
Improving Performance and Endurance for Crossbar

Resistive Memory

by

Wen Wen

B.E., Southeast University, 2011

M.E., Southeast University, 2014

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Wen Wen

It was defended on

June 19, 2020

and approved by

Jun Yang, Ph.D., Professor, Department of Electrical and Computer Engineering

Youtao Zhang, Ph.D., Professor, Department of Computer Science

Natasa Miskov-Zivanov, Ph.D., Assistant Professor, Department of Electrical and

Computer Engineering

Jingtong Hu, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Feng Xiong, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Daqing He, Ph.D., Professor, Department of Informatics and Networked Systems

Dissertation Advisors: Jun Yang, Ph.D., Professor, Department of Electrical and

Computer Engineering,

Youtao Zhang, Ph.D., Professor, Department of Computer Science

ii

Copyright © by Wen Wen

2020

iii

Improving Performance and Endurance for Crossbar Resistive Memory

Wen Wen, PhD

University of Pittsburgh, 2020

Resistive Memory (ReRAM) has emerged as a promising non-volatile memory technology

that may replace a signi�cant portion of DRAM in future computer systems. When adopting

crossbar architecture, ReRAM cell can achieve the smallest theoretical size in fabrication,

ideally for constructing dense memory with large capacity. However, crossbar cell structure

su�ers from severe performance and endurance degradations, which come from large voltage

drops on long wires.

In this dissertation, I �rst study the correlation between the ReRAM cell switching la-

tency and the number of cells in low resistant state (LRS) along bitlines, and propose to

dynamically speed up write operations based on bitline data patterns. By leveraging the

intrinsic in-memory processing capability of ReRAM crossbars, a low overhead runtime pro-

�ler that e�ectively tracks the data patterns in di�erent bitlines is proposed. To achieve

further write latency reduction, data compression and row address dependent memory data

layout are employed to reduce the numbers of LRS cells on bitlines. Moreover, two optimiza-

tion techniques are presented to mitigate energy overhead brought by bitline data patterns

tracking.

Second, I propose XWL, a novel table-based wear leveling scheme for ReRAM crossbars

and study the correlation between write endurance and voltage stress in ReRAM crossbars.

By estimating and tracking the e�ective write stress to di�erent rows at runtime, XWL

chooses the ones that are stressed the most to mitigate.

Additionally, two extended scenarios are further examined for the performance and en-

durance issues in neural network accelerators as well as 3D vertical ReRAM (3D-VRAM)

arrays. For the ReRAM crossbar-based accelerators, by exploiting the wearing out mecha-

nism of ReRAM cell, a novel comprehensive framework, ReNEW, is proposed to enhance the

lifetime of the ReRAM crossbar-based accelerators, particularly for neural network training.

To reduce the write latency in 3D-VRAM arrays, a collection of techniques, including an

iv

in-memory data encoding scheme, a data pattern estimator for assessing cell resistance dis-

tributions, and a write time reduction scheme that opportunistically reduces RESET latency

with runtime data patterns, are devised.

v

Table of Contents

Preface . xv

1.0 Introduction . 1

1.1 The Challenges in Deployment of ReRAM Crossbars 1

1.1.1 Write Performance Bottleneck . 1

1.1.2 Limited Write Endurance . 2

1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing . . . 2

1.1.4 Write Performance Issue in 3D Vertical ReRAM 4

1.2 Research Overview . 4

1.3 Contributions . 5

1.3.1 Speeding Up RESET Operation . 5

1.3.2 Improving Write Endurance . 6

1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Ac-

celerators . 7

1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write

Latency Reduction . 8

1.4 Dissertation Organization . 8

2.0 Preliminaries . 10

2.1 ReRAM Cell Structure . 10

2.2 ReRAM Programming . 11

2.3 ReRAM Crossbar Array Structure . 11

2.4 IR Drop Issue . 12

3.0 Prior Art . 15

3.1 Performance of ReRAM Crossbars . 15

3.1.1 Studies on RESET Operation . 15

3.1.2 Data Patterns in ReRAM Crossbars 15

3.1.3 RESET Latency Discrepancy . 16

vi

3.2 Endurance of ReRAM Crossbars . 16

3.2.1 Wear Leveling for Non-volatile Memories 16

3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators . 16

3.2.3 Improving Endurance by Exploiting Stochastic Switching 17

3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars 17

3.3.1 Current Accumulation Feature . 17

3.3.2 Neural Network Computing with ReRAM 18

3.4 Data Encoding for NVM . 18

4.0 Observations . 19

4.1 The Correlation between RESET Latency and the Number of LRS Cells . . 19

4.2 Endurance Variation in ReRAM Crossbars 21

4.2.1 E�ective Write . 22

4.2.2 Design Challenge . 24

5.0 Speeding Up RESET Operation . 25

5.1 Low-Overhead Runtime Pro�ling . 25

5.1.1 An Overview . 25

5.1.2 Design Details of Runtime Pro�ling 27

5.1.3 Determine the RESET Timing . 29

5.1.3.1 Online Pro�ling Operation . 31

5.1.3.2 Write Operation with Optimal RESET Timing 31

5.1.4 Reduce Bitline LRS Cells . 33

5.1.5 Overhead Analysis . 33

5.2 Pro�ling Optimization . 35

5.2.1 Pro�ling Energy Overhead Analysis 35

5.2.2 Selective Pro�ling . 36

5.2.3 Fine-grained Pro�ling . 37

5.3 Experimental Setup . 40

5.3.1 Modeling and Simulation Methodologies 40

5.3.2 Workload Characterization . 40

5.3.3 Schemes for Evaluations . 41

vii

5.4 Evaluation Results and Analysis . 44

5.4.1 Memory Access Latency . 44

5.4.2 System Performance . 45

5.4.3 E�ectiveness of Pro�ling Optimization 47

5.4.4 Memory Energy E�ciency . 48

5.4.5 Sensitivity Study . 50

5.4.5.1 Sensitivity to Number of ADC units. 50

5.4.5.2 Sensitivity to Mat Sizes. 50

5.5 Conclusion . 51

6.0 Improving Write Endurance . 53

6.1 XWL: Wear Leveling for Crossbar ReRAM Memory 53

6.1.1 An Overview . 53

6.1.2 Design Details . 55

6.1.2.1 E�ective and Raw Write . 55

6.1.2.2 Updating Write Tables . 55

6.1.2.3 Address-Remapping Algorithm 56

6.1.2.4 Design Overhead . 59

6.1.3 Process Variation Issue . 59

6.2 Experimental Setup . 59

6.3 Evaluation Results . 61

6.3.1 Endurance Improvement . 61

6.3.2 Performance Overhead . 63

6.4 Conclusion . 64

7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Ac-

celerators . 65

7.1 Background . 65

7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing 65

7.1.2 Neural Network Training . 65

7.2 Motivation . 67

7.2.1 ReRAM Cell Endurance Model . 67

viii

7.2.1.1 Tunneling Gap Distance andRof f =Ron 68

7.2.1.2 FixedRof f =Ron During Programming 69

7.2.1.3 VariableRof f =Ron During Programming 69

7.2.2 ReRAM Stochastic Switching . 70

7.3 Proposed Designs . 72

7.3.1 Training NN with SLC ReRAM . 72

7.3.2 Optimized Programming Order . 74

7.3.3 Shortened RESET operation . 74

7.3.4 Column Group Shift and Update . 77

7.4 Experimental Setup . 78

7.5 Accuracy and Lifetime of ReRAM Crossbars Tradeo� 79

7.6 Lifetime Improvement . 80

7.6.1 Total E�ective Writes . 80

7.6.2 The Maximum Number of E�ective Writes in Worst-case Cell 83

7.6.3 Sensitivity to Switching Probability 84

7.7 Conclusion . 86

8.0 Accelerating 3D Vertical Resistive Memory 87

8.1 Background and Motivation . 87

8.1.1 3D-VRAM Array Architecture . 87

8.1.2 Sneak Current Issue in 3D-VRAM Arrays 87

8.2 Proposed Designs . 88

8.2.1 Data Pattern Optimization . 89

8.2.2 RESET Latency Variation . 90

8.2.3 Data Patterns Estimation . 91

8.2.4 Write Latency Reduction with Safe and Aggressive RESET 94

8.2.4.1 Safe RESET . 96

8.2.4.2 Aggressive RESET . 96

8.2.5 Discussion . 97

8.2.5.1 Other LRS Cells Reduction Schemes 97

8.2.5.2 Overhead . 97

ix

8.3 Experimental Methodologies . 97

8.3.1 3D-VRAM Array Modeling . 97

8.3.2 Con�guration and Simulation . 99

8.3.3 Benchmarks . 100

8.3.4 Compared Schemes . 100

8.4 Evaluation Results and Analysis . 101

8.4.1 Write Latency Reduction . 101

8.4.2 Read Latency Reduction . 102

8.4.3 System Performance Improvement . 102

8.4.4 Dynamic Energy Reduction . 103

8.5 Conclusion . 104

9.0 Conclusions . 106

9.1 Summary of Contributions . 106

9.2 Impacts . 107

9.2.1 Accelerating the Deployment of Crossbar ReRAM as Main Memories . 108

9.2.2 Achieving Larger Improvements with Technology Scaling Down 108

9.2.3 Highlighting the Importance of In-memory Data Patterns to Perfor-

mance and Endurance . 109

9.2.4 Emphasizing Collaborative E�orts from Di�erent Perspectives for Mem-

ory System Design . 109

9.2.5 Advancing the Development in Data Storage and Computing Applica-

tions of Crossbar ReRAM . 110

9.3 Limitations . 110

9.4 Future Research Directions . 111

9.4.1 MLC ReRAM Crossbars . 111

9.4.2 Approximate Computing with ReRAM Crossbars 111

Bibliography . 113

x

List of Tables

1 A brief summary of proposed schemes in the dissertation. 5

2 ReRAM model parameters . 21

3 The tWR (ns) for RESET operation . 30

4 Comparing the pro�ling overhead in one bank 31

5 System con�guration . 42

6 Benchmarks characterization . 43

7 System con�guration . 60

8 Benchmark summary . 61

9 Model accuracy degradation with di�erent switching probabilities. 76

10 Neural networks and datasets. 79

11 Tradeo� between model accuracy loss and precisions of weight data. 81

12 3D-VRAM array model parameters. 98

13 Simulator con�guration. 99

14 Description of benchmarks. 100

xi

List of Figures

1 The ReRAM cell structure and two resistance states. 10

2 ReRAM cell structure and basic (SET/RESET) programming operations. . . 12

3 The three typical ReRAM array structures. 12

4 The IR drop issue in ReRAM crossbar array. 13

5 The sneaky currents during RESET and SET operations. 14

6 Sub�gures (a) to (h) show that the variations of RESET latency and voltage

drop at di�erent LRS cell percentages in bitlines when accessing to di�erent

row address in ReRAM array. The Row Address 0 is the farthest row from

driver, and Row Address 511 is the nearest row to the driver. 20

7 Sub�gures show that the variations of (a) voltage drop on selected cells and

(b) RESET latency and (c) e�ective writes at di�erent LRS cell percentages

in bitlines when accessing to di�erent row address in ReRAM array. The

Row Address Group 0 represents farthest rows from drivers, and Row Address

Group 7 consists of nearest rows to the drivers. 23

8 An overview of the proposed low-overhead runtime pro�ling scheme. 26

9 The pro�ling current vs. LRS cell percentage in 512Ö512 ReRAM crossbar

array. 28

10 The rows with di�erent addresses are mapped to 8 groups with di�erent worst-

case RESET latencies. 30

11 An example of how my proposed online pro�ling works and how to determine

the RESET timing. 32

12 Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat. 34

13 The dynamic energy distribution when adopting the proposed pro�ling technique. 36

14 The scheme of proposed selective pro�ling. 38

15 The scheme of proposed �ne-grained pro�ling. 39

16 The comparison of memory write latency. 44

xii

17 The comparison of memory read latency. 45

18 The performance comparison. The benchmarks are categorized into High,

Medium and Low memory intensity types based on RPKI and WPKI. 46

19 The number of pro�ling operation performed with optimized techniques on

mats (Normalized toPROF). 47

20 The pro�ling energy with optimized techniques (Normalized toPROF). 48

21 The comparison of dynamic energy and Energy-Delay Product (EDP). 49

22 The sensitivity of performance and memory dynamic energy consumption when

using (a) di�erent numbers of ADC units; and (b) di�erent ReRAM mat sizes. 52

23 The basic workow of XWL. 54

24 Pro�ling bitline data pattern for (1) optimized RESET latency and (2) esti-

mating e�ective writes. 57

25 An example of PA to RA address remapping. 59

26 Comparison of normalized endurance. 62

27 Comparison of normalized endurance with di�erent remapping intervals. . . . 62

28 Comparison of data swapping overhead. 63

29 An ReRAM crossbar based dot-product engine. 66

30 Neural network training with weight updates. 67

31 ReRAM cell switching and its resistance. 68

32 The correlation between switching probability and RESET voltage width with

di�erent RESET pulse heights. 71

33 An overview of ReRAM crossbar based accelerator for neural network computing. 73

34 A comparison of the baseline weight update in row-major order and the pro-

posed optimized programming order. 75

35 The precise RESET on MSB columns and shortened RESET on LSB columns. 76

36 The proposed column group shift and update scheme. 77

37 Total e�ective writes comparison for MLP and CNN models. (a) Training with

di�erent epochs until a convergence to the best accuracy. (b) E�ective writes

comparison for the MLP layerFC-784x240among all schemes with the same

number of 84 training epochs. 82

xiii

38 The contribution ratio of shortened RESET timing and optimized program-

ming order techniques for the reduction in e�ective writes with (a) MLP layer

FC-784x240and (b) CNN layer CONV4x64. 83

39 A comparison of the maximum number of e�ective writes in the worst-case

ReRAM cell for (a) MLP layer FC-784x240and (b) CNN layer CONV4x64. . . 84

40 A sensitivity study for ReNEWwith di�erent switching probabilities in MLP

layer FC-784x240: (a) total e�ective writes and accuracy with di�erent training

epochs, (b) total e�ective writes with a same number of training epochs, and

(c) the maximum number of e�ective writes. 85

41 The architecture of a 3D-VRAM array. 88

42 An example of the proposedFlip-n-Store scheme. 89

43 Comparisons of the worst-case (a) RESET voltages and (b) RESET latency

between baseline andFlip-n-Store scheme in di�erent sizes of 3D-VRAM arrays. 90

44 Variations of RESET voltage and latency with LRS percentages in selected

WL (SWL) and unselected WLs (UWLs) in di�erent sizes of 3D-VRAM arrays. 92

45 An example of data pattern estimation for WL planes in a 4Ö4Ö4 3D-VRAM

array. 94

46 An example of proposed write latency reduction scheme (While a safe-RESET

always �nishes in one RESET round, an aggressive RESET may go through

RESET-read-RESET three rounds). 95

47 The write latency reduction comparison. 101

48 The read latency reduction comparison. 102

49 The IPC improvement comparison. 103

50 The dynamic energy reduction comparison. 105

xiv

Preface

Nearing the end of my journey to a Ph.D. degree, I would like to take this opportunity

to thank many fantastic people who I am honored and blessed to work and share my life

with in the past wonderful years. First and foremost, I am sincerely grateful to my advisor

Professor Jun Yang and my co-advisor Professor Youtao Zhang for their guidance, support

and trust. They are the great role model to me as professional, passionate, motivated as well

as creative researchers. I really enjoy all discussions and brainstorming in developing new

ideas with them, and appreciate their patience, advice and tremendous e�orts in helping me

innovate and explore in my research. It has always been my greatest pleasure and fortune

to have them as my advisors.

I would also like to thank Professor Natasa Miskov-Zivanov, Professor Jingtong Hu,

Professor Feng Xiong and Professor Daqing He for serving on my Ph.D. dissertation com-

mittee. Their feedback and comments are very constructive and valuable to me in shaping

this dissertation.

Further, I want to thank all of my lab mates for receiving their continuous support and

help. With them along with me in this journey, I have so many enjoyable and memorable

moments inside and outside research.

Last but not the least, I would like to dedicate this dissertation to my family, and express

my deepest appreciation for their endless love and support. Sincere thanks to my beloved

parents, who brought me up to be a better person and always love me unconditionally.

Special thanks to my wife, who is always by my side and encourages me throughout this

journey.

xv

1.0 Introduction

Due to increasing demand for large capacity memory in modern data-intensive applica-

tions, DRAM, the de factomemory technology for constructing main memory, faces severe

high leakage power, short refreshing interval, low density and yield issues [44]. Recent studies

have proposed to construct future large capacity main memory using emerging non-volatile

memory (NVM) technologies, e.g., PCM (Phase Change Memory) [125, 75, 52, 74, 23],

STT-MRAM (Spin Transfer Torque Magnetic RAM) [50, 37, 108, 1], and ReRAM (Resistive

Memory) [101, 105, 121, 115, 54, 114, 35, 77, 119, 97, 120, 63]. These memory technologies

have good scalability, high density, almost zero low leakage power as well as non-volatility

characteristics.

Among di�erent NVM technologies, ReRAM has become one of the most promising

candidates. ReRAM explores the di�erent resistance states of vertically stacked metal and

oxide layers to store information. Comparing to other NVM technologies, ReRAM has

better write performance than PCM [111, 38] and better density and scalability than STT-

MRAM [37, 65, 96]. When adopting crossbar architecture, ReRAM can achieve the smallest

4F2 planar cell size [105]. Moreover, the intrinsic analog current accumulation feature of

ReRAM crossbars further propels the popularity of studies on this crossbar array structure

for accelerating dot-product calculations between matrices and vectors in neural network

computing.

1.1 The Challenges in Deployment of ReRAM Crossbars

1.1.1 Write Performance Bottleneck

With the bene�ts in density, capacity, non-volatility and small leakage power, however,

ReRAM crossbars su�er from large sneaky currents [124, 33, 105, 114, 43]. When performing

ReRAM accesses, in particular, RESET operations, we cannot ignore the leakage currents

1

owing through half-selected cells on the selected wordline and bitlines. This is because

crossbar arrays, even after adopting diode selectors, cannot completely isolate the to-be-

written cells from other cells on the selected wordline and bitlines. The large sneak currents

not only reduce energy e�ciency, but also cause large IR drop on long wires [82], leading to

degraded performance and operation reliability. With fast technology scaling, the IR drop

issue tends to worsen due to increased wire resistance and array sizes. To ensure operation

reliability, ReRAM write operations conservatively use the worst-case access latency of all

cells in ReRAM arrays, which leads to signi�cant performance degradation and dynamic

energy waste.

1.1.2 Limited Write Endurance

According to [115], ReRAM su�ers from unsatisfactory write endurance. Recent studies

showed that the endurances of ReRAM chips adopting di�erent resistive materials range

from 103 to 109 [102]. Furthermore, prior studies [14, 34, 69] showed that programming

ReRAM cells with longer than necessary pulse length over-SETs or over-RESETs the cor-

responding cells, leading to orders of magnitude degradation in ReRAM cell lifetime [14].

While optimized write strategies [105, 114] write di�erent rows using di�erent write laten-

cies, the rows being close to the write drivers still get stressed more than others. Adopting

traditional wear leveling techniques that evenly distribute writes across all rows in ReRAM

space would become less e�ective | the rows that close to the drivers are approaching their

lifetime while others may still have a lot of endurance to use. Thus, it is important to devise

a wear leveling approach that considers the stress di�erence at runtime.

1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing

In recent years, the neural networks have gained increasing attentions and been success-

fully applied to a wide range of applications [48, 87, 45, 47]. The increasingly growth in the

size of datasets and the number of layers in neural networks help to achieve a better pre-

diction accuracy, but also result in dramatically increased computations and expensive data

movement from o�-chip memory. Conventional CMOS-based general purpose processors

2

such as multi-core CPU [91] and GPGPU [48], or specialized hardware accelerators, such as

FPGA [113] and ASIC designs [15, 41], are intensively studied and proposed with software

and hardware optimizations for neural network applications, however, they still su�er from

the large energy consumption and limited memory bandwidth [16].

To address these issues, resistive memory (ReRAM), with adopting crossbar array struc-

ture, is proposed to implement dot-product calculations by leveraging its analog current

accumulation feature [32, 81, 16, 85, 9, 116]. ReRAM crossbars are able to accelerate neu-

ral networks computation with low energy consumption and minimized data movement [81],

since they have almost zero leakage power and intrinsically support the processing-in-memory

(PIM) computation paradigm.

Though ReRAM crossbar based neural network accelerators own these advantages over

conventional CMOS-based accelerators, due to the limited cell endurance [102, 115, 9, 116],

they su�er from short programming cycles as weight data stored in ReRAM cells are fre-

quently updated during the neural network training. The write endurance of ReRAM chips

can range from 106 to 1012 [72, 69, 9] with adopting various resistive materials and di�erent

programming schemes. On the other hand, training the state-of-the-art deep neural networks

usually demands at least 5 orders of magnitudes of weight updates, which essentially leads to

frequent ReRAM cell programming. Therefore, enhancing the lifetime of ReRAM crossbars

is the key to facilitate its widespread adoption as hardware accelerators for neural network

training.

Conventional wear-leveling techniques for NVM (non-volatile memory) based main mem-

ory have been well-studied, mostly with a focus on evenly distributing write requests across

pages [97, 123, 117, 74]. With distinct programming patterns, ReRAM crossbar based neu-

ral network accelerators may potentially demand for an innovative approach. Prior e�orts

on extending ReRAM crossbar based neural network accelerators either manage to squeeze

the endurance of the degraded MLC ReRAM cells [116] or exploit the gradient sparsi�ca-

tion and regularly perform row-swapping [116]. However, in order to further improve the

endurance of ReRAM crossbars for neural network training, it is necessary to investigate

optimal programming strategies by exploiting the mechanism of endurance degradation in

3

ReRAM crossbars, while taking characteristics of the target application, i.e., neural network

training, as well as crossbar array features into account.

1.1.4 Write Performance Issue in 3D Vertical ReRAM

With the fast advances in 3D integration technologies, recent studies [107, 104, 94, 39,

129] have demonstrated that 3D stacking is a viable solution for further improving the bit

density of ReRAM arrays. In addition to low energy-e�ciency and non-volatility, ReRAM

(Resistive Memory) achieves excellent density and scalability by vertically stacking multiple

layers of cross-point arrays. With di�erent 3D integration processes, 3D Horizontal ReRAM

(3D-HRAM) and 3D Vertical ReRAM (3D-VRAM) are two typical 3D stacked ReRAM array

architectures [104, 12]. In recent studies, the 3D-VRAM is more widely adopted for high

density memories due to lower fabrication cost [107, 39]. In this dissertation, 3D-VRAM is

chosen as the baseline.

Though 3D-VRAM arrays can be used to construct terabit-scale memories [39], similar to

2D ReRAM crossbars, they face severe sneak current issues. A recent work [107] shows that

the access voltage degradation on the selected cells tends to worsen with more stacked layers

in 3D-VRAM arrays. Most prior work on 3D-VRAM arrays studied device characteristics,

circuit modeling, architectural design explorations with assuming the worst-case scenario in

arrays [107, 104, 39, 12]. An optimization for write latency of 3D-VRAM is still lacking.

1.2 Research Overview

In order to overcome the challenges summarized above, it is necessary to propose com-

prehensive architectural solutions based on simulations and modeling across multiple levels,

i.e., device, circuitry, architecture and application.

In this dissertation, I focus on mitigating the performance degradation from IR drop [99,

100], and also propose a novel wear leveling scheme for addressing the limited write endurance

4

of ReRAM crossbars [97], by exploiting in-memory data patterns and without incurring sig-

ni�cant overhead. I then extend my study to two scenarios: (1) adopting ReRAM crossbars

for accelerating neural network computing [98], limited lifetime issue of ReRAM crossbars is

critical, particularly when performing the training task; and (2) in 3D-VRAM arrays, write

performance and reliability are dramatically degraded by enormous amount of sneaky paths.

Therefore, this dissertation proposes a collection of techniques to address these issues, which

are summarized in Table 1.

Table 1: A brief summary of proposed schemes in the dissertation.

Chapter Proposed Scheme Challenge Application

Chapter 5
Data Pattern Pro�ling &

Optimizations

Long Write Latency for

ReRAM Crossbars
Main Memory

Chapter 6 Wear LevelingXWL Limited Write Endurance Main Memory

Chapter 7 Framework ReNEW
Limited Lifetime During

Neural Network Training
Accelerators

Chapter 8

Data Encoding &

Safe- and Aggressive-

Data Pattern Estimation

Long Write Latency for

3D-VRAM arrays
Main Memory

1.3 Contributions

1.3.1 Speeding Up RESET Operation

First, I focus on mitigating the performance degradation from IR drop. This part of my

work has been published in [100]. My contributions are summarized as follows.

ˆ I study the correlation between the RESET latency of an ReRAM row and the number

of the cells in low resistance state (LRS) on selected bitlines. I propose to dynamically

5

speed up the RESET operations when there are small numbers of LRS cells. Further

performance improvement is achieved from exploiting data compression and row address

dependent data layout.

ˆ I propose a novel pro�ling technique to dynamically track the number of LRS cells along

di�erent bitlines in the crossbar. By leveraging the in-memory processing capability

of ReRAM crossbar, the number of LRS cells in bitlines is periodically detected using

current aggregation, an operation having fast speed (comparable to READ operation)

and low hardware and performance overheads.

ˆ I propose two pro�ling optimization techniques, i.e.,selective pro�ling and �ne-grained

pro�ling , to mitigate the energy overhead during pro�ling. They choose a subset of mats

or wordlines to pro�le so that fewer cells are activated during a pro�ling operation.

ˆ I evaluate the proposed design and compare it to the state-of-the-art. The experimental

results reveal that, my design improves system performance by 20.5% and 14.2%, and

reduces memory dynamic energy by 20.3% and 12.6%, compared to the baseline and the

state-of-the-art crossbar designs, respectively.

1.3.2 Improving Write Endurance

Second, I propose XWL, a novel table based wear leveling design for addressing the write

endurance degradation from IR drop in ReRAM crossbars. This part of my work has been

published in [97]. I summarize my contributions as follows.

ˆ I study write endurance variation in ReRAM crossbar, which reveals that the e�ective

write, i.e., the actual degree of ReRAM wearing out, depends on data patterns and row

addresses at runtime. To the best of my knowledge, this is the �rst study revealing the

unique wearing characteristic in ReRAM crossbars.

ˆ I propose XWL, a novel table based wear leveling design that tracks the e�ective writes

at runtime. XWL periodically remaps the ReRAM rows that are stressed the most,

rather than the ones accumulating the most write counts.

ˆ I evaluate the proposed wear leveling scheme. The experimental results reveal that, my

design improves write endurance by 324%, compared to the baseline design.

6

1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accel-

erators

Third, I propose to enhance lifetime for ReRAM crossbar based neural network acceler-

ators. To achieve this, a comprehensive framework, ReREW, which consists of techniques

that can e�ectively prolong ReRAM crossbar lifetime during neural network training, is pro-

posed. This part of my work has been published in [98]. A summary of main contributions

is listed as follows.

ˆ Unlike many of prior studies, I propose to program ReRAM cells in crossbars in SLC

(Single Level Cell) mode for neural network training and in MLC (Multi-Level Cell)

mode during the inference, in order to fully take the advantage of longer endurance of

SLC ReRAM cells during the training and larger capacity of MLC ReRAM cells for the

inference.

ˆ Prior studies show that di�erent in-memory data patterns lead to discrepancies in pro-

gramming latency and voltage stress, which further causes the disparity of actual wearing

out degrees of ReRAM cells. Based on this observation, the optimal programming la-

tency is adopted and an optimized order to update weights, which can maximize the

lifetime of ReRAM crossbars, is proposed.

ˆ I analyze the trade-o� between endurance and programming conditions, and then present

an endurance analytical model for ReRAM cell in SLC mode with di�erent program-

ming strengths. In addition, an analytical study of the trade-o� between programming

latency and switching probability is presented. Based on these analyses along with the

intrinsic error-tolerance of neural network training, I propose to intentionally shorten

the programming time to enhance lifetime of ReRAM crossbars at a cost of possibly

unsuccessful ReRAM cell switching.

ˆ Inspired by a conventional wear-leveling technique for NVM based main memory, I also

propose to shift and update a group of columns between training iterations, which can

e�ectively spread out writes across the whole crossbar.

7

ˆ Experimental evaluations prove that my proposed techniques reduce the total e�ective

writes to ReRAM crossbar-based accelerators by up to 500:3� , 50:0� , 2:83� and 1:60�

over two MLC baselines, SLC baseline and SLC design with optimal timing respectively.

1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write

Latency Reduction

Lastly, I aim to improve write performance in 3D-VRAM arrays by exploring and address-

ing of the unique issues for 3D vertical ReRAM array architectures. The main contributions

are summarized as follows:

ˆ A thorough study of how runtime data patterns stored in vertical layers inuence write

latency in 3D-VRAM array architectures is presented. In particular, I observe that the

number of LRS cells in the selected word-line plane electrode plays an more important

role on RESET latency, which is signi�cantly di�erent from that in planar crossbars.

ˆ Two di�erent approaches, i.e., safe and aggressive RESET time estimation schemes,

are proposed to optimize RESET latency under the premise of successful switching,

based on the runtime estimation of data patterns in a 3D-VRAM array. The aggressive-

RESET-time-estimation scheme optimizes the latency to the greatest extent but has

a low possibility to conduct a second-round RESET, while the safe-estimation scheme

guarantees to switch cells successfully in one round.

ˆ The proposed write schemes are experimentally evaluated and results show that, on av-

erage, my proposed design achieves 25:98� write latency reduction, 6:92� performance

improvement and 52.4% dynamic energy consumption reduction compared to the base-

line.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. The ReRAM fundamentals are

introduced in Chapter 2. Chapter 3 discusses the prior art. In Chapter 4, I build the

8

ReRAM crossbar circuit model to study the correlation between the RESET latency of an

ReRAM row and the number of the cells in low resistance state (LRS) on selected bitlines,

as well as write endurance variation in ReRAM crossbar. I elaborate the proposed pro�ling

technique, which can dynamically track the number of LRS cells along di�erent bitlines in

the crossbar, to speed up the RESET operations when there are small numbers of LRS cells

in Chapter 5. In Chapter 6, XWL, a novel table based wear leveling design that tracks

the e�ective writes at runtime, is proposed. The proposed designs of enhancing lifetime

for ReRAM crossbar-based neural network accelerators and the designs for accelerating 3D-

VRAM arrays are presented in Chapter 7 and Chapter 8, respectively. Chapter 9 concludes

the dissertation.

9

2.0 Preliminaries

In this chapter, ReRAM fundamentals are discussed. In addition, the sneak current and

IR drop issues in ReRAM crossbars are briey introduced.

2.1 ReRAM Cell Structure

ReRAM is a promising non-volatile memory technology that stores data using cell resis-

tance. As shown in Figure 1, an ReRAM cell is composed of two metal layers on the top and

bottom, which are separated by metal oxide layer. Prior study [69] has shown that various

metal oxide and electrode materials, such asCuTex=HfO 2 and CuTex=Al2O3, which have

di�erent characteristics such as endurance, retention and scalability, can be used to construct

ReRAM cell arrays.

ReRAM is a passive resistive based non-volatile memory technology, which uses di�erent

resistance states to represent data values. An ReRAM cell has two legal resistance states:

a low resistance state (LRS) to represent logic `1' and a high resistance state (HRS) to

represent logical `0'.

Figure 1: The ReRAM cell structure and two resistance states.

10

2.2 ReRAM Programming

To program an ReRAM cell (i.e., to switch resistance state from one to the other), a

proper voltage with required pulse width and magnitude has to be applied across the cell.

Figure 2 depicts two basic programming procedures for ReRAM | RESET and SET, which

are reversible switching operations and used to store data in an ReRAM cell. The RESET

operation switches the resistance state from LRS to HRS while the SET operation switches

from HRS to LRS. For an SLC ReRAM cell, with a positive voltage larger than a certain

threshold applied to the top electrode, the current owing through cell enables a formation

of the conductive �laments (CF) in the metal oxide layer, switching the ReRAM cell to low

resistance state (LRS). On the contrary, during the RESET process, which is initialized with

a negative voltage on the top electrode, the CFs are ruptured and consequently the cell is

switched to high resistance state (HRS). To program an MLC ReRAM cell is much more

complicated with consuming signi�cantly more power and time [72, 106] and thereby wears

out cells much faster, since an iterative programming, i.e., Program & Verify (P&V), is used

to accurately achieve the intermediate resistance levels.

2.3 ReRAM Crossbar Array Structure

Figure 3 presents three typical ReRAM array structures. ReRAM array can be fabricated

as a grid of 1T1R cells, which is similar to conventional DRAM architecture where each cell

is accessed through a transistor. 1T1R cell array has large cell size. ReRAM array can

also be organized as a crossbar1, which achieves the smallest 4F 2 planar cell size. ReRAM

crossbar has low fabrication cost and better scalability and thus is ideal to be architected as

DRAM replacement for building large capacity memory.

ReRAM crossbars, depending on if there is a diode access selector, can be categorized as

0T1R or 1D1R structures. Adopting selector helps to reduce sneak currents in the crossbar,

1It is also known as cross-point array structure [93].

11

which enables the fabrication of large cell arrays. In this work, 1D1R crossbar is chosen as

the baseline for 2D ReRAM crossbars.

Figure 2: ReRAM cell structure and basic (SET/RESET) programming operations.

Figure 3: The three typical ReRAM array structures.

2.4 IR Drop Issue

I next study the sneak currents in the crossbar, and will analyze its impact on ReRAM

RESET latency in a later chapter.

For discussion purpose, a cacheline is assumed to have 64B and its 512 bits are saved in 64

mats (subarrays) with each subarray containing 8 bits, the same as that in [105]. These mats

12

spread across 8 chips in one rank. To perform a RESET operation in an ReRAM crossbar,

the write driver selects one wordline and up to eight bitlines. The selected wordline is applied

with V RESETvoltage while each selected bitline is set to 0V. All other bitlines and wordlines

are applied with VRESET/2. Performing a SET operation is similar but uses opposite current

direction. During the write operation, the cells in each subarray can be categorized into

three types, as shown in Figure 4 and 5.

ˆ Selected cells. They are the cells to be SET or RESET. A selected cell stays on the

selected wordline and one of the selected bitlines as well. Ideally they are under the

maximal voltage stress, i.e., VRESET.

ˆ Half-selected cells. They are the cells on either the selected wordline or the selected

bitlines, but not both. Ideally they are under half of the maximal voltage stress, i.e.,

VRESET/2.

ˆ Not-selected cells. They are the rest of the cells in the crossbar. Ideally they have no

voltage stress.

Figure 4: The IR drop issue in ReRAM crossbar array.

A cacheline write operation consists of two phases: a RESET phase to write all 0s and

a SET phase to write all 1s. TheDSGB is adopted to improve write performance [105]

and ip-n-write is employed to only write modi�ed cells [17]. Based on my experiments as

13

Figure 5: The sneaky currents during RESET and SET operations.

well as prior studies [105, 121, 114], SET operation takes much shorter time than RESET

operation, making it less sensitive to voltage stress degradation. Therefore, I focus on long

latency RESET operations in the dissertation. The proposed scheme is applicable to the

ReRAM structures that have comparable SET and RESET latencies.

Studies have shown that ReRAM crossbar, even adopting diode selectors, has the currents

owing through all cells | while the sneaky currents owing through not-selected cells are

negligible, those owing through half-selected cells are not. The sneak currents introduce

large voltage drop along the wordline and bitlines, referred to asIR drop in the crossbar.

Large IR drop not only hurts the energy e�ciency, but also degrades the performances and

write reliability. A recent study has shown that, due to IR drop, it takes longer time to

RESET the ReRAM rows that are far away from the write driver [114].

With fast technology scaling, future ReRAM chips are expected to build upon large

ReRAM mats, i.e., crossbars. Unfortunately, large crossbars have large wire resistance,

which worsens the IR drop issue.

14

3.0 Prior Art

In this chapter, I present a summary of recent related work on performance, endurance

and intrinsic in-memory processing capability of ReRAM crossbar arrays. A brief introduc-

tion to encoding techniques for NVM is also presented.

3.1 Performance of ReRAM Crossbars

3.1.1 Studies on RESET Operation

Since the RESET operation is one of the major performance bottlenecks for ReRAM

crossbars, there have been many studies on reducing the RESET latency [105, 121, 114, 92,

119]. Xu et al. [105] proposed the double sided ground biasing (DSGB), multi-phase write

operations, as well as a compression-based encoding approach to reduce RESET latency.

Based on the observation that RESET latency correlates to the physical distance between

selected row and and the write drivers, Zhanget al. [114] proposed to divide a crossbar array

into several logical regions with di�erent access latency, in order to exploit the discrepancy

of RESET latency. Wang et al. [92] presented the write latency depends on worst-case

data pattern in ReRAM crossbars, and proposed a voltage bias scheme to optimize write

performance. Zhanget al. [119] proposed an ReRAM crossbar design with the double-sided

write driver to reduce RESET latency. Additionally, a recent study [128] proposed several

designs that are able to mitigate voltage drops and also shorten RESET latency for ReRAM

crossbars.

3.1.2 Data Patterns in ReRAM Crossbars

Chang et al. [11] presented a similar observation for read operation to this dissertation.

Mustafa et al. [67] and Shinet al. [83] reported that the detection margin for read operations

depends on data pattern in ReRAM arrays. Denget al. [18] discussed the worst-case data

15

patterns for read and write operations in an ReRAM crossbar array. Tanget al. [88] analyzed

the impact of data pattern on the sensing current in ReRAM crossbars. Xuet al. [105]

demonstrated that the RESET latency signi�cantly increases as the number of reset bits

(switched from \1" to \0") increases in ReRAM crossbars, and then exploited the data

pattern to reduce RESET latency. Lianget al. [58] analyzed the voltage drop and data

patterns in ReRAM crossbar arrays without selectors.

3.1.3 RESET Latency Discrepancy

Liang et al. [58] explored the correlation between data storage patterns and voltage

drop in crossbar resistive memory without cell selectors. Zhanget al. [114] observed and

leveraged the RESET latency discrepancy caused by row physical distance from write drivers

to improve write performance. In this work, I preset, in addition to row address impact, the

bitline data patterns also lead to RESET latency discrepancy in ReRAM crossbars.

3.2 Endurance of ReRAM Crossbars

3.2.1 Wear Leveling for Non-volatile Memories

Many prior work [74, 80] on enhancing PCM lifetime can apply to other resistive mem-

ories, and they shared the same general idea to evenly distribute write across all memory

pages. Recent studies [123, 117] on wear leveling for non-volatile memories took process

variation (PV) issue into consideration, which leads that di�erent page has non-uniform en-

durance. However, compared to this work, they all ignored the impact of array structures

on write endurance, and fail to exploit the intrinsic features in ReRAM crossbars.

3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators

Similar to crossbar ReRAM memory, the dot-product operation accelerators also su�er

from limited write endurance when programming cells. Therefore, this work is critically im-

16

portant to crossbar resistive memory design as well as in-memory computing. Wear-leveling

techniques for NVM based memories have been widely studied, which share a general idea of

evenly distributing write accesses across pages [97, 123, 117, 74]. To address the endurance

issue of ReRAM crossbar based neural network accelerators, a software and hardware co-

optimization is proposed [116]. Unfortunately, this scheme only works for MLC ReRAM

crossbars. Prior work [9] exploits gradient sparsi�cation in neural networks and a row remap-

ping scheme to improve ReRAM endurance, which is in fact complementary to my designs.

A recent study on using low-precision weights [126] for CNN training can be also used to

mitigate ReRAM crossbar endurance degradation. As shown in my evaluations, this is also

orthogonal to the proposed designReNEW, which is discussed in detail in Chapter 7, since it

can further improve endurance in low bit-width weight matrices during the training.

3.2.3 Improving Endurance by Exploiting Stochastic Switching

An approximate switching scheme is proposed to improve the endurance in [6] for NVM

based FF design, but it is lack of an analytical study between switching probability and

enhanced lifetime.

3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars

3.3.1 Current Accumulation Feature

The crossbar ReRAM architecture has recently attracted much attention [105, 99, 114, 82]

owing to its smallest 4F 2 planar cell size. In addition, due to its intrinsic analog current

accumulation feature, the crossbar resistive memory is also adopted to accelerate dot-product

operation based convolutional neural network computations [16, 85]. In the dissertation, I

leverage this feature to pro�le and track the number of LRS cells along each bitline.

17

3.3.2 Neural Network Computing with ReRAM

Recent studies on neural network accelerators exploit the natural analog current accumu-

lation feature of ReRAM crossbar architecture to implement dot-product calculations [16, 81,

85, 7, 24, 68, 21, 22, 53, 60, 71, 4, 36, 8, 26, 30, 9, 95, 73], wherein there are many [85, 9, 95,

73, 116] supporting neural networks training in ReRAM crossbars. A recent work [127] pro-

poses to adopt SLC ReRAM crossbar to achieve reliable neural network computing, however,

it does not exploit the better endurance of SLC ReRAM cells for neural network training.

3.4 Data Encoding for NVM

DCW [109] andFlip-n-Write [17] were proposed to reduce the amount of NVM cells to be

modi�ed during programming time, by which the lifetime of NVM cells can be improved. The

data encoding scheme from [105] was proposed to reduce the number of RESET operations.

However,Flip-n-Store proposed in this dissertation, which is discussed in detail in Chapter 8,

has a di�erent motivation from all prior work, and it aims at limiting the number of LRS

cells in 3D-VRAM arrays at runtime.

18

4.0 Observations

4.1 The Correlation between RESET Latency and the Number of LRS Cells

The relationship between cell RESET switching time and IR drop on the target cell can

be modeled using Equation 4.1, as shown in recent studies [105, 27].

t � ekVd = C (4.1)

wheret denotes cell RESET switching time;Vd denotes the voltage drop across the targeted

cell; C and k are experimental �ttings constants extracted from prior studies. From the

equation, the cell switching time is highly sensitive, i.e., exponentially inverse correlation, to

the voltage drop. A voltage drop of 0.4V results in 10� RESET latency increase [27].

During RESET operation, half-selected cells do not change state and exhibit as resistive

devices. Given the same voltage stress, a half-selected cell in LRS would have larger sneak

current than the one in HRS. Similar observation was reported for read operation in [82].

Given one selected wordline and one selected bitline, the correlation among IR drop, the

number of LRS cells, and RESET latency is studied. Figure 6 summarizes the correlation for

rows with di�erent row addresses | Row 0and Row 511are the farthest and the closest rows

to the write driver, respectively. The y-axis shows the RESET latency (left) and IR drop

(right) while the x-axis shows the percentage of LRS cells in the selected bitline1. I focus on

bitline LRS cells and assume the worse case for the wordline in this work. The impact from

wordline tends to be smaller due to the adoption of DSGB [105] and each subarray saving 8

bits from one cacheline. I study the RESET latency in this work, a similar observation for

READ was reported in [11]. In the experiments, the Verilog-A model from [40] is adopted

to build and simulate a 512� 512 Mat circuit model in HSPICE. Table 2 summarizes the

ReRAM crossbar model parameters.

From the �gure, given a row, e.g.row 0, the more LRS cells there are in the bitline, the

larger IR drop the sneak current brings, and the longer time the RESET operation takes.
1Note that the term of in-memory data patterns used in this work refers to the percentage of LRS cells

along bitlines, i.e., it is to characterize low architectural level data layout, similar to that in prior work [11, 58].

19

(a
)

R
ow

A
dd

re
ss

0
(b

)
R

ow
A

dd
re

ss
63

(c
)

R
ow

A
dd

re
ss

12
7

(d
)

R
ow

A
dd

re
ss

19
1

(e
)

R
ow

A
dd

re
ss

25
5

(f
)

R
ow

A
dd

re
ss

31
9

(g
)

R
ow

A
dd

re
ss

44
7

(h
)

R
ow

A
dd

re
ss

51
1

F
ig

ur
e

6:
S

ub
�g

ur
es

(a
)

to
(h

)
sh

ow
th

at
th

e
va

ria
tio

ns
of

R
E

S
E

T
la

te
nc

y
an

d
vo

lta
ge

dr
op

at
di

�e
re

nt
LR

S
ce

ll
p

er
ce

nt
ag

es

in
bi

tli
ne

s
w

he
n

ac
ce

ss
in

g
to

di
�e

re
nt

ro
w

ad
dr

es
s

in
R

eR
A

M
ar

ra
y.

T
he

R
ow

A
dd

re
ss

0
is

th
e

fa
rt

he
st

ro
w

fr
om

dr
iv

er
,

an
d

R
ow

A
dd

re
ss

51
1

is
th

e
ne

ar
es

t
ro

w
to

th
e

dr
iv

er
.

20

Another observation is, the impact diminishes as the row becomes closer to the write driver.

For row 511, the RESET latency is small and indistinguishable for the cases with di�erent

percentages of LRS cells.

Table 2: ReRAM model parameters

Metric Description Value

A Mat Size: A wordlines� A bitlines 512� 512

n Number of bits to read/write 8

Iw Cell current at Vw 88�A

Rwire Wire resistance between adjacent cells2.82

Kr Nonlinearity of the selector 200

Vw Full selected voltage during write 3.0V

Vread Read voltage 1.5V

- Voltage biasing Scheme DSGB

Prior studies [11] have revealed that, with a larger percentage of LRS cells on bitlines,

the bitline discharging time (developing time) increases during the read operation. However,

ReRAM read and SET operations are much faster than ReRAM RESET operations |

ReRAM read and SET are 18ns and 10ns, respectively, while RESET ranges from 56.4ns to

202.4ns. In this dissertation, I focus on optimizing ReRAM RESET operations. While the

proposed schemes are applicable to optimizing read and SET operations, further study is

necessary to evaluate the tradeo� between limited performance improvement and increased

hardware complexity.

4.2 Endurance Variation in ReRAM Crossbars

A recent study [115] revealed a tradeo� between write latency and endurance of ReRAM

cell | the endurance degrades when write latency increases. The relationship can be ana-

lytically modeled using the following equation:

Endurance � (
tW

t0
)C (4.2)

21

wheretW is write latency, t0 and C are constants. In this work, I choose the sameC = 2 as

in [115] to model a quadratic correlation between write endurance and latency.

As that IR drop results in RESET latency discrepancy among the ReRAM cells due to

di�erent physical locations and dynamic bitline data patterns. According to Equation 4.2,

the cells in ReRAM crossbar would exhibit endurance discrepancy. Figure 7 summarizes

the endurance discrepancy across the crossbar. I divide 512 rows to eight address groups

with each group containing consecutive 64 rows.Row Address Group 0is the one that is

the closest group to the write drivers.LRS cell ratio indicates the percentage of LRS cells

in one bitline. I adopt the worst-case voltage drop and RESET latency in every 64 rows to

represent oneRow Address Group.

From Figure 7a and 7b, the more LRS cells on selected bitlines, the larger sneak current

ows through half-selected cells. Thus smaller voltage drop and longer RESET latency are

observed. Also, the farthest rows from write drivers are more vulnerable to the impact of

bitline data patterns on RESET latency. The observation is similar to that in [99, 114]. In

conclusion, the discrepancy of RESET latency leads to write endurance variation in ReRAM

crossbar.

4.2.1 E�ective Write

In this work, I use e�ective write to summarize the overall wearing e�ect of one write

at runtime. Intuitively, let us assume that one cell can sustain 105 times writes if using write

pulse width X and 106 times writes if using write pulse width Y. Assume other conditions

are the same. It is concluded that each write with pulseX corresponds to ten writes with

pulseY. According to Equation 1, the e�ective write depends on the write pulse width while

an optimized write strategy [99] chooses pulse width based on (1) target row address and

(2) the numbers of LRS cells in the bitline. Therefore, the actual e�ective write depends on

the latter two factors.

Figure 7c depicts the relationship between e�ective writes and row addresses and LRS

ratios. In my experiments, when writingRow Address Group 0with 100% LRS cell ratio,

the write takes longest duration to complete. Such a write has the smallest wearing e�ect, as

22

(a
)

(b
)

(c
)

F
ig

ur
e

7:
S

ub
�g

ur
es

sh
ow

th
at

th
e

va
ria

tio
ns

of
(a

)
vo

lta
ge

dr
op

on
se

le
ct

ed
ce

lls
an

d
(b

)
R

E
S

E
T

la
te

nc
y

an
d

(c
)

e�
ec

tiv
e

w
rit

es
at

di
�e

re
nt

LR
S

ce
ll

p
er

ce
nt

ag
es

in
bi

tli
ne

s
w

he
n

ac
ce

ss
in

g
to

di
�e

re
nt

ro
w

ad
dr

es
s

in
R

eR
A

M
ar

ra
y.

T
he

R
ow

A
dd

re
ss

G
ro

up
0

re
pr

es
en

ts
fa

rt
he

st
ro

w
s

fr
om

dr
iv

er
s,

an
d

R
ow

A
dd

re
ss

G
ro

up
7

co
ns

is
ts

of
ne

ar
es

t
ro

w
s

to
th

e
dr

iv
er

s.

23

shown in Equation 1. All other writes are normalized to this baseline, that is, the e�ective

write of writing address group 0 under 100% LRS cell ratio is the normalized `1'. For all

other writes, the e�ective writes are calculated with following equation:

EW =
l
(
tL

t
)2

m
(4.3)

wheretL is the longest write latency (i.e., writing group 0 with 100% LRS ratio); andt

is the actual write latency of the given write.

4.2.2 Design Challenge

Given that writes to ReRAM crossbar exhibit di�erent e�ective writes at runtime, to ex-

tend chip lifetime, e�ective writes across all ReRAM cells should be evenly distributed. Un-

fortunately, existing wear leveling approaches evenly distribute raw writes across all ReRAM

cells. As a result, it is highly possible that rows in the address group 7 are worn out while

the rows in the address group 0 are very healthy.

There are two families of wear leveling schemes: one is to track writes to blocks using a

table and periodically mitigate the block that is stressed the most [117, 123, 19]; the other

is having physical addresses randomly mapped to device addresses and periodically changes

to a new random mapping [74, 80]. In this dissertation, I propose a table based wear leveling

scheme that evenly distributes e�ective writes at runtime, and leave the development of

randomized mapping based wear leveling on e�ective writes as the future work.

24

5.0 Speeding Up RESET Operation

5.1 Low-Overhead Runtime Pro�ling

In this section, I present an overview of my scheme, elaborate the details of the low-

overhead runtime pro�ler and then propose the compression based optimization for further

performance improvement. Finally, I illustrate the pro�ling scheme with an example and

estimate the overhead.

5.1.1 An Overview

Figure 8 presents an overview of the proposed scheme. Each cacheline is assumed to have

64B or 512 bits. These bits are saved in 64 mats spreading across 8 chips and each mat saves

8 bits from the cacheline, the same as previous work [105]. The 8 corresponding bitlines

saving these 8 bits form a group. Two cachelines are mapped to use the same 8-bitline

group, e..g.a0 and a1 use the �rst group, if their device addresses are separated byK, here

K is a multiple of 64 depending on the number of mats, and line address interleaving. The

cachelines that share the �rst 8-bitline group area0+i � K (0� i < 512), which are referred

to as the bitline-sharing-setin the following discussion.

Worst-case bitline ag. A 3-bit ag W-Flag is attached to each bitline-sharing-set.

The ag records the worst case bitline of all 512 bitlines shared by this set. In practice, the

worst case bitline of each 8-bitline group in one mat is �rst found, and then the worst case

from 64 mats is found. Since one mat has 512 rows, the number of LRS cells on one bitline

varies from 0 to 512. Instead of recording the accurate number, the range [0..511] is divided

into 8 subranges such that a 3-bit agW-Flag can denote its subrange, e.g., `000' denotes

subrange [0..63] and `010' denotes subrange [128..191].

In the next section, I exploit a runtime pro�ler that periodically detects the worst case

bitline in each mat as well as the worst case for the wholebitline-sharing-set.

25

F
ig

ur
e

8:
A

n
ov

er
vi

ew
of

th
e

pr
op

os
ed

lo
w

-o
ve

rh
ea

d
ru

nt
im

e
pr

o�
lin

g
sc

he
m

e.

26

Tracking the worst-case. A 6-bit counter W-Cnt is attached to eachbitline-sharing-

set. The counter is cleared each time when the worst-case ag is updated, that is, either

after pro�ling update or due to W-Cntoverow (as follows).

At runtime, the counter is incremented for each memory write that falls in thebitline-

sharing-set. This is based on the most conservative assumption that the write always intro-

duce one more LRS cell on the worst-case bitline among all 512 bitlines shared bybitline-

sharing-set. A counter overow event incrementsW-Flag if W-Flag does not saturates. The

counter is then cleared. I will elaborate the use ofW-Flag and W-Cntin following sections.

RESET latency optimization. To RESET a memory line, its W-Flag and physical

address are fetched to determine the appropriate tWR time for the RESET operation. By

looking up a pre-tested RESET latency table stored in memory controller, always using the

most conservative timing for each write can be avoided. For example, ifrow 0's W-Flag is

`010', a tWR timing of 154.6ns may be used instead of 202.4ns in the baseline design. The

quantitative values of tWR timing come from the HSPICE circuit simulations, which will be

discussed in a later section.

I next elaborate the design details and illustrate the overall workow with examples.

5.1.2 Design Details of Runtime Pro�ling

I �rst describe the runtime pro�ling mechanism that faithfully tracks the number of LRS

cells in each bitline. Clearly, reading all memory lines from the mat for detection would

introduce prohibitive overhead. In this work, I leverage the current aggregation feature of

ReRAM crossbar array [32], which has been widely exploited for accelerating in-memory

computation [16, 81, 85, 7]. Most existing memory pro�ling technique are for o�ine test.

For example, march test [90] was proposed for checking memory data integrity. The test

cannot be adopted at runtime as it can be as slow as 0.4ms per row [118, 76, 90], which is

much longer than regular ReRAM read or write operation latency.

Figure 8 illustrates how the proposed pro�ling scheme works. When there is a need to

pro�le, the memory controller sends out a pro�ling command with a 18-bit digial ID number

(which is enough to guarantee a unique ID for eachbitline-sharing-set in a 8GB memory

27

system) for determining thebitline-sharing-setin 64 mats. For each mat, all (512) wordlines

and the eight bitlines that belong to the bitline-sharing-set are activated for performing

pro�ling operation. This is similar to dot-product operation in [16].

As shown in the �gure, all wordlines are applied withVread ; the selected eight bitlines are

applied with 0V; and all other bitlines are applied withVread to depress sneaky currents. The

currents ow through the eight bitlines are highly correlated to the number of LRS cells.

The more LRS cells, the larger current will be applied to ADC and comparator circuits

that are shared by all 64 8-bit read/write groups. I adopt the analog to digital conversion

circuitry developed for accelerating in-memory computation. The bitline pro�ling currents

are �rst sent to analog transmission muxes, which select the appropriatebitline-sharing-set

to pro�le. The currents are then fed to sample-and-hold (S/H) logic and the ADC unit.

After the analog to digital conversion, the largest current (corresponds to the worst-case

bitline in this mat) is represented as a 3-bit digital value.

Figure 9: The pro�ling current vs. LRS cell percentage in 512Ö512 ReRAM crossbar array.

I divide the range [0..511] into eight subranges with equal size (except the last one which

has one more value). As shown in Figure 9, the mapping from bitline currents to subranges is

28

set up before pro�ling. To account for runtime voltage uctuation and cell process variations,

a 0.1mA guard band is allocated for each subrange. That is, subrange `011' corresponds to

LRS cell percentage range [37.5%..50%), the bitline pro�ling current is 1.03mA if there are

255 LRS cells in one bitline. For high reliability, a bitline is tagged as `011' as if the pro�ling

current is 0.93mA, that is, a line may be tagged to have more LRS cells than it actually has.

The W-Cnt tracks the write to the bitline-sharing-set after pro�ling. By default, the

memory controller pro�les the set again after 64 writes so that 6-bit value is used to represent

W-Cnt. When W-Cnt overows, it is possible to either re-pro�le the bitlines or increment

W-Flag directly (before it overows). Given ReRAM writes not always introduce more LRS

cells to the worst-case bitline, it is bene�cial to periodically pro�le the set.

5.1.3 Determine the RESET Timing

At runtime, the physical address andW-Flagare used to determine the appropriate tWR

timing for the RESET operation. The reason that I also use the row address is that, similar

as that in [114], row RESET latency also depends on its row index in one mat, i.e., the

distance to the write drivers | given the same percentage of LRS cells along the bitlines,

row 0 and 511 have the largest and smallest RESET latencies, respectively. Therefore, the

512 rows in one mat are split to eight address subranges, and the worst case RESET of this

subgroup is used to write cachelines in each range, as shown in Figure 10.

Table 3 summarizes the write timing (tWR) of RESET operation with di�erent LRS cells

along bitlines and di�erent row address category. The table is kept in the memory controller,

which is used in scheduling write operations to ReRAM memory. The quantitative values

of RESET operation timing are from my simulations of a 512� 512 Mat circuit model in

HSPICE with parameters shown in Table 2.

An example. I next use the example in Figure 11 to illustrate how my proposed online

pro�ling works and how to determine the timing of RESET operations based onW-Flag and

W-Cnt.

29

Figure 10: The rows with di�erent addresses are mapped to 8 groups with di�erent worst-case

RESET latencies.

Table 3: The tWR (ns) for RESET operation

LRS Row Address Group

Ratio 0 1 2 3 4 5 6 7

111 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1

110 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1

101 199 194 181.8 162.9 139.8 115 90.5 68

100 189 184.3 172.6 154.8 132.9 109 85.8 65.5

011 173.8 169.7 158.5 142 121.9 99.8 80.2 63.4

010 154.6 150.9 140.9 126 107.9 90.3 74.7 60.9

001 132.9 129.3 120.9 107.9 93.9 81.3 69.2 58.8

000 109.7 106.9 99.7 90.8 81.8 73.2 64.5 56.4

30

Table 4: Comparing the pro�ling overhead in one bank

Comp. Params Spec Power/Energy
Area

(mm2)

ADC [49]

sampling

speed
1.28GS/s

24.48mW 0.012
resolution 8-bit

number 8

S+H [81] number 8 � 64 5uW 0.00002

ReRAM

array

Mat number 1024

Regular Pro�ling: 267.178pJ

Fine-grained Pro�ling: 168.332pJ

Read: 72.842pJ
2.078

Mat size 512� 512 Leakage: 255.233mW

5.1.3.1 Online Pro�ling Operation A pro�ling operation is always triggered by a

W-Cntoverow. The default pro�ling frequency is after every 64 writes to the same 6-bit

W-Cntag). For the example in Figure 11,W-Cntof bitline-sharing-setwith an ID 0x004ff

overows, which sends a pro�ling command to all 64 corresponding mats (¶), each of which

contains 8 bitlines. It then performs the dot-product fashion pro�ling within each mat (·)

and produces a 3-bit counter that maps the aggregated bitline current to a LRS cell subrange.

Each subrange indicates the worst-case LRS cell percentage of the corresponding mat (¸).

W-Flag of bitline-sharing-set0x004ff is then updated with the maximum (the very worst-

case) of all 64 subrange values (¹). At last, W-Cnt is reset to zero, which completes one

online pro�ling operation.

5.1.3.2 Write Operation with Optimal RESET Timing With the proposed pro�l-

ing scheme, the timing of RESET operations is determined by looking up an optimal RESET

timing table at runtime. For the example in Figure 11, a RESET operation to logic cache-

31

line a7 is being served. Based on its physical address, the row address group number (º)

and bitline-sharing-setID (») (0x004cd in this case) are identi�ed �rst, and an up-to-date

W-Flag (¼) is fetched. Then the optimal RESET timing is found in Table 3 (½) and W-Cnt

is incremented. For the cells that need to be RESET and fall inbitline-sharing-set0x004cd

across 64 mats (a7<0:7> ... a7<224:231> ... a7<504:511>), the RESET operations

can �nish within the optimal RESET timing (¾).

Figure 11: An example of how my proposed online pro�ling works and how to determine the

RESET timing.

32

5.1.4 Reduce Bitline LRS Cells

Based on the observation that RESET latency depends on the number of LRS cells

along bitlines, it is important to reduce the number of LRS cells in the crossbar. A simple

optimization is to save the cacheline in compressed format [2] and �ll in unused cells with

0s, i.e., RESET them to HRS. However, I observed a direct application of data compression

exhibits little help | the RESET latency is hardly changed. This is because the RESET

latency depends on the worst case of all 512 bitlines. Assume every cacheline in abitline-

sharing-setcan be compressed to its half size and thus uses 256 cells. If every cacheline uses

the �rst 256 bitlines, there would be zero LRS in the other 256 bitlines. Unfortunately, it is

of little help because the worst case bitline may stay in the �rst 256 bitlines.

I therefore propose a row-address biased data layout to distribute extra 0s evenly to all

bitlines. Given onebitline-sharing-seta0+i � K (0� i < 512) wherea0 is the cacheline address

that is mapped to the �rst row. When saving a compressed cacheline in, e.g.,row i , the

row starting address is shifted to the right byi bits and then the unused cells are �lled in

with 0s in the row, as shown in Figure 12.

5.1.5 Overhead Analysis

Pro�ling overhead. The overhead comes mainly from runtime pro�ling. After every

64 writes to onebitline-sharing-set, the memory controller sends out one pro�ling command,

which activates 64 mats. In each mat, all rows and eight bitlines are activated.

Table 4 summarizes the overheads for each ReRAM memory bank. I evaluated the power

consumption and area by HSPICE simulation and NVSim [20] at 32nm. A pro�ling operation

consumes about 3.7x read energy. For either read or pro�ling, a huge portion of the power

is consumed by internal I/O and row/column decoders, thus the energy consumption is not

linear to the number of opened rows.

I followed recent studies [81, 49] to estimate the power and area overheads of adopting

ADC and sampling and holding circuits. I used eight ADC units in each bank. An ADC has

1.28GS/s sampling speed and introduces 50ns pro�ling latency. In the experimental section

33

Figure 12: Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat.

34

of this chapter, I will study the performance and power e�ciency with di�erent numbers of

ADC units.

A pro�ling command return 3 bits from each activated mat. As a comparison, a read

operation returns 8 bits from each mat. Therefore, the pro�ling results are returned to the

memory controller through data bus, without introducing additional overhead other than a

regular read.

Counters storage and RESET adjustment. One 3-bit W-Flag and 6-bit W-Cntare

attached to eachbitline-sharing-set. A bitline-sharing-setcontains 512 64B memory lines, or

32KB data. For a 8GB memory system, about 288KB storage is needed to hold all ags. In

this work, I keep all ags in the memory controller for simplicity. In the future work, I will

keep a small bu�er hold a subset of ag while keeping the rest in the L2 cache. The RESET

operation can be issued in parallel to the table lookup. Due to long RESET latency, the

table lookup result can be returned at a later time to the memory controller to determine

when to terminate RESET operation. I expect negligible performance overhead.

5.2 Pro�ling Optimization

Even though online pro�ling helps to optimize RESET latency and thus improve write

performance, it introduces non-negligible pro�ling overhead, including performance overhead

and energy consumption overhead. While the former is small as I shall show in the exper-

iments, the latter is much larger due to the large energy consumption from ADC units. I

focus on optimizing pro�ling energy consumption in this section.

5.2.1 Pro�ling Energy Overhead Analysis

To better illustrate the pro�ling energy overhead, the dynamic energy dissipation of

ReRAM memory on read, write and pro�ling operations are compared, respectively, for a

35

wide range of benchmarks1, and summarize the results in Figure 13. From the �gure, I

observe that the pro�ling energy consumes an average of 13.4% of total dynamic energy, a

non-trivial portion of memory energy dissipation. Thus, it is important to optimize online

pro�ling to reduce the pro�ling energy overhead.

Figure 13: The dynamic energy distribution when adopting the proposed pro�ling technique.

I next propose two optimization schemes to mitigate the overhead by reducing the number

of cells to be activated at pro�ling.

5.2.2 Selective Pro�ling

Figure 14 presents the basic idea of selective pro�ling. When performing the N-th round

pro�ling for a bitline-sharing-set at runtime, I �nd out that the worst-case LRS-cell-per-

bitline number is 384 out of 512 cells, as shown by the red bar in Figure 14a. However, it

occurs only in one mat while the worst-case numbers from other mats are much smaller. In

the �gure, the green bars represent the numbers that are smaller than 256. For the mats

corresponding to the green bars, the worst scenario during the next pro�ling interval occurs

when every write operation increments the number of LRS cells in those mats. Given the

default pro�ling frequency is every 64 writes, the worst scenario may introduce at most 64

more LRS cells, i.e., the worst LRS-cell-per-bitline numbers for these mats would still be

smaller than 384 by the end of the next pro�ling interval. Since the red bar is already 384

1The experiment and simulation methodologies are discussed in Section 5.3 in detail.

36

at the beginning of the next pro�ling interval, it is safe to assume the worst case for the

green bar mats and skip pro�ling them in the next pro�ling interval. However, for the mats

corresponding to the red bar and the gray bars in the �gure, the N+1-th round pro�ling still

needs to be performed.

To implement the proposed selective pro�ling scheme, I group every two consecutive

pro�ling rounds together and make thei -th round pro�ling a regular pro�ling (i.e., the same

as that in the baseline pro�ling) while the (i+1)-th round pro�ling a selective pro�ling (i.e.,

it is applied only to a subset of mats). The regular pro�ling and selective pro�ling rounds are

performed alternately. In particular, after collecting the 3-bit ags from all 64 mats during

a regular pro�ling, the memory controller constructs a 64-bitprofiling mask with each bit

representing whether the corresponding mat needs to perform selective pro�ling for the next

round. The bits are initialized as1s and updated based on the di�erence between its 3-bit

ag and W-Flag, the worst-case of all mats. Assume the 3-bit ag from matj is W-Flagj .

If W-Flagj +2 � W-Flag, i.e., the worst LRS-cell-per-bitline number from one mat is at least

128 smaller than the worst LRS-cell-per-bitline number of all mats, the corresponding bit of

the mat in the profiling mask is set to 0; otherwise, theprofiling mask bit is kept as 1.

For the next selective pro�ling round, the mats whoseprofiling mask bits are 0s are not

pro�led.

Given selective pro�ling only skips the pro�ling operations on a subset of mats, it does

not degrade write performance and reliability. Its bene�ts come from two folds: 1) it helps to

save the energy consumption on the ADC/S+H circuits and the multi-row read operations

on ReRAM arrays; 2) it shortens the ADC latency at the sampling stage. This is because

fewer samples from mats need to be processed for analog-to-digital conversion. In Section

4.4, I study the performance and energy e�ciency improvements in my experiments.

5.2.3 Fine-grained Pro�ling

I next propose to reduce the pro�ling overhead as shown in Figure 15. As aforementioned,

the VREADvoltage is applied to all wordlines in order to pro�le the ratio of LRS cells along

the bitlines within the bitline-sharing-set. These simultaneous read operations contribute to

37

F
ig

ur
e

14
:

T
he

sc
he

m
e

of
pr

op
os

ed
se

le
ct

iv
e

pr
o�

lin
g.

38

the active energy consumption of pro�ling overhead. Intuitively, by reducing the number of

wordlines that are opened to read, the pro�ling overhead can be mitigated.

Figure 15: The scheme of proposed �ne-grained pro�ling.

Based on this observation, one 512� 512 ReRAM mat is split into two 256� 512 sub-

mats. In Figure 15, they are labelled as \A" and \B", respectively. Each sub-mat consists

of 4 row address groups. Each sub-mat is pro�led independently and two sets ofW-Flag

(2-bit W-Flag-A and W-Flag-B) and W-Cnt(6-bit W-Cnt-Aand W-Cnt-B) counters are used

to track the pro�ling results and to determine the RESET timing. By keeping the same

pro�ling frequency, i.e., each sub-mat needs to be re-pro�led after accumulating 64 writes,

the same total number of pro�ling operations are kept. The pro�ling procedure, including

detecting runtime bitline data patterns and tracking the worst-case ag within onebitline-

sharing-set, is similar to the baseline pro�ling. The only di�erence is that the bitline data

patterns for each sub-mat are pro�led separately. For the pro�ling, a 2-bit value is enough

to denote W-Flag-A and W-Flag-B the with the same accuracy as the baseline pro�ling as

the number bitline LRS cells ranges from 0 to 256 in each sub-mat.

Determining the RESET timing is slightly di�erent in the �ne-grained pro�ling design.

As shown in Figure 15, the two LRS ratio numbers (from sub-mats A and B, respectively)

need to be combined to determine the optimal timing. Since conservative estimation is

39

adopted, the combination may lead to over-estimation, which slightly degrades the choice of

the optimal timing.

Comparing to the baseline pro�ling, the �ne-grained pro�ling scheme exhibits many

advantages: (1) It activates a smaller number of wordlines and thus reduces the dynamic

energy consumption. My study shows that, when activating 256 wordlines during pro�ling,

the �ne-grained pro�ling consumes 63% energy of the one that activates all 512 wordlines

(Table 4). (2) Instead of having 3-bitW-Flagvalues transferred across the memory interface,

2-bit W-Flag-A and W-Flag-B values are returned, which may potentially save the memory

bandwidth. (3) The �ne-grained pro�ling potentially enables the �ner tuning of RESET

latencies.

5.3 Experimental Setup

In this section, I present the modeling and simulation methodologies for evaluating the

energy and performance of ReRAM crossbars.

5.3.1 Modeling and Simulation Methodologies

To evaluate the e�ectiveness of my proposed design, in addition to the HSPICE modeling

and simulation as introduced in Chapter 4, I used an in-house simulator to simulate the

proposed ReRAM access scheme and compare it to the conventional and state-of-the-art

designs. Table 5 summarizes the con�guration for the baseline system. I plugged the numbers

from HSPICE and NVSim [20] simulations into my architectural simulator to obtain the

performance and memory energy e�ciency results. I used Pintool to generate memory

access traces from SPEC2006 [31], PARSEC [5] and BioBench [3] benchmark suites.

5.3.2 Workload Characterization

Table 6 characterizes all benchmarks used in the experiments. I carefully chose a subset of

benchmarks with di�erent memory access WPKI and RPKI in order to study the e�ectiveness

40

of my design. The benchmarks are categorized to three types: High, Medium and Low,

respectively, according to their memory access intensity.

5.3.3 Schemes for Evaluations

In this work, I implemented and compared �ve di�erent schemes, including the conven-

tional and state-of-the-art ReRAM designs as follows:

ˆ BL | This scheme is conventional ReRAM crossbar design. The baseline adopts DSGB

voltage driver for latency reduction.

ˆ RA| This scheme is the state-of-the-art design [114] that adopts row address awareness

technique to reduce RESET latency.

ˆ LRS| This scheme is the naive design that only adopts data pattern pro�ling technique.

ˆ CMP| This scheme is built on top of LRS. It adopts data compression and shifts the

rows starting bits based on its row addressed within each mat.

ˆ PROF| This scheme is built on top of CMPand includes all enhancements in the work.

In particular, it adopts a two dimensional tWR timing table (as shown in Table 3) in

determining RESET latency.

I also evaluated the e�ectiveness of following three schemes with pro�ling optimization

techniques:

ˆ SELPROF| This scheme is built on top of PROFand adopts the selective pro�ling scheme

to save energy.

ˆ FINE PROF| This scheme is built on top of PROFand adopts the �ne-grained pro�ling

scheme.

ˆ SELFINE PROF| This scheme adopts both pro�ling optimizations to mitigate pro�ling

overhead.

In system performance evaluation, the proposed pro�ling techniques is also compared

with IDEALPROF, the scheme that assumes zero performance overhead.

41

Table 5: System con�guration

Processor
4 cores; single issue in-order CMP;

4GHz

L1 I/D-cache
Private; 16KB per core; 4-way;

2 cycle latency

L2 cache

Private; 1MB per core; 8-way;

64-byte block size;

10 cycle latency

Main memory

8GB; 1 channel; 2 ranks; 8 chips/rank,

2Gb x8 ReRAM Chip, 8 banks/chip;

1024 mats/bank;

scheduling reads �rst, issuing writes

when there is no read, issuing

write burst when W queue is full

ReRAM Timing

Read Latency 18ns@1.5V;

SET latency 10ns@3V;

RESET latency refers to Table 3@-3V, 88�A

42

Table 6: Benchmarks characterization

Memory

Intensity
Name

Benchmark

Suite
WPKI RPKI

High

ferret PARSEC 12.44 19.44

fasta dna BioBench 9.36 11.88

gemsfdtd SPEC2006 6.27 9.82

zeusmp SPEC2006 1.62 4.12

Medium

gcc SPEC2006 1.44 3.21

cactusADM SPEC2006 0.98 3.05

perlbench SPEC2006 0.60 0.60

Low

freqmine PARSEC 0.34 0.34

gobmk SPEC2006 0.14 0.20

uidanimate PARSEC 0.14 0.36

43

5.4 Evaluation Results and Analysis

In this section, I evaluate the performance and energy e�ciency for the proposed pro�ling

scheme, and also quantitatively show the e�ectiveness of two optimization techniques in

reducing the pro�ling overhead.

5.4.1 Memory Access Latency

Figure 16 compares the average memory write latency across di�erent schemes, with the

results normalized toBL. On average, by applying the proposed techniques step by step, I

observed the signi�cant write latency reductions by 19.8%, 37.2% and 63% forLRS, CMPand

PROF, respectively. Compared toRA, the proposed schemePROFshows 53.5% more reduction.

In summary, it is e�ective to reduce RESET latency by exploiting the number of LRS cells

along bitlines.

Since the selective pro�ling does not change the RESET latency,SELPROFhas the same

write latency as that in PROF. Since the �ne-grained pro�ling technique may over-estimate

the RESET latency, FINE PROFand SELFINE PROFexhibit 7.1% write latency degradation

over PROF. They still achieve 60.3% write latency reduction overBL.

Figure 16: The comparison of memory write latency.

The reduction of RESET latency leads to the reduction of memory read latency. Fig-

ure 17 summarizes the memory read latencies in di�erent schemes. The results are normalized

44

to BL. Similar to the write latency, the memory read latency is reduced by 6.7%, 19.6% and

38.2% forLRS, CMPand PROFrespectively. The proposedPROFscheme shows a 27.6% more

reduction overRA.

When there are fewer mats pro�led with selective pro�ling, the average pro�ling latency

is shortened and hence the memory access latency on critical path is also reduced. The write

latency of SELPROFis reduced by up to 39.2% from the baseline. With the �ne-grained

pro�ling techniques, FINE PROFand SELFINE PROFperform slightly worse thanPROF. They

achieve 36.1% and 37.4% read latency reduction, respectively, overBL.

Figure 17: The comparison of memory read latency.

5.4.2 System Performance

I compared the performance when adopting di�erent schemes and summarized the CPI

(cycles-per-instruction) results in Figure 18. The results are normalized toBL. From the

�gure, the proposed pro�ling schemes achieve larger performance improvements on write

intensive benchmarks, e.g.,ferret and fasta dna. On average,PROFoutperforms BL by

32.4%, 16.5% and 5.2% on high, medium and low memory intensity benchmarks, respectively.

This is because the proposed technique focuses on improving write performance, which is

sensitive to the intensity of write requests. On average,PROFachieves 20.5% and 14.2%

performance improvements overBLand RA, respectively. Due to shortened pro�ling operation

45

latency, SELPROFimproves the overall performance by 1% overPROF, 21.2% performance

improvement over BL. FINE PROFand SELFINE PROFimprove CPI by 18.8% and 19.5%,

respectively, overBL.

To illustrate the e�ectiveness and performance overhead of the pro�ling techniques, I

also compared the proposed designs withIDEALPROF, the scheme adopting ideal pro�ling,

i.e., the pro�ling operation is assumed to have zero latency and not incur any performance

overhead. The experimental results showed that, on average,IDEALPROFachieves 2% better

performance thanPROF, and 1.1% better than SELPROF. For the group of high memory

intensive benchmarks, the average improvement is 3.3% overPROF. From the results, the

pro�ling introduces small performance overhead. Further optimizations, e.g., hiding the

pro�ling latency by issuing pro�ling commands only during memory bank idle time, are

applicable but tend to achieve limited performance improvement with increased hardware

cost.

Figure 18: The performance comparison. The benchmarks are categorized into High,

Medium and Low memory intensity types based on RPKI and WPKI.

46

5.4.3 E�ectiveness of Pro�ling Optimization

I next conducted experiments to study the e�ectiveness of the proposed pro�ling opti-

mization techniques. The normalized number of pro�ling operations is reported in Figure 19

and the normalized pro�ling energy consumption is presented in Figure 20.

Figure 19 compares the number of pro�ling operations under di�erent optimizations.

The results are normalized toPROF. On average,SELPROFi.e., the one adopting selective

pro�ling, reduces 40.6% of pro�ling operations, whileSELFINE PROF, i.e., the one adopting

both optimizations, reduces the number of pro�ling operations by 46.3%.

Figure 20 compares the pro�ling energy with di�erent optimizations. The experimen-

tal results show that both optimizations are e�ective in reducing dynamic energy caused

by pro�ling. By adopting the selective pro�ling technique, SELPROFmitigates the energy

consumption by reducing the number of pro�ling operations, whileFINE PROFreduces the

pro�ling energy from reading fewer wordlines. From the �gure,SELPROFsaves the pro�l-

ing energy by 40.6% whileFINE PROFconsumes 93.4% of the pro�ling energy inPROF. The

schemeSELFINE PROFcombines two optimizations and saves 49.9% of the pro�ling energy

in PROF.

Figure 19: The number of pro�ling operation performed with optimized techniques on mats

(Normalized to PROF).

47

Figure 20: The pro�ling energy with optimized techniques (Normalized toPROF).

5.4.4 Memory Energy E�ciency

I next compared the dynamic memory energy consumption and energy-delay product

(EDP) for all schemes. The results are normalized toBL and summarized in Figure 21.

The dynamic energy consumption has three major sources: read, write (including SET

and RESET) energy and pro�ling overheads from my proposed schemes. While thePROF

greatly improves RESET performance, it has no impact on read and SET operations. In

addition, my proposed schemes introduce pro�ling overheads. For example,LRSconsumes

3.9% more dynamic energy due to the pro�ling overhead. However,SELPROF, FINE PROF

and SELFINE PROFwith proposed optimization techniques can reduce the pro�ling energy

e�ectively as aforementioned.

In summary, PROFachieves 15.7% and 7.6% dynamic energy reduction overBL and RA,

respectively, whileSELPROF, FINE PROFand SELFINE PROFwith optimization techniques

further reduce the pro�ling overhead and achieve 20.2%, 15.4% and 20.3% dynamic en-

ergy reduction overBL, though the �ne-grained pro�ling marginally increases write energy.

SELPROF, FINE PROFandSELFINE PROFalso reduce more dynamic energy thanRAby 12.5%,

7.2% and 12.6%, respectively. The EDP results show that the proposed designs can e�ectively

improve the energy e�ciency | PROFachieves 31.9% and 19.5% EDP improvements over

BLand RA, respectively, whileSELPROF, FINE PROFand SELFINE PROFrespectively achieve

35.9%, 30.5% and 35.0% EDP improvements overBL. In addition, the schemesSELPROF,

48

F
ig

ur
e

21
:

T
he

co
m

pa
ris

on
of

dy
na

m
ic

en
er

gy
an

d
E

ne
rg

y-
D

el
ay

P
ro

du
ct

(E
D

P
).

49

FINE PROFand SELFINE PROFalso outperformRAin EDP improvements by 24.2%, 17.8%

and 23.2%, respectively. It is worth noting that thoughSELPROFpresents slightly better

EDP than SELFINE PROFdue to the RESET latency overestimation by adopting �ne-grained

pro�ling, the SELFINE PROFcan save bandwidth on memory bus by reducing the number of

pro�ling commands and ag bits that represent data patterns, which will eventually reduce

bus congestion and save energy consumption on the memory bus.

5.4.5 Sensitivity Study

In this section, the performance and energy e�ciency results are �nally compared for all

proposed schemes with di�erent number of ADC units used in each bank as well as varied

ReRAM mat sizes, which are summarized in Figure 22.

5.4.5.1 Sensitivity to Number of ADC units. For the given 512� 512 ReRAM

crossbar, increasing the number of ADC units can help reducing the pro�ling overhead.

When doubling the number of ADC units from 8 to 16, I summarized the performance

improvement and energy reduction results for schemePROFin Figure 22a. From the �gure,

while the pro�ling area and power consumption overhead are doubled, the performance

improvements are trivial | only 1.1% improvement was observed. Similarly, SELPROF,

FINE PROFand SELFINE PROFcannot signi�cantly bene�t from more ADC units.

5.4.5.2 Sensitivity to Mat Sizes. Figure 22b reveals the sensitivity study results when

di�erent ReRAM crossbar mat sizes are used | I compare 256� 256 and 512� 512.

For 256� 256 ReRAM mat, the proposed schemePROFachieves smaller improvements due

to smaller IR drop in the array | it has 14.9% performance improvement and 4.6% memory

dynamic energy reduction overBL. For the default 512� 512 ReRAM mat, the improvements

are much larger. In the �gure, the proposed schemePROFis slightly worse (only 1.6%) than

RAfor 256� 256 mat size. This is because the pro�ling latency and power consumption are

independent of mat size, which has a larger impact on smaller mats. The schemesSELPROF,

FINE PROFand SELFINE PROFwith pro�ling optimization techniques for 256� 256 mat size

50

reduce dynamic energy roughly to the same extent that they do for 512� 512 ReRAM

mat. In summary, I expect my proposed designs can achieve larger improvements in future

ReRAM arrays that have increasing mat size due to fast technology scaling.

5.5 Conclusion

In this chapter, based on the observation that the RESET latency strongly correlates to

the number of cells in low resistant states (LRS) along bit lines, I propose a novel pro�ling-

based ReRAM design, which can exploit the discrepancy of RESET latency. The in-memory

processing capability of ReRAM is leveraged to implement a low overhead runtime pro�ler.

By dynamically detecting the number of LRS cells, RESET timing is dynamically adjusted,

and signi�cant performance and energy consumption improvements are also achieved. In

addition, in order to mitigate the pro�ling overhead, two optimization techniques | selective

pro�ling and �ne-grained pro�ling, are presented. They both e�ectively achieve signi�cant

pro�ling energy reduction by reducing the number of pro�ling operations and halving the

number of being read wordlines during a pro�ling operation respectively. The experimental

results show that, on average, my designs improve system performance by 20.5% and 14.2%,

and reduce memory dynamic energy by 15.7% and 7.6%, compared to the baseline and the

state-of-the-art crossbar design. With all proposed optimization techniques, my design can

further reduce dynamic energy by up to 20.3% and 12.6% compared to the baseline crossbar

design and state-of-the-art ReRAM crossbar design, respectively.

51

F
ig

ur
e

22
:

T
he

se
ns

iti
vi

ty
of

p
er

fo
rm

an
ce

an
d

m
em

or
y

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
w

he
n

us
in

g
(a

)
di

�e
re

nt
nu

m
b

er
s

of
A

D
C

un
its

;
an

d
(b

)
di

�e
re

nt
R

eR
A

M
m

at
si

ze
s.

52

6.0 Improving Write Endurance

6.1 XWL: Wear Leveling for Crossbar ReRAM Memory

In this section, I �rst present an overview of XWL, a table-based wear leveling scheme

for ReRAM, and then discuss its design details.

6.1.1 An Overview

The workow of XWL follows typical table-based wear leveling schemes, which consists

of three stages: prediction, address remapping & data swapping and running, as shown in

Figure 23. These three stages repeat in every interval, i.e., a number of writes.

XWL splits the whole ReRAM space into chunks and tracks writes to each chunk. In

this work, one chunk is a page. Two addresses are di�erentiated in the following discussion.

Physical address (PA) refers to the address after OS page table mapping.Raw address

(RA) refers to the device address where the data are actually saved. As shown in Figure

23, XWL attaches oneinterval entry to each PA chunk and onelifetime entry to each RA

chunk.

In prediction stage, XWL tracks the number of writes to each PA chunk in the corre-

spondinginterval entry and the number of lifetime e�ective writes to each RA chunk in its

lifetime entry. The major di�erence between XWL and conventional wear leveling is, instead

of tracking raw write accesses for both tables, XWL records e�ective writes to update the

lifetime table and raw writes to update interval write table.

In address remapping & data swapping stage, XWL chooses one RA chunk and one PA

chunk that are not mapped to each other. The choice involves two pairs, their PA to RA

mapping are changed accordingly. For example, in Figure 23, if PA-chunk-2 and RA-chunk-1

are chosen, since PA-chunk-1 maps to RA-chunk-1, and PA-chunk-2 maps to RA-chunk-2,

the swap results in PA-chunk-1 maps to RA-chunk-2 and PA-chunk-2 maps to RA-chunk-1,

as shown in the �gure. The candidate selection policy determines what pages are chosen to

53

Figure 23: The basic workow of XWL.

54

get remapped. I will present di�erent algorithms in the next subsection. The design is to

map hot physical pages to the ReRAM pages with the least degree of wearing out, similar

to those previously design table-driven wear leveling algorithms [117]. Remapping involving

reading two blocks and write two blocks. Clearly, the bigger the chunk is, the larger overhead

the swap is. XWL cleared the interval entries after the swap.

In the running stage, each ReRAM page tracks incoming writes with predicted distribu-

tion, matching hot pages to low wearing out domains and cold pages to high wearing out

domains, which achieves the aim of enhancing lifetime for overall crossbar ReRAM memory.

During the running phase, both of two write tables keep updating with new write operations.

6.1.2 Design Details

6.1.2.1 E�ective and Raw Write In the proposed XWL scheme, both of the number

of e�ective writes and raw writes are tracked at runtime. The e�ective write total of each

chunk indicates how much lifetime the corresponding chunk has experienced while the raw

write reects the intrinsic access patterns of applications. The raw count would not change if

having PA chunk remapped to a di�erent RA location. However, their e�ective write counts

depend on mapping. The number of raw writes in each interval is used to indicate how many

incoming writes will reach to each ReRAM page. In contrast, to determine the degree of

wearing out of each page, the proposed e�ective write needs to be adopted for lifetime write

table since it measures how many more writes each page can undertake before failures.

6.1.2.2 Updating Write Tables While it is straightforward to update the interval raw

write table, i.e., increment after each read or write, to update the lifetime table, Equation 4.3

is adopted and the e�ective write is computed based on the write pulse width. Figure 24

illustrates the pro�ling scheme which is used for dynamic RESET latency as well as updating

e�ective write table.

As the bitline data pattern pro�ling and dynamic RESET latency presented in Chapter 5

are adopted, the RESET latency is determined by row addresses and runtime bitline data

patterns. In order to ensure the correctness of write timing, I conservatively assume each

55

write after pro�ling always introduce one more LRS cell on the worst-case bitline, which

prolongs the RESET latency. Similarly, I also have conservative assumption of updating

e�ective writes. However, in contrast to dynamic RESET latency, I assume writes will bring

more HRS cells instead, since more HRS cells lead to larger voltage drop on selected cells.

Therefore, the worst-case LRS cell ratio has to be tracked to look up dynamic RESET timing

as well as worst-case HRS cell ratio needs to be tracked to update e�ective write table. In

the case shown in Figure 24, in one row address groupn of a simpli�ed ReRAM crossbar,

the worst-case LRS cell number is 5, and the worst-case HRS cell number is 3, both of which

are incremented by 1 for each write request after pro�ling.

The dynamic RESET timing is simply determined by the table shown in Figure 7b, which

maps LRS cell ratio in a particular row address group to a conservative RESET timing. For

discussion purpose, I assume the RESET latency istR in this case. As it is desired to

RESET multiple cells, e.g. at most 8 bits in the design, within one ReRAM crossbar, the

tR is most conservative RESET timing to ensure write success, but it is too aggressive to

use this latency to estimate e�ective writes with Equation 4.3. This is since thetR may be

too long for other bits that have larger voltage drop on selected cells owing to more HRS

cells on their bitlines. When all bits are RESET with sametR , those victim cells that take

much longer RESET time than ideal one may be over-RESET, which leads to a endurance

degradation. Therefore, the most conservative e�ective writes needs to be calculated by

using following formula:

EWaddr = EW0 � a � eb�(V � V0) (6.1)

whereEWaddr is the most conservative e�ective writes at addressaddr, EW0 is
�

(tR
t)2

�
with

RESET timing tR , V0 is the voltage drop at the worst-case LRS cell ratio, andV is the one

at worst-case HRS cell ratio, anda, b are �tting constants. Equation 6.1 is derived from

experimental data of the di�erent over-RESET voltages with same RESET pulse width on

endurance degradation in [14].

6.1.2.3 Address-Remapping Algorithm As write tables are updated for each inter-

val in memory controller, the physical addresses from CPU need to remap to ReRAM page

real addresses while migrating data accordingly. As evaluated in experiment section of this

56

Figure 24: Pro�ling bitline data pattern for (1) optimized RESET latency and (2) estimating

e�ective writes.

57

chapter, the na•�ve wear leveling technique, which simply remaps PA with largest raw writes

to RA with smallest number of e�ective writes, helps to improve lifetime of ReRAM cross-

bars to certain extent. However, obviously this scheme ignores the fact that all pages are not

worn out equally, and they actually depend on dynamic bitline data patterns and physical lo-

cations. Therefore, with only taking write access patterns of applications into consideration,

it may be not able to e�ectively leverage incoming writes after address remapping.

In addition to raw write access patterns, I also want to exploit the impact of ReRAM

crossbar features on endurance for address remapping. Theweight is introduced to indicate

the tendency of remapping a PA to a physical ReRAM crossbar page. Figure 25 illustrates

my address remapping scheme. In this example, I partition ReRAM crossbar into 5 address

groups. According to preceding discussion, the closer the group is from the write drivers,

the more stress its cells accumulate from each write. Therefore, each group is assigned a

di�erent weight as follows.

weightaddr =
P n� 1

r =0 EW r
addr

n
(6.2)

where weightaddr is the weight at page addressaddr and EW r
addr is the e�ective writes at

page addressaddr with LRS cell ratio of r . It is worth noting that e�ective writes are

averaged at same address withn di�erent LRS cell ratios. This is since the data pattern can

signi�cantly change after prediction with much longer interval (104 writes) than pro�ling (64

writes), and it is no longer feasible to exploit bitline data pattern to estimate actual wearing

out for future writes.

Moreover, I adopt thePredict Write , which estimates upper limit of e�ective writes if all

writes reach to a particular page. It can be calculated by following equation:

P redictWr addr = EWaddr + weightaddr � interval (6.3)

wherePredictWr addr is the Predict Writes at page addressaddr and interval is a parameter

of how many writes between an address remapping.

Finally, as Figure 25 shown, the PA with the largest number of raw writes remaps to RA

with smallest predict writes instead of e�ective writes, and vice versa.

58

Figure 25: An example of PA to RA address remapping.

6.1.2.4 Design Overhead XWL adds two tables with two entries per 4KB data chunk

| 20 bits and 14 bits are used for the e�ective writes and interval raw writes counter,

respectively. One 16-bit remapping entry is added for each chunk. The total space overhead

is approximately 50bits=4KB = 1:56� 10� 3. I assume the optimized write scheme exploits

the LRS cell ratio information. If not, adding online pro�ling introduces negligible overhead,

as shown in Chapter 5. I use CACTI [66] to model the two tables as direct mapped cache,

the area and energy overheads are also negligible.

6.1.3 Process Variation Issue

Process variation (PV) is not considered in this work. When taking PV into considera-

tion, some of cells/rows would be more vulnerable to write operations than others. Several

PV aware wear leveling techniques [19, 123, 117] have been recently proposed to mitigate

this issue. XWL is a table based wear leveling scheme, which has the ability to address PV

more exibly. These designs are orthogonal to XWL in the work.

6.2 Experimental Setup

In Chapter 4, I model and simulate a 512� 512 ReRAM crossbar to investigate the

correlation between RESET latency ande�ective writes. In addition, I used an in-house

59

architectural Chip Multiprocessor simulator to evaluate the proposed XWL scheme and

compare it with baseline as well as na•�ve design. The system con�guration is presented in

Table 7. Pintool [61] is used to collect memory access traces from PARSEC [5], BioBench [3]

and SPEC2006 [31] benchmark suites. All benchmarks are executed with or without wear

leveling until �rst ReRAM page is worn out. Flip-n-write [17] is also used to reduce the

number of written bits. With a representative ReRAM device, I assume the ReRAM cell

endurance is 1:6 � 106. For the proposed XWL, the default interval is 104 while di�erent

intervals are also evaluated in experiments. The benchmarks are characterized in Table 8

with write bandwidth to ReRAM memory. I adopt the pro�ling approach and dynamic

RESET latency from Chapter 5.

In the work, I compared the following wear leveling schemes:

ˆ NoWL: baseline scheme, which adopts dynamic RESET latency and data pattern pro�ling,

does not use any wear leveling techniques.

ˆ Na•�ve : the wear leveling scheme, which follows the workow introduced in Section 6.1.2,

does not use proposed address remapping algorithm.

ˆ XWL: the proposed wear leveling design.

Table 7: System con�guration

Processor 4 cores@1.8Ghz; single issue in-order CMP

L1 I/D-cache Private; 16KB/core; 4-way; 2 cycles

L2 cache Private; 1MB/core; 8-way; 64B; 10 cycles

Main memory

2Gb ReRAM; 4KB page; 64B per line;

1 rank; 8 chips/rank;8 banks/chip;

128 mats/bank;

ReRAM Timing
Read Latency 18ns@1.5V; SET latency 10ns@3V;

RESET latency based on pro�ling@-3V

60

Table 8: Benchmark summary

Name Benchmark Suite
Write Bandwidth to ReRAM

(MBps)

ferret PARSEC 139.0

fasta dna BioBench 129.4

GemsFDTD SPEC2006 123.2

bzip2 SPEC2006 61.3

zeusmp SPEC2006 60.8

gcc SPEC2006 56.6

6.3 Evaluation Results

6.3.1 Endurance Improvement

Figure 26 presents the endurance improvements (normalized toNoWL). On average, by

applying the proposed wear leveling techniques, I observed the signi�cant endurance im-

provements by 285% and 324% forNa•�ve and XWL, respectively. Moreover, the proposed

wear levelingXWLshows 14% more lifetime enhancement. In conclusion, by using proposed

concept ofe�ective write as well as the address remapping algorithm, the lifetime of crossbar

ReRAM memory is e�ectively improved.

To evaluate the impact of interval length, Figure 27 compares the normalized endurance

improvements with di�erent intervals, i.e., 104, 5 � 104 and 105. From the �gure, the e�ec-

tiveness of endurance improvement diminishes as interval gets longer for most benchmarks.

On average, the normalized endurance improvements by usingXWLwith intervals of 104,

5 � 104 and 105 are 324%, 216% and 166%, respectively. This indicates that the proposed

XWLcan still signi�cantly improve the endurance of crossbar ReRAM memory even with

longer address remapping intervals.

61

Figure 26: Comparison of normalized endurance.

Figure 27: Comparison of normalized endurance with di�erent remapping intervals.

62

6.3.2 Performance Overhead

The data swapping after address remapping is inevitable for wear leveling, while it also

contributes major performance overhead [19, 117]. I also evaluate the performance overhead

of introducing the proposed wear leveling techniques. Figure 28 shows the swapping overhead

in performance by usingNa•�ve and XWLdesigns. The swapping overhead is de�ned as follows:

Swapping Overhead=
tdata swapping

texecution
(6.4)

where tdata swapping and texecution represent total data swapping time and execution time in

cycles through whole memory system lifetime, which indicates the overall percentage of

ReRAM crossbar lifetime are used for data migration. Overall,Na•�ve and XWLincur 6.5%

and 6.1% performance overheads respectively. Though theXWLmay potentially result in less

hot ReRAM pages write to the rows with smaller RESET latency as well as a larger number

of data swapping through the whole system lifetime, its performance loss is slightly better

than Na•�ve since theXWLcan much better improve the endurance cycles thanNa•�ve .

Figure 28: Comparison of data swapping overhead.

63

6.4 Conclusion

In this chapter, I focus on mitigating the write endurance degradation from IR drop by

proposing a novel wear leveling scheme for crossbar ReRAM memory. Speci�cally, based on

the study the write endurance variation issue in crossbar ReRAM memory in Chapter 4, in

which I observe that the e�ective write, which indicates actual the degree of ReRAM wearing

out, dynamically changes in runtime with di�erent data patterns and row addresses, I propose

a novel wear leveling scheme based on e�ective write to enhance lifetime of crossbar ReRAM

memory. To the best of my knowledge, this work is the �rst study speci�cally on addressing

the write endurance issue for crossbar ReRAM memory. The �nal evaluation results reveal

that, my design improves write endurance by 324%, compared to the baseline design.

64

7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network

Accelerators

7.1 Background

In this section, I discuss about the ReRAM crossbar array and its applications as neural

network accelerators, and also briey introduce the neural network training.

7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing

Figure 29 illustrates an ReRAM crossbar architecture, in which each ReRAM cell is

connected to a worldline and bitline at their crosspoint. With a voltage stress, ReRAM

cell behaves as resistive devices obeying Ohm's law. Hence, the current owing through

each cell depends on its resistance and voltage stress. With a vector ofn input voltages

V = [V0; :::; Vn� 3; Vn� 2; Vn� 1] from wordlines to one particular column of ReRAM cells, as

highlighted in red in Figure 29, aggregated analog currentI =
P n� 1

n=0 Vi � Gi outputs from the

bitline, where Gi is the conductance (the reciprocal of resistance,Gi = 1=Ri) of the ReRAM

cell. If the voltageV and conductanceG are treated as input vectors, the outputI = V �G is

naturally a result from a mathematical dot-product calculation byV and G. Since such dot-

product operations are predominantly performed in neural network computing, with weight

matrices represented by di�erent resistance levels in ReRAM cells, they can be e�ciently

processed inside ReRAM crossbars.

7.1.2 Neural Network Training

Figure 30 shows an example of neural network training, which is composed of a for-

ward and a backward propagation. In forward propagation, an input vector [x0; x1; :::; xn]

is fed into the network while calculating the intermediate neurons with weight matrices

W1; W2; :::; W4 in each layer. Afterwards, an output vector [y0; y1; :::; ym] is computed and

taken by a loss functionto estimate the di�erence with labeled data. As soon as the loss is

65

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. A brief summary of proposed schemes in the dissertation.
	2. ReRAM model parameters
	3. The tWR (ns) for RESET operation
	4. Comparing the profiling overhead in one bank
	5. System configuration
	6. Benchmarks characterization
	7. System configuration
	8. Benchmark summary
	9. Model accuracy degradation with different switching probabilities.
	10. Neural networks and datasets.
	11. Tradeoff between model accuracy loss and precisions of weight data.
	12. 3D-VRAM array model parameters.
	13. Simulator configuration.
	14. Description of benchmarks.

	List of Figures
	1. The ReRAM cell structure and two resistance states.
	2. ReRAM cell structure and basic (SET/RESET) programming operations.
	3. The three typical ReRAM array structures.
	4. The IR drop issue in ReRAM crossbar array.
	5. The sneaky currents during RESET and SET operations.
	6. Subfigures (a) to (h) show that the variations of RESET latency and voltage drop at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address 0 is the farthest row from driver, and Row Address 511 is the nearest row to the driver.
	7. Subfigures show that the variations of (a) voltage drop on selected cells and (b) RESET latency and (c) effective writes at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address Group 0 represents farthest rows from drivers, and Row Address Group 7 consists of nearest rows to the drivers.
	8. An overview of the proposed low-overhead runtime profiling scheme.
	9. The profiling current vs. LRS cell percentage in 512×512 ReRAM crossbar array.
	10. The rows with different addresses are mapped to 8 groups with different worst-case RESET latencies.
	11. An example of how my proposed online profiling works and how to determine the RESET timing.
	12. Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat.
	13. The dynamic energy distribution when adopting the proposed profiling technique.
	14. The scheme of proposed selective profiling.
	15. The scheme of proposed fine-grained profiling.
	16. The comparison of memory write latency.
	17. The comparison of memory read latency.
	18. The performance comparison. The benchmarks are categorized into High, Medium and Low memory intensity types based on RPKI and WPKI.
	19. The number of profiling operation performed with optimized techniques on mats (Normalized to PROF).
	20. The profiling energy with optimized techniques (Normalized to PROF).
	21. The comparison of dynamic energy and Energy-Delay Product (EDP).
	22. The sensitivity of performance and memory dynamic energy consumption when using (a) different numbers of ADC units; and (b) different ReRAM mat sizes.
	23. The basic workflow of XWL.
	24. Profiling bitline data pattern for (1) optimized RESET latency and (2) estimating effective writes.
	25. An example of PA to RA address remapping.
	26. Comparison of normalized endurance.
	27. Comparison of normalized endurance with different remapping intervals.
	28. Comparison of data swapping overhead.
	29. An ReRAM crossbar based dot-product engine.
	30. Neural network training with weight updates.
	31. ReRAM cell switching and its resistance.
	32. The correlation between switching probability and RESET voltage width with different RESET pulse heights.
	33. An overview of ReRAM crossbar based accelerator for neural network computing.
	34. A comparison of the baseline weight update in row-major order and the proposed optimized programming order.
	35. The precise RESET on MSB columns and shortened RESET on LSB columns.
	36. The proposed column group shift and update scheme.
	37. Total effective writes comparison for MLP and CNN models. (a) Training with different epochs until a convergence to the best accuracy. (b) Effective writes comparison for the MLP layer FC-784x240 among all schemes with the same number of 84 training epochs.
	38. The contribution ratio of shortened RESET timing and optimized programming order techniques for the reduction in effective writes with (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64.
	39. A comparison of the maximum number of effective writes in the worst-case ReRAM cell for (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64.
	40. A sensitivity study for ReNEW with different switching probabilities in MLP layer FC-784x240: (a) total effective writes and accuracy with different training epochs, (b) total effective writes with a same number of training epochs, and (c) the maximum number of effective writes.
	41. The architecture of a 3D-VRAM array.
	42. An example of the proposed Flip-n-Store scheme.
	43. Comparisons of the worst-case (a) RESET voltages and (b) RESET latency between baseline and Flip-n-Store scheme in different sizes of 3D-VRAM arrays.
	44. Variations of RESET voltage and latency with LRS percentages in selected WL (SWL) and unselected WLs (UWLs) in different sizes of 3D-VRAM arrays.
	45. An example of data pattern estimation for WL planes in a 4×4×4 3D-VRAM array.
	46. An example of proposed write latency reduction scheme (While a safe-RESET always finishes in one RESET round, an aggressive RESET may go through RESET-read-RESET three rounds).
	47. The write latency reduction comparison.
	48. The read latency reduction comparison.
	49. The IPC improvement comparison.
	50. The dynamic energy reduction comparison.

	Preface
	1.0 Introduction
	1.1 The Challenges in Deployment of ReRAM Crossbars
	1.1.1 Write Performance Bottleneck
	1.1.2 Limited Write Endurance
	1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing
	1.1.4 Write Performance Issue in 3D Vertical ReRAM

	1.2 Research Overview
	1.3 Contributions
	1.3.1 Speeding Up RESET Operation
	1.3.2 Improving Write Endurance
	1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accelerators
	1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write Latency Reduction

	1.4 Dissertation Organization

	2.0 Preliminaries
	2.1 ReRAM Cell Structure
	2.2 ReRAM Programming
	2.3 ReRAM Crossbar Array Structure
	2.4 IR Drop Issue

	3.0 Prior Art
	3.1 Performance of ReRAM Crossbars
	3.1.1 Studies on RESET Operation
	3.1.2 Data Patterns in ReRAM Crossbars
	3.1.3 RESET Latency Discrepancy

	3.2 Endurance of ReRAM Crossbars
	3.2.1 Wear Leveling for Non-volatile Memories
	3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators
	3.2.3 Improving Endurance by Exploiting Stochastic Switching

	3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars
	3.3.1 Current Accumulation Feature
	3.3.2 Neural Network Computing with ReRAM

	3.4 Data Encoding for NVM

	4.0 Observations
	4.1 The Correlation between RESET Latency and the Number of LRS Cells
	4.2 Endurance Variation in ReRAM Crossbars
	4.2.1 Effective Write
	4.2.2 Design Challenge

	5.0 Speeding Up RESET Operation
	5.1 Low-Overhead Runtime Profiling
	5.1.1 An Overview
	5.1.2 Design Details of Runtime Profiling
	5.1.3 Determine the RESET Timing
	5.1.3.1 Online Profiling Operation
	5.1.3.2 Write Operation with Optimal RESET Timing

	5.1.4 Reduce Bitline LRS Cells
	5.1.5 Overhead Analysis

	5.2 Profiling Optimization
	5.2.1 Profiling Energy Overhead Analysis
	5.2.2 Selective Profiling
	5.2.3 Fine-grained Profiling

	5.3 Experimental Setup
	5.3.1 Modeling and Simulation Methodologies
	5.3.2 Workload Characterization
	5.3.3 Schemes for Evaluations

	5.4 Evaluation Results and Analysis
	5.4.1 Memory Access Latency
	5.4.2 System Performance
	5.4.3 Effectiveness of Profiling Optimization
	5.4.4 Memory Energy Efficiency
	5.4.5 Sensitivity Study
	5.4.5.1 Sensitivity to Number of ADC units.
	5.4.5.2 Sensitivity to Mat Sizes.

	5.5 Conclusion

	6.0 Improving Write Endurance
	6.1 XWL: Wear Leveling for Crossbar ReRAM Memory
	6.1.1 An Overview
	6.1.2 Design Details
	6.1.2.1 Effective and Raw Write
	6.1.2.2 Updating Write Tables
	6.1.2.3 Address-Remapping Algorithm
	6.1.2.4 Design Overhead

	6.1.3 Process Variation Issue

	6.2 Experimental Setup
	6.3 Evaluation Results
	6.3.1 Endurance Improvement
	6.3.2 Performance Overhead

	6.4 Conclusion

	7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accelerators
	7.1 Background
	7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing
	7.1.2 Neural Network Training

	7.2 Motivation
	7.2.1 ReRAM Cell Endurance Model
	7.2.1.1 Tunneling Gap Distance and Roff/Ron
	7.2.1.2 Fixed Roff/Ron During Programming
	7.2.1.3 Variable Roff/Ron During Programming

	7.2.2 ReRAM Stochastic Switching

	7.3 Proposed Designs
	7.3.1 Training NN with SLC ReRAM
	7.3.2 Optimized Programming Order
	7.3.3 Shortened RESET operation
	7.3.4 Column Group Shift and Update

	7.4 Experimental Setup
	7.5 Accuracy and Lifetime of ReRAM Crossbars Tradeoff
	7.6 Lifetime Improvement
	7.6.1 Total Effective Writes
	7.6.2 The Maximum Number of Effective Writes in Worst-case Cell
	7.6.3 Sensitivity to Switching Probability

	7.7 Conclusion

	8.0 Accelerating 3D Vertical Resistive Memory
	8.1 Background and Motivation
	8.1.1 3D-VRAM Array Architecture
	8.1.2 Sneak Current Issue in 3D-VRAM Arrays

	8.2 Proposed Designs
	8.2.1 Data Pattern Optimization
	8.2.2 RESET Latency Variation
	8.2.3 Data Patterns Estimation
	8.2.4 Write Latency Reduction with Safe and Aggressive RESET
	8.2.4.1 Safe RESET
	8.2.4.2 Aggressive RESET

	8.2.5 Discussion
	8.2.5.1 Other LRS Cells Reduction Schemes
	8.2.5.2 Overhead

	8.3 Experimental Methodologies
	8.3.1 3D-VRAM Array Modeling
	8.3.2 Configuration and Simulation
	8.3.3 Benchmarks
	8.3.4 Compared Schemes

	8.4 Evaluation Results and Analysis
	8.4.1 Write Latency Reduction
	8.4.2 Read Latency Reduction
	8.4.3 System Performance Improvement
	8.4.4 Dynamic Energy Reduction

	8.5 Conclusion

	9.0 Conclusions
	9.1 Summary of Contributions
	9.2 Impacts
	9.2.1 Accelerating the Deployment of Crossbar ReRAM as Main Memories
	9.2.2 Achieving Larger Improvements with Technology Scaling Down
	9.2.3 Highlighting the Importance of In-memory Data Patterns to Performance and Endurance
	9.2.4 Emphasizing Collaborative Efforts from Different Perspectives for Memory System Design
	9.2.5 Advancing the Development in Data Storage and Computing Applications of Crossbar ReRAM

	9.3 Limitations
	9.4 Future Research Directions
	9.4.1 MLC ReRAM Crossbars
	9.4.2 Approximate Computing with ReRAM Crossbars

	Bibliography

