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Abstract 

Elastic Network Models in Biology:  

From Protein Mode Spectra to Chromatin Dynamics 
 

She Zhang, Ph.D. 

 

University of Pittsburgh, 2020 

 

 

 

 

Biomacromolecules perform their functions by accessing conformations energetically 

favored by their structure-encoded equilibrium dynamics. Elastic network model (ENM) analysis 

has been widely used to decompose the equilibrium dynamics of a given molecule into a spectrum 

of modes of motions, which separates robust, global motions from local fluctuations. The 

scalability and flexibility of the ENMs permit us to efficiently analyze the spectral dynamics of 

large systems or perform comparative analysis for large datasets of structures. I showed in this 

thesis how ENMs can be adapted (1) to analyze protein superfamilies that share similar tertiary 

structures but may differ in their sequence and functional dynamics, and (2) to analyze chromatin 

dynamics using contact data from Hi-C experiments, and (3) to perform a comparative analysis of 

genome topology across different types of cell lines. The first study showed that protein family 

members share conserved, highly cooperative (global) modes of motion. A low-to-intermediate 

frequency spectral regime was shown to have a maximal impact on the functional differentiation 

of families into subfamilies. The second study demonstrated the Gaussian Network Model (GNM) 

can accurately model chromosomal mobility and couplings between genomic loci at multiple 

scales: it can quantify the spatial fluctuations in the positions of gene loci, detect large genomic 

compartments and smaller topologically-associating domains (TADs) that undergo en bloc 

movements, and identify dynamically coupled distal regions along the chromosomes. The third 

study revealed close similarities between chromosomal dynamics across different cell lines on a 

global scale, but notable cell-specific variations in the spatial fluctuations of genomic loci. It also 

called attention to the role of the intrinsic spatial dynamics of chromatin as a determinant of cell 

differentiation. Together, these studies provide a comprehensive view of the versatility and utility 

of the ENMs in analyzing spatial dynamics of biomolecules, from individual proteins to the entire 

chromatin. 
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Background 

Biomolecular structures are not rigid under equilibrium conditions. Instead, they 

experience conformational changes ranging from small vibrations to collective movements that 

may involve large parts of the structure, driven by thermal fluctuations, or triggered by ligand 

binding and other changes in intermolecular interactions or environmental conditions. These 

conformational changes that are accessible to the molecule under equilibrium conditions are called 

equilibrium or intrinsic dynamics (Bahar, et al., 2007; Tsai, et al., 1999; Xu, et al., 2008). To a 

great extent, the intrinsic dynamics is determined by the way a structure is “wired”, such that 

knowledge of only the three-dimensional (3D) structure (and thereby contacts/interactions 

between the atoms of a molecule) is sufficient to deduce to a good approximation how the structure 

fluctuates in a perturbation-free environment, and how it would respond to perturbations elicited 

by, for example, oligomerization or substrate binding. Therefore, the pre-existing, structure-

encoded intrinsic dynamics of biomolecular systems often carry functional significance and serve 

as a bridge between their 3D structure and molecular function (Bahar, et al., 2015; Bahar, et al., 

2010).  

In recent years, there has been a surge in the number of studies that use elastic network models 

(ENMs) and normal mode analysis (NMA) for exploring the intrinsic dynamics of biological 

macromolecules (Bahar and Rader, 2005; Cui and Bahar, 2005). These studies have proven the 

usefulness of NMA-related methods for extracting collective modes of motions in helping (i) 

identify residues that play critical roles in mediating cooperative events, (ii) refine structures for 

docking algorithms, and (iii) steer molecular dynamics (MD) simulations to explore longer 



 xx 

timescales and larger length scales. Assuming that the system is stabilized by harmonic potentials, 

NMA provides valuable information on the equilibrium dynamics accessible to a system at 

different scales (Amadei, et al., 1993; Bahar, et al., 2010). Modes that describe the movement of 

large parts of the structure, and usually occur at the low frequency end of the mode spectrum (i.e. 

slow modes), are called global or essential modes, as opposed to local modes that correspond to 

regional fluctuations and are often associated with high frequencies (i.e. fast modes). Such a 

multiscale view of the space of motions can be useful for a mechanistic characterization of the 

movements intrinsically accessible to the molecule of interest, as it divides the complex motions 

into different frequency regimes and practically separates the collective, often functional, 

movements from the random fluctuations that occur usually on a local scale. This type of mode 

decomposition and its functional significance will be illustrated and validated by way of several 

applications in this thesis. 

In addition to the physical insights that the ENMs provide into the functional dynamics of 

biomolecules, there are three features that make them attractive: simplicity, robustness, and 

scalability (Bahar, et al., 2010). In the ENMs, complex structures of biomolecules are reduced to 

a network of nodes and springs, where atomic details are simplified and residues or other building 

blocks are represented at a coarse-grained level by network nodes; inter- and intramolecular 

interactions driven by physiochemical forces are approximated and unified by harmonic 

potentials/springs. Such simplicity enables the analytical evaluation of a mode spectrum uniquely 

defined by the network topology for each structure modeled as an ENM. The robustness of the 

global motions is twofold. On one hand, the global modes derived by the ENMs are 

methodologically determined by the overall shape of the biomolecule and insensitive to detailed 

structure and energetics. On the other hand, evolutionary pressures on the molecular functions 
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discourage huge detrimental changes in equilibrium dynamics upon minor perturbations. This 

underscores the functional significance of structure-encoded dynamics, and the importance of 

functional global modes in the evolutionary selection of structures (Zhang, et al., 2020). 

The efficiency and robustness of ENM predictions entail the most important feature for 

this study: scalability. The scalability of ENMs makes them particularly useful for investigating 

large biomolecular systems, or even further, a family of them. We show in Section 1.0 that the 

ENMs can be improved and developed to systematically examine the intrinsic dynamics of protein 

families and identify signature dynamics that is robust and unique for a given protein family, and 

shared by all members of that family. Additionally, the network nodes can be selected at different 

coarse-graining levels to accommodate different size systems, or different resolution data, and the 

ENM would still yield consistent results. In Section 2.0 and 3.0, we applied the ENMs to predict 

and characterize chromatin dynamics, a new and rising research area of interest in the field of 

genomics and epigenetics where experimental data are still limited to low resolutions, and we 

made a detailed comparison of the chromatin dynamics across several morphologically distinct 

cell lines and demonstrated how differences in the loci-specific spatial dynamics between different 

cell types relate to their differences in gene expression levels.  

Much of the work presented in this thesis has been published. As the copyrights permit, 

some of the materials from previous publications (Bahar, et al., 2015; Ponzoni, et al., 2018; 

Sauerwald, et al., 2017; Zhang, et al., 2020; Zhang, et al., 2019) are reused or quoted with proper 

citations in the following chapters. Some of the studies were accomplished in collaboration with 

other people whose contributions are acknowledged where appropriate. All presented studies were 

conducted under the supervision and guidance of my doctoral advisor, Dr. Ivet Bahar. 
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1.0 Comparative Studies of Protein Dynamics Using Elastic Network Models 

The relationship between protein sequence, structure, and function has been one of the 

most intriguing problems in molecular and structural biology (Babu, 2016; Forman-Kay and 

Mittag, 2013; Redfern, et al., 2008). While it is established theoretically that the tertiary structures 

of proteins can be well predicted solely based on their sequence, protein structures are found to be 

more evolutionarily conserved than the sequences. Evident structural similarities have been found 

among proteins with sequence identities as low as ~20%. This observation enabled a line of 

research in developing computational techniques for comparative modeling of protein structures 

in silico, such as homology modeling, structure classification, etc.  

Many computational tools have been developed over the last couple of decades to 

comparatively analyze the sequential or structural differences of proteins (El-Gebali, et al., 2019; 

Holm and Laakso, 2016; Holm and Rosenstrom, 2010; Ilyin, et al., 2003; Knudsen and Wiuf, 

2010). However, such tools are still scant and remain to be developed for investigating the 

differentiation of molecular functions driven by these differences. Studies in recent years have 

established the role of structural dynamics, also called intrinsic dynamics, in facilitating, if not 

driving, the interactions and function of biomolecular systems in the cell. Many biological events, 

including substrate recognition, binding and transport, allosteric signaling, communication and 

regulation, and mechanochemical responses, shortly referred to as protein actions, take advantage 

of the proteins’ intrinsic dynamics (Bahar, et al., 2017; Bakan and Bahar, 2009). In the meantime, 

the evolutionary significance of global modes of motion became clear (Carnevale, et al., 2006; 

Hollup, et al., 2011; Maguid, et al., 2008; Maguid, et al., 2006). Computations highlighted the 

coupling between sequence evolution and intrinsic dynamics, and experiments demonstrated that 
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the changes in structure (or oligomerization state) stabilized by mutations bear close resemblance 

to structural changes that accommodate ligand binding (Perica, et al., 2014). Evolvability of 

intrinsic dynamics thus emerged as a major mechanism enabling adaptability to environmental 

changes, intermolecular interactions, or even mutations (Haliloglu and Bahar, 2015; Tokuriki and 

Tawfik, 2009). Recent work further showed that intrinsic dynamics is a major determinant of the 

impact of missense mutations on function, and that the inclusion of ENM-based features in a 

machine learning classifier improves the accuracy of pathogenicity predictions. These 

observations provide support for using ENM-evaluated intrinsic dynamics for analyzing the 

dynamics and the functional differentiation of proteins.  

In the following sections, we show how ENMs can be used to extract information on the 

shared dynamics of members of a protein fold superfamily; and then how these procedures can be 

generalized and implemented as a computing pipeline for analyses alike. We applied this pipeline 

to large datasets of protein families with hundreds of members each, in order to understand the 

conservation/differentiation properties of the 3D dynamics and the contribution of collective 

motions in different frequency regimes to the functional mechanisms of motions. 
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1.1 Evolutionary Conservation of LeuT Superfamily Members 

1.1.1 Introduction 

Secondary active transporters translocate small molecules such as neurotransmitters, 

nutrients and metabolites across cellular membranes, using the energy provided by the co-transport 

(symport) or exchange (antiport) of ions or other solutes down their electrochemical gradients. 

Remarkably, several secondary active transporters, though belonging to genetically and 

functionally distant families, share a common architecture (or fold). Four common folds among 

transporters are the LeuT-, MFS-, GltPh- and NhaA-folds (Drew and Boudker, 2016; Shi, 2013). 

We will focus here on the LeuT-fold superfamily, which probably has the broadest representation 

in the Protein Data Bank (PDB, http://www.rcsb.org/) (Berman, et al., 2000) among the four folds.  

The LeuT fold, first resolved for a bacterial leucine transporter (Yamashita, et al., 2005), 

is composed of 12 TM helices that alternate between outward-facing (OF) and inward-facing (IF) 

conformations during the transport cycle. The former favors the uptake of substrate from the 

extracellular (EC) region, and the latter its release to the intracellular (IC) region, accompanied by 

the cotransport of Na+ ions, and in some cases by the antiport of other substrates/ ions (Kazmier, 

et al., 2017) (Figure 1.1). LeuT fold family members include the dopamine transporter (DAT), the 

multihydrophobic amino acid transporter (MhsT), the benzyl-hydantoin transporter (Mhp1), 

sodium/galactose transporter (vSGLT), the glycine betaine transporter (BetP), the 

carnitine/butyrobetaine antiporter (CaiT), and the arginine/agmatine antiporter (AdiC). An 

immediate question concerning the selection of a particular fold by a large number of transporters 

involved in different functions, and vastly differing in their sequence, is “what is special about this 

http://www.rcsb.org/


 4 

fold that lend themselves to different functionalities?”. What are the structural and dynamic 

characteristics of the LeuT fold that are exploited, or how do they adapt to different functions?  

To address this fundamental question, we first examine the sequence and structure 

properties of LeuT superfamily members, and then proceed to their dynamics to determine a shared 

“signature” mobility profile that allosterically engages all TM helices. We further examine the role 

of structural irregularities such as helical disruptions, and that of multimerization, in the 

differentiation or allosteric modulation of transport activities, and determine the dynamics 

landscape of a large ensemble of structures sharing the LeuT-fold, which indicates the collective 

motions that underlie the OF → IF transition or the multimerization of LeuT-fold members. Our 

analysis sheds light into the ways in which these transporters achieve functional differentiation, 

while efficiently recruiting the same fold whose modular dynamics is exploited. 
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Figure 1.1 The topology and transport cycle of LeuT. (A) LeuT topology represented by its secondary structures: 

rectangles: α-helices; arrows: β-strands; lines: loops. The positions of leucine and the two sodium ions are depicted 

as a yellow triangle and blue circles, respectively. EC: extracellular; IC: intracellular; EL: extracellular loop; IC: 

intracellular loop. The transmembrane helices are indexed as TM1-12. The pink and indigo triangles in the background 

indicate two pseudo-symmetric inverted repeats, TM1-5 and TM6-10, commonly shared by the LeuT-fold proteins 

(adapted from (Yamashita, et al., 2005)). (B) The transport cycle of LeuT. Each state is represented by a PDB structure 

except for the Inward-facing closed (IFc) state for which no structure has been resolved. The structures are oriented 

similarily so that the top/bottom correspond to the EC/IC side, and the left/rightmost helices are TM5/12. Three TM 

helices are highlighted for their important role in defining the transport states: TM1 (blue), TM6 (green), TM10 

(orange). 
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1.1.2 Results 

We consider a set of 90 structures (104 conformers) with LeuT-fold deposited in the PDB, 

which belong to five functional families, listed in Table 1.1. The set includes the crystallographic 

structures resolved for eight different transporters: LeuT in different conformational states, DAT, 

and MhsT from the NSS family; galactose transporter (vSGLT) from the sodium/solute symporter 

(SSS) family; benzylhydantoin (BH) transporter Mhp1 from the nucleobase/cation symport-1 

(NCS1) family; and arginine/agmatine antiporter AdiC from the amino 

acid/polyamine/organocation (APC) family; betaine transporter (BetP) and carnitine/betaine 

antiporter (CaiT) in multiple states from the betaine/choline/carnitine transporters (BCCT). 

Different from transporters in previous families which are typically monomeric or dimeric, BetP 

and CaiT in the BCCT family have been observed to robustly form trimers (Kalayil, et al., 2013; 

Koshy and Ziegler, 2015; Perez, et al., 2012; Ressl, et al., 2009; Schulze, et al., 2010). 

1.1.2.1 Sequence differences confer specificity while maintaining the fold 

The LeuT-fold (Figure 1.1A) is characterized by 10 TM helices, organized into two 

pseudo-symmetric inverted repeats, TM1-TM5 and TM6-TM10 (Schulze, et al., 2010). Figure 1.2 

displays the superposition of the transporters resolved in the OF (panel A) and the IF state (panel 

B), highlighting the common fold shared by the superfamily (panel C), as well as the distinctive 

packing of TM helices to expose the EC or IC vestibule in the OF and IF states, respectively. 

Structural alignments of the transporters listed in Table 1.1 reveal differences of up to 6.5 Å root-

mean-square deviation (RMSD) between pairs of transporters (Figure 1.2E). Mainly, the 

structures resolved for the same protein (e.g. LeuT) in different conformations exhibit RMSDs of 

approximately 2.0 Å in general; those within the same family (e.g. NSS members LeuT, DAT and 
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MhsT; or BCCT members BetP and CaiT) differ by 3-4.5 Å; while across families (e.g. BCCT and 

APC family members BetP and AdiC, respectively; or BCCT and NCS1 members BetP and Mhp1) 

the RMSDs may exceed 6 Å. Thus, although all the transporters have the same fold, there is a 

hierarchy of structural differences, increasing with their functional differences.  

Pairwise alignments of LeuT-fold family sequences confirm their low sequence identities. 

Pairs belonging to the same family, e.g. DAT-LeuT (NSS), BetP-CaiT (BCCT) or AdiC-ApcT 

(APC), exhibit sequence identities of 0.25 ± 0.03; across families, the identities drop to 0.15 ± 0.05 

(Figure 1.2F). If we focus on TM1 and TM6, which are the two most prominent transmembrane 

domains that undergo significant structural changes during the OF → IF transition, the sequence 

identities are much higher within families (e.g. 0.60 ± 0.24 for NSS members, and 0.42 ± 0.02 for 

BCCT members), whereas there is a major drop across families (Figure 1.2G-H). For example, 

CaiT TM1 shows sequence identities of 0.06 ± 0.02 with respect to most transporters. The strong 

conservation within families and low conservation across families strongly suggest that these 

helices play a role in defining the specificity of the LeuT-fold transporters. 
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Figure 1.2 Sequence and structural alignment of transporters sharing the LeuT fold. (A-B) Superposition of 

LeuT-fold transporters in the OF and IF states, colored by transporter type consistent with panel E. (C) Superposition 

of their core region colored by rainbow colors from TM1-10 (blue to orange). (D) Sequence comparison of TM1 and 

TM6 of LeuT superfamily transporters listed in Table 1.1, plus hSERT and ApcT also sharing the LeuT fold, and 

belonging to the respective families of NSS and APC. TM1 and TM6 are critical for substrate binding, specificity and 

translocation. Residues at the helical disruption regions (mostly containing GXG motifs) are highlighted in green; and 

TM6 aromatic residues involved in substrate stabilization are colored violet. (E) RMSDs between structurally resolved 

LeuT-fold monomers/protomers. (F) Pairwise sequence identities (color bar on the right) for all transporters. (G-H) 

Same results if only TM1 or TM6 is considered (figure adapted from (Ponzoni, et al., 2018)). 
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1.1.2.2 Shared fluctuation profile of core residues: a signature of LeuT-fold dynamics 

Previous studies have demonstrated that each protein has its own intrinsic dynamics 

uniquely encoded by its overall architecture, or fold, which often facilitates its functional 

interactions; and the intrinsic dynamics may be analytically evaluated using ENMs coupled with 

NMA (Bahar, et al., 2015; Bahar, et al., 2010). Here, we examined the root-mean-square 

fluctuation (RMSF) profile of residues derived from the most commonly used elastic network 

model,  the anisotropic network model (ANM) (Atilgan, et al., 2001; Doruker, et al., 2000),  for a 

subset of 11 representative transporters in both OF and IF states, indicated in Table 1.1. The results 

are presented in Figure 1.3A. The black line therein is obtained for LeuT, rescaled based on X-

ray crystallographic B-factors (purple line); and the red line (and light red shading) represents the 

average behavior (and standard deviation) over the entire set (see Figure 1.3C for the behaviors 

of individual transporters). A strong tendency to exhibit the same “signature” profile among all 

homologues (monomers and protomers) is seen, with small-to-moderate deviations from the mean. 

The next question is to what extent this signature profile is used to enable the global 

transition of the transporters. To address this question, we determined so-called soft modes, 

energetically favored by the architecture, which often provide paths for cooperative reorganization 

of the overall structure and enable allosteric effects. In this case, the availability of structures in 

both OF and IF states for LeuT, BetP and Mhp1 allowed us to quantitatively assess the structural 

changes involved in the transition OF →IF (green line in Figure 1.3B), and compare with ANM 

soft modes (red line). The comparison reveals that motions of the residues during OF→IF 

transition can be traced back to the global modes, or the signature profile, uniquely defined by the 

LeuT-fold. 
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Figure 1.3 Shared dynamics of LeuT-fold residues from theory and experiments. (A) RMSF profile for LeuT 

(black curve) obtained by ANM analysis of OF structure (PDB: 2A65, chain A), is compared to the corresponding B-

factor profile from X-ray crystallography (purple), and the signature profile (red curve) and its standard deviation 

(light red band) computed for a representative set (Table 1.1). The correlation coefficient between ANM-predicted 

RMSFs and those derived from X-ray crystallographic B-factors is 0.65. (B) Comparison of experimental (green) and 

ANM-predicted (red) global movements (undergone during OF ↔ IF transition) and their variations across LeuT-fold 

family members. Experimental data refer to LeuT, BetP and Mhp1, resolved in both OF and IF states; ANM profile 

is obtained from the 10 softest modes evaluated for the representative monomers/protomers. Shaded areas indicate 

the standard deviations. (C) ANM-predicted RMSF profiles for 11 structures representing the 8 transporters with LeuT 

fold in both OF and IF states. This figure is adapted from (Ponzoni, et al., 2018). 
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A closer inspection shows differences at certain regions, such as TM1, the IC loop between 

TM4 and TM5, and the extracellular loop EL4 between TM7 and TM8. The latter participates in 

regulating EC gating and substrate access (Kazmier, et al., 2014), a role involving substrate-

specific residues, hence the heterogeneity in the global mode shape at that region. Likewise, the 

large (approx. 16 Å) displacement of TM1 in the IF state is unique to LeuT (Figure 1.3C). This 

movement is much larger than that observed for TM1 in BetP (Perez, et al., 2012), Mhp1 (Kazmier, 

et al., 2014) and vSGLT (Watanabe, et al., 2010). Structural comparison shows that BetP TM1a is 

connected to a long helical segment; but in LeuT, it is connected to a disordered tail and therefore 

enjoys a high mobility.  

1.1.2.3 ANM soft modes characterize conformational variability observed for LeuT 

superfamily members 

Figure 1.3A demonstrates that LeuT-fold monomers or protomers belonging to different 

functional families exhibit shared dynamics regardless of their conformational (OF/IF) or 

multimerization (monomer/dimer/trimer) states. Yet, the individual subunits/monomers stabilize 

the OF, IF or intermediate/occluded state and sample a spectrum of conformational changes, 

during the transport cycle. How are those different conformers compatible with the same fold and 

signature fluctuation profile? To gain a mechanistic understanding of the conformational spectrum 

accessible to LeuT superfamily members, we performed a principal component analysis (PCA) of 

the ensemble of PDB structures listed in Table 1.1. Optimal superposition of 104 monomers and 

protomers in this set onto the LeuT OF structure (PDB: 2A65; reference structure) permitted us to 

identify a core region (Figure 1.1C) and RMSDs from the mean that varied from ~ 1.5 Å for LeuT 

monomers/ protomers to ~ 5 Å for vSGLT, BetP and Mhp1. Comparison of the results from PCA 

with ANM predictions showed that the softest ANM mode (ANM1) computed for the reference 
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structure (the closest to the average structure of the ensemble in terms of RMSD) yields a 

cumulative overlap of 0.55 with the principal components 2 and 6 (PC2 and PC6). 

Figure 1.4A shows the ensemble of structurally resolved LeuT fold transporters projected 

onto the theoretically predicted (ANM1) and experimentally supported (PC2 and PC6 combined) 

principal modes. The correlation is quite high (0.82), confirming that the two sets describe the 

same direction of deformation. While members of the same family (see the color code) tend to 

cluster together, we note that within each family a certain degree of segregation between IF 

(upward triangles) and OF (downward triangles) states takes place, for instance in the case of 

BetP (in orange) and Mhp1 (in purple), consistent with the analogous separation for LeuT (blue). 

Such observation points to the fact that a common gating mechanism might be shared among 

members of the superfamily and is well captured by the softest mode favored by the common fold.  

Figure 1.4B-C provides an overview of the “dynamics landscape” of the LeuT-fold 

transporters. Therein, monomer/protomer structures projected onto the subspace spanned by 

ANM1, ANM2 and ANM3 allowed visualization of the different classes of proteins based on their 

collective motions. Notably, proteins belonging to the same functional family tend to cluster, 

highlighting the relevance of soft modes to transporter function. 

Another interesting fact emerges by focusing on the projection of structures onto the first 

two ANM modes, shown in Figure 1.4B. In this representation, a separation can be drawn between 

trimeric transporters (BetP and CaiT) and monomeric/dimeric transporters, while secondary cuts 

(dashed lines) further subdivide both groups into OF and IF conformations. This separation may 

be an effect of the structural constraints imposed by the trimeric organization of BetP and CaiT 

transporters. The trimers feature a different interface compared with dimers, involving the 

rearrangement of helix H7 in BetP, corresponding to EL3 in LeuT (see inset in Figure 1.4B). Such 
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a rearrangement is well reproduced by ANM2 of LeuT (Figure 1.4B and D) as well as ANM3 

(Figure 1.4E), suggesting an intrinsic predisposition (via ANM2 and ANM3) of H7 to adopt the 

correct positioning for trimeric interface formation. 
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Figure 1.4 Conformational dynamics landscape of LeuT superfamily explains the structural variability 

experimentally observed for 104 conformers. (A) Projections of the 104 conformers (Table 1.1) onto ANM1 and 

combined mode from PC2 and PC6 yielded a strong correlation (r = 0.82), revealing that the observed differences 

between these structures comply with the softest mode intrinsically encoded by the LeuT fold. Three LeuT structures 

from Figure 1.1B are displayed to represent the OFo, OFc, and IF states. (B-C) Classification of LeuT-fold 

transporters based on their collective motions. The distribution of the 104 monomers/protomers are displayed in the 

subspaces of collective modes spanned by two (B) and three (C) softest ANM modes. ANM2 (see inset in panel B) 

directs the reconfiguration of the LeuT EL3 (loop-helix, yellow) along a direction (blue arrows on the ribbon diagram) 

in accord with the structural change undergone by the equivalent BetP H7-helix (orange) upon trimerization. (D) 

Overlap between the structural variation between the experimental structures of LeuT and BetP, and their respective 

ANM modes. (E) LeuT ANM3 overlaps with the structural difference between LeuT EL3 and BetP H7, as also 

observed in ANM2 (figure adapted from (Ponzoni, et al., 2018)). 
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1.1.3 Discussion 

The present section focused on a superfamily of structural homologs, LeuT superfamily, 

that encompasses members from five families of transporters with different functions and low 

sequence identity. We first characterized their shared structural and dynamic characteristics, and 

then proceeded to elucidate which features on a local or global scale, structural or dynamic, 

differentiate them to lead to different functions.  

The first task helped us identify a signature residue-fluctuation profile (Figure 1.3) 

intrinsically favored by their common fold, consistent with the postulate that shared fold also 

implies shared global dynamics. This also implies that those transporters or antiporters have 

evolved to recruit the same tertiary fold, despite their sequence dissimilarities, presumably driven 

by the adaptability of the fold to chemical (specificity) and physical (conformational flexibility) 

differences, thus allowing functional differentiation. 

Chemical specificity can be detected at the dissimilar sequence patterns among superfamily 

members that belong to different functional families, while those transporters within a given family 

exhibit distinctively higher sequence identities. The difference becomes even more pronounced 

upon focusing on TM helices involved in substrate/ion binding: similarities among the same 

functional family members are enhanced, while dissimilarities across different functional families 

become even more pronounced (Figure 1.2D-H). Physical flexibility, on the other hand, is 

manifested by structural differences between family members on both a global (OF/IF and 

intermediate states; multiple oligomerization states; Figure 1.2A-C and E) and a local (helical 

disruptions, substrate coordination geometry, extrusion of helical loops; Figure 1.4E) scale. It is 

only upon substrate/ligand binding that the pre-existing signature fluctuations are advantageously 

exploited to drive the transport of substrate. First, EC gate closure is triggered, and then further 
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insertion of the ion/substrate binding to a structurally irregular, broken helical, region confers a 

local reordering (e.g. TM1 tilting, or TM6 reorientation) that propagates to the IC region upon the 

rigidification of the originally frustrated cluster of residues; and the induced structural change 

opens the IC gate to trigger an influx of IC water, which stimulates the removal of substrate/ion 

and its release to the IC region. Thus, a cascade of events takes place, stimulated upon substrate 

and ion binding, typical of the cooperative response of allosteric proteins to ligand binding. 

A rigorous examination of the distribution of LeuT superfamily members in the 

conformational space accessible to them (Figure 1.4A-C) demonstrates how the resolved 

structures are essentially reorganizations of the shared fold along the softest ANM modes 1, 2 and 

3 intrinsically favored by their shared fold. ANM1 provides a good description of the principal 

variations in structure elucidated by the PCA of 104 monomers/protomers; ANM2 plays a 

dominant role in distinguishing the trimeric transporters; and ANM3 together with ANM2 helps 

the transition between OF and IF, as evidenced by Figure 1.4D-E. This analysis shows that the 

adaptation of the shared fold to different conformational or oligomerization states is mainly 

accomplished by the soft paths of reconfiguration intrinsically encoded by the LeuT-fold.  

Finally, it is noteworthy to mention that detailed conformational changes that involves the 

movement of side chains of amino acids usually cannot be captured by coarse-grained ENMs. For 

example, the unwinding/stretching of TM4-TM5 loop during OF →IF transition of LeuT 

(Krishnamurthy and Gouaux, 2012), MhsT (Malinauskaite, et al., 2014), Mhp1 (Shimamura, et 

al., 2010; Weyand, et al., 2008) and BetP (Perez, et al., 2012) cannot be reproduced by the ANM 

global modes. The unwound part of TM5 in the conserved motif GlyX9Pro of MhsT 

(Malinauskaite, et al., 2014) and an extension of the TM4–TM5 loop (G258-G263) in hDAT 
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(Cheng and Bahar, 2015) have been observed to trigger the hydration of Na2, leading to the 

opening of the IC vestibule.  

1.1.4 Methods 

1.1.4.1 Preparation of the structural ensemble 

We have manually collected 92 PDB structures composed of 104 protomers with the LeuT 

fold from the PDB. The initial ensemble consists of 50 LeuTs and their mutants, 14 DATs, 2 

MhsTs, 6 Mhp1s, 1 vSGLT, 6 BetPs, 4 CaiTs, and 7 AdiCs. 85 protomers were selected after 

removing the LeuT structures that were almost identical (< 0.3 Å RMSD) to the reference (PDB 

ID: 2A65) (Yamashita, et al., 2005). See Table 1.1 for more details, and Figure 1.2 for the 

respective distributions of pairwise sequence identities, structural RMSDs and biological function 

among the members of the LeuT family.  

For each subfamily (LeuT, DAT, MhsT, Mhp1, vSGLT, BetP, CaiT, AdiC), we first chose 

the structure with the most complete sequence as family representative to be aligned against the 

ensemble reference, the one with PDB ID 2A65 (Yamashita, et al., 2005), using the CE structural 

alignment algorithm. The other PDB structures were aligned to their family representative using 

sequence alignment algorithms. Through this procedure, we obtained an ensemble consisting of 

104 conformers of LeuT fold proteins. We then iteratively superposed all the conformations to 

minimize their overall pairwise RMSDs. 
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Table 1.1 LeuT fold structures available in the PDB.  

(a) OF: outward facing; IF: inward facing; suffixes “o” and “c” refer to the open or closed states of the EC (in the OF 

state) or IC (in the IF state) gates; “po” is partially open. Structures resolved in the presence of substrate are indicated; 

(b) PDB codes. Those used in structural alignments (Figure 1.2A-C) and in the generation of the fluctuation profiles 

(Figure 1.3), referred to as representative 11 structures (monomers or protomers), are indicated in boldface. LeuT 

may presumably function in either monomeric or dimeric state, but the majority of the resolved structures are dimeric. 

(c) LeuT IF dimer (Gur, et al., 2015; Zomot, et al., 2015) computed from IF monomer 3TT3. Overall the table contains 

104 distinctive conformers belonging to monomers or multimers, which have been used in the present analysis). This 

table is adapted from (Ponzoni, et al., 2018). 

 Family Transporter Conformation (a) PDB structures (b) 

trimer BCCT 

BetP 
(Koshy and Ziegler, 2015; 

Perez, et al., 2012; Ressl, et al., 

2009) 

OFo 4LLH 

intermediate 2WIT 

asym (IFo/IFo/OFo) 3P03 

asym (IFc/OF/IFo) 4AIN 

asym (IF/IF/OF) 4C7R 

asym (OFc/OFo/IFo) 4DOJ 

CaiT 
(Kalayil, et al., 2013; Schulze, 

et al., 2010) 

IFo (subs. bound) 3HFX 

IFo 4M8J, 2WSX, 2WSW 

dimer 

APC 

AdiC 
(Gao, et al., 2009; Gao, et al., 

2010) 

OFc (subs. bound) 3L1L 

OF 3NCY, 3LRB, 3LRC, 5J4I, 5J4N 

intermediate 3OB6 

SSS vSGLT 
(Faham, et al., 2008; Watanabe, 

et al., 2010) 

IFpo 2XQ2 

NSS 

LeuT 
(Krishnamurthy and Gouaux, 

2012; Singh, et al., 2008; Singh, 

et al., 2007; Yamashita, et al., 

2005) 

OFc (subs. bound) 

2A65, 2Q6H, 2Q72, 2QB4, 2QEI, 

2QJU, 3F3C, 3F3D, 3F3E, 3F48, 

3F4I, 3F4J, 3GJC, 3GJD, 3GWU, 

GWV, GWW, 3MPN, 3MPQ, 

3QS5, 3QS6, 3TU0, 3USG, 3USI, 

3USJ, 3USK, 3USL, 3USM, 3USO, 

3USP, 4HMK, 4HOD 

OFo 

3TT1, 3F3A, 4MM4, 4MM5, 

4MM6, 4MM7, 4MM8, 4MM9, 

4MMA, 4MMB, 4MMC, 4MMD, 

4MME, 4MMF 

OF 4FXZ, 4FY0, 3QS4 

IF 3TT3(c) 

monomer 

NSS 

DAT 
(Penmatsa, et al., 2013; Wang, 

et al., 2015) 

OF 
4M48, 4XNU, 4XNX, 4XP1, 4XP4, 

4XP5, 4XP6, 4XP9, 4XPA, 4XPB, 

4XPF, 4XPG, 4XPH, 4XPT 

MhsT 
(Malinauskaite, et al., 2014) 

IF 4US3, 4US4 

NCS1 
Mhp1 

(Shimamura, et al., 2010; 

Weyand, et al., 2008) 

OF 2JLN, 4D1A, 4D1B, 4D1C, 4D1D 

IF 2X79 
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1.1.4.2 Anisotropic network model (ANM) 

The Anisotropic Network Model is a broadly used ENM introduced in 2000 (Atilgan, et 

al., 2001; Doruker, et al., 2000), inspired by the pioneering work of Tirion (Tirion, 1996), 

succeeding the development of the Gaussian network model (GNM) (Bahar, et al., 1997; Haliloglu, 

et al., 1997). Given a protein of n residues, the minimalist yet powerful setup for the ANM is to 

represent each residue by a node whose initial position is identified by the coordinate of the -

carbon of the residue. Then a spring is connected to two nodes if the distance between the -

carbons of the corresponding residues is smaller than a cutoff 𝑑0 . Each spring represents a 

harmonic potential whose equilibrium position is the initial position of the two connected nodes, 

i.e. coordinates of the -carbons of the residues in the native conformation. The overall ANM 

potential of the network is defined as 

𝑉𝐴𝑁𝑀 =
1

2
∑𝛾(𝑑𝑖𝑗 − 𝑑𝑖𝑗

0 )
2

𝑖,𝑗

, (1.1) 

where 𝑑𝑖𝑗 and 𝑑𝑖𝑗
0  are the instantaneous and equilibrium (scalar) distances, respectively, between 

nodes i and j. In the minimalist setup, a uniform force constant γ is used for all the springs.  

However, this can be easily modified for more sophisticated models (an example of which we will 

see in Section 2.0). In this study, we built the ANMs for 104 LeuT fold conformers which are 

aligned and trimmed or extended to the same number of residues (gaps are filled by dummy atoms 

whose coordinates are represented by the average coordinate of the other family members). This 

allows the ANM results to be directly comparable at the cost of introducing minimal computational 

artifacts.  

Next, the ANM can be solved efficiently by eigenvalue decomposition of a 3n × 3n Hessian 

matrix, H, the off diagonal super elements (3×3 submatrices) of which are the second derivatives 
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of the ANM potential (equation 1.1) with respect to three degrees of freedom of every interaction 

pair of nodes evaluated at their equilibrium coordinates (𝑥𝑖𝑗
0 , 𝑦𝑖𝑗

0 , 𝑧𝑖𝑗
0 ; see (Atilgan, et al., 2001) for 

the derivation),  

𝐇𝑖𝑗 = −
𝛾

𝑑𝑖𝑗
0

[
 
 
 
 (𝑥𝑖𝑗

0 )
2

𝑥𝑖𝑗
0 𝑦𝑖𝑗

0 𝑥𝑖𝑗
0 𝑧𝑖𝑗

0

𝑥𝑖𝑗
0 𝑦𝑖𝑗

0 (𝑦𝑖𝑗
0 )

2
𝑦𝑖𝑗
0 𝑧𝑖𝑗

0

𝑥𝑖𝑗
0 𝑧𝑖𝑗

0 𝑦𝑖𝑗
0 𝑧𝑖𝑗

0 (𝑧𝑖𝑗
0 )

2
]
 
 
 
 

, (1.2) 

and the diagonal super elements are evaluated as the negative sum the off-diagonal super elements 

in the same row (or column). Eigenvalue decomposition of H yields 3n - 6 non-zero eigenvalues 

(𝒗𝑘 ) and eigenvectors (λk), if the network is well connected (no disjoint components). The 

eigenvectors are the normal modes which form an orthogonal basis set spanning the motion space, 

and each describes the displacements of the network nodes along that particular mode. The 

eigenvalues are proportional to the square of the mode frequencies and represent the curvature of 

the harmonic energy function along the mode “axis”. Therefore, displacements of a given size 

along high frequency (HF) modes (fast modes) are energetically more expensive than those along 

the low frequency (LF) ones (slow modes). According to the equipartition theorem, the total 

vibrational energy is on average equally distributed on each mode, so the network nodes 

experience greater displacements along the slow modes than the fast. Because of this, slow modes 

are of greater interest and importance for analyzing and characterizing the equilibrium dynamics 

of the molecule. 

A 3n × 3n covariance matrix that can be evaluated by taking the pseudoinverse of H: 

𝐂𝐴𝑁𝑀~𝐇
−1 =∑

1

𝜆𝑖
𝒗𝑖𝒗𝑖

𝑇

𝑘

𝑖=1

, (1.3) 

where 1/𝜆𝑘 is the variance (or vibrational amplitude) of the mode k. Typically, k = 3n – 6 for 

summing over all the modes. A lower value of k can be used to obtain a low-rank approximation 
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of the covariance matrix for computational efficiency and elimination of noise. A good choice of 

k can be determined by examining, for example, if the cumulative weight of the first k modes is 

over ~80%,  

𝑓𝑣𝑎𝑟(𝑘) =
∑

1
𝜆𝑖

𝑘
𝑖=1

∑
1
𝜆𝑗

𝑛−6
𝑗=1

. (1.4) 

The elements in the covariance matrix can be viewed as n × n blocks of 3 × 3 submatrices (similar 

to those of H), and each submatrix 𝐂𝑖𝑗 corresponds to the covariances between the movements of 

node i and j along the three degrees of freedom (every combination of x, y, z and therefore each 

submatrix is 3 × 3). In many applications, it is more useful to examine the cross-correlations 𝐂̃ 

between the vectorial (3D) displacements of the two nodes. In contrast to the covariance matrix, 

each element C̃𝑖𝑗  of thus n × n cross-correlation matrix 𝐂̃  is a scalar representing the cross-

correlation 〈Δ𝒓𝑖 ⋅ Δ𝒓𝑗〉 between the vectorial displacements of nodes i and j. This allows one to 

quickly identify dynamically coupled node pairs, and the diagonal elements represent the mean-

square fluctuations (MSFs) of the network nodes, 〈(Δ𝒓𝑖)
2〉. The MSFs, as well as the covariance 

matrix are inversely proportional to the force constant γ, and proportional to the absolute 

temperature T. The precise value of γ is usually unknown, and adjusted to achieve quantitative 

agreement with experimental measurements such as the X-ray crystallographic B-factors. 

However, it is usually unnecessary to obtain the absolute scale in practice because, the distribution 

of MSFs among the residues is invariant to γ, as well as the cross-correlations between the 

displacements,   

𝐂̃𝑖𝑗 =
〈Δ𝒓𝑖 ⋅ Δ𝒓𝑗〉

〈(Δ𝒓𝑖)2〉 〈(Δ𝒓𝑗)
2
〉

(1.5) 
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For example, in the present comparative analysis of protein family members’ dynamics,  the 

coarse-graining level allows us to safely assume that all members have comparable volumes, 

packing densities, and physiological conditions, and thus we can normalize the MSFs to observe 

the so-called mobility profiles of residues (i.e. normalized distributions of MSFs). 

1.1.4.3 Principal component analysis (PCA) of protein conformations 

PCA has been widely used in various disciplines. In the application to molecular 

simulations, PCA has been broadly used for extracting the so-called essential dynamics (Amadei, 

et al., 1993) of proteins, using conformations (also called snapshots or frames) generated in 

molecular dynamics (MD) trajectories. Other applications of PCA to explore the conformational 

space of proteins include the application to structural models observed in nuclear magnetic 

resonance (NMR) experiments, or to ensembles of PDB structures of the same protein in different 

states, etc. Essential dynamics refers to the first few dominant principal components (PCs) which 

are often found to be the essential modes of motions associated with molecular functions.  

Upon superposing m different structures (conformers) to a reference, a covariance matrix 

of residue fluctuations can be constructed by 

𝐂𝑃𝐶𝐴 =
1

𝑚
∑(𝒒𝑖 − ⟨𝒒⟩)(𝒒𝑖 − ⟨𝒒⟩)

𝑇

𝑖

, (1.6) 

where 𝒒𝑖 is the generalized coordinate of the residues in the ith state. ⟨𝒒⟩ =
1

𝑚
∑ 𝒒𝑖𝑖 . Similar to the 

ANM analysis, the eigenvalue decomposition of 𝐂𝑃𝐶𝐴  yields a set of modes of motions with 

associated variances. The modes are shown to be directly comparable to those obtained by the 

ANM (Bakan and Bahar, 2009); see Section 1.1.2.3. However, it should be noted that PCA only 

yields m – 1 meaningful modes (non-zero eigenvalues), as opposed to 3n – 6 in the ANM, if the 

number m of states (samples) is smaller than 3n, so that the motion space spanned by the PCs may 
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be incomplete, depending on the input data. Nonetheless, PCA is a powerful tool for extracting 

and identifying functional modes of motions and for quantitative comparison of experimental and 

theoretical (ANM) results.  

1.1.4.4 Projection of conformations onto subspaces spanned by the ANM/PCA modes 

Given the conformational change of a structure with respect to the reference Δ𝒒 

(generalized coordinate), and a set of mode vectors 𝑉 = [𝒗1, 𝒗2, … , 𝒗𝑘] obtained for the same 

structure from either the ANM or PCA, the projection 𝑝𝑖 of the conformational change Δ𝒒 onto 

the mode i can be calculated by their inner product: 

𝑝𝑖 = Δ𝒒𝑇𝒗𝑖. (1.7) 

Note that 𝒗𝑖 is a unit vector so in the extreme case of Δ𝒒 perfectly aligned along 𝒗𝑖, 𝑝 =

|Δ𝒒|. Finally, (𝑝1, 𝑝2, … , 𝑝𝑘) forms a new coordinate for projecting the conformational change Δ𝒒 

onto the subspace spanned by the mode set V (see Figure 1.4A-C for illustration). 
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1.2 Signature Dynamics of Protein Families 

1.2.1 Introduction 

In recent years, there has been an increasing interest in interpreting sequence evolutionary 

trends in the light of biophysical models, reconciling evolutionary biology and structural 

biophysics (Echave and Wilke, 2017; Liberles, et al., 2012). In Section 0, we demonstrated how 

the ENMs may be used to analyze and reveal the shared dynamics of the sequentially divergent 

LeuT fold proteins. The efficiency and versatility of the ENMs allow them to be generalized and 

extended to study larger proteins and more populated families of proteins, which may bring 

insights into the evolution of protein structure and dynamics on a broader scope.  

We recently introduced a new interface, SignDy (http://prody.csb.pitt.edu/signdy/), for 

evaluating the Signature Dynamics of protein (super)families (Zhang, et al., 2019). The hypothesis 

was that similar to signature motifs at the sequence and structure levels, each family might be 

characterized by a signature dynamics. As will be shown below, application to 116 superfamilies 

disclosed basic principles for functional fitness and diversification: exploiting the robust global 

dynamics of a versatile fold, and gaining specificity via localized, yet impactful, fluctuations 

conserved among subfamily members but divergent across subfamilies.  

We further illustrated the utility of SignDy by way of application to three families of folds: 

1) leucine transporter (LeuT), 2) periplasmic-binding protein type-1 (PBP-1), and 3) 

triosephosphate isomerase (TIM) barrel (see Figure 1.5 for an overview of the ensemble 

composition and their sequence and structure similarities). SignDy proved to be an effective tool 

for quantitative evaluation of both generic dynamics of families, and specific dynamics of 

subfamilies, identifying the specific modes of motions that distinguish subfamilies (shared by 

http://prody.csb.pitt.edu/signdy/
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subfamily members but sharply different across subfamilies), and learning how evolutionarily 

selected folds exploit collective modes of motions in different frequency regimes to reconcile a 

diversity of sequences and functions with the same architecture. The results reveal the 

conservation/differentiation of structural dynamics in relation to the evolution of sequence and 

structure.  
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Figure 1.5 Sequence, structure and function properties of LeuT, PBP-1 and TIM barrel fold family members. 

Distributions of average fractional sequence identities and average structural RMSDs within the (A) LeuT, (B) PBP-

1, and (C) TIM-barrel fold families (upper and middle panels), and biological functions of family members (pie charts, 

lower panels). The sequence identity histogram for the LeuT family of transporters (A) shows three groups, at 0.10, 

0.28 and 0.95, which correspond to the low similarity between distinct subtypes, the intermediate similarity between 

LeuT/DAT pairs, and the near identity of transporters of the same subtype. PBP-I and TIM barrel family members (B-

C) have highly dissimilar sequences (with average sequence identity of 0.11 and 0.085, respectively), while their 

average RMSD values are 4.25 and 3.64 Å. Abbreviations: GLYC, glycosidases; AdiC, arginine/agmatine antiporter; 

ALD1, Aldolase class I; BetP, glycine betaine transporter; CaiT, carnitine/butyrobetaine antiporter; CHOM, copper 

homeostasis (CutC) domain; DAT, dopamine transporter; DHP, dihydropteroate synthase-like; FMOR, FMN-linked 

oxido-reductase; GHYD, glycoside hydrolase, family 3, N-terminal domain; GPCR, G-protein coupled receptor; 

HCBL, homocysteine-binding-like domain; LAMA, D-lysine 5,6-aminomutase a-subunit; LeuT, leucine transporter; 
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LUCL, luciferase-like domain; Mhp1, benzyl-hydantoin transporter; MhsT, multi-hydrophobic amino acid 

transporter; MHYD, metal-dependent hydrolases; MTMB, monomethylamine methyltransferase MtmB; nN, non-

NMDA iGluR; N1, GluN1 NMDA iGluR subunit; N2, GluN2 NMDA iGluR subunit; PBP, periplasmic binding 

protein; PEPE, phosphoenolpyruvate-binding domain; RUB, ribulose bisphosphate carboxylase large subunit C-

terminal domain; T220, TIM barrel superfamily 3.20.20.220; T240, TIM barrel superfamily 3.20.20.240; T480, TIM 

superfamily 3.20.20.480; T540, TIM barrel superfamily 3.20.20.540; TR, transcription regulator; vSGLT, Vibrio 

sodium/galactose transporter. This figure is adapted from (Zhang, et al., 2019). 

1.2.2 Results 

As a proof of concept, we first explored and tested the utility of SignDy by way of 

application to three families of folds: 1) LeuT, 2) periplasmic-binding protein type-1 (PBP-1), and 

3) triosephosphate isomerase (TIM) barrel. Then, we proceeded to perform a systematic 

computational analysis of 26,899 proteins belonging to 116 CATH superfamilies.  

1.2.2.1 Transport and multimerization mechanisms of LeuT fold proteins favored by their 

signature dynamics 

In addition to the results obtained in Section 0, here, we focus on transport and 

multimerization mechanisms of LeuT members. Figure 1.6 reveals how the three global modes 

operate in a complementary way to enable substrate transport: they divide the fold into two parts 

from three orthogonal perspectives, resulting each in concerted opposite-direction (anticorrelated) 

fluctuations (or breathing motions) of the respective parts. Their combination allows for the 

cooperative opening and closing of the central substrate/ion-binding pocket (Figure 1.7B). The 

close-to-zero values in Figure 1.6A (indicated by vertical pink shades) indicate pivotal sites at the 

interface between oppositely moving substructures. Notably, the first pivotal site (LeuT residue 
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number 21-26, DAT 44-48, BetP 149-154, etc. See Figure 1.2D for a sequence alignment) is the 

conserved broken region of TM1 helices among LeuT-fold proteins. They are characterized in the 

previous study (Ponzoni, et al., 2018) and found to harbor critical binding sites for the substrates 

and ions (Figure 1.7). 

Closer examination reveals large displacements in EC loop 3 (EL3; known as helix H7 in 

BetP and CaiT) (black arrows in Figure 1.6A and C). The transporters exhibit large structural 

heterogeneities at this region (Figure 1.8). However, the movement of EL3 is not random. On the 

contrary, it is driven by a cooperative mode (ANM2) that enables the transition between OF and 

IF states of the transporter; and further motion of BetP H7 along the same direction/mode allows 

for inter-subunit contacts that stabilize the trimer (Figure 1.8C; also see Section 1.1.2.3 and 

Figure 1.4). This is further supported by the observation that H7 suppressed in most IF conformers 

except in vSGLT, BetP, and to some extent CaiT, where this specific region facilitates 

trimerization (Figure 1.8D).  

Another region distinguished by its conformational adaptability is IC loop 2 (IL2; red 

arrow in Figure 1.6A and C). This region undergoes large rearrangements during the OF ↔ IF 

transitions of LeuT (Krishnamurthy and Gouaux, 2012), Mhp1 (Shimamura, et al., 2010), MhsT 

(Malinauskaite, et al., 2014), and BetP (Perez, et al., 2012), the directions and the sizes of the 

deformations varying between members. The fluctuations are prominent in the IF states of LeuT, 

Mhp1 and CaiT, but not in the IF state of MhsTs, BetP and vSGLT nor the OF states. The departure 

from the generic signature profile at this region suggests a role in imparting specificity (Figure 

1.6A and C).  
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Figure 1.6 Generic and specific features of LeuT fold dynamics. Displacements along the global modes shared by 

family members (mean profiles, solid curves), their differentiation (standard deviations; darker shaded area), and the 

full range of variations (lighter shaded area). The ribbon diagrams generated for a representative LeuT structure 

(PDB ID: 2A65) are color-coded (from blue to red) by the size and direction of motions (from negative to positive) in 

each mode. (B) Generic covariance map (top) and its standard deviation (bottom), based on k ≤ 20 modes. Specific 

residue pairs whose cross-correlations significantly depart from the average are indicated by white arrows (bottom). 

The curve along the left ordinate shows the row-average. (C) Detailed view of the global/soft motions (k ≤ 5) for 13 

representative structures from 8 transporter families (labeled), in IF (dashed) and/or OF (solid) states. The curves are 

vertically shifted for visual clarity. This figure is adapted from (Zhang, et al., 2019). 
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The cross-correlations maps (Figure 1.6B) highlight the structural elements that undergo 

coupled same-sense (red) or opposite-sense (or anticorrelated; blue) motions. The largest 

variations in cross-correlations (lower map in panel B) take place in the motions of TM6 with 

respect to TMs 1-3 and 10, suggesting a driving role in eliciting cooperative changes. These 

interhelical distances have been noted to define the extent of opening/closure of the EC and IC 

vestibules (Cheng and Bahar, 2014; Drew and Boudker, 2016). TM1 movements are shown here 

to be anticorrelated with respect to TM10 which forms a coherent block with TM5 and TM7. These 

observations are consistent with recent H/D exchange mass spectrometry experiments where 

partial unwinding of TM1, 5, 6 and 7 drives the OF → IF transition (Merkle, et al., 2018). 

 

Figure 1.7 The substrate-binding pocket of LeuT-fold transporters shows minimal fluctuations. (A) Distribution 

of the mean values (top) and standard deviations (bottom) for square fluctuations of all residues (blue bars) and only 

substrate-binding site residues (orange bars). (B) Structures of most transporter subtypes are shown from the 

extracellular side to illustrate the binding pocket with the presence of the substrate (if available). The corresponding 

PDB codes are: 2A65 for LeuT, 4US4 for MhsT, 4XP9 for DAT, 4D1D for Mhp1, 2XQ2 for vSGLT, 4LLH for BetP, 

5J4I for AdiC, and 4M8J for CaiT. 
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Using sequence-, structure- and dynamics-based distance metrics, we generated the maps 

and dendrograms presented in Figure 1.9 for the LeuT family. While the topologies of the three 

trees are similar, an increased discrimination between family members can be seen as one proceeds 

from sequence, to structure, to dynamics, along with the re-distribution of selected members, 

highlighted in ellipses, based on dynamics. Panel A, based on sequence, obviously collapses all 

leucine transporters into a single node regardless of their conformational state; panel B separates 

the OF and IF conformers of LeuT, clustering the latter with two MhsT structures that are also in 

the IF state. In panel C, on the other hand, IF LeuT conformers are clustered with IF Mhp1, CaiTs 

and vSGLT, presumably sharing similar dynamics, while MhsT is differentiated despite its 

structural similarity. Such discriminative power can be explained by the projection of LeuT family 

members onto the ANM signature modes 1-3 (Figure 1.9C). 
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Figure 1.8 Structural differences of LeuT EL3/BetP H7 explained by the ANM and multimerization state. (A) 

Superposition of representative structures from each family. The region of LeuT EL3 or equivalent BetP H7 is 

highlighted. BetP and CaiT (both trimeric) are distinguished from other members of the LeuT fold family. (B) 

Comparison of the OF and IF structures of LeuT and BetP, respectively. (C) Alignment of LeuT OF and IF structures 

and a BetP structure. The structural change in this region, predicted by ANM mode 2 calculated on a single LeuT OF 

structure (PDB ID: 2A65), is indicated by the yellow arrows. (D) BetP trimer with each protomer colored differently 

and the H7 helices highlighted by a different color. This figure is adapted from (Zhang, et al., 2019). 
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Figure 1.9 Clustering of LeuT superfamily members based on their variations in sequence, structure and 

dynamics. Distance matrices (upper) and corresponding UPGMA trees (lower) of LeuT folds based on (A) sequence 

distance, (B) RMSD and (C) spectral distance calculated based on top 5 GNM modes obtained for each conformation. 

In the matrices, columns or rows represent conformers in the ensemble clustered and ordered based on pairwise 

RMSDs shown in panel B (see Table 1.1 for the order of conformers). In the trees, each node represents a conformer 

in one of the three states: OF (triangle), IF (square) or intermediate (circle). Note that the nodes in sequence and 

structure trees are overlapping which makes them look less populated. The node for a LeuT IF structure (PDB ID: 

3TT3) is highlighted in the tree diagrams, as its locations are different in these trees. The node for the only IF structure 

of Mhp1 (PDB ID: Mhp1) is highlighted in the dynamical tree. The trees are generated using the software interactive 

Tree Of Life (iTOL) (Letunic and Bork, 2007; Letunic and Bork, 2019). The figure is adapted from (Zhang, et al., 

2019). 
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1.2.2.2 Signature dynamics illustrated for three protein superfamilies 

Figure 1.10A-C illustrates the signature dynamics for three folds, LeuT, PBP-1 and TIM 

barrel. Information on the corresponding datasets of proteins can be found in the respective 

Supplementary Tables S1-3 in (Zhang, et al., 2019); their sequence, structure and function 

distributions are presented in Figure 1.5. The average mobility profile of residues resulting from 

global modes of motion (up to k = 3 (blue)) and LF motions (up to k = 10 (orange) and 20 (green) 

modes) are displayed, along with their standard deviation within each family. Minima and maxima 

can be traced back to secondary structural elements (indicated by colored bars along the abscissa 

in Panel A and C) and loops (or disordered regions, respectively. This is due to the high packing 

density at secondary structural elements manifested by small-amplitude fluctuations at those 

regions. The minimal difference between the three curves in each panel indicates the robustness 

of the signature dynamics defined by global modes. The LF modes in the range 10 ≤ k ≤ 20, which 

are usually less collective than those in k ≤ 10, induce increased variations (shades) indicative of 

a differentiation among members while preserving the signature dynamics.  

To assess the level of conservation of global modes within families, we evaluated the 

mode-mode correlation cosines averaged over all family members, ⟨𝑐𝑐𝑘⟩, for each equivalent 

mode k. The results are presented in Figure 1.11 A-C (green curves and shades for the respective 

averages and standard deviations). Sharp peaks at the lowest frequency end of the spectra and rapid 

decays with increasing mode number confirm the conservation of global modes. 
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Figure 1.10 Signature-dynamics of each family is robustly defined by global motions uniquely defined by the 

fold.(A-C) Results for the respective fold families LeuT, PBP-1 and TIM barrel. Mobility profiles driven by k = 3 

(blue), 10 (orange) and 20 (green) modes are presented, along with their standard deviations (bands in lighter shades). 

Horizontal bars along the abscissa indicate (A) the transmembrane (TM) helices of LeuT, (B) the upper lobe (UL) and 

lower lobe (LL) of PBP-1, and (C) the secondary structure (orange, α-strands; red, β-helices) of TIM barrel. (D-F) 

Ribbon diagrams of representative members, with core residues color-coded by their mobilities in global modes (1 ≤ 

k ≤ 3; blue, minimal; red, maximal). This figure is adapted from (Zhang, et al., 2019). 
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Figure 1.11 Mode conservation and spectral overlap analysis shows the high conservation of global modes and 

differentiation of LTIF modes among family members. (A-C) Mode conservation profile given by mode-mode 

correlation cosines 〈𝒄𝒄𝒌〉  averaged over all family members (green), cumulative spectral overlaps (blue), and 

cumulative weights of individual modes (orange) plotted as a function of mode index for LeuT, PBP-1 and TIM-

barrel folds, respectively. The curves display the averages over all members in each family and the bands show the 

standard deviations. In all three cases, the mode conservation decreases sharply from 0.96 ± 0.03 for mode 1, to 0.63 

± 0.23 for mode 5, and 0.18 ± 0.15 for mode 30. (D) Same result for first 100 modes obtained for 77 CATH 

superfamilies with number of residues greater than 100. The range 1 ≤ k ≤ 100 covers four regimes of motions: 

global/softest (k ≤ 3), low frequency (LF) (4 ≤ k ≤ 20), LTIF (21 ≤ k ≤ 60) and high frequency (HF) (k ≥ 60). (E) 

Change in root-mean-square fluctuations, ΔRMSF, computed for all residues in each of the 77 CATH superfamilies 

as a function of sequence entropy evaluated for four frequency regimes (labeled). The corresponding average values 

are shown by colored bars in the inset. The colored curves are weighted least square fits to computed data using cubic 

regression, with respective correlation coefficients >0.99. The distribution of sequence entropy for the 77 

superfamilies, shown by the gray bars (right ordinate) with a bin size of 0.15 and an average value is 2.0, fits a 

lognormal probability distribution (black curve) with a correlation coefficient of 0.997. This figure is adapted from 

(Zhang, et al., 2019). 
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1.2.2.3 Robust global modes define signature dynamics 

To confirm the dominance of global modes as a determinant of family signature-dynamics, 

we examined their level of conservation within CATH superfamilies. To this aim, we considered 

116 highly populated superfamilies which overall include 26,899 PDB structures (data not shown; 

see Supplementary Table S4 in (Zhang, et al., 2019)). For each superfamily, we calculated the 

pairwise sequence identities, RMSDs, and spectral distances between all pairs of members and 

evaluated the average values and standard deviations. The histograms in Figure 1.12 show the 

sequence, structure, and spectral (dis)similarities among the members of each superfamily. The 

average of pairwise sequence identities within the superfamilies are around 0.2 (or an average of 

sequence distances of ~0.8, equivalently) meaning that the sequences within superfamilies are 

quite divergent; whereas the average RMSDs are ~4.0 Å, indicating strong structural homology 

within superfamilies (especially since we have already filtered out similar structures, see Section 

1.2.4.1). Nonetheless, we found a correlation between sequence identity and RMSD (r = 0.61; 

Figure 1.12A), suggesting the fact that divergent sequences still tend to imply divergent structures, 

to a degree. 

Next, for each superfamily, we computed the mode-mode correlation cosine curves, and 

then evaluated the average over all superfamilies. The resulting master curve and its standard 

deviation (shown in Figure 1.11D, green curve and shade for 1 ≤ k < 100) consistently show that 

global modes are highly conserved. The average correlation cosine for the top-ranking mode (k = 

1) of superfamily members is 0.80 ± 0.19 and drops to 0.20 ± 0.07 for k = 20. Higher modes display 

a plateau with minimal (0.1 - 0.2) correlation. 

Larger proteins/domains have access to a broader conformational space and a wider 

spectrum of motions. One might expect their dynamics to be more heterogeneous, leading to 
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weaker mode conservation among members. Computations showed, however, that the dependency 

of mode conservation propensity on protein size is minimal (data not shown; see Supplementary 

Figure S3 in (Zhang, et al., 2019) instead). The top-ranking modes exhibit strong correlations, 

irrespective of the size of the protein, again confirming that a handful of global modes robustly 

define the signature dynamics of the family. 

 

Figure 1.12 Correlations and distributions between sequence, structure, and dynamical (dis)similarities among 

members of 116 CATH superfamilies. (A) Correlation between average pairwise sequence distances and RMSDs 

among members of superfamilies (each dot represents a superfamily average). The histogram on the top and right 

shows the distribution of the average pairwise sequence distances and RMSDs of superfamilies, respectively. (B) 

Same result for the correlation between average pairwise spectral distances and sequence distances. (C) Same result 

for the correlations between average pairwise spectral distances and RMSDs. Histograms on the right show the 

distributions of the average pairwise spectral distances calculated using first 20 modes (yellow) or all modes (red).  
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1.2.2.4 Motions in the low-to-intermediate frequency regime differentiate the dynamics of 

family members 

Figure 1.11A-C illustrates the spectral overlaps (blue curves) for the three example folds. 

In each case, the cumulative spectral overlap 〈𝑆𝑂𝑘〉 is plotted as a function of the total number of 

modes, k, included in the analysis, together with the corresponding variation among family 

members (lighter blue band). The curves reflect two counter-effects: First, there is a peak at the 

lowest-frequency end, consistent with the conservation of global modes. The overlap rapidly 

decreases with increasing k, due to the dissimilarity of the newly added modes. This differentiation 

between family members is consistent with the rapid drop in mode conservation shown in Figure 

1.11A-C for LeuT, PBP-1, TIM barrel families as well as that for CATH superfamilies (panel D). 

Then, a new regime is observed, the low-to-intermediate frequency (LTIF) regime, which includes 

modes 20 to 60 approximately, where the spectral overlap is minimized. Finally, an opposite effect 

takes over, manifested by an increase in overlap. This arises from the increased coverage of the 

space of conformational changes (shown in the orange curve), consistent with the theoretical limit 

of 𝑆𝑂𝑘 (𝐴, 𝐵) → 1 as the complete space of motions is considered. The minimum in 〈𝑆𝑂𝑘〉 occurs 

for k ≤ 50. 

The LTIF regime where the cumulative spectral overlap is minimized emerges as a 

determinant of the specificity of family members. The percent contribution of the modes in this 

regime to the overall spectrum amounts to ~25% (see the increase in the cumulative weight of 

modes (orange curves in Figure 1.11A-D) in this interval), which means a substantial contribution 

to alter dynamics, while retaining the generic behavior.  

Further calculations performed for CATH superfamilies (Figure 1.11D) corroborated the 

same trends. Supplementary Table S4 in (Zhang, et al., 2019) lists the spectral overlap calculated 
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for k = 3, 20 and all n - 1 modes for each superfamily, along with their standard deviations, and 

Figure 1.13 displays their histogram. The spectral overlap achieved by global modes, 〈𝑆𝑂3〉, 

averaged over all superfamilies, is 0.55 ± 0.25, despite the low (< 0.10) cumulative weight of this 

small set of modes. The addition of modes in the LF regime lowers the cumulative overlap to 0.45 

± 0.15, even though a larger subspace of conformational changes is sampled, indicating the 

dissimilarities in conformational motions among members in this regime. A high overlap (〈𝑆𝑂𝑎𝑙𝑙〉 

= 0.84 ± 0.02) is recovered by the ensemble of all modes, which, by definition, forms a complete 

basis set that spans all possible conformational changes.  

Overall, these data underscore the role of motions in the LTIF regime in differentiating 

family members within a given fold family, which will be further elaborated below. 

 

Figure 1.13 Distributions of average pairwise spectral overlaps between members of 116 CATH superfamily 

members. Results were evaluated based on global (k ≤ 3), HF (k ≤ 20), and all (k ≤ n-1) modes.  

1.2.2.5 Increased sequence heterogeneity among the members of a given fold family 

manifests itself by higher differentiation of dynamics 

A previous study showed that sequentially conserved sites are also distinguished by their 

restricted fluctuations; or the mobility of residues, reflected by their root-mean-square fluctuations 
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(RMSFs) around their mean positions, increases with increasing Shannon entropy (H) at the 

corresponding sequence position (Liu and Bahar, 2012). That study established the correlation 

between sequence variation and conformational flexibility (RMSF). Here we investigated one 

further property, the change in flexibility, ΔRMSF, at a given position among family members, 

which is a metric of the extent of differentiation in the equilibrium dynamics between family 

members.  

To this aim, we first evaluated the level of sequence heterogeneity within each family, 

using Shannon entropy as a metric. The resulting distribution among 13,648 residues belonging to 

77 CATH families (after excluding the small folds with n < 100 residues) is shown by the 

histogram (gray bars) in Figure 1.11E. The histogram perfectly fits a lognormal distribution in 

support of the accurate sampling of sequence variabilities by the examined set. The changes in 

residue fluctuations, Δ〈RMSF〉 (where the triangular brackets indicate the averages over residues 

with sequence entropy in the bin corresponding to the bar underneath), exhibit a smooth increase 

with increasing sequence entropy (four curves in Figure 1.11E), confirming that sequentially 

diverse families exhibit higher differentiation in their dynamics. 

The results are presented for different subsets of modes: global (k ≤ 3), LF (4 ≤ k ≤ 20), 

LTIF (21 ≤ k ≤ 60), and HF (k ≥ 60) regimes. The bar plot in the Figure 1.11E inset displays the 

Δ〈RMSF〉 averaged over all sequence entropies for the four respective groups. These results clearly 

show the dominant role of LTIF motions in imparting the member-specific differences in the 

fluctuation spectrum of individual family members, except for the high sequence entropy region. 

In this case, the differentiation of the modes shifts towards slower modes, as can be seen from the 

crossover between the LF and LTIF curves. The shift to LF modes reflects the earlier divergence 

of modes along the mode spectrum, in tandem with the higher divergence of sequence.  



 42 

Overall, this analysis demonstrates that sequence divergence is accompanied by a 

divergence in structural dynamics, even though the fold is conserved. 

A closer examination shows that Δ〈RMSF〉 contributed by the global modes is relatively 

flat with respect to sequence entropy ≤ 1.5. This insensitivity to sequence variations suggests that 

global motions are more conserved compared to sequence, presumably consistent with the slower 

divergence of structure, compared to sequence. Figure 1.12C further shows that diverging 

structures encode diverging dynamics despite the rather narrow root-mean-square deviation 

(RMSD) range. This dependency is stronger when all modes (red dots) are considered, as opposed 

to global modes (orange dots), confirming the increased differentiation of mode spectra with 

addition of higher modes. There is, however, some variation of spectral overlap with sequence 

identity (Figure 1.12B), again confirming that diverging sequences encode diverging dynamics as 

well. 

1.2.2.6 Differentiation of protein families into specific subfamilies is accompanied by the 

evolution of LTIF motions 

Consider a family composed of m subfamilies (or a superfamily of m families). For 

example, the currently considered TIM family contains 8 subfamilies (with at least 4 members). 

Subfamily classification is based on the specific functions of family members, e.g. in the case of 

TIM barrel, we have aldolases class 1 (ALD1), glycosidases (GLYC), phosphoenolpyruvate 

binding domains (PEPE), etc. Of interest is to assess to what extent subfamily members share 

similar modes among themselves, and to what extent they differ from other subfamily members. 

In other words, is the differentiation of fold families into specific subfamilies accompanied, if not 

driven, by a subset of modes that typifies the subfamily, and distinguishes it from all other 

subfamilies?  
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Note that subfamily members are not necessarily sequentially close or structurally close, 

but they belong to the same subfamily because of their shared biological (e.g. specific enzymatic) 

activities. In this respect, it is of interest to see if their common functions are supported by common 

mechanisms of action, or shared modes. Another way of asking the same question is which 

particular modes, or modes in which frequency regime, unify members within subfamilies, while 

ensuring maximal differentiation between subfamilies themselves.  Toward this goal, we evaluated 

the spectral distances 〈𝑑𝑖𝑗〉𝑚𝑝,𝑚𝑠
 between subfamilies p and s, composed of 𝑚𝑝 and 𝑚𝑠 members 

respectively, based on the similarity of their modes i ≤ k ≤ j (see Materials and Methods and 

Supplementary Information).  

Figure 1.14 illustrates the respective results for TIM families. Results are presented for the 

global, LF, LTIF and HF regimes (respective panels A-D). The maps in each case are color-coded 

by the distances between the dynamics of the subfamilies listed along the two axes (see the color-

code on the right). Note that the diagonal elements describe the level of conservation of dynamics 

within subfamilies (averaged over all combinations of family members); whereas off-diagonal 

terms represent the distances between pairs of subfamilies, with dark red entries indicating a strong 

divergence. We note that the LTIF modes are maximally distinctive across families, followed by 

LF modes, while the global modes and, interestingly, HF modes (>60) retain similarities. The 

strong discrimination provided by the LTIF regime between subfamilies - a feature apparent in the 

large-scale examination of CATH superfamilies, is now clearer with the subfamily-subfamily 

distance maps based on subfamily dynamics.  
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Figure 1.14 Low-to-intermediate frequency (LTIF) modes discriminate between subfamilies with different 

functions belonging to the TIM barrel fold family. (A-D) Subfamily-subfamily distance matrices based on 

structural dynamics, evaluated for eight TIM subfamilies. Subfamily acronyms are listed along the axes (see full names 

in Figure 1.5). Spectral distances 〈𝒅𝒊𝒋〉𝒎𝒑,𝒎𝒔
 averaged over all 𝒎𝒑 and 𝒎𝒔 members of respective subfamilies are 

shown by color-coded elements (red: long; blue: short; see the bar on the right). Results are displayed for four 

frequency regimes, global, LF, LTIF and HF, in the respective panels A-D, as indicated by the ranges i ≤ mode ≤ j. 

Diagonal terms show the distances between within subfamilies based on the motions in the particular frequency 

window; and the off-diagonal terms show those across subfamilies. The LTIF regime (modes 21-60) provides the 

sharpest discrimination between subfamilies; whereas modes in both the global (A) and high-frequency (D) regimes 

are relatively conserved. For comparison, we present the sequence distances (E) and structural distances (E and G, 

using RMSD and TM-score as metrics) between subfamilies. Note that the subfamily-subfamily spectral distances in 

the LTIF regime (panel C) conform closely to their functional classification (panel E) defined by CATH, rather than 

their structural similarities (panels F-G), in strong support of the significance of LTIF motions in the evolution of 

function. This figure is adapted from (Zhang, et al., 2019). 
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Further comparison of the conservation/divergence of structural dynamics across 

subfamilies with their sequence and structure similarities (panels E-G in Figure 1.14) reveals that 

the correlations (or lack thereof) between the mode spectra of subfamilies in different regimes 

closely parallel sequence properties, rather than structural similarities/dissimilarities. The latter 

was assessed by two metrics, average RMSD between subfamilies and average TM-score 

(template modeling score)(Zhang and Skolnick, 2004), which yielded almost identical results. In 

other words, the division of families into subfamilies relates to the differentiation of their 

dynamics, more than the differentiation of their structure, in support of the direct relevance of 

motions/dynamics to subfamily function. The same analysis was repeated for PBP-1 superfamily 

and yielded similar results (data not show; see Supplementary Figure S4 in (Zhang, et al., 2019)). 

Overall, these results demonstrate that the specific mechanisms that distinguish subfamilies can be 

traced back to the intrinsic modes in the LTIF regime.  

1.2.3 Discussion  

Structural stability and related functions such as residue packing density are key constraints 

in sequence conservation and evolutionary change rate (Echave, et al., 2016). Yet, stability alone 

is not sufficient for functionality. Many proteins achieve their function by virtue of their 

conformational flexibility (Haliloglu and Bahar, 2015; Skjaerven, et al., 2011; Zheng, et al., 2009). 

While the conservation of sequence closely relates to structural stability and thermodynamics, the 

conservation of structure and its evolution might be closely determined by its adaptability to 

functional requirements. Pioneering studies that introduced the concept of evolution of structural 

dynamics and/or its relation to sequence evolution traditionally focused on experimental data, e.g. 

α-carbon fluctuations (B-factors) (Maguid, et al., 2008; Maguid, et al., 2006), the coupling between 
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sequence variability and structural dynamics (Liu and Bahar, 2012; Nevin Gerek, et al., 2013), or 

diversity of conformers resolved for well-studied proteins in the PDB (Juritz, et al., 2013). In this 

study, we applied our newly implemented interface, SignDy, to systematically analyze 15,636 

proteins in 77 CATH superfamilies. Our analysis revealed features that could not be discerned if 

it were not for serial analysis of such large ensembles of CATH superfamilies. Decomposition of 

the mode spectrum into the contribution of different frequency windows permitted us to discern 

for the first time the differences in the conservation of modes in different frequency regimes, and 

elucidate the close relationship between the dissimilarities in the LTIF modes and the structural 

variations that distinguish subfamilies. 

It is well known that sequence diverges much faster than structure. In other words, the 

sequence space is much larger than the structure/fold space. The mapping of various sequences 

into a small number of folds, or a relatively small set of fold superfamilies (e.g. ~100 examined 

here that cover ~ 20% PDB structures), does not, however, prevent proteins from achieving a broad 

diversity of functions. The latter is enabled by conformational dynamics, which is suggested by 

the present results that it supports the selection of folds in two ways: First, all family members 

share the fold-encoded global modes, or signature dynamics, that presumably underlie the 

versatility of the fold, e.g. the different members may exhibit different levels of inter-domain 

opening, or global twisting, but these are all slight rearrangements along the shared soft modes, 

which facilitate the adaptation to different substrates (Batista, et al., 2011; Batista, et al., 2010; 

Krieger, et al., 2015; Ponzoni, et al., 2018). Secondly, motions in the LTIF regime define the 

specificity of subfamilies. As a result, members of subfamilies are unified by their shared motions, 

or mechanisms of actions, in the LF regime, whereas they are differentiated from other subfamily 

members by virtue of the differences in their specific motions mainly in the LTIF regime.  
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Despite the wealth of data on well-studied proteins such as TIM barrel proteins, it is still 

not clear whether their shared fold originates from common ancestry, or results from convergent 

evolution. Protein folds are presumed to be more susceptible to evolutionary convergence than 

sequences, but sequence-profile based phylogenetic analysis can detect evolutionary relationships 

even among sequentially distant members of a given superfamily, in support of divergent evolution 

(Theobald and Wuttke, 2005). Other studies show that fitness constraints enforce evolutionary 

paths that preserve protein structure despite sequence divergence down to 30% sequence identity 

(Gilson, et al., 2017). Yet, the currently examined superfamilies contain members with much lower 

sequence identity, and other studies suggest that there is a limit to amino acid divergence while 

maintaining the contact topology/fold of the protein (Porto, et al., 2005).  

While the current study cannot ascertain whether the shared structures are maintained 

during divergent evolution of sequences, or selected by convergent evolution, we clearly 

distinguish robust signature dynamics shared by family members, as well as LF and LTIF modes 

that characterize subfamilies. It remains to be established whether the prevalence of robust global 

motions, and accessibility to selected LTIF modes drive the selection of these folds. These 

challenges call for more research in comparing the differentiation of protein dynamics with 

sequence divergence, where SignDy can serve as an analytical framework for facilitating such 

investigations. For example, our recent examination of the signature dynamics of the lipoxygenase 

family of proteins and its differentiation among members helped detect the sites that enable its 

adaptation to specific substrate binding and allosteric activity (Mikulska-Ruminska, et al., 2019). 

We expect the SignDy interface to serve as a resource for efficiently analyzing family of proteins 

and designing allosteric modulators that can specifically target selected members of the family. 
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1.2.4 Methods 

SignDy is an integrated pipeline for evaluating the signature dynamics of protein families 

based on ENMs. The pipeline comprises seven major steps (Figure 1.15):  

1. Selection of protein family. The input to SignDy can be fed or generated in three 

ways: (i) entering a Pfam (El-Gebali, et al., 2019) or CATH (Dawson, et al., 2017; 

Knudsen and Wiuf, 2010) ID; (ii) providing a query PDB (Berman, et al., 2000) or 

UniProt (UniProt, 2019) ID, or sequence whose structural homologs are retrieved 

using from the Dali server (Holm and Laakso, 2016; Holm and Rosenstrom, 2010); 

or (iii) submitting a manually prepared list of homologous proteins. 

2. Selection of a representative set of homologs and the reference protein. 

Overrepresented sequences and structures as well as highly dissimilar ones are 

filtered out based on default or user-selected thresholds for sequence or structural 

similarities. This leads to a family of m members, one of which is the reference 

structure, R, based on prior knowledge or pre-defined criteria. 

3. Structural alignment and definition of core atoms/residues. Several alignment 

tools can be used to identify and align corresponding residues forming shared 

structural elements (core structure) with n core residues as described below.  

4. Evaluation of mode spectra, using the GNM or ANM. We use a system-

environment framework where the core is treated as the “system” and other residues 

as the “environment” (Hinsen, et al., 2000; Zheng and Brooks, 2005). To identify 

shared motions among family members, we examine the mode-mode correlations 

between R and each of the other m - 1 members. The resulting equivalent modes 

for each member are reordered to match the mode order of R.  
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5. Analysis of signature dynamics. The spatial mobility of core residues driven by 

global modes averaged over all members, and its variation across family members 

define the “signature dynamics” of the family. Other generic properties include the 

averages and deviations of cross-correlations between residue motions across 

family members. Departures from signature dynamics or cross-correlations 

highlight the specific features of individual members.  

6. Assessment of mode conservation and spectral overlap between family 

members. The level of conservation of mode k among family members is measured 

by the correlation cosine computed for the kth equivalent GNM mode of pairs of 

members, averaged over all 𝑚(𝑚 − 1)/2 pairs (green curves in Figure 1.11). The 

overall extent of similarity between the mode spectra of members A and B, based 

on the k softest modes, is given by the spectral overlap (see Section 1.2.4.5).  

7. Classification of family members based on their dynamics. A dynamics-based 

dendrogram for each family can be constructed using the spectral distance between 

pairs of family members as a metric (see Section 1.2.4.6).  

The above procedures were implemented in ProDy (Bakan, et al., 2014; Bakan, et al., 2011). More 

details are presented in the following subsections. 
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Figure 1.15 SignDy workflow. The workflow is separated into two main parts: dataset preparation (left; steps 1-3) 

and SignDy operations and outputs (right; steps 4-7), described in the text above. Cylinders and light grey rectangular 

boxes represent databases and corresponding query inputs, respectively. This figure is adapted from (Zhang, et al., 

2019). 

1.2.4.1 Dataset of CATH Superfamilies 

We considered the 175 most populated superfamilies in the CATH database (Dawson, et 

al., 2017; Knudsen and Wiuf, 2010), and selected 116 comprised of a total of 26,899 proteins after 

eliminating the close structural homologs (RMSD < 1 Å) using single-linkage clustering, as well 

as outliers (RMSD ≥ 10 Å with respect to the reference), and superfamilies with less than 50 

representative members. We superposed all the members to their reference in each superfamily 

using the CE algorithm (Shindyalov and Bourne, 1998). Supplementary Table S4 in (Zhang, et al., 

2019) lists all the superfamilies and their properties.  
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1.2.4.2 Datasets for LeuT, PBP and TIM barrel fold families  

LeuT. The structural ensemble is prepared as described in Section 1.1.4.1. 

PBP-1. Individual PBP-1 domain structures were selected and aligned with Dali server 

using a structure of the N-terminal domain (NTD) of AMPA-type ionotropic glutamate receptor 

(iGluR) paralogue GluA2 (chain A from PDB ID: 3H5V) (Jin, et al., 2009) as the query. This 

search yielded a set of 2,291 chains from 977 structures including isolated domains and whole 

receptors. We filtered out those results with Dali Z-score below 10 and less than 50% coverage, 

resulting in 971 chains from 451 structures. We further refined the set by applying an RMSD filter 

that removed redundant structures within 1.0 Å RMSD from others in the ensemble, as well as the 

outliers (≥10.0 Å RMSD from all others). This led to an ensemble with 379 members (data not 

shown; see Supplementary Table S2 in (Zhang, et al., 2019)), including iGluR NTDs, class C G-

protein coupled receptor (GPCR) and natriuretic peptide receptor ligand-binding domains, and 

bacterial periplasmic binding proteins (PBPs) and transcription regulators (TRs). Figure 1.5 

displays the histograms of pairwise sequence identities, structural RMSDs and biological function 

for PBP family members. 

TIM barrels. TIM barrel structures were selected and aligned by Dali using the triose 

phosphate isomerase (TIM) structure with PDB ID 8TIM (chain B) (Banner, et al., 1975) as the 

query. The search yielded a total of 1,070 structures. Among them, 455 were filtered out by 

requiring the following criteria to be satisfied: RMSD > 1 Å with respect to the query structure; 

Dali Z score > 10; and coverage > 70%. Among the remaining 615 structures, 14 could not be 

aligned using the mapping information from Dali, which led to 601 structures. As an additional 

filter, we excluded members from all pairs outside the range 1 < RMSD < 10 Å. This led to an 

ensemble of 290 conformations and the columns in the multiple sequence alignment (MSA) were 
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trimmed to ensure column occupancies of 0.7 or higher, resulting in 180 columns corresponding 

to core residues (data not shown; see Supplementary Table S3 in (Zhang, et al., 2019)).  

1.2.4.3 Calculation of mode spectra and sorting of modes 

GNM or ANM analyses are performed for each member, using its complete structure 

composed of the core (shared by all members) and other residues (specific to members) using the 

system-environment framework (Hinsen, et al., 2000; Zheng and Brooks, 2005). The effect of the 

environment on the core dynamics is modelled therein by adopting a modified Kirchhoff (GNM) 

or Hessian (ANM) matrix for the core. In this way, we identify the mode spectrum for each family 

member. The high-throughput examination of protein family dynamics is possible because of the 

efficiency of ENMs.  

Because of the structural variations, the order (or relative frequencies) of the modes may 

vary among family members. Pairwise comparisons of the mode spectra of family members 

necessitate the identification of the equivalent modes. We accomplish mode-mode matching as a 

linear assignment problem (Kuhn, 1955; Kuhn, 1956). Accordingly, we first calculate the 

correlation cosine, 𝜌𝑖𝑗(𝐴, 𝐵) =  𝒗𝑖
(𝐴)
⋅ 𝒗𝑗

(𝐵)
, between each pair of modes i and j belonging to 

proteins A and B, then evaluate the cost of matching them as 1 − 𝜌𝑖𝑗(𝐴, 𝐵), and finally select the 

set of pairs that minimizes the total cost.  

1.2.4.4 Evaluation of signature dynamics 

The signature dynamics is defined by global dynamics shared by family members. It refers 

to any dynamical property of a protein structure that can be derived from the ENM which is now 

evaluated for every conformer in the structural ensemble and aligned altogether. Such dynamical 
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properties mainly involve three: 1) modes of motions; 2) the MSFs of residues driven by a selected 

subset of global modes or all modes; 3) the cross-correlations between residue fluctuations. The 

averages of these properties over all members, respectively denoted by ⟨𝒗𝑘⟩, ⟨MSF⟩ and ⟨𝐂⟩, 

describe the generic behavior of the family. Note that each mode describes a fully symmetric 

fluctuation; so 𝒗𝑘 and −𝒗𝑘 represent the same eigenvector for mode k; and therefore eigenvectors 

are assigned the same sign as their counterparts in the reference structure before evaluating the 

averages ⟨𝒗𝑘⟩ over family members.  

The departures of the individual members from the generic behavior are given by the 

standard deviations Δ𝒗𝑘, MSF and Δ𝐂, displayed by, for example in Figure 1.6, a band around 

the mean values (Δ𝒗𝑘 and MSF) or by an additional n × n map (Δ𝐂𝑖𝑗).  

1.2.4.5 Spectral overlap and mode-mode overlap 

We use the spectral overlap (termed as covariance overlap in (Hess, 2002)) as a measure 

of the degree of similarity between the global mode spectra of structures A and B. The spectral 

overlap provides a robust and easy-to-compute metric, as a function of the entire set of eigenvalues 

and eigenvectors, to measure the overlap of the subspaces spanned by two mode spectra or subsets 

of modes. The spectral overlap based on k LF modes (i.e. mode index in the range [1, k]) predicted 

by the ENM is defined as  

𝑆𝑂𝑘(𝐴, 𝐵) =  1 − [
∑  (𝜎𝑖

(𝐴) + 𝜎𝑖
(𝐵) ) –  2∑ ∑  (𝜎𝑖

(𝐴) 𝜎𝑗
(𝐵) )

1
2 𝑘

𝑗=1 (𝒗𝑖
(𝐴)𝒗𝑗

(𝐵))2 𝑘
𝑖=1  𝑘

𝑖=1

∑  𝑘
𝑖=1 (𝜎𝑖

(𝐴) + 𝜎𝑖
(𝐵) )

]

1
2

, (1.8) 

where 𝜎𝑖
(𝐴)

 designates the ith eigenvalue of the covariance matrix for protein A, and 𝒗𝑖
(𝐴)

 is the 

corresponding eigenvector. Note that 𝜆𝑖
(𝐴)

=  1/𝜎𝑖
(𝐴)

, where 𝜆𝑖
(𝐴)

 is the ith eigenvalue of the 

connectivity matrix (Hessian for the ANM; Kirchhoff for the GNM) for same protein A. 
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𝑆𝑂𝑘(𝐴, 𝐵) varies in the range [0, 1]. The upper limit can be only reached by two entirely 

overlapping mode spectra. For each superfamily and a given k, the spectral overlap ⟨𝑆𝑂𝑘⟩ is 

averaged over all 
𝑚(𝑚−1)

2
 pairs of A and B.  

A detailed analysis of the extent of differentiation between the individual modes of family 

members is performed by evaluating the correlation cosines, also called mode-mode overlaps, 

averaged over all 
𝑚(𝑚−1)

2
 pairs  

⟨𝑐𝑐𝑘⟩ =  
2

𝑚 (𝑚 − 1)
∑ ∑ |𝒗𝑘

(𝐴) 𝒗𝑘
(𝐵)|

𝐵 ≠𝐴𝐴
. (1.9) 

The absolute value of the correlation cosine is used because the direction of the 

eigenvectors is immaterial. Note that the mode number k refers to the rank-ordered index 

determined after identifying the optimal matches between the mode spectra of family members, as 

described in the Section 1.2.4.3. 

1.2.4.6 Spectral distance and construction of dynamics-based dendrograms 

The spectral distance, 𝐷𝑘(𝐴, 𝐵), between the first k global modes of A and B is defined by 

the arc cosine 𝐷𝑘(𝐴, 𝐵)  =  cos
−1(𝑆𝑂𝑘(𝐴, 𝐵)) and that among all members of a given family is 

evaluated as 

⟨𝐷𝑘⟩ =
2

𝑚 (𝑚 − 1)
∑ ∑  cos−1[𝑆𝑂𝑘(𝐴, 𝐵)]

𝐵 ≠𝐴𝐴
. (1.10) 

The m × m distance matrix 𝐷𝑘(𝐴, 𝐵) with k = 3 is used as metric for classifying family members 

based on their global mode spectra. The dendrograms (Figure 1.9) are constructed using the 

neighbor joining (NJ) (Saitou and Nei, 1987) or Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA) (Sokal, 1958) method. Similar trees based on sequence and structure 

dissimilarities allow for comparing the differentiations of sequence, structure and dynamics among 
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the members of the family. Here we adopted the RMSDs after structural alignment as structure 

distance, and the Hamming distance 𝐷𝐻(𝐴, 𝐵) (normalized by the number of columns in the MSA) 

as sequence distance between members A and B. 
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2.0 Chromatin Dynamics Analyzed by the Gaussian Network Model 

The spatial organization of the eukaryotic genome has emerged as a topic of broad interest 

over the past decade, as a consequence of its inherently complex structure emerging from recent 

studies, and its important role in regulating transcriptional activity (Bickmore and van Steensel, 

2013; Cavalli and Misteli, 2013; Fraser, et al., 2015; Hou, et al., 2012). However, due to the size 

and complexity of the genome structure (or ensemble of conformers sampled under physiological 

conditions), it is impractical to use traditional structure determination techniques such as 

crystallography or nuclear magnetic resonance (NMR). As alternatives, the genome structure is 

usually studied by examining the 3D contacts of genomic loci via experiments such as Fluorescent 

in situ hybridization (FISH) or Chromosome Conformation Capture (3C). Improved by the next 

generation sequencing (NGS) advances, the Hi-C technology scaled up the 3C technique to all-to-

all and genome-wide detection of chromatin contacts, thus providing a more complete view of the 

entire genome for human and other species (Dixon, et al., 2012; Lieberman-Aiden, et al., 2009; 

Rao, et al., 2014; Stevens, et al., 2017). These studies revealed that the spatial organization of the 

genome is largely compartmental and hierarchical (Figure 2.1). In parallel, many computational 

methods have been developed and contributed to these and other characterizations of chromosomal 

architecture (Forcato, et al., 2017; Lajoie, et al., 2015; Oluwadare, et al., 2019). In particular, it 

was identified that chromosomal spatial regions are hierarchically categorized as nested structures 

of varied sizes, such as A/B compartments and topologically associating domains (TADs). 

However, the scale, complexity, and noise inherent in the available data still make it challenging 

to determine the exact spatial relationships and underlying chromatin architecture, let alone 
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structure-based dynamics. Therefore, the exact nature of chromatin spatial organization and its 

influence on gene expression and regulation remain unclear.  

 

Figure 2.1 Spatial organization of mammalian genome (schematic). (A) Cell nucleus containing chromosomes in 

the form of chromatin fibers (left) and computationally resolved 3D model for manmalian chromosomes (Stevens, et 

al., 2017) (right). Three loci are highlighted and represented by nodes, and the spatial distances between them are 

indicated by red dashed double-headed arrows. (B) Chromatin contact map determined by Hi-C experiment. The 

spatial distance between the two cyan loci in panel A is smaller than that between the orange and the cyan ones, so 

the former is subject to a higher frequency (cyan arrow) of contacts than the latter (yellow arrow). (C) Two main 

levels of the chromosomal domains (Rao, et al., 2014): compartments (~5Mb) and topologically-associating domains 

(TADs, ~1Mb) (Rowley and Corces, 2018), manifested in the “blocks” along the diagonal of the Hi-C contact map 

(panel B). 
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In this chapter, we show that the GNM adapted to modeling chromatin inter-loci contact 

topology using Hi-C data provides a mathematically well-founded unified framework for modeling 

chromatin dynamics, assessing the structural basis of genome-wide observations, and identifying 

hierarchical chromosomal domains. 

2.1 GNM Evaluation of Chromosomal Dynamics Explains Genome-Wide 

Accessibility and Long-Range Couplings  

2.1.1 Introduction 

The Gaussian Network Model (GNM) is a highly robust and widely tested framework 

developed for modeling the intrinsic dynamics of biomolecular structures (Bahar, et al., 1998; 

Bahar, et al., 1997; Bahar, et al., 2010). We adapted the GNM to the topology-based modeling of 

chromosomal dynamics. Chromosomal dynamics refers to the coupled spatial movements of loci 

under equilibrium conditions, as uniquely defined by the topology of an elastic network 

representative of the chromosome architecture. The only input GNM requires is a map of 3D 

contacts between structural elements that define the nodes of the network. Here, this information 

is provided by Hi-C data, which gives contact frequencies between genomic loci (network nodes). 

The Hi-C matrix is used for constructing the so-called Kirchhoff (or Laplacian) matrix which 

uniquely defines the equilibrium dynamics of the network, including the mean-square fluctuations 

of the nodes (genomic loci) as well as the spatial cross-correlations between pairs of nodes.  

The chromatin structure is often described in terms of TADs, whose identification involves 

searching for sequentially contiguous groups of highly interconnected loci along the diagonal of 
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the Hi-C matrix of intra- chromosomal contacts. Spatial couplings between sequentially distant 

genomic regions, on the other hand, represent a new dimension to search and identify meaningful 

structural components. The identification of such long-range couplings is a challenging problem. 

Several methods have sought to identify long-range interactions from 3C-based data (Jin, et al., 

2013; Rao, et al., 2014; Sanyal, et al., 2012; Xu, et al., 2016), but the scale of these interactions is 

still small compared to that of the full chromosome. Most methods detect interactions within 1–2 

megabases (Mb), or up to 10 Mb (Ay, et al., 2014; Forcato, et al., 2017), so extending the span of 

predicted long-range couplings to the order of tens of millions of base pairs may yield new insights 

into regulatory actions. Such long-range correlations may originate from physical proximity in 

space, or other indirect effects similar to those in allosteric structures. Assessment of such long-

range correlations is important for gaining a better understanding of the physical basis of gene 

expression and regulation.  

We show and verify upon comparison with an array of experimental data and genome-wide 

statistical analyses that the GNM provides a robust description of accessibility to the nuclear 

environment as well as co-expression patterns between gene-loci pairs separated by tens of 

megabases. The analysis may serve as a framework for drawing inferences from Hi-C or other 

advanced genome-wide studies toward establishing the structural and dynamic bases of regulation.  

2.1.2 Results 

We evaluated the mobility profiles (MSFs) and covariance maps for the coupled 

movements of gene loci for GM12878 cells from a human lymphoblastoid cell line with relatively 

normal karyotype. We illustrate the results for chromosome 17 based on Hi-C data at 5 kb 

resolution (see Section 2.1.4 and Figure 2.8), based on Hi-C data at 5 kb resolution for GM12878 
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cells from a human lympho-blastoid cell line with relatively normal karyotype. We compared our 

predictions with the experimental measures of chromatin accessibility and interactions, namely 

DNase-seq (Tsompana and Buck, 2014), ATAC-seq (Buenrostro, et al., 2013), and Chromatin 

Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) (Heidari, et al., 2014). We also 

examined co-expression enrichment for GNM-predicted cross-correlated distal domains 

(CCDDs), using RNA-seq expression data.  

2.1.2.1 Correlation between chromatin mobility and experimental measures of accessibility 

Figure 2.2 illustrates the MSFs obtained with the GNM (blue curves) for the loci on three 

chromosomes (1, 15 and 17, in respective panels A, B and C). Results for all other chromosomes 

are presented in Supplementary Figure S1 in (Sauerwald, et al., 2017). 

GNM application to H/D exchange data (Bahar, et al., 1998) has shown that the MSFs of 

network nodes can be directly related to the accessibility of the corresponding sites: exposed sites 

enjoy higher mobility, and those buried have suppressed mobilities. The entropic cost of exposure 

to the environment for a given site can be shown to be inversely proportional to its MSFs based 

on simple thermodynamic arguments applied to macromolecules subject to Gaussian fluctuations 

(such as those represented by the GNM) (Bahar, et al., 1998). We examined whether GNM-

predicted mobility profiles were also consistent with data from chromatin accessibility 

experiments. We compared our predictions with two measures of chromatin accessibility, DNase-

seq (Tsompana and Buck, 2014) and ATAC-seq (Buenrostro, et al., 2013), shown respectively by 

the yellow and red curves in Figure 2.2A-C.  

Figure 2.2 shows that the GNM-predicted MSFs of chromosomal loci are in good 

agreement with the accessibility of loci as measured by DNase-seq. The corresponding Spearman 

correlations for the three chromosomes illustrated in panels A-C vary in the range 0.78-0.85 (see 
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inset), and the computations for all 23 chromosomes (panel D, yellow bars) yield a Spearman 

correlation of 0.800 ± 0.044. The Spearman correlation between GNM MSFs and ATAC-seq data 

is somewhat lower: 0.552 ± 0.112. Interestingly, the Spearman correlation between the two sets of 

experimental data was 0.741 ± 0.089, suggesting that the accuracy of computational predictions is 

comparable to that of experiments, and that the DNase-seq provides data more consistent with 

computational predictions. ATAC-seq maps not only the open chromatin, but also transcription 

factors and nucleosome occupancy (Buenrostro, et al., 2013), which may help explain the observed 

difference.  

We performed the same analysis on the available data for a different cell type, IMR90, and 

found an even better agreement with experiments (data not shown; see Supplementary Figure S2 

in (Sauerwald, et al., 2017)). The Spearman correlation between the computed MSFs and 

experimental ATAC-seq data averaged over all chromosomes was 0.63 ± 0.08 IMR90 cells, and 

that between MSFs and DNase-seq data was 0.82 ± 0.03. Consistently, the two sets of experiments 

also exhibit a higher correlation (0.81 ± 0.06) in this case. 

Overall, this analysis shows that GNM representation of chromosomal architecture using 

Hi-C data provides quantitative description of the spatial mobility of individual nodes (gene loci) 

in good agreement with their accessibility detected in DNase-seq and ATAC-seq experiments, the 

agreement with DNase-seq data being particularly strong. The same behavior is reproduced for all 

chromosomes in two different cell types. 
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Figure 2.2 GNM-predicted mobilities of chromosomal loci in GM12878 show good agreement with data from 

chromatin accessibility experiments. (A-C) Mobility profiles (MSFs of loci, blue) obtained from GNM analysis of 

the equilibrium dynamics of chromosomes 1, 17, and X, respectively, are compared to the DNA accessibilities probed 

by ATAC- (yellow) and DNA-seq (red) experiments. GNM results are based on 500 slowest modes. 𝒓𝟏  is the 

Spearman correlations between GNM predictions and DNase-seq experiments; and 𝒓𝟐 is that between GNM and 

ATAC-seq. (D) Spearman correlations between theory and experiments for all chromosomes. See (Sauerwald, et al., 

2017) for more details. 
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2.1.2.2 Robustness of GNM results 

These results for two different types of cell lines show that the mobility profiles predicted 

by the GNM for the 23 chromosomes accurately capture the accessibility of gene loci. The 

agreement with experimental data lends support to the applicability and utility of the GNM for 

making predictions on chromatin dynamics. The current results were obtained by using subsets of 

500 GNM modes for each chromosome, which essentially yield the same profiles and the same 

level of agreement with experiments as those obtained with all modes (Figure 2.3). The use of a 

subset of modes at the LF end of the spectrum improves the efficiency of computations, without 

compromising the accuracy of the results.  

Computations repeated for different levels of resolution (from 5 to 50 kilobases (kb) per 

bin) also showed that the results are insensitive to the level of coarse-graining (Figure 2.4), which 

further supports the robustness of GNM results. We note that all results are obtained by adopting 

the vanilla coverage (VC) normalization for Hi-C data. Computations repeated with two alternative 

normalization schema, square-root VC (Rao, et al., 2014) and Knight-Ruiz (Knight and Ruiz, 2013) 

normalization, showed a significant decrease in the level of agreement with experimental data 

regardless of the number of modes included in the GNM computations and the underperformance 

of these schema became particularly pronounced in the case of high resolution data, in support of 

the VC normalization adopted here (Figure 2.7; see Section 2.1.4.2 for more details). 

This analysis demonstrates that the GNM results are robust to model parameters such as 

the number of selected modes. A small subset of global modes (e.g. a few hundreds) provide an 

adequate description of the gene loci fluctuation profile. 
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Figure 2.3 Mobility profiles computed using different subsets of GNM modes show the robust convergence of 

results with a small subset of modes. (A-C) Comparisons between experimental data and MSFs obtained using 10, 

100, and 500 GNM modes. (D) Spearman correlations between experimental accessibility and computationally 

predicted mobility profiles obtained with different numbers of modes. (E) Spearman correlations between MSFs 

computed from slowest k modes and k+1 modes. Abscissa are in logarithmic scale in panels D and E. The correlation 

levels off at around a few hundreds of modes, showing that the addition of higher modes does not practically change 

the predicted MSFs, and a small subset of ~500 modes can be efficiently used for evaluating the MSFs (adapted from 

(Sauerwald, et al., 2017)). 
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Figure 2.4 Mobility profile of GM12878 chromosome 17 predicted by the GNM based on Hi-C maps at different 

resolutions. The three panels display the correlations between chromatin accessibility data (ATAC and DNase-seq) 

and GNM-predicted fluctuation profiles based on the Hi-C contact map for chromosome 17 at (A) 50kb, (B) 10kb, 

and (C) 5kb resolution. GNM results are computed using 500 lowest-frequency modes. The level of agreement 

between computational predictions and experimental observations is insensitive to the resolution of experimental data. 

This figure is adapted from (Sauerwald, et al., 2017). 
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2.1.2.3 Loci pairs separated by similar genomic distances exhibit differential levels of 

dynamic coupling, consistent with ChIA-PET data 

As presented in the previous Chapter, the GNM is a powerful tool for evaluating the cross-

correlations between the movements of the network nodes. Here we examined what type of cross-

correlations between the spatial displacements of gene loci would be predicted by the GNM.  

Figure 2.5 displays the covariance map generated for the coupled movements of the loci on the 

chromosome 17 of GM12878 cells. Panel A displays the cross-correlations (see equation 2.5) 

between all loci-pairs as a heat map. Diagonal elements are the MSFs (presented in Figure 2.2C). 

The blocks along the diagonal (outlined by dashed yellow boxes) indicate loci of different sizes 

that form strongly coupled clusters. The red dashed boxes indicate the pairs of regions exhibiting 

weak correlations despite genomic distances of several megabases. The curve along the upper 

abscissa in Figure 2.5A shows the average cross-correlation of each locus with respect to all others; 

the peaks indicate the regions tightly coupled to all others, probably occupying central positions 

in the 3D architecture. Results for other chromosomes can be found in Supplementary Figure S12 

in (Sauerwald, et al., 2017). The covariance map is highly robust and insensitive to the resolution 

of the Hi-C data. The results in Figure 2.5A were obtained using all 15,218 nonzero modes 

corresponding to 5 kb resolution representation of the chromosome 17. Calculations repeated with 

lower resolution data (50 kb) and fewer modes (500 modes) yielded covariance maps that 

maintained the same features (data not shown; see Supplementary Figure S13 in (Sauerwald, et al., 

2017)). 

Owing to their genomic sequence proximity, the entries near the main diagonal of the 

covariance map tend to show relatively high covariance values (colored yellow-to-brown; Figure 

2.5A). Note that even the close vicinity of the diagonals (e.g. loci intervals of ≥200) represents (at 
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5 kb resolution) genomic loci separated by >1 Mb. The covariance map clearly shows that there 

are strong couplings between loci separated by a few megabases. We show an example of such 

regions in Figure 2.5B. While the loci pairs located in the dark red band along the diagonal appear 

all to exhibit strong couplings, a closer examination reveals differential levels of cross-correlations 

that are in good agreement with the data from Chromatin Interaction Analysis by Paired-End Tag 

Sequencing (ChIA-PET) experiments (Heidari, et al., 2014). The “long-range” interactions 

identified by ChIA-PET are indicated in panel B by red dots (close to the diagonal). These are 

interacting loci separated by several hundreds of kb. We selected background pairs separated by 

the same 1D distance, on both sides of the ChIA-PET pair, and compared the cross-correlations 

predicted for the two sets along each chromosome (Figure 2.5C). The background pairs (blue bars) 

show weaker GNM cross-correlations compared to the ChIA-PET pairs (red bars) although they 

are separated by the same genomic distance along the chromosome.  

Similar statistical analysis repeated for all 23 chromosomes showed that the cross-

correlations between pairs of loci identified by ChIA-PET experiments were greater than those of 

background pairs separated by the same genomic distance on every chromosome, with all p-values 

being less than 10−19 (two-sided t-test). 
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Figure 2.5 Covariance map computed for chromosome 17 and comparison with ChIA-PET data and contacts 

from Hi-C experiments in GM12878.(A) Covariance matrix computed for chromosome 17, color-coded by the 

strength of cross-correlation between loci pairs (see the color bar on the left). The curve on the upper abscissa shows 

the average overall off-diagonal elements in each column, which provides a metric of the coupling of individual loci 

to all others. The blue bands correspond to the centromere, where there are no mapped interactions. (B) Close-up view 

of a region along the diagonal. Red dots near the diagonal indicate pairs (separated by ~100 kb) identified by ChIA-

PET to interact with each other; nearby blue points are control/background pairs. (C) Stronger cross-correlations of 

ChIA-PET pairs compared to the background pairs. (D) Dependence of cross-correlations on the number of contacts 

observed in Hi-C experiments. A broad distribution is observed, indicating the effect of the overall network topology 

(beyond local contacts) on the observed cross-correlations. (E) Loci pairs exhibiting anti-correlated (same direction, 

opposite sense) movements usually have fewer contacts, compared to those exhibiting correlated (same direction, 

same sense) pairs of the same strength. This figure is adapted from (Sauerwald, et al., 2017). 



 69 

2.1.2.4 Cross-correlations between loci motions encoded by chromosomal network topology 

In general, loci-loci cross-correlations become weaker with increasing distance along the 

chromosome, and some pairs show anticorrelations (i.e. move in opposite directions; see color bar 

in Figure 2.5A). Yet, we can distinguish distal regions that exhibit notable cross-correlations in 

the spatial movements (off-diagonal lighter-colored blocks). The levels of cross-correlations do 

not necessarily need to scale with the interaction strengths between the correlated loci (or number 

of contacts detected by Hi-C). On the contrary, a broad range of cross-correlations is observed for 

a given number of contacts, indicating that the observed correlations are global properties defined 

by the entire network topology and reflect the collective behavior of the entire structure.  

Figure 2.5D displays the computed cross-correlations as a function the number of contacts, 

showing that some pairs of loci display much stronger correlations revealed by the GNM than 

others that make more Hi-C contacts. Figure 2.5E shows that the anticorrelated pairs of loci (blue) 

usually have fewer contacts than those (red) exhibiting positive cross-correlations of the same 

strength. This analysis thus shows that gene loci pairs which exhibit the same frequency of contacts 

in Hi-C experiments may have stronger or weaker cross-correlations in their spatial movements 

depending on the overall topology of the network. 

2.1.2.5 Dynamically correlated distal regions exhibit higher co-expression 

The GNM covariance map further shows the existence of correlations between the 

movements of farther apart (>10 Mb) regions. In contrast to the main diagonal, the majority of the 

off-diagonal space typically shows significantly weaker correlations. Regions in this space with 

higher than expected covariance values represent dynamically linked windows along the 

chromosome, which may represent long-range interactions. We call these pairs of windows cross-

correlated distal domains (CCDDs). To identify CCDDs, we set a threshold for each covariance 
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matrix equal to the absolute value of the minimum covariance. Treating the remaining adjacent 

pairs as edges in a graph, we then locate connected components beyond the widest section of the 

main diagonal and above the threshold that contain more than one bin pair, and find the maximal-

area rectangle contained within each connected region of high covariance values. These CCDDs 

are therefore pairs of regions distant along the chromosome, composed each of highly 

interconnected loci, which also exhibit relatively high cross-correlations compared to other regions 

of similar genomic separation. Previous methods for identifying long-range chromatin interactions 

(Rao, et al., 2014; Sanyal, et al., 2012; Xu, et al., 2016; Yaffe and Tanay, 2011) have focused on 

locating individual points of interaction within 1–2 Mb apart, while CCDDs tend to be on the order 

of tens of Mb apart and supported by groups of interacting loci. 

The covariance matrix results from the overall coupling of the complete network of loci 

upon inversion of the Kirchhoff matrix for the entire chromosomes. As such, it permits to capture, 

or better discriminate, the long-range correlations resulting from the complex topology of loci-loci 

contacts, as opposed to the raw data on local loci-loci contacts described by Hi-C maps. The 

covariance data also permit the identification of an appropriate threshold value for defining the 

significant CCDDs, consistent with the cooperative couplings within the entire structure, including 

distal correlations. There is no correspondingly clear threshold value for raw Hi-C data, which 

makes identifying these regions difficult without covariance matrices. Highly distant gene pairs 

within CCDDs show greater co-expression values than gene pairs outside these regions (p-value 

< 10−7 using the background defined below). For each CCDD, we identified the genes contained 

within the region and measured the co-expression of each gene pair from distant chromosomal 

segments. The background gene pairs were gathered from outside the CCDDs but with similar 
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genomic separation as the CCDD gene pairs. We computed gene expression correlations from 212 

experiments (see Section 2.1.4.5). 

 

Figure 2.6 Co-expression is significantly enriched in CCDDs. In each histogram, the yellow distribution represents 

gene pairs from CCDDs and the blue distribution represents background gene pairs. All are showing the normalized 

number of gene pairs with a particular Pearson expression correlation for gene pairs within a distance of (A) 0-25 Mb, 

(B) 25-50 Mb, (C) 50-75 Mb, and (D) 75-100 Mb. The more distant pairs (50-100 Mb apart) within the CCDDs show 

enriched expression correlations as compared to the background pairs. There were not enough gene pairs within 

CCDDs more than 100Mb apart to draw significant conclusions. This figure is adapted from (Sauerwald, et al., 2017). 

 

As seen in Figure 2.6, the CCDDs containing specifically gene pairs that are between 50 

and 100 Mb apart are much more highly co-expressed than background gene pairs at the same 

genomic distance (p-value < 10−19 ; see Section 2.1.4.5 for details). This indicates that the 

couplings between these genes, as revealed by GNM, may often be biologically important. CCDDs 

at smaller genomic distance (<50 Mb) exhibit similar co-expression distributions to the 
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background gene pairs, likely due to the effect of shorter genomic distances including more co-

regulated genes within the background. Beyond distances of 100Mb, there are not sufficient gene 

pairs within CCDDs to draw any meaningful conclusions. Dynamically coupled regions that are 

very distant sequentially but biologically linked through gene expression are therefore identifiable 

using the GNM covariance matrix. 

Overall, the co-expression enrichment of CCDDs supports the significance of the GNM-

predicted distal correlations and showed that the genes that are distant along the linear sequence 

may be co-regulated through spatial (re)arrangement of corresponding genomic regions that brings 

the genes into spatial proximity. 

2.1.3 Discussion  

The GNM is particularly adept at predicting topology-dependent dynamics and identifying 

long-range correlations - the type of modeling that has been a challenge in chromatin 3D modeling 

studies. Hi-C matrices, in which each entry represents the frequency of contacts between pairs of 

genomic loci, can be interpreted as chromosomal contact maps similar to those between residues 

adopted in the GNM representation of proteins.  

There are several differences between the Hi-C and GNM 𝚪 matrices. The first is the size: 

human chromosomes range from ~50 to 250 million base pairs. When binned at 5kb resolution, 

this leads to 10,000 – 50,000 bins per chromosome. GNM provides a scalable framework, where 

the collective dynamics of supramolecular systems represented by 104-105 nodes (such as the 

ribosome or viruses) can be efficiently characterized. GNM may therefore be readily used for 

analyzing intrachromosomal contact maps at high resolution. The second is the precision of the 

data. Experimental methods for resolving biomolecular structures such as X-ray crystallography, 
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NMR, and even cryo-electron microscopy yield structural data at a much higher resolution than 

current genome-wide studies. The Hi-C method is population-based (derived from hundreds of 

thousands to millions of cells), noisy, incomplete (e.g. unmapped regions). However, the GNM 

results are usually robust to variations in the precision/resolution of the data on a local scale, and 

require information on only the overall contact topology rather than detailed spatial coordinates, 

which supports the utility of Hi-C data and applicability of the GNM. Third, the chromatin is likely 

to be less ‘structured’ than the structures at the molecular level, and it is likely to sample an 

ensemble of conformations that may be cell- or context-dependent. Single-cell Hi-C experiments 

have indicated cell-cell variability in chromosome structure on a global scale, though the domain 

organization at the megabase scale is largely conserved (Nagano, et al., 2013). Therefore, 

structure-based dynamic features may be assessed at best at a probabilistic level.  

In this work, we analyzed the chromosome dynamics using an elastic network model, 

GNM, which has found wide applications in molecular structural biology. Though other models 

(Chen, et al., 2015; Chen, et al., 2016) have examined genome structure through graph theoretical 

methods, the inclusion of the complete spectrum of motions in the analysis provides a more 

realistic picture of chromosomal dynamics in accord with a wealth of experimental data. GNM is 

a mathematically rigorous approach, based on first physical principles, with intuitive 

interpretations and well-established theoretical and physical underpinnings. It enables us to 

evaluate, compare and consolidate a broad range of biologically significant genome-wide 

properties with the help of a unified model. These properties include the evaluation of the MSFs 

of loci (using data at 5 kb resolution), the discrimination of short-range regulatory interactions 

among close-neighboring loci, and the identification of dynamically coupled CCDDs. These 

respective predictions were shown to satisfactorily compare with data from chromatin accessibility 
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(DNase-seq and ATAC-seq) and ChIA-PET experiments, and predictions from previous 

computational methods. The agreement with experiments not only validates the applicability of 

the GNM, but also provides a new set of independent data, which consolidate those from 

experiments, especially when the experimental data themselves exhibit some differences (see 

Figure 2.2D). The application to two different cell types also showed that GNM data comply with 

cell-cell variability. The identification of CCDDs allowed us to locate spatially coupled co-

expressed regions of the genome which are vastly distant (over 50 Mb apart) along the 

chromosomes, and this information cannot be found from gene expression or other experimental 

data alone. 

Due to the fact that the Hi-C experiments suffer from several systematic biases, we chose 

Vanilla Coverage (VC) normalization to eliminate such biases. The choice of VC normalization 

was based on the satisfactory correlation between theoretical predictions and chromatin 

accessibility (see Section 2.1.4.2) (Duan, et al., 2010; Rao, et al., 2014). We further assessed the 

impact of the simplest bias, GC content, on our results. In order to verify that the agreement with 

experimental data was not simply due to obvious covariates, we measured the correlation between 

GC content and both DNase-seq and ATAC-seq. On all chromosomes, the MSFs from GNM 

exhibited higher correlation with both experimental datasets than GC content. The correlation 

between GC content and accessibility data averaged to 0.606 and 0.278 for DNase-seq and ATAC-

seq, respectively, compared to 0.800 and 0.552 achieved by the GNM-predicted MSFs. Co-

expression enrichment of CCDDs was maintained after bias-corrected RNA-seq quantification 

(data not shown; see Supplementary Figure S17 in (Sauerwald, et al., 2017)), also supporting the 

significance of the GNM predicted distal correlations. Future efforts may focus on deploying 
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methods that can remove bias factors from both Hi-C and accessibility data, in order to fully 

separate the capabilities of GNM from simple covariates. 

In general, the evaluation of dynamic features using structure-based models becomes 

prohibitively expensive with increasing size of the structure, hence the development of coarse-

grained models and methods for exploring supramolecular systems dynamics. The chromatin size 

is well beyond the range that can be tackled efficiently by structure-based methods and realistic 

force fields. The applicability of the GNM to modeling chromatin dynamics originated in two 

fundamental features: its scalability and its ability to solve for collective fluctuations and cross-

correlations based on network contact topology, exclusively. No knowledge of structural 

coordinates was needed, nor did we predict structural models - a task that has been undertaken 

successfully by recent studies (Ay, et al., 2014; Bau and Marti-Renom, 2011; Bau, et al., 2011; 

Rousseau, et al., 2011; Stevens, et al., 2017; Varoquaux, et al., 2014; Zhang and Wolynes, 2015). 

We characterized the collective dynamics encoded by the overall chromosomal contact topology, 

driven by entropy, consistent with the ensemble-based properties of the genome structure. MSFs 

predicted by the GNM represent ensemble averages over thermal fluctuations (see Section 2.1.4.3), 

and reflect population-averaged behavior examined in the Hi-C experiments, hence their 

applicability to population-average based experiments such as ATAC-seq and DNase-seq. 

2.1.4 Methods 

2.1.4.1 Data preprocessing 

Our Hi-C data came from the large, high-resolution Hi-C dataset (GEO accession: 

GSE63525), pre-processed using VC normalization (Rao, et al., 2014). We used Hi-C data at 5kb 

resolution unless otherwise noted. DNase-seq data were collected as part of the ENCODE project 
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(ENCFF000SKV for GM12878 cells, ENCFF740JVK for IMR90 cells) (Consortium, 2004). The 

ATAC-seq measurements (Buenrostro, et al., 2013) were also obtained for GM12878 and IMR90 

cells (GEO accessions GSM1155959 and GSM1418975, respectively). For both experimental 

datasets, called peaks were binned to the same resolution as the Hi-C data by adding all peak values 

within each bin. The binned data were then smoothed using a moving average with a window size 

of 200 kb. The long-range interactions from ChIA-PET were from ENCODE (ENCFF002EMO) 

(Heidari, et al., 2014). We used a two-sample t-test assuming unequal variances to quantify the 

difference between the covariance distributions of ChIA-PET and background interactions. 

2.1.4.2 Hi-C Data Normalization 

We tested three types of normalization methods applied to the Hi-C contact map: VC 

normalization (referred to as VCnorm), square-root VC normalization (referred to as sqrtVC) 

(Rao, et al., 2014) and Knight-Ruiz normalization (referred to as KRnorm) (Knight and Ruiz, 

2013). All three methods aim to eliminate the so-called “one-dimension bias” (Rao, et al., 2014). 

We found that the GNM performed best on Hi-C maps normalized by VCnorm when benchmarked 

against experimental data (Figure 2.7). Not only are the correlations with the chromatin 

accessibility lower, but also the square-fluctuations become increasingly flatter upon inclusion of 

a higher number of modes in the calculations when KRnorm or sqrtVC are applied on the contact 

map. In the extreme case, when all the modes are used, the square fluctuations become almost 

completely flat along the chromosome using KRnorm. This is because KRnorm ensures that every 

row and column sum up to 1. As a consequence, all loci become almost equally constrained and 

the differences in their square fluctuations are suppressed. 

In addition, computations with the three normalization methods were repeated at different 

resolutions, and VCnorm yielded the most robust agreement between theoretically predicted MSFs 
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and experimentally observed accessibilities across all resolutions. Both KRnorm and sqrtVC 

showed poor correlations at high resolution (5kb) (Figure 2.7). Furthermore, VCnorm showed the 

expected improvement in correlation using increasing number of modes included in the analysis, 

while KRnorm or sqrtVC led to inconsistent results, even at 50kb resolution (Figure 2.7). Due to 

the better performance across resolutions and numbers of modes, shown by the agreement with 

experimental data, we chose VC normalized contact maps to perform further analyses. 

 

Figure 2.7 The scanning of correlations between chromatin accessibility and square fluctuations calculated as 

a function of the number of modes included in the GNM analysis. The rows compare the correlations at different 

resolutions, and the columns compare those computed from three different normalization methods. Note the poor 

performance of KRnorm and SQRTVCnorm, especially in the case of high resolution data (5kb). This figure is adapted 

from (Sauerwald, et al., 2017). 
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2.1.4.3 Extension of the GNM to modeling chromatin dynamics 

The GNM was first proposed in 1997 for analyzing protein dynamics (Bahar, et al., 1997). 

Similar to the ANM, the GNM describes the structure as a network of nodes connected by elastic 

springs. The two models differ in that the GNM uses exclusively the inter-residue contact topology 

and ignores the 3D coordinates of the residues. Instead of using a 3n × 3n Hessian, n being the 

number of nodes in the network, the network topology in the GNM is defined by an n × n Kirchhoff 

matrix 𝚪, whose elements are 

 𝚪𝑖𝑗  =  

{
 
 

 
 

−𝛾𝑖𝑗 𝑑𝑖𝑗 ≤ 𝑑0 and 𝑖 ≠ 𝑗

0 𝑑𝑖𝑗 > 𝑑0 and 𝑖 ≠ 𝑗

− ∑ 𝛾𝑖𝑗
𝑗,𝑗≠𝑖

𝑖 = 𝑗
. (2.1) 

Here 𝛾𝑖𝑗 represents the strength or stiffness of interaction between beads i and j (or the force 

constant associated with the spring that connects them), dij is their distance separation in the 3D 

structure, and d0 is the cutoff distance for making contacts (or for being connected by a spring). 

The GNM potential is defined as  

𝑉𝐺𝑁𝑀 =
1

2
∑𝛾𝑖𝑗 (𝒅𝑖𝑗 − 𝒅𝑖𝑗

0 )
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𝑖,𝑗

=
1

2
∑𝛾𝑖𝑗 (∆𝒓𝑖 − ∆𝒓𝑗)

2

𝑖,𝑗

, (2.2) 

where 𝛥𝒅𝑖𝑗 and 𝛥𝒅𝑖𝑗
0  represent the distance vectors, as opposed to scalars in equation 1.1, between 

node i and j. This difference allows the GNM to take account of the energy changes incurred during 

internal rotational motions which are neglected in the ANM. 𝛥𝒓𝑖 and Δ𝒓𝑗 are the displacements of 

node i and j from their equilibrium positions in 3D. The GNM potential can be also represented in 

a matrix form using the arrays of x, y, z components of 𝛥𝒓’s, i.e. Δ𝒙 = [Δ𝑥1, Δ𝑥2, … , Δ𝑥𝑛]: 

𝑉𝐺𝑁𝑀 =
1

2
(Δ𝒙𝑇𝚪Δ𝒙 + Δ𝒚𝑇𝚪Δ𝒚 + Δ𝒛𝑇𝚪Δ𝒛). (2.3) 
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Assuming the fluctuations of the network nodes to be isotropic, their probability 

distribution can be expressed using a Boltzmann factor as 

𝑝(Δ𝒓) = 𝑝(Δ𝒙)𝑝(Δ𝒚)𝑝(Δ𝒛)~exp {−
3

2𝑘𝐵𝑇
𝛥𝒙𝑇𝜞𝛥𝒙} , (2.4) 

where 𝑘𝐵  and 𝑇  are the Boltzmann constant and absolute temperature. Obviously, 𝑝(Δ𝒓) is a 

multivariate Gaussian distribution which means that the GNM assumes that the network nodes 

normally fluctuate around their equilibrium positions. 

In the application to proteins, the beads represent individual residues, their positions are 

identified with those of the α-carbons, and a uniform force-constant 𝛾𝑖𝑗 = 𝛾 is adopted for all pairs 

(1 ≤ i, j ≤ n), with a cutoff distance of d0 ~ 7Å. In the extension to the chromatin, we redefine the 

network nodes and springs such that beads represent genomic loci consistent with the resolution 

of the Hi-C data. We set 𝛾𝑖𝑗 equal to 𝛾𝑧𝑖𝑗 where 𝑧𝑖𝑗 is the Hi-C contact counts reported for the pair 

of genomic bins (Levy-Leduc, et al., 2014) i and j after normalization by vanilla coverage (VC) 

method (Rao, et al., 2014), and 𝛾 is taken as unity. The element 𝚪𝑖𝑗 is thus taken to be directly 

proportional to the actual number of physical contacts between the loci i and j, which permits us 

to directly incorporate the strength of interactions in the network model. The parameter 𝛾 

uniformly scales all elements, physically representing the strength (or spring constant) of 

individual contacts.  

2.1.4.4 Prediction of the dynamics of genomic loci using the GNM 

The covariance of the multivariate Gaussian distribution, 𝐂𝑖𝑗 , between the spatial 

displacements of loci i and j can be obtained from the pseudoinverse of 𝚪, as 

𝐂𝑖𝑗 = ⟨𝛥𝒓𝑖 . Δ𝒓𝑗⟩~ [𝚪
−𝟏]𝑖𝑗 =∑

1

λ𝑘

𝑛−1

𝑘=1

 [𝒗𝑘 𝒗𝑘
T]
𝑖𝑗
, (2.5) 
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where the summation is performed over all modes of motion intrinsically accessible to the network, 

obtained by eigenvalue decomposition of 𝚪. The respective frequencies and shapes of these modes 

are given by the n - 1 non-zero eigenvalues (𝜆𝑘 ) and corresponding eigenvectors (𝒗𝑘 ). The 

eigenvector 𝒗𝑘 represents the normalized displacements of the n loci along the kth mode axis, and 

1/𝜆𝑘 rescales the amplitude of the motion along this mode. In the Hi-C map there are regions 

where no cross-linked DNA fragments can be mapped. These unmapped regions are isolated from 

the system, and their existence may lead to multiple zero-eigenvalue modes. These unmapped 

regions are not constrained by other loci, so they may cause large fluctuations that obscure the 

signal from other regions. These extra zero-eigenvalue modes and unphysically large fluctuations 

were removed by discarding the unmapped regions. Note that the removal of the unmapped regions 

will not cause disconnections because the chromosomes are highly compact, so the loci next to the 

unmapped regions remained connected to the loci located at the other end of the region. 

The ith diagonal element of 𝐂, ⟨𝛥𝒓𝑖
2⟩, is the predicted mean-square fluctuation (MSF) of the 

ith locus under physiological conditions, which is inversely proportional to the elastic spring 

constant . The MSF profiles thus provide a measure of the relative size of motions of the different 

gene loci (irrespective of ), exclusively defined by the particular loci-loci contact topology. They 

represent ensemble averages over all accessible motions to a given locus. 

Cross-correlations in the GNM are easily obtained from the 𝑛 × 𝑛 covariance matrix as 

𝐂̃𝑖𝑗 =
𝐂𝑖𝑗

√𝐂𝑖𝑖𝐂𝑗𝑗
, (2.6) 

so that the covariances are normalized by the MSFs of corresponding loci. This is particularly 

helpful in mitigating the cases where some loci experience extremely high or low fluctuations that 
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dominate the covariances with other loci. The described calculations are summarized and depicted 

schematically in Figure 2.8. 

 

Figure 2.8 Schematic description of the GNM methodology applied to Hi-C data. The inter-loci contact data 

represented by the Hi-C map (upper left, for n genomic bins (loci)) is used to construct the GNM Kirchhoff matrix, Γ 

(top, middle). Eigenvalue decomposition of Γ yields a series of eigenmodes which are used for computing the 

covariance matrix (lower, right), the diagonal elements of which reflect the mobility profile of the loci (bottom, left), 

and the off-diagonal elements provide information on locus-locus spatial cross-correlations. 𝒖𝒌, kth eigenvector; 𝝀𝒌, 

kth eigenvalue; m, number of nonzero modes, starting from the lowest-frequency mode, included in the GNM analysis 

(m ≤ n-1). In the present application to the chromosomes, n varies in the range 10,248 ≤ n ≤ 49,850, the lower and 

upper limits corresponding respectively to the respective chromosomes 22 and 1. This figure is adapted from 

(Sauerwald, et al., 2017). 

2.1.4.5 Evaluation of co-expression levels 

In order to calculate co-expression values for genes in this cell type, we downloaded every 

publicly available RNA-seq experiment on GM12878 cells from the Sequence Read Archive 
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(Kodama, et al., 2012), which gave 212 data sets. These raw read data were quantified using 

Salmon (Patro, et al., 2017), resulting in 212 transcripts per kilobase million (TPM) values for 

every gene. Quantification was performed with and without bias correction, with qualitatively 

similar results. Co-expression was then measured as the Pearson correlation of the two vectors of 

TPM values for a given gene pair. 
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2.2 Identification of Hierarchical Chromosomal Domains 

2.2.1 Introduction 

Spatial organization of the genome is largely compartmental and hierarchical. Instead of 

mixing with each other, each chromosome is organized by itself in different chromosomal 

territories (Cremer and Cremer, 2010; Meaburn and Misteli, 2007; Mirny, 2011). Inside each 

chromosome, the loci that have different interaction patterns can be generally categorized into 

transcriptionally active and inactive regions, i.e. A and B compartments, respectively (Lieberman-

Aiden, et al., 2009; Rao, et al., 2014). Each compartment is typically ~100Mb in size and can be 

further segregated into smaller parts called topologically associating domains (TADs), which are 

nested substructures and varied in size (Dixon, et al., 2012; Rao, et al., 2014; Rowley and Corces, 

2018). Based on the strengths of inter- and intra-domain interactions, the boundaries of these 

domains show different levels of clarity. Architectural proteins are highly enriched at domain 

boundaries, especially at the strongly distinguishable boundaries (Gomez-Diaz and Corces, 2014; 

Van Bortle, et al., 2014).  

Significant progress has been made towards computationally identifying these domains 

(An, et al., 2019; Durand, et al., 2016; Filippova, et al., 2014; Rao, et al., 2014; Serra, et al., 2017; 

Weinreb and Raphael, 2016; Yan, et al., 2017; Zhan, et al., 2017); however, many computational 

methods focus on identifying the domains at a given scale or a given level of resolution, such that 

a comprehensive characterization of the hierarchical organization of the multiscale genome 

(simultaneously revealing TADs, A/B compartments and other levels) has been elusive.  

The intrinsic dynamics identified by the GNM includes a spectrum of independent spatial 

movements, i.e. normal modes. Each mode k is characterized by two properties: its vibrational 
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frequency and “shape”, described by the respective kth eigenvalue and eigenvector of the Kirchoff 

matrix  representing the network topology.  The frequencies are indicative of the relative time 

scales of the modes, the low (high) frequency modes usually corresponding to global (local) 

motions that involve large (small) parts of the structure. Therefore, the frequencies in the GNM 

can be regarded as a “resolution parameter” that defines the granularity of the structure whose 

dynamics we are examining. Notably, the GNM shares a very similar mathematical formulation 

with spectral clustering (see Appendix A), and so the GNM modes can be readily used to identify 

chromosomal domains. However, despite the physical insights provided by the GNM, the first k 

modes merely yield k clusters and do not necessarily guarantee a hierarchical or nested division as 

k increases, which may pose a challenge for obtaining a hierarchical view based on clusters 

identified using different k. 

To address this problem, we developed a network analysis framework, termed Hierarchical 

community Decoding Framework (HiDeF). HiDeF enables us to determine the hierarchical 

relationships among the structural domains identified by the GNM modes.  (see Section 2.2.4.4). 

Taking a Hi-C contact map as input, chromosomal domains are identified at many resolutions, 

after which containment relationships are systematically inferred for pairs of domains. The result 

is a directed acyclic graph (DAG) representing the inferred hierarchical domains, in which vertices 

at increasing distances from the root represent domains of increasing granularity. This framework 

has parameters which allow for flexible control of model complexity: the output hierarchy can be 

simple, prioritizing only the strongest patterns in data, or complex, retaining increasing numbers 

of auxiliary patterns that arise during the resolution sweep.  

We applied this framework, described in detail in the Methods subsection 2.2.4.4, to the 

GNM analysis of Hi-C chromatin interaction data. The hierarchical representation of these overall 
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network structure uncovered significant structural properties relevant to functional entities, and 

yielded novel insights into the spatial organization of genomes beyond that often described in 

terms of compartments and/or TADs. 

2.2.2 Results 

2.2.2.1 Different types of (sub)compartments show differentiated levels of mobility and 

accessibility 

A/B compartments were first discovered in an early Hi-C study of the human chromosomes 

(Lieberman-Aiden, et al., 2009). It was found that the whole genome can be split into two spatial 

compartments that correspond to the open and closed chromatin (labeled as compartments A and 

B, respectively) based on the distribution of loci along the first principle axis/component deduced 

from a PCA analysis of processed Hi-C contact matrices. Regions within each type of the 

compartment tend to interact with others of the same type and much less frequently with others of 

the different type. Later, with advances in experimental techniques and availability of higher 

resolution Hi-C data, six subtypes (A1, A2, B1, B2, B3, B4) of compartments were discovered 

based on their long-range interaction patterns, both within and between chromosomes (Rao, et al., 

2014).  

Here we examined the chromatin mobility (predicted by the GNM) and accessibility 

(measured by ATAC- or DNase-seq experiments) of the genomic regions labeled as open 

(compartment A) and closed chromatin (compartment B). We confirm that the regions in 

compartment A experience significantly greater mobility and accessibility than those in 

compartment B (p-value < 0.01, see Figure 2.9).  
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Figure 2.9 Chromatin mobility and accessibility of regions belonging to different subcompartments. The box 

plots show the distributions of (A) GNM-predicted MSFs, (B) ATAC-seq measured accessibility, (C) DNase-seq 

measured accessibility of loci grouped based on six compartmental subtypes. The mean value, standard deviation, and 

min-max range of each distribution are indicated by the red horizontal line, the blue box, and the black bars, 

respectively. Results were obtained for GM12878 cell line. (D) Replication times of different compartments. The 

heatmap shows the enrichment of regions belonging to different types of compartments being replicated during G1, 

S1, S2, S3, S4, and G2 phases of the cell cycle. This panel is adapted from (Rao, et al., 2014).  

 

A closer inspection into the subtypes of compartments revealed heterogeneous chromatin 

mobility and accessibility among regions of different subtypes within the same compartment type. 

Specifically, compartment A2 seems to be more rigid (compactly folded) than A1, and 

consequently experiences loci mobility (supported by GNM-predicted MSFs; Figure 2.9A) and 
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accessibility (supported by DNase-seq but not ATAC-seq; Figure 2.9B and C) almost as low as 

those of compartment B. This is also supported by the finding that “A2 is more strongly associated 

with the presence of H3K9me3 than A1” (Rao, et al., 2014), as H3K9me3 is often associated with 

heterochromatin. Among the subtypes of compartment B, B2 and B3 were shown to be the most 

rigid subtypes, consistent with the finding that they are enriched at nucleolus-associated domains 

(NADs) or lamina-associated domains (LADs). B1 and B4, on the other hand, showed relatively 

enhanced mobilities and accessibilities with respect to other B subtypes. Overall, the mobility and 

accessibility profiles of compartment subtypes coincide with replication times of the regions in 

that the more mobile (accessible) regions tend to replicate sooner in the cell cycle and vice versa 

(Figure 2.9D), suggesting that the spatial mobility/accessibility is an important property that 

affects the regulation of gene transcriptional activities. 

2.2.2.2 Domains identified by GNM at different granularities correlate with known 

structural features 

Compartments are multi-megabase-sized regions in the genome characterized by known 

genomic features such as gene presence, levels of gene expression, chromatin accessibility, and 

histone markers (Lieberman-Aiden, et al., 2009; Rao, et al., 2014). As mentioned above, Hi-C 

experiments have revealed two broad classes of compartments: “A” compartments are generally 

associated with active (open) chromatin, containing more genes, fewer repressive histone markers, 

and more highly expressed genes; and “B” compartments are associated with less accessible DNA 

(closed chromatin), have sparser genes, and exhibit higher occurrence of repressive histone marks. 

TADs (Dixon, et al., 2012) are finer resolution groupings of the chromatin distinguished by denser 

self-interactions and associated with characteristic patterns of histone markers and CCCTC-

binding factor (CTCF) binding sites near their boundaries. The multiscale nature of GNM 
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spectrum allows for exploring the hierarchical levels of organization within the system. It is of 

interest to examine to what extent these two levels can be detected by GNM analysis of chromatin 

structural hierarchy. 

As presented above, the GNM LF modes reflect the global dynamics of the 3D structure, 

and increasingly more localized motions are represented by higher frequency modes. We identified 

domains from subsets of GNM modes that group regions of similar dynamics (see Section 2.2.4.3). 

In order to verify whether these GNM-predicted domains correspond to TADs at various 

resolutions, we used the TAD caller Armatus (Filippova, et al., 2014), varying its “γ” parameter 

that controls resolution. We refer to this latter parameter as the Armatus γk, to distinguish it from 

the force constant in the GNM. We measured the agreement between GNM domains and TADs 

using the variation of information (VI) distance, which computes the agreement between two 

partitions, and where a lower value indicates greater agreement (Meilă, 2003). For more 

information on the VI metric, see Section 2.2.4.2. For each choice k of number of modes adopted 

for GNM partitioning of the chromatin structure, the Armatus γk that minimizes the VI distance 

between the GNM domains and the Armatus domains was selected. This resulted in a mean VI 

value of 1.251 for optimal parameters, which is significantly lower than the VI distance of 1.946 

obtained when the GNM domains were randomly re-ordered along the chromosome and compared 

back to the original TADs (empirical p-value < 0.01 for all chromosomes). Figure 2.10A, left 

panel shows the comparison for each chromosome between (i) the VI values obtained for the 

optimally matched TAD boundaries with the GNM domains and (ii) the distribution of VI values 

obtained upon random shuffling of domains. As the number of included GNM modes increases, γk 

monotonically increases as well, showing that the number of GNM modes is a good proxy for the 

scale of chromatin structures sought.  
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Figure 2.10 Comparison of GNM domains with TADs and Compartments. Results were obtained for (A) 

GM12878 and (B) IMR90. Variation of information (VI) measures for comparing GNM domains with TADs (left 

panels) and compartments (right panels). Lower VI indicates greater agreement. Box plots show the distribution of 

VI values obtained by randomly shuffling GNM domains and comparing to original TAD and compartment 

boundaries. Blue dots represent the VI value of the true GNM domains with TADs and compartments, respectively. 

This figure is adapted from (Sauerwald, et al., 2017). 

 

Furthermore, the GNM predicts large-scale global motions using a relatively low number 

of modes, so we compared these regions discerned in LF modes to larger-scale compartments. We 

found that the first 5-20 non-zero modes correspond fairly well to compartments. For each 
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chromosome, we selected the number of modes that produced the smallest VI distance between 

Lieberman-Aiden compartments and GNM domains. This yielded a mean optimal VI distance of 

1.771 (using an average of 13 modes; Figure 2.11). This is significantly lower than the mean 

optimal VI distance of 2.088 when the locations of Lieberman-Aiden compartments are randomly 

shuffled along the chromosome, though the difference is only statistically significant for 16 of the 

23 chromosomes, with p-value equal to 0.05. The comparisons of GNM domains with 

compartments for each chromosome in GM12878 cells can be seen in Figure 2.10A, right panel. 

The same calculations were performed on IMR90 cells, with qualitatively similar results. For the 

comparisons with randomly shuffled domains on IMR90 cells, the results for only 1 chromosome 

for TADs and 3 chromosomes for compartments were statistically insignificant (Figure 2.10B).  

Figure 2.11 further shows the GNM domains found using the number of modes that 

minimizes the VI with compartments or TADs at a lower (50kb) and higher (10kb) resolution. 

Interestingly, despite having five times more modes in the higher resolution, in both cases it takes 

~35 and ~12 GNM modes to capture TAD- and compartment-like structures, respectively. The 

ability of the GNM to recapitulate both TADs and compartments - two organizational levels of 

wildly different scales - shows the flexibility and generality of the GNM approach.  
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Figure 2.11 The number of modes used to find GNM domains that minimizes the VI with compartments or 

TADs. Results were obtained using (A) 10kb and (B) 50kb resolution Hi-C data for GM12878. Upper panels show 

the results for the individual chromosomes. Lower panels show the averages and distributions of the results when all 

chromosomes are considered together. The fact that panels A and B show similar results suggests that the number of 

GNM modes used for finding compartments or TADs is insensitive to the resolution. 

2.2.2.3 Hierarchical spatial organization of the mouse genome 

In the previous sections, we have focused on analyzing the chromosomal domains at a 

given resolution. Now, equipped with the methodology that allows us to identify domains at 

multiple scales, and the aforementioned framework, HiDeF, that can infer hierarchical structure 

from multiresolution clusterings, we proceed to obtaining a hierarchical view of the spatial 

organization of the genome using the GNM modes (see Section 2.2.4.3). Hierarchical domains 

identified by HiDeF (see Section 2.2.4.4 and Appendix B) are illustrated in Figure 2.12 for mouse 

embryonic stem cells (mESC) chromosome 5, as an example. The corresponding domains 

(outlined in the lower triangle of the matrix in panel A) are found to be organized into a hierarchy 

of 15 levels/depths (see dendrogram in panel B). On the first level (the “zeroth” level merges the 
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entire chromosome into one domain), the densely packed tail (top-right part of the matrix, in panel 

A) is reasonably considered as one domain, and the loosely packed head-to-body (bottom-left to 

middle part of the matrix), as two additional domains (which might be merged into one, arguably). 

These gigantic domains are then further divided and separated into smaller and finer domains as 

the depth increases. Notably, GNM coupled with HiDeF provides a much clearer and more 

interpretable view of the nested domains than those originally identified by GNM modes alone.  

Chromosome banding is a technique used for producing a visible karyotype by staining 

condensed chromosomes (Speicher and Carter, 2005). In the most used Giemsa (G)-staining 

technique, the heterochromatin regions (closed chromatin) stain is darker, in contrast to 

euchromatin (open chromatin) which incorporates less stain and appears as light bands. The 

resulting chromosome bands or cytobands divide the chromosome into different parts, in a 

hierarchical fashion, as the nomenclature of the bands involves several levels. Typically, the first 

level defines the chromosome arms. For example, each human chromosome has two arms, i.e. a 

short arm (denoted by “p”) and a long arm (“q”), separated by the centromere. In the case of the 

mouse genome, there is only one arm (“q”) for each chromosome. Then, the arms can be further 

divided into regions denoted by capital letters and then numbers to capture more refined banding 

patterns (e.g. 5qB3.1 refers to a stained region on the long arm of chromosome 5, major G-band 

B). Even though such division by the chromosome banding can be crude (~10Mb) as compared to 

the size of compartments and TADs, and the experiment is designed to mark the parts of a 

metaphase chromosome (whereas Hi-C experiments typically operate on interphase 

chromosomes), chromosome bands still provide good experimental indications of where the open 

and closed chromatin regions are and how they are hierarchically organized (see upper diagonal 

parts of Figure 2.12 panel A and the dendrogram in panel C), which can be conveniently compared 
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with our computationally derived model. Such a comparison is illustrated in the panels D and E of 

Figure 2.12 and in Figure 2.13. 

 

Figure 2.12 Hierarchical organization of mESC chromosome 5 structure. (A) Cross-correlation map of loci 

movements. The colored lines in the upper and lower triangle of the map outline the structural domains defined by 

chromosome bands and GNM modes, respectively. The color bar on top indicates the ranges of the cytogenetic bands 

of mouse chromosome 5 (first level, e.g. qA). (B) Domain hierarchy determined by HiDeF based on GNM-identified 

domains. Each node represents a GNM domain identified by a certain number of modes and is color-coded by its most 

overlapping chromosome band. Dark shade of the color indicates low overlap (measured by containment index, see 

equation 2.10), and in the extreme cases, nodes/domains cannot be assigned to a unique chromosome band is colored 

black. (C) The implied domain hierarchy by chromosome bands. Each node represents a band/domain colored 

consistently with the color bar in panel A. (D) The first level of chromosome bands (e.g. qA) compared with the 

second level of HiDeF hierarchy. (E) The same comparison for the second level of chromosome bands and third level 

of HiDeF hierarchy. 
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Figure 2.13 Mutual information between chromosome bands and HiDeF/GNM domains defined at different 

depths. (A) Schematic showing how chromosome bands of different depths are compared with the HiDeF domains 

resolved at different depths. The “depth” starts at level 0 for both cytoband and HiDeF hierarchies (see the scale on 

the left), which represents the chromosome as an intact domain. The domains at each depth for both cases are extracted 

and processed into flat clusters of loci, which are compared between the two cases using adjusted mutual information 

(AMI). (B) Results for every pair of domains identified at depth i and j with chromosome banding or HiDeF. The 

amount of AMI is multiplied by 100 and displayed on each cell. The bottom-left cell of each matrix corresponds to 

comparing the whole chromosome with itself (domain defined at the zeroth depth) which yields an AMI of 1 (red cell). 

The comparison between the whole chromosome and any other way of domain separation yields an AMI of 0 (blue 

cells). 

 

Overall, there is an agreement between the chromosome bands and our predicted domains. 

The first two levels of the HiDeF hierarchy separate the mESC chromosome 5 into approximately 
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5-7 large clusters, which are broadly consistent with the five main chromosome bands A-G (band 

D only corresponds to a small region; see Figure 2.13A). Then we calculated the adjusted mutual 

information (AMI) as a metric to quantify the similarity between chromosome bands and 

HiDeF/GNM domains defined at different levels. The result corroborated the consistency between 

GNM/HiDeF domain separations at various levels and the experimental cytobands (Figure 2.13). 

2.2.2.4 Enrichment of architectural binding proteins at the boundaries of deeply nested 

domains 

To further understand the biological significance of the chromatin structural hierarchy, we 

compared our domain boundaries with the occupancy of several known architectural proteins in 

mammals (cohesion subunit RAD21; condensin subunits CAP-H2 and CAP-D3, CTCF, and 

transcription factor for polymerase III C (TFIIIC), see Section 2.2.4.1) in Figure 2.14 for mESC 

chromosomes 5 and 10 and Figure 2.14 for mESC chromosome 3. 

As mentioned above, architectural proteins are enriched at the chromosomal domain 

boundaries and their density/occupancy correlates with the boundary strength (Gomez-Diaz and 

Corces, 2014; Van Bortle, et al., 2014). The highly packed tail mESC chromosome 5 

(chr5:110,000,000-151,700,000, or the range 2050-3034 based on the axes’ units of 50 kbs; Figure 

2.15B), for example, appears to be enriched in architectural proteins as compared to the rest of the 

chromosome 5, consistent with the presence of a relatively high number of domain boundaries at 

that particular region. Precisely, the tail region exhibits a 15.4% increase in domain boundaries 

compared to the average density based on 536 boundaries over the entire sequence 151,700 kbs.  

A close-up view of the region chr5:37,500,000-42,500,000 (or the range 750-850 in Figure 

2.15A) further showed that the domain boundaries identified at different depths tend to co-localize 

with the architectural proteins. Based on the generated hierarchy, we could conveniently trace 
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specific domains to find out which k gives rise to their groupings. For example, in Figure 2.15 

panels A and C, the domains at depth 6 and 8 originate from GNM clusters obtained at modes k ≅ 

100 and 300, which can be visually confirmed by the corresponding cross-correlation maps 

(Figure 2.15C).  

Despite their distinct sequence lengths, different chromosomes exhibit hierarchies of 

similar depth (14.8±1.5, Figure 2.16A). Domain boundaries at all depths showed significant 

architectural protein enrichment as compared to the background (empirical p-value ≪ 0.0001, 

Figure 2.15D), but more interestingly, the architectural proteins showed greater enrichment at 

higher (shallower) levels of the hierarchy than at lower (deeper) levels, suggesting that the deeper 

domain boundaries tend to be weaker than the shallower ones. This may be because the domain 

identified at a deeper level are packed and wrapped around by their upper level structures, such 

that they can be either stabilized by fewer architectural proteins or they are less exposed to them, 

or both. Alternatively, a more flexible definition of domain boundaries on a local scale may be 

necessary for facilitating the gene transcription regulation. Since deeper domains tend to have 

smaller sizes while the sizes of domains at the same depth may vary, we checked whether the 

correlation between the architectural protein binding and the domain depth is simply an effect that 

can be attributed to the domain sizes. But surprisingly architecture protein binding occupancy did 

not show any correlation with domain sizes (r = -0.04, Figure 2.16B). 
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Figure 2.14 Hierarchical spatial organization of mESC chromosomes 3 and 10 and comparison with the loci of 

architectural proteins. (A) Cross-correlations calculated for chromosome 3 using all GNM modes. Similar 

representations of cross-correlations and domains are adopted as in Figure 2.12. Colored lines in the upper triangle 

delineate the domain boundaries redefined based on the hierarchy and those in the lower triangle delineate the original 

domain boundaries identified the GNM modes. The histograms on top of the matrix show the architecture protein 

occupancies. RAD21: cohesion subunit; CAP-H2 and CAP-D3: condensin subunits; CTCF: CCCTC-binding factor; 

TFIIIC: transcription factor for polymerase III C. (B) Same results for chromosome 10. (C) A close-up view of the 

results at genomic regio chr3:41,000,000-52,250,000. (D) Close-up at genomic region chr10:95,000,000-110,000,000. 
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Figure 2.15 Hierarchical organization of mouse chromosome 5. (A) A close-up view of cross-correlations 

calculated for mESC chromosome 5 using all GNM modes analyzed by HiDeF (chr5: 37,500,000-42,500,000; or loci 

750-840, each locus being composed of 50kb). Colored lines delineate the boundaries and sizes of domains identified 

at different depths. The histograms on top of the matrix show the occupancies of architectural proteins at 

corresponding loci. (B) Same results for the entire chromosome 5. (C) Hierarchy of chromosomal domains identified 

by HiDeF/GNM. The matrices on the right are cross-correlations calculated from 100 (top) and 300 (bottom) GNM 

modes. Note the finer-grained distribution of correlated regions as we proceed to higher modes. The magenta and 

green boxes correspond to the two depths indicated by the colored arrows in the matrices. (D) Normalized 

distributions of architectural protein binding site (APBS) occupancies within a two-locus radius around domain 

boundaries identified at different depths. The last entry (“-”) along the abscissa represents the background APBS 

occupancy. The boundaries from earlier depths are excluded in latter depths. The zeroth depth (the entire chromosome) 

and depths that have <500 boundaries are omitted. 
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Figure 2.16 Invariants of the hierarchical organization of chromosomes. (A) Depths of hierarchies extracted for 

different chromosomes using clusters identified at different k (number of GNM modes). The depth i ncreases with k, 

but not as fast. In addition, the depth of the hierarchies obtained for a given k does not depend on the size of the 

chromosomes (even though larger chromosomes have intrinsically access to a larger number of modes). (B) 

Relationship between APBS occupancy and the domain size. Each dot represents an architectural protein binding 

occupancy (ordinate) at the boundary of a domain with some size (abscissa). The domain size is quantified as the 

number of loci, and since each boundary borders two domains, the domain with bigger size is selected. The red line 

is the best linear fit (r = -0.04, with p < 0.001). 
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2.2.3 Discussion 

In the Subsection 2.2, we extracted and analyzed the hierarchical organization of 

chromosomal regions, the size of which varies from whole chromosome arms to small genomic 

loci, including compartments, subcompartments, TADs, and other chromosomal domains at 

intermediate levels/depths. We used a novel hierarchy inference framework, HiDeF, in 

combination with the GNM identification of structural domains. We showed that the domains 

extracted from the GNM modes correlate with known chromosomal structures such as 

compartments and TADs; the genomic regions in different subtypes of compartments exhibit 

differentiated chromatin mobility and accessibility; the depth of a chromosomal region in the 

hierarchy may be an important structural feature that can be revealed by its boundary strength. 

Alternatively, depths with strong boundaries inform which domains exhibit robust structural and 

dynamic coherence. In the future, a similar analysis could be used for comparing the chromatin 

structure across different cell types or even species. 

The GNM identification of structural domains is mathematically related to spectral 

clustering through the common Laplacian/Kirchhoff matrix (see Appendix A). We note that a 

TAD-finding method using only the second eigenpair (Fiedler value/vector) of the Laplacian has 

also been developed (Chen, et al., 2016) and tested on 100 kb resolution data. By including a higher 

number of eigenvectors, we were able to identify TADs comparable to those detected by Armatus 

on all chromosomes (as measured by lower VI) at 5 kb, and for 18/23 chromosomes at 100 kb 

resolution (data not shown; see Supplementary Figure S11A and C in (Sauerwald, et al., 2017)). 

Further corroborating the benefit of using multiple modes, earlier studies showed that spectral 

clustering by using more eigenvectors can outperform partitioning methods which only use one 

eigenvector (Alpert, et al., 1999; Alpert and Yao, 1995). In addition, we note that a TAD calling 
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program, TADtree, also returns hierarchical domains, but it exclusively identifies domains at the 

scale of TADs (~1Mb) (Forcato, et al., 2017; Weinreb and Raphael, 2016); whereas in the currently 

proposed approach, mega-domains of up to 100Mb can be identified, alongside TADs or regions 

of different sizes. As a result, the hierarchical domains reported here tend to be more nested than 

those identified by TADtree. 

Multiresolution community and hierarchy detection methods have been of broad interest 

in recent decades (Blondel, et al., 2008; Reichardt and Bornholdt, 2006; Rosvall, et al., 2009). 

While most methods for constructing the hierarchies take recursive bottom-up or top-down 

approaches, here, we proposed an alternative approach of a modular workflow, which decouples 

the inference of clusters from the identification of their hierarchical relations. Such modularity 

makes it possible to substitute alternative algorithms at each step, so one could use clustering 

algorithms other than the GNM/spectral clustering as the basic method for identifying domains at 

different resolutions, and then combine the results with HiDeF algorithm to robustly extract the 

underlying hierarchy. Therefore, the proposed framework would be expected to be of broad utility 

for analyzing multiscale network organization in many research domains. For instance, it could be 

used for revealing hierarchical cell-type relationships in single-cell RNA-seq data to gain insights 

into the composition and development of tissues/organs (Stuart, et al., 2019); or for discovering 

protein complexes or modules from comprehensive protein-protein interaction (PPI) databases (Li, 

et al., 2017) or high-throughput screens of PPIs (Szklarczyk, et al., 2019) for aggregating genomic 

information of diseases and inferring novel disease genes. 
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2.2.4 Methods 

2.2.4.1 Hi-C and ChIP-seq data processing 

Data were obtained from the Gene Expression Omnibus (GEO) database (Barrett, et al., 

2013). Population Hi-C data for human GM12878 cell line came from GSE63525 (Rao, et al., 

2014) and those for mESCs were obtained from GSE80280 (Stevens, et al., 2017). Both datasets 

are normalized using VCnorm (Rao, et al., 2014). ChIP-seq data for architectural proteins were 

obtained from GEO series GSE90994 (CTCF), GSE33346 (cohesin: RAD21; condensin subunits: 

CAP-H2 and CAP-D3), and GSE80034 (TFIIIC) (Cattoglio, et al., 2019; Dowen, et al., 2013; 

Yuen, et al., 2017). Processed data files were downloaded and converted to BED format using 

BEDOPS (Neph, et al., 2012). Chromosome banding data were obtained from Ensembl genome 

browser (Yates, et al., 2020). Cytobands were parsed as label arrays and the underlying hierarchies 

were built using HiDeF. Genome positions in different assemblies were converted to those in 

GRCm38/mm10 with liftOver in the UCSC genome browser (Kent, et al., 2002). All data were 

normalized and binned into 50kb per loci. Architecture protein binding site (APBS) data were 

normalized for each chromosome to obtain occupancies. Those located within a two-locus radius 

around domain boundaries were collected and categorized based on the depth of the domains, and 

those outside, were considered as the background. To balance the sizes, data belong to each depth 

and the background were replicated with 1,000 bootstrap samples of size 100. We used Welch’s t-

test to quantify the difference between the distribution of APBS occupancies of each depth and the 

background. 
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2.2.4.2 Variation of Information (VI) metric 

This metric is based on information theory. It measures the difference in information 

contained in two clusterings, or partitions, of a dataset. If we consider each domain to be a cluster 

of nodes/points, this type of comparison becomes very natural. Formally, for two sets of clusters 

A and B, VI is defined as follows: 

𝑉𝐼(𝐴, 𝐵) = 𝐻(𝐴) +  𝐻(𝐵) −  2𝐼(𝐴, 𝐵) (2.7) 

where 𝐻(𝐴) represents the entropy of a set of clusters A, and 𝐼(𝐴, 𝐵) is the mutual information 

between the two partitions, given by 

𝐻(𝐴) =  −∑𝑃(𝑖) log 𝑃(𝑖)

𝑖

, (2.8) 

𝐼(𝐴, 𝐵) =  ∑𝑃(𝑖, 𝑗) log
𝑃(𝑖, 𝑗)

𝑃(𝑖)𝑃(𝑗)
𝑖,𝑗

, (2.9) 

where the probability of picking a node in cluster 𝐶𝑖, 𝑃(𝑖), is simply the number of points in that 

cluster divided by the total number of points in the data set. In this work, a “cluster” is the set of 

loci placed into the same domain or compartment. 

Note that this is a true metric in the space of clusterings; VI is commutative, satisfies the 

triangle inequality, and is always non-negative and equal to zero if and only if the two clusterings 

are identical. More intuitively, VI is a measure of the amount of information that is lost and gained 

by changing from one clustering to another, without any assumptions placed on the clusterings 

themselves or how they were generated. More information can be found in (Meilă, 2003). 
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2.2.4.3 Multi-resolution spectral clustering 

We used spectral clustering techniques to identify chromosomal domains from the GNM 

modes (Appendix A). The GNM-predicted intrinsic dynamics is defined by a spectrum of normal 

modes of motion. LF modes usually correspond to global motions, i.e. they collectively engaging 

large domains; whereas HF motions refer to local movements (of small domains or individual 

loci). Therefore, the frequencies of the GNM modes can be regarded as a “resolution parameter” 

that controls the size of domains engaged in collective motions. For each chromosome, we 

calculated the GNM modes as well as the cross-correlations between the motions of gene loci, 

based on the normalized Hi-C contacts as previously described (see Section 2.1.4.2) and identified 

genomic loci clusters by discretizing the first k = 1, 2, …, 300 modes (Stella and Shi, 2003). This 

step led to 300 sets of clusters per chromosome. Loci in the same cluster that were not sequentially 

consecutive were separated into different domains (Figure 2.17). We found that the results from 

discretization were robust to randomization (Stella and Shi, 2003); therefore, we presented in this 

study the results from one single run. Multiple runs were performed and yielded similar results. 

Variation of information (VI) metric was used as a quantitative measure of agreement between 

GNM-predicted domains, TADs, and compartments. 
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Figure 2.17 Schematic shows how GNM modes (eigenvectors) are discretized and processed into indicators for 

finally identifying the GNM domains. (A) Eigenvectors solved from the GNM and sorted ascendingly based on 

associated eigenvalue. Each row represents an eigenvector whose positive/zero/negative elements are indicated by 

red/white/blue colors. (B) Indicator vectors discretized from first k eigenvectors whose elements are nonnegative. (C) 

The resulting multi-resolution chromosomal domains. Domains separated based on different k are outlined with 

different colors.  

2.2.4.4 Inferring hierarchical organization of chromatin structure 

The containment relationship between two chromosomal domains, A and B, is quantified 

by the containment index as: 

𝑐𝑖(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐵|
, (2.10) 

which intuitively measures how much of B is shared with A. A containment graph can be 

constructed based on the measure, where vertices represent clusters identified from the previous 

step (see Section above) and edges represent containment relationships. Specifically, given a cutoff 

value 𝜅 ∈ (0.5, 1], if 𝑐𝑖(𝐴, 𝐵) > 𝜅 and 𝑐𝑖(𝐴, 𝐵) > 𝑐𝑖(𝐵, 𝐴), then there exists an edge from A to B, 
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representing that A κ-contains B. A root vertex is added to connect to all other vertices, 

representing that every data point belongs to a grand hypothetical cluster. A 𝜅 value of 0.9 was 

used to generate results in the present study. 

The containment graph is a DAG that denotes a complete, albeit redundant, set of 

containment relations, meaning that if A κ-contains B and B κ-contains C, it is likely (but not 

necessary) that A also κ-contains C. Redundant relations/edges are removed by obtaining a 

transitive reduction of the original graph. In addition, edges are considered as competing if they 

are incident to the same vertex (i.e. biological pleiotropy), and a second cutoff value, ξ, is used to 

control how many competing edges are tolerated in the final graph. Vertices are labeled with 

numerical depths equal to their maximum distances to the root. Clusters/domains are redefined at 

different depths conforming to the structure of the graph/hierarchy (see details in Appendix B). ξ 

= 0.2 (tolerating top 20% competing edges) was adopted in the present study (competing edges 

were omitted in plots for clearer visualization). 
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3.0 Comparative Study of Chromosomal Dynamics of Different Cell Types 

toward Understanding Cell-to-Cell Heterogeneity 

Cell identity is determined by lineage-specific gene expression during differentiation 

(Bernstein, et al., 2007). The process of gene expression is regulated by the accessibility of the 

corresponding region of the DNA to transcription factors and co-factors. Therefore, the spatial 

organization of the genome plays a crucial role in the process of cell differentiation. Recently, 

various studies have shown that different cell types show recognizably different contact topologies 

at their chromatin and the observed changes in the chromatin structure are associated with cell 

development and differentiation (Andrey and Mundlos, 2017; Bonev, et al., 2017; Dixon, et al., 

2015; Joeng, et al., 2017) (Figure 3.1). However, questions remain regarding the type and extent 

of conservation and/or differentiation of chromatin structure among different cell lineages and how 

to quantify these differences.  

Advances in chromosome conformation capture techniques as well as computational 

characterization of genomic structural dynamics open new opportunities for exploring the 

structural aspects of genome-scale differences across different cell types. Rao et al. (Rao, et al., 

2014) found that many loop domains (~100 kb) are conserved not only in different cells but also 

across species; Dixon et al. (Dixon, et al., 2015) noted that, although chromatin domain boundaries 

tend to be stable during cell differentiation, drastic changes in chromatin interactions are observed 

both within and between domains; Rudan et al. (Rudan, et al., 2015) found that the CTCF sites, 

one of the most important determinants of domain boundaries, evolve under two regimes: some 

CTCF sites are conserved across species, others are significantly more flexible. A recent single 
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cell study on mammalian genome showed that while larger chromatin structures compartments are 

mostly conserved, the structures of the topologically associating domains (TADs) and loops may 

vary substantially even within the population of the same type of cells (Stevens, et al., 2017). All 

these observations have shown some levels of conservation as well as variation in the chromatin 

3D structure or organization of different cells, suggesting a complex dependency on cell type at 

the 3D genome level, which is further obscured by cell heterogeneities within even a given type 

of cell. 

 

 

Figure 3.1 Heterogeneity in chromosomal spatial organization across different types of cells. (A) Diagrams of 

three cell types derived from different germ layers. (B) Contact maps of chromosome 17 measured by Hi-C 

experiments for six different cell types (Rao, et al., 2014): GM12878, human B-lymphocytes; K562, human 

immortalized myelogenous leukemia line; IMR90, human lung fibroblasts; NHEK, primary normal human epidermal 

keratinocytes; HUVEC, human umbilical vein endothelial cell line; KBM7, chronic myelogenous leukemia cell line. 

 

The models, methods and tools presented in the previous sections showed that 

chromosomal structural dynamics is an important feature that explains/defines cell identity, in 
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addition to other epigenetic properties. Comparison with RNA-seq expression data will reveal in 

the present chapter (also published in (Zhang, et al., 2020)) a strong overlap between highly 

expressed genes and those distinguished by high mobilities in a cell-specific manner, in support of 

the role of the intrinsic spatial dynamics of the chromatin as a determinant of cell differentiation. 

Overall, network models for characterizing 4D genome dynamics provide a computationally 

efficient platform for assessing cell type-specific behavior and differentiation at the level of the 

entire chromatin.  

3.1 Conservation vs Variation of Chromosomal Dynamics 

3.1.1 Introduction 

We examined here the dynamic basis of variabilities between different cell types by 

investigating their chromatin mobility profiles inferred from Hi-C data using an ENM 

representation of the chromatin. As explained and shown in Section 2.1.2.1, the MSFs of network 

nodes (i.e. loci in the context of chromatin) positively correlate with their accessibility: mobile 

sites are more likely to be exposed than stationary ones, and therefore genes that located at such 

sites tend to be more accessible to transcription factors and other regulatory proteins. Thus, it may 

be of interest to compare MSFs of chromosome loci across different cell types to identify cell type-

specific exposed chromosomal regions toward understanding the structural and dynamic bases of 

differential gene expression. 

MSFs are obtained from the linear (weighted) combination of square displacements of loci, 

contributed each by the full set or a representative subset of normal modes. As explained in Section 
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2.1.4.3, the shape of the mode (eigenvector) describes the direction and magnitude of the intrinsic 

collective motions of the loci, and the frequency (eigenvalue) serves as a weight to the mode that 

defines the amplitude of the (square) displacement along the mode. Modes are assigned increasing 

mode numbers with decreasing amplitude, such that the first few modes (global modes) make 

relatively large contributions to the fluctuation spectrum; whereas higher modes usually exhibit 

more localized fluctuations. As a consequence, the differences we see in MSFs are twofold: those 

originating from the differences in the mode shapes and those resulting from the differences in the 

frequency dispersion of the modes. Therefore, the evaluation of mode spectra is not only a 

necessary step for computing overall dynamical quantities such as the MSFs, but also a useful tool 

for assessing the origin of the differences in the spatial dynamics of the genomes of different cells.  

In this section, our comparative analysis of sixteen cell lines reveals close similarities 

between chromosomal dynamics across different cell lines on a global scale, but notable cell-

specific variations emerge in the detailed spatial mobilities of genomic loci. Closer examination 

of the mode spectra reveals that the differences in spatial dynamics mainly originate from the 

difference in the frequencies of their intrinsically accessible modes of motion. Thus, even though 

the chromosomes of different types of cells may have access to similar modes of collective 

movements, not all modes are deployed by all cells, such that the effective mobilities and cross-

correlations of genomic loci are cell type-specific. 

3.1.2 Results 

We first evaluated the GNM modes and predicted MSFs of genomic loci for all 

chromosomes in16 human cell lines (Table 3.1), using their inter-loci contact topology data from 

public Hi-C datasets (Darrow, et al., 2016; Joeng, et al., 2017; Phanstiel, et al., 2017; Rao, et al., 
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2014; Rao, et al., 2017; Sanborn, et al., 2015) in the GNM framework extended for chromatin 

dynamics as described in Section 2.1.4.3. MSFs were analyzed and compared across different cell 

lines to assess the overall similarities between the mobility profiles of the individual chromosomes. 

Next, similar to the comparative analysis we did for protein families in Section 1.2, we matched 

and examined equivalent normal modes across cell lines and assessed the extent of mode-mode 

overlaps and the origin of the variations in loci mobilities.  

3.1.2.1 Genomic loci exhibit similar fluctuations on a global scale while retaining cell-

specific patterns 

We first examined the MSFs of genomic loci evaluated for different cell types. Mobility 

profiles (normalized MSFs, which allow for visual comparison of the behaviors of different cells) 

are illustrated for the chromosomes 17 (Figure 3.2A) and 2 and 8 (Figure 3.3) of the 16 different 

types of cells. The series of curves in these figures show chromosome-specific patterns broadly 

shared by different types of cells. Cell-cell similarities between chromosomal mobility profiles are 

quantified by pairwise Pearson correlation coefficients. This led to an average Pearson correlation 

of r = 0.63 ± 0.23 for cell-cell mobility profiles of all chromosomes (dashed line in Figure 3.2B), 

except for an ectodermal cell line, NHEK, which correlated poorly with other cells (r = 0.29 ± 

0.22, Figure 3.2B) but exhibited a correlation with another ectodermal cell line, RPE1 (r = 0.58 ± 

0.14). RPE1, in turn, exhibited relatively strong correlations with two other ectodermal cell lines, 

HMEC (r = 0.66 ± 0.08) and HCT116 (r = 0.63 ± 0.12), as well as the only endodermal cell line, 

IMR90 (r = 0.68 ± 0.11). 

Pearson correlations between the mobility profiles of genomic loci in different types of 

cells can be viewed in Figure 3.2C for all pairs of cells. The results refer to the collective 

fluctuations of all chromosomes for each pair of cell types. The hematopoietic cell lines (the first 



 112 

nine in Figure 3.2B-C) exhibit a correlation of at least 0.5 with each other, with three being the 

most dissimilar, EP (erythroid progenitors), THP1 and THP1-derived macrophages. EP is the only 

red blood cell line in the dataset, and THP1 and the macrophages are more differentiated than other 

hematopoietic cell lines. HSPC, the hematopoietic stem and progenitor cells, correlate well with 

almost all other cell types (r = 0.66 ± 0.17, Figure 3.2B, first entry) and will be used as reference 

for quantitative analyses of cell type-specific behavior.  

 

Figure 3.2 Comparison of the chromosomal dynamics of different types of cells. (A) Mobility profile of genomic 

loci computed for the chromosome 17 of all 16 cells or cell lines in our dataset (Table 3.1). The curves represent the 

normalized distributions of MSFs of gene loci predicted by the GNM, stacked up for visual comparison. (B) Violin 

plots showing the distribution of Pearson correlations between the chromatin mobility profile of individual cells (listed 

along the abscissa) and all others. Results are computed using the first 500 matched modes predicted for the entire 

chromatin of all cells. Blue dashes indicate the mean. (C) Heat map showing the Pearson correlations between the 

intrinsic dynamics of the examined 16 cell lines, based on the mobility profile of all chromosomes. This figure is 

adapted from (Zhang, et al., 2020). 
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Figure 3.3 Mobility profiles for two chromosomes computed for 16 types of cell lines. Results are shown for 

chromosomes 2 (A) and 8 (B). Mobility profiles of genomic loci were computed based on first 500 GNM modes. This 

figure is adapted from (Zhang, et al., 2020). 

 

3.1.2.2 Dissection of mode spectra reveals the high conservation of global modes 

Decomposition of the chromosomal mode spectrum accessible to each cell type yielded the 

mode conservation curve presented in Figure 3.4A as a function of mode number. The ordinate 

〈𝑆〉𝑖 designates the correlation cosine between the shape of mode i, averaged over all pairs of cells 

(see Section 3.1.4.2). The first mode is highly conserved across all examined cells (〈𝑆〉1 = 0.84 ±

0.18) indicating the prevalence of a global mode shape for the chromatin, shared by all cell lines; 

Figure 3.4C and D illustrate the global mode shape (parts) corresponding to the respective 

chromosomes 2 and 17. A closer look at mode conservation within individual chromosomes 

(illustrated for chromosome 2 in Figure 3.5E, for example) also exhibited the same pattern, mainly 
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high-to-moderate conservation of the first few modes (see also the inset, Figure 3.4A), followed 

by a rapid decrease with increasing mode number.  

 

Figure 3.4 Conservation of the first global mode accessible to the chromatin. (A) Mode conservation profile as a 

function of mode number i reveals the high conservation of the first global mode (i = 1). The profile displays the 

correlation cosines between individual mode shapes computed for each of the first 200 modes accessible to the entire 

chromatin averaged over all cell pairs (equation 3.2). The solid green curve and the shade show the mean and standard 

deviation, respectively. (B) Same as panel A, after reorganizing the modes to select the equivalent modes that best 

match those of the reference cell, HSPC. Note the higher conservation of modes, but also the accompanying higher 

variance. (C-D) Global mode shape for chromosomes 2 (C) and 17 (D), highly conserved across 16 cell lines. The 

curves represent the normalized spatial displacements of loci (abscissa) along the equivalent mode 1 axis. A central 

hinge region is observed in C at the crossover between positive and negative displacements near loci 2,000-2,500. 

The original mode numbers are shown in parentheses on the ordinate, and the correlation cosine with respect to the 

reference (HSPC) is indicated in each case. This figure is adapted from (Zhang, et al., 2020). 

 

We further evaluated the mode-mode overlaps among the first 10 modes, for every pair of 

cells. The heatmap on the left in Figure 3.5A shows an example of such overlaps for HSPC and 
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KBM7, where each element represents the correlation cosine [𝑆(𝐴, 𝐵)]𝑖𝑗 (equation 3.1) between 

the ith and jth modes (1 ≤ 𝑖, 𝑗 ≤ 10) of the respective cells A and B (in this case HSPC and KBM7). 

The same type of overlap map is displayed for HSPC and each of the other cell types in Figure 

3.5C. These maps confirmed that the slowest modes from different cells exhibit relatively high 

overlaps (see red pixels near the upper left part of the diagonal in each block). Even in the case of 

the most distinctive cell types such as GM12878 and NHEK, the overlap between the top three 

modes remained above 0.65. 

 

Figure 3.5 Mode-mode overlaps across different cell lines, illustrated for chromosome 2. (A) Mode-mode 

matching process illustrated for the softest 10 modes of HSPC and KBM7. The entries in the heat map are the mode-

mode correlation cosines, with the strength of correlations decreasing from red to blue. Red two-way arrows display 

the modes that are swapped to result in the map on the right. (B) Comparison of the original (abscissa) and reassigned 

(ordinate) mode numbers after optimal matching to the mode numbers of the reference cell (HPSC). Results for 

different cell types are color-coded, consistent with previous figures. (C-D) Same as panel A, displayed mode-mode 

overlaps between all 15 pairs of cell types and the reference HPSC, and their reordering to identify equivalent modes. 

This figure is adapted from (Zhang, et al., 2020). 
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3.1.2.3 While different cell types have access to conserved genome-scale dynamics, the 

active modes of motions differ from cell to cell 

Closer examination of the heat maps such as Figure 3.5A (left) reveal that a high mode-

mode overlap between different cell lines is not necessarily observed at the diagonal elements of 

each block, indicating a mismatch in mode numbers between different cells. As mentioned earlier, 

the mode number is a physically meaningful quantity, smaller indices referring to lower frequency 

or larger amplitude modes. Thus, an off-diagonal red pixel in the heat map means that the two 

modes are similar in shape (relative distribution of loci movements during this mode), but not in 

size (absolute amplitude of motions). In a sense, the mode will be more pronounced or active in 

one type of cell compared to the other. Here, “more active” means a predisposition to undergo a 

relatively larger displacement along that mode (exhibited by the cell with the smaller mode 

number).  

The differences in the mobility profiles of chromosomal loci in different cell types (Figure 

3.2A) can thus originate not only from the different shapes of the modes - evidenced in the 

comparison of the global mode shapes of chromosomes 2 and 17 for the 16 cells/cell lines in 

Figure 3.3C and D), but also from their different frequencies or statistical weights.  

To understand to what extent the frequency dispersion or the selective activation of pre-

existing shared modes underlies the differences in the observed spatial mobilities of genomic loci, 

we adopted the mode numbers of HSPCs as reference (as the most undifferentiated cell in the 

dataset, based on the mode shape overlaps) and reordered the modes of the other 15 cell lines to 

achieve the highest mode-mode overlaps. Figure 3.5A provides a schematic description of mode 

number reassignment method. Essentially, the shape and frequencies of the modes are retained, 

but their mode index is changed to match the so-called “equivalent” modes in evaluating the 
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average mode-mode overlaps. This led to heat maps with highest mode-mode overlaps along the 

diagonals of the blocks, as illustrated in Figure 3.5D, and a conservation profile presented in 

Figure 3.4B for the entire chromatin. By selectively including the “equivalent modes” (or matched 

modes) and excluding others to evaluate the intrinsic dynamics, we end up with mobility profiles 

that are almost identical across all cell lines (Figure 3.6A). The recomputed mobility profiles led 

to significant increase in the Pearson correlations among different cell lines (r = 0.85 ± 0.08, 

Figure 3.6B; compared 0.63 ± 0.23 in Figure 3.2A-B).  

It is important to note that the equivalent modes were identified by searching a broader 

range of modes, and often found from amongst “higher” modes (Figure 3.5B), which means some 

of the matched modes had relatively low weights/amplitudes and thus might not be contributing 

to collective dynamics in a given cell type as effectively as they do in another cell type. Slow 

modes tended to be retained without significant change in mode numbers; whereas fast modes 

exhibited large differences. For example, the first 10 matched modes are selected from amongst 

the original 20 modes of the cell lines; whereas the top 100 modes of the reference cell line (HSPC) 

are matched by up to 400 (original) modes of the other cell lines (Figure 3.5B).  

The degree of collectivity of a given mode provides a measure of its distribution over 

different parts of the structure (Brüschweiler, 1995). Slower modes are usually more collective, 

cooperatively involving large groups of loci, and collectivity usually decreases with mode number, 

but this is not necessarily a smooth decrease. The collectivity of the top 500 modes for all 

chromosomes and cell types evaluated before and after matching the modes showed that the 

dependency of collectivity on mode number remained unaffected by mode-mode matching 

(Figure 3.7).  
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Figure 3.6 Verification of the close similarity of the spectrum of motions after eliminating the differences 

originating from the frequency dispersion. (A) Mobility profiles of genomic loci on chromosome 17 based on first 

500 matched modes identified for all cell lines. (B) Distribution of Pearson correlations between the chromatin 

mobility profiles of each cell type and all others, obtained with the same set of modes. (C) Percent change in mode 

population after inclusion of equivalent modes for each cell line, averaged over all chromosomes. The error bars 

indicate the standard deviation among chromosomes. HSPC has no change because it is used as the reference. This 

figure is adapted from (Zhang, et al., 2020). 
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Overall, these results show that the chromatin of different types of cells have access to 

comparable modes of motion (encoded by their similar contact topologies) but not all of these pre-

existing intrinsic modes are manifested, resulting in cell-specific mobilities of genomic loci. The 

differences in mobility profiles observed in Figure 3.2 and Figure 3.3 originate from the fact that 

the “active” modes differ between different cell lines. If we select the original softest 500 modes, 

we end up with cell-type specific mobility profiles. The profiles become similar only if we select 

the “equivalent” modes even though this set contains contributions from relatively “inactive” 

modes and excludes some “active modes”.  

In other words, conserved modes among different types of cells manifest themselves in a 

signature profile shared among all cell lines (Figure 3.6A) provided that the differences in the 

mode frequencies are suppressed. But in practice, not all modes are operative, and the fluctuations 

of genomic loci exhibit cell type-specific features. Some modes are “mute” while others are fully 

deployed, and which modes are selectively deployed depends on the cell type. 

It is of interest to assess the fraction of the original modes that have been replaced by 

equivalent modes. Results are presented in Figure 3.6C. We note that despite showing the greatest 

enhancement to conform to the signature profile, NHEK is only in the third place to show largest 

mode changes (19%), indicating that some of the original slow modes for NHEK greatly differed 

from those for HSPC, and the substitution of those modes effectively restituted the mobility profile 

to closely resemble the signature profile. Two cell lines that showed the largest mode changes are 

K562 (27%) and T-cells (24%). Their mobility profiles exhibited an increase in average correlation 

with all others from 0.60 (each) to 0.86 and 0.78, respectively. EP experienced the least mode 

number changes (8.1 ± 4.6%), yet its average correlation increased significantly (from 0.54 to 

0.79). 
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Figure 3.7 Collectivity profiles of GNM modes illustrated for chromosome 17 loci. (A) The bars display the degree 

of collectivity of each mode, in the range 1 ≤ k ≤ 200, obtained for all cell types, before (left, original) and after 

matching the modes to those of the reference, HSPC (right, matched). (B) Mode collectivities averaged over all cells 

and plotted based on subsets of 10 modes demonstrate that the two sets display comparable distribution of collectivity 

in general. This figure is adapted from (Zhang, et al., 2020). 

3.1.3 Discussion 

The present comparative study of the intrinsic dynamics of chromosomes in a series of cell 

lines of different cell types using corresponding Hi-C data in the Gaussian Network Model (GNM) 

shed light to several fundamental features, including the shared fluctuation patterns in the spatial 

positions of different types of cells or signature dynamics, evident in the modes of motions in the 
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lowest frequency regime. These slowest (and most collective) modes of motion intrinsically 

accessible to the individual chromosomes of different types of cells were distinguished by their 

conservation, even among phenotypically divergent cells such as GM12878 and NHEK, yielding 

an average correlation cosine of 〈𝑆〉1 = 0.84 ± 0.18 between all cell type pairs. The modes in the 

intermediate and high-frequency ranges, on the other hand, appeared to be less conserved. This is 

physically reasonable, because global modes, especially the first few, usually underlie the 

structural stability (Bahar, et al., 1998). The spatial organization of chromatin is hierarchical (see 

Section 2.2), and the conservation of global modes may suggest that the cells maintain similar 

upper levels of the hierarchy but organize the lower levels differently. This type of organization 

may ensure a stable genome structure and the framework to achieve cell type-specific gene 

transcription/regulation activities. 

Careful analysis showed that the differences in the mode spectrum essentially resided in 

the contributions (statistical weights) of different modes of motions, rather than the availability of 

these modes of motions. In other words, different types of cells share pre-existing modes with 

similar “shapes” but different frequencies. While the ensemble of modes intrinsically accessible 

were comparable, some modes were “silent” in selected cell types, while others were “active”. 

This distinction is reminiscent of the existence of the same set of genes in all cell lines but their 

differential expression levels in different cell types depending on the specific functions of these 

cells. Similarly, we have the same ensemble of collective motions theoretically accessible, but not 

all of them are operative within the same time window, and as a result the different types of cells 

end up exhibiting differential dynamics (Figure 3.2A and Figure 3.3). We demonstrated that the 

16 cell types presently analyzed would have exhibited the same fluctuation behavior (Figure 3.6A-

B), if their equivalent modes were equally active. This interesting finding brings important insights 



 122 

into how genome structure may reorganize during cell differentiation and enable different 

accessibility patterns, shown here using a physical model at the genome-scale, for several types of 

cell lines.  

3.1.4 Methods 

Computational methods used here in this chapter are similar to the methods used in 

previous chapters with minor adjustments, such as the GNM analysis of the Hi-C data (Section 

2.1.4.3), calculation of mode-mode overlap and spectral overlap (Section 1.2.4.5), and 

identification of equivalent modes (Section 1.2.4.3). Most of the calculations are performed using 

the application programming interface (API) ProDy (Bakan, et al., 2014; Bakan, et al., 2011). The 

specifications and adaptations for this study are described below. 

3.1.4.1 Hi-C data acquisition and processing  

The Hi-C datasets used in this study were downloaded from various sources (summarized 

in Table 3.1) using the Juicer/Straw tool (Durand, et al., 2016) implemented as an interface in 

ProDy (Bakan, et al., 2014; Bakan, et al., 2011). The full dataset contains cell types derived from 

different germ layers. The majority of the cell lines are hemopoietic cells of different types or at 

different developmental stages. Preprocessing steps are described in Section 2.1.4 and Section 

2.1.4.2. GNM modes, MSFs and covariances of loci were evaluated for all 23 chromosomes in 

each dataset.  
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Linkage Name Germ layer Reference 

◼ GM12878 Human lymphoblastoid cell line mesoderm 

(Rao, et al., 2014) 

◼ K562 
Human immortalized myelogenous leukemia cell 

line 
mesoderm 

◼ KBM7 Chronic myelogenous leukemia (CML) cell line mesoderm 

◼ HUVEC Human umbilical vein endothelial cell line mesoderm 

◼ IMR90 Lung fibroblasts endoderm 

◼ NHEK Normal human epidermal keratinocytes ectoderm 

◼ HMEC Primary mammary epithelial cells ectoderm 

◼ HeLa Cervical cancer cells ectoderm 

◼ Hap1 Near-haploid human cell line derived from KBM7 mesoderm (Sanborn, et al., 2015) 

◼ HCT116 Human colon cancer cell line ectoderm (Rao, et al., 2017) 

◼ RPE1 Retinal pigment epithelial cell line ectoderm (Darrow, et al., 2016) 

◼ HSPC Hematopoietic stem and progenitor cells mesoderm 

(Joeng, et al., 2017) ◼ EP Erythroid progenitor cells mesoderm 

◼ T-cell T lymphocytes mesoderm 

◼ THP1 Immortalized monocyte-like cell line mesoderm 
(Phanstiel, et al., 2017) 

◼ Macrophages Macrophages derived from THP1 mesoderm 

Table 3.1 Dataset of cell lines analyzed in the present study. Cells that originate from hematopoietic stem cells are 

highlighted in blue. These all originate from mesodermal germ layers, as well as the human umbilical vein endothelial 

cell line (HUVEC, highlighted in gray). Those resulting from the differentiation of ectodermal germ layers are 

highlighted in yellow; and endodermal germ layers in orange. This table is adapted from (Zhang, et al., 2020). 

3.1.4.2 Mode-mode overlaps 

To compare two different sets of m modes defined as {(𝜆𝑖
𝐴, 𝒗𝑖

𝐴)|𝑖 ∈ ℕ and 𝑖 < 𝑘} and 

{(𝜆𝑗
𝐵, 𝒗𝑗

𝐵)| 𝑗 ∈ ℕ and 𝑗 < 𝑘} obtained for the same chromosome of two different cell types A and 

B, for example, we evaluate the mode-mode overlaps organized in a correlation cosine map 

𝑆(𝐴, 𝐵) the ijth element of which is 

[𝑆(𝐴, 𝐵)]𝑖𝑗 = |𝒗𝑖
(𝐴)
⋅ 𝒗𝑗

(𝐵)
| (3.1) 

where 𝒗𝑖
(𝐴)

 is the shape (eigenvector) of the ith mode obtained for cell type A. [𝑆(𝐴, 𝐵)]𝑖𝑗 varies in 

the range [0, 1], and the lower and upper limits refer to no and complete overlap, respectively. 
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Then, the level of conservation of mode i is evaluated by averaging [𝑆(𝐴, 𝐵)]𝑖𝑖 over all pairs of 

(A, B), i.e. 

〈𝑆〉𝑖 =
𝑚(𝑚 − 1)

2
∑ ∑ [𝑆(𝐴, 𝐵)]𝑖𝑖

𝐵,𝐵≠𝐴𝐴

, (3.2) 

where m is the total number of cell types (m = 16 here). 

3.1.4.3 Identification of mode-mode-matches across different cell lines 

Because of cell-type specific variations in the genome structure, the mode spectra also 

differ. Pairwise comparisons of the mode sets for different cell lines necessitate the identification 

of the equivalent (best matching) modes. As described, we first calculate the mode overlaps 

[𝑆(𝐴, 𝐵)]𝑖𝑗 ∈ [0, 1] for all eigenvector pairs (i, j) of cells A and B using equation 3.1, and then 

evaluate the cost of matching them as 1 − [𝑆(𝐴, 𝐵)]𝑖𝑗  and finally select the mode pairs that 

minimizes the total cost using the Hungarian algorithm (Kuhn, 1955; Kuhn, 1956). 

3.1.5 Acknowledgment 

The presented work is part of the publication (Zhang, et al., 2020). I performed all the 

analyses. Dr. Ivet Bahar supervised the project. 
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3.2 Quantification of Differences in the Intrinsic Chromatin Dynamics 

Explains Cell Differentiation 

3.2.1 Introduction 

Numerous studies with biomolecular assemblies have demonstrated that accessibility to 

binding substrates does not necessarily map to functionality. A more important feature that enables 

function is the malleability of the putative active sites to optimize binding energetics and support 

adaptability to structural changes, manifested by conformational flexibility under physiological 

conditions (Haliloglu and Bahar, 2015). By analogy, it is reasonable to expect that genes located 

in loci distinguished by large amplitude fluctuations under equilibrium conditions would be more 

amenable to processing and expression. We performed a systematic comparative analysis to 

examine the existence of such correlations between the 3D mobilities of the genes and their 

expression levels. Using gene-set enrichment data based on RNA sequencing experiments 

deposited in Gene Expression Omnibus (GEO) (Barrett, et al., 2013), we demonstrated the 

existence of a strong coupling between cell-specific highly mobile genes (HMGs) predicted here 

by the GNM and the highly expressed genes (HEGs) compiled in the ARCHS4 database 

(Lachmann, et al., 2018). 

Nonetheless, mobility profile of chromosomes is a 1D property and does not reflect the 

complexity of chromosomal dynamics. So, despite being shown to be related to important genomic 

properties such as chromatin accessibility and differential gene expression, locus mobility as a 

measure of cell type specificity would be incomplete because of the absence of inter-loci 

interactions. Such interactions between loci can be quantified by the cross-correlation map 𝐂̃ 
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derived from the GNM (see Section 2.1.4.3), which describes how much the pair of loci i and j are 

correlated with regard to their spatial movements, averaged over all possible modes of motions. 

Such correlations may originate from connectivity (sequence neighbors along the DNA), spatial 

proximity in the 3D genome or from “allosteric” effects involving other common connections. The 

mobility profile and directional cross-correlations thus provide complementary information on the 

respective sizes and orientational couplings of genomic loci movements.  

3.2.2 Results 

We first evaluated the GNM-predicted MSFs and cross-correlations for 23 chromosomes 

of 16 human cells (or cell lines) listed in Table 3.1. Then, we compared the GNM-predicted highly 

mobile genes (HMGs) with the highly expressed genes (HEGs) in multiple cell lines annotated in 

the ARCHS4 database (Lachmann, et al., 2018). Finally, we computed the covariance overlap 

between the same chromosomes for every pair of cells to measure their similarities in terms of 

collective intrinsic dynamics. 

3.2.2.1 Genes distinguished by high mobility correlate with those highly expressed in a cell-

type-specific manner 

We identified the subset of highly mobile genes (HMGs) distinguished by large amplitude 

motions (peaks in the mobility profiles, e.g. Figure 3.2A) in a given cell type but not in others, 

and explored the biological relevance of these strong departures from the average mobility profile 

of all cells (Figure 3.14), if any, to the differential function of the specific cells. 

Specifically, we compared the HMGs predicted here with the highly expressed genes 

(HEGs) in multiple cell lines annotated in the ARCHS4 database (Lachmann, et al., 2018) (see 
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Section 3.2.4.1). ARCHS4 contains information on the HEGs of 125 common cell lines, obtained 

by integrating gene expression data from RNA-seq experiments deposited in the Gene Expression 

Omnibus (GEO) (Lachmann, et al., 2018). These 125 cell lines constitute our pool of “candidate 

cell types”, which will be searched to explore the relationship between HMGs and HEGs. The pool 

contains HEG data for six of the 16 cell lines investigated here (K562, IMR90, HCT116, HUVEC, 

HeLa, and THP1), which will be referred to as the query cell lines. In each case, we screened the 

query cell line against the entire dataset of 125 candidate cell lines in ARCHS4 and computed the 

Jaccard index as a measure of the overlap between the HMGs of the query cell line and the HEGs 

of the candidate cell lines; and identified the top-ranking candidate cell lines whose HEG pattern 

shows the highest similarity to the HMG pattern of the query cell line. In each case we also display 

the results for the other 5 query cell lines for comparative purposes. Notably, the top-ranking 

candidate cell line turned out to be the query cell line itself in all cases (Figure 3.8).  

Other top-ranking candidates also bear resemblances to the corresponding target as well. 

For instance, BJ cell (normal human foreskin fibroblast), NHDF (normal human dermal fibroblast) 

and MG63 (osteosarcoma with fibroblastic shape) all share a fibroblast-like morphology as 

IMR90, a fetal lung fibroblast. In the case of THP1, a typical cell model for primary monocytes, 

one of its top candidates, U937, also shows monocytic traits (Figure 3.8).  
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Figure 3.8 Overlap between cell-type-specific highly mobile and highly expressed genes.Results are presented for 

six of our dataset cell types that were represented in ARCSH4. The overlap was quantified using the Jaccard index. 

Top-ranking five (screened) cell lines whose HEGs exhibit the highest overlap with the HMGs of the query cell are 

shown by the bar plots. Overlaps between the HMGs of the query cell and the HEGs of other five cell lines are also 

presented for comparison. Strikingly, the top-ranking cell type (from the pool of 125 in ARCSH4) turns out to be the 

query cell type itself, demonstrating the distinctive overlap between HMGs and HEGs specific to each cell type. This 

figure is adapted from (Zhang, et al., 2020). 

3.2.2.2 Locus-locus dynamical correlations show stronger dependency on cell type than do 

loci mobilities 

As mentioned above, cross-correlations measure how much the movements of two loci are 

correlated. Figure 3.9A showed such cross-correlation maps for chromosome 17 as an example, 

computed for all cell lines in our dataset. We observed strong correlations among sequential 

neighbors (red band along the diagonal). Pronounced couplings are observed within selected 

regions presumably representing TADs (red squares on the diagonal). As to the cross-correlations 

between sequentially distant loci, a range of behavior is detected. For instance, an interesting 
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pattern near the end of the long arm (loci 1,000-1,500 approximately) is distinguished in K562: 

two distal domains exhibit a pronounced coupling (highlighted by the black square in Figure 3.9A 

and schematically depicted in Figure 3.9B). This behavior tends to be more prominent in 

mesodermal cell lines (including hematopoietic cell lines labelled in blue and HUVEC labelled in 

gray), than in ectodermal cell lines such as NHEK, HMEC, HCT116, and RPE1. We also notice 

that, as compared to other cell lines, K562, HCT116, THP1, and macrophage exhibit stronger 

cross-correlations among the loci in the short arm (loci 1-500), implying a higher packing density 

in the region. Another manifestation of tight packing is the suppressed mobility of loci occupying 

such regions, noted earlier in the short arm region (Figure 3.2A). Thus, tightly packed regions 

which exhibit minimal movements are also distinguished by their close directional couplings, in 

accord with their restricted movements as almost rigid blocks. This feature can be observed clearly 

by displaying the MSF profiles along the axes of the cross-correlation maps. The black arrows in 

Figure 3.10 highlight such regions.  

We then examined the overlaps between covariance matrices obtained for different cell 

lines (see Section 3.2.4.2). Unlike fluctuation profiles, covariance matrices showed higher 

variations among the cells. The overall covariance overlap averaged over all chromosomes and 

pairs of cell lines was 0.48 ± 0.11 (blue violins in Figure 3.9C). NHEK again yielded the lowest 

average overlap of 0.40 ± 0.10, however, it was not an outlier, and many other cells exhibited 

comparable values. The overlaps between the covariance matrices could be slightly improved upon 

mode matching (red violins in Figure 3.9C), but the improvement was much more limited 

compared to that observed in locus mobility profiles. Overall, this analysis the couplings between 

loci movements exhibit a stronger dependency on cell type than that the mobility profiles of 

individual loci presented in Section 3.1.2.1. 
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Figure 3.9 Locus-locus cross-correlations reflect cell-type specificity. (A) Cross-correlations 𝐂̃𝒊𝒋 between genomic 

loci computed for chromosome 17, shown for 15 different cell types. 𝐂̃𝒊𝒋 values vary from -0.26 (anticorrelated, off-

diagonal regions in dark blue) to 1.0 (fully correlated, diagonal elements, in red). The white bands at loci ~400-500 

refer to the centromere, where Hi-C contact data are missing. (B) Schematic description of chromosomal organization 

indicated by the correlation patterns. Red blocks A and B on the diagonal represent two domains (A: green; and B: 

blue) with tightly packed DNA; and the off-diagonal red blocks indicate the long-range domain-domain couplings 

between A and B. The dashed curve depicts a long sequence not shown between A and B. (C) Covariance overlaps 

among cell lines averaged over all chromosomes based on the first 500 original (blue violins) or matched (red violins) 

modes. This figure is adapted from (Zhang, et al., 2020). 
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Figure 3.10 Cross-correlation maps aligned with MSFs illustrated for four cell types. The heat maps display the 

correlation cosines between the movements of chromosome 17 loci of the different types of cells (labeled), based on 

500 softest modes. Black arrows along the left ordinate show examples of regions that exhibit high directional 

correlations while their mobility is low, indicative of severe spatial restrictions (minima in mobility profiles) 

constraining the loci to move together, or to be rigidly held together while undergoing small fluctuations. This figure 

is adapted from (Zhang, et al., 2020). 

3.2.2.3 Covariance overlap between loci as a discriminative metric for assessing the 

divergence of cell lines 

To understand the impact of cell-type-specific locus-locus dynamical couplings on the 

response or adaptation of cells to endogenous or environmental effects, on cell differentiation, we 
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quantified the differences between the covariances obtained for individual chromosomes in 

different cell lines using as metric the covariance overlap (see Section 3.2.4.2) and performed a 

series of experiments in silico.  

 

Figure 3.11 Time evolution of chromatin contact topology after auxin treatment. (A) Covariance matrices for 

chromosome 17 of HCT116 cells before and after auxin treatment, and 20, 40, 60, 180 minutes after auxin has been 

withdrawn. It can be seen, indicated by yellow arrows, loci interactions are greatly weakened or disrupted after auxin 

treatment (compare the matrix for auxin+ with that for auxin-). These interactions are gradually restored during time 

after withdrawn (compare the matrices for 20, 40, 60 and 180 minutes). Hi-C data are obtained from (Rao, et al., 

2017). (B) Average overlaps between the covariance matrices computed based on Hi-C maps at each time point after 

the treatment of auxin and those computed based on Hi-C maps for normal HCT116 (Rao, et al., 2017). Standard 

deviations are shown by error bars. This figure is adapted from (Zhang, et al., 2020). 
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First, we examined the loop domain loss for HCT116 under the influence of auxin using 

time-dependent Hi-C dataset, mainly Hi-C maps for HCT116 cells under normal conditions 

(auxin-), 6 hours after the treatment of auxin (auxin+), and 20, 40, 60 or 180 minutes of auxin 

withdrawal (Rao, et al., 2017). We evaluated the covariance overlaps between the covariance (of 

all chromosomes) of the treated cells at each time point and those of the normal cells. As expected, 

the average covariance overlap dropped by approximately 30% after the treatment and gradually 

recovered with time after auxin withdrawal (Figure 3.11).  

 

Figure 3.12 Hematopoetic cell relationships represented by a tree determined by their differentiated chromatin 

dynamics. (A) Collective MST for hematopoietic cells based on the covariance overlaps computed for all 

chromosomes. (B) k-nearest neighbor-based clustering/visualization of single-cell RNA-seq data of hemopoietic 

progenitors, adapted from (Pellin, et al., 2019). Cell lines that used in this study are marked by nodes at corresponding 

(approximate) positions on this map and color coded consistently with panel A. This figure is adapted from (Zhang, 

et al., 2020). 
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Second, we asked whether the differences in covariances could be used to distinguish cell 

types. To answer this question, we constructed a distance graph for the cell lines based on the 

covariance overlaps, where each node represents a cell line and each edge is weighted by the arc 

distance 𝑑𝑐𝑜𝑣 between the covariance matrices, obtained for the corresponding pair of cells (see 

equation 3.7). We then determined the MST that revealed the relations between cell lines based 

on their covariance. We applied this procedure to the hematopoietic cell lines because among the 

cell lines we collected those had the clearest differentiation hierarchy and lineages in earlier or 

intermediate stages, such as HSPC, GM12878, and THP1. Covariance overlaps obtained for 

different chromosomes gave rise to different MSTs (data not shown), possibly due to different 

rates in the spatial organization of different chromosomes during cell differentiation. To determine 

the MST for all chromosomes, we constructed a graph based on the maximum 𝑑𝑐𝑜𝑣(𝐴, 𝐵) (see 

Section 3.2.4.3) between all cell types, which led to a collective MST that retain only the closest 

relationships among cell types in terms of genome structure similarities. The resulting MST was 

found to be broadly agree with single-cell transcriptional behavior of hematopoietic progenitors 

(Hay, et al., 2018; Pellin, et al., 2019) (Figure 3.12). The tree correctly reproduces the 

transcriptional similarities among blood cell lineages (indicated by solid edges), including the fact 

that Hap1 is derived from KBM7. K562 and KBM7, both of which relate to myeloid progenitors, 

should have been closer to HSPC than GM12878, a lymphoblastoid cell line. This discrepancy 

might originate from the cancerous nature of K562 and KBM7 (hence the dashed edges between 

KBM7, K562 and GM12878). Moreover, the relationship among monocyte progenitors (THP1) 

and GM12878 is ambiguous, also marked by a dashed edge in Figure 3.12A. 

Third, we applied the neighbor-joining method to construct a “phylogenetic” tree based on 

the maximum covariance distance map obtained for all investigated cell lines. The resulting tree 
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groups together similar cell lines, e.g. hematopoietic cells cluster together except for HSPC and 

EP, and epithelial cell lines, NHEK, RPE1, and HCT116, are under the same branch (Figure 3.13). 

Interestingly, one of the two leukemia cell lines, K562, is clustered with HeLa derived from the 

cervical tumor, whereas the other, KBM7 and its derivative Hap1, are grouped with normal 

lymphoid cells, GM12878 and T-cells, suggesting cancer heterogeneity among leukemia cells.  

 

Figure 3.13 Collective measurement of similarities between different cell types in terms of their chromatin 

dynamics. (A) Minimum covariance overlaps (correspond to maximum covariance distance) across all chromosomes 

obtained for all cell pairs. The numbers show the overlap as percentages. (B) Neighbor-joining tree for all cell lines 

constructed using the minimum (maximum) covariance overlaps (distances) for all chromosomes. Branch lengths are 

not proportional to arc distances. The color shades are added to facilitate the visualization of the grouping of 

ectodermal, mesodermal and other cell lines as in Figure 3.9C. This figure is adapted from (Zhang, et al., 2020). 

 

The similarities between cell lines found here at the chromatin dynamics level are in 

accordance with an earlier study (Sauerwald and Kingsford, 2018) where they found that HMEC, 

despite being an epithelial cell line originated from the ectoderm, was more similar to endodermal 

and mesodermal cells; the leukemia cell lines, KBM7 and K562, resemble GM12878; and there 
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are similarities between IMR90 and HUVEC. However, the results for epidermal keratinocytes, 

NHEK, are different. High similarities between the TADs identified for NHEK and those for 

GM12878 and K562 were reported (Sauerwald and Kingsford, 2018), while NHEK shows little 

resemblance to other cell lines in terms of its intrinsic dynamics.  

3.2.3 Discussion 

As discussed in Section 3.1, chromatin accessibility plays an essential role in regulating 

gene expression and cell differentiation by allowing or preventing physical interactions between 

transcription factors or other regulatory proteins and genomic loci (Klemm, et al., 2019). 

Theoretically, the accessibility of a site is predominantly determined by the local packing density, 

which is manifested by high mobilities in the 3D fluctuation profiles predicted by the GNM 

(Section 2.1.2.1). Then, to understand the role of high mobility at selected loci in defining cell 

differentiation, we identified cell type-specific variations in the equilibrium dynamics that give 

rise to genes that are specifically more exposed/mobile in one cell than another, i.e. HMGs. A 

distinctive overlap between HMGs and HEGs has been found upon a systematic examination with 

the ARCSH4 database. The analysis demonstrates that (i) the unique HMG pattern predicted here 

to typify each cell line strongly correlates with the cell-line-specific HEG behavior, suggesting a 

strong link between high mobility and high expression, and (ii) the set of HMGs provides a 

sufficiently distinctive feature to accurately discriminate between cell lines exhibiting different 

expression patterns. It also suggests that (iii) high conformational flexibility or spatial mobility 

may be a prerequisite for enabling productive interaction with proteins and thereby effective 

transcription or gene expression. 
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Cross-correlation maps of chromosomal loci is an additional and maybe more important 

feature that provide additional and important information on locus-locus spatial 

couplings/correlations which contribute to the chromatin dynamics in a three-dimensional (3D) 

space. Here we compared the covariance matrices using the covariance overlap, which is a well-

established metric to compare the subspaces spanned by normal modes and has been used in many 

applications (Grossfield, et al., 2007; Hess, 2002; Romo and Grossfield, 2011). We found that 

while the locus mobilities shared much resemblance among cell lines, long-range couplings 

measured by spatial cross-correlations (covariance) exhibited more diversities, even among closely 

related cells (Figure 5A and Supplementary Figure S5A). For example, for chromosome 17, the 

off-diagonal cross-correlations are much weaker and sparser for K562 than for other hematopoietic 

cells (Figure 5A and Supplementary Figure S5A), which may suggest that in K562 the two arms 

of chromosome 17 are partially disordered, if not unfolded. Moreover, in the same chromosome, 

there are two anchor regions (Figure 5A, black arrows) that connect the two arms of the 

chromosome in GM12878; whereas the regions are absent in two leukemia cell lines, K562 and 

KBM7, as well as in THP1 and all four epithelial cell lines. These observations agree with the 

view that while chromatin domain positions in space are stable during differentiation, interactions 

within and between domains can change drastically (Dixon, et al., 2015). Furthermore, the cell 

trees based on covariance overlaps did capture some lineage relationships and further suggested 

the utility of pairwise covariance overlaps as a metric for quantifying the differentiation of cells 

with regard to their collective dynamics. 

Overall, this analysis revealed strong overlap between highly expressed genes and those 

distinguished by high mobilities; and cross-correlations of genomic loci are cell type-specific. 

These observations, with important implications in cell differentiation, invites attention to the 
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significance of the intrinsic mobilities of the individual genes in enabling their transcriptional 

regulation, shown here using a physical model at the genome-scale, for several types of cell lines. 

3.2.4 Methods 

3.2.4.1 Overlap between HMGs and HEGs 

Relative mobilities of genomic loci are calculated by subtracting from the MSF profile 

〈Δ𝒓𝑖
2〉(𝐴) of locus i in cell type A the average over all m cell types, i.e. 

Δ〈Δ𝒓𝑖
2〉(𝐴) = 〈Δ𝒓𝑖

2〉(𝐴) −
∑ 〈Δ𝒓𝑖

2〉(𝐴)𝐴

𝑚
. (3.3) 

Loci with the highest Δ〈Δ𝒓𝑖
2〉(𝐴) (top 10%) are considered as highly mobile, and genes 

within these loci are called “highly mobile genes” (HMGs) for that cell type A. The ARCHS4 

database (Lachmann, et al., 2018) from Enrichr (Chen, et al., 2013; Kuleshov, et al., 2016) contains 

HEGs data for 125 cell types. We used Jaccard index as a metric to evaluate the overlap between 

HMGs for cell line A and the HEGs for cell line B from the ARCHS4 database, 

𝐽(𝐻𝑀𝐺(𝐴), 𝐻𝐸𝐺(𝐵)) =
| 𝐻𝑀𝐺(𝐴) ∩ 𝐻𝐸𝐺(𝐵) |

| 𝐻𝑀𝐺(𝐴) ∪ 𝐻𝐸𝐺(𝐵) |
. (3.4) 

Then, the following computational test/protocol of four steps, schematically described in 

Figure 3.14A is adopted: (1) we compute for a given cell type A the relative mobilities of genomic 

loci with respect to the average over all cells examined by the GNM, (2) we identify those loci, or 

corresponding genes, which rank in the top 10% in terms of their mobility. These are the HEGs 

specific to cell type A. (3) The list of HEGs is provided as input to search the pool of candidate 

cell types and extract those cell types B whose HMGs provide maximal overlap (highest Jaccard 

indices) with the HEGs of cell type A. (4) the top-ranking 5-6 candidate cells resulting from this 
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screening process are shown in the bar plots in Figure 3.8 (left bars), along with the results for 

the other GNM-characterized cell types also contained in the pool (color-coded; right bars). 

 

Figure 3.14 Illustration of the 4-step protocol in silico test of the relationship between HMGs and HEGs. For 

IMR90 as a query cell: (1) Identification of high mobility (HM) loci from the difference (green curve) between the 

mobility profile obtained with the GNM (shown here for IMR90 chromosome 17; yellow curve), and that averaged 

across all 16 cell lines (blue curve); HM loci are defined as those exhibiting the top 10% mobility, shown by the red 

dots. (2) Genes located in HM loci, HMGs, are identified (shown by green dots). The procedure is repeated for all 

chromosomes, and the resulting list of HMGs for IMR90 chromatin is used for screening against the cell-type specific 

HEGs compiled in the ARCSH4 database; (3) Similarities between the HMGs of the query cell type and the HEGs of 

the 125 cell types in ARCSH4 are measured by the Jaccard index, and rank-ordered for each query cell type. This 

figure is adapted from (Zhang, et al., 2020). 

3.2.4.2 Covariance overlap for quantifying the similarities of chromatin dynamics 

The similarities between covariance matrices 𝐂𝐴 and 𝐂𝐵 for respective cell types A and B 

is quantified by the spectral/covariance overlap (Hess, 2002) (as described in Section 1.2.4.5): 

𝑆𝑂(𝐴, 𝐵) = 1 − [
∑ (𝜎𝑖

𝐴 + 𝜎𝑖
𝐵  ) − 2∑ ∑ (𝜎𝑖

𝐴 𝜎𝑗
𝐵  )

1
2 𝑛−1

𝑗=1 (𝒗𝑖
𝐴 ⋅ 𝒗𝑗

𝐵)2 𝑛−1
𝑖=1  𝑛−1

𝑖=1

∑ (𝜎𝑖
𝐴 + 𝜎𝑖

𝐵  )𝑛−1
𝑖=1

]

1
2

. (3.5) 
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Here n is the total number of nodes (meaning n – 1 non-zero modes in total). 𝜎𝑖 denotes the 

variance of mode i, equal to the reciprocal of 𝜆𝑖 . An important difference from the procedure 

described in Section 1.2.4.5 is that, because Hi-C maps are measured for different cell lines that 

may have different total read counts, we normalized the variances by 

𝑤𝑖 =
𝜎𝑖

∑ 𝜎𝑗
𝑛−1
𝑗=1

= 
1/𝜆𝑖

∑ 1/𝜆𝑗
𝑛−1
𝑗=1

. (3.6) 

𝑤𝑖 serves as a prior probability of contribution from mode i. This normalization permits 

us to directly compare the covariance matrices derived from different datasets.  

3.2.4.3 Cell dendrograms based on chromatin dynamics  

The spectral overlap can be converted to an arc distance (spectral distance) as  

𝑑𝑐𝑜𝑣(𝐴, 𝐵) = arccos(𝑆𝑂(𝐴, 𝐵)). (3.7) 

We took the maximum spectral distances across all chromosomes for each cell pair (A, B) 

to construct a distance graph 𝐺𝐷 where the vertices represent the cells, and the edges are weighted 

by the spectral distances between the corresponding vertices. For characterizing the cellular 

hierarchy among hematopoietic cells, a minimum-spanning tree (MST) was found using Prim's 

algorithm (Prim, 1957). This way, cell lines at intermediate stages are treated as internal nodes. 

For all cells, because of the absence of intermediate cell lines, neighbor-joining (NJ) algorithm 

(Saitou and Nei, 1987) was adopted, where all cell lines are treated as terminal nodes. 
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Future Directions 

Since their introduction in the late 1990s, the ENMs have become a widely used tool for 

exploring the unique functional motions of protein molecules over the years. The versatility and 

flexibility of the ENMs lend themselves to not only convenient and efficient applications to 

biomolecular systems, but also many methodological extensions that complement and expand the 

original models or the existing computational toolset (Atilgan and Atilgan, 2009; Eyal and Bahar, 

2008; Hinsen, et al., 2000; Kaynak, et al., 2018; Kurkcuoglu, et al., 2016; Lezon and Bahar, 2012). 

In this work, we focused on developing computational frameworks on top of ENMs to 

explore/enable their capability in processing large datasets. Our study demonstrated two novel 

applications of the ENMs, the first on the analysis of protein family dynamics and the second on 

the evaluation of the chromatin intrinsic dynamics using information on coarse-grained contact 

topology. Below, we will briefly recap the conclusions reached from the analyses described in 

each chapter and discuss future directions of improvements or applications.  

In Chapter 1.0, we developed and used an integrated computational pipeline, SignDy, for 

retrieving and analyzing the signature dynamics of protein families. We found that family 

members share conserved global modes that presumably provide the architecture for the fold to 

perform its main molecular functions, and motions in the LTIF regime define the specificity of 

subfamilies. In the future, additional studies with SignDy by a wide range of users with expertise 

in particular proteins and families would provide deeper insights into the evolution of dynamics 

and its importance for function. A reasonable strategy for utilizing SignDy in characterizing 

family/subfamily dynamics vis-à-vis structure and function evolution would be: (i) generate the 
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mode conservation and collectivity profiles for the investigated family;  (ii) identify the conserved 

modes in different regimes; (iii) examine the corresponding mode shapes  to (iv) identify critical 

sites responsible for the evolutionarily conserved signature dynamics (minima in global modes) 

and stability (peaks in HF modes) as well as those susceptible to subfamily-specific divergence (in 

conserved LTIF modes); and (v) generate dendrograms that provide information on dynamics 

similarities in different regimes, complementing sequence and structure similarities, among family 

members. While subfamily-subfamily spectral distances have been analyzed in Section 1.2.2.6 

based on different frequency windows of structural dynamics (Figure 1.14), computations may be 

performed for narrower windows or even individual modes, to identify the most discriminative 

modes and infer new design/engineering principles for alterations of function. 

In Chapter 2.0, we adapted the GNM to modeling chromatin’s intrinsically accessible 

dynamics, and we made predictions on several dynamic properties of the chromatin molecule, 

which were shown to satisfactorily compare with data from chromatin accessibility (DNase-seq 

and ATAC-seq) and ChIA-PET experiments, and known chromatin substructures such as 

compartments and TADs. Future GNM analyses of chromatin dynamics could focus on the nature 

of the long-range couplings, analysis of their biological significance, or the meaning of genomic 

regions that exhibit high covariances. GNM also predicts a measure of the overall coupling of each 

genomic locus to others (i.e. the covariance matrix), the significance of which requires further 

investigation. The GNM was shown to capture several biological properties of chromosomes, but 

further insights into cooperative events, including the inter-chromosomal interactions, is within 

reach by focusing on the softest (lowest frequency) modes of motion predicted by the GNM. 

Modeling such inter-chromosomal interactions could be further exploited by a systems-

environment framework (Hinsen, et al., 2000) to help ameliorate the tip effect at certain 
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chromosomal regions induced by sparse contacts. Finally, gene transcription is believed to be 

partly regulated by chemical modifications to histone proteins, and it has been shown in previous 

studies that histone modification markers (HMMs) are strongly associated with domain boundaries 

(Filippova, et al., 2014). It would be interesting to perform an analysis similar to what we did in 

Section 2.2.2.4 with the APBSs to investigate if/how HMMs are differentially enriched at domain 

boundaries, and how this enrichment depends on the hierarchical depths. In addition, several 

potential directions for the application of HiDeF to other types of biological networks were 

discussed in Section 2.2.3.  

In Chapter 3.0, we showed that the comparative analysis of the fluctuation spectrum and 

CCDDs can reveal the differences across cell types. Similar to the case of protein families 

examined in Chapter 1.0 where global dynamics were found to be conserved, it would be of interest 

to explore whether cell-cell variabilities as well as the differences in disease vs normal states could 

equally be rationalized in the light of chromatin dynamics as more data become accessible on cell 

type-specific genome spatial organization. As more data will become available, more detailed 

analytical treatments using broader datasets, including more extensive single cell Hi-C data, will 

help obtain more complete and accurate information on cell-specific chromatin dynamics as well 

as their relevance to cell differentiation. Last but not least, a comparison of the hierarchies of 

chromatin domains across different cell types/species may provide more insights into the cell type-

specific chromatin dynamics, to enhance our understanding of what type (extent) of structural 

rearrangements could lead to the observed changes in frequency dispersion while retaining similar 

mode shapes. 
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Appendix A Relationship between Spectral Clustering and the GNM 

Spectral clustering. In early studies (Chan, et al., 1994; Hagen and Kahng, 1992), spectral 

clustering (or clustering based on the ratio cuts criterion) has been shown to relate to the weighted 

quadratic placement problem (QPP), which aims to find the optimal locations of n points 𝒙 =

[𝑥1, 𝑥2, … , 𝑥𝑛] to minimize their total weighted squared distance: 

𝑧 =∑𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

𝑖𝑗

. (A. 1) 

The non-negative weights 𝑎𝑖𝑗  can be organized into an 𝑛 × 𝑛  affinity matrix, i.e. 𝐀 =

[𝑎𝑖𝑗], essentially defining a network topology of 𝒙. Suppose 𝐃 is the degree matrix of the network, 

and 𝐋 = 𝐃 − 𝐀, the QPP can be expressed as a quadratic programming problem:  

minimize𝒙 𝑧 = 𝒙𝑇𝐋𝒙, subject to 𝒙𝑇𝒙 = 1. (A. 2) 

The constraint is to avoid the meaningless solution that 𝒙  are all zeros. By introducing the 

Lagrange multiplier and setting the derivative to zero, it arrives at the following eigenequation: 

𝐋𝒙 = 𝜆†𝒙. (A. 3) 

It can be seen that the solution to the QPP is the eigensystem of L, the Laplacian matrix that defines 

the network topology. The first k eigenvectors 𝐕 = [𝒗1, 𝒗2, … , 𝒗𝑘] are the optimal placement of 

the points in k dimensions (i.e. Laplacian embedding), and the sum of the first k eigenvalues 

𝜆1
† , 𝜆2

† , … , 𝜆𝑘
†
 is the cost of the placement and total squared distance among the points. Laplacian 

embedding serves as (one of) the justification of spectral clustering and it will be discussed below 

its connections to the GNM. 
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An optimization view of the GNM. Minimizing the GNM potential (equation 2.3) under 

the constraint that the atomic displacement Δ𝒓 is normalized leads to the following optimization 

problem: 

minimizeΔ𝒓 𝑉𝐺𝑁𝑀 =
1

2
Δ𝒓𝑇𝚪Δ𝒓, subject to Δ𝒓𝑇Δ𝒓 = 1, 

which similarly to equation A. 2, arrives at an eigenvalue problem: 

𝚪Δ𝒓 = 𝜆Δ𝒓, (A. 4) 

𝚪 is the Kirchhoff matrix which takes the form of a Laplacian. Eigenvectors and eigenvalues of 

𝚪 correspond to shapes and frequencies of normal modes. Equation A. 3 and A. 4 connect the GNM 

to spectral clustering in that they both solve the problem by retrieving the eigenvalues of a 

Laplacian matrix. Notably, the zero eigenvector corresponds to the translation of the entire network 

as a rigid body in the GNM; and in QPP, this correspond to a trivial solution where every point is 

placed at the same location, however, it was shown in (Stella and Shi, 2003) that this seemingly 

trivial zero eigenvector is just as important as any others for generating the optimal clustering 

solution.  

Despite their similar mathematical forms, the physical interpretations of the two methods 

are distinct. Specifically, the variables 𝒙 in the QPP are spatial positions of the points/nodes 

whereas in the GNM Δ𝒓 are the changes in the positions. This means that while spectral clustering 

seeks to cluster nodes based on their proximity in an embedding space, the GNM reveals and 

identifies nodes with similar dynamics. Nonetheless, this difference does not compromise the 

utility of applying spectral clustering techniques on the GNM results, but sheds light on the fact 

that the “dynamically coupled” domains identified by the GNM should be also physically close, if 

a global distance optimum is reached.  
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Appendix B Inferring Hierarchy from Multiresolution Clustering Results 

Background. Given 𝑛  data points, 𝑥1, 𝑥2, … , 𝑥𝑛 , let 𝐏  be an 𝑛 ×𝑚  binary matrix that 

denotes 𝑚  non-exclusive clusters identified by some algorithm(s) using different parameter 

settings. Each column of 𝐏 is a binary vector that indicates which data points are owned by which 

cluster, 𝐏 = [𝒑1, 𝒑2, . . . , 𝒑𝑚] = [𝑝𝑖𝑗], 

𝑝𝑖𝑗 = {
1 if 𝑥𝑖  is owned by cluster 𝑗,
0 otherwise.

(B. 1) 

Pairs of clusters may be disjoint, overlapping with, or containing each other. These relationships 

will be identified and represented by a directed acyclic graph (DAG) in later steps. 

 

Containment index. Given two sets (clusters) of data points, 𝐴  and 𝐵 , we define 

containment index of B with respect to A as follows, to measure how much of 𝐵 is included in 𝐴: 

𝑐𝑖(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐵|
. (B. 2) 

Obviously, 𝑐𝑖(𝐴, 𝐵) ∈ [0,1]. The metric is asymmetric provided that 𝐴 is different from 𝐵. If 

𝑐𝑖(𝐴, 𝐵) > 𝜅  and 𝑐𝑖(𝐴, 𝐵) > 𝑐𝑖(𝐵, 𝐴) with 𝜅 ∈ (0.5, 1.0], it is defined that 𝐴 𝜅-contains 𝐵 , or 

𝐴 ≽ 𝐵. 𝐴 properly contains 𝐵 (𝐴 ≻ 𝐵) if the inequality is strict. Note that 𝑐𝑖(𝐴, 𝐵) > 𝑐𝑖(𝐵, 𝐴) 

also implies that |𝐴| > |𝐵|, so circular relations such as 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴 are impossible; therefore, 

the corresponding graph representation (see below) becomes acyclic.  

This generalized definition of containment coincides with the conventional one when 𝜅 =

1, that is 𝐴 ⊆ 𝐵 if every element of 𝐵 belongs to 𝐴. However, when 𝜅 < 1, the requirement for 

defining containment is relaxed. As a result, we may still declare that 𝐴 contains 𝐵 even if some 
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elements of 𝐵 are not part of 𝐴, to a degree. This is to account for the ambiguous classification of 

data points at the decision boundaries of the clustering algorithm. 

In practice, 𝐴 and 𝐵 are represented by binary ownership vectors. Pairwise containment 

indices of communities are calculated via the following formula: 

𝐂̃ = 𝐏𝑇𝐏, 

𝐂 = [𝑑𝑖𝑎𝑔(𝐂̃)]
−1
𝐂̃, (B. 3)  

where 𝑑𝑖𝑎𝑔(𝐂̃) is a diagonal matrix composed of diagonal elements of 𝐂̃. Finally, 𝐂 is the matrix 

of pairwise containment indices where each element 𝐂𝑖𝑗 = 𝑐𝑖(𝒑𝑖, 𝒑𝑗). 

 

Containment graph. Let 𝐺 be a directed graph. 𝑉 are the vertices, each corresponds to a 

cluster of data points. 𝐸 are the directed edges. Let 𝑢 and 𝑣 be two vertices in 𝐺, and 𝑈 and 𝑉 their 

corresponding clusters. There exists an edge 𝑢 → 𝑣 if 𝑈 𝜅-contains 𝑉. Data points themselves are 

treated as clusters of size 1 and represented by terminal vertices, which are connected to other 

vertices in the same way as the non-terminal vertices. All vertices receive an edge from the root 

vertex representing a grand cluster that owns every data point. The containment graph is acyclic 

as no circular relations are allowed (see above). 

Since 𝐺 represents all the containment relations among the clusters, it is referred to as a 

containment graph. Most of the containment relations are transitive, meaning that if there is an 

edge 𝑣 → 𝑢 and 𝑢 → 𝑤, there may be also an edge 𝑣 → 𝑤. The transitive reduction of 𝐺, denoted 

by 𝐻 , is a subgraph of 𝐺  that removes as many edges as possible while retaining the same 

reachability for every vertex, which effectively eliminates transitive edges, e.g. 𝑣 → 𝑤  in the 

above example. Since 𝐺 is acyclic, 𝐻 is unique. 
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Computationally, the affinity matrix of 𝐺  can be easily evaluated from the matrix of 

pairwise containment indices, 𝐂 (see above), by comparing it with 𝜅: 

 

𝐀(𝐺) = 𝐂 ∘ Δ(𝐂 ≥ 𝜅) ∘ Δ(𝐂 ≥ 𝐂𝑇) (B. 4) 

 

Here ∘ denotes the Hadamard (element-wise) product and Δ is the vectorized Kronecker delta 

function that operates on the input matrix element-wise. If there is any two-way edges, one of the 

edges is removed arbitrarily. 𝑉 are sorted in a topological order 𝛼(𝑉) and a reachability matrix, 

𝐑(𝐺) = [𝑅𝑖𝑗] where 𝑖, 𝑗 ∈ 𝛼(𝑉), is computed for the convenience of the latter operations. 𝛼(𝑉) 

and 𝑅(𝐺) can be computed together in a single run of depth-first search (DFS). The transitive 

reduction 𝐻 of 𝐺 was found with the following algorithm, 

Algorithm 1 Transitive Reduction 

Input: a containment graph 𝐺 = (𝑉, 𝐸) 

Output: a directed acyclic graph 𝐻 

foreach 𝑢 ∈ 𝑉 do 

|   foreach 𝑣 ∈ 𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡(𝑢) do 

|   |   foreach 𝑤 ∈ 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡(𝑣) do 

|   |   |   remove (𝑢, 𝑤) if (𝑢, 𝑤) ∈ 𝐸 

|   |   end 

|   end 

end 

 

𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡(𝑢)  finds all the vertices that receive an edge from 𝑢 ; whereas 

𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡(𝑣) finds all the vertices reachable from 𝑣, which can be efficiently found using the 
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adjacency or the reachability matrix, respectively. Notably, the topological order 𝛼(𝑉) and the 

reachability matrix 𝐑(𝐺) stays valid for 𝐻.  

Every vertex in 𝐻 except for the root can have one to several direct predecessors. Consider 

a vertex and all the edges incident to it. The edge with the highest weight is considered as an 

essential edge for maintaining reachability of the vertex; whereas the others are considered as 

competing edges. Competing edges are ranked globally by their weights, such that a second cutoff 

value 𝜉 ∈ [0, 1] can be used to select top ranking ones. This produces a subgraph of 𝐻, denoted 

by 𝐻̃, containing all the essential edges and the top 𝜉 × 100% competing edges. Notably, there 

are two special cases: when 𝜉 = 1, 𝐻̃ = 𝐻; when 𝜉 = 0, 𝐻̃ is an arborescence, which means there 

exists only a single (directed) path from the root to any vertex in the graph. In this study, 𝜉 = 0 

was used. 

Finally, to further simplify 𝐻̃, vertices with both indegree and outdegree equal to 1 are 

removed by contracting the edge between them and their neighbors. While the topological order 

of the remaining vertices 𝛼(𝑉̃) is consistent with 𝛼(𝑉), 𝐑(𝐺) = 𝐑(𝐻) ≠ 𝐑(𝐻̃). 

 

Vertex (cluster) depth. The depth of a vertex is defined as the max number of steps for it 

to traverse back to the root. It is effectively computed by the following algorithm: 

Algorithm 2 Computing Depths 

Input: simplified containment graph 𝐻̃ and the 

topological order of vertices 𝛼(𝑉̃) 

Output: an array 𝒅 containing the depths of 𝛼(𝑉̃) 

initialize 𝒅 as an integer array of length 

foreach 𝑢 ∈ 𝛼(𝑉) 

    if 𝑢 is root then 

        𝒅𝑢  =  0  
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    else 

        𝒑 =  𝑔𝑒𝑡_𝑢𝑝𝑝𝑒𝑟_𝑑𝑒𝑝𝑡ℎ𝑠(𝑢)  

        𝒅𝑢 = 𝑚𝑎𝑥(𝒑) +  1 

    end 

end 

 

𝑔𝑒𝑡_𝑢𝑝𝑝𝑒𝑟_𝑑𝑒𝑝𝑡ℎ𝑠(𝑢) returns the depths of all the direct predecessors of vertex 𝑢. This algorithm 

works based on the assumption that when a vertex is being evaluated, all of its predecessors must 

have been evaluated already, which is conveniently satisfied by the topological sorting. The 

algorithm tends to assign the largest possible depth to the vertices; however, this behavior can be 

easily modified to fulfill different purposes (for example, one may be interested in the 

"shallowness" of the clusters).  

Now that we have a containment graph 𝐻̃ where each vertex belongs to an original cluster, 

the ownership of the clusters, i.e. the vertices that belong to that cluster, may be subject to change. 

Adjusted ownership for a non-terminal vertex is defined as all its reachable terminal vertices. The 

smaller the values of 𝜅 and/or 𝜉, the larger the difference between the original and the new clusters. 

Let 𝜔𝑖  be a terminal vertex representing the data point 𝑥𝑖 , and 𝜇1, . . . 𝜇𝑚̃  be 𝑚̃  non-terminal 

vertices at a given depth. An 𝑛 × 𝑚̃ binary matrix, 𝐐 = [𝒒1, 𝒒2, . . . , 𝒒𝑚̃] = [𝑞𝑖𝑗], can be used to 

describe the membership of adjusted clusters, 

𝑞𝑖𝑗 = {
1 if 𝜔𝑖 is reachable from 𝜇𝑗,

0 otherwise.
(B. 5) 
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