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Abstract

Cardiovascular disease (CVD) is a group of disease that involve the cardiovascular system. 

According to World Health Organization, it is the leading cause of death worldwide and 

hypertension is a major risk factor of CVD. Pregnancy is a special “window” for women and 

the physiological change could reflect enduring risk for CVD. In a recent study, researchers 

were interested in whether placental malperfusion could predict risk of CVD 8-10 years after 

delivery, and blood pressure (BP) is one of the endpoints of interest. In this thesis, we 

studied whether placental malperfusion is predictive for elevated BP. BP was repeatedly 

measured for three times during the office visit, thus the data had a longitudinal structure. 

One challenge is that BP fluctuates with regards to time during a day, and it is essential to 

adjust for the potential confounding effect of time in regression analyses. Splines provide a 

powerful tool to adjust for such relationship with abundant flexibility. In this thesis, nat-

ural cubic splines (NCS) and smoothing splines (SS) were considered and compared. As a 

consequence, application of the splines could identify significant predictive biomarkers, with 

flexible adjustment of the time effect. NCS is easier to use while SS is more flexibile. 

Public health importance: Limited number of research have been done about the prog-

nostic utility of placental malperfusion on risk of hypertension and CVD. Splines provide a 

powerful and flexible tool to characterize such a relationship.
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1.0 Introduction

Cardiovascular disease is a life-course disease which involves the heart and blood vessels

in human bodies, and the common types of CVD includes coronary heart disease, cerebrovas-

cular disease, peripheral arterial disease and rheumatic heart disease.[1] CVD is the major

cause of death in the United States, accounting for more than 28.8 percent of the total death

in 2017.[2] The risk of CVD starts accumulating since the early stage of adulthood, and often

relates to the onset of CVD later in life.[3] For women, pregnancy is a unique ”window” to

go through a ‘stress test’ of the cardiovascular system and has the potential CVD risk factors

manifest in their early stage of life.[4]

Hypertension is a common and serious medical condition characterized by elevated blood

pressure (BP) measurements.[1] According to the 2017 Guideline for the Prevention, Detec-

tion, Evaluation, and Management of High Blood Pressure in Adults by American College of

Cardiology, hypertension is diagnosed by the systolic blood pressure (SBP) measurement be-

ing ≥ 130 mmHg or the diastolic blood pressure (DBP) measurement being ≥ 80 mmHg.[5]

Hypertension is one of the most important risk factors for CVD, and approximately half

of the coronary heart disease and stroke cases are related to high BP.[6] Because BP is an

important factor affecting the health of one’s cardiovascular system, it is critical to detect

hypertension early and treat accordingly. However, as much as 38% of hypertension cases

were undetected before the age of 40.[7]

In a recent window study initiated in Magee-Womens Hospital in Pittsburgh, PA, 499

women were selected from an retrospective cohort of pregnant women with deliveries at the

Magee-Womens Hospital in 2008 or 2009. The primary objective of this study is to identify

clinical biomarkers that predict the risk of CVD. A primary endpoint is the BP measured at

clinic visits, and the primary biomarker of interest is placental malperfusion. The research

subjects’ BP were measured at their clinical office visit about 8-10 years after their index

delivery, with a standardized manner by trained research staff. The BP were measured after

a five-minute rest, and were measured for three times on the non-dominant arm using an

appropriately sized cuff with one-minute intervals between each adjacent measurements.
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The research subjects’ placental pathology were extracted from an existing dataset, as

well as other clinical features such as BMI at pregnancy, preeclampsia, age and family his-

tory of heart disease. Placental malperfusion, referred to poor placental perfusion, has

the main pathological characteristics as decidual vasculopathy, infarcts, abruption and ad-

vanced villous maturation.[8] It is known that placental malperfusion has well-established

associations with adverse pregnancy outcomes (APO) such as preeclampsia, growth re-

striction and preterm delivery, and APO is related to increased risk for future CVD in

women.[9, 10, 11, 12, 13] In this study, it was proposed that the pathological impairments

converge in the placenta to make the placental malperfusion a common pathway to mul-

tiple APOs, and thus a consequential, unifying feature that links APOs to maternal car-

diometabolic and microvascular risk after delivery.

The placenta malperfusion lesions were determined by both gross and microscopic pla-

cental pathology findings following a uniform consensus criteria described in the Amster-

dam Placental Workshop Group Consensus Statement.[14] The gross findings are placental

hypoplasia, infarction, and retroplacental hemorrhage and the microscopic findings are ab-

normalities of villous development, which includes distal villous hypoplasia and accelerated

villous maturation. In this research, the evidence of malperfusion lesions were grouped in five

domains including vasculaopathy, advanced villious maturation, infarction, fibrin deposition

and perivillous fibrin, and marked as one union factor called “malperfusion”.

One of the challenges in the study of BP is that BP fluctuates during the day and has a

strong circadian pattern.[15] For each person, BP measurements are not constant during the

day, thus the measurement time should be adjusted to account for potential confoundings.

Splines is a powerful tool to provide a flexible adjustment for the fluctuating pattern. It fits

multiple functional forms for each specified or default time intervals. Therefore it could fit

very flexible curves according to the time range.

Natural cubic spline (NCS) is a widely used tool to provide a flexible fit between a contin-

uous predictor and the continuous outcome. It is specially useful when such a relationship is

not the primary concern of the study, but it is necessary to be adjusted for the data analysis.

To implement NCS, polynomial curves which are continuous up to the second derivatives

are fitted in each pre-defined time intervals. Basically, it is a piecewise smooth curve with
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different functional forms on each interval and continuous at the knots (boundary of the

intervals), and will provide a more flexible fit than a regular polynomial regression.

Smoothing spline (SS) is a more general spline method than NCS. Instead of fitting the

relationship in regard to specific knots, it will fit the curves according to all time points. It

is more flexible, and penalizes both the bias and roughness of the fitted curve. However, it

is more difficult to program and implement in practice.

The objective of this thesis is to describe the difference of the 8-10 years postpartum BP

measurements between woman with placental evidence of maternal malperfusion and those

without such lesions during pregnancy and determine whether women with those lesions

have excess risk of hypertension.

There are two challenges in the analysis of BP data in the window study. First, each

research subject had three repeated measurements, thus the data structure is longitudinal.

Second, there is wide variation in time when those measurements were taken. In our data,

the office visit time ranged from to 06:53am to 15:34pm, and the comparison of BP should

adjust for the measurement time. Based on the data structure and research question, we

incorporated NCS and SS in the mixed-effect models separately and compared the results.

In Chapter 2, we will give a more detailed review of the two spline methods. In Chapter

3 we will describe the dataset and apply spline-based methods. We conclude with discussion

in Chapter 4.
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2.0 Methods

2.1 Non-Parametric Regression Models

Linear regression is one of the most commonly used techniques to model the relation-

ship between the outcome variable y and the predictors {x1, x2, ..., xp}.[16] The model is

characterized by

yi = β0 + β1x1,i + ...+ βpxp,i + εi, i = 1, 2, ..., n

where β0 is the intercept, {β1, ..., βn} are regression coefficients corresponding to predictors

{x1, ..., xp} and εi is the residual term. Given the observed data, one could fit the linear

regression model and use the model to predict outcomes for new observations. Typically,

linear regression has the assumption of linear relationship, independent of residuals and

equal variance of residuals (homoscedasticity). The model is fitted with least square, which

estimates by minimizing residual sum of square
∑n

i=1{yi−β0−β1x1,i− ...−βpxp,i}2. Linear

regression is easy to fit and interpret, in average, y would increase by β1 with each unit

increase in x1 and other covariates fixed. However, linear regression is not very flexible and

could only model linear relationship.

In reality, there are many occasions that the relationship between the outcome variable

and the predictors are obviously non-linear. Then, polynomial regression model is more

appropriate. Given data points {yi, ti, i = 1, 2, ..., n}, the model has the form

yi = g(ti) + ε, i = 1, 2, ..., n

where g(t) is a polynomial function of t. In practice, it is essential to consider both the

goodness-of-fit and the roughness of the curve. The goodness-of-fit of a curve is measured by

the residual sum of square
∑n

i=1{Yi−g(ti)}2. The roughness of a curve defined on an interval

[a, b] can be measured by the second derivative g′′(t) if the curve is twice differentiable, and

the absolute value of g′′ indicates the degree of fluctuation. Therefore, the integrated squared

second derivative
∫ b
a
{g′′(t)}2 dt is a global measure of roughness, which has computational

advantages compared to
∫ b
a
|g′′(t)| dt. In order to balance between the residual sum of squares
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and the roughness of the fitted curve, a roughness penalty approach is introduced. Given a

smoothing parameter α > 0, the penalized sum of squares is defined as

S(g) =
n∑
i=1

{Yi − g(ti)}2 + λ

∫ b

a

{g′′(t)}2
dt.

where λ is the smoothing parameter. The penalized least squares estimator is the curve

function ĝ that minimizes the penalized sum of squares function S(g) for a fixed λ. Compared

to least square estimator, the penalized least squares estimator takes both the goodness-of-fit

of the data and the roughness of the curve into consideration. As λ goes to zero, the penalty

term in penalized least square goes to zero, thus the fitted curve would be interpolating every

data point and could overfit a new dataset. As λ goes to infinity, the penalty term is the

dominating part of the penalized least squares and it would force the roughness term to be

zero, thus the curve would become a linear regression fit but there would be a poor fit for

the data. Such a nonparametric regression model could provide a flexible description on the

association between the outcome and predictors.

2.2 Natural Cubic Splines

Compared to regression models, spline functions are more flexible to model this relation-

ship. In this section, we will describe natural cubic splines with more details.

Given knots t1, t2, ..., tn on an interval [a,b], such that a < t1 < t2 < ... < tn < b, a curve

function g(t) defined on [a, b] is a cubic spline if it satisfies two conditions.

(i) g(t) is a cubic polynomial on each interval (a, t1), (t1, t2), ..., (tn, b).

(ii) The function and its first and second derivatives are continuous at each knot ti, so

that the polynomial pieces of g(t) fit together at the knots ti.

A cubic spline defined on [a, b] is said to be a natural cubic spline if its second and third

derivatives at a and b are zero. This means that g(t) is linear on the intervals [a, t1] and

[tn, b].

It is natural to express the natural cubic spline defined on [a, b] as

g(t) = di(t− ti)3 + ci(t− ti)2 + bi(t− ti) + ai for ti ≤ t ≤ ti+1, i = 0, 1, ..., n (2.1)
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and we define t0 = a and tn+1 = b. Because of the continuity of g(t) and its first two

derivatives at internal knots, there are restrictions among the coefficients {ai, bi, ci, di}, and

such representation is redundant in practice.

The value-second derivative representation provide a more convenient way to specify a

NCS with the value g(ti) and the second derivative g
′′
(ti) at each knots.[17] Let gi = g(ti) be

the NCS on interval [a, b] with fixed knots ti, i = 1, ..., n such that a < t1 < t2 < ... < tn < b.

Define gi = g(ti) and γi = g
′′
(ti). From the property of NCS we know that γ1 = γi = 0.

Define two matrix g and γ as g = [g1, g2, ..., gn]T and γ = [γ2, γ2, ..., γn−1]T . Then we can

define the n× (n− 2) matrix Q and the (n− 2)× (n− 2) matrix R. Let hi = ti+1 − ti for i

= 1,...,n-1, then matrix Q is constructed as

qj−1,j = h−1
j−1, qj,j = h−1

j−1 − h−1
j and qj+1,j = h−1

j j = 2, ..., n− 1

and qi,j = 0 for |i− j| ≥ 2.

R is a symmetric matrix constructed with elements ri,j:

ri,i =
1

3
(hi−1 + hi) for i = 2, ..., n− 1,

ri,i+1 = ri=1,i =
1

6
hi for i = 2, ..., n− 1,

and ri,j = 0 for |i− j| ≥ 2

By theorem, a NCS can be specified if and only if the relationship QTg = Rγ is

satisfied.[17] Let g be the cubic curve on interval [tL, tR], and define g(tL) = gL, g(tR) = gR,

g
′′
(t+L) = γL, g

′′
(t−R) = γR, h = tR − tL. Then we have

g
′′
(t) =

(t− tL)γR + (tR − t)γL
h

g
′′′

(t) =
γR − γL

h

because g
′′
(t) is linear and g

′′′
(t) is constant on the interval.

By taking integration with respect to t and plugging in the expressions g(tL) = gL,

g(tR) = gR, we have the expression of g as:

g(t) =
(t− tL)gR + (tR − t)gL

h
− 1

6
(t− tL)(tR − t){(1 +

t− tL
h

)γR + (1 +
tR − t
h

)γL} (2.2)
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This representation has the same form as in (2.1). Given the condition that QTg = Rγ,

γ can be obtained as

γ = R−1QTg

Thus, all the parameters in (2.2) can be obtained from the observed data. Consequently,

the value of the NCS at ant point t can be expressed with matrix g and γ.

In order to illustrate the application of NCS in practice, we provide an example R code.

Suppose given a dataset called “data.office”, SBP measure is named “sbp mmhg” and the

corresponding measurement time is named “bp time”. We could fit a NCS between SBP

and time using the code below.

>z . s <− ns ( data . o f f i c e $bp t ime ,

knots=times ( c ( ‘ 0 8 : 3 6 ’ , ‘ 1 0 : 2 2 ’ , ‘ 1 2 : 0 5 ’ , ‘ 1 3 : 5 2 ’ ) ) ,

Boundary . knots = times ( c ( ‘ 0 6 : 5 4 ’ , ‘ 1 5 : 3 2 ’ ) ) )

>NCS1 <− lm(sbp mmhg ˜ z . s , data = data . o f f i c e )

The function “ns()” is used to generate the basis matrix for the NCS with respect to

the measurement time in the dataset. The interval is set to be 06:54am and 15:32pm and

the internal knots are selected to be 08:51am, 10:20am, 12:02pm and 13:43pm. The basis

matrix is stored in the object “z.s”, and one can directly apply the basis matrix to a linear

model to fit the NCS between SBP and the measurement time. The fitted NCS model was

stored in the object “NCS1” and can be further applied into other statistical models such as

mixed-effects model.

2.3 Smoothing Splines

Compared to fitting polynomial curves with NCS, smoothing splines is a more gen-

eral method to estimate the relationship. In this section, we describe a method developed

by Yuedong Wang (2011) to model smoothing splines based on reproducing kernel Hilbert

space.[18]
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2.3.1 Reproducing Kernel Hilbert Space (RKHS)

On a linear space E, a nonnegative function || · || is called a norm if it satisfies

(i)||f || = 0 only when f = 0;

(ii)||αf || = |α| · ||f ||;

(iii)||f + g|| ≤ ||f ||+ ||g||;

And an inner product is a mapping (·, ·): E × E → R which satisfies

(i)(f, g) = (g, f);

(ii)(αf + βg, h) = α(f, h) + β(g, h);

(iii)(f, f) ≥ 0 and (f, f) = 0 only when f = 0;

Thus, a norm could be defined by an inner product as ||f || ,
√

(f, f), and an linear

space together with an inner product is called an inner product space.

If every Cauchy sequence in the space E converges to an element in E, then the space

E is called complete. A Hilbert space (H) is a complete inner product space defined by the

norm.

The most common example of a Hilbert space is a Euclidean space of three dimensions

(R3) with an inner product defined as
x1

x2

x3

 ·


y1

y2

y3

 = x1y1 + x2y2 + x3y3

The inner product satisfies the three properties above, and a norm can be defined ac-

cordingly as ||x|| =
√
x · x. Given the completeness of Euclidean space, the Euclidean space

with an inner product is a complete inner product space, thus is a Hilbert space.

Let H denote a Hilbert space and the elements of H are real-valued functions f : X →

R, where X is an random set. For any fixed x ∈ X , define

Lx(f) , f(x), f ∈ H,

then Lx: H → R is called the evaluational functional. A Hilbert space is called a repro-

ducing kernel Hilbert space(RKHS) if every evaluational functional Lx is continuous. Lx is

8



continuous when Lxfn = fn(x) → f(x) = Lxf

Apply the Riesz representation theorem, there exists an unique Rx ∈ H such that

Lx(f) = (Rx, f)

Thus, Rx itself is function: X → R. Define Rx(Z) as a bivariate function of x and z such

that R(x, z) , Rx(z), x, z ∈ X . Here, the bivariate function R(x, z) is called the reproducing

kernel of the RKHS H. It can be proven that the reproducing kernel is nonnegative definite:

R(x, z) = Rx(z) = Lx(Rz) = (Rx, Rz) ≥ 0

For any α1, ..., αn ∈ R and x1, ..., xn ∈ X ,

n∑
i,j=1

αiαjR(xi, xj) = R(
n∑
i=1

αixi,
n∑
j=1

αjxj) ≥ 0

Thus, for any x1, ..., xn, the matrix |R(xi, xj)|n×n is nonnegative definite.

Denote S as a subspace of a Hilbert space H, then the subspace S is a Hilbert space if S is

closed. The orthogonal complement of can be defined:

S⊥ , {f ∈ H : (f, g) = 0 for all g ∈ S}

Thus for all elements f ∈ H, f can be decomposed as f = g + h, where g ∈ S and h ∈ S⊥.

Meanwhile, H is decomposed as H = S
⊕
S⊥

Suppose H is RKHS and H = H0

⊕
H1, then the RK has the property that

R(x, z) = R((x0, x1), (z0, z1)) = R0(x0, z0) +R1(x1, z1)

9



2.3.2 RKHS for Smoothing Spline

Consider the general smoothing spline regression(SSR) model

yi = f(xi) + εi, i = 1, ..., n

where yi is the observation of the function f given the covariates xi, and εi is the independent

random error with mean zero and variance σ2. f is the functional form of the smoothing

spline. The Sobolev space is defined as:

Wm
2 [a, b] = {f : f, f

′
, ..., f (m−1) are absolutely continuous,

∫ b

a

(f (m))2dx ≤ ∞}

If the smoothing spline f has a domain of X = [a, b], and f ∈ Wm
2 [a, b], then the the

smoothing spline estimate f̂ ∈ Wm
2 [a, b] is the solution to the penalized least squares(PLS):

1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

(f (m)(x))2dx (2.3)

The Sobolev space Wm
2 [a, b] is an RKHS H and one can define an inner product as

(f, g) =
m−1∑
ν=0

f (ν)(a)g(ν)(a) +

∫ b

a

f (m)(x)g(m)(x)dx

Define a decomposition of Wm
2 [a, b] as Wm

2 [a, b] = H = H0

⊕
H1, where H0 is the subspace

of all the (m-1) order polynomials and H1 contains the orthonormal complement of H0.

H0 = span{1, (x− a), ..., (x− a)(m−1)/(m− 1)!}

H1 = span{f : f (ν)(a) = 0, ν = 0, ...,m− 1,

∫ b

a

(f (m))2dx <∞}

Thus, the corresponding RKs of the RKHS Wm
2 [a, b] = H = H0

⊕
H1 are

R0(x, z) =
m∑
ν=1

(x− a)(ν−1)

(ν − 1)!

(z − a)(ν−1)

(ν − 1)!

R1(x, z) =

∫ b

a

(x− u)
(m−1)
+

(m− 1)!

(z − u)
(m−1)
+

(m− 1)!
du

10



Here, (x)+ = max{x, 0}. Denote P1 as the orthogonal projection from a function onto H.

For any f ∈ H, f can be decomposed as f = f0 + f1, where f0 ∈ H0, f1 ∈ H1. Thus, the

roughness penalty term ca be expressed as∫ b

a

(f (m))2dx = ||f1||2 = ||P1f ||2

The PLS in (2.3) can be written as:

1

n

n∑
i=1

(yi − f(xi))
2 + λ||P1f ||2 (2.4)

There is no penalty applied to functions is f0. The example of polynomial splines suggests

that RHKS could be used to construct the more general smoothing spline with the following

conditions:

(i)The model space of f is an RKHS H;

(ii)The model space can be decomposed as H = H0

⊕
H1, where functions f0 ∈ H0 are not

penalized;

(iii)A penalty term as λ||P1f ||2.

2.3.3 Application in General Smoothing Splines

A more general SSR model is that

yi = Lif + εi, i = 1, ..., n

where Li are bounded linear functions that Li ∈ H. This is useful when the observation of

f(x) is made through linear functions of f(x), such as f
′
(xi). (2.) is a special case of (2.)

where Li is the evaluational fuctionals at design points(covariates) such that Lif = f(xi).

Li is are bounded according to the definition of RKHS.

In the more general smoothing spline model, the estimate of f , denoted as f̂ , minimizes the

PLS in a form as
1

n

n∑
i=1

(yi − Lf)2 + λ||P1f ||2

The domain of f is an arbitrary set X and the model space is an RKHS H on X with RK

R(x, z), which can be decomposed as H = H0

⊕
H1. Equivalently, the function can be
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decomposed as f = f0 + f1. The subspace H0 is a finite dimensional space, and its basis

functions are consisted of {φν(x), ν = 1, ..., p}. H0 is usually called the null space because

the functions f0 ∈ H0 are not penalized. Separately, f0 and f1 are the projection of f onto

H0 and H1. Thus, the magnitude of f1 can be measured with ||P1f ||, which represents the

departure from the null space and can be used to assess the appropriateness of the model.

And λ is used to trade off between the goodness of fit and the appropriateness of the model.

Applying the Riesz representation theorem, there exists a unique representer ηi ∈ H =

Wm
2 [a, b] such that

Lif = f(xi) = (ηi, f)

ηi(x) = (ηi, Rx) = LiRx = Li(z)R1(x, z)

Li(z) is the evaluation functional at xi applied to a function of z.

Let ξi = P1ηi, then ξi is the projection of ηi onto H1. It can be proved that P1 is self-adjoint

that

(P1g, h) = (P1g, P1h+ {h− P1h}) = (P1g, P1h) = (P1g + {g − P1g}) = (g, h)

Given R(x, z) = R0(x, z) +R1(x, z), it can be shown that

ξi(x) = (ξi, Rx) = (P1ηi, Rx) = (ηi, P1Rx) = Li(z)R1(x, z)

Thus, the projection of the representer ηi onto H1, ξi, can be calculated by applying the

operator Li(z) to R1. The inner product of ξ is defined as

(ξi, ξi) = Li(x)ξj(x) = Li(x)Lj(z)R1(x, z)

Recall that {φν(x), ν = 1, ..., p} is the basis function for H0 where there is no penalty, define

T as a n× p matrix and Σ as a n× n matrix that

T = {Liφν}n p
i=1 ν=1

Σ = {Li(x)Lj(z)R1(x, z)}ni,j=1

12



Then, assume that

f̂(x) =

p∑
ν=1

dνφν(x) +
n∑
i=1

ciξi(x) + ρ

where ρ ∈ H1, and (ρ, ξi) = 0 for i = 1,...,n.
∑p

ν=1 dνφν(x) is the projection of f̂ onto

H0, denoted as P0f .
∑n

i=1 ciξi(x) is the projection of P1f̂ onto the subspace spanned by

{ξi(x), i = 1, ..., n}. Recall that ξi = P1ηi ∈ H1, then ζi = ηi − ξi ∈ H0. ζi and ξi are the

projection of the unique representer ηi ∈ H onto H0 and H1, respectively. Therefore,

Liρ = (ηi, ρ) = (ξi, ρ) + (ζi, ρ) = 0 + 0 = 0

Denote y = (y1, ..., yn)T and f̂ = (L1f̂ , ...,Lnf̂)T respectively as the observation vector and

fitted value vector. Let d = (d1, ..., dp)
T and c = (c1, ..., cp)

T , then we have

f̂ = Td+ Σc

In addition, ||P1f ||2 = ||
∑n

i=1 ciξi + ρ||2 = cTΣc + ||ρ||2. Hence, the PLS can be reformed

as
1

n
||y − Td− Σc||2 + λ(cTΣc+ ||ρ||2)

Thus, the PLS is minimized only when ρ = 0.

The Kimeldorf-Wahba representer theorem is: Given T is of full column rank. Then the

PLS in (2.4) has a unique minimized from[19]

f̂(x) =

p∑
ν=1

dνφν(x) +
n∑
i=1

ciξi(x)

At ρ = 0, the PLS term is
1

n
||y − Td− Σc||2 + λcTΣc

where c and d are coefficients that needed to be estimated from the observed data. Apply

QR decomposition to T , we have T =
(
Q1 Q2

)(
R
0

)
, where (Q1, Q2) is an orthogonal matrix

and Q1, Q2 are respectively n×p, n×(n−p) matrices, and R is an upper triangular invertible

p× p matrix.
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Define M = Σ + nλI, it can be shown that the PLS has a solution that the fitted values

f̂ has a form

f̂ = Td+ σc = y − nλc = H(λ)y

where

H(λ) , I − nλQ2(QT
2MQ2)−1QT

2

Computing details are given in the book. It is proved that given the observation (xi, yi)
T , i =

1, ..., n, the fitted values ŷ could be calculated with a specified λ.

2.3.4 Linear Mixed-Effects Model

Linear mixed-effects model is an extension of linear regression model, with both fixed

effects and random effects included.[20] When the outcome is repeatedly measured within

each research subject, it is not proper to assume the observations are independent with other,

and the data has a longitudinal structure and a mixed-effects model should be fitted. Fixed

effect is the variation that is explained by independent predictors, and random effect is the

variation not explained by the predictors. For example, when studying the effect of placental

malperfusion on repeatedly measured BPs, the variation due to placental malperfusion is

fixed effects and the variation within each research subject is random effect. The linear

mixed-effects model has a form

yi = X iβ +Zibi + εi, i = 1, 2, ..., n

where y is the vector of continuous outcome, X are the design matrix, β is the vector of

fixed effects, Z is the matrix of covariates, b is the vector of random effects and ε is the

vector of residuals. For example, X contains the value of placental malperfusion and Z is

the matrix of subject indicators. It is assumed that bi and εi follow normal distribution

with mean zero and variance of matrix D and Ri, respectively. The random effects bi are

independent with the residual error εi for the same subject.
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2.3.5 Semiparametric Mixed-Effects Models

In the motivating dataset of our study, the outcome variable is the three repeatedly

measured BP for each women. For each measurement, both the systolic blood pressure

(SBP) and diastolic blood pressure (DBP) were recorded as well as the measurement time.

For each women, the covariate of primary interest is “placental malperfusion” which is a

binary variable coded as 0 or 1, with 1 representing women with placental malperfusion

and 0 representing women without placental malperfusion. Other binary covariates includes

“preeclampsia” (1 for cases and 0 for non-cases), “race” (1 for black and 0 for others),

“family history of hypertension” (1 for cases and 0 for non-cases) and “family history of

heart disease” (1 for cases and 0 for non-cases). There are two continuous variables, “age”

and “body mass index (BMI) at pregnancy”.

For our repeatedly measured data, the semiparametric linear mixed-effects models has

the form as

yij = STijβ + Lijf + zTijbi + εij, i = 1, 2, ...,m; j = 1, ..., ni,

where yij (i = 1, ..., n and j = 1, 2, 3) represents the jth BP measurements for ith woman.

Here, n is number of subjects in the dataset. β is the coefficient vector of the fixed effects

and bi ∼ N (0,D) are the random effects and D is the covariance matrix. In our data, the

fixed effects are the covariates, and the random effects are the variation of baseline between

each women. Lijf = f(tij) is the smoothing spline function in regards to the time points tij.

εij is the random error and εi = (εi1, ..., εini
)T ∼ N (0, σ2Λi), where Λi = Ini

. The PLS can

be further written as

1

n

m∑
i=1

(yi − STi β − Lif)TWi(yi − STi β − Lif) + λ||P1f ||2, n =
m∑
i=1

ni, (2.5)

where W−1 = ZDZT + Λ, Z = diag(Z1, ..., Zm) and Zi = (zi1, ..., zini
). The minimizer f̂(t)

for the PLS(2.5) is

f̂(t) =

p∑
ν=1

dνφν(t) +
n∑
i=1

Ciξi(t) = Lif
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where {φν(t), ν = 1, ..., p} are the basis functions of H0 with no penalty imposed. And the

PLS term can be reformed as

m∑
i=1

(yi − STi β − T Ti d− ΣT
i c)

TWi(yi − STi β − T Ti d− ΣT
i c) + nλcTΣc

The random effect can be estimated[21] as

b̂ = DZTW (y − Sβ − Td− Σc)

On the other hand, the linear mixed-effects model can be written as

yi = STi β + T Ti d+ µi + ZT
i bi + εi = Xiα + µi + ZT

i bi + εi (2.6)

where µi ∼ N (0, Σ
nλ

), bi ∼ N (0,D), εi ∼ N (0, σ2Ini
) and Σ = (R1(ti, tj)). S

T
i β is the fixed

effect, ZT
i bi is the random effect and T Ti d + µi are related to the smoothing splines. This

method could turn the fitted smoothing splines into a form of linear mixed-effect model, and

fitting the linear mixed-effect model is equivalent to fitting the smoothing splines.

2.4 Adopted Models

The purpose of this thesis is to describe the effect of placental malperfusion on maternal

BP 8 to 10 years after delivery, adjusting for other covariates.

At first, the missingness of BP measurements and measurement time was checked, and

only complete cases were included in the final dataset. The distribution of BP measurements

were checked with QQ-plots and the outliers were excluded from the data. Descriptive

statistics were created for the covariates to check if the study design is balanced.

Then, we studied the effects of the covariates on BP without adjusting the measurement

time. Linear mixed-effects model was used to fit the regression model for our longitudinal

data. Two models were fitted step by step to investigate the random effects and fixed effects.

Model I:

Yij = µi + εij
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Here, Yij denotes the jth measurement of blood pressure for the ith subject. µi denotes

the mean blood pressure for the ith subject, which has a normal distribution with mean µ

and variance τ 2, denoted as µi ∼ N (µ, τ 2). µ is the global mean of blood pressure among the

study population and τ 2 is the variation of blood pressure measurements among subjects.

εij is the error term for the jth measurement of blood pressure for the ith subject, which

follows a normal distribution with mean zero and variance σ2, denoted as εi ∼ N (0, σ2). σ2

denotes the variation of blood pressure measurements within each subject.

Model II:

Yij = αi + βXi + εij

Here, Xi denotes the covariates of the ith subject fitted in the model and β denotes the

coefficients of the covariates. αi denotes the variation of blood pressure measurements be-

tween each subjects, which has a normal distribution as αi ∼ N (0, τ 2). εij denotes variation

of blood pressure measurements within each subject, which has a normal distribution as εi

∼ N (0, σ2).

After that, we used natural cubic spline to adjust for the relationship between BP mea-

surements and measurement time. Then combined the NCS into linear mixed-effects model

to fit the relationship between BP and the covariates of interest, with adjusting for the time.

Model III:

Yij = αi + βXi + g(tij) + εij

with g(tij) representing the NCS.

Lastly, we used smoothing spline to provide a more flexible adjustment for the association

between BP and measurement time. A semiparametric linear mixed-effects model was fitted

as demonstrated in the following.

Model IV:

Yij = αi + βXi + Lf + εij

where Lf = f(tij) represents the smoothing spline term. As illustrated in chapter 2, Model

IV could be fitted by equation (2.6).

In model III and model IV, most of the terms have the same interpretation as in model

II except for the spline term.
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3.0 Data Analysis

3.1 Description of the Data

There were 498 subjects in the original dataset. After excluding subjects with missingness

in their BP measurement times, a total of 367 subjects were included in our study from the

office visit dataset where each subject had 3 repeated measurements of both SBP and DBP

as well as the time for each BP measurement. The normality of the distribution of BP

measures were examined by QQ-plot in R and shown in Figure 1.

Figure 1: QQ Plot Blood Pressure Measures before Excluding Outliers

It is obvious that there were heavy tails in the distribution of both SBP and DBP. After

excluding the outliers (data points outside 1.5 times the interquartile range above the upper

quartile and bellow the lower quartile), there were 351 subjects in our final dataset and the

distribution of the BP measures were very close to normal distribution (Figure 2).
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Figure 2: QQ Plot Blood Pressure Measures after Excluding Outliers

For each subject, the three measurements of BP were performed sequentially in a short

time period, with approximately one minute apart. The measurement times ranged from

06:53am to 15:34pm and the distribution was shown in Figure 3.1 while figure 3.2 shows the

distribution of the measurement time gap for each subject. The time gap was calculated as

the gap between the first measurement and the last measurement for each subject. Most

of the time gaps were smaller than six minutes, thus, for the convenience of our study, the

measurement times of BP were estimated with the mean of the three time records for each

subject.
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(1) Histogram of Blood Pressure Measurement Time

(2) Histogram of Measurement Time Range for Each Subject

Figure 3: Distribution of Blood Pressure Measurement Time

Besides fitting the time trend of BP, we were also interested in the effect of malperfu-

sion, preeclampsia, race (demorace), BMI at pregnancy (prepregbmi), age, family history of

hypertension outside of pregnancy (famhbp) and family history of heart disease (famheart)

on BP and malperfusion was of primary interest. Table 1 summarizes the descriptive statis-

tics for these covariates of interest. The number of records shows how many subjects have

observed data for this covariate.
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Table 1: Descriptive Statistics on Covariates of Interest

Covariates Number of Records (Proportion) Mean (SD) / n (%)

Malperfusion 351 (100%) 117 (33.3%)

Preeclampsia 351 (100%) 45 (12.8%)

Race(black) 351 (100%) 98 (27.9%)

Family History of Hypertension 331(94.3%) 189 (53.8%)

Family History of Heart Disease 305 (86.9%) 72 (20.5%)

BMI at Pregnancy (kg/m2) 247 (70.4%) 26.1 (6.2)

Age (years) 347 (98.9%) 38.0 (6.0)

The Pearson correlation between the three measurements were calculated to examine

the relationship between the three repeated measures(Figure 4). The results showed that

the correlation between the three repeated measurements were exchangeable for both sbp

and dbp, indicating that the order of the measurements does not influence the measurement

result and it was reasonable to treat the three measurement time as an identical one.
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Figure 4: Correlation among Blood Pressure Measurements

3.2 Application of the Linear Mixed-Effects Model

In model I, the variation of blood pressure measurements within each subject was es-

timated to be 49 for sbp and 16 for dbp, and the variation between each subjects had an

estimated value of 121 for sbp and 80 for dbp. From the results, we can tell that the majority

of the variation came from the variation of different subjects, and the repeated measurements

for each subject were consistent.

Table 2 and Table 3 summarized the coefficients, p-values, between subject variations(τ 2)

and within subject variations (σ2) of each univariable models in model II for sbp and dbp

in the office visit data.
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Table 2: Univariable Linear Mixed-Effects Model for SBP

Covariates for Model II Coefficient P-value τ 2 σ2

Malperfusion 0.73 0.58 121.36 49.01

Preeclampsia 7.09 0.0001 115.83 49.01

Race(black) -0.37 0.61 121.36 49.07

Age 0.16 0.13 119.79 49.32

BMI at Pregnancy 0.73 < 0.0001 93.56 51.66

Family History of Hypertension 2.81 0.03 120.55 49.26

Family History of Heart Disease 1.90 0.23 120.94 48.76

Table 3: Univariable Linear Mixed Model for DBP

Covariates for Model II Coefficient P-value τ 2 σ2

Malperfusion 1.77 0.09 79.99 16.22

Preeclampsia 4.39 0.003 78.53 16.22

Race(black) -0.57 0.31 80.61 16.24

Age 0.13 0.11 80.04 15.99

BMI at Pregnancy 0.44 < 0.0001 73.35 15.74

Family History of Hypertension 3.01 0.004 80.62 14.94

Family History of Heart Disease 2.28 0.07 79.28 17.13

It can be noticed that the variation within subjects are smaller than variation between

subjects, and the variation of DBP is much small than SBP. Malperfusion alone was not

significant in predicting either SBP or DBP. Among the covariates of interest, preeclampsia,

BMI at Pregnancy and family history of hypertension were identified to be significant in the

univariable models.

Table 4 and Table 5 summarized the coefficients, p-values, between subject variations

(τ 2) and within subject variations (σ2) of the multivariate models in model II for SBP and

DBP in the office visit data.

23



Table 4: Multivariate Mixed-Effects Model for SBP

Covariates for Model II Coefficient P-value τ 2 σ2

Malperfusion 2.08 0.18

96.45 52.32

Preeclampsia 5.61 0.01

Race(black) 2.95 0.12

Age 0.14 0.32

BMI at Pregnancy 0.66 < 0.0001

Family History of Hypertension 0.41 0.80

Family History of Heart Disease 0.25 0.90

Table 5: Multivariate Mixed-Effects Model for DBP

Covariates for Model II Coefficient P-value τ 2 σ2

Malperfusion 2.94 0.02

69.94 15.92

Preeclampsia 2.60 0.13

Race(black) 2.85 0.06

Age 0.16 0.15

BMI at Pregnancy 0.48 < 0.0001

Family History of Hypertension 1.07 0.42

Family History of Heart Disease 2.17 0.17

In the multivariate model, BMI at pregnancy was significant for predicting both SBP

and DBP. Malperfusion was significant in the multivariate model for DBP and preeclampsia

was significant for in the multivariate model for SBP. Women with malperfusion were esti-

mated to have 2.08 (95% CI [-0.98, 5.14]) mmHg higher SBP and 2.94 (95% CI [0.45, 5.43])

mmHg higher DBP than woman without malperfusion lesion. Even though family history of

hypertension and heart disease were pretty significant in the univariable models, they are not

significant in the multivariate model for both SBP and DBP. The between subject variations

were both much greater that the within subject variation of blood pressure measurements.
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3.3 Application of the Mixed-Effects Model with Natural Cubic Splines

In this section, Model III was fitted with five knots for both SBP and DBP, and plotted

in Figure 5.

Figure 5: Natural Cubic Splines Plot for Blood Pressure over the Measurement Time

As shown in the plot, both SBP and DBP appeared to be slightly increased in the

afternoon of a day. However, the time trend of BP was not obvious. To explore the effect of

malperfusion on the time trend of BP, the NCS plots were plotted by different malperfusion

groups.(Figure 6)

25



(1) Systolic Blood Pressure

(2) Diastolic Blood Pressure

Figure 6: Natural Cubic Splines Plot of Blood Pressure with Grouping of Malperfusion

For both SBP and DBP, the lines for malperfusion group and non-malperfusion group

were very close to each other in the morning. However, the two lines began to diverge in the

afternoon, and those who had malperfusion during pregnancy had higher BP measurements

than those did not have malperfusion.
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The coefficients, p-values, between subject variations (τ 2) and within subject variations

(σ2) of the full models in Model III for SBP and DBP are summarized in Table 6 and Table

7, respectively.

Table 6: Multivariate Mixed-Effects Model for SBP with NCS

Covariates for Model III Coefficient P-value τ 2 σ2

Malperfusion 1.91 0.23

97.41 52.32

Preeclampsia 5.37 0.01

Race(black) 2.90 0.13

Age 0.16 0.25

BMI at Pregnancy 0.67 < 0.0001

Family History of Hypertension 0.43 0.79

Family History of Heart Disease 0.45 0.82

Table 7: Multivariate Mixed-Effects Model for DBP with NCS

Covariates for Model III Coefficient P-value τ 2 σ2

Malperfusion 3.06 0.02

71.10 15.92

Preeclampsia 2.89 0.10

Race(black) 2.52 0.11

Age 0.17 0.14

BMI at Pregnancy 0.48 < 0.0001

Family History of Hypertension 0.95 0.47

Family History of Heart Disease 2.27 0.16

After adding the NCS to adjust measurement time, there is no remarkable change in

the estimated coefficients and the p-values for each covariates. The variation within and

between each women are also relatively similar with the model without NCS. Women with

placental malperfusion are estimated to have 1.91 (95% CI [-1.20, 5.02]) and 3.06 (95% CI

[0.52, 5.59]) mmhg higher SBP and DBP, respectively.
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3.4 Application of Mixed-Effects Model with Smoothing Splines

In this section, we apply the method of smoothing splines into the linear mixed-effect

model to fit the semiparametric linear mixed-effects model. ModelIV

Table 8: Semiparametric Mixed-Effects Model for SBP

Covariates for Model IV Coefficient P-value τ 2 σ2

Malperfusion 2.14 0.17

96.92 52.32

Preeclampsia 5.69 0.01

Race(black) 2.82 0.13

Age 0.15 0.30

BMI at Pregnancy 0.66 < 0.0001

Family History of Hypertension 0.36 0.82

Family History of Heart Disease 0.26 0.89

Table 9: Semiparametric Mixed-Effects Model for DBP

Covariates for Model IV Coefficient P-value τ 2 σ2

Malperfusion 3.08 0.02

69.66 15.92

Preeclampsia 2.87 0.10

Race(black) 2.54 0.10

Age 0.18 0.12

BMI at Pregnancy 0.48 < 0.0001

Family History of Hypertension 0.96 0.47

Family History of Heart Disease 2.20 0.16

The results from the smoothing splines is also quite similar with the estimate from

Model II and III. After adding the SS to adjust measurement time, women with placental

malperfusion are estimated to have 2.14 (95% CI [-0.94, 5.21]) and 3.08 (95% CI [0.59, 5.57])

mmhg higher SBP and DBP, respectively.
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4.0 Conclusions

From the results of the fitted model, we conclude that BMI at pregnancy was the most

significant predictor for BP 8-10 years after delivery in the window study. Considering both

statistical results and pathophysiology mechanism, even though placental malperfusion was

only statistically significant for DBP at the commonly used level of 0.05, the influence of

placental malperfusion should not be ignored to evaluate the risk of post-delivery CVD for

women.

Both NCS and SS provide powerful tools to adjust for the time trend of BP measurements

in our dataset. NCS is easier to fit and combine in the linear mixed-effects model. However,

NCS need to manually select knots or specify the degree of freedom, and one could get

different results with different settings in the NCS model.

Smoothing spline is a more general and flexible method. SS will fit in regards as all the

time points, thus no knots needs to be selected. It could fit more than the cubic polynomial

splines in NCS, and it could combine the smoothness penalty into a semiparametric linear

mixed-effect model to fit the data. However, this method is much more complicated than

NCS, and it is harder to implement in software and takes longer time to compute.

Based on the analytical results, we conclude that placental malperfusion is a prognostic

biomarker of DBP at about 8-10 years after delivery. “Preeclampsia” and “BMI at preg-

nancy” are very significant in our study, indicating that health provider should use these

clinical profiles to consider interventions to reduce the risk of hypertension and consequential

health impacts.
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Appendix

Example R Code

#Read in the c leaned d a t a s e t

data . o f f i c e<−read . csv ( ’ data o f f i c e order f i n a l 1 0 5 3 . csv ’ )

l ibrary ( lme4 )

l ibrary ( lmerTest )

#Model I

#Fi t model I f o r SBP

glm1 . s <− lmer ( sbp mmhg ˜ (1 | Window ID) , data=data . o f f i c e )

#Fit model I f o r DBP

glm1 . d <− lmer (dbp mmhg ˜ (1 | Window ID) , data=data . o f f i c e )

#Model I I

#Fi t m u l t i v a r i a t e model I I f o r SBP

glm2 . s<−lmer ( sbp mmhg ˜ malper fus ion + demorace +prepregbmi + age

+ preec lamps ia + famhbp

+famheart + (1 | Window ID) , data=data . o f f i c e )
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#Fit m u l t i v a r i a t e model I I f o r DBP

glm2 . d<−lmer (dbp mmhg ˜ malper fus ion + demorace +prepregbmi + age

+ preec lamps ia + famhbp

+famheart + (1 | Window ID) , data=data . o f f i c e )

#The code f o r m u l t i v a r i a t e model I I can be e a s i l y transformed f o r

f i t t i n g u n i v a r i a b l e model

#I I by changing the c o v a r i a t e s , f o r example , u n i v a r i a t e model f o r

SBP with malper fus ion

glm3 . s<−lmer ( sbp mmhg ˜ malper fus ion + (1 | Window ID) , data=data .

o f f i c e )

#Model I I I

l ibrary ( s p l i n e s )

l ibrary ( chron )#package to d e a l wi th time v a r i a b l e

#Fi t the n a t u r a l c u b i c s p l i n e s f o r SBP

z . s<−ns (data . o f f i c e $mean bp time ,

knots=chron : : t imes ( c ( ’ 0 8 : 51 : 40 ’ , ’ 1 0 : 20 : 00 ’ , ’ 1 2 : 02 : 00 ’ , ’

1 3 : 43 : 00 ’ ) ) ,

Boundary . knots = chron : : t imes ( c ( ’ 0 6 : 54 : 00 ’ , ’ 1 5 : 32 : 00 ’ ) ) )

NCS1<−lm( sbp mmhg ˜ z . s , data = data . o f f i c e )

#Fit the n a t u r a l c u b i c s p l i n e s f o r DBP

z . d<−ns (data . o f f i c e $mean bp time ,

knots=chron : : t imes ( c ( ’ 0 8 : 51 : 40 ’ , ’ 1 0 : 20 : 00 ’ , ’ 1 2 : 02 : 00 ’ , ’

1 3 : 43 : 00 ’ ) ) ,

Boundary . knots = chron : : t imes ( c ( ’ 0 6 : 54 : 00 ’ , ’ 1 5 : 32 : 00 ’ ) ) )
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NCS1 . d<−lm(dbp mmhg ˜ z . s , data = data . o f f i c e )

#Fit model I I I f o r SBP

ncsglm1 . s<−lmer ( sbp mmhg ˜ malper fus ion + z . s + prepregbmi +

demorace +

preec lamps ia + age + famhbp + famheart + (1 | Window

ID) , data=data . o f f i c e )

#Fit model I I I f o r DBP

ncsglm1 . d<−lmer (dbp mmhg ˜ malper fus ion + z . d + prepregbmi +

demorace +

preec lamps ia + age + famhbp + famheart + (1 | Window

ID) , data=data . o f f i c e )

#Model IV

#The semiparametric mixed−e f f e c t s model ( slm ) f u n c t i o n i s b u i l t in

the package ” a s s i s t ”

l ibrary ( a s s i s t )

#Fit model IV f o r SBP

#data1 i s data . o f f i c e a f t e r e x c l u d i n g a l l miss ing v a l u e s because

slm () f u n c t i o n does not a l l o w

#miss ing v a l u e

slm1 . s<− slm ( sbp mmhg˜mean bp time + malper fus ion + demorace +

prepregbmi +

preec lamps ia + age + famhbp + famheart ,

rk=cubic ( chron : : t imes (mean bp time ) ) ,

random=l i s t (Window ID=˜1) , data=data1 )
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#Fit model IV f o r DBP

slm1 . d<− slm (dbp mmhg˜mean bp time + malper fus ion + demorace +

prepregbmi +

preec lamps ia + age + famhbp + famheart ,

rk=cubic ( chron : : t imes (mean bp time ) ) ,

random=l i s t (Window ID=˜1) , data=data1 )
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