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Abstract 

Simon Barratt-Boyes BVSc, PhD, DACVIM 

 

Developing a Model of H5N1 Influenza Pathogenesis in Precision-Cut Human Lung Slices 

 

Gwenddolen Kettenburg, MS 

 

University of Pittsburgh, 2020 

 

 

Abstract 

 

 

Highly pathogenic avian H5N1, known as HPAI H5N1, is a strain of influenza that is 

highly contagious in poultry and is occasionally spread to people that have had close contact with 

infected poultry. In humans, the fatality rate is 60%, though person-to-person transmission rarely 

occurs. HPAI H5N1 causes severe acute respiratory distress syndrome (ARDS), fluid buildup in 

the lung alveoli, making it hard for the lungs to get adequate oxygen due to a severe inflammatory 

response, followed by an inflammatory response and subsequent epithelial cell death in the lungs. 

The mechanism for ARDS is poorly understood. While models of infection exist in lab animals, a 

representative ex vivo model of infection in humans is needed to study the severe outcome of 

disease. An emerging alternative to animal models and immortalized cell culture models is 

precision-cut tissue slices of the organ of interest, using human donors as a source of tissue.  In 

this study, I developed a model of H5N1-infected precision-cut lung porcine then human slices 

and utilized said model to elucidate the mechanism of ARDS by selectively inhibiting members 

of cell death pathways and observe changes in downstream cytokines. Fluorescent 

immunohistochemistry was used to visualize and quantify markers of cell death and infection using 

image quantification. Changes in IL-1 were observed by enzyme-linked immunosorbent assay 

(ELISA). Here, I demonstrate that pyroptotic cell death is induced in response to H5N1 infection 
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ex vivo as demonstrated by reduced IL-1 levels in response to a caspase-1/4 inhibitor and a 

gasdermin-D (GSDMD) inhibitor. This approach could prove public health relevance in 

developing novel, host-directed therapies to treat severe influenza infection in humans by 

providing a model to easily test human responses. 
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1.0 Introduction 

1.1 HPAI H5N1 Influenza 

1.1.1 Highly Pathogenic Avian Influenza H5N1 Virology 

Influenza viruses are diverse members of the Orthomyxoviridae family, possessing a single 

stranded RNA genome consisting of eight segments (1-3).  These eight segments encode 11 

proteins (4). Hemagglutinin (HA) and neuraminidase (NA) are surface glycoproteins that play 

roles in entry/exit of virus particles and are used to subtype influenza type A viruses (IAV) (1, 2, 

4). Polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), polymerase basic protein 

1-F2 (PB1-F2), and polymerase acidic protein (PA) are polymerase subunits that play a role in

mRNA cap recognition and RNA elongation, and protease activity  (2, 4). Nucleoprotein (NP) is 

an RNA binding protein that plays a role in nuclear import (2, 4). Matrix protein 1 (M1) is a matrix 

protein that plays a role in viral export and RNA nuclear export, while matrix protein 2 (M2) is an 

ion channel protein that assists in virus uncoating (2, 4). Nonstructural protein 1 (NS1) is an 

antagonist of interferon, and nonstructural protein 2 (NS2) plays a role in RNA nuclear export (2, 

4). 

Influenza A and B viruses are clinically relevant human pathogens, and influenza C and D 

viruses also exist (5), but for the purpose of this study the focus will be on highly pathogenic avian 

influenza H5N1 (HPAI H5N1), an influenza A virus. IAV can be further subtyped into 

combinations of 18 known HA and 11 known NA subtypes (5). Wild aquatic birds are the natural 

hosts of IAV (5). HPAI subtypes that pose risk to both poultry and human health are the H5, H7, 
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and H9 subtypes, and are deadlier to humans than seasonal strains (1-3, 5, 6). Seasonal IAV 

subtypes are the H1, H2, and H3 subtypes that circulate in the human population and cause illness 

every year (2, 3, 7).  

IAV viruses enter cells by binding to sialic acid receptors, more specifically receptors that 

are linkages between sialyloligosaccharides (SA) and galactose (Gal). The two most important 

sialic acid receptors are SA-α2,6-Gal and SA-α2,3-Gal (3, 4, 7-11). Circulating seasonal IAVs 

preferentially bind to SA-α2,6-Gal receptors, while avian IAVs preferentially bind SA-α2,3-Gal 

receptors (3, 4, 7-11). This is suspected to be because SA-α2,3-Gal is readily expressed in avian 

airways and intestines but found in the lower respiratory tract in humans, whereas SA-α2,6-Gal 

receptors are predominantly in the upper respiratory tract of humans (2, 3, 9, 11). Other differences 

such as temperature of the upper and lower respiratory tract along with target cells also play a role 

in the differing routes of infection (2, 3, 9, 11). Avian influenza viruses on their own are fairly 

stable in their aquatic bird reservoirs, but concern is raised that HPAI H5N1 could reassort in a 

“mixing vessel” host such as a pig, which has both SA-α2,6-Gal and SA-α2,3-Gal receptors, in the 

same manner which created the 2009 H1N1 pandemic IAV, along with the 1957 H2N2 “Asian 

influenza” and 1968 H3N2 “Hong Kong influenza” (12-15). In contrast, the 1918 H1N1 pandemic 

IAV had avian origins but did not go through a reassortment event, instead resulting from a bird-

to-human transmission (12).  

HPAI H5N1 preferentially binds to non-ciliated cells, and it is thought that the most 

favored cellular target for infection of HPAI H5N1 is type II pneumocytes in the alveoli (8, 10, 

11).  Human IAVs in general preferentially bind to ciliated cells, and it is thought that the most 

favored cellular target for infection is type I pneumocytes in the alveoli, in comparison (8, 10, 11). 

Human disease from HPAI H5N1 usually arises when domestic poultry are infected and infection 
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is passed to people in close contact with these animals, although due to the preferential binding to 

receptors in the lower respiratory tract of people, it is extremely difficult for HPAI H5N1 to spread 

between people, as with other avian IAV (1, 2, 4, 6, 16, 17). 

1.1.2 Epidemiology and Ecology 

HPAI H5N1 circulates naturally in wild aquatic birds such as ducks and gulls, usually 

asymptomatically (15, 18). The terms highly pathogenic avian influenza (HPAI) and low 

pathogenic avian influenza (LPAI) refers to disease outcome in domestic poultry, and does not 

coincide with disease presentation in humans; H5N1 can spread rapidly throughout a poultry stock 

once infected with high mortality rates (around 90%) after coming into contact with surfaces 

shared between infected birds, close contact, or through contact with contaminated feces (13, 15, 

18-20). IAVs are notorious for undergoing antigenic drift and shift. Antigenic drift produces the 

seasonal strains every year that differ from the previous year through small mutations in the HA 

and NA proteins, and antigenic shift is a large change in the virus that can produce a new subtype 

by which people have no preexisting immunity (5). These changes often yield reassortments 

between one to two different subtypes, making vaccine design a difficult challenge (15, 21, 22).  

To date, there have been 861 cases of H5N1 infection in humans with 455 of these 

confirmed cases resulting in death (20), although these are severe cases and the true case count 

may be much higher due to mild cases going unreported (13, 15, 18, 23, 24). Outbreaks of H5N1 

have been notable in Asia, with the first detection arising in southern China shortly preceding the 

first reported human cases in Hong Kong, with the majority of human cases now taking place in 

Indonesia, Vietnam, Egypt, China, Thailand, and Bangladesh (13, 15, 22, 24-26). It should be 

noted that outbreaks occur in poultry in the same areas where human infections have been detected 
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(the Asian lineage of HPAI H5N1), but also in North America, where the lineage has rarely been 

found to infect people (18). Other avian IAV viruses (H7 and H9 subtypes) have been found to 

infect people as well, but have not been found to be as pathogenic, with H9 IAV infections 

resulting in mild seasonal flu-like clinical manifestations and H7 IAV infections also resulting in 

mild symptoms with the exception of some severe cases (27-29). Still, HPAI H5N1 Asian lineage 

remains the most fatal influenza strain to humans, with a reported mortality rate of about 52%; 

although with the assumption that mild cases go unreported due to many people with flu-like 

symptoms never seeking testing and treatment, some research suggests that the true mortality rate 

may be closer to 30% (13, 15, 18, 23, 24).  

1.1.3 Clinical Manifestation, Treatment, and Prevention 

HPAI H5N1 infection in humans presents with symptoms of normal respiratory illness: 

fever, cough, shortness of breath along with other typical seasonal influenza symptoms such as 

headache, tiredness, and sore throat (30, 31). However, disease progression then leads to more 

severe complications like pneumonia and acute respiratory distress syndrome (ARDS), with 

evidence showing that infection can spread throughout the body and past the respiratory system 

(30-32). Pigs have been shown to be infected with HPAI H5N1, although replication and 

subsequent titers remained low and were accompanied by mild and asymptomatic infection, further 

highlighting their possible role as an intermediate host (33, 34).  

Currently, as with most viral infections without a current vaccine, prevention is the best 

method in disease reduction. For HPAI H5N1, since infection usually happens at the poultry-

human interface, mitigation is best done at this step by taking basic personal protective equipment 

(PPE) precautions such as washing hands after coming in contact with birds, and wearing a mask 
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(18). Also, vaccination for the seasonal influenza strains to generate potential cross-protection, and 

reducing exposure to sick and/or dead birds can also help in mitigation (18). These are prevention 

measures that can be completed on an individual level, but other more aggressive/widespread 

concepts have been suggested, such as a more controlled approach to poultry rearing with active 

surveillance to limit exposure of domestic poultry to wild birds, live bird market changes to instill 

more sanitary and safe practices if not disband the practice overall, and finally, potential 

vaccination of humans once an appropriate vaccine has been developed (18, 35). As for a drug 

treatment, oseltamivir and zanamivir are approved for prophylactic use (18, 36, 37).  

In the past there have been some investigations into vaccination programs for poultry, 

rather than focusing efforts solely on human vaccination and are available, but in the most affected 

countries many have deemed the cost of the service unsustainable, and coverage of flocks was 

low; these vaccines would be useful if implemented in combination with increased biosafety 

measures (35, 38, 39). In the United States, the standard for curbing HPAI H5N1 in poultry is to 

cull the flocks because the method of differentiating infected from vaccinated animals (DIVA) is 

difficult due to shortcomings in serological testing. The pursuit of a vaccine for HPAI H5N1 has 

made progress, but the attention has shifted to a different IAV vaccine approach, targeting the 

more conserved HA stem region rather than the HA globular head, which would allow for broad 

protection to both seasonal IAV strains and avian IAV strains without the urgent need to develop 

a new formulation every year to match the circulating strains (40-42). 

1.1.4 HPAI H5N1 Pathogenesis in Humans Leads to ARDS 

The innate immune response dominates the host’s response to HPAI H5N1 infection, as 

demonstrated by a multitude of studies showing an increase in proinflammatory cytokines (cell 
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signaling molecules) and mobilization of macrophages, particularly alveolar macrophages (AMs) 

(Figure 1), followed by recruitment of neutrophils to the lung in response to infection (43-54). 

Hallmarks specifically include an increase in interferon-α (IFNα) production, interleukin-6 (IL-6), 

C-X-C motif chemokine ligand 10 (CXCL10), tumor necrosis factor-α (TNF-α), interleukin-1 beta 

(IL-1β), and interleukin-18 (IL-18) (43-46, 48, 49, 51-54). Interferon-stimulated gene (ISG)-

induction was also linked to disease pathology, more specifically a type I IFN signaling response 

to generate antiviral activity through secretion of IFN-α and IFN-β, with some reports 

demonstrating similar responses to what was seen in the 1918 H1N1 pandemic (46, 47, 50, 54-57). 

Alveolar epithelial cells (AECs) are the main cellular targets of H5N1, and through lung damage 

to AECs plasma leakage into the airways happened as a result (Figure 1) (43). AMs are also 

susceptible to infection, and it is suspected that H5N1 recruitment of neutrophils and macrophages 

disrupts the epithelial-endothelial barriers and therefore leading to alveolar damage (Figure 1) (43, 

45, 46, 51, 53, 58-60). A primary disease outcome of H5N1 infection is ARDS, which is still 

poorly characterized, as are some parts of H5N1 pathogenesis itself; more research into the 

cytokine response and cell death mechanisms that accompany this response would be beneficial to 

prevention and treatment of the disease (43, 45, 46, 51, 52, 58). While causing severe disease in 

humans, pigs generally have mild disease, and generally pathogenesis in these hosts is controlled 

by alveolar macrophages in addition to lower titers in the lungs overall, possibly losing their 

pathogenicity in this intermediate host (14, 61, 62).   



 

 7 

 

Figure 1: Schematic of Lung Alveolar Epithelium  

Diagram demonstrating location of AECs (type I and type II pneumocytes) and macrophages (63). 

1.2 Animal Models of H5N1 Infection 

Animal models are a necessary and more sophisticated method of studying diseases that 

provide a better picture of how a disease may progress in a human as opposed to cell culture. For 

HPAI H5N1, mice, ferrets, and non-human primates (NHPs) have all been used (43, 64-71). In 

mice, the BALB/c model is most frequently used and infection is simulated through the intranasal 
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route, without adapting the virus to the mice first (64, 67, 68). Adaptation of influenza to the animal 

model is unfavorable because it promotes loss of pathogenicity (to humans) through lung-to-lung 

serial passages, and gain of characteristics that make the virus pathogenic in mice or other animal 

models like ferrets, effectively testing something that is not representative of a human infection 

(72).  

Ferrets are a more representative model than mice, due to their respiratory system 

similarities to the human respiratory system, and they are also susceptible to infection without 

adaptation (64, 65, 67, 71). There are other benefits that make ferrets a better small animal model, 

such as the ability for infected ferrets to transit disease to uninfected ferrets and their competence 

in vaccine efficacy research. However, there is a limit on the amount of ferret specific reagents 

available, their caging and care requirements are more costly, and lack of influenza virus 

seronegative ferrets make mice preferred to many researchers (64, 65).  

NHPs remain the gold standard of disease modeling, due to their similarities to humans. 

However, the costs associated with this model make it a less favorable option unless other small 

animal models have already been used to investigate, along with variability of viral titers and gross 

pathology within groups that can make statistical analysis difficult, and ethical issues (64). For 

NHP, both models of aerosol delivery and intranasal/intratracheal route have been established and 

have been used to evaluate vaccine efficacy, antiviral treatments, and natural disease progression 

(43, 64, 66, 69, 70). However, the problem still remains that working with HPAI H5N1 in biosafety 

level 3 (BSL3) conditions is cumbersome when working with animals. A more representative 

model of infection than cell culture that capitulates a natural human response would be helpful in 

screening treatments and investigating novel pathogenesis mechanisms before moving to an 

animal model.  
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1.2.1 Previous Model of HPAI H5N1 Induced ARDS 

Our lab has established an aerosolized model of HPAI H5N1 infection in cynomolgus 

macaques that has shown an increase in IL-1β with other proinflammatory cytokines along with 

destruction of alveolar macrophages can lead to ARDS and therefore serve as a model for severe 

infection with disease (43). This being an aerosol model allows for the virus to reach the alveoli, 

which are believed to be the site of ARDS, whereas intranasal and intratracheal methods of 

infection do not allow for this deep lung infection that is a hallmark of a lethal H5N1 infection. 

We have also shown through RNA expression profiles from these macaques that genes involved 

with the pyroptotic pathway (GSDMD, NLRP3, AIM2, caspase-4, caspase-5, and AIM2) are 

upregulated in comparison to control animals, and that apoptotic genes (caspase-3, caspase-8, 

BCL2, and BCL2L1) remain largely comparable to mock animals, with the exception of caspase-

9 which was lower in infected animals (Corry et al. manuscript in preparation). This, in 

combination with the lack of exploration of pyroptosis in a representative model of H5N1 has 

prompted further interest into the topic for our group, which is partially explored in this research 

project. 

1.3 Apoptosis 

Apoptosis is a programmed cell death mechanism that has two general pathways: the 

intrinsic and extrinsic pathways, triggered either by the death ligand or cellular stress, and a 

granzyme B pathway (which is less common but is carried out by cytotoxic T-cell activities (73-

76). Caspases (protease enzymes that are involved in cell death pathways) play a significant role 
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in this pathway, and procaspases are the inactive precursors of caspases. The extrinsic pathway 

follows a sequence of events that starts with death ligand activation and procaspase-8 may cleave 

itself into caspase-8  that goes on to activate caspase-3, which is the most significant member of 

the apoptotic pathway, and caspases-6 and -7 (73, 74, 76). The intrinsic pathway is induced by 

stimuli that is not receptor associated such as DNA damage and oxidative stress, which then goes 

on to induce the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein family to interact with the 

mitochondria to release cytochrome-c, eventually activating procaspase-9 and procaspase-3, and 

finally inducing apoptosis (73, 74, 76). In the intrinsic pathway, caspase-8 can also go on to cleave 

proapoptotic protein BH3 interacting-domain death agonist (Bid) that interacts with the 

mitochondria and continue to follow the events of the intrinsic pathway, linking the two (73, 74, 

76). Most importantly, apoptosis is considered a “silent” form of cell death, meaning there is no 

inflammatory reaction (77). An outline of this pathway is seen in figure 2. 
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Figure 2: Apoptotic Pathway 

Figure showing the intrinsic and extrinsic pathways of apoptosis (78). 

1.3.1 Apoptosis and HPAI H5N1 

Apoptosis has been suggested to play a role in the cytokine dysregulation events that could 

lead to severe pathogenesis in H5N1 disease (49, 79-85). H5N1 has been shown to activate 

caspases-8 and -9 in alveolar epithelial cells, but had also delayed apoptosis through its 

upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and signal transducer and 

activator of transcription 3 (STAT3)  (85). Additionally, research has found that H5N1 can directly 

infect natural killer (NK) cells and induce apoptosis of the cells in an effort to evade NK immunity 

and cytotoxicity, allowing for increased replication (82). In humans, apoptosis of alveolar 
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macrophages is found to be delayed by H5N1 because the peak in apoptotic cells was not seen 

until 48 hours post infection (hpi) as observed through TRAIL expression, possibly allowing for a 

chance for extended replication in the lungs (79). Finally, NS1 of H5N1 has the ability to induce 

apoptosis through both the intrinsic and extrinsic pathways (84).  

In duck embryonic fibroblasts and chicken embryonic fibroblasts, there has been evidence 

shown to suggest that non-cytokine related events may lead to apoptosis, more specifically through 

an influx of extracellular calcium, therefore leading to mitochondrial dysregulation through both 

caspase independent and dependent events (81). Another study in duck embryonic fibroblasts 

showed that apoptosis was carried out in a caspase-dependent matter in avian cells, specifically 

caspases-8 and -9, but also with caspase-3 (83). Pigs are already more resistant to H5N1 

pathogenesis, but this is hypothesized to be in part mediated by early apoptotic events in porcine 

alveolar macrophages through PB1-F2 through induction of inflammation, and therefore there are 

less virus progeny produced (86).  

While apoptosis has been implicated as a method of pathogenesis, the fact that it is not 

associated with an inflammatory response does not explain the massive inflammatory response 

that is seen in ARDS following infection. Also, much of the research into cell death mechanisms 

are done in cell culture and mice, which may not be completely representative of what happens in 

an appropriate animal model (49, 79, 81-86). An inflammatory response to ARDS in our 

aerosolized macaque model has led us to believe that another form of cell death, pyroptosis, may 

be contributing to pathogenesis instead. 
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1.4 Pyroptosis 

Pyroptosis is a programmed cell mechanism that ends in rupturing of the cell membrane, 

making this method of cell death classified as “fiery” because it induces an inflammatory response 

after inflammasome activation (87-94). The pyroptotic pathway starts with either intracellular 

pathogen-associated molecular pattern molecules (PAMPs) that are derived from pathogenic 

sources (i.e. bacteria and viruses) that signal the immune system to respond, or damage-associated 

molecular patterns (DAMPs) that are released from dying cells to signal an inflammatory response 

(87, 90, 91, 93, 94). These signal to the inflammasome complex, molecular units that trigger pro-

inflammatory cytokine production, with apoptosis-associated speck like protein containing a 

caspase recruitment domain (ASC) which then signals procaspase-1, further cleaving itself into 

caspase-1 which then cleaves GSDMD (87, 90, 91, 93, 94). Additionally, through caspase-1 

cleavage, further cleavage events of pro-IL-1β  into IL-1β and pro-IL-18 into IL-18 go on to be 

released from the cell through potassium efflux which can trigger further NOD-,LRR-, and pyrin 

domain containing protein 3 (NLRP3) inflammasome activation, denoted as the canonical pathway 

(87, 90, 91, 93, 94).  

The non-canonical pathway involves the cleavage of procaspase-11 into caspase-11 upon 

PAMP and DAMP signaling, leaving to cleavage of GSDMD by caspase-4, upon which the N 

terminus can go on to either cause mitochondrial damage from the N-terminus of cleaved  or 

assemble into pores in the inner cell membrane leaflet to allow for IL-1β and IL-18 to leave the 

cell upon cleavage from caspase-4/5 (87, 89, 91, 93, 94).  

With this pathway newer to discovery than other for more well-known cell death 

mechanisms, the master executioner of the pathway, GSDMD, is only in recent years being 

recognized for its role in cytokine release, although caspase-1 is also a very important member of 
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the pathway (87, 88, 90, 91, 93, 94). Because it is involved in both canonical and non-canonical 

pyroptotic pathways, GSDMD and the cleavage events of caspase-1 and caspase-4/5 are ideal 

targets for inhibition when studying the role of pyroptosis in disease pathogenesis (88). Outlines 

of this pathway are seen in figure 3. 

 

Figure 3: Pyroptotic Pathway 

Figure demonstrating the components of the pyroptotic pathway (95). 

1.4.1 Pyroptosis and HPAI H5N1 

Unlike literature linking apoptosis and H5N1 pathogenesis, there is not much research into 

the possibility of pyroptosis playing a role in H5N1 pathogenesis. To explain the massive 

proinflammatory response, one study has linked induction of type I IFN signaling to trigger 

pyroptosis in immortalized airway epithelial cells, and various caspase inhibitors were used to 

determine which pathway was most prominent upon infection (56). ASC and caspase-1 have 

demonstrated role in the adaptive response to IAV after challenge, recruiting macrophages, 

dendritic cells, NK cells, and neutrophils to the lung, but also shown that they are required for 
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release of IL-1β and IL-18 in IAV infection (96, 97). A study in rhesus macaques showed that 

genes NLRP3 and IL-1β were downregulated after infection with H5N1 in the bronchus, however 

in this experiment the virus was delivered via multiple routes: intratracheal, intranasal, intraocular, 

and oral, which may not be representative of a natural aerosol infection (98). Conversely, in a 

macaque model of aerosolized H5N1 infection, downstream cytokines of pyroptosis such as IL-

1β were found to be upregulated after infection (43). In response to seeing a proinflammatory 

response upon aerosol H5N1 challenge, transcriptomics revealed an increase in RNA expression 

in GSDMD, caspase-1, ASC, NLRP3, and absent in melanoma 2 (AIM2), indicating that a 

canonical pyroptotic response is happening (Corry et al. Manuscript in preparation).  

1.5 Precision-Cut Lung Slices 

Precision-cut lung slices (PCLS) are a valuable culture system that are more representative 

of a whole lung than normal immortalized cell culture because they represent all cell types, 

structure, and accurately reflect changes to the extracellular matrix that may happen with disease, 

but are more easily generated than performing animal research by providing an ex vivo platform 

(99-104). These are thin sections of sectioned tissue that are derived from a live organ that can be 

put into culture and kept alive, and have the benefit of creating a “snapshot” of the cells in that 

particular area of the tissue while retaining their immune cells (99-104). PCLS are more 

sophisticated than transwell systems, which allow for study for cellular interactions and crosstalk, 

but do not accurately recapitulate the air and liquid flow as it would happen in vivo (100). PCLS 

provide an alternative to these more sophisticated in vivo models that are difficult to create and 

have reliance on artificial scaffolds by creating a mechanistically useful model (100). Finally, 
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PCLS have also been shown to be viable after cryopreservation, allowing for the researcher to 

make full use of hard to procure lungs for future studies (100). Most attractive, the PCLS model 

maintains a 3-dimensional architecture of the lung, which cannot be attained in in vivo models 

(105). 

As with all model systems, there are disadvantages that include a lack of a recruitable 

immune response, not every slice has the exact same cellular makeup, and the fact that this is 

regarded universally “static” system as opposed to a breathing system, especially with no air-liquid 

interface (100). In short, PCLS provide a platform to model diseases up to two weeks, but anything 

longer should warrant the investment into another model system, making them ideal for observing 

a short-term response (100, 102-104).  

Interestingly, there has been some evidence that PCLS can generate a re-call immune 

response to antigens from routine vaccines such as influenza (104). Traditionally, PCLS are used 

to study chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and 

asthma, although there has been some exploration into infectious respiratory pathogens including 

swine influenza virus, S. aureus, Y. pestis, C. burnetii, Jaagsiekte sheep retrovirus (99-101, 103, 

106-108). As mentioned in previous sections, animal models are not human models, no matter how 

sophisticated, and are difficult to manipulate in high biosafety conditions. A massive cytokine 

influx is thought to be the mechanism of which ARDS causes lung damage, but the processes 

behind this are poorly understood. A PCLS system using inhibitors to block cell death pathways 

would allow us to pinpoint the mechanism by which ARDS leads to cell death in an easy to 

manipulate model system. 
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2.0 Public Health Significance 

With the risks that the constantly mutating seasonal influenza viruses pose to human health 

and the strain they put on the public health system, it is only natural to wonder if HPAI H5N1 or 

other avian influenza strains could mutate to adapt to person-to-person spread and cause another 

flu pandemic (18, 109, 110). Gain of function experiments completed on HPAI H5N1 

demonstrated that airborne transmission was possible between infected and healthy ferrets by 

generating mutations from serial passaging in ferrets, but there was a loss of pathogenesis (111).  

The same observation was made by generating viruses that are comprised of the HA protein from 

HPAI H5N1 and seven gene segments from the 1918 pandemic H1N1, with several mutations to 

the HA segment that allowed for easier transmission between mammals, but again a loss of 

pathogenicity occurred over passages (112). Both of these studies, while ultimately demonstrating 

that over serial passages and selective mutations H5N1 loses pathogenicity, still show the alarming 

potential of HPAI H5N1 to possibly mutate to gain the ability to spread person-to-person.  

Research to understand the mechanisms that contribute to pathogenesis and how to block 

those said mechanisms in the absence of the vaccine are necessary to prepare for a potential HPAI 

H5N1 pandemic. Drugs to block cell death mechanisms of disease could be especially useful to 

Middle Eastern and Asian countries where outbreaks of H5N1 happen most often, but also to 

provide broadly acting solutions to other viruses of concern in the same areas, such as Middle East 

respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) (18). In fact, while understanding the pathogenesis of SARS-CoV-

2 is only in the early stages, some research has suggested that pyroptosis may contribute to 

pathogenesis (113, 114), as my data and our lab’s previous data into HPAI H5N1 pathogenesis 
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suggests. These data together highlight the need for a model of HPAI H5N1 that is easy to generate, 

representative of human infection, and susceptible to testing of new treatments.  
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3.0 Hypothesis and Specific Aims 

Previously, we have started to pinpoint the cell death mechanism of ARDS using our lethal 

HPAI H5N1 aerosol model (43). From transcriptomic analyses of the lungs from this study, we 

have started to analyze the cell death mechanisms that may be causing ARDS; genes involved with 

the pyroptotic pathway such as ASC, NLRP3, caspase-1, AIM2, and GSDMD were upregulated 

in infected macaques in relation to naïve macaques (Corry et al. manuscript in preparation). Genes 

involved with the apoptotic pathway such as caspase-3, caspase-8, and antiapoptotic genes BCL2 

and BCL2L1 remained the same between infected and naïve macaques (Corry et al. manuscript in 

preparation).  My overarching hypothesis is that lung damage from HPAI H5N1 infection is a 

result of pyroptosis. This project’s main focus will be to establish a protocol for generating PCLS 

from pig lungs and eventually from human lungs and be able to establish successful infection of 

HPAI H5N1 in these lung slices. Once infection is established in these models, I will focus on 

blocking main members of the pyroptotic pathway (using caspase 1/4 inhibitor VX-765 and 

GSDMD inhibitor disulfiram) and the apoptotic pathway (caspase-3 inhibitor Z-DEVD-FMK), 

along with a pan-caspase inhibitor Z-VAD-FMK. I aim to assess the success of these inhibitors by 

imaging certain cell markers for members of the pyroptotic pathway, cell death, cell markers, and 

infection, along with performing assays to measure downstream IL-1ß. 
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3.1 Aim 1: Develop an Ex Vivo Model of Porcine and Human PCLS 

This aim seeks to successfully develop a protocol to generate PCLS from two relevant 

hosts of HPAI H5N1 infection: pigs and humans. I carried this out by procuring lungs from 

respective sources, infused the lung with low melting point agarose, then sliced small cores of the 

lung with a vibratome in order to generate 400-micron thick lung slices that were of appropriate 

thickness to mount on a microscope slide. I used viability staining and differential interference 

contrast (DIC) imaging to assess the structural integrity and general health of the slices, and finally 

established a working protocol for either host that would be appropriate for infection.  

3.2 Aim 2: Determine if PCLS Can Be Productively Infected with HPAI H5N1 and 

Determine Cellular Targets of Infection 

This aim allowed for me to see if the PCLS and specific cell types within those PCLS are 

susceptible to being infected with HPAI H5N1, and if the slices were generating virus progeny. I 

carried this out by taking supernatant from the lung slices and performed plaque assays to look for 

replicating virus, along with using immunohistochemistry (IHC) to use a microscope to look for 

markers of infection such as influenza A NP and influenza NS1. I was also interested in observing 

the susceptibility of AECs’s and alveolar AM’s to HPAI H5N1 infection. Prior to infection, I 

propagated H5N1 A/Vietnam/1203/2004 virus stock in chicken eggs and used this stock 

throughout the project.  
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3.3 Aim 3: Determine the Contribution of Pyroptosis to Lung Damage in H5N1 Infection 

This aim sought to explore the role of pyroptosis in HPAI H5N1 pathogenesis, and blocked 

cell death by treating PCLS with VX-765. To do this, I treated the lung slices with DMSO as a 

vehicle control, VX-765 as a caspase-1/4 inhibitor (inhibit pyroptosis), Z-DEVD-FMK as a 

caspase-3 inhibitor (inhibit apoptosis), and Z-VAD-FMK as a pan-caspase inhibitor. I also 

explored the potential of disulfiram as a GSDMD inhibitor (inhibit pyroptosis). To observe cell 

death, I used fluorescent-labeled inhibitor of caspases (FLICA), a marker of active caspase-1, and 

7-aminoactinomycin D (7-AAD), a marker of cells with compromised membranes, to observe the 

changes in cell death in response to drug treatments through IHC. Other markers such as IL-1ß, 

ASC, human myxovirus resistance protein 1 (MxA/Mx1), and IFN were also observed through 

IHC. Finally, ELISAs for IL-1ß were performed on supernatants collected from PCLS to quantify 

the changes in this late stage cytokine released in response to pyroptosis.  
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4.0 Methods and Materials  

4.1 H5N1 Influenza Propagation in Chicken Eggs 

Embryonated pathogen-free chicken eggs (Charles River Laboratories) were incubated in 

a rocking egg incubator (GQF MFG Co. Inc) at 35C at 60% humidity for 11 days before infection 

and were checked by candling (shining a light on the eggs in a dark room to observe the inside) on 

day 1, day 8, and day of infection. Eggs with blood rings, evidence of bacterial contamination, or 

eggs that were not fertilized were discarded (Figure 4). The H5N1 A/Vietnam/1203/2004 stock 

virus previously provided by Dr. S. Mark Tompkins at the Department of Infectious Diseases, 

University of Georgia was diluted to 1x104 PFU/mL (determined to be optimal titer in pilot egg 

inoculation experiment) in 1x antibiotic-antimycotic (Thermo Fisher). Using a 20-gauge needle, a 

hole was pierced on the top of the air sac, and a 27-gauge needle was used to inoculate the allantoic 

sac by dispensing contents at a 45-degree angle through the previously made hole. The eggs were 

sealed with glue and disinfected with 70% alcohol and incubated in a static humidified incubator 

at 37C for 24 hours. Eggs were then placed at 4C overnight to kill the embryo and constrict the 

blood vessels. The allantoic fluid was then collected without blood contamination, pooled into one 

container, then centrifuged to remove debris. Supernatant was aliquoted and flash frozen before 

storage at -80C. Virus titer was verified to be 7.25x108 PFU/mL in Madin-Darby canine-kidney 

(MDCK) cells by plaque assay, and virus stock was analyzed via whole-genome sequencing as 

previously described (43) and no significant amino acid changes were found. All work with H5N1 

was performed at the University of Pittsburgh Regional Biocontainment Laboratory under BSL3 

conditions. 
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Figure 4: Egg Candling 

Examples of eggs used in experiment to generate H5N1 A/Vietnam/1203/2004 stock. (A) These eggs are considered 

healthy and preferable to infect due to the presence of a developing embryo and developed veins. (B) These eggs are 

not viable as demonstrated by a ring of bacterial contamination and dead embryo (left) and presence of a blood ring 

and dead embryo (right).  

4.2 Acquisition of Porcine and Human Lungs and Tissue Processing 

Human lungs were acquired from the International Institute for the Advancement of 

Medicine (IIAM) postmortem and were delivered within 48 hours of cross-clamp time (Table 1), 

then upon arrival were warmed in a 37C water bath for 1 hour. Porcine lungs were acquired from 

Thoma Meat Market from pigs that were sacrificed on day of lung collection for other purposes 
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(Table 1), and upon arrival were warmed in a 37C water bath for 1 hour. Next, lungs were 

perfused with 2% low-melting point agarose (Thermo Fisher) and allowed to solidify at room 

temperature. Lung was further separated into 0.5-inch sections and cored with an 8mm biopunch. 

The cores were embedded in petri dishes with 2% low-melting point agarose (Thermo Fisher) and 

sectioned into either 400-micron or 900-micron human PCLS with a vibratome (Leica VT1200s). 

Slices were washed 3 times with DMEM media (Gibco) containing 50 U/mL 

penicillin/streptomycin (Gibco), 0.2 g/mL gentamicin (Gibco), and 1.25 g/mL amphotericin B 

(Gibco) (lung slice wash media) to reduce contamination before culturing in lung slice wash media 

with 10% FBS (Gemini) (lung slice maintenance media is LSMM). Slices were cultured overnight 

in 0.5 mL media in 48 well tissue culture (TC)-treated plates on a rocker at 37C and 5% CO2 

before infection the following day. 
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Table 1: Lung Donor Demographic Information 

 

Summary demographic data of lungs used in this study. (A) Demographic and descriptive data of human lungs. (B) 

Description of porcine lungs and date acquired.  

4.3 Infection, Sample Collection, and Fixation of PCLS 

PCLS were placed one per well in a 48 well TC-treated plate with 0.5mL LSMM either on 

its own as a mock condition, 100ng/mL lipopolysaccharide (LPS) (Novus Biological), or highly 

pathogenic avian influenza A/Vietnam/1203/2004 (H5N1) virus at MOI 10. The media was further 
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treated with vehicle control, inflammasome control, caspase inhibitors, or GSDMD inhibitors. 

PCLS were left to infect rocking at 37C and 5% CO2 until various timepoints were reached. At 

the end of timepoints (24, 48, or 72 hpi depending on experiment), the slice was washed with 1x 

PBS and moved to fixing in 2% paraformaldehyde for 4 hours if used for IHC or pooled in a tube 

and treated with radioimmunoprecipitation assay buffer (RIPA) buffer to generate protein lysates. 

Supernatant was collected at time points (24, 48, or 72 hpi depending on experiment) and treated 

with non-denaturing lysis buffer (NDLB) before freezing at -80C. 

4.4 Drug Treatments  

LPS (Thermo Fisher) was used as a positive inflammasome control initially at a 

concentration of 10ng/mL before changing to a concentration of 100ng/mL due to low 

inflammasome activation observed at the lower dose. Dimethylsulfoxide (DMSO) 1% (Sigma) 

was used as a vehicle control in all conditions, as this is the solvent that the caspase and GSDMD 

inhibitors used in this study are reconstituted in. Caspase-1/4 inhibitor VX-765 (Sigma) was used 

at a concentration of 10 M, caspase-3 inhibitor Z-DEVD-FMK (Fisher Scientific) was used at a 

concentration of 100 M, pan-caspase inhibitor Z-VAD-FMK (Fisher Scientific) was used at a 

concentration of 100 M, and GSDMD inhibitor disulfiram (Fisher Scientific) was originally used 

at a concentration of 100 M before changing to 5 M over toxicity concerns. Once reconstituted 

in DMSO, inhibitors were further diluted in LSMM before being added to PCLS.  
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4.5 Fluorescence Microscopy 

4.5.1 Precision-Cut Lung Slices  

PCLS were fixed in 2% paraformaldehyde (PFA) for 4 hours then permeabilized in 0.25% 

Triton-X 100 for 10 minutes before blocking in a solution containing 5% goat serum for 1 hour at 

room temperature. Slices were then incubated in primary antibody in a solution containing 0.5% 

goat serum for overnight at 4C, followed by incubation with Alexa-Fluor conjugated secondary 

antibodies for 45 minutes at room temperature. DAPI was used to identify cellular nuclei. Slices 

were flattened on microscope slides and mounted under coverslips with ProLong Diamond 

Antifade Mountant (Thermo Fisher). 7-AAD staining was completed before fixing with 2% PFA 

by diluting 1:200 in 1xPBS and incubating for 30 minutes on ice, then moved to fixing.  

The following primary antibodies were used and diluted at 1:100 (except 7-AAD at 1:200): 

mouse anti-human anti pan-cytokeratin (AE1/AE3; Abcam), mouse anti-human anti-influenza A 

nucleoprotein (DPJY03; BEI resources), mouse anti-human anti-caspase-1 (D-3; Santa Cruz), 7-

AAD (Immunohistochemistry Technologies), mouse anti-human anti-ASC (B-3; Santa Cruz), 

mouse anti-human anti-MxA/Mx1 (4812; Novus Biological), mouse anti-human anti-IFN alpha 

(MMHA-2; PBL Assay Science), and mouse anti-human anti-IL-1ß/IL-1F2 (11E5; Novus 

Biologicals).  

Secondary antibodies were all from Thermo Fisher and included goat anti-mouse IgG1 

Alexa Fluor 546, goat anti-mouse IgG2a Alexa Fluor 647, goat anti-mouse IgG2a Alexa Fluor 

488, donkey anti-rabbit IgG Alexa Fluor 488, and goat anti-mouse IgG2b Alexa Flour 647, all 

diluted at 1:250. Isotype controls were all from Invitrogen and included: rabbit anti-IgG, mouse 

anti-IgG2a clone 20102, mouse anti-IgG1 clone 11711, and mouse anti-IgG2b. Staining controls 
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included an isotype control with matching secondary antibody or just secondary antibody alone.  

PCLS were imaged using either an Olympus FluoView FV1000 confocal microscope or an 

Olympus Multiphoton microscope and analyzed using NIS elements software (Nikon). 

4.5.2 Macaque Study Samples 

Tissues from macaques were part of the study in 2016 that developed a lethal model of 

HPAI H5N1 ARDS, and serves as the prerequisite for this study, and were animals  M139-15 

(naïve control animal) and 103799 M138-15 (infected with 6.57 log10 PFU H5N1 

A/Vietnam/1203/2004 and was humanely sacrificed on day 4) (43). These macaques were 

cynomologus females exposed to aerosolized H5N1 A/Vietnam/1203/2004 at varying 

concentrations via head-only Aeroneb Solo Nebulizer (Aerogen) exposure unit and monitored for 

disease status until the animal needed to be humanely sacrificed due to disease progression. At 

necropsy, tissue chunks were fixed in 2% paraformaldehyde for four hours followed by immersion 

in 30% sucrose overnight before being flash frozen and stores at -80C until sliced. From here, 

tissue sections were cut using a cryostat microtome at 7 microns thick and were attached to warmed 

microscope slides and stored at -20C until stained. From here, tissue sections were permeabilized, 

stained, and imaged with the same equipment and in the same manner as PCLS.  

The primary antibodies used for macaque lungs were diluted 1:100 and were: mouse anti-

human anti-MxA/Mx1 (4812; Novus Biological) and mouse anti-human anti-IFN alpha (MMHA-

2; PBL Assay Science). The secondary antibodies used, all from Thermo Fisher, were diluted 

1:250 and were goat anti-mouse IgG1 Alexa Fluor 546 and goat anti-mouse IgG2a Alexa Fluor 

488. Isotype controls were carried out in the same manner as PCLS. 
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4.6 Plaque Assays 

MDCK cells were grown until 90% confluent in cell media consisting of DMEM (Gibco) 

with 20% FBS (Gemini), 200mM L-glutamine (Gibco), 1M HEPES buffer (Gibco), and 

Penicillin/Streptomycin 10,000 U/mL/10,000 g/mL (Gibco). All cell cultures used were below 

passage 20. This suspension is split into 6-well TC-treated plates and left to incubate overnight (or 

until 90% confluency was reached) at 37C at 5% CO2. Media was then removed from the cells 

immediately prior to infection, and 0.2mL of diluted virus in virus growth media (DMEM with 

1M HEPES buffer, Penicillin/Streptomycin 10,000 U/mL/10,000 g/mL, 1:40 bovine serum 

albumin fraction V 7.5%, and 1:1000 2mg/mL TPCK-trypsin; all reagents from Gibco). Plates 

were rocked, then placed at 4C for 15 minutes followed by 37C at 5% CO2 for 45 minutes. A 

1:1 mixture of 2% agarose (Invitrogen) and MEM media (2x MEM with 1M HEPES (Gibco), 

Penicillin/Streptomycin 10,000 U/mL/10,000 g/mL (Gibco), 1:20 bovine serum albumin fraction 

V 7.5% (Gibco), with 1:800 2mg/mL TPCK-trypsin (Thermo Fisher)) was applied per well. The 

plates were incubated at 37C at 5% CO2 for 3-5 days, then agarose plugs are removed, and plates 

are fixed with 37% formaldehyde (Fisher Scientific). Plates were stained with 25%EtOH/0.1% 

crystal violet (Fisher Scientific) and plaques were counted.  

4.7 Cytokine Analysis 

IL-1 enzyme-linked immunosorbent assays (ELISAs) (R&D systems) were performed 

according to manufacturer’s protocol on supernatant collected from PCLS. Supernatants were 

treated with non-denaturing lysis buffer (2mM EDTA, 50mM Tris-HCL, 1% Triton X-100, 
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150mM NaCL, and water) to inactivate H5N1 infected samples to perform the assay under 

biosafety level 2 (BSL2) conditions. Mock and LPS treated samples were also treated with non-

denaturing lysis buffer. Capture antibody coated a high-binding 96-well plate overnight, followed 

by blocking with 1% bovine serum albumin (BSA) before sample addition. Following incubation 

of samples, detection antibody was added to the plates followed by Streptavidin-HRP. Finally, a 

mixture of H2O2 and tetramethylbenzidine was added to trigger a colorimetric reaction that was 

stopped with sulfuric acid before being read using a BioTek ELx800 microplate reader at 450nm 

with 540nm correction.  

4.8 Lactate Dehydrogenase Assay 

Lactate dehydrogenase (LDH) assays (Thermo Fisher Scientific) were performed under 

BSL3 conditions with supernatants that were collected from PCLS. Supernatants and a 1X LDH 

positive control were treated with a mix of substrate mix and assay buffer (included in kit) and left 

to incubate at room temperature for 30 minutes in a flat bottom 96-well plate before the reaction 

was stopped by the addition of stop solution (included in kit). Total absorbance of released red 

formazan product was measured at 490-680nm using a Synergy LX Multi-Mode microplate reader.  

4.9 Generation of Protein Lysates 

900-micron thick lung slices were collected and pooled at various timepoints (either n=2 

or n=3, depending on experiment) and weighed. RIPA buffer (10mM Tris-Cl pH 8.0, 1mM EDTA, 
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1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140mM NaCl) was added to the slices 

in a volume (in microliters) that was 3 times the weight of the slices (in milligrams) and small 

scissors were used to shear the sample. Keeping sample on ice, the sample was vortexed then 

placed at -80C to fully freeze. After thawing, samples were centrifuged, and supernatant was 

collected and stored at -80C until Bicinchoninic acid (BCA) protein assays and Western blots 

could be performed.  

4.10 Image Analysis and Quantification  

TIFF images taken from microscopy sessions were analyzed using NIS Elements version 

4.50.00. Regions of interest (ROIs) were drawn to encapsulate lung tissue and exclude edges of 

tissue/airways in the tissue where no tissue is present. Microscope slides were imaged non-

repetitively, and the total number of images per slide varies by experiment but for quantification a 

minimum of 5 images was used and a maximum of 10 images were used. For confocal images 

presented, the focal plane varied by sample but was consistently taken near the top of the tissue 

section. Multiphoton images are Z-stacks of a defined depth that varies per image anywhere from 

40 to 70 microns, depending on the upper and lower limit of tissue determined by viewing through 

the objective. Stains of interest were then quantified by recording the binary area (recorded as 

pixels) and averaging the values to generate individual data points per donor, and summary 

quantification of stains of interest per panel. General image edits such as scale bars were done in 

ImageJ version 2.0.0-rc-69/1.52p.  
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4.11 Statistical Analysis  

Statistical analyses were completed using GraphPad Prism software version 8.3.1 (332). 

The alpha value in all tests was set to 0.05. All tests were determined to be best run as non-

parametric and therefore median values were displayed on graphs instead of mean values, as 

determined through Shapiro-Wilk tests. Comparisons within groups of three treatments or more 

were subject to Kruskal-Wallis test followed by multiple comparisons. Comparisons between 

groups of two treatments were subject to two-tailed Mann-Whitney U tests. The averages of log10 

were calculated as geometric means, and values that originally were zero were given an arbitrary 

value of 1 before log transforming. 
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5.0 Results 

5.1 Aim 1: Develop an Ex Vivo Model of Porcine and Human PCLS 

The purpose of this aim was to develop an ex vivo PCLS model first in porcine lungs then 

in human lungs. This will be carried out by acquiring lungs from a butcher for pig lung and from 

the transplant network IIAM, then perfusing with low melting agarose to provide stability and 

allow for soft tissue to be cut into slices. Various viability methods were employed to assess quality 

of tissue effectiveness of processing protocols.  

5.1.1 Establishment of Lung Processing Protocol 

The lung processing protocol that I  have developed in this study was derived from a study 

that generated a PCLS model in sheep lung to study various gene therapy vectors (115). Through 

practice with various porcine lungs and early human lungs (Table 1), I have had great success in 

being able to perfuse lungs with low melting point agarose until stiff to the touch, generate small 

lung cores to be sectioned on a vibratome (Leica VT1200s), generating 400-micron thick slices 

for microscopy, and 900-micron thick slices for downstream western blotting, and supernatant 

collection to measure downstream cytokines and replicating virus through plaque assays (Figure 

5).  
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Figure 5: Workflow of Processing Lungs 

Sequence of processing events to generate PCLS. (A) Setup of lung in BSC and elevation to allow for lung to be 

perfused with low melting point agarose. (B) A 1 inch thick section of lung cut from organ, and small 8mm biopunch 

cores generated from this section. (C) Lung cores embedded in low melting point agarose for stability. (D) Setup of 

lung core on vibratome ready to be sliced. (E) 400 micron thick lung slice (left) and 900 micron thick lung slice (right) 

in culture.  

 

To image the structural integrity of the PCLS, I acquired differential interference contrast 

(DIC) images through confocal microscopy throughout the study to observe any changes in tissue 

upon processing and between donors. DIC imaging allowed for fine details in transparent tissue to 

be observed that would not be seen with normal fluorescent microscopy. Figure 6 represents 

structural makeup of a pig lung and human lung AHCG011. The most noticeable difference in 

gross lung pathology has to do with the way the lungs are procured. While the human lungs are 

taken from relatively healthy donors and processed as if they were going toward a transplant, the 

porcine lung is obtained from a local butcher. This concludes that the lung processing protocol 

does not interfere with the structural integrity of the lung slices. 
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Figure 6: Imaging of PCLS 

Differential interference contrast microscopy shows structural makeup of porcine PCLS (left) and human PCLS (right) 

from donor AHCG011. Scale bar is 100m.  

 

5.1.2 Establishment of Lung Culturing Protocols 

In order to determine viability of PCLS in culture following processing, I employed 

viability staining with SYTO10, a nucleic acid stain that is cell membrane permeable and will label 

all cells, and DEADRed, a stain that only labels cells with compromised membranes (Thermo 

Fisher). This method was used in the study with sheep lung that was a foundational basis for the 

development of our model system (115). In the following experiments, the day 0 timepoint refers 

to PCLS that were cultured for one hour in LSMM on day of acquisition and processing. After 

processing, media was changed daily. These results indicate that for a porcine lung, the values are 

not significantly different from each other, suggesting that rather than being more viable on a 
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certain day porcine PCLS can successfully be maintained in culture for at least 3 days without 

viability loss.  I had investigated whether leaving the lung cores in their embedded agarose petri 

dishes then slicing on the vibratome at a later date would become an alternate in case infection 

could not be completed on the same day as processing, but the viability tests revealed that these 

slices were not ideal (Figure 7).  

 

Figure 7: Viability of Porcine Lung Slices 

(A) Porcine PCLS stained for SYTO10 (green) and DEADRed (red) at day 0, 3, and 7 timepoints. One slice was 

cultured normally and one slice was treated with 10% Triton X-100 as a death control for each timepoint. Scale bar is 

100m. (B) Quantification of cell markers for SYTO10 and DEADRed within PCLS. Horizontal lines on graphs 

represent medians and results were statistically analyzed through Kruskal-Wallis tests followed by Dunn’s multiple 

comparisons. *p<0.05. 

 

Viability testing was also completed with human lung with the same viability testing kit, 

but modifications were made to test whether PCLS were more viable when incubated with or 
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without gentle rocking during incubation. A day 1 timepoint was added to assess whether infection 

was best done the day PCLS were generated or after an acclimation period, with the media changed 

daily. Again, the day 0 timepoint refers to PCLS that were cultured for one hour in LSMM on day 

of acquisition and processing. These data indicate that the viability of human PCLS remain 

relatively level over 3 days in culture, as seen in the porcine lung viability experiment (Figure 8). 

In the study with sheep lung that serves as a basis for this study, the researchers found that culturing 

slices for 3 days before infection yielded greater infection and transduction efficacy (103). This 

certainly reduces the risk of bacterial or fungal contaminants, and this may make the slices more 

vulnerable to infection when the normal lung flora is not competing with the pathogen of interest. 

However, this study’s purpose was to generate a maintained infection in PCLS, whereas I am 

looking at short term, within 72 hours, infection effects in PCLS. So, day of infection is most likely 

best done the day of or day after processing for H5N1 infection. In the human lung, there is some 

staining of SYTO-10 of elastin and collagen, which is also observed in later multiphoton imaging.  

The implementation of the shaking platform was included after porcine lung experiments were 

complete but will be included in any future experiments with them. Going forward with this, a 

shaking platform will also be used to keep the slices in motion after infection with H5N1 or 

treatment with LPS. LPS is known to be an inducer of the non-canonical inflammasome pathway, 

specifically by activating the NLRP3 inflammasome (116, 117). This will be used as a positive 

control for inflammasome activation at a concentration of 100ng/mL, which in literature is 

considered a high dose without being toxic to the cells (118-120). A lower concentration of 

10ng/mL was initially used but was changed after inflammasome activation was not happening 

(data not shown). 
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Figure 8: Viability of Human Lung AHAU189 

(A) Porcine PCLS stained for SYTO10 (green) and DEADRed (red) at day 0, 1, 3 and 7 timepoints. One slice was 

cultured normally and one slice was treated with 10% Triton X-100 as a death control for each timepoint. Per timepoint 

and per culture/death control, one slice was cultured stationary and one was cultured on a rocker. Scale bar is 100m. 

(B) Quantification of cell marker for SYTO10 and DeadRed within PCLS. Horizontal lines on graphs represent 

medians and results were statistically analyzed through Kruskal-Wallis tests followed by Dunn’s multiple 

comparisons. *p<0.05, **p<0.01. 

5.1.3 Aim 1 Conclusions  

In conclusion, in aim 1 I successfully modified a PCLS model that can go on to be tested 

with different treatment and exposure conditions that can be used for porcine and human lungs. 

Both porcine and human lung slices remain viable in culture after processing, allowing for 

flexibility in planning experiments and generally healthy slices that are suitable to be infected with 

HPAI H5N1. 
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5.2 Aim 2: Determine if PCLS Can Be Productively Infected with HPAI H5N1 and 

Determine Cellular Targets of Infection 

Aim 2 seeks to take the PCLS model to the next level and determine its ability to ultimately 

be infected with H5N1 and determine if H5N1’s target cells for replication, alveolar epithelial cells 

(AEC’s) are susceptible within PCLS. Evidence of infection will be observed by using IHC and 

will be supported with plaque assay results taken from supernatant of infected PCLS. The stock of 

H5N1 A/Vietnam/1203/2004 that I have generated in chicken eggs was used for all infections 

throughout this study. The parent stock of this virus was also used to infect macaques in the 2016 

study (43) (Table 1).  

5.2.1 HPAI H5N1 Can Infect and Replicate in Porcine PCLS 

Throughout this study, multiple compounds were used to manipulate cell death conditions 

to observe the role of H5N1 in cell death pathways (specifically pyroptosis). DMSO 1% will be 

used as a vehicle control in all conditions, as this is the solvent that the caspase and GSDMD 

inhibitors used in this study are reconstituted in. Caspase 1/4 inhibitor VX-765 (Millipore Sigma) 

will be used at a concentration of 10M throughout the study, as it has been shown to be effective 

at this concentration in cell culture (121), and in animal models, other cell culture models, and is 

approved for clinical use (122-124). Z-DEVD-FMK (R&D Systems) is a caspase-3 inhibitor and 

Z-VAD-FMK (R&D Systems) is a pan-caspase inhibitor, both used at a concentration of 100M. 

There is some evidence that Z-VAD-FMK completely inhibits caspase-1 activity and prevents over 

50% of cell death at a lower concentration of 30-40M (125). In comparison, Z-VAD-FMK did 

not prove to be any more effective than Z-DEVD-FMK against influenza A infection at a 
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concentration of around 40M (126) and a concentration of 20M (127). One study found Z-

VAD-FMK effective at reducing cytopathogenicity of H5N1 at 200M (128). Finally, GSDMD 

inhibitor disulfiram was initially used at 100M, but was dropped to 5M after concerns of cell 

toxicity, and to be more comparable to what has been seen in other studies (125).  

Plaque assay results were performed on supernatant collected from 400-micron PCLS used 

in IHC and from 900-micron PCLS used for further western blot analysis. In 400-micron PCLS, 

titers were highest after 48 hours in comparison to the input virus but dropped after 72 hours 

(Figure 9). This is most likely due to the fact that the porcine lung is not in great condition to begin 

with the lung slices may have begun to die and not be able to support replication. In comparison, 

900-micron lung slices supported better replication, with all conditions yielding a higher titer than 

the input virus titer (Figure 9). At 24 hours, all drug treatments yielded similar titers, but after 48 

hours VX-765 and Z-DEVD-FMK increased by almost 2 logs in comparison with their 24-hour 

counterparts (Figure 9). After 72 hours, titers were overall higher than 24 hours but still lower than 

48 (Figure 9), which once again suggests that these porcine PCLS are just not as healthy, especially 

after being exposed to a virus.  
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Figure 9: H5N1 Titers of Porcine Lung 

Supernatant was collected from (A) 400 micron PCLS and (B) 900 micron porcine lung PCLS from one donor and 

titer was determined through plaque assays on MDCK cells. Bars on graphs represent medians and results were 

statistically analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. All tested treatments 

were significantly higher than the input virus. *p<0.05. 

 

There is evidence that H5N1 can infect pigs, but their susceptibility to infection is low and 

titers from infected lungs are lower than other animals that are infected such as ferrets and NHPs, 

which may have to do with the PB1-F2  protein promoting recruitment of macrophages, 

monocytes, and NK cells, with early apoptotic events then taking place in alveolar macrophages 

(33, 86, 129). I see that in our PCLS model, H5N1 does infect porcine lung slices in what appears 

to be mild (Figure 10), supporting other evidence showing pigs as a potential mixing vessel and 

allowing us to study a comparable model to human lung. There is some colocalization that supports 

the idea that H5N1 infects AEC (Figure 10), and there is more virus detected after treatment with 

VX-765 (Figure 10B). Caspase-1 knockout mice were shown to be more susceptible to influenza 

infection, implicating that I might be seeing higher levels of HPAI H5N1 because dampening the 
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cell death response to infection may allow for the cells to survive and allow for further replication 

(130). AEC presence in lung tissue remained comparable across drug treatments in mock and LPS 

treated conditions, but dropped after infection with H5N1, suggesting that H5N1 infection may be 

destroying these target cells (Figure 10). This could be further analyzed by using panels for 

markers 7-AAD to measure cell death, AEC, and influenza A NP to observe through IHC.  
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Figure 10: Infection of Porcine Lung with H5N1 

(A) Porcine lung PCLS stained with antibodies to AEC (red) and influenza A NP (green). DAPI was used to identify 

nuclei in cells. Scale bar is 100m. Arrowheads point to representative co-localization. (B) Quantification of cell 

marker for NP within PCLS. (C) Quantification of cell marker for AEC within PCLS.  (D) Quantification of 

colocalization of cell markers for AEC and NP within PCLS. Horizontal lines on graphs represent medians and results 

were statistically analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. *p<0.05. 

Conditions: H5N1 MOI 10, LPS 100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, Z-

VAD-FMK 100M. Each dot is an individual image and this figure represents one donor.  

 

5.2.2 HPAI H5N1 Can Infect and Replicate in Human PCLS 

Plaque assay results were generated by taking supernatant from 400-micron PCLS used in 

IHC analysis and from 900-micron PCLS used for further western blot analysis. Because cell death 

became a presumed issue with PCLS health in the porcine lung, I decided to replace the media 
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with drugs daily, but not LPS of H5N1 in human lung AHAU189, making each timepoint after 

24hpi a non-cumulative titer (Figure 11). Titers of all timepoints and drug treatments were higher 

than the input titer, showing successful virus replication in PCLS. As with porcine lung, more 

replication was observed in 900-micron, but human lung had overall higher titers than porcine 

lung, indicating the humans are better hosts for H5N1 replication than pigs, supporting evidence 

that has already been seen to implicate pigs as a mixing vessel (33, 43, 86, 129, 131) (Figures 9 

and 11). 

 

Figure 11: H5N1 Titers of Human Lung AHAU189 

Supernatant was collected from (A) 400 micron PCLS and (B) 900 micron human lung AHAU189 PCLS and titer 

was determined through plaque assays on MDCK cells. Bars on graphs represent medians and results were statistically 

analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. All tested treatments were 

significantly higher than the input virus. *p<0.05. 

 

Next, human PCLS were infected and evaluated for their competence as a model. Through 

IHC, I observed the presence of AEC’s in human PCLS and showed that as in porcine lung (Figure 
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10), human PCLS could be infected with H5N1 as observed through representative colocalization 

(Figure 12). As with porcine lung, treatment with VX-765 appears to illicit more infection than its 

DMSO vehicle control, possibly implicating caspase-1 as an important player in infection (Figure 

12). The amount of NP colocalized with AEC was also higher in VX-765 treated PCLS (Figure 

12D). I believe that both type I pneumocytes, filamentous red stained region near the alveolar 

epithelial spaces, and type II pneumocytes, round and red stained cells, are representatively stained 

in this tissue. HPAI H5N1 is also preferentially infecting type II pneumocytes in PCLS, 

corroborating what is seen in literature (132).  
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Figure 12: Infection of AHAU189 Human Lung with H5N1 

(A) Human lung AHAU189 PCLS stained with antibodies to AEC (red) and influenza A NP (green). DAPI was used 

to identify nuclei in cells. Scale bar is 100m. Arrowheads point to representative co-localization. Images are Z-stack 

projections taken on an Olympus Multiphoton microscope of 20 images encompassing a 2 micron thick section per 

image. (B) Quantification of NP in PCLS. (C) Quantification of AEC in PCLS. (D) Quantification of colocalization 

of NP and AEC in PCLS. Bars on graphs represent medians and results were statistically analyzed through Kruskal-

Wallis tests followed by Dunn’s multiple comparisons. *p<0.05, **p<0.01, ***p<0.001. Conditions: H5N1 MOI 10. 

Treatments: DMSO 1%, VX-765 10M. Each dot is an individual image and this figure represents one donor. 

 

While I have shown that AECs can be infected with H5N1, I have also seen in previous 

studies that H5N1 can destroy AM’s in both human and porcine lungs (43, 86). To evaluate 

whether the same thing happens in human and porcine PCLS, PCLS were stained with antibodies 

to CD163 and influenza A NP. I found that in human lungs, there appeared to be fewer AMs after 

H5N1 infection, and some colocalization showed H5N1 infected AMs (Figure 13A). The same 
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observation was seen in porcine lungs (Figure 13B). Interestingly, the influenza A NP seemed to 

infect this porcine lung (Figure 13B) more than the previous porcine lung (Figure 10), despite the 

same dose of H5N1 being delivered and the lungs being treated in the same manner. This could be 

due to variation between animals and general health of the pig donor that was used, which I do not 

have information for. It is less likely due to the PCLS coming from different areas of the lung since 

all lung cores are taken from the lower lobe, and while the possibly of having sample variation of 

cell populations is present it cannot be controlled more closely. 

 

Figure 13: Alveolar Macrophages in H5N1 Infected Lungs 

(A) Human lung AHCG011 PCLS stained with antibodies to CD163 (red), NS1 (green), and influenza A NP (cyan). 

(B) Porcine lung PCLS stained with antibodies to CD163 (red) and Influenza A NP (green). Scale bar is 100m. 

Arrowheads point to representative co-localization. Conditions: H5N1 MOI 10. 
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5.2.3 Aim 2 Conclusions  

In this aim I showed that the PCLS model system can successfully be infected with H5N1 

and produce replicating virus. I also showed that H5N1 can infect AECs and AMs in both human 

and porcine lungs, showing that this model can recapitulate what is seen in other cell culture and 

animal models after H5N1 infection, suggesting that our model can be used to assess the role of 

cell death in response to infection. This important step also allows for our lab to investigate other 

cell death pathways in the future and assess more cell death inhibitors now that a model system 

has been established.  

5.3 Aim 3: Determine the Contribution of Pyroptosis to Lung Damage in H5N1 Infection 

In this extensive aim I plan to examine the role of cell death upon H5N1 infection, using 

LPS as a positive control for inflammasome activation and observing the impact of caspase and 

GSDMD inhibitors to try and reverse cell death. I will use 7-AAD as a marker of dead cells with 

compromised membranes in addition to FLICA to label active caspase-1 in living cells as a main 

indicator of drug effectiveness. I will also investigate the levels of secreted IL-1 to confirm that 

downstream cytokines are also impacted. Finally, ASC and IL-1 will be observed in IHC, along 

with IFN and MxA/Mx1. 
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5.3.1 Cell Death is Observed in Porcine PCLS and Affected by Caspase Inhibitors  

In porcine lung, mock conditions have lower levels of FLICA and 7-AAD than the LPS 

control and H5N1 conditions (Figure 14). The most dramatic visual change is in H5N1 infected 

PCLS, FLICA stained cells dropped in number after treatment with caspase-1/4  inhibitor VX-

765 (Figure 14). On the contrary, the amount of 7-AAD stained cells remained largely unchanged 

after infection with H5N1 and across all drug treatments but was highest after exposure to 

disulfiram (Figure 14). Experiments with this porcine lung and human lung AHAU189 where the 

concentration of disulfiram was 100M showed an increase of 7-AAD stained cells, and separate 

experiments in isolated and selected AMs from porcine lung showed toxicity from disulfiram at 

this concentration as determined by flow cytometry staining with 7-AAD. A lower concentration 

of 5M was shown to be non-toxic to isolated AMs, so this concentration will be used in PCLS in 

the future.  
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Figure 14: Cell Death in H5N1 Infected Porcine Lung 

(A) Porcine lung PCLS stained with antibodies to 7AAD (red) and FLICA (green). DAPI was used to identify nuclei 

in cells. Scale bar is 100m. Arrowheads point to representative co-localization. (B) Quantification of cell marker for 

FLICA within PCLS. (C) Quantification of cell marker for 7-AAD within PCLS.  (D) Quantification of colocalization 

of cell markers for FLICA and 7-AAD within PCLS. Horizontal lines on graphs represent medians and results were 

statistically analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. *p<0.05. Conditions: 

H5N1 MOI 10, LPS 100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, disulfiram 100M. 

Each dot is an individual image and this figure represents one donor. 
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5.3.2 Cell Death is Observed in Human PCLS and Reversed by Caspase Inhibitors  

In human lung, there was a great deal of difficulty in staining with FLICA due to the stain 

nonspecifically binding to what was determined most likely to be elastin in the lung, so cell death 

is determined primarily solely through 7-AAD staining. Staining with other antibodies after 

staining with 7-AAD and subsequent paraformaldehyde fixing also interfered with the final 

staining panel, and it was difficult to observe co-localization of 7-AAD with other markers such 

as Influenza A NP (data not shown, determined through preliminary testing).  

In human lung AGIE005, the LPS treated PCLSs showed the most dramatic change in cell 

death, with widespread 7-AAD in vehicle control treated DMSO and a significant decrease after 

treatment with VX-765 within the LPS treated group (Figure 15). In H5N1 treated PCLSs, there 

was a slight decrease in 7-AAD after treatment with caspase-1 inhibitor VX-765 but not as 

dramatic as the decrease seen after treatment with caspase-3 inhibitor Z-DEVD-FMK (Figure 15). 

This lung donor was the earliest lung with presentable data for 7-AAD, and the results provided 

warrant further investigation to determine if the same changes in cell death were observed after 

treatments in other lung donors.  
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Figure 15: Cell Death from H5N1 in AGIE005 Human Lung 

(A) Human lung AGIE005 PCLS stained with antibodies to 7-AAD (green). DAPI was used to identify nuclei in cells. 

Scale bar is 100m. Dotted lines mark areas of tissue. (B) Quantification of cell marker for 7-AAD within PCLS. 

Horizontal lines on graphs represent medians and results were statistically analyzed through Kruskal-Wallis tests 

followed by Dunn’s multiple comparisons. *p<0.05, **p<0.01. Conditions: H5N1 MOI 10, LPS 100ng/mL. 

Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M. Each dot is an individual image and this figure 

represents one donor. 

 

In human lung AHCG011 (the most recently procured lung), the concentration of 

disulfiram was changed from 100M to 5M to eliminate potential toxicity from the drug itself 

and to better reflect what I have seen in literature concerning the suggested concentration to use 

(125).  
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I used multiphoton imaging to generate Z-stacks of PCLS to obtain more representative 

images of thicker tissue. In these images was widespread 7-AAD throughout all conditions except 

those treated with disulfiram (Figure 16). The presence of 7-AAD that appears to be in a higher 

quantity after treatment with Z-DEVD-FMK than the DMSO vehicle control (Figure 16) indicates 

that this concentration may possibly be too high and in future studies this will need to be adjusted 

to make sure no cell toxicity is happening directly from the drug treatment.  

Due to time constraints, only one image per condition was able to be taken for the 

multiphoton imaging (Figure 16), so the same PCLSs were imaged on a confocal microscope 

(Figure 17), taking 5 images per condition to be able to quantify the experiment. In this experiment, 

there was a visible drop in 7-AAD after VX-765 and after treatment with disulfiram (Figure 17A). 

Even though all results were nonsignificant, there is a slight drop in 7-AAD after treatment with 

VX-765 and disulfiram (Figure 17B).  



 

 57 

 

Figure 16: Cell Death from H5N1 in AHCG011 Human Lung 

Human lung AHCG011 PCLS stained with antibodies to 7AAD (red). DAPI was used to identify nuclei in cells. Scale 

bar is 100m. Images are Z-stack projections taken on an Olympus Mumultiphoton microscope encompassing 23 

images with each image representing a 2 micron thick section. Dotted lines mark areas of tissue. Conditions: H5N1 

MOI 10, LPS 100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, disulfiram 100M. 
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Figure 17: Cell Death from H5N1 in AHCG011 Human Lung 

(A) Human lung AHCG011 PCLS stained with antibodies to 7AAD (green). DAPI was used to identify nuclei in cells. 

Scale bar is 100m. Dotted lines mark areas of tissue. (B) Quantification of cell marker for 7-AAD within PCLS. 

Horizontal lines on graphs represent medians and results were statistically analyzed through Kruskal-Wallis tests 

followed by Dunn’s multiple comparisons. All results were nonsignificant. Conditions: H5N1 MOI 10, LPS 

100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, disulfiram 5M. Each dot is an 

individual image and this figure represents one donor. 

 

Overall, caspase-1 inhibitor VX-765 at 10M and GSDMD-inhibitor disulfiram at 5M 

are the most effective in reducing cell death, indicating that a pyroptotic pathway may be involved 

in HPAI H5N1 pathogenesis, as we have seen in transcriptomics in our previous study. The use of 

7-AAD with these results also indicates that pyroptosis may be happening since 7-AAD labels 

cells with a compromised membrane, which is more consistent with an inflammatory method of 

cell death rather than apoptosis where the cell membrane can remain intact.  
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5.3.3 Downstream IL-1 is Reduced After Treatment with Caspase and Gasdermin-D 

Inhibitors 

With evidence with 7-AAD showing effectiveness of caspase and GSDMD inhibitors, 

further investigation was needed to assess downstream cytokines and other members of the 

pyroptotic pathway.  IL-1 ELISAs were completed on supernatants from 400-micron thick PCLS 

that were used in IHC, along with supernatants from 900-micron thick PCLS that were used for 

downstream Western blotting analysis. All supernatants were treated with non-denaturing lysis 

buffer to inactivate them so that the assay could be performed in BSL2 conditions; independent 

testing found no impact of non-denaturing lysis buffer on the quality of the ELISA (data not 

shown). From the most recent human lung, AHCG011, IL-1 increased after infection with H5N1 

but was brought down after treatment with caspase-1/4 inhibitor VX-765, caspase-3 inhibitor Z-

DEVD-FMK, and GSDMD  inhibitor disulfiram, but the most dramatic change was after treatment 

with VX-765 and disulfiram (Figure 18). In 400-micron slices, the most significant results arose 

after 48 hours of infection, which did not change much from 24 hours besides Z-DEVD-FMK 

becoming slightly less effective (Figure 18B). In 900-micron PCLS, H5N1 infection still induces 

IL-1 production that can be almost completely reversed after treatments with VX-765 and 

disulfiram (Figure 19A), but this effect of VX-765 was only seen at 24 hours and was passed in 

effectiveness by Z-DEVD-FMK, but the effectiveness of disulfiram remained the same (Figure 

19B). 
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Figure 18: IL-1 ELISA from Human Lung AHCG011 400-Micron Slices 

Supernatant from human lung AHAU189 400-micron PCLS was inactivated with NDLB and subjected to an ELISA 

for IL-1 at (A) 24hpi and (B) 48hpi. (B) IL-1 is most dramatically reduced after treatment with VX-765 and 

disulfiram after 48 hours. Horizontal lines on graphs represent medians and results were statistically analyzed through 

Kruskal-Wallis tests followed by Dunn’s multiple comparisons. *p<0.05, ***p<0.001. Each dot is an individual image 

and this figure represents one donor. 

 

 

Figure 19: IL-1 ELISA from Human Lung AHCG011 900-Micron Slices 

Supernatant from human lung AHAU189 900-micron PCLS was inactivated with NDLB and subjected to an ELISA 

for IL-1 at (A) 24hpi and (B) 48hpi. Horizontal lines on graphs represent medians and results were statistically 
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analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. *p<0.05. Each dot is an individual 

image and this figure represents one donor. 

5.3.4 ASC and IL-1 are Reduced After Treatment with Caspase and Gasdermin-D 

Inhibitors in Lung Tissue 

In addition to observing IL-1 in ELISAs, I wanted to see if the same drug effects were 

present in the tissue through IHC. In figure 20, markers to the ASC inflammasome complex and 

the cytokine IL-1 were observed in human PCLS. In this lung, AHAU189, disulfiram was used 

at a concentration of 100M. ASC was higher in LPS and H5N1 conditions in comparison with 

mock, although IL-1 through IHC remained fairly consistent among all conditions (Figure 20). 

In tissue, disulfiram 100M also reduced levels of ASC and IL-1 (Figure 20). In the IL-1 ELISA 

results for the same donor as the tissue stained for IL-1, AHAU189, VX-765 10M dramatically 

reduced IL-1 levels, further confirming the important role in caspase-1/4 in the pathogenesis of 

H5N1 (Figure 21).  
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Figure 20: Markers of Pyroptotic Pathway in Human Lung AHAU189 

(A) Human lung AHAU189 PCLS stained with antibodies to ASC (red) and IL-1 (green). DAPI was used to identify 

nuclei in cells. Scale bar is 100m. Arrowheads highlight representative co-localization. (B) Quantification of cell 

marker for ASC within PCLS. (C) Quantification of cell marker for IL-1. (D) Quantification of colocalization of 

ASC and IL-1.  Horizontal lines on graphs represent medians and results were statistically analyzed through Kruskal-

Wallis tests followed by Dunn’s multiple comparisons. *p<0.05, **p<0.01. Conditions: H5N1 MOI 10, LPS 

100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, disulfiram 100M. Each dot is an 

individual image and this figure represents one donor. 
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Figure 21: IL-1 ELISA from Human Lung AHAU189 

Supernatant from human lung AHAU189 400-micron PCLS was inactivated with NDLB and subjected to an ELISA 

for IL-1. Horizontal lines on graphs represent medians and results were statistically analyzed through Kruskal-Wallis 

tests followed by Dunn’s multiple comparisons. *p<0.05, **p<0.01. Each dot is an individual image and this figure 

represents one donor. 

5.3.5 Interferon Response in Macaque Lungs 

Macaques from our previous study demonstrated ARDS upon a high dose of aerosolized 

H5N1 of 6.72 log10 PFU as seen by impressive inflammation through PET-CT scans, and an 

increase in IFN, IL-6, TNF- (43). From this same study, transcriptomics revealed higher 

expression of ISG in H5N1-infected macaques in comparison to naïve animals (Corry et al. 

manuscript in preparation). In lung samples from this study, I show an increase in IFN in H5N1 

infected tissue from a day 4 necropsy which matches what I have seen in this previous study, but 

also a visible increase in antiviral protein MxA/Mx1 (Figure 22) in the same tissue.  These results 

suggest that upon H5N1 infection, the innate immune system goes through a type I interferon 
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response, corroborating what we have seen in our previous study and in a PCLS model of H5N1 

infection (43, 131, 133, 134).  

 

Figure 22: Interferon-Related Markers in Macaque Lungs 

Immunofluorescence staining of lung sections from naive and infected macaque lungs stained with antibodies to IFN 

(red) and MxA/Mx1 (green). Arrowheads point to representative co-localization. Scale bar is 100m.  

5.3.6 IFN and MxA/Mx1 Reduction After Treatment with Inhibitors 

In order to see if human PCLSs are susceptible to a type I IFN response similar to what 

was seen in monkey lungs, lung slices were stained with antibodies to IFN and MxA/Mx1 and 

observed via IHC. The LPS inflammasome control condition was relatively comparable to mock 

conditions (Figure 23). LPS can induce type I IFN responses, although the lack of induction could 

be due to a different inflammasome activation other than TLR4 (135, 136). IFN and MxA/Mx1 

were reduced with all caspase and GSDMD inhibitors, although most dramatically with disulfiram 

(Figure 23), providing further evidence for a pyroptotic involvement in H5N1 pathogenesis.  
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Figure 23: Markers of Interferon Stimulation in Human Lung AHCG011 

(A) Human lung AHCG011 PCLS stained with antibodies to IFN- (red) and MxA/Mx1 (green). DAPI was used to 

identify nuclei in cells. Scale bar is 100m. Arrowheads highlight representative co-localization. (B) Quantification 

of cell marker for MxA/Mx1 within PCLS. (C) Quantification of cell marker for IFN. (D) Quantification of 

colocalization of MxA/Mx1 and IFN.  Horizontal lines on graphs represent medians and results were statistically 

analyzed through Kruskal-Wallis tests followed by Dunn’s multiple comparisons. *p<0.05, **p<0.01. Conditions: 

H5N1 MOI 10, LPS 100ng/mL. Treatments: DMSO 1%, VX-765 10M, Z-DEVD-FMK 100M, disulfiram 5M. 

Each dot is an individual image and this figure represents one donor. 

 

Finally, other quantitative methods of measuring cell death were explored. An LDH assay 

was tested to try and measure pyroptosis as LDH is released once the cell membrane loses integrity. 

In figure 24, LDH is increased after treatment with LPS and H5N1 in human lung AHAU189 and 

was reduced after treatment with caspase 1/4 inhibitor VX-765 across all exposure conditions. This 
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provides yet another piece of evidence that would suggest that pyroptosis plays a part in HPAI 

H5N1 pathogenesis.  

 

Figure 24: LDH Assay of Human Lung AHAU189 

Supernatants from 900-micron human lung AHAU189 PCLS were collected and subjected to a LDH assay. Horizontal 

lines on graphs represent medians and results were statistically analyzed through Kruskal-Wallis tests followed by 

Dunn’s multiple comparisons. *p<0.05. Each dot is an individual image and this figure represents one donor. 

5.3.7 Aim 3 Conclusions 

In conclusion, aim 3 successfully provides early evidence that pyroptosis plays a role in 

H5N1 pathogenesis, as we have seen in a macaque model via transcriptional analysis. This aim 

used a multitude of methods that examine different parts of the pyroptotic pathway, from beginning 
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(ASC), to the executioners of the pathway (caspase-1 and GSDMD) and ending with secreted 

cytokines and enzymes such as IL-1 and LDH. 

5.4 Final Conclusions 

In this study, I have accomplished the task of developing a PCLS model of H5N1 infection 

in both human and porcine lungs and have utilized this model to observe replicating virus and its 

subsequent cellular targets, AMs and AECs (Figures 5-13). Cell death data in porcine lung showed 

treatment with VX-765 10M yielded the most dramatic decrease in FLICA labeled despite 7-

AAD labeled cells remaining relatively the same (Figure 14). Also, in the human PCLS model I 

have investigated the possible cell death pathway that plays a role in the cytokine dysregulation 

that we have seen in our macaque model (43) and through transcriptomic analysis (Corry et al. 

manuscript in preparation), by employing ELISAs and IHC to observe multiple players of the 

pathway and response to infection: IL-1, ASC, caspase-1, MxA/Mx1, IFN, FLICA, and 7-AAD. 

I found that VX-765 10M widely decreases IL-1 in supernatant (Figures 18, 19, 21), reduced 

levels of LDH in supernatant (Figure 24), and decreased levels of 7-AAD (Figures 15, 16, 17). 

While limited in data, experiments with human lung AHCG011 using a non-toxic concentration 

of disulfiram at 5M showed exciting results, decreasing 7-AAD levels (Figures 16 and 17), and 

lowering the amount of secreted IL-1 to below the limit of detection of the ELISA in 400-micron 

PCLS and slightly higher but still dramatic reductions in 900-micron PCLS (Figures 18 and 19). 

In addition to 7-AAD and IL-1 reductions, disulfiram at 5M significantly decreased both 
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MxA/Mx1 and IFN in H5N1 infected conditions in comparison to the DMSO 1% vehicle control 

(Figure 23). 

In our previous study, we showed a massive mobilization of cytokines (especially IFN) 

(Figure 22) in response to infection, and recruitment of neutrophils and destruction of alveolar 

macrophages (43), it is encouraging to see a similar IFN response in our PCLS model (Figure 

23), giving validation that out PCLS model in at least some aspects can be substituted for animals 

models for early experiments as predecessors to determining what would be most important to 

study in an animal model, since many experiments in NHP models do not the capacity to test 

multiple factors at once due to cost, housing requirements, and difficulty of working with animals 

in a higher biosafety level. A graphical summary of this conclusion is shown in figure 25. 

 

Figure 25: Graphical Summary of Study Findings 

Through successful inhibition of pyroptotic pathway members, pyroptotosis can be linked to HPAI H5N1 

pathogenesis in PCLS. 
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6.0 Discussion 

6.1 HPAI H5N1 Infection in PCLS 

Infection of both porcine and human PCLS was successful, yielding productive replication 

in both conditions (Figures 9 and 11) as seen via plaque assays. In IHC, drug treatment with VX-

765 10M yielded higher levels of influenza A NP (Figures 10 and 12), although replicating virus 

remained equal among drug treatments at respective timepoints (24, 48, and 72hpi), implicating 

that they have no real effect on viral replication. In literature, AECs were shown to be targets of 

HPAI H5N1 infection, especially type I pneumocytes, which is comparable to what I have seen in 

the human PCLS model (132). However, in multiphoton imaging of human lung AHAU189, 

filamentous staining of AEC that seemed to be non-specific showed up throughout the tissue. As 

suggested by colleagues, filamentous staining of AEC within the tissue and not near the alveolar 

space may be nonspecific staining of elastin of collagen in the lung (Figure 12A). Further 

experimentation using specific stains would be needed to conclude this. AMs were reduced after 

HPAI H5N1 infection, suggesting that HPAI H5N1 may also be replicating in these cell types 

and/or targeting these cells to undergo cell death (Figure 13). As mentioned before, influenza A 

NP was not consistent between both porcine lungs (Figures 10 and 13) despite keeping infection 

and processing protocols consistent. This may be due to the general health of the porcine lung, 

perhaps a porcine lung that was less hemorrhaged would be more susceptible to infection.  
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6.2 HPAI H5N1 and Pyroptosis 

Upon infection with influenza, the virulence factor PB1-F2 has been shown to activate the 

NLRP3 inflammasome and induce IL-1 production, indicating that NLRP3 plays an important 

role in the progression of disease (137). ASC knockout, caspase-1 knockout, and NLRP3 knockout 

mice reveal a lessened disease status, characterized by lower levels of IL-1, ASC, and caspase-

1, further supporting the involvement of the pyroptotic cell death response in another HPAI virus, 

H7N9, and H5N1 infection (56, 130, 138). These results corroborate what was seen in this study, 

since targeting caspase-1 and GSDMD resulted in a drop of IL-1 and therefore a reduction in 

pyroptosis.  In IHC, levels of IL-1 were relatively low in tissue but very high in supernatant for 

human lung AHAU189 (Figures 20 and 21). This may be because at timepoints where lung slices 

were fixed in PFA (24, 48, or 72 hpi depending on the experiment), IL-1 had already been 

secreted into the media, which would explain these differences. In human lung AHCG011, IL-1 

levels were significantly reduced after treatment with disulfiram at 5 M at both 24 and 48 hpi in 

both 400 and 900-micron PCLS (Figures 18 and 19). Furthermore, differences in IL-1 levels 

became highly significant among all treatments due to an increase in IL-1 after 48 hpi in 

comparison to 24hpi in 400-micron slices in response to increase in cytokine levels in both VX-

765 10M and Z-DEVD-FMK 100M conditions.  

In macaque lung tissue observed through IHC, transcriptomics (Corry et al. manuscript in 

preparation), and in PCLS from human lung AHCG011, ISG-associated members IFN- and 

MxA/Mx1 were found to be increased after HPAI H5N1 infection (Figures 22 and 23). All caspase 

and GSDMD inhibitors decreased IFN- and MxA/Mx, with disulfiram at 5M providing a 

significant decrease of both cell markers (Figure 23). This corroborates evidence that suggests that 
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a type I ISG response triggers a pyroptotic response and an apoptotic response in response to 

influenza infection (56, 139), and more specifically a pyroptotic response that we have seen in our 

studies (43) (Corry et al. manuscript in preparation).  

Finally, 7-AAD serves as a simple and easy to use marker of cell death that stains cells that 

possess permeabilized membranes. Cell death remained relatively even across all drug treatments 

in porcine lung, although I believe this is due to the hemorrhaged nature and general diminished 

health of the porcine lungs upon arrival and throughout processing (Figure 14). FLICA stain was 

successful in porcine lungs, so this marker of active caspase-1 shows me that VX-765 10M 

decreases the amount of active caspase-1 in tissue (Figure 14). Other experiments with healthy 

human lungs, while lacking in FLICA due to issues with nonspecific staining, provide valuable 

data on 7-AAD reduction upon both VX-765 10M and disulfiram 5M treatment in human lungs 

AHCG011 and AGIE005 (Figures 15, 16, 17). Only in one human lung, AGIE005, showed a 

decrease in 7-AAD in response to Z-DEVD-FMK 100M treatment (Figure 15). The main 

difference between this human lung and the others is that this donor had Lupus, so perhaps cell 

death from this, which usually follows a caspase-3 dependent pathway (140), precedes cell death 

from H5N1 and is preferentially reduced from Z-DEVD-FMK 100M treatment.  

 Overall, my data in addition to our lab’s data shows pyroptosis plays at least some role in 

H5N1 pathogenesis (Figure 25). 

6.3 Pyroptosis and Neutrophils 

There have been studies recently that link GSDMD activation in neutrophils and the 

generation of neutrophil extracellular traps (NETs) (141, 142). Specifically, GSDMD is cleaved 
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when NETs are formed and travels to the plasma membrane, implicating that through multiple 

stimuli GSDMD is essential in NETosis (141, 142). However caspase 1/4 inhibitor VX-765 did 

not impact NET formation (142). Multiple studies have shown that neutrophils play an important 

role in H5N1 pathogenesis, as IL-1 aids in recruitment, so pyroptosis may have additional stimuli 

and pathway connections that warrant further exploration (43, 56, 96, 138, 143-146). Additionally, 

neutrophils activate the NLRP3 inflammasome in AM’s, and their presence in the lower 

respiratory tract are correlated with disease severity (143, 144, 146). With evidence in our study 

implicating that GSDMD plays an important role in H5N1 pathogenesis, it will be important in the 

future to investigate the role of NET formation and NETosis using the PCLS model of infection. 

However, since neutrophils are part of a recruitable immune response, they would need to be added 

to PCLS separately in order to assess their role in infection by artificially adding a recruitable 

immune response to this system. 

6.4 Contributions to Field of Influenza Research 

As mentioned previously, the pandemic potential of avian influenza viruses, particularly 

H5N1, make for a public health concern due to the high mortality rate and lack of a specific 

immune response in the general human population to H5 influenza subtypes. There are mitigation 

efforts in place, but these are more so to protect vulnerable poultry populations. Seasonal influenza 

vaccination is recommended to prevent H5N1 infection in case cross-protection (18), but a vaccine 

for H5N1 does not exist for use in humans, only in poultry. Research into a universal influenza 

vaccine targeting the stem of the HA protein is in process among many groups, including our own, 

but the process to develop, test, and approve a vaccine for use is long. Instead, broadly acting 
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targets of the innate immune system’s overactive response would be useful for not only protection 

against HPAI H5N1 pathogenesis, but other HPAI avian influenza viruses, and highly pathogenic 

coronaviruses (MERS-CoV, SARS-CoV, SARS-CoV-2) that have also been associated with 

ARDS as a severe disease outcome (147-150).  

By assessing the roles of caspase and GSDMD inhibitors in PCLS, preparation for potential 

new infections would allow for a broadly acting treatment that could prove effective for multiple 

pathogens, something a vaccine cannot do. Additionally, these inhibitors could potentially be 

combined in treatment strategies to account for immune evasion strategies presented by different 

pathogens.  

6.5 Limitations 

The major limitation in this study is the statistical analysis of the image quantification 

through IHC. Because of smaller sample sizes of images, it is difficult to determine if the tests run 

should be parametric or nonparametric, but could possibly be improved by the addition of more 

images, such as a sample size of at least 10. PCLS were mounted in ProLong Diamond (Thermo 

Fisher), improving the condition of the slides enough to revisit older experiments if necessary, 

since all slides were saved.  

Another limitation was the lack of donors to run comparisons along them to observe 

possible individual related differences in H5N1 pathogenesis and cell death responses. Two 

porcine lungs, denoted for the months received: 8/19 and 11/19, represent the data presented in 

this study, and 4 human donors were used to generate data for this project: AGIE005, AGHH267 

(was used to examine H1N1 infection but data was not shown), AHAU189, and AHCG011 (Table 
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1). Donors with matched treatments were statistically compared, but no significant results were 

found due to low sample sizes.  This is due to the fact that the model was adjusted to become more 

streamlined as time went on, and now that I have identified conditions and treatments of interest, 

experiments could be reduced and kept the same for each lung in the future, allowing for a better 

power analysis. Finally, a limitation is the lack of a recruitable immune response in these PCLS, 

as mentioned before. This makes it a bit difficult to make sure every slice is comparable to each 

other, especially in different sections of the lung, raising the concern that some sections may be 

skewed in the cell populations that already reside in those lung slices.  
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7.0 Future Directions 

With an established PCLS model in place, I would like to use this to further investigate the 

role of GSDMD inhibitor disulfiram against H5N1 infection, in anticipation of using this drug in 

our aerosolized H5N1 model in macaques to prevent pyroptosis and possibly NETosis. With this 

in mind the PCLS model will be used to evaluate other cell death pathways to match what we have 

seen in transcriptomic analysis. Additionally, neutrophils activate the NLRP3 inflammasome in 

alveolar macrophages by providing the second signal which leads to caspase-1 cleavage and IL-

1 release, and the level of them in the lower respiratory tract are correlated with disease severity 

(143, 144, 146). With disulfiram showing effectiveness in reducing pyroptosis through cell death 

and IL-1 reduction throughout my results and downregulation of GSDMD in transcriptomics , 

we believe  GSDMD plays an important role in pathogenesis and will be important in the future to 

investigate the role of NET formation and NETosis using the PCLS model of infection. However, 

since neutrophils are part of a recruitable immune response, they would need to be added to PCLS 

separately in order to assess their role in infection by artificially adding a recruitable immune 

response to this system. 

Another GSDMD inhibitor, LDC7559, necrosulfonamide as a MLKL inhibitor (part of the 

necroptotic pathway) will be used, for example to further explore the cell death pathways, but in 

investigation into an animal model we will use an inhibitor of NETosis in combination with a 

GSDMD inhibitor to provide a two-punch approach to reducing lung injury. The opportunity to 

test the effectiveness of these inhibitors and tease out the pathogenesis mechanisms before moving 

to an animal model is an exciting opportunity to test many other forms of cell death and their 

associated inhibitors.  



 

 78 

Additionally, this PCLS model may not be limited to just H5N1. Other respiratory 

pathogens such as other influenzas and coronaviruses could be adapted to a PCLS model as we 

have done with H5N1. The added benefit of already having this PCLS system working with BSL3 

pathogens has allowed for us to begin considering how this system may fare with a relevant virus 

that is affecting our everyday lives: SARS-CoV-2. While most research is preliminary, there are 

some studies that indicate pyroptosis may be involved in pathogenesis through assumptions that is 

shares some of the same inflammatory responses as SARS-CoV with data to support that both 

coronaviruses secrete the same cytokines that have been implicated in H5N1 pathogenesis, such 

as IL-1, MIP-1A, and TNF- (113, 151). Future studies in both of these areas could pave the way 

to testing important therapeutics that could help curb future epidemics in the absence of a vaccine. 
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