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Abstract 

Predicting Cancer Drug Effectiveness with Deep Learning Artificial Intelligence 
 

Michael Qi Ding, PhD 
 

University of Pittsburgh, 2020 
 
 
 
 

Despite advances in molecular technologies, application of precision medicine in clinical 

oncology remains difficult. Although widely used, single-gene biomarkers are imperfect predictors 

for the effective administration of targeted therapy. Meanwhile, nonspecific cytotoxic medications 

lack established biomarkers to guide their usage, yet they remain first-line chemotherapy for many 

patients. As the formulary of precision medications and tissue-agnostic treatments expands, there 

is a pressing and growing need for sensitive and specific companion diagnostic testing. The 

effective application of powerful computational techniques holds great potential for assisting 

clinicians and patients in the navigation of ever-increasingly complex treatment decisions.  

To address this challenge, we applied state of the art deep learning techniques and modern 

machine learning frameworks to develop a deep neural network autoencoder for learning latent 

representations of integrated omics data from cancer cell lines. We used these representations to 

build predictive models of drug sensitivity. We evaluated the effectiveness of these models using 

a variety of preclinical and clinical data to assess potential for translational impact.  

This research is significant in three primary ways. First, we developed a novel data-driven 

approach to precision medicine. Second, we demonstrated the potential for this approach to 

improve clinical outcomes relative the current standard of care. Third, we demonstrated that this 

approach not only optimizes therapeutic efficacy in preclinical cancer models, but is also 

generalizable to real, clinical tumors.   
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1.0 Introduction 

Precision oncology, the practice of using data from analyses of biomarkers and next-

generation sequencing to guide therapies, has the potential to revolutionize cancer medicine [1]. 

Over time, usage of the term has transitioned from restrictive descriptions of specific targeted 

therapies, such as tyrosine kinase inhibitors, to encompass the general prospect of directing therapy 

based on genomic profiles, independent of anatomically or histologically defined cancer types [2]. 

The success of this endeavor depends on two components: the identification of genomic alterations 

that drive individual tumors, and the development of effective methodologies for matching 

effective targeted therapies to these alterations once identified [3]. 

1.1 Description of the Problem 

In the current practice of precision oncology, the prescription of molecularly targeted 

therapies is mainly based on the altered genomic status of a drug-target gene as a therapeutic 

indicator, but this approach benefits only a small percentage of patients. The cause is two-fold. 

First, the percentage of tumors with actionable targeted therapies using approved agents under 

current clinical guidelines is generally estimated to be in the single digits [4]. Second, once 

administered according to these guidelines, the effectiveness of a therapy is not guaranteed [5]. 

Most molecular targeted agents only partially inhibit the intended signaling pathway, and many 

suffer from poor selectivity, affecting up to as many as 17 different known targets. In contrast, 

nonspecific cytotoxic medications lack well-established biomarkers to guide their usage, but they 
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remain first-line chemotherapy for many patients [4]. The development of effective companion 

diagnostic tests for guiding treatment is critical for effectively utilizing the existing 

armamentarium of targeted and non-targeted medications, as well as for incorporating future 

advances in molecularly targeted therapy and immunotherapy.  

Recent large-scale pharmacogenomics screening on cancer cell lines [6, 7] and patient-

derived xenografts [8] has explored the effectiveness of both molecular targeted and nonspecific 

therapies in inhibiting the growth of in vitro and in vivo cancer models. These studies found that 

for the majority of molecularly targeted drugs, genomic markers are not accurate indicators. Not 

only did some cancer samples resist medications that genomic markers indicated should be 

effective, there existed other samples that were found to be sensitive to molecular targeted drugs 

even though genomic status of the corresponding target genes were wild type.  

Translated into a clinical setting, these findings suggest that the presence of a single genetic 

indicator may not be sufficient for administering a molecular targeted therapy, and also that 

additional patients beyond those with aberrant genomic markers may potentially benefit from 

receiving such a targeted treatment. Accurately matching patients with effective therapies would 

both expand the application of existing anti-cancer drugs as well as reduce the rate of ineffective 

therapy. Achieving this goal requires progressing beyond the use of conventional genomic markers 

and utilizing modern advances in the collection and analysis of genome-scale omics data.  

1.2 Significance of this Research 

Clinical oncologists require companion diagnostic tests that provide sensitive and specific 

predictions about the potential effectiveness of a medication for a given patient [9]. Current clinical 
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guidelines regarding the administration of molecular targeted chemotherapies generally take into 

consideration some clinical variables and the genomic status of a small number of single nucleotide 

polymorphisms. These rule-based systems lack the capacity to accurately model the complex 

processes that give rise to cancer and have limited utility as predictors for drug effectiveness. The 

incorporation of a wider array of genetic and genomic information is key to building better suited 

models that can properly balance bias and variance. In this research, we apply a deep learning 

approach to utilize integrated omics data to significantly improve the practice of drug sensitivity 

prediction.  

This dissertation recounts the journey of the creation and validation of a novel platform 

technology for the effective utilization of rapidly expanding molecular healthcare data in clinical 

care. Aside from the development of the technology itself, this research represents significant 

contributions to knowledge regarding the effective administration of chemotherapy and to theory 

of the optimization and behavior of deep neural networks. It is our deepest hope that this research 

will someday also contribute to improving the practice of precision medicine. 
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2.0 Background 

2.1 Brief History of Clinical Oncology 

The clinical practice of treating cancer dates back to at least 3000 BC, when the earliest 

known recorded cases of cancer were documented in Ancient Egypt [10]. The disease was not 

well-understood at the time, and although the Egyptians and contemporaneous civilizations 

attempted a range of remedies ranging from cauterization to arsenic and metallic pastes, there was 

no effective treatment. As knowledge and understanding of cancer grew due to advancements in 

technology and biological theory, the shape of clinical oncology evolved alongside it. 

In Ancient Greece around 300 BC, Hippocrates and his students rejected superstitious 

explanations for cancer and argued that it was a natural disease. Maintaining consistency with the 

humoral theory, they posited that cancer was caused by an imbalance of black bile, yellow bile, 

phlegm, and blood. A distinction was made between surface lesions and deep cancers, the former 

being treated with cauterization and ointments, while the latter, if operable, were removed by 

surgery [11]. 

Shortly after the turn of the first millennium, the first description of what is now understood 

to be metastasis was recorded in Rome [12]. Unfortunately, the Romans did not agree with the 

Greeks in using surgery for cancer, and instead favored the use of purgatives to rebalance bodily 

humors, delaying progress for centuries. After the fall of the Roman empire, surgery as treatment 

for cancer spread and grew throughout Europe and the Middle East during the Dark Ages. This 

time period saw locally isolated innovations such as the removal of entire organs to prevent 

recurrence, and the initial development of wide excision techniques [13]. 
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The invention of the printing press in 1450 signaled the end of the Dark Ages, and the 

resulting Renaissance movement removed many societal barriers that had hindered scientific 

progress. In medicine, increasing practice of autopsy and subsequent publication of findings in 

case reports led to rejection of the humoral theory [14]. Advances in anatomy and physiology 

coincided with the identification and characterization of cancers from various sites of origin, 

including the brain, lung, breast, colon, liver, cervix, and prostate, forming a very early foundation 

for modern understanding of tumor pathology [15]. These insights led to the refinement of earlier 

surgical techniques, and the development of procedures including radical mastectomy and 

lumpectomy [16].  

The invention of the microscope in 1590 led to the examination of surgical samples by 

microscope and the growing adoption of microscopy in the diagnosis of cancer. The resulting 

descriptions of tumor physiology informed the creation of guidelines for operative surgery [17]. It 

was around this time that doctors began to propose environmental causes for cancer. The first two 

hypothesized carcinogens were tobacco [18] and chimney soot [19]. With the advent of cell theory 

in 1838 came the understanding that cancers are formations of cells in diseased organs with the 

ability to spread to other parts of the body through the vascular system [20]. Because cells can 

only arise from other cells, it was concluded that cancers must develop from normal tissue. It was 

quickly established that primary tumors can develop in every organ system, each with unique 

clinical and microscopic features. A medical movement towards subspecialization spurred the 

development of new tools and techniques to facilitate organ-specific studies and surgeries. 

Continued accumulation of knowledge in cancer microscopy led to the histological identification 

and classification of tumor subtypes.  
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The turn of the 19th and 20th centuries brought several major advances in the clinical 

treatment of cancer. Advances in anesthesia and sterile technique enabled the practice of more 

advanced surgical procedures [21]. In 1895, Wilhelm C. Rontgen discovered X-rays, creating the 

field of diagnostic radiology [22]. In the following years, X-rays were found to be both 

carcinogenic and highly destructive to living tissue. This discovery, combined with the isolation 

of radium by Pierre and Marie Curie in 1898, led to the development of the earliest forms of 

radiation therapy [23]. In 1909, Paul Ehrlich published the first book on chemotherapy, detailing 

the results of experiments in rodents [24]. Critically, he observed that neoplasms are composed of 

a combination of sensitive and resistant cells, causing nonuniform response to chemical treatment.  

Over the following decades, scientists continued to search for causes of cancer [25], finding 

evidence for parasites [26], viruses [27], hormones [28], and pollutants [29], as potential triggers 

for the disease. From 1919 to 1940, James Ewing published four editions of his definitive textbook 

on neoplastic diseases [30]. Ewing believed cancers were caused by repeated damage of tissue by 

chemical and environmental agents. He also demonstrated that the malignancy of a tumor could 

be correlated to a number of histopathological features. These findings led to the eventual 

development of modern histologic grading systems. 

The same years saw the development and adoption of smear techniques for collecting and 

visualizing cells from tumors at all body sites for diagnosis [31]. Combined with the microscopic 

examination of bodily fluids and secretions [32], this established the practice of cytology. 

Pioneering work by the likes of Theodor Kocher, William Halsted, and Harvey W. Cushing 

contributed to the continued specialization of surgery [33]. Large reductions in operative mortality 

were observed as a result, causing radical surgery to remain the treatment of choice for both 

primary and metastatic cancers. Although progress was being made in the nascent fields of 
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radiation therapy and chemotherapy, early successes were difficult to come by. Radiation therapy 

suffered from technical issues in instrumentation and manufacturing, as well from the 

unexplainable phenomenon of radioresistance [34]. The earliest chemotherapeutic agents, which 

included nitrogen mustard, were not favored due to extreme toxicity [35]. 

The elucidation of the structure of DNA by James Watson, Francis Crick, Rosalind 

Franklin, and Maurice Wilkins in 1953 opened the door to the modern understanding of the 

etiology of cancer. Prior to this discovery, many environmental causes for cancer had already been 

identified, typically through the observation of increased incidence of a specific type of cancer in 

a population with high exposure to a carcinogen. These included leukemia in radiologists [36], and 

lung carcinoma in smokers [37], asbestos workers [38], and pesticide factory employees [39]. 

However, it was only after the physical structure of the DNA molecule was determined that 

progress in genetics enabled the experiments with tumor viruses [40-42] and heredity studies [43, 

44] that separately began to suggest the importance of the genome in oncogenesis.  

Advances in cytology, including the clinical adoption of the Pap smear led to increased 

rates of and earlier detection of cancer in patients [45]. The resulting proliferation of clinical 

samples that required both proper identification and causal explanation created the field of surgical 

pathology. Over the next several decades, clinical tumor samples were extensively and 

systematically examined, diagnosed, and classified, creating the foundation of the modern 

organizational classification of cancers [46].  

Continued tests of highly toxic chemotherapeutic agents such as urethane yielded only 

short remissions in patients until Sidney Farber demonstrated the efficacy of a folic acid antagonist 

in treating acute leukemia in 1948 [47]. This initial success in treating a systemic condition sparked 

a search for antimetabolites and antibiotics for the treatment of metastatic tumors, leading to 
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estrogen therapy for metastatic carcinoma of the prostate [48], and methotrexate for metastatic 

choriocarcinoma [49]. Advances in radiation therapy saw the replacement of radium with cobalt 

and proton beams [50]. During this time, radiation was determined to be particularly effective as 

a first-line treatment for lymphomas and started to become incorporated into adjuvant therapy in 

combination with surgery. Meanwhile, radical surgical procedures fell out of favor as continued 

technical progress made removing only the cancerous parts of affected tissue not only possible but 

also effective [51]. Early attempts at creating a vaccine against cancer were unsuccessful, but 

progress was made in the search for cancer-specific antigens, despite the relative lack of 

understanding of immunological processes at this time [52].  

Despite an accumulation of evidence for environmental exposures including viruses, 

chemicals, and radiation as causes for cancer, the underlying molecular process of oncogenesis did 

not begin to become clear until 1976, when Harold E. Varmus and J. Michael Bishop determined 

that certain retroviruses can transform proto-oncogenes, specific genes in normal cells, into 

oncogenes responsible for the growth of cancer [53]. Over time, it was determined that many 

different genomic modifications, including translocation, amplification, and deletion could create 

oncogenes. Genes that control the process of cell division came to be known as tumor-suppressor 

genes, because they counteract the proliferative tendency of malignant tumors. Deactivation of 

such genes through genomic mutation could lead to cancer, making them oncogenes, as well [54]. 

One such gene and its associated product, tumor protein 53, was discovered in 1979. It has since 

been found to be the most frequently mutated gene in human cancer [55].  

Angiogenesis was determined to be an important component of cancer growth [56]. With 

the discovery of tumor angiogenesis factors such as vascular endothelial growth factor and 

prostaglandin came the identification and therapeutic use of angiogenesis inhibitors such as 
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thalidomide [57]. This was the earliest practice of targeted therapy – the administration of a 

chemotherapeutic agent intended to act upon a specific gene or gene product. New 

chemotherapeutic agents, both cytotoxic and targeted, were developed and tested at an astonishing 

rate in the 1970s and 1980s [58]. Successful compounds ultimately required evaluation in humans 

for regulatory approval, leading to the formalization of a testing framework consisting of four 

phases of randomized clinical trials [59]. Effective primary chemotherapy regimens were 

incorporated into preoperative and postoperative adjuvant therapy alongside surgery and radiation 

[60]. Combination chemotherapy consisting of multiple compounds administered together were 

tested and found to be appropriate for certain cancers [61].  

The 1980s and 1990s saw great advances in the practice of immunotherapy, made possible 

by lessons learned from progress in immunology. Experiments with monoclonal antibodies 

revealed that activated immune cells secreted cytokines as an antiproliferative response, leading 

to the therapeutic application of interleukins and interferons [62]. Further discoveries regarding 

the natural immune response to cancer led to the identification of additional targets for 

immunotherapy. Eventually, trastuzumab was the first therapeutic antibody approved for clinical 

use in 1998 [63].  

In 2001, regulatory approval of the tyrosine kinase inhibitor imatinib for the treatment of 

chronic myeloid leukemia signaled the arrival of precision oncology as the latest development in 

clinical oncology [64]. Treatments tailored to a patient’s specific tumor promised to be more 

effective and have fewer side effects than traditional systemic chemotherapy. Initially, efforts were 

focused on finding or developing small-molecule inhibitors for a small number of known 

oncogenic targets. Over time, as understanding of the molecular processes of cancer grew, the 

search expanded to cover more molecules and more targets [6, 7].  
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Most recently, precision oncology has expanded to include personalized immunotherapy. 

In 2017, chimeric antigen receptor T-cell therapy, in which a patient’s own immune cells are 

harvested and modified outside the body to fight cancer, was approved to treat B-cell cancer [65]. 

In 2018, the antibody pembrolizumab was approved for the treatment of solid tumors with 

microsatellite instability or mismatch repair deficiency [66]. This is the first approval of a cancer 

treatment based solely on genetics, and its administration depends not on the tissue type or body 

site of the target tumor, but on the results of a companion diagnostic test [67]. This approval of a 

pioneering tissue-agnostic drug reflects an understanding that cancers of different tissues can share 

underlying activating mechanisms, potentially sensitizing them to the same treatments. 

2.2 Overview of Drug Screening Experiments for Cancer Chemotherapy 

When Paul Erlich published his work on small molecule screening, he detailed the search 

for a molecule effective against Treponema pallidum, the causative agent of syphilis [68]. Erlich’s 

animal model of disease was a rabbit, but he performed initial screening of hundreds of different 

candidate treatments in mice infected with a different Treponema bacteria, for reasons including 

time and cost. The substitute worked; compound 6061, which was effective in treating mice 

infected with trypanosomes, was subsequently found to also eradicate spirochete infections in 

chickens. Compound 606 went on to cure the rabbit, and ultimately succeeded in a clinical trial of 

50 patients with late-stage syphilis. Erlich was extremely fortunate to be working at an institution 

with talented chemists and the equipment and expertise for high-throughput animal testing. Even 

 

1 Arsphenamine, also known as Salvarsan.  
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so, the screening experiment took five years to complete from its inception in 1904 to its 

publication in 1909. A more efficient system was clearly needed. 

The earliest mouse model of cancer took the form of spontaneous tumors in inbred mouse 

lines that were selected for high susceptibility to cancer. Utilizing this model proved challenging, 

as each spontaneous tumor is distinct and thus must function as its own control [69]. In addition, 

the experimenter has no control over the creation of tumors, and it was often difficult to obtain 

spontaneous tumors in sufficient quantity to conduct a screening experiment. These shortcomings 

were addressed by the creation of transplantable tumor systems in rodents [70]. These systems 

enabled the transplantation of a single spontaneous tumor from one animal into many other 

animals. This enabled experimenters to transplant as many tumors as they needed at one time, with 

the added benefit that because the transplants were all from the same source, they would all be 

genetically identical, enabling comparability of drug responses between samples.  

In 1935, Murray Shear used one such system, the murine S37 sarcoma model, to create an 

organized cancer drug screening program at the Office of Cancer Investigations of the United 

States Public Health Service, which would eventually merge with the National Institutes of Health 

Laboratory of Pharmacology to become the National Cancer Institute [71]. Over the course of the 

next 18 years, Shear’s program would test over 3,000 compounds. Unfortunately, only two would 

make it into clinical testing, and they would be rejected due to extreme toxicity. Due to a lack of 

knowledge and understanding regarding the evaluation of toxic chemicals in humans, the program 

was brought to an end in 1953.  

Those intervening years had seen the development of additional tumor transplantation 

systems. The S37 sarcoma model was replaced by the newer and more representative L1210 

leukemia model [72] as the NCI’s primary screening testbench. The L1210 contributed to progress 
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in therapy for acute lymphocytic leukemia and various lymphomas but did little to advance 

treatment for solid tumors [73]. It would remain in use until 1975, when it was supplanted by a 

panel of tumors utilizing new xenograft technology [74]. These xenografts better represented 

human tumors than murine transplantation models because they were derived from human cancer 

tissue, but screening remained slow and costly as they were still in vivo models. In 1985, the 

xenograft models were replaced by a panel of 60 primary tumor cell lines [75]. Advances in culture 

technique and cell line immortalization had finally made it possible to grow tumor models in vitro, 

greatly reducing the time and cost of performing drug screening experiments [76]. The NCI-60 

screen, as it was called, continues to operate, screening 3000 small molecules per year, thus 

evaluating potential drug-cancer pairings at a rate over 1000 times that of Shear’s S37 program.  

The drug screening methods described thus far have been examples of phenotypic drug 

discovery (PDD). Under this modality, candidate molecules, often randomly selected, are 

evaluated in a battery of cells, tissues, or animals to determine whether or not they have the desired 

effect. The molecular mechanism of action of a successful molecule, or its target, is typically only 

determined later, after it has been established that the molecule works [77]. The advantage of PDD 

is that it does not require a strong understanding of the disease being treated, nor does it depend 

on extensive knowledge of the compounds being tested. In this way, it is a reflection of the field 

of cancer chemotherapy until relatively recently. 

The alternative to PDD is target-based drug discovery (TDD). Under this alternate 

modality, candidate molecules are first selected based on their association with an entity that is 

known to be important to the disease. This association can be measured in many ways, ranging 

from simple enzymatic activity assays on one end to evaluation of complex protein-protein 

interactions on the other [78]. This selection step can typically be run in an extremely high 
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throughput manner, enabling the pre-screening of millions of candidate molecules in vitro before 

a select few are enhanced and evaluated in a more time and cost intensive manner in the disease 

model. This increased throughput is the primary advantage of TDD. 

The discovery of the BCR-ABL fusion tyrosine kinase inhibitor imatinib is a major success 

story in TDD. Initially, a lead compound was identified in a screen for inhibitors of protein kinase 

C [79]. During optimization of the molecule through the addition and subtraction of organic 

functional groups, a variant was discovered that traded inhibition of protein kinase C for inhibition 

of tyrosine kinases. After further modification to improve delivery and bioavailability, the 

molecule now known as imatinib was selected for clinical development [80]. After success in cell 

line experiments, mouse models, and clinical trials, imatinib was approved for clinical use [81].  

The success of imatinib, in the words of one author, “is proof of principle that rationally 

designed, molecularly targeted therapy works. Imatinib represents a paradigm shift in cancer drug 

development. It is hoped that this will pave the way for a new generation of specific, targeted 

therapies” [82]. Such optimism pervaded the field of drug discovery as PDD was abandoned for 

TDD virtually overnight. Unfortunately, the balms of Gilead failed to materialize. Instead of an 

explosion of designer targeted therapy, the ensuing years actually saw a decline in the number of 

candidate treatments progressing through clinical trials and eventually entering the market, despite 

increased investment in research and development [83]. Given the supposedly higher throughput 

of the new methodology, something was amiss.  

TDD relies on a critical assumption that the target and assay chosen for the screening 

process are appropriate for identifying potential drug candidates. Although these decisions are 

made carefully and based on a current understanding of the disease pathology, the process is 

necessarily reductionistic. By performing the screen in vitro, selection of candidate compounds is 
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made on the basis of interaction between the drug and the target. However, in the administration 

of the drug to treat disease, the interaction between the drug and the organism is what really matters 

[84]. Sometimes, such as in the case of imatinib, the approximation works. However, the 

relationship between the BCR-ABL oncogene and chronic myeloid leukemia is a special case. More 

than 95% of people with the disease have the fusion protein targeted by imatinib [85]. In contrast, 

the underlying etiology of most other cancers is significantly more complicated. TDD was 

struggling to properly identify candidate molecules for these more complex disease states.  

An analysis of first-in-class new molecular entities (NMEs) approved by the United States 

Food and Drug Administration (FDA) between 1999 and 2008 revealed that 28 approved 

medications were discovered using a PDD framework, while only 17 were found via TDD [86]. A 

subsequent study examining 48 NMEs approved between 2008 and 2013 found that the number 

of drugs found by PDD had declined to four, consistent with the framework’s fall from favor. 

Meanwhile, TDD had contributed 29 medications. Upon closer inspection, 21 of those discoveries 

were tyrosine kinase inhibitors, which follow a relatively straightforward molecular mechanism of 

action (MMOA). If these were removed from consideration, then TDD had only discovered eight 

new compounds. Thus, the contributions of PDD and TDD during this time period were 

overshadowed by hybrid modes of drug discovery, which combined elements of both PDD and 

TDD to find 15 new therapies [77].  

One such new framework, called mechanism-informed phenotypic drug discovery 

(MIPDD) involves the design of a drug-target interaction assay that functions in the context of a 

cell culture. In this manner, the screen is similar to PDD in that it takes place in vivo, but produces 

rationally designed candidates with known MMOAs, like TDD. The main drawback of MIPDD is 

that theoretically a compound that achieves the desired phenotype may not do so by acting through 
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the intended pathway. Despite this, MIPDD has proven useful especially for the development of 

second generation therapies [87]. Ultimately, PDD has proven to be the superior method for the 

identification of first-in-class therapies, while TDD/MIPDD is better suited for the development 

of next-generation best-in-class therapies based on known MMOAs2.  

With the development and refinement of microarrays, followed by next-generation 

sequencing techniques, it has become increasingly affordable to collect a large amount of genomic, 

and transcriptomic data to characterize a biological sample. These technologies have been 

incorporated into cell line-based drug screening experiments with the dual purpose of validating 

and confirming the identity of cell cultures maintained for decades in the laboratory, as well as 

identifying genetic targets for potential therapy. Microarray assessment of RNA expression in the 

NCI-60 cell lines was first done in the year 2000 [88], and DNA mutation profiles were completed 

shortly thereafter [89].  

PDD screening experiments in which a large number of compounds are evaluated on a 

large number of cell lines while genomic and transcriptomic data are collected have come to be 

known as large pharmacogenomic studies, due to their potential for generating knowledge relevant 

to pharmacogenomics. Pharmacogenomics describes interactions between genes and medications, 

and is particularly significant in cancer chemotherapy, due to the genetic nature of the disease [90]. 

A summary of the landscape of large pharmacogenomic experiments that have been conducted for 

cancer is presented in Table 1.  

 

2 It is tempting to attribute this to the first or early-mover advantage enjoyed by PDD, but the fact remains 

that TDD/MIPDD has consistently produced more follow-on next-generation therapies than novel first-in-class drugs, 

while the opposite is true for PDD.  
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Table 1: Large pharmacogenomics experiments. 

Study Name Study Type RNA Expression DNA 
Mutation 

DNA Copy 
Number 

Cell 
Lines 

Drug 
Compounds 

Release 
Year 

NCI-60 Large 
Pharmacogenomic 

Various 
Microarrays,  

RNA-Seq 

Various SNP 
Arrays, 
Whole 

Exome NGS 

Various SNP 
Arrays 59 >88,000 2016 

GlaxoSmithKline Large 
Pharmacogenomic 

Affymetrix U133 
Plus 2.0 

Microarray 

Affymetrix 
500k SNP 

Array 

Affymetrix 
500k SNP 

Array 
311 19 2010 

Cancer Cell Line 
Encyclopedia 

Large 
Pharmacogenomic 

Affymetrix U133 
Plus 2.0 

Microarray, 
Illumina RNA-Seq 

OncoMap, 
Hybrid 

Capture NGS 

Affymetrix 
SNP 6.0 Array 479 24 2012 

Cancer Genome 
Project 

Large 
Pharmacogenomic 

Affymetrix HT-
U133A Microarray Sanger Affymetrix 

SNP 6.0 Array 639 130 2012 

Genentech Cell Line 
Screening Initiative 

Large 
Pharmacogenomic Illumina RNA-Seq Sanger Illumina 2.5M 

SNP Array 610 16 2015 

Genomics of Drug 
Sensitivity in Cancer 

Large 
Pharmacogenomic 

Affymetrix U219 
Microarray 

Illumina 
HiSeq Whole 
Exome NGS 

Affymetrix 
SNP 6.0 Array 1001 265 2016 

Cancer Therapeutics 
Response Portal v2 

Large 
Pharmacogenomic 

Affymetrix U133 
Plus 2.0 

Microarray, 
Illumina RNA-Seq 

OncoMap, 
Hybrid 

Capture NGS 

Affymetrix 
SNP 6.0 Array 860 481 2018 

Connectivity Map Perturbational L1000 Assay   76 19811 2017 
Institute for 
Molecular Medicine 
Finland 

Traditional 
Screening 

   106 308 2016 
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The earliest large pharmacogenomic screen was conducted and published by the 

pharmaceutical company GlaxoSmithKline, making available their cell line characterization and 

drug response data [91]. Two years later, the Cancer Cell Line Encyclopedia (CCLE) and the 

Cancer Genome Project (CGP) large pharmacogenomic studies were published concurrently in 

2012, encouraging the development of computational models to predict drug sensitivity [6, 7]. A 

meta-analysis of overlapping data provided by the CCLE and CGP studies found generally strong 

correlation between the genomic data provided, but suggested inconsistencies in the drug response 

measurements when comparing calculated values for half maximal inhibitory concentrations 

(IC50) [92]. When the Genentech Cell Line Screening Initiative published the results of their study 

(cGSI), they confirmed agreement of genomic data between cGSI, CCLE, and CGP [93].  

The putative assumption was that inconsistency between the two studies arose from a 

combination of technical and data processing discrepancies [94], and a follow-up study that 

processed the data through a unified IC50 estimation pipeline harmonized the results [95]. 

However, this was accomplished largely by placing an artificial upper limit on calculated IC50 

values. The main culprit appeared to be incomplete and poorly overlapping dose response curves 

that made IC50 difficult to estimate and thus a poor representation of drug sensitivity [96]. 

Suggestions were made that the area under a normalized dose response curve be used instead, and 

that targeted precision compounds should be evaluated separately from nonspecific traditional 

chemotherapy medications [97]. The Institute for Molecular Medicine Finland created and 

published their own drug screening dataset (FIMM) of 308 drugs evaluated across 106 cancer cell 

lines sans genomic data, and argued that drug sensitivity results could be reconciled between 

FIMM, CGP, and CCLE through the use of a novel drug sensitivity score [98]. Additional 
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computational methods have been proposed to rectify the situation [99, 100]. The disagreement 

remains unresolved [101].  

In the ensuing time, the research groups responsible for CGP and CCLE have continued 

their work, expanding the number of cell lines characterized as well as the number of drug 

compounds tested. The Genomics of Drug Sensitivity in Cancer (GDSC) is an expanded version 

of CGP and has replaced it for most purposes [102]. The Cancer Therapeutics Response Portal 

(CTRP) is an expansion of CCLE. Although the two experiments are maintained by the Broad 

Institute as separate studies, CTRP obtains most of its genomic data from CCLE [103].  

Other experiments that are not technically large pharmacogenomic studies but are 

significant and worth mentioning include the Connectivity Map (CMap), a perturbational 

experiment that instead of focusing on phenotypic drug response, seeks to determine the genomic 

impact of exposure to specific compounds. It has quantified changes in gene expression caused by 

28,000 perturbagens on 76 cell lines using the L1000 Assay [104]. In addition, there exist countless 

smaller pharmacogenomic datasets that are focused on characterizing cancer cell lines of a specific 

type, most notably for breast [105, 106]. 

A major criticism of cell line-based screening experiments is that the laboratory cell culture 

model may not be highly representative of the actual disease state. Although the lineage of a cancer 

cell line eventually traces back to a primary sample, the immortalization process necessarily 

changes the cell line, and its genome is vulnerable to drift over the course of many passages in the 

laboratory [107]. The alternative is to conduct screening experiments using patient-derived 

primary cells. While this can certainly be done [108, 109], it is not a perfect solution, as not all 

primary cell samples can be maintained in culture long enough to perform the experiment. 
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In an interesting twist, patient-derived xenograft (PDX) models have recaptured the 

attention of investigators as they seek a model that adheres to the actual disease state as closely as 

possible [110]. This process has drawbacks similar to those of the primary cell culture model, as 

not all tumor samples can successfully inoculate a PDX. However, it does achieve the goal of 

modeling a very realistic cancer, at the cost of decreased throughput that comes with performing 

an in vivo screen [8].  

The latest development in drug screening experiments attempts to address this throughput 

problem via the use of patient-derived organoids [111]. Organoids are miniature models of organs. 

Thus, they are composed of a combination of many different cell types. This diversity, combined 

with local anatomy that is similar to real tissue, should cause them to be more realistic models than 

immortalized cell monocultures. Organoids are grown in culture, making them logistically easier 

to use than PDX models. Although the protocols for creating patient-derived organoids are still 

relatively new, tissue-specific pharmacogenomic organoid datasets are already being created [112-

115]. If organoids prove to offer significant tangible advantages over cell line-based models, they 

will play an important role in the future of cancer drug screening.  

2.3 Current Methods in Cancer Pharmacogenomics 

The infancy of pharmacogenomics can be traced back as far as 510 BC, when Pythagoras 

recorded that consumption of fava beans induced a serious, sometimes fatal, reaction in some, but 

not all people [116]. It is now known that this reaction is caused by a deficiency in glucose-6-

phosphate dehydrogenase. The digestion of fava beans creates highly reactive redox compounds 

that in turn produce reactive oxygen species in the blood. Ordinarily, this response is controlled 
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through cellular antioxidant mechanisms. However, these controls rely on glucose-6-phosphare 

dehydrogenase to function effectively. Individuals with a deficiency are less able to clear reactive 

oxygen species, and suffer severe oxidative damage as a result. This damage causes red blood cells 

to break down faster than they can be replaced, resulting in hemolytic anemia [117]. 

However, there was no way to capitalize on Pythagoras’s insight3, as there existed no 

formalized concept of genes until Gregor Mendel established his rules of heredity [118]. Even 

then, without modern molecular biology techniques for identifying, visualizing, and quantifying 

genetic changes, little progress could be made in exploring potential connections between genetic 

variability and drug metabolism. It was not until the 1950s that the maturation of genetic 

technologies such as gel electrophoresis would both enable and renew interest in the study of 

pharmacogenomics [119-121]. 

Although many types of genetic variation exist, pharmacogenomics exploration has largely 

centered on single nucleotide polymorphisms (SNPs) and their impact on individual drug response 

[122]. Early interest in the genetics behind pharmacokinetic variability yielded advances in the 

understanding of transport proteins and metabolizing enzymes, including cytochrome P450 [123]. 

Over time, focus shifted to emphasize variation in genes that encode drug targets [124]. Prominent 

among the successes is the identification of the role of APOE polymorphisms in Alzheimer’s 

disease [125], which served as a proof of concept for both the selection of a subgroup of patients 

whose genetics predispose a better or worse response to treatment [126, 127], and the detection of 

a linkage disequilibrium locus [128], which would pave the way for genome-wide association 

studies (GWAS) after the completion of the Human Genome Project [129]. 

 

3 Aside from prodigiously avoiding fava beans. 
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Despite these advances, there were few opportunities to integrate pharmacogenomics into 

clinical practice [130]. This difficulty arose from a combination of factors, including concerns 

about the usefulness of genetic testing in the primary care setting [131] and the prohibitive cost of 

early genotyping systems [132]. However, the creation and implementation of critical entities 

including genetics specialists [133], education programs [134], and computer decision support 

systems [135] slowly began to enable physicians to meet the growing public demand for genetic 

testing and counseling [136].  

Although pharmacogenomics holds promise for an array of treatments across many 

diseases, the potential for impact is greatest in diseases that are inherently variable. These include 

infectious diseases caused by rapidly mutating bacteria and viruses, such as HIV and hepatitis, as 

well as chronic diseases with broadly diagnosable symptoms but numerous potential underlying 

molecular causes, like Alzheimer’s and hypertension [124]. Cancer represents a combination of 

challenges from both groups. Like the former, it can mutate and develop resistance to previously 

effective therapy. Like the latter, it is highly heterogenous, and exhibits great variation in response 

to treatment as a result. Because of this, pharmacogenomics is uniquely positioned to provide 

powerful insights into the effective treatment of cancer [137]. 

The holy grail of cancer pharmacogenomics is the accurate prediction of drug response 

based on a patient’s genetic profile in the form of an affordable, accessible genetic test performed 

on a readily available biological sample. The challenge lies in determining which genes to test and 

which polymorphisms to look for. 

Early work in this direction focused on optimizing the administration of existing 

chemotherapies, a class of medications which initially consisted wholly of nonspecific, cytotoxic 

compounds. Guided by known mechanisms of action elucidated through traditional molecular 
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biology techniques, researchers conducted population studies to identify critical genes and gene 

products for a variety of chemotherapy medications. Many of these focused on predicting the 

ability of the body to properly metabolize the drug, controlling for toxicity risk and preventing 

adverse reactions. Results include thiopurine methyltransferase deficiency causing thiopurine 

toxicity [138, 139], and dihydropyrimidine dehydrogenase deficiency causing 5-Fluorouracil 

toxicity [140, 141]. Similar studies examining the genetic basis of resistance to platinum agents 

revealed the importance of various DNA excision and repair proteins [142, 143], as well as more 

general components of the cellular toxic response [144]. 

These findings, while interesting, were unfortunately generally not clinically actionable. In 

the cases of thiopurine and 5-Fluorouracil, the toxicity-inducing enzymatic deficiencies occur in 

the general population at rates of 0.3% and 0.1% respectively [137, 145]. This prevalence is so 

low that pre-screening for these conditions before treatment, while available, is not common 

practice. As for platinum therapy, the mechanistic significance of specific DNA repair SNPs was 

difficult to determine [146, 147], and the cellular processes for handling toxin export contain such 

redundancy that some very deleterious mutations inexplicably have no predictive power [148]. 

Overall, this suggests the existence of a much more complex series of interactions than can be 

accurately described by a small number of polymorphisms. The administration of these 

medications under current standard of care guidelines is based on tumor tissue type and staging, 

without genetic testing. 

The advent of molecularly targeted medications signaled a potential change in this 

paradigm. When combined with powerful algorithms for identifying driving mutations in 

individual cancers, these precision medications raised the possibility of delivering effective 

therapy by matching a specific tumor’s causal mutation with a drug that specifically targets that 
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alteration [149]. Unfortunately, the formulary of precision medications is limited, and prescription 

of these medications using the genomic status of a target gene as a therapeutic indicator benefits 

only an estimated 5-8% of patients [150, 151]. This is due in part to stringent clinical guidelines 

which often require a tumor to be from a specific tissue and contain a specific polymorphism in a 

single gene to approve the use of a precision therapy. Theoretically, a targeted medication could 

provide benefits over traditional chemotherapy for patients who do not meet the clinical guidelines 

for its use. 

Proposals for repurposing agents across different disease and tumor types with the same 

target gene, across different alterations within the same gene, and based on strong but unintended 

binding kinetics could potentially increase the portion of patients benefiting from targeted 

medications to 40% [4]. The most recent work in this area suggests that combining a database of 

drug-target interactions with pathway knowledge enables repurposing of drugs across different 

targets in the same pathway, potentially bringing the portion of patients benefiting from existing 

precision therapies to over 90% [152]. Although drug repurposing systems can certainly suggest a 

targeted medication for a large proportion of cancer patients, the rate at which the suggested drugs 

will be effective in treating the specific tumors is likely to be much lower in reality. These systems 

typically operate under either a Mendelian or limited polygenic model for disease etiology. Under 

these models, the observable variability in disease phenotype, which includes clinically relevant 

traits such as treatment response, is attributable to genotypic variation in just a small number of 

genes. If accurate, then effective treatment decisions can be made based on knowledge of the 

mutation status of a few genomic locations.  

However, in the case of cancer and other complex diseases, this assumption generally does 

not hold [153, 154]. Genome-wide association studies have been very good at identifying 
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important loci in complex diseases, but significant results from a typical GWAS, when combined, 

still only explain a fraction of observed variability [155]. The rest is attributable to a combination 

of a large number of common polymorphisms with effect sizes too small to be statistically 

identified in a genome-wide test, and very rare variants with large effect sizes that do not occur in 

the test sample [156, 157]. In contrast to Mendelian diseases which are typically caused by protein 

coding changes [158], complex diseases are generally characterized by polymorphisms in 

noncoding regions that control gene regulation [159, 160]. This evidence supports the idea that 

complex diseases are driven by the cumulative effect of a large number of relatively small 

individual effects on key genes and pathways [161].  

This long tail effect has been documented in many cancer types, including pancreatic, 

prostate, and breast [162-165]. This phenomenon has significant implications for the accurate 

prediction of the therapeutic effectiveness of targeted medications. Considering only the genomic 

status of a drug target or a drug target and a small number of related genes does not work. This 

was demonstrated in a study examining the effectiveness of certain PI3K inhibitors in restricting 

the growth of an array of PDX models. The findings showed a wide range of drug effectiveness 

irrespective of the genomic status of PIK3CA and PTEN [8]. Proper modeling of tumors and their 

response to treatments thus needs to consider interactions between key driver genes or pathways 

and a host of less common but still impactful polymorphisms that impart unique variation to 

individual tumors. 

Modeling complex diseases in this manner requires genome-wide technologies capable of 

monitoring many cellular transcripts in parallel. Initially, this took the form of microarrays, with 

specialized applications ranging from SNP genotyping to RNA expression profiling. More 

recently, focus has shifted to next-generation sequencing technologies, but microarrays remain in 
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widespread use. Gene expression analysis was found to be especially useful for cancer 

classification. Combined with unsupervised machine learning methods such as hierarchical 

clustering, microarray expression data were used to identify a new subtype of acute lymphoblastic 

leukemia [166], stratify diffuse large B-cell lymphoma into three prognostic types [167, 168], and 

separate breast cancer patients into subgroups with significant differences in treatment outcome 

[169]. The addition of supervised learning techniques enabled the creation of clinically relevant 

gene signatures containing dozens of genes that combined enabled prediction of disease outcome 

and potential benefit from specific therapies [170]. Such gene signatures were the precursors to 

modern-day gene panels [171-173]. 

Even before the existence of microarrays, clinical data were being incorporated into 

successful models for predicting susceptibility, recurrence, and survivability in a variety of cancer 

types using many different types of models, including naïve Bayesian classifiers [174], support 

vector machines [175], decision trees [176], and artificial neural networks [177]. As genomic data 

started becoming available, it was rapidly incorporated into models alongside clinical data [178-

180], and then eventually used in the creation of genomic-only models [181-183]. The practice of 

machine learning in cancer pharmacogenomics came as a natural extension of the application of 

these techniques in classification and prognosis. 

However, predicting the effectiveness of specific drugs in individual tumors presents some 

unique challenges. Most of the patient datasets used to create clinical models enrolled only a few 

dozen participants, although there were a few exceptions [184]. For models based on a small 

number of clinical features, these sample sizes are adequate. However, more complex models 

seeking to incorporate high dimensional genomic data require a larger training set. Of larger 

concern was the availability of drug response data. Any particular patient generally only attempted 
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a handful of different treatment regimens. It was both ethically and logistically impossible to 

evaluate the effects of dozens of potential therapies on every patient for the sole purpose of 

collecting data for training predictive models. For these reasons, pharmacogenomics investigators 

turned to cell line screening experiments for increased throughput, just as their drug discovery 

counterparts did before them. 

The earliest machine-learning-focused cell line pharmacogenomics studies generally 

concentrated on predicting the effectiveness of treatment compounds on specific, individual types 

of cancer, especially breast cancer [105, 185]. In 2012, the NCI, along with the Dialogue on 

Reverse Engineering Assessment and Methods project, held a challenge to assess the performance 

of drug sensitivity prediction algorithms [186]. 44 different prediction methods were evaluated on 

a dataset of 53 breast cancer cell lines and 28 therapeutic compounds. The best-performing method 

was found to be Bayesian multitask multiple kernel learning; a random forest approach took 

second place. 

As large pharmacogenomics studies such as CCLE and CGP began publishing datasets 

containing cell lines from many different tissue types, the search turned towards developing 

unified models capable of predicting a sample’s drug response regardless of tissue of origin. 

Algorithms used in this endeavor include ridge regression [187], elastic net [188], random forest 

[102, 189], perceptron [190], and support vector machine [191]. In virtually every study, separate 

models are trained to predict the IC50 of individual drugs from gene expression microarray data. 

To improve on the current state of the art, new approaches need to integrate other data types made 

available by large pharmacogenomics studies, such as mutation and copy number alteration 

information. The proven ability of deep learning methodologies to model complex interactions 

makes them strong candidates for this task [192, 193].  
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2.4 Preliminary Work 

This section describes preliminary work conducted in 2016 that explored the possibility of 

predicting drug effectiveness from integrated omics data using deep learning. It involved 

preprocessing omics data from large pharmacogenomics experiments, developing a latent 

representation of this data, using the latent representations to build drug sensitivity models, and 

evaluating the performance of those models. This work is presented in an abridged form here – for 

additional details and experiments, please refer to the associated publication [194].  

2.4.1 Methods 

2.4.1.1 Data Retrieval and Feature Engineering 

I retrieved data from the two largest available pharmacogenomics studies, the Genomics 

of Drug Sensitivity in Cancer (GDSC) [7], and the Cancer Cell Line Encyclopedia (CCLE) [6]. 

GDSC data were chosen for use in model training despite its lower cell line count. This is because 

GDSC has significantly more drug data. 140 compounds were evaluated in GDSC, compared to 

24 in CCLE. CCLE data were set aside for later use in model evaluation.  

Microarray gene expression data from GDSC was obtained in the form of raw Affymetrix 

CEL files. Batch effects were removed using Robust Multi-Array Averaging [195]. Expression 

values from replicate experiments were averaged, and data corresponding to Affymetrix spike 

control probes were manually removed. This procedure generated an array of 22,215 probe-level 

expression measurements in 727 cell lines. 

To reduce computational load, feature selection was performed on GDSC gene expression 

data. Reducing the cardinality of the feature set resulted in an order of magnitude reduction in the 
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number of parameters requiring tuning in downstream deep learning. Feature selection was 

performed using three variance metrics, based on the assumption that features with low variance 

across the dataset have limited predictive utility [196]. Hartigans’ dip test for unimodality was 

used to select for features with multimodal distributions [197]. The outlier sum method was used 

to select for features characterized by largely unimodal distributions but with significant outlier 

populations [198]. Median absolute deviation was used to select for genes with a high variance 

across samples regardless of distribution shape. Selection via these three methods yielded 3,080 

gene expression features. A mixture of two normal distributions was fitted to each feature’s 

expression profile using the expectation-maximization algorithm [199]. A Bonferroni-corrected t-

test was performed to verify statistical significance between the two groups for each gene. These 

two groups were then used to determine a cutoff for discretizing the expression levels of each gene 

into low and high values. After this procedure, the preprocessed GDSC gene expression dataset 

contains discretized gene expression data of 3080 probes. 

Copy number estimates for 426 genes were obtained in a preprocessed form from GDSC. 

These values were determined by processing Affymetrix SNP 6.0 microarray data using the 

PICNIC algorithm for copy number prediction [200]. Copy-number estimates ranging from 0 to 

10 were normalized to real values between 0 and 1. Genes with copy-number estimates greater 

than 10 were set to the maximum normalized value of 1.  

Mutation annotations for 71 genes were obtained in a preprocessed form from GDSC. 

SNPs were identified via capillary sequencing, and chromosomal rearrangements were determined 

with the use of specialized primers. Genes with a rearrangement event or other non-silent mutation 

were encoded with a value of 1. Unmutated genes or genes with silent mutations were assigned a 

value of 0.  
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Cell line annotations were used to combine the gene expression, copy number, and 

mutation datasets into a single array for deep learning. Cell lines without all three data types 

available were discarded, leaving a final dataset of 3577 features in 624 cell lines. 

2.4.1.2 Developing Latent Representations of Omics Data Using Deep Learning 

Matlab code for training a deep autoencoder was obtained from Geoffrey Hinton’s website 

and modified to use the feature selected GDSC dataset for unsupervised representation learning 

[201]. To train the autoencoder, the 624 cell lines in the dataset were randomly split into training 

and validation sets of 520 and 104 samples, respectively. The training set contains the data actually 

used to learn the model, while the validation set is used to provide an unbiased evaluation of the 

model for hyperparameter tuning. Specifically, the validation set was used to enabling application 

of the early stopping rule to determine an appropriate number of backpropagation cycles. An 

architecture with seven hidden layers of size 1300, 552, 235, 100, 235, 552, and 1300 was used4. 

The model weights were initialized by pretraining a stacked restricted Boltzmann machine for 50 

epochs. Using a minibatch size of 26, conjugate gradient descent was used to optimize the 

autoencoder weights. The early stopping rule was invoked to stop backpropagation after 400 

epochs of training when reconstruction error on the training set started to diverge from 

reconstruction error on the testing set.  

After training of the autoencoder was completed, the GDSC final dataset of 3577 features 

in 624 cell lines was propagated through the neural network. Values for the hidden nodes in the 

 

4 The selection of this structure was relatively arbitrary. The only real guideline was that the first layer 

probably needed to be larger than 1000 and the middle layer needed to be larger than 10. The intervening layers are a 

geometric progression.  
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first four layers were extracted to produce four latent representations of the GDSC data with 1300, 

552, 235, and 100 features, respectively. 

2.4.1.3 Predicting Drug Sensitivity with Latent Representations  

GDSC drug sensitivity measurements in the form of normalized activity area values were 

obtained and discretized into sensitive and resistant categories by applying the waterfall method 

described by CCLE [6]. This procedure is briefly summarized as follows: drug sensitivity 

measurements for a single drug across all cell lines are sorted in increasing order to generate a 

waterfall distribution. A linear regression is fitted to this distribution, and a Pearson correlation is 

calculated to determine goodness of fit for the linear regression solution. If the Pearson correlation 

is less than 0.95, indicating a poor fit, the major inflection point is estimated to be the point on the 

waterfall distribution with the maximal distance to a line drawn between the start and endpoints of 

the distribution. Otherwise, the median value is used as the inflection point instead. The inflection 

point is used as the cutoff for designating cell lines as sensitive or resistant to the drug relative to 

other cell lines in the experiment. 

This drug sensitivity metric was chosen over traditional targets such as IC50 or -log(IC50) 

due to technical and biological variance associated with its measurement and estimation [202] and 

to avoid the additional future complexity of extrapolating from in vitro nominal concentrations to 

make conclusions in vivo [203]. In contrast, predicting a binary outcome variable that describes 

relative sensitivity allows for more straightforward adjustments later if required.  

I used elastic net regression to generate logistic models for drug sensitivity prediction 

[204]. This is a form of logistic regression that combines lasso and ridge regularization, which 

enables it to perform feature selection while maintaining stability in cases of multicollinearity. The 

elastic net contains two hyperparameters, alpha and lambda. Alpha defines the relative weight of 
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the lasso and ridge penalization terms. Lambda determines the overall size of the regularization 

penalty. Alpha was fixed at 0.5, and predictive performance was optimized over a range of 

lambdas. Regression was performed with 25-fold cross-validation. 

For each drug, six models were built to predict the same target consisting of the discretized 

sensitivity data for that drug across the cell lines in which it was evaluated. The input vectors for 

the six models were a combined set of original unprocessed omics features, the feature selected 

data set used to train the deep autoencoder, and each of the four layers of latent representations 

generated from the trained autoencoder. 

2.4.2 Results 

The elastic net models trained with all omics features achieved an average area under the 

receiver operating characteristic of 0.81. Applying variance-based feature selection before training 

the elastic net did not enhance overall predictive performance, resulting in an average AUROC of 

0.78. However, some individual drugs are better predicted with feature selection than without. 

Aggregate predictive performance of models using latent variables as predictive features was an 

average AUROC of 0.79. Interestingly, some drugs modeled poorly using the original or selected 

omics features are significantly better predicted using hidden layer models. As a group, the best 

model for every drug has an average AUROC of 0.87 (Figure 1A). 

For any given drug, the performance often varies when latent variables from different 

layers are used as predictive features. 57 drugs are best predicted using the original omics features, 

30 are best predicted using selected features, and 53 drugs are best predicted using latent 

representation features. These findings suggest that complex relationships useful in the prediction 

of drug sensitivity are uncovered by deep learning (Figure 1B). 
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Figure 1: Learning cellular states using deep learning. A, Predictive performance of elastic net models relative 

to predictive features used as inputs. B, Proportion of best models from each category of input feature. C, 

Sensitivity and specificity of 140 best elastic net models (Best EN) compared with 43 genomic marker rule-

based models (GM) and 10 FDA genomic guideline clinical indications (FDA). D, Sensitivity and positive 

predictive value of 140 best elastic net models (Best EN) compared with 43 genomic marker rule-based models 

(GM) and 10 FDA genomic guideline clinical indications (FDA). ***, P < 10e−3. 
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Average sensitivity, specificity, and positive predictive value for the best models using 

variable thresholds are 0.82, 0.82, and 0.51, respectively (Figure 1C, 1D). Exceptional 

performance was achieved for 15 drugs, in which sensitivity and specificity values were greater 

than 0.98, positive predictive value was greater than 0.94, and AUROC values were greater than 

0.99. 

Out of the 140 drugs in the dataset, 29 have unknown or nonspecific mechanisms of action, 

leaving 111 molecularly targeted specific therapies. Of these 111 drugs, some combination of 

mutation or copy number information is available for 53 drug targets, whereas the genomic status 

of the target genes of the remaining 58 drugs was not measured. For each of the 53 drugs, a rule-

based classifier was created to predict drug sensitivity. 10 of these drugs have an FDA-approved 

genomic testing indication for their clinical use, and the rule-based classifier mirrors these 

predefined indications. These 10 compounds are comprised of poly(ADP-ribose) polymerase and 

tyrosine kinase inhibitors, with genetic tests for BRCA1/2, EGFR, ERBB2, ALK, and BCR-ABL 

mutations to approve their use. For the remaining 43 drugs, the rule-based classifier makes its 

decision based on the genomic status of the target protein. If it is either mutated or copy-number 

amplified, the cell line is predicted to be sensitive to the drug. 

The average sensitivity, specificity, and positive predictive value of the rule-based models 

are 0.10, 0.93, and 0.38, respectively (Figure 1C, 1D). Most cell lines are insensitive to molecularly 

targeted therapies, and the majority of cell lines were predicted by the rule-based models to be 

insensitive, resulting in generally high specificity. However, the low sensitivity and positive 

predictive values indicate that significant numbers of sensitive cell lines do not have the relevant 

genomic markers and are not identified, and the majority of cell lines hosting a genomic marker 

are actually not sensitive to the drugs. Generally, the best elastic net models significantly 
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outperform the rule-based models, indicating the existence of potential opportunities for 

therapeutic improvement in these areas. 

To investigate the external validity of the machine learning predictive models, they were 

evaluated using experimental data from CCLE. 15 of the drugs studied in GDSC were also 

investigated in CCLE. The best models for these 15 drugs were re-evaluated using data from 

CCLE. 

2.4.3 External Validation 

Microarray gene expression data from CCLE was obtained in the form of raw Affymetrix 

CEL files. Batch effects were removed using Robust Multi-Array Averaging [195]. Expression 

values from replicate experiments were averaged, and data corresponding to Affymetrix spike 

control probes were manually removed. This procedure generated an array of 54,675 probe-level 

expression measurements in 1067 cell lines. A mixture of two normal distributions was fitted to 

each gene’s expression profile using the expectation-maximization algorithm [199], and these 

groups were used to determine a cutoff to discretize the expression levels of each gene into low 

and high values.  

HapMap normalized CCLE copy number alteration data were obtained and used to 

estimate raw copy number by assuming a base frequency of two copies per gene. Copy-number 

estimates ranging from 0 to 10 were normalized to real values between 0 and 1. Genes with copy-

number estimates greater than 10 were set to the maximum normalized value of 1.  

CCLE mutation data were collected using two methods, Oncomap 3.0 and hybrid capture 

analysis. These data were combined using cell line annotations, and reclassified as mutated or not 

based on The Cancer Genome Atlas specification for the Mutation Annotation Format.  
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Following preprocessing of CCLE omics data, values for the 3,577 features used to train 

the GDSC autoencoder were extracted and used to create a CCLE selected dataset. All features 

were available in both experiments with the exception of mutation data on four genes. These 

missing values were filled in with uninformative average values derived from the GDSC dataset. 

After this procedure, the CCLE selected dataset is an array of 3,577 features measured in 1067 cell 

lines. CCLE drug sensitivity data in the form of normalized activity area values was obtained and 

discretized into relative sensitive and resistant categories by applying the waterfall method as 

described previously. The CCLE selected dataset was propagated through the autoencoder trained 

on the GDSC selected dataset to create a latent encoding of the CCLE data. This latent 

representation was then used as inputs to the GDSC elastic net models to make drug sensitivity 

predictions for the 15 drugs shared by the two experiments. These predictions were evaluated 

against the waterfall discretized experimentally measured drug response data from CCLE. 

 

 

Figure 2: External validity of predictive models. AUROC values for elastic net models developed using GDSC 

omics data evaluated using CCLE omics data or randomly permuted CCLE omics data. ***, P < 10e-6.  
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The 15 models achieved an average AUROC of 0.67 (Figure 2). This is significantly higher 

than prediction results obtained using randomly permuted input data, indicating that the 

relationships modeled by deep learning persist even under different experimental conditions. 

2.4.4 Conclusions 

In this preliminary work, I combined genome-scale omics data with machine learning 

techniques to accurately predict the performance of a wide range of targeted and untargeted 

therapies on cancer cell lines. The findings indicate that data-driven approaches may significantly 

outperform rule-based methods using the genomic status of drug targets as therapeutic indicators. 

Completing these experiments provided support for the viability of the project and created a 

precursory experimental framework for organizing subsequent work. 
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3.0 Research Design 

In this section, I present the motivation behind his research in the form of specific research 

questions. Further, I provide an overview of the individual studies that comprise this dissertation 

as guided by four specific aims.  

3.1 Research Questions 

1. Is it possible to build computational models with some level of accuracy for drug sensitivity 

prediction using omics features and experimental response data from large pharmacogenomics 

experiments?  

2. What technologies can be employed to build these models and how can they be optimized for 

this task?  

3. Is there potential for these models to improve the state of clinical care? If so, by how much?  

4. Can either these models or the overall modeling framework generalize to clinical data in order 

to provide such a benefit?  
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3.2 Dissertation Overview 

 

Figure 3: Dissertation overview. 

 

Figure 3 provides an overview of this dissertation research that consists of four specific 

aims that are associated with the research questions defined above.  

Aim 1: To optimize deep learning methodology.  

• Incorporate newly available data from the Genomics of Drug Sensitivity in Cancer 

large pharmacogenomics experiment into predictive models.  

• Optimize the machine learning model developed in preliminary work using a modern 

machine learning framework.  

• Optimize the architecture hyperparameters of the deep neural network autoencoder.  

• Evaluate potential benefits from including various regularization methods in the 

training of the deep neural network autoencoder.  
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Aim 2: To determine the potential for clinical impact.  

• Simulate a cell line clinical trial by using a group of tumor cell lines to represent a 

cohort of patients.  

• Compare outcomes achieved by following the current standard of care versus using 

artificial intelligence-supported decision making.  

Aim 3: To generalize predictive models from cancer cell lines to cancer organoids.  

• Explore data normalization techniques to enable interoperability of predictive models 

with omics data from different sources.  

• Evaluate the ability of computational models trained using cancer cell lines to predict 

drug sensitivity in a variety of different cancer organoids.  

Aim 4: To incorporate available clinical data via transfer learning.  

• Evaluate the potential to improve model performance or generalizability by training the 

deep autoencoder on data from clinical tumor samples.  

• Further generalize predictive models from cancer cell lines to predict clinical outcomes 

or survival of patients using omics data collected in the process of care.  

• Evaluate the potential to create predictive models utilizing only clinical data.  
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4.0 Aim 1: Deep Learning Optimization  

Aim 1 focuses on improving the machine learning model used in preliminary work. The 

autoencoder described in 2.4.1.2 was adopted with relatively few modifications from code 

originally written for the task of recognizing images of integers 0 through 9 from the MNIST 

handwritten digits dataset [201]. As a result, several significant optimizations are possible.  

First, preliminary work was conducted on GDSC release 5.0, published in June 2014 [205]. 

The next major version, release 6.0, was made available two years later in June 2016 [102]. The 

predictive models were updated to take advantage of this new data. Second, the scientific 

computing code was developed and used before the creation of modern open source machine 

learning frameworks. The autoencoder was reimplemented using Google’s TensorFlow machine 

learning platform. Third, a very small number of neural network architectures were investigated 

in the preliminary work. A more rigorous search was conducted to optimize these hyperparameters. 

Fourth, recent advances in deep learning include the application of various regularization 

techniques to latent layers. These modifications to the training process are intended to increase 

generalizability and reduce training time. The potential benefit of these regularization methods 

was examined. I discuss each of these optimization components in the following sections.  

4.1 Data Retrieval and Feature Engineering 

The GDSC project’s version 6.0 release increased the coverage from 140 compounds 

evaluated in 624 cell lines to 265 compounds evaluated in 1001 cell lines. I decided to make this 
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updated dataset the basis for the following work. Although the original download location no 

longer exists, the data used in the following steps can currently be accessed from the GDSC 

archives in the directory for release 6.0. The dataset was processed in a manner similar to that used 

in preliminary work, described in 2.4.1.1. 

4.1.1 Methods 

4.1.1.1 Predictive Feature Data 

Microarray gene expression data from GDSC was obtained in the form a pre-processed 

Robust Multi-Array Averaged dataset [102]. This dataset consists of an array of 17,738 gene-level 

expression measurements in 1018 cell lines. As before, feature selection was performed on the 

GDSC gene expression data to reduce computational load using Hartigan’s dip test for unimodality 

[197], the outlier sum method [198], and median absolute deviation. Selection via these three 

methods yielded 3,108 gene expression features. Also as before, a mixture of two normal 

distributions was fitted to each feature’s expression profile using the expectation-maximization 

algorithm [199]. A Bonferroni-corrected t-test was performed to verify statistical significance 

between the two groups for each gene. These two groups were then used to determine a cutoff for 

discretizing the expression levels of each gene into low and high values. After this procedure, the 

preprocessed GDSC gene expression dataset contains discretized expression data on 3,108 genes. 

Copy number estimates for 585 genes were obtained in a preprocessed form from GDSC. 

These values were determined by processing Affymetrix SNP 6.0 microarray data using the 

PICNIC algorithm for copy number prediction [200]. Copy-number estimates ranging from 0 to 8 

were normalized to real values between 0 and 1. Genes with copy-number estimates greater than 
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8 were set to the maximum normalized value of 1. Genes for which data were incomplete were 

discarded, yielding a dataset containing copy number estimates for 565 genes.  

Mutation annotations for 587 genes were obtained in a preprocessed form from GDSC. 

SNPs were identified from whole exome sequencing data via the CaVEMan and Pindel algorithms 

for identifying substitutions and small insertions/deletions, respectively. Genes with a 

rearrangement event or other non-silent mutation were encoded with a value of 1. Unmutated genes 

or genes with silent mutations were assigned a value of 0.  

Cell line annotations were used to combine the gene expression, copy number, and 

mutation datasets into a single array for deep learning. Cell lines without all three data types 

available were discarded, leaving a final dataset of 4260 features in 963 cell lines. 

4.1.1.2 Drug Sensitivity Data 

GDSC drug sensitivity measurements for 1074 cell lines in the form of normalized activity 

area values were obtained and discretized into sensitive and resistant categories by applying the 

waterfall method used in CCLE [6] and described in 2.4.1.3. Cell lines for which no drug 

sensitivity experiments were conducted were discarded, yielding a drug sensitivity target dataset 

of 265 drugs evaluated in 963 cell lines.  

4.2 TensorFlow Implementation 

Modern machine learning platforms such as TensorFlow and Pytorch have become 

standard for the development and deployment of machine learning models in industry and 

academia [206]. The most significant advantage of utilizing a modern framework for our 
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application is the ability to utilize GPU computing on Nvidia Corporation’s CUDA parallel 

computing platform. In this section, I discuss my re-implementation of the deep autoencoder in 

TensorFlow. Furthermore, I evaluate the performance of predictive models built using data 

representations from the TensorFlow autoencoder and compare them against corresponding 

models created using the Matlab autoencoder. 

4.2.1 Methods 

4.2.1.1 Developing Latent Representations of Omics Data Using Deep Learning 

Code for training a deep autoencoder using TensorFlow 1.0 was written to use the new 

feature selected GDSC dataset for unsupervised representation learning. I closely matched the 

methodology used in preliminary work, as described in 2.4.1.2. An architecture with seven hidden 

layers of size 1300, 552, 235, 100, 235, 552, and 1300 was used. The layers were fully connected 

with sigmoid activation functions. The output layer is linear, and the cost function is a binary cross 

entropy. The starting model weights were set using Xavier initialization [207]. The network was 

trained using a gradient descent optimizer. The early stopping rule was invoked to stop 

backpropagation after 250 epochs of training when reconstruction error on the training set started 

to diverge from reconstruction error on the testing set. As a control, the Matlab autoencoder used 

in preliminary work, was trained and evaluated alongside the TensorFlow autoencoder. 

To train the autoencoders, the 963 cell lines in the dataset were randomly split into training 

and testing sets of 858 and 105 samples, respectively. After training of the autoencoders was 

completed, the GDSC final dataset of 4260 features in 963 cell lines was propagated through the 

neural networks. Values for the hidden nodes in the first four layers of each autoencoder were 
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extracted to produce latent representations of the GDSC data with 1300, 552, 235, and 100 

features. 

4.2.1.2 Predicting Drug Sensitivity with Latent Representations 

Elastic net regression was used to generate logistic models for drug sensitivity prediction 

[204] as described previously in 2.4.1.3. For each drug, ten models were built to predict the same 

target consisting of discretized sensitivity data for that drug across the cell lines in which it was 

tested. The input vectors for the ten models were a combined set of original unprocessed omics 

features, the feature selected dataset used to train the deep autoencoders, and the four layers of 

latent representations generated from both trained autoencoders. 

4.2.2 Results 

The elastic net models trained with original unprocessed features achieved an average area 

under the receiver operating curve of 0.73 (Figure 4). Applying variance-based feature selection 

and discretization before training the elastic net did not enhance overall predictive performance, 

although some individual drugs are better predicted with feature selection than without.  

Aggregate predictive performance of the best models using hidden latent variables as 

predictive features was not higher than models trained with original unprocessed features. This 

finding applied to both autoencoder implementations tested in this experiment. In fact, the average 

AUROC of the best models based on hidden latent variables was 0.73 for both autoencoders. A 

paired t-test comparing the performance of these two groups of models failed to reject the null 

hypothesis. 
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Figure 4: Learning cellular states with different autoencoder implementations. Predictive performance of 

elastic net models relative to predictive features used as inputs, derived from TensorFlow (TF) or Matlab 

implementationso of the same autoencoder. ***, P < 0.001 

4.2.3 Discussion 

The purpose of this experiment was to monitor the transfer of the deep learning 

methodology from one code platform to another. In the process, this experiment recapitulated 

many of the original findings found in preliminary work.  

As before, selecting and discretizing a smaller subset of features from the original 

integrated omics dataset causes a statistically significant (P < 0.001) decrease in predictive 

performance, presumably due to information loss. This decrease is then rescued by encoding the 

selected, discretized dataset and using the resulting hidden latent variable representations for 

predictive modeling. In the end, the best available predictive models are a mix of original, selected, 

and hidden layer models.  
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In moving from the Matlab autoencoder to the TensorFlow autoencoder, predictive 

performance did not deteriorate. This finding supports the use of the TensorFlow autoencoder in 

subsequent optimization and modeling work. Due to the change in code base, time to train an 

autoencoder has been reduced from over an hour to less than two minutes. This has enabled the 

rapid prototyping necessary for proper optimization of the neural network hyperparameters.  

4.2.4 Limitations 

The results of this experiment are unfortunately not directly comparable to those achieved 

in preliminary work, reported in 2.4.2. Despite consistent methodology, the greatly expanded 

dataset resulted in empirical differences in feature selection and discretization. In addition, 

AUROC values reported in preliminary work were obtained by generating ROC curves on the 

training data using fully trained prediction models. In the current and all subsequent experiments, 

performance metrics were calculated by computing the average AUROC of individual component 

models during cross validation. This removes a bias by ensuring that the data being used for 

evaluation has not been seen by the model during training. It is for these reasons that the Matlab 

autoencoder was re-trained and re-evaluated alongside the TensorFlow autoencoder for this 

experiment. 

4.3 Deep Neural Network Architecture Optimization 

The neural network architecture used in preliminary work consisted of seven hidden layers 

of size 1300, 552, 235, 100, 235, 552, and 1300. With the speed increase from GPU computing, it 
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became possible to rigorously evaluate competing potential architectures for the autoencoder. This 

process is complicated by the fact that efficient algorithms do not exist for hyperparameter 

optimization. As a result, random search and grid search are both popular methods [208]. I chose 

a hybrid method, where the boundaries of the search space are defined by a grid, and the parameters 

within are selected at random.  

In order to evaluate candidate deep learning architectures, it was necessary to select an 

evaluation metric other than predictive modeling performance. This is because although we can 

now perform deep learning very fast, elastic net regression remains computationally intensive, 

especially for larger feature sets. Test set reconstruction error was chosen for evaluation, as this 

metric represents the ability of the autoencoder to learn relationships between input features that 

generalize to unseen data. In this section, I discuss the search for an optimal autoencoder structure. 

4.3.1 Methods 

4.3.1.1 Candidate Autoencoder Structure Construction 

An autoencoder structure factory was created to produce candidate architectures for 

evaluation. Three hyperparameters were defined by hand. These were the size of the first hidden 

layer, the size of the smallest hidden layer in the middle, and the number of layers in the 

autoencoder. In the literature, the smallest middle hidden layer is often referred to as the code 

layer. The allowable sizes for the first hidden layer were 1000, 1100, 1200, 1300, 1400, and 1500. 

The allowable sizes for the code layer were 50, 100, 200, 300, 400, and 500. The allowable number 

of layers in the autoencoder was five, seven, and nine, which corresponds to three, four, and five 

layers to produce hidden representations, respectively. The remaining hyperparameters, which 
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were the number of hidden nodes in any undefined layers, were determined randomly according 

to the following procedure.  

Given a first hidden layer size and code layer size, a five-layer autoencoder can be 

constructed by randomly picking a number between the size of the first hidden layer and the size 

of the code layer, and making that the size of the layer in between. For example, if the first hidden 

layer has 1000 nodes and the code layer has 300 nodes, then a randomly selected number from the 

interval (300, 1000), such as 735, could be used to create a five-layer autoencoder with dimensions 

of 1000, 735, 300, 735, 1000. For every combination of first hidden layer size and code layer size, 

20 random intermediate numbers were selected, resulting in 720 different candidate architectures 

with five layers.  

Given an autoencoder structure with five layers, a nine-layer autoencoder can similarly be 

constructed by picking two random numbers. The first random number is selected from between 

the sizes of the first and second layer in the five-layer structure, and the second random number is 

selected between the sizes of the second and third layers. For example, given the previously used 

five-layer autoencoder structure of 1000, 735, 300, 735, 1000, then a random number is selected 

from the interval (735, 1000), such as 800, and another number is selected from the interval (300, 

735), such as 512. This creates a nine-layer autoencoder with dimensions of 1000, 800, 735, 512, 

300, 512, 735, 800, 1000. In this manner, the 720 candidate architectures with five layers were 

used to create 720 candidate architectures with nine layers. The search space for architectures with 

nine layers is much larger than the search space for five-layer architectures, so an additional 720 

nine-layer architectures were randomly generated, creating a total of 1440 candidate architectures 

with nine layers.  
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Given an autoencoder structure with nine layers, a seven-layer autoencoder can be 

constructed by removing the third and corresponding seventh layer from the nine-layer structure. 

For example, given the previously used nine-layer autoencoder structure of 1000, 800, 735, 512, 

300, 512, 735, 800, 1000, removing the two layers of size 735 leaves a seven-layer autoencoder 

with dimensions of 1000, 800, 512, 300, 512, 800, 1000. In this manner, the 1440 candidate 

architectures with nine layers were used to create 1440 candidate architectures with seven layers.  

In total, 3600 candidate architectures were generated. 11 were duplicates, and were 

discarded. The architecture used in preliminary work was manually added. 3590 architectures were 

evaluated. 

4.3.1.2 Candidate Autoencoder Structure Evaluation  

The TensorFlow autoencoder implementation described in 4.2.1.1 was used with some 

minor modifications. The 963 cell lines in the dataset were randomly split into training and testing 

sets of 750 and 213, respectively. The training set of 750 samples was then randomly split into 

five folds, each consisting of a training set of 600 samples, and a validation set of 150 samples. 

All autoencoders were trained for 1,000 epochs. At each step, the reconstruction error on the 

validation set and test set were recorded. After training was complete, the epoch with the lowest 

reconstruction error on the validation set was determined, and the corresponding reconstruction 

error on the test set at that time was recorded. This training and evaluation process was repeated 

for each of the five folds, and the resulting five test set reconstruction errors were averaged to 

create the target evaluation metric.  

For evaluation, autoencoder performance was visualized against the complexity of the 

underlying neural network. Mirroring the deep learning optimization cost function, performance 

was defined as a cross entropy reconstruction error in the form of a negative log-likelihood. 
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Complexity was represented as the number of hyperparameters in each neural network on a log 

scale.  

During analysis, an additional metric was created to describe the magnitude of the 

information bottleneck present in the autoencoder. Since the encoding component of the 

autoencoder consists of successively smaller layers, it is possible to calculate a shrinkage ratio by 

dividing the number of nodes in a layer by the number of nodes in the next layer. For example, if 

the current layer has 500 nodes, and the next layer has 150, then this represents a shrinkage of 

3.33. On the natural log scale, the bottleneck for this particular transition of layers is thus 1.20. 

This metric is calculated for each transition between layers, and the maximum value obtained is 

defined as the bottleneck for the entire autoencoder. The bottleneck metric represents the largest 

layer-to-layer drop in node size present in the deep neural network. 

4.3.1.3 Optimal Autoencoder Structure Design and Evaluation  

To aid in the selection of an optimal autoencoder structure from the configurations tested, 

a high-dimensional Bayesian information criterion (BIC) was calculated to quantify the tradeoff 

between reconstruction performance and complexity [209, 210]. Performance is defined as the log 

likelihood of the model given the data, and complexity is a log-scaled count of the number of 

parameters, or weights, in the deep neural network. The top 20 autoencoder structures by this 

criterion were examined, and in combination with the other evaluation metrics, were used to 

inform the design of a single new autoencoder structure for subsequent experiments.  

The new deep autoencoder structure was implemented and trained on the GDSC integrated 

omics dataset as described in 4.2.1.1. The only modification made was to the autoencoder 

structure.  
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To determine the impact of the new structure on predictive performance, the new 

autoencoder was used to generate predictive features for elastic net regression as described in 

2.4.1.3 and 4.2.1.2. For each drug, six models were built to predict the same target consisting of 

discretized sensitivity data for that drug across the cell lines in which it was tested. The input 

vectors for the six models were a combined set of original unprocessed omics features, the feature 

selected dataset used to train the deep autoencoder, and the four layers of latent representations 

generated from the autoencoder. Predictive performance was compared against that of models 

trained on representations derived from the autoencoder structure used in preliminary work, 

originally reported in 4.2.2.  

4.3.2 Results 

4.3.2.1 Candidate Autoencoder Structure Evaluation 

For the autoencoder architectures tested, performance exhibits a classic relationship with 

complexity. As the number of parameters in the neural network increases, the reconstruction 

performance generally improves. This effect, however, is subject to diminishing returns (Figure 

5A).  

The clearest visible pattern in the results is the impact of the size of the first hidden layer 

on model performance. As the size of the first hidden layer increases from 1000 to 1500, the 

performance of the autoencoder generally increases, even as overall complexity remains the same. 

This effect is also subject to diminishing returns (Figure 5B). The impact of the number of hidden 

layers on model performance is also visible. The number of hidden layers is closely related to the 

overall complexity of the model. In general, an autoencoder with fewer layers is less complex and 

performs worse than an autoencoder with more layers. However, there do exist five-layer and 
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seven-layer autoencoders that perform just as well as all but the most complex nine-layer 

autoencoders (Figure 5C).  

 

 

Figure 5: Autoencoder network architecture optimization. Reconstruction performance of deep neural 

network autoencoders relative to the number of parameters in the neural network. All panels depict the same 

data, with different highlights. A, Generalized location of finalized architecture vs. preliminary architecture. 

B, Impact of first hidden layer size. C, Impact of autoencoder depth. D, Impact of middle layer size.  
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Figure 5: Autoencoder network architecture optimization (continued). Reconstruction performance of deep 

neural network autoencoders relative to the number of parameters in the neural network. All panels depict the 

same data, with different highlights. E, Impact of information bottleneck. F, Impact of information bottleneck, 

zoomed, 1300 first hidden layer size only. 

 

The impact of the size of the middle hidden layer, or code layer is more difficult to discern 

(Figure 5D). A clear relationship is visible wherein smaller code layers are generally found in 

lower-complexity models. It also seems possible that at a given first layer size and constant 

complexity level, having a smaller code layer is favored in terms of performance. For a given first 

hidden layer size, autoencoders with large bottlenecks occupy the leading edge of the performance-

complexity optimization curve (Figure 5E, 5F). 

4.3.2.2 Optimal Autoencoder Structure Design and Evaluation  

The top 20 architectures sorted by BIC are listed in Table 2. There are several 

commonalities visible in these high-performing architectures. First, they are all either five or seven 
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layers deep, suggesting that nine-layer architectures are too complex. Second, the size of the first 

hidden layer is large. In fact, it is 1500 for all of them. Third, the size of the code layer is small – 

either 50, 100, or 200. Fourth, regardless of the number of layers in the autoencoder structure, 

there is an extreme bottleneck between the second and third hidden layers.  

 

Table 2: Autoencoder network architecture optimization. 

Architecture Structure Layer Depth Scaled BIC 

1500 1357 50 1357 1500 5 4.655 

1500 1317 50 1317 1500 5 4.651 

1500 1479 50 1479 1500 5 4.646 

1500 1401 116 100 116 1401 1500 7 4.646 

1500 1104 133 50 133 1104 1500 7 4.645 

1500 1135 50 1135 1500 5 4.645 

1500 1366 50 1366 1500 5 4.645 

1500 1156 73 50 73 1156 1500 7 4.644 

1500 1325 111 100 111 1325 1500 7 4.644 

1500 1282 82 50 82 1282 1500 7 4.643 

1500 1260 100 1260 1500 5 4.643 

1500 1129 100 1129 1500 5 4.641 

1500 1148 200 1148 1500 5 4.638 

1500 1177 110 100 110 1177 1500 7 4.638 

1500 1228 100 1228 1500 5 4.637 

1500 1150 50 1150 1500 5 4.637 

1500 1373 100 50 100 1373 1500 7 4.637 

1500 1314 100 1314 1500 5 4.635 

1500 1270 71 50 71 1270 1500 7 4.634 

1500 1496 112 100 112 1496 1500 7 4.633 
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These results generally agree with the overall trends observed in the previous section. 

Based on this information, a seven-layer autoencoder structure with layers 1500, 1200, 110, 100, 

110, 1200, 1500 was created for use in subsequent experimentation. Aggregate predictive 

performance of the best models using hidden latent variables from the optimized autoencoder as 

predictive features did not outperform the corresponding models from the preliminary 

autoencoder. As before, the average AUROC of the best models based on hidden latent variables 

was 0.73 for both autoencoders. A paired t-test comparing the performance of these two groups of 

models failed to reject the null hypothesis.  

However, an examination of the predictive performance of individual hidden layers reveals 

statistically significant differences between the predictive performance of features derived from 

the second (P < 0.01) and third (P < 0.05) hidden layers (Figure 6). 

 

 

Figure 6: Learning cellular states using an optimized autoencoder. Predictive performance of elastic net models 

relative to predictive features used as inputs, derived from differing autoencoder structures. *, P < 0.05. **, P 

< 0.01.  
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4.3.3 Discussion  

Through the evaluation of thousands of different autoencoder structures, it became possible 

to gain an understanding of the complex relationship between an autoencoder’s reconstruction 

ability and the complexity of the underlying neural network. Specifically, we determined that at a 

given complexity level, the best-performing models favor large first hidden layers and small code 

layers. This structure enables the creation of an extreme bottleneck between the second and third 

hidden layers.  

The use of the optimized autoencoder structure in the drug sensitivity predictive modeling 

workflow did not improve predictive performance in the aggregate compared to using the 

preliminary autoencoder. This is likely because the absolute reconstruction performance of the two 

autoencoders was very similar. It is reasonable that minor differences in encoding efficacy do not 

translate into noticeable differences in predictive ability when using a logistic regression model 

with robust regularization such as elastic net.  

Interestingly, some of the hidden layers exhibited differential predictive potential when 

moving from one autoencoder to the other. This is likely due to the significant differences in the 

number of nodes in those layers. For the second hidden layer, the preliminary autoencoder has 

only 552 nodes while the optimized autoencoder has 1200. The third hidden layers exhibit this in 

reverse – the preliminary autoencoder has 235 layers while the optimized autoencoder has 110. In 

both cases, the predictor with the larger number of nodes exhibits better aggregate performance. 

On the surface, this is surprising because a higher dimension feature set generally presents a more 

difficult regression or classification problem. However, the process of representing a complex 

high-dimensional dataset with a smaller-dimensional one is generally inclined to incur some loss 

of information, so follows that predictive performance may suffer as a result. This finding mirrors 
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the general within-autoencoder trend that the smaller hidden layers generally do not perform as 

well in aggregate as the first hidden layer, which is the largest.  

The optimized autoencoder structure does not outperform the structure used in preliminary 

work for drug sensitivity prediction. This is likely because although the architecture structures are 

different, their reconstruction performance is not that far apart in absolute terms. The optimized 

autoencoder structure of 1500, 1200, 110, 100, 110, 1200, 1500 is the standard structure for all 

subsequent experiments.  

4.3.4 Limitations 

The optimized autoencoder structure designed as a result of the random grid search actually 

lies on the edge of the grid. The first hidden layer size of 1500 is the largest value explored for that 

particular hyperparameter. Given the convincing pattern depicted in Figure 5B, it is likely that 

further increasing this value could have continued to improve the reconstruction performance of 

the autoencoder models. Without actually exploring those values, we do not know whether they 

would yield meaningful increases in reconstruction ability or if the resulting increased complexity 

would make for a bad tradeoff.  

It is difficult to attribute the behavior of the predictive modeling results to changes made 

to the autoencoder alone. Although these experiments are technically controlled in that the same 

elastic net procedure is used to build models for drug sensitivity after encoding the data with 

different neural networks, there is a possibility that differential interactions between the regression 

method and the feature engineering methods could impact the results. Evaluating a different 

regression or classification algorithm, perhaps one without regularization, could yield some insight 
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here, even if, based on preliminary work, such an algorithm is very likely to perform worse than 

the elastic net.  

4.4 Deep Neural Network Regularization 

After determination of the optimal autoencoder structure, recent advances in deep learning 

were evaluated for potential to improve the autoencoder. Regularization methods such as 

sparsification [211], dropout [212], and batch normalization of weights [213] have gained 

popularity at conferences and in modeling competitions due to their demonstrated ability to reduce 

overfitting and improve generalizability of neural network models.  

Originally, the sparsification method proposed for evaluation was L1 regularization. After 

some consideration, this was replaced with a Kullback-Leibler (KL) divergence penalty. The KL-

divergence, sometimes referred to as entropy or relative entropy, expresses a measure of 

disagreement or discrepancy between two probability distributions [214]. This seemed more 

meaningful for our purposes than the L1 norm, which simply penalizes coefficients that grow too 

large in absolute terms.  

Dropout normalization is perhaps the simplest normalization method. By randomly 

excluding weight parameters in training cycles, dropout simulates the process of training many 

different neural networks at once. In addition, it increases training speed because a smaller number 

of nodes are updated during each training cycle [212].  

Batch normalization is a process that seeks to coordinate the update of multiple layers in a 

deep neural network at once. In traditional backpropagation, each layer is updated by itself. 

However, in practice, oftentimes all layers are updated at once, potentially significantly changing 
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the distribution of inputs for a given layer at the same time the weights for that layer are being 

modified. Batch normalization is the process of standardizing these intermediate values, so a 

change in inputs during a weight update does not change the distribution [215].  

In this section, I discuss the evaluation of the potential benefits of these modifications on 

the optimized deep neural network structure.  

4.4.1 Methods 

The optimized autoencoder structure determined in 4.3.2.2 was used to encode integrated 

omics features from the GDSC for elastic net regression as described in 2.4.1.3, 4.2.1.2, and 

4.3.1.3. For each drug, six models were built to predict the same target consisting of discretized 

sensitivity data for that drug across the cell lines in which it was tested. The input vectors for the 

six models were a combined set of original unprocessed omics features, the feature selected dataset 

used to train the deep autoencoder, and the four layers of latent representations generated from the 

autoencoder. The only modification from previous methods was the addition of one of three 

regularization methods – KL-divergence, dropout, or batch normalization, to the first hidden layer 

of the autoencoder. In the implementation of these three methods, there was only one 

hyperparameter to specify. The dropout rate was set at 0.5, or 50%. Applying dropout is effectively 

training and sampling from a probability distribution of network architectures. A dropout rate of 

0.5 creates the highest variance for this distribution, creating the strongest possible regularization 

effect.  
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4.4.2 Results 

Predictive performance of elastic net models built using regularized representation layers 

was compared against the same models built using an autoencoder without regularization, 

originally reported in 4.3.2.2. No statistically significant differences in performance was found 

using any of the three regularization methods (Figure 7). 

 

 

Figure 7: Learning cellular states using regularized autoencoders. Predictive performance of elastic net models 

relative to predictive features used as inputs, derived from a single autoencoder structure with various forms 

of regularization. H1 = hidden layer 1.  

4.4.3 Discussion 

There are several reasons why regularization did not significantly improve the predictive. 

First, the autoencoder is trained in an unsupervised fashion. As there is no exposure to the target 
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result data, there can be no overfitting to those results. Second, we employ early stopping when 

training the autoencoder. This is a very conservative method for preventing a highly complex 

model, such as a neural network, from learning spurious relationships that may randomly exist in 

the training data [216]. Third, our predictive modeling utilizes elastic net regression, which is a 

logistic regression with both L1 and L2 regularization. Taken together, these three characteristics 

put our model at an extremely low risk for overfitting. It is not surprising then, that additional 

regularization techniques designed specifically to combat overfitting did not improve predictive 

performance.  

4.4.4 Limitations 

This investigation of the impact of regularization was conducted after determining an 

optimized deep neural network structure. This was done for efficiency – if regularization was to 

be studied before settling on a single architecture, then each of the three regularization methods 

would need to have been tested on multiple architectures.  

However, this raises the possibility that the reason regularization caused no improvement 

in performance is because we had already tailored the autoencoder to our application. We did not 

seem to have overfit, since we would have likely seen an improvement with regularization. Instead, 

by selecting an autoencoder architecture with the right complexity, we had already gained 

whatever benefit potentially existed in applying regularization to the autoencoder. It is conceivable 

that with an unoptimized and excessively large autoencoder, there may be a benefit to employing 

regularization, especially if the number of training cycles is not restricted by early stopping. There 

is evidence in machine learning literature that large networks can perform very well in practical 

scenarios if regularized appropriately [217]. If that is indeed the case, then a more efficient method 
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of arriving at a working model would be to simply take an overly complicated autoencoder and 

train it with regularization. This would undoubtedly be faster than testing 3600 different 

autoencoders. However, such size compromises interpretability, which is undesirable for 

biomedical applications.  
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5.0 Aim 2: Determine Potential for Clinical Impact  

Aim 2 focuses on exploring the potential therapeutic benefit from a successful translation 

of the models created and evaluated in preliminary work and refined in Aim 1. Although deep 

learning based predictive models performed favorably when compared to rule-based genomic 

biomarker models in preliminary work, a collection of such rule-based models does not create an 

accurate representation of clinical practice. The proportion of patients who are approved to attempt 

molecularly targeted therapy is small, and the rest are prescribed a series of nonspecific cytotoxic 

medications according to national or institutional guidelines [5].  

A true evaluation of the potential clinical impact of accurate drug prediction models must 

compare the ability to select targeted and nonspecific medications against the standard of care. 

Using a group of tumor cell lines derived from the same cancer sub-type to simulate a cohort of 

patients, it is possible to run a cell line “clinical trial” to accomplish this task. I discuss the details 

of this experiment in the following sections.  

5.1 Cancer Cell Line Trial 

In order to run this experiment, the cancer type selected must satisfy two conditions. First, 

there must be a substantial number of cell lines of that cancer type in the available 

pharmacogenomics data. Second, there must be adequate representation of the targeted and 

cytotoxic medications used to treat this type of cancer in the compounds tested by the 

pharmacogenomics experiment. An analysis of the GDSC data reveals that two groups of cancer 
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cell lines satisfy both conditions. Thus, two separate trials will be run on the non-small-cell lung 

carcinoma (NSCLC) and upper aero-digestive tract (ADT) tumor cell lines. 

Using current National Comprehensive Cancer Network (NCCN) standard of care 

guidelines for a particular cancer, it is possible to simulate attempted treatment regimens for each 

cell line as it progresses through the standard of care. The effectiveness of this standard of care 

model can then be compared against a theoretical clinical decision support system that predicts the 

chance of success before attempting a therapy. If the computational predictive models developed 

from deep learning are to be clinically useful, they should consistently find an effective therapy in 

fewer attempts than the current standard of care. Such models would also be useful in repurposing 

unapproved medications for the cell lines for which the standard of care did not include an effective 

therapy.  

5.1.1 Methods 

5.1.1.1 Standard of Care Modeling 

Non-small cell lung cancer  

The NCCN 2018 clinical guidelines for treating advanced NSCLC with chemotherapy 

were cross referenced against available pharmacogenomic data from GDSC. The resulting 

simplified clinical guideline is outlined in Table 3. Candidate therapies are listed in general 

preferred order of administration.  
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Table 3: A simplified standard of care for NSCLC. 

Therapy Type Drug Name Indication/Notes 

Targeted Therapy Erlotinib EGFR activating mutation 

Alectinib EML4-ALK rearrangement 

Crizotinib ROS1 rearrangement 

Dabrafenib BRAF V600E 

Nonspecific 

Chemotherapy 

Cisplatin  

Paclitaxel  

Gemcitabine Squamous only 

Docetaxel  

Notable Omissions Pembrolizumab No PD-L1 or sensitivity data 

Osimertinib No EGFR T790M data 

Ceritinib No drug sensitivity data 

Pemetrexed No drug sensitivity data 

 

 

Table 4: A simplified standard of care for ADT cancers. 

Therapy Type Drug Name Indication/Notes 

Targeted Therapy Erlotinib EGFR activating mutation 

Gefitinib EGFR activating mutation 

Nonspecific 

Chemotherapy 

Cisplatin  

5-Fluorouracil  

Docetaxel  

Paclitaxel  

Notable Omissions Irinotecan No drug sensitivity data 

Oxaliplatin No drug sensitivity data 
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Upper aero-digestive tract cancer  

The NCCN 2018 clinical guidelines for treating advanced esophageal or head and neck 

cancers were cross referenced against available pharmacogenomic data from the GDSC. The 

resulting simplified clinical guideline is outlined in Table 4. As before, candidate therapies are 

listed in general preferred order of administration, favoring targeted therapies where available. 

Standard of care modeling 

Using these simplified guidelines, cancer cell lines of relevant lineages were modeled as 

individual patients progressing through the standard of care. First, their molecular genotyping 

information was used to determine eligibility for targeted therapy. Cell lines carrying relevant 

single-gene biomarkers were evaluated on targeted therapy first, by checking the GDSC drug 

sensitivity data described in 4.1.1.2 for a sensitivity response. If targeted therapies did not work, 

the patient progressed to nonspecific chemotherapy with the remainder of the cohort. Patients 

progressed along the standard of care until they had been successfully treated once or had been 

unsuccessfully treated three times. Success is defined as the administration of a therapy that was 

found to be effective in the discretized drug sensitivity experimental results from the GDSC. The 

results were recorded to compare against an alternative course of action. 

5.1.1.2 AI-Supported Decision Modeling  

A simple implementation of a clinical decision support system into the care workflow does 

not suggest new drugs from outside the existing armamentarium. Rather, it simply reorders already 

approved medications to create an individualized personal “standard” of care. Drugs are evaluated 

in order of model performance – that is, the better-performing models are used first, because they 

are less likely to make mistakes. Instead of paying attention to single-gene biomarkers for the 

administration of targeted therapy, the computational model’s predictive recommendation is 
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followed instead. For nonspecific chemotherapy without markers, the drug is not universally 

administered, but instead, the computational model’s predictive recommendation is followed as 

well.  

Predictive model generation  

Up until this point, the autoencoders used to create low-dimensional representations of 

cancer cell line omics data from the GDSC have been trained on the entire dataset. Although this 

is the correct course of action to produce the strongest possible model by utilizing all of the 

available training data, there does exist potential for leakage, as the entire predictive modeling 

pipeline cannot be said to have been evaluated on previously unseen data. Although this may not 

necessarily result in overfitting for reasons discussed in 4.4.3, a modification was made to the 

predictive modeling workflow that has been used thus far as described in 2.4.1.3, 4.2.1.2, 4.3.1.3, 

and 4.4.1.  

Given a particular cell line to be evaluated, that cell line’s descriptive omics feature 

information and experimental drug response information is removed from the GDSC. A complete 

autoencoder and set of elastic net regression models are trained on the remaining data using the 

same methodology as before. From the various regression models trained for a particular drug, the 

best one is selected on the basis of cross-validated AUROC. In order to generate a drug-cell line 

effectiveness call, the cell line’s descriptive features are encoded by the autoencoder, and evaluated 

using the selected best model. This leave-one-out process is repeated for every cell line to be 

evaluated. Given the 109 NSCLC cell lines and 79 ADT cell lines in the GDSC, this process is 

computationally extremely intensive, although it is far more tractable than performing the process 

on the entire dataset. For this reason, this experimental design modification was adopted for this 

experiment only.  
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Drug sensitivity predictions generated in this manner were used to simulate 

recommendations from an AI clinical decision support system following patients through the 

standard of care. As with the standard of care modeling described in the previous section, patients 

were followed until they had been successfully treated once or unsuccessfully treated three times. 

As before, success is defined as the administration of a therapy that was found to be effective in 

the discretized drug sensitivity experimental results from the GDSC. Results were recorded for 

comparison to the standard of care. 

5.1.2 Results 

Non-small cell lung cancer  

Sankey diagrams for visualizing the path of 109 NSCLC cell lines through the standard of 

care and model-assisted decision making can be found in Figure 8. For 19 of these cell lines, there 

is no effective treatment in the list of approved medications. The remaining 90 pass through the 

different care modalities with varying results.  

Following the standard of care, 22 patients are successfully treated on the first attempt. 37 

are successfully treated on the second attempt, bringing the total to 59. One patient is successfully 

treated on the third attempt, resulting in a total of 60 patients receiving an available, effective 

therapy within three regimens, an overall success rate of 67%. 

Following the AI-supported standard of care, 70 patients are successfully treated on the 

first attempt. 13 are successfully treated on the second attempt, bringing the total to 83. Four 

patients are successfully treated on the third attempt, resulting in a total of 87 patients receiving an 

available, effective therapy within three regimens, an overall success rate of 97%.  
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Figure 8: Evaluating the NSCLC standard of care with a cell line trial. Sankey diagrams depicting the 

therapeutic fate of NSCLC cell lines in A, Standard of care, and B, AI-assisted standard of care.  

 

Following the standard of care, an average of 2.70 therapies are attempted before either 

finding an effective treatment or running out of options. In contrast, the AI-supported standard of 

care averages 1.22 therapies.  

Upper aero-digestive tract cancer  

Sankey diagrams for visualizing the path of 79 ADT cell lines through the standard of care 

and model-assisted standard of care can be found in Figure 9. For 15 of these cell lines, there is no 

effective treatment in the list of approved medications. The remaining 64 pass through the different 

care modalities, again with varying results.  
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Figure 9: Evaluating the aero-digestive tract cancer standard of care with a cell line trial. Sankey diagrams 

depicting the therapeutic fate of aero-digestive tract cancer cell lines in A, Standard of care, and B, AI-assisted 

standard of care. 

 

Following the standard of care, 14 patients are successfully treated on the first attempt. 13 

are successfully treated on the second attempt, bringing the total to 27. 32 patients respond well to 

the third therapy regimen, resulting in a total of 59 patients receiving an available, effective therapy 

within three regimens, an overall success rate of 92%.  

Following the AI-supported standard of care, 46 patients are successfully treated on the 

first attempt. 13 more are successfully treated on the second attempt, bringing the total to 53. 

Finally, 8 patients are treated on the third try, resulting in a total of 61 patients receiving an 

available, effective therapy within three regimens, an overall success rate of 95%. Although the 
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final success percentage is similar, the AI-supported method treats more patients effectively sooner 

than following the standard of care.  

Following the standard of care, an average of 2.30 therapies are attempted before either 

finding an effective treatment or running out of options. In contrast, the AI-supported standard of 

care averages 1.78 attempts.  

5.1.3 Discussion 

Some patterns can be seen in the results. A particularly strong AI model for Docetaxel 

causes it to be the first evaluated therapy for both cohorts of patients. Since it is an accurate model, 

it has a high success rate when assigning subjects to be treated. This strategy significantly 

outperforms the current standard of using Cisplatin as first-line therapy for all patients. In the 

NSCLC results, a significant portion of the cell line population is successfully treated with 

Gemcitabine by the AI. The standard of care is unable to match this performance because current 

guidelines do not indicate Gemcitabine for non-squamous tumors.  

Despite several targeted medications being approved for either type of cancer, these 

therapies were not attempted in either treatment system. In the standard of care, this is due to no 

patients having the relevant biomarkers to indicate administration of a targeted therapy. This does 

reflect reality in real patient tumors, where positive biomarkers for targeted therapy are rare. In the 

AI-supported system, the models for targeted therapies were simply lower in priority than the best-

performing nonspecific models, and patients were successfully treated before being evaluated for 

targeted therapies.  

These findings reinforce the preceding work by supporting the conclusion that it is possible 

to accurately predict drug sensitivity from integrated omics data using artificial intelligence 
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models. These models have demonstrated superior performance when compared to the current 

standard of care guidelines for NSCLC and ADT tumor cell lines. The advantage is two-fold. First, 

a greater percentage of cell lines are successfully assigned an effective therapy in the AI-assisted 

standard of care than the non-assisted standard of care. Second, the AI-assisted method 

successfully treats more cell lines earlier in the process. Translated to the clinic, these advantages 

would lead to reduced costs, side effects, and lost time through the avoidance of ineffective 

therapies.  

5.1.4 Limitations 

Although these findings are promising, it is unlikely that a random assortment of cancer 

cell lines can really effectively approximate a population of real-world patients. This is because 

the distribution of cancer subtypes in the cell lines is likely to be different from the corresponding 

distribution in a human patient population. While we have demonstrated that effective predictive 

models could potentially provide a lot of value to clinical care, the delivery of that value relies on 

the models actually working in the clinical environment. Without some indication of 

generalizability, it is difficult to progress cell line based models past proof of concept. The next 

chapter addresses this limitation.  
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6.0 Aim 3: Explore Generalizability to Organoids  

Aim 3 focuses on determining whether the models being trained so far will properly 

generalize to new data. Although the deep learning drug prediction models successfully 

generalized to another large pharmacogenomics experiment in 2.4.3, the ultimate intention of these 

models is not to predict the effectiveness of drugs on cell lines, but to predict drug sensitivity of 

clinical cancers. However, due to the same lack of clinical data that precludes the training of these 

predictive models using clinical samples in the first place, it is difficult to evaluate their 

performance on real clinical tumors. An intermediate step is to determine whether computational 

models trained on cell line data can predict drug sensitivity of patient-derived organoids, which 

more closely resemble clinical tumors than immortalized cell lines.  

As organoid culture technique is still a relatively new technology [218], there is not an 

abundance of data available for this purpose. However, three recently published studies contain 

tissue-specific pharmacogenomic datasets for bladder [114], colorectal [115], and liver [112] 

cancer organoids. While these datasets are not large enough to be used to train predictive models, 

they can be used to test them.  

There are only two complications. First, the organoid datasets are small. The bladder, 

colorectal, and liver datasets have 11, 19, and 5 samples, respectively. Discretizing the gene 

expression data via mixture fitting as described in 4.1.1.1 will not be possible. Models will need 

to be built using continuous data. Second, as the organoid experiments are very recent, they did 

not quantify gene expression using microarrays, instead opting for RNA-Seq. This difference must 

be reconciled before models trained using microarray features can be tested using data collected 

using RNA-Seq.  
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A variety of techniques exist for this propose. Some, such as probe region expression 

estimation [219], and variance modeling at the observational level [220] require sample matching, 

which is not possible in this case. Other methods include training distribution matching [221], 

quantile normalization [222], feature specific quantile normalization [223], and nonparanormal 

transformation [224]. The ideal method will preserve internal data dependencies while normalizing 

the overall distribution of data, stripping experiment-specific, methodology-dependent, batch 

effects.  

Once a suitable data normalization method has been selected, it may be used to normalize 

the organoid datasets, enabling the external validation experiment that is the main goal of this aim. 

I discuss the evaluation of normalization methods and subsequent organoid generalizability 

experiment in the following sections.  

6.1 Gene Expression Normalization  

A straightforward method to determine whether two datasets are normalized relative to 

each other is to combine the datasets into one, and then perform an unsupervised clustering on the 

combined dataset. Data from two different sources will tend to separate into distinct clusters if 

batch or platform effects are not addressed beforehand. In contrast, after successful normalization, 

the combined dataset should behave like a single source, and will cluster according to some other 

criteria or feature. Thus, the ability for competing data normalization procedures to achieve this 

effect can be a useful selection criterion.  

Although the purpose of finding an appropriate data normalization method is to enable 

application of predictive models trained on cell lines to be evaluated in organoids, the organoid 
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datasets themselves are too small to run this experiment. However, publicly accessible RNA-Seq 

data from The Cancer Genome Atlas (TCGA) can be used instead [225].  

In this experiment, TCGA clinical samples characterized by RNA-Seq are combined with 

GDSC cell line samples characterized using microarrays, and this combined set of samples is 

clustered according to gene expression profile. Without normalization, the methodology and data 

source effects will separate the TCGA samples from the GDSC samples. Different normalization 

methods can be applied to one or both datasets before they are combined and clustered once again. 

If the normalization is effective, then samples from the two different experiments should not 

appear different due to that reason alone, and the samples should separate according to tissue type, 

that is, TCGA breast cancers should cluster with GDSC breast cancer cell lines.  

6.1.1 Methods 

6.1.1.1 Data Retrieval and Feature Engineering  

Log2 normalized RNA-Seq data describing the TCGA was downloaded from the UCSC 

Xena browser [225]. For simplicity, the seven most abundant tissue types within the dataset were 

extracted, and the rest of the dataset was discarded. The retained dataset contained cancers of the 

breast, skin, kidney, colon, rectum, lung, and head/neck.  

Microarray gene expression data from the GDSC was obtained in the form of a pre-

processed Robust Multi-Array Averaged dataset [102], as in 4.1.1.1. However, instead of 

conducting feature selection, cancer cell lines corresponding to the seven TCGA tissue types 

selected for the experiment were extracted, and the rest of the dataset was discarded.  

Gene names for the TCGA dataset were renamed from the Human Genome Organisation 

(HUGO) nomenclature to Ensembl gene IDs to match the GDSC data. Genes that were not 
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measured in both datasets were discarded from both datasets. At the end of this procedure, the 

GDSC clustering dataset contained 278 cell lines, and the TCGA clustering dataset was composed 

of 3527 clinical samples. All samples in both datasets had complete gene expression measurements 

on 14,511 genes.  

6.1.1.2 Clustering  

The combined dataset of GDSC cell lines and TCGA samples were clustered according to 

the gene expression features using k-means. Naturally, k was set at 7, since a successful clustering 

operation would be expected to separate the cancers by tissue of origin. In addition to this control 

experiment without normalization, five clustering experiments were completed after normalization 

by one of the following methods: quantile Gaussian normalization, feature-specific quantile 

normalization, feature-specific linear transformation, nonparanormal transformation, and training 

distribution matching. For normalization methods that require the designation of a reference 

dataset and a transform dataset, the TCGA data were transformed using the GDSC data as the 

reference.  

6.1.2 Results 

Clustering the data without any normalization was not a success (Figure 10A). All of the 

GDSC cell lines clustered into a single group, while the TCGA clinical samples separated neatly 

by tissue type. Quantile normalization and training distribution matching achieved virtually the 

same results as the control (Figure 10B, 10F). Linear transformation of the clustering features was 

counterproductive, preventing proper clustering of the TCGA samples while not helping 

differentiation of the GDSC cell lines (Figure 10D).  
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Figure 10: K-means clustering of a combined GDSC and TCGA dataset. Before clustering, the datasets were 

preprocessed with A, No normalization, B, Quantile gaussian normalization, C, Feature-specific quantile 

normalization, D, Feature-specific linear transformation, E, Nonparanormal transformation, and F, Training 

distribution matching.  

 

The two normalization methods that saw success were feature-specific quantile 

normalization, and nonparanormal transformation (Figure 10C, 10E). Both of these methods failed 

to distinguish a cluster containing the TCGA lung samples, but otherwise managed to generate 

mono-origination clusters with data from both TCGA and GDSC.  
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6.1.3 Discussion  

Normalization of these samples for clustering is a difficult task, because the normalization 

process must overcome two challenges. First, we are attempting to combine data from cell lines 

with data from clinical tissue. Second, the cell lines were assayed by microarray while the clinical 

tissue were profiled using RNA-Seq. The normalization method must reconcile both of these 

differences while maintaining the underlying gene expression information that enables successful 

clustering of the cancer samples.  

It is not surprising then, that clustering the data without normalization does not distinguish 

between cancer types. Similarly, quantile normalization of the entire dataset probably changed 

very little, as expression levels of all genes in all samples is likely already close to normally 

distributed. What is surprising is that training distribution matching (TDM) failed to work at all. 

TDM was developed specifically to enable the transfer of machine learning models built on 

microarrays to be applied to data generated from RNA-seq [221]. TDM accomplishes this task by 

transforming test data to approximate the same distribution of expression values as the reference 

data without impacting the rank correlation of the datasets. This approach is probably too 

conservative in an application where we are also attempting to normalize across cell lines and 

clinical tissue.  

Although the two successful methods produce similar results, they function differently. 

Feature specific quantile normalization operates by assuming the distribution of an individual gene 

across one dataset should be similar to the distribution of that same gene across the other dataset 

[223]. It then normalizes these values. Nonparanormal transformation, however, does not require 

a reference dataset to normalize against. That is because it transforms features into a multivariate 

Gaussian distribution, the exact form of which is estimated from the underlying data. In this 
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manner, the nonparanormal actually seeks to represent independence relationships found in the 

data. Using this method to individually transform both datasets relies on an assumption that similar 

gene expression distributions will give rise to similar multivariate Gaussian transformations, which 

can then be effectively merged [224]. 

The nonparanormal transformation seems to have a significant advantage in not requiring 

a reference dataset. This offers flexibility because it allows the creation of models utilizing one 

dataset before the nature of the evaluation dataset is known. Based on this feature, the 

nonparanormal transformation was selected as the preferred normalization method for subsequent 

experiments.  

6.1.4 Limitations 

Although we explored a selection of parametric and nonparametric normalization methods 

in this experiment, the evaluation was not exhaustive. There exist numerous other algorithms and 

tools for normalizing datasets for interoperability. In addition, individual methods we did evaluate 

can often be implemented in multiple ways to varying effect. In the end, practical concerns 

prevented us from exhaustively optimizing this component of the research. However, as it is a 

critical piece, we did ensure that we found a working method and a promising backup strategy 

before moving on.  
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6.2 Nonparanormal Transformation  

Before utilizing the nonparanormal transformation in an experimental setting, we must first 

verify that it does not negatively impact the existing modeling workflow. Using the nonparanormal 

transformation on a gene expression dataset generates a collection of predictive features with a 

multivariate Gaussian distribution centered around 0. This can be integrated smoothly into the 

existing modeling workflow by centering the distribution around 0.5 and linearly scaling the 

transformed dataset into the range [0,1]. 

6.2.1 Methods 

Microarray gene expression data from GDSC was obtained in the form of a pre-processed 

Robust Multi-Array Averaged dataset [102], as in 4.1.1.1. However, instead of performing feature 

selection, the nonparanormal transformation was applied. The resulting expression dataset was 

then linearly transformed. As it is generally not the best idea to do feature selection on transformed 

data, the 3,108 genes selected in 4.1.1.1 were carried over and extracted from the nonparanormal 

transformed GDSC gene expression dataset. This dataset was then combined with the copy number 

and mutation data from 4.1.1.1, creating a deep learning dataset of 4260 features in 963 cell lines. 

This dataset is directly comparable with the dataset generated in 4.1.1.1, with the only difference 

being that the gene expression data is transformed and continuous, rather than discrete.  

This data was then used to train a deep autoencoder as described in 4.2.1.1. Linearly scaling 

the transformed expression data allows the use of the same autoencoder configuration. No changes 

to activation or cost functions are necessary. After training, the autoencoder was used to encode 

the input GDSC dataset, and elastic net was used to generate logistic models for drug sensitivity 
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prediction as in 2.4.1.3, 4.2.1.2, and 4.3.1.3. For each drug, six models were built to predict the 

same target consisting of discretized sensitivity data for that drug across the cell lines in which it 

was tested. The input vectors for the six models were a combined set of original omics features 

including nonparanormal transformed expression data, the feature selected dataset used to train the 

deep autoencoder, and the four layers of latent representations generated from the autoencoder.  

6.2.2 Results 

The elastic net models trained with all omics features including transformed gene 

expression data achieved an average area under the receiver operating characteristic of 0.73 

(Figure 11).  

 

 

Figure 11: Learning cellular states using transformed expression data. Predictive performance of elastic net 

models relative to predictive features used as inputs to the same autoencoder structure, including discretized 

or continuous gene expression data.  
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Applying feature selection to this dataset did not improve overall predictive performance. 

Aggregate predictive performance of the best models using hidden latent variables as predictive 

features was not higher than models trained with all omics features. When compared against 

predictive models trained on the corresponding dataset including discrete gene expression data 

from 4.2.2, no statistically significant differences were observed. 

6.2.3 Discussion 

Applying the nonparanormal transformation to the gene expression data did not 

significantly affect the performance of drug sensitivity models trained directly on the data or on 

encoded features from an autoencoder. Based on these findings, it was deemed acceptable to use 

the nonparanormal transformation to harmonize datasets for model training and evaluation.  

An additional finding here is that the decrease in performance between models trained on 

the original unprocessed dataset and the selected discrete dataset persists when the gene expression 

data are nonparanormal transformed, and thus still continuous. This indicates that the decrease in 

performance is a result of the feature selection, and not of the discretization.  

6.2.4 Limitations  

The primary purpose of this experiment was to evaluate the impact of using the 

nonparanormal transformation on gene expression data prior to deep learning and predictive model 

generation. The experimental design used was partially driven by convenience and partially by a 

desire for realism – the control models to compare against had already been trained and evaluated, 

and we wanted to see how the nonparanormal transformation would perform in the eventual 
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intended usage scenario alongside other omics features. However, a different approach would have 

excluded the copy number and mutation data from the experiment. This would remove any 

potential influence from those omics data classes, ensuring that any deviation seen in the predictive 

modeling results would be directly related to changes made in the preprocessing of the gene 

expression data.  

6.3 Organoid Drug Sensitivity Prediction  

The three organoid datasets available for evaluating predictive models trained on the 

GDSC consist of a bladder dataset in which 50 drugs had been evaluated on 11 organoids [114], a 

colorectal dataset in which 83 drugs had been evaluated on 19 organoids [115], and a liver dataset 

in which 29 drugs had been evaluated on 5 organoids [112]. Additionally, a pancreatic cancer cell 

line dataset was obtained5, in which 302 drugs had been evaluated on 23 cell lines [109]. We 

decided to also evaluate model performance on this dataset for an additional test of external 

validity.  

6.3.1 Methods 

6.3.1.1 Data Retrieval and Feature Engineering  

Gene expression data for the bladder (GSE103990) and colorectal (GSE65253) datasets 

were obtained in a pre-processed normalized counts format from the Gene Expression Omnibus. 

 

5 This dataset was not part of the original plan. It was actually first downloaded by mistake.  
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Gene expression data for the liver dataset was obtained in a pre-processed RPKM format from 

supplementary dataset 1 in the original publication. Gene names for the colorectal dataset were 

renamed from HUGO nomenclature to Ensembl gene IDs. Log2 normalization was applied to data 

from all three organoid experiments.  

Gene expression data for the pancreatic cancer cell line dataset was obtained in a pre-

processed log-normalized counts format from the Gene Expression Omnibus (GSE84023). Gene 

names for the pancreatic cancer cell line dataset were renamed from HUGO nomenclature to 

Ensembl gene IDs. Any replicate records were averaged. Gene expression data from all four 

studies was normalized via nonparanormal transformation.  

Having been generated on different sequencing platforms and thus pre-processed through 

different pipelines, there existed slight variation in gene expression coverage from experiment to 

experiment. When cross-referenced against the 3,108 genes selected from the GDSC dataset in 

4.1.1.1, the set of genes present in all four studies plus the GDSC was found to be 2785, or 89.6%. 

Expression values for these genes were retained for use in evaluation, and the rest of the data 

discarded.  

6.3.1.2 Developing Latent Representations with Deep Learning 

Nonparanormal transformed, feature-selected gene expression data from the GDSC was 

repurposed from the previous experiment described in 6.2.1. Gene expression data for the 2785 

genes common to the four evaluation datasets were retained, and the rest of the data were 

discarded, leaving a deep learning dataset of 2785 features in 963 cell lines. This dataset was used 

to train an optimized deep learning autoencoder as described in 4.3.1.3. 
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6.3.1.3 Predicting Drug Sensitivity with Latent Representations  

Drug Sensitivity Data Preprocessing 

Drug sensitivity data for all four evaluation datasets were obtained in the form of 

normalized area under dose-response curves as supplemental data from their respective 

publications. As with the gene expression data, replicate experiments were averaged. Each dataset 

was individually discretized using the waterfall method as in 4.1.1.2.  

In order to create an evaluation dataset large enough to generate meaningful performance 

metrics, the organoid datasets were merged at this time. Drug compounds for which fewer than 19 

organoids had been evaluated or were not tested in the GDSC were discarded. This process created 

an organoid evaluation dataset of 69 drugs, each tested in some subset of 35 organoids.  

The pancreatic cancer cell line dataset was kept separate. Cross referencing drugs tested in 

this dataset with drugs tested in the GDSC, target data on 82 drugs were kept, creating an 

evaluation dataset of 82 drugs tested in 302 pancreatic cancer cell lines. 

Predictive Modeling  

After training, the autoencoder from the previous section was used to encode the input 

GDSC dataset, and elastic net was used to generate logistic models for drug sensitivity prediction 

as in 2.4.1.3, 4.2.1.2, 4.3.1.3, and 6.2.1. For each drug, five models were built to predict the same 

target consisting of discretized sensitivity data for that drug across the cell lines in which it was 

tested. The input vectors for the five models were the feature selected dataset used to train the deep 

autoencoder, and the four layers of latent representations generated from the deep autoencoder. 

This process creates five predictive models for each drug. From these five, the best one is selected 

on the basis of cross-validated AUROC on the GDSC sensitivity training data.  
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In order to generate a drug-sample effectiveness call for an organoid or cell line, the target 

sample’s preprocessed gene expression data from 6.3.1.1 is encoded by the autoencoder, and 

predictions are made using the chosen best model. These predictions are then evaluated against 

actual sensitivity calls from the relevant organoid or cancer cell line experiment. This was 

completed for the pancreatic cell line dataset, and the combined organoid dataset.  

6.3.2 Results  

The expression-only elastic net models achieved an average area under the receiver 

operating characteristic of 0.73 on the pancreatic cell lines dataset. On the organoid dataset, an 

average area under the receiver operating characteristic of 0.69 was achieved (Figure 12). 

 

 

Figure 12: External validation on pancreatic cancer cell lines and bladder, colorectal, and liver cancer 

organoids. Predictive performance of elastic net models trained on gene expression and drug sensitivity data 

from the GDSC, evaluated on drug sensitivity experimental results from four external studies.  
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6.3.3 Discussion 

These findings demonstrate that drug sensitivity models trained using data on the GDSC 

can accurately predict drug response in pancreatic cancer cell lines and in bladder, colorectal, and 

liver organoids. This is extremely promising, because these results indicate that the complex 

covariance relationships learned by training the deep autoencoder on the GDSC generalize not 

only to other cancer cell lines, but to an entirely different cancer modeling system in organoids. 

This is a positive indication, although not a guarantee, that this methodology may be successfully 

applied to clinical tumors.  

Performance in the organoids was generally worse than in the pancreatic cancer cell lines. 

This may be a result of organoid results being more difficult to predict due to differences between 

organoids and cell lines, or some particular characteristic of the studies themselves. The first of 

these options is likely, but in reality, it could be a combination of many factors.  

6.3.4 Limitations 

In an ideal version of this experiment, it would have been possible to swap the training and 

evaluation datasets, and repeat the findings. Unfortunately, the organoid and pancreatic cancer cell 

line datasets are too small to use for training predictive models. Larger evaluation datasets would 

be extremely useful once they become available.  

Although physiologically closer to clinical tumors than immortalized cell lines, organoids 

do have their own shortcomings. First, not all primary tumors can successfully inoculate an 

organoid culture, so a population of organoids should not be considered a representative sample 

of clinical tumors. Second, drug response can be difficult to assess experimentally, as an organoid 
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culture contains many different cell types, some of which are not cancerous, and it is not always 

clear whether a therapeutic compound is successfully destroying tumor cells or noncancerous 

tissue in the organoid. From an experimental point of view, these two different outcomes are 

difficult to distinguish, as both are characterized by a reduction in organoid size and cell density.  
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7.0 Aim 4: Incorporate Clinical Data with Transfer Learning  

A lack of clinical drug response data does not necessitate that deep learning drug sensitivity 

prediction models be trained entirely on information from cell line pharmacogenomics 

experiments. Since the modeling design consists of an unsupervised autoencoder paired with a 

supervised regression, it is possible to incorporate uncategorized clinical samples in the 

unsupervised portion of the modeling process.  

Recent work in the Lu laboratory indicates that unsupervised deep learning techniques, 

when applied to gene expression data, can learn a representation of the internal cellular state [226]. 

This suggests that the autoencoders we have been training are learning a representation of the 

internal state of immortalized cancer cell lines. It is possible instead to train the autoencoder on a 

different set of data, thereby learning a representation of a different internal state. In the interest of 

generating clinically applicable models, it is best that clinical samples be used for this purpose. 

This can be accomplished by using gene expression data from TCGA [225]. When trained on this 

data, the autoencoder should then capture covariance relationships that are significant in the 

internal cellular state of clinical tumors.  

Cell line drug sensitivity data can then be used to train the supervised regression component 

of the drug predictive model, thus creating the best possible version of deep learning based drug 

sensitivity prediction models. In the following sections, I describe the training of this model and 

explore its clinical utility. Further, I explore the possibility of training both the unsupervised deep 

learning component and the supervised regression component on clinical data.  
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7.1 Transfer Learning 

Transfer learning is a problem modality in machine learning that focuses on gaining 

experience in one task and using that experience to improve performance on a different but related 

problem. In separating our deep learning and regression steps, we have already been incorporating 

transfer learning in our predictive modeling process- we are using knowledge gained from 

encoding and reconstructing descriptive omics data to help predict drug sensitivity. In this 

experiment, we incorporate an additional form of transfer. By training the autoencoder on TCGA, 

we are transferring knowledge gained from encoding clinical tumors to help build drug sensitivity 

models based on experimental cell line data.  

7.1.1 Methods 

7.1.1.1 Predictive Feature Data 

Log2 normalized RNA-Seq data describing the entire TCGA dataset was downloaded from 

the UCSC Xena browser [225], as in 6.1.1.1. Before normalization, variance-based feature 

selection was conducted on the expression data as described in 4.1.1.1. This yielded a list of 2831 

genes exhibiting non-unimodal expression in the TCGA data. A nonparanormal transformation 

was applied to the entire dataset, and then gene expression values for the selected genes were 

extracted afterwards, yielding a dataset containing gene expression values for 2831 genes in 9649 

clinical samples. Genes for which expression was not measured in the GDSC were discarded, 

leaving a final TCGA gene expression dataset of 2758 genes in 9659 clinical samples.  

Copy number estimates for 24,776 genes measured in 10845 samples in the TCGA were 

obtained in a preprocessed form from the UCSC Xena browser. These values were determined by 
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processing Affymetrix SNP 6.0 microarray data using the GISTIC2 algorithm to produce 

segmented copy number variation data, which was then mapped to genes to produce gene-level 

estimates. These values were converted log2 form to estimated counts. Estimates ranging from 0 

to 8 were linearly scaled to real values between 0 and 1. Genes with copy number estimates greater 

than 8 were set to the maximum normalized value of 1. Genes for which copy number estimates 

were incomplete or not available in the GDSC were discarded, leaving a final TCGA copy number 

dataset of 562 genes in 10845 clinical samples.  

Mutation annotations for 22,052 genes measured in 10182 samples in the TCGA were 

obtained in a preprocessed form from the UCSC Xena browser. These values were obtained by 

generating aligned reads from whole exome sequence data using an implementation of Burrows 

wheeler aligner (BWA), and then calling variants with the MuTect2 pipeline. Genes with a 

rearrangement event or other non-silent mutation in a coding region were encoded with a value of 

1. Unmutated genes or genes with silent mutations were assigned a value of 0. Genes for which 

mutation data were incomplete or not available in the GDSC were discarded, leaving a final TCGA 

mutation dataset of 434 genes in 10182 samples.  

TCGA sample annotations were used to combine the gene expression, copy number, and 

mutation datasets into a single array for deep learning. Samples without all three data types 

available were discarded, leaving a final dataset of 2754 features in 8812 clinical samples. 

7.1.1.2 Developing Latent Representations with Deep Learning 

The TCGA dataset processed in the previous section was used to train an optimized deep 

autoencoder as described in 4.3.1.3.  

Microarray gene expression data from GDSC was obtained in the form of a pre-processed 

Robust Multi-Array Averaged dataset [102]. A nonparanormal transformation was applied to the 
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entire dataset. Following the transformation, this dataset was cross referenced with the feature 

selected gene expression dataset from TCGA. Extraneous features were discarded, leaving a 

GDSC gene expression dataset of 2758 genes in 1014 cell lines.  

Copy number estimates and mutation annotations for GDSC were repurposed from 4.1.1.1. 

These were cross referenced with their TCGA counterparts, and then combined with the GDSC 

gene expression data, ultimately yielding a GDSC feature dataset of 3754 data points measured in 

963 cell lines. 

To create a control, the GDSC autoencoder training set from 6.2.1 was repurposed and 

used to train an autoencoder alongside the TCGA dataset. This autoencoder differs from the one 

trained in that section because it uses the optimized autoencoder structure determined in Aim 1 

instead of the structure used in preliminary work.  

Two sets of latent representations were produced by encoding the corresponding GDSC 

feature sets with the two deep autoencoders, one trained on GDSC data, and the other trained on 

TCGA data.  

7.1.1.3 Predicting Drug Sensitivity with Latent Representations  

Elastic net regression was used to generate logistic models for drug sensitivity prediction 

using these latent representations of GDSC data as in 2.4.1.3, 4.2.1.2, 4.3.1.3, 6.2.1, and 6.3.1.3. 

For each drug, nine models were built to predict the same target consisting of discretized sensitivity 

data for that drug across the cell lines in which it was tested. The input vectors for these nine 

models were the feature selected dataset used to train the deep autoencoders, and each of the four 

layers of latent representations generated from both deep autoencoders.  
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7.1.2 Results 

Aggregate performance of the best models using hidden latent variables from the TCGA-

trained autoencoder as predictive features did not outperform the corresponding models that used 

data representations from the GDSC autoencoder. As before, the average AUROC of the best 

models based on hidden latent variables was 0.73 for both autoencoders. A paired t-test comparing 

the performance of these two groups failed to reject the null hypothesis (Figure 13). 

 

 

Figure 13: Learning cellular states using a TCGA autoencoder. Predictive performance of elastic net models 

relative to predictive features used as inputs, derived from autoencoders trained on either GDSC (GDSC AE) 

or TCGA (TCGA AE) integrated omics data. Results from individual layers are shown. H1-H4 = hidden layers 

1-4.  
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7.1.3 Discussion 

Predictive models trained on the two different-sized feature selected datasets have similar 

performance, indicating that differential feature selection on TCGA vs. GDSC most likely did not 

impact the other results. Further, the relationships learned by feature selection and deep learning 

on the TCGA clinical samples are informative when building predictive models for drug sensitivity 

in GDSC cell lines. This result implies that the autoencoder learns relationships between the input 

data features that are characteristic of cancer in general, not specifically cancer cell lines, or clinical 

cancer samples. It is an indication that models trained on these data representations may be widely 

generalizable, irrespective of their original source.  

The expected outcome for this experiment was that switching the autoencoder to train on 

a different dataset would generally cause predictive models utilizing deep learning features to 

perform worse. However, there was no detectable loss of performance when using the TCGA 

autoencoder. In addition to the points mentioned above, this suggests that when training the 

autoencoder on the GDSC cell line data in this and previous experiments, we did not overfit the 

encoder, and thus the hidden latent representations, to the training data. Nevertheless, to 

completely avoid the possibility of this happening in the future, the TCGA autoencoder was 

designated as the standard to use for any subsequent experiments involving building models from 

GDSC cell lines.  

7.1.4 Limitations 

Ideally, this experiment is conducted with the TCGA and GDSC autoencoders being 

trained on the exact same set of features using data from the two different pharmacogenomics 
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experiments. This would ensure that differences in results would be solely due to training the 

autoencoder on clinical samples versus cell line data. However, this is difficult to execute in 

practice, because feature selection must be employed on one dataset or the other. It was ultimately 

determined that the actual training of the autoencoder and the selection of samples to train it are 

two components of a single unsupervised learning problem, and should be treated as such. This 

actually biases the experiment towards the GDSC autoencoder – if the TCGA autoencoder had 

unexpectedly performed better than the GDSC autoencoder, a case could not be made that its 

outperformance was the result of having encountered the descriptive information during training.  

7.2 Clinical Patient Survival Prediction with Cell Line Based Models  

The creation and validation of a set of predictive models incorporating integrated omics 

data from the TCGA in the previous section opens the door to using the rich TCGA dataset for 

model building or model validation. Unfortunately, while the TCGA is a great source for omics 

data characterizing tumors, the phenotypic data is much more limited. Therapeutic records for 

patients are sparse, and validated follow-up response information, such as response evaluation 

criteria in solid tumors (RECIST) scores, are even rarer.  

However, the TCGA does have a significant amount of patient survival data for certain 

cancer subtypes. One of these subtypes is lung cancer. As noted in Aim 2, the therapeutic options 

evaluated in the GDSC contain most therapies administered to patients in the current standard of 

care for lung cancer. This presents a unique opportunity to validate predictive models trained from 

cell line dose-response experiments on real clinical tumors in a retrospective manner.  
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7.2.1 Methods 

Clinical phenotype data for 877 lung adenocarcinoma patients and 765 lung squamous cell 

carcinoma patients were downloaded from the TCGA using the UCSC Xena browser [225]. These 

records were largely compiled from clinical questionnaires completed at time of enrollment and 

on subsequent physician visits. Patient records that did not include therapeutic information were 

discarded. This was a majority of records – 177 lung adenocarcinoma patients and 135 lung 

squamous cell carcinoma patients remained. These were combined into a dataset of 312 lung 

cancer patients. These were cross referenced against the TCGA molecular profiling data generated 

in 7.1.1.1. Nine records belonged to patients without genomic sequencing data on file. These were 

discarded.  

Next, survival data for TCGA lung adenocarcinoma patients and lung squamous cell 

carcinoma patients were downloaded in separate files from the UCSC Xena browser. These 

datasets were combined and cross referenced against the patients for which therapy information 

and molecular profiling features were available. Three more records were removed, bringing the 

dataset to 300. 

Finally, the therapeutic regimens recorded were matched to specific drug prediction models 

created in the previous section. This matching process was done last because it had to be completed 

manually, as the therapeutic regimen data contains many misspellings. After this process, patient 

records with medications that did not match to an available predictive model were discarded. 96 

of the remaining samples were lost at this step, leaving 204. The set of predictive models chosen 

for the experiment were built using GDSC feature data encoded by an autoencoder trained on 

TCGA data because this set of models was believed to be at the lowest risk of accidentally 

overfitting the GDSC cell line dataset.  
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Finally, the clinical staging of the tumors was examined. The vast majority of tumors were 

found to be in stages Ia through IIIa. A decision was made to remove a small number of late-stage 

(IIIb or IV) samples from the experiment, as these are highly advanced diseases that are unlikely 

to survive regardless of choice of chemotherapy. 19 of these records were removed, bringing the 

final number to 185. 

Fully normalized, feature selected, processed integrated omics data for these 185 patients 

were repurposed from the previous experiment. Latent representations were generated using the 

TCGA-trained deep autoencoder from the previous experiment, and drug sensitivity calls were 

made using the relevant models. As in previous sections, the model to be used for any particular 

drug was selected on the basis of cross-validated AUC performance on the GDSC training set.  

Any patient whose lung cancer was predicted to be sensitive to a drug they were given was 

labeled as a chemotherapy responder. In contrast, patients whose tumors were predicted to be 

insensitive to their therapy were designated as non-responders. In this manner, the population of 

185 patients were sorted into two groups. A survival function was estimated for each group, and 

the results were compared. 

7.2.2 Results 

Patients classified as responders had better survival outcomes than patients classified as 

non-responders (Figure 14A). Median survival in the non-responder group was three years, while 

median survival in the responder group was greater than five years. The difference between two 

groups is statistically significant (P < 0.05). When broken down into clinical stage, responders and 

non-responders were evenly distributed across the varying progression levels of disease (Figure 

14B).  
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Figure 14: Predicting overall survival of TCGA lung cancer patients. A, Kaplan-Meier plot for predicted 

responders and non-responders. B, Clinical stage distribution of actual responders and non-responders.  

7.2.3 Conclusions 

In this experiment, we applied drug sensitivity models originally trained on cancer cell line 

pharmacogenomics data to the classification of clinical cancer samples. We found that they were 

able to accurately classify lung cancer patients from TCGA as chemotherapy responders and non-

responders.  

These results echo the findings from Aim 2 in suggesting that there exists significant 

opportunity to improve the current standard of care using data-driven computational modeling. 

These results reinforce findings from Aim 3 in suggesting that models developed on preclinical 

data can generalize to new tissue types, new cancer disease models, and now to clinical tumors.  
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This study provides the strongest external validation so far for the idea that omics data 

contain information that are important and useful for the prediction of cancer drug response, and 

that this information can be learned and encoded from large pharmacogenomics studies.  

7.2.4 Limitations 

This is an extremely positive result. However, this experiment investigated modeling 

generalizability for a relatively small number of medications in the context of a single cancer type. 

Although it is reasonable to believe the general conclusion that transfer learning from large 

pharmacogenomics studies is possible and may be achieved for other medications in other cancer 

types, difficulties remain (Appendix A). Physiological differences between immortalized cancer 

cell lines and real clinical tumors may cause unexpected behavior, and the complexity of modern 

clinical chemotherapy regimens may limit the usefulness of models learned using single-therapy 

experimental data.  

7.3 Clinical Patient Survival Prediction with Clinical Tumor Based Models  

The use of cell line based predictive models to predict the survival of clinical patients in 

the TCGA in the previous section was a powerful demonstration of the utility of omics data and 

our ability to extract useful information via deep learning. Although our decision to use cell line 

based large pharmacogenomics experiments to create our models is largely due to the scarcity of 

suitable clinical data at the time, such data are increasing in availability as patients, clinicians, 
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researchers, and other healthcare stakeholders continue to realize the benefits of molecular 

profiling.  

One example of this increasing availability is the recent publication of a French dataset of 

143 human colorectal tumors with molecular phenotyping data and extensive clinical annotations, 

including overall survival data and RECIST scores [227]. In this section, we use this dataset to 

train a predictive model for a common colorectal chemotherapy regimen, and evaluate it on 

colorectal tumors from the TCGA.  

7.3.1 Methods 

7.3.1.1 Predictive Feature Data 

Log2 normalized RNA-Seq data describing the TCGA was downloaded from the UCSC 

Xena browser [225], as in 7.1.1.1. A nonparanormal transformation was applied to the entire 

dataset, and then gene expression values for 3091 genes chosen via variance-based feature 

selection were extracted, leaving a final dataset of 3091 features in 8812 clinical samples.  

Microarray gene expression data for 143 colorectal tumors from the French dataset were 

obtained in the form of raw Affymetrix CEL files from the Gene Expression Omnibus (GSE62050, 

GSE72970). Batch effects were removed using Robust Multi-Array Averaging [195]. Data 

corresponding to Affymetrix spike control probes were manually removed. This procedure 

generated an array of 19,939 gene-level expression measurements in 143 clinical tumors. This 

dataset was normalized against colon and rectal cancer samples extracted from the nonparanormal 

transformed TCGA dataset via feature-specific quantile normalization. Afterwards, the same 3091 

genes were extracted, leaving a normalized descriptive dataset of 3091 features in 143 colorectal 

tumors. Alongside the gene expression information, chemotherapy response in the form of 
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RECIST scores was obtained from the Gene Expression Omnibus. Out of the 143 samples in the 

dataset, 32 patients had received the FOLFOX combination therapy of Folinic acid, 5-Fluorouracil, 

and Oxaliplatin. 81 had received the FOLFIRI combination therapy of Folinic acid, 5-Fluoruracil, 

and Irinotecan. No further preprocessing of the chemotherapy response data was required.  

Expanded versions of Log2 normalized RNA-Seq data describing 456 colon and 166 rectal 

cancers from the TCGA were downloaded from the UCSC Xena browser [225]. These data were 

normalized against colon and rectal adenocarcinoma samples already contained in the 

nonparanormal transformed TCGA dataset via feature-specific quantile normalization. 

Afterwards, the same 3091 genes were extracted, creating a TCGA colorectal dataset of 3091 

features in 622 tumors. This represents a significant expansion in data from the 382 colorectal 

cancers originally included in the TCGA. Clinical phenotype data describing a subset of these 

samples were downloaded from the National Cancer Institute’s GDC Data Portal [228]. These 

records were manually parsed to determine which patients had received FOLFOX or FOLFIRI 

combination therapy. Overall survival data describing a different subset of these samples were 

downloaded from the UCSC Xena browser. These three datasets (gene expression, chemotherapy 

regimen, and survival) were cross-referenced against each other. Patient samples for which all 

three pieces of information were not available were discarded. This yielded an evaluation dataset 

of 92 colorectal tumors, all of which had received FOLFOX.  

7.3.1.2 Developing Latent Representations with Deep Learning 

The TCGA dataset consisting of 3091 gene expression features measured in 8812 pan-

cancer clinical samples was used to train an optimized deep autoencoder as described in 4.3.1.3.  
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This autoencoder was then used to create latent representations of the 32 patients who had 

received FOLFOX combination therapy in the French dataset, and of the 92 colorectal cancer 

patients who had received FOLFOX combination therapy in the TCGA.  

7.3.1.3 Predicting Drug Sensitivity with Latent Representations 

Elastic net regression was used to generate a logistic model for drug sensitivity prediction 

using the latent representation of the French data. In total, five models were built to predict the 

same target consisting of discrete RECIST designations for the 32 patients treated with FOLFOX 

in the French dataset. The input vectors for these five models consisted of the feature selected 

dataset used as input to the autoencoder, and the resulting four layers of latent representations 

generated from this input. Although the small size of the training dataset presents difficulties for 

cross-validation, the model to be evaluated was chosen based on performance on the training 

dataset. This was the fifth model, created using the fourth, smallest latent representation.  

This model was used to classify the 92 colorectal cancer patients from the TCGA who had 

received FOLFOX combination therapy. Any patient whose cancer was predicted to be sensitive 

to the therapy was labeled as a chemotherapy responder. In contrast, patients whose tumors were 

predicted to be insensitive to FOLFOX were designated as non-responders. In this manner, the 

population was sorted into two groups. A survival function was estimated for each group, and the 

results were compared.  

7.3.2 Results 

Patients classified as responders had better survival outcomes than patients classified as 

non-responders (Figure 15). Overall survival for colorectal cancer patients is better than that of 
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lung patients, and the length of follow-up for this data is not long enough to estimate differences 

in median survival rates between the two groups. However, the difference in survival curves 

between the two groups is statistically significant (P < 0.05).  

 

Figure 15: Predicting overall survival of TCGA colorectal cancer patients. Kaplan-Meier plot for predicted 

responders and non-responders.  

7.3.3 Conclusions 

In this experiment, we applied a chemotherapy response model originally trained on 

information from one clinical dataset to the classification of samples from a different clinical 

dataset. We found that the model was able to accurately classify colorectal cancer patients from 

TCGA as FOLFOX responders and non-responders.  

These results indicate that the predictive methodology developed using cell line 

pharmacogenomics data generalizes to other training datasets. In doing so, it enables the possibility 

of training models completely on clinical information, as long as the necessary data is available. 
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Such an approach promises to create more clinically applicable models, as it is not vulnerable to 

spurious effects arising from differences between real tumors and preclinical cancer models. Thus, 

these findings advocate the expanded collection of molecular profiling data in the course of care, 

as well as the importance of clinical follow-up to determine the effectiveness of administered 

therapy.  

7.3.4 Limitations 

Improving the effectiveness of chemotherapy administration requires two valuable 

components – not prescribing an ineffective therapy, and correctly prescribing an effective one. 

By accurately identifying a group of chemotherapy non-responders, the models suggest that it may 

be worthwhile to consider alternative treatment options for that group of patients. Thus, these 

patient survival prediction studies demonstrate that deep learning based artificial intelligence 

models can accomplish the first task. Addressing the second component requires an interventional 

study that is outside the scope of this dissertation.  
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8.0 Final Conclusions and Future Work 

This dissertation describes the process used to create and refine a novel data-driven 

approach to precision medicine. We have trained and validated our predictive models for drug 

sensitivity on a wide range of preclinical and clinical data. While the models themselves are an 

important contribution, the framework that was developed to create them is invaluable. Effectively 

encoding molecular features with deep learning unlocks an almost limitless number of potential 

applications, of which drug sensitivity prediction is just one. We have demonstrated that it is 

possible. We were able to accomplish the four aims we set out to achieve in 3.2:  

Aim 1: To optimize deep learning methodology.  

• We incorporated newly available data from the Genomics of Drug Sensitivity in Cancer 

large pharmacogenomics study to improve the performance and expand the coverage 

of our drug sensitivity models.  

• We optimized the deep learning autoencoder using Google’s TensorFlow machine 

learning framework.  

• We determined how the characteristics of an autoencoder’s structure impact its 

reconstructive performance. We used this understanding to design a new autoencoder 

structure.  

• We evaluated three regularization methods for deep neural networks and decided they 

were not needed at this time.  

Aim 2: To determine the potential for clinical impact.  

• We simulated two cell line clinical trials by using groups of tumor cell lines to represent 

a cohort of patients.  
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• We demonstrated that incorporating AI-supported decision making into the standard of 

care both increases the chance of a patient receiving an effective therapy and reduces 

the number of treatment regimens attempted before they receive it.  

Aim 3: To generalize predictive models from cancer cell lines to cancer organoids.  

• We explored five techniques for normalizing gene expression data from different 

experiments for interoperability.  

• Using one of those methods, we evaluated our predictive models using data from three 

different cancer organoid studies and one external cancer cell line study.  

Aim 4: To incorporate available clinical data via transfer learning.  

• We trained a deep neural network autoencoder on molecular data from clinical cancer 

samples collected by The Cancer Genome Atlas.  

• We used this autoencoder to apply our predictive models for drug sensitivity to predict 

survival outcomes of clinical patients.  

• Using a small amount of high quality clinical data, we created predictive models trained 

completely on clinical data and used them to predict survival outcomes of clinical 

patients.  

8.1 Deep Learning Autoencoders Enable Powerful Predictive Modeling 

We began by building a deep learning autoencoder and using it to encode gene expression, 

copy number variation, and mutation annotation data from large pharmacogenomics experiments. 

We re-implemented this autoencoder in the TensorFlow framework to greatly increase training 

speed. Using this increased speed, we evaluated 3600 candidate architectures to inform the design 
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of an autoencoder that achieves good reconstructive performance without excessive complexity. 

We learned that the key features are the size of the first hidden layer and the magnitude and location 

of the information bottleneck. We then evaluated regularization methods designed to reduce 

training time and improve generalizability and determined that these techniques were not needed.  

As we found in preliminary work, deep learning latent features did not generally provide 

the best performance when compared layer-by-layer. However, for select groups of drugs, 

predictive models trained on deep learning latent features performed at a level not obtainable by 

using raw, unprocessed predictive features. More investigation is required to determine what 

causes a drug to be better predicted using deep learning latent features, but the answer must be 

related to the statistical covariance relationships learned during unsupervised representation 

learning. This is one of the primary strengths of autoencoders – their utility in dimensionality 

reduction of large, complex datasets allows the effective application of other machine learning 

methods. The other advantage is that they are trained in an unsupervised manner with unlabeled 

data, which is plentiful, instead of labeled data, which is scarce. As more clinical data continues 

to be collected in the process of care, this latter advantage may fade but the former will not.  

8.2 Accurate Predictive Models Exhibit Significant Potential Impact  

We modeled two sets of cancer cell lines as groups of patients and conducted two simulated 

clinical trials. These studies were done on non-small cell lung carcinomas and upper aero-digestive 

tract cancers. Following the current standard of care, we found that most of the subjects in our 

studies do not receive an effective chemotherapy on the first or second try. Even after the third 

attempt, a significant group of patients are not successfully treated, even when an effective therapy 
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exists and is approved for their tumor type. In contrast, when using our predictive models to aid in 

the decision-making process, a large majority of patients were correctly treated on the first attempt. 

We demonstrated that effective predictive models can reduce rates of ineffective administration, 

leading to better outcomes and reduced costs.  

8.3 Generalizable Predictive Models Function in Other Preclinical Settings  

We explored a variety of data normalization techniques to unlock interoperability of 

molecular data from different sources. This enabled us to separate our predictive models from the 

dataset they were trained on, and generalize them to applications in other settings. Our models 

successfully predicted drug sensitivity in a different cell line dataset, and in three cancer organoid 

datasets. Generalization to the organoid setting is a positive indication that these predictive models 

may be useful in clinical tumors, because organoids are phenotypically and genotypically similar 

to the primary tumors from which they are derived.  

8.4 Transfer Learning Unlocks Translation to Clinical Setting  

Using clinical data to train heavily computational models for most purposes is impossible 

because the data that are required typically does not exist in the proper form or in sufficient 

quantity. For example, useful therapeutic data are not often available in most clinical datasets, and 

recorded responses to specific therapies are even less common. However, molecular profiling data 
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are readily available and rapidly increasing in supply. This data is useful for unsupervised learning, 

such as training deep learning autoencoders.  

We used The Cancer Genome Atlas, a clinical cancer dataset eight times larger than the 

largest cell line pharmacogenomics study, to train a deep learning autoencoder to learn the cellular 

state of cancers. We used this autoencoder to transfer drug sensitivity prediction models trained 

on cell lines or clinical cancer samples to successfully predict chemotherapy outcomes in other 

clinical patients. This result was a revalidation of all preceding experiments, demonstrating that 

our modeling approach is powerful, accurate, and generalizable.  

8.5 Future Work 

There are very many potential areas of inquiry that future work could explore.  

In unsupervised learning, a fully connected deep autoencoder is just the beginning. There 

exist countless variations and iterations upon the same basic idea. Like most neural networks 

exceeding a certain size, autoencoders are exceedingly powerful but their capacity comes at the 

cost of being relatively opaque models. Exploration of different autoencoder implementations that 

may offer enhanced transparency and explainability would be worthwhile, especially if the 

eventual goal is clinical translation. Examples include sparse and variational autoencoders.  

In supervised learning, there are many options available other than the logistic regression 

method used throughout most of this research. Multitask learning, especially, holds significant 

potential for the drug sensitivity prediction task. Just as testing a drug typically used in bladder 
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cancer on breast cancer cell lines improves our predictive modeling6, multitask learning enables 

insights from predicting one class of drugs, such as EGFR inhibitors, to be used in improving the 

prediction of other medications, such as MEK inhibitors.  

In pharmacogenomics, there is an ever-expanding supply of data. The continued 

application of these methodologies to new data to create novel models is worthwhile. Meanwhile, 

the continued validation of existing models, especially using clinical data or in clinical trials is an 

important next step in translating this research into clinical impact.  

Future work need not be restricted by the scope of past work. This technology is not limited 

to our current task of predicting chemotherapy outcomes in cancer, which is an important, specific 

application. This dissertation research has demonstrated that the general strategy of learning new 

representations of existing data can be very powerful. Future extensions of this work appear 

promising.  

 

6 We have tried training predictive models using only cell lines from a specific tissue type. The sample count 

is too small. However, adding additional samples, even from a different tissue type, can fix the problem.  
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Appendix A Clinical Tumor Response Prediction with Cell Line Based Models 

Although high-quality clinical data that evaluates the effectiveness of a therapeutic 

decision is difficult to find, when it does exist it can present a rare opportunity for model 

evaluation. In the absence of such data, heuristic measures such as survival are used to approximate 

therapeutic response. Such measures can suffer from imperfect correlation [229] and troublesome 

effect sizes [230]. In contrast, clinical follow-up for the explicit purpose of determining the 

effectiveness of therapy provides validated metrics that are well-suited for model evaluation [231]. 

Specifically, Response Evaluation Criteria in Solid Tumors (RECIST) scores, which classify a 

tumor as sensitive or resistant to a therapy, are more directly comparable to the sensitive or not 

sensitive designations applied to pharmacogenomics experimental results in the process of creating 

our training datasets in 4.1.1.2 and 2.4.1.3.  

This appendix details an experiment that was not part of originally proposed work but 

became possible due to data availability. In this study, we apply cell line based deep learning 

models in an attempt to predict clinical RECIST scores. The results have interesting implications 

for the training and application of such models in the future.  

Appendix A.1 Methods 

Log2 normalized RNA-Seq data describing the TCGA was downloaded from the UCSC 

Xena browser [225], preprocessed, and used to train an optimized deep learning autoencoder as 

described in 7.3.1.2.  
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Microarray gene expression, chemotherapy regimen, and therapy response data for 143 

colorectal tumors from the French dataset were obtained from the Gene Expression Omnibus 

(GSE62050, GSE72970) and preprocessed as described in 7.3.1.1.  

Microarray gene expression data from GDSC was obtained in the form of a pre-processed 

Robust Multi-Array Averaged dataset [102], as in 4.1.1.1. However, instead of performing feature 

selection, the nonparanormal transformation was applied. Following the transformation, this 

dataset was cross referenced with the feature selected gene expression datasets from the TCGA 

and the French dataset. Extraneous features were discarded, leaving a GDSC gene expression 

dataset of 3091 data points measured in 963 cell lines.  

The TCGA autoencoder was then used to encode the French colorectal and GDSC gene 

expression datasets to create latent representations.  

Elastic net regression was used to generate logistic models for predicting the sensitivity of 

cancers to 5-Fluorouracil and Irinotecan using these latent representations of the GDSC data. In 

total, five models were built to predict the same target consisting of discretized sensitivity data for 

each drug across the cell lines in which it was tested. The input vectors for these five models were 

the feature selected GDSC dataset and each of the four layers of latent representations of the GDSC 

dataset generated from the autoencoder.  

As in previous experiments, the model to be used for evaluation for each drug was selected 

on the basis of cross-validated AUC performance on the GDSC training set. These models were 

then used to predict the therapeutic response of clinical tumors from the French colorectal dataset 

that had been administered combination FOLFIRI therapy. The predictions were evaluated against 

the actual RECIST scores recorded for those patients.  
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Appendix A.2 Results 

Cell-line based models for predicting response to individual administrations of 5-

Fluorouracil and Irinotecan were unable to predict the response of clinical tumors to combination 

FOLFIRI (Figure 16). The fitted probabilities provided by the models were grouped closely 

together in the output space. The 5-Fluorouracil model in particular appeared to perform poorly, 

assigning relatively lower probabilities of response to many samples that turned out to be sensitive 

to FOLFIRI treatment.  

 

 

Figure 16: Predicting clinical FOLFIRI sensitivity from cell line based deep learning models for individual 

component medications. 
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Appendix A.3 Conclusions 

The closeness of the fitted probabilities provided by the models suggests there may be 

utility in recalibrating deep learning predictive models when applying them to new data. However, 

there are other potential explanations for this phenomenon. The clinical samples used for 

evaluation are close to each other in the input space, since we are providing only colorectal samples 

to pan-cancer models. Logically, this would cause the outputs to be close to each other in the output 

space. Further investigation is required.  

As for 5-Fluorouracil, there exists evidence in the literature to suggest that the metabolic 

effects of the compound in cell cultures may be different from its effects when administered in 

vivo [232]. Specifically, high ABCC11 expression in cancer cell lines is an indicator for therapeutic 

resistance [233], while the high expression of the same ABCC11 protein in clinical cancer patients 

is associated with better therapeutic response and longer disease-free survival [234]. It is possible 

that for 5-Fluorouracil, the predictive model learned a similar relationship that is valid in cancer 

cell lines, but is reversed in clinical tumors.  

Taken together, these findings indicate that transferring information learned from cell line 

pharmacogenomics studies to clinical tumors is not always straightforward, especially in the 

context of complex combination therapies. This experiment is a reminder to exercise caution in 

the clinical application of pre-clinical models, and hints that the training of models on exclusively 

clinical data as described in in 7.3 may be the way forward.  
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Appendix A.4 Limitations 

The models used in this study were trained exclusively on gene expression information, 

because mutation and copy number data were not available in the evaluation dataset. As a result, 

the models evaluated were weaker than they would have been if they had access to additional 

omics data types.  

This study attempted to use two single-therapy models to predict the effectiveness of a 

combination therapy that consists of three medications. No single-therapy model was available for 

the third medication because there was no training data available to create one. The absence of this 

third model makes it very difficult to account for the synergistic effects that are responsible for 

making the combination therapy effective in the first place. Without this critical component, it is 

impossible to determine for certain whether the puzzle is simply incomplete or if the other two 

components actually do not work.  
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