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Abstract 

The Influence of Mechanical and Neural Coupling on Electromyography Signals of the 

Extrinsic Hand Muscles 

 

Carl Richard Beringer III, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Dexterous control of a myoelectric prosthetic hand has been the subject of decades of 

research and effort but remains an unsolved challenge. In part, it is because dexterous prosthetic 

control relies upon products from multidisciplinary fields: an articulated high degree-of-freedom 

(DOF) robotic limb, stable electrodes to capture high-resolution biosignals, the portable 

computational power to run control algorithms in real-time, and a decoder founded on a strong 

understanding of how the hand is controlled. Our scientific understanding of muscle activations 

coordinate to enable skilled and dexterous movements of the hand has not kept pace with the rapid 

development of technology which may be leveraged to develop a prosthetic hand. Dexterous 

control of the hand is a complex endeavor which requires simultaneous control over numerous 

muscles which span multiple joints. These muscles do not act independently and are coupled 

through mechanical means, such as shared tendons, and neural mechanisms, including diverging 

descending motor commands. Understanding how the coupling in the hand is present and 

manifested, particularly through the lens of electromyography, is a vital endeavor which is a 

necessary step towards development of dexterous prostheses.  

In this manuscript, I present my research that uses electromyography to characterize the 

mechanical and neural coupling within the extrinsic hand muscles. I begin with how the EMG 

activity of the extrinsic finger muscles, which span across the wrist, is affected by the posture of 

the wrist and contributes to wrist movements. In the next section, I demonstrate the neural coupling 
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present during movements of the digits and develop a series of generalized models of coactivation 

and stabilization for the extrinsic finger flexors and extensors. Finally, using the EMG data 

collected I present the development of an optimization environment to test methods of EMG-to-

activation and simulate the forward dynamics of a 17 DOF model of the hand to replicate dexterous 

movements. These results provide an insight on control of the hand which may prove useful for 

development of prosthetic control algorithms and demonstrate a testing environment for EMG-to-

activation signal processing protocols. 
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1.0 General Introduction 

The human hand is a wondrous appendage that allows us to interact and manipulate the 

environment around us. It is amazingly versatile and capable of strong, gross movements as well 

as performing delicate manipulations that require a fine touch. It can even be argued that the hand 

has become vital for communication in the digital age thanks to texting and e-mail. Achieving such 

a level of motor control requires the coordination of the many hand muscles which may span across 

four joints. Further compounding this complexity is the mechanical and neural coupling present in 

the hand, which prevents the muscles which actuate the digits from acting independently. Because 

of these factors, the hand should be considered as a complete system rather than an assembly of 

the palm, thumb, and four fingers. 

The loss of a hand is a devastating injury that affects the daily lives of more than 540,000 

Americans (Ziegler-Graham, MacKenzie, Ephraim, Travison, & Brookmeyer, 2008). In order to 

restore function and independence to amputees, prosthetic devices that use electromyographic 

(EMG) activity collected by surface electrodes from the residual muscles as a control signal are 

often prescribed. Despite an explosion in research and development of prosthetic control 

algorithms, myoelectric prosthetic hands have rejection rates of up to 33%, with many users 

complaining of poor control (Mcfarland, Winkler, Heinemann, Jones, & Esquenazi, 2010). A 

review of upper limb amputee needs has shown that many patients desire increased independent 

control of the fingers, a feature not offered by present control systems, so that they may perform 

activities of daily living such as tying their shoes or buttoning a shirt (Cordella et al., 2016). 

The difficulty in developing a prosthetic control system that can completely replicate 

intended hand movements is due to the complexity of the hand and a gap in understanding of how 
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the hand coordinates movements. Previous studies of the hand, particularly those examining the 

extrinsic finger muscles, have often only focused on a single muscle during simple movements 

(Birdwell, Hargrove, Kuiken, & Weir, 2013; Butler, Kilbreath, Gorman, & Gandevia, 2005; 

Johanson et al., 1990; Kilbreath & Gandevia, 1994; Leijnse, Campbell-Kyureghyan, Spektor, & 

Quesada, 2008; Reilly & Schieber, 2003; van Duinen, Yu, & Gandevia, 2009). Across these 

studies, different tasks are used which makes comparison difficult. 

In this work, I have sought to understand and characterize the extrinsic hand muscles during 

a broad range of movements and postures. In Chapter 2, I describe changes in the extrinsic finger 

muscles EMG activity during different wrist postures and how these muscles assist in wrist 

movements of able-bodied subjects. In Chapter 3, I examine the behavior of the extrinsic finger 

muscles during movements of neighboring digits in able-bodied subjects. After this, in Chapter 4 

I compare these patterns of EMG activity in trans-radial amputees to the results in the previous 

chapters.   

1.1 Control of the Hand 

1.1.1 Skeletal Muscle Tissue and Modeling 

Muscle is a form of tissue which generate forces through contraction of the tissue for the 

production of movements, stabilization of joints, and generation of heat. Muscle tissue is divided 

into several subtypes, but all muscle tissue has four properties which enable this function: electrical 

excitability, contractibility, extensibility, and elasticity (Tortora & Derrickson, 2018). Skeletal 

muscle tissue is a type of muscle tissue responsible for volitional movements of the body through 
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the generation of force. Skeletal muscles are composed of hundreds to thousands of cells (muscle 

fibers) responsible for force generation. These muscle fibers are further composed of cylindrical 

structures known as myofibrils, which are comprised of thick and thin filaments. The filaments are 

organized in longitudinal compartments known as sarcomeres and act as a functional unit. The 

generation of force via muscle contraction originates within these sarcomeres through the sliding 

filament mechanism: thick filaments walk along the lengths of neighboring thin filaments, which 

are attached to the walls of each sarcomere, generating force through the shortening of the muscle. 

The force generation of muscles as a muscle-tendon unit has been modeled based on its physical 

properties in Hill-type muscle models described in this equation (Lloyd & Besier, 2003) and a 

diagram may be seen in Figure 1.1: 

𝐹𝑀𝑇(𝑡) = 𝐹𝑀𝐴𝑋[𝑓(𝑙)𝑓(𝑣)𝑎(𝑡) + 𝑓𝑝(𝑙)] cos(φ(t))              Equation 1-1 

Where FMT is the muscle-tendon force at time t and is equal to the maximum force (FMAX) 

multiplied by muscle activation, a(t), tension developed at length l [f(l)] and velocity v [f(v)] plus 

the passive elastic force at length l [fp(l)], multiplied by the cosine of the angle between the muscle 

and tendon. 
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Figure 1.1 Hill-type muscle model diagram 

The diagram provides a systems-level overview of the Hill-type muscle model. The passive element is a 

function of the passive force-length curve. The contractile, or active, element is a function of activation as well 

as the force-length and force-velocity properties. 
 

The length-tension and force-velocity relationships represent phenomenon based on the 

sliding filament mechanism. The maximum tension that may be generated changes based on the 

overlap between the thick and thin filaments; as the muscle sarcomeres lengthen and shorten, the 

changing overlap between the filaments affects the tension that may be generated. Likewise, the 

state of a muscle in eccentric or concentric contraction further influences the tension that may be 

generated. The passive elastic muscle force, as the name suggests, is derived from the elastic 

properties of the muscle-tendon unit. As a muscle is lengthened, a tension is generated which 

follows an exponential curve. The tension generated by the passive forces can be negligible when 

a joint is in a neutral position, but follow an exponential curve when a muscle is stretched such as 

when a joint is moved near the limits of the range of motion (Lehman & Calhoun, 1990). 
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1.1.2 An Abridged Anatomy of the Hand 

The anatomy and physiology of the hand is a complex topic that has had numerous books 

devoted to its details (Botte, 2003; Hirt, Seyhan, & Wagner, 2016; Jones & Lederman, 2007; Rayan 

& Akelman, 2012). In this section, I will briefly describe the characteristics of the muscles and 

structure of the hand relevant to this work. The hand is composed of 27 bones, which can be 

divided into three categories: the carpals, the metacarpals, and the phalanges (Taylor & Schwarz, 

1955).  The carpals are eight irregularly shaped bones which comprise the wrist. The palm of the 

hand is shaped by the five metacarpal bones, which lead to the four fingers and thumb. The 

remaining 14 bones are the phalanges: three bones for each finger, and two for the thumb. The 

phalanges closest to the metacarpal are known as the proximal phalanges, followed by the 

interphalanges and then the distal phalanges. The thumb is composed of only the proximal and 

distal phalanges. 

The hand is composed of many joints; the digits alone have a total of 15 joints which have 

a total of 20 degrees of freedom (DOF) (Ingram, Körding, Howard, & Wolpert, 2008). The most 

proximal joint, commonly referred to as the wrist joint, is composed of two joints: the radiocarpal 

and midcarpal joints. These two joints permit flexion/extension and radial/ulnar deviation. 

Although the hand can be pronated and supinated, this movement occurs at the distal radioulnar 

joint in the forearm, not the wrist. The thumb is articulated by three joints: the carpometacarpal 

(CMC) joint at the base of the thumb and carpal bones, the metacarpal joint (MCP) between the 

metacarpal and proximal phalanges, and the interphalangeal (IP) joint located between the 

proximal and distal phalanges. The finger joints have a similar structure: the CMC joint are 

relatively fixed between the carpals and finger metacarpals. The MCP joints, which are commonly 
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observed as the knuckles, are between the metacarpals and proximal phalanges. The next joint is 

the proximal interphalangeal (PIP) joint, followed by the distal interphalangeal joint (DIP). 

The many joints of the hand make it capable of performing a wide number of movements, 

which are articulated by many muscles. The carpal muscles are located in the forearm and act on 

the wrist to perform flexion/extension and abduction/adduction movements through a combination 

of activations. These muscles are the extensor carpi radialis longus (ECRL) and brevis (ECRB), 

the extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU). These 

muscles perform multiple actions; for example, FCU performs flexion and adduction (ulnar 

deviation) of the wrist. For a review of these muscles and their functions, see Jones & Lederman, 

2007. Performing a single action such as flexion requires a careful balance of these muscles to 

counteract movement in abduction and adduction. The muscles which control the fingers can be 

divided into two groups based on the location of the muscle. The pronator and supinator muscles, 

which insert outside the wrist, perform pronation and supination movements of the wrist. The 

intrinsic finger muscles are small muscles located within the hand and are responsible for some 

thumb movements as well as abduction/adduction of the fingers. Intrinsic finger muscles also assist 

with flexion and extension movements of the digits in combination with the extrinsic finger 

muscles. The extrinsic hand muscles, which are central to this work, are located in the forearm and 

predominantly control the flexion/extension of the fingers and thumb.  

The extrinsic finger muscles are connected from origins in the forearm to the fingers 

through long tendons which cross the wrist joint and insert at either the proximal phalanges or 

distal phalanges. The muscles included in this group are the extensor digitorum (ED), extensor 

indicis proprius (EIP), extensor digiti minimi (EDM), flexor digitorum profundus (FDP), and 

flexor digitorum superficialis (FDS). EIP and EDM insert on only the index finger (D2) and little 
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finger (D5) respectively whereas ED, FDS, and FDP insert on the index, middle, ring, and little 

(D2-D5) fingers. Movements of the thumb are also controlled through extrinsic muscles, such as 

flexor pollicus longus, extensor pollicis longus, extensor pollicis brevis, and abductor pollicis 

longus, although these muscles are outside the scope of this work. 

ED, FDS, and FDP control flexion/extension of the digits over the DIP and PIP joints 

through a combination of actions. ED and FDP insert at the distal phalanges while FDS inserts at 

the middle phalanges. The actions of ED and FDP fully extend/flex the digit, while activation of 

FDS flexes the finger at all joints except DIP. The concerted action of these muscles together 

permits a varied ability to manipulate the finger in different movements and postures (Chase & 

White, 1978). The ability of these three muscles to control more than eight joints is a complex 

topic which will be addressed in the following sections. 

1.1.3 Mechanical Coupling of the Hand 

ED, FDS, and FDP are considered to be individual muscles yet are the primary actuators 

of the fingers. The ability of these three muscles to control flexion and extension of the digits 

individually is only possible because those muscles are composed of smaller compartments which 

directly actuate the digits. While other muscles may have only a single tendon or two linking the 

muscle to the actuated joint, these muscles have multiple tendons which cross the wrists and insert 

on the phalanges (Malerich, Baird, McMaster, & Erickson, 1987; von Schroeder & Botte, 1995). 

The tendons which spread to the digits are interconnected by the juncturae tendinum (Von 

Schroeder & Botte, 2001) and in some cases resemble spider webs (Leijnse, Carter, Gupta, & 

McCabe, 2008; von Schroeder & Botte, 1995). The organization and connections of these tendons 

can vary across subjects (Schenck, 1964; von Schroeder & Botte, 1995; Von Schroeder & Botte, 
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2001). This variation may be greater than a simple difference in connectivity; unusual anatomical 

connections such as FDP and a thumb flexor have been reported, with one study finding it present 

in at least one hand of 25% of cadavers (Linburg & Comstock, 1979) . These shared connections 

contribute to the mechanical distribution of force of the hand. As a muscle contracts, tension is 

generated on the tendon and its shared connections which insert on the other digits. If a single part 

of the muscle is only activated and generating tension for movement of one digit, digits which 

share tendinous connections may be affected. These effects are part of what is described as 

mechanical coupling – the mechanical characteristics of one part of the hand have an influence on 

another. 

Further contributing to the mechanical coupling of the hand is the change in muscle lengths 

based on the hand posture. This is expected at a single joint: for example, a full extension of the 

elbow will result in a lengthening of the biceps. Similarly, a full extension of a finger will result 

in increase on the tension of the FDP tendon and a lengthening of the FDP muscle (Tanaka, 

Amadio, Zhao, Zobitz, & An, 2005). However, the extrinsic hand muscles span more than one 

joint and may be influenced by the state of those joints. The position of the wrist affects these 

muscle lengths and the tension of the muscle, thereby altering the force exerted by a finger (Kursa, 

Lattanza, Diao, & Rempel, 2006; Li, 2002; Tanaka et al., 2005). 

The mechanical coupling in the hand is part of why it should be described as a system 

rather than a series of parts. The shared tendinous connections and influence by joint angles has 

an effect on the joints and muscles of the hand and shows that performing even simple movements 

is a challenge. However, the mechanical coupling is not the only aspect of the hand that makes it 

such a complex system. 
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1.1.4  Neural Coupling of the Hand 

Beyond mechanical coupling, the hand is subject to neural coupling as well. In an 

experiment by Lang and Schieber, excursion angles of the fingers were tracked during single digit 

volitional (‘active’) movements and passive movements where the finger was moved by an outside 

force. When the excursions of the non-moved digits during active and passive movements were 

compared, it was found that the non-intended digits moved more during active than passive 

movements (Lang & Schieber, 2004). This simple experiment demonstrated neural coupling in the 

hand: active digit movements do not occur independently and cause movement of the neighboring 

digits.   

1.1.4.1 Hand Synergies – Kinematics and Muscles 

The neural coupling present in the hand may be a feature for a limb that appears to be 

specialized for grasping. The use of the hand has been divided into two categories: movements 

requiring the simultaneous use of multiple digits for grasp, or for the individuated movement of a 

digit. Grasp and grasping movements are the most common uses of the hand (Schieber & Santello, 

2004), yet the use of the hand for grasping is a late evolutionary development and the human 

capability to create a variety of grasps is unmatched. Even the chimpanzee, our closest relative and 

whose hand morphology resembles that of humans, are unable to create a precision or power grip 

(Napier, 1960).  

Grasping requires the coordinated movement of multiple digits in order to shape the hands 

around an object. When an individual reaches for an object, the fingers begin to assume the shape 

to grasp an object as the arm travels along its trajectory (Mason, Gomez, & Ebner, 2001) and show 

consistent covariation across the finger joints simultaneously (Santello, Flanders, & Soechting, 
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2002). Control over the many DOFs of the hand can be described by a small number of 

coordination patterns known as synergies. Principal component analysis (PCA) during grasping 

has shown that two components can account for more than 80% of the variance (Santello, Flanders, 

& Soechting, 1998). 

The kinematic synergies across the joints of the hand are driven by the extrinsic hand 

muscles which receive diverging inputs from motor neurons (Butler et al., 2005; Keen & 

Fuglevand, 2004a; Reilly & Schieber, 2003; Yu, van Duinen, & Gandevia, 2010). The diverging 

inputs terminate in the subcompartments of ED, FDS, and FDP, which have ”highly selective core 

regions” that act specifically on each finger, and specifically for the movement of each digit and 

less selective regions at the periphery which are active for movements of the neighboring digit 

(Reilly & Schieber, 2003). EMG studies of these muscles have supported the synergies observed 

in the kinematic domain and provided a foundation on which the force synergies may be 

understood. Motor unit synchronies in muscles provide evidence of common synaptic input to 

motoneurons and functionally coordinate muscle synergies. Motor unit synchrony has been 

observed in the compartments of ED during hand opening movements (Keen & Fuglevand, 2004a). 

Work by Winges et al. has consistently shown motor unit synchrony between the thumb and finger 

flexors, as well as between the compartments of the finger flexors (Winges & Santello, 2004).  

This synchrony was shown to be particularly strong between the thumb and D2 flexor muscles 

(Winges, Johnston, & Santello, 2006) and may play a role in precision grip. Motor unit 

synchronization is also present in the intrinsic hand muscles, but to a much lesser extent than the 

extrinsic hand muscles (Huesler, Maier, & Hepp-Reymond, 2000). Motor unit synchrony is not a 

specialization for a single synergy, as work has found that motor units may participate in multiple 

synergies and that organization of synergies is distributed (Weiss & Flanders, 2004). Muscle 
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synergies have also been observed between the extrinsic and intrinsic hand muscles: Johnston et 

al. demonstrated simultaneous and uniform scaling of EMG activity across these muscles during 

a precision grasp as wrist angle was altered (Johnston, Bobich, & Santello, 2010). 

1.1.4.2 Neural Basis of Synergies 

Identifying the origin of the neural coupling within the hand is a challenging endeavor. In 

the motor cortex, the fingers have a somatotopic representation in the motor cortex (Beisteiner et 

al., 2001; Dechent & Frahm, 2003). Neural recordings from these areas have been used to decode 

and reconstruct individual finger movements (Acharya et al., 2008; Aggarwal et al., 2008; 

Aggarwal, Tenore, Acharya, Schieber, & Thakor, 2009). However, the somatotopy of these 

regions features significant overlap (Dechent & Frahm, 2003) and transcranial magnetic 

stimulation in humans has induced synergistic finger movements (Gentner & Classen, 2006). 

Intracortical microstimulation of the primary motor cortex has induced synergistic muscle activity 

similar to volitional movements in nonhuman primates (Graziano, Cooke, Taylor, & Moore, 2004; 

Overduin, d’Avella, Carmena, & Bizzi, 2014; Overduin, D’Avella, Roh, & Bizzi, 2008). In an 

fMRI study of hand shaping and posture, Leo et al.showed that activity in motor regions could be 

described as a function of a small number of motor primitives that grouped together multiple joints 

(Leo et al., 2016).  

At the spinal cord level, it has been demonstrated that spinal interneurons facilitate the 

divergence of motor commands to the hand muscles. In nonhuman primates, spike-triggered 

averaging of EMG activity of hand muscles has identified the role of spinal interneurons in 

postspike facilitation and postspike suppression in facilitating grip (Takei & Seki, 2010). Further 

examination of this phenomenon has identified that the link between premotor interneurons and 

muscle synergies, leading Takei et al. to claim that these interneurons underlie the observed 
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coordination of hand movements (Takei, Confais, Tomatsu, Oya, & Seki, 2017). Given all these 

findings, it appears likely that muscle synergies are organized at both a spinal and supraspinal 

level. 

1.2 Electromyography 

The volitional contraction of skeletal muscle tissue occurs when spinal motor neurons 

generate action potentials that propagate along their axons and eventually depolarize at the synapse 

between the motor neuron axon and the skeletal muscle fiber, known as the neuromuscular 

junction. The depolarization generates a muscle action potential through a series of events, 

beginning with the release of acetylcholine at the neuromuscular junction. Acetylcholine diffuses 

across the synapse and binds to receptors on the myocyte at the motor end plate, triggering a muscle 

action potential. The muscle action potential travels along a channel known as the transverse 

tubule, opening the calcium channels along the way which release calcium ions into the 

intracellular space and enable the thick filaments to walk along the length of the thin filaments, 

thereby shortening and causing a muscle contraction. 

Electromyography (EMG) is a technique which measures muscle activity by recording the 

electrical activity of the muscle action potential. EMG activity may be recorded non-invasively 

with surface electrodes or through the placement of intramuscular electrodes directly within the 

muscle belly (Figure 1.2). Both methods have their advantages and disadvantages. Surface EMG 

recordings are the summation of motor unit action potentials within an area and provide a global 

view of muscle activity (De Luca, Adam, Wotiz, Gilmore, & Nawab, 2006). In areas with small, 

densely-packed muscles such as the forearm, surface EMG recordings contain the activity of 
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multiple muscles and it is difficult to disentangle the behavior of any one muscle due to crosstalk 

(Lynn, Bettles, Hughes, & Johnson, 1978). Intramuscular electrodes provide a finer focal 

resolution than surface recording and are capable of recording individual motor unit action 

potentials (Reilly, Nordstrom, & Schieber, 2004). Intramuscular electrodes are also less 

susceptible to crosstalk (Basmajian & De Luca, 1985). These characteristics make intramuscular 

electrodes an apt choice for recording from the extrinsic hand muscles. Multiple electrodes may 

be placed in ED, FDS, and FDP to record from the compartments which actuate the digits (Birdwell 

et al., 2013; Birdwell, Hargrove, Weir, & Kuiken, 2015; Cipriani, Segil, Birdwell, & Weir, 2014). 

Recording from deeper muscles such as FCU is also possible, whereas surface electrodes would 

likely be unable to accurately capture these signals due to spatial filtering. 

An intramuscular electrode, highlighted by the red box, is shown during insertion into FDS2 under 

ultrasound guidance.  

Figure 1.2 Insertion of an intramuscular electrode into a muscle 



 14 

 

Intramuscular electromyography has also seen renewed interest due to innovations in 

technology and applications towards prosthetic control devices. Presently, placement of 

intramuscular electrodes uses a needle to percutaneously implant the electrode in muscle tissue. 

Due to this, intramuscular electrodes can only be used for short-term (less than 24 hour) recordings 

and are susceptible to movement artifacts. Recent designs have demonstrated the capability for 

intramuscular electrodes to be permanently implanted in muscle tissue and wirelessly transmit 

information (Pasquina et al., 2014). The implantation of intramuscular electrodes offers benefits 

over surface electrodes for prosthetic control beyond the previously mentioned improved recording 

capability. Surface electrodes are susceptible to changing impedances due to sweat and air 

temperature which can threaten the stability of EMG recordings (Bell, 1993). Surface electrodes 

must be changed out daily, and the variation in the placement can also affect the signal quality or 

control algorithm (Hargrove, Englehart, & Hudgins, 2006). The chronic stability of intramuscular 

electrodes combined with the capability of recording small and previous unrecordable sites 

therefore makes this an appealing approach. A variety of implantable EMG recording devices are 

currently being developed (McDonnall, Hiatt, Smith, & Guillory, 2012; Merrill, Lockhart, Troyk, 

Weir, & Hankin, 2011; Pasquina et al., 2014), which may make a clinical take home device 

available in the near future.  

1.2.1 EMG Signal Processing 

The raw EMG activity collected directly from the muscle must undergo signal processing 

in order to be used for analysis or prosthetic control. For prosthetic control and use in Hill-type 

muscle models, EMG activity is often converted to a form of activation as described in Equation 
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1-1. EMG-to-Activation processing methods vary among researchers but have some common 

elements. The signal processing for intramuscular and surface EMG also varies due to the 

differences in the power spectrum (Christensen, Søgaard, Jensen, Finsen, & Sjøgaard, 1995). As 

much of this work is focused on intramuscular EMG, we will focus on the processing methods 

used for this signal. 

A typical EMG-to-activation protocol begins with bandpass filtering EMG activity 

between 100 Hz to 4000 Hz, although significant variation in the specific frequencies are often 

used (Burgar, Valero-Cuevas, & Hentz, 1997; Johnston, Winges, & Santello, 2005; Kamavuako, 

Farina, Yoshida, & Jensen, 2009; Reilly & Schieber, 2003). The bandpass filter serves to remove 

high frequency noise and signal drift as well as movement artifacts which are caused by the 

physical movements of the recorded subject and reduce high frequency interference. The filtered 

signal is then typically rectified to obtain a positive waveform, as activation is considered a positive 

number. The next step in the processing chain often varies but typically has the same result of low 

pass filtering the signal. Many researchers then calculate the root mean square or moving average 

value of the signal over a 50-200ms time window or use a traditional low-pass filter the data at 10 

Hz or lower (Cipriani et al., 2014; Smith, Kuiken, & Hargrove, 2016). These approaches arguably 

reach the same outcome, and work which has sought to compare the various approaches has found 

minor difference in force prediction accuracy (Mathiesen et al., 2010). Nonetheless, the resultant 

signal is then typically normalized to the maximal activity which has been recorded. The maximal 

activity is typically obtained through a maximum voluntary contraction (MVC), in which the 

subject attempts to generate as much isometric force as voluntarily possible. Other alternative 

methods of EMG-to-Activation have been proposed such as non-linear activation dynamics 

(Buchanan, Lloyd, Manal, & Besier, 2004), but the methods described above are standard. An 
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example of such a process may be seen in Figure 1.3, which is replicated in Chapter 5 as Figure 

5.3. 

 

Raw EMG activity is high-pass filtered before undergoing rectification, low-pass filtering, and a thresholding. 

This processing removes noise and drift from the signal and converts the EMG activity to activation. After 

thresholding, the signal is normalized to an arbitrary threshold and the optimizer searches to find the 

appropriate gains to scale the signal. Figure and caption are replicated from Figure 5.3. 
 

EMG activity is not always used as an analogue for activation for prosthetic control. 

Prosthetic control designers may only be interested in certain features of the EMG signal and 

maximizing the information content received. Arguably the most common features used for 

prosthesis control are the time domain features popularized by Hudgins et al (Hudgins, Parker, & 

Scott, 1993). Briefly summarized, the Hudgins time domain features measure signal properties 

during a window of time. These properties are the mean absolute value, mean absolute value slope, 

Figure 1.3 Sample EMG-to-activation process 
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rate of zero crossings, rate of slope sign changes, and the temporal length of the waveform 

(Hudgins et al., 1993). Other common time-domain features used are variance (Huang & Chen, 

1999) and root mean square of the signal (Mathiesen et al., 2010). Willison amplitude (sometimes 

incorrectly referred to as ‘Wilson amplitude’) is a less commonly used feature that tallies the 

number of times the difference between sequential EMG samples is above a threshold during a 

moving window (Huang & Chen, 1999). Originally developed to identify muscle disease 

(Willison, 1964), the technique has shown a strong relationship to isometric force (Mathiesen et 

al., 2010).  

The feature extraction methods listed are nowhere close to exhaustive as there are at least 

50 different types (Phinyomark et al., 2013). There have been some efforts to compare the 

effectiveness of feature extraction on either prosthetic control tasks (Phinyomark et al., 2013; 

Scheme & Englehart, 2014) or predicting isometric force (Mathiesen et al., 2010). Of these three 

studies, Hudgins time domain features and Willison amplitude show some of the best performance. 

It should be noted that these studies are in no way exhaustive – the implementation of these features 

extractions has flexibility, e.g. the mean absolute value may be implemented in a fixed or sliding 

window and the timing of the window is open for debate, and the authors did not base their 

implementation on the optimal performance. 

1.2.2 Myoelectric Prosthetic Control 

Upper limb loss affects more than 540,000 Americans and is typically caused by either 

congenital birth effects or traumatic injury (Ziegler-Graham et al., 2008). Myoelectric prosthetic 

limbs are commonly prescribed to restore lost functionality (see section 1.0 for more information).

EMG activity and its relation to muscle force has been well-studied due to its application as a 
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command signal for a prosthetic device. The explosion of robotics technology has seen the 

development of motorized prosthetic hands that feature up to 6 controllable powered joints, such 

as the DEKA LUKE hand (Resnik, Klinger, & Etter, 2014). It can be argued that the limiting factor 

in myoelectric prosthetics is not the prosthesis, but the inability of control algorithms to take 

advantage of the degrees of freedom and restore dexterous movements to the user. A study by the 

Department of Veterans Affairs found that 33% of veterans who received an upper limb prosthesis 

rejected the device, with a significant number citing ‘not functional’ as the reason (McFarland et 

al., 2010). A wider review of upper limb amputee needs has shown that many patients desire 

increased independent control of the fingers so that they may perform activities of daily living 

such as tying their shoes or buttoning a shirt (Cordella et al., 2016).  

Myoelectric control algorithms that seek to restore and replicate hand function must have 

several characteristics: it must support simultaneous movement of multiple DOF, allow for 

arbitrary movements and positions of the joints, and perform reliably enough that users are not 

concerned about erroneous movements or failures. These features are similar to those outlined by 

Dario Farina in describing the ideal characteristics of an upper-limb prosthesis: simultaneous and 

proportional control, insensitive to day-to-day changes in electrode impedance, adaptive to user 

fatigue, feature a minimal number of electrodes, require little training and minimal retraining, and 

produce movements with a delay below 200 ms (Farina et al., 2014). Efforts have been made to 

develop control schemes to address these priorities, but to date none have met these criteria.  

1.2.2.1 Direct Control 

Direct control is a control algorithm which maps the EMG activity of a muscle to a velocity 

signal for at least one DOF. Typically, a limited number of muscle sites are recorded and only a 

single DOF is controlled at a time. If a user requires the movement of multiple degrees of freedom, 
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they must toggle through the modes (sequential control). Modes may be toggled through co-

contractions or a manual toggle such as a foot switch (Williams, Meier, & Atkins, 2004). Mode 

switching may be beneficial to users, as a single pair of electrodes may be used to control a number 

of DOFs by cycling through a number of DOF and manually manipulating one at a time.  

The implementation of direct control schemes can vary, but differential control is 

commonly used. In differential control, the difference in EMG activity between two EMG 

recording sites is measured, and if the difference is above a threshold then the joint moves in the 

desired direction (Smith, Kuiken, & Hargrove, 2014) at either a fixed (on-off control) or scaled 

(proportional control) velocity (Fougner, Stavdahl, Kyberd, Losier, & Parker, 2012). On-off 

control methods were traditionally offered in the past, but emerging proportional control systems 

have begun to replace them. There has been sparse literature which has sought to compare the 

effectiveness of on-off versus proportional control, and of the studies that have been performed 

there has been no definitive answer (Fougner, Stavdahl, & Kyberd, 2014; Sears & Shaperman, 

1991). Direct control has also been implemented where a single EMG channel controls a joint. The 

default state of the DOF is at one extreme, and EMG activity is mapped to move the joint into the 

opposite state. When EMG activity is not present or below a set threshold, the joint returns to the 

original state (Cipriani et al., 2014). 

Direct control has been attempted to control multiple DOF simultaneously with moderate 

success (Cipriani et al., 2014; Smith et al., 2014). A follow-up study by one of these groups 

compared simultaneous differential control to a method that used the weighted terms of every 

recorded muscle to control each DOF, and found that this method had improved performance 

(Smith et al., 2016). These findings suggest that additional information on movements may be 

captured from muscles not directly associated with the action. It can further be argued that these 
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findings indirectly support the view of the hand as a system, and that muscles which are not directly 

controlling a joint may provide some synergistic support. 

1.2.2.2 Pattern Recognition 

Pattern recognition is a method of prosthetic control that classifies extracted EMG features 

into a preset movement or posture using recordings from muscle sites (Scheme & Englehart, 2011). 

Pattern recognition algorithms can vary; for example, a single EMG channel may sequentially 

control a single DOF at a time (Figure 1.4b) or multiple EMG channels may simultaneously control 

multiple DOF in parallel (Young, Smith, Rouse, & Hargrove, 2013). The chief advantage of 

pattern recognition is that it may allow for complex grips or hand configurations with a single 

command.  Clinically available devices such as the i-Limb by Touch Bionics presently allow for 

the user to associate many predetermined grips and hand states with the EMG activity such as a 

co-contraction of muscles or 1-3 bursts of activity (touch bionics Product Catalog, 2015). Other 

pattern recognition approaches require a training data set based on intended movements. For 

example, the user can train to the hand open/close functionality of a classifier by attempting to 

replicate those movements while following a video prompt. Recent work has suggested that the 

use of the prosthesis itself, rather than a video, may improve this training (Simon, Lock, 

Stubblefield, & Hargrove, 2011). 

The method of classification used for pattern recognition can widely vary. Classification 

schemes have used linear discriminant analysis (Leone et al., 2019; Zhang, Zhao, Han, & Zhao, 

2014), artificial neural networks (Nazemi & Maleki, 2014; Tenore et al., 2007), or support vector 

machines (Noce et al., 2019). Linear discriminant analysis is typically favored at it is 

computationally efficient and accurate (Hakonen, Piitulainen, & Visala, 2015; Scheme & 

Englehart, 2011). The classification scheme is only part of the equation: developers have a wide 
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array of EMG features to use as input for a classifier. The selection of a classifier and the features 

extracted must be carefully thought through. Work by Scheme and Englehart showed differences 

in classification error of up to 30% within the same classifier depending on the EMG feature used 

(Scheme & Englehart, 2014). This matter is further complicated as there was no clear EMG feature 

that consistently outperformed all others. Time domain features had the lowest error for linear 

discriminant analysis classifiers, but the most error compared to other features for support vector 

machines.   

In contrast to direct control, pattern recognition removes the arbitrary freedom and 

movement of a joint in favor of fluid transitions between complex grips and postures. Task-based 

comparisons between pattern recognition and direct control methods have been mixed – take-home 

trials and in-lab experiments have claimed that pattern recognition outperforms conventional 

control (Hargrove, Lock, & Simon, 2013; Hargrove, Miller, Turner, & Kuiken, 2017; White et al., 

2017) although in-lab testing by one of these groups has claimed increased efficiency using 

simultaneous direct control (Smith et al., 2014). There has been some effort to study user 

preference for these control methods. In one take-home study, users preferred direct control and 

performed better on tasks that forced users to use a prosthesis while under a high cognitive load 

(Resnik et al., 2018). In contrast, a pair of studies using able-bodied subjects in a lab environment 

found a lower cognitive load and improved performance with direct control (Deeny, Chicoine, 

Hargrove, Parrish, & Jayaraman, 2014; White et al., 2017). 
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Figure 1.4 Comparison of myoelectric control methods  

 Illustration of three myoelectric control methods during a reach and grasp task a) conventional control, also 

known as direct control, controls a single DOF sequentially. The user switches between DOF by cocontracting 

the recorded muscles. b) An applied pattern recognition scheme for the same task. The feature space of the 

EMG signal is represented on a two-dimensional axis with four classes corresponding to the two DOFs. c) A 

direct control method that allows for simutlaneous proportional control over two DOFs, represented as two 

axes. The user is able to simultaneously rotate the wrist and open the hand, or perform both tasks 

individually. Figure adapted from (Farina et al., 2014) © 2014 IEEE 

1.2.2.3 Model-based Controllers 

Model-based controllers are an emerging technology that use controllers based on 

biomimetic models to offer naturalistic control over a prosthetic limb. The naturalistic control of 

a model-based controller is appealing as pattern recognition and direct control algorithms have a 

significant cognitive load associated with higher DOF control (Deeny et al., 2014). The 

development of a system based on biomimetic models has also been proposed to be more robust 

than a traditional prosthetic control algorithm. Pattern recognition and direct control rely on 

mapping EMG activity from specific muscles to limb kinematics, but do not account for the 

changes in EMG activity in response to orientation of the limb in space; ignoring these factors can 
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lead to erratic and deteriorated performance (Jiang, Muceli, Graimann, & Farina, 2013). Model-

based controllers may take these factors into account when predicting movements (Sartori, 

Durandau, Došen, & Farina, 2018). Pan et al. directly compared the performance of a 

musculoskeletal model versus linear regression and artificial neural network control over a virtual 

hand when the arm was placed in 9 different positions in space. In comparison to linear regression 

and artificial neural networks, the model-based controller had higher overall correlation 

coefficient, a lower normalized RMS error, and less variation across trials (Pan, Crouch, & Huang, 

2019). These findings suggest that not only can a model-based controller outperform other 

methods, but that the performance will be consistent across positions of the hand and arm which 

are commonly encountered during activities of daily living. 

Approaches to model-based control have varied amongst researchers. Sartori et al. 

developed a 3-DOF (2 DOF at wrist, 1 hand open/close) system using a subject-scaled model from 

OpenSim (Sartori et al., 2018). Crouch and Huang found that a lumped-parameter model was able 

to be quickly trained and used to trace a path with a virtual hand across 2 DOF (Crouch & Huang, 

2017). A 23 DOF faster-than-real time model has also been developed (Blana, Chadwick, van den 

Bogert, & Murray, 2017), but published work on matching model to subject kinematic cs has only 

tested a few DOF (Blana et al., 2020).  

While model-based controllers have the possibility of scaling up to higher DOF, they have 

not reached a level higher than 3 independent DOF. Part of this may be that it has only been 

recently that model-based controllers have become a viable and efficient alternative. Previously, 

hardware limitations in the past could not support simultaneously recording and processing EMG 

activity while also simulating the forward dynamics of a musculoskeletal model. Recent work in 
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the field has contributed to easing this computational load by simplifying the calculation process 

for the biomechanics of forward simulations (Sobinov et al., 2019). 

1.3 Summary of Work 

The previous sections of this work have described the anatomy and physiology of the hand. 

The muscles, tendons, and bone tissues that construct the hand are well understood. The path of a 

neural signal to move the hand may be traced from the inception in cortical tissue down the spinal 

cord to the muscles that they innervate. The synergistic activations of the hand have been 

documented through principal component analysis. Through this knowledge, it is understood that 

mechanical and neural coupling is ever present. However, there is a gap in understanding these 

phenomena through the lens of electromyography. This is arguably one of the most necessary 

viewpoints that is needed, as it directly relates towards the clinical design and development of 

myoelectric prosthetic controllers. Technological development of robotic hands and EMG 

recording technology has surpassed prosthetic control algorithms, which have been limited in part 

due to our lack of understanding in the effects of coupling on EMG activity of the extrinsic hand 

muscles. The work contained in this dissertation is aimed at closing this gap. 

First, the effects of mechanical coupling on EMG activity of the extrinsic finger muscles 

will be outlined and studied (Chapter 3). The changes in EMG activity in response to changes in 

wrist posture will be described, as well as how the extrinsic finger muscles assist in wrist 

movements. In the next chapter, neural coupling of the extrinsic finger muscles will be described 

in the context of EMG activity (Chapter 4). Neural coupling will be uncovered by describing the 

EMG activity across the extrinsic finger muscles during the agonist and antagonist movements of 
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neighboring digits. The knowledge gained regarding EMG activity will be applied towards 

controlling a 17 degree-of-freedom model via forward simulation, and the development of a testing 

environment for prosthetic control (Chapter 5). Overall, the principal aim of this thesis is to 

develop fundamental knowledge related to EMG control of complex hand movements, with a 

focus on individual joint movements of the fingers and wrist, and apply to this knowledge to 

develop advanced prostheses for upper limb amputees. 
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2.0 General Methods 

2.1 Experimental Summary 

11 healthy, able-bodied subjects (7 males, 4 females) were included in this study. Subject 

ages ranged from 25-32 with an average age of 28.2±2.7 years. All subjects provided informed 

consent prior to any experimental procedure and all procedures were approved by the University 

of Pittsburgh and Army Research Labs Institutional Review Boards. All methods were performed 

in accordance with the relevant guidelines and regulations. Sixteen percutaneous EMG electrodes 

were implanted in extrinsic muscles of the hand (Table 2.1). Subjects wore a glove fitted with 

electromagnetic trackers to capture hand kinematics (Figure 2.1). Subjects then performed an 

extensive series of single joint movements with varying finger and wrist postures while EMG and 

kinematics were recorded. 

2.2 Percutaneous EMG Recording 

Percutaneous bipolar fine-wire electrodes (Motion Lab Systems, Inc., Baton Rouge, LA) 

were placed in sixteen forearm muscles. Each electrode pair consisted of two 0.051 mm diameter 

insulated stainless steel wires. Each wire was passed through a 27 gauge (30 mm long, for 

superficial muscles) or 25 gauge (50 mm long, for deep muscles) hypodermic needle and the ends 

of each wire were bent to form a hook. On each wire, 2 mm of insulation was removed from the 

end to form the active recording area of the electrode, and the two electrodes were offset from each 
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other so that the deinsulated portions did not touch. Each bipolar pair was placed into the target 

muscle with a single needle insertion. Muscle locations were identified using palpation and 

ultrasonographic visualization techniques during instructed movements to guide electrode 

insertion (Henzel et al., 2010). Electrodes were placed by an experienced physician and subjects 

were asked to make many different movements during the ultrasound procedure and during 

electrode insertion itself to localize the electrode to the correct muscle or muscle compartment. 

After the electrode tips were visualized to be in the correct location using ultrasound, the needle 

was removed, leaving the wires in place as a result of the hooked ends. Care was taken to prevent 

the wires from becoming dislodged. The subject was asked to exercise the hand and wrist so that 

the wires were embedded in the muscle tissue and then a small adhesive bandage was placed at 

the wire exit site to prevent the wires from being snagged and dislodged. After all electrodes were 

placed, the arm was wrapped in a bandage to protect all the electrodes, lead wires and cabling on 

the arm for the duration of the experiment. 

As this was part of a larger study, some of the 16 implanted electrodes targeted wrist 

muscles while others targeted the extrinsic finger muscles. A complete list of muscles implanted 

for each subject is listed in Table 2.1. Intramuscular EMG recordings were digitized with a 

multichannel neural recording system (Grapevine Neural Interface System with Surf S2 headstage, 

Ripple, Inc) at 30 kHz.  
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Table 2.1 List of muscles and electrodes implanted in each subject 

   Subject  

Muscle  1 2 3 4 5 6 7 8 9 10 11 

EIP  x x x x 
 

x x x x 
 

x 

ED2  x x x x 
 

x 
 

x 
 

x x 

ED4  x x x x x x x x x x x 

EDM  
    

x 
 

x x 
 

x 
 

FDS2  x 
  

x 
      

x 

FDS3  
 

x x x 
 

x 
 

x x 
 

x 

FDS4  x x 
 

x x x x x x x 
 

FDS5  
           

FDP2  x x 
 

x 
       

FDP3  
  

x 
  

x x 
 

x x x 

FDP4  
   

x x 
  

x 
  

x 

FDP5  
 

x x 
 

x 
  

x 
  

x 

ECU  x x 
 

x x x x x x x x 

ECRL  x x x x x 
 

x x x x x 

FCU  x 
 

x x x x x x x x x 

FCR  x x x 
 

x x x x x x x 

SUP  x 
 

x x x x x 
 

x x 
 

PRO  x 
 

x x x x x 
 

x x 
 

APL  x 
 

x x x x x x x x x 

FPL  x x x x x x x x x x x 

EPL  x x x x x x x x x x x 

EPB  
 

x 
         

 

2.3 Kinematic Motion Tracking 

Hand and arm kinematics were recorded using an electromagnetic tracking system 

(trakStar, Ascension Technology, Inc.) integrated into the MotionMonitor (Innovative Sports 

Training Inc., http://www.TheMotionMonitor.com) recording software. This motion tracking 

system provides the ability to track the location of a series of wired sensors in six-dimensional 

space by creating a pulsed electromagnetic field in the workspace. The primary advantage of this 
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system is that it enables sensors to be tracked even when obscured, which is particularly valuable 

for monitoring motion of the digits. The tracking sensors were attached to a glove, and located 

over the proximal, intermediate, and distal phalanges of the index finger; the proximal and distal 

phalanges of the middle, ring, and little finger; the metacarpal and phalanges of the thumb; and the 

dorsal center of metacarpals (Figure 2.1a). Tracking sensors were also placed over the distal 

portion of the radius and lateral aspect of the biceps to track the position of the arm. Subject-

specific arm and hand segments were then created using the digitization process in the 

MotionMonitor software. The OpenSim v3.3 Inverse Kinematics tool (Delp et al., 2007) was then 

used to extract the joint angles from the .trc files using a scaled musculoskeletal model (Gritsenko, 

Hardesty, Boots, & Yakovenko, 2016). 

2.4 Experimental Tasks 

Subjects were asked to follow the movements of a virtual hand displayed on a computer 

screen. Subjects were seated, with their hand and arm held in front of them above the table (Figure 

2.1b). Each movement exercised a single DOF of the fingers or wrist for ten repetitions at 1 Hz. A 

list of all 42 trial types is provided in Appendix Table 1. For D2-D5 movements, subjects were 

asked to produce coupled motions of the metacarpal phalangeal joint along with the proximal and 

distal interphalangeal joints, with a focus on moving the metacarpal phalangeal joint through 90 

degrees. All fingers motions were repeated while the subject maintained the wrist in a neutral 

posture (hand aligned with the forearm and thumb pointing up), or with the wrist in a flexed, 

extended, pronated, or supinated position at the limit of the wrist range of motion. During wrist 

movements, the fingers were held in either flexed or extended positions and the exercises were 
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performed while the wrist was held neutral, pronated, or supinated. Pronation/supination 

movements were only performed during neutral wrist postures. The initial posture for D2-D5 

movements was with all fingers extended and the wrist in one of five positions. For wrist 

movements, the initial starting pose was with the wrist held neutral and the fingers either flexed or 

extended, depending on the trial.  
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Figure 2.1 Overview of the experimental set-up  

a) Electromagnetic tracking glove that subjects wore during the experiments. The red rectangles show 

placement of electromagnetic sensors in relation to the joints of the fingers. b) Subjects viewed and followed a 

video which demonstrated the hand posture, movement, and timing. 
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3.0 Effects of Wrist Posture on Finger EMG Activity 

The majority of the work in this chapter has been published in Scientific Reports with the 

exception of the work in classification.  

Wrist posture impacts the muscle lengths and moment arms of the extrinsic finger muscles 

that cross the wrist. As a result, the electromyographic (EMG) activity associated with digit 

movement at different wrist postures may also change. Therefore, we sought to quantify the 

posture-dependence of extrinsic finger muscle activity. Fine-wire bipolar electrodes were inserted 

in the extrinsic finger muscles of able-bodied subjects to record EMG activity during wrist and 

finger movements in various postures. EMG activity of all the recorded finger muscles were 

significantly different (p<.05, ANOVA) when performing the same movement in five different 

wrist postures. EMG activity varied by up to 70%, with the highest levels of activity observed in 

finger extensors when the wrist was extended. Similarly, finger flexors were most active when the 

wrist was flexed. For the finger flexors, EMG variations with wrist posture were most prominent 

for index finger muscles, while the EMG activity of all finger extensor muscles were similarly 

modulated. The extrinsic finger muscles also showed significant EMG activity during wrist 

movements with the digits held still regardless of finger posture.  These results may impact the 

design of biomimetic control algorithms for myoelectric prosthetic hands, but further work in 

trans-radial amputees is necessary to determine whether this phenomenon persists after 

amputation. 
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3.1 Introduction 

The human hand is a complex biomechanical system and both active and passive forces 

generated from muscles in the forearm are used to maintain postures and perform movements. The 

movement of a single finger alone generates torque at the wrist (An, Hui, Morrey, Linscheid, & 

Chao, 2017) that must be counteracted to maintain wrist posture. Similarly, single digit motion 

also generates torque in the joints of neighboring digits (Li, Latash, & Zatsiorsky, 1998; 

Zatsiorsky, Li, & Latash, 2000), a phenomenon known as force enslavement, which must in turn 

be counteracted by other finger muscles. This force enslavement effect has been suggested to be a 

combination of passive mechanical coupling driven by tendinous connections between digits as 

well as active coupling from higher order motor commands (Li et al., 1998; Schieber, Gardinier, 

& Liu, 2001). While there has been significant efforts to characterize the resulting 

electromyography (EMG) activity in the forearm muscles in these scenarios, prior work has 

primarily used surface EMG recordings and/or examined only a single muscle at a time (Butler et 

al., 2005; Kilbreath & Gandevia, 1994; Leijnse, Campbell-Kyureghyan, et al., 2008; Roman-Liu 

& Bartuzi, 2013), leaving an incomplete understanding of how the many extrinsic finger muscles 

are coordinated to produce single and multiple digit movements. Intramuscular EMG is an 

alternative method of recording EMG signals by placing fine-wire electrodes through the skin 

directly into muscles. Intramuscular recordings have been used for over 50 years to characterize 

muscle activity (Clamann, 1969; Harrison & Mortensen, 1962; Willison, 1964) and provides focal 

recording from a single target muscle that is difficult or impossible to achieve with standard surface 

EMG. Fine-wire electrodes can also record distinct signals from deep muscles and the different 

compartments of the multicompartment finger flexor and extensor muscles (Bickerton, Agur, & 
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Ashby, 1997; Henzel et al., 2010; Kilbreath, Gorman, Raymond, & Gandevia, 2002; Reilly & 

Schieber, 2003). 

Extensive work has demonstrated that coupling between the digits is composed of 

mechanical (Keen & Fuglevand, 2003; Leijnse, Walbeehm, Sonneveld, Hovius, & Kauer, 1997) 

and neural components (Keen & Fuglevand, 2004a; Kilbreath et al., 2002; Lang & Schieber, 2004; 

Li et al., 1998; Reilly & Schieber, 2003), although the influence of inter-digit coupling on the 

coordination of single and multiple degrees of freedom (DOF) movements is not well understood. 

Experiments in humans have shown that electrical stimulation induces more focal and independent 

finger forces compared to volitional movement, suggesting that neural coupling does in fact result 

from cortical motor control strategies (Kilbreath et al., 2002). The influence of coupling is also 

visible during EMG recordings; an example may be seen in the work by Leijnse et al. (Leijnse, 

Campbell-Kyureghyan, et al., 2008), which shows phasic EMG activity in the extensor digiti 

minimi during a thumb tapping task. However, EMG activity of other muscles which appear to be 

functionally unrelated to the actuation of a joint may contain unique information that is relevant 

for prosthetic control. Improved EMG decoder performance was observed by Smith et al. (Smith 

et al., 2016) when all recorded extrinsic finger muscles were included in the decoder regression 

equations for each DOF. Conversely, prosthetic control schemes that rely on muscles crossing just 

a single joint, such as parallel dual-site control (Smith et al., 2014), could lead to inappropriate 

movements resulting from inter-digit coupling.  

Similarly, wrist posture is known to have mechanical effects on the fingers, the most direct 

being motion of the relaxed fingers while the wrist is flexed and extended. For example, when the 

wrist is extended the fingers naturally curl into a tenodesis grasp (Mateo et al., 2013). This occurs 

because the extrinsic finger flexor muscles span the wrist and are subject to lengthening based on 
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wrist angle, which in turn causes an increase in passive tension in the flexor muscles (Keir, Wells, 

& Ranney, 1996; Tanaka et al., 2005). The resulting increase in force has also been shown to affect 

the EMG activity necessary to maintain the static pose of a digit (Johnston et al., 2010). These 

posture-dependent changes in extrinsic finger flexor EMG have been well-studied in the context 

of grip force (Ambike, Paclet, Latash, & Zatsiorsky, 2013; Johansson, Backlin, & Burstedt, 1999; 

Johnston et al., 2010; Li, 2002; Morse, Jung, Bashford, & Hallbeck, 2006; Werremeyer & Cole, 

1997) and lead to changes in EMG activity (Duque, Masset, & Malchaire, 1995; Mogk & Keir, 

2003; Werremeyer & Cole, 1997). Duque et al. quantified this relationship between grip force and 

EMG as a series of nonlinear models for flexed, extended, and neutral wrist postures, 

demonstrating that these posture changes alter the relationship between grip force generation and 

EMG (Duque et al., 1995). However, most of these studies have focused on monitoring EMG 

activity at different wrist postures during tasks where the digits had to exert external loads, such 

as grasping tasks. 

A further motivation to study the relationship between extrinsic finger muscle EMG 

activity and wrist posture is the potential impact on the design of control systems for prosthetic 

hands. Dexterous prosthetic hands exist, but a significant barrier to adoption is a lack of control 

algorithms which take advantage of the high degree-of-freedom movements that are offered in the 

prostheses (Cordella et al., 2016). Biomimetically-inspired control algorithms could possibly 

improve control (Crouch, Pan, Filer, Stallings, & Huang, 2018; Sartori et al., 2018), thus we sought 

to improve the understanding of the relationship between extrinsic finger muscle EMG activity 

and wrist posture. 

In this study we used intramuscular EMG electrodes to target the compartments of the 

flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS) and extensor digitorum 
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(ED), as well as the extensor digiti minimi (EDM) and the extensor indicis proprius (EIP) muscle, 

and sought to characterize the effect of changing wrist joint angles on EMG activity of the extrinsic 

finger muscles during structured hand movements. We also examined how the extrinsic finger 

muscles may contribute to wrist movements themselves. 

3.2 Methods 

Subject implantation, EMG recording, motion tracking, and experimental tasks for this 

study are described in Chapter 2. 

3.2.1 Data Processing 

Kinematic and EMG signals were processed offline using Matlab (The Mathworks, version 

2016b). Kinematic data were smoothed with a 4th order low-pass Butterworth filter at 10 Hz to 

remove noise from the motion tracking system. The single-ended intramuscular EMG recordings 

were first differenced and the resulting signals were then high-pass filtered with a 4th order high-

pass Butterworth filter at 10 Hz in order to remove low-frequency drift in the signal. Next, each 

signal underwent a process to remove electromagnetic noise generated by the kinematic motion 

tracking system (Figure 3.1a). The electromagnetic field was captured by the EMG recording 

system as a series of 100 µs pulses occurring at the pulse frequency of 100 Hz. We removed these 

narrow pulses from recordings offline by generating a template pulse train, and then subtracting it 

from the data. An example of the EMG signal before and after electromagnetic noise removal is 

shown in Figure 3.1a. After electromagnetic noise was removed, EMG signals were bandpass 
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filtered with a 4th order Butterworth for 100 to 4000 Hz to remove movement artifacts, line noise, 

and high frequency noise. Similar bandpass filter settings are commonly used in intramuscular 

EMG recordings (Burgar et al., 1997; Kamavuako & Rosenvang, 2012; Valero-Cuevas, 2000). 

 Potential extrinsic finger muscle recordings were excluded during the data analysis phase 

if the EMG activity from an electrode was not modulated by single digit movement (Kamavuako 

et al., 2013; van Duinen et al., 2009), or if the electrode recordings were significantly contaminated 

by artifacts which occurred occasionally with the fine-wire electrodes. Artifacts were identified 

based on signal amplitude and shape. Events with peak voltages much greater than those occurring 

during a maximal voluntary contraction, or events with large instantaneous changes in amplitude 

or that did not resemble typical EMG activity or motor unit action potentials were considered 

artifacts. If multiple electrodes were in the same muscle or muscle compartment for a subject, we 

included only a single electrode with the highest signal-to-noise ratio. Electrode placement was 

verified after experiments by reviewing EMG activity from D1-D5 flexion/extension movements 

in neutral, flexed, extended, supinated, and pronated postures as well as from 14 trials of wrist 

movements. 
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Figure 3.1 Overview of data processing and effects of wrist posture on EMG activity. 

a) Comparison of EMG activity during rest before (left) and after (right) electromagnetic noise removal. 

Blocked in red are examples of electromagnetic artifacts introduced by the kinematic tracking system and the 

same signal after electromagnetic artifact removal. Left: EMG activity after high-pass filtering to remove DC 

offset and motion artifacts. The electromagnetic artifacts can be observed boxed in red. Right: The same 

EMG activity after electromagnetic noise removal. b) D2 metacarpal-phalangeal joint velocity and EMG 

activity of EIP and FDS2 during repeated flexion (red) and extension (blue) movements. The unshaded region 

between movements represents brief holding periods that were not included in calculations of  EMG activity. 

c) Rectified and processed EMG activity of ED4 during repetitions of D4 flexion and extension in neutral, 

flexed, extended, pronated, and supinated postures. The dashed vertical line shows the task start cue. The 

hand was held in these static postures for approximately 4 seconds before performing 10 movement 

repetitions. Note the substantial change in EMG activity for the same finger movement in different wrist 

postures. 

3.2.2 Data Analysis and Statistics 

We divided the EMG data for every trial into flexion and extension phases using the 

kinematic recordings (Figure 3.1b). The angular velocities were low-pass filtered with a zero-
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phase digital filter at 10 Hz. We detected the movement phases by first identifying the positive and 

negative peak velocities. Movement onset was then detected based on the first zero velocity point 

preceding each peak, while the end of a movement was the first zero velocity point after a peak. 

The filtered EMG data were integrated over the relevant movement windows and divided by the 

duration of the movement to quantify the average EMG activity over the period. For example, the 

flexor digitorum superficialis was integrated during flexion movements and the extensor digitorum 

was integrated during extension movements. 

3.2.3 EMG Normalization 

Average EMG activity was normalized separately for finger and wrist movement analyses. 

As the primary objective of these analyses was to compare the way that EMG activity changed 

across different postures, we choose to normalize activity across the trials themselves, rather than 

to a maximal voluntary contraction. For finger analyses, mean EMG activity was calculated for 

each muscle and subject during digit movements in all wrist postures (e.g. Figure 3.1c). The EMG 

activity for each muscle was then normalized to the mean value from the wrist posture that evoked 

the largest EMG activity. For example, in Figure 3.1c, the average EMG activity of ED4 was 

highest when the wrist was extended. Therefore, all ED4 EMG activity for this subject was 

normalized to the mean value that occurred while the wrist was extended. Similarly, for wrist 

analyses, the mean EMG activity for each finger muscle was calculated for the four combinations 

of finger postures and wrist movements: fingers extended (‘flat’) during wrist flexion and 

extension and fingers flexed (‘fist’) during wrist flexion and extension. For the four movements, 

the EMG activity of each muscle and subject was normalized to the mean peak activity during the 

task. 
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3.2.4 Finger Movements 

The normalized EMG activity of each muscle and compartment were tested for significant 

differences using a two-way ANOVA with subject and wrist posture (neutral, flexed, extended, 

pronated, and supinated) as factors. Post-hoc pairwise testing to identify differences in EMG 

activity for movements in the postures assessed was performed using Tukey’s honest significant 

differences (HSD) test for multiple comparisons. 

3.2.5 Wrist Movements 

The normalized EMG activity of ED, EDM and EIP muscles were combined into a single 

‘extensors’ group, while FDS and FDP were combined into a ‘flexors’ group. Since the data were 

not normally distributed (p<.05, Kolmogorov-Smirnov test,) a Kruskal-Wallis test was conducted 

on the EMG activity of the extrinsic finger flexors and extensors to detect whether EMG activity 

of finger flexors and extensors differed based on finger position. Post-hoc pairwise testing was 

performed using Dunn’s test with a Bonferroni correction. 

3.2.6 Classifying Wrist Posture from Extrinsic Finger Muscle EMG Activity 

To investigate whether extrinsic finger muscle EMG signals might contain information 

about wrist posture, we developed a classifier to examine the capability of predicting wrist posture 

based on finger EMG activity alone. We trained two linear discriminant analysis classifiers, one 

for the extrinsic finger extensors and the other for the flexors, to predict if the movement of a digit 



 41 

was performed when the wrist was held in a flexed, neutral, or extended wrist posture. Each 

classifier was cross-validated using k-folds, with k = 5. 

3.3 Results 

3.3.1 Finger Movements at Different Wrist Postures 

3.3.1.1 Finger Extensors 

For all the finger extensor muscles, both posture and subject had a significant main effect 

on EMG activity (p<.0001, ANOVA). Further, the EMG activity of every finger extensor muscle 

was highest when the wrist was held in an extended posture. This activity was significantly higher 

than all other postures assessed (p<.001, Tukey’s HSD, Figure 3.2). In contrast, when the wrist 

was flexed, the finger extensors generated the lowest level of EMG activity during the extension 

phase of the motion, ranging from mean levels of 30 ± 13% to 53 ± 30% of their maximum activity 

level with the wrist was extended. These significant changes in EMG activity in response to wrist 

posture were consistent across all of the extensor muscles with the highest levels of EMG activity 

occurring when the wrist was extended and the lowest levels occurring when the wrist was flexed. 

EMG activity for the finger extensors with the wrist in the neutral, pronated, and supinated postures 

was at an intermediate level and varied depending on the muscle. When the wrist was held neutral 

during digit extension movements, average EMG activity ranged from 47 ± 22% to 61 ± 35% of 

its maximum value with the lowest activity occurring in the D2 extensors (ED2, EIP) and 

progressively increasing for ED4 and EDM. Average EMG activity when the wrist was pronated 

ranged from 50 ± 28% to 67 ± 21%. Notably, the two index finger extensor muscles were 
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differentially modulated when the wrist was pronated. While ED2 and EIP activity were similar 

when the wrist was in the neutral, extended or supinated postures, the average EMG activity for 

ED2 and EIP was 50 ± 28% and 61 ± 26%, respectively when the wrist was pronated. This effect 

may be driven by the differing origin and insertion points of the ED and EIP muscles, which are 

accentuated during wrist pronation. With the wrist supinated, EMG activity across all the finger 

extensors varied the least, with all muscles having average activity levels between 49 ± 33% and 

59 ± 31% of their maximum. 

Of the extensor muscles assessed, ED4 showed the greatest difference in activity based on 

wrist posture. Of the ten possible pairwise comparisons (e.g. neutral vs. flexed, neutral vs. 

extended), all but neutral vs. supinated postures showed significant differences (p<.01, Tukey’s 

HSD). ED2 and EDM were affected the least by changing wrist posture; only pairwise 

comparisons testing extension against the other postures showed statistical significance (Figure 

3.2e). 
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Figure 3.2 Finger extensor EMG activity in different wrist postures 

(a-d)  Overall mean normalized EMG activity for each subject for the extrinsic finger extensors during 

extension motions with the wrist in neutral, flexed, extended, pronated, and supinated postures. All finger 

extensors had their maximum EMG activity during extension movements when the wrist was held extended. 

Individual data points represent the subject mean and error bars are standard error of the mean. Data are 

color and marker coded for each subject. The horizontal red bars at each wrist posture show normalized 

group means and the standard deviation across subjects is shown as a gray box. Pairwise comparisons of 

EMG activity between the wrist extended and all other postures showed significant differences (p<.001, 

Tukey’s HSD). e) Heat map of pairwise significant differences for EMG activity of the extrinsic finger 

extensor muscle for all combinations of wrist postures.  
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3.3.1.2 Finger Flexors 

Similar to the finger extensors, wrist posture had a significant effect on the EMG activity 

of all of the finger flexor muscles (p<.001 for all muscles except FDS4, p<.05, ANOVA with 

Tukey’s HSD). The finger flexor muscles were most active when the wrist was held in the flexed 

posture, with the exception of FDS4 and FDP4. FPD4 was most active in a neutral posture with an 

average normalized EMG activity of 95 ± 26%, although the low number of muscle recordings 

could have an effect on this result. FDS4 was also most active in the neutral wrist posture with an 

average normalized EMG activity of 87 ± 25%, although this was not statistically higher than other 

wrist postures. With the wrist in the neutral posture, the other flexor muscles had average activity 

levels that were much lower and ranged between 54 ± 18% to 73 ± 22% (Figure 3.3). When the 

wrist was extended, the EMG activity of the flexor muscles to produce the same finger flexion 

motion ranged from just 31 ± 12% (FDS2) to 76 ± 21% (FDP3) of that required when the wrist 

was flexed.  In contrast to the finger extensors, the individual finger flexor muscles showed little 

difference between extended, pronated, and supinated postures. Interestingly, the overall effect of 

wrist posture on EMG activity was most prevalent for D2 and D3 than D4 and D5 (Figure 3.3), 

whereas all finger extensors were affected similarly by changes in wrist posture (Figure 3.2).  
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Figure 3.3 Finger flexor EMG activity during different wrist postures 

(a-g)  Overall mean normalized EMG activity for each subject for the extrinsic finger flexors during flexion 

motions with the wrist in neutral, flexed, extended, pronated, and supinated postures. The D2, D3, and D5 

finger flexors showed significantly elevated EMG activity when the wrist was flexed. Individual data points 

represent the subject mean and standard error of the mean. Data are color and marker coded for each 

subject. The horizontal red bars show normalized group means and the standard deviation is shown as a gray 

box.. h) Heat map of pairwise significant differences (Tukey’s HSD) of EMG activity between postures for the 

extrinsic finger flexors. 
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3.3.2 Inter-Subject Variance 

For all muscles that were assessed, excluding FDS2, the individual subject had a significant 

effect on how wrist posture effected extrinsic finger muscle EMG activity (p<.05, Tukey’s HSD). 

This main effect response was primarily driven by high responders, which were subjects that had 

particularly high levels of finger EMG activity when the wrist posture matched the action of the 

finger muscle (e.g. wrist extension for finger extensors). ED2 in Subjects 1 and 4 (Figure 3.2a), 

EDM in Subject 10 (Figure 3.2c), EIP in Subjects 4 and 9 (Figure 3.2d) and FDP5 in Subject 8 

(Figure 3.3d) are all examples of this. Overall this effect was less pronounced in the finger flexor 

muscles. There were a few other notable instances of inter-subject variance that we observed in 

these data. For example, the FDP5 EMG activity in Subject 2 (Figure 3.3d) was maximized when 

the wrist was extended, rather than flexed, as was the case for all other subjects. In this case, the 

EMG activity clearly showed that this electrode was in the FDP5 muscle as it highly active only 

during flexion of the 5th digit. In this subject, motion of the 5th digit was atypical in that most of 

the flexion and extension occurred at the proximal interphalangeal joint when the wrist was 

extended, rather than the metacarpal-phalangeal joint. This highlights the other primary reason for 

inter-subject variability that we observed.  

3.3.3 Extrinsic Muscle Finger EMG Activity During Wrist Movements 

The extrinsic finger extensor muscles were highly active during wrist extension regardless 

of the finger posture. In fact, finger extensor EMG activity was significantly higher when the 

fingers were fully flexed and the wrist was being extended than when the fingers were extended 

and the wrist was being flexed (p<.001, Dunn’s, Figure 3.4a). In the four combinations assessed 
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(wrist extension/flexion with fingers extended/flexed), the extrinsic finger extensor EMG showed 

a wide range of activity levels. The highest EMG activity occurred during wrist extension when 

the fingers were held extended where the median normalized EMG activity from the finger 

extensors was 98% (IQR 85%-111%). When the wrist was extending and the fingers were held 

flexed, the median normalized EMG for the finger extensors declined to 52% (IQR 35%-77%). 

During wrist flexion movements, finger extensor EMG activity was 28% (IQR 16%-44%) when 

the fingers were held extended and was even smaller at 18% (IQR 9%-33%) when the fingers were 

held flexed. All pairwise comparisons of EMG activity for the different movement and posture 

combinations were significantly different (p<.001, Kruskal-Wallis test with Dunn’s post-hoc test). 

Overall, we found that the finger extensor EMG activity changed by more than a factor of three 

when the fingers were held extended based on whether the wrist was moving in extension or 

flexion. 

The EMG activation patterns of the finger flexor muscles showed a similar pattern to that 

observed in the finger extensors, with finger flexors significantly more active during wrist flexion 

movements than wrist extension movements, even when wrist extension was performed with the 

fingers in a fist (Figure 3.4b). The highest EMG activity of the movements and postures assessed 

occurred during wrist flexion when the fingers were fully flexed at a median normalized EMG 

activity of 96% (IQR 82%-111%). The next highest level of EMG activity was during wrist flexion 

with the fingers extended with a median normalized value of 49% (IQR 21%-72%), nearly half of 

the highest value. Even when the fingers were being actively held in extension, finger flexor 

muscles were active during wrist flexion movements. EMG activity for the finger flexors was 

lowest during wrist extension movements; during extension movements with the fingers flexed, 

the median normalized EMG activity was 29% (IQR 15%-47%). When the wrist was extended 
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and the fingers were extended, median normalized EMG activity was the lowest at 15% (IQR 7%-

27%). The difference in activity levels were all significant (p<.001, Kruskal-Wallis test with 

Dunn’s post-hoc test) and varied by more than threefold depending on whether the wrist was 

flexing or extending when the fingers were fully flexed. 
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Figure 3.4 Effect of finger posture and wrist movement on finger muscle EMG 

Normalized mean EMG activity for a) finger extensors (N=22 muscles) and b) finger flexors (N=28 muscles) 

during wrist extension and flexion movements in flat and fist postures. For each of the 11 subjects, 10 

repetitions were performed for movements in each posture. The red line shows the median, and the outer 

boxes are the first and third quartile. Error bars represent the 5-95% confidence interval. All posture and 

movement combination showed significant differences (p<.005, Kruskal-Wallis with Dunn post-hoc testing). 
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3.4 Classifying Wrist Posture from Extrinsic Finger Muscle EMG Activity 

Since we found that that extrinsic finger muscle EMG activity was often highly modulated 

by wrist posture, we asked whether wrist posture itself could be classified simply from the flexor 

or extensor finger muscle EMG activity. Overall, using just finger extensor muscles, the classifier 

accuracy was 63.5% ± 4.0% (99% confidence interval) and using just finger flexor muscles, the 

classifier accuracy was 47.4% ± 4.3% (99% confidence interval), both which were significantly 

above the chance level of 33%. True class prediction accuracy varied depending on the posture 

but followed the same pattern for both classifiers (Figure 3.5). The most accurate true class 

predictions occurred when the wrist was held in the same posture as the finger action: wrist 

extended for the finger extensors (86.9%) and wrist flexed for the finger flexors (66.4%). When 

the wrist was in a neutral posture, true class accuracies were lowest for both classifiers at 32.7% 

for the finger extensors and 22.5% for the finger flexors. The confusion matrices and true class 

accuracy for both classifiers are shown in Figure 3.5, and additional information on precision and 

recall is provided in Table 3.1. 

 

 

 



 51 

 

Figure 3.5 Classification of wrist posture from finger EMG activity 

Confusion matrices and true class accuracy for the linear discriminant classifiers for the a) finger extensors 

and b) finger flexors. The diagonal of the matrices shows the percent of correct predictions (true positive 

rate); the other percentages in each row are the incorrect predictions of other hand postures (false positives). 

a) The finger extensors show the highest accuracy (86.9%) for detection of the extended wrist posture, and 

the lowest accuracy (32.7%) for neutral posture. The most common misclassification for the neutral posture 

was for the wrist flexed posture. For the finger extensors, the differences in EMG activity for flexed and 

neutral postures were minor and only significant for ED4, which may be the driving cause of this error. b) 

The finger flexors show similar results as the extensors, but with lower overall accuracy. Prediction of the 

flexed posture was the highest at 66.4%, followed by extended posture at 54.8%. Neutral posture 

classification had the lowest accuracy at 22.5%. 
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Table 3.1 Precision and recall for posture classification 

Extensors  Flexors 

Wrist Posture Precision Recall  Wrist Posture Precision Recall 

Extended 0.869 0.712  Extended 0.548 0.493 

Neutral 0.327 0.533  Neutral 0.225 0.378 

Flexed 0.713 0.612  Flexed 0.663 0.378 

3.5 Discussion 

In this study, we found that there were wrist posture-dependent effects on extrinsic finger 

muscle EMG activity, which is consistent with previous reports (Duque et al., 1995; Johanson et 

al., 1990; Mogk & Keir, 2003; Roman-Liu & Bartuzi, 2013),. We also expanded on this work by 

investigating EMG activity from the individual muscle compartments of the FDS, FDP and ED 

muscles, specifically while using completely unloaded finger movements like would occur during 

hand pre-shaping in reach-to-grasp actions (Fligge, Urbanek, & Van der Smagt, 2013; Janssen & 

Scherberger, 2015) . An important issue is that using intramuscular electrodes instead of surface 

electrodes increased the likelihood that the recorded signals were indeed from the same muscle in 

all postures. With surface EMG, there can be significant motion of the muscles under the skin, 

making it difficult to ensure that recordings at all wrist postures would be from the same muscle 

(Duque et al., 1995; Roman-Liu & Bartuzi, 2013).  

In these experiments, we found that during single digit motions, both the finger flexors and 

extensors exhibited significant changes in their EMG activity based on the posture of the wrist, 

and in some cases varied by as much as 70% of their normalized value. We have also shown 

evidence that the extrinsic finger muscles have higher levels of activity during wrist movements 

that are performed in the same direction of action regardless of finger posture, which suggests that 
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these muscles assist with unloaded wrist movements. These muscles may therefore also play a role 

in maintaining static wrist postures, which is consistent with other studies (Werremeyer & Cole, 

1997). 

There are multiple causes for EMG activity to change based on wrist posture. Previous 

work has shown that grip and fingertip forces decrease as wrist posture moves further into a flexed 

posture (Ambike et al., 2013; Li, 2002). It has been suggested that this may be in part due to the 

diminished force production capacity of the flexors as they shorten (Li, 2002). If the required force 

output or tasks remains the same and force production ability diminishes, an increase in EMG 

activity is required to increase force generation (Aratow et al., 1993; Solomonow, Baratta, & 

D’Ambrosia, 1991). 

Posture dependent activation levels may also be attributed to the altered tension of the 

antagonist extrinsic finger muscles caused by lengthening of muscles and tendons during different 

wrist postures, which change the force necessary to make such movements (Loren et al., 1996). 

The increased passive force of the extrinsic finger muscles when the is wrist extended and flexed 

has been previously documented (Gonzalez, Buchanan, & Delp, 1997; Keir et al., 1996; Li, 2002). 

For example, when the wrist is extended, the FDS and FDP muscles are lengthened, which 

generates an increased flexion torque on the digits (Li, Zatsiorsky, & Latash, 2000; Savage, 1988). 

The extensor digitorum and other assisting muscles must therefore generate more force, and thus 

EMG activity, to counteract the increased tensions of the flexor muscles both to maintain finger 

position and to perform extension movements. During finger flexion movements while the wrist 

is still held extended, the lengthened finger flexor muscles generate substantial passive forces that 

assist in flexion movements and therefore require less EMG activity to make a flexion movement. 

This may also explain why the flexor compartments of the radial digits (FDS2, FDS3, FDP3) had 
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the lowest activation in the supinated posture, while the flexor compartments of the ulnar digits 

(FDS4, FDP4, FDP5) were substantially more active in the same posture. Despite the muscle 

compartments showing consistent patterns of responses, such as elevated EMG activity of the 

finger extensors when the wrist was extended and lower activity when the wrist was flexed (Figure 

3.2), there were differences in the magnitude of those responses across fingers. This may be 

explained in part by the differences in passive forces generated by the individual compartments at 

different wrist postures. The study by Keir et al. showed that passive muscle force differences of 

up to 200% may occur between compartments of the same muscle, such as in the case of FDS2 

and FDS4 (Keir et al., 1996). The moment contributions of FDS and FDP also vary across the 

digits (Li et al., 2000). It is therefore plausible that the extrinsic finger muscle compartments 

exhibit some differences in response magnitude based on wrist posture, but that the overall pattern 

of responses is maintained. 

EMG activity was subject-dependent and the effect of the subject was found to be 

significant for nearly all muscles. This is due in part to instances where a muscle was primarily 

active in a single wrist posture, and much less active, in some cases just 10-30% of the normalized 

activity, in other wrist postures (e.g. Figure 3.2a,d). Interestingly, the EMG activity patterns of 

these high responders appeared to be limited to a single muscle. For example, EDM of subject 10 

showed high EMG activity during the extended posture but low activity during the other postures 

(Figure 3.2c). In the other muscles and movements of subject 10, the EMG activity showed a range 

of responses similar to other subjects (Figure 3.2a-b, Figure 3.3a,f). Although high responders had 

less pairwise differences in EMG activity due to posture, their performance still demonstrates that 

EMG activity for movements is affected by wrist posture. It is unsurprising that differences 

between subjects were observed. Control over the hand and fingers has been shown to vary 
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substantially across subjects (Hager-Ross & Schieber, 2000; Salonikidis et al., 2009) and the 

number of muscles within the hand lends itself to redundant control where different muscle activity 

combinations could be used to achieve similar kinematic outputs (Latash, Scholz, & Schöner, 

2002). 

The accuracy of the classifiers used to determine wrist posture based on the integrated 

finger EMG activity were significantly above chance, demonstrating that information regarding 

wrist posture can be obtained from the extrinsic finger muscles. The high level of classifier 

accuracy for wrist postures in the agonist direction (wrist extended for the finger extensors, flexed 

for the finger flexors) suggests that information on wrist state can be gathered from the extrinsic 

finger muscles. However, information is limited to this preferred direction, due to the poor 

performance in predicting neutral posture. The performance of the classifiers is a reflection of the 

results reported in Figure 3.3 and Figure 4.4; all muscles assessed showed at least some overlap 

between EMG activity in the neutral posture and the posture in the opposite direction of the action 

(flexed for the finger extensors, extended for the finger flexors), which caused difficulty in 

differentiating between these postures. Of the 11 muscles assessed, only 3 showed significant 

differences between EMG activity occurring in the neutral and antagonist postures, making it 

difficult to effectively distinguish between those postures when all muscles are taken into 

consideration. We chose to use separate classifiers rather than a single classifier to highlight the 

strengths of the flexors and extensors for predicting wrist posture in the flexed and extended 

postures respectively. 

A core limitation of our work was that we were unable to determine how much or the 

change in extrinsic finger EMG activity based on posture was due to the necessity of overcoming 

mechanical coupling effects, such as the changing passive forces of antagonist muscles 
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lengthening, as opposed to a motor control strategy in which the fingers assist in maintaining wrist 

posture. We are therefore unable to directly ascribe whether this phenomenon is a reaction to 

passive forces or a method of control that uses multiple muscles for force generation. Electrode 

placement was also a challenge in certain cases. For example, we didn’t have electrodes in ED3 

due in part to the location of the posterior antebrachial cutaneous nerve. Electrode placement in 

FDS4 and FDP4 also proved challenging. Four electrodes that were targeted to FDP4 penetrated 

too deeply and were believed to be located in the flexor carpi ulnaris muscle in post hoc experiment 

data analysis, as the electrodes showed no response to finger movement but were active during 

wrist flexion and adduction. We were unable to determine whether this was due to the small size 

of these muscles or electrode migration that may have occurred immediately after placement while 

subjects first moved their hands. Another limitation on our work was the testing of pronation and 

supination postures. While we did test finger movements in these wrist postures, we did not explore 

activity during pronation and supination movements as thoroughly as Mogk et al. and it was 

difficult to draw meaningful conclusions on these postures, as there did not seem to be a consistent 

behavior across the muscles examined (Mogk & Keir, 2003). Biomechanical models of the arm 

and hand may assist in understanding these postures, as the EMG activity of the extrinsic finger 

muscles may be impacted by the changing muscle lengths and moment arms which can be modeled 

in simulation software. 

In this study we demonstrated that wrist posture significantly influences the necessary 

action of finger muscles as demonstrated by the large changes in EMG activity of the extrinsic 

finger muscles in able-bodied subjects. Indeed, in certain cases, a three-fold change in finger 

muscle activity was required to produce the same finger kinematics when the wrist was held in 

different postures. For the finger flexors, these effects were most pronounced for muscles 
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controlling the index finger. Future work could investigate whether the effects of wrist posture on 

finger muscle activity are still present in traumatic transradial amputees where these mechanical 

influences are removed. This could help clarify whether these interactions represent a learned feed-

forward control strategy driven by the cortex or might be predominantly driven by real-time 

sensory-driven feedback. 
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4.0 Coactivation and Stabilization of the Extrinsic Finger Muscles 

The volitional movement of a finger involuntarily generates force in a neighboring digit. 

This phenomenon is partially due to the neural and mechanical coupling present in the extrinsic 

hand muscles. Previous work has shown muscle activation of the extrinsic finger muscle 

compartments when neighboring digits have performed the same and opposite type of movement, 

known as coactivation and stabilization respectively, but the underlying muscle activations have 

not been well-studied. In order to understand how the extrinsic hand muscles coordinate to control 

the fingers, we inserted fine-wire intramuscular electrodes to record electromyographic (EMG) 

activity during single digit flexion and extension tasks. The normalized integrated EMG activity 

of the muscles during non-associated movements was compared to activity during a static pose. 

All of the 11 extrinsic hand muscles and compartments tested showed significantly higher EMG 

activity compared to static pose during at least one non-associated movement (p<.01, Bonferroni 

t-test). The finger extensors showed EMG activity across a broad range of digits, while the flexors 

were typically only active for movements of neighboring digits. Subjects showed variability in the 

ability to perform individuated movements, which we quantified using an individuation index. We 

further developed a set of generalized models to describe the EMG activity of an extensor or flexor 

muscle during movements of the same or opposite action based on distance from the digits. These 

results provide an overview of the EMG activity across 11 muscles and shows the coordination 

across the muscles during single digit movement.  
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4.1 Introduction 

Movements of the fingers are complex tasks that require the coordination of multiple 

muscles and tendons that span across up to four joints. Flexion and extension movements of the 

index, middle, ring, and pinky fingers (D2-D5) are primarily actuated by three muscles: the flexor 

digitorum superficialis (FDS) and flexor digitorum profundus (FDP) for flexion, and the extensor 

digitorum communis (ED) for extension. These three muscles can control four fingers due to 

finger-specific subcompartments which exert force on the tendons that actuate digits (Butler et al., 

2005; Keen & Fuglevand, 2004a; Reilly & Schieber, 2003; van Duinen et al., 2009). It has been 

well-established that the fingers are subject to enslaving effects: the involuntary production of 

force by non-intended fingers during a digit movement (Kilbreath & Gandevia, 1994; Li et al., 

1998; Schieber & Santello, 2004; Zatsiorsky et al., 2000). Enslaving effects have been attributed 

to a combined influence of factors (Zatsiorsky et al., 2000): mechanical coupling of the muscles 

and tendons (Keen & Fuglevand, 2003), a shared common input to motor neurons across the 

compartments (Keen & Fuglevand, 2004a, 2004b; Kilbreath et al., 2002; Reilly et al., 2004), and 

diverging motor commands (Schieber, 1991, 1995, 1996; Schieber & Hibbard, 1993; Schieber & 

Santello, 2004).  

Given the neural-related causes of enslaving effects, it is unsurprising that the extrinsic 

finger muscles show significant coactivation for non-actuated digits during similar actions. This 

phenomenon can be prominently seen through electromyographic (EMG) analysis, and has been 

documented in the ED (Birdwell et al., 2013; Leijnse, Campbell-Kyureghyan, et al., 2008; van 

Duinen et al., 2009), FDS (Butler et al., 2005), and FDP (Birdwell et al., 2013; Kilbreath & 

Gandevia, 1994; Reilly & Schieber, 2003). Efforts have been made towards quantifying the levels 

of independence and coactivation of the extrinsic finger muscles in humans through force (Yu et 
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al., 2010; Zatsiorsky et al., 2000) and EMG activity (Birdwell et al., 2013; Kilbreath & Gandevia, 

1994; Leijnse, Campbell-Kyureghyan, et al., 2008; Reilly & Schieber, 2003; van Beek, Stegeman, 

van den Noort, Veeger, & Maas, 2018). However, these works are limited in at least one of several 

ways. They neglect to compare EMG coactivation to a baseline level of activity such as during a 

static pose, do not test across a broad range of movements, and/or examine a limited number of 

muscle compartments.  

While it is well-established that the extrinsic finger muscles show EMG activity during 

similar movements by neighboring digits, less is known about EMG activity of these muscles 

during opposite movements. Previous work has shown EMG activity of FDS3 and FDP2-3 during 

a low force isometric contraction of ED2 (Birdwell et al., 2013), and EMG activity of ED during 

hand closing movements (Johanson et al., 1990).  These activations by muscles in response to the 

opposite movement has been suggested to be a motor control pattern for stabilization (Birdwell et 

al., 2013; Reilly & Schieber, 2003). Collecting data on how these muscles react to antagonist and 

other digit movements is vital towards understanding motor control over the hand. 

Beyond motor control, understanding how the extrinsic finger muscles behave holds direct 

relevance towards upper-limb myoelectric prosthetic control. The muscle bellies of ED, FDS, and 

FDP are located in the forearm and may still be present after transradial amputation, allowing for 

collection of EMG signals that can be used for myoelectric control after limb loss (Cipriani et al., 

2011; Pasquina et al., 2014; Segil, Huddle, & Weir, 2017). Mapping EMG activity from these 

residual muscles for direct or model-based control over prosthetic finger movements has been 

proposed for myoelectric prosthetic hands (Birdwell et al., 2015; Cipriani et al., 2014; Sartori et 

al., 2018). These methods often require setting a baseline threshold for EMG activity to prevent 

unwanted movement. Setting a threshold can require significant time and effort for each EMG 
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channel, as setting a threshold too low may not prevent unwanted movements and setting it too 

high can cause substantial effort to be needed to cause movement. It is therefore imperative that a 

dataset which catalogues the EMG activity of the extrinsic finger muscles across a range of single 

digit movements be established in order to inform prosthetic control designers. 

4.2 Methods 

Subject implantation, EMG recording, motion tracking, and experimental tasks for this 

study are described in Chapter 2. Data processing is described in Chapter 3.2.1. 

4.2.1 Data Analysis and Statistics 

EMG data were divided into flexion and extension phases based on the angular velocity of 

the moved digit. Angular velocities were low-pass filtered with a zero-phase digital filter at 10 Hz. 

Movement timing was detected by finding the peak positive and negative velocities within a trial. 

The onset of a movement was then recorded as the first zero velocity point preceding a peak, and 

the end of movement was the first zero velocity point after a peak (see Section 3.2.2 and Figure 

3.1b). Filtered EMG were then integrated over the movement window and divided by the duration 

of the movement. EMG activity for static pose was collected from the same trials as D2-D5 

movements during the first 4 seconds of trials when the hand was held in a neutral position with 

the fingers extended and thumb pointed upwards. EMG activity was integrated over a random 

length of time between 0.5-0.7 seconds 3 times per trial, then divided by the duration of time. 
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4.2.1.1 Trial Rejection 

Analysis of digit kinematics after experiments showed that some subjects demonstrated 

variability in the time to complete movements across the digits. This variability was not consistent 

across subjects and could have possibly influenced the results of analyses. In order to reduce this, 

the average time to complete flexion or extension of the digits was calculated across D1-D5 

movements for each subject. Trials that were 100 ms faster or slower than the average (~500 ms) 

for that movement were excluded from analysis. If six or more trials (60% of the repetitions) for 

any movement was excluded by this criterion, the subject was not included in analysis for 

movements of that type. We tested a range of time buffers to determine the effect of this on subjects 

excluded and determined that 100 ms balanced consistency in trial repetitions and subject 

exclusion (Figure 4.1). Subjects 3, 4, and 7 were excluded from analysis of flexion movements, 

and subjects 2 and 9 from extension movements. 
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Figure 4.1 Effect of time buffer on subject exclusion 

Subjects were excluded if six or more repetitions of a movement (flexion or extension) for a digit were outside 

of the subject’s average movement time +/- the time buffer. Subjects were tested twice and only excluded 

from analysis of the movement they failed. For example, a subject may have been excluded from analysis 

using flexion movements, and thus removed from coactivation analysis of flexors and stabilization of 

extensors, but still included in coactivation analysis of the extensors and stabilization of the flexors. 

 

4.2.2 Coactivation and Stabilization 

Integrated EMG activity across all movements was normalized to the mean EMG activity 

of the action associated with the muscle for each subject to capture the range of activity for the 

movements being studied. For example, EMG activity of ED2 was normalized to the average EMG 

activity of the muscle during D2 extension movements. Coactivation was measured as the EMG 

activity during D1-D5 movements that performed the same action as the muscle measured, e.g. for 
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ED2, this was during extension movements of the fingers. Stabilization was measured as the EMG 

activity during D1-D5 movements during the opposite action as the muscle measured; using ED2 

again was an example, this was EMG activity of that muscle which occurred during flexion 

movements. EMG activity for these movements was normalized to the same measurement used in 

coactivation: the EMG activity during the associated movement and digit (e.g. for ED2, D2 

extension). 

Statistical analysis was performed with a type III sum of squares general linear model for 

each muscle, using the normalized integrated EMG as the dependent factor. Subject and movement 

type (static pose, D1-D5 flexion or extension depending on muscle and analysis) were included in 

the model as fixed factors. Two models were built for each muscle to evaluate EMG activity during 

coactivation (agonist movements) and stabilization (antagonist movements). The normalized 

integrated EMG activity was the dependent variable. Subject and movement (static pose, D1-D5 

flexion or extension) were included in the models as the fixed factors. Follow-up analysis was 

performed with pairwise comparisons on the estimated marginal means to compare EMG activity 

across movements and static pose. A Bonferroni correction was included to account for multiple 

comparisons. 

The coactivity of the extrinsic finger muscles was scored using an individuation index, 

where 0 is equal EMG activity across all movements and 1 is no EMG activity above static pose 

levels during non-actuated movements. The individuation index (II) is described in Equation 4-1: 

𝐼𝐼 = 1 −
𝐸𝑀𝐺̅̅ ̅̅ ̅̅ ̅𝑛𝑜𝑛𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑−𝐸𝑀𝐺𝑆𝑡𝑎𝑡𝑖𝑐

𝐸𝑀𝐺̅̅ ̅̅ ̅̅ ̅𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑−𝐸𝑀𝐺𝑆𝑡𝑎𝑡𝑖𝑐
                                    Equation 4-1 

Where 𝐸𝑀𝐺̅̅ ̅̅ ̅̅ ̅
𝑛𝑜𝑛𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 is the weighted average of the normalized integrated EMG 

activity of the muscle during non-actuated movements (e.g. for ED2, D1 and D3-D5 extension), 
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𝐸𝑀𝐺̅̅ ̅̅ ̅̅ ̅
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 is the average normalized integrated EMG activity during the associated 

movement, and 𝐸𝑀𝐺𝑆𝑡𝑎𝑡𝑖𝑐 is the normalized EMG activity during the static pose.  

4.2.3 Generalized Models 

We developed a series of generalized models for the extensors and flexors to describe the 

coactivation and stabilization behaviors. Each model is comprised of the group of muscles which 

perform the same movement; the extensor model is composed of EIP, ED, and EDM while the 

flexor model is a combination of the FDS and FDP compartments. In order to combine the muscles, 

the data that was used in the general linear models described previously was recoded. The primary 

movement associated with a digit was coded as ‘D’. The neighboring radial and ulnar digits were 

labeled ‘D-1’ and ‘D+1’ respectively; digits further away continued with this naming scheme. 

Models were constructed as a type III sum of squares general linear model, with normalized 

integrated EMG as the dependent factor and movement type as a fixed factor. 
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4.3 Results 

EMG activity from FDS4 from four trials consisting of 10 repetitions of finger flexion and extension. EMG 

activity was high-pass filtered at 100 Hz and underwent noise removal. Despite FDS4’s association with D4 

flexion, it shows clear modulation during movements of the neighboring digits as well as D2. EMG activity 

was high-pass filtered at 100 Hz. 

 

4.3.1 Coactivation 

All extrinsic finger muscles assessed, with exception of FDS2, showed significant EMG 

activity above static pose EMG activity levels during non-actuated movements using pairwise 

comparisons. EMG activity during these movements was the highest for movements of 

neighboring digits and tapered off for movements further away. An example of the EMG activity 

observed is shown in Figure 4.2.  The finger flexor muscles showed less EMG activity for non-

Figure 4.2 EMG activity of FDS4 during D2-D5 movements 
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actuated movements than the finger extensors. For the flexors, EMG activity was only sometimes 

above static pose levels for neighboring digit movements, whereas the extensors muscles were 

consistently active for adjacent digit movements and those further away. EMG activity during 

static pose for the flexors was below 10% of the normalized integrated EMG activity, except for 

FDS2 at 19%. In contrast, the extensor muscles showed EMG activity between 20-30% during 

static pose.  

4.3.2 Finger Flexors 

For the flexor muscles assessed, movement and subject were significant factors (p<.05) for 

all models, and all models showed a significant interaction effect (p<.001) except for FDP4 (Figure 

4.3e). The flexors muscle compartments showed a selective response for digit movements, and 

typically only showed a small amount of EMG activity for the movement of a neighboring digits. 

None of the flexor muscle compartments had EMG activity above static pose activity for 

movements that were more than one digit away.  

This result is further emphasized by the low levels of EMG activity during static pose, 

which was tested against the EMG activity observed during movements. For FDS2-4, EMG 

activity during the static pose was between 7-19% of the normalized EMG activity (Figure 

4.3b,d,f). FDP2-5 static pose EMG activity was lower and between 2-6% (Figure 4.3a,c,e,g).  Out 

of all the muscles assessed FDS2 was the most selective, showing significant EMG activity only 

during D2 flexion. All other flexors assessed showed significant EMG activity for at least one 

other movement, although the pattern of coactivation varied based on the digit. FDS3 was 

significantly active during D4 flexion (67% of normalized EMG activity, p<.001), but not for D2 
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flexion (15%, ns). EMG activity of FDS4 was significantly active during D2-D5 flexion, at 16%-

20% of the normalized EMG activity when performing non-D4 flexion movements. 

FDP2 showed an unusual pattern of EMG activity, as the highest EMG activity occurred 

during D3 flexion (170%, p<.001), and no significant EMG activity for D4 and D5. Unlike the 

other muscles, only data from one subject for FDP2 was available. FDP3 showed significant levels 

of EMG activity during D2-D4 flexion with 20% normalized EMG activity during D2 flexion and 

55% for D4 flexion (p<.001). The coactivity shown is similar to FDS3, which was also strongly 

modulated for D4 flexion. FDP4 was less active than FDS4 during the movement of neighboring 

digits; significant EMG activity only occurred during D3 flexion (20%, p<.005). Besides D5 

flexion, EMG activity of FDP5 was only significantly present during D4 flexion (39%, p<.001). 
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Figure 4.3 Coactivation across the extrinsic finger flexor muscles 

The subplots show the generalized models developed for the extrinsic finger flexors. Each point represents the 

estimated marginal mean and error bars show the 95% confidence intervals of EMG activity during flexion 

movements. The horizontal red bar and shaded area represent the estimated marginal mean of EMG activity 

during static pose and the 95% confidence intervals. 
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4.3.3 Finger Extensors 

In contrast to the flexor muscles, the extensors showed high levels of EMG activity across 

many movements of the digits. ED2, EIP, and ED4 models showed EMG activity significantly 

above static pose during all movements. EDM was the most selective extensor muscle but still had 

EMG activity significantly above static pose during D3-D5 movements. The EMG activity of the 

extensor muscles decreased for movements that were further away from the actuated digit. For all 

extensor muscle models, subject and movement were found to be a significant factor (p<.001) and 

showed a significant interaction effect (p<.001). 

ED2 and EIP showed the highest levels of coactivity during D1 extension movements at 

85% and 89% of the normalized EMG respectively (Figure 4.4a-b). EMG activity of these two 

muscles was lower for extension movements of digits further away from D2, down to 50% and 

40% for ED2 and EIP during D5 extension. For ED4, the highest levels of coactivity were during 

D3 and D5 extension movements at 58%. EMG activity of ED4 continued to decrease for 

movements further away, with the lowest level of EMG activity occurring at 38% during D1 

extension (Figure 4.4c). Out of the extensor muscles assessed, EDM was the most selective but 

still showed coactivation for D4 (73%) and D3 (50%) extension movements (Figure 4.4d).  

The EMG activity of the static pose of the extensors ranged from 21-29% of the normalized 

value. This level, which was much higher than those of the flexors, was due to the static pose in 

which subjects held their fingers extended. Compared to the flexor muscles, the higher level of 

EMG activity during static pose meant that detecting differences from static pose would only occur 

if higher levels of EMG activity were recorded during digit movements. Given this, the 

coactivation that was observed from the extensor muscles is further highlighted. 
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Figure 4.4 Coactivation across the extrinsic finger extensor muscles 

The subplots show the generalized models developed for the extrinsic finger extensors. Each point represents 

the estimated marginal mean and error bars show the 95% confidence intervals of EMG activity during 

extension movements. The horizontal red bar and shaded area represent the estimated marginal mean of 

EMG activity during static pose and the 95% confidence intervals. 

4.3.4 Individuation Indices 

We characterized the ratio of EMG activity during non-associated digit movements to 

associated movements using the individuation index (II) described in Equation 4-1. The 

individuation indices reinforce the coactivity findings while exploring differences in subjects for 

each muscle. For the flexor muscles, the trend of selectivity was still seen as most subjects were 

above 0.8. The lowest index (least selective) was found to be FDP2 at .55; however, this was from 

a single subject who showed an anomalous level of activity. In contrast, FDS2 was the most 

selective flexor muscle with an average index of 0.9. Beyond the D2 flexors, FDS and FDP were 

largely in agreement: FDP3 and FDS3 had a lower index on average than FDP4 and FDS4 
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respectively (Figure 4.5a). Flexor subjects had similar levels of individuation indices, with only a 

couple of notable outliers. The individuation indices of the extensor muscles exhibit nearly the 

opposite behavior. ED2 and EIP showed much lower individuation indices than ED4 and EDM 

(Figure 4.5b) and are the lowest observed of any muscle, whereas ED4 and EDM had 

approximately equivalent indices overall. The extensor muscles showed a strong variance of 

responses in individuation indices across subjects, with ED2 having a range of 0.55.  
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Figure 4.5 Individuation indices of finger flexors and extensors 

Subjects are coded by shape, and muscles are coded by color. The horizontal axis represents the associated 

finger. For the multicompartment muscles such as FDS, FDP, and ED, the horizontal axis corresponds with 

the associated compartment. An individuation index of 1 represents a muscle that shows no significant 

activity during the same action of other fingers, whereas an individuation index of 0 represents equivalent 

EMG activity across all movements. 
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4.4 Stabilization 

The flexor and extensor muscles showed different behaviors during antagonist movements. 

For the flexor muscles, EMG activity was always above static pose level and typically the highest 

when the associated digit was extending. For the extensor muscles, EMG activity was typically 

low when the associated digit made flexion movements. Similar to the behavior observed during 

coactivation, the flexors showed low levels of EMG activity with all movements below 30% of 

normalized EMG activity, whereas the extensors were much more active and generally between 

40-80% of normalized EMG activity for many flexion movements.  

Across all models, movement, subject, and the interaction effects were found to be 

significant (p<.001 except for FDP4 movement, p<.05). Pairwise comparisons were performed on 

a per muscle/model basis by comparing the estimated marginal means with a Bonferroni 

correction. 

4.4.1 Flexors 

The flexor muscles showed some EMG activity significantly above static pose during 

extension movements, but this was generally only for one or two movements.  The highest EMG 

activity occurred in FDS2 during D2 extension at 30%. FDS2 was also significantly active during 

D1 and D3 extension at approximately equal levels of 16-17% respectively (p<.001). FDP2 was 

also significantly active during D1-D3 extension (p<.005), as well as D4 extension (p<.05) with 

EMG activity ranging between 14-22%. FDP3 was found to be more selective than FDS3. FDP3 

was active only during D3 extension (17%, p<.001) whereas FDS3 was active for D3-D5 

movements (p<.001), with the highest activity during D4 extension (22%) and low activity for D3 
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and D5 (14% and 11%). FDS4 and FDP4 overall showed very low levels of EMG activity during 

extension movements, with EMG activity of FDS4 for D1-D5 movements between 8-13% and 

FDP4 6-15%. Nonetheless, FDS4 EMG activity was still significantly above static posture activity 

for all D1-D5 extension (p<.001) whereas FDP4 was only significantly active for D4 extension 

(15%, p<.05). FDP5 also showed low EMG activity during extension movements and had EMG 

activity slightly above static pose levels for D5 extension (10%, p<.001) and D1 extension (7%, 

p<.001).  



 76 

 

Figure 4.6 Stabilization of the extrinsic finger flexor muscles 

General linear models for the extrinsic finger flexor muscles, representing the normalized EMG activity 

during extension movements. Each point represents the estimated marginal mean and error bars show the 

95% confidence intervals of normalized EMG activity during extension movements. The horizontal red bar 

and shaded area represent the estimated marginal mean of EMG activity during static pose and the 95% 

confidence intervals. 
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4.4.2 Extensors 

The extensor muscles showed a high level of EMG activity during flexion movements and 

shared some common patterns of EMG activity. No extensor muscles (ED2, EIP, ED4, and EDM) 

showed significant EMG activity above baseline rest during D2 flexion, but all extensor muscles 

were significantly active during D3 flexion. For ED2, EIP, and ED4, EMG activity during D3 

flexion was the highest observed for coactivation, ranging from 59-76% of normalized EMG 

activity levels (p<.001). For EDM, the most EMG activity during flexion was observed during D4 

movement at 85% of the normalized value (p<.001). ED2 and EIP showed common responses to 

flexion movements of the digits. Both muscles showed significant EMG activity approximately 

50% of normalized EMG activity and during D4 flexion (ED2: 55% EIP:36%, p<.001). ED4 and 

EDM also showed similar patterns of EMG activity, with significant EMG activity occurring 

during D3-D5 flexion (p<.001). EDM was also significantly active during D1 flexion (60% 

normalized EMG activity, p<.001) while ED4 was not. 
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Figure 4.7 Stabilization of the extrinsic finger extensor muscles 

General linear models for the extrinsic finger extensor muscles, representing the normalized EMG activity 

during flexion movements. Each point represents the estimated marginal mean and error bars show the 95% 

confidence intervals of normalized EMG activity during extension movements. The horizontal red bar and 

shaded area represent the estimated marginal mean of EMG activity during static pose and the 95% 

confidence intervals. 

 

4.4.3 General Models of Coactivation and Stabilization 

A set of generalized models for the extensors and flexors was developed to model 

coactivation and stabilization of the extrinsic hand muscles. Both the extensor and flexor muscles 

have the highest level activation during the associated movement, labeled ‘D’ (Figure 4.8a-b). As 

movements are performed by digits further away from the associated movement, EMG activity 

declines until it reaches the same level as static pose. EMG activity of the flexor muscles declines 

more drastically than that of the extensors. For the flexor muscles, EMG activity of D-1 and D+1 
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is 21% and 44% of the normalized EMG activity whereas the extensor EMG activity of D-1 and 

D+1 is between 65% and 74%.  At D-2 and D+2, the EMG activity of the flexors is 11% and nearly 

indistinguishable from static pose (8%) whereas the extensor EMG activity at 47% and 68% is 

well-above static pose (26%).  

The stabilization models show a stark contrast between the stabilizer muscles. For the 

extensor muscles, EMG activity was indistinguishable from static pose during flexion of the 

associated digit D, but higher for movement of the neighboring digits. 

 

Figure 4.8 Generalized models of coactivation and stabilization 

Generalized models of the extensors and flexors during agonist (coactivation) and antagonist (stabilization) 

movements. a-b) The highest EMG activity of the muscles occurs during the agonist movement of the 

associated digit, and decreases for movements further away. The extensors show a slower decline in EMG 

activity versus movement distance in comparison to the flexors, which do not show significant EMG activity 

occurring for finger movements more than one digit away. 
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4.5 Discussion 

Coactivation, and to a much lesser extent stabilization, have been previously studied 

through the lens of electromyography and digit movement (Birdwell et al., 2013; Keen & 

Fuglevand, 2003, 2004b, 2004a; Kilbreath & Gandevia, 1994; Kilbreath et al., 2002; Leijnse, 

Campbell-Kyureghyan, et al., 2008; Li et al., 1998; Reilly et al., 2004; Schieber, 1995; van Beek 

et al., 2018; van Duinen et al., 2009; Zatsiorsky et al., 2000). These studies have still left a 

significant gap, which we addressed. Many studies only examined a single muscle during a unique 

task, making it difficult to compare responses of the muscle groups. The tasks used often involved 

large levels of force generation on the digits, and do not explore coactivation and/or stabilization 

during low force movements which are commonly performed during daily life.  Over the course 

of this study, we addressed these gaps: we simultaneously examined EMG activity from ED, EIP, 

EDM, FDS, and FDP during low force movements during agonist and antagonist movements of 

D1-D5 using intramuscular EMG to target the individual muscle compartments.  

We found that the finger extensors showed more coactivation than the flexors, and these 

results are further emphasized by the static pose position, which caused a higher EMG activity for 

comparison for the extensors than the flexors. These findings may be due to two reasons. The 

flexion movements involved use of the FDS and FDP muscles, therefore requiring less force 

generation from any single muscle which may have removed the need for activation of neighboring 

muscle to assist with the movement. It is also likely that humans are able to selectively activate 

the flexor compartments more than the extensors. The most common use of the hand involves 

grasping of the hand, an action largely performed by the finger flexor muscles. A review of hand 

function by Schieber and Santello explains that finger individuation during grasping allows for 

more complex grasps and complicated manipulations, such as tying a knot (Schieber & Santello, 
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2004). Extension of fingers can aid in manipulation, but the movements are largely driven by the 

flexor muscles. 

Kilbreath and Gandevia showed coactivity of the FDP compartments when subjects lifted 

a weight on each finger which generated approximately 50% of a maximal voluntary contraction 

(MVC) for that digit (Kilbreath & Gandevia, 1994). Our results deviated from Kilbreath and 

Gandevia in that we found different patterns of coactivation present in some compartments of FDP. 

In particular, FDP3 for two of our subjects showed high levels of EMG activity during D4 

movements, whereas Kilbreath and Gandevia found EMG activity below 10% MVC during the 

D4 task. Although we did not assess MVC levels, the movement tasks performed by subjects were 

likely well below the threshold Kilbreath and Gandevia used. 

We presented EMG activity of the finger flexors and extensors during antagonist 

movements, dubbed stabilization, but found varied responses from the muscle compartments. For 

FDS and FDP, no consistent behavior was observed. For example, FDP2 was active during D1-

D4 movements, with the most activity during D3 extension whereas FDP3-5 were most active for 

extension of the associated digits and showed little EMG activity for other movements. This 

pattern may have been influenced by the pose subjects held their hands, in which all fingers were 

extended. Because the non-moving digits were already extended, there was no clear mechanical 

need for the flexors to provide a stabilizing force to resist the extension of the neighboring digits.   

Subjects often showed variance in our analysis, but this finding appears to be common 

across similar literature. Häger-Ross and Schieber’s study on the ability of the digits to perform 

individuated movements saw individuation indices of the middle and ring finger varying between 

13% and 17% respectively (Hager-Ross & Schieber, 2000). In EMG research, Kilbreath and 

Gandevia’s subjects showed a difference of 40% MVC activity in FDP2 during the D4 task 
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(Kilbreath & Gandevia, 1994). Visual inspection of the raw EMG of subjects 5 & 6 presented by 

Leijnse, Campbell-Kyureghyan, Spektor, and Quesada show different responses to the same 

repeated tapping task. For example, EIP of subject 6 shows EMG activity during a D4 task at 

nearly the same level as during the D2 task while subject 5 does not (Leijnse, Campbell-

Kyureghyan, et al., 2008). The group also discussed variance between subjects in EMG activity of 

ED2 and EIP in D2 tasks, suggesting that the redundancy of the muscles leads to these behaviors. 

The individuation indices provide an overview of the variation by subjects to perform 

individual movements. The finger flexors showed little variance across the individuation indices; 

subjects generally had indices within .1 for each muscle with an occasional outlier. In contrast, the 

extensor muscles had much more variance. This was consistent across all four extensor muscles: 

ED2, EIP, ED4, and EDM. In some subjects, independence (or the lack thereof) was largely 

consistent across the muscles. Seven muscles from Subject 8 were included in the analysis. Of 

those seven muscles, five (ED2, ED4, EDM, FDS3, and FDS4) had among the lowest 

individuation indices per muscle. In comparison, Subject 1 had the highest individuation indices 

for three out of the four muscles assessed. 

Electrode placement may have also played a role in the observed variation. Reilly and 

Schieber have suggested that there are four core regions of the FDP with motor units that act 

selectively for a digit and peripheral areas around these cores that feature overlapping motor units 

(Reilly & Schieber, 2003). Therefore, it is possible to see varying responses from the muscle 

compartment from the same subject. An example of this may be seen in Figure 4 of Reilly and 

Schieber’s work: electrode B and C, placed in a compartment of FDP, both show preferential EMG 

activity for D3 flexion. During D2 and D4 extension, electrode C shows EMG activity while 

electrode B only shows minor activity for D4 extension. Due to this variability as well as variability 
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in subject individuation, we felt it was most appropriate and informative to describe our results as 

generalized models to provide an overview of the patterns of EMG activity in the extrinsic hand 

muscles. 

Our work was limited by having subjects hold the hand with the fingers extended. This 

position was used for static pose, which served as a baseline for EMG activity to compare to 

activity during movements, and as a position for the other fingers during movements. The posture 

had two effects: it influenced the EMG activity collected during static pose and set a higher level 

of EMG activity for comparison for the extensors, and a lower level for the finger flexors. We do 

not believe this impacted the results of the coactivation analysis, as the extensors demonstrated 

significant levels of EMG activity above static pose across most of the movements. Likewise, 

despite a lower level of EMG activity during static pose the flexors showed selective activation. 

However, the extended position of the non-moving fingers of the hand may have impacted the 

EMG activity flexor muscles during extension movement, as it was unnecessary for the flexor 

muscles to activate and stabilize the position of the associated digit during the movement of 

neighboring fingers. 

We have performed one of the broadest EMG studies to date of the extrinsic finger muscles. 

We have collected and reported on data collected from 11 muscle sites in able-bodied subjects to 

model EMG activity during flexion and extension movements of D1-D5 for the purposes of 

understanding coactivation and stabilization. We found that the extensor muscles showed EMG 

activity during extension and flexion, even for movements more than one digit away, whereas the 

flexors were more selective and only active for the associated movement and a neighboring digit. 

This work may be useful towards understanding patterns of EMG activity of the extrinsic hand 

muscles for prosthetic control, but it is unknown whether the same patterns of coactivation and 
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stabilization will remain or how they will change. Future work should focus on repeating this 

experiment in transradial amputee subjects. 
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5.0 Optimization of EMG Activation and Simulation of Forward Dynamics 

Electromyographic (EMG) signals from extrinsic hand muscles that remain after 

amputation can be used to control prosthetic hands. Clinically available systems typically use one 

of two algorithms for control: pattern recognition, in which predetermined prosthetic movements 

or states are commanded based on recognizing patterns of activity across multiple EMG sensors, 

or direct control, in which EMG activity directly controls output for a given degree of freedom 

(DOF). Both approaches face challenges in taking full advantage of modern prosthetic hands that 

can control individual fingers. In order to address some of the challenges of existing control 

schemes, we have developed an optimization approach to determine the impact of different 

intramuscular EMG to muscle activation signal transformations to drive an alternative control 

scheme based on a biomimetically inspired, dynamic model of the hand with Hill-type muscle 

actuators. Using kinematics and EMG activity recorded from up to 16 muscles in three able-bodied 

subjects, we attempted to optimize the linear gains of a signal processing chain in order to drive 

the forward kinematics of a 17-DOF musculoskeletal model and recreate five different movements 

and postures of the hand. Using this incomplete set of data from the hand, we are able to reproduce 

movements of the wrist and fingers with normalized RMS positional error levels of down to 

0.23±.08 of the normalized range of motion averaged across 17 joints. 
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5.1 Introduction 

Research on upper-limb prosthetic control has exploded in recent years and struggled to 

keep pace with emerging myoelectric prosthetic devices. Present myoelectric prosthetic hands can 

offer six degrees-of-freedom of at the fingers and wrist, yet few control algorithms are able to take 

advantage of this to restore dexterous and simultaneous control over the joints. Previous efforts 

towards prosthetic control algorithms have typically attempted to restore hand function through 

either direct control, e.g. matching EMG activity to velocity (Cipriani et al., 2014; Smith et al., 

2014), or by using pattern recognition to configure the hand in a predetermined shape (Hakonen 

et al., 2015; Leone et al., 2019; Scheme & Englehart, 2011). These algorithms are unable to fully 

restore dexterous hand functionality to the user as they suffer from one or more issues as algorithms 

are unable to scale beyond a few DOF for simultaneous control and users are unable to move the 

hand and fingers into arbitrary or spontaneous shapes. The  ideal characteristics of an upper-limb 

prosthesis incorporates these factors, as well as minimal delay and little training (Farina et al., 

2014). 

Pattern recognition and direct control may never overcome these issues due to fundamental 

designs that prevent them from emulating the underlying control of the hand. For pattern 

recognition, it is self-explanatory: the classification of EMG activity into predetermined postures 

is incongruent with the ability to manipulate the hand into arbitrary methods. For direct control, it 

is the fallacious mapping of EMG activity to a kinematic property such as velocity. EMG activity 

is a representation of the neural drive to activate a muscle and generate force. Deriving velocity 

from such a metric requires factoring in the torque generated by the muscle about each joint which 

requires knowledge of the moment arm, muscle length, and contraction velocity as well as the net 

torque generated by agonist and antagonist muscles working at the joint. 
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Further confounding this issue is the complexities involved in the activation of multiple 

agonist and antagonist muscles in the hand muscles during even simple movements. Not 

surprisingly, whole-hand movements such as grasp require the synergistic activation of multiple 

muscles (Santello et al., 1998, 2002). However, even simple movements such as flexing a single 

finger requires the activation of multiple muscles to stabilize the non-moving digits ( Reilly & 

Schieber, 2003). Model-based systems which have included this information have seen enhanced 

performance (Paclet & Quaine, 2012). These coordinated synergies are believed to be coordinated 

through the central nervous system (Overduin et al., 2014, 2008; Schieber & Santello, 2004; Takei 

et al., 2017; Takei & Seki, 2010), which suggests that muscle synergies may persist after trans-

radial amputation even if there is no mechanical need.  

Biomimetic model-based controllers have been proposed as an alternative control method. 

These controllers are particularly appealing as they may be more robust than traditional controllers 

(Sartori et al., 2018), offer arbitrary and dexterous control over a prosthesis, and require less 

training than traditional devices. Whereas a traditional device must be trained to associate EMG 

activity with a movement or map a joint to a kinematic output, the emergent properties of a 

biomimetic model can allow for generalizable EMG activity to accommodate a broad space of 

movement and posture combinations (Pan et al., 2019). Biomimetic controllers typically rely upon 

muscle activation as an input. The translation of EMG-to-activation is problem that has been 

approached in various ways. This has included decomposing EMG activity into motor unit action 

potentials (Kapelner et al., 2019), using non-linear models (Buchanan et al., 2004; Lloyd & Besier, 

2003), artificial neural networks (Wang & Buchanan, 2002), or through the use of traditional 

feature extractions such as low-pass filtering, Willison Amplitude, zero-crossing, and so forth 

(Kamavuako et al., 2009). Very little effort has been put forth into testing and comparing EMG-
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to-activation methods, which has caused a lack of consensus amongst researchers for the optimal 

method. Further causing difficulty is the variables involved in these feature extraction methods. 

Feature extraction techniques such as mean absolute value have parameters which may be set, such 

as the window size for calculation, sliding vs. non-sliding window, and the update rate of the 

sliding window. When testing such differences in parameters, the amplitude of EMG activity used 

for normalization must also be recalculated which can cause further difficulty in comparing EMG 

processing methods.  The effectiveness of an EMG-to-activation method cannot be definitively 

declared unless the parameter space is robustly explored. 

In order to address this, we have developed an optimization environment in which EMG-

to-activation methods may be robustly tested.  Using previously recorded kinematics and EMG 

data, we are able to optimize the gains of an EMG-to-activation signal and simulate the forward 

dynamics of a 17 degree-of-freedom (DOF) musculoskeletal biomimetic model. In this study, we 

demonstrate as proof-of-concept the ability of the optimizer and model to accurately control 

movements of the fingers and wrist across a broad range of movements and postures.  
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5.2 Methods 

5.2.1 Optimizer Overview 

 

Figure 5.1 Block diagram of optimizer system 

Offline recorded EMG activity e(t) undergoes signal processing to convert to muscle activation a(t). The 

muscle activation is input to the musculoskeletal model with joint positions θ(t) to calculate the output 

torques τ(t) across the joints. The torques are applied to the forward dynamics simulation in MujoCo and the 

timestep is advanced to receive the simulated joint positions. The simulated kinematics are compared to the 

subject kinematics to calculate the error, which is then used as a fitness measurement for the optimizer 

function to adjust the linear gains applied at the signal processing step. 

 

The optimizer system is composed of several subsystems. The major components of this 

system are signal processing, the musculoskeletal model, forward simulation, and optimizer. 

Previously recorded EMG activity e(t) is input into the signal processing subsystem, where the 

signal is converted into activation a(t). Activation and the position of up to 18 degrees-of-freedom 

are then used as input to the musculoskeletal model. The muscle force is calculated using a Hill-

type muscle model as well as the muscle moment arm for each of the muscles within the model. 

The resulting torques, both passive and active, τ(t) are then tallied for each joint and entered into 
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the MuJoCo 2.0, where the forward dynamics are applied, the time step is advanced, and the model 

kinematics  θ(t) are extracted to calculate the next series of muscle forces and moment arms.  This 

loop repeats until the entire trial or series of trials is completed. The subject kinematics are then 

compared to the recorded subject kinematics. An error is calculated between these signals and used 

as the measure of fitness for the optimization subsystem which adjusts the scaled gains.    

5.2.1.1 Signal Processing 

The signal processing subsystem receives raw EMG activity as an input and outputs the 

muscle activation. In this subsystem, the EMG may be converted to activation using a chain of 

processing steps specified by the user in the config file. The order and properties of the processing 

steps can be varied, and processing methods may be repeated. For example, an acceptable 

processing step would be a low-pass filter at 1000 Hz, rectification, high-pass filter at 100 Hz, and 

then low-pass again at 10 Hz. The signal processing block is adaptable, and new processing 

methods may easily be added into it. Some examples of included programmed methods used in 

EMG-to-activation besides standard filtering methods include mean absolute value with 

configurable window size and sliding movement, the Willison Amplitude, and thresholding. The 

signal processing block interacts directly with the gain scaling factors; gain scaling is applied 

directly after the completion of signal processing. 

5.2.1.2 Musculoskeletal Model 

The musculoskeletal model receives neural activation and joint positions as input and 

produces torque for the joints. The musculoskeletal model can be separated into two components: 

the Hill-type muscle model, and moment arm calculation. The Hill-type muscle model uses 

activation and joint position to calculate muscle force. In the muscle model, joint position is used 



 91 

to determine the length of the muscle as part of the calculation for active and passive force, while 

activation is the volitional drive to create a movement. Muscle lengths are also used to calculate 

the moment arms as part of the force to torque calculation. The initial step of the musculoskeletal 

model uses the initial starting position of the recorded kinematics. 

5.2.1.3 Forward Simulation 

MuJoCo is a physics simulation environment which can simulate the movements of a 

model of the hand. The hand model uses user-defined parameters, such as joint stiffness and 

viscosity as well as specified masses of the hand and digit segments to calculate the kinematics 

when a torque is applied. The forward simulation applies the torques from the musculoskeletal 

model to the physics model in MuJoCo simulation. After the torques are applied to the joints, time 

is advanced a step and the new joint positions are passed back into the musculoskeletal model. At 

the initial time step, the joint positions are set to starting position of the recorded kinematics. The 

forward simulation of the system can run in faster than realtime; for a 16 second trial, forward 

simulation and musculoskeletal modeling calculations may be completed in 2 seconds on a 

consumer-grade PC. 

5.2.1.4 Optimizer 

The optimizer block adjusts the gain scale factors based on the error between the forward 

simulation and recorded subject kinematics. The error is calculated across each joint and 

normalized to the total range of motion for the joint. The error for each degree-of-freedom is 

calculated to the root mean square (RMS), and multiplied by a weighted term before being 

summed. The optimization function used may be interchanged. For this study, the least-squares 
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non-linear optimizer function (lsqnonlin) was used. Lsqnonlin was selected as it allows for 

optimization of multiple variables, and the solution space may be constrained. 

5.3 Experimental Procedures 

Methods for EMG and kinematic data collection are described in Section 2.0. 

5.3.1 Subject Selection 

Of the 12 subjects implanted with electrodes, three were selected to demonstrate the 

optimization process. Subjects were selected based on having EMG activity from four wrist 

muscles (ECU, ECRL, FCU, FCR) and at least one agonist-antagonist pair (preferably more) for 

a digit. Subjects were also preferentially selected based on having a close to complete set of 

muscles which represented the extrinsic finger muscles. A list of subjects and corresponding 

signals to the optimizer as well as the digits included in movement trials are shown in Table 5.1. 
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Table 5.1 Signal list by subject for optimization 

 Subject 4 Subject 8 Subject 10 

Si
gn

al
 L

ab
el

 

ECRL FPL ECU 

ECU APL ECRL 

FCU ED2 EPL 

FDP4 ED4 EDM 

EPL EIP APL 

ED4 EDM FPL 

EIP EPL ED4 

ED2 PECM_M SUP 

APL FDS3 FDP3 

FPL FDP2 PECM_M 

SUP FDS4 FCU 

FDP2 FCR FCR 

FDS2 ECU PT 

FDS3 ECRL ED4 

FCR FDP5 ED2 

PT FCU FDS4 

Digit Index (D2) Index (D2) Ring (D4) 

  

5.3.2 Optimization and Forward Simulation 

Five trials were chosen from each of the subjects for analysis: digit flexion/extension when 

the wrist was held 1) neutral,  2) flexed, and 3) extended, and wrist flexion/extension when the 

fingers were 4) fully flexed and 5) fully extended. The digit trials selected varied between subjects. 

Because subjects did not have identical placement of electrodes, the digit trial was selected based 

on the electrode placement of at least one flexor and extensor muscle. Preference was given for 

digits which had EMG activity recorded from the most associated muscles. 

Optimization of the trials was run two ways: batch and single trial optimization. In batch 

optimization, all 5 trials were optimized simultaneously to find a single set of gains that minimized 

the error across the trials. For single trial optimization, gains were optimized individually to each 
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trial to minimize the error within each trial. In some instances, the optimization process became 

trapped in local minima. In order to overcome this, optimizations were run multiple times and the 

initial starting point of the gains was randomized. Batch optimizations were run 20 times, and 

single trial optimizations were run 5 times each for a total of 25 runs.  

The objective of the optimizer functions was to reduce the weighed sum of the RMS 

position error. The position error was calculated at each of the 17 DOF of the model by measuring 

the difference between the subject and model kinematics. Position error was then normalized by 

range of motion for the joint, and the root mean square was calculated. The RMS error of each 

joint was multiplied by a subject-dependent set of weights. Across all subjects, 12 out of 17 joints 

were given a weight of 0; the joints which were weighed greater than 0 were the D2-D5 metacarpal 

(MCP) joints and wrist flexion/extension. 

The RMS positional error was chosen as the fitness metric after considering using the 

correlation coefficient and identifying four types of outcomes with both metrics (Figure 5.2). The 

chief advantage of the RMS positional error is that it provides an accurate metric for the 

performance of a joint during both movements and static poses. Although having a high correlation 

coefficient is also ideal, there are instances in which a high correlation coefficient does not 

appropriately represent a movement (Figure 5.2b). Similarly, a low correlation coefficient does 

not necessarily mean poor performance. In Figure 5.c, the fingers are held in a static pose. The low 

correlation coefficient would initially suggest that there is a poor match between the simulated and 

subject kinematics, but observation of the joint position over time shows that the simulated joint 

accurately replicates the position of the subject. 
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Figure 5.2 Visualization of R and RMS error values with joint kinematics 

Subject (blue) and optimized simulated (red) kinematics are shown for static and dynamic states in the 

matrix above. The x and y axes represent increasing correlation coefficients and position errors respectively, 

and how kinematics which reflect these combinations of measurements, e.g. high RMS and low R, may 

appear. a) High R, Low RMSE: the desired outcome to match the subject kinematics. b) High R, High 

RMSE: the general trajectory of the movement is matched, but there is significant error between the position 

of the joint. c) Low R, low RMSE: kinematics in this quadrant are often from static poses. d) High R, High 

RMSE: a failure to optimize. 
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5.3.3 Signal Processing 

EMG activity was high-pass filtered at 100 Hz with a 4th order butterworth filter, rectified, 

low-pass filtered at 2 Hz with a 4th order butterworth filter, and thresholded. Thresholds for the 

EMG activity were based on the mean EMG activity of each subject basis by activity when the 

subject had posed their hand with the fingers extended, wrist neutral, and self-supported above the 

table, and empirically adjusted. The filtered EMG activity was then normalized to 10,000. 10,000 

was selected as it was a high enough level which EMG activity would be below, but low enough 

that the boundaries of the gains could still be scaled to maximize the activation as necessary. EMG 

activity was then downsampled from the originally recorded 30,000 Hz to 100 Hz to match the 

sampling rate of the subject kinematics. Figure 5.3 provides an overview of this process and how 

the shape of the signal changes with each of these steps. 
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Raw EMG activity is high-pass filtered before undergoing rectification, low-pass filtering, and a thresholding. 

This processing removes noise and drift from the signal and converts the EMG activity to activation. After 

thresholding, the signal is normalized to an arbitrary threshold and the optimizer searches to find the 

appropriate gains to scale the signal. 
 

5.3.4 Statistical Analysis 

After optimization runs were completed, trials with the lowest average RMS error for the 

wrist and digit MCP joint which was moved (D2 for Subjects 4 and 8, D4 for Subject 10) were 

included in final analysis. In addition to the wrist and digit MCP joints, the average normalized 

RMS error was calculated across all the joints. The correlation coefficients were calculated for all 

joints, and an overall average of all the coefficients for the joints was also calculated.  

 

Figure 5.3 EMG-to-activation processing pipeline 
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5.4 Results 

Optimization was performed on subjects 4, 8, and 10 in two methods: optimization to a 

single trial, or to five trials to obtain a set of generalized gains. An example of the resulting 

kinematics for may be seen in Figure 5.4 for subject 8. The simulated results mimic the pacing of 

movements and posture of the subject. The common source of error from the trials shown in Figure 

5.4 is from overshooting and undershooting the peak positions during flexion and extension 

movements.  The results shown in Figure 5.4 represent the best and worst performances from the 

trials; the MCP joint during wrist flexion/extension with the fingers (Figure 5.4d) has the highest 

error for the tested MCP and wrist joint across all subjects and batch/single optimizations. In 

contrast, the wrist joint in Figure 5.4c has some of the lowest RMS error. 
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Figure 5.4 Comparison of subject kinematics to optimizer kinematics 

Subject kinematics (black) and the resulting optimizer kinematics for single trial fit (red) and generalized fit 

(blue) for the wrist and D2 MCP joints for subject 8. The overfit single trial models predictably outperform 

the generalized batch results and closer match the subject kinematics.   

 

Across all subjects, the overall lowest RMS error was at the wrist followed by the MCP 

joint of the tested finger. This is consistent with the weighting scheme used which was placed a 

higher importance on the wrist than the MCP joint. For subjects 4, 8, and 10, the average wrist 

error for generalized optimizations was 0.10±.04, 0.15±.07, and 0.19±.09 respectively whereas 

single trial optimizations for subjects 4, 8, and 10 were 0.09±.04, 0.12±.08, and 0.16±.07. For 

subjects 4, the RMS error at the MCP joint was the highest observed of the three subjects; the RMS 
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error of the MCP joint was much higher at 0.44±.13 for the generalized fit but much lower at 

0.22±.09 for single-trial fit (Figure 5.5a). Subjects 8 and 10 had lower average RMS errors of 

0.13±.20 and 0.38±.09 for generalized fits, and 0.17±.10 and 0.32±.08 for single-trial fits (Figure 

5.5c,e). Out of the three subjects, subject 8 had the best performance and least difference between 

generalized and single trial gains. The overall average RMS error for subject 8 was the same for 

general and single trial optimization runs: 0.24. Subjects 4 and 10 both had higher levels of RMS 

error; subject 4 had an overall average RMS error of 0.35±.07 and .26±.06 for general and single 

trial optimizations. Subject 10 had similar levels of error at 0.35±.07 and 0.27±.09 as well (Figure 

5.5). 

The correlation coefficients of the subjects showed a broad range of responses. In nearly 

all cases, the highest correlation coefficients were observed during single trial optimizations 

despite not being a factor in fitness optimizations. For subjects 4 and 8, the highest correlation 

coefficients were associated with the wrist joint. The wrist joint of subject 4 had a R value of 

0.57±.43 for generalized optimization and 0.67±0.42 for the single trial optimization. The wrist 

joint of subject 8 had a correlation coefficient of 0.54±.35 and 0.572±.32 for the generalized and 

single trial. Subject 10 had a lower wrist performance with correlation coefficients of 0.38±0.4 and 

0.49±.43 for generalized and single trials. The MCP joints had a lower correlation coefficient than 

the wrist for subjects 4 and 8. For subject 4, the D2 MCP joint had a correlation coefficient of 

0.38±.23 and 0.39±.31 for generalized and single optimizations. Subject 8 showed better 

performance and equal performance, with an average R of 0.53±.47 and 0.53±.46 for generalized 

and single optimizations. The highest correlation coefficients were associated with Subject 10 D4 

MCP joint at 0.69±.19 and 0.62±.25 for generalized and single optimizations. The correlation 

coefficients of the wrist and digit MCP joints were much higher than the average joint correlations. 
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For all subjects, the overall average of the joints was below 0.16 for both general and single trial 

optimizations (Figure 5.5b,d,f). 
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Figure 5.5 Error and correlation coefficients of optimization results 

Mean and standard deviation of the normalized RMS error and correlation coefficients by subject for 

generalized (blue) and single-trial fit (red). Across all subjects and joints, the single trial optimizations 

consistently have lower RMS error. These difference in values range from being less than 2%, as seen in 

Subject 8, or much larger as shown in the MCP joint of Subject 4.  
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5.5 Discussion 

In this study, we have demonstrated the ability of our optimization and modeling system 

to reproduce movements of the fingers and wrist in 17 degrees-of-freedom using a limited set of 

muscle EMG activity. The overall average RMS error for the generalized models was between 

0.24-0.35, whereas the average RMS error for the single trial fits for subjects was 0.24-0.27. At 

the wrist joint, which was the most weighed in the fitness calculation, the average RMS error was 

between 0.1-0.2 for generalized fits and 0.09-0.16 for single trial fits. Our work shows that with a 

limited set of muscle targets, a generalized set of gains can be calculated to control a 17-DOF 

model to perform arbitrary movements in a variety of postures. 

In these experiments, we demonstrated that a model may be trained on a broad set of 

movements and postures for generalizable applications and suffer less than an average RMS error 

of 0.1 compared to single trial optimizations. The difference in error of single and generalized fits 

varied between the subjects. For subjects 4 and 10, the average difference was approximately 0.9, 

whereas subject 8 had a difference in error of single and generalized fits as 0.03. A possible 

explanation for this discrepancy is that more attention was given to the selection of a threshold for 

subject 8; subject 8 had undergone robust testing in the optimization system for over a year prior 

to this experiment, and the optimal threshold level had been selected. In contrast, subjects 4 and 

10 had not previously had their threshold levels tested in the optimizer and had been selected based 

on the mean EMG activity during a static hold position. While this was a fair initial starting point, 

more testing could be performed with the optimizer could feasibly attempt to vary the thresholds 

to identify a better threshold. The thought behind the development of the optimizer was meant for 

tasks such as this; because the optimizer will find the optimal gain setting for EMG-to-activation, 

different parameter spaces can be tested without having to re-examine the scaling of the signal. 
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The trials that the model was trained and evaluated on consisted of an initial period of static 

hold lasting three seconds followed by ten repetitions of a digit or the wrist while the other digits 

maintained a static pose. Although our overall error across the joints appeared to be high, it is 

important to keep this information in context when evaluating the effectiveness of the optimizer – 

during digit flexion and extension, the other fingers were not kept neutral but at a fully extended 

state.  

In our results we showed RMS error and the correlation coefficients, although we did not 

use the correlation coefficient as a fitness measurement nor consider it in the selection of the final 

trials. We chose to include the correlation coefficients to demonstrate the dissonance which may 

be observed when reporting results of prosthetic control devices. Correlation coefficients have 

value in quantifying the form of a movement, but not whether that movement was accurately 

performed. Figure 5.2b demonstrates that a high correlation coefficient can deceptively implicate 

that all is well, when the actual movement is drastically different. Similarly, a low correlation 

coefficient does not implicate a poor level of control. As shown in Figure 5.2c, the position is 

maintained and has an RMS error of 0.07, yet the correlation coefficient would suggest a drastic 

mismatch between the states of the subject and simulation. For these reasons, we believe that RMS 

error is an effective metric. RMS error can provide an accurate measurement of when a joint is 

kept in a static posture (Figure 5.2c) as well as the accuracy of a joint during dynamic movements 

(Figure 5.2a).  

A major limitation of this work is the EMG data set used and lack of representation of all 

the extrinsic hand muscles. The musculoskeletal model can simultaneously simulate 54 muscles 

of the arm, with 33 of those muscles related to the extrinsic hand muscles. A maximum of 16 

electrodes were implanted in a single subject at a time, giving incomplete coverage of the hand. In 
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many of the subjects, only one or two digits had an associated extensor or flexor muscle with them. 

Because the model receives no activation for muscles which were not recorded, no torque is 

generated within these digits. As shown in Chapter 2, the extrinsic finger muscles generate torque 

which assists in wrist movements. Missing digits therefore effect torques generated at the wrist, 

which must then be compensated by the remaining muscles in the dataset. This can also affect digit 

movements: besides the intrinsic muscles, flexion/extension of the finger is coordinated by at least 

three muscles: FDS, FDP, and ED. When there is only partial coverage of these muscles, the 

activation must be scaled higher than normal to compensate for the deficiency.  

Our work with the optimization system was also limited as we used only a single physics 

model. The forward dynamics of the model were simulated on a physics model of the hand and 

fingers which feature independent joint stiffnesses, damping, and mass values, all of which may 

drastically change the kinematic output even when the same activation signal is used. These values 

were derived from observing simulations and adjusting the parameters based on the results. Future 

work with the musculoskeletal model can work on further adjusting the parameters of the physics 

model to also improve performance. This may be accomplished by incorporating the model 

parameters into the optimization (e.g. allowing the model parameters to be fit), or through running 

multiple optimizations using a model with varying parameters to identify which EMG-to-

activation and model combination are capable of achieving the lowest error. 

The calculation of our fitness metric played a large role in our results. For this study, we 

used the weighted sum of the normalized positional error from the joints as the fitness function. 

Previous work in optimizing EMG activity for musculoskeletal models have focused on using joint 

torques (Lehman & Calhoun, 1990; Lloyd & Buchanan, 1996) as part of the fitness function. Our 

optimization system can do this, but we chose to focus on using the kinematics for this work as 
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the behavior of the model and outputs are more easily interpreted, predictable, and able to be 

balanced. When using torque as an error function, difficulties may emerge; torque cannot be 

normalized on a per joint basis, and the necessary torque to be generated can be altered depending 

on the properties of the physics model. This makes balancing the torque error and weighing it 

across joints, with varying masses, stiffnesses, and damping to be a difficult endeavor. Another 

issue that arises, and a primary reason for using kinematics instead of torque for fitness, is that a 

minor difference in torque may have major ramifications. For example, if the torque for a 

movement is .01 N*m, an error of ± .015 N*m will either increase the torque of the movement in 

the given direction or move the joint into the opposite direction. A fitness function that uses such 

a metric (e.g. RMS) would weigh these errors equally despite one being opposite of user intent. 

Beyond these issues, kinematics as a fitness function has also been promoted as being more 

pertinent for training models to be used with trans-radial amputees (Crouch & Huang, 2016). 

Future work with the optimization system will attempt to compare the effectiveness of 

EMG-to-activation methods, such as by comparing the effect of filter cut-off on EMG-to-

activation performance. We also hope to use this system with datasets that have been recently 

released, which may feature more extensive coverage of the extrinsic hand muscles. Ideally, testing 

this model with new datasets would include EMG activity recorded from the residual muscles of 

transradial amputees. 
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6.0 Conclusions and Future Work 

6.1 Summary 

Control over the hand is deceptively complex and requires the coordinated efforts of many 

muscles to maintain postural stability while moving a joint. These details are commonly 

overlooked in the development of upper-limb prosthetic control devices. This is not necessarily 

due to the hubris of prosthetic control designers, but due to the lack of published works which 

demonstrates how mechanical and neural coupling is manifested in the EMG activity of the 

extrinsic hand muscles. This work is some of the first of its kind to show intramuscular EMG 

activity from so many extrinsic finger muscles across a broad range of movements. 

6.1.1 Mechanical Coupling 

The extrinsic hand muscles may stretch across more than 6 joints and therefore generate 

torque at those joints during muscle contraction intended to manipulate only a single joint. In 

Chapter 3, we demonstrated how such mechanical coupling may influence EMG activity. For 

example, we showed how the extrinsic finger muscles participate in the generation of torque at the 

wrist; EMG activity of the extrinsic finger muscles was not only a function of finger posture but 

also wrist movement.  Likewise, we demonstrated that EMG activity of the extrinsic finger 

muscles during finger movements is affected by wrist posture. This has been examined by other 

groups, but not with intramuscular electromyography nor with the posture and wrist combinations 

used (Duque et al., 1995; Mogk & Keir, 2003; Werremeyer & Cole, 1997). 
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Subject variance played a large role in the results of this work, particularly in the effects of 

wrist posture on finger EMG activity. For example, EMG activity of ED2 showed a broad range 

of responses across subjects – in some subjects, wrist posture strongly altered EMG activity during 

D2 movements, whereas other subjects showed little to no effect. There are three plausible causes, 

or a combination thereof, that caused subjects to show such difference in magnitude between 

responses. The first is that anatomy across subjects may vary in such a way that the effect of wrist 

posture becomes muted. Perhaps the force necessary to make the movements is less affected by 

the lengthening or shortening of tendons, or variation in the origin/insertion of the tendons that 

caused them to be more lengthened or shortened than others. Another possible cause is that the 

neighboring digit assisted with the generation of force, due to shared tendon connections via the 

juncturae tendinum – essentially suggested that the generation of force was distributed to the 

neighboring digit which assisted with the movement. This is plausible, as digit independence has 

been showed to vary significantly across subjects (Hager-Ross & Schieber, 2000).  Unfortunately, 

the dataset collected is limited in that there is not complete coverage of the extrinsic finger muscles, 

so we are unable to attempt to correlate coactivation of the neighboring digit with the magnitude 

of the effect of wrist posture. The final cause is that the placement of electrodes varied in the 

muscles between subjects. Reilly and Schieber showed a variation in EMG responses from 

electrodes placed in the same compartment of the extrinsic hand muscles. They suggested that the 

compartments have a center-out gradient of coding, where the center of the compartment is 

strongly active for that digit and the peripheral edge is less specific and becomes more active for 

the neighboring digit (Reilly & Schieber, 2003). It is likely that all three of these factors play a 

role rather than any one specifically. 
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6.1.2 Neural Coupling 

The coordinated movements of the hand are only capable of occurring due to the neural 

coupling present. The numerous degrees of freedom offer a large solution space that is reduced by 

a synergistic framework. Given that the most common usage of the hand is for grasping and 

shaping the hand into a limited set of postures (Schieber & Santello, 2004), it is unsurprising that 

humans are not optimized for independent control of the fingers. In Chapter 4, I presented how 

this neural coupling is manifested in electromyographic signals of the extrinsic hand muscles. I 

characterized coactivation, EMG activity present when a neighboring digit performed the same 

action, and stabilization, EMG activity when a neighboring digit performs the opposite action, of 

ED, FDS, and FDP and developed a set of general models of behavior for the extensors and flexors.  

On its face, these results provide information on the EMG activity of the extrinsic finger 

muscles and offer an expected level of EMG activity during a series of movements. These results 

have value to prosthetic control designers but looking deeper into common patterns across the 

extrinsic finger muscles unlocks new perspectives on synergies in the hand. In these results, I 

showed that the extrinsic finger extensor muscles show significant levels of EMG activity during 

the extension movement of neighboring digits, even for digits on the opposite side of the hand. 

During flexion movements, the extrinsic finger extensors still show significant EMG activity for 

distant digits – for example, ED2 showed EMG activity significantly greater than resting baseline 

even during D5 flexion. High levels of EMG activity appear to be a defining characteristic of the 

extrinsic finger extensors. Yet for D2 flexion, none of the extrinsic finger extensors assessed (EIP, 

ED2, ED4, and EDM) showed any significant EMG activity (Figure 4.7) This unusual behavior 

may be the result of a synergy across the fingers related to a stereotypical pinch grip. Whereas 

most digit flexion movements would result in a diverging motor command that elicits flexion in 
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the neighboring digits, which the subjects overcame by volitionally focusing on keeping their 

fingers extended, during D2 flexion a unique command descends that does not diverge to 

neighboring flexor compartments and cause flexion of these digits. This is further supported by 

the asymmetric pattern of FDP3 and FDS3 shown in Figure 4.3: EMG activity of these 

compartments is greater than 50% of the normalized EMG activity during D4 flexion, but nearly 

indiscernible for D2 flexion. Patterns of EMG activation such as this fall under the umbrella of 

neural coupling and are rarely taken into account by prosthetic control developers, yet vital to 

understanding the hand. 

6.1.3 Musculoskeletal Modeling and Optimization 

We developed a testing environment that sought to find the optimal gains for an EMG-to-

activation algorithm in order to drive the forward dynamics of a 17 DOF model of the hand. The 

objective of this work was to recreate movements performed by users in an offline environment. 

We demonstrated that we are capable of accurately recreating movements using an incomplete set 

of muscles to drive a Hill-type musculoskeletal model of the hand (Figure 5.4). In single trial 

optimizations, we can achieve a normalized average RMS error of below 0.17 of the normalized 

range of motion across 17 DOF. When control over the model was broadened to using a set of 

generalized gains, the increase in error was modest at .01. It is expected that performance will 

degrade as a specialized model becomes tuned for generalized movements, and the increase in 

error is an acceptable level in this regard. 

We also explored how the RMS error and correlation coefficient may provide an 

incomplete picture of performance. Correlation coefficient was a useful metric for measuring how 

well the model followed a movement but had no value in determining the accuracy of holding a 



 111 

static pose. We provided an example of this in Figure 5.4c, which showed a comparison of subject 

and model kinematics of a joint meant to be held in a static posture. Despite having a normalized 

RMS error of .08 and matching the position of the subject, the model had a low correlation 

coefficient of .07. 

The EMG-to-activation signal processing that we used is common in prosthetic control 

algorithms but may not be a good representation of activation. EMG-to-activation may be 

accomplished through other methods. The work presented was meant as a demonstration to show 

how machine learning could be applied to EMG-to-activation to find the optimal solution for a set 

of parameters and grade it based on output kinematics. Our methods of EMG-to-activation have 

been proposed that have value in being explored which go beyond low-pass filtering. For example, 

Kapelner et al. used a decomposition algorithm to convert EMG activity into neural spike trains 

to control a 3 DOF musculoskeletal model (Kapelner, Sartori, Negro, & Farina, 2020) and non-

linear dynamics have been proposed as well (Zajac, 1989).  

6.2 Future Work 

Technological innovation has outpaced the body of research available on the EMG activity 

of the hand in able-bodied and amputee subjects, so future works should be focused on continuing 

to explore development in these fields. There is still much more to explore in the field of 

mechanical coupling, neural coupling, and particularly in musculoskeletal modeling. The focus of 

this work was geared towards improving knowledge in the field of motor control of the hand and 

electromyography for prosthetic control applications. There are still large gaps present in these 
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fields, and this work has not scratched the surface in examining how trans-radial amputees may 

control the extrinsic hand muscles. 

6.2.1 Coupling of the Extrinsic Hand Muscles 

Our work was not an all-inclusive analysis of mechanical coupling in the hand and how it 

can affect EMG activity. Future work could still continue in this direction by performing follow-

up studies that examine more wrist postures, including intermediate angles, and mapping the 

change in EMG activity for the movements as a function of these angles. Further building off of 

this, the effect of wrist posture when the arm is placed in different positions in space should be 

examined. Although arm position is expected to change the EMG activity of the extrinsic hand 

muscles, and indeed has been shown in a study to affect prosthetics control (Pan et al., 2019), more 

work is needed to bring awareness to this phenomenon.  

Further work in neural coupling could focus on characterizing EMG activity patterns of the 

extrinsic hand muscles during common synergies. The work in Chapter 4 only scratched the 

surface on characterization of these extrinsic hand muscles by exploring coactivation and 

stabilization. We recorded and presented data that was observed but failed to present a strong 

theory on why each muscle had that response. As noted in the previous section, the idiosyncrasies 

present in some of the EMG data may be possibly explained by motor primitives and synergies 

across the extrinsic hand muscles. Perhaps the mistake was by characterizing the muscles, rather 

than the movement and how it related to stereotypical patterns of movement in the hand and 

neglecting to treat the hand has a system. 

A major area of interest for us is exploring how coupling in the extrinsic hand muscles 

persists after traumatic limb loss in trans-radial amputees. The effects of wrist posture on finger 
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muscle EMG activity is caused by the lengthening and shortening of muscles, which alters the 

level of activation necessary for the generation of equivalent force as well as the force requirements 

themselves. It is presently unknown whether this pattern of activity will remain after the loss of 

the limb, or whether it will dissipate due as there is no longer a change in the muscle lengths or 

force requirements. We are also interested in exploring coactivation in the extrinsic finger muscles 

in trans-radial amputees. The question arises of whether the synergies that are present across the 

extrinsic hand muscles persist after the loss of the limb or instead dissipate due to disuse. Further 

coactivation may also be present as the ability to independently move the fingers could possibly 

diminish. 

One challenging area in this work was ensuring that subjects had performed the full range 

of motion for the movements. We only realized well after experimentation how much variability 

subjects showed in performing (or not) the assigned movements. In part this is because performing 

the movements while having sixteen wires implanted in the forearm muscles is uncomfortable, 

particularly when the hand is contorted into a fully flexed or extended position. We attempted to 

correct this by analyzing subject movements and removing movements that were outside of a 

specified range (Chapter 4). Future experiments that involve movements of the hand should 

investigate using a device which is physically displaced by the digit during movements to ensure 

that the full range of motion is reached such as the apparatus used by Li et al. (Li et al., 2000). 

6.2.2 Musculoskeletal Biomimetic Model 

A major area of future work is the implementation of controllers atop musculoskeletal 

biomimetic model (MBM). At the present time, the musculoskeletal model treats the fingers and 

finger muscle independently – there is no mechanical coupling between the fingers such as shared 
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tendons or juncturae tendinum. Even passive movements of the fingers result in movements of 

neighboring digits (Lang & Schieber, 2004). Model performance could likely be further improved 

by adding these features, which would mimic the natural anatomy of the hand. Another major area 

of work for the MBM is development of a predictive model to simulate EMG activity from missing 

muscle locations. In Chapter 4, we showed generalized models of EMG activity for the extensors 

and flexors based on the movements of neighboring digits. It is conceivable that the inverse could 

be developed for the extrinsic finger muscles: the prediction of EMG activity based on the behavior 

of the neighboring digit muscles. While such a system is unlikely to be able to fully replace a hand, 

it is likely to at least provide some partial coverage and assist in whole-hand movements such as 

grasp. 

Improvements aside, an area of interest in the future is to explore using the musculoskeletal 

model to simulate the intended movements of trans-radial amputee subjects. As kinematics would 

not be able to be recorded from these users, optimization would rely on comparing intended 

movement kinematics to predicted. This can be accomplished by instructing users to follow a 

motion and using the instructed kinematics as an input source, although some tests may be needed 

to identify how to compensate between possible delays between subject movements and intended 

kinematics. An alternative to this would be by recording the mirrored kinematics of the subject, as 

performed by Crouch and Huang in similar model-based work (Crouch & Huang, 2016).  

I have presented intramuscular EMG data from the extrinsic hand muscles across a broad 

range of movements. With this data, I have shown how the mechanical coupling within the hand 

can contribute to modulation of the EMG activity of the extrinsic finger muscles. I have also shown 

how neural coupling is manifested in the EMG activity of the extrinsic finger muscles during the 

movements of neighboring digits. With these findings, I have demonstrated the viability of a high 
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DOF model-based prosthetic control system and developed an offline method of testing and 

simulating EMG-to-activation models.  This approach may be used towards developing improved 

prosthetic control algorithms and identifying the important features of EMG activity necessary for 

prosthetic control. 
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Appendix A Supplementary Data 

Appendix Table 1 List of movements performed for each subject 

List of movements performed for each subject. For trial types 1-30 the wrist posture column indicates the 

static wrist posture for the entire trial, while the finger posture column indicates the position of the other 

fingers during the movement. For trial types 31-42 the wrist posture column indicates the wrist rotation 

posture for the entire trial, while the finger posture column indicates the position of all the fingers during the 

movement. 

Trial # Movement Wrist Posture Finger Posture 

1 D2 Flexion/Extension Neutral Extended 

2 D3 Flexion/Extension Neutral Extended 

3 D4 Flexion/Extension Neutral Extended 

4 D5 Flexion/Extension Neutral Extended 

5 D1 Flexion/Extension Neutral Extended 

6 D1 Abduction/Adduction Neutral Extended 

7 D2 Flexion/Extension Flexed Extended 

8 D3 Flexion/Extension Flexed Extended 

9 D4 Flexion/Extension Flexed Extended 

10 D5 Flexion/Extension Flexed Extended 

11 D1 Flexion/Extension Flexed Extended 

12 D1 Abduction/Adduction Flexed Extended 

13 D2 Flexion/Extension Extended Extended 

14 D3 Flexion/Extension Extended Extended 

15 D4 Flexion/Extension Extended Extended 

16 D5 Flexion/Extension Extended Extended 

17 D1 Flexion/Extension Extended Extended 

18 D1 Abduction/Adduction Extended Extended 

19 D2 Flexion/Extension Pronated Extended 

20 D3 Flexion/Extension Pronated Extended 

21 D4 Flexion/Extension Pronated Extended 

22 D5 Flexion/Extension Pronated Extended 

23 D1 Flexion/Extension Pronated Extended 

24 D1 Abduction/Adduction Pronated Extended 

25 D2 Flexion/Extension Supinated Extended 

26 D3 Flexion/Extension Supinated Extended 

27 D4 Flexion/Extension Supinated Extended 

28 D5 Flexion/Extension Supinated Extended 

29 D1 Flexion/Extension Supinated Extended 

30 D1 Abduction/Adduction Supinated Extended 



 117 

Appendix Table 1 (Continued) 

31 Wrist Flexion/Extension Neutral Flexed 

32 Wrist Flexion/Extension Pronated Flexed 

33 Wrist Flexion/Extension Supinated Flexed 

34 Wrist Flexion/Extension Neutral Extended 

35 Wrist Flexion/Extension Pronated Extended 

36 Wrist Flexion/Extension Supinated Extended 

37 Wrist Abduction/Adduction Neutral Flexed 

38 Wrist Abduction/Adduction Pronated Flexed 

39 Wrist Abduction/Adduction Supinated Flexed 

40 Wrist Abduction/Adduction Neutral Extended 

41 Wrist Abduction/Adduction Pronated Extended 

42 Wrist Abduction/Adduction Supinated Extended 
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