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Graph data are ubiquitous in the real world, such as social networks, biological networks.

To analyze graph data, a fundamental task is to learn node features to benefit downstream

tasks, such as node classification, community detection. Inspired by the powerful feature

learning capability of deep neural networks on various tasks, it is important and necessary

to explore deep neural networks for feature learning on graphs. Different from the regular

image and sequence data, graph data encode the complicated relational information between

different nodes, which challenges the classical deep neural networks. Moreover, in real-world

applications, the label of nodes in graph data is usually not available, which makes the feature

learning on graphs more difficult. To address these challenging issues, this thesis is focusing

on designing new deep neural networks to effectively explore the relational information for

unsupervised feature learning on graph data.

First, to address the sparseness issue of the relational information, I propose a new

proximity generative adversarial network which can discover the underlying relational in-

formation for learning better node representations. Meanwhile, a new self-paced network

embedding method is designed to address the unbalance issue of the relational information

when learning node representations. Additionally, to deal with rich attributes associated to

nodes, I develop a new deep neural network to capture various relational information in both

topological structure and node attributes for enhancing network embedding. Furthermore,

to preserve the relational information in the hidden layers of deep neural networks, I develop

a novel graph convolutional neural network (GCN) based on conditional random fields, which

is the first algorithm applying this kind of graphical models to graph neural networks in an

unsupervised manner.
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1.0 Introduction

1.1 Feature Learning on Graphs

Graph (or Network), a data structure that describes the pairwise relationship between

nodes, is very common in a wide variety of areas. For instance, in social science, people

connect with each other, forming the social network. In e-commence, customers and items

constitute a bipartite graph. In IoT, connected devices compose the IoT network. In chem-

istry, compound can be represented as a molecular graph. In the biology domain, there are

brain networks and protein-protein interaction networks. Due to the abundance of graphs,

analyzing graphs for desired tasks is important and attracts increasing attention in recent

years.

For graph data, there are a wide range of learning tasks, such as node classification, link

prediction, community detection, etc. Specifically, node classification is to predict the type

of a given node. For example, in a collaboration network, we can predict the research area

of a given researcher by doing node classification. Link prediction is to predict whether two

nodes are linked. It can be applied to the recommender system, such as friend recommenda-

tion in a social network. Community detection is to identify densely linked clusters of nodes.

For example, in a brain network, we can identify the connectome module which potentially

associate to specific brain functions. To facilitate these learning tasks on graphs, a critical

step is to learn effective node features for the complicated graph. In many real-world appli-

cations, the raw feature of a node is noisy or not available. Without effective node features,

it is difficult to conduct the aforementioned learning tasks on graphs. Thus, it is necessary

to learn effective node features to benefit the learning tasks on graphs.

Learning node features is to learn the low-dimensional representation for each node in

a graph. However, it is a challenging task. On one hand, unlike the regular data that are

assumed to be independent to each other, a graph encodes complex relationship between

different nodes. For instance, in a social network, two users might share similar interests

or friend lists. To learn an effective representation, it is necessary to capture and preserve
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these kinds of relationships in the low-dimensional space. Just as shown in Figure 1, the

learned low-dimensional node representations in Figure 1(b) should approximately preserve

the relationship between different nodes of the original graph in Figure 1(a). On the other

hand, in real-world applications, the node’s label is usually not available and difficult to

obtain. For example, it is prohibitive to label all users in a social network like Facebook.

Without node labels, learning low-dimensional node representations become more difficult.

To address these challenging issues, in this thesis, I will put forward unsupervised feature

learning algorithms for graph data.

(a) Graph

(b) Learned node features

Figure 1: An illustration of feature learning on the graph. Figure is from [18].
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1.2 Feature Learning with Deep Neural Networks

Recent decades have witnessed the rapid development of deep learning. In particular, the

seminal work [51] employs deep convolutional neural network to learn image representation

for classification and achieves significant improvement over traditional methods. From then

on, deep neural networks have been widely used in a wide variety of fields. For instance,

convolutional neural networks (CNN), such as AlexNet [51], ResNet [37], MaskRCNN [36],

have shown impressive performance on the image data. They have been widely applied

to image classification, autonomous driving, and disease detection. In particular, ResNet

and its variants even outperform human beings in the ImageNet [21] classification task.

Moreover, deep learning also has shown impressive performance on the language data. For

example, the transformer network [85], BERT [22] have been widely used in many tasks,

such as machine translation, chat robot. Besides that, deep learning has been applied to

the sequential decision, such as the robotic manipulation, game playing, automated trading.

Especially, AlphaGo [80] outperforms the best human Go player.

Considering the great success of deep neural networks on image data, language data, and

sequential data, a natural question is how to have a well-performing deep neural network for

graphs, such that it can learn good node representations for the graph learning tasks, such as

node classification, link prediction, community detection, etc. However, in spite of achieving

great success of deep neural networks on the aforementioned data, how to apply deep neural

networks to graph data is still challenging. Unlike image or language data which have a

regular grid or line structure, graph data have no such structures so that these networks

cannot be applied to graph data directly.

In fact, the success of deep neural networks can be attributed to the powerful feature

learning capability to deal with the intrinsic structure of data. In particular, as for image

data, the widely used model is the convolutional neural network. It uses the small filter

to capture the local correlation of image pixels. Then, CNN can capture edges and shapes

of objects for prediction. As for the language data, the commonly used model is recurrent

neural networks (RNN) or attention neural networks, which can capture the dependence

between different words in a sentence, which is also helpful for prediction. Here, it can

3



bee seen that both of them are designed for dealing with the intrinsic structure of data.

Inspired by the aforementioned observation, to have an effective deep neural network for

graphs, we also need to deal with the intrinsic structure of the graph data. Compared with

image data and sequence data whose samples have a simple relationship, nodes in a graph

have complicated relationships between each other, which is encoded by edges. Therefore, to

design a deep neural network for learning node representations, it is necessary to deal with

this kind of relational information between different nodes. Actually, it is consistent with

the requirement of capturing and preserving node relationships in the previous subsection.

Other than dealing with the relational information when designing deep neural networks

for graph data, another challenge is the absence of the supervised information. It is well

known that a critical reason for the big success of deep neural networks is the availability

of large-scale labeled data. For instance, the availability of ImageNet facilitates the devel-

opment of convolutional neural networks significantly. Considering that, without supervised

information, it is difficult to learn node representations with deep neural networks. On the

other hand, as we discussed earlier, it is difficult to obtain the label of nodes in real-world

applications. Thus, it is necessary to explore designing deep neural networks to learn node

representations without node labels.

1.3 Challenges and Contributions

Based on the aforementioned discussion, in this thesis, I will put forward new deep neural

networks for learning node representations in an unsupervised manner. In particular, this

thesis will focus on how to capture and preserve the relational information to learn good node

representations. To this end, I formulate four research questions, which challenge classical

deep neural networks and constitute the main contributions of this thesis.

Challenge 1: How to learn good node representations when the relational information

is sparse?

The task of learning node representations can be decoupled into discovering the proximity

in the original space and preserving it in the low-dimensional space. Only with the well-

4



discovered proximity can we preserve it in the low-dimensional space. Thus, it is critical

to discover the proximity between different nodes to learn good node representations. Due

to the number of discovered links in a graph is limited, the relational information which is

represented by the adjacency matrix of the graph is very sparse. Thus, these links are not

sufficient to learn good node representations.

To address the sparseness issue, in Chapter 3, I proposed a novel proximity generative

adversarial network (ProGAN) to generate links whose distribution is an approximation to

that of true links. With this generative model, the underlying relationship can be approxi-

mately discovered by the generated links. Then, with both discovered and generated links,

the sparseness issue will be alleviated so that the low-dimensional representation of nodes

can preserve the relationship between different nodes well. Extensive experimental results

have verified the effectiveness of ProGAN. To the best of our knowledge, this is the first

work using the generative model to address the sparseness issue of the relation.

Challenge 2: How to learn good node representations when the relational information

is unbalanced?

When learning the low-dimensional representation of nodes of a graph, it is usually

formulated as a contrastive learning problem where the reference node and its neighbouring

node compose the positive pair while the reference node and its non-neighbouring node

compose the negative pair. However, the positive and negative pairs are severely unbalanced

where negative pairs are much more than positive ones. When sampling the negative context

nodes to compose the negative pair, existing methods usually employ a predefined sampling

distribution based on the node popularity. This sampling distribution often fails to capture

the real informativeness of each node and cannot reflect the training state.

To address this unbalance issue, in Chapter 4, I proposed a novel sampling method which

can dynamically select negative context nodes. With this dynamic sampling method, the

negative context nodes can be selected gradually in terms of their difficulty in the course

of training. In addition, to better model the sampling distribution, I also proposed a novel

generative adversarial network based sampling method which has a large model capacity for

dynamic sampling. Consequently, the unbalance issue is alleviated significantly.
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Challenge 3: How to learn good node representations when nodes have rich attributed

information?

Unlike the plain network where only the topological structure is available, nodes of

attributed networks possess rich attributed information. These informative attributes can

benefit network analysis. Thus, it is important and necessary to learn node representations

based on both the topological structure and node attributes.

In Chapter 5, I proposed a novel deep attributed network embedding approach, which can

capture the high non-linearity and preserve various proximities in both topological structure

and node attributes. At the same time, a novel strategy is proposed to guarantee the

learned node representation can encode the consistent and complementary information from

the topological structure and node attributes. Extensive experiments on benchmark datasets

have verified the effectiveness of our proposed approach.

Challenge 4: How to preserve the relational information in the hidden layers of graph

convolutional neural networks when learning node representations?

Compared with the generic data, the graph data possess the similarity information be-

tween different nodes. Thus, when applying graph neural networks to the graph data, it

is necessary to preserve the relational information at each layer of graph neural networks.

Otherwise, the relationship between different nodes in the output layer will be violated. But

it is challenging to enforce the hidden layers to preserve the similarity relationship.

In Chapter 6, to address this issue, I proposed a novel conditional random field enhanced

graph convolutional neural network. The conditional random field is designed as a layer

which is easy to be inserted after each hidden layer of graph neural networks to preserve the

relational information. We applied this novel CRF layer to different graph neural networks

and obtained significant improvement over them. To the best of our knowledge, this is the

first work that applies conditional random field to graph neural networks in an unsupervised

way.
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2.0 Background

2.1 Traditional Graph Embedding Methods

Unsupervised feature learning on graphs can be traced back to the graph-based dimen-

sionality reduction method. In particular, graph-based dimensionality reduction methods

belong to the manifold learning, which aims to preserve the topological structure when

learning low-dimensional node representations. Representative methods include locally lin-

ear embedding (LLE) method [75], Laplacian eigenmaps (LE) method [5], locality preserving

projection (LPP) method [39], etc. In the following, we will give a brief overview of these

classical methods.

2.1.1 Locally Linear Embedding Method

Locally linear embedding method is first proposed in [75]. It assumes data points are

drawn from some underlying manifold where each data point and its neighbours lie on

a locally linear patch of a manifold [75]. Based on this local linearity assumption, LLE

constructs the graph by optimizing the following problem:

min
W

n∑
i=1

‖xi −
n∑
j=1

wijxj‖2 , (2.1)

where xi ∈ Rd denotes the data point, W = [wij] ∈ Rn×n represents the edge weight between

xi and xj. After obtaining the adjacency matrix W , based on the local linearity assumption,

LLE learns the low-dimensional representation by optimizing the following problem:

min
U

n∑
i=1

‖ui −
n∑
j=1

Wijuj‖2 , (2.2)

where U = [u1, u2, · · · , un] ∈ Rd′×n (d′ < d) denotes the low-dimensional representation of

data points. Its optimal solution can be easily obtained by conducting eigendecomposition.
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2.1.2 Laplacian Eigenmaps Method

Similar with LLE, Laplacian eigenmaps method [75] also aims to preserve the local

structure when learning low-dimensional representations. Different from LLE, it doesn’t

construct the graph by minimizing the reconstruction error. Instead, LE employs some

heuristic methods to construct the graph, such as Gaussian kernel. After that, it optimizes

the following problem:

min
U

n∑
i=1

n∑
j=1

‖ui − uj‖2wij . (2.3)

Intuitively, when the edge weight wij > 0 is large, xi and xj are similar. Then, optimizing

this objective function will push ui and uj to be close to each other. As a result, the proximity

can be preserved in the low-dimensional space. This objective function can also be solved

by conducting eigendecomposition.

2.1.3 Locality Preserving Projection Method

Locality preserving projection method [39] is a linear method to learn low-dimensional

representation based on the graph. In particular, it assumes that there exists a linear pro-

jection matrix P ∈ Rd′×d such that U = PX. Besides that, it employs the same procedure

as LE method to construct the graph and optimizes the follows problem:

min
P

n∑
i=1

n∑
j=1

‖Pxi − Pxj‖2wij . (2.4)

It can be seen that this objective function also pushes the low-dimensional representation

Pxi and Pxj to be close to each other if xi and xj are similar. By optimizing this objection

function with eigendecomposition, we can get the projection matrix P so that the low-

dimensional representation can be easily obtained.

In summary, these traditional unsupervised methods learn low-dimensional representa-

tions by preserving the local structure of the data. However, they are not sufficient. On

one hand, they cannot capture and preserve the complicated relational information. In par-

ticular, they only use the edge weight to measure the proximity between two data points.

However, there exist some other proximities between two data points. For instance, if two
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data points are not connected but they share similar neighboring data points, we can still

view they are similar to each other. In fact, this phenomenon is common in social network.

Two users have similar friends are also tending to be similar to each other. Thus, it is

necessary to capture and preserve more complicated relational information when learning

low-dimensional representations. On the other hand, traditional methods have large com-

putational overhead since they involve the time-consuming eigendecomposition operation

whose time complexity is O(n3) where n is the number of data points. Thus, they are not

applicable for large-scale applications.

2.2 Network Embedding

With the emergence of large-scale graph data, a lot of effort has been made to propose

new feature learning methods for graphs. In particular, network embedding has attracted

a lot of attention in the past few years. In this subsection, we will give a brief overview

about a commonly used contrastive-learning-based network embedding schema, which makes

unsupervised feature learning for large-scale and featureless networks feasible.

The contrastive-learning-based network embedding schema was first proposed in Deep-

Walk [72]. Its goal is to capture and preserve the rich relational information when learning

low-dimensional node representations. To this end, DeepWalk employs random walk over the

network to capture the rich relational information between different nodes. In particular, for

each node, DeepWalk uses random walk to get a node sequence s = {v1, v2, · · · , vs} where vi

denotes the node. Then, it employs a sliding window with a specific window size to slide on

the node sequence. If two nodes appear in the window simultaneously, they are viewed to be

similar two each other. Intuitively, this operation can be viewed to augment the adjacency

matrix by adding more edges to it. Thus, compared with traditional methods in the last

subsection, this augmented adjacency matrix can capture high-order relational information

for learning better node representations.

To augment the adjacency matrix, there are different approaches. For instance, Deep-

Walk utitlizes the regular random walk. Node2Vec [33] argues that DeepWalk is not capable
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of capturing the diversity of relational information. To address this issue, Node2Vec proposed

a biased random walk to combine the breadth-first sampling and depth-first sampling. In

this way, it can capture both the global and local relational information. LINE [83] proposed

the second-order proximity to augment the adjacency matrix. In particular, LINE argues

that the original edges in the adjacency matrix represent the first-order proximity, while the

second-order proximity is the proximity between the context of nodes. In other words, if two

nodes share similar neighbours, they are similar. Based on this argument, LINE employs

the second-order proximity to augment the adjacency matrix.

After obtaining the augmented adjacency matrix, the contrastive-learning-based network

embedding schema optimizes the following objective function to learn low-dimensional node

representations:

max log p(vp|vi) +
∑
j∈Nvi

log(1− p(vj|vi)) , (2.5)

where vi denotes the anchor node, vp is the positive context node of vi which is indicated

by the edges in the adjacency matrix, vj denotes the negative context node of vi which

means that there are no edges between vi and vj, and Nvi stands for all the negative context

nodes of vi. This problem can be viewed as a binary classification problem where vi and its

neighbour vp compose the positive pair while vi and its non-neighbouring node vj compose

the negative pair. By optimizing this objective function, it can push similar nodes together

and push dissimilar nodes away to each other. In this way, the relational information can

be preserved in the low-dimensional space.

Although the contrastive-learning-based network embedding schema has achieved suc-

cess in some scenarios, yet it still has some limitations. Firstly, as we discussed earlier,

this schema employs the heuristic methods to capture the underlying relational information.

Their capacity is limited so that it fails to capture the rich relational information. Secondly,

as indicated in Eq. (2.5), we should sample a subset from the negative context of the anchor

node to optimize the loss function. However, how to sample the negative context nodes to

ease the learning of low-dimensional node representations is challenging. Current methods,

such as DeepWalk, only use some predefined sampling distributions, which are not satisfac-

tory. Thirdly, the contrastive-learning-based network embedding schema only focus on the
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topological structure of the network, failing to explore the rich node attributes. Thus, how

to deal with node attributes to capture and preserve the proximity in node attributes is still

a challenge.

2.3 Deep Neural Networks

In recent years, deep neural networks have been applied to different areas and achieve

good performance. In this subsection, we will give a brief overview about three fundamental

deep neural networks which are used in this thesis.

2.3.1 Multi-Layer Perceptron Neural Networks

Multi-Layer Perceptron Neural Networks (MLP) is a basic deep neural network. Its each

layer is a fully-connected layer: including linear transformation and non-linear activation

operation, which is defined as follows:

z(l) = W (l)h(l−1) + b(l) , h(l) = σ(z(l)) , (2.6)

where h(l) ∈ Rdl denotes the hidden feature in the l-th layer, W (l) ∈ Rdl×dl−1 and b(l) ∈ Rdl

are the model parameter in the l-th layer to be learned, z(l) ∈ Rdl is the hidden feature

before conducting non-linear activation operation, σ(·) is the non-linear activation function.

By stacking multiple layers together, MLP is actually a highly non-linear mapping func-

tion which maps the input to a new space to be easily predicted. In addition, we can use

backpropagation to compute gradients and then use stochastic gradient descent method to

iteratively learn the model parameter.

2.3.2 Graph Convolutional Neural Networks

Graph convlutional neural network (GCN) is the architecture designed for the graph

data. The classical neural networks like MLP cannot deal with the graph structure, while
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GCN can leverage the relational information when learning node representations. In detail,

a typical GCN layer is defined as follows:

Z(l) = W (l)H(l−1)A ,

H(l) = σ(Z(l)) ,
(2.7)

where H(l) = [h
(l)
1 , h

(l)
2 , · · · , h

(l)
n ] ∈ Rdl×n is the hidden feature of all nodes in the l-th layer,

Z(l) = [z
(l)
1 , z

(l)
2 , · · · , z

(l)
n ] ∈ Rdl×n is the hidden feature before conducting non-linear acti-

vation operation, σ(·) is the non-linear activation function, W (l) ∈ Rdl×dl−1 is the model

parameter in the l-th layer. Here, we omit the bias for simplification. Compared with MLP,

GCN has an aggregation operation to leverage the relational information, which is denoted

by H(l−1)A where A ∈ Rn×n determines how to aggregate neighbours. For instance, in the

standard GCN [48], it is defined as follows:

z
(l)
i =

∑
j∈Ni

1√
|Ni||Nj|

W (l)h
(l−1)
j , (2.8)

where Ni denotes the neighbours of the i-th node and |Ni| represents the degree of the i-th

node. In the graph attention network (GAT) [86], the aggregation matrix is learned from

the data for each layer by the following operation:

αij =
exp

(
LeakyReLU

(
aT
[
W (l)h

(l−1)
i ‖W (l)h

(l−1)
j

]))
∑

j∈Ni exp
(

LeakyReLU
(
aT
[
W (l)h

(l−1)
i ‖W (l)h

(l−1)
j

])) , (2.9)

where a ∈ Rdl is a learnable vector of parameters, and ·‖· denotes the concatenation opera-

tion. Then, GAT aggregates the neighbours as follows:

z
(l)
i =

∑
j∈Ni

α
(l)
ij W

(l)h
(l−1)
j . (2.10)

It is obvious that the graph convolutional operation in Eq. (2.8) and Eq. (2.10) can deal

with the relational information, compared with the classical MLP in Eq. (2.6).
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2.3.3 Generative Adversarial Networks

In recent years, Generative Adversarial Networks (GAN) [32], as an unsupervised learning

approach, have attracted a surge of attention. Specifically, GAN is a generative model and

its goal is to generate samples as real as true samples. To this end, it has two components:

generator and discriminator, just as shown in Figure 2. The generator tries to use a deep

neural network to map a simple prior distribution p(z), such as Gaussian distribution, to

the complicated data distribution pg. The discriminator serves as a metric to measure the

distance between the true data distribution pdata and the generated data distribution pg. By

optimizing the following objective function:

min
φ

max
θ
Ex∼pdata [logDθ(x)] + Ez∼p(z) [log (1−Dθ (Gφ(z)))] . (2.11)

The approximated distribution pg will approach to the true distribution pdata. Then, the

generated samples can be viewed drawn from the true data distribution.

(a) Generator (b) Discriminator

Figure 2: An illustration of GAN.
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3.0 Network Embedding via Proximity Generative Adversarial Network

3.1 Introduction

As a fundamental tool to analyze networks, network embedding is to learn a low-

dimensional representation for each node in a network. This low-dimensional node rep-

resentation can preserve the proximity between different nodes of the network. Essentially,

a network embedding method includes two phases. The first phase is to discover the prox-

imity between different nodes in a network. The second phase is to preserve the proximity

in the low-dimensional space. Only with the well-discovered proximity can we preserve it

in the low-dimensional space. Thus, it is considerably important to discover the underlying

proximity in a network well.

To discover the underlying proximity in a network, various proximities have been explored

in recent years. Specifically, these proximities include the first-order proximity, second-order

proximity, high-order proximity, and so on. In detail, the first-order proximity [83] considers

that two nodes are similar if there is an edge between them. However, the discovered edges

in a network are usually very sparse so that they are not enough to disclose the proximity

between different nodes. The second-order proximity [83] views two nodes similar if they

share similar neighbors. Thus, the second-order proximity is supposed to discover more

underlying relationships than the first-order proximity. Furthermore, GraRep [12] proposes

to discover the high-order proximity by constructing the k-step probability transition ma-

trix explicitly. In this way, the long-distance relationship between two different nodes can

be captured. Additionally, DeepWalk [72] employs random walk to discover the high-order

proximity. Specifically, it utilizes random walk to get node sequences. For each node se-

quence, it uses a sliding window to get the neighborhood of its nodes. As a result, the

high-order proximity information can be captured [92]. In this section, we will propose a

novel method to discover the underlying proximity among different nodes to benefit network

embedding.
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Figure 3: The architecture of our proposed ProGAN. For the generator, Input 1 and Input

2 share a common part so that they will generate similar output, while Input 3 does not

share any parts with the other two so that it will generate different output. Best viewed in

color. For the discriminator and encoder, the input is real triplet and generated triplet. The

discriminator distinguishes real and fake nodes, and discriminates whether two generated

nodes are similar. The encoder discriminates whether two real nodes are similar.
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In the past few years, generative adversarial networks (GAN) [32] have shown promising

results in a wide variety of tasks, such as image generation [100], text generation [96]. The

basic idea of GAN is to learn a map which can transform a noise from a simple distribution

to a sample from a complicated distribution. This map is usually constructed by a deep

neural network which has large expressivity. Inspired by the development of GAN, we

propose to use GAN to generate proximities between different nodes to approximate the

underlying proximity. In this way, the generated proximity can capture the underlying

relationship between different nodes, which will benefit the network embedding. However,

the standard GAN is used to generate samples rather than proximities. Thus, how to generate

the proximity is challenging.

To address the aforementioned problems, in this chapter, we propose a novel proximity

generative adversarial network (ProGAN) for network embedding. Specifically, to capture

the underlying proximity, ProGAN tries to generate proximities to approximate the distri-

bution of the real proximity. In this way, undiscovered proximities can be captured by the

generated ones. Furthermore, to generate the proximity, we instantiate it to the relation-

ship of a triplet of nodes, in which the positive node is similar to the reference node while

the negative node is dissimilar with that. By generating this kind of triplets, ProGAN can

capture the underlying proximity. Moreover, to generate the desired triplet, we propose

the novel neural network architecture as shown in Figure 3. With this novel architecture,

ProGAN can generate similar nodes from similar input noise and dissimilar nodes from dis-

similar input noise. Then, with these generated triplets and real triplets, ProGAN trains an

encoder to learn node representations, which can preserve both the real proximity and the

generated proximity. At last, extensive experimental results have verified the performance

of our proposed ProGAN.

3.2 Related Works

As a fundamental tool to analyze networks, various network embedding methods have

been proposed in recent years. In this part, we will give a brief review on these related works.
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In terms of the availability of node attributes, existing methods can be categorized into

two classes: plain network embedding and attributed network embedding. Plain network

embedding methods [72, 33, 83, 12, 74] only employ the topological structure to learn node

representations, while attributed network embedding methods [92, 42, 43, 71, 48, 35, 25]

utilize both the topological structure and node attributes.

The seminal DeepWalk [72] formulates network embedding as word embedding. Specif-

ically, it employs random walk on the network to get node sequences which can be viewed

as sentences. With these node sequences, DeepWalk then utilizes the Skip-Gram model to

learn node representations. Later, Node2Vec [33] proposes a biased random walk method,

which combines the breadth-first and depth-first sampling to preserve the local and global

proximity, to construct the context of nodes. Afterwards, LINE [83] is proposed to preserve

the first-order and second-order proximity when learning the node representation. GraRep

[12] aims to preserve the high-order proximity. Specifically, two nodes having similar k-step

neighbors should have similar latent representations. However, all these methods ignore node

attributes when learning the low-dimensional node representation.

In an attributed network, nodes usually possess rich information. By exploring such kind

of rich attributed information, the proximity among different nodes can be discovered and

preserved better when learning node representations. For instance, [92] proposes to incorpo-

rate both topological structure and node attributes by using inductive matrix factorization

method. [42] proposes to factorize the attribute matrix and regularize the factorization by

the toplogical structure. Recently, [25] utilizes a multi-modal auto-encoder to combine topo-

logical structure and node attributes to learn node representations. By incorporating node

attributes, these methods have shown some improvement over the counterpart which only

employs the topological structure.

However, most of aforementioned methods are shallow methods, failing to capture the

highly non-linear property in a network. Networks in real-world applications are usually

complicated and highly non-linear. Thus, it is important to capture the high non-linearity

in the network.

Recent developments of deep neural networks have accelerated much progress in data

mining and machine learning. Deep neural networks have much larger expressivity to capture
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the highly non-linear property of the data than shallow methods. An example is the seminal

work [51] which adopts deep convolutional neural network to learn image representation for

classification and achieves significant improvement over traditional methods. From then on,

deep neural network has been widely used in a wide variety of applications.

In recent years, some works [14, 87, 48, 25, 8, 35, 29, 27] have been proposed to apply

deep neural networks for network embedding. For example, [14] proposes a heterogeneous

network embedding method. This method focuses on heterogeneous data embedding, such

as image-text embedding or text-text embedding, ignoring to explore the network structure.

The work [87] employs deep neural network for network embedding, in which an autoencoder

is utilized to learn the low-dimensional representation for each node. This model can discover

the highly non-linear structure in the network while preserving the similarity. In addition,

[48] proposes a semi-supervised network embedding method based on graph convolutional

neural network by combining the topological structure and the node attribute. Recently,

[8] utilizes a multi-layer perceptron neural network to map each node in the network to a

Gaussian distribution, which can capture the uncertainty of the learned representation.

Recently, a variant of deep neural networks, generative adversarial network (GAN) [32],

has attracted much attention due to its impressing performance on the unsupervised task.

Its basic idea is to learn a map which can transform a simple distribution to a complicated

distribution. Specifically, GAN includes a generator and a discriminator. The generator tries

to generate samples as real as possible while the discriminator is to distinguish the generated

samples and the real ones. Formally, the objective function of GAN is defined as follows:

min
φ

max
θ
Ex∼p(x)[logDθ(x)] + Ez∼p(z)[log(1−Dθ(Gφ(z)))] , (3.1)

where p(x) denotes the real data distribution and p(z) represents the simple prior distribu-

tion. Dθ(·) corresponds to the discriminator while Gφ(·) corresponds to the generator. By

optimizing this objective function, the generator Gφ(·) can learn a map to transform the prior

distribution p(z) to the complicated data distribution q(x) where q(x) is the approximation

to the real data distribution p(x).

Due to the impressive performance of GAN, some researchers have tried to apply GAN for

network embedding. For instance, [88] proposes GraphGAN to learn low-dimensional node
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representations. Specifically, network embedding is to push similar nodes together and push

away dissimilar nodes. When pushing away dissimilar nodes, it needs to sample negative

nodes for the reference node. GraphGAN employs a generator to generate the sampling

distribution to sample the negative nodes, benefiting the embedding result. [19] proposes

the adversarial network embedding, which utilizes the adversarial technique to regularize

the learned representation. In this chapter, we will exploit GAN to discover the underlying

proximity to benefit node embedding.

3.3 Network Embedding via Proximal Generative Adversarial Network

3.3.1 Problem Definition

Let G = {V,W,X} denote an attributed network. V = {vi}ni=1 is a set of n nodes.

W = [wij] ∈ Rn×n denotes the adjacency matrix. wij = 1 denotes there exists an edge

between node vi and node vj. Otherwise, wij = 0. X = [xij] ∈ Rn×d represents the attribute

matrix. The i-th row Xi· ∈ Rd denotes the attribute of node vi. In this chapter, we will

focus on the attributed network embedding.

Network embedding is to learn a low-dimensional representation for each node vi from

the topological structure W and attributes X. Additionally, the low-dimensional repre-

sentation should preserve the proximity between different nodes. In other words, in the

low-dimensional space, a network embedding method should push similar nodes together

and push dissimilar nodes away. Therefore, the proximity between different nodes can be

instantiated to the triplet 〈vi, vj, vk〉 where vi denotes the reference node, vj represents the

positive node which is similar with vi, vk stands for the negative node which is dissimilar

with vi. Therefore, we have the following formal definition.

Definition 1. Network embedding is to learn a map f : {W,X} 7→ E where E ∈ Rn×d′

denotes the low-dimensional representation. Meanwhile, given a triplet 〈vi, vj, vk〉 in the

original space such that

sim(vi, vj) > sim(vi, vk) , (3.2)
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the learned low-dimensional representation should guarantee

sim(Ei·, Ej·) > sim(Ei·, Ek·) , (3.3)

where sim(·, ·) denotes the proximity between two data points, Ei· represents the low-dimensional

embedding of the i-th node vi.

This definition indicates that the task of network embedding can be decoupled into

discovering the proximity in the original space and preserving it in the low-dimensional

space. Only with the well-discovered proximity can we preserve it in the low-dimensional

space. Thus, discovering the proximity between different nodes is critical to learn a good

node representation. However, the edges in a network are very sparse so that they are

not enough to disclose the proximity between different nodes. Existing network embedding

algorithms proposed various methods to discover underlying proximities, such as first-order

proximity, second-order proximity, and so on. However, most of them fail to fully utilize both

the topological structure and node attributes. To address these problems, we will propose a

novel proximity generative adversarial network to discover the underlying proximity among

different nodes, benefiting network embedding.

3.3.2 Proximity Generative Adversarial Network

Unlike existing methods which discover proximities among different nodes, we propose to

generate the proximity. But how to generate it is challenging. Inspired by the development

of generative adversarial networks, we propose to employ GAN to generate the underlying

proximity. However, the standard GAN is designed to generate samples rather than proxim-

ities. Thus, how to generate the underlying proximity is also challenging. To address these

challenges, we propose a novel proximity generative adversarial network (ProGAN).

As discussed in the previous subsection, the proximity can be instantiated to the triplet

〈vi, vj, vk〉 such that sim(vi, vj) > sim(vi, vk). Thus, the key idea of generating the proxim-

ity is to generate triplets. Formally, assume the true distribution of the triplet is denoted

by P (vi, vj, vk) which is unknown. Our task is to learn a distribution Q(vi, vj, vk) to ap-

proximate P (vi, vj, vk). Since Q(vi, vj, vk) is similar with P (vi, vj, vk), the generated triplets
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from Q(vi, vj, vk) can disclose the real proximity. Thus, by generating triplets, ProGAN can

discover the underlying complicated proximity between different nodes. In addition, when

generating the triplet to get the proximity, it is supposed that the generated individual nodes

in the triplet are as real as the true nodes. In other words, our another task is to learn the

distribution Q(vi) to approximate the true node distribution P (vi). Moreover, after dis-

covering the underlying proximity, we should preserve it when learning the low-dimensional

representation. To this end, ProGAN includes three components: generator, discriminator,

and encoder. Generator is expected to generate the desired triplet and node. Discriminator

needs to discriminate them from the real ones. Encoder is to learn the low-dimensional rep-

resentation for each node by preserving the real and generated proximity. In the following

part, we will describe the detail of these three components.

Generator To approximate the distribution P (vi, vj, vk), the generator needs to generate

the triplet 〈v̂i, v̂j, v̂k〉 such that sim(v̂i, v̂j) > sim(v̂i, v̂k) where v̂i denotes the generated

nodes. But how to generate this kind of triplets? Here, we consider a generator v̂ ∼ G(z1, z2)

where z1 corresponds to the first input noise while z2 corresponds to the second input noise.

Comparing with the standard GAN which has only one input noise z, our proposed ProGAN

decouples the input noise into two parts: z1 and z2. In this way, our objective is to learn

the generator such that varying z1 or z2 can control the similarity of two generated nodes.

Doing so allows us to generate the desired triplets.

In detail, to generate two similar nodes (v̂i, v̂j), ProGAN enforces their input noise to

share a common z1. Otherwise, there is no such a constraint. Thus, to generate the desired

triplet 〈v̂i, v̂j, v̂k〉 such that sim(v̂i, v̂j) > sim(v̂i, v̂k), the input to the generator is (zi1 , zi2),

(zi1 , zj2), and (zk1 , zk2) respectively. Apparently, v̂i and v̂j share the same input noise zi1 ,

then they are expected to be similar with each other. In addition, v̂i and v̂j does not share

the second input noise, then they will not be exactly same with each other. On the other

hand, v̂i and v̂k do not share any common input, thus they are not expected to be similar.

On the other hand, to approximate the distribution P (vi), we employ the same generator

G(z1, z2). When concatenating the two input z1 and z2 together, this generator acts as the

standard one in GAN to generate nodes. Thus, with this proposed generator G(z1, z2), we

can generate not only the desired node v̂i but also the triplet 〈v̂i, v̂j, v̂k〉. Since the generated
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nodes are supposed to be similar with real nodes and the generated triplet 〈v̂i, v̂j, v̂k〉 is also

similar to real triplets, the proximity between generated nodes should also be similar with

real nodes. Thus, by generating triplets 〈v̂i, v̂j, v̂k〉, we can discover the underlying proximity

between different nodes.

Discriminator To learn the aforementioned generator, the standard discriminator of

GAN is not enough, since it cannot disentangle the latent space. As a result, there is

no possibility to control the similarity of generated nodes. The discriminator of ProGAN

is supposed to complete two goals. The first goal is to distinguish the generated nodes

and the real ones. This is same as the standard GAN, which will guide the generator to

generate nodes as real as possible. The second goal is to determine whether the generated

triplet satisfies sim(v̂i, v̂j) > sim(v̂i, v̂k). In other words, the discriminator should determine

whether two generated nodes are similar or not. In this way, the generated triplet can

encode the proximity information. As a result, the discriminator will guide the generator to

approximate two distributions P (vi) and P (vi, vj, vk).

For the discriminator, we need real nodes so that we can distinguish the real and gener-

ated ones. But how to represent them? Here, in this chapter, we employ the node attribute

Xi· to represent the real node vi. Then, the triplet can be represented in the same way.

Correspondingly, the generator should generate node attributes X̂i·. In other words, to fool

the discriminator, the generator will learn a distribution Q(X̂i·) to approximate the real node

distribution P (Xi·). Furthermore, the discriminator will also guide the generator to learn a

distribution Q(X̂i·, X̂j·, X̂k·) to approximate P (Xi·, Xj·, Xk·).

Encoder After obtaining the proximity between different nodes, we can use it to learn

the low-dimensional representation for each node. To do that, the proximity should be

preserved in the low-dimensional space. As we discussed early, the discovered proximity

is not enough to learn a good representation. Thus, we should utilize both the discovered

proximity and the underlying one.

For the discovered proximity, we also resort to the triplet. Specifically, to construct the

real triplet 〈Xi·, Xj·, Xk·〉 such that sim(Xi·, Xj·) > sim(Xi·, Xk·), we use the following steps.

At first, we randomly select the reference node Xi·. Then, Xj· is selected from {j|wij = 1}

while Xk· is selected from {k|wik = 0}. In other words, if there exists an edge between two
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nodes, they are similar. Otherwise, they are dissimilar. For the underlying proximity, we

directly utilize the generated triplet 〈X̂i·, X̂j·, X̂k·〉 such that sim(X̂i·, X̂j·) > sim(X̂i·, X̂k·).

With these proximities, we expect sim(Ei·, Ej·) > sim(Ei·, Ek·) and sim(Êi·, Êj·) > sim(Êi·, Êk·)

in the low-dimensional space. In this way, we can push similar nodes together and push away

dissimilar nodes in the low-dimensional space.

Since the second goal of the discriminator is also push similar generated nodes together

and push away dissimilar generated nodes, the encoder can share the same architecture with

the discriminator. The only difference is that the discriminator has one more function to

distinguish the real nodes and the generated ones. Therefore, in this chapter, we use a

single neural network for both the discriminator and encoder. Based on this common neural

network, we add one more branch at the last layer for the discriminator to differentiate the

generated nodes from the real ones.

At last, all of these three components are implemented by deep neural networks to capture

the highly non-linear property in a network. In summary, the generator can generate the

desired triplet to discover the underlying proximity. The discriminator tries to guide the

generator to generate nodes and triplets to be similar as real ones. With the discovered

proximity and the synthesized underlying proximity, the encoder employs a deep neural

network to learn low-dimensional node representations. Comparing with existing methods,

the difference lies in that we employ our proposed ProGAN to synthesize the underlying

proximity rather than construct it by heuristic strategies.

Loss Function To learn the three components in ProGAN, we are going to define the

objective function. Overall, it includes the adversarial loss and encoder loss. The adversarial

loss will enforce ProGAN to generate nodes and triplets as real as possible and the encoder

loss will push ProGAN to learn a good node representation.

Regarding the adversarial loss, it is designed as a minimax game between the discrim-

inator and the generator, in which the discriminator is trained to distinguish the real and

generated nodes while the generator is trained to generate nodes to fool the discriminator.

Specifically, the discriminator’s loss function is defined as follows:

LD1 = Ex∼p(x)[logD1(x)] + Ez1∼p(z),z2∼p(z)[log(1−D1(G(z1, z2)))] ,

LD2 = Ez1∼p(z),z2∼p(z),z′2∼p(z)[log σ(s1)] + Ez1∼p(z),z2∼p(z),z′′1∼p(z),z′′2∼p(z)[log(1− σ(s2))] ,
(3.4)
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where s1 = D2(G(z1, z2))
TD2(G(z1, z

′
2)) measures the similarity of two similar nodes while

s2 = D2(G(z1, z2))
TD2(G(z′′1 , z

′′
2 )) measures that of two dissimilar nodes. In addition, σ(·)

denotes the Sigmoid function. Note that the discriminator has two branches as shown in the

Figure 3. Here, we use D1 and D2 to denote the output of these two branches respectively.

Correspondingly, LD1 implements the first goal of the discriminator to distinguish the real

and generated nodes. LD2 fulfills the second goal to discriminate whether two generated

nodes are similar or not. As discussed earlier, G(z1, z2) and G(z1, z
′
2) share the same input

z1 so that they are considered to be similar. On the contrary, G(z1, z2) and G(z′′1 , z
′′
2 ) do not

share any input so that they are supposed to be dissimilar.

Regarding the generator loss, it should guide the generator to fool the discriminator and

synthesize similar nodes when given similar input. To this end, the loss function of the

generator is defined as follows:

LG = Ez1∼p(z),z2∼p(z)[log(D1(G(z1, z2)))]

+ Ez1∼p(z),z2∼p(z),z′2∼p(z)[log σ(s1)]

+ Ez1∼p(z),z2∼p(z),z′′1∼p(z),z′′2∼p(z)[log(1− σ(s2))] ,

(3.5)

where s1 and s2 are defined as the discriminator. Specifically, the first term guides the

generator to generate nodes as real as possible. The second and third terms guide the

generator to generate similar nodes when given similar input, while generate dissimilar nodes

when given different input.

Regarding the encoder loss, it should push similar nodes together and push dissimilar

nodes away. In addition, to train the encoder, we utilize both the discovered proximity and

the underlying proximity generated by the generator. Therefore, the loss function of the

encoder is defined as follows:

LE = E(x1,x2,x3)∼p(x,y,z)[log σ(E(x1)
TE(x2))

+ log(1− σ(E(x1)
TE(x3)))]

+ Ez1∼p(z),z2∼p(z),z′2∼p(z)[log σ(t1)]

+ Ez1∼p(z),z2∼p(z),z′′1∼p(z),z′′2∼p(z)[log(1− σ(t2))] ,

(3.6)
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Table 1: Descriptions of benchmark datasets

Dataset # Nodes #Edges #Attributes #Labels

Citeseer 3,312 4,660 3,703 6

Cora 2,708 5,278 1,433 7

Flickr 7,564 239,365 12,047 9

Blogcatalog 5,196 171,743 8,189 6

where t1 = E(G(z1, z2))
TE(G(z1, z

′
2)) measures the similarity of node representations of two

similar nodes while that of two dissimilar nodes is measured by t2 = E(G(z1, z2))
TE(G(z′′1 , z

′′
2 )).

Here, the first two terms act on the discovered proximity while the last two terms act on

the underlying proximity generated by the generator. Note that the parameter of encoder

E is same as the discriminator D2. Thus, we can train the encoder and the discriminator

simultaneously.

By optimizing these objective functions, we can learn the parameter of three components

of our ProGAN. Particularly, we can use the stochastic gradient descent method to optimize

it easily. At last, we summarize the optimization step in Algorithm 1. Note that step 3 and

4 can be updated simultaneously.

Algorithm 1 Algorithm to optimize ProGAN.
1: repeat

2: Sample the input noise as Eq.(3.5) to optimize the generator loss LG.

3: Sample the input noise and real nodes as Eq.(3.4) to optimize the descriminator loss

LD1 + LD2 .

4: Sample the real triplet and the input noise as Eq.(3.6) to optimize the descriminator

loss LE.

5: until Converges
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3.4 Experiments

In this chapter, we will conduct extensive experiments to show the performance of our

proposed methods.

3.4.1 Dataset Descriptions

Throughout this chapter, four attributed networks are employed, including citation net-

works, social networks. The details about these datasets are described as follows.

• Citeseer [65] is a paper citation network. Papers from different topics constitute nodes

and the citation among them composes edges. We use the content of papers as node

attributes and topics as class labels.

• Cora [65] is also a paper citation network. Similarly, nodes are papers from different

topics, edges are the citation among different papers, and the node attribute is the bag-

of-words representation of the corresponding paper. In addition, the topics that papers

belong to are considered as class labels.

• Flickr [42] is a social network where users share their photos. Users follow each other to

form a network. Here, the tags on their images are used as the attribute. Additionally,

the groups that users joined are considered as class labels.

• Blogcatalog [42] is also a social network where nodes are users and edges are the friendship

between different users. The attribute of nodes is the extracted keywords from their blogs.

Regarding the class label, we use the predefined categories that blogs belong to.

For all datasets, we normalize its attribute to have a unit length. At last, we summarize the

statistics of these networks in Table 1.

3.4.2 Experiment Settings

To verify the performance of ProGAN, we compare it with 9 state-of-the-art methods,

which include 5 pure network embedding methods: DeepWalk [72], Node2Vec [33], LINE

[83], GraRep [12], GraphGAN [88], and 4 attributed network embedding methods: TADW
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Table 2: Node classification result of Citeseer dataset.

Method
10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.5146 0.4604 0.5623 0.5149 0.5830 0.5397

Node2Vec 0.5059 0.4541 0.5744 0.5249 0.5812 0.5339

LINE 0.4951 0.4472 0.5317 0.4778 0.5395 0.4942

GraRep 0.4908 0.4355 0.5326 0.4622 0.5335 0.4662

GraphGAN 0.4260 0.3837 0.5347 0.4888 0.5570 0.5146

TADW 0.6451 0.5990 0.7055 0.6487 0.7174 0.6639

GAE 0.6273 0.5806 0.6727 0.6055 0.6868 0.6059

SAGE 0.5039 0.4707 0.5692 0.5305 0.5999 0.5563

DANE 0.6585 0.6121 0.7085 0.6528 0.7115 0.6553

ProGAN 0.7186 0.6488 0.7417 0.6748 0.7440 0.6931

[92], GAE [49], SAGE [35], and DANE [25]. For DeepWalk and Node2Vec, when conducting

random walk, we set the number of walks to 10 and the walk length to 80. When constructing

the context from node sequences, the window size is set to 10. For LINE, we utilize both the

first-order and second-order proximity. In addition, the number of negative samples is 5. For

GraRep, the transition step length is set to 5. Throughout our experiments, the dimension

of node representations is set to 100.

Regarding our proposed method, when constructing the real triplet, we need to sample

negative neighbors. In our experiment, following [83], the sampling probability is Pv = d
3/4
v

where dv denotes the degree of node v. When sampling positive neighbors, we randomly

select them from the connected nodes of a reference node. In addition, all three components

of our proposed ProGAN employ the multi-layer perceptron (MLP) model. Specifically,

the architecture of the generator is 128 → 512 → d where 128 is the dimension of input

noise while d is the dimension of the node attribute. Furthermore, we enforce z1 and z2
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Table 3: Node classification result of Cora dataset.

Method
10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.7424 0.7368 0.7975 0.7866 0.8148 0.8032

Node2Vec 0.7777 0.7649 0.8107 0.8001 0.8118 0.8007

LINE 0.7473 0.7399 0.7943 0.7883 0.8081 0.8011

GraRep 0.7609 0.7510 0.7700 0.7558 0.7764 0.7617

GraphGAN 0.6957 0.6804 0.7405 0.7241 0.7668 0.7557

TADW 0.7683 0.7462 0.8201 0.7989 0.8435 0.8293

GAE 0.7662 0.7587 0.7980 0.7852 0.8015 0.7896

SAGE 0.6608 0.6403 0.7664 0.7520 0.8044 0.7921

DANE 0.7769 0.7558 0.8212 0.8062 0.8258 0.8094

ProGAN 0.8080 0.7866 0.8365 0.8172 0.8486 0.8357

have the same dimension. Thus, their dimension is 64. The architecture of the encoder is

d → 512 → 100 where 100 is the dimension of the node representation. The discriminator

has an almost same architecture as the encoder. The only difference is that the discriminator

has one more branch to distinguish real nodes and generated nodes. Moreover, other than

the last layer, the generator uses ReLU as the activation function. Sigmoid function is

used in the last layer. For the discriminator and the encoder, LeakyReLU is used as the

activation function. In our experiments, to evaluate the learned node representation, we

conduct node classification, node clustering, and node visualization on the learned low-

dimensional representation. To measure the performance of these tasks, we employ Micro-F1

and Macro-F1 to measure the classification performance while utilizing clustering accuracy

(ACC) and normalized mutual information (NMI) to measure the clustering performance.

The larger these metrics are, the better the performance is.
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Table 4: Node classification result of Flickr dataset.

Method
10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.4421 0.4370 0.5022 0.4960 0.5187 0.5108

Node2Vec 0.4682 0.4623 0.5069 0.5029 0.5261 0.5204

LINE 0.5122 0.5013 0.5265 0.5185 0.5399 0.5320

GraRep 0.4759 0.4683 0.5182 0.5106 0.5132 0.5030

GraphGAN 0.4503 0.4466 0.4982 0.4928 0.5206 0.5133

TADW 0.7524 0.7471 0.7707 0.7662 0.7777 0.7738

GAE 0.6273 0.5806 0.6727 0.6055 0.6868 0.6059

SAGE 0.2796 0.2741 0.3194 0.3132 0.3303 0.3253

DANE 0.6078 0.6085 0.6753 0.6747 0.7030 0.7020

ProGAN 0.7958 0.7899 0.8192 0.8143 0.8271 0.8239

3.4.3 Results and Analysis

3.4.3.1 Node Classification To verify whether a network embedding method can dis-

cover and preserve the proximity, we conduct node classification on the learned node rep-

resentation. In this experiment, the classifier is the `2-norm regularized logistic regression.

In detail, all nodes are used to train network embedding methods. Then, we can get the

low-dimensional representation for each node. After that, to conduct node classification,

we randomly select 10%, 30%, 50% nodes as the training set and the remained nodes as the

testing set. For each case of the training set, we employ five-fold cross-validation to select

the best classifier parameters. Then, we report the classification accuracy of the testing set

in Table 2, 3, 4, 5. From these tables, we can find that our proposed ProGAN has a bet-

ter performance than all the other state-of-the-art methods. In particular, we have several

observations as follows.

First, comparing with GraphGAN which learns to choose negative neighbors rather than

discover the proximity, our method has significant improvement. Especially, ProGAN only
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Table 5: Node classification result of Blogcatalog dataset.

Method
10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.6241 0.6156 0.6778 0.6730 0.6999 0.6954

Node2Vec 0.6104 0.6040 0.6501 0.6431 0.6506 0.6455

LINE 0.6630 0.6539 0.6844 0.6737 0.6933 0.6863

GraRep 0.7000 0.6956 0.7163 0.7118 0.7426 0.7398

GraphGAN 0.5196 0.5158 0.5877 0.5811 0.6056 0.6000

TADW 0.9128 0.9115 0.9241 0.9233 0.9296 0.9290

GAE 0.3917 0.3318 0.4219 0.3717 0.4179 0.3681

SAGE 0.5390 0.5321 0.5547 0.5471 0.5387 0.5340

DANE 0.8642 0.8619 0.9065 0.9054 0.9104 0.9091

ProGAN 0.9294 0.9280 0.9426 0.9418 0.9450 0.9443

(a) Blogcatalog: Micro-F1 (b) Blogcatalog: Macro-F1

Figure 4: The node classification result of ProGAN and ENC. ENC denotes the model

without generator and discriminator.
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uses the popularity-based negative sampling method, but it can improve the embedding

result significantly. Thus, we can conclude that the learned proximity is helpful to learn

node representations.

Second, comparing with attributed network embedding methods which use the high-

order proximity, such as GAE and SAGE, our proposed ProGAN shows a better perfor-

mance. Specifically, when constructing the real triplet, our method only uses the first-order

proximity. However, ProGAN can beat those methods which use the high-order proximity.

Hence, we can conclude that the generated proximity can serve as the high-order proximity

to learn a good node representation.

To further verify this point, we conduct another experiment. In detail, we remove the

discriminator and generator, only training the encoder with real triplets. Then, we conduct

node classification on the learned node representation. The result is shown in Figure 4.

Here, this baseline method is denoted by ENC. Due to the space limitation, we only report

the results of Blogcatalog. From Figure 4, we can find the improvement of our proposed

ProGAN is significant, which verifies that the generated proximity by ProGAN acts as the

high-order proximity to benefit node representation learning.

3.4.3.2 Node Clustering To further verify the performance of our proposed ProGAN,

we conduct node clustering on the learned node representation. Similar with node classifi-

cation, all nodes are used to train network embedding models. After that, we run K-means

on the learned low-dimensional representations. To measure the clustering performance,

clustering accuracy (ACC) and normalized mutual information (NMI) are used. The result

is shown in Figure 5. From it, we can find that our proposed ProGAN can outperform the

other baseline methods significantly in terms of both ACC and NMI, which further verifies

the effectiveness of our proposed method.

3.4.3.3 Network Visualization Network visualization is another widely used task to

verify the embedding result. Hence, we visualize the learned node representations of these

methods by using T-SNE [62]. Specifically, it projects the learned low-dimensional nodes into

the two-dimensional space and then visualizes them. Due to the space limitation, we only
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(a) Cora: ACC (b) Citeseer: ACC

(c) Flickr: ACC (d) Blogcatalog: ACC

(e) Cora: NMI (f) Citeseer: NMI

(g) Flickr: NMI (h) Blogcatalog: NMI

Figure 5: Node clustering results.
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report the result of Blogcatalog dataset. The result is shown in Figure 6. Here, we only report

the result of the best 7 baseline methods. Apparently, comparing with the other state-of-

the-art methods, the learned node representation of ProGAN has a more compact structure

within a group and a larger margin between different groups. In particular, although TADW

and DANE have good node classification result, yet its node representations do not have a

compact group structure and large margin between groups as our method, which is also

verified by the clustering result. All in all, ProGAN can discover and preserve the proximity

better than the baseline methods.

3.5 Conclusion

In this chapter, we propose a novel proximity generative adversarial network for net-

work embedding. Specifically, the proposed ProGAN can generate proximities, with which

we can discover the underlying complicated relationship between different nodes. Then, by

preserving these underlying proximities in the low-dimensional space, the learned node rep-

resentation has shown better performance on several tasks, which verifies the effectiveness

of our proposed method. For the future work, we will focus on generating the structural

proximities rather than the ordinary proximity to further improve network embedding.
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(a) DeepWalk (b) GraRep

(c) LINE (d) GraphGAN

(e) TADW (f) SAGE

(g) DANE (h) ProGAN

Figure 6: Network visualization of Blogcatalog dataset.
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4.0 Self-Paced Network Embedding

4.1 Introduction

The essential idea to learn the low-dimensional representations is to preserve the prox-

imity in the topological structure of a network. By preserving such proximities, nodes with

large proximity will have similar low-dimensional representations, benefiting downstream

tasks. To obtain the effective low-dimensional representation, a wide variety of approaches

have been proposed. They aim at capturing various proximities in a network. For example,

the seminal DeepWalk model [72] employs random walk to obtain the node sequences and

then reformulates network embedding as word embedding by regarding node sequences as

word sequences. In this way, the proximity between nodes can be captured by Skip-gram [67]

model. Afterwards, Node2Vec [33] was proposed based on the similar idea but with a novel

random walk algorithm. Additionally, LINE [83] was introduced to preserve the first and

second order proximity when learning the low-dimensional representation. GraRep [12] aims

at preserving high order proximity during representation learning. Struc2Vec [74] targets to

preserve to structural proximity by identifying structure identities.

Among these existing methods, the methods based on Skip-gram [67] model, such as

DeepWalk [72], Node2Vec [33], and LINE [83] have attracted much attention. Their basic

idea is to push together similar nodes while pushing away dissimilar nodes. Mathematically,

it is formulated as a binary classification problem which classifies two similar nodes as a

positive pair while classifying two dissimilar nodes as a negative pair. Although these ap-

proaches have shown good performance in many tasks, yet it has a drawback. Specifically,

to train this binary classification problem, we should feed both positive and negative pairs

to the model. For each node, its paired positive node can be easily obtained according to

edges of the network [83] or the result of random walk [72, 33]. But how to obtain the

negative nodes is not obvious. Some negative nodes are more informative while some are

not. If employing random sampling method, we cannot discriminate the informativeness of

different nodes. Therefore, existing methods, such as DeepWalk [72], Node2Vec [33], and
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LINE [83], propose to sample negative nodes based on a pre-designed distribution. This

distribution depends on the degree of nodes. The intuition behind this sampling method

is that oversampling more connected nodes will lead to better performance because these

nodes carry more information than less connected ones. Although this strategy has correct

intuition, the idea is incomplete because this method ignores that the less connected nodes

may also be informative in practice. Thus, we cannot just use the connection information to

determine the informativeness of a node. How to discover the really informative nodes for

training models is important and also challenging.

Moreover, the sampling distribution employed by the existing network embedding meth-

ods [72, 33, 83] is static, which means that the sampling distribution does not change during

training. As a result, the informativeness of a node is constant when training models. How-

ever, with the training process going on, some negative nodes are well pushed away from the

anchor node while some are not. In such a case, we should put more focus on these difficult

nodes. Therefore, it is better to sample nodes with different probabilities at different training

phases. On the other hand, we cannot always focus on the difficult nodes, ignoring the easy

ones. According to the learning process of human beings, we should start with easy samples

when learning a new model and then learn difficult samples gradually [7, 52]. The reason is

that we can learn a draft model by using easy samples and then refine it by taking difficult

samples. In our case, if we always select difficult negative nodes to train our model, the easy

ones cannot be fully utilized, and it is easy to disturb the low-dimensional representations

by too much focus on the difficult nodes.

To address the above challenging problems, in this chapter, we propose a novel self-paced

network embedding method. With this method, we can dynamically sample the informative

negative nodes for training models. Specifically, we propose a self-paced node sampling

strategy. This strategy can discover the informativeness of each node based on current

model parameters and then sample negative nodes according to their informativeness. In

addition, this self-paced strategy can sample difficult negative nodes gradually with the

training process going on. Moreover, we extend this self-paced sampling strategy to the

generative adversarial network framework. The extensive experiments are conducted on

seven benchmark network datasets to validate the effectiveness of our proposed methods.
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4.2 Related Work

Network Embedding Network embedding has become a popular data mining research

topic in recent years due to its important role in network data analysis. It is to learn a low-

dimensional representation for each node in a network while preserving proximity. Recently,

there has been much progress towards effective network embedding algorithms. For example,

DeepWalk [72] was proposed to utilize random walk to get node sequences as word sentences,

then employ Skip-gram [67] model to learn node embedding, which is essential to predict

the context of each anchor node by maximizing the likelihood function as follows:

max
n∏
i=1

∏
j∈ci

p(vj|vi) , (4.1)

where vi is the anchor node, vj denotes its context node, and ci denotes the context set of

node vi. p(vj|vi) is the conditional probability of node vj given node vi. Based on this schema,

LINE [83] and Node2Vec [33] were proposed respectively with different context constructing

approaches. In addition, some other kinds of methods also make much progress. For ex-

ample, GraRep [12] aims at preserving high order proximity during representation learning.

Struc2Vec [74] aims to preserve structural proximity by identifying structure identities. M-

NMF [90] captures community structure when learning the low-dimensional representation.

TADW [92] and ANE [42] target to integrate the topological structure and node attributes

to learn node representations. A dynamic network embedding method [55] was proposed to

handle the dynamic networks. SDNE [87] employs deep autoencoder to capture the high

non-linearity in the network. In [48], a semi-supervised network embedding method was pro-

posed based on the graph convolutional network. Although these methods are promising in

many tasks, in this chapter, we will limit our interest to solve the model related to Eq. (4.1).

Negative Sampling Negative sampling [67, 34] is an efficient approach for solving

multi-class classification problems. In detail, the multi-class classification problem, such as

problem (4.1), is considerably inefficient when the number of classes is very large. Nega-

tive sampling (or termed as contrastive learning) reformulates it as a binary classification

problem by constructing positive pairs and negative pairs. The positive pair is usually easy

to construct based on some prior knowledge. For example, positive pairs in a network can
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be easily constructed based on the connection between nodes [83]. The challenge is how to

construct negative pairs. In [67], the authors propose to sample negative pairs based on the

word popularity, while [83] considers constructing the sampling distribution in terms of the

degree of nodes. Actually, both of them share a common intuition that more popular or con-

nected samples should be selected more frequently since they are more informative. Under

the context of recommender systems, [98] proposes a dynamic negative sampling algorithm

based on the temporary recommend result. Recently, IRGAN [89] was proposed to have

the same spirit as negative sampling for information retrieval. Unlike conventional negative

sampling, it employs a generator to generate the negative samples dynamically.

Self-Paced Learning In machine learning community, how to select training samples

to learn a good model is an important topic. As we know, human beings usually learn

from easy concepts to complex ones. To mimic this cognitive activity of humans, curriculum

learning [7] and self-paced learning [52] have attracted much attention. Particularly, based

on some fixed prior knowledge, curriculum learning constructs a ranking function to assign

different learning priorities to different samples. Self-paced learning selects training samples

voluntarily by measuring the performance of samples dynamically as follows:

min
vi,w

n∑
i=1

vil(yi, f(xi;w))− λ
n∑
i=1

vi , (4.2)

where w is the model parameter, vi ∈ {0, 1} indicates whether the training sample (xi, yi) is

selected, and l(·, ·) denotes the loss function.

Along this line, many works have been proposed for different situations. For example, [44]

proposes a self-paced learning algorithm to select easy and diverse samples. [59] proposes the

self-paced co-training under the semi-supervised settings. [82] is proposed for object tracking.

[45] is proposed for combining curriculum learning and self-paced learning. However, as far

as we know, there are no existing works for our settings. Thus, inspired by self-paced

learning, we will focus on how to perform negative sampling from easy samples to difficult

ones dynamically to solve Eq. (4.1).
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4.3 New Self-Paced Network Embedding

4.3.1 Problem Definition

Given a network G = {V , E} where V = {vi}ni=1 denotes a set of n nodes and E = [eij] ∈

Rn×n denotes the adjacency matrix, if there exists an edge between node vi and vj, eij = 1.

Otherwise, eij = 0. The embedding of each node vi is a low-dimension vector ui ∈ Rd.

Network embedding is to learn low-dimensional representations {ui}ni=1 of nodes. The

essential idea is to push similar nodes together while pushing dissimilar nodes away to each

other in the low-dimensional vector space. Thus, DeepWalk [72], LINE [83], and Node2Vec

[33] propose to optimize Eq. (4.1). By optimizing this model, the context node vj of the

anchor node vi will have a high probability p(vj|vi), while other nodes have a small p(vj|vi).

Thus, Eq. (4.1) can push positive context nodes vj to the anchor node vi while pushing

negative context nodes away from the anchor node.

However, Eq. (4.1) actually is a multi-class classification problem in which the number

of classes equals the number of nodes. When n is very large, it is inefficient. Therefore,

DeepWalk [72], LINE [83], and Node2Vec [33] reformulate Eq. (4.1) as an equivalent problem

and employ negative sampling method to accelerate it as follows:

max log p(vp|vi) +
∑
j∈Nvi

log(1− p(vj|vi)) , (4.3)

where vp denotes the positive context of node vi while vj denotes the negative context,

Nvi denotes the sampled negative context node set and |Nvi | = k. By using this effective

negative sampling method, the complexity is reduced to O(km) while the original complexity

is O(nm) where O(m) is the complexity of computing the loss of each sample and k � n.

Now, a natural question is how to select the negative context samples Nvi effectively? In

existing works [72, 83, 33], they use a predefined distribution, which reflects the popularity

of nodes, to sample them. Specifically, LINE [83] constructs the sampling distribution based

on the number of degrees of nodes such that a more connected node will be selected in a

large probability. However, it has some drawbacks in practice as follows:
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• The popularity-based sampling method cannot really reflect the informativeness of a

node. Some less connected nodes can also be much informative in practice.

• The informativeness of a node is usually changing with the training process going on.

But the predefined sampling method fails to reflect this change.

Therefore, in this chapter, we will focus on developing effective negative sampling algorithms

to address these problems.

4.3.2 Self-Paced Network Embedding

In this section, we will introduce a novel dynamic sampling method for network embed-

ding: self-paced network embedding. At first, to fully capture the informativeness of nodes

and reflect the training state, we propose a dynamic negative sampling method. Based

on this method, we further propose a self-paced sampling method to feed difficult samples

gradually with the training process going on to learn a better embedding result. At last,

we extend the proposed self-paced sampling method to the generative adversarial network

framework.

4.3.2.1 Informativeness of Nodes Formally, the conditional probability in Eq. (4.1)

and Eq. (4.3) is defined as follows:

p(vj|vi) = σ(uTj ui) =
1

1 + exp(−uTj ui)
, (4.4)

where ui and uj are the low-dimensional representation of node vi and vj respectively. Here,

we call vi anchor node. As we can see from this formulation, a large inner product between

ui and uj denotes a high probability of vj given vi. For all the negative context nodes Nvi of

the anchor node vi, they will have different conditional probabilities based on the currently

learned low-dimensional representation. Moreover, as for a negative context node, if its

conditional probability is high, it should be a difficult negative context node since it is close

to the anchor point based on the inner product but we should push it away from the anchor

node. Otherwise, it is an easy negative context node because it is far away from the anchor

point. Thus, it is natural to use Eq. (4.4) to denote the informativeness of a negative context
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node given the anchor node. If p(vj|vi) is large, vj is more informative to the anchor node vi.

Otherwise, it is less informative since it has already been far away from the anchor point.

On the other hand, the essentiality of network embedding is to push away negative

context nodes from the anchor point. Thus, to learn a good low-dimensional representation

such that similar nodes are clustered while dissimilar nodes are separated, it is better to

put more focus on difficult negative context nodes to push them away from the anchor node.

Based on this intuition, it is natural to construct the negative sampling distribution based on

the informativeness of nodes between the currently learned low-dimensional representation

at each iteration. Mathematically, we define the informativeness-aware negative sampling

distribution as follows:

pij =
exp (uTj ui)∑

j∈Nvi
exp (uTj ui)

, (4.5)

where N vi is the negative context node set of node vi. As shown in this formulation, if a

negative context node is close to the anchor node, the inner product between them will be

large so that the probability pij is large. As a result, the difficult negative context node

has a large chance to be selected. Then, it will be updated more frequently than the easy

ones so that it is pushed away from the anchor point. Thus, our method can always select

the more informative nodes to update model parameters. On the contrary, the conventional

sampling distribution used in [72, 83, 33] only focuses on the more connected nodes. With

such a connection-based sampling method, even when a more connected node has already

been well separated from the anchor node, it still has a large chance to be updated. While

a less connected node which is close to the anchor node has small chance to be pushed away

from the anchor node. Thus, their result is not satisfactory. As for our method, we put more

focus on the difficult negative context node. As a result, even though a negative context node

is less connected, it still has a large chance to be selected if it has a large inner product with

the anchor node. All in all, our proposed method can effectively select the more informative

negative context node.

Furthermore, unlike the predefined sampling distribution employed in [72, 83, 33], our

proposed sampling distribution can reflect the training state since the low-dimensional rep-

resentation is updated at each iteration. In particular, the sampling distribution changes

dynamically according to the current state. An easy negative context node may become
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a difficult one after updating model parameters, then it will have a large chance to be se-

lected. As a conclusion, our proposed method can automatically and dynamically select the

informative negative context node based on the training state.

4.3.2.2 Self-Paced Negative Sampling Although the proposed sampling distribution

in Eq. (4.5) can always select the more informative nodes at each iteration, yet it fails to

utilize all nodes. Specifically, at each iteration, it always selects the difficult negative context

node, the easy one almost has no chance to be pushed away from the anchor node. Although

the easy negative context node may already be separated with the anchor node, yet it still

needs to refine so that we can get a better result.

On the other hand, according to self-paced learning [7, 52], like human beings learning

from easy samples to complex ones, we should feed easy samples at early training stage and

gradually provide difficult samples with the training process going on. However, the sampling

distribution in Eq. (4.5) always feed difficult samples at any training stage. Therefore, to

fully utilize all nodes and gradually select difficult nodes, we propose the self-paced network

embedding (SeedNE) model as follows:

max log p(vp|vi) +
∑

j
p′
ij∼Nvi

log(1− p(vj|vi)) + l(µ)

s.t. p′ij =

pij, pij < l(µ)

0, otherwise ,

(4.6)

where N vi is the negative context node set of node vi, l(µ) is a threshold function parameter-

ized by µ, which acts as a threshold to the sampling probability. In detail, for the probability

pij obtained from Eq. (4.5), if it is larger than the threshold l(µ), we set it as zero as shown in

Eq. (4.6). Actually, it is to set the probability of difficult negative context nodes to zero such

that the easy ones have larger chance to be selected at the early training stage. With the

training process going on, l(µ) is increasing so that difficult negative context nodes will be

included gradually. This is consistent with our motivation. The concrete threshold function

l(µ) is deferred to Section 4.4.
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Algorithm 2 Self-Paced Network Embedding (SeedNE)

1: for each node vi do

2: Sample positive context nodes vp.

3: Sample negative context nodes vj according to p′ij.

4: Update node representations ui, up, uj and the parameter µ by SGD.

5: Update the sampling probability p′ij as Eq. (4.5) and Eq. (4.6).

6: end for

By optimizing problem (4.6) for each anchor node vi, we can gradually sample difficult

negative context nodes based on the training performance to learn low-dimensional repre-

sentations of nodes. At last, we summarize the self-paced network embedding (SeedNE)

method in Algorithm 2.

4.3.2.3 Extension: Adversarial Self-Paced Network Embedding In recent years,

Generative Adversarial Network (GAN) [32] has attracted a surge of attention due to its

flexibility to simulate distributions. The GAN framework includes a generator and a dis-

criminator. The generator is to approximate the data distribution while the discriminator

is to discriminate the approximated and true data distribution. Mathematically, the GAN

framework is to optimize the following problem:

min
θ

max
φ

Ex∼p(x) log[D(x)] + Ex∼G(z),z∼p(z)[log(1−D(x))] , (4.7)

where D(·) denotes the discriminator parameterized by φ, G(·) denotes the generator param-

eterized by θ, p(x) denotes the data distribution, and p(z) denotes a prior distribution. Here,

the generator G(·) tries to use a deep neural network to map a simple prior distribution p(z)

to the complicated data distribution. By optimizing this objective function, the generator

is expected to generate similar samples with true ones as well as possible.

Inspired by the GAN framework, we can use a generator to generate negative samples

for Eq. (4.3). Specifically, for each anchor node vi, it is defined as follows:

min
θ

max
φ

Evj∼pd(vj |vi) log pφ(vj|vi) + Evj∼Gθ(vj |vi)[log(1− pφ(vj|vi))] , (4.8)
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where pφ(vj|vi) is identical with Eq. (4.4) in which φ = {ui, uj}, pd(vj|vi) denotes the sam-

pling distribution for the positive context node of node vi, Gθ(vj|vi) denotes the sampling

distribution for the negative context node, which is constructed from the generator.

This model includes two components: discriminator and generator. The discriminator

has the same functionality as Eq. (4.3), which pushes similar nodes together while pushing

away different nodes in the low-dimensional vector space. The generator is to generate

negative context nodes by constructing the sampling distribution Gθ(vj|vi). More details are

explained in the following.

Discriminator Specifically, the discriminator is to solve the following problem:

max
φ

Evj∼pd(vj |vi) log pφ(vj|vi) + Evj∼Gθ(vj |vi)[log(1− pφ(vj|vi))] , (4.9)

which is actually identical with Eq. (4.3). The only difference is how to obtain negative

context nodes. The negative context node of this model is generated from the generator

Gθ(vj|vi) while Eq. (4.3) uses a predefined distribution for sampling them. Similarly, the

difference between this discriminator and Eq. (4.6) is also the sampling method. Eq. (4.6)

constructs the basic sampling distribution according to the current training state as shown

in Eq. (4.5). This discriminator also sample negative nodes based on the current training

state, but it uses a generator to construct such a distribution in a more flexible way, which

will be shown in the following. By optimizing this model, we can obtain the embedding

result φ = {ui}ni=1.

Generator On the other hand, the generator is to solve the following problem:

min
θ
Evj∼Gθ(vj |vi)[log(1− pφ(vj|vi))] , (4.10)

where the generator model Gθ(vj|vi) constructs a sampling distribution as follows:

Gθ(vj|vi) =
exp(u

′T
j u
′
i)∑

j exp(u
′T
j u
′
i)
, (4.11)

where θ = {u′i}ni=1 is the model parameter of the generator. Specifically, u′i ∈ Rd denotes the

low-dimensional representation of node vi in the generator. At first glance, Eq. (4.11) has no

difference with Eq. (4.5). However, Eq. (4.5) uses the current embedding result {ui}ni=1 to

construct the sampling distribution while Eq. (4.11) employs a more flexible way to construct
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the sampling distribution to find the underlying informative negative context nodes. In par-

ticular, it constructs the sampling distribution by training another model parameterized by

new parameters θ = {u′i}ni=1. With these new parameters, the sampling distribution will have

more capacity to discover the informative nodes. Furthermore, similar with Eq. (4.5), these

new parameters can also reflect the current embedding result. Specifically, the loss function

in Eq. (4.10) is computed based on the current embedding result. Thus, when updating new

model parameters θ = {u′i}ni=1 by gradient descent method, the current embedding result

can directly affect θ through the gradient information.

With this flexible distribution, we can sample vj as the negative context node of node vi

to train this model. However, there is a challenge to optimize Eq. (4.10). In particular, to

use gradient descent method to update model parameter θ, the model should be continuous.

However, the sample vj that the loss function depends on is not the direct output of the

generator Gθ(vj|vi). Instead, vj is sampled from a node set according to Gθ(vj|vi), which is

discrete. Thus, we cannot use gradient descent method directly to update model parameter

θ. A practical way is to employ the policy gradient [78] to update model parameter θ, which

is defined as follows:

∇θEvj∼Gθ(vj |vi)[log(1− pφ(vj|vi))]

=
K∑
j=1

∇θGθ(vj|vi) log(1− pφ(vj|vi))

=
K∑
j=1

Gθ(vj|vi)∇θ log[Gθ(vj|vi)] log(1− pφ(vj|vi))

= Evj∼Gθ(vj |vi)∇θ log[Gθ(vj|vi)] log(1− pφ(vj|vi)) .

(4.12)

However, taking a look at the sampling distribution Eq. (4.11) defined in the generator, we

can find that this distribution has the same spirit as Eq. (4.5), which always selects the

difficult negative context node. Thus, it potentially ignores the easy negative context node

and cannot gradually select difficult ones with the training process going on. To alleviate

these problems, we further propose the adversarial self-paced network embedding (ASeedNE)
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method as follows:

min
θ

max
φ

Evj∼pd(vj |vi) log pφ(vj|vi) + Evj∼G′θ(vj |vi)[log(1− pφ(vj|vi))] + l(µ)

s.t. G′θ(vj|vi) =

Gθ(vj|vi), Gθ(vj|vi) < l(µ)

0, otherwise .

(4.13)

There are still two components in this novel model. Specifically, the discriminator is to

optimize the following problem:

max
φ

Evj∼pd(vj |vi) log pφ(vj|vi) + Evj∼G′θ(vj |vi)[log(1− pφ(vj|vi))] + l(µ)

s.t. G′θ(vj|vi) =

Gθ(vj|vi), Gθ(vj|vi) < l(µ)

0, otherwise .

(4.14)

The difference between this discriminator and that in Eq. (4.9) is that here we employ a self-

paced sampling strategy such that the difficult negative context node is gradually utilized

to train this model. While the model in Eq. (4.9) always choose the most difficult negative

context nodes to train modal parameters.

Additionally, the generator is to optimize the following problem:

min
θ
Evj∼G′θ(vj |vi)[log(1− pφ(vj|vi))]

s.t. G′θ(vj|vi) =

Gθ(vj|vi), Gθ(vj|vi) < l(µ)

0, otherwise .

(4.15)

For this generator, after sampling vj according to the self-pace sampling strategy, we can

still use the policy gradient defined in Eq. (4.12) to update model parameters. At last, our

adversarial self-paced network embedding method is summarized in Algorithm 3.

Note that although IRGAN [89] also utilizes the GAN framework to mimic the negative

sampling procedure, yet our method is different with IRGAN. In particular, IRGAN always

chooses the difficult negative samples while our method can gradually select difficult neg-

ative context nodes according to the training state. In this way, our method learns node

representations from easy negative context nodes to get a draft of the embedding and then

refine the embedding result by selecting difficult negative context nodes gradually.
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Algorithm 3 Adversarial Self-Paced Network Embedding (ASeedNE)

1: repeat

2: Sampling positive and negative context nodes according to pd and G′θ respectively to

update the discriminator in Eq. (4.14).

3: Sampling negative context nodes according to G′θ to update the generator in Eq. (4.15).

4: Update the sampling probability G′θ according to Eq. (4.11) and Eq. (4.15).

5: until Converges

Table 6: Description of benchmark datasets

Dataset #Nodes #Edges #Labels

Wiki 4,777 184,812 40

PPI 3,890 76,584 50

Cora 2,708 5,278 7

Citeseer 3,312 4,660 6

BlogCatalog 10,312 333,983 39

Facebook 4,039 88,234 -

GR-QC 5,242 14,496 -

4.3.2.4 Summarization Compared with the predefined negative sampling distribution

used in [72, 33, 83], our proposed SeedNE can effectively capture the informativeness of

each node based on the current embedding result. Based on the informativeness of nodes,

SeedNE can gradually select difficult negative context nodes to train the model by employing

the self-paced sampling strategy. For the ASeedNE method, it can also discover the informa-

tiveness of each node in a more flexible way by training a generator. Similarly, the sampling

distribution constructed by the generator can also reflect the current embedding result. All

in all, both SeedNE and ASeedNE gradually select difficult negative context nodes to train

model parameters.
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4.4 Experiments

In this section, we will conduct experiments to show the performance of the proposed

methods.

4.4.1 Dataset Descriptions

We use 7 benchmark datasets including social networks, citation networks, biomedical

networks, and so on. The details about these datasets are shown as follows.

• Wikipedia (Wiki) [63]: This is a co-occurrence network of words in the Wikipedia

database. Here, we employ the preprocessed version of [33]. It contains 4,777 nodes,

184,812 edges. There are 40 classes denoting the Part-of-Speech tag.

• Protein-Protein Interactions (PPI) [9]: This is a biomedical network. We utilize the

preprocessed network in [33]. The details about the preprocessing operation can be

found in [33]. In particular, there are 3,890 nodes and 76,584 edges in this network. The

number of node classes is 50. Different classes denote different biological states.

• Cora [65]: This is an academic citation network, which contains 2,708 machine learning

papers. There are 5,429 edges in this network. These papers are from 7 classes, which

represent the topic of these papers.

• Citeseer [65]: This is another citation network. It has 3,312 publications from 6 classes.

The edge between two publications denotes the citation relationship between them.

There are 4,660 edges totally in this network.

• BlogCatalog [84]: This is a social network from the BlogCatalog website. The nodes are

bloggers and the edges are friendship relationships among bloggers. The class is inferred

from bloggers’ interests. Specifically, there are 10,312 nodes, 333,983 edges. The number

of classes is 39.

• Facebook [54]: This is a social network where nodes represent users and edges denote

the friendship between two users. This dataset is used for the link prediction task

• GR-QC [54]: This is a collaboration network where nodes denote authors and edges

represent the collaborative relationship between two authors. This dataset is also used

for the link prediction task.

We summarize the statistics of these benchmark datasets in Table 6.
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Table 7: Node classification result of Wiki

Method
50% 70% 90%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.4720 0.0993 0.4850 0.1047 0.4795 0.0946

Node2Vec 0.4753 0.1058 0.4860 0.1154 0.5015 0.1056

GraRep 0.4729 0.1071 0.4929 0.1213 0.4839 0.1000

LINE 0.4830 0.1082 0.4919 0.1014 0.4868 0.1067

SeedNE 0.5283 0.1207 0.5429 0.1428 0.5367 0.1355

ASeedNE 0.5343 0.1222 0.5449 0.1619 0.5513 0.1445

4.4.2 Baseline Methods

To show the performance of our proposed methods, we compare them with four state-of-

the-art methods, including DeepWalk, Node2Vec, GraRep, LINE. The details about these

methods are described as follows.

• DeepWalk [72]: This method utilizes random walk to get node sequences. By viewing

node sequences as word sentences, DeepWalk formulates network embedding as word

embedding so that it uses Skip-gram [67] model to learn node representations.

• Node2Vec [33]: Similar with DeepWalk, this method also uses Skip-gram [67] model to

learn node representations. But it uses a biased random walk algorithm to get node

sequences for constructing node contexts.

• GraRep [12]: This method proposes to preserve high order proximity by constructing

k-step probability transition matrix when learning node representations.

• LINE [83]: This method proposes first and second order proximity among nodes. It

learns to represent the node by preserving the first and second order proximity.
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Table 8: Node classification result of PPI

Method
50% 70% 90%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.1915 0.1629 0.2156 0.1853 0.2009 0.1659

Node2Vec 0.1858 0.1590 0.2004 0.1663 0.2040 0.1630

GraRep 0.2035 0.1730 0.1999 0.1712 0.2100 0.1654

LINE 0.2092 0.1812 0.2065 0.1768 0.2040 0.1675

SeedNE 0.2191 0.1825 0.2268 0.1940 0.2131 0.1835

ASeedNE 0.2209 0.1854 0.2293 0.1925 0.2268 0.2010

Table 9: Node classification result of Cora

Method
50% 70% 90%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.8111 0.8023 0.8069 0.8018 0.8044 0.7956

Node2Vec 0.8096 0.8034 0.8007 0.7989 0.8081 0.8080

GraRep 0.7749 0.7577 0.7872 0.7721 0.7897 0.7839

LINE 0.8118 0.8016 0.8069 0.7994 0.7970 0.7842

SeedNE 0.8155 0.8066 0.8229 0.8200 0.8413 0.8339

ASeedNE 0.8133 0.8034 0.8167 0.8107 0.8339 0.8234
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4.4.3 Experiment Settings

In our experiments, we set the window size as 10, the walk length as 80, and the number

of walks as 10 for DeepWalk. For Node2Vec, it has the same settings as DeepWalk. Addi-

tionally, we set the parameter p = 1 and q = 1 for Node2Vec. For GraRep, the maximum

matrix transition step is set as 5. For LINE, we set the number of negative samples as 5. To

have a fair comparison, the dimension of node representations is set as 100 for all methods.

For our proposed methods, there is no any preprocessing operation on the network. For

each node, we use its connected neighbor nodes as the positive context nodes while the

disconnected ones as the negative context nodes. When sampling negative context nodes,

we set the number of negative context nodes as 1, that is Nvi = 1. The implementation

is based on Tensorflow [1]. Adam [47] algorithm is employed to update model parameters.

The batch size is set as 100. Furthermore, the threshold function employed in Eq. (4.6) and

Eq. (4.13) is defined as follows:

l(u) = min(au2 + b, 1) , (4.16)

where a > 0 and b > 0 are set as different values for different datasets. Additionally, u is

initialized as 1 for all datasets. We can see that this function is always positive and no larger

than 1. When it is less than 1, we have its gradient as follows:

∇l(u) = 2au . (4.17)

Then, by maximizing Eq. (4.6) or Eq. (4.13), we can update u as follows:

ut+1 = ut + 2ηaut , (4.18)

where η > 0 is the step size. Because a > 0 and u is initialized as 1, then the second term

on the right-hand side is positive. As a result, u is increasing such that l(u) is increasing.

Then, we can gradually include difficult negative context nodes.
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Table 10: Node classification result of Citeseer

Method
50% 70% 90%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.5782 0.5306 0.6036 0.5426 0.6235 0.5426

Node2Vec 0.5763 0.5094 0.5895 0.5237 0.6205 0.5346

GraRep 0.5522 0.4842 0.5503 0.4800 0.5813 0.4994

LINE 0.5534 0.5026 0.5674 0.5137 0.5904 0.5424

SeedNE 0.5890 0.5419 0.5946 0.5463 0.6416 0.5795

ASeedNE 0.5914 0.5440 0.5865 0.5354 0.6295 0.5701

Table 11: Node classification result of Blogcatalog

Method
50% 70% 90%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.3927 0.2556 0.4047 0.2689 0.4169 0.2836

Node2Vec 0.3965 0.2582 0.4082 0.2698 0.4149 0.2828

GraRep 0.3674 0.2039 0.3830 0.2278 0.3869 0.2322

LINE 0.3518 0.1786 0.3597 0.1845 0.3597 0.1869

SeedNE 0.4095 0.2646 0.4216 0.2843 0.4312 0.2884

ASeedNE 0.4106 0.2680 0.4243 0.2873 0.4326 0.3037

4.4.4 Results and Analysis

4.4.4.1 Node Classification To evaluate the performance of network embedding, node

classification is the most widely used method [72, 33, 12, 83]. In this chapter, we also conduct

node classification to show the performance of our proposed methods. The classifier used

in this chapter is Logistic Regression. Specifically, we use all nodes to train the network
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embedding method to get node representations. After that, we conduct node classification

on these representations. To evaluate these network embedding methods comprehensively,

we randomly select {50%, 70%, 90%} nodes to train the classifier respectively. Then, the

classifier’s performance is evaluated on the rest nodes. To measure the classification perfor-

mance, we employ Micro-F1 and Macro-F1 as metrics. The larger the two metrics are, the

better the classification performance is.

The classification results are shown in Tables 7, 8, 9, 10, 11. In these tables, the best two

results in each case are marked in bold. From these tables, we can find that both SeedNE

and ASeedNE outperform the other state-of-the-art methods significantly. Specifically,

• In Table 7, the best two results are our proposed SeedNE and ASeedNE. Both of them

have achieved significant improvement over the other baseline methods. The reason

behind this improvement is that our methods can effectively discover informative negative

context nodes according to the current embedding result, and then feed difficult negative

context nodes gradually to train model parameters such that similar nodes are pushed

together while dissimilar nodes are pushed away.

• In Table 7, comparing SeedNE with ASeedNE, we can find that ASeedNE can outperform

SeedNE in most cases. The reason is that ASeedNE employs a generator to construct

the negative sampling distribution, which has the larger capacity to capture the infor-

mativeness of each node than SeedNE. Thus, it can select more helpful negative context

nodes to improve model’s performance. Similar results can also be found in the other

tables, which further verify the effectiveness of our proposed methods.

4.4.4.2 Network Visualization Network visualization is another widely used method

to evaluate the performance of network embedding algorithms. It is to project the learned

node representations into a two-dimensional space such that we can visualize them. In this

chapter, we employ the well-developed tool t-SNE [62] to visualize node representations.

Here, we only visualize the Cora dataset due to the space limitation. The visualization

result is shown in Figure 7. From this figure, we have the following observations:
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(a) DeepWalk (b) Node2Vec

(c) GraRep (d) LINE

(e) SeedNE (f) ASeedNE

Figure 7: The visualization of Cora dataset.
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Table 12: Link prediction accuracy

Method Facebook GR-QC

DeepWalk 0.9050 0.8354

Node2Vec 0.8900 0.7949

GraRep 0.9445 0.8899

LINE 0.9329 0.8847

SeedNE 0.9532 0.9208

ASeedNE 0.9545 0.9230

• In Figure 7(a), nodes scatter over the entire space such that these nodes have no a

compact group structure, which means this method fails to push together similar nodes.

Similar results can be found in Figure 7(b).

• In Figure 7(c), nodes from different classes are mixed with each other, especially for nodes

in the center of this figure. This means that this method fails to push away dissimilar

nodes. Figure 7(d) shows the similar result.

• In Figure 7(e), we can see that these nodes have compact group structures and the margin

between different groups is large compared with baseline methods, which means our

proposed SeedNE can push similar nodes together and push dissimilar nodes away. Thus,

our method can achieve a better result on the node classification task. Our proposed

ASeedNE has similar results, just as shown in Figure 7(f).

In conclusion, our proposed methods can successfully push similar nodes together and push

dissimilar nodes away by sampling informative nodes in each iteration so that the embedding

result is better than baseline methods.

4.4.4.3 Link Prediction In this section, we will evaluate the embedding result by using

the link prediction task. The goal of this task is to predict the existence of an edge between

two nodes. Specifically, Facebook and GR-QC are used in this experiment. We randomly
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select 10% edges from the original network as positive samples of the testing set. The

remained network is used for learning node representation. Additionally, we randomly select

the same number of edges from the undiscovered edges as negative samples of the testing

set.

The link prediction accuracy of these two datasets is shown in Table 12. From this

table, we can observe that our proposed methods outperform all the other baseline meth-

ods. Especially, the improvement of the GR-QC dataset is very significant. Specifically,

the improvement over the best baseline method is around 4%, which further verifies the

effectiveness of our proposed methods.
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Figure 8: Node classification result of Wiki dataset from the SeedNE method.

4.4.4.4 More Results To further show the effect of self-paced sampling strategy, we

compare our proposed methods with that without self-paced sampling strategy. In partic-

ular, this baseline method employs Eq. (4.5) to sampling negative context nodes at each

iteration. Thus, it always feeds difficult negative nodes to train models. Here, we only show

the result about the Wiki dataset due to the space limitation. Figure 8 shows node classi-

fication results about SeedNE. From this figure, we can find that our method can achieve

better classification result for most cases based on both Micro-F1 and Macro-F1. Figure 9

shows node classification results about ASeedNE. Similarly, we can find that our method

can beat that without self-paced sampling strategy for most cases, which further verifies the

effectiveness of our proposed sampling strategy.
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Moreover, in Figure 10, we show the threshold function value during training models.

Here, we only show the result of Cora dataset due to the space limitation. Additionally, we

only show the first 50 iterations because it is a constant value in the following iterations. Note

that we let the parameter a change in the training process. Specifically, a is doubled in every

10 iterations. Intuitively, this operation will accelerate to include difficult negative context

nodes. In practice, if a stays as a small value for a long time such that the threshold function

value is small, only easy negative context nodes can be included so that the embedding result

cannot be further refined. This is consistent with the cognitive activity of human beings. In

Figure 10, the threshold function value increases slowly so that only easy negative context

nodes are selected to train models at the beginning phase. With the training process going on,

the threshold value becomes larger and larger. Therefore, more and more difficult negative

context nodes are fed into the model, which is consistent with the intuition of our proposed

methods.
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Figure 9: Node classification result of Wiki dataset from the ASeedNE method.

4.5 Conclusion

In this chapter, we proposed the novel self-paced network embedding methods. Our

proposed methods can effectively capture the informativeness of each node. Based on the
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Figure 10: The threshold function value when training Cora.

informativeness of nodes, we introduced a self-paced informativeness-aware sampling strat-

egy. With this sampling strategy, our proposed methods can gradually select informative

nodes to train model parameters. Extensive experiments on different data mining tasks have

demonstrated the superior performance of our proposed methods.
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5.0 Deep Attributed Network Embedding

5.1 Introduction

Attributed networks are ubiquitous in the real world, such as academic citation networks.

Unlike the plain network where only the topological structure is available, nodes of attributed

networks possess rich attributed information. These informative attributes can benefit net-

work analysis. For example, in an academic citation network, the citation among different

articles compose a network where each node is an article and each node has substantial text

information about the article’s topic. Another example is the social network where users

connect with others and post their profiles as the attribute. Furthermore, the social science

[64, 66] has shown that attributes of nodes can reflect and affect their community structures

[43, 94]. Thus, it is necessary and important to study the attributed network.

Network embedding as a fundamental tool to analyze networks has attracted a surge of

attention in data mining and machine learning community recently. It is to learn a low-

dimensional representation for each node of a network while preserving the proximity. Then,

the downstream tasks, such as node classification, link prediction, and network visualization,

can benefit from the learned low-dimensional representation. In recent years, various network

embedding methods have been proposed, such as DeepWalk [72], Node2Vec [33], and LINE

[83]. However, most of the existing approaches mainly focus on the plain network, ignoring

useful attributes of nodes. For example, in the social network such as Facebook or Twitter,

each user connects with others, constituting a network. Most of existing methods only focus

on the connection when learning node representations. But the attribute of each node can

also provide useful information. A good example is the user profile. A young user may have

much more similarity with another young guy, rather than an old user. Thus, it is important

to incorporate node attributes when learning node representations.

Moreover, the topological structure and attributes of networks are highly non-linear [87].

Thus, it is important to capture the highly non-linear property to discover the underlying

pattern. Then, the proximity can be preserved better in the learned node representations.
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However, most of existing methods, such as [42, 92], only employ the shallow model, failing to

capture the highly non-linear property. Furthermore, how to capture this highly non-linear

property is difficult due to the complicated topological structure and attributes. Therefore,

it is challenging to capture the highly non-linear property for attributed network embedding.

To address the aforementioned problems, we propose a novel deep attributed network

embedding (DANE) approach for attributed networks. In detail, a deep model is proposed

to capture the underlying high non-linearity in both topological structure and attributes.

Meanwhile, the proposed model can enforce the learned node representations to preserve the

first-order and high-order proximity in original networks. Moreover, to learn the consistent

and complementary representation from the topological structure and attributes of a net-

work, we propose a novel strategy to combine these two kinds of information. Furthermore,

to obtain a robust node representation, an efficient most negative sampling strategy is pro-

posed to make the loss function robust. At last, extensive experiments have been conducted

to verify the effectiveness of our proposed approach.

First-order 
proximity loss

Topological 
structure

Attributes

Consistent and 
complementary loss

First-order 
proximity loss

High-order 
proximity 

loss

Semantic 
proximity 

loss

Figure 11: The architecture of DANE.
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5.2 Related Work

Plain Network Embedding Network embedding can be traced back to the graph em-

bedding problem, such as Laplacian Eigenmaps [4], LPP [38]. These methods are to learn

data embedding while preserving the local manifold structure. However, these methods are

not applicable for large-scale network embedding, since they involve the time-consuming

eigendecomposition operation whose time complexity is O(n3) where n is the number of

nodes. Recently, with the development of large-scale networks, a variety of network embed-

ding methods [72, 33, 12, 83, 27] have been proposed. For example, DeepWalk [72] adopts

random walk and Skip-Gram to learn node representations, based on the observation that

the distribution of nodes in the random walk is similar to that of words in natural language.

LINE [83] proposes to preserve the first- and second-order proximity when learning node

representations. GraRep [12] is proposed to preserve high order proximity. Furthermore,

Node2Vec [33] is proposed by designing a biased random walk on the flexible node’s neigh-

borhood. However, all of these methods only utilize the topological structure, ignoring the

useful attribute of nodes.

Attributed Network Embedding Attributed network embedding has attracted much

attention in recent years. A wide variety of models have been proposed for attributed net-

works. For example, [92] proposes an inductive matrix factorization method to combine

the topological structure and attributes of networks. However, it is a linear model essen-

tially, which is not enough for the complicated attributed network. [42, 43] employ the

graph Laplacian technique to learn the joint embedding from the topological structure and

attributes. [48] proposes a graph convolutional neural network model for attributed net-

works. But this model is a semi-supervised approach, failing to deal with the unsupervised

case. [71] proposes to combine DeepWalk with a neural network for network representation.

Nonetheless, the DeepWalk part is still a shallow model. Recently, two unsupervised deep

attributed network embedding approaches [49, 35] have been proposed. However, they can

only explore the topological structure implicitly. Thus, it is necessary to explore the deep

attributed network embedding method in a more effective way.
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5.3 Deep Attributed Network Embedding

In this section, we first give the formal definition of attributed network embedding and

then develop our novel deep attributed network embedding approach.

5.3.1 Problem Definition

Let G = {E,Z} denote an attributed network with n nodes, where E = [Eij] ∈ Rn×n is

the adjacency matrix and Z = [Zij] ∈ Rn×m is the attribute matrix. In detail, if there exists

an edge between the i-th node and the j-th node, Eij > 0. Otherwise, Eij = 0. Zi· ∈ Rm is

the i-th row of Z, which denotes the attribute of the i-th node.

Before giving the problem definition, we first introduce the definition of different prox-

imities, which is important for our approach.

Definition 2. (First-Order Proximity [83]) Given a network G = {E,Z}. The first-order

proximity of two nodes i and j is determined by Eij. Specifically, a larger Eij denotes a

larger proximity between the i-th node and the j-th one.

The first-order proximity indicates that if there exists a link between two nodes, they

are similar. Otherwise, they are dissimilar. Thus, it can be viewed as a local proximity.

Definition 3. (High-Order Proximity [12]) Given a network G = {E,Z}, the high-order

proximity of two nodes i and j is determined by the similarity of Mi· and Mj·, where M =

Ê + Ê2 + · · · + Êt is the high-order proximity matrix, Ê is the 1-step probability transition

matrix which is obtained from the row-wise normalization of the adjacency matrix E.

The high-order proximity actually indicates the neighborhood similarity. Specifically, if

two nodes share similar neighbors, they are similar. Otherwise, they are not similar. Here,

the high-order proximity can be viewed as a global proximity.

Definition 4. (Semantic Proximity) Given a network G = {E,Z}, the semantic proximity

of two nodes i and j is determined by the similarity of Zi· and Zj·.

The semantic proximity denotes that if two nodes have similar attributes, they are similar.

Otherwise, they are dissimilar.
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Attributed network embedding is to learn the low-dimensional representation of each

node based on the adjacency matrix E and the attribute matrix Z, such that the learned

representation can preserve the proximity existing in the topological structure and node

attributes. Formally, we aim at learning a map f : {E,Z} → H where H ∈ Rn×d is the

node representation, such that H can preserve first-order proximity, high-order proximity and

semantic proximity. Then, downstream tasks, such as node classification and link prediction,

can be performed on the learned H.

5.3.2 Deep Attributed Network Embedding

Essentially, the attributed network embedding faces three great challenges to obtain a

good embedding result. They are:

• Highly non-linear structure: The underlying structure of the topological structure and

attributes are highly non-linear, thus it is difficult to capture this non-linearity.

• Proximity preservation: The proximity in an attributed network depends both on the

topological structure and the attribute, thus how to discover and preserve the proximity is

a tough problem.

• Consistent and complementary information in the topological structure and attributes:

These two kinds of information provide different views for each node, thus it is important to

make the learned node representations preserve the consistent and complementary informa-

tion in these two modalities.

To address these three challenges, we develop a novel deep attributed network embedding

(DANE) approach. The architecture is shown in Figure 11. Overall, there are two branches

where the first branch is composed of a multi-layer non-linear function, which can capture

the highly non-linear network structure, to map the input M to the low-dimensional space.

Similarly, the second branch is to map the input Z to the low-dimensional space to capture

the high non-linearity in attributes.

5.3.2.1 Highly Non-linear Structure To capture the highly non-linear structure, each

branch in Figure 11 is an autoencoder. Autoencoder is a powerful unsupervised deep model
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for feature learning. It has been widely used for various machine learning applications [46].

The basic autoencoder contains three layers, they are the input layer, the hidden layer, and

the output layer, which are defined as follows:

hi = σ(W (1)xi + b(1)),

x̂i = σ(W (2)hi + b(2)) .
(5.1)

Here, xi ∈ Rd is the i-th input data, hi ∈ Rd′ is the hidden representation from the encoder,

and x̂i ∈ Rd is the reconstructed data point from the decoder. θ = {W (1),W (2), b(1), b(2)} are

model parameters. σ(.) denotes the non-linear activation function.

One can learn model parameters by minimizing the reconstruction error:

min
θ

n∑
i=1

||x̂i − xi||22 . (5.2)

To capture the high non-linearity in the topological structure and attributes, the two

branches in Figure 11 employ K layers in the encoder as follows:

h
(1)
i = σ(W (1)xi + b(1)),

· · ·

h
(K)
i = σ(W (K)h

(K−1)
i + b(K)) .

(5.3)

Correspondingly, there will be K layers in the decoder. Here, h
(K)
i is the desired low-

dimensional representation of the i-th node.

For our approach, the input of the first branch in Figure 11 is the high-order proximity

matrix to capture the non-linearity in the topological structure. The explanation is delayed

to the next section. The input of the second branch is the attribute matrix Z to capture

the non-linearity in the attribute. Here, we denote the learned representation from the

topological structure and attributes as HM and HZ respectively.
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5.3.2.2 Proximity Preservation To preserve the semantic proximity, we minimize

the reconstruction loss between the input Z of the encoder and the output Ẑ of the decoder:

Ls =
n∑
i=1

‖Ẑi· − Zi·‖22 . (5.4)

The reason is disclosed in [76]. Specifically, the reconstruction loss can enforce the neural

network to capture the data manifold smoothly and thus can preserve the proximity among

samples [87]. Therefore, by minimizing the reconstruction loss, our approach can preserve

the semantic proximity in attributes.

Similarly, to preserve the high-order proximity, we also minimize the reconstruction

loss as follows:

Lh =
n∑
i=1

‖M̂i· −Mi·‖22 . (5.5)

Specifically, the high-order proximity M denotes the neighborhood structure. If two nodes

have similar neighborhood structure, which means Mi· and Mj· are similar, the learned

representation HM
i· and HM

j· by minimizing the reconstruction loss will also be similar with

each other.

As discussed before, we need to preserve the first-order proximity which captures the

local structure. Recall Definition 2, two nodes are similar if there exists an edge between

them. Thus, to preserve this proximity, we maximize the following likelihood estimation:

Lf =
∏
Eij>0

pij , (5.6)

where pij is the joint probability between the i-th node and the j-th node. Note that we

should preserve the first-order proximity in the topological structure and attributes simulta-

neously so that we can obtain the consistent result between these two kinds of information.

For the topological structure, the joint probability is defined as follows:

pMij =
1

1 + exp(−HM
i· (HM

j· )T )
. (5.7)

Similarly, the joint probability based on the attribute is defined as follows:

pZij =
1

1 + exp(−HZ
i· (H

Z
j· )

T )
. (5.8)
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Thus, we can preserve the first-order proximity in the topological structure and attributes

simultaneously by minimizing the negative log-likelihood as follows:

Lf = −
∑
Eij>0

log pMij −
∑
Eij>0

log pZij . (5.9)

5.3.2.3 Consistent and Complementary Representation Since the topological struc-

ture and attributes are the two-modal information of the same network, we should guarantee

the learned representation from them is consistent [24, 28]. On the other hand, these two

kinds of information describe different aspects of the same node, providing complementary

information. Thus, the learned representation should also be complementary. All in all, how

to learn the consistent and complementary low-dimensional representation is very important.

A direct and simple method is to concatenate these two representations HM and HZ

directly as the embedding result. Although this method can maintain the complementary

information between two modalities, yet it cannot guarantee the consistency between these

two modalities. Another widely used method is to enforce the two branches in Figure 11

to share the same highest encoding layer, that is HM = HZ . Although this method can

guarantee the consistency between two modalities, it will lose too much complementary

information from two modalities due to the exactly same highest encoding layer. Therefore,

how to combine the topological structure and attributes together for attributed network

embedding is a challenging problem.

To address this challenging problem, we propose to maximize the following likelihood

estimation:

Lc =
n∏
i,j

p
sij
ij (1− pij)1−sij , (5.10)

where pij is the joint distribution between two modalities, which is defined as follows:

pij =
1

1 + exp(−HM
i· (HZ

j· )
T )

. (5.11)

Additionally, sij ∈ {0, 1} denotes whether HM
i· and HZ

j· are from the same node. In detail,

sij = 1 if i = j. Otherwise, sij = 0. Furthermore, Eq. (5.10) is equivalent to minimize the

negative log-likelihood as follows:

Lc = −
∑
i

{log pii −
∑
j 6=i

log(1− pij)} . (5.12)

66



By minimizing Eq. (5.12), we can enforce HM
i· and HZ

j· as consistent as possible when they

are from the same node while pushing away them when they are from different nodes. On the

other hand, they are not exactly same, thus they can preserve the complementary information

in each modality.

However, the second term in the right hand side of Eq. (5.12) is over strict. For instance,

if two nodes i and j are similar according to the first-order proximity, the representation

HM
i· and HZ

j· should also be similar although they are from different nodes. That is to say

we should not push them away. Thus, we relax Eq. (5.12) as follows:

Lc = −
∑
i

{log pii −
∑
Eij=0

log(1− pij)} . (5.13)

Here, we push HM
i· and HZ

j· together when they are from the same node while pushing them

away when two nodes are not connected. As a result, to preserve proximities and learn the

consistent and complementary representation, we optimize the following objective function

jointly:

L = −
∑
Eij>0

log pMij −
∑
Eij>0

log pZij +
n∑
i=1

‖M̂i· −Mi·‖22

+
n∑
i=1

‖Ẑi· − Zi·‖22 −
∑
i

{log pii −
∑
Eij=0

log(1− pij)} .
(5.14)

By minimizing this problem, we can obtain HM
i· and HZ

i· , then we concatenate them as the

final low-dimensional representation of the node such that we can preserve the consistent

and complementary information from the topological structure and attributes.

5.3.3 Most Negative Sampling Strategy

Take a more detailed look at Eq. (5.13), it is to solve the following problem with respect

to each node:

Lci = − log pii −
∑

j:s.t.Eij=0

log(1− pij) . (5.15)

In practice, the adjacency matrix E is very sparse since many edges are not discovered.

However, the undiscovered edge does not really mean two nodes are not similar. If we push

away two potential similar nodes, the learned representation will become worse.
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In detail, the gradient of Lci with respect to HM
j· where Eij = 0 is

∂Lci
∂HM

j·
= pijH

Z
i· . (5.16)

According to the gradient descent method, the updating rule for HM
j· is HM

j· ← HM
j· −αpijHZ

i·

where α is the step size. Since HZ
i· is constant when updating HM

j· , pij determines the

updating rule. Furthermore, pij depends on HM
i· (HZ

j· )
T . If two nodes i and j are similar

potentially but there is no direct link, pij will be large so that HM
j· will be pushed much away

from HZ
i· . As a result, the embedding result will become worse and worse.

Table 13: Description of benchmark datasets

Dataset #Nodes #Edges #Attributes #Labels

Cora 2,708 5,278 1,433 7

Citeseer 3,312 4,660 3,703 6

Wiki 2,405 12,761 4,973 17

PubMed 19,717 44,338 500 3

To alleviate this problem, we propose a most negative sampling strategy to get a robust

embedding result. Specifically, at each iteration, we calculate the similarity between HM

and HZ by P = HM(HZ)T . Then, for each node i, we select the most negative sample as

follows:

j = arg min
j,Eij=0

Pij . (5.17)

Based on this negative sample, the objective function Eq. (5.15) becomes

Lci = − log pii − log(1− pij) , (5.18)

where j is sampled based on Eq. (5.17). With this most negative sampling strategy, the

potential similar nodes will not be violated as far as possible. Thus, the embedding result

will be more robust.

Sampling Complexity The sampling complexity is dominated by the computation of

the similarity P whose complexity is O(n2) while the complexity of Eq. (5.13) is also O(n2).
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Note that we omit the complexity of computing each pij. Thus, there is no much increased

overhead to employ our sampling strategy. As a result, our proposed sampling strategy is

efficient and effective.

5.4 Experiments

5.4.1 Experiment Settings

Datasets In our experiments, we employ four benchmark datasets 1: Cora, Citeseer,

PubMed, and Wiki. The first three datasets are paper citation networks. The edge of each

network is the citation link. The attribute of each node is the bag-of-words representation

of the corresponding paper. Wiki is a network with nodes as web pages. The link among

different nodes is the hyperlink in the web page. We summarize the statistics of these

benchmark datasets in Table 13.

Table 14: The architecture of our approach for different datasets.

Dataset #neurons in each layer Dataset #neurons in each layer

Cora
2708-200-100

Citeseer
3312-200-100

1433-200-100 3703-500-100

Wiki
2405-200-100

PubMed
19717-500-100

4973-500-100 500-200-100

Baselines To evaluate the performance of our proposed DANE, we compare it with 9

baseline methods, including 4 plain network embedding methods and 5 attributed network

embedding methods. The former category contains DeepWalk [72], Node2Vec [33], GraRep

[12], and LINE [83]. The latter one includes TADW [92], ANE [43], Graph Auto-Encoder

(GAE) [49], Variational Graph Auto-Encoder (VGAE) [49], and SAGE [35]. For DeepWalk

and Node2Vec, we set the window size as 10, the walk length as 80, the number of walks as

1https://linqs.soe.ucsc.edu/data
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10. For GraRep, the maximum transition step is set to 5. For LINE, we concatenate the first-

order and second-order result together as the final embedding result. For the rest baseline

methods, their parameters are set following the original papers. At last, the dimension of

the node representation is set as 200.

To obtain the high-order matrix M in Definition 3, we utilize the random walk as Deep-

Walk [72] to obtain the high-order context of each node and then construct the adjacency

matrix M with a sliding window size as 10. Moreover, the architecture of our approach for

four datasets is summarized in Table 14. We use LeakyReLu [61] as the activation function.

Table 15: Node classification result of Cora.

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.7568 0.7498 0.8064 0.7943 0.8287 0.8177

Node2Vec 0.7477 0.7256 0.8201 0.8121 0.8235 0.8162

GraRep 0.7568 0.7441 0.7927 0.7893 0.7999 0.7921

LINE 0.7338 0.7191 0.8122 0.8105 0.8353 0.8254

TADW 0.7510 0.7234 0.8006 0.7801 0.8354 0.8187

ANE 0.7203 0.7150 0.8027 0.7906 0.8117 0.7987

GAE 0.7691 0.7573 0.8059 0.7921 0.8095 0.7989

VGAE 0.7888 0.7736 0.8054 0.7909 0.8117 0.7994

SAGE 0.7633 0.7475 0.8096 0.7999 0.8154 0.8080

DANE 0.7867 0.7748 0.8281 0.8127 0.8502 0.8377

5.4.2 Results and Analysis

Node Classification To show the performance of our proposed DANE, we conduct

node classification on the learned node representations. Specifically, we employ `2-regularized

Logistic Regression as the classifier. To make a comprehensive evaluation, we randomly select

{10%, 30%, 50%} nodes as the training set and the rest as the testing set respectively. With
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Table 16: Node classification result of Citeseer.

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.5052 0.4645 0.5783 0.5329 0.5900 0.5486

Node2Vec 0.5233 0.4832 0.6110 0.5651 0.6335 0.5972

GraRep 0.4817 0.4589 0.5511 0.5118 0.5707 0.5048

LINE 0.5139 0.4726 0.5761 0.5384 0.6075 0.5700

TADW 0.6048 0.5344 0.6481 0.5769 0.6578 0.5897

ANE 0.5877 0.5451 0.6718 0.6174 0.7071 0.6596

GAE 0.6058 0.5532 0.6550 0.5814 0.6540 0.5808

VGAE 0.6115 0.5662 0.6386 0.5824 0.6443 0.5837

SAGE 0.5351 0.4988 0.6304 0.5948 0.6528 0.6137

DANE 0.6444 0.6043 0.7137 0.6718 0.7393 0.6965

these randomly chosen training sets, we use five-fold cross-validation to train the classifier

and then evaluate the classifier on the testing sets. To measure the classification result,

we employ Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) as metrics. The classification results

are shown in Table 15,16,17,18 respectively. From these four tables, we can find that our

proposed DANE achieves significant improvement compared with plain network embedding

approaches, and beats other attributed network embedding approaches in most situations.

Node Clustering To show the performance of our proposed approach on the unsuper-

vised task, we conduct node clustering on the learned node representations. Here, we employ

K-means as the clustering method and use clustering accuracy as the metric. The clustering

result is summarized in Table 19. From this table, we can find that our approach achieves

much better clustering performance than the others for most cases, which further verifies

the effectiveness of our proposed DANE.
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Table 17: Node classification result of Wiki.

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.5621 0.4536 0.6479 0.5267 0.6675 0.5942

Node2Vec 0.5603 0.4131 0.6099 0.4760 0.6376 0.5203

GraRep 0.5801 0.4393 0.6223 0.5143 0.6642 0.5341

LINE 0.5806 0.4634 0.6538 0.5425 0.6766 0.5656

TADW 0.7266 0.6300 0.7565 0.6434 0.7764 0.6519

ANE 0.6263 0.5298 0.7144 0.5907 0.7298 0.6817

GAE 0.6245 0.4842 0.6526 0.5038 0.6567 0.5076

VGAE 0.6591 0.5215 0.6817 0.5621 0.7041 0.5790

SAGE 0.6259 0.5179 0.6764 0.5904 0.6866 0.6039

DANE 0.7293 0.6180 0.7702 0.6597 0.7839 0.6838

Network Visualization To further show the embedding result of our approach, we

visualize the node representation by using t-SNE [62]. Due to the space limitation, we

only post the result of three representative baseline methods for the Cora dataset. The

visualization result is shown in Figure 12. From Figure 12, we can find that our approach

can achieve more compact and separated clusters compared with the rest baseline methods.

Thus, our approach can achieve better performance on both supervised and unsupervised

tasks.

Effect of the Sampling Strategy To evaluate the effect of our sampling strategy,

we compare it with two alternative methods. The first one is the random sampling method

(DANE-RS). The second one is the importance sampling method (DANE-IS). For DANE-IS,

we use pi =
exp(−Pij)∑
j exp(−Pij)

,∀i as the sampling probability. Intuitively, this probability will let

dissimilar points have large probability. With these two sampling methods, we learn node

representations and then conduct node classification on the learned node representations for
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Table 18: Node classification result of PubMed.

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.8047 0.7873 0.8168 0.8034 0.8156 0.8034

Node2Vec 0.8027 0.7849 0.8110 0.7965 0.8103 0.7981

GraRep 0.7951 0.7785 0.8031 0.7901 0.8051 0.7937

LINE 0.8037 0.7892 0.8129 0.8007 0.8110 0.7994

TADW 0.8358 0.8343 0.8586 0.8584 0.8643 0.8633

ANE 0.7977 0.7875 0.8263 0.8191 0.8284 0.8203

GAE 0.8285 0.8238 0.8310 0.8263 0.8306 0.8257

VGAE 0.8299 0.8240 0.8350 0.8291 0.8361 0.8299

SAGE 0.8170 0.8090 0.8250 0.8160 0.8267 0.8176

DANE 0.8608 0.8579 0.8731 0.8706 0.8775 0.8749

Table 19: Clustering accuracy

Method Cora Citeseer Wiki PubMed

DeepWalk 0.6813 0.4145 0.4286 0.6660

Node2Vec 0.6473 0.4504 0.3792 0.6754

GraRep 0.5579 0.3777 0.3800 0.5501

LINE 0.4789 0.3913 0.4087 0.6614

TADW 0.5993 0.6642 0.4257 0.6257

ANE 0.3829 0.2557 0.3006 0.4486

GAE 0.6410 0.3677 0.4191 0.5915

VGAE 0.5546 0.3744 0.4445 0.6721

SAGE 0.6022 0.4589 0.4074 0.6020

DANE 0.7027 0.4797 0.4731 0.6942
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the Cora dataset. The result is shown in Table 20. We can find that DANE-RS has the

worst performance since it fails to discriminate different negative samples. DANE-IS has a

better result, but it is still worse than our method. Because our proposed sampling strategy

can always find the most negative samples to refine node representations as far as possible.

Table 20: Cora: Node classification of different sampling methods.

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DANE-RS 0.7301 0.7151 0.8038 0.7887 0.8125 0.8015

DANE-IS 0.7748 0.7635 0.8228 0.8091 0.8443 0.8308

DANE 0.7867 0.7748 0.8281 0.8127 0.8502 0.8377

5.5 Conclusion

In this chapter, we propose a novel deep attributed network embedding approach, which

can capture the high non-linearity and preserve the proximity both in the topological struc-

ture and node attributes. Meanwhile, the proposed approach can learn a consistent and

complementary representation from the topological structure and node attributes. The ef-

fectiveness has been verified by extensive experiments.
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(a) DeepWalk (b) TADW

(c) VGAE (d) DANE

Figure 12: Visualization of different approaches for the Cora dataset.
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6.0 Conditional Random Field Enhanced Graph Convolutional Neural

Network

6.1 Introduction

In recent years, deep convolutional neural networks have achieved great success in a

wide variety of tasks, such as image classification [51, 37], image generation [51, 10, 26], and

machine translation [73]. The basic idea of convolutional neural networks is to conduct the

convolutional operation in a local neighborhood to explore the local correlation. For image

data, there is a grid-like structure so that the implicit spatial order makes it easy to perform

the convolutional operation in the local neighborhood. In practical applications, graph is

a natural representation of numerous real-world data, such as social networks, knowledge

graphs, citation networks. However, graphs have no the regular grid-like structure so that

it is difficult to determine the local neighborhood to conduct the convolutional operation.

To address this issue, the graph convolutional neural network has been proposed, which

is designed to perform convolution on the complicated graph data. It has shown superior

performance in various tasks, such as node classification [48], recommender system [95]. As

a result, graph convolutional neural networks have attracted much attention in recent years.

Generally speaking, graph convolutional neural networks can be categorized into two

classes: spatial approaches and spectral approaches. Specifically, spatial approaches [23, 3,

70, 35] conduct convolutions directly on the graph. More specifically, this kind of methods

first construct a fixed-size neighborhood for each node in the graph and then perform regular

convolution on this neighborhood. For instance, [70] proposes to construct the neighborhood

from a fixed-size node sequence and then conduct the convolutional operation. Spectral ap-

proaches [11, 20] perform the convolutional operation in the spectral domain. In this way,

spectral approaches do not need to construct the neighborhood explicitly for the compli-

cated graph data. For instance, [11] defines the convolution in the Fourier domain which

can be done in the eigenspace of the graph Laplacian. [20] proposes the fast localized

spectral filtering for graph convolutional neural networks to avoid the expensive eigende-
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composition. Recently, [48] further simplifies the spectral approach by directly aggregating

the 1-hop neighboring nodes. With these development, graph convolutional neural networks

have been successfully applied to a couple of tasks [77, 41, 48, 85, 99, 69, 57, 56], such as

node classification [48, 85], relation extraction [99].

Although the aforementioned graph convolutional neural networks can deal with the

graph data, yet they fail to fully utilize the properties of graphs. For the graph data,

there exist edges which indicate the similarity relationship between different nodes. Two

connected nodes imply that they are similar to each other while disconnected nodes indicate

the dissimilarity between them. Existing graph convolutional neural networks can utilize this

kind of connectivity information when performing the convolutional operation. For instance,

the GCN proposed in [48] aggregates the 1-hop neighboring nodes such that the connectivity

information is encoded into the new representation. On the other hand, the connectivity

(similarity) information should also be preserved in the new representation (hidden features)

obtained from the convolutional operation. However, although the convolutional operation

can incorporate the connectivity information, yet it cannot guarantee the obtained hidden

features preserve the similarity relationship explicitly. If this kind of relationship is violated in

the hidden features, the downstream tasks will be degenerated severely. Thus, it is important

and necessary to preserve the similarity information explicitly in the hidden layers of graph

convolutional neural networks.

To preserve the similarity relationship in the new representation, numerous methods

[2, 39, 75] have been proposed. The most widely used method is the Laplacian regularization,

which has been used for various tasks, such as manifold learning [2, 39]. However, this method

usually requires the expensive eigendecomposition. Thus, it is not suitable for large-scale

neural networks. On the other hand, since we need to enforce the hidden layers of the

graph convolutional neural network to satisfy the similarity constraint, it is necessary and

important to use a lightweight operation which has small computational overhead and is

easy to optimize by the backpropagation. Hence, it is challenging to restrict the behavior of

the hidden layers of the graph convolutional neural network.

To address the aforementioned issues, in this chapter, we propose a novel CRF layer

to regularize the standard graph convolutional neural network to preserve the similarity
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(a) Standard Graph Convolutional
Neural Network

(b) Graph Convolutional Neural Net-
work with CRF Layer

Figure 13: The comparison between the standard graph convolutional neural network and

that with the CRF layer. With the proposed CRF layer, the output features are expected

to preserve the similarity better than those of the standard GCN.
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relationship. Specifically, we resort to the CRF model to restrict the hidden feature of the

graph convolutional layer. Then, we find that the solution of the CRF model can be viewed

as an individual layer to encourage similar nodes to have similar hidden representations. As

shown in Figure 13, this novel CRF layer can be inserted into standard graph convolutional

neural networks to regularize the output of the convolutional operation. Furthermore, the

proposed CRF layer is easy to compute and optimize. Thus, it is an efficient regularization

layer to regularize the behavior of the hidden layers of graph convolutional neural networks.

At last, we summarize the contribution of this chapter as follows:

• We propose a novel CRF layer for graph convolutional neural networks to encourage

similar nodes to have similar hidden features.

• The proposed CRF layer is easy to compute and optimize. It can be inserted into existing

graph convolutional neural networks easily.

• Extensive experimental results have verified the effectiveness of our proposed CRF layer.

6.2 Related Work

In this section, we will review related works about existing graph convolutional neural

networks.

Recently, deep learning for the graph data has attracted increasing attention. A wide va-

riety of methods [23, 3, 70, 35, 11, 20, 48, 25, 27, 30] have been proposed for this task. Among

them, the graph convolutional neural network becomes more and more popular. Essentially,

it is to conduct the convolutional operation on the non-Euclidean graph data. Compared

with the regular convolutional neural network, there exists a challenge since different nodes

in the graph have different size of the neighborhood while the regular convolutional operation

requires a fixed-size neighborhood for each node. To address this issue, different approaches

[23, 3, 70, 35, 11, 20, 48, 40, 2, 102, 50, 16] have been proposed. In terms of how to per-

form convolution, existing works can be categorized into two classes: spatial approaches and

spectral approaches.
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Spatial approaches [23, 3, 70, 35] conduct convolution directly on the graph. Recall that

the regular convolution requires that the size of the neighborhood is fixed and nodes in the

neighborhood are ordered. However, different nodes in a graph usually have different size of

neighborhoods and have no ordering information. Thus, the goal of spatial approaches is to

construct a fixed-size and ordered neighborhood to conduct the generic convolutional oper-

ation. For instance, [70] first selects a fixed-size sequence of nodes and then constructs the

desired neighborhood from this sequence. As a result, the standard convolutional operation

can be performed on this fixed-size neighborhood. [3] proposes a parametric construction

method to obtain the neighborhood. [35] introduces an inductive method which randomly

selects a fixed-size neighborhood and then aggregates the feature of these nodes in a specific

manner.

Unlike spatial approaches, spectral approaches [11, 20, 48] try to perform the convolu-

tional operation in the spectral domain rather than the spatial domain. In this way, spectral

approaches do not require to explicitly construct the fixed-size neighborhood. For instance,

[11] defines the convolution in the Fourier domain which can be done in the eigenspace of

the graph Laplacian. However, the computational overhead is large due to the eigendecom-

position. To address this issue, [20] proposes the fast localized spectral filtering for graph

convolutional neural networks. Specifically, this method resorts to the Chebyshev expansion

of the graph Laplacian to avoid the eigendecomposition. Thus, it has the same linear compu-

tational complexity as the standard CNN. Later, [48] further simplifies the spectral approach.

In detail, [48] proposes to restrict the filters to perform only on the 1-hop neighboring nodes.

In this way, it only needs to aggregates the features of these neighboring nodes, which is

efficient compared with previous works. Then, graph convolutional neural networks become

more and more popular and widely used for a wide variety of tasks. Recently, [85] proposes

the graph attention network (GAT) which applies the attention mechanism to graph convo-

lutional neural networks. Specifically, compared with standard graph convolutional neural

network which aggregates features of neighboring nodes uniformly, GAT assigns different

weights according to the importance of the neighboring node to the reference node.

Although the aforementioned methods can apply the convolutional operation to the

graph data, yet they share a common drawback. Unlike the standard data, the graph data
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possess the connectivity information between different nodes. This connectivity information

encodes the similarity relationship. In particular, two connected nodes indicate that they are

similar, while disconnected nodes imply the dissimilarity between them. Although existing

graph convolutional neural networks can utilize this kind of information when conducting

the convolutional operation, yet they cannot guarantee the obtained new features from the

convolutional operation satisfy the similarity constraint. Thus, if the new features violate

the implicit constraint, the learned features will degenerate downstream tasks. All in all,

it is important and necessary to enforce the learned new features to preserve the similarity

relationship.

In fact, to deal with the similarity relationship, various works [2, 39, 75] have been

proposed. For instance, the graph regularization method [2, 39] is a widely used approach

to restrict the new features to preserve the similarity. This method has been successfully

used for conventional machine learning models, such as manifold learning [39]. However,

this method requires the expensive eigendecomposition of the graph Laplacian. Thus, it is

not efficient for large-scale graphs. In addition, to handle the similarity relationship, the

conditional random field (CRF) method is another potential choice. CRF is a probabilistic

graphical model which can model the pairwise relationship. It is first proposed in [53] for

predicting labels of the sequential data. After that, it has been applied to different tasks

to encourage similar data points to have similar predictions. For instance, in the image

segmentation task [17], CRF is used to refine the coarse pixel-level prediction by exploring

the relationship between each pixel and their contexts. Recently, CRF is also applied to

the information retrieval task [15] by modeling the pairwise similarity between the query

data point and the gallery data point. Besides, a contemporary work, Conditional Graph

Neural Field (CGNF) [60], also applies CRF to the graph convolutional neural network. In

particular, CGNF utilizes CRF to exploit the correlation of node labels like the conventional

CRF model [53, 17]. Conversely, our method does not use node labels in the CRF part.

Thus, our method is totally different from CGNF.
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6.3 Preliminary Knowledge

In this section, we will provide some preliminary knowledge about the conditional random

field which is important for our proposed method.

Conditional random field (CRF) is a probabilistic graphical model, which is first proposed

in [53] for predicting labels of the sequential data. Later, CRF is introduced to different

tasks for structured prediction, such as image segmentation [17], information retrieval [15].

Essentially, CRF is capable of modeling the pairwise relationship between the reference data

point and its context to refine the final prediction. Formally, given the input data xi, CRF

aims at predicting yi by maximizing the conditional probability as follows:

P (yi|xi) =
1

Z(xi)
exp(−E(yi|xi)) , (6.1)

where Z(xi) denotes the partition function which serves as the normalization factor, E(yi|xi)

represents the energy function. Here, the definition of yi depends on the specific task. For

instance, in the image segmentation task, yi represents the label for each pixel. In our task,

yi denotes the new representation.

As for the energy function, it includes two components: the unary energy component

and the pairwise energy component. The unary energy function gives the prediction for

each individual data point. The pairwise energy function aims at capturing the correlation

between the individual data point and its context to regularize the unary energy function. As

a result, the prediction for each individual data point can benefit from its own information

and its neighboring data points’ information. Formally, the energy function is defined as

follows:

E(yi|xi) = ψu(yi, xi) +
∑
j

ψp(yi, yj, xi, xj) , (6.2)

where ψu(yi, xi) denotes the unary energy function while ψp(yi, yj, xi, xj) represents the pair-

wise energy function. For instance, in the image segmentation task, the unary energy function

predicts the label for individual pixels in terms of the property of each pixel. The pairwise

energy function provides the context information to encourage similar pixels to have similar

label assignment. Finally, the mean-field approximation method is usually used to optimize

the CRF model.
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Inspired by its capability of capturing the pairwise relationship between the reference

data point and its context, we will propose to apply CRF to the graph convolutional neural

network to preserve the similarity in hidden layers.

6.4 Methodology

Assume the input graph G = {A,X} includes the adjacency matrix A ∈ Rn×n and the

node feature matrix X ∈ Rn×d where n denotes the number of nodes and d represents the

dimension of node features. Specifically, A = [aij] ∈ Rn×n gives the connectivity information

between different nodes where aij > 0 represents there exists an edge between node i and

node j, otherwise aij = 0. Based on these terminologies, the standard graph convolutional

neural network (GCN) proposed in [48] can be represented as follows:

H(l+1) = σ(ÂH(l)W (l+1)) , (6.3)

where H(l) denotes the representation of the graph nodes in the l-th layer, W (l) stands for

the model parameter in the l-th layer, σ(·) represents the non-linear activation function.

Additionally, Â represents the normalized graph adjacency matrix Â = D̃−
1
2 ÃD̃−

1
2 . Here,

Ã = A+ I where I is an identity matrix, and D̃ is a diagonal matrix with diagonal elements

being D̃ii =
∑n

j=1 Ãij.

Intuitively, GCN in Eq. (6.3) first aggregates features of neighboring nodes in terms of

the adjacency matrix by using ÂH(l) and then conducts the rest transformation. For the

graph data, nodes are connected by edges. These edges carry the similarity relationship

between different nodes. Thus, to learn effective representations H(l+1) from GCN, it is

necessary to enforce H(l+1) to preserve the similarity relationship. Otherwise, H(l+1) cannot

fully represent the input graph data, degenerating the downstream task. To address this

issue, we will propose a novel method to restrict the behavior of H(l+1).
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6.4.1 CRF Layer

In this section, following [48, 85], we consider the following problem whose objective

function is defined as follows:

J(W ;X, Â, Y ) = L(Y ;F (X, Â,W )) , (6.4)

where Y denotes the label of nodes for supervised tasks and the reconstruction of the graph

for unsupervised task, W represents the all model parameters of graph convolutional neural

networks, F (·, ·, ·) indicates the graph convolutional neural network mapping, and L(·, ·)

stands for the loss function. Following [13], the objective function of graph convolutional

neural networks can be reformulated as the following one with the quadratic penalty:

J(W ;X, Â, Y ) = L(Y ;FL(H(L−1), Â,W (L))) +
L−1∑
l=1

γ

2
‖H(l) − Fl(H(l−1), Â,W (l))‖2F , (6.5)

where γ > 0, L represents the total number of layers, and Fl(·, ·, ·) denotes the mapping in

the l-the layer. For the GCN defined in Eq. (6.3), Fl(·, ·, ·) is σ(ÂH(l−1)W (l)). In terms of

[97], under mild conditions, the solution of Eq. (6.5) converges to that of Eq. (6.4) when

γ → ∞. From this new formulation, it is easy to find that there is no any constraint for

H(l) to enforce it to satisfy the similarity constraint that a graph possesses. To address this

problem, the high-level idea of our method is to enforce a regularization for H(l) to make it

satisfy the similarity relationship. Specifically, our general objective function is defined as

follows:

J(W ;X, Â, Y ) = L(Y ;FL(H(L−1), Â,W (L))) +
L−1∑
l=1

γ

2
‖H(l) − Fl(H(l−1), Â,W (l))‖2F +R(H(l)) ,

(6.6)

where R(·) denotes a regularization function for implementing the similarity constraint. In

fact, there are numerous works for such kind of regularization in the traditional machine

learning and data mining models. However, since our purpose is to restrict the behavior of

the layers of graph convolutional neural networks, there exist several challenges:

• The regularization term should be easy to compute. It cannot have expensive computa-

tion.
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• The regularization term should be friendly to the backpropagation strategy. Then, the

neural network can still be optimized in the backpropagation way.

• The regularization term should be easy to plug into existing graph convolutional neural

networks.

All in all, it is critical and challenging to get an efficient and effective regularization term.

To address the aforementioned challenges, we resort to the conditional random field

(CRF) which can capture the pairwise relationship between different nodes. Specifically, the

node representation H(l) is viewed as random variables {H(l)
i· } where H

(l)
i· represents the i-th

row of H(l), corresponding to the representation of node i. These random variables are con-

ditioned on {B(l)
i· } where B

(l)
i· = Fl(H

(l−1)
i· , Â,W (l)) stands for the preliminary representation

of node i obtained from the convolutional operation. Based on these terminologies, we have

the following CRF model:

P (H(l)|B(l)) =
1

Z(B(l))
exp(−E(H(l)|B(l))) , (6.7)

where Z(·) serves as the normalization factor and E(·) is the energy function. As we discussed

earlier, the energy function includes two components: the unary energy component and the

pairwise energy component. In this chapter, the unary function is defined as follows:

ψu(H
(l)
i· , B

(l)
i· ) = ‖H(l)

i· −B
(l)
i· ‖22 . (6.8)

In fact, minimizing this unary function will enforce the node representation H
(l)
i· to be close

to that obtained from the convolutional operation. To capture the similarity relationship

between different nodes, the pairwise function is defined as follows:

ψp(H
(l)
i· , H

(l)
j· , B

(l)
i· , B

(l)
j· ) = gij‖H(l)

i· −H
(l)
j· ‖22 , (6.9)

where gij denotes the similarity between node i and node j. Intuitively, when gij is large,

minimizing ψp(H
(l)
i· , H

(l)
j· , B

(l)
i· , B

(l)
j· ) will enforce H

(l)
i· to be close to H

(l)
j· . Otherwise, it will

push H
(l)
i· away from H

(l)
j· . As a result, similar nodes will be encouraged to have similar

representations.
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Finally, the energy function for node i is defined as follows:

E(H
(l)
i· |B

(l)
i· ) = α‖H(l)

i· −B
(l)
i· ‖22 + β

∑
j∈Ni

gij‖H(l)
i· −H

(l)
j· ‖22 , (6.10)

where Ni denotes the neighborhood of node i. Here, we introduce two parameters α > 0 and

β > 0 to adjust the importance of the two energy functions. Obviously, the energy function

defined in Eq. (6.10) will enforce the new representation in the l-th layer to be close to

that obtained from the convolutional operation and encourage similar nodes to have similar

new representations. In addition, comparing with Eq. (6.6), the pairwise energy function in

Eq. (6.10) actually acts as the regularization to encourage the new representations H(l) to

preserve the similarity relationship.

After obtaining the energy function, we need to derive a tractable and efficient updating

rule for the new representations H(l). Here, we resort to the mean-field approximation

method. The basic idea is to find a simple distribution to approximate P (H(l)|B(l)) rather

than computing P (H(l)|B(l)) exactly. Specifically, we employ the simple distribution Q(H(l))

to approximate P (H(l)|B(l)). This simple distribution can be represented by the product of

independent marginal distributions as Q(H(l)) =
∏n

i=1Qi(H
(l)
i· ). Then, we minimize the KL

divergence between the original distribution P (H(l)|B(l)) and the simple distribution Q(H(l))

as follows:

min KL(Q(H(l))||P (H(l)|B(l))) . (6.11)

As a result, we can get the optimal distribution Q∗i (H
(l)
i· ) as follows:

lnQ∗i (H
(l)
i· ) = Ej 6=i[lnP (H

(l)
j· |B

(l)
j· )] + const . (6.12)

According to Eq. (6.7) and Eq. (6.10), we can get

Q∗i (H
(l)
i· ) ∼ exp

(
α‖H(l)

i· −B
(l)
i· ‖22 + β

∑
j∈Ni

gij‖H(l)
i· −H

(l)
j· ‖22

)
, (6.13)

which indicates that Q∗i (H
(l)
i· ) is a Gaussian function. As a result, the maximum probability

is achieved at the expectation of Q∗i (H
(l)
i· ). Then, by computing its expectation, we have the

updating rule for the new representations H(l) as follows:

(H
(l)
i· )k+1 =

αB
(l)
i· + β

∑
j∈Ni gij(H

(l)
j· )k

α + β
∑

j∈Ni gij
. (6.14)
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Note that it is an iterative updating rule and (H
(l)
i· )k denotes H

(l)
i· in the k-th iteration. After

K iterations, we set H
(l)
i· = (H

(l)
i· )K , which is the final node representations in the l-th layer.

From Eq. (6.14), it can be seen that H
(l)
i· depends on not only the representation B

(l)
i· which

is obtained from the convolutional operation but also the representation of its neighboring

nodes. Especially, when the coefficient gij is large, which means that node j is more similar

with node i, it will contribute more to H
(l)
i· . In this way, similar nodes will have similar

representations.

In Eq. (6.14), we need to compute the coefficient gij between two nodes. In fact, there

are a couple of choices to implement it. In this chapter, we employ two approaches, which

is shown as follows.

Gaussian The most straightforward approach is to use the Gaussian function to compute

gij as follows:

gij = exp
( B

(l)
j· B

(l)T
i·

‖B(l)
j· ‖2‖B

(l)
i· ‖2

/σ2
)
, (6.15)

where σ is set as a learnable parameter in this chapter. Note that B
(l)
i· is a row vector.

Intuitively, a large inner product implies a large similarity. Then, node j will contribute

more to the representation of node i. After obtaining gij, it is easy to update H
(l)
i· without

expensive operations.

Neural Network Another choice to compute gij is the flexible neural network, which

has a larger capability than Gaussian function to deal with the similarity between node i

and node j. Specifically, we employ a one-layer MLP to compute it as follows:

gij =
exp(sij)∑
k∈Ni exp(sik)

, (6.16)

where

sij = (WθB
(l)T
i· )T (WβB

(l)T
j· ) . (6.17)

Here, Wθ and Wβ are the weights of neural networks. All these weights are learnable param-

eters which can be optimized with those of standard graph convolutional neural networks.

Finally, Eq. (6.14) can serve as an individual layer to plug into the existing graph convo-

lutional neural networks. Specifically, as shown in Figure 13, for the GCN proposed in [48],
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we may have the following layer configuration:

Conv Layer : B(l) = σ(ÂH(l−1)W (l)) ,

CRF Layer : (H
(l)
i· )k+1 =

αB
(l)
i· + β

∑
j∈Ni gij(H

(l)
j· )k

α + β
∑

j∈Ni gij
.

(6.18)

Here, we call Eq. (6.14) as the CRF layer. In addition, for the CRF layer, we initialize

(H
(l)
i· )0 = B

(l)
i· and set the number of iterations to 2 in our experiment.

Obviously, with our proposed CRF layer, similar nodes will be encouraged to have similar

representations. Consequently, the similarity relationship can be preserved in the layers of

graph convolutional neural networks. In addition, it can also be find that it is friendly to

back propagation. Thus, we can still use the backpropagation strategy to optimize this kind

of neural networks. At last, we summarize our method in Algorithm 4.

Algorithm 4 Graph convolutional neural network with CRF layer.

Require: the number of iterations K

Ensure: (H(l))K

1: Graph Convolutional Layer

B(l) = σ(ÂH(l−1)W (l))

2: CRF Layer

3: for k = 0, 1, · · · , K − 1 do

4:

(H
(l)
i· )k+1 =

αB
(l)
i· + β

∑
j∈Ni gij(H

(l)
j· )k

α + β
∑

j∈Ni gij

5: end for

6.4.2 Discussion

Recently, [85] applies the attention mechanism to the graph convolutional neural network.

That is the graph attention network (GAT) whose convolutional layer is defined as follows:

H
(l+1)
i· = σ(

∑
j∈Ni

αijH
(l)
j· W

(l+1)) , (6.19)
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Table 21: Descriptions of benchmark datasets.

Dataset # Nodes #Edges #Features #Classes

Citeseer 3,327 4,732 3,703 6

Cora 2,708 5,429 1,433 7

Pubmed 19,717 44,338 500 3

where H
(l+1)
i· denotes the feature of the i-th node, αij represents the attention coefficient

between the i-th node and the j-th node. In this way, if αij is large, which indicates that

the j-th node is an important neighbor to the i-th node, it will contribute more to the new

feature of the i-th node.

In our proposed CRF layer, there is also a coefficient gij which represents the coefficient

between two nodes. However, the mechanism of our method is different from that of GAT.

Specifically, although both GAT and our method aggregate neighboring nodes in terms of the

similarity between different nodes, yet GAT acts before the non-linear activation function

while our method happens after the non-linear activation function. Since the non-linear

function cannot guarantee to preserve the structure of node distributions, the similarity may

not be preserved after the convolutional operation. On the contrary, our method acts on

the output of the non-linear activation function directly. Thus, it can guarantee the output

of the convolutional layer to preserve the similarity relationship. In addition, our method is

an iterative approach which can be dynamically affected by the updating of the neighboring

nodes. Thus, our method is more flexible.

6.5 Experiments

In this section, we will conduct extensive experiments to verify the performance of pro-

posed CRF layer.
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6.5.1 Datasets

The datasets used in our experiments are same as [48, 85]. Specifically, there are three

datasets: Cora, Citeseer, and Pubmed [79]. The nodes of these networks are documents

from different topics. The citation between documents serves as the edges. The content of

documents corresponds to node features. Here, node features are represented by the bag-of-

words of the corresponding document. The details about these documents are described as

follows:

• Citeseer is a research paper citation network. There are 3,327 papers from 6 topics. The

total number of citations is 4,732. The dimension of node features is 3,703.

• Cora is also a citation network. It has 2,708 documents from 7 topics. Each document

has 1,433 features. The number of citations between different documents is 5,429.

• Pubmed is another citation network. It consists of 19,717 documents from 3 classes.

Each document has 500 features.

The statistics of these datasets are summarized in Table 21.

In our experiments, we conduct three tasks to evaluate the performance of our proposed

method. They are unsupervised graph auto-encoder, semi-supervised node classification and

supervised node classification. As for the unsupervised graph auto-encoder, we use the link

prediction task to evaluate the performance of our method. Following [49], 5% and 10%

edges are randomly selected as the validation and test sets. The rest edges are used for the

training set. As for the semi-supervised task, following [48, 85], 20 nodes per class are labeled

as the training set. 500 nodes are selected as the validation set to conduct model selection.

After that, the trained model is evaluated on the testing set which has 1,000 nodes. As

for the supervised task, following [16], we keep the same validation and testing sets as the

semi-supervised task. The rest nodes are all labeled as the training set.

6.5.2 Experiment Settings

For the unsupervised task, we apply our proposed CRF layer to graph auto-encoder

(GAE) [49], and we call it CRF-GAE. Following [49], there are two layers in GAE where the
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(a) GCN (b) CRF-GCN-Gaussian (c) CRF-GCN-NN

Figure 14: The visualization of features from the last layer for Citeseer.

dimension of first graph convolutional layer is 32 and that of the second graph convolutional

layer is 16. Here, we insert our CRF layer after the first layer. Then, we keep the same

training protocol as GAE to learn model parameters. In particular, we use Adam [47] with

the learning rate being 0.1 to train CRF-GAE for 200 epochs. To evaluate the performance

of CRF-GAE, following [49], we compare it with spectral clustering (SC), DeepWalk [72],

and the regular GAE.

For the semi-supervised task, we compare it with various state-of-the-art methods. Fol-

lowing [85], the following semi-superivsed methods are employed as the baseline methods.

They are Label Propagation (LP) [101], Semi-supervised Embedding (SemiEmb) [91], Man-

ifold Regularization (ManiReg) [6], DeepWalk [72], Iterative Classification Algorithm (ICA)

[58], Planetoid [93], the graph convolutional neural network with Chebyshev filters [20], and

the MoNet method [68].

To show the performance of the CRF layer on the semi-supervised task, we apply it to

two existing graph convolutional neural networks, including GCN [48] and GAT [85]. Here,

we call them CRF-GCN and CRF-GAT. As for CRF-GCN, we employ the same network

configuration as GCN. Specifically, there are two convolutional layers. The dimension of the

hidden layer is 16. In our experiments, we insert the CRF layer after the first convolutional

layer. All the weights are initialized with the Glorot method [31]. Additionally, we apply

dropout [81] to all convolutional layers and the dropout ratio is set to 0.5. Furthermore, the
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weight decay whose parameter is 0.0005 is employed to regularize model parameters. The

Adam [47] optimizer with a learning rate of 0.01 is utilized to optimize CRF-GCN.

As for CRF-GAT, there are also two convolutional layers. Similarly, we insert the CRF

layer after the first convolutional layer. The other configuration is almost same with that

of the original GAT. Specifically, for Cora and Citeseer, the first convolutional layer has

8 attention heads, each of whom has 8 features. The second convolutional layer has only

one attention head and the number of its features equals the number of classes. Similar

with CRF-GCN, the weight decay with λ = 0.0005 is employed to regularize the weights

of the neural network. Additionally, the dropout with drop rate being 0.6 is applied to

all convolutional layers and the normalized attention coefficients. For Pubmed, there are 8

attention heads at the second convolutional layer. In addition, the weight decay is increased

to λ = 0.001. At last, all models are optimized by Adam [47] optimizer.

Table 22: The performance of link prediction.

Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC 84.6 88.5 80.5 85.0 84.2 87.8

DeepWalk 83.1 85.0 80.5 83.6 84.4 84.1

GAE 91.0 92.0 89.5 89.9 96.4 96.5

CRF-GAE-Gaussian (ours) 92.08 93.14 90.53 91.35 96.53 96.61

CRF-GAE-NN (ours) 92.25 93.04 90.90 91.80 96.51 96.63

6.5.3 Results and Analysis

6.5.3.1 Unsupervised Task In Table 22, we report the performance of link prediction.

Here, we use AUC (area under the ROC curve) and AP (average precision) to measure

the performance. The larger value means better performance. Following [49], we run the

experiments for 10 times and report the mean value. From Table 22, it can be seen that,
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Table 23: The accuracy of semi-supervised node classification. Our results are marked in

bold.

Methods Cora Citeseer Pubmed

ManiReg [6] 0.595 0.601 0.707

SemiEmb [91] 0.590 0.596 0.717

LP [101] 0.680 0.453 0.630

DeepWalk [72] 0.672 0.432 0.653

ICA [58] 0.751 0.691 0.739

Planetoid [93] 0.757 0.691 0.739

Chebyshev [20] 0.812 0.698 0.744

MoNet [68] 0.817 - 0.788

GCN [48] 0.815 0.703 0.790

CRF-GCN-Gaussian (ours) 0.828 0.718 0.790

CRF-GCN-NN (ours) 0.825 0.721 0.792

GCN-64 0.814 0.709 0.790

GAT [85] 0.830 0.725 0.790

CRF-GAT-Gaussian (ours) 0.846 0.731 0.791

CRF-GAT-NN (ours) 0.841 0.726 0.790

equipped with our proposed CRF layer, both CRF-GAE-Gaussian and CRF-GAE-NN out-

perform the regular GAE model, which confirms the effectiveness of our proposed method

for the unsupervised task.

6.5.3.2 Semi-supervised Task In Table 23, we report the classification accuracy of the

semi-supervised task. Here, the results of state-of-the-art methods are extracted from the

original GAT [85]. In addition, CRF-GCN-Gaussian denotes that gij is computed by using

the Gaussian function while CRF-GCN-NN denotes that it is computed by using the neural
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(a) GCN (b) Input of the CRF layer (c) Output of the CRF layer

Figure 15: The visualization of features from the hidden layer of GCN and CRF-GCN-

Gaussian for Citeseer.

network. So does CRF-GAT. Note that since the dimension of the hidden layer of GAT is

64, we also report the result of GCN-64 which has 64 hidden features either.

From Table 23, it can be seen that the proposed CRF regularization layer does be helpful

to improve the performance of existing graph convolutional neural networks. Specifically,

both CRF-GCN-Gaussian and CRF-GCN-NN can beat the counterpart GCN for almost

all datasets. For instance, CRF-GCN-NN can improve upon the standard GCN by 1.0%

and 1.8% for Cora and Citeseer, respectively, which indicates that preserving the similarity

relationship is beneficial. As for CRF-GAT-Gaussian, it improves upon the standard GAT

by 1.6% and 0.6% for Cora and Citeseer, respectively. This further verifies the effectiveness

of our proposed method.

To further show the effectiveness of our proposed method, we visualize the learned fea-

tures in the last layer of GCN for Citeseer dataset. Specifically, in Figure 14. we plot the

learned features of the testing set by using T-SNE [62]. It can be seen that the learned

features from our proposed methods have a more compact structure than those learned from

the standard GCN. In other words, the similarity relationship does be preserved better than

the standard GCN. Thus, our method has a better classification performance.

Furthermore, to show the effect of the CRF layer, we visualize the hidden features of the

CRF layer. Specifically, in Figure 15(a), we show the output feature of the first convolutional

layer of the standard GCN for Citeseer dataset. In Figure 15(b) and Figure 15(c), we visualize
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the input and output feature of the CRF layer which follows the first convolutional layer of

our proposed CRF-GCN-Gaussian, respectively. Compared Figure 15(b) with Figure 15(c),

it can be seen that the output feature of the CRF layer have a more compact structure than

the input. In other words, the CRF layer makes the features more compact to preserve the

similarity. All these results have verified the effectiveness of our proposed method.

Figure 16: The semi-supervised classification accuracy of different MLP methods with dif-

ferent layers for Cora.

At last, to comprehensively verify the effectiveness of the CRF layer, we apply it to the

standard fully connected neural networks. In detail, we insert the CRF layer after each

fully connected layer other than the last layer. Here, we call them CRF-MLP-Gaussian

and CRF-MLP-NN. In detail, the dimension of the hidden layer is set to 64. The training

configuration, such as learning rate, weight decay parameter, dropout ratio, is same with

CRF-GCN. In Figure 16, we demonstrate the testing accuracy of the semi-supervised classi-

fication for Cora. Here, we show the result of MLP with different layers. It can be seen that

CRF-MLP-Gaussian and CRF-MLP-NN can outperform the standard MLP consistently and

significantly. IN particular, the standard MLP performs worse when increasing the number

of layers while our methods do not. The possible reason is that the hidden layer of the stan-

dard MLP cannot preserve the similarity. As a result, the learned representations violate

the similarity relationship more severely when stacking more layers. On the contrary, due

to the regularization of the CRF layer, our methods perform well when stacking multiple
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layers. Thus, based on the aforementioned observations, we can conclude that the proposed

CRF layer can preserve the similarity relationship between different nodes effectively.

Figure 17: The supervised classification accuracy of different supervised GCN methods.

6.5.3.3 Supervised Task To further demonstrate the performance of our proposed

method, we conduct the supervised node classification task as [16]. Specifically, we also

insert the CRF layer after the first convolutional layer of GCN. Additionally, in this task,

we employ the residual connection in the CRF layer as follows:

Ĥ(l) = (H(l))K +B(l) , (6.20)

where (H(l))K is the last iteration of the CRF layer.

Similar with the semi-supervised task, we use the early stop strategy to terminate the

training procedure when the loss function is not further decreased. The classification result

is reported in Figure 17. It can be seen that our proposed methods outperform the standard

GCN for almost all cases, which demonstrates the effectiveness of our proposed method.

Furthermore, we also apply the proposed CRF layer to fully connected neural networks for

the supervised task. Following the configuration of the semi-supervised task, the dimension

of hidden layers is also set to 64. In this experiment, there is only one hidden layer and the

proposed CRF layer is inserted after the hidden layer. The classification result is shown in
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Table 24: The supervised classification accuracy of MLP.

Dataset Cora Citeseer Pubmed

MLP 0.733 0.757 0.863

CRF-MLP-Gaussian 0.873 0.799 0.886

CRF-MLP-NN 0.852 0.783 0.884

Table 25: The semi-supervised classification accuracy of Cora dataset. The “const” variant

represents α = 1 and β = 1.

Dataset Cora Citeseer Pubmed

CRF-GCN-Gaussian 0.828 0.718 0.790

CRF-GCN-Gaussian-const 0.813 0.698 0.791

CRF-GCN-NN 0.825 0.721 0.792

CRF-GCN-NN-const 0.811 0.700 0.788

Table 24. It can be seen that MLP with the proposed CRF layer significantly outperforms

the standard MLP. The underlying reason is that the proposed CRF layer can preserve the

similarity relationship in the hidden layer. As a result, the learned representation for nodes

is discriminative, benefiting the classification task.

6.5.3.4 Ablation Study In the proposed CRF layer, there are two important param-

eters: α and β, which are used to adjust the importance of B(l) and H(l). In this chapter,

we set them as the learnable parameters. To show the importance of these parameters, we

compare it with the variants: CRF-GCN-Gaussian-const and CRF-GCN-NN-const, which

set α = 1 and β = 1. In Table 25, we report the semi-supervised classification accuracy.

It can be seen that these two variants degrade the performance significantly for almost all

cases. Thus, it is necessary to learn these two parameters automatically.
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6.6 Conclusion

In this chapter, we propose a novel CRF layer for the graph convolutional neural network.

Specifically, by resorting to the CRF model for the hidden layers of graph convolutional

neural networks to explore the similarity relationship, we obtain an efficient CRF layer,

which can encourage the hidden features to preserve the similarity between different nodes.

In addition, the proposed CRF layer is easy to compute and optimize so that it can be

inserted into existing graph convolutional neural networks to improve their performance.

The extensive experimental results have verified the effectiveness of our proposed method.
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7.0 Conclusion

Unsupervised feature learning on graphs is an important and challenging task. It has

attracted a surge of attention in recent years with the emergence of large-scale graph data.

In this thesis, we study how to learn effective node features with deep neural networks. We

have deeply incorporated the domain knowledge into the design of new deep neural networks

to address the challenging issues in this task.

Essentially, the task of feature learning on graphs can be decoupled into discovering the

proximity in the original space and preserving it in the low-dimensional space. Only with

the well-discovered proximity can we preserve it in the low-dimensional space. To discover

the underlying proximity, we have proposed a new proximity generative adversarial network.

It can generate the triplet of nodes to approximate the underlying true proximity so that

the underlying proximity can be discovered and then preserved in the low-dimensional node

representations. The extensive experiments on node classification, community detection,

and network visualization validate the effectiveness of our new deep neural networks in

discovering proximities.

For discovering the proximity, we also developed a new self-paced network embedding

method to dynamically select the negative node for a given anchor node to push together

similar nodes and push away dissimilar nodes in the low-dimensional space. Especially, our

ASeedNE method, which is based on the generative adversarial network, has large model

capacity to select more informative nodes to learn better node representations. This new

neural network also shows superior performance on various tasks, such as link prediction and

network visualization.

Attributed networks bring more challenges to feature learning on graphs due to the cou-

pling of topological structure and node attributes. We have proposed a new deep auto-

encoder neural network to capture and preserve various proximities in both topological

structure and node attributes. Additionally, the learned node representation can encode

the consistent and complementary information from both the topological structure and node

attributes. Extensive experiments have verified the effectiveness of our proposed approach.
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At last, we have studied how to couple graph neural networks with graphical models to

benefit learning node representations. In particular, we have proposed a conditional random

field layer to regularize the hidden layers of graph neural network to preserve the proximity.

This layer is easy to be applied to existing graph neural networks, such as GAE, GCN, GAT.

It is worth noting that our proposed CRF layer does not depend on the label. Thus, it is

friendly for both unsupervised and supervised tasks. To the best of our knowledge, this is

the first work that can couple graphical model and graph neural network in an unsupervised

manner. We believe our work opens a new way to explore these two important techniques.

Extensive experiments on various architectures have confirmed the superior performance of

our proposed new neural networks.
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