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Abstract 
Title Page 

Transcriptomic Interrogation of the Drivers of Ovarian Cancer 
Progression 

John Alan Willis, MS 

University of Pittsburgh, 2020 

Ovarian cancer is the deadliest gynecologic malignancy, particularly the High Grade 

Serous subtype (HGSOC). Unlike other subtypes of ovarian cancer, most initial HGSOC 

presentations respond well to chemotherapy, ususally a platinum-based agent and a taxane. Most 

HGSOC deaths follow initial round of treatment, when the recurrent disease fails to respond 

to standard therapy. A better understanding of how HGSOC progresses from a treatable disease 

to a chemoresistant one may assist in the development of more effective therapies.  

However, determining the drivers of this evolution has been stymied by a lack of longitudinal 

data.  

Recent advances in sequencing technology and an increased understanding of the value 

of long-term follow-up in cancer patients present an opportunity to study the mechanisms of 

HGSOC evolution. Dissemination of sequencing results through public databases like the 

Sequence Read Archive offers researchers the opportunity to strengthen the conclusions drawn 

from their own sequencing studies by contextualizing their own results, or by pooling results for 

more powerful meta-analyses. I assembled eight RNA-Seq datasets (one generated in-house), 

four consisting of matched pairs of primary and recurrent HGSOC, two consisting of primary 

ovarian and metastatic samples from the same presentation, and two studies of ovarian cancer 

cell lines, to integrate in a study of HGSOC evolution. Combining gene expression and gene 

fusion analysis may suggests common and potentially actionable pathways of HGSOC 

evolution.  
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My analysis of 118 pairs of HGSOC samples suggests genes involved in tumor-

microenvironmental interactions, immune response, epigenetic factors, and regulators of 

epithelial to mesenchymal transition (EMT) are altered with HGSOC progression. Transcript 

level analysis further reveals differential transcript use with progression, including differential 

transcript use of LPCAT2 in HGSOC tumor associated macrophages. The gene fusion 

profile of 36 pairs of HGSOC samples also reveals preserved expression of the potentially 

disease-relevant gene fusion CCDC6-ANK3 in multiple patients, also detected in cisplatin-

resistant HGSOC lines. These results support the growing body of literature implicating 

altered tumor-TME interaction and epigenetic mechanisms in the evolution of HGSOC and 

calls for further longitudinal studies of HGSOC, and particularly the use of single cell 

sequencing to parse the contributions of multiple interacting cell.  
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1.0 Background and Significance 

High Grade Serous Ovarian Cancer (HGSOC) - Overview 

Ovarian cancer(OVCA) is projected to kill over 14,000 women in 2020 according to the NIH 

Surveillance, Epidemiology, and End Results Program(SEER). While the umbrella term “ovarian cancer” 

includes epithelial and non-epithelial subtypes, the distribution of ovarian cancer fatalities is skewed 

towards the most common and most deadly subtype of ovarian cancer, high-grade serous ovarian carcinoma 

(HGSOC). This disease accounts for up to 80% of lives lost annually to ovarian cancer. No effective 

screening methods exist for the detection of HGSOC, so it is most often detected at a late stage via incidental 

imaging or in patients already presenting with genitourninary or gastrointestinal symptoms1,2. Initial 

management of ovarian cancer typically consists of a biopsy followed by surgical debulking3. Neoadjuvant 

chemotherapy has increasingly been used to reduce tumor volume prior to debulking, as residual tumor 

volume has been shown to be a major predictor of survival4, but the contribution of neoadjuvant 

chemotherapy to the well documented evolution of HGSOC is under-studied. Treatment with the standard 

regimen of platinum and taxane-based chemotherapy typically leads to remission in HGSOC, but 

recurrence is nearly inevitable, causing a 5 year survival below 50%2.   

The limited set of drugs with proven efficacy further impedes management of recurrent, 

chemoresistant disease. The standard platinum and taxane therapy was developed for HGSOC over 30 years 

ago, and studies of alternative therapeutic approaches have only started to show promise in the past decade. 

PARP inhibition with olaparib5,6, rucaparib, and niraparib7, angiogenesis inhibition with 

bevacizumab8, epigenetic modulation with HDAC inhibitors9, and cell cycle regulation with CDK 
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inhibitors10 are all actively being explored. Both PARP-Inhibition and VEGF inhibition have 

shown sufficient clinical benefit to be approved for treatment, but despite these successes, ovarian 

cancer survival remains low. These alternative treatments could all feasibly exploit known 

properties of HGSOC, but determining which patients benefit from specific therapies remains an 

unsolved challenge.  

The Ovarian Cancer Genome 

Researchers have recently turned to the ovarian cancer genome to answer the question of 

how to improve patient survival, with illuminating results. Cancers like ovarian clear cell 

carcinoma, endometrioid carcinoma, and low grade serous, classified as Type I OVCA, present as 

slow growing often chemoresistant tumors but patient survival exceeds that of HGSOC. Type II 

OVCA, which includes HGSOC, likely originates from fallopian tube epithelium and differs in its 

chemosensitivity, genomic profile, and overall patient survival. HGSOC accounts for over 70% of 

ovarian cancer cases overall2. It is the recurrence of this subtype of ovarian cancer that often 

presents with chemoresistance and causes patient death. To reduce the number of ovarian cancer 

deaths, many groups focus their research on HGSOC, due to both its prevalence and aggressive 

presentation.  

The HGSOC genome is among the most unstable cancer genomes11. The disease is defined 

by near ubiquitous TP53 mutations, frequently accompanied by DNA-repair defects or CCNE1 

amplifications. Subtypes have been described in HGSOC, with early studies suggesting up to seven 

distinct subtypes12, but current advocates of HGSOC subtypes hold that 3 major subtypes exist: 

an immune active subtype, a mesenchymal subtype, and mixed13. The mesenchymal subtype, 
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associated with mutation and expression of stroma-associated genes has the worst prognosis, while 

the immune-active subtype has better odds of survival. It must be noted however that the validity 

of HGSOC subtypes is far less established than that of breast cancer.  

Exactly what alterations beyond TP53 mutations, HR defects, and CCNE1 amplifications 

contribute to the onset and phenotype of HGSOC remains to be fully characterized. The disease 

has a relatively low burden of point mutations, while its DNA structural variation (SV) load is 

second only to breast cancer. HGSOC has long been associated with extrachromosomal DNA in 

the form of “double minute chromosomes” which can carry and express oncogenic material14,15. 

Additionally, the “Tandem Duplicator” phenotype, characterized in many cancers, is common in 

HGSOC16. Typically associated with the classic mutations of HGSOC(TP53, BRCA1, CCNE1), 

the tandem duplicator phenotype can be further reduced in HGSOC to several mutational 

signatures, the size and spacing of detected SVs corresponding to the n specific mutations 

constellations of mutations driving the phenotype17.    

While SV at the genome level is a potential mechanism of HGSOC evolution, additional 

regulatory mechanisms also exist. Studies of the epigenetics of ovarian cancer have shown 

epigenetic factors, including histone methylation and acetylation profiles and expression of 

regulators of histone markers, to be prognostic9. Histone deacetylase activity in OVCA has been 

implicated dysregulation of cyclins, cadherins, and secreted T-cell regulators. Elevated repressive 

hypermethylation in promoters of tumor suppressors including BRCA1 have been found in ovarian 

tumors relative to normal tissue. The presence of both repressive(H3K27me3) and activating 

(H3K4me3) methylation in a “poised bivalent chromatin” appears to be a characteristic of genes 

downregulated with ovarian cancer18,19.  In light of these findings, the use of drugs targeting 

epigenetic factors have been tested in small clinical trials, with promising results for the 
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methyltransferase inhibitor decitabine, but these studies have been complicated by the severe side 

effect profile of these drugs9.  

Looking beyond the genome has been informative in studies of HGSOC as well. Expressed 

gene fusions have been detected in the disease20–23, most promisingly promiscuous ABCB1 fusions 

detected by Bowtell et al first in their landmark characterization of HGSOC progression in 2015, 

and later confirmed to be common in the AOCS cohort24,25. Characterization of the HGSOC 

proteome has primarily supported the findings from the genome and transcriptome, implicating 

JAK-STAT signaling, ECM signaling, and DNA repair pathways as key players in the disease26.  

A holistic view of the evolving -omic profile of HGSOC suggests that broad regulatory 

factors like TF and miRNA may be worthwhile targets in HGSOC27. While diverse mutations in a 

range of genes likely contribute to the presentation and evolution of HGSOC, many of these 

changes occur in common, well defined and targetable pathways28. Profiling HGSOC cases to 

determine which pathways are most frequently affected by potential driver mutations, and 

determining which proteins play major regulatory roles in the pathway offers an appealing path to 

improved HGSOC therapy.  

Chemoresistance in cancer is thought to emerge through many mechanisms, including: 

reducing intracellular drug concentration, drug inactivation, and activation of DNA damage and 

repair pathways29. The problem of chemoresistance in HGSOC has been attacked from many 

angles. Characterizing DNA copy number variation (CNV) by sequencing and microarrays has 

implicated many CNVs in cancer associated genes30, with CCNE1 as the most distinct and well-

studied amplification25. These analyses have produced experimental chemosensitivity signatures 

for HGSOC, predicting PARP-I response and cisplatin response based on copy number profile31. 

Transcriptomes have been similarly informative, demonstrating the frequent upregulation of genes 
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associated with the Mesenchymal subtype signature in chemoresistant HGSOC12,32. The response 

to neoadjuvant chemotherapy has also been interrogated, showing treatment-promoted 

upregulation of DNA repair pathways and activation of Wnt and TGFbeta pathways33.  

Attempts to characterize structural changes in the genome between primary and metastatic 

HGSOC have produced inconsistent results, some studies showing an enrichment in CNV in 

metastases, but others showing an equal or lower CNV burden in HGSOC metastases25,34. Single 

cell analysis of HGSOC suggests metastases are relatively depleted in HGSOC epithelial cells, 

with enrichment in immune and stromal components35.  

Genomic and transcriptomic data has been used to predict chemosensitivity, metastasis, 

and survival in HGSOC, with some clear prognostic factors found. HOX gene expression has been 

shown to predict recurrence in HGSOC36, as has elevated expression of ECM proteins and 

epigenetic regulators. HGSOC stem cells, expressing ALDH and CD133, have been shown to be 

regulated by the wnt-bmp axis, with signaling between tumor cell and mesenchymal stem cells 

derived from normal stroma promoting stemness and chemoresistance37,38.  

 Fusion Transcripts in HGSOC 

Gene fusions have long been studied as drivers of cancer. Discovery of BCR-ABL, the 

Philadelphia Chromosome, in acute myelogenous leukemia (AML) provided oncologists with both 

a biomarker and a drug target39. In prostate cancer, TMPRSS-ERG fusions are prevalent40, and the 

WES-FLI1 fusion characteristic of Ewing’s sarcoma is also frequent in that tumor41. CCDC6-RET 

is found in nearly 50% of papillary thyroid carcinomas42. More recently, NTRK3 fusions have 
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successfully been targeted with kinase inhibitors in lung cancer43, in a success for precision 

medicine.  

The appeal of fusions as drivers of malignancy stems from the diverse mechanisms by 

which they might drive tumors. Domains gained and lost by fusion genes may remove or activate 

key regulatory elements, enabling pro-malignant signaling cascades. Fusions may also produce 

truncations of the 5` partner gene, again potentially creating a truncated protein with possible neo-

function. Finally breakpoints at the 5` or 3` end of the fusions of interest may remove a gene from 

its appropriate regulatory context44.  

Gene fusions, which may ultimately produce chimeric fusion proteins, can emerge at the 

genomic or transcriptomic level. All SV are capable of producing gene fusions, and no single 

mechanism has been implicated. SVs are well documented drivers of atypical gene expression, 

and recent pan-cancer studies have shown their enrichment in relevant oncogenic pathways28,45. 

Frequently, fusions containing TSGs show reduced expression, while the opposite is true of 

oncogenic fusions.  At the time of transcription, readthrough fusions may also be produced 

between adjacent genes when the appropriate stop codon is missed or skipped. Transcripts can also 

fuse via aberrant transsplicing, frequently producing fusions with a “2 and 2” pattern of the first 

two exons of the 5` gene and the last two exons of the 3` gene.  

Kinase fusions are particularly common and appealing targets that can be activated by any 

of these mechanisms44. CCDC6-RET, a kinase fusion extremely common in papillary thyroid 

carcinoma, causes inappropriate RET signaling that drives proliferation. Thyroid cancer is one of 

the most fusion enriched cancers, though like prostate cancer it has several highly recurrent 

fusions46–48. Breast cancer and ovarian cancer differ in that they lack highly recurrent fusions, but 

the instability of their genomes leads to the accumulation of diverse fusions of unclear importance. 
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Despite this heterogeneity, some fusion events have been shown to promote clinically relevant 

phenotypes. NTRK3 fusions in secretory breast carcinoma are potentially druggable alterations 

also seen in phenotypically similar salivary gland tumors49,50. ESR1 fusions have been detected 

and validated as drivers of endocrine resistance51,52. One fusion that recurs primarily in the basal-

like subtypes of breast cancer, ESR1-CCDC170, has been detected in both breast and ovarian 

cancer51,53.  

Methods that target both the transcriptome and genome have been developed for the 

detection of gene fusions, though the field now focuses primarily on expressed chimeric transcripts 

detection via RNA seq54–57. Any detection of SV with nucleotide resolution will allow possible 

fusions to be detected from WGS or exome sequencing, but in cancers like HGSOC, the high SV 

burden complicates separating pro-malignant “driver fusions” from inert “passenger fusions”58. 

By detecting chimeric transcripts via RNA-Seq, researchers can limit their search to fusions that 

are at least expressed in the transcriptome.    

Numerous fusion callers have been developed, including FusionCatcher55, STARFusion59, 

TopHat-Fusion60, Pizzly61, and Ericscript62. The outputs of these fusion callers can be highly 

variable, motivating the development of integrated, multi-caller pipelines. Benchmarking these 

tools suggests FusionCatcher has a valuable mix of speed and accuracy54, but studies focused on 

detecting clinically relevant, active fusions attempt to integrate the outputs of multiple fusion 

callers to reduce the high false positive rate of many fusion callers63. Once detected, bioinformatic 

validation of fusion expression requires mapping supporting reads to the breakpoint and 

confirming the specificity of the read support, which can be performed with IGV, SVViz64s, or 

ChimeraViz65, an application designed for fusion visualization. Prioritization of possible driver 

fusions often involves mapping the reads contributing to the detected fusion against its wildtype 
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sequence to determine domains gained or lost. Oncofuse66 and Pegasus67 are programs designed 

to assign a driver likelihood score to fusions based on the similarity of their domain profiles to 

those of known malignancy promoting fusions. Following bioinformatic prioritization and 

biological detection via PCR of purported driver fusions, in vitro characterization is necessary to 

argue for a genuine effect of fusion expression.  

The genomic instability of HGSOC has prompted many researchers to attempt to implicate 

fusions. Early work suggested that recurrent fusions including BCAM-AKT268, CDKN2D-

WDFY269, and ESRRA1-C11orf2023 might be valuable targets or HGSOC biomarkers, but the 

prevalence of those fusions was likely overestimated in all of those studies. Notably however, 

ESR1—CCDC170, a purported driver of basal-like breast cancer, has also been found in multiple 

studies of HGSOC33.  

The lack of highly recurrent fusions in HGSOC suggests that if fusions are effectors of its 

phenotype, their action is best understood at the population level, with diverse individual fusions 

acting through common oncogenic pathways. CNV are common in many oncogenically relevant 

pathways in HGSOC, and the same is true of fusions. A recent study of fusions in primary HGSOC 

is associated with dysregulation of the expression of nearby genes, and CNVs are well established 

drivers of altered gene expression70. These findings suggest that fusions in oncogenically relevant 

pathways dysregulate of those pathways, generating the phenotype in HGSOC. A pathway-based, 

systems biology approach to characterization of HGSOC fusions may be a powerful lens through 

which to view structural variation as a driver of HGSOC evolution.  

A fusion-centric approach to HGSOC evolution also has many limitations. Searching for 

fusions in bulk RNA seq may be difficult if the driver fusion is only present in a subclonal 

population of cancer cells. Subclonal expansion has been postulated as a major mechanism of 
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HGSOC evolution71, and in several studies the heterogeneity of metastatic tumors was actually 

reduced in comparison to the primary35. Additionally, many fusions have been detected in normal 

tissue, but it is unclear if they have oncogenic potential. Additional passenger fusions might be 

generated through splicing or readthrough mechanisms, but each of those mechanisms has also 

been implicated in generating pro-malignant fusions as well. Finally, fusion-centric study also 

offers limited perspective into the contributions of the tumor microenvironment to the disease.  

 Study Objectives 

This work integrates and builds upon earlier transcriptomic studies of HGSOC progression 

with an emphasis on gene-set or pathway-level changes with progression.  I further attempt to 

determine possible contributions of expressed chimeric transcripts to the observed systems-level 

changes in gene expression associated with HGSOC progression. My major objectives are as 

follows:  

• Meta-analysis of HGSOC Progression via RNA-Seq 

o Characterize both differential gene expression between “progressed” and 

“unprogressed” individual HGSOC datasets and an appropriately normalized and 

batch-corrected integrated dataset 

o Contrast gene expression changes between ovarian primary tumors and early 

metastases with those detected between primary and recurrent HGSOC 

o Identify key pathways of and gene networks associated with progression 

• Integration of HGSOC Fusion-Calling results with Gene Expression Results 
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o Develop a sensitive fusion detection pipeline to run on datasets with compatible

sequencing parameters. Summarize those results with an interactive R-Shiny

dashboard to facilitate exploration of fusion detection results

o Correlate the expression of any possible driver fusions with broader gene

expression changes using the differential gene expression pipeline developed in 1.
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2.0 Methods 

Assembling the HGSOC pairs cohort through sequencing and download of public data 

Searching the sequencing Read Archive(SRA72,73) using the terms “Ovarian cancer”, 

“pairs”, “recurrence”, and “metastasis” showed 5 datasets with usable sequencing data. The 

datasets varied in their preparation and final parameters. In addition to the publicly available data, 

we sequenced 19 pairs of samples in-house.  

Sequencing of in-house HGSOC Pairs 

Sample Acquisition 

19 patient matched pairs of frozen tumor tissue were obtained from the Pitt Biospecimen 

Core (in collaboration with Dr Robert Edwards) and through collaboration with Roswell Park 

Cancer Institute(RPCI). RNA was extracted for sequencing with Quiagen’s RNAeasy RNA 

extraction kit according to standard protocols and extracted RNA quality was assessed using a 

NanoDrop spectrophotometer. Samples passing preliminary QC were provided to the University 

of Pittsburgh Genomics Research Core for further QC, library prep, and sequencing. RNA quality 

(fragment length distribution, RNA integrity, sample purity) was quantified by the Pitt Genomics 

Research Core and samples meeting the minimum thresholds for quality were processed for 

sequencing using the Illumina Tru-seq v2 paired-end stranded library preparation kit. Generated 

libraries were sequenced on an Illumina NextSeq 500 with a read length of 150bp, a target insert 

size of 400bp and a target read depth of 100x. The sequencing results were converted to fastq files 

that were transferred to long term and working storage on the computing cluster provided by the 

University of Pittsburgh Center for Research Computing. 
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Summary of other Datasets Employed: 

Metastasis Datasets 

The “Metastasis Datasets” were generated from 2 recent publications,74,75 totaling 23 pairs. Both 

studies collected tissue from both the ovarian primary tumor, the “unprogressed” samples, and a 

metastasis, the “progressed” samples, during the initial debulking. Raw fastq files were 

downloaded from European Nucleotide Archive(ENA)76 using curl in December 2019 . The 

integrity of downloaded data was verified by comparison of md5 checksums between downloaded 

files and the reported md5 checksums on ENA. The code used to download and verify download 

integrity is on github at https://github.com/johnalanwillis/ovarianCancerProject.  

Recurrence Datasets 

The “Recurrence Datasets” consisted of 3 datasets downloaded between 2016-2019 and the in-

house dataset described above. Samples in this group consisted of HGSOC samples that had 

recurred, the “progressed” samples, and paired samples from a prior debulking, the “unprogressed” 

samples. The “Recurrence Datasets” varied more in their sequencing parameters and download 

methods than the “Metastasis Datasets”. The AOCS and TCGA datasets were obtained by 

downloading the aligned bam files from the SRA using SRAtools and converting them to fastq 

files with the bam2fastq function provided by samtools77. The OCTIPS dataset was not available 

in raw form, but the gene-level counts matrix was downloaded from the ENA after obtaining 

permission from the original study authors.  

MSC dataset 

To investigate the contributions of the microenvironment to HGSOC evolution, additional raw 

RNA Seq data from a study comparing cancer associated mesenchymal stem cells(CA-MSCs) with 

MSCs from normal omentum. As with the Metastasis Datasets, the raw fastq files were 
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downloaded from the ENA (PRJNA384578, PRJNA564846) using curl in June 2019, and 

download integrity was verified by comparing md5 checksums.  

CCLE dataset 

To investigate the relationship between chimeric fusion transcript expression, overall gene 

expression profile, and bench-testable phenotypes, raw RNA-Seq data for ovarian cancer cell lines 

from the Cancer Cell Line Encyclopdia (CCLE)78,79 was downloaded from the SRA using 

SRAtools in 2016 and the bam files were converted to fastq with samtools bam2fastq function. 

Data Processing For Gene and Isoform Expression Analysis 

QC of Raw and Processed Sequencing Data 

Quality of raw sequencing reads was quantified using the java application 

FastQC(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)80fas. Consistency of 

reported parameters including fragment length and read depth with target values was checked prior 

to further analysis. Alignment quality was evaluated following alignment with STAR using 

dataset-specific alignment parameters using samtools(http://www.htslib.org/). Integrated read and 

alignment level QC was orthogonally verified with the java application 

Qorts(https://hartleys.github.io/QoRTs/)81. QoRts reported values were compared with samtools 

and fastqc reported values for consistency across methods. By-sample QC summaries were 

generated using the java application MultiQC(https://multiqc.info/)82. All QC operations were 

performed using BASH scripts that can be found on github at 

https://github.com/johnalanwillis/ovarianCancerProject 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.htslib.org/
https://hartleys.github.io/QoRTs/
https://multiqc.info/
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Data Processing For Expression Analysis 

All expression analysis operations were performed using BASH scripts and within R markdown 

documents that can be found on github at https://github.com/johnalanwillis/ovarianCancerProject 

Isoform Expression was quantified from raw reads using SALMON v0.14 

(https://salmon.readthedocs.io/en/latest/salmon.html)83,84 against an index generated from the 

gencode v29 transcriptome and genome85. Salmon employs a k-mer based pseudoalignment 

approach to isoform level expression quantification. Rather than mapping each reported read to a 

genome/transcriptome region with the highest sequence identity, Salmon breaks reads into “k-

mers” of pre-defined length classifies each read as a likely member of a subset of “equivalence 

classes”, or “k-mer” distribution profiles. This approach is both faster, and more accurate than 

alignment based read counting techniques. Isoform expression was studied using the R package 

IsoformSwitchAnalyzer v1.886. The package reads transcript level quantification results as output 

by RSEM, cufflinks, SALMON, etc, and facilitates differential isoform use testing and annotation 

using a range of tools through a unified interface. The counts matrix generated by SALMON 

records transcript level counts, but most RNA seq Analyses are performed with the intention of 

uncovering genes of interest. Transcript counts matrices are transformed to gene counts by 

collapsing isoform counts to the gene level and correcting for gene-length effects. The resulting 

gene counts matrix derived from transcript quantification is more accurate than direct counting of 

reads mapping to genes without consideration of the contributions of different isoforms to the 

overall count. 

Isoform abundances generated from Salmon’s psuedomapping approach are collapsed into 

gene level counts with transcript length aware offsets using the txiMeta87t package when possible. 

txiMeta improves on the tximport approach by tying linking Salmon quantification results to their 

https://salmon.readthedocs.io/en/latest/salmon.html
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target transcriptome by including a transcriptome signature in the quantification results. Each 

transcriptome, ie Gencode v.29, has a unique signature, and matching a quantification signature to 

a transcriptome signature simplifies the analysis process and prevents accidental mismatch of 

references between alignment and analysis. 

Differential Expression Analysis 

Gene expression level QC was examined using pcaExplorer88, which wraps base R’s 

princomp output in a range of visualization functions. Plots of samples along their principle 

components were generated using the function pcaPlot to determine if batch effects were present 

and if samples separated by covariates of interest along any of the principal component of the 

variance.  

Differential gene expression analysis was performed with EdgeR89, which employs a 

generalized linear model-based approach to differential expression testing. EdgeR, like DESeq2, 

assumes gene expression follows a negative binomial distribution, and uses an empirical bayes 

approach to derive sample and gene-level dispersion parameters for final modeling. To generate a 

counts matrix usable in visualizations or other statistical applications, the cpm() function from 

EdgeR was used. This generates a Trimmed Mean of M-values normalized matrix that corrects for 

differences in library size between samples. Gene level counts were prepared from the transcript 

level quantification matrix output from salmon using tximport, and differential expression testing 

was performed according to standard protocol using the EdgeR glm pipeline.  

The limma90 package offers another linear model-based approach to gene 

expression analysis which was originally developed for use with microarrays.  For RNA-Seq 

experiments, it is often applied with the Voom91 transformation, which transforms the gene counts 
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to to account for the measured mean-variance trend at both the sample and gene level. Differential 

expression analysis is performed on the transformed counts using a linear model-based approach. 

The third and final differential expression technique employed was DESeq292. DESeq2 

normalizes between samples by calculating a by-sample size factor from the median by-gene 

geometric means. Scaled counts are then transformed using either the vst() or rlog() 

transformations to correct for the mean-variance trend, and a linear modeling approach is used to 

test for differential expression, based on the assumption of genes dispersed according to a negative 

binomial distribution.  

Overrepresentation and Gene Set Enrichment Analysis 

To identify patterns in gene expression between conditions and within clusters, 

overrepresentation analysis(ORA), was performed using the packages Clusterprofiler93. By testing 

for deviation in gene set membership for an experimentally uncovered gene set against a 

hypergeometric distribution, Clusterprofiler reveals large alterations in gene set activity.  

Gene Set Enrichment Analysis improves on the ORA approach to gene set testing by 

comparing the distribution of gene expression in a gene set against a reference distribution. This 

method is more sensitive to subtle, coordinated changes in many genes. The package fGSEA94 

speeds up the typical gsea process by using preranked gene sets. 

Gene Set Variation Analysis, GSVA95, extends the gene set approach developed in GSVA 

to determine the relative enrichment of gene set activity in an individual sample against others in 

a cohort. By comparing the distribution of genes in a single sample against other genes in a cohort, 

and the relative distribution within the cohort to a predefined gene set, it generates a by-sample 

score for gene sets of interest. GSVA can transform a gene expression matrix into a gene-set 
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activation matrix, which can then be used in downstream applications, like for differential 

activation testing using limma.  

Network analysis with VIPER and WGCNA 

Virtual inference of Protein activity by Enriched Regulon Analysis(VIPER) and MAster 

Regulator INference Analysis (MARINA)96 from the package viper facilitated the inference of 

“master regulator” gene activity from gene expression matrices using a mutual information 

approach. “Master regulators”, or genes whose expression was highly correlated with the activity 

of several other genes, were inferred from HGSOC gene expression from the TCGA using the 

ARACNE algorithm97. These collections of mutually regulated genes and their “master 

regulators”, termed “regulons” were accessed from the package TCGARegulons98 and used to 

uncover regulons strongly associated with progression using the marina() function. Gene 

expression matrices were also transformed into regulon activity matrices using the viper() function, 

and the transformed matrices were used with limma to test for differential regulon activation 

associated with progression, using the standard limma linear modeling approach.  

Correlated Expression network analysis with WGCNA 

 Identification of correlated gene expression modules using Weighted Gene Correlation 

Network Analysis(WGCNA)99,100 was also performed. In WGCNA, a scaled correlation matrix is 

generated and the goal of hierarchical clustering by gene. The modules are identified by the 

hierarchically clustered gene-correlation, and modules are collapsed together based on the 

similarity of module eigengenes. These modules can then be correlated to covariates of interest by 

transforming the by-sample gene expression matrices into module activation matrices.  
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Methods for Exploring and summarizing gene expression results 

Findings from HGSOC paired data analysis were explored in HGSOC TCGA cases as an 

external validation set. TCGABiolinks101 provides a standardized interface for processing TCGA 

data. I used this package to obtain gene counts and sample metadata for TCGA HGSOC cases. 

Batch effects resulting from combining heterogenous datasets were corrected using the 

removeBatchEffects function from limma, which employs a linear modelling approach to regress 

batch effects out from a gene expression matrix. Success of batch effect correction was confirmed 

by PCA with the PCAExplorer package.  

The ComplexHeatmap102 package provides a powerful and flexible interface to visualize 

data with attractive and detailed annotations. In addition to the heatmap and annotation functions, 

the package also generates visualizations of set relationships with the UpsetPlot function. This 

package was used to generate heatmaps summarizing differential expression results and Upset 

plots to visualize the intersections between differential gene expression tools.  

The statistical package cluster103 provides numerous supervised and unsupervised 

clustering methods and cluster quality analysis functions silhouette width and elbow plots in R. 

Cluster stability was further characterized by clustering of bootstrapped subsamples of the data 

using the package ConsensusClusterPlus104 

Survival analysis was performed by a Cox proportional-hazards model fitting patient 

survival by quantized gene expression or regulon cluster membership with the package Survival. 

Survival plots were then generated with survminer105, which plots survival analysis results using 

the ggplot2 framework, rather than base R graphics. 
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Methods for Fusion Detection and Exploration 

The contribution of expressed fusion genes to the progression of HGSOC was investigated 

through the use of fusion detection algorithms when sequencing parameters were appropriate. 

Overall 36 pairs of samples were sequenced with paired-end libraries and long read length, in the 

WCRC-RPCI, AOCS, and TCGA cohorts. To improve the sensitivity of the screen, three fusion 

detection and annotation tools were employed, and their combined results were then filtered using 

a custom R Shiny dashboard. 

Expressed gene fusions were detected using FusionCatcher55. FusionCatcher detected 

expressed gene fusions by aligning raw sequencing reads against a transcriptome, using a battery 

of aligners including BWA, STAR, and TOPHAT. Reads that appear split across the transcriptome 

or pairs that lack an adjacent partner are collected and their mapping against putative fusions is 

then quantified. The generated fusion list is subsequently compared to an internal database of 

known false positives.  

Expressed gene fusions were detected using FusionZoom. FusionZoom detected expressed 

gene fusions by aligning raw sequencing reads against a transcriptome, using Tophat to perform 

alignment. Putative fusions are scored for their driver-likelihood to generate a list of likely drivers 

from the tophat output.  

Expressed gene fusions were detected using STARFusion59. STARFusion detected 

expressed gene fusions by aligning raw sequencing reads against a transcriptome, using STAR to 

perform alignment. 

The tabular output of the fusion calling battery was parsed, cleaned, and harmonized using 

custom R scripts. The cleaned fusion detection results were then explored using an R 

ShinyDashboard106, named FusionExplorer, as described in the Results.  
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Methods for Bench Validation of Detected Fusions in human tissue 

To confirm the expression of bioinformatically detected fusions in-vivo, PCR primers were 

designed against the putative novel exon-exon junctions in the fusions of interest. Primers were 

designed using Primer3107 with standard parameters. The desired primers were ordered from 

Genewiz, and stored in 20uM aliquots at -20C.  

RNA was extracted from frozen sections of HGSOC tumor tissue using the Quiagen 

RNeasy FFPE kit according to standard manufacturers protocols. Prior to final elution, an on-

column DNA digest was performed with the provided DNAase. The concentration and quality of 

eluted RNA was quantified by UV spectroscopy on the Nanodrop 2000, and samples failing to 

meet quality cutoffs were re-extracted from additional sections. cDNA was generated from the 

eluted RNA using Takara Primescript and the RNA was stored at -80C.  

Patient Samples were screened for novel fusion junctions via RT-PCR with BioRad’s 

SYBRGreen Master Mix. The reaction was prepared on ice with sterile, nuclease-free H20 and the 

previously obtained primers and cDNA. Optimal reaction parameters were determined by 

performing test reactions at a range of concentrations and cycler temperature was determined with 

gradient PCR. Final reactions were run with a fusion-negative control sample, typically either 

OVCAR3 or MCF7 cDNA, and primers for B2M, GAPDH, or ACTB were used as positive 

controls. 1% polyacrylamide gels were run for initial PCR optimization, through gels with 

concentrations 0.5%-1% were used for gel extraction and sequencing.  

To confirm the identity amplified products, bands were cut from PCR gels using sterile 

scalpels under UV light and collected in sterile, nuclease-free PCR Tubes. Excess polyacrylamide 

was trimmed from the bands and amplified sequences were purified using the Monarch gel 

extraction kit. The quality of extracted products was determined by UV spectroscopy on the
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nanodrop and samples meeting minimum quality and concentration requirements were sent for 

Sanger Sequencing by GeneWiz. Sequencing results from gel extracted fusion junction bands were

downloaded and the sequences from high confidence results were aligned against putative fusion 

junctions reported by the fusion calling algorithms employed in the in-silico screen.  

Methods for Bench Validation of Detected Fusions in Cell lines 

Culture of NIH_OVCAR3, SKOV3, BT474 Cells 

Cell lines were obtained from ATCC and stored at -80C in LN2 until needed. Periodic 

mycoplasma testing was performed using a MycoAlert Mycoplasma Detection. Once thawed for 

use, cells were maintained at 37°C in 5% CO2.  All culture media and media supplements were 

obtained from Life Technologies. NIH_OVCAR3, SKOV3, BT474 cells were cultured in 

Dulbecco’s modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). 
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siRNA Knockdown of CCDC6--ANK3

To assess the contribution of CCDC6—ANK3 expression in NIH_OVCAR3 cells, 

siRNA were designed targeting the CCDC6—ANK3 exon-exon junction expressed in 

NIH_OVCAR3 cells using dharmacon’s siRNA Design tool and were ordered from Dharmacon, 

along with non-targeting control pool siRNA. Once obtained, siRNA stocks were aliquoted and 

stored at -20C.  siRNA kd of fusion Expression using lipofectamine RNAiMax liposomal vectors 

CCDC6—ANK3 Expression in NIH_OVCAR3 cells was knocked down via liposomal 

transfection with lipofectamine RNAiMax via reverse transfection. siRNA-liposome complexes 

in OptiMem media were prepared according to the manufacturers protocol at in 6 well plates. Cells 

were subsequently added to the growth media to achieve a target count of ~125K cells per well. 

After 24hrs of kd, siRNA kd media was replaced with standard growth media.  

confirmation of fusion kd via qPCR  

Fusion knockdown (kd) was confirmed by qPCR, using Primers designed against the 

exon-exon junction targeted by the siRNA. RNA was harvested from siRNA kd cells, 

untreated and vehicle-treated, and non-targeting siRNA treated cells 72 hrs after reverse 

transfection using the Quiagen RNAeasy kit according to standard protocols, and cDNA was 

generated using Takara Primescript.  The qPCR reaction mixture was prepared on ice in 96-well 

plates from SsoAdvanced Green Supermix,and run on the CFX96 thermocycler (Bio-Rad) 

according to the manufacturer’s protocol. Samples were normalized to a battery of housekeeping 

controls and CCDC6—ANK3 kd 

was assessed using the 2-CT method against Vehicle treated control.  

 

 Methods for characterizing the contribution of fusion expression to 

phenotype 
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Determining Growth Effects of fusion kd with Prestoblue 

Once the efficacy of siRNA kd of CCDC6—ANK3 was demonstrated, the effects of anti 

CCDC6—ANK3 siRNA treatment on growth in NIH OVCAR3 cells was assessed using 

Prestoblue and FluoReporter. In both cases, growth assays were performed by reverse 

transfecting NIH_OVCAR3 cells with siRNA or control for 24 hrs and seeding cells in normal 

growth media at 10K cells per well in 96 well plates. 5 replicates per condition were plated 

and samples were collected at 24, 48, 72, 96, and 120hrs after plating. For FluoReporter 

Quantification, plates were collected at each timepoint, growth media was dumped, and the 

plates were stored at -80C until scoring. Fluoreporter quantification was performed by lysing 

stored cells by freeze-thaw cycling, adding DNA intercalating fluorescent dye, and scoring 

fluorescence of siRNA kd relative to control. PrestoBlue quantification was performed at the 

time of collection for each timepoint by adding prestoblue dye in 1:1 ratio to the growth media, 

and scoring fluorescence at 5, 15, 30min, 1hr, 2hr, 4hr, and 8hrs of incubation. The 

fluorescence by incubation time was plotted and the fluorescence score detected at the 

midpoint of the exponential growth phase of the saturation curve was taken as the true value. 

Final scoring compared siRNA kd with vehicle.  
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3.0 Results and Discussion 

Characterization of available HGSOC Sequencing Data 

Aggregating all available paired sets of RNA-Seq Data from the “Metastasis Datasets” and 

“Recurrence Datasets” yielded a collection of 118 pairs of “progressed” and “un-progressed” 

HGSOC. While the focus of these analyses is on the contrasting gene expression between HGSOC 

samples over time and space in the body, I also interrogated the contributions of changing isoform 

and gene fusion expression. Overall 8 datasets were employed in these analyses, 7/8 of which had 

raw fastq files available. The sequencing parameters varied between datasets, with the Metastasis 

datasets consisting only of short (<75bp) single end reads suitable for gene expression and 

transcript expression analysis. The Recurrence datasets were generated using higher read depth, 

longer read length, and with a paired-end modality suited to fusion detection in addition to 

gene/transcript expression analysis. Only the OCTIPS dataset (n=128) lacked accessible 

sequencing reads, but the gene counts matrix provided was still useful for gene expression 

analyses.  

The details of the sequencing parameters can be found at the SRA sites for each project.  

Figure 1A summarizes the raw or processed data available by cohort, illustrating the gaps in the

Metastasis and OCTIPS datasets.  
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Table 1: Studies Explored in HGSOC Progression Meta-Analysis. 

Depth and quality of sample metadata varied widely between datasets. While some datasets 

included potentially valuable information like chemosensitivity and tumor cellularity, most 

datasets lacked sufficient annotation to perform rigorous analysis based on those covariates. The 

contributions of those factors to expression patterns was explored in the single dataset analyses, 

but the focus of the aggregated analyses (“Metastasis”, “Recurrence”, “Progression”) on the 

within-patient paired contrasts.  

 The metadata tables processed into the final metadata table and the final table used in 

analysis is available in SI8-17. Figure 1B summarizes the metadata available by cohort,

illustrating the gaps in the relevant covariates including chemoresponse and tumor cellularity. 

Table 2 further describes the characteristics of the datasets for annotated covariates of interest.

Dataset Group Available Format Publication Date PMID

WCRC/RPCI
(In-house Sequenced)

Recurrence fastq N/A N/A

EGAD00001000877
(AOCS)

Recurrence fastq May 2015 26017449

EGAD00001000877
(TCGA)

Recurrence fastq Nov 2011 21720365

EGAS00001002660
(OCTIPS)

Recurrence Gene-counts Dec 2017 28972047

PRJNA384578 Metastasis fastq Nov 2019 31744494

PRJNA564846 Metastasis fastq Oct 2019 31600962

Table 1: Studies Explored in HGSOC Progression Meta-Analysis
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Figure 1: Summary of Available Datasets and Metadata by Dataset. Available Data by dataset

for the 8 studies investigated B: Metadata available for the 6 datasets of sequenced tumors. 

Table 2: Characteristics of samples studied by Dataset. Summary of tumor characteristic for

sequenced tumor samples. Raw numbers are reported next to percentages. Datasets lacking 

annotation of the characteristic of interest report 0 counts and NaN percents 
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Gene Expression Changes associated with Metastasis, Recurrence, and Progression 

As all datasets employed in this analysis could be simplified to a gene-level counts matrix 

as described in the methods, the most detailed analyses were performed at the gene expression 

level. Fortunately, numerous gene expression analysis methods have been developed for RNA-

Seq data. Recent studies of DEA have suggested that using multiple gene expression analysis tools 

may offer improved sensitivity and specificity, so I used the three most popular tools available 

through the Bioconductor framework. DESeq2, EdgeR, and Limma–Voom are frequently used to 

explore differential gene expression results and offer flexible means for testing for differential 

gene expression. The major differences between DEA methods are the underlying model used to 

describe the relationship of covariates to expression value, the hypothesized underlying 

distribution of the reported gene counts, the means of correcting for the tendency towards 

heteroscedasticity in the counts data, and the tests used to define significance of differential 

expression. DESeq2 and EdgeR both use a generalized linear model based approach with an 

underlying count distribution drawn from a negative binomial distribution, which assumes that 

most genes are not differentially expressed. These techniques differ in their methods of controlling 

for the mean variance trend in the data and the tests used for determining the significance of 

differentially expressed genes. EdgeR is generally regarded to be a less sensitive tool, and our 

results bear this out. The limmaVoom pipeline differs in that it assumes a poisson distribution for 

counts and controls for variance using the “voom” transformation, which employs an empirical 

bayes estimation-based method to model the distribution of counts based on the observed counts 

within and between different genes and conditions 
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In addition to basic DEA, I used both overrepresentation analysis and genes set enrichment 

analysis(GSEA) approaches to extract biologically meaningful summaries from noisy gene 

expression data. 

I also used two co-expression network-based approaches to detect patterns of gene 

expression associated with conditions of interest. MaRina/Aracne-AP attempt to infer the activity 

of known biologically relevant hub genes and their targets, termed “regulons”, by determining 

which genes provide significant information about the expression of other genes within the same 

sample. It then tests for differential activation of regulons across conditions by bootstrap 

subsampling to define a null distribution of regulon activity in a dataset and testing the actual data 

against that null. Weighted Gene Correlation Network Analysis(WGCNA) similarly focuses on 

networks of related genes and their hubs by generating a correlation matrix of all genes with each 

other, transforming that matrix to achieve a “scale free” topology, and clustering genes by their 

scaled correlation. Closely related genes are then integrated into modules, and the correlation of 

covariates with module eigengene expression by sample is tested. Table 3 summarizes the major

techniques employed in our gene expression analysis and the underlying models they employ.  
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Table 3: Analysis Methods Employed in Gene Expression Meta-Analysis of HGSOC 
Progression 

The sensitivity of sequencing results to subtle factors like date of extraction, technician, or 

other “batch effects” is well documented. While many tools designed explicitly to perform 

differential gene expression analysis allow batch to be specified and corrected for within the 

analysis, many other functions, including clustering and coexpression network analyses, require a 

batch-corrected gene expression matrix as an input. The limma package contains a function that 

uses a generalized linear model approach to regress out the contributions of user defined batches 

to overall expression results.  

To explore the contribution of batch effects to the sequencing data under investigation, I 

used PCAExploreR to investigate the relationship between the covariates of interest and the major 

sources of variance in the data. To assess the contribution of batch effect to the variance, I analyzed 

the data both with and without batch correction. As shown in Figure 2, BATCH is a dominant

Application Model Underlying 
Distribution

Variance-
Stabilization

Test

DESeq2 GLM Negative 
Binomial

VST, RLOG OR, Log-
likelihood

EdgeR GLM Negative 
Binomial

Log anova

Limma-Voom GLM Poisson Voom fishers

MaRina/Aracne-
AP

N/A Mutual 
Information 
network

VST Bootstrap t-
testing

WGCNA N/A Scale-Free 
Correlation 
Network from 
Biweight
Midcorrelation

VST Fisher’s 
transformed rho 
and t-test
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contributor to the variance in the data, and the removeBatchEffects() function effectively removes 

the contributions of batch to the variance of the resulting, batch-effect-corrected gene expression 

matrix. Figure 2C illustrates the pearson correlation coefficient and significance between the 

eigengene of each principle component and the covariates PATIENT_ID, TISSUE, BATCH, and 

TIMEPOINT. Notably, regressing out the batch effect improves the sensitivity to detect 

correlations between principle component eigengenes and the remaining covariates, including 

revealing significant correlations between TIMEPOINT and principle components 2 and 8.  

Differential Gene Expression analysis was performed using DESeq2, EdgeR, and 

LimmaVoom. All 3 applications use a model formula interface to specify the relationship between 

covariates and expression, so the same formula, Expression ~ 

BATCH+PATIENT_ID+TIMEPOINT, was used in each case. TISSUE was not included in our 

model due to a lack of coverage across our datasets. Genes differentially expressed with alpha < 

0.1 were counted as significant, and the similarity between DGEA results across libraries was 

compared as shown in the upset plot in Figure 4. In all contrasts, DESeq2 was the most sensitive, 

and the DESeq2 results were used for all contrasts in downstream analyses including clustering 

and GSEA.  
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Figure 2: Batch Effects and their Correction using GLMs. (A): PCA plot of sample pairs along

the two dominant principal components – Circles represent “un-progressed” samples, triangles 

represent “progressed” samples, and a line connects pairs of samples from the same patient. Batch 

is indicated by color. Batch effects are clearly illustrated on the left, and the residuals following 

regression for batch show an elimination of by-batch clustering along the dominant principal 

components (B) SCREE Plot of principal components of the data shows a reduction in batch 

associated variance – The magnitude of the principal components is indicated by bar height, with 

cumulative variance indicated by the red line. (C) Principal Component Eigencorrelation Table: 

The degree of correlation(pearson) between the first 10 principal components and the major known 

covariates with correlation significance 
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Figure 3: Comparison of Differential Gene Expression Results Between Major DEA Tools
Overlap in progression-associated differentially expressed genes 

The top 25 and 1,500 differentially expressed genes were then studied to identify possible 

clusters associated with progression as shown in Figure 4. Optimal K for K-means clustering was

selected by clustering of bootstrapped subsamples with ConsensusClusterPlus. K-means clustering 

with k=3 the full cohort by the top 25 DE genes showed one cluster strongly associated with the 

unprogressed samples, with relative overexpression of genes including TSPAN8 and GATA4 and 

underexpression of FAPB4 and SFRP2. Notably this clustering shows no clear correlation with 

TISSUE or BATCH. This clustering of samples was then applied to the top 1500 DE genes, which 

were subsequently k-means clustered with k=4 to less obvious success.  
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Figure 4: Clustered Heatmap of the Most Significantly Differentially Expressed Genes with 
Progression by Test Statistic. The top 25 differentially expressed genes as ranked by test statistic

calculated by the DESeq2 method are shown in the top heatmap, biclustered using hierarchical 

clustering. The bottom graph shows the top 1500 differentially expressed genes ranked by test 

statistic, with the same column order as determined by the upper clustering and the rows 

hierarchically clustered 

These differential expression results were used to generate a list of DE genes ranked by 

test statistic for use in Gene Set Enrichment Analysis (GSEA). GSEA abstracts noisy gene

expression data to the pathway or gene-set level, and unlike overrepresentation analysis, detects 

subtle coordinated changes in gene expression. I compared the gene expression results to the C6 

Oncogenic and Hallmark gene sets from MSigDB, uncovering differentially regulated gene sets 

associated with progression in both, as shown in Figure 5. Hallmark gene set results showed
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upregulation of EMT genes and immune-associated gene sets, and decreased activation of Myc 

target genes with progression. The C6 gene set also showed significant dysregulation of genes 

dysregulated by shRNA kd of BMI1, a polycomb group gene associated with cancer stem cell 

maintenance.  

To determine potentially differentially active genes and pathways associated with 

recurrence, additional analyses were performed on the metastasis datasets and the recurrence 

datasets only. Performing DGE on only the recurrence datasets revealed many of the same genes 

differentially expressed at alpha <= 0.1, including TSPAN8 and COLEC11. Integration of those 

results to gene sets shows downregulation of MYC targets and alteration of BM1 activity, as 

detected in the integrated datasets as seen in Figure 6.

This BM1 activity is not detected in the Metastasis datasets, which failed to detect any C6 

gene sets with differential activity, but did detect significant (alpha <0.05) differential activation 

of Hallmark gene sets associated with lipid processing, cell cycle progression, and EMT, as shown 

in Figure 7

An orthogonal approach to GSEA to identify differentially active gene sets across contrasts 

is the use of coexpression networks. Unlike GSEA, which tests the similarity of the input dataset 

to published gene sets, these approaches derive their own sets of coordinated genes from the data 

itself. I used two different coexpression analysis techniques. VIPER, or Virtual Inference of 

Protein activity by Enriched Regulon analysis, and WGCNA, or Weighted Gene Correlation 

Network analysis. While the two techniques can both explore gene networks and associate those 

networks with covariates of interest, they differ in how they derive their networks.  
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Figure 5: Gene Set Enrichment Analysis of Progression Associated Genes Against Hallmark 
and C6(Oncogenic) Gene Sets from MSigDB. (A) Significantly altered Hallmark gene sets

associated with progression – Genes dysregulated with progression are involved in EMT, immune 

response, and MYC signaling, consistent with prior results (B) Significantly altered C6 

(Oncogenic) sets associated with progression – Genes dysregulated with progression are involved 

in Epigenetic and kinase signaling processes 
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Figure 6: Gene Set Enrichment Analysis of Recurrence Associated Genes Against Hallmark 
and C6(Oncogenic) Gene Sets from MSigDB
A: Significantly altered Hallmark gene sets associated with progression – Genes dysregulated

with progression are involved in EMT, immune response, and MYC signaling, consistent with 

prior results B: Significantly altered C6 (Oncogenic) sets associated with progression – Genes

dysregulated with progression are involved in epigenetic and kinase signaling processes 
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Figure 7: Gene Set Enrichment Analysis of Metastasis Associated Genes Against Hallmark 
and C6(Oncogenic) Gene Sets from MSigDB: Significantly altered Hallmark gene sets 
associated with metastasis – Diverse Hallmark gene sets were significantly associated with

metastatsis only, including EMT and cell-cycle associated sets 

VIPER, which uses a mutual-information based approach called ARACNE to derive a 

gene-correlation matrix, compares the expression profile of samples of interest to gene sets, 

“Regulons”, associated with the activity of “Master Regulator” genes that appears to strongly 

correlate with many related genes. In this analysis, I used a set of regulons derived from TCGA 

ovarian cancer RNA-Seq data from the TCGARegulons package to determine how regulon activity 

changes with progression. VIPER tests the measured contrast in regulon activity against a 

bootstrapped null distribution of regulon activities to determine what regulons are differentially 

active under some condition. The advantage of this approach is that it can detect changes in regulon 

activity in settings where regulon expression may not be significantly changed. This approach is 

similar to the use of GSEA with a set of transcription factor associated genes, but the use of 
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regulons derived directly from HGSOC RNA-Seq data simplifies the interpretation of the results 

specifically in the context of HGSOC.  

This analysis showed HOXA10 and RGS13 as HGSOC-associated regulons significantly 

activated with progression and a decrease in the activity of EMT associated regulons GATA4, 

FOXL2, and TSPAN8 and the hormone signaling related regulons FSHR, ARX, and CASR, as 

shown in Figure 8A 

Figure 8: Differentially Activated Regulons as Detected By VipeR Implicate Increased 
HOXA10 Signaling in HGSOC Progression. (A) Regulon activation plot for the top 10 regulons

associated with progression: the top 10 differentially activated regulons show a clear activation of 

inflammatory and kinase signaling associated regulons but on overall decline in the activation of 

hormone signaling and EMT-associated regulons (B) Significance and major contributing genes 

for the top differentially activated regulons 

VIPER provides a function to transform an input gene expression matrix to a protein 

activity matrix, offering the opportunity to validate these results generated by the MaRina 

approach in VIPER. Using the transformed protein activity matrix as an input to limma’s empirical 

Bayesian DE pipeline, I found many of the same regulons significantly differentially activated, as 

shown in Figure 9. 
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Figure 9: Differentially Activated Regulons as Detected By limma Confirm VIPER Regulon 
Analysis Results. Magnitude and significance of differentially activated regulons as detected by

limma

WGCNA derives its own gene networks from a transformed gene expression correlation 

matrix and tests the correlation of eigengenes for the networks with covariates. First a correlation 

matrix is constructed from the gene expression data, expressing each gene in terms of its similarity 

to others in terms of expression. In my analysis, the “midweight bicorrelation statistic” was chosen 

as the correlation statistic for its robustness to outliers. To improve the interpretability of the data 

by reducing noise, the correlation matrix is raised to a power with the goal of scaling the values in 

the correlation matrix so that most genes have low scaled correlation value with most other genes, 

often below a cutoff of 0.2, but a few highly connected network “hub” genes can be found in a 

“Scale Free Toplogy”.  The ideal exponent is typically selected by hand to yield a manageable 

number of hub genes. Plotting the network characteristics “mean connectivity” and “scale 

independence” as a function of soft threshold, a “scale free” network can be constructed. The genes 

are then clustered by their scaled coexpression to identify “network modules”.  
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Figure 10: Weighted Gene Correlation Network Analysis (WGCNA) of HGSOC Progression 
- Selection of “Soft Threshold” for correlation matrix transformation. A soft threshold of 8

reduces mean connectivity to achieve a “scale-free topology”, in which most genes are connected

only to one other highly connected “hub” nodes

In constructing a scale free network, a soft threshold of 8 was chosen, as shown in Figure 

10. The module eigengenes of the resulting modules were then compared, and highly similar

modules by eigengene similarity were collapsed together, as shown in Figure 11. I found 25

modules with the parameters employed. As a simple negative control, a nonsense covariate, 

FILELOC, was included in the analysis, and showed the lowest correlation with ME expression 

of all covariates measured, consistent with expectations. Factors like RNA Integrity and tumor 

cellularity were strongly associated with several modules, but most notably one module, steelBlue, 

was significantly associated with TIMEPOINT only, shown in Figure 12.

Examining specifically the steelBlue module showed a strong correlation between a gene’s 

module membership statistic and its correlation to TIMEPOINT, as Figure 13A shows.
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Figure 11: Weighted Gene Correlation Network Analysis (WGCNA) of HGSOC Progression 
- Initial clustering of genes by scaled correlation and final clustering following collapsing of
similar modules. Many initially detected modules were collapsed due to high eigengene similarity

These genes include many of the regulons detected by VIPER as significantly associated 

with TIMEPOINT, including NR5AX, GATA4, and STAR, and several genes differentially 

expressed between TIMEPOINT as detected by standard DGEA. The steelBlue network is shown 

in Figure 13B. Overrepresentation analysis testing the steelBlue module genes against a

background of all genes in the final WGCNA input showed significant enrichment in embryonic 

development, cell-microenvironmental interactions, and intracellular signaling.  



42 

Figure 12: Weighted Gene Correlation Network Analysis (WGCNA) of HGSOC Progression 
- Correlation of identified coexpression modules with sample metadata. The correlation of

each module’s eigengene expression with traits was quantified. Tumor cellularity has the most

significantly coexpressed modules. The steelblue module is significantly correlated with

progression, but no other recorded traits

The consistency of both coexpression-based analyses motivated deeper analysis of network 

activity in the datasets. By VIPER transforming the gene expression matrix, as was performed for 

the limma validation of MARINA results, generates a matrix similar to a gene expression matrix. 

Selecting the top 15 differentially activated regulons associated with progression and clustering 

samples by their VIPER scores. An elbow plot generated using consensusClusterPlus suggested 4 

to be the most stable number of clusters by K means clustering(Figure 14A), and so samples were

clustered with k=4 using the cluster package. A heatmap of the resulting clusters is presented in 

Figure 14B. To search for patterns in cluster transition, I generated a Sankey plot of cluster
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Figure 13: Weighted Gene Correlation Network Analysis (WGCNA) of HGSOC Progression 
- Characterization of the Progression-Associated Gene Correlation Module “steelblue”
(A) Correlation of module membership significance and progression – a strong correlation

between module membership and significance of correlation with progression is shown (B)

Dominant contributors to the “steelblue” module – many genes detected by WGCNA were also

detected to be progression-associated by MaRina, including NR5A1, GATA4, TSPAN8, and many

genes included within their regulons

membership transitions, separated by Batch. While samples are somewhat evenly distributed 

across clusters in the unprogressed samples, with progression, clusters 1 and 3 become dominant 

shown in Figure 15. Clusters 1 and 3 show increased HOX gene activity and decreased hormone

signaling and EMT associated regulons.  

Clustering TCGA gene expression data using the same regulons produced similar clusters, 

but those clusters showed correlation with overall patient survival. These findings suggest that 

while there are modules of coexpressed genes, many associated with “master regulators” that are 

frequently active in HGSOC progression, further work needs to be done to uncover a regulon 

progression signature with clinical utility.  
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Figure 14: Consensus Clustering of Viper Regulon Activation Scores for Top Progression-
Associated Regulons Yields 4 Stable Clusters. (A) Elbow plot of clustering CDF suggests 4

clusters (B) Clustered Heatmap of VIPER transformed regulon activation matrix for the top 

differentially activated regulons shows 4 clusters  
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Figure 15: Master Regulator Cluster Transitions with Progression in HGSOC. Clusters 1 and

3 dominate with progression in HGSOC 
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Figure 16: HGSOC Derived Cancer-Associated Mesenchymal Stem Cell Lines Show 
Differential Transcript Use Patterns Compared to Wild Type Omental Mesenchymal Stem 
Cells 

Gene Isoform Expression Analysis and the Contribution of CA-MSCs 
to HGSOC Progression 

While gene-level expression analysis and its abstraction to pathway and regulon-level 

trends offers insight into the mechanics of HGSOC progression, a growing body of literature 

suggests that differential isoform expression may play a major role in the progression of a range 

of diseases, including cancer. Salmon performs isoform level quantification by default, and the 

Bioconductor ecosystem has several established tools for investigating patterns in this isoform 

level data. I applied differential isoform analysis methods to all cohorts for which the raw fastq 
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files were available, and found changes in several potentially disease relevant genes that would 

were not detected by gene-level analysis.  

Using the R package IsoformSwitchAnalyzer, I uncovered many instances of differential 

isoform use associated with progression, including exon skipping, intron retention, and the use of 

alternative transcriptional start and end sites in HGSOC progression, as shown in Figure 16.  

In analysis of patient derived cancer-associated mesenchymal stem cells (CA-MSCs) and 

mesenchymal stem cells derived from normal omentum(MSCs), the gene LPCAT2, a lipid droplet 

associated protein, was not differentially expressed between conditions, but showed differential 

isoform use with potential functional consequence. As Figure 17 shows, a truncated version of 

LPACT2 is preferentially expressed in unprogressed HGSOC and in HGSOC CA-MSCs. In CA-

MSCs, a full length version of the gene is expressed.  

The expression of this gene has been implicated in chemoresistance in colorectal cancer, 

and lipid metabolism is currently an active area of research in the study of chemoresistace. This 

finding suggests that in addition to changes in gene expression, changes in isoform expression can 

play a role in the progression of HGSOC.  
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Figure 17: Differential Transcript Use in CA-MSCs Alters the Domain Structure of Cancer-
Relevant Proteins. Schematic of exon isoform usage in the gene RELN. Top panel represents

isoforms from the ensemble database. Graphs below how gene expression, isoform expression and 

usage.
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Detection of Expressed Gene Fusions form RNA-Seq and the development of 

FusionExplorer, an R Shiny appliction for exploration of cohort fusion 

profiles  

The ability to detect fusions and differential splicing is a major advantage of interrogating 

HGSOC evolution via sequencing rather than microarray. By searching for structural variation at 

the transcriptome level, this approach also improves the signal/noise ratio, a particular problem in 

SV prone cancers like HGSOC and breast cancer. While only 3 of our datasets (AOCS, TCGA, 

WCRC/RPCI) were sequenced with parameters adequate for fusion detection, this still revealed 

the expressed fusion profile of 36 pairs of HGSOC samples.  

Consistent with standard practice, I screened the sequencing-amenable cohorts for 

interesting fusions by applying 3 fusion detection algorithms, FusionCatcher, STARFusion, and 

FusionZoom. While the sensitivity varied greatly between applications and datasets, most samples 

were found to have expressed fusions. Although tools exist for visualizing the basic fusion profile 

of single samples, no tools are explicitly designed to facilitate quick exploration of large 

collections of fusions across groups are available on Bioconductor. As fusion calling results are 

typically rectangular delimitted text files, these outputs could be parsed and basic analysis could 

be performed in excel by a lay biologist, but an R ShinyDashboard approach could simplify fusion 

exploration further by providing a graphical user interface and more robust bioinformatic tools.  

To simplify exploration of multiple fusion datasets, I developed FusionExplorer, an R 

package consisting of parsing and analysis functions and a ShinyDashboard gui for interaction and 

the display of results. The basic components of FusionExplorer is detailed in Figure 18
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Figure 18: Key Features of FusionExplorer, an R Shiny Dashboard Interface for Cohort-
Level Fusion Exploration. 

The structure of FusionExplorer is further detailed in Figure 19. As with any Shiny object,

FusionExplorer is best understood as a User Interface(UI) and Server. In this case, the Server 

performs all analysis functions, generates all visual summaries of data, and hosts all the necessary 

data. The UI primarily serves to transmit data from bidirectionally between the User and Server, 

through a user input pane and two data display panes. Screenshots of the application demonstrating 

the UI in action is included in the SI and the code is available on github at 

https://github.com/johnalanwillis/ovarianCancerProject. In this initial design of FusionExplorer, 

the full parsed fusion cohort must either be explicitly generated and loaded onto the server or 

generated with custom functions within the server. Generating a fusion set usable by the 

application is simple, requiring only a metadata table containing the location of the fusion caller 

results file and any relevant metadata.  A worthwhile improvement would be to move the parsing 

functions to the User Interface Pane, for a more conceptually consistent design. 

FusionExplorer – RNA Chimera 
Exploration Toolset

ObjectsFunction Modules

Parsing

Annotation

Filtering

Visualization

Validation

parse_STARFusion()

parse_FusionCatcher()

parse_FusionZoom()

parse_Oncofuse()

parse_Pegasus()

get_Oncogenes()

get_TSGs()

get_Kinases ()

get_Cosmic()

get_Chromosome()

get_Shared()

get_Unique()
filter_Reads()

filter_Annotation()

filter_Groups()

plot_LandscapeHist()

plot_LandscapeCirc()

plot_Enrichment()
plot_Tx()

plot_Prot()

explore_GeneSeqs()

explore_TxSeqs()

explore_ProtSeq

explore_primers

ChimeraSet:
• ChimeraLandscape – DataFrame
• SampleMetadataTable – DataFrame
• SampleFusionMatrix – paired Matrices
FusionExplorer App: 
• fusionDatabase – DataFrame of fusions uploaded through the parsr
• supportData – Dataframe of genes and features of interest used by annotation 

and filtering functions
• UI – shinyDashboard object that displays database information and recieves

user input
• server  – shiny object containing functions used to process user input and

database data

Dependencies
• dplyr
• readr
• maggritr

• ggplot2
• ggbio
• bioMart

Run_FusionExplorer
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Figure 19: Structure of FusionExplorer, an R Shiny Dashboard Interface for Cohort-Level 
Fusion Exploration 

In developing FusionExplorer, I collected 10 fusion datasets, from my HGSOC investigations, 

from other Lee-Oesterreich lab investigations of breast tumor and cell line fusions, and from 

publicly available fusion datasets. Subsetting the data through the User Input Pane to only include 

HGSOC fusions involving in-frame, cosmic genes with greater than 5 supporting reads, I was able 

to identify several recurrent fusions, typically preserved between samples. 

The properties of the HGSOC fusion cohort are summarized in Figure 20. Unsurprisingly,

sequencing depth plays a significant role in the sensitivity of fusion detection, with the deeply 

sequenced AOCS samples exhibiting the highest counts of detected fusions. Consistent with the 

prior result reported by the AOCS consortium, progressed AOCS samples appear to have more 

fusions detected than the early samples, though differences in the sample acquisition parameters 

could also play a role. The AOCS cohort compares solid tumor samples to tumor cells obtained 
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from ascites in recurrent HGSOC. The pattern of increased detectable fusions does not hold for 

the WCRC-RPCI or TCGA cohorts however, as Figure 20A shows.

Figure 20: HGSOC Cases Preserve and Acquire Fusions in Oncogenically Relevant 
Pathways (A) Counts of fusions passing read filtering by sample and cohort from the union of

Fusioncatcher, STARFusion, and FusionZoom (B) KEGG Pathways overrepresented in the list of 

genes involved in acquired or preserved fusions (C) Distribution of highly recurrent genes involved 

in Preserved or Acquired fusions across datasets 

 The fusions detected that had supporting reads above a predefined cutoff of 5 supporting 

reads are enriched in oncogenically relevant pathways. In particular, kinase signaling pathway 

genes appear to frequently contribute to fusions detected in our datasets. One challenge to 

interpreting this result is the possibility that this enrichment in detected genes is simply a function 

of gene length or baseline expression levels. Highly expressed genes are more likely to be 

detectable by sequencing and therefore fusions involving those same genes may also be more 

likely to be detectable by sequencing, assuming that the fusion does not alter the regulation of the 

gene. This is most likely to play a role for genes detected at the 5’ end of the fusions, which should 
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have their relationships to upstream regulatory sequences preserved. Gene length could also bias 

the detection of patterns in expressed fusion genes, because these genes occupy a greater fraction 

of the genome and are therefore more likely to be disrupted by acquisition of structural variation 

by simple geometric probability.  

Focusing in on the genes frequently detected as fused in our cohorts, a clearer view of the 

expressed fusion landscape develops. CCDC6—ANK3 recurs in all datasets, acquired in the 

AOCS cohort, but preserved in the WCRC-RPCI and TCGA dataset. Fusions with the lncRNA 

MALAT1 are also frequently acquired in the WCRC-RPCI and TCGA cohorts. Within the 

WCRC-RPCI cohort, we also uncovered a number of ”Preserved” fusions, shared between both 

early and late timepoints within a single patient. While their status as preserved fusions limits the 

likelihood that they are drivers of the evolution of these cases, they are excellent test cases for the 

bench validation of the bioinformatic fusion detection results. These preserved fusions, indicated 

by the green box, were selected for bench validation in patient samples by RT-PCR.  
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Bioinformatic and Benchtop investigation of the contributions of fusion 

expression to HGSOC progression 

Recurrent Fusions detected in the in-silico screen of HGSOC pairs yielded many potential 

targets. The highly supported fusion FBXL12—RFX2 was among the first on the target list to 

validate. It was detected in both unprogressed and progressed samples in one patient from the 

WCRC/RPCI cohort, OVCA_14. In Figure 21-22, I summarize my bioinformatic characterization

and benchtop validation of FBXL12—RFX2 as a “preserved” fusion in HGSOC.  

Figure 21: FBXL12—RFX2 is a Preserved fusion with high oncogenic potential detected in 
one HGSOC patient. Mapping fusion breakpoints to WT genes reveals a fusion that preserves F-

box-like and RFX-DNA-binding domains 
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Detected by FusionCatcher in 2 samples in the WCRC-RPCI cohort, FBXL12-–RFX2 is 

an example of a bioinformatically well supported and bench-validated expressed gene fusion. In 

this figure, we see the bioinformatic evidence for the fusion –the grey bars represent RNA-

sequencing reads that map to the new fusion junction. The high number of reads spanning the 

putative fusion junction, indicated by the dotted line, suggest that this detected fusion is not simply 

a bioinformatic or sequencing artefact.  

The exon structure of the fusion is diagrammed in A, showing the earliest exons of FBXL12 

fused with the later exons of RFX2. Below that diagram, we see a map of the known protein 

domains associated with the new structure. An Fbox-like domain and an DNA binding domain 

from RFX2 are preserved by the fusion. This fusion had a high Oncofuse “Driver Score”, which 

attempts to score the similarity of fusions to fusions known to have oncogenic activity. This fusion 

derives oncogenic potential from both its partners.  

FBXL12 may fail to perform its normal regulation of CDK4, contributing to proliferation, 

while aberrant RFX2 activity driven by FBXL12 expression may alter collagen expression 

patterns, possibly contributing to chemoresistance or invasion.  

To confirm the expression of this fusion in patient samples, primers were designed against 

the component genes of the fusion, oriented to span the putative fusion junction. RT-PCR was 

used to amplify a fragment of the fusion containing the fusion junction, tested against a fusion-

negative control, in this case RNA from the HGSOC-like cell line NIH_OVCAR3. The strong 

band present in the fusion positive sample and absent in the control cell line was extracted with a 

clean scalpel and the amplified cDNA was sent for sequencing, to confirm the presence of the 

expected fusion junction sequence, shown in Figure 22. Multiple sequence alignment performed

with DECIPER showed inconsistency between multiple sequencing runs of the same sample, but 
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the resulting E score still allows us to confidently conclude that the fusion junction was indeed the 

amplified fragment visualized on the gel.  

Figure 22: PCR Confirmation of FBXL12—RFX2 expression in one HGSOC patient. RT-

PCR with fusion-junction targeting primers shows the fusion junction of FBXL12—RFX2 is 

uniquely expressed in one patient. L: 1kb+ ladder, W: water control, MM: master mix and primers 

without cDNA, C: fusion negative control NIHOVCAR3 cDNA, S: Fusion positive sample 

OvCa1-L.

In addition to FBXL12—RFX2, the HGSOC-associated fusions AGFG—MFF, IL1R1—

MAP2K4—MYH3, and CCDC6—ANK3 were detected using the same PCR strategy, as shown 

in Figure 23A. As the most common in-frame, cosmic-gene-associated, and not “banned” by

fusionCatcher expressed fusion in HGSOC, CCDC6—ANK3 was chosen for more detailed 

characterization. Fortunately, CCDC6—ANK3 is also expressed in the HGSOC-derived cell lines 

NIH_OVCAR3 and ONCO-DG1, so NIH_OVCAR3 was chosen as the initial platform for 

phenotypic studies. The exon structure of the recurrently fused genes CCD6, ANK3 and the 

structure of the fusion shows that CCDC6 only contributes one exon, without any complete 

functional domains to the abbreviated ANK3, shown in Figure 23B. This suggests that rather than

creating a functional protein of combined domains or a hyperactive version due to truncation, 

CCDC6—ANK3 may function by putting the expression of a truncated ANK3 under the control 

of a promoter usually driving the expression of CCDC6, a gene with roles in DNA Damage Repair 

and Cell Cycle progression.  

Key:
L – ladder – 1kb+
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Figure 23: Investigation of Recurrent Fusions Uncovered in the WCRC-RPCI Cohort
(A) PCR Confirmation of Recurrent Fusions Detected by RNA Seq (B) Structure of the Highly

Recurrent Fusion CCDC6—ANK3 C: CCDC6—ANK3 expression contribution to growth

To determine if CCDC6—ANK3 expression plays a role in NIH_OVCAR3 cells, siRNA 

targeting the novel exon-exon junction between the two partner genes were designed using 

Dharmacon’s siRNA design tool. Comparing the growth rates of NIH_OVCAR3 cells treated with 

a non-targeting siRNA control library to that of NIH_OVCAR3 cells treated with fusion-targeting 

siRNA shows a clear difference in growth at 5 days, as shown in Figure 23C. 

While liposomal transfection of NIH_OVCAR3 cells with siRNA against the CCDC6—

ANK3 fusion junction appears to alter growth, I attempted to confirm the specific effect of 

CCDC6—ANK3 siRNA treatment on the expression of the fusion and its component genes via 

qPCR. As shown in Figure 24A, another set of CCDC6—ANK3 siRNA kds in NIH_OVCAR3

cells showed one siRNA pair, siRNA2, has a clear effect on growth compared to non-targeting 

control and another set of siRNA targeting the same fusion junction. Puzzlingly, both sets of 

siRNA appeared to alter fusion expression compared to NTC, but siRNA2, the one with a clear 

growth effect, did have the mose significant and dose dependent decrease. Attempts to characterize 
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the effect of CCDC6—ANK3 expression and kd on the expression of wild-type genes was also 

confounded by irreconcilable results. 

Figure 24: siRNA Knockdown of CCDC6—ANK3 Alters Growth in NIH_OVCAR3 Cells 
A: Growth effect of liposomal transfection of anti-CCDC6—ANK3 siRNA alters growth in

NIH_OVCAR3 cells. Two different siRNA sequences were tested(si1, si2) and two concentrations 

(A/B) were tested against a non targeting control pool B: Design strategy for CCDC6—ANK3

siRNA knockdown C: Treatment of NIH_OVCAR3 cells with anti CCDC6—ANK3 siRNA

reduces expression of CCDC6—ANK3 as quantified by qPCR 
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4.0 Conclusion 

HGSOC continues to present a challenge to clinicians and researchers, as its unstable 

genome promotes its evolution into treatment resistant forms. While recent trials of PARP 

inhibitors and cell cycle inhibitors have shown promise in treatment of HGSOC, the disease lacks 

the clear subtypes or molecular markers to guide treatment decisions. This analysis uncovered 

diversity in molecular changes associated with HGSOC progression, but also revealed that many 

of these changes ultimately act through common mechanisms.  

Previous studies of HGSOC progression have implicated EMT and tumor 

microenvironmental interactions in the emergence of chemoresistance, and these results are 

consistent with that finding. There is clear evidence from histopathology, omics studies, and single 

cell sequencing studies that demonstrates HGSOC progression involves an increase in the relative 

mass of tumor epithelium to stroma in progressed disease. This combined study of HGSOC 

progression implicated genes associated with EMT and immune response in HGSOC progression, 

supporting the current emphasis on therapies that exploit the immune system to overcome the 

inherent heterogeneity of the disease.  

Our study failed to replicate the results of prior fusion detection studies in HGSOC, but did 

implicate one highly recurrent fusion, CCDC6—ANK3, in the presentation of some HGSOC 

cases. While The exact nature of its contribution to the presentation of HGSOC remains unclear, 

this fusion merits further investigation. Additionally, numerous other potentially druggable fusions 

were detected in the course of our analysis, supporting the further investigation of fusion detection 

as a means to target therapies for HGSOC.  
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