaphrodites were transferred to small seeded plates 

individually. Genotype these hermaphrodites 2 to 3 days later when they laid over 50 eggs.  
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2.4 PCR Genotyping 

PCR was applied to select  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1 ; him-17(e2707) genotype,  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
; him-

17(e2806) genotype, xnd-1(ok709); him-17(e2707) genotype and  xnd-1(ok709); him-17(e2806) 

genotype. Four sets of primers were used in this project to select and verify desired mutant strains. 

Stand PCR was applied to select and verify xnd-1(ok709) mutant. Allele specific PCR was applied 

to select and verify him-17(e2707) and him-17(e2806) mutants. The primers used in these studies 

are included in the Appendix A. 

xnd-1(ok709) allele was run on 1.5% agarose gel with our lab’s customized DEL40EXT 

PCR protocol. him-17(e2707) and him-17(e2806) alleles were run on 3% agarose gel with 

customized DEL40 PCR protocol on PCR instruments (MJ Research PTC-200 Thermal Cycler 

and TC 9639 Thermal Cycler by Benchmark Scientific). The details of customized DEL40EXT 

and DEL40 are included in Appendix A. 

2.5 Brood Analysis 

N2, him-17(e2707), him-17(e2806), xnd-1(ok709), xnd-1(ok709); him-17(e2707) and xnd-

1(ok709); him-17(e2806) were analyzed for clutch sizes (total number of eggs), brood sizes, 

hatching rates, and male rates. Clutch sizes were calculated by counting all fertilized (refractile) 

eggs laid by a single worm every 18 hours until the worm died or no more eggs were laid in 2 

consecutive days. Brood sizes were calculated by counting all alive progenies hatching from 

fertilized eggs laid by a single worm 3 or 4 days after eggs were counted. Hatching rates were 

calculated as the number of alive progeny divided by the number of fertilized eggs from a single 
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worm with the format of xx.xx%. Unfertilized eggs were excluded from counting. Genotyping by 

PCR was performed on each individual worm to confirm the genotype after eggs were depleted. 

Male rates were calculated as the number of male progenies divided by the number of total 

progenies. Males and hermaphrodites were counted 3 to 4 days after eggs were laid. 
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3.0 Results 

3.1 Creating xnd-1 and him-17 Double Mutants 

I was able to successfully construct the desired double mutant strains that are analyzed 

below. Genotypes of   𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞C1

; him-17(e2707),  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2806), xnd-1(ok709); 

him-17(e2707) and xnd-1(ok709); him-17(e2806) were confirmed multiple times by with PCR 

testing both the heterozygous parents and the homozygous progeny.   

 

Figure 8. C.elegans Crossover and Experiment Procedure. 

 

 



 

22 

The first outcross from stains of 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 hermaphrodites and him-17 males gave 

progenies with genotypes of [𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
𝑞𝑞𝑞𝑞1

; [ℎ𝑖𝑖𝑖𝑖−17]
+

 and [𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
+

; [ℎ𝑖𝑖𝑖𝑖−17]
+

.  

Pick [𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
+

 ; [ℎ𝑖𝑖𝑖𝑖−17]
+

(non-roller) males to outcross with ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

 hermaphrodites. 

The first PCR was run to select and verify 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 ; ℎ𝑖𝑖𝑖𝑖−17
+

(Figure 9 and Figure 10). 

6 worms were confirmed as 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

 ; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2707)
+

 out of 30 [𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
𝑞𝑞𝑞𝑞1

 ; 

[ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2707)]
+

worms.  PCR for xnd-1(ok709) failed to identify xnd-1(ok709) mutant in  

[𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
𝑞𝑞𝑞𝑞1

 ; [ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2806)]
+

 worms(Figure 11), so we continued with the project with 19  

[𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
𝑞𝑞𝑞𝑞1

 ; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2806)
+

 worms out of 30 [𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)]
𝑞𝑞𝑞𝑞1

 ; [ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2806)]
+

 worms (Figure 12). 

 

Figure 9.  xnd-1(ok709) Primers to Select  𝒙𝒙𝒙𝒙𝒙𝒙−𝟏𝟏(𝒐𝒐𝒐𝒐𝟕𝟕𝟕𝟕𝟕𝟕)
𝒒𝒒𝒒𝒒𝟏𝟏

 ; 𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕
+

. 13 worms were detected as 𝒙𝒙𝒙𝒙𝒙𝒙−𝟏𝟏(𝒐𝒐𝒐𝒐𝟕𝟕𝟕𝟕𝟕𝟕)
𝒒𝒒𝒒𝒒𝟏𝟏

 out of 

30 worms.  

The plate names are underneath the gel lane. Expected size of xnd-1(ok709) procuct: 700 bp 
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Figure 10. him-17(e2707) Primers to Select  𝒙𝒙𝒙𝒙𝒙𝒙−𝟏𝟏(𝒐𝒐𝒐𝒐𝟕𝟕𝟕𝟕𝟕𝟕)
𝒒𝒒𝒒𝒒𝟏𝟏

 ; 𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕(𝒆𝒆𝟐𝟐𝟕𝟕𝟕𝟕𝟕𝟕)
+

. 12 worms were detected as 

𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕(𝒆𝒆𝟐𝟐𝟕𝟕𝟕𝟕𝟕𝟕)
+

 out of 30 worms. 

The plate names are underneath the gel lane. Expected size of N2 product: 120 bp; expected size of him-

17(e2707) product: 100 bp. 

 

 

Figure 11. xnd-1(ok709) Primers Failed to Select  𝒙𝒙𝒙𝒙𝒙𝒙−𝟏𝟏(𝒐𝒐𝒐𝒐𝟕𝟕𝟕𝟕𝟕𝟕)
𝒒𝒒𝒒𝒒𝟏𝟏

 ; 𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕（𝒆𝒆𝟐𝟐𝟐𝟐𝟕𝟕𝟐𝟐)）
+

 . 

Expected size of xnd-1(ok709) procuct: 700 bp 
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This is presumably because the PCR did not work at all and needed to be repeated. Since 

the stocks were balanced, I was able to check for xnd-1 in the Rolling progeny at the next 

generation. 

 

Figure 12. him-17(e2806) Primers to Select  𝒙𝒙𝒙𝒙𝒙𝒙−𝟏𝟏(𝒐𝒐𝒐𝒐𝟕𝟕𝟕𝟕𝟕𝟕)
𝒒𝒒𝒒𝒒𝟏𝟏

 ; 𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕(𝒆𝒆𝟐𝟐𝟐𝟐𝟕𝟕𝟐𝟐)
+

. 19 worms were detected as 

𝒉𝒉𝒉𝒉𝒉𝒉−𝟏𝟏𝟕𝟕(𝒆𝒆𝟐𝟐𝟐𝟐𝟕𝟕𝟐𝟐)
+

 out of 30 worms.  

The plate names are underneath the gel lane. Expected size of N2 product: 195 bp; expected size of him-

17(e2806) product: 175 bp. 

 
Second PCR was to select and confirm 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
; him-17(e2707),  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
;  him-

17(e2806), xnd-1(ok709); him-17(e2707) and xnd-1(ok709); him-17(e2806) with him-17(e2707), 

him-17(e2806), xnd-1(ok709) and xnd-1 wild-type primers. 

As shown in Figure 13,  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

;him-17(e2707) and xnd-1(ok709); him-17(e2707) 

were confirmed by PCR to have the him-17(e2707) mutation.  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2806) was 

confirmed by PCR to have the him-17(e2806) mutation, while xnd-1(ok709); him-17(e2806) was 

not. However, I believed it was a sampling error, because in this genotyping, xnd-1(ok709); him-

17(e2806) worm was a progeny of  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; him-17(e2806)  
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In Figure 14, we see the results for genotyping with xnd-1 wild-type primers and xnd-

1(ok709) primers. Bands with both xnd-1 wild type primers and xnd-1(ok708) primers indicated 

genotype of 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

. Only one band with xnd-1(ok709) primers indicated genotype of xnd-

1(ok709). Upon attaining the balanced stocks 𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

;ℎ im-17(e2707) and  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)
𝑞𝑞𝑞𝑞1

; 

him-17(e2806) stocks, they were maintained at 20°C throughout the course of my experiments.     

 

Figure 13. Genotyping of him-17(e2707) and him-17(e2806). him-17(e2707) primers. 

Expected size of N2 product: 120 bp; expected size of him-17(e2707) product: 100 bp. him-17(e2806) primers: 

Expected size of N2 product: 195 bp; expected size of him-17(e2806) product: 175 bp; 
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Figure 14.Genotyping of xnd-1(ok709). 

3.2 Hatching Rates and Male Rates 

To determine if there is a genetic interaction between xnd-1 and him-17, I next wanted to 

perform detailed brood studies of the single and double mutants. Average clutch size, average 

brood size, average hatching rate and average male rate for all genotypes were calculated as 

described in material and methods (Table 2). The data are presented as the average± SEM. Clutch 

size is the total number of eggs laid by a single worm. Brood size is the total number of hatched 

laid eggs by a single worm. Hatching rate is the ratio of brood size to clutch size, which indicates 

the degree of the meiosis success. Male rate is the ratio of the number of males to the number of 

progeny which indicates the degree of X chromosomal nondisjunction. 
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Table 2. Characteristics of Genotypes Used in this Project. 

 

t-tests were applied to compare differences between pairwise combinations of genotypes. 

As expected, the wild type N2 is different from xnd-1(ok709), him-17(e2707), and him-17(e2806), 

as well as the respective double mutants, xnd-1;him-17(e2707) and xnd-1;him-17(e2806)(Figure 

15 and Figure 16). This was true for all parameters analyzed: clutch size, brood size, hatching rate 

and frequency of males.  

In Figure 15, when we look at brood sizes, xnd-1(ok709) is not statistically different than 

him-17(e2707) and xnd-1;him-17(e2707), but him-17(e2707) is different from xnd-1;him-

17(e2707). xnd-1; him-17(e2707) has a higher brood size than him-17(e2707). However, although 

the brood sizes are different between him-17(e2707) and xnd-1;him-17(e2707), the calculated 

hatching rates of these two genotypes does not have a significant difference. I observed significant 

individual variances in terms of clutch size, brood size and male rate, indicating that a larger 

number of animals should be counted in future studies.  

 

 

 

Genotype N 
Avg. Clutch 
size ± SEM 

Avg. Brood 
size ± SEM 

% Hatching ± 
SEM 

% Male ± 
SEM 

N2 15 219.2±12.91 216.07±12.89 98.57±0.46 0.09±0.05 

xnd-1(ok709) 8 93.50±22.21 28.75±10 30.75±8.29 16.09±3.76 

him-17(e2707) 13 69.69±11.99 21.00±5.15 30.13±4.65 40.66±5.09 
xnd-1(ok709); him-

17(e2707) 14 75.07±15.47 12.21±4.21 16.27±7.17 38.01±5.50 

him-17(e2806) 12 142.50±16.82 123.00±17.33 86.32±6.3 6.17±2.16 
xnd-1(ok709); him-

17(e2806) 14 150.93±19.58 71.79±15.93 47.56±7.90 27.77±4.03 
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Figure 15. Characteristics of xnd-1(ok709), him-17(e2707) and xnd-1(ok709);him-17(e2707); N2 as a control.  

The only statistical difference is between brood size of him-17(e2707) and xnd-1(ok709);him-17(e2707). 

 

In Figure 16, we look at the other double mutant genotypes, xnd-1(ok709); him-17(e2806). 

Here, in terms of brood size, hatching rate and male rate, we find xnd-1 is not statistically different 

from xnd-1(ok709);him-17(e2806), while xnd-1(ok708) is statistically different from him-

17(e2806) and him-17(e2806) is statistically different from xnd-1(ok709); him-17(e2806) . xnd-

1(ok709) has a lower brood size rate and hatching rate and a higher male rate than him-17(e2806). 

him-17(e2806) has higher brood size and hatching rate in contrast to xnd-1(ok709); him-17(e2806). 



 

29 

 

 

Figure 16. Characteristics of xnd-1(ok709), him-17(e2806) and xnd-1(ok709);him-17(e2806), N2 as a control. 

xnd-1(ok709) is statistically different from him-17(e2806) in terms of brood size, hatching rate and male rate. 

him-17(e2806) is statistically different from xnd-1(ok709);him-17(e2806) in terms of brood size, hatching rate 

and male rate. 
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4.0 Discussion 

Miscarriage and infertility are a public health problem all over the world. Meiotic 

nondisjunction is a main cause of miscarriage, trisomies and monosomies. Cytogenetic analysis 

of 132 villous tissues of miscarriage showed 58% trisomy,7.9% monosomy, 10.1% polyploidy, 

1.1% double trisomy and 15.7% mosaic (I Horiuchi et al., 2019). Nondisjunction can occur in 

either meiosis I or meiosis II. Crossovers create physical connections between homologs that 

ensure their alignment and segregation during the first meiotic division.  

The well-studied him-5 gene mutations in C. elegans reduce the frequency of crossovers 

on X chromosome and changes the crossover distributions on both X chromosomes and 

autosomes (Meneely et al. 2012). xnd-1 and him-5 are in the same functional pathway (Meneely 

et al. 2012).  

him-17(e2707), him-17(e2806), xnd-1(ok709), xnd-1(ok709);him-17(e2707) and xnd-

1(ok709);him-17(e2806) genotypes have significant differences compared to N2 in clutch size, 

brood size, hatching rate and male rate, consistent with the known roles of these genes in 

crossover formation. XND-1 was reported to localize to autosomal chromosomes and influences 

distribution of crossovers on autosomal chromosomes and frequencies in sex chromosomes, 

either of which results in a higher lethal rate and male rate (Wagner, et al.,2010). We also know 

him-17 mutants exhibit a Him phenotype with lower hatch rates compared to wild type. From the 

data I observed, low clutch sizes and hatching rates and higher male rates may develop from a 

complicated relationship between xnd-1 and him-17.  

him-17(e2707) and  him-17(e2806) have significant differences in clutch size, brood size, 

hatching rate and male rate, which verifies that these two mutations have very different levels in 
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abilities to regulate crossovers formation. This is consistent with published data on these 

genotypes (Reddy and Villeneuve,2004). The different effects between him-17(e2707) and him-

17(e2806) may be because him-17(e2707) is a nonsense mutation (R862Stop) that shortens and 

changes the structure of HIM-17, while him-17(e2806) is a missense mutation (M223I) that may 

not affect HIM-17 structure and functions. 

We are interested in determining whether XND-1 and HIM-17 function together or in the 

same pathway to influence meiotic processes. Therefore, the most important interactions to 

analyze are the differences between the single and double mutant genotypes.  

 

 

 

Figure 17. Interactions Among xnd-1, him-17 and him-5. 

 

If xnd-1(ok709) mutation and him-17 mutations work together to increase the rate of 

nondisjunction though HIM-5, then double mutant could show 1) higher male rates and lower 

hatching rates than both single mutants, 2) higher male rates and lower hatching rates than only 

one of the two single mutants or 3) no significant difference than  either of the single mutants. If 

1) then we would interpret that xnd-1 and him-17 are complementary genes. If 2), we would 

interpret xnd-1 is an epistatic gene of him-17 or vice versa. If 3), we would interpret that xnd-1 and 

him-17 are redundant genes. In xnd-1;him(e2707) double mutants, we saw no significant 
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difference from either of the single mutants, therefore it could be interpreted that xnd-1 and him-

17 are in the same pathway. However in xnd-1;him(e2806) double mutants, we saw higher male 

rates and lower hatching rates than him-17(e2806) mutants, therefore we might interpret that xnd-

1 is epistatic to him-17. How do we reconcile these different interpretations for how xnd-1 and 

him-17 function? 

I think my data is best described by the model in Figure 17. xnd-1 both works through him-

17 and independently regulates him-5. There may be other factors regulating him-17. When xnd-1 

and him-17 are both mutated, xnd-1 cannot regulate him-17 and because him-17(e2806) is a weaker 

allele, it has a partial function in regulating him-5. Other factors may regulate him-17(e2806) to 

have some functions. This may explain why there is no significant difference between xnd-1(ok709) 

and xnd-1(ok709); him-17(e2806). Since xnd-1(ok709) is significantly different than him-

17(e2806), I think this confirms that in xnd-1 mutant animals, him-17(e2806) retains some function 

to regulate him-5. In contrast to him-17(e2806), both xnd-1 and other factors regulate him-17 so 

that him-17(e2806) gave better results in brood size and hatching rate than xnd-1(ok709). The 

significant difference between him-17(e2806) and xnd-1(ok709); him-17(e2806) verifies this 

interaction again. For him-17(e2806), both xnd-1 and other factors can regulate him-17 to have 

some partial functions to work on him-5, while for xnd-1(ok709);him-17(e2806), other factors but 

not xnd-1 can regulate him-17 to have some partial functions to further work on him-5, which 

explains why him-17(e2806) had a higher brood size and hatching rate than xnd-1(ok709);him-

17(e2806).  

Brood size and hatching rate give an overall measure of egg viability, which is at least in 

part, a product of the meiotic success that preceded egg and sperm fusion. Another measure of 

meiotic success is the frequency of males. HIM-17 is required for DSB formation on both 
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autosomal and the X chromosomes (Reddy and Villeneuve ,2004) and XND-1 influence DSB 

formation mainly on X chromosome (Wagner, et al.,2010). xnd-1(ok709) has no difference 

compared to   xnd-1(ok709);him-17(e2707) and xnd-1(ok709);him(e2806) in terms of male rate; 

him-17(e2707) is different from xnd-1(ok709);him-17(e2707) and   him-17(e2806) is different than 

xnd-1(ok709);him-17(e2806), indicating xnd-1 is an epistatic to  him-17 for nondisjunction of the 

X chromosome.  Although t-test gives the conclusion that xnd-1(ok709) has no significant 

difference from him-17(2707) in hatching rate, the raw data seem very different in % Male ± SEM: 

16.09±3.76 (xnd-1(ok709)) vs 40.66±5.09 (him-17(e2707)). I think it is because only 8 animals of 

xnd-1(ok709) were counted, fewer than other genotypes.  Further, when we look at male rates of 

him-17(e2806) and xnd-1(ok709);him-17(e2806), him-17(e2806) has a lower male rate than xnd-

1(ok709);him-17(e2806). This may be interpreted by that partial loss of function for HIM-17 in 

him-17(e2806) still works on him-5. However, when xnd-1 is knocked out in double mutants, xnd-

1 cannot regulate him-5 through him-17 and cannot regulate him-5 independently.  Double mutant 

with him-17(e2707) mutation is different from double mutant with him-17(e2806) mutation in 

hatching rate and male rate.  I interpret this as the weak allele function of him-17(e2806) and 

factors in other pathways may influence him-17 functions on X chromosome. I found some 

differences in male rates between single mutants and double mutants, indicating that xnd-1 and 

him-17 work together to regulate him-5 to influence DSBs on X chromosome.  

Overall, my studies suggest that there is a complex relationship between him-17 and xnd-

1 and that the interaction between the two genes may depend strongly on which phenotype is being 

measured. This is expected because both genes have roles both in meiotic break formation and in 

other germ line functions including mitotic cell division. As individual differences in 
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characteristics were observed, future studies should count more worms to decrease variance.  

Further analysis of whether there are alternative pathways would be interesting.  
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Appendix A Materials Used for Polymerase Chain Reaction 

Primers used in this project (all primers are written in the direction of 5’ 3’): 

 

1.  xnd-1(ok709) knock out primers 
1. 
JY-JLY-717: CCAGATTTGAGTCGAATCGAACCAA 

JY-JLY-722: CCACTGCAGTTTCTACTGGTTGCG 

Expected sizes: 

N2: no band 

xnd-1(ok709): 700 base pairs 

 

2. him-17(e2707) primers: 
 
ZK270: reverse primer: ATTAGGCATATCGGCATAGA 

ZK271: wild type forward primer: 

GTTGCAAGTTGTTACTAGTTACCGAGTTGAACTTCCACGGTC 

ZK272: mutant forward primer: GACCGAGTTGAACTTCCACGCAT 

Expected sizes: 

N2: 120 base pairs 

him-17(e2707): 100 base pairs 

 

3.him-17(e2806) primers  
4. 
JY-JY-152: CTCCGCCTCGTAATGCATGG 

JY-JY-153: wild-type SNP; mismatch: T to C one base 5’ to the terminal 3’G 
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CCTAGACGCGTACTAGTCGACTGGCCCTCTTGCAACCACG 

JY-JY-154: mismatch A to G two bases 5’ of the terminal 3’ A 

CTCGGCCCTCTTGCAACCGTA 

N2: 195 base pairs 

him-17(e2806): 175 base pairs 

 

4. xnd-1 wild type primers 
 
CQC-3: Forward primer to xnd-1 wt. 

GCTCTGGAGATGACGAAAAACGCC 

CQC-4: Reverse primer to xnd-1 wt. 

AGCCATCGATGCCTGATTAACTGAG 

N2: 1100 base pairs 

xnd-1(ok709): no band 

 

1.5% agarose gel for xnd-1 

 

1.1.5g agarose in 100 mL1xTAE in a 250 mL flask and microwave for 1 to 2 minutes  

2.Cool agarose solution to about 50 °C  

3.Add 2.5 mL ethidium bromide (EtBr) to agarose solution  

4.Pour the agarose solution into a tray with well combs 

5.Wait for 30 minutes at room temperature until the gel completely solidifies 

6.Fill gel tray with 1xTAE until the gel is covered and add 4 mL ethidium bromide (EtBr) 

to 1xTAE solution 
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3% agarose gel for him-17(e2707) and him-17(e2806) 

 

1.3g agarose in 100 mL1xTAE in a 250 mL flask and microwave for 2 to 3 minutes  

2.Cool agarose solution to about 50 °C \ 

3.Add 2.5 mL ethidium bromide (EtBr) to agarose solution  

4.Pour the agarose solution into a tray with well combs 

5.Wait for 30 minutes at room temperature until the gel completely solidify  

6.Fill gel tray with 1xTAE until the gel is covered and add 4 mL ethidium bromide (EtBr) 

to 1xTAE solution 

 

Worm lysis before PCR 

Worm lysis materials  

•Proteinase K 
 
•Worm Lysis Buffer 
 

50 mM KCl 

10 mM Tris-HCl 

2.5 mM MgCl2 

0.45% Nonidet P-40 

0.45% Tween-20 

0.01% gelatin 

 

Worm lysates Procedure 

 

1.Add 100 uL worm lysis buffer into a 1.5 mL Eppendorf tube 

2.Add 0.5 uL proteinase K into worm lysis buffer and mix 
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3.Aliquot 12 ul worm lysis buffer to each PCR tube 

4.Pick single worm (or multiple worms) into lysis buffer  

5.Spin down to the bottom of each PCR tube 

6.Run on PCR instrument with WORMLYS program 

 

WORMLYS program for worm lysis  

1.65℃ for 60 minutes 

2.95℃ for 20 minutes 

3.Cool to 4℃  

 

DEL40 for him-17(e2707) and him-17(e2806): 

1.95℃ for 2 minutes 

2.95℃ for 15 seconds 

3.55℃ for 30 seconds 

4.72℃ for 1 minute 

5.Repeat step 2 to 4 for 39 times 

6.72℃ for 5 minutes 

7.12℃ for ever 

 

DEL40EXT for xnd-1(ok709) and xnd-1 wt: 

1.95℃ for 2 minutes 

2.95℃ for 15 seconds 

3.55℃ for 30 seconds 

4.72℃ for 2 minute 

5.Repeat step 2 to 4 for 39 times 

6.72℃ for 5 minutes 

7.10℃ for 10 seconds 
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Appendix B Detailed Protocols Used in the Project 

C. elegans Maintenance Protocol 

Nematode Growth Medium (NGM) agar Preparation 
 

Materials:  

1. Worm medium base (HIMDIA) 
2. OP50: Escherichia coli (E. coli) 
3. OP50 liquid culture to grow and store OP50 
4. Small petri plates (35 mm diameter) and large petri plates (60 mm diameter). 

 
Prepare OP50 liquid culture  
 

1. 48g Tryptone, 30g Yeast Extract and 15g Sodium Chloride in to a 5-liter 
flask 

2. Add deionized water to 3 liters 
3. Add a stir bar and dissolve at room temperature 
4. Aliquot to small jars (~100 mL) and autoclave with Liq60 for about 1.5 hours 
5. Cool to room temperature, tight the lid and store at room temperature. 
6. Pick a colony of OP50 from a LB agar plate and dip into OP50 liquid culture 
7. Cap and loose the lid to allow the bacteria to grow overnight at 37 ℃ 
8. Tight the lid and store liquid culture with OP50 at 4℃ready for use 

 
 

Preparation and seeding of NGM plates: 
 

1. A bottle of worm medium base (HIMDIA) into a 5-liter flask. 
2. Add 3 liters of deionized water into the flask 
3. Add 3ml 5 mg/mL Cholesterol in Ethanol into the medium base 

solution  
4. Add a stir bar into the medium base solution and swirl to mix well at 

room temperature. 
5. Autoclave the medium base solution with Liq60 program for about 

1.5 hours 
6. Cool autoclaved medium base solution at about 55 ℃ with a stir 

bar. 
7. Dispense solution into small (35 mm diameter) and large (60 mm 

diameter) petri plates, fill plates 2/3 full of agar 
8. Cool the plates for 3 days at room temperature 
9. Add 3 drops of OP50 to large petri plates or 1 drop of OP 50 liquid 
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culture to small petri plates and spread to create a lawn for C. 
elegans maintenance 

10. Add 1 drop OP50 liquid culture in the center of small petri plates 
and do not spread to make C. elegans cross plates 

11. Allow OP50 to grow at room temperature for 2 or 3 days and store 
the seeded plates at 4 ℃ 

 

Recovery of C. elegans stocks 
 

1. Leave a vial of frozen C. elegans at room temperature until all ice turn into 
liquid 

2. Pour the liquid onto a large seeded plate 
3. Transfer 10 to 15 worms individually to separate small seeded plates after 2 

to 3 days 
Allow worms to grow and reproduce   

 
 

C. elegans Crosses Protocol  

 
 

C.elegans outcross for  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
;  ℎ𝑖𝑖𝑖𝑖 − 17(𝑒𝑒2707) and xnd-1(ok709); him-17(e2707) 

 
 

1. Pick 3 L4 him-17(e2707) males and one L4 
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
 hermaphrodite on a 

cross plate, to increase cross success rate, create 3 to 5 cross plates 
 

2. Observe the rate of male progenies on the plates after 3 to 4 days, if many 
male progenies (more than 1% male) are observed, that indicates a success 
cross. 

 

3. Pick 3 L4  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

+
; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2707)

+
 (non-roller) males and one L4 

ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

 
hermaphrodite on a cross plate, to increase cross success rate, create 3 to 5 
cross plates 

 

4. Pick at least 24 L4  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
 ; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2707)

+
 (non-green rollers) to 

hermaphrodites individually to separate small seeded plates  
5. Genotype every hermaphrodite after they lay over 50 eggs 



 

41 

 

6. Keep  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
;  ℎ𝑖𝑖𝑖𝑖 − 17(𝑒𝑒2707) (non-green rollers) as stock and xnd-

1(ok709); him-17(e2707) for experiment 
 

C.elegans outcross for  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
;  ℎ𝑖𝑖𝑖𝑖 − 17(𝑒𝑒2806) and xnd-1(ok709); him-17(e2806) 

 

1. Pick 3 L4 him-17(e2806) males and one L4 
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
 hermaphrodite on a 

cross plate, to increase cross success rate, create 3 to 5 cross plates 
 

2. Observe the rate of male progenies on the plates after 3 to 4 days, if many 
male progenies (more than 1% male) are observed, that indicates a success 
cross. 

 

3. Pick 3 L4  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

+
; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2806)

+
 (non-roller) males and one L4 

ℎ𝑇𝑇2
𝑞𝑞𝑞𝑞1

 
hermaphrodite on a cross plate, to increase cross success rate, create 3 to 5 
cross plates 

 

4. Pick at least 24 L4  
𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
 ; ℎ𝑖𝑖𝑖𝑖−17(𝑒𝑒2806)

+
 (non-green rollers) to 

hermaphrodites individually to separate small seeded plates  
 

5. Genotype every hermaphrodite after they lay over 50 eggs 
 

6. Keep  𝑥𝑥𝑥𝑥𝑥𝑥−1(𝑜𝑜𝑜𝑜709)

𝑞𝑞𝑞𝑞1
;  ℎ𝑖𝑖𝑖𝑖 − 17(𝑒𝑒2806) (non-green rollers) as stock and xnd-

1(ok709); him-17(e2806) for experiment 
C. elegans Counts Protocol  

 
In order to calculate clutch size, brood size, hatching rate and male rate, numbers of eggs, 
progenies and males were counted for every single worm.   
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1. At 0 hour: place a single L4 hermaphrodite worm(mother) on a 

small seeded plate at 20 ℃ 
2. After every 18 to 20 hours: transfer the mother to a fresh small 

seeded plate and count numbers of eggs left on the old plate until no 
eggs are laid or the mother are arrested. Always place plates at 
20 ℃ 

3. Count hatched worms and category their sexes to hermaphrodite or 
male 3 or 4 days after eggs are laid 

4. If necessary, genotype the mother after all eggs are laid  
 

C. elegans Storage Protocol 

 
 
Freezing buffer:  
 

1X worm freezing buffer                   1L 
NaCl                                       20 ml of 5 Molar 
KH2PO4 anhydrous                        6.8 gm 
Glycerol                                    150 ml 
1xM9 media                                500 ml 
10N NaOH                                 560 µl 
1M MgSO4                                 600 µl  
dH2O                                       to make 1L 
Sterilize by 0.2-micron filter and store at 4 C 

 
 

Freeze and store C. elegans 
  

1. Pick 10 L4 hermaphrodites on a large NGM plate  
2. Starve worms starve for 5 to 7 days 
3. Add 1ml of freezing buffer and wash the plate to cryotubes 
4. Leave the plate at -80℃ for 48 hours  
5. Put the cryotubes in Liquid Nitrogen 
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