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1.0 Introduction

This dissertation is composed of three chapters: an empirical work on labor economics

and two experimental papers on dynamic adverse selection and decisions under unawareness.

Even though the chapters are not strictly connected, they all share the same motivation of

understanding individual behavior in economic situations with complex information struc-

tures and challenging information processing and learning.

The first chapter—and my job market paper—studies a question with a long history in

labor economics: are government employees paid more than their counterfactual private-

sector wages? The main empirical challenge in this literature is the issue of selection bias:

workers that sort into the public sector may be different in terms of unobservable character-

istics than workers that sort into the private sector. To quote an early study by [Van Ophem,

1993], “the problem is not that the researcher does not want to take such factors [self se-

lection] into account, but the problem is that the data do not contain such information”.

In this chapter, I create a unique dataset that does contain the necessary information. The

data covers the Brazilian labor market, where public-sector jobs are allocated via exams.

I construct a dataset with over 2 million individuals linking public-sector exam results to

labor market outcomes. The data allow me to address two major sources of selection bias.

Specifically, I compare outcomes for workers that have sought a public-sector job and had

a very similar performances in the exams. Using a regression discontinuity design, I find a

positive and large public-sector wage premium. The estimated coefficient is almost twice as

large as simple OLS estimates, suggesting there is negative selection into the public sector.

Finally, in order to better understand the selection mechanism, I conducted a survey with

undergraduates at a Brazilian university. I collected information on career preferences and

elicited full wage expectations for both sectors. I find that subjects who prefer to work in

the public sector expect a positive and large wage premium, while those that prefer not to

work for the government expect a negative wage gap. The survey results shed light on the

nature of the negative selection.

The second chapter of this dissertation (joint with Alistair Wilson and Stephanie Wang),
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uses experimental methods to study an adverse selection environment that is common in

many economically relevant situations. The chapter uses a new experimental design in

which subjects make decisions on a series of common-value matching games where the value

of an outside option deteriorates as time passes. A natural counterpart, for example, are

situations where a potential employer looks at job applicants that have had different numbers

of previous jobs and different spells of unemployment. All else equal, candidates with more

job separations and longer spells are likely to be less productive. The experimental results

indicate that while a minority understand the selection mechanism and act accordingly, most

subjects fail to condition the quality of the outside option on the passage of time. For the

latter types, choices are better described by a behavioral model in which agents notice the

overall selection problem, but fail to comprehend the dynamic aspect of it. We test this

model in an out-of-sample and out-of-context experiment and find support for the main

predictions.

Finally, on the third chapter (joint with Evan Piermont), we design a web-based exper-

iment to study the interaction between unawareness and risk-taking. In the experiment,

subjects complete a pattern-finding task for which the space of valid patterns is easy to

understand, but hard to enumerate. In other words, finding a new pattern is hard, but

verifying its validity is easy. We use this new task to exogenously vary subjects’ awareness

by manipulating the type and extent of feedback. We find that subjects unawareness per se

does not affect risk-taking. We find, however, that the context in which the risky decision

is made is crucial: subjects exposed to unawareness are shown to be more risk averse when

choices are made within the same context as the pattern-finding task, as opposed to risky

choices in a neutral setting.

2



2.0 Selection Bias and the Returns to Public-Sector Employment

2.1 Introduction

Personnel policies in the public sector may be set through a political economy process,

rather than by market forces Barro [1973], Alesina et al. [2000]; hence it is not obvious that

wages in the public and private sectors should be the same for similar individuals. A potential

gap between public and private sector wages could in turn have major implications. First,

it may affect the allocation of talent, impacting the quality of public-sector workers and by

extension the quality of public goods and services. Second, it could result in an inefficient

use of resources if, for example, the public sector pays more than is necessary to match

workers’ outside options. Since the wage bill is usually the government’s largest expense, this

difference could impact its fiscal sustainability, especially in developing countries Gindling

et al. [2019]. Third, the wage and hiring policies adopted by the public sector can affect

equilibrium outcomes of the entire labor market Bradley et al. [2017], Albrecht et al. [2018].

Lastly, since the public sector employs, on average, 14 percent of the labor force1, the impact

of its wage policies on resource allocation, and public expenditures, is likely very large.

Because of these potentially profound implications for the functioning of economies, a

large literature has sought to establish whether public and private sector wages differ.2 A

key challenge in testing for and measuring the size of the public-private wage gap, however,

is the issue of selection bias. That is, workers that sort into the public sector might be

different with respect to unobservable characteristics than workers that sort into the private

sector. As [Van Ophem, 1993, p.206] stated, “the problem is not that the researcher does

not want to take such factors [selection bias] into account, but the problem is that the data

do not contain sufficient information”.

Most previous studies have compared wages in both sectors using regression analysis

controlling for observable covariates Smith [1976], Moulton [1990], Campos et al. [2017],

1World Bank’s World Bureaucracy Indicators. Data is from 73 countries, both rich and poor, for the
period 2011-2016.

2See surveys in Ehrenberg and Schwarz [1986], Bender [1998], Gregory and Borland [1999], Lausev [2014].
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Finan et al. [2017], Gindling et al. [2019], which does not address the possibility that workers

could select into sectors based on unobservables. For example, suppose that workers that

end up in the public sector are not well-suited for the private sector, e.g., due to being

more risk averse Bonin et al. [2007], Guiso and Paiella [2008]. This could mean that their

counterfactual wages in the private sector are lower than those of workers who actually work

in the private sector. Without correcting for this negative selection bias, comparing wages of

public and private sector employees would underestimate the public-sector wage premium.

Alternatively, there could be positive selection bias, for instance if more able workers are

also more motivated by public service Besley and Ghatak [2005].

Another approach used in this literature are panel data models with worker fixed effects

Krueger [1988], Rosholm and Smith [1996]. Here the main challenge stems from the few num-

ber of observations on sector transitions, which are necessary for identification. Additionally,

without a credible source of exogenous separations, the problem of endogeneity of sector

choice remains, as pointed out by Moulton [1990]. A third empirical strategy are switch-

ing regression models Maddala [1986], Van der Gaag and Vijverberg [1988], Van Ophem

[1993]. This strategy attempts to correct for selection bias by first estimating a sector-choice

equation using a probit model based on observable characteristics of workers and jobs, and

subsequently using the estimated probabilities to correct the original estimates. These mod-

els, however, are restricted to using observable covariates to explain sector choice, and also

rely on numerous parametric assumptions for identification.

This paper provides a new estimate of public-private wage gaps while controlling for

selection bias. The evidence comes from the Brazilian labor market where, like in other

developing countries (e.g., India and Indonesia), public sector jobs are allocated via exams.

The key innovation is the construction of a novel dataset combining test-taking records and

labor market outcomes. The idea is to compare individuals who are similar in that (i) they

applied for a public-sector job (something that is typically unobserved), and (ii) got similar

test results except for falling just above of just below a threshold for getting the job. Thus,

for these individuals, it is arguably random (in a regression discontinuity sense) whether they

get the public-sector job or not. Additionally, the data on test performance are matched

with data on the same individual’s wages and sector of employment, which make it possible

4



to compare public and private sector wages for individuals who were effectively randomly

assigned to either sector.

Using a fuzzy regression discontinuity (RD) design, I find a positive and large public-

sector wage premium of approximately 48 percent. I further estimate the model restricted

to high-school and college-educated workers, and find the relative wage gap to be higher for

those with lower education levels. The main contribution of the paper, however, is not the

size of the estimated gap, but rather to show that the coefficient is almost twice as large as

the coefficients from OLS wage regressions.3 This difference points to a negative selection

bias term and highlights the value of the RD approach. To the best of my knowledge, this

paper provides the first evidence on the sign and magnitude of the selection bias using data

on public-sector exams.

Finally, I conduct a survey experiment with undergraduate students from a large Brazil-

ian university in order to better understand the selection mechanism. I gather data on

career prospects and preferences, and, most importantly, elicit subjective wage expectations

for both sectors. If the estimated public-sector wage premium was in fact due to negative

selection, one would expect students that declare a preference for working in the public sector

to have higher expectations for the wage premium compared to students that do not pre-

fer the public sector. That is because characteristics that are unobserved to the researcher

are known by the individual. That is precisely what I find: The average expected wage

premium among those that prefer the public sector is positive and large, corresponding to

approximately 29 percent of mean expected wages. In contrast, students not interested in a

government job expect a public-sector wage penalty.

This paper relates primarily to the literature on public-private wage gaps. Many previous

studies have examined the earnings gap in individual countries, such as Romania Voinea and

Mihaescu [2012], Canada Mueller [1998], France Bargain and Melly [2008], Russia Gimpelson

et al. [2015], Brazil Foguel et al. [2000], Germany Melly [2005], United States Schanzenbach

[2015], among others. There are also papers that study the question using data for multiple

countries Mizala et al. [2011], Gindling et al. [2019], Finan et al. [2017]. Most of these

3In terms of the size of the wage premium, Gindling et al. [2019] uses survey data for 91 countries and
find a wage premium between 40-60 percent for 10 of those countries, and Bewerunge et al. [2012] find a
premium of 39 percent for federal workers in the United States.

5



studies compare wages for private and public sector workers while controlling for observable

characteristics, an empirical strategy that does not address the problem of selection bias.

Gonzaga and Firpo [2010] use a different approach from the previous literature and is

the paper closest to mine. They estimate a difference-in-differences model with worker fixed

effects exploring the privatization of state-owned firms (SOF) 1990’s Brazil. Using a dataset

of Brazil’s entire formal labor market — which is one of the datasets used in this paper —,

they compare workers that were laid off following the privatization of SOFs with workers

that were laid off from other, private-sector firms. Those who lost their public-sector jobs

and went on to work at the private sector experienced decreases in pay that were 11 percent

higher than workers fired from private-sector firms who found work at another private firm.

This gap is the authors’ estimate of the public sector wage premium. This paper, however,

only studies workers at SOFs and exclude all workers on general public administration, which

accounts for the bulk of employment in the public sector. Moreover, the empirical strategy

does not address all possible sources of selection bias. In particular, we do not know which of

the workers laid off from private firms ever got close to obtaining a job in the public sector,

nor if they ever applied to one, which is something I observe in my dataset.

My results also speak to a more recent literature that tries to understand selection into

the public sector. Dal Bó et al. [2013] conduct a field experiment in Mexico as part of a

government effort to hire 300 (temporary) workers for a socially oriented position. Both

wages and job offers were randomized, and candidates completed intelligence tests and a

questionnaire about motivation for public service. The authors find that higher wage offers

attract a larger and higher-quality candidate pool, as measured by both test results and

by current or past earnings. Moreover, they find no difference in the levels of public-sector

motivation between wage conditions. Note, however, that Dal Bó et al. [2013] do not explore

the issue of wage gaps, and their results do not rule out the possibility that counterfactual

private-sector wages for the (better) applicants are lower than the public-sector wage.

Finally, the paper also adds to the literature on subjective wage expectations and its

usefulness in both understanding a particular phenomenon and predicting behavior Manski

[2004], Arcidiacono et al. [2012], Reuben et al. [2017]. In particular, I use subjective expected

wage distributions to shed light on the mechanism behind the negative selection bias term
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uncovered in the empirical estimations.

The remainder of the paper is organized as follows. Section 2.2 describes the institutional

environment and the datasets. Section 2.3 presents OLS wage regressions that will serve as a

benchmark with which to compare the RD results. Section 2.4 discusses the issue of selection

bias and the assumptions of the RD design. Sections 2.5 and 2.6 present the results from the

RD estimations and the instrumental variables approach, respectively. Section 2.7 breaks

the results down by education level, while Section 2.8 discusses the results from the survey

experiment. Section 2.9 concludes.

2.2 Institutional Background and Data

2.2.1 Public-sector Exams

The requirement that the government hire via pubic-sector exams is enshrined in Brazil’s

Constitution.4 The only exceptions are political appointees, such as ministers and lower-level

aides, and elected officials, which combined represent a small fraction of overall employment

in the public sector. Whenever the government (federal, state or municipal), a state institu-

tion (e.g., public universities) or a state-controlled firm decide to hire workers it must organize

a public-sector exam.5 Moreover, a separate exam is required for each job-employer combi-

nation: If, say, the Central Bank and the Labor Ministry each wants to hire an economist,

there has to be two separate exams even though both institutions are part of the federal

government.

The government has to make an upcoming exam known to the public, which it does by

publishing a notice, known as edital, in its official daily newsletter. This notice contains

details about the job (hours, wage, benefits, etc.), the minimum requirements for admission

(education level, prior experience, etc.) and information about the exam itself (date and time,

content, classification criteria, etc.). The exams are mostly comprised of written tests; for

4The Constitution states that “entry into a public-sector job or position requires prior approval in a
public-sector exam of written tests and/or evaluation of degrees(...), except for jobs defined by law as being
of free appointment and removal”.

5For simplicity, I will refer to the three types of employers as the government.
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some jobs, such as police officers and judges, they may also include physical and psychological

components. Participation in the exams is open to the entire working-age population. The

only requirements are being up to date with military (only males) and voting (everyone)

obligations, completing an online form, and paying a small fee.

The most common arrangement is for the government to outsource the entire selection

process to a third-party organization. These exam organizers are responsible for creating

and grading the exams, and for the logistics of registrations and test-taking. When the

selection process is completed, the government is obligated to offer the job(s) according to

the final ranking provided by the exam organizer: first offer goes to the first place, second

offer to second place, and so on. Moreover, as long as there are enough candidates, it has to

hire at least as many people as the number of openings it advertised.6

There are dozens of such exam organizers in Brazil. In this paper, I use data obtained

from two of these companies, both of which non-profit foundations that agreed to share

the data for research purposes only. They are concentrated in the southeastern part of the

country and are among the 10 or so largest such companies in Brazil. The data cover all

public-sector exams handled by these companies from 2007 to 2017. Each entry in the dataset

contains a job identifier, the candidate’s final grade and ranking, and a few demographics.7

Job characteristics were manually collected from over 400 public notices (editais) and merged

with the data on exam results. Lastly, each individual is identified by the national tax number

(cpf ), which allows me to perfectly match test-taking results with labor market outcomes

using the RAIS (Relação Anual de Informações Sociais ; see Section 2.2.2) dataset.

To the best of my knowledge, this is the first time that matched data on exam results

and labor market outcomes have been compiled and used for research purposes. As such,

there were many steps involved in preparing the dataset.8 First, I dropped exams for uni-

versity entrance, non-government jobs, for temporary positions, and for internal promotions.

6This obligation has been legally established by a series of judicial decisions, including by the Supreme
Court of Brazil. Occasionally, however, the government will hire fewer people than advertised for budgetary
or other reasons. Those cases invariably end up in the court system and the rights of the employee usually
prevail.

7Most candidates do not get assigned a final ranking as each exam will only rank a pre-specified number
of the highest-scoring candidates — usually 3 times the number of openings. I come back to this point when
discussing the regression discontinuity design on Section 2.4.2.

8A detailed discussion of the procedures can be found in the Data Appendix.
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Second, I excluded jobs with serious data problems. These include: inconsistent or missing

ranking information, jobs allocated to different cities without proper identification, jobs with

openings for different departments within the same employer, etc. Third, I restrict attention

to individuals aged 18-55 who held a job at anytime during 2017.

Table 2.1 provides a summary of the exams dataset. The final sample covers approxi-

mately 3,000 different jobs from 125 employers, and contains exam results for over 2 million

individuals. Note, however, that I do not observe the universe of public-sector exams. As

discussed further in Section 2.4, the empirical strategy requires only that the subset of exams

that I do observe be sufficient in the sense that (just) approved candidates are more likely

to end up working in the public sector than (just) not-approved candidates.

Table 2.1: Summary Statistics

Panel A: Individual Test-Takers

Candidates N 2,090,022

Hires N 98,305

Female 0.55

High-school degree 0.46

College degree 0.44

Age Mean 35.8

Exams Taken Mean 2.8

Panel B: Public-Sector Exams
Exams N 3,092

Openings per exam Mean 23.6
Median 4

Min 1
Max 2,500

Candidates per opening Mean 101.5
Median 45.1

Min 0.2
Max 3,077

Education requirement Less than high-school 0.13
High-school 0.33

College 0.52

Gov’t level Municipal 0.43
State 0.54

Federal 0.03

Note: Sample used for main analyses. Includes only individuals aged 18-55
and that had a formal-sector job in 2017. Include exams from both organizers.
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2.2.2 RAIS

The RAIS is an employer-employee match dataset covering the entire formal sector of

the Brazilian economy. It does not include information on the self-employed, those in the

informal sector, interns, domestic workers and some other minor categories. The data are

assembled in the first quarter of every year by the Brazilian Labor Ministry. Each entry in

the dataset is a summary of both employer and employee characteristics for each formal job

held during the previous year. The information is reported by the employer, who is subject

to fines in case of non compliance. From the workers’ perspective, the information on RAIS

is used to define eligibility for a number of worker-related social programs. Information

on the worker includes average wages, hours worked, education, and gender; data on the

employer include legal status, number of employees, geographic location, and many others.

Crucially, both workers and firms are identified by their national tax numbers, cpf and cnpj,

respectively.

For this paper, the two most important variables are average hourly wages and the legal

status of the employer (either pubic or private). Earnings information are from average wages

during the year. The hourly wage is calculated based on the average number of hours worked

in a week. The variable used to identify the legal status of the employer (natureza juridica)

assumes many different values. Examples are “municipality”, “public-traded corporation”,

“limited liability corporation”, “mixed enterprise”, etc. I classify as public sector direct

governments (municipalities, states, federal government), government-controlled institutions

(e.g., public health agencies, public universities, etc.) and government-controlled companies

(e.g., state oil company, state electricity generator, etc.). All other legal entities are classified

as private-sector employers9. For the cases when a worker has more than one entry in a year,

I first keep the jobs that were active as of December 31st of the corresponding year. If

multiple jobs are still left, I keep the job with the highest hourly wage and, if still tied,

I select the job with the earliest start date. If multiple jobs are still left, I choose one at

random.

The main limitation of the RAIS dataset is that is is restricted to the formal sector of

9See Data Appendix for more details.

10



the economy. There are two reasons why this limitation is not particularly important for

this paper. First, more than 92 percent of the test-taking individuals held a formal sector

job at some point during the period studied. This indicates that the relevant labor market

for those taking public-sector exams is the formal sector, not the informal one.10 Second,

the primary goal is to estimate the sign and magnitude of the selection bias, and to do so I

use as benchmark wage regressions using the same RAIS dataset.

2.3 Wage Regressions

Before proceeding with the regression discontinuity estimates, it is worth considering

the evidence from simple wage regressions. Table 2.2 reports OLS regressions of log hourly

wages on years of education, experience, experience2, gender, region/state fixed effects and

an indicator for public-sector job. I use a random sample of approximately 1.2 million

workers who held a job in 2017. The sample was chosen to match the distribution of test-

takers’ labor market outcomes on key variables, namely, years of education, state or region,

and age. Results are shown for the entire sample and also separately for high-school and

college graduates, the two categories that correspond to approximately 85% of the exam test-

takers. Table 2.2 presents evidence of a substantial wage gap in favor of the public sector.

Considering the full sample first, public-sector workers with the same years of education,

experience, gender and from the same region or state earn, on average, 25% more compared

to private-sector workers. Moreover, the observed wage gap is larger for high-school graduates

(42%) than for college graduates (13%).

10Albrecht et al. [2018] finds a similar pattern in a study of the Colombian labor market.
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Table 2.2: Wage Regressions for Random Sample of Workers

Full Sample
High-School
Graduates

College
Graduates

Coefficient on public-sector 0.249∗∗∗ 0.418∗∗∗ 0.130∗∗∗

(0.002) (0.003) (0.002)
% Public-Sector 0.17 0.08 0.27
Mean Hourly Wage 22.73 11.71 35.11
Median Hourly Wage 13.16 9.03 24.33

R2 0.420 0.436 0.150
N 1,257,019 542,810 537,840

Note: OLS regression on random sample of workers who held a formal job in 2017 and were
between 18 and 55 years old. Dependent variable is log hourly wages and is restricted to be at
least 75% of the 2017 federal minimum and at most equal to the public-sector legal maximum
(245 BRL), for public-sector workers, or two times the public-sector legal maximum for private-
sector workers. Controls include years of education, experience, experience2, gender, and state
or region fixed-effects.

2.4 Identification Strategy

2.4.1 The Problem of Self-Selection

To understand the role of selection in estimates of the public-private wage gap, it is useful

to think in terms of potential outcomes Rubin [1974, 1977], Angrist and Pischke [2008]. Let

Yi denote hourly wages for worker i, and let Y0i and Y1i represent potential wages for the

same individual in the private and public sectors, respectively. Define the indicator variable

Gi ∈ {0, 1} which is 1 if the worker has a public-sector job and 0 if she has a job in the

private sector. For any given worker, we only get to observe Y1i if Gi = 1, or Y0i if Gi = 0.

Hence, we can write observed wages in terms of potential wages as follows:

Yi = Y0i + (Y1i − Y0i)Gi (2.1)

Suppose we take a random sample from the working population and compare the wages

of private and public-sector workers. We would obtain the following:
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E[Yi|Gi = 1]− E[Yi|Gi = 0] =E[Y1i − Y0i|Gi = 1] (2.2)

+ E[Y0i|Gi = 1]− E[Y0i|Gi = 0]

The first right-hand-side term in (2) is the average treatment effect on the treated. It

is the difference, for public-sector workers, between their current wages and the wages they

would have received had they worked in the private sector. The second line of (2) is the

selection bias component. It is the difference between potential private-sector wages for

those currently working for the government and those working in the private-sector.

Note that the sample used includes workers that have taken at least one public-sector

exam. It is possible, however, that part of the selection is coming from the decision to

take an exam. In practice, this channel is unlikely to be of first importance in the case

of Brazil. Taking a public-sector exam is not particularly expensive or time demanding.

Exams typically happen on weekends and candidates below the poverty line can apply for a

fee waiver. Given the low overall cost of taking a public-sector exam and the large potential

benefits, one would expect a large number of people to take exams even if their chances

are small and the public-sector is not their preferred option. In the survey discussed on

Section 2.8, for instance, most students that say the public-sector is not their preferred

option also say there is a high chance they will take at least one such exam.

The sign and magnitude of the selection bias is the main object of interest of this paper.

It is not clear, a priori, if the sign on the selection bias should be negative or positive. I

consider each possibility in turn.

2.4.1.1 Positive Selection Bias Suppose that a worker’s productivity is the same for

the private and public sectors. Assume also that government wages are set above the average

wages adjusting for education and experience. In that case, if the hiring mechanism used by

the Brazilian government is successful in sorting the most able candidates, the result would

be a positive selection bias: counterfactual private-sector wages for those currently occupying

public-sector jobs would be higher than potential outcomes for private-sector workers. In
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this case, estimates of E[Y1i − Y0i|Gi = 1], the true public-sector wage premium, would be

smaller than the simple wage comparison E[Yi|Gi = 1] - E[Yi|Gi = 0].

2.4.1.2 Negative Selection Bias A negative bias would result if, for instance, the hir-

ing mechanism adopted by the government favored individuals with lower potential private-

sector earnings. Since the public-sector has high job security and is less responsive to pro-

ductivity, it is conceivable that it disproportionately attracts candidates with lower overall

productivity. Moreover, this individuals would have lower opportunity costs and would thus

be more willing to invest the time necessary to be approved in a public-sector exam. If this

were the case, estimates of the true public-sector wage premium would be larger than the

naive wage comparison.

2.4.2 Regression Discontinuity

The regression discontinuity (RD) design makes use of institutional idiosyncrasies to

exploit variations in outcomes close to a fixed threshold. The main assumption necessary for

identification is that the values of unobserved covariates vary smoothly around the threshold

Hahn et al. [2001]. In the context of exam test-taking, the idea is that two people on either

side of the cutoff are very similar in terms of underlying ability, or motivation, or other

unobserved components that are correlated with the outcome of interest. If this assumption

is satisfied and we further observe a discontinuity in the probability of treatment assignment

(i.e. working in the public sector), then observed differences in the outcome of interest can

be interpreted as treatment effects.

Usually, applications of the RD design use information from few selection criteria (for

example, exams), but many individuals. For example, Abdulkadiroğlu et al. [2014] study

the impact of classroom composition on learning outcomes for students in grades 7-12. The

authors explore discontinuities in admissions tests for six highly-selective schools in the

United States. Since there are many applicants and few schools, it is necessary to determine

which students can be deemed as being close to the threshold on either side. This is a

common issue in RD applications and has given rise to different methods of estimation and
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of optimal bandwidth selection Imbens and Kalyanaraman [2012], Calonico et al. [2014]. In

contrast, the unique dataset used in this paper contains the test results for many individuals

across many different exams. For each exam, I essentially compare the labor market outcomes

of the last individual to have been approved to the outcomes of the first individual not to be

approved. Since I have the results for many different exams, I obtain a large sample while

focusing on those very close to the threshold.

Another benefit of the data used here is that each exam allocates, on average, a small

number of individuals to treatment. This is not the case the case for most RD applications.

For example, Ost et al. [2018] study the returns to college for academic marginal students

by exploring discontinuities on universities’ dismissal rules based on GPAs. Their sample

includes 20,000 at-risk students, of which more than 10,000 end up being dismissed. In

order for the RD assumptions to be valid, the authors have to restrict attention to only a

fraction of those students that are closest to the dismissal threshold. Since the RD design

focuses on individuals close to the assignment cutoff, its treatment estimates are referred to

as local average treatment effects. In my dataset, on the other hand, 26 percent of the exams

advertise only 1 opening and fully 63 percent of them advertise 5 or less. For that reason,

the estimated treatment effect is less local than usual, as for most exams the sample used

for the RD estimates includes all of the treated individuals.

I use the national tax number to combine information on public-sector exam results and

labor market outcomes for each individual test-taker. The empirical strategy results in a

discrete running variable, as explained in more detail later. Note also that if I had access

to all exams taken by individuals in the sample, I would be able to use a sharp RD design.

That is because a public-sector exam is the only available path to obtaining a public-sector

job. However, since I observe the exam results of only two exam organizers, the identification

comes from the discontinuity in the probability of obtaining a public-sector job. The crucial

assumption for identification is that potential outcomes vary continuously with the variable

used to determine treatment status - the running variable - while the observed outcomes

have a jump, or discontinuity, at the relevant values Hahn et al. [2001], Imbens and Lemieux

[2008].
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2.4.3 The Running Variable

Since I have individual results from over 3,000 different exams, I construct the (discrete)

running variable as to compare the labor market outcomes of a candidate that was the last

to be approved with the outcomes of a candidate that was the first not to be approved in the

exam. One way to do this is to use the number of openings advertised in the official notice

to construct such a variable. Note, however, that being approved in the exam does not mean

the candidate will take the job. Moreover, during the legal time window the government is

allowed hire more workers than it advertised. Finally, many exams list 0 as the number of

targeted hires, and most of those end up hiring multiple workers. For these reasons, it is not

possible to use the number of advertised openings to define the running variable.

To construct a valid running variable, I examined the official notice for each one of

the exams and collected, among other information, the tax identification number of the

exam-specific employer. Using both the individual and employer tax number, I was able

to verify, for each classified test-taker, whether she ended up working for that particular

employer. More specifically, for each classified candidate, I check if she started working for

the government employer at any time during a three-year window starting 60 days after

the exam had taken place. I consider a three-year window because most of the exams have

a duration of two years, which can be renewed for another two years at the discretion of

the employer. Only during that period is the government legally allowed to hire among the

classified workers. The duration time starts to count after the exam has been validated,

which happens at least 2-3 months after the exam has taken place11.

The running variable is defined as the distance, in ranking positions, to the last person

to have been hired by the exam-specific employer. Candidates with a positive value for the

running variable have been approved in the exam and, as such, had the option to take the

job. Those with negative values for the running variable did not get approved and did not

get a job offer from that employer. For candidates that were classified at public-sector exam

e, the running variable Re
i is constructed as follows:

Re
i = RankeLH −Rankei (2.3)

11See Appendix B for more details on constructing the running variable.
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where RankeLH is the ranking of the last candidate to be hired by the exam-specific employer,

and Rankei is the ranking of candidate i on exam e. For example, consider an actual exam

to hire four analysts with a degree in Economics, Business or Accounting for a state public

health institution in 2013. The last candidate to be hired by that institution, satisfying the

timing requirements, obtained a final ranking of 5. Every candidate with a ranking better

than 5 will then be assigned a positive running variable. In this particular example, the

candidate ranked 3rd is the first one still in the dataset12, and thus receive a running variable

equal to 1, followed by the candidates with ranking equal to 2 and 1, respectively. Similarly,

candidates that obtained rankings lower than 5 were assigned negative values for the running

variable.

Following de Chaisemartin and Behaghel [2019], I do not include the last candidate hired

in the analysis. The intuition behind it is simple: candidates that are approved in the exam

can decide not to take the job, and non-approved candidates could have decided not to take

the job had they been approved instead. Hence, an approved candidate that is known to have

accepted the job is fundamentally different from the comparison groups. In the context of

random assignment to waitlists for oversubscribed training programs, de Chaisemartin and

Behaghel [2019] shows that including the last person to take up the offer result in inconsistent

estimates.

2.4.4 RD Sample and Discontinuities

Since there are over 3,000 different jobs, with different wages and educational require-

ments, it is important to construct the RD sample to ensure comparability among individuals

on equally-distant sides of the admissions cutoff. Consider, for example, an exam that hires

only two workers. For that exam, I observe individuals with values of 1 and 2 for the running

variable, but not for higher values. Since there are not many openings, there will not be many

approved candidates. On the negative side, however, I observe candidates with very low val-

ues for the running variable. That is simply because there are many more non-approved

than approved candidates.

12The candidate ranked 4th met one of the exclusion criteria: not aged between 18-55 in 2017, lower than
minimum wage, not holding a formal sector job in 2017, etc.
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Recall that the empirical strategy compares the outcomes of candidates that are equally

distant from the approval cutoff, and since candidates applying to the same job are most

similar in terms of observed and, arguably, unobserved characteristics, I construct the RD

sample to guarantee that any exam that has an observation for running variable x also has an

observation for -x. For that reason, I restrict the RD sample to only include exams that have

at least one observation for each value x and -x for the running variable, for x ∈ [−15, 15].

For the RD results, I estimate the following equation on a number of different outcomes:

Yi = α + δRi + βCi + γRiCi + εi (2.4)

where Yi is the outcome of interest (indicator for job in the public sector, hourly wage, and

others), Ri is the running variable defined above, and Ci is an indicator variable which is

equal to 1 if Ri is positive. An observation is a person-exam, and errors are clustered at the

ranking level Kolesár and Rothe [2018]. Since some exams have multiple candidates with

the same ranking value, the regression weighs each observation by the inverse of the number

of units of the same exam at each different value for the running variable. This is equivalent

to using variables that are the average of each exam-running variable combination.

2.5 Regression Discontinuity Results

2.5.1 Probability of Public-Sector Employment

I first examine whether being just above the exam-specific approval cutoff has any impact

on the probability of holding a public-sector job in 2017, conditional on having a formal-

sector job. Figure 2.1a shows a clear discontinuity at the approval cutoff, suggesting that the

fuzzy RD approach is valid. The graph plots the (demeaned) fraction of candidates working

in the public sector as a function of the running variable for the interval -10 to 10. The fitted

lines come from a regression of the indicator for public-sector job on the running variable, an

indicator for the running variable being above zero, and their interaction (see equation 4).

Being just above the approval cutoff increases the likelihood of holding a public-sector job
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by approximately 12.5 percentage points. Figure 2.1b plots the differences in probabilities

by absolute value of the running variable. These are direct comparisons between individuals

that applied to the same set of jobs and that are equally distant from, but on different sides

of, the approval cutoff. The confidence intervals come from regressions estimated separately

for each pair (x,−x), for x ∈ [1, 10]. Every one of the pairwise differences is positive and

statistically significant.

Finally, note that candidates that fall below the cutoff also have high rates of public-

sector employment: approximately 65% of non-approved candidates in my RD sample end

up working in the public sector. This indicates that individuals in the sample are also taking

exams from other organizers. This fact, while weakening the power of the instrument, does

not bias the results as long as the assumptions of the RD design are valid.

Finally, I look at outcomes for the latest available year (2017) for a number of reasons.

Most important of those is that, since I do not observe the universe of public-sector exams,

looking at outcomes after, for example, two years after an individual’s exam would artificially

inflate the discontinuity. For example, an individual that got really close to getting a partic-

ular job, but didn’t, is likely to obtain another one, outside of my sample, in the following

years. If I were to restrict the labor market outcomes to this hypothetical 2-year window, I

would wrongly assign that individual as not having obtained a public-sector job. A second

important reason relates to the exclusion restriction in the instrumental variables estimates.

The IV regression requires that the instrument affect the outcome variable (wages) solely

via the probability of obtaining a job in the public sector. If failing to obtain a passing

grade affects earnings potentials in other ways (e.g., negative market signaling, impact on

morale, etc.), the exclusion restriction could be compromised. Focusing on outcomes for the

latest available year means that, for most candidates, exam results and the measurement of

labor market outcomes are many years apart. It is thus less likely that those threats to the

exclusion restriction are valid.
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(a) Discontinuity in Public-Sector Status

(b) Differences in Public-Job Status, Ranks x and -x

Figure 2.1: Discontinuity in Probability of Public-Sector Job

Note: Figure (A): Discontinuity on restricted sample: 0.126*** (0.009), N=63,720. Linear regression with
indicator for public-sector job as dependent variable. Robust standard errors clustered at the running
variable. Figure (B): Differences in share of workers in public-sector by absolute values of running variable.
Confidence intervals (95%) come from regressions with dummy indicating positive value of the running
variable.
???p < 0.01 ??p < 0.05 ?p < 0.1

2.5.2 Specification Checks

As discussed in section 2.4.2, the crucial assumption for identification in a RD design

is that unobserved confounds vary smoothly across the threshold used to assign treatment
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status. By definition, it is not possible to directly test an assumption on unobservables. It is

possible, however, and highly desirable, to examine the distribution of key variables across

the threshold. Usually the most important specification test for a regression discontinuity

analysis is the density of the running variable around the cutoff McCrary [2008]. The density

test is used to determine if participants are able to manipulate the variable at the threshold

boundary, which would result in many more individuals being just above the cutoff than just

below (or vice versa). Since the running variable here is defined as the rank position in a

particular exam, there is, by construction, the same number of observations for values 1 and

-1 (and 2 and -2, and 3 and -3, etc.) of the running variable, which makes sorting impossible.

There is, however, one variable that candidates could plausibly manipulate: the number of

exams taken. Specifically, if approved candidates take more exams than comparable non-

approved candidates, the assumption of similar unobserved covariates could be deemed less

convincing.

Figure 2.2a plots the (demeaned) average number of exams taken in the period 2007 to

2017 as a function of the running variable. The fitted line comes from a regression with the

demeaned number of exams as dependent variable. As before, Figure 2.2b plots the estimated

difference by absolute value of the running variable. I find no evidence of manipulation of

the number of exams attempted: the estimated coefficient for the the bandwidth [-10,10] is

very low (0.009) and not statistically significant.

Table 2.3 reports discontinuity estimates on various observable variables using three dif-

ferent ranking bandwidths. Focusing on the specification checks, there is no evidence of a

discrete jump on either age or the gender of the candidate. I also check for discontinuities in

the share of candidates with each education level, since high-school (college) graduates can

compete for jobs that require less than a high-school (college) degree. That is, if test-takers

on either side of the cutoff are truly comparable, then one would expect educational attain-

ment to vary smoothly across the threshold. That is precisely what I observe. Coefficient

estimates for an indicator of high-school or college degree are small (less than 1 percentage

point) and not statistically significant.

Finally, I test for discontinuities on public-sector wages. The goal is to gauge how

representative the sample of government jobs used here is. Recall that most of the test-takers
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(a) Discontinuity on Number of Exams Taken

(b) Differences in Number of Exams, Rank X and -X

Figure 2.2: Discontinuity on Number of Exams Attempted, 2007 to 2017

Note: Figure (A): Discontinuity on restricted sample: 0.010 (0.047), N=63,719. Linear regression with
number of exams attempted as dependent variable. Robust standard errors clustered at the running variable.
Figure (B): Differences in average number of exams by absolute value of running variable. Confidence
intervals (95%) come from regressions with dummy indicating positive value of the running variable.
???p < 0.01 ??p < 0.05 ?p < 0.1

who are not approved in the observed exams end up working for the government anyway,

which means they are taking exams from other organizers. And if different organizers are

associated with different types of government jobs, we would observe a discontinuity in terms

of wages for those in the public sector. Table 2.3 shows that, on average, candidates that
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Table 2.3: Discontinuity on Selected Variables and Bandwidths

Ranking Bandwidth

Variable [−5, 5] [−10, 10] [−15, 15]

Public-Sector Job 0.133∗∗∗(0.007) 0.126∗∗∗ (0.009) 0.119∗∗∗ (0.009)
N 36,664 63,720 82,792

Hourly Wage 1.216∗∗ (0.413) 1.196∗∗∗ (0.249) 1.305∗∗∗ (0.234)
N 36,516 63,441 82,420

Number of Exams 0.037 (0.065) 0.009 (0.047) -0.006 (0.038)
N 36,663 63,719 82,791

Age 0.301 (0.203) 0.163 (0.132) 0.064 (0.130)
N 36,662 63,718 82,789

Female -0.007 (0.004) 0.002 (0.002) 0.000 (0.004)
N 36,664 63,720 82,792

High-school Degree 0.010 (0.012) 0.009 (0.010) 0.009 (0.009)
N 36,664 63,720 82,792

College Degree -0.008 (0.012) -0.008 (0.009) -0.012 (0.008)
N 36,664 63,720 82,792

Hourly Wage, Public-Sector -0.058 (0.360) -0.428 (0.348) -0.289 (0.405)
N 24,370 41,253 53,674

Note: Indicator for public-sector job for 2017 and includes government agencies and gov-
ernment controlled companies. Hourly wage in 2017 is measured in Brazilian Reais (BRL).
Number of exams include any exam taken from the two organizers in the period 2007 to 2017.
Age, in years, is measured in 2017.
???p < 0.01 ??p < 0.05 ?p < 0.1

failed to be approved in an exam in my sample, but nonetheless ended up working in the

public sector, earn slightly higher wages than candidates that were approved and took the

public-sector job. The difference, however, is not statistically significant.

2.5.3 Discontinuity in Hourly Wages

The main outcome of interest is hourly wages for those working in the formal sector

in 2017. Figure 2.3a plots the average demeaned hourly wages as function of the running

variable. Estimates of equation (4) with demeaned hourly wages as dependent variable for

bandwidth [-10,10] reveal a sharp discontinuity at the approval cutoff. Candidates just above

the cutoff earn, on average, 1.19 Brazilian Reais (BRL; p < 0.01) more per hour than workers

just below the cutoff. The fitted lines comes from regression (4) with demeaned hourly wages

as dependent variable.
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(a) Discontinuity in Demeaned Hourly Wages

(b) Differences in Hourly Wages, Ranks X and -X

Figure 2.3: Discontinuity in Hourly Wage

Note: Figure (A): Discontinuity on restricted sample: 1.192*** (0.249), N=63,441. Linear regression with
demeaned hourly wage as dependent variable. Robust standard errors clustered at the running variable.
Figure (B): Differences in hourly wages by values of running variable with opposite signs. Confidence
intervals (95%) from regressions with hourly wage as dependent variable and dummy indicating positive
value of the running variable.
???p < 0.01 ??p < 0.05 ?p < 0.1

As discussed before, most of the jobs have observations at negative values of the running

variable, since there are many more candidates than openings. However, exams that have

few openings usually do not have any observations for values 3 and above of the running
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variable. To ensure comparability, the RD sample keeps, for each absolute value of the

running variable, only those jobs with at least one observations on either side of the cutoff.

Figure 2.3b plots the estimated difference in hourly wages by the absolute value of the

running variable, where the confidence intervals come from the similar regressions estimated

separately for each pair (x,−x) of the running variable, for x ∈ [1, 10]. For each distance

from the cutoff, average wages for approved candidates are higher than average wages for

non-approved candidates, and 9 out of 10 pairwise comparisons are statistically significant.

2.6 IV Estimates of the Public-Sector Wage Premium

In this section, I use the discontinuity as an instrument and estimate the returns to a

public-sector job. The IV estimate is simply the ratio of the estimated discontinuity in hourly

wages to the estimated discontinuity in the probability of public-sector employment Angrist

and Pischke [2008]. Table 2.4 presents the IV estimates for three different bandwidths,

with and without exam-fixed effects. Focusing on the estimates with the bandwidth [-10,10]

and exam fixed-effects, the IV estimates result in a large and positive public-sector wage

premium. I estimate that an individual earns, on average, 48% more in a public-sector job

versus a private-sector job. All of regression specifications include controls for gender, years

of education and experience, number of tests taken, and number of tests attempted.

First, note that these estimates are larger, in both absolute and relative terms, compared

to the estimates from the Mincerian regressions. Using a random sample of 1.2 million

workers, the estimated wage gap from a wage regression was 25% (see Section 2.3). This is

evidence, therefore, that the selection bias discussed in Section 2.4 is substantially negative:

potential private-sector earnings for workers who sort into the public sector are lower than

private-sector wages for comparable workers who sort into the private sector. Thus, failing

to control for selection bias leads to an underestimation of the public-sector wage premium.

In order for the IV estimates to have a causal interpretation, the exclusion restriction

need to be valid. In the present context, it means that being just above the approval cutoff

for an exam impacts earnings solely via the increased probability of obtaining a public-sector
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Table 2.4: IV Estimates of Returns to Public-Sector Employment

Ranking Bandwidth

[-5,5] [-5,5] [-10,10] [-10,10] [-15,15] [-15,15]

Coefficient on Public-Sector 0.489∗∗∗ 0.475∗∗∗ 0.523∗∗∗ 0.485∗∗∗ 0.538∗∗∗ 0.504∗∗∗

(0.062) (0.084) (0.058) (0.062) (0.054) (0.059)
Exam Fixed-Effects No Yes No Yes No Yes
F-statistic 139.38 155.76 156.70 157.07 171.04 171.90

Mean Hourly Wage 26.75 25.35 24.80
Median Hourly Wage 20.53 20.08 19.89
N 36,513 63,436 82,414

Note: Instrumental variables estimates for the public-sector wage premium. Depended variable is log
of hourly wages and excluded instruments are the discontinuities in the probability of holding a public-
sector job in 2017. For all specifications an observation is a person-exam, and all regressions include
controls for years of education, experience, experience2, gender, state or region fixed effects and number
of exams taken.
???p < 0.01 ??p < 0.05 ?p < 0.1

job. One possible threat to the exclusion restriction is if negative exam results affect wages

directly via another channel, such as lower morale or negative market signaling. Since labor

market outcomes are measured in 2017 and the exam results are for the years 2007 to 2015,

there is a span of at least two years between test results are labor market measures. This

time gap makes it less likely that effects on morale or signaling could affect wages directly.

Finally, as to the signaling value of test results, note, first, that it does not matter for

public-sector employment; as to the private-sector, I have found no evidence that employers

actually use exam results as screening devices.

2.7 Heterogeneity by Education Level

The literature on public-private wage usually finds returns that are larger for lower-

educated individuals, which tend to decrease, or even reverse sign, for higher-education

groups. In order to look at the different education groups separately, I construct specific RD

samples for high-school and college graduates, following the same steps as before. That is

because individuals with different educational levels often take an exam for the same job.
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For example, I observe many college-educated candidates taking exams for public-sector jobs

that require only a high-school degree.

(a) Public-Sector Job: Discontinuity and Pairwise Differences

(b) Hourly Wages: Discontinuity and Pairwise Differences

Figure 2.4: Discontinuity in Public-Sector Job and Hourly Wages, High-School

Note: Figure (A): Discontinuity on restricted sample: 0.151*** (0.021), N=27,102. Linear regression with
indicator for public-sector job as dependent variable. Robust standard errors clustered at the running
variable. The graph on the right plots the differences in the indicator for public-sector job, by absolute
value of the running variable. Figure (B): Discontinuity on restricted sample: 1.309*** (0.149), N=26,984.
Linear regression with demeaned hourly wage as dependent variable. Robust standard errors clustered at
the running variable. The graph on the right plots the differences in hourly wages, by absolute value of the
running variable.
???p < 0.01 ??p < 0.05 ?p < 0.1

Figure 2.4 presents the RD results for workers with a high-school degree as of 2017.

Figure 2.4a and Figure 2.4b plot the discontinuities at the cutoff and the pairwise differences

for the probability of public-sector employment and for hourly wages, respectively. High-

school graduates just above the approval cutoff are 15.1 percentage points more likely to be

working in the public-sector than those just below it. I also estimate a large and positive
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discontinuity on demeaned hourly wages of about 1.31 BRL (p < 0.01). Finally, the pairwise

comparisons for the each absolute value of the running variable reveal the differences are

always positive and almost always significant for each point in the interval [-10,10].

Figure 2.5 presents the results for individuals with a college degree as of 2017. Figure 2.5a

and Figure 2.5b plot the discontinuity and the pairwise differences in the probability of

public-sector employment and hourly wages, respectively. College graduates just above the

approval cutoff are 10.3 percentage points more likely to be working in the public-sector

than those just below it, and earn, on average, 1.11 BRL (p < 0.05) more. As with high-

school graduates, the pairwise difference are all the in same direction, and most of them are

statistically significant.

Finally, Table 5 presents the IV estimates of the returns to public-sector employment for

each education group separately. For both groups, the IV estimates, which take the selection

bias into account, are higher than the OLS estimates. This indicates that the selection bias

term is negative for both groups. The difference, relative to the gap estimated in wage

regressions, is much higher for college graduates (45 percent versus 13 percent) than for

high-school graduates (50 percent versus 42 percent).

2.8 Survey Experiment

To better understand the selection mechanism, I conducted a survey with undergraduates

from a Brazilian university. The survey was administered online and was sent to students via

the university administration. Students who completed the survey were entered to win one

of 75 gift-cards for a local bookstore worth 100 BRL (49 USD, 2018 PPP dollars). Among

many other questions, I asked students about their preferred sector to work for and about

their expected future wages.13 A total of 845 students provided complete answers.

For each student, I elicited subjective wage expectations for both an entry-level position

and for a job after 10 years of experience, and for both the private and public sectors. The

average age at graduation is 24, hence in the latter case students were asked to estimate their

13See Appendix C for more details about the survey, including the translated questionnaire.
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(a) Public-Sector Job: Discontinuity and Differences by Running Variable

(b) Hourly Wages: Discontinuity and Differences by Running Variable

Figure 2.5: Discontinuity in Public-Sector Job and Hourly Wages, College Graduates

Note: Figure (A): Discontinuity on restricted sample: 0.103*** (0.010), N=38,060. Linear regression with
indicator for public-sector job as dependent variable. Robust standard errors clustered at the running
variable. The graph on the right plots the differences in the indicator for public-sector job, by absolute
value of the running variable. Figure (B): Discontinuity on restricted sample: 1.107∗∗(0.416), N=37,938.
Linear regression with demeaned hourly wage as dependent variable. Robust standard errors clustered at
the running variable. The graph on the right plots the differences in hourly wages, by absolute value of the
running variable.
???p < 0.01 ??p < 0.05 ?p < 0.1
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Table 2.5: IV Estimates of Returns to a Public-Sector Job, by Education Level

Ranking Bandwidth

[-5,5] [-5,5] [-10,10] [-10,10] [-15,15] [-15,15]

Panel A: High-School Graduates

Coefficient on Public-Sector 0.429∗∗∗ 0.405∗∗∗ 0.484∗∗∗ 0.495∗∗∗ 0.564∗∗∗ 0.565∗∗∗

(0.046) (0.038) (0.068) (0.074) (0.085) (0.086)

Exam Fixed-Effects No Yes No Yes No Yes
F-statistic 231.56 239.77 59.41 57.98 101.17 97.54

Mean Hourly Wage 16.49 16.20 16.08
Median Hourly Wage 14.71 14.84 15.02
N 15,571 26,983 35,846

Panel B: College Graduates

Coefficient on Public-Sector 0.275∗∗∗ 0.304∗∗∗ 0.459∗∗∗ 0.483∗∗∗ 0.434∗∗∗ 0.461∗∗∗

(0.083) (0.095) (0.153) (0.159) (0.123) (0.127)
Exam Fixed-Effects No Yes No Yes No Yes
F-statistic 80.51 75.36 72.51 71.80 98.89 102.31

Mean Hourly Wage 32.08 30.93 30.52
Median Hourly Wage 25.32 24.65 24.44
N 23,407 37,937 47,314

Note: Instrumental variables estimates for the public-sector wage premium. Dependent variable is the log
of hourly wages and excluded instruments are the discontinuities in the probability of holding a public-
sector job in 2017. For all specifications an observation is a person-exam, and all regressions include
controls for experience, experience2, gender, state or region fixed effects and number of exams taken.
***p¡0.01 **p¡0.05 *p¡0.1

earnings at around age 34, which is similar to the average age of workers in the labor market

data (33.94). For each question, subjects were first asked about the minimum and maximum

wages they could conceivably get. I then used these bounds to created four intermediate

points and elicited subjects’ subjective probability of their wages being at least as high as

each intermediate value. Finally, I used those four CDF points to fit a log-normal distribution

for each one of the respondents.

Results from the survey could be informative for two main reasons. First, the selection

effect could operate via the mere choice to take an exam if, for example, only those with a

low outside option choose to take an exam. The test-taking data, however, only includes

information for individuals that have taken at least one public-sector exam. As argued

before, the characteristics of the exams make it unlikely that this is the main selection
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channel. Indeed, results from the survey support this conjecture. Even though half of the

participants do not list the public sector as their preferred outcome, only 8.4 percent said

their chances of taking a public-sector exam were “low” or “very low”.

Second, data on wage expectations can shed light on the underlying mechanisms. In

particular, assume that students know more about their own abilities and motivations than

does the researcher. Since public-sector wages are less responsive to effort, one would expect

the students with lower (unobserved) ability to sort into the public-sector and to expect

lower private-sector wages. That is, students that declare a preference for the public sector

would display a higher expected public-sector wage premium. Figure 2.6 plots the expected

public-private wage gap for those that prefer the public sector versus those that are either

indifferent of that prefer the private sector. The graph clearly shows the distribution of the

public-sector preferred group shifted to the right. For that group, the expected wage gap is

16.41 BRL (p ¡ 0.000, se = 1.61), while those that do not prefer the public sector expect a

small negative wage gap equal to -2.92 BRL (p = 0.06, se = 1.54).

Figure 2.6: Expected Public-Private Wage Gap by Sector of Preference

Note: Histogram of individual expected (mean) wage gaps after 10 years of experience. Preference for sector
comes from answer to question: “In case you decide to look for a job after graduating, would you prefer a
job in the public or the private sector? (1) Public sector; (2) Private sector; (3) Indifferent”

Note also that, consistent with negative selection on unobserved ability, differences in the

expected wage gap come almost entirely from differences in expected wages in the private

sector. Figure 2.7 plots the expected private and public-sector wages by choice of sector.

There is no significant difference in expectations regarding public-sector wages. Expected
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private-sector wages, on the other hand, are markedly different between groups: students

that prefer the public-sector have significantly lower expectations for private-sector wages,

followed by the group of students that are indifferent between the sectors. Those that declare

a preference for private-sector jobs, on the other hand, have the highest wage expectation.

(a) Expected Public-Sector Wages (b) Expected Private-Sector Wages

Figure 2.7: Expected Public and Private-Sector Wages by Sector Preference

Note: Bars represent 95% confidence intervals. Preference for sector comes from answer to question: “In
case you decide to look for a job after graduating, would you prefer a job in the public or the private sector?
(1) Public sector; (2) Private sector; (3) Indifferent”. Figure (A): Mean expected public-sector wages after
10 years of experience. Figure (B): Mean expected private-sector wages after 10 years experience.

2.9 Conclusion

This paper constructs a new dataset to study an old question in labor economics: are

government workers paid more than their counterfactual private-sector wages? Using a fuzzy

regression discontinuity design combining public-sector exam results and labor market out-

comes for over 2 million individuals, I find a large and positive public-sector wage premium.

In the main specification, I find a wage gap in favor of the public sector of approximately

48 percent, which is twice as large as the wage premium estimated via OLS. This difference

suggests that there is negative selection into the public-sector: counterfactual private-sector

wages for workers who sort into the public-sector are lower than wages of similar workers

who sort into the private-sector. Results from a survey experiment eliciting expected wage
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distributions from a sample of Brazilian undergraduates support the selection hypothesis.

The expected wage gap for the subjects that declare a preference for the public sector is

positive and large, while the expected wage gap for subjects that do not prefer the public

sector is small and negative.

An alternative explanation is that workers have sector-specific productivity and sort into

their highest-productivity sector. That seems unlikely, however, as most of the positions of-

fered government have similar counterparts in the private sector — police officers, firefighters

and judges being possible exceptions. Moreover, for this explanation to be consistent with

the RD and survey results, students would have to have a clear understanding of their levels

of productivity on both sectors even before having any experience in the labor market.

Given the nature of the data, it is not possible to separate the estimates of the wage pre-

mium that are due to the public-sector job per se and the fraction that is a direct consequence

of the hiring mechanism used in Brazil. In either case, the result of a negative selection effect

is important. First, the end result is the same in terms of its potential economy-wide effects

and on the fiscal constraints of the state. Second, other populous developing countries (e.g.,

India and Indonesia) use a similar system to select public-sector employees, and are thus

likely to experience similar effects. Finally, the large negative selection bias reported here

has important implications for interpreting previous results based on OLS regressions with

controls for observable variables.
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3.0 The Times They Are a-Changing: Learning in a Dynamic Adverse

Selection Experiment

3.1 Introduction

In many situations of economic interest the passage of time carries with it important

strategic implications. In labor markets, good workers are hired and retained at higher

rates, and so prolonged unemployment can serve as a negative signal to future employers.

For durable goods such as houses, long periods on the market can provide prospective buyers

with a stronger bargaining position. In health-insurance markets, long prior spells without

insurance may signal adverse selection for customers newly seeking a policy. These forces

can also be present in simple consumer settings, where the quality of produce on offer at a

farmer’s market will be lower later in the afternoon than first thing in the morning, with

earlier shoppers having picked through the best offerings. Such forces might even loom in the

market for academic papers, where the length of time a paper has been around in working

paper form can act as a negative signal, creating the need for a decreasingly ambitious

submission strategy.

While situations with dynamically accruing adverse selection are commonplace, evidence

for how decision makers respond to these forces is predominantly derived from behavior

in static situations, such as sealed-bid common-value auctions or simple lemons problems.

While the experimental literature certainly demonstrates initial failures of the Bayes-Nash

equilibrium predictions, there is evidence in many settings that experience pushes subjects

toward the equilibrium. For example, though many fall for the winner’s curse early on,

the learning process pushes them to bid less as they gain experience. While behavioral

concepts such as Cursed Equilibrium may predict the early behavior, the standard Bayes-

Nash equilibrium can still be a good long-run predictor, an “as if” outcome, without the

need for subjects to understand the environment introspectively. However, similar “as ifs”

in richer settings where subjects need to be responsive to non-obvious conditioning variables

require greater sophistication. In order for behavior to converge towards the equilibrium
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agents need to have a flexible enough model of the environment to admit a conditional

response to the “right” variables. A useful analogy here is to running a regression, where an

omitted variable can lead to bias in all of the other estimates. Whenever subjects’ models

of the world are not flexible enough, long-run learned behavior can differ substantially from

the Bayes-Nash equilibrium, potentially reversing policy-relevant comparative statics.

Our experimental environment provides a test-tube for examining these ideas. Specifi-

cally, in our dynamic matching environment, participants need to allow for the passing of

time as a conditioning variable. In our main experimental treatment, subjects are formed

into groups with each member initially assigned to an object with an independently drawn

common value. Each subject discovers their assigned object’s value at an exogenously deter-

mined point in time, and is then given a chance to exchange it for an unknown rematching

option. In our environment, exchange results in given-up objects becoming the rematching

option for subsequent movers, leading to adverse selection. So long as participants keep

objects with high values and give those with low-values, adverse selection will increase over

time.

Given this accruing selection, equilibrium behavior will be highly sensitive to the passing

of time, with greater willingness to keep a low-value object at later points in the game.

Moreover, introspectively reaching an equilibrium outcome requires only a relatively sim-

ple qualitative model of other players: that they keep good items and exchange bad ones

according to a cutoff. As the best-response cutoffs in our environment are relatively insen-

sitive to the specific values of others’ cutoffs, a decreasing response to time comes about for

most plausible beliefs about others, in particular whether they are believed to be station-

ary or not. While reaching the solution introspectively requires only minimal sophistication,

another possibility is that equilibrium behavior is reached only in the long run through expe-

rience. A simple requirement for convergence to equilibrium in our setting (as all information

sets are reached with positive probability) is that subjects allow for a time-dependent best

response. Experienced bad (good) outcomes that occur later (earlier) in the game must be

considered distinctly when forming a response. In the regression analogy, given their observ-

able outcomes from past play as the left-hand side variable, participants need to allow for

time as a right-hand-side variable.
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Our experimental results find that aggregate behavior is qualitatively in line with the

equilibrium comparative static: participants are less likely to give up low-value objects as

time passes. However, there are substantial deviations from the equilibrium point predic-

tions. Looking at individual-level data there is a great deal of heterogeneity, with a large

proportion of subjects failing to respond to the passage of time at all, exhibiting a station-

ary response even after extensive experience. Similar effects are found across five robustness

treatments that vary the feedback subjects are given on the environment.

Taken together, our baseline and robustness results point to approximately two-thirds

of the subjects maintaining a too-simple model of the world that omits time as a causal

factor. While these subjects show no movement towards learning the qualitative conditioning

variable as the session proceeds, they do show a significant learning effect, adjusting their

behavior to the presence of adverse selection. Going back to the regression analogy, omitting

time as a right-hand-side variable creates bias in the regression intercept, absorbing the

unconditional expected effect of time. While this change in the stationary level from a fully

cursed response lowers the costs of stationary subjects’ mistakes, it also serves to inhibit their

ability to learn the actual relationship. For example, a fully-cursed subject would observe

large ex-post losses only when moving late in the game, giving up objects of below-average

value, but rematching very often to the worst-case values, potentially helping them recognize

time as a conditioning variable. In contrast, our adaptive but stationary subjects instead

make counterfactual but unobserved errors early on (failing to give up below-average objects)

and then make comparatively smaller errors later on in the game.

In our discussion section we explore the extent to which a boundedly rational equilib-

rium model can explain the outcomes. In particular, we show that a steady-state learning

model where subjects use past play to form expectations under a misspecified assumption of

stationarity can rationalize behavior. As this explanatory model is formulated post hoc, we

conduct two further treatments as out-of-sample tests, explicitly testing the long-run feed-

back mechanism in the model. In a simplified, longer-run version of our experiment, we vary

the way subjects receive role assignments. Similar to the original sessions, our first treat-

ment assigns roles (the time of choice) randomly in each new supergame, so subjects gain

experience across the conditioning variable. In our second treatment, subjects’ exogenously
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assigned roles are fixed at the session level, so a player makes her choice at the same time

period in each new supergame. Despite identical Bayes-Nash and Cursed Equilibrium pre-

dictions, subjects that learn against a stationary model will end up at very different points in

the two treatments. By manipulating the assignment at the session level, we force boundedly

rational agents in the fixed-role treatment to experience outcomes at a single point in time,

and so a simple model of the world will still lead to an expectation conditioned on time.

Per the behavioral model, we find stark differences in the long-run response, providing a

strong out-of-sample validation, both qualitatively and quantitatively. Our paper provides

evidence that boundedly rational learning models (see for example, Esponda, 2008, Esponda

and Pouzo, 2016, and Spiegler 2016 for a corresponding graph-theoretic language) can be

successful at organizing long-run behavior, in our case with subjects maintaining an overly

simple model of a static world. Variations on our experimental setting can be fertile ground

for examining related questions, and in helping to document what regularities might exist

in the subjects’ model-based learning.

While our experimental results definitely sound a note of caution for models that re-

quire substantial strategic sophistication to converge toward equilibrium, we should note

that there is also a glass-half-full interpretation: A large minority do condition on time.

This subgroup’s late-session behavior is well-explained by the Bayes-Nash equilibrium, but

their time-conditioning emerges very early on in the session. As more direct evidence of

their understanding, written statements in a peer-advice treatment indicate a clear grasp

of the theoretical mechanics. When we consider the selection effects likely to be present

for professionals in finance, human resources, and actuarial disciplines, our results not only

favor the equilibrium predictions, they also suggest they might be reached introspectively.

The paper is structured as follows. Section two reviews the related literature. Section

three contains the experimental design and procedures, and section four presents the model

and hypotheses. The main results are presented in sections five, and in section six we discuss

the heterogeneity in response, outline a behavioral model and provide an out-of-sample test.

Finally, section seven concludes.
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3.2 Literature Review

Our study contributes to the growing theoretical [Eyster and Rabin, 2005, Jehiel, 2005,

Jehiel and Samet, 2007, Jehiel and Koessler, 2008, Esponda, 2008] and experimental lit-

eratures [Esponda and Vespa, 2014, 2015] on failures to account for how others’ private

information will affect them in strategic settings. Experimental and empirical studies have

primarily focused on three settings: auctions (see Kagel and Levin, 2002 for a survey), voting,

and informed sellers. One well-documented case is the winner’s curse, the systematic over-

bidding found in common-value auctions. A leading theoretical explanation for this effect

is that bidders fail to infer decision-relevant information on the value for the item they are

bidding on, conditional on a relevant hypothetical: their bid winning the auction. Modeling

this, Eyster and Rabin [2005] allow for subjects to best respond to others’ expected action,

failing to incorporate (or imperfectly incorporating, if partially cursed) how others’ actions

are correlated with their private information.

A number of experimental studies have focused on determining the extent to which

the winner’s curse can be explained by this conjecture. For example, Charness and Levin

[2009] have participants engage as buyers in an individual version of the informed-seller

problem. Ivanov et al. [2010] have players bid in a common-value second-price auction

where the value of the object is the highest signal in the group (the maximal game), thereby

controlling for beliefs about their opponents’ private information. Both studies continue to

find deviations from the standard equilibrium prediction, suggesting that incorrect beliefs

about other players’ information are one source, but not the only one, of the failure to best

respond. For cursed behavior in voting, Esponda and Vespa [2014] find that most participants

in a simple voting decision problem with minimal computational demands are unable to think

hypothetically. That is, they do not condition their votes on the event that their vote is

pivotal (and the subsequent information on the common state). Moreover, a smaller fraction

of subjects is also unable to infer the other (computerized) voters’ information from their

actual votes. Similarly, Esponda and Vespa [2015] found that most participants were not

able to correctly account for sample-selection driven by other players’ private information.1

1See Enke [2017], who also examines belief updating in selected samples, and Jin et al. [2015] who
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Our experimental setup expands this literature by offering a novel setting that can be easily

modified to explore various bounded rational models of learning to detect regularities in

people’s misspecified perceptions of the strategic setting.

Thus far, the experimental literature has focused on the importance of sequential rather

than simultaneous play in reaching closer to equilibrium behavior in these strategic settings.

For example, a significant share of participants who received explicit feedback about the

computerized players’ choices in the sequential treatment of Esponda and Vespa [2014] were

able to correctly extract information from those observed choices. Similarly, players are

more likely to adjust their thresholds to account for the selection problem if they were

actually pivotal in the previous round [Esponda and Vespa, 2015]. A number of experiments

on sealed-bid vs. clock auctions have found closer to equilibrium bidding behavior when

bidders are able to observe the decisions of other bidders (Levin et al., 1996; Kagel, 1995).

Carrillo and Palfrey [2009] find that second movers in the sequential version of their two-

sided adverse selection setup behave more in line with equilibrium predictions than the first

movers or players in the simultaneous version. Ngangoué and Weizsäcker [2017] is another

recent example where traders neglect the information contained in the hypothetical value of

the price in a simultaneous market, but react to realized prices in line with standard theory

in a sequential market. However, while the literature has identified sequentiality as the key

to subjects understanding the equilibrium thinking, our paper suggests that sequentiality

alone might not be enough, and that it is crucial that agents have a flexible-enough model

of the world.

Our study also speaks to the substantial theoretical literature interested in dynamic

adverse selection environments (Hendel et al., 2005; Daley and Green, 2012; Gershkov and

Perry, 2012; Chang, 2014; Guerrieri and Shimer, 2014; and Fuchs and Skrzypacz, 2015). One

focus has been on asset markets where sellers have private information about the quality of

the asset [Chang, 2014, Guerrieri and Shimer, 2014]. Similarly, the current and past owners

of an object in our setup could know the value of the object, while those who have never

examine the response to empty messages in a disclosure environment. In both studies, sample selection
creates a tension between the naive expectation and the correct one. In our setting we instead examine the
within-subject response to an observed conditioning variable, namely time and focus more on how subjects
learn about the selection forces.
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held the object do not. Although our players only make a binary choice on whether to keep

the object or trade it for another in the early rounds of the experiment, they state a cutoff

value for trading the object in later rounds, much like the price setting done by sellers and

buyers in the asset markets. Our experimental results suggest that these models should

take seriously behavioral agents with misspecified models of the dynamic adverse selection

environment.

3.3 Design

We conducted 30 experimental sessions with a total of 516 undergraduate subjects. The

experiments were all computer-based and took place at the Pittsburgh Experimental Eco-

nomics Laboratory (PEEL). Sessions lasted approximately 90 minutes and payment averaged

$25.64, including a $6 participation fee. We have eight different treatments: two main treat-

ments, five robustness treatments, and two additional treatments for the out-of-sample test

of a behavioral model. To approximate the sequential structure of our studies the next two

sections focus on describing the two main treatments: a Selection (S) treatment, which in-

duces dynamic adverse selection; and a No Selection (NS) control treatment that removes

adverse selection and has a stationary best response.

Our S and NS sessions both consist of 21 repetitions of the main supergame, broken

up into: part (i) (supergames 1–5), which introduces subjects to the environment; part

(ii) (supergames 6–20) and part (iii) (supergame 21), which add strategy methods; and

part (iv), which elicits information on risk preferences and strategic thinking. Before each

part, instructions were read aloud to the subjects, alongside handouts and an overhead

presentation.2 The environment in both treatments has a similar sequential structure, with

one key difference: in S supergames three randomly chosen subjects are matched together

into a group to play a game; in NS supergames an individual subject makes choices in an

isolated decision problem. We next describe the S -treatment environment in more detail

2Detailed instructions, presentation slides, and screenshots of the experimental interface are available on
the Appendix to Chapter 3.
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before coming back to describe the NS -treatment.

3.3.1 Selection Treatment

The primary uncertainty in each of our supergames is generated by drawing four num-

bered balls, labeled as Balls A–D. Each ball is assigned a random value θ through an in-

dependent draw over the integers 1–100 (with proportionate monetary values from $0.10 to

$10.00) according to a distribution F , which has an expected value of 50.5.3 A group of

three players are randomly assigned a mover position, which we refer to as first, second and

third mover. Each group member takes one of the four balls in turn, randomly and without

replacement. As the three players each hold a initial ball, a single ball remains unheld. This

unheld ball is the initial rematching population in our game.

An example matching is illustrated in Figure 3.1, where the first line shows an example

initial matching. In the illustrated example the first mover is matched to Ball B, the second

mover to Ball A and the third mover to Ball D, or 〈1B, 2A, 3D〉 for short. In this example

the leftover unheld ball is Ball C.

Though players know which of the four balls they have been assigned at the start of the

supergame, they do not start out knowing the assigned ball’s value, nor the balls (or values)

held by other group members. In each round, the three players flip fair coins. If it lands

heads they learn their held ball’s value, and if the coin lands tails they do not learn the value

and must wait to flip again. It is possible for more than one player to move in the same

period, for instance, if both first and second movers flip a head in their first try. Lastly, if a

player has not seen their held ball’s value in rounds one or two (flipping tails in both) then

the value is revealed to them in round three with certainty.4 Each subject makes only one

decision per supergame. In the round when they see their ball’s value, the player makes one,

and only one, payoff relevant decision:

3The distribution used in our experiments is a discrete uniform with additional point masses at the two
extreme points. Precisely, the probability mass function puts a 51

200 mass on the two values 1 and 100 and a
1

200 weight on each of the integers 2–99. This distribution was chosen to make the selection problem more
salient, and to generate sharper predictions for the Bayes-Nash equilibrium.

4We later report on treatments that eliminate the added uncertainty of the coin flips, with similar results.
We introduced the coin flips in the initial experiments in order to collect within-supergame data for each
participant and to make the passage of time more salient.
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Figure 3.1: Example Supergames

Either Keep the currently held known-value ball as the final supergame outcome.

Or Take the unknown rematching ball; the currently held ball becomes the rematching

ball.

To make clear the process and intuition of the game, consider the example illustrated in

Figure 3.1. The figure here takes the point of view of the first mover, where figure elements

in black represent information that is known to the first mover at each point in time, while

elements in gray represent unknowns. In the example, though the first mover knows she

is holding Ball B in the first round (t = 1), its value remains unknown to her as she fails

the coin flip. The first mover does not know which balls the other two players are initially

holding, nor their coin flip outcomes, nor their decisions. She only knows that they are

present and that their decisions are potentially affecting the rematching ball.

In the illustrated example, the initial matching is 〈1B, 2A, 3D〉 and Ball C is initially

unheld. However, unbeknown to the first mover, the second mover flips a head and sees his

held ball’s value is one and decides to switch, while the third mover flips tails and does not

learn her value. The interim matching is therefore 〈1B, 2C, 3D〉 where the rematching ball

is now the released Ball A. In the second round, the first mover flips a head, and sees that

her held ball’s value is 34. She decides to release this ball and rematches to the currently

unheld Ball A, and the matching becomes 〈1A, 2C, 3D〉. After her round-two decision (and

again, unknown to the first mover) the second mover does not act as he has already made a
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decision, while the third mover flips a head and decides to give up her 13-ball, rematching

to the Ball B that was just given up by the first mover, shifting the match to 〈1A, 2C, 3B〉.
By round three, all three participants have made a decision, and so no other choices are

made, and thus the final matching is 〈1A, 2C, 3B〉. At the end of the supergame all four

balls’ values are made common knowledge—though which balls other players are assigned

to is not—and the first mover learns that the ball she rematched to has a value of one.

Supergames one to five exactly mirror the procedure above: Subjects make a binary

decision to keep or switch only in the round where their ball value is revealed. The second

part of each session then adds a partial strategy method. Specifically, in supergames 6–20

participants are asked to provide a cutoff in each round, indicating the lowest value for

which they would keep their held ball contingent on seeing its value that round. If they

receive information, the decision to keep or switch is resolved according to the stated cutoff;

if they do not, they must wait until the next round, when they provide another cutoff. As in

supergames 1–5, subjects only implemented decision is in the round where the ball’s value

is revealed, and no other decisions—or cutoffs—are recorded afterwards. Finally, in part

(iii) we use a complete strategy method in which subjects are not informed about whether

or not information was received in each round, and we collect their minimum-acceptable

cutoff values in all three rounds of supergame 21 with certainty.5,6 Strategic feedback on the

other participants is purposefully limited in our baseline S game.7 At the end of each of our

S -supergames, each group member sees the values of the four drawn balls, as well as the

particular ball he/she is holding at the end and (if relevant) the identity and value of the

ball they were initially matched to. Participants do not see strategic feedback. That is, they

observe neither the identity of the balls held by the other two group members at the end of

the supergame, nor the balls others were initially holding, nor their choices.

Subjects’ final payments for the session are the sum of: a $6 show-up fee; $0.10 times

5In expectation one-quarter of subject data in supergames 6–20 will have data from all three round
cutoffs, one quarter with cutoffs from rounds one and two only, and one half of the data only has an elicited
first-round cutoff.

6In part (iv) at the end of each session we collect survey information, and incentivize the following
elicitations: (a) risk preferences (using the dynamically optimized sequential experimentation method from
Wang et al. 2010); (b) a three-question Cognitive Reflection Test [Frederick, 2005]; and (c) a version of the
Monty Hall problem. One participant per session was selected for payment in the part (iv) elicitations.

7We examine the effects of alternative feedback in Section 3.5.1.
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the value of their final held ball ($0.10 to $10.00) from two randomly selected supergames

from 1–20; and $0.10 times the value of their final held ball in supergame 21. Excluding the

part (iv) payments the experiment therefore has a minimum possible payment of $6.30 and

a maximum of $36.00.

3.3.2 No Selection Treatment

Our No Selection (NS) treatment is designed to have the same structure as the S -

treatment game, except that we turn off the dynamic adverse selection. This is achieved

by making a single change to the environment: each group has just one member. As such,

each supergame is a decision problem with a single participant in the role of first mover.

As there are four balls, and only one of them is held by the agent, there are three unheld

balls. In whichever round the first-mover sees their held ball’s value, if they decide to switch

their ball, they receive a random selection from the three unheld balls. Our NS sessions

therefore replicate the incentives and timing from the S sessions, but without the other

group members. We illustrate a parallel example supergame for the NS environment in

Figure 3.1(B).

3.4 Model and Hypotheses

The games described above are dynamic assignment problems over a finite set of common-

value objects. The objects (the long-side) are initially assigned randomly to the short-side of

the market (the game’s participants). Private information on the held object’s value arrives

randomly over time, according to an exogenous process (in the experiment, the coin flips).

With a single decision maker, the rematching pool is never affected by other participants’

decisions. As such, the risk-neutral prediction in our NS treatment is that subjects are

stationary and use a minimal acceptable cutoff of 51 for retaining a ball. The cutoff rule

gives up balls valued 50 or below (beneath the expected value of 50.5) and keeps balls valued

51 or higher.
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Though risk-aversion or risk-lovingness might lead to alternative cutoffs, the passing of

time conveys no information on the expected rematching value, and decision makers are

predicted to be stationary across supergame rounds.

Hypothesis 1 (NS-Treatment). Subjects use stationary decision-making cutoffs in the NS

treatment

In contrast to the control, when there are multiple players the arrival of private infor-

mation leads to adverse selection on the rematching pool. Whenever other players give

up objects with (privately) observed low values, and keep objects with high values, the re-

matching pool will become selected. As private information arrives slowly, adverse selection

accrues over time. In early periods, it is less likely that others have received information, so

the rematching pool is less likely to be selected. In later periods, it is more likely that others

have received information, leading to an increasing likelihood that the rematching pool is

adversely selected.

Because the environment is sequential and involves each player making a single decision,

the equilibrium predictions can be solved inductively, where best-response calculations are

entirely backward looking. This is in contrast to many other situations that examine “cursed”

behavior over hypothetical future events. For example, in common-value auctions, optimal

decision-making requires the bidder to act as if concentrating solely on the hypothetical event

that their bid wins the auction, inferring information contained in this event on the object’s

value. Similarly, in common-value voting, the voter has to focus on the hypothetical event

that her vote is pivotal. In our environment, the optimal response is conditioned on time,

where the hypothetical thinking relates to how other participants have acted in previous

periods.

From the point of view a player making their decision at time t there are two distinct

random variables: the initially assigned objects to each player θ0
i , each distributed identically

to an initial draw θ ∼ F ; and the rematching object, θRt , with a distribution that varies over

time. Once the held object’s value becomes known, the optimal risk-neutral response is

to give up held objects if their value is lower than the expected value of rematching, and
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to keep higher values.8 The rematching random variable θRt and the policy cutoff µ?
t can

be calculated inductively from the first-mover seeing her object’s value in the first round

(t = 1).9 For the base case the rematching value θR1 in period one is just an iid draw from

the initial-value distribution F , as no other participant has had a chance to exchange their

object yet. The policy for a risk-neutral first-round, first-mover is summarized by a cutoff

equal to the expected-value of a single draw from F . The player moving at t = 1 therefore

keeps values of 51 and higher, and discards values of 50 and lower, similar to the NS rule.

For the inductive step we define the event that the player moving at time t sees their

value as It, and the joint event that they both see their value and choose to switch as St (with

complement Sc
t ). Given the rematching random variable θRt in period t, and the previous

player’s policy cutoff µ?
t , the rematching value θRt+1 in period t+ 1 is defined by:10

θRt+1 |It+1 = Pr {St;µ?
t |It+1} · (θ |θ < µ?

t ) + Pr
{
SC
t ;µ?

t |It+1

}
·
(
θRt
∣∣It+1,SC

t

)
. (3.1)

The optimal policy cutoff for the player making a decision at t + 1 is then given by the

expectation of rematching µ?
t+1 = E

(
θRt+1 |It+1

)
. Given the induction in (1) it is clear the

solution to the model is unique where the best response is entirely backward looking on what

previous players might have done.

The risk-neutral Bayes-Nash Equilibrium predictions for the S -treatment vary from a

predicted cutoff of 51 for the first mover in the first round, to a cutoff of 23 for the third

mover in the third round.11 This represents a substantial response to adverse selection by

the end of the supergame, reducing the expected value of rematching by almost half. To put

this in context, if the other two agents were fully informed on the other three balls’ values

and perfectly sorted so the remaining unheld ball was the worst of the three, its expected

8In our experiments the action set is discrete as the ball values are in Θ = {1, . . . , 100}, and so the cutoff
can be summarized instead by min{x ∈ Θ : x ≥ µ?t }, the minimal acceptable ball value.

9For the theory, instead of indexing time by the round number, we do it by round-mover. So the first
mover in round 1 is t = 1; the second mover in round 1 is t = 2; the third mover in round 1 is t = 3; the
first mover in round 2 is t = 4; etc.

10For example, given the base case the next step in the induction has the second-mover see her value and
infer that Pr {S1;µ?1 |I2 } = Pr {S1} = Pr {I1} · F (µ?1) = 1

4 , given a one-half probability the first mover
observes their value, and a one-half probability that their observed ball’s value is lower than the first-round
cutoff. The effective CDF for the rematching pool in period two is therefore 1

4 · F (x |θ < 50.5) + 3
4 · F (x),

with expected value µ?2.
11The risk-neutral PBE cutoffs for rounds 1, 2, and 3 are, respectively: (51, 35, 28) for the first-mover;

(42, 31, 25) for the second-mover; and (35, 28, 23) for the third-mover.
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Figure 3.2: Predicted Adverse-Selection Accruing Over Supergame

value would be µ(3) = 16.4. That is, by the end of the last round over 75 percent of the

adverse selection possible under full information and perfect sorting has occurred. Figure

3.2 expresses the risk-neutral Bayes-Nash Equilibrium predictions as the intensity of the

adverse selection, graphing the difference (µ∗t − µ̄), where µ̄ is the expected value of the

original distribution F . Within each round the cutoffs are decreasing as the different roles

take turns to move, but across rounds there is a flatness from the third mover in round one

to the first mover in round two, and from the third mover in round two to the first mover in

round three.12 Importantly, within each role the PBE predictions indicate strictly decreasing

cutoffs, reflecting the increased adverse selection as the game unfolds.

While the equilibrium cutoffs are unique under risk neutrality, the decreasing pattern

holds in equilibrium for both risk-loving and risk-averse preferences. Moreover, decreasing

cutoffs will be predicted even without sophisticated equilibrium beliefs on others’ behavior.

For example, a simple belief that other participants use a stationary (non-boundary) cutoff

rule that gives up low-valued objects and keeps high ones yields best-response cutoffs with

quantitatively similar predictions to the equilibrium (see Figure A1.1 in the Appendix).

Using a cutoff µ′ different from the equilibrium one has two largely offsetting effects

12The reason for the non-decreasing parts is the conditioning in equation (1). For example, the first mover
who sees their value in round two (the fourth mover, so the event I4 in the induction) knows that they did not
switch in round one. So in the language of the induction Pr {S1 |I4 } = 0, as S1 ⊂ I1 and Pr {I1 ∩ I4} = 0
in our information structure—the same reasoning applies to the first mover in round three. Note, if players
were different for each decision, the cutoffs would be strictly decreasing, as conditioning on It+1 would be
uninformative to prior periods.
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in the inductive calculation given in (1). On the one hand increasing the cutoff increases

the likelihood of selection, Pr {St;µ′}, as there are more values for which the object is

exchanged. On the other, it decreases how bad the selection is when it does occur, making

the rematching distribution given a switch more favorable to succeeding agents. In our

experimental parameterization, the best-response cutoffs are quantitatively similar to the

equilibrium cutoffs for a large set of beliefs on others’ behavior. This robustness to the

cutoffs used by others is a useful feature of our dynamic environment: even with substantial

deviations from equilibrium by others, the empirical best response for individuals in our

sessions is essentially identical to the PBE. Instead of requiring highly accurate beliefs on

the cutoffs used by others, the strategic sophistication required to deploy a decreasing cutoff

is to understand that information arrives slowly over time for all players, and that others will

give up low-valued objects and keep high-valued ones. Given the similarity in the different

agents’ tasks within the supergame, understanding this can be achieved by projecting one’s

own experiences and behavior onto others.

While the levels in Figure 3.2 are calculated using the risk neutral PBE, the following

hypotheses are independent of the subjects’ risk aversion and are robust to subjects’ beliefs

on others’ strategic behavior. As the majority of our results elicit subjects’ precise cutoff

rules, we specify our hypotheses over such cutoffs.13

Hypothesis 2 (S-Treatment). Subjects use strictly decreasing cutoffs over the supergame in

the S-Treatment

In addition to the qualitative direction of cutoffs within treatments, we can also make

comparisons across treatments, as the first-mover in the first round of our S -treatment faces

an identical problem to the NS -treatment.

Hypothesis 3 (First decision equivalence). The distribution of first-round first-mover cut-

offs in the S-treatment is identical to that in NS

Below we outline the aggregate experimental results from these two treatments, where

our focus will be on the late-session play after subjects have acquired extensive experience

13We examine the behavior in supergames one to five in the Appendix, where we show that subjects act
as if they are using a monotone rule that keeps high value balls and gives up on low values.
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with the environment. After outlining the main results, and checking their robustness, we

turn to subjects learning behavior over the session in section 3.5.2, where we propose and

test a behavioral model of steady-state learning that rationalizes the long-run deviations

from equilibrium.

3.5 Aggregate Results

We now describe the main experimental results, comparing the behavior in the decision

environments with and without adverse selection, examining the three hypotheses above.

The aggregate results for the S - and NS -treatments are illustrated in Figure 3.3, where

the figure presents all data from subjects in the first-mover role where a cutoff is elicited.

The focus on first movers provides the cleanest comparison across treatments because (i)

the PBE prediction is identical for the first-mover in the first round, and (ii) the changes

in the optimal cutoffs across rounds are largest for first-movers.14 The figure indicates the

first-mover subjects’ responses relative to the expected cutoff without selection (µ?
1 = 51).

While the equilibrium theory (the circles) and empirical best response (the triangles) predict

no adverse selection in NS, the prediction in the S treatment is for selection to accrue across

the three rounds (the gray circles), with much of the selection accruing by the round two

decision.

Three patterns emerge from Figure 3.3: (i) aggregate subject behavior does respond to

the passage of time in S supergames, but the adjustment to the adverse selection falls short

of the equilibrium predictions; (ii) behavior is qualitatively different across treatment and

control; and (iii) while aggregate behavior in the NS control is statistically indistinguishable

from the risk-neutral theory, behavior in the S treatment is significantly different.

Table 3.1 provides random-effect regression results to complement the figure. The table

reports estimated (absolute) cutoff for first movers across rounds one to three, where we

14Results and conclusions are statistically and numerically similar with a focus on all rounds and mover
roles. In the Appendix we provide evidence from the first five supergames where we did not explicitly elicit
cutoffs; subjects’ behavior in these rounds with the binary keep/switch action is consistent with the use of
a cutoff.
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Figure 3.3: First-Mover Cutoffs (Supergame 6–21)

Note: Bars depict 95 percent confidence intervals from a random-effects estimation across all cutoffs in
supergames 6–21. Empirical best responses calculated using cutoff distributions.

separately estimate first-mover behavior in supergames 11 to 20 and in the full-strategy

method supergame 21.15 Aggregate estimates are produced by regressing the chosen first-

mover cutoff µj
ist (subject i, supergame s, round t, and session type j ∈ {NoSel, Sel}) on

a set of mutually exclusive treatment-round dummies. The estimated aggregate cutoff µ̂j
t

for session type j and supergame round t, allows us to make statistical inference over the

equilibrium hypotheses.

15We focus here on results in the latter half of the session. Results for supergames 6 to 20 are in Appendix
Table A3.1; results for subjects in the second- and third-mover roles are in Table A3.2. Qualitative results
are similar to those reported in Table 3.1.
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Table 3.1: Average First-Mover Cutoff (Relative to 51) by Round in No Selection and Selection

Treatment Cutoff for Theory Supergame 11 to 20 Supergame 21

N Estimate p-values N Estimate p-values

µ? µ̂ µ̂ = µ̂NS
1 µ̂ = µ?jt µ̂ µ = µ̂NS

1 µ = µ?jt

No Selection
(NS)

Rd. 1, µ̂NS
1 [0] 110 +3.8 – 0.119 33 +1.8 – 0.479

(2.4) (2.5)

Rd. 2, µ̂NS
2 [0] 49 +3.1 0.213 0.216 33 +1.9 0.907 0.449

(2.5) (2.5)

Rd. 3, µ̂NS
3 [0] 27 +2.9 0.268 0.244 33 +2.3 0.620 0.360

(2.5) (2.5)

Joint Tests: 0.335‡ 0.238§ 0.875‡ 0.817§

Selection
(S)

Rd. 1, µ̂S1 [0] 460 -4.4 0.003 0.000 66 -7.5 0.018 0.013
(1.23) (3.04)

Rd. 2, µ̂S2 [-16] 212 -8.0 0.000 0.000 66 -11.1 0.001 0.107
(1.28) (3.0)

R. 3, µ̂S3 [-23] 113 -11.9 0.000 0.000 66 -14.7 0.000 0.006
(1.4) (3.0)

Joint Test: 0.000‡ 0.000§ 0.000‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for the relative cutoff (choice-51) against treatment-round dummies.
Standard errors in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 170/137/33
Total/Selection/No Selection first-mover subjects across supergames 11–20, and 55/22/33 in supergame 21. Selection treatment exclude
subjects in the second- and third-mover roles (these figures given in the Appendix). †−Univariate significance tests columns examine differences
from either the first-round coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t) or the theoretical prediction (H0 :µ̂jt = µ?jt ).
‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE cutoffs in supergame

(H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).



Hypothesis 1 is a basic check for the control environment: given the stationary NS

environment, are the aggregate cutoffs in this treatment stationary across the supergame?

Inspecting the NS coefficients in Table 3.1, we verify that the first-round cutoffs are 54.8

(so +3.8 relative to the risk-neutral cutoff of 51). This decreases slightly over the course of

each supergame, to +2–3 in rounds two and three. Examining each coefficient in turn we

test whether the average cutoffs used in each treatment-round are equal to the coefficients

used in round one, reporting the p-values in the H0 : µ̂j
t = µ̂NS

1 column. Individually, neither

the second- nor third-round’s NS coefficients are significantly different from the first round.

Examining Hypothesis 1 directly with a Wald test for the same cutoff for all three rounds of

the control (H0 : µ̂NS
1 = µ̂NS

2 = µ̂NS
3 ) we fail to reject for both supergames 11–20 (p = 0.355)

and for supergame 21 (p = 0.875).

Beyond just stationarity in the NS cutoffs, we also fail to reject the stronger hypothesis

that aggregate behavior in NS is both stationary and equal to the risk-neutral prediction.

Examining each coefficient separately, we fail to reject the risk-neutral predictions for all NS

round coefficients (the H0 : µ̂j
t = µ?j

t column), where we also fail to reject the risk-neutral

PBE prediction jointly with a Wald test (p = 0.238).

Result 1 (Control Stationarity). We cannot reject that average behavior in the NS control

sessions is stationary, nor can we reject the risk-neutral PBE prediction.

Given that aggregate behavior in our control is well-behaved, we turn to an examination

of aggregate behavior in the environment with adverse selection. The bottom half of Table 3.1

provides the average first-mover S -treatment cutoffs across the three rounds, µ̂S
1 , µ̂S

2 and µ̂S
3 ,

again breaking the estimates up into those obtained in supergames 11–20 and supergame 21.

Our coarsest prediction for the Selection treatment is that the cutoffs decrease, indicating

that subjects respond to the adverse selection accruing over time (Hypothesis 2). The

hypothesis is tested by examining a Wald test for stationary cutoffs, H0 : µ̂S
1 = µ̂S

2 = µ̂S
3 .

Unlike the control where we fail to reject stationarity, we strongly reject it in the S -treatment

(p < 0.001) in favor of the PBE prediction of strictly decreasing cutoffs.

Though qualitative behavior is in line with the theory, the aggregate levels in S are

far from the PBE predictions. As illustrated in Figure 3.3, subjects’ behavior does not
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fully internalize the predicted degree of adverse selection. For supergames 11 to 20, the

relative level is just over half the predicted magnitude. For supergame 21 on its own, the

relative magnitude is closer to the prediction, representing 64 percent of the predicted adverse

selection effect of -23. However, the attenuated response relative to theory becomes more

pronounced when we consider that subjects start out with lower cutoffs in the very first

round. While the behavioral shift across the three rounds is significantly less than zero

(µ̂S
3 − µ̂S

1 = −7.65 in supergame 21, p < 0.001), the magnitude of the observed change in

cutoffs is a third of the theoretical prediction.

The relative drops in willingness to rematch across the supergame are therefore less

pronounced than the equilibrium predictions, but the different behavior in the first-round of

the S -treatment also jumps out as an anomaly. Despite an equivalent decision for first movers

in the very first round, the provided cutoffs in the S supergames (µ̂S
1 ) are significantly lower

than both the NS cutoffs (p = 0.002) and the risk-neutral prediction (p = 0.004). Moreover,

this effect becomes more pronounced if we focus just on play at the end of the session in

Supergame 21.

Result 2 (Treatment Dynamics). We reject that aggregate behavior in the S treatment is

stationary, as the cutoffs have a significant and strictly decreasing trend. However, the

dynamic reaction is significantly different from the theoretical prediction.

Result 3 (First Round Non-Equivalence). Average first-round cutoffs in the S treatment

are significantly lower than both the NS results and the risk-neutral prediction.

In Section 3.5.2 we show that these two aggregate patterns from the S -treatment (a

negative but shallow slope, with a lower intercept) are a product of individual heterogeneity.

Two behavioral types emerge: (a) Sophisticated subjects who change their cutoffs across su-

pergames, starting close to the risk-neutral value in the first round; and (b) Coarse-reasoning

subjects that use a constant response across the supergame, but where the level of this re-

sponse responds downward due to (unconditional) experienced selection. When mixed, the

aggregate behavior is shifted downward with an attenuated response across time. Before

analyzing the results from individual heterogeneity, we briefly outline results from four ro-

bustness treatments, varying the strategic feedback that subjects receive.
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3.5.1 Summary of Robustness Treatments

Our robustness treatments manipulate the information subjects receive in the dynamic

adverse selection environment. Details of these treatments and the results are relegated to

the Online Appendix for interested readers, as the main findings replicate the above, and

seem to be driven by the same learning behavior discussed in the next section. Our intention

here is to provide the reader with a concise summary of the treatments and the qualitative

results.

Robustness Treatment 1 (S-Across). Additional strategic feedback across the S-treatment

supergames.

Here we replicate the S -treatment, but the subjects are now completely informed on

all players’ actions at the end of each supergame. Looking back to Figure 3.1(A) in the

design, whereas the S -treatment only informed subjects on their own choices (the elements

in black), in the S-Across-treatment subjects are informed of all elements in the figure once

the supergame has ended. The treatment results mirror those in the S -treatment.

Robustness Treatment 2 (S-Within). Additional strategic feedback within the S-treatment

supergame.

Where S-Across provided feedback at the end of each supergame, this treatment modifies

the information structure within the supergame so that subjects are informed about switches

along the path of play. Rather than time, the relevant conditioning variable is the observation

of a switch by the other participants. In the Figure 3.1(A) example, the first mover would

know that the second-mover had switched when they made their choice in round 2. We come

back to this treatment to talk about individual-level results in the next section, but we find

qualitatively similar effects to the S -treatment at the aggregate level. Subjects respond to

the appropriate signal (here an observed move, not the passage of time), but the size of the

response is attenuated.

Robustness Treatment 3 (S-Peer). Peer advice on the final choice (supergame 21) in the

S-treatment environment.
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These sessions are identical to the S -treatment, except for supergame 21.16 In the final

supergame (which is paid with certainty), subjects are first matched into chat groups of

three. After chatting, each member is matched with members from other chat groups for the

final S supergame. Crucially, one of the three chat-group members is selected at random and

that participant’s supergame 21 outcomes determines the payoff for the entire chat group.

As such, each team member has an incentive to explain the environment to others.

Even though many groups do have chat members who explain the underlying tensions in

the game to the other participants,17 the end behavior in supergame 21 is not significantly

different from that observed in the S -treatment environment.

The results from our robustness treatments mirror the findings in our Selection treatment.

Given the regularity across our robustness treatments, we focus on breaking down behavior

at the individual level in the Selection treatment, to show that the aggregate results obscure

important heterogeneity. Moreover, we show that the subject-level data from the robustness

treatments do show substantial stability in the rates of subject types.

3.5.2 Subject Heterogeneity and Learning Behavior

In Section 3.5 we provide evidence that average cutoffs are significantly decreasing across

the S supergames and are stationary in the NS control. To an extent this represent a victory

for the theory as a qualitative prediction on aggregate behavior. However, in this section, we

show that the averages mask an important heterogeneity in behavior. While a substantial

number of subjects do use strictly decreasing cutoffs in the S -treatment, a majority use

stationary cutoffs that are unresponsive to the theoretical conditioning variable. In this

section, we examine individual-level results to better understand the within-subject response.

To describe individual behavior we define a simple type-scheme based on each partic-

16Results from this treatment were included in Table 3.1 for the columns examining Supergames 11–20 as
the treatment is identical up to this point, but not for the results examining Supergame 21.

17Every team chat from all S-Peer sessions are included in Appendix E for interested readers. Example
explanations: “As the rounds go on, the chances that the ball the computer is holding has a really small value
increases[...] because in previous rounds, if someone had a small value they probably switched and gave it to
the computer”;“So here are my thoughts: The chance of you getting a low # that someone else switched out
is based on which mover you are and what round it is. Typically I go with ˜ 50 if I am mover 1 or 2 on the
first round[...] Then drop down for each subsequent round. Because you get stuck with what you switch too
and as time goes on that is much more likely to be a low # ”.
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ipant’s choices in the final supergame.18 Specifically, we dichotomize subjects as either

Decreasing or Non-Decreasing, where for the Non-Decreasing types we further break down

the total fraction that are Stationary. A Decreasing subject is one whose final supergame

cutoffs satisfy µi
1 > µi

2 ≥ µi
3, where a Stationary subject satisfies µi

1 = µi
2 = µi

3. In addition

to the knife-edge definitions, we create a parallel family of definitions over a variable ε > 0,

where an ε-Decreasing type satisfies µi
1 ≥ µi

2 + ε and µi
2 ≥ µi

3, and an ε-Stationary type

satisfies |µi
1 − µi

2| , |µi
1 − µi

3| < ε.19

Table 3.2: Type Proportions

Subjects Decreasing Non-Decreasing

Total Stationary

Exact ε = 2.5 Exact ε = 2.5 Exact ε = 2.5

No Selection 33 3.0% 3.0% 97.0% 97.0% 57.6% 75.8%

Selection 66 42.4% 37.9% 57.6% 62.1% 36.4% 47.0%
Robustness:

S-Across 60 28.3% 23.3% 71.7% 76.7% 45.0% 60.0%
S-Peer 72 34.7% 30.6% 65.3% 69.4% 47.2% 55.6%

Selection+Robustness 198 35.4% 30.8% 64.6% 69.2% 43.0% 54.0%

Table 3.2 provides the type composition in our NS -treatment and S -treatments (includ-

ing robustness treatments). Focusing on the type definitions with ε = 2.5, we find that all

but one subject in our NS -treatment uses non-decreasing cutoffs, with a large (slim) majority

being ε (exactly) stationary. In contrast, pooling across our adverse selection treatments —

where we expect decreasing behavior —, we find that only a third of subjects use a decreas-

ing cutoff profile. Comparing the fraction of decreasing types between S and NS suggests

that approximately one in every three subjects is responsive to the theoretical prediction.

A majority of participants, however, are invariant to the key qualitative prediction, and are

instead better classified as using a stationary cutoff across the supergame.

Though our type dichotomy is based on behavior in the last supergame, the types are

highly predictive of the response within earlier supergames. We next examine behavior in

18The final supergame represents the point where subjects have maximal experience with the task and
where we ramp up the monetary incentive by an order of magnitude as this supergame is paid for sure.

19Figure A4.1 in the Appendix provides the type fractions as we vary ε from 0 to 10 to indicate the
robustness across definitions.
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supergames 6 to 20, where we elicit cutoffs using a partial strategy method, breaking it

down by blocks of five supergames. Note that for each block of five supergames we expect

to observe: (i) at least one measurement of the first-mover, first-round cutoff µi
1,1 from 87

percent of subjects; and (ii) at least one measurement of the within-subject dynamic response

between rounds 1 and 2 ∆µi := µi
j,1 − µi

j,2 from 97 percent of subjects (for all mover roles

j). For each data subsample we run random-effects regressions for each measure against

dummies interacting the subject’s type (based on supergame 21 behavior) and dummies for

each block of five supergames. The regression results are provided in Table 3.20

Table 3.3: Behavior by Type Across the Session

Type Supergames ∆Session

6–10 11–15 16–20

NS -Treatment (All)

First-round cutoff, µ1 +1.8
(2.4)

+3.9
(2.4)

+3.7
(2.4)

+2.0
(0.7)

???

Cutoff change, ∆µ +0.2
(0.8)

−1.3
(0.8)

? −0.4
(0.8)

−0.5
(0.8)

S -Treatment (Non-Decreasing)

First-round cutoff, µ1 −1.7
(1.6)

−2.6
(1.6)

? −4.1
(1.6)

??? −2.4
(0.8)

???

Cutoff change, ∆µ −0.3
(0.5)

−0.5
(0.5)

−0.9
(0.5)

? −0.6
(0.5)

S -Treatment (Decreasing)

First-round cutoff, µ1 −2.0
(2.3)

−3.8
(2.3)

−2.3
(2.3)

−0.3
(1.1)

Cutoff change, ∆µ −6.6
(0.7)

??? −7.9
(0.7)

??? −8.6
(0.7)

??? −2.0
(0.7)

???

Note: Coefficients (and standard errors in parentheses) derived from two random-
effects regressions from 1,125/1,233 observations of the first-mover first-round
cutoff/cutoff-change within supergame over 159 participants. Significance at the fol-
lowing confidence levels: ?–90 percent; ??–95 percent; ???–99 percent.

20For the adverse-selection treatments we pool subjects from both S and S-Across, as these supergames
are theoretically identical. We do not include data from S-Explicit or S-Within as the extensive-form games
here have distinct predictions, nor do we include data from S-Peer as the type classifications are made after
the chat rounds.
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Table 3.3 therefore provides the treatment-type averages for the first-round first-mover

cutoff, µ1 (measured relative to 51, the risk-neutral prediction), and the participant’s dy-

namic cutoff change within the supergame, ∆µ. Examining the first-round cutoffs (the deci-

sion point where there is no adverse selection in any treatment) we find that: (i) Subjects in

the NS treatment use cutoffs that are consistent with slightly risk-loving preferences, where

cutoffs increase with experience across the session.21 (ii) In contrast to NS, non-decreasing

subjects in the S -treatment use initial first-mover cutoffs that start out consistent with a

risk-neutral response, but which decrease significantly over the course of the session. (iii)

First-round–first-mover cutoffs for decreasing subjects are not significantly different from the

risk-neutral PBE prediction in any supergame block for the S -treatment and do not change

much over the session.

The second set of results in the table examine how subjects change their cutoffs within

the supergame in reaction to time, the theoretically relevant conditioning variable. We find

that: (iv) Subjects classified as non-decreasing in supergame 21 do not have a significant

cutoff response to time in prior supergames.22 This is true in environments both with and

without adverse selection. (v) Finally, subjects classified as decreasing in supergame 21 show

significant within-supergame reductions in the cutoff in earlier supergames, even in the 6–10

block. We also do find evidence that the magnitude of their within-supergame decrease over

time increases across the session. By the last supergame block the cutoff difference is -8.6,

which is not too far from the PBE prediction of 11.3.23

From Table 3.3 we conclude that the type classifications based on supergame 21 are

useful for understanding subjects’ behavior in prior supergames. While this result may

not be surprising for the non-decreasing subjects, it does speak to the stability of their

classification. For the decreasing types, the results indicate that these subjects understand

21The ∆Session column provides the difference between the first and third block of cutoff-eliciting su-
pergames.

22Non-decreasing subjects in supergames 16-20 in the S -treatment do have a significant decrease in their
cutoff. However, the change is quantitatively small (-0.9), and insignificant when we look at the joint
hypothesis across all three blocks (p = 0.304).

23Since subjects are equally likely to be assigned first, second or third-mover roles, the expected PBE
prediction takes account of the frequency of each mover role, so: 1/3(−16− 9− 7) = −11.33. While we can
reject the equilibrium point prediction (p < 0.001), the average decreasing subjects’ behavior after extensive
experience shows they internalize 76 percent of the predicted level.

58



the qualitative time component of the game early on.24 Moreover, the chat logs from the

S-Peer treatment suggest that approximately a quarter of the subjects use the chat to

explain the game’s dynamic adverse selection mechanic to others. The conclusion is that

the minority of decreasing subjects introspectively understand the environment, adjusting

their levels with experience. By the end of the sessions, these subjects average behavior is

approximately 4/5 of the way along the PBE prediction.

Second, the results suggest that the non-decreasing subjects become more pessimistic

over their stationary cutoff as the S -treatment session proceeds. This trend is absent in the

NS -treatment; where if anything the NS -subjects move in the opposite direction, becoming

more optimistic about the outside option as the session proceeds.25 What then is going on?

Before diving into our behavioral model, we shift briefly to standard explanations for

how an equilibrium “as if” might work without an introspective understanding of the game.

Through repeated exposure to the environment, a subject should be able to build a direct

understanding of how their resulting supergame outcome V responds to the observed sig-

nals — the exogenous time t at which they received information, It, and the value of the

initially held ball, θ0 — and their chosen cutoff rule µ = (µ1, . . . , µt, . . . , µT ). The expected

supergame value is given by:

EV (µ) =
∑
t

Pr {It} ·
[
Pr
{
θ0 < µt

}
· E
(
θR|It

)
+ Pr

{
θ0 ≥ µt)

}
· E
(
θ0|θ0 ≥ µt

)]
. (3.2)

Through access to enough data on past play an agent would be able to arrive at the

equilibrium policy vector µ? simply by forming an accurate estimate of the rematching value

at each point in time, E
(
θR |t

)
. If this conditional expectation is learned, risk-neutral agents

optimize their outcome by setting their cutoff at each point in time to µ?
t := E

(
θR |t

)
. In

the long-run, any subject that switches their assigned ball with positive probability will be

able to generate an accurate estimate of E
(
θR |t

)
through sample averages. Given that

exchanging the lowest-possible-value ball (1) is a strictly dominant response and that the

24Looking just at decreasing types, 75–80 percent have a cutoff-difference in excess of -2.5 in each of the
prior supergame blocks. Of the 29 subjects with data in all three blocks, 21 are consistently negative in all
three.

25Given the between-subject identification, we should clarify that about 30 percent of the subjects classified
as non-decreasing in NS would be expected to be decreasing types were they counterfactually placed in our
S environment. However, we cannot separately identify these sophisticated subjects in the NS environment.
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receipt of information It is exogenous with full support, any participant that allows for

the expected rematching value to be time dependent will in the steady-state act as if they

introspectively understand the best response.

While conditional expectations can be quickly estimated by looking at the average of

recent experiences, understanding that conditioning is required is harder to learn. One of

the main findings from our experiments is that a majority of our participants are entirely

insensitive to time, even after 21 supergame repetitions. Moreover, for those participants

that do condition on time, it does not seem that they reach this understanding through

trial and error. Instead, they seem to do so early on in our sessions through an introspective

understanding from the game’s description.26 While sophisticated types learn the level of the

effect, we do not see many ‘eureka’ moments where a stationary subject becomes decreasing

midway through the session.

In principle the majority’s failure to condition could be captured by behavioral models

such as Cursed Equilibrium [Eyster and Rabin, 2005], where boundedly rational agents take

entirely unconditional expectations. However, this type of model would lead to no cutoff

differences for cursed players between the S - and NS -treatments. Instead, we find significant

differences between the treatments for the non-decreasing types, where non-decreasing S -

treatment participants use lower cutoffs (relative to NS ), making their failure to condition

less costly overall.

Long-run behavior for the stationary participants is therefore poorly modeled by Cursed

Equilibrium, which does not allow for the cursed types to adapt their unconditional ex-

pectations. Instead we examine an alternative model with steady-state learning for the

stationary types. While we reject the simplest implementation of this behavioral model

(learning the unconditional value of rematching), we show that a model based on the uncon-

ditional supergame value (i.e., including outcomes both kept and rematched) performs well

at explaining the results. However, recognizing that this model is post-hoc, we go on to test

26The best predictor for being classified as a decreasing type in the selection treatments is score on
the cognitive reflection task (CRT). Marginal effects from a probit estimate suggest each correct answer
on the 3-question CRT increases the likelihood of being classified as a decreasing type by 23 percent (
p = 0.000). In contrast, while there are predictive effects on being a sophisticated decreasing type from
other covariates—gender (higher probability for males), risk-aversion (higher probability with greater risk
aversion) and behavior in a Monty Hall problem (higher probability for those with a sophisticated response)—
these covariates are only marginally significant with p-values in the 0.069–0.079 range.
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the model out-of-sample with two additional experimental treatments.

3.5.3 Maintained (but Wrong) Models of the World

Our behavioral model assumes that a fraction λ of the population is boundedly rational,

and ignore time as a conditioning variable; the remaining fraction (1−λ) correctly condition

on time and best respond.

Our initial approach for modeling the stationary boundedly rational type was to have

them be uncertain over the rematching outcome θR. While a best-responding agent will

set their cutoff at time t to µt = E
(
θR |t

)
, agents that ignore time but do respond to the

experienced outcomes will in the steady state set their cutoffs to

µ = EθR
∑
t

Pr {It} · E
(
θR |t

)
. (3.3)

Given the game’s structure, for any λ and boundedly rational player cutoff µ we can solve

for the equilibrium strategies of the best-responding player (a time-varying cutoff µ?
t (λ, µ))

through the rematching random variable θR(t). The behavioral model is then closed by

finding the fixed-point solution µ? to equation (3.3): the stationary cutoff that matches the

unconditional value of rematching.

Under risk-neutrality the model predicts the sophisticated type’s cutoffs in the selection

treatment are almost-identical to the PBE prediction for all values of λ ∈ [0, 1), and predicts

the boundedly rational player uses a constant relative cutoff of µ? = −15.27 In contrast,

because the rematching model is well-specified for our NS-treatment, the prediction here is

that both types use a stationary relative cutoff of zero.

A behavioral model focused on learning the rematching value reproduces a qualitative

feature of our data: boundedly rational players do react to the presence of adverse selection

(differences between the NS and S treatments), adjusting their levels in response. However,

quantitatively the model’s prediction for the boundedly rational types is too large at -15,

27Changes in λ do not lead to large changes in the model predictions—a function of the previously alluded
to property that best response in our specific game is not sensitive to the level of other players’ cutoffs. By
way of example, when λ = 1/10 the unconditional value of rematching with a cutoff that keeps objects of 36
or better (a relative cutoff of -15) is 35.53; when λ = 9/10 the unconditional rematching expectation is 35.64.
For the sophisticated types, across this same range of λ the cutoffs used are identical except for two time
periods where the cutoff differs by 1.
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as the average relative cutoff used by non-decreasing types in the final supergame was -

5.3. Matching the qualitative feature but missing the level could plausibly be due to other

assumptions in the model.

Risk neutrality is one strong assumption in the model, and one that is rejected by a

separate risk elicitation at the end of our sessions. We ask subjects to make choices over

a sequence of objective lottery pairs and find that most participants exhibit risk aversion.

Using the median participants’ measured risk preference, the prediction for the boundedly

rational type in the S -treatment is a relative cutoff of -34.28 We repeat the same exercise

for the NS treatment and estimate the relative cutoff the subject should use. The median

subject’s behavior in our objective risk elicitation suggests a relative cutoff in the NS treat-

ment of approximately -21. Rationalizing the quantitative selection effects observed in our

experiments would instead require the large majority of subjects to be risk loving. The

failure of this first model led us to conduct a number of exploratory regressions examining

what aspects (if any) from the previous supergame experience and measured risk preferences

predicts non-decreasing participants final cutoffs.

Pooling together non-decreasing subjects from the S- and NS-treatments,29 we regressed

the supergame 21 cutoff on a number of observables. In the appendix we lay out all of

the specifications examined, however, here we focus on a single summary regression (that

maximized the adjusted R-squared).

µ̂ = − 4.5
(1.5)
· S − 0.1

(2.5)
·NS + 3.3

(1.6)
· σ̂
(
V i

)
+ 1.7

(1.6)
· σ̂
(
θ
R

i

)
+ 3.9

(1.3)
· σ̂
(
Riski

)
. (3.4)

The first two terms in the regression allow for separate intercepts in the S- and NS- data.

The last three terms represent subject-level variation (each measured in standard-deviations

from the sample average) over: (i) V i, the average experienced final outcomes in the first 10

supergames; (ii) θ
R

i , the average experienced rematching outcome in the first 10 supergames

28Our elicitation is designed to estimate a subject-level CRRA coefficient ρ for the utility function u(x) =
x1−ρ

1−ρ . Maintaining CRRA we calculate the subject’s relative certainty equivalent as Riski = u−1
(
Eu(θR)

)
−

51.
29Our non-decreasing sample is made up of 32 subjects from NS, 41 subjects from S, and 46 subjects from

S-Across which had an identical supergame. We do not include S-Peer as the final supergame choices are
contaminated by the chat.
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(the final outcome conditional on rematching); and (iii) Riski, the subject’s risk preference

from the elicitation task, measured as a certainty equivalent.30

The significant variables in the regression are: (i) the measured risk preference, with an

increase in the final cutoff of 3.9 per standard deviation increase in the calculated certainty

equivalent for a fresh draw (p = 0.003); and (ii) the average final outcome in supergames

1–10, with an increase in the final cutoffs of 3.3 per standard deviation increase (p = 0.031).

After controlling for risk aversion and the experienced outcomes (a function of treatment)

we do not find significant differences between the S- and NS-treatments (p = 0.120). Neither

do we find significant effects from the subject’s rematching experiences (p = 0.291).

These regression results led us to consider another explanatory behavioral model. Instead

of rematching outcomes, we shifted the feedback variable for the boundedly rational subjects

to be the final supergame values. Subjects’ cutoffs are set to the unconditional average of

their previous supergame-level outcomes, and not just the rematching outcomes. The new

equation for the stationary type’s cutoffs is:

µ = EV
∑
t

Pr {It} ·
[
F (µ) · E

(
θR |t

)
+ (1− F (µ)) · E

(
θ0
∣∣θ0 ≥ µ

)]
. (3.5)

The learning model defined by (3.5) has the boundedly rational type’s expectation formed

over final supergame values which mixes positively selected outcomes from retained high

values to the adversely selected outcomes from rematching. For our S -treatment the risk-

neutral prediction for the boundedly rational type using a final-value referent is a relative

cutoff of µ? = +10. Using this rule, a participant would compare her current object to her

previous supergame average outcome of just over 60, and so would keep all objects with

values higher than 61, and give up all lower values. Moreover, unlike the rematching-based

referent, this learning model is also misspecified for the NS treatment, where a boundedly

rational type would use a cutoff of +18.

This second behavioral model is also quantitatively far from the observed behavior under

risk neutrality. While the model predicts a relative cutoff of +10 for the boundedly rational

30We also examined experience in later supergames, but did not find significant effects. Convergence seems
to happen quite quickly.
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type in S, the average non-decreasing participant’s supergame-21 cutoff here was -5.3.31

However, unlike our initial model, the measured risk-aversion is now able to rationalize

observed behavior across both treatments.32

The behavioral model where the boundedly rational agents use their final supergame

outcomes as a reference to decide whether or not to give up a current value remains easy to

solve when accounting for risk preferences. We illustrate the behavioral model’s prediction as

we shift the underlying risk preferences in Figure 3.4. In terms of preferences, we use a CRRA

utility function within the model, varying the coefficient ρ. Rather than the coefficient ρ,

the horizontal axis in 3.4 indicates the certainty equivalent to a single draw from our value

distribution, expressed as a relative cutoff, CE(ρ). Risk neutrality is therefore located at

0, where greater risk aversion is indicated by increasingly negative relative cutoffs. On the

vertical axis, we indicate the learning model’s prediction (based on final outcomes) for the

boundedly rational type under the relevant risk preference.33

The solid line in Figure 3.4 indicates the cutoff in our S -treatment, while the dashed line

indicates the model cutoff in NS. Both predictions are increasing on the certainty equivalent

(decreasing on risk aversion). Superimposed on the boundedly rational model predictions, we

indicate elements from the data. The interquartile range and median for the non-decreasing

participants’ risk preferences ([CE(ρ̂0.75),CE(ρ̂0.25)], and CE(ρ̂0.50), respectively) are shown

as a gray band/line running vertically. Running horizontally, we illustrate the average final-

supergame cutoffs for non-decreasing subjects, labeled µ̂S and µ̂NS, for the S- and NS -

treatments, respectively.

Using the median risk coefficient of ρ̂0.5 = 0.73, which has a certainty equivalent of -22,

the behavioral model squares the conflict between the elicited risk aversion and some of

the seemingly risk-loving choices in the NS -treatment. At the median level of elicited risk

aversion, the boundedly rational model predicts a steady-state cutoff of µ̄V = 53 in the NS -

treatment and µ̄V = 43 in the S -treatment, comparing well to the observed supergame-21

31Similarly, the average relative supergame-21 cutoff in NS was +2.0, far from the predicted cutoff of +18
even if we were to allow for a half of the participants being sophisticated types with a zero cutoff.

32Recall that equation (3.4) indicates that measured risk preferences do have a strong predictive effect.
33For this figures we fix λ = 2

3 . However, there is again little substantive change as we vary λ. In Figure
XX in the Online appendix we present the analog for Figure 4 over the S-treatment predictions at λ = 1

10
and λ = 9

10 .
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Figure 3.4: Boundedly Rational Agent Cutoffs by Risk-Aversion

Note: Shaded region shows interquartile range for elicited values for ρ among non-decreasing subjects.

cutoff for non-decreasing subjects of 53 and 45.7, respectively.34

The stationary behavioral model that has subjects comparing their drawn objects to

a referent expectation based on final outcomes thus matches the aggregate results in both

treatment and control, once risk aversion is considered. However, we should note that we

did not consider this model prior to conducting our main experiments, and our arrival at it

came about as an ex-post description of behavior. The model requires two distinct features

to accurately predict levels: that subjects form expectations over final outcomes and not

rematching outcomes (this was not obvious to us at the start of the study); and that risk

aversion modifies the cutoff from the risk-neutral level (this was anticipated, hence the risk

elicitation).

34For the interquartile range of risk parameters [0.44, 0.93] the steady-state prediction for the boundedly
rational types predicts values of µ̄V between 60 and 46 for the NS -treatment (subject data is 60.0 to 47.8)
and between 52 and 36 for the S -treatment (subject data is 51 to 40).
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One way of addressing the post-hoc nature of the model is to look at subject-level varia-

tion. As the model was formed from an examination of aggregate behavior, individual-level

variation can help us identify the two mechanisms that underlie it. In the Appendix (Ta-

ble A.5.1) we provide subject-level regressions that do just that, where we show that the

non-decreasing subjects’ final supergame 21 cutoffs vary significantly and in the direction

of the behavioral model with: (i) their idiosyncratic experienced final outcomes in prior su-

pergames; and (ii) their elicited risk aversion. While individual heterogeneity corroborates

the two mechanisms in the model, a stronger test requires us to assess the model out of sam-

ple. Stronger still is to move out of context to a simpler strategically distinct environment.

3.5.4 Out-of-Sample Test of Behavioral Model

To test our boundedly rational model we conduct two further robustness treatments,

labeled S-Random and S-Fixed. These treatments were planned and conducted after for-

mulating the model. The treatments’ three aims were to: (i) simplify the environment to

three movers acting at fixed points;35 (ii) double the number of supergame repetitions (made

feasible through the simplification); and (iii) vary the experience that individual subjects

obtain, in a way that alters the boundedly rational model but not the Perfect Bayesian

(nor Cursed) equilibrium prediction. In achieving these aims the new treatments provide a

strong examination not only of the steady-state learning model’s predictive power, but also

a validation of the key learning mechanism within the model.

The S-Random and S-Fixed environments both have the three movers act sequentially,

each knowing that the previous mover observed their held-object’s value for sure and made

a keep/switch decision. The risk-neutral PBE prediction for the environment has the first

mover use a cutoff of 51 (no adverse selection), the second mover 32 (-19), and the third

mover 22 (-29). The reduction in the expected rematching outcome across the supergame

is therefore quantitatively similar to our S environment,36 but with the decrease happening

more quickly.

35We thank Dan Levin for suggesting this modification.
36Adverse selection of 0 for a first mover in the first round; -20 for a second-mover in round two, and -30

for a third mover in the last round.
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In the S-Random treatment 72 subjects played 40 supergames, where the mover roles—

first, second or third—, are randomly assigned at the beginning of each new supergame.

In the S-Fixed treatment a further 72 subjects also played 40 supergames, but the three

roles were randomly assigned at the start and held fixed throughout the session (so each

subject experiences the same mover role across the entire session).37 In supergame 41 of

both treatments subjects are given an equal chance of being assigned to each role, and are

asked to provide cutoffs for each roles using a strategy method (similar to supergame 21 in

the initial treatments).38 Dichotomizing subjects into Decreasing/Non-decreasing by their

supergame 41 behavior we find that 46 percent are decreasing in the random-role treatment,

and 33.3 percent with fixed roles.

The out-of-sample prediction for our model relates to the non-decreasing types. Specif-

ically, the boundedly rational model predicts an adverse selection effect of -8 (under the

median risk parameter ρ = 0.73) for the non-decreasing participants in S-Random. This

prediction balances out the (equally likely) chances of being a first, second or third mover.

In contrast, for S-Fixed the subjects only experience outcomes for a single role. As such the

same model predicts different steady-state behavior for the boundedly rational type: +2 for

the first mover, -9 for the second mover and -14 for the third mover.

In Table 3.4 we examine the supergame 40 cutoffs of subjects in the two treatments

through a joint regression, where we include dummies for all role-type and treatment in-

teractions (and so exclude the constant).39 We report regression results that only include

the ε−non-decreasing subjects — 87 out of 144 subjects. For each estimated coefficient we

then test whether it is significantly different from the PBE prediction, and from the relevant

behavioral prediction µ̄V . Moreover, in the last four columns we present joint tests across

the vector of three coefficients against: (i) the PBE prediction; (ii) the prediction for the

boundedly rational type in the fixed-role treatment; (iii) the prediction for the boundedly

rational type in the random-role treatment; and (iv) a null of cutoff stationarity across the

37See also Fudenberg and Vespa [2018] for an investigation of the effect of experiencing different roles in
a signaling game.

38Note the slight asymmetry in supergame 41: in S-Random we ask for strategies over roles the subject
experienced; in S-Fixed this question asks them to make decisions outside of their previous experience within
the experiment.

39We focus here on supergame 40 as the last-round behavior as supergame 41 was used to classify partic-
ipants.
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Table 3.4: Supergame 40 Relative Cutoffs: Out-of-Sample Test

Treatment Mover
Joint Tests

(p-values)

First, µ̂1 Second, µ̂2 Third, µ̂3 µ? µ̄Fix.
V µ̄Rdm.

V µ1 = µ2 = µ3

S-Fixed -1.9 -9.5 ??? -19.4 ?? .00 .44 .03 .01

S-Random -9.5 ? -12.2 -7.2 ??? .00 .03 .84 .70

Note: Significantly different from the relevant scalar PBE prediction in µ? = (0,−19,−29) at the following
confidence levels: ? - 90 percent; ?? - 95 percent; ??? - 99 percent. Significantly different from relevant scalar
treatment-specific behavioral prediction in µ̄Fix.

V = (2,−9,−14) or µ̄Rdm.
V = (−8,−8,−8) at the following

confidence levels: • - 90 percent; •• - 95 percent; ••• - 99 percent.

different roles.

The results validate the boundedly rational model, both quantitatively and qualitatively.

For the quantitative result, and focusing on the joint tests, we reject the PBE prediction with

99 percent confidence in all tests. Similarly, we can reject the other treatment’s behavioral

prediction with at least 95 percent confidence in all cases. In contrast, for the relevant be-

havioral prediction µ̄V , we cannot reject in either the fixed or random treatments. Moreover,

we fail to reject the behavioral model in all six tests against the role-specific cutoffs.

Qualitatively, our two treatments are predicted to have distinct outcomes under the

behavioral model. Though all of the non-decreasing subjects reveal a misunderstanding

of how mover-roles affect expected values in their last supergame, we do observe distinct

behavior across roles in the two treatments. In the fixed role treatments, the non-decreasing

subjects (randomly assigned to each role) have significantly different cutoffs from one another,

and we can reject stationarity across roles with 99 percent confidence. In contrast, in the

treatment with random roles, subjects taking on each role in supergame 40 (again, randomly

assigned) do not have distinct cutoffs from one another, and we fail to reject stationarity.

As such, this represents a strong test of the model’s mechanism. We summarize the result

as follows:

Result 4 (Behavioral Model). Long-run behavior for participants in our dynamic adverse
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selection environment strongly respond to experience. However, a majority of subjects never

condition on time. Their long-run choices can be modeled with a boundedly rational steady-

state model, with distinct predictions from both the PBE and from boundedly rational models

of initial response.

3.5.5 Dynamic Adverse Selection in Decision Problems

Our S -treatments (and behavioral model) are derived for behavior in a strategic setting,

where part of the problem is forming a coherent model of the other players. In contrast, our

NS control is a decision a problem, without any ambiguity over others’ play. In this section,

we outline two decision-problem treatments that have dynamic adverse selection hardwired

into the environment. Across these two treatments we show that (i) most participants still

fail to account for selection, indicating that the failure is in being able to understand how

selection affects the expected outcomes; and (ii) learning effects are attenuated, with agents’

misspecified models of the environment being less affected by experience.

Our decision problem variant of the S -treatment makes the dynamic adverse selection

in the game explicit. Per our other treatments, the agents make one and only one decision

at an exogenously determined time — rounds one, two, or three. However, unlike in our

NS -treatment, where choosing to rematch leads to an equal chance of matching with each of

the three objects in the rematching pool, in our explicit selection treatments the rematching

pool changes by round. Participants are informed that if they switch their held object in

round one they will be randomly and fairly matched to one of the three rematching objects.

If they switch in round two, the best rematching object is excluded, and they will be fairly

rematched to the other two. Finally, if they choose to switch in round three both the best

and second-best rematching objects are excluded, forcing the rematching object to be the

worst of the three.

The expected value of rematching in rounds one to three can be calculated via three

order statistics: the min, median and max of three draws, θmin = 16.4, θmed = 50.5 and

θmax = 94.6, respectively. The expected rematching in round one is the average across all

three 1/3(θmin + θmed + θmax) = 50.5, in round two it is 1/2(θmin + θmed) = 33.5, while in round
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three rematching has value θmin = 16.4.

Our two treatments hold constant this structure, but differ in the exogenous likelihoods

of seeing the initially held object’s value in each period. Our S-Dec environment mirrors

the standard games with a chance of observing the held ball in rounds 1–3 of (1/2, 1/4, 1/4).

Our S-Dec-High environment increases the likelihood of observing the held ball in the later

periods, with an observation chance in rounds 1–3 of (1/4, 1/4, 1/2).40

The treatment hypotheses are therefore that: (i) A large majority of participants will

continue to make mistakes through the use of stationary strategies across the supergame

periods; and (ii) for the stationary agents, the (constant) cutoffs will be lower on S-Dec-High

as this treatment results in more more extensive experience with the very bad outcomes.

Table 3.5: Behavior by Non-Decreasing Types Across the Session

Outcome Supergames ∆Session

6–10 11–15 16–20

S -Dec

(67% non-decreasing)

First-round cutoff, µ1 +3.8
(3.1)

+2.8
(3.1)

+3.7
(3.1)

−0.1
(0.7)

Cutoff change, ∆µ −0.3
(1.3)

−0.2
(1.2)

−1.3
(1.2)

−1.0
(1.1)

S -Dec-High

(55% non-decreasing)

First-round cutoff, µ1 +2.0
(3.4)

+2.4
(3.4)

+0.2
(3.4)

−1.8
(0.8)

??

Cutoff change, ∆µ −0.1
(1.2)

−0.5
(1.3)

+0.4
(1.3)

+0.5
(0.9)

Note: Coefficients (and standard errors in parentheses) derived from two
random-effects regressions from 1,080/688 observations of the first-round
cutoff/cutoff-change within supergame over 72 participants. Significance at
the following confidence levels: ?–90 percent; ??–95 percent; ???–99 percent.

Similar to our S-treatment, aggregate behavior is qualitative in line with the PBE pre-

dictions, but the quantitative predictions are off.41 As before, this is driven by heterogeneity:

40In the instructions we move from using a coin-flip metaphor to using an urn draw without replacement.
41Table XX in the appendix presents full results from the S-Dec and S-Dec-High treatments across all
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a majority of subjects are classified as ε-non-decreasing — 67% for S -Dec and 55% for S -

Dec-High. Here we focus on the behavior of the non-decreasing types. Table 3.5 reports

regressions results with first-round cutoffs and changes from first to second round cutoffs as

outcomes, broken down by blocks of five supergames.

We observe two main results. First, it does not seem to be the case that thinking about

others’ beliefs is the major hurdle for achieving equilibrium. This is in line with previous

work by Charness and Levin [2009] and Esponda and Vespa [2014]. The second interesting

result is that there appears to be less learning going on relative to the Selection treatments.

In the S -Dec treatment, we find no learning effects across the periods, and we find only a

small effect on our S -Dec-High treatment where we increase the probability of late-round

decisions and thus increase the likelihood of experiencing bad outcomes.

3.6 Conclusion

In this study, we use a novel experimental design that implements a common-value

matching environment. The environment sets up a dynamic adverse selection problem, sim-

ilar in its strategic tensions to those present in labor markets, housing markets, and mating

markets, among others. The main prediction is that subjects adapt to the dynamic adverse

selection by conditioning their responses on time, where the particulars of our environment

make this qualitative prediction robust to risk preferences and the beliefs over the quantita-

tive response of others. Moreover, our environment is sequential with directly experienced

conditioning variables, where the strategic thinking required in is entirely backwards-looking.

As such, the previous literature should make us optimistic for equilibrium in this setting.

However, while a substantial minority do respond to the adverse selection in a discerning

way, the majority fail to adjust their valuations over time, maintaining a stationary response.

A number of additional treatments show the results are robust to changes in the en-

vironment. Three robustness treatments increase the provision of feedback, while a fourth

treatment allows for peer feedback. Taken together with a complementary result in Mart́ınez-

rounds.
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Marquina et al. 2017 in a simultaneous setting without uncertainty, our results suggest that

the gains from sequentiality in previous studies were primarily driven by removing uncer-

tainty. Further, while our sophisticated minority are able to clearly explain the adverse-

selection mechanism to their peers, very few of the stationary subjects actually understand

the advice, and instead stick with their stationary strategies.

While the modal stationary response place a cloud over the equilibrium predictions for

our dynamic environment, we do see a silver-lining: Our sophisticated minority seem to

understand the equilibrium introspectively. Their valuations are decreasing with time from

the first supergames that we can observe this response; and the fact that they can explain

the game’s selection mechanic to others speak to their deeper understanding. When we think

of professionals operating in dynamic markets—for example in finance, insurance, and labor

markets—selection forces would seem to make the behavior of our sophisticated minority

more representative.

Outside professional settings where expert decision-makers are likely to introspectively

understand the strategic forces, our results point to the need for alternative theoretical

models.42 In our discussion section we consider a boundedly rational model that can help

explain long-run outcomes. In this steady-state learning model, subjects learn the overall

expectation of the supergame, which they use to make their (stationary) decisions. Two new

treatments provide an out-of-sample test for this behavioral model’s long-run prediction,

where the results provide a strong validation.

In two simplified version of our original setup, we vary whether subjects experience

all conditioning outcomes, or just one. Consistent with the predictions of the behavioral

learning model, we find that subjects who only experience outcomes at a fixed point in time

have a starkly different responses to those who experience outcomes at a random point in

time, matching both the directions and levels predicted by the behavioral model. Future

work using variations of our experimental setting can continue to probe for patterns and

42The results also point to the power of informational nudges. For example, Hanna et al. [2014] show
that seaweed farmers fail to optimize production even when given all the relevant data, but pointing out
the relevant conditioning variable corrects the problem. Behavioral models are useful here, as they can help
us understand whether the correcting nudge produces societal benefits. For example, in a CV audit study
Bellemare et al. [2018] document a failure to condition on unemployment duration when selecting candidates.
Correcting this non-response might have a social cost if the planners’ aims are the reduction of persistent
unemployment.
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regularities in subjects’ maintained models, thereby sharpening the power of behavioral

theoretic predictions as a complement to classical ones.
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4.0 Unawareness and Risk Taking: The Role of Context

4.1 Introduction

Economic agents must often make decisions in environments they do not fully understand,

either because the environment is too complicated or because the complexity is not readily

apparent, leading agents to learn less than they should. As novel information is discovered,

agents’ perceptions of the world change, potentially leading to changes in behavior beyond

what can be attributed directly to the information acquisition. For instance, the discovery

of HIV made salient the possibility of a permanent and life-threatening sexually transmitted

disease; the 2008 financial crisis shed a bright light on the systemic correlation in the returns

to mortgage backed securities, hitherto unrecognized by economic agents ; the 20th century’s

struggle with nuclear arms and climate change illuminated humanity’s ability to alter entire

ecosystems.

Following such revelations, behavior is bound to change; although how, and, importantly,

why, is much less clear. On the one hand, these discoveries might lead to learning useful

information, in which case changes in behavior can be attributed to standard conditioning on

this new information. For example, condom use increased substantially as the result of AIDS

education Moran et al. [1990]. On the other hand, the very act of learning about previously

inconceivable events might change agents’ perceptions of their own knowledge. The discovery

of a novel (and at the time, deadly) sexually transmitted disease might raise alarms about the

existence of yet other undiscovered consequences of unprotected sex, resulting in an increase

in safer sex practices even when participants are known to be HIV-negative. Likewise, even

after the dust has settled on mortgage backed securities, investors might act more cautiously

in anticipation of the next unforeseen event. In other words, exposure to unawareness can

lead agents to change their preferences in ways not directly attributable to information

acquisition.1

1There are many different definitions of unawareness and our upcoming discussions would meet some, but
not others. We provide a formal treatment in Section 4.5, but as a working definition we take unawareness to
be the inability to properly understand the space of available actions and the consequences of those actions.
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Being made aware of one’s own unawareness, and the resulting change in beliefs and

behaviors, is a topic mostly absent from economic investigations, likely due to the difficulty

in modeling and measuring unawareness. In this paper, we propose a new method to study

unawareness in a controlled laboratory setting. Our experimental design creates unawareness

in a natural way: subjects are given a task whose complexity is not obvious. This allows

us to distinguish between exposure to complexity (simply doing the task) and exposure to

unawareness (recognizing that one’s understanding was incomplete). Specifically, we ask

subjects to find combinations of 3 cards, from an array of 12 cards, that conform to a

logical pattern. In our control treatment, subjects are told beforehand the total number of

valid combinations, leaving no room for unawareness. We induce unawareness in two other

treatments by (1) withdrawing any reference to the number of valid 3-card combinations

or (2) providing the information only after the task is completed. The experimental design

also allows us to consider subjects’ introspection: their awareness of their own unawareness,

which is measured by performance self-assessments.

We are interested in studying the impact of experiencing unawareness on risk prefer-

ences, which we measure using a version of the investment game Gneezy and Potters [1997].

Additionally, for each unawareness treatment we describe the risky asset either in a neutral

way—using virtual coin flips—or in a framed context that invokes the complex task. We

find that exposure to unawareness alone does not affect risk taking: there are no differences

in the amount invested in the risky option across our unawareness treatments. However,

investment in the risky asset is significantly lower when the risky decision is framed in con-

nection to the complex task, and only for the treatments that induce unawareness. To follow

on our earlier examples, we can expect post-2008 investors to become more risk averse in

their investment decisions but not in choices in unrelated domains, such as speedy driving,

drug use, or unprotected sex. Likewise, the discovery of HIV might well have changed sexual

practices without inducing safer portfolio choices.

Our paper is related to a growing theoretical (Modica and Rustichini, 1994, Dekel et al.,

1998, Karni and Vierø, 2017, Piermont, 2019a; among others) and experimental Mengel

et al. [2016], Ma and Schipper [2017] literature studying the properties and consequences of

decision-making under unawareness. In particular, Mengel et al. [2016] find that exposure
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to unawareness causes the decision-maker to be more sensitive to objective risk as measured

by the variance of a simple lottery. Ma and Schipper [2017], on the other hand, find no

treatment effect on risk taking using a different manipulation to induce unawareness. Our

results support the conclusion of a null effect on risk preferences, while highlighting the

context-dependent nature of the impact of unawareness on decision-making.

There are two important distinctions between ours and the earlier experiments by Mengel

et al. [2016] and Ma and Schipper [2017]. First, our design allows for having a measure of

subjects’ awareness of their own unawareness. As discussed in detail in Section 4.4.2.3,

this measure mediates our treatment effects. Another important distinctive feature of our

design is that the unawareness-inducing task is separate from the risk elicitation task, while

both earlier studies use the same task both to induce unawareness and to measure risk

preferences. We believe that such distance brings the design closer to real-world counterparts

and , importantly, allows us to modulate the context of in which we assess risk taking. It

likely also makes our experiment less susceptible to experimenter demand effects.2

The paper is organized as follows. Section 4.2 describes our novel experimental task.

Sections 4.3 and 4.4 present the experimental design and results for our first-stage and main

experiments, respectively. Section 4.5 provides a formal treatment of unawareness, and

Section 4.6 concludes.

4.2 The Set Finding Task

To induce unawareness in subjects, we used a pattern matching task based on the card

game SETTM. A card in our game is described by a triple 〈number, color, symbol〉, where

n ∈ {1, 2, 3, 4}, c ∈ {purple, red, orange, teal} and s ∈ {triangle, square, circle, star}. The

cards were presented visually, as in Figure 4.1, where the card 〈n, c, s〉 had n c-colored s-

shaped symbols (i.e., the third card in Figure 4.1 is 〈3, orange, circle〉 and has 3 orange

circles). With three attributes each ranging over four values, there are a total of 64 unique

cards. We refer to these 64 cards as the deck.

2See de Quidt et al. [2019] for a comprehensive survey on experimenter demand effects.
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Figure 4.1: Example Of Cards Used In The Experimental Task

For the main task of the experiments, subjects were shown a selection of 12 cards drawn

from the deck, which we refer to as their hand. From their hand, subjects had to select groups

of three cards to form sets.3 A set is any group of three cards such that the value for each

attribute, 〈number, color, symbol〉, is either the same for all three cards or pairwise distinct

for all three cards. Formally, a group of three cards,
(
〈n1, c1, s1〉, 〈n2, c2, s2〉, 〈n3, c3, s3〉

)
, is

a set if

a1 = a2 = a3 or a1 6= a2, a1 6= a3, and a2 6= a3,

for each attribute a ∈ {n, c, s}.
Figure 4.2 provides an example. The first row constitute a set, whereas the second does

not, as s1 = triangle, but s2 = s3 = circle.

Figure 4.2: A Set And A Non-Set

The set-finding task has a number of desirable properties. First, the space of valid

strategies is easy to delineate. That is, the rules of the game and the actions and consequences

available to the subjects are straightforward to describe; the task is not open ended or

3The experimental design is explained in detail in Sections 4.3 and 4.4.
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ambiguous. Second, despite it being easy to verify if three cards form a set, finding sets is

hard, and the space of possible strategies (i.e., efficient ways to search for sets) is enormous

and very hard to properly understand. Observing a hand of 12 cards does not easily reveal

how many possible sets might be found from it, and even after interacting with the task,

subjects make large mistakes when estimating their performance. Third, and to the best of

our knowledge, the task has never been used in experiments before. Hence most subject will

not have prior experience interacting with it. Fourth, the task appears to be gender and

demographic neutral. And finally, it is a lot of fun.

Our experimental design is divided in two stages. In the first stage, we conducted sim-

ple experiments to measure participants’ understanding and performance in the task. As

explained in more detail later, we tested different combinations of task difficulty and levels

of monetary incentives, and elicited participants’ beliefs about their own performance. We

used these first-stage results to aid in the design our main experiments, in which we study

the impact of unawareness on risk preferences. Table 4.1 provides descriptive statistics for

both stages. The subsequent Sections 4.3 and 4.4 describe each stage’s design and results in

detail.

Table 4.1: Descriptive Statistics

Experiments

First-stage Main

Number of subjects 246 971
Average payment (usd) 2.15 2.04
Completion time (min) 14.0 10.6
Female .43 .49
Age 18-30 .38 .30

31-45 .46 .46
46-65 .16 .20
65+ .00 .04

Education High-school .11 .11
Some college .38 .35
College .42 .39
Masters+ .09 .15

Note: Table contains demographic information and descriptive
statistics for participants in the first-stage and main experiments.
Includes only participants that correctly answered the comprehen-
sion quiz and completed the experiment.
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4.3 First-Stage Experiment

4.3.1 Experimental Design

We ran four sessions of the first-stage experiments on March and April of 2019. The

experiments were done online using Amazon Mechanical Turk. We advertised it as a “short

decision-making experiment” with a guaranteed payment of $0.50 upon completion and the

chance of an additional payment.4

The experiment begins by describing the composition of the cards and the resulting

64-card deck. We then describe the properties of a set—using a number of examples for

clarity—and have subjects complete a comprehension quiz which asks them to classify five

different 3-card combinations as either a set or not a set. Only subjects that answered 4 or

more questions correctly were allowed to continue; the others were automatically eliminated

and paid the $0.50 participation fee.5

The experiment consisted of two rounds. For each round subjects were shown a 12-card

hand and paid a piece rate for each set found during a 120-second time window. Subjects

faced a 5-second penalty if they either selected three cards that did not form a set, or if they

selected a set that had already been found. This rule was intended to minimize the incentives

for random clicking. After each round, participants were asked to estimate the share—from

0 to 100%—of the total number of sets they believed they had found. We incentivized this

elicitation by paying an extra 50 cents if the estimate was within 5% of the true value, on

either side.6

We implemented a 2 × 3 design with the goal of assessing subjects’ performance and

understanding of the task, with both between and within-subject variation. First, each

subject was randomly assigned to either the low ($0.10) or high ($0.35) piece rate treatment.

4See Appendix ?? for complete screenshots and instructions. Interested readers can complete the experi-
ment by accessing https://faep.herokuapp.com/ and typing as a username any combination of 5 or more
alphanumeric characters.

5We used four different quiz versions that we believed, ex-ante, to be equally difficult. Ex-post analysis
revealed that one version was relatively hard and another version was relatively easy (see Appendix ?? for
details). Note, however, that since treatments were randomly assigned independently of the quiz version,
differences in quiz success rates do not affect our results.

6Because of a coding error, we lost approximately one third of our belief-elicitation data. Information on
which author was responsible for the mistake is available upon request.
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Second, we randomly assigned one of four different types of hands at the round level: with 10,

15, 23 or 28 total number of sets. Each hand was randomly selected, without replacement,

from a collection of 20 possible hands, 5 of each type. Subjects did not get any information

about the hand and were told only that they would “see a 12-card hand that was randomly

selected from a larger list of 12-card hands”.

4.3.2 Results

Table 2 reports regression results for the first-stage experiments. For each outcome

of interest, we report random-effects regressions of the outcome of interest on treatment

dummies.7

Table 4.2: Number Of Sets Found And Belief Gaps For First-Stage Experiments

Dependent Variable
Sets Found Belief Gaps

(1) (2) (3) (4)

Constant 3.05???
(.20)

3.85???
(.19)

24.49???
(2.83)

30.72???
(2.70)

15-set hand −.04
(.25)

6.50?
(3.97)

23-set hand .93???
(.24)

12.71???
(3.82)

28-set hand .70???
(.26)

13.76???
(4.01)

$0.35 piece rate −.75???

(.26)
2.60

(3.69)

N 492 492 331 331

Note: Figures are derived from random-effects regressions of dependent
variable on treatment dummies (10-set hand and $0.10 piece rate are the
omitted categories).

We are mostly interested in three outcomes. First, we ask if subjects find more sets in

hands with a larger number of possible sets. The answer is “yes”, but not much more. Sub-

jects find on average an extra 0.9 and 0.7 sets for hands with 23 or 28 total sets, respectively,

when compared to 10-set hands; there is no difference between 10 and 15-set hands. Sec-

ond, we ask if performance in the task is sensitive to monetary incentives. Indeed it is, but

negatively so: subjects in the 10-cent treatment find significantly more sets than subjects in

7We also estimated models (3) and (4) using random-effects Tobit regressions, with similar results.
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the 35-cent treatment. The last measure we study is the belief gap: the difference between

the believed and actual share of total sets found. Belief gaps are positive and large for all

treatments, and increase monotonically with the total number of sets in the hand seen in

model (3). As per column (4), and there is no direct impact of the piece rate on belief gaps.

Finally, Figure 4.3 provides evidence that the time constraint in the set-finding task is not

binding. It depicts the total number of sets found, per round and combining all treatments,

for each 10-second block. If the time limit was binding, we would expect to see either a

uniform distribution or a spike closer to the end. We instead observe a larger number of sets

at the beginning and a decline towards the end of the 120 seconds.

Figure 4.3: Timing Of Sets Found

Note: Figure plots the total number of sets found per 10-second block for rounds 1 and 2.

Results from the first-stage experiments informed the design of our main experiment,

which is discussed in next section.
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4.4 Main Experiment

4.4.1 Experimental Design

We ran four sessions of the main experiment in May and October of 2019 on Amazon

Mechanical Turk. Sessions were advertised as a “short decision-making experiment” with

a participation fee of $0.50 and the chance for an additional payment.8 As in the first-

stage experiment, we started by describing the cards and the characteristics of a set, and

moved on to a comprehension quiz. Again, only subjects that answered 4 or more questions

correctly were allowed to continue; the others were automatically eliminated and paid the

$0.50 participation fee. Subjects approved in the quiz proceeded with the experiment, which

consisted of two tasks.

Task 1 was a set-finding exercise. Subjects were presented with a 12-card hand and

given 120 seconds to find sets. As before, they incurred a 5-second penalty for selecting a

combination of cards that either did not constitute a set or that had already been found.

The piece rate for each correct set was fixed at $0.10, and all of the 12-card hands had 28 sets

in total.9 Immediately after completing task 1, subjects were asked to estimate the share of

the total number of sets they believed they had found. This elicitation was not incentivized.

The piece rate and number of possible sets contained in the hand were chosen based

on the results of the first-stage experiment. First, we observed only a small difference

between the number of sets found under the $0.10 or $0.35 piece rates; indeed, subjects

found significantly more sets under the lower piece rate. We opted for the $0.10 incentive to

obtain a larger sample size given budgetary constraints. Second, even though subjects found

more sets from hands that contained more sets, belief gaps—the difference between subjects

beliefs about and the actual share of total sets found—were largest for the 28-set hands.

We anticipated using variation in this gap to study the role of subjects’ contemplation of

their own unawareness (see Section 4.4.2.3 for details), and hence decided to use only 28-set

8See Appendix ?? for complete screenshots and instructions. Interested readers can complete the main
experiment by accessing https://faep2.herokuapp.com/ and typing as a username any combination of 5
or more alphanumeric characters.

9To minimize the scope for cheating in the online environment, each subject was shown a randomly
selected hand drawn from a collection of 20 different 12-card hands. The instructions informed subjects that
they would “see a 12-card hand that was randomly selected from a larger list of 12-card hands”.
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hands.

After completing task 1, subjects moved on to task 2, which elicited risk preferences

using a version of the investment game [Gneezy and Potters, 1997]. At the start of task 2

subjects were endowed with an additional $1 and asked to decide how much to invest in a

risky option. Specifically, subjects were asked how much they wanted to “keep safe” and

how much they were willing to “bet” on a risky lottery. Subjects could not lose the amount

kept safe, but there were two possible outcomes for the amount bet: (i) the good outcome,

where the money bet was multiplied by 3; or (ii) the bad outcome, where the money bet

was lost. Each outcome occurred with 50% probability, so the investment had a positive

expected rate of return.

We implemented three treatments varying the nature and extent of subjects’ knowledge

about the set-finding task, and two treatments varying the context in which the betting

decisions were made. Thus, we have a 3 × 2, between-subject experimental design. We

next describe the differences between the knowledge treatments. Figure 4.4 displays those

differences using screenshots of the experimental interface.

– Full Information: This is our control treatment, where we shut down the unawareness

channel by informing subjects of the number of available sets prior to completing task

1. Subjects saw a counter at the top of the set-finding screen stating “You found n of

28 sets”, where n was the number of sets found at any given point in time. After task

1 and the belief elicitation stage, subjects were shown an array of all sets contained in

their hand, with the ones they had found highlighted.

– Unawareness: Subjects were not informed about the number of possible sets. After

completing task 1 and the belief elicitation, subjects were simply reminded of the number

of sets they had found.

– Unawareness-Info: Subjects were not informed about the total number of possible sets

prior to completing task 1, as in the unawareness treatment. However, after completing

task 1 and the belief elicitation, subjects were shown an array of all sets contained in

their hand, with the ones they had found highlighted.

Next, we describe the treatments varying the context of the risky decision. The only
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(a) Full Information

(b) Unawareness

(c) Unawareness-Info

Figure 4.4: Screenshots Of Set-Finding And Feedback Screens

treatment variation is related to the description of the objective risk; the actual probabilities

of the good and bad outcomes, as well as the amount available to invest and the payoff

structure, were invariant across treatments. Figure 4.5 presents screenshots of the investment

stage for both treatments.

– Neutral: The chances of the good and bad outcomes were framed as the outcome of

tossing a fair coin. Subjects saw pictures of the two sides of a coin and were told that
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we would “toss a virtual and fair coin to determine which outcome happens”. If the coin

turned up heads, the good outcome occurred; and if the coin turned up tails, the bad

outcome was realized.

– Context: The framing of the random outcome was done using the sets found and

not found by the subject. Specifically, subjects saw an array of sets half of which was

populated by the sets found and half by the sets not found. The sets found by the subject

were highlighted. Subjects were informed that we would “randomly select one of the n

sets, where each set has the same chance of being selected”. If the randomly selected set

was among those found by the subject, the good outcome occurred; otherwise, the bad

outcome realized.

Note that if a subject did not find any sets, she could not be assigned to the context

treatment, and hence was automatically assigned to the neutral version. For this reason all

of the analysis in this section restricts attention to subjects that found at least 1 set—92%

of the sample. Lastly, to increase confidence in our instructions, the actual randomization

was implemented using public lottery outcomes from the Pennsylvania Lottery. This was

explained to the subjects prior to the betting decisions and described in the study’s pre-

registration.10

(a) Neutral Framing (b) Context Framing

Figure 4.5: Screenshots of Different Framings for Risky Decision

10AEARCTR-0004145
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4.4.2 Results

We will present the results of our main experiment in three parts. First, we explore the

differences between the knowledge treatments with respect to (i) the number of sets found,

(ii) beliefs gaps, and, most importantly, (iii) the share of the endowment bet. Second, we

investigate risky attitudes between the context treatments. Third, we examine how the role

of context interacts with subjects’ degree of salience of unawareness, providing evidence for

the channel by which unawareness changes subsequent choice behavior.

4.4.2.1 Knowledge Treatments Table 4.3 presents regression results for three depen-

dent variables: (i) the number of sets found, (ii) belief gaps, and (iii) the share of the

endowment bet. We report models with and without controls, which include hand fixed-

effects,11 demographics (age group, gender, and education level) and, for some models, the

number of sets found. Treatment full information is the omitted category in all columns.

Note first, from columns (1) and (2), that subjects found the same number of sets, on

average, across the three knowledge treatments. Being fully aware of the number of available

sets prior to completing task 1 did not impact subjects’ productivity, which speaks to the

inherent complexity of our task. Second, although there are no differences in the number

of sets found, there are stark differences in belief gaps, i.e., the difference between subjects

beliefs about and the actual share of total sets found—columns (3) and (4). The belief gap is

positive and significant for all treatments. The gap is, however, almost two and a half times

larger for the unawareness and unawareness-info treatments. In Section 4.4.2.3 we explore

this gap further when studying the role of context. Finally, columns (5) and (6) of Table 4.3

reveal no treatment effect with respect to risk preferences. On average, subjects bet close to

40% of their endowment in the risky lottery.

4.4.2.2 The Role of Context Suppose you just read a magazine article about the

discovery of a new super virus that is afflicting your country. You have thus suddenly

become aware of a hitherto unforeseen risk to your health. Does this increased awareness

11Not all of the 20 different 12-set hands had similar levels of difficulty. The average number of sets found
was 3.65 with a standard deviation of 1.14. The lowest average was 1.84 and the maximum 5.63.
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Table 4.3: Number of Sets, Belief Gaps, and Share Bet

Dependent Variable
Sets Found Belief Gaps % Bet

(1) (2) (3) (4) (5) (6)

Constant 4.11???
(.15)

4.02???
(.59)

12.55???
(1.40)

13.30??
(5.34)

39.86???
(1.96)

38.95???
(7.11)

Unawareness −.20
(.21)

−.19
(.19)

17.90???
(2.15)

17.41???
(2.15)

−.21
(2.78)

.10
(2.82)

Unawareness-Info −.07
(.21)

−.08
(.20)

17.42???
(2.06)

17.60???
(2.06)

.53
(2.75)

.34
(2.81)

Controls X X X
N 890 887 890 887 890 887

Note: Figures are derived from OLS regressions of dependent variable on treatment dummies (full
information is the omitted category). Only includes subjects who found at least 1 set (92% of
total). Controls include hand fixed-effects and dummies for age group (18-35, 36-45, 46-65, and
65+), education level (high-school, some college, college, and masters+) and gender. For models (3)
to (6) controls also include the number of sets found. We also run Tobit regressions for models (5)
and (6), with similar results.

affect your risk attitudes? And if it does, is the effect restricted to the health domain or does

it spill over to other areas (financial, relationships, etc.)? This is the primary motivation for

our second research question: are changes in risk taking behavior induced by unawareness

domain dependent? In other words, are changes in risk taking behavior dependent on the

risky decision being contextually linked to the domain in which the decision maker was

exposed to unawareness?

Within each knowledge treatment, subjects saw one of two randomly chosen descriptions

of the risky asset. In the neutral condition, the outcome was determined by a (virtual) coin

flip, whereas in the context condition it was determined by randomly drawing a set among

a list of sets contained in the subject’s hand, half of which the subject had found. In both

cases, the chance of the good outcome was identical: 50%. We ask if the framing affects the

amount bet in the risky lottery.

Figure 4.6 depicts, for each knowledge treatment, the average share of the endowment bet

for each framing. An interesting pattern emerges: the context of the risky decision is relevant

for treatments unawareness and unawareness-info, but not for the control treatment. In line

with our earlier example, it’s as if experiencing unawareness about the virus causes people

to become more risk averse in their health behaviors, an attitude that doesn’t carry over to
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other domains.

(a) Full Information (b) Unawareness (c) Unawareness-Info

Figure 4.6: Risky Investment and Context

Note: Average share of the endowment invested in risky asset for each combination of knowledge (full
information, unawareness, and unawareness-info), and framing (neutral and context) treatments. Error
bars indicate standard errors of the mean.

Table 4.4 reports the same results using linear regressions, both with and without con-

trols. As before, the set of controls include hand fixed-effects, demographics (age group,

gender, education level) and the number of sets found.

Columns (1) and (2) report a significant negative coefficient for the context treatment.

On average, subjects bet 4.5 percentage points (p.p) less compared to the neutral lotteries.

This corresponds to a decrease of a little over 10% in the amount bet. Models (3) and (4)

break down the effect by knowledge treatment. It’s clear from those regressions that the

impact of context in the amount bet is coming from the treatments unaware and unaware-

info. Due to the lower sample sizes, however, coefficients are not significant for each separate

treatment.

Columns (5) and (6) combine data from treatments unawareness and unawareness-info.

Recall that both treatments are identical up to the end of task 1. Moreover, both treatments

have similar results with respect to the share of the endowment bet and number of sets

found. With the resulting increase in statistical power, models (5) and (6) find a negative

and statistically significant effect of context on our measure of risky behavior. Framing
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Table 4.4: Share of Endowment Bet in Risky Lottery

(1) (2) (3) (4) (5) (6)

Constant 42.18???
(2.23)

41.46???
(7.24)

40.92???
(2.69)

39.98???
(7.40)

40.92???
(2.68)

40.02???
(7.40)

Unaware −.21
(2.77)

0.04
(2.81)

2.02
(3.91)

2.65
(4.05)

Unaware-Info .40
(2.74)

0.20
(2.80)

1.96
(3.86)

1.92
(3.98)

Context −4.48??

(2.24)
−4.25?

(2.27)

Full Information × Context −2.04
(3.92)

−1.49
(4.01)

−2.04
(3.92)

−1.50
(4.01)

Unaware × Context −6.32
(3.92)

−6.47
(4.04)

Unaware-Info × Context −5.09
(3.83)

−4.75
(3.89)

Unaware-All 1.98
(3.34)

2.26
(3.48)

Unaware-All × Context −5.71??

(2.74)
−5.59??

(2.78)

Controls X X X
N 890 887 890 887 890 887

Note: Figures are derived from OLS regressions of dependent variable on treatment dummies (full
information is the omitted category). Only includes subjects who found at least 1 set (92% of total).
Controls include hand fixed-effects, number of sets found, and dummies for age group (18-35, 36-45,
46-65, and 65+), education level (high-school, some college, college, and masters+) and gender. We also
run Tobit regressions for all models, with very similar results.

the betting scenario in the same domain as the unawareness-inducing task causes a drop of

approximately 13% in the amount bet in the risky lottery.

There are two possible channels by which subjects become more risk-averse: first, that

their risk preferences change, i.e., they become less tolerant of risk; second, that their per-

ception of probabilities, albeit intended to be objective, change. Do subjects assess the

objective risk differently in each context treatment?12 These could be caused, for example,

by an unfamiliarity with the description: a coin toss is more readily understandable than

selecting one set out of a group of n sets. Or maybe the experienced unawareness itself might

affect individuals’ ability to assess the objective risk component.

With that in mind, we added a second belief elicitation for the latter half of our sessions.

After describing task 2, we elicited subjects’ beliefs about the chances of the good outcome

12We thank David Huffman for raising this possibility.
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happening. We incentivized this stage by paying an additional $0.50 if the question was

correctly answered.

Indeed subjects in the context treatment were less likely to answer correctly: while 87%

of subjects responded correctly for the neutral treatment, only 75% did so for the context

treatment (p < 0.00). Also, the average guess for neutral and context were, respectively,

51.0% and 47.1% (p = 0.01, two-sided t-test). Note, however, that the overall impact of the

assessed probability on betting behavior is small: 0.15p.p per additional percentage point

assigned to the good outcome (see Appendix ?? for details).

Hence, if we assume the estimated coefficient would be similar for the entire sample

(recall that we only elicited beliefs about probability for ∼ 45% of the sample), the observed

gap of 3.9p.p in the assessment of the objective probability (51% − 47.1%) translates into

an extra 0.15 × 3.9 = 0.59 percentage points of the endowment invested in the risky asset.

That is only about 10% of the observed difference in the amount bet by context treatment

(5.59p.p per column (6) of Table 4.4). We conclude that the main channel by which risk

taking behavior changes is via changes in risk tolerance rather than changes in assessment

of objective probabilities.

4.4.2.3 Salience of Unawareness We next dig deeper into the role of context by ex-

amining the interaction between the context and subjects’ degree of salience of unawareness

(henceforth SOU). We are motivated by the fact that, as discussed in Section 4.4.2.2, treat-

ments unawareness and unawareness-info have very similar results. This suggests a limited

role of information disclosure after subjects experience the unawareness-inducing task. As

such, we conjecture that the most important driver of differences between the full infor-

mation and the unawareness treatments are differences in the salience of unawareness, i.e.,

subject’s introspective understanding of the task before the state space is revealed.

Our measure of SOU is the belief gap: the difference between the share of sets a subject

thought she had found and the actual share of sets found. The higher (lower) the difference,

the lower (higher) the degree of SOU. For example, suppose subject 1 guessed he had found

30% of the sets, but had actually found only 15%, while subject 2’s guess were 45% and

40%, respectively. The difference for subject 1 is thus +15% and for subject 2 it is +5%. We
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then say subject 2 is more aware of her own unawareness compared to subject 1. Figure 4.7

compares the share of endowment bet, by treatment and context, for subjects with above-

median and below-median SOU.

As Figure 4.7 makes clear, the difference between investment choices in the neutral versus

context treatments comes almost exclusively from subjects with above-median salience of

unawareness and only for the treatments that induce unawareness. Intuitively, subjects that

are more aware of their own unawareness are more susceptible to having their risk preferences

affected by making a risky decision within the same context as the unawareness-inducing

task.

4.5 A Simple Model of Preference Change Following Discoveries

In this section, we outline a simple model that can help explore the channel by which

the salience of unawareness can dictate preferences. In an effort to convey meaning with the

minimal notational and technical investment, we introduce the abstract model alongside a

running example. Also, we gloss over many technical details but, when doing so, make sure

to point to the relevant part of the theoretical literature on awareness.

An agent faces a decision problem which depends on the truth or falsity of a set of

uncertain statements, L. The agent is not aware of all statements, but rather of a subset

A ⊆ L. The uncertainty faced by the agent is modeled by a state-space, Ω. Unlike in the

standard state-space model where a state, ω ∈ Ω, represents the resolution of all statements,

here each state ω is associated with a set of propositions L(ω) and determines the truth only

of ϕ ∈ L(ω). The true of the propositions is given by the family of truth functions

{
tω : L(ω)→ {T,F}

}
ω∈Ω

.

The interpretation is that the agent might consider possible different states in which different

objects, concepts, properties, etc. exist : the statement q = “there is a quantum algorithm

breaking protocol x,” makes sense only in those states in which (the concept of) quantum

computers exist. Allowing the set of statements to vary over the state space, while adding
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(a) Full Information

(b) Unawareness-All

Figure 4.7: Salience Of Unawareness And Investment In The Risky Asset

Note: Figure (A): Share of endowment bet in the full information treatment, by context, for subjects
above and below the corresponding median of the salience of unawareness measure. Figure (B): Share of
endowment bet in the unawareness treatments, by context, for subjects above and below the corresponding
median SOU. Error bars indicate standard errors of the mean.
???p < 0.01 ??p < 0.05 ?p < 0.1
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complexity to the model, is requisite in capturing agents who are unsure of how unaware

they are.

Critically, the statements in L discuss not only physical aspects of the world, but also the

agent’s own perception. For example, it is perfectly reasonable to entertain the statement

“the agent is fully aware” which would be true exactly in the states where A = L(ω).13 This

allows us to model how an agent reasons about her own awareness (and knowledge), and in

particular allows for introspective unawareness—when the agent considers it possible that

she might be unaware and takes this into account when making decisions.

Example. Neelay Mehta is deciding whether to use the new cryptographic protocol x to

secure financial records for his business. He will only change protocols if x is sufficiently

likely, say 75% likely, to be secure. In addition, being somewhat of a computer guy, Neelay

knows how the cryptographic algorithm underlying protocol x works and that it is secure in

the context of his understanding of how a computer works. Of course, he admits that it is

possible that there exists models of computation outside of his understanding which might

render x vulnerable.

There are three relevant statements,

p =“cryptographic protocol x is secure,”

q =“there is a quantum algorithm breaking protocol x,” and

a =“the agent is initially fully aware,”

and Neelay’s awareness is A = {p, a}.
We can represent his subjective uncertainty with three states: Ω = {ω1, ω2, ω3}. Let

L(ω1) = {p, a} and L(ω2) = L(ω3) = {p, q, a} and the truth functions

tω1 :

p 7→ T

a 7→ T

tω2 :


p 7→ T

q 7→ F

a 7→ F

tω2 :


p 7→ F

q 7→ T

a 7→ F

13That statements regarding the awareness and beliefs of the agent can themselves be consistently assigned
truth values over Ω is not obvious, but it is true. The proof of this is tangential to our aims here, but can
be found in various forms in Fagin and Halpern [1987], Halpern and Rêgo [2013], Piermont [2019a].
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Notice: he knows that if he is fully aware, then p is true, but if he is not fully aware then p

might be true or false. Further notice that a is true exactly when he is fully aware. Notice

also, that although Neelay contemplates the contingency that he is unaware (the states where

a is false), he does not know what he is unaware of. �

The agent’s awareness defines a partition of the state-space via the A-indistinguishability

equivalence relation ω ∼A ω′. Two states, ω and ω′, are A-indistinguishable whenever they

yield the same truth values for all statements the agent is aware of. Formally:

ω ∼A ω′ ⇐⇒ (tω(ϕ) = tω′(ϕ)) for all ϕ ∈ A.

If A ⊆ A′, then the partition generated by ∼A′ is a refinement of that generated by ∼A: as

the agent becomes more aware she can distinguish between more states so her perception of

the state space becomes finer.

The agent also entertains a probability measure, π, over the cells in the partition gener-

ated by ∼A. For consistency, we must require π(E) > 0 implies A ⊆ L(ω) for all ω ∈ E,

so that the agent rules out events incompatible with her current awareness. This prohibits

the nonsensical state-of-affairs in which the agent is aware of some statement p (for example

“quantum computers are fast”) but also believes it possible that concept of p does not exist.

Example (continued). Since Neelay’s awareness is A = {p, a}, he can distinguish between

all states: ∼A generates the partition {{w1}, {w2}, {w3}}. Indeed, in state ω1 a is true but

false everywhere else, and states ω2 and ω3 can be distinguished by the truth of p. Thus, his

probabilistic beliefs assign a probability to each state. Perhaps, in a bout of overconfidence, he

thinks it’s exceedingly likely that he fully understands computation, embodied by the probability

π = ( 8
10
, 1

10
, 1

10
). Thus his evaluation of the truth of p, is

π({ω | tω(p) = T}) = π({ω1, ω2}) =
9

10

exceeds his threshold and he will adopt protocol x. �
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Of course, to discuss the results of our experiment, we must move past the static model,

and examine what happens when the agent learns or becomes more aware. This model

accommodates the standard information acquisition problem: when the agent learns that ϕ

is true, her beliefs update via Bayes’ rule, and her new beliefs are given by

πnew(E) =
π(E ∩ {ω ∈ Ω | tω(ϕ) = T})
π({ω ∈ Ω | tω(ϕ) = T}) .

It can also accommodate the discovery of a novel statement, which represents the expan-

sion of awareness. Often, the discovery of a novel statement is accompanied by learning that

that statement is true, but this can be seen as the combination of first becoming aware of ϕ

and then learning that ϕ is true—the latter belief change being handled by conditioning in

the usual way.

The expansion of awareness is captured as a movement from A to A′ ⊃ A. As mentioned

above, this means her perception will become finer, so that her new beliefs, πnew, may be

defined on a different, finer partition. Even when the agent becomes aware of a novel

statement ϕ without learning the truth of ϕ, her new beliefs will assign a probability to the

event that {ω ∈ Ω | tω(ϕ) = T}. Note that this event was not (necessarily) in measured by

∼A and therefore not assigned a probability by her initial probability measure.

Despite not learning the truth of ϕ, the agent’s beliefs do change. Why? Because L
concerned not only statements about the physical world, but also statements regarding the

epistemology of the agent. As a simple example, if the agent initially put positive probability

on a state ω in which she was fully aware (so that A = L(ω)), then after discovering ϕ she

must disregard ω (since now A 6⊆ L(ω)). Therefore, the very act of becoming aware requires

conditioning on the event {ω ∈ Ω | ω was compatible with discovering ϕ}.14

Notice that discovering a novel statement implies that the agent learns that a =“the

agent was fully aware” was false instigating a belief update in a traditional manner. Of

course, the agent need not discover any particular statement to learn the statement a. For

14Again, that there exists a consistent notion of what it means for a state to be compatible with discovering
a statement is not self-evident. This is also true and also outside of the scope of this outline, but a formal
theory is put forth in Halpern and Piermont [2020]. Notice also that the conditioning event in question might
not in measured by ∼A so standard Bayesian updating cannot be applied as there is no ex-ante probability by
which to condition. This can be circumvented by appealing to a slight generalization of Bayesian Updating,
the behavioral theory of which is outlined in Piermont [2019b].
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example, by interacting with a game and observing inexplicable results, a player could learn

that she does not know all the rules without explicitly discovering any additional rules.

Example (continued). Neelay reads a blog that alludes to the ‘computational paradigm out-

side of the classical computer.’ Although he continues to be unaware of the specific reference

the author makes, he nonetheless learns that a is false. His updated beliefs are given by

πnew = (0, 1
2
, 1

2
).

Notice in this contrived example, the resulting beliefs are exactly the same as when he

instead reads a blog post explaining quantum computing, discovering the existence q without

learning its truth. Even though he learns nothing about the truth of q, only states ω2 and ω3

are compatible with discovering anything at all! Hence his new beliefs are constructed exactly

by conditioning on a being false.

By either learning he is unaware, or discovering what he is unaware of, Neelay moves

from a position of wanting to adopt the new protocol to one of avoiding it. �

Notice how, in the example, there is correlation between unawareness/complexity and

beliefs about other aspects of the world. In the event where Neelay is not fully aware of the

intricacies of cryptography, it is more likely that protocol x is insecure—that is, he considers

the protocol breakable, but only if it is breakable in a way he does not currently understand.

More generally, it is this correlation between unawareness and the payoffs associated with

various actions that induces behavior change in response to the salience of unawareness. That

the change in actions following discovery are generally more cautious is not dictated by the

model, but seem to be an empirical trend akin to uncertainty aversion. A reasonable explana-

tion is that subjects correlate being unaware with the environment being more complicated,

and thus inducing more uncertainty about payoffs; the standard motivations for uncertainty

aversion, then, induce cautious behavior.

The final piece of the puzzle is that we can reason, loosely, about what types of things

we are unaware of. Thus the correlation between unawareness and payoffs is context depen-

dent. Learning that there are novel computational models that might be able to break a

cryptographic protocol will change the agent’s perception of the uncertainty regarding the

efficacy of data storage methods, but likely not on the risks associated with climate change.
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4.6 Conclusion

We introduce a novel experimental task designed to induce unawareness in a natural

way, namely, a task whose complexity is not easily grasped. We then manipulate subjects’

exposure to unawareness and study the impact of unawareness on risk taking when the

risky domain is either described in a neutral fashion or framed in the same context as the

unawareness-inducing task. First, we find strong evidence that the unawareness manipu-

lation works, as the gap between self-assessed and actual performances is much larger for

the unawareness treatments compared to the control treatment. Second, even though we

find no average treatment effect on risky behavior, we find evidence of a differential impact

of context: subjects are shown to be more risk averse in the contextual domain, but only

in treatments that induce unawareness. Finally, these effects are mediated by the individ-

ual’s salience of unawareness, as only subjects that are aware of their own unawareness are

impacted by the context of the risky decision.

Our results underscore the importance of considering the context of the decision when

evaluating the behavioral effects of unawareness. This insight can potentially have implica-

tions for future work, both empirical and theoretical, on the interaction of unawareness on

information disclosure and learning.
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Appendix A Appendix for Chapter 2

A.1 Survey Instrument

This appendix contains an English translation of the questions used in the survey with

undergraduate students. The survey was conducted over two weeks on November, 2018. The

order of the questions on public and private sector wage expectations and preferences was

randomized for each individual. The (optional) open questions at the end were individualized

depending on the answer to the initial questions on sector preference.
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 Page 1 of 14 

Hello!  
 
This research is part of a study about the labor market in Brazil and takes, on average, 17 
minutes to complete. Your participation is anonymous and voluntary. At the end of the survey, 
you can enter to win one of 75 gift-cards from Saraiva Bookstore worth R$ 100 each. If you 
decide to participate, we will ask you for your email in order to send the gift-card if you are one 
of the winners.  
 
Felipe A. Araujo is the researcher responsible for this study. Felipe graduated from UFJF in 
2008, and is currently pursuing a PhD in economics at the University of Pittsburgh, USA. He can 
be reached by email [f.araujo@pitt.edu] or by phone [xxx-xxxxxx].  
 
 
 
Q1 After graduating, you plan to: 

o Find a job 

o Go to graduate school 

o Open your own business 

o Other (please specify) ________________________________________________ 
 
 
 
Q2 If you decide to look for a job, would you prefer to get a job in the public or private sector?  

o Public sector  

o Private sector 

o I am indifferent  
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Q3 What is the chance that you will take at least one public-sector exam after graduation?  

o Very low 

o Low  

o Neither high nor low  

o High  

o Very high 
 
Q4 How old are you? 

o 16 

o …  

o 39 

o 40 or more 

 

Q5 What's your gender? 

o Male  

o Female 

o Other  
 
Q6 What year are you attending? 

o First  

o Second 

o Third  

o Fourth 

o Fifth or higher 
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Q7 What level are you currently attending?  

o Undergraduate 

o Specialization 

o Masters 

o Doctorate  

o Post-doc  
 
Q8 What is your major?  

o Business Administration 

o Public Administration 

o Architecture and Urbanism 

o Arts 

o Visual Arts  

o Cinema and Audiovisual  

o Design 

o Fashion 

o Arts and Design 

o Humanities 

o Computer Science 

o Religion 

o Biological sciences 

o Accounting 

o Economics 
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o Natural Sciences 

o Social Sciences 

o Communication  

o Law 

o Nursing 

o Environmental and Sanitary Engineering 

o Civil Engineering 

o Computational Engineering 

o Production Engineering 

o Electrical Engineering 

o Electrical Engineering - Robotics and Industrial Automation 

o Electrical Engineering - Energy 

o Electrical Engineering - Power Systems 

o Electrical Engineering - Electronic Systems 

o Electrical Engineering - Telecommunications 

o Mechanical Engineering 

o Statistics 

o Pharmacy 

o Philosophy 

o Physics 

o Physiotherapy 
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o Geography 

o History 

o Journalism 

o Literature  

o Mathematics 

o Medicine 

o Veterinary Medicine 

o Music 

o Normal Degree 

o Nutrition 

o Dentistry 

o Pedagogy 

o Psychology 

o Chemistry 

o Radio, TV and Internet 

o Social Work 

o Information Systems 

o Tourism 
 
 
 
Q9 What is your GPA?  

________________________________________________________________ 
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Q10 Which campus do you study at?  

o Juiz de Fora 

o Governador Valadares 
 

 
 
Next, I would like to ask you some questions about your future earnings expectations. In all of 
the following questions, the term salary refers to a monthly and pre-tax salary.  
 

 
 
Q11 First consider the private sector jobs you would consider applying to after graduation, and 
think of the starting salary you could get.  
  
What is the lowest starting salary you believe you could possibly be offered for a private sector 
job?  

________________________________________________________________ 
 
 
Q12 And what is the highest starting salary you believe you could possibly be offered for a 
private sector job?  

________________________________________________________________ 
 

 
 
Q13 Still thinking about the starting salary you would possibly be offered for a private sector 
job:  
 
 What do you think is the percent chance that your private sector starting salary offer will be:  
 

 Use the slider to select a chance between 0% and 
100%. 

 
 0 100 

 
R$ [value 1] or more per month 

 
R$ [value 2] or more per month 

 
R$ [value 3] or more per month 

 
R$ [value 4] or more per month 
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Q14 Now consider a job in the public sector obtained via a public-sector exam. Consider a job 
you would apply for, and think about the starting salary you could get after you graduate.  
  
What is the lowest starting salary you believe you could possibly receive in the public sector?  

________________________________________________________________ 
 
 
 
Q15 And what is the highest starting salary you believe you could possibly receive in the public 
sector? 

________________________________________________________________ 
 

 
 
Q16 Still thinking about the starting salary you could possibly receive in the public sector after 
graduating:  
 
 What do you think is the percent chance that your starting salary in the public sector will be:  
 

 Use the slider to select a chance between 0 and 
100%. 

 
 0 100 

 
R$ [value 1] or more per month 

 
R$ [value 2] or more per month 

 
R$ [value 3] or more per month 

 
R$ [value 4] or more per month 

 
 
 
The next questions relate to your salary expectations after 10 years of experience. In all of these 
questions, please ignore the effects of inflation, that is, consider that R$ 1 in 10 years has the 
same purchasing power as R$ 1 today. As in the previous questions, the term salary refers to a 
monthly and pre-tax salary.  
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Q17 Please think again about your salary expectations in a private sector job, and consider the 
salary you could receive after 10 years of experience.  
 
 What is the lowest salary you believe you could possibly get in a private sector job after 10 
years of experience?  

________________________________________________________________ 
 
  
 
Q18 And what is the highest salary you believe you could possibly get in a private sector job 
after 10 years of experience?  

________________________________________________________________ 
 
  
Q19 Still thinking about the salary you could possibly get from a private sector job after 10 
years of experience:  
 
 What do you think is the percent chance that your salary after 10 years of private sector 
experience will be:  

 Use the slider to select a chance between 0% and 
100%. 

 
 0 100 

 
R$ [value 1] or more per month 

 
R$ [value 2] or more per month 

 
R$ [value 3] or more per month 

 
R$ [value 4] or more per month 

 
 
 
 
Q20 Finally, I would like to ask you one last time about your public sector salary expectations. 
Consider a job obtained via a public-sector exam and please reflect on the salary you could 
receive after 10 years of experience.  
 
 What is the lowest salary you believe you could possibly receive in the public sector after 10 
years of experience?  

________________________________________________________________ 
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Q21 And what is the highest salary you believe you could possibly receive in the public sector 
after 10 years of experience?  

________________________________________________________________ 
 

 
 
 
Q22 Still thinking about the salary you could possibly receive in the public sector after 10 years 
of experience:  
 
What do you think is the percent chance that your salary after 10 years of experience in the 
public sector will be:  

 Use the slider to select a chance between 0% and 
100%. 

 
 0 100 

 
R$ [value 1] or more per month 

 
R$ [value 2] or more per month 

 
R$ [value 3] or more per month 

 
R$ [value 4] or more per month 

 
 
 
 
 
Q23 What is the lowest salary you would be willing to accept for a job in the private sector after 
you graduate? Please answer in terms of a monthly and pre-tax salary.  

________________________________________________________________ 
 

 
 
Q24 What is the lowest salary you would be willing to accept for a job in the public sector, 
obtained via a public-sector exam, after you graduate? Please answer in terms of a monthly and 
pre-tax salary.  

________________________________________________________________ 
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Q25 Imagine you have just started a job in the private sector. What do you think is the chance, 
in percentage terms, that you will lose your job in the first 3 years? 
 

 Use the slider to select a chance between 0% e 100% 
 

 0 100 
 

 
 

 
 
 
Q26 Now imagine that you have just started a job in the public sector. What do you think is the 
chance, in percentage terms, that you will lose your job in the first 3 years? 
 

 Use the slider to select a chance between 0% e 100% 
 

 0 100 
 

 
 

 
 
 
Q27 In case you decide to pursue a career in the public sector, what do you think is the chance, 
in percentage terms, that you will be approved in a public-sector exam for a job that is attractive 
to you? 
 

 Use the slider to select a chance between 0% e 100% 

 
 0 100 

 
 

 
 
Q28 Imagine that you have signed-up for a public-sector exam in your field of study. Suppose 
this public-sector exam has 1,000 candidates for a total of 5 openings, and that you had 6 months 
to study for the tests. 
  
Consider a measure that splits the candidates in 5 different groups according to the final ranking 
in the exam. For example, the group [201,400] refers to the group of candidates that were 
classified between the 201st e 400th positions. What do you think is the chance, in percentage 
terms, that you would be part of each of the groups? 
  
For example, the value 30 in one of the groups means you believe there is a 30% chance that you 
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belong to that group. A value of 0, on the other hand, means you believe there is a 0% chance 
you would belong to that group, while a value of 100 means you believe you’d part of that group 
with 100% chance. Use the fields below to indicate your chances of being part of each of the 
groups, and note that the sum of all fields should be equal to 100.  
 
[1, 200]:       _______  
[201, 400]:   _______  
[401, 600]:   _______  
[601, 800]:   _______   
[801, 1000]: _______  
Total:           _______ 
 

 
 
Q29 Now suppose the public-sector exam has taken place, and that you were classified in the 
[randomly selected] group. Imagine you decide to take another exam with the same 
characteristics (1,000 candidates, 5 openings, your field of study, and 6 months to study), what 
do you think are the chances, in percentage terms, that you would belong to each of the groups? 
Use the fields below to indicate your chances of being part of each of the groups, and note that 
the sum of all fields should be equal to 100. 
 
[1, 200]:       _______  
[201, 400]:   _______  
[401, 600]:   _______  
[601, 800]:   _______   
[801, 1000]: _______  
Total:           _______ 
 

 
 
We are approaching the end of the survey! 
The next questions are about your personal preferences and characteristics.   
  

 
 
Q30 How willing are you to give up something that is beneficial for you today in order to benefit 
more from that in the future? Please indicate your answer using a scale from 0 to 10, where 0 
means “not at all willing” and 10 means “very willing”. 
 

 0 = Not at all willing 10 = Very willing 

 
 0 1 2 3 4 5 6 7 8 9 10 
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Q31 In general, how willing are you to take risks? Please indicate your answer using a scale from 
0 to 10, where 0 means “not at all willing” and 10 means “very willing”. 
 

 0 = Not at all willing 10 = Very willing 
   

 0 1 2 3 4 5 6 7 8 9 10 
 

 
 

 
 
 
 
Q32 Do you agree with the following statement? “Job stability is higher in the public sector than 
in the private sector”. Please indicate your answer using a scale from 0 to 10, where 0 means 
“totally disagree” and 10 means “totally agree”. 

 0 = Totally disagree 10 = Totally agree 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

 
 

 
 
 
Q33 Do you agree with the following statement? “The benefits (retirement, health plan, work 
hours, etc.) are better in public-sector jobs than in private-sector jobs? Please indicate your 
answer using a scale from 0 to 10, where 0 means “totally disagree” and 10 means “totally 
agree”. 
 

 0 = Totally disagree 10 = Totally agree 
 0 1 2 3 4 5 6 7 8 9 10 

 
1 () 

 
 
 

 
 
Q34 Will you graduate at the end of the year? 

o Yes 

o No 
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Q35 Have you ever taken a public-sector exam? 

o Yes 

o No 
 
 
 
Q36 Approximately how many people do you known that either having been approved at, or are 
currently studying for, a public-sector exam?  

o 1 

o … 

o 9 

o 10 or more  

o I don’t know anyone 
 
 
Q37 Have you ever worked in the private sector? 

o Yes 

o No 
 
 
Q38 Are you currently working? 

o Yes, I have been approved in a public-sector exam 

o Yes, I work in the private sector 

o Yes, I have my own business 

o No 
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Q39 [OPTIONAL] Please, describe in more detail your reasons to prefer to have your own 
business instead of finding a job in the private or public sectors. 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
 
 
Q40 [OPTIONAL] Please, describe in more detail your reasons to prefer to go to graduate school 
instead of looking for a job or opening you own business. 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
 
 
Q41 [OPTIONAL] Please, describe in more detail your reasons to prefer a job in the private 
sector instead of a job in the public sector.  

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
Q42 [OPTIONAL] Please, describe in more detail your reasons to prefer a job in the public 
sector instead of a job in the private sector. 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
 

Q43 [OPTIONAL] Lastly, please describe in more detail what your decision process would be if 
you were considering jobs in both the public and private sectors. For example, what would be 
your strategy to decide between taking public-sector exams or applying for positions in the 
private sector? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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A.2 Tables and Figures

Table A.1: Wage Regressions for Sample of Test-Takers

Full Sample
High-School
Graduates

College
Graduates

Coefficient on public-sector 5.157∗∗∗ 4.873∗∗∗ 5.456∗∗∗

(0.031) (0.023) (0.003)
% Public-Sector 0.40 0.32 0.51
Mean Hourly Wage 20.18 13.36 27.93
Median Hourly Wage 14.63 10.77 21.94

R2 0.125 0.129 0.071
N 1,532,248 685,786 672,546

Note: OLS regression on a 30% random sample of test-takers who held a formal job in 2017.
Controls include years of education, experience, experience2, gender, and state or region fixed-
effects. Sample further divided into test-takers with a high-school degree or a college degree as
of 2017. Mean hourly wages (BRL) is the dependent variable and is restricted to be at least
75% of the 2017 federal minimum and at most equal to the public-sector legal maximum (245
BRL), for public-sector workers, or two times the public-sector legal maximum for private-sector
workers. Age is restricted to be between 18 and 55.

Figure A.1: Discontinuity in Hourly Wage

Note: Discontinuity on restricted sample: 1.196∗∗∗(0.249), N=63,441. Linear regression with hourly wage as
dependent variable. Robust standard errors clustered at the running variable.
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(a) Discontinuity in Age

(b) Differences in Age, Ranks X and -X

Figure A.2: Discontinuity in Age

Note: Figure (A): Discontinuity on restricted sample: 0.163 (0.132), N=63,718. Linear regression with age in
2017 as dependent variable. Robust standard errors clustered at the running variable. Figure (B): Differences
in age by values of running variable with opposite signs. Confidence intervals (95%) from regressions with
age in 2017 as dependent variable and dummy indicating positive value of the running variable.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.1
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(a) Discontinuity in Gender Composition

(b) Differences in Gender Composition, Ranks X and -X

Figure A.3: Discontinuity in Gender Composition

Note: Figure (A): Discontinuity on restricted sample: 0.002 (0.002), N=63,720. Linear regression with
indicator for female as dependent variable. Robust standard errors clustered at the running variable. Figure
(B): Differences in % of females by values of running variable with opposite signs. Confidence intervals (95%)
from regressions with indicator for female as dependent variable and dummy indicating positive value of the
running variable.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.1
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(a) Discontinuity in High-School Education

(b) Differences in High-School Education, Ranks X and -X

Figure A.4: Discontinuity in Share with High-School Degree

Note: Figure (A): Discontinuity on restricted sample: 0.009 (0.010), N=63,720. Linear regression with
indicator for high-school education as dependent variable. Robust standard errors clustered at the running
variable. Figure (B): Differences in % of high-school degree by values of running variable with opposite signs.
Confidence intervals (95%) from regressions with indicator for high-school education as dependent variable
and dummy indicating positive value of the running variable.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.1
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(a) Discontinuity in College Education

(b) Differences in College Education, Ranks X and -X

Figure A.5: Discontinuity in Share with College Degree

Note: Figure (A): Discontinuity on restricted sample: −0.008 (0.009), N=63,720. Linear regression with
indicator for college education as dependent variable. Robust standard errors clustered at the running
variable. Figure (B): Differences in % of college degree by values of running variable with opposite signs.
Confidence intervals (95%) from regressions with indicator for college education as dependent variable and
dummy indicating positive value of the running variable.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.1
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Appendix B Appendix for Chapter 3

B.1 Supplementary Tables and Figures

B.1.1 Invariance to Quantitative Beliefs

Figure B.1 shows the effect of the cutoffs in round one for the second and third mover on

the best-response cutoffs for the first mover in round two. In particular the figure indicates

the difference in best response between the first and second round, so 51 − µ1,2(µ2,1, µ2,3).

For most second- and third-mover responses close to the equilibrium the best response is

identical. Even with substantially different beliefs about the cutoffs, the first mover should

still have a difference in their first and second cutoffs of at least 10. The sole exceptions are

those cases where the second and third movers are believed to use boundary cutoffs, either

always or never switching.

Never (1) (35) (51) Always (100)

Never (1)

(42)

(51)

Always (100)

( 1)

(
1
)

FM Selection=16 ≥10

Figure B.1: Differences for First-Mover Cutoffs (Round 1 to 2) as a Function of Beliefs
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B.1.2 Experimental Design

Overall allocation of subjects to session is given in Table B.1.

Table B.1: Experimental Design Table

Treatment Type Sessions Subjects Supergames

Selection Game 4 66 1,386

No Selection Decision 2 33 693

S-Across Game 4 60 1,260

S-Within Game 4 69 1,446

S-Explicit Decision 2 36 756

S-Peer Game 4 72 1,512

S-Simple-Random Game 4 72 2,952

S-Simple-Fixed Game 4 72 2,952

All 28 480 12,960

Note: Table presents number of sessions and subjects per treatment, which are classi-
fied by type (game versus decision problem).

B.1.3 Robustness

This appendix contains tables and figures that extend the analysis in the main text.

Table B.2 reports the same regressions as in Table 1 in the main text, but using data from

supergames 6 to 20 instead of supergames 11 to 20. Table B.3 extends the same analysis

for players in the role of second- and third-movers, and finds very similar results. Table B.4

replicates the analysis from Table 1 for the S-Across treatment, and Table B.5 extends the

analysis to include data from supergames 6 to 20. Tables B.6 and B.7 do the same for the

S-Explicit treatment.

Table B.8 report results from the S-Within treatment, in which subjects are informed

about the actions taken by other players during the course of the supergame. In the S-Within

treatment, the relevant conditioning variable should be the information that other people

switched, and the passing of time per se does not convey direct actionable information. Table
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B.9 extends the analysis to include data from supergames 6 to 20.

Tables B.10 and B.11 report results of supergame 21 behavior for subjects in the S-Within

and S-Peer treatments, respectively. For both cases, we cannot reject the hypothesis that

cutoffs are similar to the Selection treatment. We conclude that neither receiving strategic

feedback during the path of play, nor discussing the optimal strategy with peers significantly

affects behavior in supergame 21.
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Table B.2: Average Cutoff for No Selection and Selection Treatments, First-Movers

Treatment Game Round Theory Supergame 6 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ?jt

No
Selection
(Control)

Round 1, µ̂NS
1 [51] 54.13 – 0.192 52.76 – 0.479

(2.40) (2.48)

Round 2, µ̂NS
2 [51] 53.53 0.249 0.295 52.88 0.907 0.449

(2.42) (2.48)

Round 3, µ̂NS
3 [51] 53.01 0.100 0.414 53.27 0.620 0.360

(2.46) (2.48)

Joint Tests: 0.197‡ 0.201§ 0.875‡ 0.817§

Selection
(Treat-
ment)

Round 1, µ̂S1 [51] 46.92 0.007 0.001 43.45 0.018 0.013
(1.20) (3.04)

Round 2, µ̂S2 [35] 43.28 0.000 0.000 39.91 0.001 0.107
(1.23) (3.04)

Round 3, µ̂S3 [28] 38.92 0.000 0.000 36.32 0.000 0.006
(1.30) (3.04)

Joint Tests: 0.000‡ 0.000§ 0.000‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies.
Standard errors in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are
171/138/33 Total/Selection/No Selection first-mover subjects across supergames 6-20, and 55/22/33 in supergame 21. Selection
treatment exclude subjects in the second- and third-mover roles. †−Univariate significance tests columns examine differences
from either the first-round coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t) and the theoretical prediction
(H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE

cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.3: Average Cutoff per Round for Selection Treatments, Second- and Third-Movers

Treatment Game Round Theory Supergame 11 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ?jt

Selection, Second-Movers

Round 1, µ̂S1 [42] 44.64 0.000 0.000 46.09 0.066 0.145
(0.68) (2.80)

Round 2, µ̂S2 [31] 41.32 0.000 0.000 40.36 0.001 0.001
(0.98) (2.80)

Round 3, µ̂S3 [25] 38.00 0.000 0.000 35.18 0.000 0.000
(1.40) (2.80)

Joint Tests: 0.000‡ 0.000§ 0.024‡ 0.000§

Selection, Third-Movers

Round 1, µ̂S1 [35] 43.79 0.000 0.000 45.50 0.030 0.000
(1.31) (2.57)

Round 2, µ̂S2 [28] 40.57 0.000 0.000 41.95 0.001 0.000
(1.34) (2.57)

Round 3, µ̂S3 [23] 37.63 0.000 0.000 36.82 0.000 0.000
(1.40) (2.57)

Joint Tests: 0.000‡ 0.000§ 0.059‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies. Standard errors
in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 133/138 second-/third-mover
subjects across supergames 11-20, and 22 second- and third-movers in supergame 21. †−Univariate significance tests columns examine differences
from either the first-round coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ).
‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE cutoffs in supergame (H0 : 0 =

µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.4: Average Cutoff for S-Across Treatment, First-Movers (Supergames 11 to 20)

Treatment Game Round Theory Supergame 11 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ̂St µjt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ̂St µ̂jt = µ?jt

S-Across

Round 1, µ̂
S(A)
1 [51] 49.26 0.082 0.255 0.375 51.80 0.807 0.068 0.809

(1.93) (3.31)

Round 2, µ̂
S(A)
2 [35] 45.37 0.034 0.320 0.000 49.45 0.458 0.037 0.000

(2.00) (3.31)

Round 3, µ̂
S(A)
3 [28] 41.30 0.000 0.390 0.000 45.35 0.097 0.048 0.000

(2.11) (3.31)

Joint Tests: 0.000‡ 0.000§ 0.001‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies. Standard errors in
parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 60 first-mover subjects across supergames
11-20, and 20 first-movers in supergame 21. †−Univariate significance tests columns examine differences from either the first-round coefficient from the
control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treatment (H0 :µ̂jt = µ̂St for treatment j, round t) and
the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of

PBE cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.5: Average Cutoff for S-Across Treatment, First-Movers (Supergames 6 to 20)

Treatment Game Round Theory Supergame 6 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ̂St µjt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ̂St µ̂jt = µ?jt

S-Across

Round 1, µ̂
S(A)
1 [51] 49.59 0.150 0.239 0.459 51.80 0.807 0.068 0.809

(1.90) (3.31)

Round 2, µ̂
S(A)
2 [35] 46.40 0.015 0.182 0.000 49.45 0.458 0.037 0.000

(1.94) (3.31)

Round 3, µ̂
S(A)
3 [28] 41.66 0.000 0.261 0.000 45.35 0.097 0.048 0.000

(2.02) (3.31)

Joint Tests: 0.000‡ 0.000§ 0.001‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies. Standard errors
in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 60 first-mover subjects across
supergames 6-20, and 20 first-movers in supergame 21. †−Univariate significance tests columns examine differences from either the first-round coefficient
from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treatment (H0 :µ̂jt = µ̂St for treatment j, round
t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint

test of PBE cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.6: Average Cutoff per Round for S-Explicit Treatment (Supergames 11 to 20)

Treatment Game Round Theory Supergame 11 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ̂St µjt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ̂St µ̂jt = µ?jt

S-Explicit

Round 1, µ̂
S(E)
1 [51] 55.52 0.844 0.001 0.067 59.58 0.199 0.004 0.059

(2.47) (4.55)

Round 2, µ̂
S(E)
2 [34] 48.46 0.076 0.054 0.000 53.58 0.877 0.016 0.000

(2.49) (4.55)

Round 3, µ̂
S(E)
3 [17] 42.57 0.000 0.238 0.000 50.08 0.615 0.015 0.000

(2.55) (4.55)

Joint Tests: 0.000‡ 0.000§ 0.000‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies. Standard errors in
parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 36 subjects in the S-Explicit treatment
across supergames 11-20, and 12 first-movers in supergame 21. †−Univariate significance tests columns examine differences from either the first-round
coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treatment (H0 :µ̂jt = µ̂St for treatment
j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j);

§–Joint test of PBE cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.7: Average Cutoff per Round for S-Explicit Treatment (Supergames 6 to 20)

Treatment Game Round Theory Supergame 6 to 20 Supergame 21

Estimate Test (p-Value) Estimate Test (p-Value)

µ? µ̂ µ̂jt = µ̂NS
1 µ̂jt = µ̂St µjt = µ?jt µ̂ µ̂jt = µ̂NS

1 µ̂jt = µ̂St µ̂jt = µ?jt

S-Explicit

Round 1, µ̂
S(E)
1 [51] 55.49 0.698 0.002 0.063 59.58 0.199 0.004 0.059

(2.42) (4.55)

Round 2, µ̂
S(E)
2 [34] 48.88 0.134 0.043 0.000 53.58 0.877 0.016 0.000

(2.44) (4.55)

Round 3, µ̂
S(E)
3 [17] 43.84 0.004 0.083 0.000 50.08 0.615 0.015 0.000

(2.48) (4.55)

Joint Tests: 0.000‡ 0.000§ 0.000‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies. Standard errors in
parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are 36 subjects in the S-Explicit treatment
across supergames 6-20, and 12 first-movers in supergame 21. †−Univariate significance tests columns examine differences from either the first-round
coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treatment (H0 :µ̂jt = µ̂St for treatment
j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j);

§–Joint test of PBE cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.8: Average Cutoff per In-Group Switches, S-Within (Supergames 11 to 20)

Treatment In-Group Switches Theory Supergame 11 to 20

Estimates

µ? Round 1, µ̂
S(W )
1s Round 2, µ̂

S(W )
2s Round 3, µ̂

S(W )
3s Joint Tests:

S-Within

Zero [51] 42.91 [0.000]† 41.51 [0.000]† 39.35 [0.000]† 0.001‡

(1.80) (1.87) (2.03)

One [14] 35.66 [0.000]† 34.44 [0.000]† 34.09 [0.000]† 0.206‡

(1.88) (1.87) (1.95)

Two [3] 30.77 [0.000]† 29.95 [0.000]† 31.18 [0.000]† 0.813‡

(2.76) (2.25) (2.26)

Joint Tests: 0.000‡ 0.000‡ 0.000‡

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies.
Standard errors in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are
69 subjects across supergames 11-20. †−P-Value of univariate significance tests of the theoretical predictions (H0 :µ̂jts = µ?jts ). ‡–Join

test: Cutoffs are stationary across the treatment (H0 : µ̂
S(W )
1s = µ̂

S(W )
2s = µ̂

S(W )
3s across rounds, and H0 : µ̂

S(W )
t1 = µ̂

S(W )
t2 = µ̂

S(W )
t3

across number of in-group switches).
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Table B.9: Average Cutoff per In-Group Switches, S-Within (Supergames 6 to 20)

Treatment In-Group Switches Theory Supergame 6 to 20

Estimates

µ? Round 1, µ̂
S(W )
1s Round 2, µ̂

S(W )
2s Round 3, µ̂

S(W )
3s Joint Tests:

S-Within

Zero [51] 43.42 [0.000]† 42.15 [0.000]† 40.93 [0.000]† 0.006‡

(1.68) (1.72) (1.86)

One [14] 37.04 [0.000]† 37.04 [0.000]† 35.60 [0.000]† 0.192‡

(1.73) (1.72) (1.79)

Two [3] 34.67 [0.000]† 31.26 [0.000]† 32.53 [0.000]† 0.291‡

(2.45) (2.05) (2.06)

Joint Tests: 0.000‡ 0.000‡ 0.000‡

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against treatment-round dummies.
Standard errors in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). There are
69 subjects across supergames 6-20. †−P-Value of univariate significance tests of the theoretical predictions (H0 :µ̂jts = µ?jts ). ‡–Join

test: Cutoffs are stationary across the treatment (H0 : µ̂
S(W )
1s = µ̂

S(W )
2s = µ̂

S(W )
3s across rounds, and H0 : µ̂

S(W )
t1 = µ̂

S(W )
t2 = µ̂

S(W )
t3

across number of in-group switches).



Table B.10: Average Cutoff in S-Within Treatment, First-Movers (Supergame 21)

Treatment Game Round Theory Supergame 21

Estimate Test (p-Value)

µ? µ̂ µ̂j
t = µ̂NS

1 µ̂j
t = µ̂S

t µ̂j
t = µ?j

t

S-Within

Round 1, µ̂
S(W )
1 [51] 39.57 0.001 0.413 0.001

(3.32)

Round 2, µ̂
S(W )
2 [35] 37.00 0.004 0.540 0.547

(3.32)

Round 3, µ̂
S(W )
3 [28] 34.09 0.001 0.639 0.067

(3.32)

Joint Tests: 0.005‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against
treatment-round dummies. Standard errors in parentheses, risk-neutral predicted cutoffs in square brack-
ets (switch ball if value is lower than cutoff). There are 23 first-mover subjects in supergame 21.
†−Univariate significance tests columns examine differences from either the first-round coefficient from
the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treat-
ment (H0 :µ̂jt = µ̂St for treatment j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of
stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE cutoffs

in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.11: Average Cutoff in S-Peer Treatment, First-Movers (Supergame 21)

Treatment Game Round Theory Supergame 21

Estimate Test (p-Value)

µ? µ̂ µ̂j
t = µ̂NS

1 µ̂j
t = µ̂S

t µ̂j
t = µ?j

t

S-Peer

Round 1, µ̂
S(A)
1 [51] 46.13 0.187 0.577 0.140

(3.31)

Round 2, µ̂
S(A)
2 [35] 41.5 0.035 0.739 0.049

(3.31)

Round 3, µ̂
S(A)
3 [28] 37.17 0.005 0.859 0.001

(3.31)

Joint Tests: 0.000‡ 0.000§

Note: Figures derived from a single random-effects least-squares regression for all chosen cutoffs against
treatment-round dummies. Standard errors in parentheses, risk-neutral predicted cutoffs in square brack-
ets (switch ball if value is lower than cutoff). There are 24 first-mover subjects in supergame 21.
†−Univariate significance tests columns examine differences from either the first-round coefficient from
the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the Selection treat-
ment (H0 :µ̂jt = µ̂St for treatment j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of
stationary cutoffs across the supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE cutoffs

in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).
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Table B.12: Average Cutoff in Last Round for S-Simple Treatments (Supergame 40)

Treatment Game Round Theory S-Simple-Random S-Simple-Fixed

Estimate p-values Estimate p-values

µ? µ̂ H0 : µ̂Wj = µ̂W1 H0 : µ̂jt = µ?jt µ̂ H0 : µ̂jt = µ̂NS
1 H0 : µ̂jt = µ?jt

S-Simple

Round 1, µ̂NS
1 [51] 44.88 – 0.033 50.20 – 0.770

(2.85) (2.85)

Round 2, µ̂NS
2 [32] 41.62 0.421 0.001 43.00 0.077 0.000

(2.85) (2.85)

Round 3, µ̂NS
3 [22] 38.00 0.090 0.000 30.67 0.000 0.003

(2.85) (2.85)

Joint Tests: 0.000‡ 0.000§ 0.000‡ 0.000§

Note: Figures derived from a single OLS regression (N = 144 subjects each making a single choice) against treatment-round dummies. Standard
errors in parentheses, risk-neutral predicted cutoffs in square brackets (switch ball if value is lower than cutoff). †−Univariate significance tests columns
examine differences from either the first-round coefficient from the control (H0 :µ̂jt = µ̂NS1 for treatment j, round t), the first-mover coefficients from the
Selection treatment (H0 :µ̂jt = µ̂St for treatment j, round t) and the theoretical prediction (H0 :µ̂jt = µ?jt ). ‡–Joint test of stationary cutoffs across the
supergame (H0 : µ̂j1 = µ̂j2 = µ̂j3 for treatment j); §–Joint test of PBE cutoffs in supergame (H0 : 0 = µ̂j1 − µ?j1 = µ̂j2 − µ?j2 = µ̂j3 − µ?j3 ).



B.1.4 Type Classification Robustness

In Figure B.2 we indicate the three type categories as we vary the bandwidth parameter

ε from 0 to 10.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Allowed Type Error

T
y
p
e
P
ro
p
o
rt
io
n

(a) Selection

Stationary

Decreasing

Other

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Allowed Type Error

T
y
p
e
P
ro
p
o
rt
io
n

(b) No Selection

Figure B.2: Type Robustness to ε

Table B.13 reports on the proportion of types as classified in the last five partial strategy

supergames for each treatment. Rather than the full strategy method final supergames, we

here take averages across supergames to assess the strategy cutoffs.

Following the paper we focus on the type specifications with an error bandwidth ε = 2.5
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(though we also provide data on ε = 0 and ε = 5).

For treatment S-Simple-Random a subject is decreasing if the difference in average cutoffs

for all pairwise comparisons (first minus second-mover, first minus third-mover, and second

minus third-mover) are strictly positive; likewise, subject is ε-decreasing if all such differences

are (weakly) greater than ε. For treatment S-Within subject is decreasing if the difference in

average cutoffs for all pairwise comparisons (no switches minus 1 switch, no switches minus 2

switches, and 1 switch minus 2 switches) are strictly positive; and subject is ε-decreasing if all

such differences are (weakly) greater than ε. For all other treatments subject is decreasing

if minimum of (round 1 - round 2) cutoffs, irrespective of type, is strictly positive, and

is ε-decreasing if minimum is larger than ε. Treatment Selection includes data from S-

Deliberation as both treatments are identical up until cycle 21.

Table B.13: Type Classifications on Last Five Cycles

NS Decreasing Non-Decreasing

Exact ε = 2.5 ε = 5 Exact ε = 2.5 ε = 5

No Selection 33 12.1% 3.0% 3.0% 87.9% 97.0% 97.0%

Selection 138 29.7% 25.4% 23.9% 70.3% 64.6% 66.1%

S-Across 60 21.7% 20.0% 18.3% 78.3% 80.0% 81.7%

S-Explicit 36 50.0% 36.1% 36.1% 50.0% 63.9% 63.9%

S-Within 69 65.6% 49.2% 44.3% 34.4% 50.8% 55.7%

S-Simple-Random 72 47.9% 39.4% 33.8% 52.1% 60.6% 66.2%

Note: Type classification based on cutoffs chosen in cycles 36-40 for S-Simple-Random and
cycles 16-20 for all other treatments.
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B.1.5 Effects from Experience and Risk Aversion

Table B.14: Individual Regressions

Explanatory Variables (I) (II) (III)

Sel. Only Sel.+NoSel. Sel.+NoSel.

Experienced Rematching ν̂G1,10 0.037 0.063

ν̂G11,20 0.055 0.051

Experienced Outcomes ν̂H1,10 0.363 ??
0.030 0.277 ??

0.049 0.341 ???
0.003

ν̂H11,20 0.015 0.018

Risk Aversion ρ̂ -2.24 ??
0.046 -2.12 ??

0.021 -2.11 ??
0.017

No Selection δNoSel – 5.52 7.23 ??
0.020

Constant 21.6 25.8 26.9

N 66 91 91

R
2

0.141 0.198 0.214

Note: Statistically significant variables indicated by stars (?–10%;??–5%; ? ? ?–1%) with p-values beneath 
them. R2 

is the adjusted R-squared measure of fit.

For each ε-stationary subject we generate their experienced rematching (ν̂Gi ) and final

(ν̂Hi ) outcomes, averaging across supergames 1–10 and supergames 11–20. Despite facing

the same generating process in each treatment there is substantial subject variation in re-

matching and final outcomes in these blocks of ten supergames. For each individual subject

variation in the average experiences can be used to validate the mechanic in the hypoth-

esized learning model. In Table B.14, we regress each stationary subject’s supergame-21

cutoff choice on the observed experiences (ν̂Gi and ν̂Hi ) and elicited risk preference (ρ̂i). In

the first regression (Column I), we present results for the 66 stationary-type subjects in our

Selection treatments (the baseline and S-Across). In the second (Column II) we pool in the

additional 25 stationary subjects from the No Selection treatment (including a treatment

dummy). In the third regression, we remove the experienced rematching (both) and late-

session experienced final outcomes as independent variables (which can be motivated by the

adjusted R-squared measures provided in the last row).
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Across specifications we find that variation in final outcomes in the early-session su-

pergames, ν̂H1,10, has a strong effect in the predicted direction. However, subjects’ learning

seems to occur quite quickly, as we do not find a significant final cutoff response to final-

outcome variation in the second block of ten supergames. While the signs on both rematching

variables and the late-session final-outcome variable are positive, the size of the estimated

effects are far smaller than for the early-session final outcomes. Separate from experience,

subject-variation in elicited risk preferences is a significant predictor for subjects’ final su-

pergame cutoffs in all of the regressions, reflecting the other requirement for the aggregate

match made by the behavioral model.
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B.2 Theoretical Model

We model a dynamic setting with adverse selection occurring over time. To do this we

set up a finite population of objects O = {o1, . . . , oM} (with the interpretation of long-side

participants or durable goods, etc.). Each object has a common value, an iid draw over V ⊂ R

according to a commonly known distribution F so that the average value is v̄. These objects

are initially matched to a group of individuals I = {1, . . . , N} (with the interpretation of

short-side participants, consumers, etc.). Each individual is randomly assigned to one of

the objects at the beginning of the game through a one-to-one matching function, so that

individual i has the initial object µi
0. In our setting there are more objects than individuals

(N < M) and so some of the objects Ô0 ⊂ O are initially unassigned. The set of unassigned

objects will function here as a rematching population, and it is adverse selection over this

population that is our main focus.

Choices take place over a time variable t ∈ {1, 2, . . . , T ·N}, where individuals take

turns receiving an opportunity to see their object’s value. In particular each individual sees

their object’s value in period t?i = i + τiN , where τi is an iid random variable from 1 to

T .1 At the exogenously determined time τi the individual i faces a choice: keep the initially

assigned object µi
0 which has a known value v0, or instead rematch to an object µi

t from the

unmatched population Ôt. Importantly, rather than the rematching population being some

fixed outcome or a draw from a stationary distribution, the rematching population after

agent i’s choice is given by Ôt+1 = {µi
0} ∪ Ôt \ {µi

t}.
To see that there is adverse-selection in our environment it suffices to solve the first few

periods of the model. Define the event that the participant who moves in period t observes

their value that period as It and the event that they observe their value and switch as St,
with complementary event St.

t = 1 Suppose individual 1 observes their object’s value in period 1 (the event I1 = {t?1 =

1}). Because no-one else can have moved yet, each object in the rematching pool is an iid

draw from the distribution G1(v |I1 ) = F (v). The optimal choice is therefore to rematch

1The interpretation given is that there are T periods, but agents move in turns within the period, so 1
is the first-mover, 2 the second-mover, etc. An alternative interpretation is that draws where two agents
choose at the same time are resolved in preference to the first-mover, then the second-mover, and so on.
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if µ1
0 < v̄ =: v?1, which happens with probability p?1 = Pr{t?1 = 1} · Pr {µ1

0 < v?1}.
t = 2 Suppose 2 observes their object’s value. A draw from the rematching pool is therefore

distributed as G2(v |I2 ) = G2(v) = λPr {S1 |I2} · F (v |v < v?1 ) + (1− λp?1) ·G1(v) where

λ = 1
M−N is the probability of drawing any particular object from the rematching pool.

The distribution G2(v) therefore has an expected value v?2 < v?1, and the optimal choice

by 2 is therefore to rematch if µ2
0 < v?2, which happens with probability p?2 = Pr{t?2 =

2} · Pr {µ2
0 < v?2}

...

t Were i to see their value at t, the distribution of the rematching population is Gt(v |It ) =

λp?t−1 ·F (v
∣∣v < v?t−1 )+(1−λp?t−1) ·Gt−1(v

∣∣St−1, It ) which has expectation v?i . Individual

i therefore switches with probability p?t = Pr{It} · Pr {µi
0 < v?t }.

The optimal solution proceeds inductively, with the additional complication that after period

N agents must condition their choices on their own information, and that of other agents.2

Define the two sets of time periods

Xt(s, s
′) = {s, s+ 1, . . . s′ − 1, s′} ∩ {r |J(r) = J(t)} ,

Yt(s, s
′) = {s, s+ 1, . . . s′ − 1, s′} ∩ {r |J(r) 6= J(t)} ,

the time periods between s and s′ where the player who moves at t is or is not the relevant

decision maker, respectively. The optimal decision rules according to :

v?t :=
∑

s∈Yt(1,t−1)

qs · F (v?s) ·∏r∈Yt(s+1,t−1) (1− qr · F (v?r))

1−∑r∈Xs(s+1,t−1) qrF (v?r)
E [v |v < v?s ]

This forms a decreasing sequence {v?t }(j+1)N
t=jN+1 across each sequence of player turns j ∈

{1, . . . , T}, while for any individual i the optimal decision rule
{
v?jN+i

}T
j=1

is decreasing.

That the first sequence of turns has a decreasing optimal decision rule is illustrated

above, as each participant faces a rematching pool that is a convex combination of the

previous participant’s distribution Ft−1, but with a positive probability of F (v |v < Eνt−1 )

mixed in. For the first result we need to nest information. Define the event that a participant

2For instance, agent i observing the value of µ1
o in period N + i knows that they did not see their value

in period i. Similarly, the inductive step must incorporate the nested condition that player i − 1 did not
switch when working backwards.
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i observes the object at time t = j · N + i and switches as St and its complement of not

switching as Nt. Essentially this event encodes information that j did not switch in periods

(j− 1)N + i, (j− 2)N + i, etc. The rematching distribution of a participant who is thinking

about switching at time t is given by:

Gt(v) = λ · Pr{St−1} · F (v |v < v?1 ) + (1− λ · Pr{St}) ·Gt−1(v |Nt−1 ).

For the recursive calculation, the event NjN+i only contains information that is relevant to

the probability that person i saw their object in a previous period, and so for any fixed

sequence of turns {v?t }(j+1)N
t=jN+1 the same reasoning as before holds, given any distribution at

the start of the sequence GjN(v).
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B.3 Instructions

B.3.1 Instructions to Part 1 [Supergames 1-5]

B.3.1.1 No Selection (Control) and S-Explicit

Introduction3

Thank you for participating in our study. Please turn off mobile phones and other

electronic devices. These must remain turned off for the duration of the session.

This is an experiment on decision making. The money you earn will depend on both your

decisions and chance. The session will be conducted only through your computer terminal;

please do not talk to or attempt to communicate with any other participants during the

experiment. If you have a question during this instruction phase please raise your hand

and one of the experimenters will come to where you are sitting to answer your question in

private.

During the experiment, you will have the opportunity to earn a considerable amount

of money depending on your decisions. At the end of the experiment, you will be paid in

private and in cash. On top of what you earn through your decisions during the experiment,

you will also receive a $6 participation fee.

Outline

Your interactions in this experiment will be divided into “Cycles”.

• In each cycle you will be holding one of four balls, called Balls A to D.

• Each ball has a value between 1 and 100, and your payoff in each cycle will be determined

by the value of the ball you are holding at the cycle’s end.

• Initially you will not know any of the four ball’s values, and will only know which of the

four balls you are holding. Each cycle is divided into three rounds, and in one of these

rounds you will see the value of your ball.

• At the point when you see your ball’s value you will be asked to make your only choice

for the cycle:

3Some passages are different depending on treatment, and are indicated by highlighted text and the name
of the treatment in brackets. Everything else is the same.
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– either keep the ball you are holding.

– or instead let go of your current ball and take hold of one of the other three balls.

Main Task

In more detail, a cycle proceeds as follows:

• In each new cycle and for each participant, the computer randomly draws four balls.

Each ball’s value is chosen in an identical manner:

– With 50% probability the computer rolls a fair hundred-sided die: so the ball has

an equal probability of being any number between 1 and 100.

– With 25% probability the ball has value 1.

– With 25% probability the ball has value 100.

• After drawing the values for the four balls, the computer randomly shuffles them into

positions A to D. Once in place, the four balls’ positions are fixed for the entire cycle.

So whatever the value on Ball A, this is its value for the entire cycle. Only at the end of

each cycle are four new balls drawn for your next cycle.

• Once the balls are in position, the computer randomly matches you to a ball, so you

start out holding one of the balls A to D. There are therefore three leftover balls which

are held by the Computer.

– For example, one possible initial match might be that you hold Ball B. So because

Ball B is held in this example, the Computer starts the cycle holding Balls A, C and

D.

• Your outcome each cycle will depend only on the ball you are holding at the end of the

cycle.

– In each cycle you will know which of the four balls you start out holding.

– You will not know any of the four balls’ values to start with.

– Every cycle you will make just one decision. At some random point in the cycle you

will be told your ball’s value. You will then be asked to make a choice after learning

your ball’s value: either keep holding your ball or give your ball to the computer,

and instead take one of the three balls the computer is holding.
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• The point in the cycle when you see your ball’s value is random. Each cycle is divided

into three rounds where you are given a chance to see your ball.

• The round in which you will see your held ball’s value and make your choice for the cycle

is random:

– In round one, the computer flips a fair coin. If the coin lands Heads, you will see

your ball’s value. So you have a 50% chance of seeing your ball’s value in the first

round.

– In round two, if you did not see you ball in round one you get another 50% chance

of seeing its value: another coin flip.

– Finally, in round three, if you did not see your ball’s value in either round one or

round two you will see its value for sure in round three and make your choice.

• Whenever you do see your held ball’s value—either in round one, two or three— you will

make your only decision for the cycle. The two options you have are:

1. Keep hold of your ball until the end of the cycle.

2. Switch balls: Give your ball to the computer to hold, and instead take one of the

balls it is currently holding.

[S-Explicit]

• If you do choose to switch balls with the computer, the procedure the computer uses to

select a ball to give you in exchange varies with the round:

– In round one, the computer will randomly select one of the three available balls,

choosing between each of the three balls it is holding with equal probability.

– In round two, the computer will randomly select a ball from the two lowest value

balls of the three it is holding, choosing each of the two lowest-value balls with equal

probability. So, in round two the computer will never offer you the highest-value ball

of the three.

– In round three, the computer will only offer you the lowest-value ball of the three it

is holding.
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• Your cycle payoff is $0.10 multiplied by the number on the ball you are holding at the

end of the cycle. So a ball with value 1 at the end of a cycle has a payoff of $0.10, a ball

with value 50 has a payoff of $5.00, while a ball with value 100 has a payoff of $10.00.

Cycle Summary

1. Each participant is given four balls A to D, where each ball has a random value between

1 and 100.

2. Each participant is then assigned one of the four balls to hold, with the leftover balls

held by the computer.

3. Across three rounds the participants are given the chance to see the value of the balls

they are holding.

• Whenever you see the value of the ball you are holding you must decide whether to

keep holding it, or trade it with the computer.

• In rounds one and two you have a 50% probability of seeing the held ball’s values.

Any participant that reaches round three without seeing their ball’s value will always

see its value in round three, and are then given the option to trade it for one of the

computer balls.

[S-Explicit]

• The procedure the computer uses to choose the ball it is willing to exchange with you

changes across the cycle. In round one it will randomize across all three balls. In

round two, it randomizes over the two lowest-value balls. In round three, it will offer

the lowest-value ball with certainty.

Experiment Organization

There will be three parts to this experiment. The first part will last for 5 cycles. After

this you will get instructions for the second part which will last for another 15 cycles, where

the task is very similar. Part 3 will last for a single cycle. Following part 3, we will conclude

the experiment with a number of survey questions for which there is the chance for further

payment.
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Payment

• Monetary payment for Parts 1 and 2 will be made on two randomly chosen cycles, where

each of the 20 cycles in the first two parts are equally likely to be selected for payment.

• You will be given the opportunity for further earnings in Part 3 and the survey at the

end of the experiment (which we will explain once the preceding parts end).

• All participants will receive a $6 participation fee added to total earnings from the other

parts of the experiment.

B.3.1.2 Selection, S-Across, S-Within, and S-Peer

Introduction4

Thank you for participating in our study. Please turn off mobile phones and other

electronic devices. These must remain turned off for the duration of the session.

This is an experiment on decision making. The money you earn will depend on both your

decisions and chance. The session will be conducted only through your computer terminal;

please do not talk to or attempt to communicate with any other participants during the

experiment. If you have a question during this instruction phase please raise your hand

and one of the experimenters will come to where you are sitting to answer your question in

private.

During the experiment, you will have the opportunity to earn a considerable amount

of money depending on your decisions. At the end of the experiment, you will be paid in

private and in cash. On top of what you earn through your decisions during the experiment,

you will also receive a $6 participation fee.

Outline

Your interactions in this experiment will be divided into “Cycles”.

• In each cycle you will be in a group of three, with each participant holding one of four

balls, called Balls A to D.

• Each ball has a value between 1 and 100, and your payoff in each cycle will be determined

by the value of the ball you are holding at the cycle’s end.

4Some passages are different depending on treatment, and are indicated by highlighted text and the name
of the treatment in brackets. Everything else is the same.
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• At the start of each cycle you will see which ball each of the three participants are holding.

However, you will NOT know any of the four ball’s values. Each cycle is divided into

three rounds, and in one of these rounds you will see the value of your ball.

• At the point when you see your ball’s value you will be asked to make your only choice

for the cycle:

– either keep the ball you are holding.

– or instead let go of your current ball and take hold of whichever ball is not being

held by another group member.

Main Task

In more detail, a cycle proceeds as follows:

• At the start of each cycle the computer randomly divides all of the participants in the

room into groups of three. Each player will randomly be given one of three roles: either

First Mover, Second Mover or Third Mover.

– The groups of three and specific roles assigned are fixed for each cycle.

– In each new cycle you will be randomly matched into a new group of three.

– In each new cycle you will be randomly assigned to either be the First, Second or

Third Mover.

• In each new cycle and for each separate group of three, the computer randomly draws

four balls. Each ball’s value is chosen in an identical manner:

– With 50% probability the computer rolls a fair hundred-sided die: so the ball has

an equal probability of being any number between 1 and 100.

– With 25% probability the ball has value 1.

– With 25% probability the ball has value 100.

• After drawing the values for the four balls, the computer randomly shuffles them into

positions A to D. Once in place, the four balls’ positions are fixed for the entire cycle.

So whatever the value on Ball A, this is its value for the entire cycle. Only at the end of

each cycle are four new balls drawn for your next cycle and next group of three.

• Once the balls are in position, the computer randomly gives a different ball to each of

the three group members. Each group member therefore starts out holding one of the
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balls A to D. But because the three group members are each holding one of the four balls

there is one leftover ball. This leftover ball is held by the Computer.

– For example, one possible initial match might be that Ball A is held by the Third

Mover; Ball B by the First Mover; and Ball D by the Second Mover. So because

Balls A, B and D are all held in this example, the Computer starts the cycle holding

the leftover Ball C.

[Selection, S-Across, and S-Peer]

• Your outcome each cycle will depend only on the ball you are holding at the end of the

cycle.

– In each cycle you will know which of the four balls you start out holding

– You will not know any of the four balls’ values to start with, nor which balls the other

two group members are holding.

[S-Within]

• Your outcome each cycle will depend only on the ball you are holding at the end of the

cycle.

– You will not know any of the four ball’s values to start with.

– You will know which ball is being held by each participant, and will also know if a

ball was previously held by another participant.

– Every cycle you will make just one decision. At some random point in the cycle you

will be told your ball’s value. You will then be asked to make a choice after learning

your ball’s value: either keep holding your ball or give your ball to the computer,

and instead take whichever ball the computer is holding.

• The point in the cycle when you see your ball’s value is random. Each cycle is divided

into three rounds where each group member is given a chance to see their ball. Each

round is further divided into a sequence of turns, dictated by your role:

1. The first mover gets the first opportunity to see their ball’s value. If they see it,

they make their one choice for the cycle, if not they must wait until the next round

for another opportunity to see their ball’s value.
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2. After the first mover, the second mover gets an opportunity to see their ball. Again,

if they see it, they make their one choice for the cycle, otherwise they must wait

until the next round.

3. Finally, after both the first and second mover, the third mover gets an opportunity

to see their ball. As before, if they see their ball they make their one choice for the

cycle, otherwise they must wait until the next round.

• The round in which you will see your held ball’s value and make your choice for the cycle

is random:

– In round one, the computer flips a fair coin once for each group member. If the coin

lands Heads, the group member sees their ball’s value. So each group member has a

50% chance of seeing their ball’s value in the first round.

– In round two, any group members who did not see their ball in round one get another

50% chance of seeing its value: another coin flip.

– Finally, in round three, any group members who did not see their ball in either round

one or round two see their ball’s value for sure in round three and make their choice.

• Whenever you do see your held ball’s value—either in round one, two or three—you will

make your only decision for the cycle. The two options you have are:

1. Keep hold of your ball until the end of the cycle.

2. Switch balls: Give your ball to the computer to hold, and instead take the ball it is

currently holding.

• The cycle ends after every participant within a group sees the ball’s value and makes a

decision.

[S-Across]

• At the end of the cycle you will get feedback on what happened. You will be told:

– The balls each group member and the computer started with.

– Choice 1/2/3: The identity of the group member who was 1st/2nd/3rd to see their

ball’s value; the round they saw their ball’s value; their choice (keep or switch); and

which ball the computer was holding after their choice.
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• Your cycle payoff is $0.10 multiplied by the number on the ball you are holding at the

end of the cycle. So a ball with value 1 at the end of a cycle has a payoff of $0.10, a ball

with value 50 has a payoff of $5.00, while a ball with value 100 has a payoff of $10.00.

Cycle Summary

1. The computer randomly forms the participants in the room into groups of three.

2. Each group is given four balls A to D, where each ball has a random value between 1

and 100.

3. Each of the three participants are given one of the four balls to hold, with the leftover

ball held by the computer.

4. Across three rounds the group members move in sequence according to their roles, and

each are given the chance to see the value of the ball they are holding.

• Whenever you see the value of the ball you are holding you must decide whether to

keep holding it, or trade it with the computer.

• In rounds one and two each group member has a 50% probability of seeing their held

ball’s value. Any group members that reach round three without seeing their ball’s

value will always see it in round three, and are then given the option to trade it for

the current computer ball.

Experiment Organization

There will be three parts to this experiment. The first part will last for 5 cycles. After

this you will get instructions for the second part which will last for another 15 cycles, where

the task is very similar. Part 3 will last for a single cycle. Following part 3, we will conclude

the experiment with a number of survey questions for which there is the chance for further

payment.

Payment

• Monetary payment for Parts 1 and 2 will be made on two randomly chosen cycles, where

each of the 20 cycles in the first two parts are equally likely to be selected for payment.

• You will be given the opportunity for further earnings in Part 3 and the survey at the

end of the experiment (which we will explain once the preceding parts end).
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• All participants will receive a $6 participation fee added to total earnings from the other

parts of the experiment.

B.3.2 Instructions to Part 2 [Supergames 6-20]

We will now pause briefly before continuing on to the second part of the experiment.

The task for the next 15 cycles of the experiment is very similar to the last 5. In fact, there

is only one difference from part one.5

So far, if you flipped a head you have been told the value of the ball you are holding

prior to deciding whether or not to trade it for the computer’s ball. For the remaining cycles

you instead will be asked to provide a cutoff rule in case you see your ball.

This cutoff is the minimum value you would need to keep the ball you are holding. In

every round of a cycle, you will be asked to provide a cutoff for trading your ball should you

see its value that round.

You will be asked to choose your cutoff value by clicking on the horizontal bar at the

bottom of your screens per the projected slide. You can click anywhere on the bar to change

your cutoff, and you can always adjust your minimum cutoff by plus or minus one by clicking

on the two buttons below the bar.

In the projected example I selected a minimum cutoff of 80.

After you submit your cutoff the computer will then flip the coin if you are in rounds

one or two to determine if you see your ball’s value, similar to part one.

If the coin flip is tails, nothing happens, and you will have to wait to decide until at least

the next round, where you will repeat this procedure and provide another minimum cutoff.

If instead the coin flip is Heads, or you are making your decision in round three where

you are guaranteed to see your ball, the computer will show you the value of your ball. The

computer will automatically keep it or trade your ball according to the minimum cutoff you

selected.

If your ball’s value is LOWER than your selected minimum, you will automatically

5The experimenter read the instructions aloud after Part 1 had ended. Slides were used to show screen-
shots and emphasize important points (see section B.3.3). The text was identical for all treatments, and
the accompanying slides differ only for treatment S-Within.
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trade your ball for the computer’s ball, which you will keep until the end of the cycle. In the

projected example I had selected 80 as my minimum cutoff. In the above example, it shows

what would happen if I saw my held ball, and its value was 75. Because this is lower than

my selected minimum value of 80, the computer uses my selected cutoff to automatically

trade my ball for the computer’s ball, rather than keeping it.

The next example shows what happens if the coin flip is heads, and your held ball is

equal to or greater than your selected minimum cutoff. In this case, because the ball’s value

is greater than my selected minimum value of 80, the computer uses my selected cutoff to

automatically keep my ball until the end of the cycle, rather than trading it. The projected

example illustrates what would happen if my held ball had a value of 85. Because 85 is

above my selected cutoff of 80, I would keep my ball until the end of the cycle.

Because of this procedure, you will maximize your potential earnings by selecting the

chosen cutoff value to answer the following question: What is the smallest value X for which

I would keep my ball right now, where for any balls lower than X, I would rather trade them

for the computer’s ball?

The computer will now ask you three questions to make sure you understand this cutoff.

At the top of your screens the computer will indicate a ball you are holding. Just for these

question we will also tell you the ball the computer is holding. For each question we will

give you a selected cutoff, and the value of the ball you are holding. Given this information,

we would like you to select what happens.

You must answer all three questions correctly for the experiment to proceed.
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B.3.3 Slides for Instructions to Part 2
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B.3.4 Handouts for Part 2 [Supergames 6-20]

B.3.4.1 No Selection (Control) and S-Explicit

Part Two67

• Everything in part two cycles will be the same as part one, with one exception.

• In every round, you will be asked to provide a cutoff.

• The cutoff you provide is the minimum value required for you to keep your ball.

• After you have confirmed your cutoff X between 1 and 100 the computer will determine

if you see your ball’s value this round:

– If you see your ball’s value this round a choice will be made according to your

minimum-value cutoff.

– If you do not see your ball’s value this round, you will provide another minimum-

value cutoff in the next round.

• In the round where you see your ball, the computer will use your minimum cutoff X as

follows:

– IF your ball’s value is equal to or greater than the minimum cutoff X, then you will

choose to keep your ball.

[No Selection (Control)]

– OTHERWISE if your ball’s value is less than the minimum cutoff X, the computer

will choose to trade your ball for one of the computer’s balls.

[S-Explicit]

– OTHERWISE if your ball’s value is less than the minimum cutoff X, the computer

will choose to trade your ball for the one chosen by the computer that round.

[Selection, S-Across, S-Within, and S-Peer]

– OTHERWISE if your ball’s value is less than the minimum cutoff X, the computer

will choose to trade your ball for the one held by the computer that round.

• Because of this procedure, you should choose your cutoff value to answer the following

question:

6The experimenter distributed the handouts before showing the slides and reading the script. They served
as a consultation material for subjects.

7Some passages are different depending on treatment, and are indicated by highlighted text and the name
of the treatment on brackets. Everything else is the same.
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[No Selection (Control)]

What is the smallest value X from 1 to 100 for which I would like to keep my ball right

now, rather than give it to the computer in exchange for one of the balls the computer is

holding?

[S-Explicit]

What is the smallest value X from 1 to 100 for which I would like to keep my ball right

now, rather than give it to the computer in exchange for its selected ball for this round?

[Selection, S-Across, S-Within, and S-Peer]

What is the smallest value X from 1 to 100 for which I would like to keep my ball right

now, rather than give it to the computer in exchange for the ball the computer is holding?

B.3.5 Instructions to Part Three

We will now pause briefly before continuing on to the third part of the experiment. The

task for the final cycle of the experiment is very similar to the last 20. However, where we

paid two random cycles from the last 20, we will pay you whatever you earn in this last cycle

for sure. So for this one cycle you will earn between $0.10 and $10.00 depending on your

final ball.8

In this cycle we will randomly assign you to be either a first, second or third mover, and

will tell you your role. Like the preceding rounds, we will ask you for a minimum cutoff value

to keep your ball, and the computer will automatically keep or switch your ball depending

on your selected cutoff if you see your balls value that round.

[No Selection, Selection, S-Explicit, and S-Across]

The only difference in part 3 is that we will only tell you which round you saw your ball’s

value in at the end of the cycle.

[S-Within]

There are two differences in Part 3. First, we have removed the information on which

balls the other participants are holding. All you will know is which ball you are currently

8The experimenter read the instructions aloud after Part 2 had ended.
Slides were used to show screenshots and emphasize important points (see section B.3.6).
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holding. Second, we will now only tell you which round you saw your ball’s value and how

you decided at the very end of this cycle.

You will submit cutoffs in rounds 1 to 3, as before. In the round where you see your

ball’s value, you will use your selected cutoff for that round to make a decision.

[No Selection, Selection, S-Across, and S-Within]

If your balls’ value is lower than your minimal cutoff you will exchange your ball with

the one the computer is holding at that point.

[S-Explicit]

If your ball’s value is lower than your minimal cutoff you will exchange your ball with

the one the computer has selected to exchange for that round.

If your balls’ value is equal to or greater than your minimum cutoff you will keep your

ball for the cycle. Because of this procedure, nothing in the structure of the task has changed

from Part 2. So you should make your decisions exactly as before. The new procedure allows

us to collect information on the cutoffs you would select in all three rounds of the cycle.

[No Selection, Selection, S-Across, and S-Explicit]

Effectively, the only thing that has changed from part two is the point at which we tell

you you have made your choice, and that your payoff from this cycle will always be added to

your final cash payoff for the experiment.

[S-Within]

Recall that, in contrast to the previous cycles, (i) you will now not receive any information

about which balls the other two participants and the computer are currently holding in any

period, and (ii) you will choose a cutoff in all three rounds.

In terms of payment, remember that the outcome from this cycle will always be added to

your final cash payoff for the experiment, so that the ball you are holding at the end of this

cycle will add between $0.10 and $10.00 to your final payoff, depending on the ball you are

holding at the end.

Please now make your choices for the final cycle.
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B.3.6 Slides for Instructions to Part 3

B.3.6.1 No Selection, Selection, S-Across, S-Explicit, and S-Within

• Part Three will consist of a single cycle
• Whatever you earn in this cycle will be added to the two

random cycles selected from Parts 1 and 2

– So you have the chance to earn between $0.10 and $10.00 for
this cycle depending on your final ball

• You will be told whether you are the First, Second or Third
mover

• We will ask you for your minimal cutoff in each new round as
before

• If your coin flip is heads, you will choose an action according
to your cutoff as before

• The only difference is that we will not tell you when and if you
have made a choice until the end of the cycle

155



• You will submit cutoffs in rounds 1 to 3, as before
• In the round where you see your ball’s value, you will use your

selected cutoff to make a decision

– If your balls’ value is lower than your minimal cutoff you will
exchange your ball with the one the computer is holding

– If your balls’ value is equal to or greater than your minimal
cutoff you will keep your ball

• Because of this procedure, nothing in the structure of the task
has changed

– The new procedure allows us to collect information on the
cutoff you would select in all three rounds

– All that has changed from part two is the time at which we
inform you on your choice for the cycle
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B.3.6.2 S-Peer

• Part Three will consist of a single cycle
• Whatever you earn in this cycle will be added to the two

random cycles selected from Parts 1 and 2
– So you will earn between $0.10 and $10.00 for this cycle

• We will ask you for your minimal cutoff in each new round as
before

• If your coin flip is heads, you will choose an action according
to your cutoff as before

• The only difference is that we will not tell you when and if you
have made a choice until the end of the cycle

• You will submit cutoffs in rounds 1 to 3, as before
• In the round where you see your ball’s value, you will use your

selected cutoff to make a decision
– If your balls’ value is lower than your minimal cutoff you will

exchange your ball with the one the computer is holding
– If your balls’ value is equal to or greater than your minimal

cutoff you will keep your ball

• Because of this procedure, nothing in the structure of the task
has changed.

– The new procedure allows us to collect information on the
cutoff you would select in all three rounds

– All that has changed from part two is the time at which we
inform you on your choice for the cycle
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B.3.7 Instructions for Part 4

Finally we will conduct a number of survey questions for which there will be the chance

of an additional payment.

Part four consists of three sets of questions, which will have a series of possible prizes.

One participant in the room will be randomly selected for payment on these additional

questions.

The first question is a decision making task. You will be presented with three balls. One

of these balls is worth $10, while the other two are worth $0. The computer has shuffled the

three balls, and fixed their locations.

1. We will ask you to choose one of the the three balls.

2. After you have chosen a ball, we will reveal one zero dollar ball from the two balls that

you did not choose.

3. We will then make you an offer:

• Would you like the ball you initially chose plus $5?

• Or would you instead like to switch to the remaining ball plus X times $0.10?

• X will vary between 1 and 100.

• We would like you to tell us the minimum value of X for which you would like to swap.

– If you swap you get the value of the remaining unchosen ball (either 0$ or $10) plus

$0.10 times X (so between $0.10 and $10)

– If you keep your ball, you get its value (either 0$ or $10) plus $5.

Please make your choices for this task now.

[Wait while subjects complete task]

The next task will ask you to answer three numerical questions within a 15 second time-

limit. Whoever is selected for payment in part 4 will receive $1 per correct answer.

[Wait while subjects complete task]

Finally, we would like you to make a series of choices between lotteries. In each choice

you will be asked to pick either Lottery A or Lottery B, where each offers a probability over

two monetary prizes.
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One of your four choices from these lotteries will be selected for payment, and the outcome

added to your total earnings if you are selected for payment in part four.
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B.4 Screenshots
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B.4.1 Chat Transcripts

Session-17, Group-1

A: Hey guys (t=6 )

C: hello (t=14 )

B: Hi, ideally we want the bot to have the lowest value (t=20 )

A: true (t=36 )

C: i think a decent cutoff is somewhere between 20-50 (t=51 )

B: this way when one of us 3 get selected at random we will always not have the lowest value chosen
(t=56 )

B: I think a cut off between those values is ideal as well (t=69 )

A: i usually put my cut-offs lower if i’m third mover, around 5-20 (t=91 )

A: because the people before me are likely switching out a 1 value (t=107 )

C: very true (t=116 )

B: (t=127 )

A: but i agree with 20-50 for first or second mover (t=128 )

C: so if we are a first mover go between 20-50 and lover it if we are the later mover (t=141 )

A: progressively getting lower with each round (t=141 )

B: I think that is a good plan (t=144 )

B: Also don’t forget the coin flip (t=150 )

A: but we won’t know the outcome of it :( (t=158 )

B: we can communicate if we get heads or tails (t=167 )

B: for example (t=171 )

B: if you are first mover (t=181 )

B: quickly select your cutoff value at 40 or something around there (t=190 )

B: oh shit nevermind (t=204 )

A: my understanding is that this round, we won’t be told which round we’re making the decision,
therefore we won’t know where we’re making our decision (t=216 )

C: yeah, i think we just have to go in with the cutoffs we want (t=236 )

B: Yea I made a mistake, I guess we will just have to follow the formula of putting in low cutoffs
later on (t=243 )

C: sounds good (t=251 )

A: sounds good (t=253 )

B: sounds good (t=262 )
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B: (\\ /) (t=281 )

B: (= ’ . ’ =) (t=286 )

B: () () (t=289 )

A: wow you’re good at that (t=297 )

Session-17, Group-2

A: hey (t=9 )

C: hello there (t=18 )

B: hello (t=22 )

A: so honeslty i’ve just been making like 60 my cut-off? (t=37 )

C: Ive been doing about 60-65 for the first one (t=51 )

B: ive been using 40 just to be safe (t=61 )

B: what are u guys going to use on this round (t=74 )

C: and then once Ive gotten to the 2nd and 3rd rounds Ive decreased it to like 40 and then 20 just
to be safer (t=79 )

A: uhhh, i’m probably going to stick to 60ish (t=95 )

A: idk really haha (t=99 )

C: I think I’m going to do 60 too fir the first round (t=111 )

B: lets hope it gives us all 100s (t=116 )

A: yeah, forreal lol (t=121 )

B: *all get 1s’ line up for dimes (t=141 )

A: i’ve been just trying to calculate it so i atleast come out with $20 when i can (t=148 )

A: wow, no don’t even joke (t=155 )

A: haha (t=158 )

B: lol (t=159 )

C: did you guys decrease your cutoff as the rounds go on or no? (t=166 )

A: the lowest i’ve gone is 50 (t=175 )

B: i left mine at 40 worked good, either get 60+ or 1 (t=184 )

A: because we’ve had some rounds where the values were really low, but not too many (t=191 )

A: I usually got pretty lucky I think (t=199 )

C: yea i havent had too many in the 20-50 range (t=205 )
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A: all right, 60s it is haha (t=255 )

B: if we all have all put a high cut off do you think its better for this round (t=258 )

A: uhhhh I think that’s why I like being in the middle because it’s kinda a catch all. (t=281 )

A: like you might not make a lot but you probs won’t get 0.01 either (t=291 )

A: or .10 (t=295 )

Session-17, Group-3

C: Hi! (t=9 )

B: Hello! (t=11 )

A: hi! (t=16 )

C: How is everyone? (t=18 )

A: kinda tired (t=23 )

C: I hear ya. Me too (t=30 )

B: Yeah (t=33 )

C: Anyways, what would you guys like to do? (t=46 )

A: Im not really sure (t=71 )

C: Does anyone have any opinions about the study cut offs. (t=75 )

B: my cutoff was 50, what are yours? (t=95 )

C: I am not really sure either. I had lower cut off during my game (1-10) (t=100 )

A: mine was 35 (t=109 )

B: 1-10 was kinda low, i think (t=118 )

C: How did 50 work? Or 35? (t=119 )

B: 50 give a lot of chance to get 100 (t=127 )

C: Did it give you higher chances of having a better ball? (t=132 )

B: yeah, like i have 5 times 100 (t=151 )

A: I dont necesarily think so (t=155 )

C: Good. My lower numbers did not work well for me (t=166 )

B: how many 100 did 35 get? (t=172 )

A: mm maybe like 5 or 6 (t=186 )

C: I did it because at the beginning of the experiment I had several 1s going back to 1s (t=197 )

C: Yeah, I had like 4 100s, and a few 80s (t=211 )
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C: You did better (t=214 )

C: So it sounds like a slightly higher cut off gives better odds (t=238 )

C: Thanks for the good information (t=252 )

A: okay so you want to go with the 50 (t=253 )

C: I do (t=259 )

C: Want to go with 50, sorry (t=264 )

A: lol its cool (t=279 )

C: It seems like it yields better probability in the outcome (t=280 )

C: Cool (t=282 )

C: Good luck to everyone n the rest of the study (t=297 )

Session-17, Group-4

C: I’ve been using 60 as my minimum cutoff (t=22 )

B: 50 seems to be the safest bet. Worked well so far. (t=28 )

A: ive used 48 (t=33 )

B: so lets averaged them? (t=53 )

A: 49???? (t=64 )

C: Around 52 or 53? (t=96 )

C: If we average the 3 (t=102 )

B: yeah it would be 52 and change (t=108 )

C: Ok so how about 52 (t=117 )

B: works for me (t=122 )

A: hmmm (t=130 )

A: what about a little lower (t=161 )

B: why lower? (t=169 )

B: 51? (t=184 )

A: what if it’s 50 (t=186 )

B: ok (t=189 )

C: Works for me (t=192 )

A: and then we get a 1 (t=193 )

A: ok so 50 (t=198 )
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B: yes, 50 (t=203 )

A: :) (t=221 )

Session-17, Group-5

C: soo what should we make the cutoff (t=14 )

B: As the rounds go on, the chances that the ball the computer is holding has a really small value
increases (t=31 )

C: yea (t=38 )

B: because in previous rounds, if someone had a small value they probably switched and gave it to
the computer (t=55 )

B: so what I’ve been doing is decreasing my cutoff values each round (t=66 )

C: so as the rounds go on we should increase the cutoff (t=67 )

A: go down by 5 for cutoff in each round? (t=67 )

B: decrease (t=74 )

C: decrease yea (t=80 )

C: my bad haha (t=83 )

B: I’ve been doing 50/40/20 (t=93 )

B: idk what you guys think haha (t=99 )

C: ive been doing 30/25/20 (t=107 )

C: because im cool with $3 (t=121 )

C: instead of potentially giving up close to $5 (t=141 )

B: yeah that’s true (t=147 )

A: ive been 45/35/25 (t=148 )

A: doesn’t matter to me (t=156 )

C: how about we do 40/30/20? (t=163 )

B: yeah sounds good (t=169 )

A: perfect (t=173 )

C: alright cool (t=176 )

C: lets make some money (t=182 )

B: we get matched with other people though anyway right haha (t=185 )

C: oh idk whats the point of this then (t=200 )

B: just to share strategies I guess lol (t=213 )
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C: true haha (t=220 )

A: yeah it says above each team member will be assigned a different group (t=241 )

C: well good luck (t=242 )

B: yep to you guys too haha (t=258 )

C: 8ˆ)-+( (t=278 )

Session-17, Group-6

A: Hello World! (t=12 )

C: Hello (t=16 )

B: hello (t=18 )

B: what cutoff number do you guys feel is best/ (t=64 )

A: What have you folks been using as your cutoff? (t=65 )

A: I’ve been doing 20 (t=82 )

B: ive been using everything above 60 (t=85 )

C: So here are my thoughts: The chance of you getting a low # that someone else switched out is
based on which mover you are and what round it is. Typically I go with ˜50 if I am mover 1 or
2 on the first round (t=96 )

B: so is 50 the best option then? (t=129 )

A: Alright so mover 1 and 2 we want to do 50 plus (t=131 )

B: that sounds good (t=152 )

C: Then drop down for each subsequent round. Because you get stuck with what you switch too and
as time goes on that is much more likely to be a low # (t=154 )

A: So thats round 1 (t=161 )

A: Do the same thing for round 2?? (t=169 )

B: yeah we should (t=191 )

A: Alright want to drop to 40? (t=197 )

B: it feels better biting doin (t=202 )

B: yeah we should drop to 40 (t=218 )

C: I’d say if you are mover 1 or 2, you do 50/40/20. Mover 3 40/30/20 (t=230 )

A: Follow that exactly (t=240 )

C: Or something like that (t=243 )

B: ok gotcha (t=255 )
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A: ;) (t=273 )

C: Go team! :) (t=291 )

A: Let (t=296 )

Session-18, Group-1

B: wazzzzzzzzzzzzzzup any ideas? (t=9 )

C: noooope (t=16 )

B: ive just put 40 everytime haha (t=33 )

C: i did 49 everytime (t=46 )

A: i did 10 everytime (t=58 )

B: sooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo should
we all put 10 orrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr (t=101 )

C: hmmmm (t=104 )

C: my brain hurts i just wanna leave (t=129 )

A: haha (t=136 )

B: if i walk outta here with 20 bucks ill be happy (t=153 )

C: ya if it’s less i’ll feel like i wasted my time (t=177 )

C: but does 10 work/? (t=185 )

B: i think imma stick with 40, it worked for me nice (t=216 )

C: same w 49 hehe (t=228 )

B: alright so basically we all just wasted 5 min here (t=245 )

B: GO TEAM (t=248 )

C: other people r typin so much like damn what are they plannin out here (t=257 )

B: world domination (t=266 )

A: no idea (t=267 )

C: may the odds be ever in your favor (t=288 )

C: good luck yalllllll (t=294 )

Session-18, Group-2

B: hi (t=10 )

C: I always put 42 (t=14 )

C: every time (t=17 )
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A: I went 70 pretty much everytime (t=26 )

B: im cool w/ 42 (t=35 )

A: It was pretty successful (t=42 )

C: 42 was also successful (t=52 )

A: I got 100 a good amount of times (t=54 )

C: i think they had higher values for the last part than the first (t=66 )

C: is this the team or do we get new teams? (t=78 )

A: We are collectively deciding on one value right? (t=79 )

B: i also went in the 40’s and got 100 6-10 times (t=82 )

C: me too (t=92 )

B: this is our team (t=94 )

B: idt we all have to say the same amount tho (t=111 )

A: I know but are we deciding on one value collectively? (t=113 )

B: i dont belive so, just talking about a gameplan (t=128 )

B: i just dont want .10 tbh (t=167 )

A: ok so who ever gets to decide, you guys want to go in the 40s? (t=171 )

A: I would prefer to go a little higher (t=185 )

A: like 60s (t=193 )

A: ???? (t=226 )

C: i guess the question is, if we all put the same number, will we get the lower thing that was given
up by someone if they accepted the higher one (t=230 )

B: i think we all play the round with other people like normal and then one of our values in chosen
as our payment (t=261 )

B: so we dont all have to say the same # (t=272 )

A: Whats the point of the chat then? (t=287 )

C: if we were all successful, should we just play as we had been (t=292 )

Session-18, Group-3

B: any of you know what we’re supposed to be discussing? (t=47 )

C: What the minimum should be? (t=57 )

B: Awesome. Thanks (t=70 )

C: maybe 60? (t=83 )
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A: so what value are you planning to set (t=85 )

A: i guess it can be lower, around 50? (t=128 )

C: that sounds good (t=137 )

A: ˆ ˆ (t=153 )

C: so we all set 50 as minimum (t=212 )

A: yes, i would do this (t=237 )

B: we’ll all be matched to different groups. I’m not quite sure why it would matter whether or not
we all picked the same (t=255 )

A: oh (t=267 )

A: i thought we will be in the same group... sry (t=284 )

C: same (t=288 )

A: good luck (t=299 )

B: 50 would work if we were all together, but in separate groups, we should probably just do as
before (t=300 )

Session-18, Group-4

C: hello (t=56 )

A: hello (t=64 )

B: hey hows it going (t=81 )

C: oh you know pretty solid (t=91 )

A: i really have to pee (t=98 )

C: thanks for the info (t=107 )

B: Im getting sleepy (t=110 )

C: (t=121 )

C: lets all just get 100 on this last level so we’re gtd the $10 (t=121 )

A: are we supposed to be deciding anything (t=136 )

C: not really just talking about what our cutoffs will be (t=152 )

A: mine has been 50 the whole time (t=163 )

C: i set 50 for first mover and less for second & third (t=178 )

C: but its mostly luck (t=193 )

B: Mine are 20 if Im the first or second mover; after that I use 2 (t=220 )

C: the key is to just get a 100 ball (t=266 )

C: gl (t=298 )
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Session-18, Group-5

C: What’s good team (t=15 )

A: hey team! My strategy has been to choose a low cutoff (between 10 and 25) since there seem be
a lot of 1s in each round and it seems better to keep anything above 1 even if it’s not that high
of a number (t=58 )

A: sorry that was super detailed (t=95 )

C: I’ve been going around 40-50. Mine have had a lot of 100s (t=121 )

A: i think it is good to choose a higher cutoff if you are mover 1 (t=154 )

A: i have just by chance been mover 3 a lot, which means I am more likely to get someone’s discarded
1 (t=170 )

B: I choose a cutoff value of 50. Only because there seem to be more numbers above 50 than below
(t=183 )

C: I would agree with that. I sort of assume the later you move the worse the remaining ball is
(t=195 )

B: that’s true. It’s better to find out early what the value of your ball is. And keep it if it is high.
(t=243 )

A: I guess I am not sure if I should change my strategy of choosing a lower-ish cutoff to choosing a
slightly higher one (t=268 )

C: May the force be with you (t=298 )

Session-18, Group-6

B: k, so is this supposed to be like economics omegle? (t=30 )

C: basically (t=46 )

B: anyone had an econ course yet? (t=56 )

B: I’m minoring in it (t=62 )

A: My strategy is to start my cutoff highest in the first round, usually around 50. Then I decrease
it as the rounds go on, to 40 then to 30 or something like that. (t=78 )

B: I figure this: (t=92 )

B: 25% for both 1 and 100 (t=98 )

A: But sorry no I have not taken any econ class in college. (t=98 )

B: after that, 50% for above 50 (t=116 )

C: Is it just me or is there more like a 75% chance of a 1 (t=121 )

B: there is a 26% chance for a 1 (t=134 )

B: 26% for 100 (t=144 )
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C: Right i get that but there’s been like 3 ones in each group i’ve been in (t=151 )

B: the rest is random (t=153 )

B: Yea, and I’ve been denied seeing my number like 30 times (t=171 )

C: Like multiple 1’s so even when I switch a 1 I get a 1 haha (t=177 )

B: it’s just bad luck haha (t=181 )

B: happened to me to (t=188 )

B: too* (t=190 )

A: Same. (t=194 )

B: yo who’s tryna get some food after? lol (t=213 )

B: okay but just go 50 and then u have a 2/3rds chance of getting above your cutoff (t=240 )

C: okie will do (t=256 )

B: econ minor, business major, had stats, those are my qualifications xDD (t=274 )

A: v hungry but I have class after :( But basically if you haven’t seen the number by the third time
but like 2 as your cutoff so we dont get 10 cents plz (t=283 )

Session-19, Group-1

B: So... does anybody have any strategies? (t=20 )

B: Or is this all up to chance? (t=49 )

C: i haven’t found any strategic way to go about this...just been picking a number i would be ok
with getting (t=95 )

B: Same (t=115 )

A: ive been picking low numbers and it’s been turning out well for me.. (t=128 )

B: How low? (t=137 )

A: like single digits (t=149 )

A: but i feel like theres an element of teamwork here (t=167 )

A: maybe two people pick low and one pick high? (t=174 )

A: honestly i have no idea.. (t=181 )

B: We could try that (t=187 )

C: ya works for me (t=196 )

B: So, i’ll pick low I guess (t=206 )

A: haha ok (t=212 )

C: ill go high (t=226 )
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A: i can pick low (t=228 )

C: how high do you guys want me to go? (t=239 )

A: have you guys been picking high or low and how has that been working out for you? (t=252 )

B: I’ve been picking 40 and have gotten mixed results (t=266 )

C: ive been going around 30-40 and its been going pretty good (t=269 )

A: ok so maybe two high and one low (t=279 )

C: when we say high what are we talking about (t=294 )

A: because low has been real good (t=294 )

Session-19, Group-2

C: What have you all been making your cutoffs? (t=42 )

B: 30 fam (t=66 )

A: I have been making mine at 50 (t=71 )

C: i have been doing 50 too (t=82 )

B: amateurs lol (t=276 )

Session-19, Group-3

C: what cutoff’s have you guys been using (t=37 )

A: i used 30 for every one (t=50 )

C: i used 60 (t=57 )

B: I’ve been using 40 every time and it’s been working pretty well (t=60 )

A: yea i feel like the lowerish ones have pretty good outcomes (t=82 )

C: alrighty so what do you guys suggest we use? 30,40? (t=116 )

A: 35? (t=126 )

C: sweet sounds good to met (t=143 )

C: me* (t=149 )

B: yeah that works (t=155 )

C: lets make some cash $$$ (t=290 )

Session-19, Group-4

C: hello (t=25 )
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B: hi (t=28 )

A: hi (t=30 )

B: i say we make cut off 55 (t=36 )

B: or 60 (t=56 )

B: idk (t=57 )

A: i have been doing 60 or 65 (t=64 )

C: ive been going lower (t=73 )

B: like what (t=84 )

C: like 40’s (t=89 )

A: has it been working well (t=94 )

C: yeah (t=98 )

C: but we could do 55 (t=113 )

C: that makes sense (t=118 )

A: same here so i say 55 (t=125 )

B: okay perfect (t=136 )

B: good talk (t=141 )

A: good luck ppl (t=150 )

B: thx u too (t=155 )

B: hopefully we all make $$$$$$$$$$$ (t=167 )

A: in desperate need of it always (t=182 )

B: #collegelife (t=191 )

Session-19, Group-5

A: Hi (t=19 )

B: hey (t=23 )

C: Sup (t=27 )

C: I usually go 75 50 25 (t=39 )

B: i do 57, 54, 50 (t=60 )

B: #risky (t=70 )

C: i guess the goal is to get the lowest possible value into the computers hands (t=75 )

A: I’ve been doing (t=76 )
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A: 50 (t=84 )

A: how can we do that (t=122 )

B: pray (t=148 )

C: Basically lol (t=158 )

C: There’s usually one ball thats pretty low (Like sub 10) right? (t=182 )

A: yeah, but i have seen a couple low balls in one cycle (t=216 )

B: yeah. i can only remember one instance where it was like 100 100 99 68 (t=220 )

B: one for me was 1 1 1 1 (t=240 )

A: i guess the smaller the cutoff we do the better for all of us for the most part? (t=276 )

B: well, do good guys! maybe 30 as cutoff? (t=287 )

B: or 20? (t=295 )

C: 31 (t=297 )

A: sounds good to me! (t=298 )

C: :P (t=299 )

Session-19, Group-6

C: Any ideas? (t=34 )

B: Initial thoughts? (t=37 )

A: 50? (t=67 )

B: 35? (t=78 )

C: Yeah 35 sounds good, so a lower value is switched out (t=121 )

A: Cool (t=129 )

B: It has worked well for me in previous cycles (t=155 )

A: I’ve been doing well with 65 (t=176 )

A: But 35 is more safe (t=188 )

B: How many .10 vs 100? (t=193 )

C: I agree with 35 (t=213 )

B: 35 it is (t=240 )

A: Sounds good (t=248 )
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Session-20, Group-1

A: hi guys (t=18 )

B: hello (t=23 )

C: hi (t=24 )

A: what do we want to do for cutoffs (t=25 )

B: what have u guys been doing prior (t=37 )

B: ive been doing 70 (t=42 )

C: i’ve been keeping mine pretty low, around 40 (t=53 )

A: i think we should start out higher and then go lower in the rounds (t=61 )

C: yeah i agree (t=71 )

B: that would work (t=77 )

A: so first round we should do 70? (t=98 )

B: im good with that (t=111 )

C: okay (t=113 )

B: then have like 40 be our lowest (t=126 )

A: ok (t=130 )

C: sounds good (t=134 )

A: so never go lower than 40? (t=162 )

C: yeah maybe 40 for the last round? (t=176 )

B: how many rounds are there again? (t=185 )

C: 3 (t=194 )

A: three (t=194 )

A: so 70 for the first, 40 for the last (t=206 )

A: what about the middle round? (t=217 )

B: what about the second round (t=220 )

B: 55?? (t=228 )

C: somewhere in the middle (t=232 )

A: that works (t=232 )

C: yeah (t=234 )

B: okay lol (t=236 )

A: let’s hope were lucky haha (t=245 )
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A: or one of us is I guess (t=257 )

C: haha yeah (t=263 )

C: good luck guys (t=289 )

A: same to you (t=294 )

B: you too! (t=299 )

Session-20, Group-2

A: Hello world! (t=12 )

B: hey (t=37 )

C: Sup (t=43 )

A: Does anyone have a good strategy for this? (t=48 )

B: i’m just going to keep doing it how i did before tbh (t=72 )

A: Yeah thats how I feel too (t=85 )

C: same (t=92 )

B: cool cool (t=108 )

A: since we do not know the order of the chosers, we cannot really make a susinct gameplan (t=126 )

A: did anyone watch south park on wednesday? (t=141 )

B: nah i don’t like that show (t=159 )

C: No was it a good episode? (t=162 )

A: yeah it was pretty funny (t=178 )

C: I’ll have to watch it over the weekend (t=193 )

A: Im sorry for you member B (t=194 )

C: Anyone into AHS (t=203 )

B: nope guess i just live under a rock (t=227 )

A: I was invited over someones house tonight to watch it but ive never seen it before (t=228 )

B: t-minus 1 minute thank god (t=251 )

C: It’s really good kind of a creepy show tho (t=256 )

A: yeah this sucks (t=258 )

C: yeah I just wanna nap tbh (t=264 )

A: #dicksoutforharambe (t=273 )

C: RIP (t=284 )

B: fuck penn state (t=289 )

C: ˆˆˆˆˆ (t=294 )
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Session-20, Group-3

C: greetings (t=8 )

A: hello (t=27 )

B: hey (t=44 )

A: what are you thinking (t=49 )

A: im not really sure how we help each other (t=66 )

C: My thought process is to set your first cutoff highest, second cutoff lower than that, and third
cutoff lower than that because each successive round there is a greater chance that someone
else switched with the computer ball and therefore gave (t=89 )

A: yeah thats a good idea (t=109 )

C: so i usually set my fist at 50, second 40, and third about 45 (t=120 )

C: third about 35*** (t=126 )

B: well thats good with me (t=128 )

A: yeah ive been always doing 50 pretty much but thats a better idea (t=138 )

A: i will do that (t=150 )

C: have you guys found a different successful strategy (t=168 )

B: I just kind of eyeball it but If thats been working for you (t=176 )

C: i dont think we’re allowed to say specifically but yes it’s been working for me (t=200 )

A: okay good (t=208 )

C: best of luck (t=215 )

A: thanks you too (t=220 )

Session-20, Group-4

C: if you’re the first mover set your threshold pretty high (t=42 )

C: like around 60-75 (t=50 )

C: if you’re second mover set it around 40-50 (t=63 )

A: and go down depending on what mover you are (t=65 )

C: and if you’re third set it at like 25 (t=74 )

C: ˆwhat team member A said (t=85 )

C: Team Member B you got it? (t=113 )

B: yes (t=119 )

C: alright cool (t=126 )
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A: sounds good (t=149 )

C: about to make some $$$$$$$$$ (t=276 )

A: let’s hope (t=293 )

C: we got this (t=297 )

Session-20, Group-5

A: hi (t=9 )

B: hey (t=29 )

C: hi (t=50 )

A: does anyone have a stradegy (t=54 )

C: what do you think our cutoffs should be (t=59 )

A: I’ve just been using 50 (t=76 )

B: same (t=87 )

A: do you want to use that or something else (t=118 )

B: sounds good to me, C are you good with it? (t=144 )

C: I’ve actually used a cutoff of 2 for a lot of the rounds, seeing as that anything is better than a
$0.10 payoff (t=166 )

C: but i’m good with 50 if you guys want to do that (t=179 )

A: has 2 worked for you for the most part (t=197 )

C: yeah for the most part, because when you use 50 i feel like you end up losing a lot of opportunities
to get more than $0.10 (t=239 )

B: using 50 I dont think I got .10 once and I got about 5 $10.00 (t=246 )

C: up to you guys though (t=252 )

A: doesnt matter to me (t=270 )

B: how did 50 work for you A? (t=273 )

A: i only got .10 twice (t=292 )

C: okay we can do 50 (t=297 )

A: so good i guess (t=297 )

Session-20, Group-6

C: how should we choose (t=41 )

B: I have no idea (t=65 )
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C: i guess just make the cut off higher rather than lower? (t=88 )

A: just make sure we get a number larger than 1 (t=97 )

B: yeah thats what i was thinking. Make the cutoff a bit higher than usual. (t=122 )

C: okay sounds good (t=134 )

C: i feel like its all random anyway (t=210 )

A: yeah theres no way to predict anything (t=227 )

B: Lets just hope the person selected gets 100 off the bat (t=260 )

C: yeah (t=278 )
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B.5 One-Parameter Reinforcement Learning Model

In this section we use a one-parameter reinforcement learning model, based on Erev

and Roth (1998) and Luce (1959), to explain the differences in behavior across some of our

treatments for subjects classified as stationary. Figure F.1 plots the average round-1 cutoff

for supergames 6-20 for treatments Selection, S-Across, S-Peer, and S-Explicit. As is clear

from the graphs, there is a marked difference in the cutoff choices between S-Explicit and

the other treatments. Figure F.2 plots the same averages, but combining the treatments

Selection, S-Across and S-Peer.

4
0

4
5

5
0

5
5

6
0

6 10 14 18
Supergames

Selection

4
0

4
5

5
0

5
5

6
0

6 10 14 18
Supergames

S−Across

4
0

4
5

5
0

5
5

6
0

6 10 14 18
Supergames

S−Peer

4
0

4
5

5
0

5
5

6
0

6 10 14 18
Supergames

S−Explicit

Figure B.3: Average Cutoff for Stationary Subjects in Round 1

Note: Subjects are classified as stationary if their cycle-21 cutoffs satisfy |µ1−µ2| ≤ 2.5 and |µ1−µ3| ≤ 2.5,
where µt is the cutoff value chosen in round t.

One possible reason for the observed difference is the type of learning available for sub-

jects in each case. In the S-Explicit treatment, the adverse selection was implemented

through a time-dependent rule, with the rematching pool comprised of all three balls in

round 1, the two lowest-value balls in round 2, and the lowest-value ball in round 3. For

this reason, there were no mover types in treatment S-Explicit, and, since half of the time
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subjects make a decision in round 1, there is an overall lower chance of observing a bad

outcome after switching in S-Explicit compared to other treatments with first, second, and

third movers.
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Figure B.4: Average Cutoff for Stationary Subjects in Round 1

In what follows, we estimate a simple one-parameter reinforcement model that best fit

the data for treatments Selection, S-Across, and S-Peer using data only for subjects classified

as stationary. Later, we use the optimal parameter estimate to predict round-1 cutoff values

for the S-Explicit treatment, again restricting the analysis to the stationary subjects.

B.5.1 The Model

In supergame s = 6, each player n has an initial propensity to choose the k -th cutoff

value, where k ∈ [1, 100], given by a non-negative number qnk(1). We assume that each

player has an equal propensity for each of the possible cutoffs, such that:

qnk(1) = qnj(1) ∀n and ∀k (1)
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The reinforcement of receiving payoff x is given by the identity function:

R(x) = x (2)

Suppose that player n chooses cutoff k in supergame s. For supergame s+1, he adjusts

the propensity of his jth-cutoff according to:

qnj(s+ 1) =

qnj(s) +R(x), if j = k

qnj(s), otherwise
(3)

Finally, the probability that player n chooses the kth cutoff in supergame s is given by:

pnk(s) =
qnk(s)∑100
j=1 qnj(s)

(4)

Equation (4) is Luce’s linear probability response rule. Note that, even though we assume

that every cutoff has the same propensity at s = 6, we made no assumptions about the sum

of propensities, which appear in the denominator of equation (4). This is the only parameter

of the model, and, together with the size of the payoffs, it determines the speed of learning.

Let X be the average payoff of all players in all four treatments. The parameter s(1),

which is assumed to be the same for all players, is given by:

s(1) =

∑100
j=1 qnj(1)

X
(5)

which, together with (4), implies that the initial propensities are:

qnj(1) = pnj(1)s(1)X (6)

Both pnj(1) and X are known: the first by assumption, and the second from the data.

All we need is an estimate for s(1). The value that minimizes the Mean Squared Deviation

(MSD) using data from Selection, S-Across, and S- Peer is s(1)=0.162, which indicates an

extremely fast learning speed.

Figure F.3 presents the same graph as in Figure F.2, but also plots the fitted values for

Selection, S-Across, andS-Peer and the predicted values for S-Explicit.
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Figure B.5: Average Cutoff for Stationary Subjects in Round 1, Data and Prediction (s(1) = 

0.162)

Note that both in S-Explicit and in the other treatments, subjects start choosing very 

similar cutoffs. The subsequent experience with realized payoffs, however, is different, which 

accounts for the increasing profile of S-Explicit cutoff choices and the decreasing profile of 

cutoff choices in the other treatments.
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Appendix C Appendix for Chapter 4

C.1 First Stage Experiments

Screenshots for first-stage experiments. Different states of the same stage are indicated

by sub-captions.
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(A-1) Quiz stage with no answers

193



(A-2) Quiz stage with 4 correct answers
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(B-1) Initial screen for round 1

(B-2) Screen indicating 1 set found
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(B-3) Screen indicating 2 sets found

(B-4) Example of 5-second time penalty
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(C-1) Initial screen for round 2
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(C-2) Screen indicating 2 sets found
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C.2 Main Experiments

Screenshots for main experiments. Different states of the same stage — and different

treatments — are indicated by sub-captions.
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(A-1) Treatment full information; 1 set found
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(A-2) Belief elicitation

(A-3) Treatment full information; feedback screen
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(B-1) Treatment unawareness ; 1 set found

(B-2) Belief elicitation
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(B-3) Treatment unawareness ; feedback screen

(C-1) Treatment unawareness-info; 1 set found
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(C-2) Belief elicitation

(C-3) Treatment unawareness-info; feedback screen
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(D-1) Treatment with neutral risk task

(D-2) Treatment with context risk task
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Joseph Y Halpern and Leandro C Rêgo. Reasoning about knowledge of unawareness revisited.
Mathematical Social Sciences, 65(2):73–84, 2013.

Rema Hanna, Sendhil Mullainathan, and Joshua Schwartzstein. Learning through noticing:
Theory and evidence from a field experiment. Quarterly Journal of Economics, 129(3):
1311–1353, 2014.

Igal Hendel, Alessandro Lizzeri, and Marciano Siniscalchi. Efficient sorting in a dynamic
adverse-selection model. Review of Economic Studies, 72(2):467–497, 2005.

Guido Imbens and Karthik Kalyanaraman. Optimal bandwidth choice for the regression
discontinuity estimator. The Review of economic studies, 79(3):933–959, 2012.

Guido W Imbens and Thomas Lemieux. Regression discontinuity designs: A guide to prac-
tice. Journal of econometrics, 142(2):615–635, 2008.

Asen Ivanov, Dan Levin, and Muriel Niederle. Can relaxation of beliefs rationalize the
winner’s curse?: An experimental study. Econometrica, 78(4):1435–1452, 2010.

Philippe Jehiel. Analogy-based expectation equilibrium. Journal of Economic Theory, 123
(2):81–104, 2005.

Philippe Jehiel and Frédéric Koessler. Revisiting games of incomplete information with
analogy-based expectations. Games & Economic Behavior, 62(2):533–557, 2008.

Philippe Jehiel and Dov Samet. Valuation equilibrium. Theoretical Economics, 2(2):163–185,
2007.

Ginger Zhe Jin, Michael Luca, and Daniel Martin. Is no news (perceived as) bad news?
an experimental investigation of information disclosure. Working Paper 21099, National
Bureau of Economic Research, April 2015.

John H Kagel. Cross-game learning: Experimental evidence from first-price and english
common value auctions. Economics Letters, 49(2):163–170, 1995.

John H Kagel and Dan Levin. Common Value Auctions and the Winner’s Curse. Princeton
University Press, Princeton, NJ, 2002.

218



Edi Karni and Marie-Louise Vierø. Awareness of unawareness: a theory of decision making
in the face of ignorance. Journal of Economic Theory, 168:301–328, 2017.

Michal Kolesár and Christoph Rothe. Inference in regression discontinuity designs with a
discrete running variable. American Economic Review, 108(8):2277–2304, 2018.

Alan B Krueger. Are public sector workers paid more than their alternative wage? evidence
from longitudinal data and job queues. In When public sector workers unionize, pages
217–242. University of Chicago Press, 1988.

Jelena Lausev. Journal of Economic Surveys, 28(3):516–550, 2014.

Dan Levin, John H Kagel, and Jean-Francois Richard. Revenue effects and information
processing in english common value auctions. American Economic Review, pages 442–460,
1996.

Wenjun Ma and Burkhard C Schipper. Does exposure to unawareness affect risk preferences?
a preliminary result. Theory and Decision, 83(2):245–257, 2017.

Gangadharrao S Maddala. Disequilibrium, self-selection, and switching models. Handbook
of econometrics, 3:1633–1688, 1986.

Charles F Manski. Measuring expectations. Econometrica, 72(5):1329–1376, 2004.

Alejandro Mart́ınez-Marquina, Muriel Niederle, and Emanuel Vespa. Probabilistic states
versus multiple certainties: The obstacle of uncertainty in contingent reasoning. Working
Paper 24030, National Bureau of Economic Research, November 2017. URL http://www.

nber.org/papers/w24030.

Justin McCrary. Manipulation of the running variable in the regression discontinuity design:
A density test. Journal of econometrics, 142(2):698–714, 2008.

Blaise Melly. Public-private sector wage differentials in germany: Evidence from quantile
regression. Empirical Economics, 30(2):505–520, 2005.

Friederike Mengel, Elias Tsakas, and Alexander Vostroknutov. Past experience of uncertainty
affects risk aversion. Experimental Economics, 19(1):151–176, 2016.

Alejandra Mizala, Pilar Romaguera, and Sebastián Gallegos. Public–private wage gap in
latin america (1992–2007): A matching approach. Labour Economics, 18:S115–S131, 2011.

Salvatore Modica and Aldo Rustichini. Awareness and partitional information structures.
Theory and decision, 37(1):107–124, 1994.

John S Moran, Harlan R Janes, Thomas A Peterman, and Katherine M Stone. Increase in
condom sales following aids education and publicity, united states. American Journal of
Public Health, 80(5):607–608, 1990.

219

http://www.nber.org/papers/w24030
http://www.nber.org/papers/w24030


Brent R Moulton. A reexamination of the federal-private wage differential in the united
states. Journal of Labor Economics, 8(2):270–293, 1990.

Richard E Mueller. Public–private sector wage differentials in canada: evidence from quantile
regressions. Economics Letters, 60(2):229–235, 1998.
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