
Improving Performance and Endurance for Crossbar

Resistive Memory

by

Wen Wen

B.E., Southeast University, 2011

M.E., Southeast University, 2014

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Wen Wen

It was defended on

June 19, 2020

and approved by

Jun Yang, Ph.D., Professor, Department of Electrical and Computer Engineering

Youtao Zhang, Ph.D., Professor, Department of Computer Science

Natasa Miskov-Zivanov, Ph.D., Assistant Professor, Department of Electrical and

Computer Engineering

Jingtong Hu, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Feng Xiong, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Daqing He, Ph.D., Professor, Department of Informatics and Networked Systems

Dissertation Advisors: Jun Yang, Ph.D., Professor, Department of Electrical and

Computer Engineering,

Youtao Zhang, Ph.D., Professor, Department of Computer Science

ii

Copyright © by Wen Wen

2020

iii

Improving Performance and Endurance for Crossbar Resistive Memory

Wen Wen, PhD

University of Pittsburgh, 2020

Resistive Memory (ReRAM) has emerged as a promising non-volatile memory technology

that may replace a significant portion of DRAM in future computer systems. When adopting

crossbar architecture, ReRAM cell can achieve the smallest theoretical size in fabrication,

ideally for constructing dense memory with large capacity. However, crossbar cell structure

suffers from severe performance and endurance degradations, which come from large voltage

drops on long wires.

In this dissertation, I first study the correlation between the ReRAM cell switching la-

tency and the number of cells in low resistant state (LRS) along bitlines, and propose to

dynamically speed up write operations based on bitline data patterns. By leveraging the

intrinsic in-memory processing capability of ReRAM crossbars, a low overhead runtime pro-

filer that effectively tracks the data patterns in different bitlines is proposed. To achieve

further write latency reduction, data compression and row address dependent memory data

layout are employed to reduce the numbers of LRS cells on bitlines. Moreover, two optimiza-

tion techniques are presented to mitigate energy overhead brought by bitline data patterns

tracking.

Second, I propose XWL, a novel table-based wear leveling scheme for ReRAM crossbars

and study the correlation between write endurance and voltage stress in ReRAM crossbars.

By estimating and tracking the effective write stress to different rows at runtime, XWL

chooses the ones that are stressed the most to mitigate.

Additionally, two extended scenarios are further examined for the performance and en-

durance issues in neural network accelerators as well as 3D vertical ReRAM (3D-VRAM)

arrays. For the ReRAM crossbar-based accelerators, by exploiting the wearing out mecha-

nism of ReRAM cell, a novel comprehensive framework, ReNEW, is proposed to enhance the

lifetime of the ReRAM crossbar-based accelerators, particularly for neural network training.

To reduce the write latency in 3D-VRAM arrays, a collection of techniques, including an

iv

in-memory data encoding scheme, a data pattern estimator for assessing cell resistance dis-

tributions, and a write time reduction scheme that opportunistically reduces RESET latency

with runtime data patterns, are devised.

v

Table of Contents

Preface . xv

1.0 Introduction . 1

1.1 The Challenges in Deployment of ReRAM Crossbars 1

1.1.1 Write Performance Bottleneck . 1

1.1.2 Limited Write Endurance . 2

1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing . . . 2

1.1.4 Write Performance Issue in 3D Vertical ReRAM 4

1.2 Research Overview . 4

1.3 Contributions . 5

1.3.1 Speeding Up RESET Operation . 5

1.3.2 Improving Write Endurance . 6

1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Ac-

celerators . 7

1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write

Latency Reduction . 8

1.4 Dissertation Organization . 8

2.0 Preliminaries . 10

2.1 ReRAM Cell Structure . 10

2.2 ReRAM Programming . 11

2.3 ReRAM Crossbar Array Structure . 11

2.4 IR Drop Issue . 12

3.0 Prior Art . 15

3.1 Performance of ReRAM Crossbars . 15

3.1.1 Studies on RESET Operation . 15

3.1.2 Data Patterns in ReRAM Crossbars 15

3.1.3 RESET Latency Discrepancy . 16

vi

3.2 Endurance of ReRAM Crossbars . 16

3.2.1 Wear Leveling for Non-volatile Memories 16

3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators . 16

3.2.3 Improving Endurance by Exploiting Stochastic Switching 17

3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars 17

3.3.1 Current Accumulation Feature . 17

3.3.2 Neural Network Computing with ReRAM 18

3.4 Data Encoding for NVM . 18

4.0 Observations . 19

4.1 The Correlation between RESET Latency and the Number of LRS Cells . . 19

4.2 Endurance Variation in ReRAM Crossbars 21

4.2.1 Effective Write . 22

4.2.2 Design Challenge . 24

5.0 Speeding Up RESET Operation . 25

5.1 Low-Overhead Runtime Profiling . 25

5.1.1 An Overview . 25

5.1.2 Design Details of Runtime Profiling 27

5.1.3 Determine the RESET Timing . 29

5.1.3.1 Online Profiling Operation . 31

5.1.3.2 Write Operation with Optimal RESET Timing 31

5.1.4 Reduce Bitline LRS Cells . 33

5.1.5 Overhead Analysis . 33

5.2 Profiling Optimization . 35

5.2.1 Profiling Energy Overhead Analysis 35

5.2.2 Selective Profiling . 36

5.2.3 Fine-grained Profiling . 37

5.3 Experimental Setup . 40

5.3.1 Modeling and Simulation Methodologies 40

5.3.2 Workload Characterization . 40

5.3.3 Schemes for Evaluations . 41

vii

5.4 Evaluation Results and Analysis . 44

5.4.1 Memory Access Latency . 44

5.4.2 System Performance . 45

5.4.3 Effectiveness of Profiling Optimization 47

5.4.4 Memory Energy Efficiency . 48

5.4.5 Sensitivity Study . 50

5.4.5.1 Sensitivity to Number of ADC units. 50

5.4.5.2 Sensitivity to Mat Sizes. 50

5.5 Conclusion . 51

6.0 Improving Write Endurance . 53

6.1 XWL: Wear Leveling for Crossbar ReRAM Memory 53

6.1.1 An Overview . 53

6.1.2 Design Details . 55

6.1.2.1 Effective and Raw Write . 55

6.1.2.2 Updating Write Tables . 55

6.1.2.3 Address-Remapping Algorithm 56

6.1.2.4 Design Overhead . 59

6.1.3 Process Variation Issue . 59

6.2 Experimental Setup . 59

6.3 Evaluation Results . 61

6.3.1 Endurance Improvement . 61

6.3.2 Performance Overhead . 63

6.4 Conclusion . 64

7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Ac-

celerators . 65

7.1 Background . 65

7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing 65

7.1.2 Neural Network Training . 65

7.2 Motivation . 67

7.2.1 ReRAM Cell Endurance Model . 67

viii

7.2.1.1 Tunneling Gap Distance and Roff/Ron 68

7.2.1.2 Fixed Roff/Ron During Programming 69

7.2.1.3 Variable Roff/Ron During Programming 69

7.2.2 ReRAM Stochastic Switching . 70

7.3 Proposed Designs . 72

7.3.1 Training NN with SLC ReRAM . 72

7.3.2 Optimized Programming Order . 74

7.3.3 Shortened RESET operation . 74

7.3.4 Column Group Shift and Update . 77

7.4 Experimental Setup . 78

7.5 Accuracy and Lifetime of ReRAM Crossbars Tradeoff 79

7.6 Lifetime Improvement . 80

7.6.1 Total Effective Writes . 80

7.6.2 The Maximum Number of Effective Writes in Worst-case Cell 83

7.6.3 Sensitivity to Switching Probability 84

7.7 Conclusion . 86

8.0 Accelerating 3D Vertical Resistive Memory 87

8.1 Background and Motivation . 87

8.1.1 3D-VRAM Array Architecture . 87

8.1.2 Sneak Current Issue in 3D-VRAM Arrays 87

8.2 Proposed Designs . 88

8.2.1 Data Pattern Optimization . 89

8.2.2 RESET Latency Variation . 90

8.2.3 Data Patterns Estimation . 91

8.2.4 Write Latency Reduction with Safe and Aggressive RESET 94

8.2.4.1 Safe RESET . 96

8.2.4.2 Aggressive RESET . 96

8.2.5 Discussion . 97

8.2.5.1 Other LRS Cells Reduction Schemes 97

8.2.5.2 Overhead . 97

ix

8.3 Experimental Methodologies . 97

8.3.1 3D-VRAM Array Modeling . 97

8.3.2 Configuration and Simulation . 99

8.3.3 Benchmarks . 100

8.3.4 Compared Schemes . 100

8.4 Evaluation Results and Analysis . 101

8.4.1 Write Latency Reduction . 101

8.4.2 Read Latency Reduction . 102

8.4.3 System Performance Improvement . 102

8.4.4 Dynamic Energy Reduction . 103

8.5 Conclusion . 104

9.0 Conclusions . 106

9.1 Summary of Contributions . 106

9.2 Impacts . 107

9.2.1 Accelerating the Deployment of Crossbar ReRAM as Main Memories . 108

9.2.2 Achieving Larger Improvements with Technology Scaling Down 108

9.2.3 Highlighting the Importance of In-memory Data Patterns to Perfor-

mance and Endurance . 109

9.2.4 Emphasizing Collaborative Efforts from Different Perspectives for Mem-

ory System Design . 109

9.2.5 Advancing the Development in Data Storage and Computing Applica-

tions of Crossbar ReRAM . 110

9.3 Limitations . 110

9.4 Future Research Directions . 111

9.4.1 MLC ReRAM Crossbars . 111

9.4.2 Approximate Computing with ReRAM Crossbars 111

Bibliography . 113

x

List of Tables

1 A brief summary of proposed schemes in the dissertation. 5

2 ReRAM model parameters . 21

3 The tWR (ns) for RESET operation . 30

4 Comparing the profiling overhead in one bank 31

5 System configuration . 42

6 Benchmarks characterization . 43

7 System configuration . 60

8 Benchmark summary . 61

9 Model accuracy degradation with different switching probabilities. 76

10 Neural networks and datasets. 79

11 Tradeoff between model accuracy loss and precisions of weight data. 81

12 3D-VRAM array model parameters. 98

13 Simulator configuration. 99

14 Description of benchmarks. 100

xi

List of Figures

1 The ReRAM cell structure and two resistance states. 10

2 ReRAM cell structure and basic (SET/RESET) programming operations. . . 12

3 The three typical ReRAM array structures. 12

4 The IR drop issue in ReRAM crossbar array. 13

5 The sneaky currents during RESET and SET operations. 14

6 Subfigures (a) to (h) show that the variations of RESET latency and voltage

drop at different LRS cell percentages in bitlines when accessing to different

row address in ReRAM array. The Row Address 0 is the farthest row from

driver, and Row Address 511 is the nearest row to the driver. 20

7 Subfigures show that the variations of (a) voltage drop on selected cells and

(b) RESET latency and (c) effective writes at different LRS cell percentages

in bitlines when accessing to different row address in ReRAM array. The

Row Address Group 0 represents farthest rows from drivers, and Row Address

Group 7 consists of nearest rows to the drivers. 23

8 An overview of the proposed low-overhead runtime profiling scheme. 26

9 The profiling current vs. LRS cell percentage in 512×512 ReRAM crossbar

array. 28

10 The rows with different addresses are mapped to 8 groups with different worst-

case RESET latencies. 30

11 An example of how my proposed online profiling works and how to determine

the RESET timing. 32

12 Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat. 34

13 The dynamic energy distribution when adopting the proposed profiling technique. 36

14 The scheme of proposed selective profiling. 38

15 The scheme of proposed fine-grained profiling. 39

16 The comparison of memory write latency. 44

xii

17 The comparison of memory read latency. 45

18 The performance comparison. The benchmarks are categorized into High,

Medium and Low memory intensity types based on RPKI and WPKI. 46

19 The number of profiling operation performed with optimized techniques on

mats (Normalized to PROF). 47

20 The profiling energy with optimized techniques (Normalized to PROF). 48

21 The comparison of dynamic energy and Energy-Delay Product (EDP). 49

22 The sensitivity of performance and memory dynamic energy consumption when

using (a) different numbers of ADC units; and (b) different ReRAM mat sizes. 52

23 The basic workflow of XWL. 54

24 Profiling bitline data pattern for (1) optimized RESET latency and (2) esti-

mating effective writes. 57

25 An example of PA to RA address remapping. 59

26 Comparison of normalized endurance. 62

27 Comparison of normalized endurance with different remapping intervals. . . . 62

28 Comparison of data swapping overhead. 63

29 An ReRAM crossbar based dot-product engine. 66

30 Neural network training with weight updates. 67

31 ReRAM cell switching and its resistance. 68

32 The correlation between switching probability and RESET voltage width with

different RESET pulse heights. 71

33 An overview of ReRAM crossbar based accelerator for neural network computing. 73

34 A comparison of the baseline weight update in row-major order and the pro-

posed optimized programming order. 75

35 The precise RESET on MSB columns and shortened RESET on LSB columns. 76

36 The proposed column group shift and update scheme. 77

37 Total effective writes comparison for MLP and CNN models. (a) Training with

different epochs until a convergence to the best accuracy. (b) Effective writes

comparison for the MLP layer FC-784x240 among all schemes with the same

number of 84 training epochs. 82

xiii

38 The contribution ratio of shortened RESET timing and optimized program-

ming order techniques for the reduction in effective writes with (a) MLP layer

FC-784x240 and (b) CNN layer CONV4x64. 83

39 A comparison of the maximum number of effective writes in the worst-case

ReRAM cell for (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64. . . 84

40 A sensitivity study for ReNEW with different switching probabilities in MLP

layer FC-784x240: (a) total effective writes and accuracy with different training

epochs, (b) total effective writes with a same number of training epochs, and

(c) the maximum number of effective writes. 85

41 The architecture of a 3D-VRAM array. 88

42 An example of the proposed Flip-n-Store scheme. 89

43 Comparisons of the worst-case (a) RESET voltages and (b) RESET latency

between baseline and Flip-n-Store scheme in different sizes of 3D-VRAM arrays. 90

44 Variations of RESET voltage and latency with LRS percentages in selected

WL (SWL) and unselected WLs (UWLs) in different sizes of 3D-VRAM arrays. 92

45 An example of data pattern estimation for WL planes in a 4×4×4 3D-VRAM

array. 94

46 An example of proposed write latency reduction scheme (While a safe-RESET

always finishes in one RESET round, an aggressive RESET may go through

RESET-read-RESET three rounds). 95

47 The write latency reduction comparison. 101

48 The read latency reduction comparison. 102

49 The IPC improvement comparison. 103

50 The dynamic energy reduction comparison. 105

xiv

Preface

Nearing the end of my journey to a Ph.D. degree, I would like to take this opportunity

to thank many fantastic people who I am honored and blessed to work and share my life

with in the past wonderful years. First and foremost, I am sincerely grateful to my advisor

Professor Jun Yang and my co-advisor Professor Youtao Zhang for their guidance, support

and trust. They are the great role model to me as professional, passionate, motivated as well

as creative researchers. I really enjoy all discussions and brainstorming in developing new

ideas with them, and appreciate their patience, advice and tremendous efforts in helping me

innovate and explore in my research. It has always been my greatest pleasure and fortune

to have them as my advisors.

I would also like to thank Professor Natasa Miskov-Zivanov, Professor Jingtong Hu,

Professor Feng Xiong and Professor Daqing He for serving on my Ph.D. dissertation com-

mittee. Their feedback and comments are very constructive and valuable to me in shaping

this dissertation.

Further, I want to thank all of my lab mates for receiving their continuous support and

help. With them along with me in this journey, I have so many enjoyable and memorable

moments inside and outside research.

Last but not the least, I would like to dedicate this dissertation to my family, and express

my deepest appreciation for their endless love and support. Sincere thanks to my beloved

parents, who brought me up to be a better person and always love me unconditionally.

Special thanks to my wife, who is always by my side and encourages me throughout this

journey.

xv

1.0 Introduction

Due to increasing demand for large capacity memory in modern data-intensive applica-

tions, DRAM, the de facto memory technology for constructing main memory, faces severe

high leakage power, short refreshing interval, low density and yield issues [44]. Recent studies

have proposed to construct future large capacity main memory using emerging non-volatile

memory (NVM) technologies, e.g., PCM (Phase Change Memory) [125, 75, 52, 74, 23],

STT-MRAM (Spin Transfer Torque Magnetic RAM) [50, 37, 108, 1], and ReRAM (Resistive

Memory) [101, 105, 121, 115, 54, 114, 35, 77, 119, 97, 120, 63]. These memory technologies

have good scalability, high density, almost zero low leakage power as well as non-volatility

characteristics.

Among different NVM technologies, ReRAM has become one of the most promising

candidates. ReRAM explores the different resistance states of vertically stacked metal and

oxide layers to store information. Comparing to other NVM technologies, ReRAM has

better write performance than PCM [111, 38] and better density and scalability than STT-

MRAM [37, 65, 96]. When adopting crossbar architecture, ReRAM can achieve the smallest

4F2 planar cell size [105]. Moreover, the intrinsic analog current accumulation feature of

ReRAM crossbars further propels the popularity of studies on this crossbar array structure

for accelerating dot-product calculations between matrices and vectors in neural network

computing.

1.1 The Challenges in Deployment of ReRAM Crossbars

1.1.1 Write Performance Bottleneck

With the benefits in density, capacity, non-volatility and small leakage power, however,

ReRAM crossbars suffer from large sneaky currents [124, 33, 105, 114, 43]. When performing

ReRAM accesses, in particular, RESET operations, we cannot ignore the leakage currents

1

flowing through half-selected cells on the selected wordline and bitlines. This is because

crossbar arrays, even after adopting diode selectors, cannot completely isolate the to-be-

written cells from other cells on the selected wordline and bitlines. The large sneak currents

not only reduce energy efficiency, but also cause large IR drop on long wires [82], leading to

degraded performance and operation reliability. With fast technology scaling, the IR drop

issue tends to worsen due to increased wire resistance and array sizes. To ensure operation

reliability, ReRAM write operations conservatively use the worst-case access latency of all

cells in ReRAM arrays, which leads to significant performance degradation and dynamic

energy waste.

1.1.2 Limited Write Endurance

According to [115], ReRAM suffers from unsatisfactory write endurance. Recent studies

showed that the endurances of ReRAM chips adopting different resistive materials range

from 103 to 109 [102]. Furthermore, prior studies [14, 34, 69] showed that programming

ReRAM cells with longer than necessary pulse length over-SETs or over-RESETs the cor-

responding cells, leading to orders of magnitude degradation in ReRAM cell lifetime [14].

While optimized write strategies [105, 114] write different rows using different write laten-

cies, the rows being close to the write drivers still get stressed more than others. Adopting

traditional wear leveling techniques that evenly distribute writes across all rows in ReRAM

space would become less effective — the rows that close to the drivers are approaching their

lifetime while others may still have a lot of endurance to use. Thus, it is important to devise

a wear leveling approach that considers the stress difference at runtime.

1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing

In recent years, the neural networks have gained increasing attentions and been success-

fully applied to a wide range of applications [48, 87, 45, 47]. The increasingly growth in the

size of datasets and the number of layers in neural networks help to achieve a better pre-

diction accuracy, but also result in dramatically increased computations and expensive data

movement from off-chip memory. Conventional CMOS-based general purpose processors

2

such as multi-core CPU [91] and GPGPU [48], or specialized hardware accelerators, such as

FPGA [113] and ASIC designs [15, 41], are intensively studied and proposed with software

and hardware optimizations for neural network applications, however, they still suffer from

the large energy consumption and limited memory bandwidth [16].

To address these issues, resistive memory (ReRAM), with adopting crossbar array struc-

ture, is proposed to implement dot-product calculations by leveraging its analog current

accumulation feature [32, 81, 16, 85, 9, 116]. ReRAM crossbars are able to accelerate neu-

ral networks computation with low energy consumption and minimized data movement [81],

since they have almost zero leakage power and intrinsically support the processing-in-memory

(PIM) computation paradigm.

Though ReRAM crossbar based neural network accelerators own these advantages over

conventional CMOS-based accelerators, due to the limited cell endurance [102, 115, 9, 116],

they suffer from short programming cycles as weight data stored in ReRAM cells are fre-

quently updated during the neural network training. The write endurance of ReRAM chips

can range from 106 to 1012 [72, 69, 9] with adopting various resistive materials and different

programming schemes. On the other hand, training the state-of-the-art deep neural networks

usually demands at least 5 orders of magnitudes of weight updates, which essentially leads to

frequent ReRAM cell programming. Therefore, enhancing the lifetime of ReRAM crossbars

is the key to facilitate its widespread adoption as hardware accelerators for neural network

training.

Conventional wear-leveling techniques for NVM (non-volatile memory) based main mem-

ory have been well-studied, mostly with a focus on evenly distributing write requests across

pages [97, 123, 117, 74]. With distinct programming patterns, ReRAM crossbar based neu-

ral network accelerators may potentially demand for an innovative approach. Prior efforts

on extending ReRAM crossbar based neural network accelerators either manage to squeeze

the endurance of the degraded MLC ReRAM cells [116] or exploit the gradient sparsifica-

tion and regularly perform row-swapping [116]. However, in order to further improve the

endurance of ReRAM crossbars for neural network training, it is necessary to investigate

optimal programming strategies by exploiting the mechanism of endurance degradation in

3

ReRAM crossbars, while taking characteristics of the target application, i.e., neural network

training, as well as crossbar array features into account.

1.1.4 Write Performance Issue in 3D Vertical ReRAM

With the fast advances in 3D integration technologies, recent studies [107, 104, 94, 39,

129] have demonstrated that 3D stacking is a viable solution for further improving the bit

density of ReRAM arrays. In addition to low energy-efficiency and non-volatility, ReRAM

(Resistive Memory) achieves excellent density and scalability by vertically stacking multiple

layers of cross-point arrays. With different 3D integration processes, 3D Horizontal ReRAM

(3D-HRAM) and 3D Vertical ReRAM (3D-VRAM) are two typical 3D stacked ReRAM array

architectures [104, 12]. In recent studies, the 3D-VRAM is more widely adopted for high

density memories due to lower fabrication cost [107, 39]. In this dissertation, 3D-VRAM is

chosen as the baseline.

Though 3D-VRAM arrays can be used to construct terabit-scale memories [39], similar to

2D ReRAM crossbars, they face severe sneak current issues. A recent work [107] shows that

the access voltage degradation on the selected cells tends to worsen with more stacked layers

in 3D-VRAM arrays. Most prior work on 3D-VRAM arrays studied device characteristics,

circuit modeling, architectural design explorations with assuming the worst-case scenario in

arrays [107, 104, 39, 12]. An optimization for write latency of 3D-VRAM is still lacking.

1.2 Research Overview

In order to overcome the challenges summarized above, it is necessary to propose com-

prehensive architectural solutions based on simulations and modeling across multiple levels,

i.e., device, circuitry, architecture and application.

In this dissertation, I focus on mitigating the performance degradation from IR drop [99,

100], and also propose a novel wear leveling scheme for addressing the limited write endurance

4

of ReRAM crossbars [97], by exploiting in-memory data patterns and without incurring sig-

nificant overhead. I then extend my study to two scenarios: (1) adopting ReRAM crossbars

for accelerating neural network computing [98], limited lifetime issue of ReRAM crossbars is

critical, particularly when performing the training task; and (2) in 3D-VRAM arrays, write

performance and reliability are dramatically degraded by enormous amount of sneaky paths.

Therefore, this dissertation proposes a collection of techniques to address these issues, which

are summarized in Table 1.

Table 1: A brief summary of proposed schemes in the dissertation.

Chapter Proposed Scheme Challenge Application

Chapter 5
Data Pattern Profiling &

Optimizations

Long Write Latency for

ReRAM Crossbars
Main Memory

Chapter 6 Wear Leveling XWL Limited Write Endurance Main Memory

Chapter 7 Framework ReNEW
Limited Lifetime During

Neural Network Training
Accelerators

Chapter 8

Data Encoding &

Safe- and Aggressive-

Data Pattern Estimation

Long Write Latency for

3D-VRAM arrays
Main Memory

1.3 Contributions

1.3.1 Speeding Up RESET Operation

First, I focus on mitigating the performance degradation from IR drop. This part of my

work has been published in [100]. My contributions are summarized as follows.

• I study the correlation between the RESET latency of an ReRAM row and the number

of the cells in low resistance state (LRS) on selected bitlines. I propose to dynamically

5

speed up the RESET operations when there are small numbers of LRS cells. Further

performance improvement is achieved from exploiting data compression and row address

dependent data layout.

• I propose a novel profiling technique to dynamically track the number of LRS cells along

different bitlines in the crossbar. By leveraging the in-memory processing capability

of ReRAM crossbar, the number of LRS cells in bitlines is periodically detected using

current aggregation, an operation having fast speed (comparable to READ operation)

and low hardware and performance overheads.

• I propose two profiling optimization techniques, i.e., selective profiling and fine-grained

profiling, to mitigate the energy overhead during profiling. They choose a subset of mats

or wordlines to profile so that fewer cells are activated during a profiling operation.

• I evaluate the proposed design and compare it to the state-of-the-art. The experimental

results reveal that, my design improves system performance by 20.5% and 14.2%, and

reduces memory dynamic energy by 20.3% and 12.6%, compared to the baseline and the

state-of-the-art crossbar designs, respectively.

1.3.2 Improving Write Endurance

Second, I propose XWL, a novel table based wear leveling design for addressing the write

endurance degradation from IR drop in ReRAM crossbars. This part of my work has been

published in [97]. I summarize my contributions as follows.

• I study write endurance variation in ReRAM crossbar, which reveals that the effective

write, i.e., the actual degree of ReRAM wearing out, depends on data patterns and row

addresses at runtime. To the best of my knowledge, this is the first study revealing the

unique wearing characteristic in ReRAM crossbars.

• I propose XWL, a novel table based wear leveling design that tracks the effective writes

at runtime. XWL periodically remaps the ReRAM rows that are stressed the most,

rather than the ones accumulating the most write counts.

• I evaluate the proposed wear leveling scheme. The experimental results reveal that, my

design improves write endurance by 324%, compared to the baseline design.

6

1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accel-

erators

Third, I propose to enhance lifetime for ReRAM crossbar based neural network acceler-

ators. To achieve this, a comprehensive framework, ReREW, which consists of techniques

that can effectively prolong ReRAM crossbar lifetime during neural network training, is pro-

posed. This part of my work has been published in [98]. A summary of main contributions

is listed as follows.

• Unlike many of prior studies, I propose to program ReRAM cells in crossbars in SLC

(Single Level Cell) mode for neural network training and in MLC (Multi-Level Cell)

mode during the inference, in order to fully take the advantage of longer endurance of

SLC ReRAM cells during the training and larger capacity of MLC ReRAM cells for the

inference.

• Prior studies show that different in-memory data patterns lead to discrepancies in pro-

gramming latency and voltage stress, which further causes the disparity of actual wearing

out degrees of ReRAM cells. Based on this observation, the optimal programming la-

tency is adopted and an optimized order to update weights, which can maximize the

lifetime of ReRAM crossbars, is proposed.

• I analyze the trade-off between endurance and programming conditions, and then present

an endurance analytical model for ReRAM cell in SLC mode with different program-

ming strengths. In addition, an analytical study of the trade-off between programming

latency and switching probability is presented. Based on these analyses along with the

intrinsic error-tolerance of neural network training, I propose to intentionally shorten

the programming time to enhance lifetime of ReRAM crossbars at a cost of possibly

unsuccessful ReRAM cell switching.

• Inspired by a conventional wear-leveling technique for NVM based main memory, I also

propose to shift and update a group of columns between training iterations, which can

effectively spread out writes across the whole crossbar.

7

• Experimental evaluations prove that my proposed techniques reduce the total effective

writes to ReRAM crossbar-based accelerators by up to 500.3×, 50.0×, 2.83× and 1.60×

over two MLC baselines, SLC baseline and SLC design with optimal timing respectively.

1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write

Latency Reduction

Lastly, I aim to improve write performance in 3D-VRAM arrays by exploring and address-

ing of the unique issues for 3D vertical ReRAM array architectures. The main contributions

are summarized as follows:

• A thorough study of how runtime data patterns stored in vertical layers influence write

latency in 3D-VRAM array architectures is presented. In particular, I observe that the

number of LRS cells in the selected word-line plane electrode plays an more important

role on RESET latency, which is significantly different from that in planar crossbars.

• Two different approaches, i.e., safe and aggressive RESET time estimation schemes,

are proposed to optimize RESET latency under the premise of successful switching,

based on the runtime estimation of data patterns in a 3D-VRAM array. The aggressive-

RESET-time-estimation scheme optimizes the latency to the greatest extent but has

a low possibility to conduct a second-round RESET, while the safe-estimation scheme

guarantees to switch cells successfully in one round.

• The proposed write schemes are experimentally evaluated and results show that, on av-

erage, my proposed design achieves 25.98× write latency reduction, 6.92× performance

improvement and 52.4% dynamic energy consumption reduction compared to the base-

line.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. The ReRAM fundamentals are

introduced in Chapter 2. Chapter 3 discusses the prior art. In Chapter 4, I build the

8

ReRAM crossbar circuit model to study the correlation between the RESET latency of an

ReRAM row and the number of the cells in low resistance state (LRS) on selected bitlines,

as well as write endurance variation in ReRAM crossbar. I elaborate the proposed profiling

technique, which can dynamically track the number of LRS cells along different bitlines in

the crossbar, to speed up the RESET operations when there are small numbers of LRS cells

in Chapter 5. In Chapter 6, XWL, a novel table based wear leveling design that tracks

the effective writes at runtime, is proposed. The proposed designs of enhancing lifetime

for ReRAM crossbar-based neural network accelerators and the designs for accelerating 3D-

VRAM arrays are presented in Chapter 7 and Chapter 8, respectively. Chapter 9 concludes

the dissertation.

9

2.0 Preliminaries

In this chapter, ReRAM fundamentals are discussed. In addition, the sneak current and

IR drop issues in ReRAM crossbars are briefly introduced.

2.1 ReRAM Cell Structure

ReRAM is a promising non-volatile memory technology that stores data using cell resis-

tance. As shown in Figure 1, an ReRAM cell is composed of two metal layers on the top and

bottom, which are separated by metal oxide layer. Prior study [69] has shown that various

metal oxide and electrode materials, such as CuTex/HfO2 and CuTex/Al2O3, which have

different characteristics such as endurance, retention and scalability, can be used to construct

ReRAM cell arrays.

ReRAM is a passive resistive based non-volatile memory technology, which uses different

resistance states to represent data values. An ReRAM cell has two legal resistance states:

a low resistance state (LRS) to represent logic ‘1’ and a high resistance state (HRS) to

represent logical ‘0’.

Top Metal Layer

Bottom Metal Layer

Metal Oxide

Oxygen Ion

Oxygen Vacancy

Low Resistance State (Logic “1”)High Resistance State (Logic “0”)

Figure 1: The ReRAM cell structure and two resistance states.

10

2.2 ReRAM Programming

To program an ReRAM cell (i.e., to switch resistance state from one to the other), a

proper voltage with required pulse width and magnitude has to be applied across the cell.

Figure 2 depicts two basic programming procedures for ReRAM — RESET and SET, which

are reversible switching operations and used to store data in an ReRAM cell. The RESET

operation switches the resistance state from LRS to HRS while the SET operation switches

from HRS to LRS. For an SLC ReRAM cell, with a positive voltage larger than a certain

threshold applied to the top electrode, the current flowing through cell enables a formation

of the conductive filaments (CF) in the metal oxide layer, switching the ReRAM cell to low

resistance state (LRS). On the contrary, during the RESET process, which is initialized with

a negative voltage on the top electrode, the CFs are ruptured and consequently the cell is

switched to high resistance state (HRS). To program an MLC ReRAM cell is much more

complicated with consuming significantly more power and time [72, 106] and thereby wears

out cells much faster, since an iterative programming, i.e., Program & Verify (P&V), is used

to accurately achieve the intermediate resistance levels.

2.3 ReRAM Crossbar Array Structure

Figure 3 presents three typical ReRAM array structures. ReRAM array can be fabricated

as a grid of 1T1R cells, which is similar to conventional DRAM architecture where each cell

is accessed through a transistor. 1T1R cell array has large cell size. ReRAM array can

also be organized as a crossbar1, which achieves the smallest 4F 2 planar cell size. ReRAM

crossbar has low fabrication cost and better scalability and thus is ideal to be architected as

DRAM replacement for building large capacity memory.

ReRAM crossbars, depending on if there is a diode access selector, can be categorized as

0T1R or 1D1R structures. Adopting selector helps to reduce sneak currents in the crossbar,

1It is also known as cross-point array structure [93].

11

which enables the fabrication of large cell arrays. In this work, 1D1R crossbar is chosen as

the baseline for 2D ReRAM crossbars.

Bottom Electrode

High Resistance State
(HRS, Logic “0”)

Low Resistance State
(LRS, Logic “1”)

Top Electrode

Oxygen Vacancy

SET: HRS to LRS

RESET: LRS to HRS

+VSET

-VRESET

Vswitch

Oxygen Ion
Metal Oxide

Vswitch

Figure 2: ReRAM cell structure and basic (SET/RESET) programming operations.

Sourceline

Bitline
Wordline Bitli

ne

Wordline

Bitli
neReRAM Cell

ReRAM Cell
ReRAM Cell
Diode

“1T1R” Structure “0T1R” Structure “1D1R” Structure

Wordline

Figure 3: The three typical ReRAM array structures.

2.4 IR Drop Issue

I next study the sneak currents in the crossbar, and will analyze its impact on ReRAM

RESET latency in a later chapter.

For discussion purpose, a cacheline is assumed to have 64B and its 512 bits are saved in 64

mats (subarrays) with each subarray containing 8 bits, the same as that in [105]. These mats

12

spread across 8 chips in one rank. To perform a RESET operation in an ReRAM crossbar,

the write driver selects one wordline and up to eight bitlines. The selected wordline is applied

with VRESET voltage while each selected bitline is set to 0V. All other bitlines and wordlines

are applied with VRESET/2. Performing a SET operation is similar but uses opposite current

direction. During the write operation, the cells in each subarray can be categorized into

three types, as shown in Figure 4 and 5.

• Selected cells. They are the cells to be SET or RESET. A selected cell stays on the

selected wordline and one of the selected bitlines as well. Ideally they are under the

maximal voltage stress, i.e., VRESET.

• Half-selected cells. They are the cells on either the selected wordline or the selected

bitlines, but not both. Ideally they are under half of the maximal voltage stress, i.e.,

VRESET/2.

• Not-selected cells. They are the rest of the cells in the crossbar. Ideally they have no

voltage stress.

V
1/2V

1/2V
1/2V

1/2V 1/2V 1/2V 0

Half-selected cells

Half
-se

lec
ted

 ce
lls

Selected cell

Sneak Current

Figure 4: The IR drop issue in ReRAM crossbar array.

A cacheline write operation consists of two phases: a RESET phase to write all 0s and

a SET phase to write all 1s. The DSGB is adopted to improve write performance [105]

and flip-n-write is employed to only write modified cells [17]. Based on my experiments as

13

RESET Operation

0

V/2

V/2

V/2

V/2

V/2 V/2 V

Ileak

Ileak

Ileak

IleakIleak

Ileak

SET Operation

V

V/2

V/2

V/2

V/2

V/2 V/2 0

Ileak Ileak Ileak

Ileak

Ileak

Ileak

Figure 5: The sneaky currents during RESET and SET operations.

well as prior studies [105, 121, 114], SET operation takes much shorter time than RESET

operation, making it less sensitive to voltage stress degradation. Therefore, I focus on long

latency RESET operations in the dissertation. The proposed scheme is applicable to the

ReRAM structures that have comparable SET and RESET latencies.

Studies have shown that ReRAM crossbar, even adopting diode selectors, has the currents

flowing through all cells — while the sneaky currents flowing through not-selected cells are

negligible, those flowing through half-selected cells are not. The sneak currents introduce

large voltage drop along the wordline and bitlines, referred to as IR drop in the crossbar.

Large IR drop not only hurts the energy efficiency, but also degrades the performances and

write reliability. A recent study has shown that, due to IR drop, it takes longer time to

RESET the ReRAM rows that are far away from the write driver [114].

With fast technology scaling, future ReRAM chips are expected to build upon large

ReRAM mats, i.e., crossbars. Unfortunately, large crossbars have large wire resistance,

which worsens the IR drop issue.

14

3.0 Prior Art

In this chapter, I present a summary of recent related work on performance, endurance

and intrinsic in-memory processing capability of ReRAM crossbar arrays. A brief introduc-

tion to encoding techniques for NVM is also presented.

3.1 Performance of ReRAM Crossbars

3.1.1 Studies on RESET Operation

Since the RESET operation is one of the major performance bottlenecks for ReRAM

crossbars, there have been many studies on reducing the RESET latency [105, 121, 114, 92,

119]. Xu et al. [105] proposed the double sided ground biasing (DSGB), multi-phase write

operations, as well as a compression-based encoding approach to reduce RESET latency.

Based on the observation that RESET latency correlates to the physical distance between

selected row and and the write drivers, Zhang et al. [114] proposed to divide a crossbar array

into several logical regions with different access latency, in order to exploit the discrepancy

of RESET latency. Wang et al. [92] presented the write latency depends on worst-case

data pattern in ReRAM crossbars, and proposed a voltage bias scheme to optimize write

performance. Zhang et al. [119] proposed an ReRAM crossbar design with the double-sided

write driver to reduce RESET latency. Additionally, a recent study [128] proposed several

designs that are able to mitigate voltage drops and also shorten RESET latency for ReRAM

crossbars.

3.1.2 Data Patterns in ReRAM Crossbars

Chang et al. [11] presented a similar observation for read operation to this dissertation.

Mustafa et al. [67] and Shin et al. [83] reported that the detection margin for read operations

depends on data pattern in ReRAM arrays. Deng et al. [18] discussed the worst-case data

15

patterns for read and write operations in an ReRAM crossbar array. Tang et al. [88] analyzed

the impact of data pattern on the sensing current in ReRAM crossbars. Xu et al. [105]

demonstrated that the RESET latency significantly increases as the number of reset bits

(switched from “1” to “0”) increases in ReRAM crossbars, and then exploited the data

pattern to reduce RESET latency. Liang et al. [58] analyzed the voltage drop and data

patterns in ReRAM crossbar arrays without selectors.

3.1.3 RESET Latency Discrepancy

Liang et al. [58] explored the correlation between data storage patterns and voltage

drop in crossbar resistive memory without cell selectors. Zhang et al. [114] observed and

leveraged the RESET latency discrepancy caused by row physical distance from write drivers

to improve write performance. In this work, I preset, in addition to row address impact, the

bitline data patterns also lead to RESET latency discrepancy in ReRAM crossbars.

3.2 Endurance of ReRAM Crossbars

3.2.1 Wear Leveling for Non-volatile Memories

Many prior work [74, 80] on enhancing PCM lifetime can apply to other resistive mem-

ories, and they shared the same general idea to evenly distribute write across all memory

pages. Recent studies [123, 117] on wear leveling for non-volatile memories took process

variation (PV) issue into consideration, which leads that different page has non-uniform en-

durance. However, compared to this work, they all ignored the impact of array structures

on write endurance, and fail to exploit the intrinsic features in ReRAM crossbars.

3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators

Similar to crossbar ReRAM memory, the dot-product operation accelerators also suffer

from limited write endurance when programming cells. Therefore, this work is critically im-

16

portant to crossbar resistive memory design as well as in-memory computing. Wear-leveling

techniques for NVM based memories have been widely studied, which share a general idea of

evenly distributing write accesses across pages [97, 123, 117, 74]. To address the endurance

issue of ReRAM crossbar based neural network accelerators, a software and hardware co-

optimization is proposed [116]. Unfortunately, this scheme only works for MLC ReRAM

crossbars. Prior work [9] exploits gradient sparsification in neural networks and a row remap-

ping scheme to improve ReRAM endurance, which is in fact complementary to my designs.

A recent study on using low-precision weights [126] for CNN training can be also used to

mitigate ReRAM crossbar endurance degradation. As shown in my evaluations, this is also

orthogonal to the proposed design ReNEW, which is discussed in detail in Chapter 7, since it

can further improve endurance in low bit-width weight matrices during the training.

3.2.3 Improving Endurance by Exploiting Stochastic Switching

An approximate switching scheme is proposed to improve the endurance in [6] for NVM

based FF design, but it is lack of an analytical study between switching probability and

enhanced lifetime.

3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars

3.3.1 Current Accumulation Feature

The crossbar ReRAM architecture has recently attracted much attention [105, 99, 114, 82]

owing to its smallest 4F 2 planar cell size. In addition, due to its intrinsic analog current

accumulation feature, the crossbar resistive memory is also adopted to accelerate dot-product

operation based convolutional neural network computations [16, 85]. In the dissertation, I

leverage this feature to profile and track the number of LRS cells along each bitline.

17

3.3.2 Neural Network Computing with ReRAM

Recent studies on neural network accelerators exploit the natural analog current accumu-

lation feature of ReRAM crossbar architecture to implement dot-product calculations [16, 81,

85, 7, 24, 68, 21, 22, 53, 60, 71, 4, 36, 8, 26, 30, 9, 95, 73], wherein there are many [85, 9, 95,

73, 116] supporting neural networks training in ReRAM crossbars. A recent work [127] pro-

poses to adopt SLC ReRAM crossbar to achieve reliable neural network computing, however,

it does not exploit the better endurance of SLC ReRAM cells for neural network training.

3.4 Data Encoding for NVM

DCW [109] and Flip-n-Write [17] were proposed to reduce the amount of NVM cells to be

modified during programming time, by which the lifetime of NVM cells can be improved. The

data encoding scheme from [105] was proposed to reduce the number of RESET operations.

However, Flip-n-Store proposed in this dissertation, which is discussed in detail in Chapter 8,

has a different motivation from all prior work, and it aims at limiting the number of LRS

cells in 3D-VRAM arrays at runtime.

18

4.0 Observations

4.1 The Correlation between RESET Latency and the Number of LRS Cells

The relationship between cell RESET switching time and IR drop on the target cell can

be modeled using Equation 4.1, as shown in recent studies [105, 27].

t× ekVd = C (4.1)

where t denotes cell RESET switching time; Vd denotes the voltage drop across the targeted

cell; C and k are experimental fittings constants extracted from prior studies. From the

equation, the cell switching time is highly sensitive, i.e., exponentially inverse correlation, to

the voltage drop. A voltage drop of 0.4V results in 10× RESET latency increase [27].

During RESET operation, half-selected cells do not change state and exhibit as resistive

devices. Given the same voltage stress, a half-selected cell in LRS would have larger sneak

current than the one in HRS. Similar observation was reported for read operation in [82].

Given one selected wordline and one selected bitline, the correlation among IR drop, the

number of LRS cells, and RESET latency is studied. Figure 6 summarizes the correlation for

rows with different row addresses — Row 0 and Row 511 are the farthest and the closest rows

to the write driver, respectively. The y-axis shows the RESET latency (left) and IR drop

(right) while the x-axis shows the percentage of LRS cells in the selected bitline1. I focus on

bitline LRS cells and assume the worse case for the wordline in this work. The impact from

wordline tends to be smaller due to the adoption of DSGB [105] and each subarray saving 8

bits from one cacheline. I study the RESET latency in this work, a similar observation for

READ was reported in [11]. In the experiments, the Verilog-A model from [40] is adopted

to build and simulate a 512 × 512 Mat circuit model in HSPICE. Table 2 summarizes the

ReRAM crossbar model parameters.

From the figure, given a row, e.g. row 0, the more LRS cells there are in the bitline, the

larger IR drop the sneak current brings, and the longer time the RESET operation takes.

1Note that the term of in-memory data patterns used in this work refers to the percentage of LRS cells
along bitlines, i.e., it is to characterize low architectural level data layout, similar to that in prior work [11, 58].

19

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RESETLatency(ns)

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(a
)

R
ow

A
d

d
re

ss
0

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(b
)

R
ow

A
d

d
re

ss
63

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(c
)

R
ow

A
d

d
re

ss
12

7

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

Voltage	Drop	(V)

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(d
)

R
ow

A
d

d
re

ss
19

1

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RESET	Latency	(ns)

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(e
)

R
ow

A
d

d
re

ss
2
55

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(f
)

R
ow

A
d

d
re

ss
31

9

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(g
)

R
ow

A
d

d
re

ss
44

7

2.
7

2.
75

2.
8

2.
85

2.
9

2.
95

3

05010
0

15
0

20
0

25
0

10
0
87

.5
75

62
.5

50
37

.5
25

12
.5

0

Voltage	Drop	(V)

RE
SE
T	
La
te
nc
y

Vo
lta

ge

(h
)

R
ow

A
d

d
re

ss
51

1

F
ig

u
re

6:
S
u
b
fi
gu

re
s

(a
)

to
(h

)
sh

ow
th

at
th

e
va

ri
at

io
n
s

of
R

E
S
E

T
la

te
n
cy

an
d

vo
lt

ag
e

d
ro

p
at

d
iff

er
en

t
L

R
S

ce
ll

p
er

ce
n
ta

ge
s

in
b
it

li
n
es

w
h
en

ac
ce

ss
in

g
to

d
iff

er
en

t
ro

w
ad

d
re

ss
in

R
eR

A
M

ar
ra

y.
T

h
e

R
ow

A
d
d
re

ss
0

is
th

e
fa

rt
h
es

t
ro

w
fr

om
d
ri

ve
r,

an
d

R
ow

A
d
d
re

ss
51

1
is

th
e

n
ea

re
st

ro
w

to
th

e
d
ri

ve
r.

20

Another observation is, the impact diminishes as the row becomes closer to the write driver.

For row 511, the RESET latency is small and indistinguishable for the cases with different

percentages of LRS cells.

Table 2: ReRAM model parameters

Metric Description Value

A Mat Size: A wordlines × A bitlines 512× 512

n Number of bits to read/write 8

Iw Cell current at Vw 88µA

Rwire Wire resistance between adjacent cells 2.82Ω

Kr Nonlinearity of the selector 200

Vw Full selected voltage during write 3.0V

Vread Read voltage 1.5V

- Voltage biasing Scheme DSGB

Prior studies [11] have revealed that, with a larger percentage of LRS cells on bitlines,

the bitline discharging time (developing time) increases during the read operation. However,

ReRAM read and SET operations are much faster than ReRAM RESET operations —

ReRAM read and SET are 18ns and 10ns, respectively, while RESET ranges from 56.4ns to

202.4ns. In this dissertation, I focus on optimizing ReRAM RESET operations. While the

proposed schemes are applicable to optimizing read and SET operations, further study is

necessary to evaluate the tradeoff between limited performance improvement and increased

hardware complexity.

4.2 Endurance Variation in ReRAM Crossbars

A recent study [115] revealed a tradeoff between write latency and endurance of ReRAM

cell — the endurance degrades when write latency increases. The relationship can be ana-

lytically modeled using the following equation:

Endurance ≈ (
tW
t0

)C (4.2)

21

where tW is write latency, t0 and C are constants. In this work, I choose the same C = 2 as

in [115] to model a quadratic correlation between write endurance and latency.

As that IR drop results in RESET latency discrepancy among the ReRAM cells due to

different physical locations and dynamic bitline data patterns. According to Equation 4.2,

the cells in ReRAM crossbar would exhibit endurance discrepancy. Figure 7 summarizes

the endurance discrepancy across the crossbar. I divide 512 rows to eight address groups

with each group containing consecutive 64 rows. Row Address Group 0 is the one that is

the closest group to the write drivers. LRS cell ratio indicates the percentage of LRS cells

in one bitline. I adopt the worst-case voltage drop and RESET latency in every 64 rows to

represent one Row Address Group.

From Figure 7a and 7b, the more LRS cells on selected bitlines, the larger sneak current

flows through half-selected cells. Thus smaller voltage drop and longer RESET latency are

observed. Also, the farthest rows from write drivers are more vulnerable to the impact of

bitline data patterns on RESET latency. The observation is similar to that in [99, 114]. In

conclusion, the discrepancy of RESET latency leads to write endurance variation in ReRAM

crossbar.

4.2.1 Effective Write

In this work, I use effective write to summarize the overall wearing effect of one write

at runtime. Intuitively, let us assume that one cell can sustain 105 times writes if using write

pulse width X and 106 times writes if using write pulse width Y. Assume other conditions

are the same. It is concluded that each write with pulse X corresponds to ten writes with

pulse Y . According to Equation 1, the effective write depends on the write pulse width while

an optimized write strategy [99] chooses pulse width based on (1) target row address and

(2) the numbers of LRS cells in the bitline. Therefore, the actual effective write depends on

the latter two factors.

Figure 7c depicts the relationship between effective writes and row addresses and LRS

ratios. In my experiments, when writing Row Address Group 0 with 100% LRS cell ratio,

the write takes longest duration to complete. Such a write has the smallest wearing effect, as

22

2.
7

2.
752.
8

2.
852.
9

2.
953

VoltageDrop(V)

LR
S
Ce

ll
Ra

tio

Ro
w
	A
dd
re
ss
	G
ro
up
	0

Ro
w
	A
dd
re
ss
	G
ro
up
	1

Ro
w
	A
dd
re
ss
	G
ro
up
	2

Ro
w
	A
dd
re
ss
	G
ro
up
	3

Ro
w
	A
dd
re
ss
	G
ro
up
	4

Ro
w
	A
dd
re
ss
	G
ro
up
	5

Ro
w
	A
dd
re
ss
	G
ro
up
	6

Ro
w
	A
dd
re
ss
	G
ro
up
	7

(a
)

05010
0

15
0

20
0

25
0

30
0

RESETLatency(ns)
LR
S
Ce

ll
Ra

tio

Ro
w
	A
dd
re
ss
	G
ro
up
	0

Ro
w
	A
dd
re
ss
	G
ro
up
	1

Ro
w
	A
dd
re
ss
	G
ro
up
	2

Ro
w
	A
dd
re
ss
	G
ro
up
	3

Ro
w
	A
dd
re
ss
	G
ro
up
	4

Ro
w
	A
dd
re
ss
	G
ro
up
	5

Ro
w
	A
dd
re
ss
	G
ro
up
	6

Ro
w
	A
dd
re
ss
	G
ro
up
	7

(b
)

024681012141618 EffectiveWrites

LR
S
Ce

ll
Ra

tio

Ro
w
	A
dd
re
ss
	G
ro
up
	0

Ro
w
	A
dd
re
ss
	G
ro
up
	1

Ro
w
	A
dd
re
ss
	G
ro
up
	2

Ro
w
	A
dd
re
ss
	G
ro
up
	3

Ro
w
	A
dd
re
ss
	G
ro
up
	4

Ro
w
	A
dd
re
ss
	G
ro
up
	5

Ro
w
	A
dd
re
ss
	G
ro
up
	6

Ro
w
	A
dd
re
ss
	G
ro
up
	7

(c
)

F
ig

u
re

7:
S
u
b
fi
gu

re
s

sh
ow

th
at

th
e

va
ri

at
io

n
s

of
(a

)
vo

lt
ag

e
d
ro

p
on

se
le

ct
ed

ce
ll
s

an
d

(b
)

R
E

S
E

T
la

te
n
cy

an
d

(c
)

eff
ec

ti
ve

w
ri

te
s

at
d
iff

er
en

t
L

R
S

ce
ll

p
er

ce
n
ta

ge
s

in
b
it

li
n
es

w
h
en

ac
ce

ss
in

g
to

d
iff

er
en

t
ro

w
ad

d
re

ss
in

R
eR

A
M

ar
ra

y.
T

h
e

R
ow

A
d
d
re

ss

G
ro

u
p

0
re

p
re

se
n
ts

fa
rt

h
es

t
ro

w
s

fr
om

d
ri

ve
rs

,
an

d
R

ow
A

d
d
re

ss
G

ro
u
p

7
co

n
si

st
s

of
n
ea

re
st

ro
w

s
to

th
e

d
ri

ve
rs

.

23

shown in Equation 1. All other writes are normalized to this baseline, that is, the effective

write of writing address group 0 under 100% LRS cell ratio is the normalized ‘1’. For all

other writes, the effective writes are calculated with following equation:

EW =
⌈
(
tL
t

)2
⌉

(4.3)

where tL is the longest write latency (i.e., writing group 0 with 100% LRS ratio); and t

is the actual write latency of the given write.

4.2.2 Design Challenge

Given that writes to ReRAM crossbar exhibit different effective writes at runtime, to ex-

tend chip lifetime, effective writes across all ReRAM cells should be evenly distributed. Un-

fortunately, existing wear leveling approaches evenly distribute raw writes across all ReRAM

cells. As a result, it is highly possible that rows in the address group 7 are worn out while

the rows in the address group 0 are very healthy.

There are two families of wear leveling schemes: one is to track writes to blocks using a

table and periodically mitigate the block that is stressed the most [117, 123, 19]; the other

is having physical addresses randomly mapped to device addresses and periodically changes

to a new random mapping [74, 80]. In this dissertation, I propose a table based wear leveling

scheme that evenly distributes effective writes at runtime, and leave the development of

randomized mapping based wear leveling on effective writes as the future work.

24

5.0 Speeding Up RESET Operation

5.1 Low-Overhead Runtime Profiling

In this section, I present an overview of my scheme, elaborate the details of the low-

overhead runtime profiler and then propose the compression based optimization for further

performance improvement. Finally, I illustrate the profiling scheme with an example and

estimate the overhead.

5.1.1 An Overview

Figure 8 presents an overview of the proposed scheme. Each cacheline is assumed to have

64B or 512 bits. These bits are saved in 64 mats spreading across 8 chips and each mat saves

8 bits from the cacheline, the same as previous work [105]. The 8 corresponding bitlines

saving these 8 bits form a group. Two cachelines are mapped to use the same 8-bitline

group, e..g. a0 and a1 use the first group, if their device addresses are separated by K, here

K is a multiple of 64 depending on the number of mats, and line address interleaving. The

cachelines that share the first 8-bitline group are a0+i×K (0≤i<512), which are referred

to as the bitline-sharing-set in the following discussion.

Worst-case bitline flag. A 3-bit flag W-Flag is attached to each bitline-sharing-set.

The flag records the worst case bitline of all 512 bitlines shared by this set. In practice, the

worst case bitline of each 8-bitline group in one mat is first found, and then the worst case

from 64 mats is found. Since one mat has 512 rows, the number of LRS cells on one bitline

varies from 0 to 512. Instead of recording the accurate number, the range [0..511] is divided

into 8 subranges such that a 3-bit flag W-Flag can denote its subrange, e.g., ‘000’ denotes

subrange [0..63] and ‘010’ denotes subrange [128..191].

In the next section, I exploit a runtime profiler that periodically detects the worst case

bitline in each mat as well as the worst case for the whole bitline-sharing-set.

25

U
pd

at
e	
W
-F
la
g	
=	
M
AX

{6
4	
3-
bi
t	v
al
ue

s}

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Vr
ea

d

Sh
ar
ed
	A
DC

S/
H

S/
H

S/
H

3-
bi

t c
ou

nt
er

 v
al

ue

Fr
om

 o
th

er

co
lu

m
ns

Sh
ar
ed
	C
om

pa
ra
to
rs

Tr
an

sm
is

si
on

G
at

e
M

ux
Sh
ar
ed

	A
DC

	&
	C
om

pa
ra
to
r

WordlineDecoders

Pr
of

ilin
g

M
at

1

Sh
ar
ed

	A
DC

	&
	C
om

pa
ra
to
r

WordlineDecoders

Pr
of

ilin
g

M
at

0

Sh
ar
ed

	A
DC

	&
	C
om

pa
ra
to
r

WordlineDecoders

Pr
of

ilin
g

M
at

63

Vr
ea

d

Vr
ea

d

R
on

R
of

f

I1
=V

re
ad

/R
on

I2
=V

re
ad

/R
of

f

I=
I1

+I
2

D
ot

-P
ro

du
ct

O

pe
ra

tio
n

a0 a1
a0 a1

64
 b

itl
in

e-
sh

ar
in

g-
se

ts

a0 a1

64
B
ca
ch
el
in
e:
a0

64
B
ca
ch
el
in
e:
a1

3-
bi

t
3-

bi
t

3-
bi

t

F
ig

u
re

8:
A

n
ov

er
v
ie

w
of

th
e

p
ro

p
os

ed
lo

w
-o

ve
rh

ea
d

ru
n
ti

m
e

p
ro

fi
li
n
g

sc
h
em

e.

26

Tracking the worst-case. A 6-bit counter W-Cnt is attached to each bitline-sharing-

set. The counter is cleared each time when the worst-case flag is updated, that is, either

after profiling update or due to W-Cnt overflow (as follows).

At runtime, the counter is incremented for each memory write that falls in the bitline-

sharing-set. This is based on the most conservative assumption that the write always intro-

duce one more LRS cell on the worst-case bitline among all 512 bitlines shared by bitline-

sharing-set. A counter overflow event increments W-Flag if W-Flag does not saturates. The

counter is then cleared. I will elaborate the use of W-Flag and W-Cnt in following sections.

RESET latency optimization. To RESET a memory line, its W-Flag and physical

address are fetched to determine the appropriate tWR time for the RESET operation. By

looking up a pre-tested RESET latency table stored in memory controller, always using the

most conservative timing for each write can be avoided. For example, if row 0’s W-Flag is

‘010’, a tWR timing of 154.6ns may be used instead of 202.4ns in the baseline design. The

quantitative values of tWR timing come from the HSPICE circuit simulations, which will be

discussed in a later section.

I next elaborate the design details and illustrate the overall workflow with examples.

5.1.2 Design Details of Runtime Profiling

I first describe the runtime profiling mechanism that faithfully tracks the number of LRS

cells in each bitline. Clearly, reading all memory lines from the mat for detection would

introduce prohibitive overhead. In this work, I leverage the current aggregation feature of

ReRAM crossbar array [32], which has been widely exploited for accelerating in-memory

computation [16, 81, 85, 7]. Most existing memory profiling technique are for offline test.

For example, march test [90] was proposed for checking memory data integrity. The test

cannot be adopted at runtime as it can be as slow as 0.4ms per row [118, 76, 90], which is

much longer than regular ReRAM read or write operation latency.

Figure 8 illustrates how the proposed profiling scheme works. When there is a need to

profile, the memory controller sends out a profiling command with a 18-bit digial ID number

(which is enough to guarantee a unique ID for each bitline-sharing-set in a 8GB memory

27

system) for determining the bitline-sharing-set in 64 mats. For each mat, all (512) wordlines

and the eight bitlines that belong to the bitline-sharing-set are activated for performing

profiling operation. This is similar to dot-product operation in [16].

As shown in the figure, all wordlines are applied with Vread; the selected eight bitlines are

applied with 0V; and all other bitlines are applied with Vread to depress sneaky currents. The

currents flow through the eight bitlines are highly correlated to the number of LRS cells.

The more LRS cells, the larger current will be applied to ADC and comparator circuits

that are shared by all 64 8-bit read/write groups. I adopt the analog to digital conversion

circuitry developed for accelerating in-memory computation. The bitline profiling currents

are first sent to analog transmission muxes, which select the appropriate bitline-sharing-set

to profile. The currents are then fed to sample-and-hold (S/H) logic and the ADC unit.

After the analog to digital conversion, the largest current (corresponds to the worst-case

bitline in this mat) is represented as a 3-bit digital value.

0.089

0.507
0.704

0.867
1.0326

1.2345

1.5043

1.9166

2.7122

0

0.5

1

1.5

2

2.5

3

0 12.5 25 37.5 50 62.5 75 87.5 100

I/
m
A

LRS	Cell/%

Counter = 111

Counter = 110

Counter = 101
Counter = 100
Counter = 011
Counter = 010
Counter = 001

Safeguarding area

Current to 3-bit value
of LRS percentage

Counter = 000

Figure 9: The profiling current vs. LRS cell percentage in 512×512 ReRAM crossbar array.

I divide the range [0..511] into eight subranges with equal size (except the last one which

has one more value). As shown in Figure 9, the mapping from bitline currents to subranges is

28

set up before profiling. To account for runtime voltage fluctuation and cell process variations,

a 0.1mA guard band is allocated for each subrange. That is, subrange ‘011’ corresponds to

LRS cell percentage range [37.5%..50%), the bitline profiling current is 1.03mA if there are

255 LRS cells in one bitline. For high reliability, a bitline is tagged as ‘011’ as if the profiling

current is 0.93mA, that is, a line may be tagged to have more LRS cells than it actually has.

The W-Cnt tracks the write to the bitline-sharing-set after profiling. By default, the

memory controller profiles the set again after 64 writes so that 6-bit value is used to represent

W-Cnt. When W-Cnt overflows, it is possible to either re-profile the bitlines or increment

W-Flag directly (before it overflows). Given ReRAM writes not always introduce more LRS

cells to the worst-case bitline, it is beneficial to periodically profile the set.

5.1.3 Determine the RESET Timing

At runtime, the physical address and W-Flag are used to determine the appropriate tWR

timing for the RESET operation. The reason that I also use the row address is that, similar

as that in [114], row RESET latency also depends on its row index in one mat, i.e., the

distance to the write drivers — given the same percentage of LRS cells along the bitlines,

row 0 and 511 have the largest and smallest RESET latencies, respectively. Therefore, the

512 rows in one mat are split to eight address subranges, and the worst case RESET of this

subgroup is used to write cachelines in each range, as shown in Figure 10.

Table 3 summarizes the write timing (tWR) of RESET operation with different LRS cells

along bitlines and different row address category. The table is kept in the memory controller,

which is used in scheduling write operations to ReRAM memory. The quantitative values

of RESET operation timing are from my simulations of a 512 × 512 Mat circuit model in

HSPICE with parameters shown in Table 2.

An example. I next use the example in Figure 11 to illustrate how my proposed online

profiling works and how to determine the timing of RESET operations based on W-Flag and

W-Cnt.

29

Write	Drivers	&	SA

W
or
dl
in
e
De

co
de

rs
Row	Address	Group	

#0	:	0-63

Row	Address	Group	
#1	:	64-127

Row	Address	Group	
#7	:	448-511

RESET	
latency
Decrease

Figure 10: The rows with different addresses are mapped to 8 groups with different worst-case

RESET latencies.

Table 3: The tWR (ns) for RESET operation

LRS Row Address Group

Ratio 0 1 2 3 4 5 6 7

111 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1

110 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1

101 199 194 181.8 162.9 139.8 115 90.5 68

100 189 184.3 172.6 154.8 132.9 109 85.8 65.5

011 173.8 169.7 158.5 142 121.9 99.8 80.2 63.4

010 154.6 150.9 140.9 126 107.9 90.3 74.7 60.9

001 132.9 129.3 120.9 107.9 93.9 81.3 69.2 58.8

000 109.7 106.9 99.7 90.8 81.8 73.2 64.5 56.4

30

Table 4: Comparing the profiling overhead in one bank

Comp. Params Spec Power/Energy
Area

(mm2)

ADC [49]

sampling

speed
1.28GS/s

24.48mW 0.012
resolution 8-bit

number 8

S+H [81] number 8× 64 5uW 0.00002

ReRAM

array

Mat number 1024

Regular Profiling: 267.178pJ

Fine-grained Profiling: 168.332pJ

Read: 72.842pJ
2.078

Mat size 512× 512 Leakage: 255.233mW

5.1.3.1 Online Profiling Operation A profiling operation is always triggered by a

W-Cnt overflow. The default profiling frequency is after every 64 writes to the same 6-bit

W-Cnt flag). For the example in Figure 11, W-Cnt of bitline-sharing-set with an ID 0x004ff

overflows, which sends a profiling command to all 64 corresponding mats (¶), each of which

contains 8 bitlines. It then performs the dot-product fashion profiling within each mat (·)

and produces a 3-bit counter that maps the aggregated bitline current to a LRS cell subrange.

Each subrange indicates the worst-case LRS cell percentage of the corresponding mat (¸).

W-Flag of bitline-sharing-set 0x004ff is then updated with the maximum (the very worst-

case) of all 64 subrange values (¹). At last, W-Cnt is reset to zero, which completes one

online profiling operation.

5.1.3.2 Write Operation with Optimal RESET Timing With the proposed profil-

ing scheme, the timing of RESET operations is determined by looking up an optimal RESET

timing table at runtime. For the example in Figure 11, a RESET operation to logic cache-

31

line a7 is being served. Based on its physical address, the row address group number (º)

and bitline-sharing-set ID (») (0x004cd in this case) are identified first, and an up-to-date

W-Flag (¼) is fetched. Then the optimal RESET timing is found in Table 3 (½) and W-Cnt

is incremented. For the cells that need to be RESET and fall in bitline-sharing-set 0x004cd

across 64 mats (a7<0:7> ... a7<224:231> ... a7<504:511>), the RESET operations

can finish within the optimal RESET timing (¾).

LRS Cell/%

I/m
A

a7<504:511>

bit
lin
e-
sh
ar
ing
-s
et
:0
x0
04
cd

ADC & Comparators

bitline data pattern profiling

VREAD

I1= VREAD/Roff
VREAD

VREAD

VREAD
I2= VREAD/Ron

I0= VREAD/Ron

I3= VREAD/Ron

I = I0+ I1+ I2 + I3

W-Flag
Row Address Group

0 1 … 7

111 202.4 197.7 … 69.1

110 202.4 197.7 … 69.1

… … … … …
000 109.7 106.9 … 56.4

bitline-sharing-set ID W-Flag W-Cnt

… … …

0x004cd 111 010011

… … …
0x004ff 011 111111

… … …

…

profiling

profiling

3b counter

3b counter

3b counter

3b counter

…

…

profiling bitling-
sharing-set 0x004ff

Mem Ctrl

write request to cacheline:a7

update W-Flag = MAX{64 3-bit values}

profiling

write

1

2

3 4

56

7

8

write to cacheline:a7
with optimal write timing

a7<224:231> Mat 28

a7<0:7>
Mat 0

512 x 512 array

…

64

Mat 63

bit
lin
e-
sh
ar
ing
-s
et
:0
x0
04
ff

Figure 9

Table 3

9

Figure 11: An example of how my proposed online profiling works and how to determine the

RESET timing.

32

5.1.4 Reduce Bitline LRS Cells

Based on the observation that RESET latency depends on the number of LRS cells

along bitlines, it is important to reduce the number of LRS cells in the crossbar. A simple

optimization is to save the cacheline in compressed format [2] and fill in unused cells with

0s, i.e., RESET them to HRS. However, I observed a direct application of data compression

exhibits little help — the RESET latency is hardly changed. This is because the RESET

latency depends on the worst case of all 512 bitlines. Assume every cacheline in a bitline-

sharing-set can be compressed to its half size and thus uses 256 cells. If every cacheline uses

the first 256 bitlines, there would be zero LRS in the other 256 bitlines. Unfortunately, it is

of little help because the worst case bitline may stay in the first 256 bitlines.

I therefore propose a row-address biased data layout to distribute extra 0s evenly to all

bitlines. Given one bitline-sharing-set a0+i×K (0≤i<512) where a0 is the cacheline address

that is mapped to the first row. When saving a compressed cacheline in, e.g., row i, the

row starting address is shifted to the right by i bits and then the unused cells are filled in

with 0s in the row, as shown in Figure 12.

5.1.5 Overhead Analysis

Profiling overhead. The overhead comes mainly from runtime profiling. After every

64 writes to one bitline-sharing-set, the memory controller sends out one profiling command,

which activates 64 mats. In each mat, all rows and eight bitlines are activated.

Table 4 summarizes the overheads for each ReRAM memory bank. I evaluated the power

consumption and area by HSPICE simulation and NVSim [20] at 32nm. A profiling operation

consumes about 3.7x read energy. For either read or profiling, a huge portion of the power

is consumed by internal I/O and row/column decoders, thus the energy consumption is not

linear to the number of opened rows.

I followed recent studies [81, 49] to estimate the power and area overheads of adopting

ADC and sampling and holding circuits. I used eight ADC units in each bank. An ADC has

1.28GS/s sampling speed and introduces 50ns profiling latency. In the experimental section

33

Compressed Data Layout after Shifting in ReRAM Mat

00001111
00001001
00000111

00000001
00000011

00100010
00010110
01010010

00001111
10001000
11000001

00010000
01100000

00010001
01011000
10100100

0b
1b
2b
3b
4b
5b
6b
7b

01122365 33223213

Compressed Data
Before Shifting

Compressed Data
After Shifting

n-bit shifting

Worst case of LRS Cells #
reduces from 6 to 3 by shifting.

(a) (b)

Mat

Bitline-sharing-sets

Figure 12: Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat.

34

of this chapter, I will study the performance and power efficiency with different numbers of

ADC units.

A profiling command return 3 bits from each activated mat. As a comparison, a read

operation returns 8 bits from each mat. Therefore, the profiling results are returned to the

memory controller through data bus, without introducing additional overhead other than a

regular read.

Counters storage and RESET adjustment. One 3-bit W-Flag and 6-bit W-Cnt are

attached to each bitline-sharing-set. A bitline-sharing-set contains 512 64B memory lines, or

32KB data. For a 8GB memory system, about 288KB storage is needed to hold all flags. In

this work, I keep all flags in the memory controller for simplicity. In the future work, I will

keep a small buffer hold a subset of flag while keeping the rest in the L2 cache. The RESET

operation can be issued in parallel to the table lookup. Due to long RESET latency, the

table lookup result can be returned at a later time to the memory controller to determine

when to terminate RESET operation. I expect negligible performance overhead.

5.2 Profiling Optimization

Even though online profiling helps to optimize RESET latency and thus improve write

performance, it introduces non-negligible profiling overhead, including performance overhead

and energy consumption overhead. While the former is small as I shall show in the exper-

iments, the latter is much larger due to the large energy consumption from ADC units. I

focus on optimizing profiling energy consumption in this section.

5.2.1 Profiling Energy Overhead Analysis

To better illustrate the profiling energy overhead, the dynamic energy dissipation of

ReRAM memory on read, write and profiling operations are compared, respectively, for a

35

wide range of benchmarks1, and summarize the results in Figure 13. From the figure, I

observe that the profiling energy consumes an average of 13.4% of total dynamic energy, a

non-trivial portion of memory energy dissipation. Thus, it is important to optimize online

profiling to reduce the profiling energy overhead.

0

0.2

0.4

0.6

0.8

1

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

Dy
na

m
ic

 E
ne

rg
y

Di
st

rit
un

tio
n

write read profiling

Figure 13: The dynamic energy distribution when adopting the proposed profiling technique.

I next propose two optimization schemes to mitigate the overhead by reducing the number

of cells to be activated at profiling.

5.2.2 Selective Profiling

Figure 14 presents the basic idea of selective profiling. When performing the N-th round

profiling for a bitline-sharing-set at runtime, I find out that the worst-case LRS-cell-per-

bitline number is 384 out of 512 cells, as shown by the red bar in Figure 14a. However, it

occurs only in one mat while the worst-case numbers from other mats are much smaller. In

the figure, the green bars represent the numbers that are smaller than 256. For the mats

corresponding to the green bars, the worst scenario during the next profiling interval occurs

when every write operation increments the number of LRS cells in those mats. Given the

default profiling frequency is every 64 writes, the worst scenario may introduce at most 64

more LRS cells, i.e., the worst LRS-cell-per-bitline numbers for these mats would still be

smaller than 384 by the end of the next profiling interval. Since the red bar is already 384

1The experiment and simulation methodologies are discussed in Section 5.3 in detail.

36

at the beginning of the next profiling interval, it is safe to assume the worst case for the

green bar mats and skip profiling them in the next profiling interval. However, for the mats

corresponding to the red bar and the gray bars in the figure, the N+1-th round profiling still

needs to be performed.

To implement the proposed selective profiling scheme, I group every two consecutive

profiling rounds together and make the i-th round profiling a regular profiling (i.e., the same

as that in the baseline profiling) while the (i+1)-th round profiling a selective profiling (i.e.,

it is applied only to a subset of mats). The regular profiling and selective profiling rounds are

performed alternately. In particular, after collecting the 3-bit flags from all 64 mats during

a regular profiling, the memory controller constructs a 64-bit profiling mask with each bit

representing whether the corresponding mat needs to perform selective profiling for the next

round. The bits are initialized as 1s and updated based on the difference between its 3-bit

flag and W-Flag, the worst-case of all mats. Assume the 3-bit flag from mat j is W-Flagj.

If W-Flagj+2 ≤ W-Flag, i.e., the worst LRS-cell-per-bitline number from one mat is at least

128 smaller than the worst LRS-cell-per-bitline number of all mats, the corresponding bit of

the mat in the profiling mask is set to 0; otherwise, the profiling mask bit is kept as 1.

For the next selective profiling round, the mats whose profiling mask bits are 0s are not

profiled.

Given selective profiling only skips the profiling operations on a subset of mats, it does

not degrade write performance and reliability. Its benefits come from two folds: 1) it helps to

save the energy consumption on the ADC/S+H circuits and the multi-row read operations

on ReRAM arrays; 2) it shortens the ADC latency at the sampling stage. This is because

fewer samples from mats need to be processed for analog-to-digital conversion. In Section

4.4, I study the performance and energy efficiency improvements in my experiments.

5.2.3 Fine-grained Profiling

I next propose to reduce the profiling overhead as shown in Figure 15. As aforementioned,

the VREAD voltage is applied to all wordlines in order to profile the ratio of LRS cells along

the bitlines within the bitline-sharing-set. These simultaneous read operations contribute to

37

LR
S

 #

M
at

 #

38
4

32
0

25
6

w
or

st
 c

as
e

m
at

no
 n

ee
d

pr
of

ilin
g

ne
xt

 ti
m

e
(a

fte
r 6

4
w

rit
es

)
m

at
s

pr
of

ile
d

m
at

s

M
at
0

M
at
1

M
at
2

M
at
3

M
at
4

M
at
63

1
0

1
0

0
1

M
em

C
trl

B
an

k

LR
S

 #

M
at

 #

38
4

32
0

M
at
0

M
at
1

M
at
2

M
at
3

M
at
4

M
at
63

1
0

1
0

0
1

M
em

C
trl

B
an

k

N
th

 p
ro

fil
in

g
(N

+1
)th

pr
of

ilin
g

no
t p

ro
fil

ed
 a

nd
 a

ss
um

ed
 w

or
st

-c
as

e
m

at
s

P
ro

fil
in

g
M

as
k

P
ro

fil
in

g
M

as
k

(a
) F

ul
lp

ro
fil

in
g:

al
l m

at
s

ne
ed

 p
ro

fil
in

g
(b

) S
el

ec
te

d
pr

of
ilin

g:
 o

nl
y

m
at

s
in

 g
re

y
ne

ed
 p

ro
fil

in
g

64
 W

rit
es

25
6

F
ig

u
re

14
:

T
h
e

sc
h
em

e
of

p
ro

p
os

ed
se

le
ct

iv
e

p
ro

fi
li
n
g.

38

the active energy consumption of profiling overhead. Intuitively, by reducing the number of

wordlines that are opened to read, the profiling overhead can be mitigated.

Shared ADC & Comparator

W
or

dl
in

e
De

co
de

rs A

B

LRS Ratio
(A/B)

Row Address Group

0 1 … 7

11/11 202.4 197.7 … 69.1

11/10 202.4 197.7 … 69.1

… … … … …

00/00 124 121 … 58.9

2-bit counter value

(1) Fine-grained Profiling (2) Write Timing Lookup in MemCtrl

Figure 15: The scheme of proposed fine-grained profiling.

Based on this observation, one 512×512 ReRAM mat is split into two 256×512 sub-

mats. In Figure 15, they are labelled as “A” and “B”, respectively. Each sub-mat consists

of 4 row address groups. Each sub-mat is profiled independently and two sets of W-Flag

(2-bit W-Flag-A and W-Flag-B) and W-Cnt (6-bit W-Cnt-A and W-Cnt-B) counters are used

to track the profiling results and to determine the RESET timing. By keeping the same

profiling frequency, i.e., each sub-mat needs to be re-profiled after accumulating 64 writes,

the same total number of profiling operations are kept. The profiling procedure, including

detecting runtime bitline data patterns and tracking the worst-case flag within one bitline-

sharing-set, is similar to the baseline profiling. The only difference is that the bitline data

patterns for each sub-mat are profiled separately. For the profiling, a 2-bit value is enough

to denote W-Flag-A and W-Flag-B the with the same accuracy as the baseline profiling as

the number bitline LRS cells ranges from 0 to 256 in each sub-mat.

Determining the RESET timing is slightly different in the fine-grained profiling design.

As shown in Figure 15, the two LRS ratio numbers (from sub-mats A and B, respectively)

need to be combined to determine the optimal timing. Since conservative estimation is

39

adopted, the combination may lead to over-estimation, which slightly degrades the choice of

the optimal timing.

Comparing to the baseline profiling, the fine-grained profiling scheme exhibits many

advantages: (1) It activates a smaller number of wordlines and thus reduces the dynamic

energy consumption. My study shows that, when activating 256 wordlines during profiling,

the fine-grained profiling consumes 63% energy of the one that activates all 512 wordlines

(Table 4). (2) Instead of having 3-bit W-Flag values transferred across the memory interface,

2-bit W-Flag-A and W-Flag-B values are returned, which may potentially save the memory

bandwidth. (3) The fine-grained profiling potentially enables the finer tuning of RESET

latencies.

5.3 Experimental Setup

In this section, I present the modeling and simulation methodologies for evaluating the

energy and performance of ReRAM crossbars.

5.3.1 Modeling and Simulation Methodologies

To evaluate the effectiveness of my proposed design, in addition to the HSPICE modeling

and simulation as introduced in Chapter 4, I used an in-house simulator to simulate the

proposed ReRAM access scheme and compare it to the conventional and state-of-the-art

designs. Table 5 summarizes the configuration for the baseline system. I plugged the numbers

from HSPICE and NVSim [20] simulations into my architectural simulator to obtain the

performance and memory energy efficiency results. I used Pintool to generate memory

access traces from SPEC2006 [31], PARSEC [5] and BioBench [3] benchmark suites.

5.3.2 Workload Characterization

Table 6 characterizes all benchmarks used in the experiments. I carefully chose a subset of

benchmarks with different memory access WPKI and RPKI in order to study the effectiveness

40

of my design. The benchmarks are categorized to three types: High, Medium and Low,

respectively, according to their memory access intensity.

5.3.3 Schemes for Evaluations

In this work, I implemented and compared five different schemes, including the conven-

tional and state-of-the-art ReRAM designs as follows:

• BL — This scheme is conventional ReRAM crossbar design. The baseline adopts DSGB

voltage driver for latency reduction.

• RA — This scheme is the state-of-the-art design [114] that adopts row address awareness

technique to reduce RESET latency.

• LRS — This scheme is the naive design that only adopts data pattern profiling technique.

• CMP — This scheme is built on top of LRS. It adopts data compression and shifts the

rows starting bits based on its row addressed within each mat.

• PROF — This scheme is built on top of CMP and includes all enhancements in the work.

In particular, it adopts a two dimensional tWR timing table (as shown in Table 3) in

determining RESET latency.

I also evaluated the effectiveness of following three schemes with profiling optimization

techniques:

• SEL PROF — This scheme is built on top of PROF and adopts the selective profiling scheme

to save energy.

• FINE PROF — This scheme is built on top of PROF and adopts the fine-grained profiling

scheme.

• SEL FINE PROF — This scheme adopts both profiling optimizations to mitigate profiling

overhead.

In system performance evaluation, the proposed profiling techniques is also compared

with IDEAL PROF, the scheme that assumes zero performance overhead.

41

Table 5: System configuration

Processor
4 cores; single issue in-order CMP;

4GHz

L1 I/D-cache
Private; 16KB per core; 4-way;

2 cycle latency

L2 cache

Private; 1MB per core; 8-way;

64-byte block size;

10 cycle latency

Main memory

8GB; 1 channel; 2 ranks; 8 chips/rank,

2Gb x8 ReRAM Chip, 8 banks/chip;

1024 mats/bank;

scheduling reads first, issuing writes

when there is no read, issuing

write burst when W queue is full

ReRAM Timing

Read Latency 18ns@1.5V;

SET latency 10ns@3V;

RESET latency refers to Table 3@-3V, 88µA

42

Table 6: Benchmarks characterization

Memory

Intensity
Name

Benchmark

Suite
WPKI RPKI

High

ferret PARSEC 12.44 19.44

fasta dna BioBench 9.36 11.88

gemsfdtd SPEC2006 6.27 9.82

zeusmp SPEC2006 1.62 4.12

Medium

gcc SPEC2006 1.44 3.21

cactusADM SPEC2006 0.98 3.05

perlbench SPEC2006 0.60 0.60

Low

freqmine PARSEC 0.34 0.34

gobmk SPEC2006 0.14 0.20

fluidanimate PARSEC 0.14 0.36

43

5.4 Evaluation Results and Analysis

In this section, I evaluate the performance and energy efficiency for the proposed profiling

scheme, and also quantitatively show the effectiveness of two optimization techniques in

reducing the profiling overhead.

5.4.1 Memory Access Latency

Figure 16 compares the average memory write latency across different schemes, with the

results normalized to BL. On average, by applying the proposed techniques step by step, I

observed the significant write latency reductions by 19.8%, 37.2% and 63% for LRS, CMP and

PROF, respectively. Compared to RA, the proposed scheme PROF shows 53.5% more reduction.

In summary, it is effective to reduce RESET latency by exploiting the number of LRS cells

along bitlines.

Since the selective profiling does not change the RESET latency, SEL PROF has the same

write latency as that in PROF. Since the fine-grained profiling technique may over-estimate

the RESET latency, FINE PROF and SEL FINE PROF exhibit 7.1% write latency degradation

over PROF. They still achieve 60.3% write latency reduction over BL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d
M

em
ro

y
W

rit
e

La
te

nc
y

BL RA LRS CMP PROF SEL_PROF FINE_PROF SEL_FINE_PROF

Figure 16: The comparison of memory write latency.

The reduction of RESET latency leads to the reduction of memory read latency. Fig-

ure 17 summarizes the memory read latencies in different schemes. The results are normalized

44

to BL. Similar to the write latency, the memory read latency is reduced by 6.7%, 19.6% and

38.2% for LRS, CMP and PROF respectively. The proposed PROF scheme shows a 27.6% more

reduction over RA.

When there are fewer mats profiled with selective profiling, the average profiling latency

is shortened and hence the memory access latency on critical path is also reduced. The write

latency of SEL PROF is reduced by up to 39.2% from the baseline. With the fine-grained

profiling techniques, FINE PROF and SEL FINE PROF perform slightly worse than PROF. They

achieve 36.1% and 37.4% read latency reduction, respectively, over BL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d
M

em
or

y
Re

ad

La
te

nc
y

BL RA LRS CMP PROF SEL_PROF FINE_PROF SEL_FINE_PROF

Figure 17: The comparison of memory read latency.

5.4.2 System Performance

I compared the performance when adopting different schemes and summarized the CPI

(cycles-per-instruction) results in Figure 18. The results are normalized to BL. From the

figure, the proposed profiling schemes achieve larger performance improvements on write

intensive benchmarks, e.g., ferret and fasta dna. On average, PROF outperforms BL by

32.4%, 16.5% and 5.2% on high, medium and low memory intensity benchmarks, respectively.

This is because the proposed technique focuses on improving write performance, which is

sensitive to the intensity of write requests. On average, PROF achieves 20.5% and 14.2%

performance improvements over BL and RA, respectively. Due to shortened profiling operation

45

latency, SEL PROF improves the overall performance by 1% over PROF, 21.2% performance

improvement over BL. FINE PROF and SEL FINE PROF improve CPI by 18.8% and 19.5%,

respectively, over BL.

To illustrate the effectiveness and performance overhead of the profiling techniques, I

also compared the proposed designs with IDEAL PROF, the scheme adopting ideal profiling,

i.e., the profiling operation is assumed to have zero latency and not incur any performance

overhead. The experimental results showed that, on average, IDEAL PROF achieves 2% better

performance than PROF, and 1.1% better than SEL PROF. For the group of high memory

intensive benchmarks, the average improvement is 3.3% over PROF. From the results, the

profiling introduces small performance overhead. Further optimizations, e.g., hiding the

profiling latency by issuing profiling commands only during memory bank idle time, are

applicable but tend to achieve limited performance improvement with increased hardware

cost.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d
CP

I

BL RA LRS CMP PROF SEL_PROF FINE_PROF SEL_FINE_PROF IDEAL_PROF

High Medium Low

Figure 18: The performance comparison. The benchmarks are categorized into High,

Medium and Low memory intensity types based on RPKI and WPKI.

46

5.4.3 Effectiveness of Profiling Optimization

I next conducted experiments to study the effectiveness of the proposed profiling opti-

mization techniques. The normalized number of profiling operations is reported in Figure 19

and the normalized profiling energy consumption is presented in Figure 20.

Figure 19 compares the number of profiling operations under different optimizations.

The results are normalized to PROF. On average, SEL PROF i.e., the one adopting selective

profiling, reduces 40.6% of profiling operations, while SEL FINE PROF, i.e., the one adopting

both optimizations, reduces the number of profiling operations by 46.3%.

Figure 20 compares the profiling energy with different optimizations. The experimen-

tal results show that both optimizations are effective in reducing dynamic energy caused

by profiling. By adopting the selective profiling technique, SEL PROF mitigates the energy

consumption by reducing the number of profiling operations, while FINE PROF reduces the

profiling energy from reading fewer wordlines. From the figure, SEL PROF saves the profil-

ing energy by 40.6% while FINE PROF consumes 93.4% of the profiling energy in PROF. The

scheme SEL FINE PROF combines two optimizations and saves 49.9% of the profiling energy

in PROF.

0

0.2

0.4

0.6

0.8

1

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d

of
 P

ro
fil

in
g

SEL_PROF SEL_FINE_PROF

Figure 19: The number of profiling operation performed with optimized techniques on mats

(Normalized to PROF).

47

0

0.2

0.4

0.6

0.8

1

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d
Pr

of
ili

ng

En
er

gy

SEL_PROF FINE_PROF SEL_FINE_PROF

Figure 20: The profiling energy with optimized techniques (Normalized to PROF).

5.4.4 Memory Energy Efficiency

I next compared the dynamic memory energy consumption and energy-delay product

(EDP) for all schemes. The results are normalized to BL and summarized in Figure 21.

The dynamic energy consumption has three major sources: read, write (including SET

and RESET) energy and profiling overheads from my proposed schemes. While the PROF

greatly improves RESET performance, it has no impact on read and SET operations. In

addition, my proposed schemes introduce profiling overheads. For example, LRS consumes

3.9% more dynamic energy due to the profiling overhead. However, SEL PROF, FINE PROF

and SEL FINE PROF with proposed optimization techniques can reduce the profiling energy

effectively as aforementioned.

In summary, PROF achieves 15.7% and 7.6% dynamic energy reduction over BL and RA,

respectively, while SEL PROF, FINE PROF and SEL FINE PROF with optimization techniques

further reduce the profiling overhead and achieve 20.2%, 15.4% and 20.3% dynamic en-

ergy reduction over BL, though the fine-grained profiling marginally increases write energy.

SEL PROF, FINE PROF and SEL FINE PROF also reduce more dynamic energy than RA by 12.5%,

7.2% and 12.6%, respectively. The EDP results show that the proposed designs can effectively

improve the energy efficiency — PROF achieves 31.9% and 19.5% EDP improvements over

BL and RA, respectively, while SEL PROF, FINE PROF and SEL FINE PROF respectively achieve

35.9%, 30.5% and 35.0% EDP improvements over BL. In addition, the schemes SEL PROF,

48

00.
2

0.
4

0.
6

0.
8

11.
2

1.
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

fe
rr

et
fa

st
a

ge
m

s
ze

us
gc

c
ca

ct
us

pe
rl

fr
eq

go
bm

k
flu

id
m

ea
n

Normalized EDP

Normalized Dynamic Energy

w
rit

e
re

ad
pr

of
ili

ng
ED

P

F
ig

u
re

21
:

T
h
e

co
m

p
ar

is
on

of
d
y
n
am

ic
en

er
gy

an
d

E
n
er

gy
-D

el
ay

P
ro

d
u
ct

(E
D

P
).

49

FINE PROF and SEL FINE PROF also outperform RA in EDP improvements by 24.2%, 17.8%

and 23.2%, respectively. It is worth noting that though SEL PROF presents slightly better

EDP than SEL FINE PROF due to the RESET latency overestimation by adopting fine-grained

profiling, the SEL FINE PROF can save bandwidth on memory bus by reducing the number of

profiling commands and flag bits that represent data patterns, which will eventually reduce

bus congestion and save energy consumption on the memory bus.

5.4.5 Sensitivity Study

In this section, the performance and energy efficiency results are finally compared for all

proposed schemes with different number of ADC units used in each bank as well as varied

ReRAM mat sizes, which are summarized in Figure 22.

5.4.5.1 Sensitivity to Number of ADC units. For the given 512 × 512 ReRAM

crossbar, increasing the number of ADC units can help reducing the profiling overhead.

When doubling the number of ADC units from 8 to 16, I summarized the performance

improvement and energy reduction results for scheme PROF in Figure 22a. From the figure,

while the profiling area and power consumption overhead are doubled, the performance

improvements are trivial — only 1.1% improvement was observed. Similarly, SEL PROF,

FINE PROF and SEL FINE PROF cannot significantly benefit from more ADC units.

5.4.5.2 Sensitivity to Mat Sizes. Figure 22b reveals the sensitivity study results when

different ReRAM crossbar mat sizes are used — I compare 256× 256 and 512× 512.

For 256×256 ReRAM mat, the proposed scheme PROF achieves smaller improvements due

to smaller IR drop in the array — it has 14.9% performance improvement and 4.6% memory

dynamic energy reduction over BL. For the default 512×512 ReRAM mat, the improvements

are much larger. In the figure, the proposed scheme PROF is slightly worse (only 1.6%) than

RA for 256× 256 mat size. This is because the profiling latency and power consumption are

independent of mat size, which has a larger impact on smaller mats. The schemes SEL PROF,

FINE PROF and SEL FINE PROF with profiling optimization techniques for 256× 256 mat size

50

reduce dynamic energy roughly to the same extent that they do for 512 × 512 ReRAM

mat. In summary, I expect my proposed designs can achieve larger improvements in future

ReRAM arrays that have increasing mat size due to fast technology scaling.

5.5 Conclusion

In this chapter, based on the observation that the RESET latency strongly correlates to

the number of cells in low resistant states (LRS) along bit lines, I propose a novel profiling-

based ReRAM design, which can exploit the discrepancy of RESET latency. The in-memory

processing capability of ReRAM is leveraged to implement a low overhead runtime profiler.

By dynamically detecting the number of LRS cells, RESET timing is dynamically adjusted,

and significant performance and energy consumption improvements are also achieved. In

addition, in order to mitigate the profiling overhead, two optimization techniques — selective

profiling and fine-grained profiling, are presented. They both effectively achieve significant

profiling energy reduction by reducing the number of profiling operations and halving the

number of being read wordlines during a profiling operation respectively. The experimental

results show that, on average, my designs improve system performance by 20.5% and 14.2%,

and reduce memory dynamic energy by 15.7% and 7.6%, compared to the baseline and the

state-of-the-art crossbar design. With all proposed optimization techniques, my design can

further reduce dynamic energy by up to 20.3% and 12.6% compared to the baseline crossbar

design and state-of-the-art ReRAM crossbar design, respectively.

51

(a
)

(b
)

00.
2

0.
4

0.
6

0.
8

11.
2

1.
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

BL
RA

LRS
CMP

PROF
SEL_PROF

FINE_PROF
SEL_FINE_PROF

8
AD

C
un

its
16

 A
DC

 u
ni

ts
25

6x
25

6
51

2x
51

2

Normalized Dynamic Energy

Normalized CPI

N
or

m
al

ize
d

CP
I

N
or

m
al

ize
d

Dy
na

m
ic

 E
ne

rg
y

F
ig

u
re

22
:

T
h
e

se
n
si

ti
v
it

y
of

p
er

fo
rm

an
ce

an
d

m
em

or
y

d
y
n
am

ic
en

er
gy

co
n
su

m
p
ti

on
w

h
en

u
si

n
g

(a
)

d
iff

er
en

t
n
u
m

b
er

s
of

A
D

C

u
n
it

s;
an

d
(b

)
d
iff

er
en

t
R

eR
A

M
m

at
si

ze
s.

52

6.0 Improving Write Endurance

6.1 XWL: Wear Leveling for Crossbar ReRAM Memory

In this section, I first present an overview of XWL, a table-based wear leveling scheme

for ReRAM, and then discuss its design details.

6.1.1 An Overview

The workflow of XWL follows typical table-based wear leveling schemes, which consists

of three stages: prediction, address remapping & data swapping and running, as shown in

Figure 23. These three stages repeat in every interval, i.e., a number of writes.

XWL splits the whole ReRAM space into chunks and tracks writes to each chunk. In

this work, one chunk is a page. Two addresses are differentiated in the following discussion.

Physical address (PA) refers to the address after OS page table mapping. Raw address

(RA) refers to the device address where the data are actually saved. As shown in Figure

23, XWL attaches one interval entry to each PA chunk and one lifetime entry to each RA

chunk.

In prediction stage, XWL tracks the number of writes to each PA chunk in the corre-

sponding interval entry and the number of lifetime effective writes to each RA chunk in its

lifetime entry. The major difference between XWL and conventional wear leveling is, instead

of tracking raw write accesses for both tables, XWL records effective writes to update the

lifetime table and raw writes to update interval write table.

In address remapping & data swapping stage, XWL chooses one RA chunk and one PA

chunk that are not mapped to each other. The choice involves two pairs, their PA to RA

mapping are changed accordingly. For example, in Figure 23, if PA-chunk-2 and RA-chunk-1

are chosen, since PA-chunk-1 maps to RA-chunk-1, and PA-chunk-2 maps to RA-chunk-2,

the swap results in PA-chunk-1 maps to RA-chunk-2 and PA-chunk-2 maps to RA-chunk-1,

as shown in the figure. The candidate selection policy determines what pages are chosen to

53

Addr.	
Remapping

Table Prediction
RA ReRAM Lifetime Eff. Wr.
RA1 Data1 16 (Low)
RA2 Data2 24 (Med)
RA3 Data3 95 (High)

Interval Raw Wr. PA
4 (Med) PA1
10 (Hot) PA2
3 (Cold) PA3

Addr. Remapping & Data Swapping

Running

prev.
interval

RA ReRAM Lifetime Eff. Wr.
RA1 Data2 16
RA2 Data1 24
RA3 Data3 95

Interval Raw Wr. PA
0 PA1
0 PA2
0 PA3

RA ReRAM Lifetime Eff. Wr.
RA1 Data2 316*
RA2 Data1 144*
RA3 Data3 185*

Interval Raw Wr. PA
100* PA1
40* PA2
30* PA3

next
interval

*Expected # of writes

Figure 23: The basic workflow of XWL.

54

get remapped. I will present different algorithms in the next subsection. The design is to

map hot physical pages to the ReRAM pages with the least degree of wearing out, similar

to those previously design table-driven wear leveling algorithms [117]. Remapping involving

reading two blocks and write two blocks. Clearly, the bigger the chunk is, the larger overhead

the swap is. XWL cleared the interval entries after the swap.

In the running stage, each ReRAM page tracks incoming writes with predicted distribu-

tion, matching hot pages to low wearing out domains and cold pages to high wearing out

domains, which achieves the aim of enhancing lifetime for overall crossbar ReRAM memory.

During the running phase, both of two write tables keep updating with new write operations.

6.1.2 Design Details

6.1.2.1 Effective and Raw Write In the proposed XWL scheme, both of the number

of effective writes and raw writes are tracked at runtime. The effective write total of each

chunk indicates how much lifetime the corresponding chunk has experienced while the raw

write reflects the intrinsic access patterns of applications. The raw count would not change if

having PA chunk remapped to a different RA location. However, their effective write counts

depend on mapping. The number of raw writes in each interval is used to indicate how many

incoming writes will reach to each ReRAM page. In contrast, to determine the degree of

wearing out of each page, the proposed effective write needs to be adopted for lifetime write

table since it measures how many more writes each page can undertake before failures.

6.1.2.2 Updating Write Tables While it is straightforward to update the interval raw

write table, i.e., increment after each read or write, to update the lifetime table, Equation 4.3

is adopted and the effective write is computed based on the write pulse width. Figure 24

illustrates the profiling scheme which is used for dynamic RESET latency as well as updating

effective write table.

As the bitline data pattern profiling and dynamic RESET latency presented in Chapter 5

are adopted, the RESET latency is determined by row addresses and runtime bitline data

patterns. In order to ensure the correctness of write timing, I conservatively assume each

55

write after profiling always introduce one more LRS cell on the worst-case bitline, which

prolongs the RESET latency. Similarly, I also have conservative assumption of updating

effective writes. However, in contrast to dynamic RESET latency, I assume writes will bring

more HRS cells instead, since more HRS cells lead to larger voltage drop on selected cells.

Therefore, the worst-case LRS cell ratio has to be tracked to look up dynamic RESET timing

as well as worst-case HRS cell ratio needs to be tracked to update effective write table. In

the case shown in Figure 24, in one row address group n of a simplified ReRAM crossbar,

the worst-case LRS cell number is 5, and the worst-case HRS cell number is 3, both of which

are incremented by 1 for each write request after profiling.

The dynamic RESET timing is simply determined by the table shown in Figure 7b, which

maps LRS cell ratio in a particular row address group to a conservative RESET timing. For

discussion purpose, I assume the RESET latency is tR in this case. As it is desired to

RESET multiple cells, e.g. at most 8 bits in the design, within one ReRAM crossbar, the

tR is most conservative RESET timing to ensure write success, but it is too aggressive to

use this latency to estimate effective writes with Equation 4.3. This is since the tR may be

too long for other bits that have larger voltage drop on selected cells owing to more HRS

cells on their bitlines. When all bits are RESET with same tR, those victim cells that take

much longer RESET time than ideal one may be over-RESET, which leads to a endurance

degradation. Therefore, the most conservative effective writes needs to be calculated by

using following formula:

EWaddr = EW0 · a · eb·(V−V0) (6.1)

where EWaddr is the most conservative effective writes at address addr, EW0 is

⌈
(tR

t
)2
⌉

with

RESET timing tR, V0 is the voltage drop at the worst-case LRS cell ratio, and V is the one

at worst-case HRS cell ratio, and a, b are fitting constants. Equation 6.1 is derived from

experimental data of the different over-RESET voltages with same RESET pulse width on

endurance degradation in [14].

6.1.2.3 Address-Remapping Algorithm As write tables are updated for each inter-

val in memory controller, the physical addresses from CPU need to remap to ReRAM page

real addresses while migrating data accordingly. As evaluated in experiment section of this

56

LRS Cell HRS Cell

Bitlines

5 3 2 4

0 2 3 1

LRS #
HRS # 3

5

worst-case

write request

voltage drop table as Fig. 2(a)

RESET Timing table as Fig. 2(b)

bitline data pattern profiling dynamic RESET timing&
updating Effective Writes

Increment by 1

Row Address Group n

RESET Latency

lifetime Effective Writes table

Eq. (3)

Figure 24: Profiling bitline data pattern for (1) optimized RESET latency and (2) estimating

effective writes.

57

chapter, the näıve wear leveling technique, which simply remaps PA with largest raw writes

to RA with smallest number of effective writes, helps to improve lifetime of ReRAM cross-

bars to certain extent. However, obviously this scheme ignores the fact that all pages are not

worn out equally, and they actually depend on dynamic bitline data patterns and physical lo-

cations. Therefore, with only taking write access patterns of applications into consideration,

it may be not able to effectively leverage incoming writes after address remapping.

In addition to raw write access patterns, I also want to exploit the impact of ReRAM

crossbar features on endurance for address remapping. The weight is introduced to indicate

the tendency of remapping a PA to a physical ReRAM crossbar page. Figure 25 illustrates

my address remapping scheme. In this example, I partition ReRAM crossbar into 5 address

groups. According to preceding discussion, the closer the group is from the write drivers,

the more stress its cells accumulate from each write. Therefore, each group is assigned a

different weight as follows.

weightaddr =

∑n−1
r=0 EW

r
addr

n
(6.2)

where weightaddr is the weight at page address addr and EW r
addr is the effective writes at

page address addr with LRS cell ratio of r. It is worth noting that effective writes are

averaged at same address with n different LRS cell ratios. This is since the data pattern can

significantly change after prediction with much longer interval (104 writes) than profiling (64

writes), and it is no longer feasible to exploit bitline data pattern to estimate actual wearing

out for future writes.

Moreover, I adopt the Predict Write, which estimates upper limit of effective writes if all

writes reach to a particular page. It can be calculated by following equation:

PredictWraddr = EWaddr + weightaddr × interval (6.3)

where PredictWraddr is the Predict Writes at page address addr and interval is a parameter

of how many writes between an address remapping.

Finally, as Figure 25 shown, the PA with the largest number of raw writes remaps to RA

with smallest predict writes instead of effective writes, and vice versa.

58

RA1

RA2

RA3

RA4

RA5

PA1

PA2

PA3

PA4

PA5

5
7
9
1
3

15
30
17
6
22

1.0
1.5
2.0
2.5
3.0

Eff.	Wr.RA Weight
25
45
37
31
52

Predict	Wr.PARaw	Wr.

Predict Wr. = Eff. Wr. + weight*interval

Figure 25: An example of PA to RA address remapping.

6.1.2.4 Design Overhead XWL adds two tables with two entries per 4KB data chunk

— 20 bits and 14 bits are used for the effective writes and interval raw writes counter,

respectively. One 16-bit remapping entry is added for each chunk. The total space overhead

is approximately 50bits/4KB = 1.56× 10−3. I assume the optimized write scheme exploits

the LRS cell ratio information. If not, adding online profiling introduces negligible overhead,

as shown in Chapter 5. I use CACTI [66] to model the two tables as direct mapped cache,

the area and energy overheads are also negligible.

6.1.3 Process Variation Issue

Process variation (PV) is not considered in this work. When taking PV into considera-

tion, some of cells/rows would be more vulnerable to write operations than others. Several

PV aware wear leveling techniques [19, 123, 117] have been recently proposed to mitigate

this issue. XWL is a table based wear leveling scheme, which has the ability to address PV

more flexibly. These designs are orthogonal to XWL in the work.

6.2 Experimental Setup

In Chapter 4, I model and simulate a 512 × 512 ReRAM crossbar to investigate the

correlation between RESET latency and effective writes. In addition, I used an in-house

59

architectural Chip Multiprocessor simulator to evaluate the proposed XWL scheme and

compare it with baseline as well as näıve design. The system configuration is presented in

Table 7. Pintool [61] is used to collect memory access traces from PARSEC [5], BioBench [3]

and SPEC2006 [31] benchmark suites. All benchmarks are executed with or without wear

leveling until first ReRAM page is worn out. Flip-n-write [17] is also used to reduce the

number of written bits. With a representative ReRAM device, I assume the ReRAM cell

endurance is 1.6 × 106. For the proposed XWL, the default interval is 104 while different

intervals are also evaluated in experiments. The benchmarks are characterized in Table 8

with write bandwidth to ReRAM memory. I adopt the profiling approach and dynamic

RESET latency from Chapter 5.

In the work, I compared the following wear leveling schemes:

• NoWL: baseline scheme, which adopts dynamic RESET latency and data pattern profiling,

does not use any wear leveling techniques.

• Naı̈ve: the wear leveling scheme, which follows the workflow introduced in Section 6.1.2,

does not use proposed address remapping algorithm.

• XWL: the proposed wear leveling design.

Table 7: System configuration

Processor 4 cores@1.8Ghz; single issue in-order CMP

L1 I/D-cache Private; 16KB/core; 4-way; 2 cycles

L2 cache Private; 1MB/core; 8-way; 64B; 10 cycles

Main memory

2Gb ReRAM; 4KB page; 64B per line;

1 rank; 8 chips/rank;8 banks/chip;

128 mats/bank;

ReRAM Timing
Read Latency 18ns@1.5V; SET latency 10ns@3V;

RESET latency based on profiling@-3V

60

Table 8: Benchmark summary

Name Benchmark Suite
Write Bandwidth to ReRAM

(MBps)

ferret PARSEC 139.0

fasta dna BioBench 129.4

GemsFDTD SPEC2006 123.2

bzip2 SPEC2006 61.3

zeusmp SPEC2006 60.8

gcc SPEC2006 56.6

6.3 Evaluation Results

6.3.1 Endurance Improvement

Figure 26 presents the endurance improvements (normalized to NoWL). On average, by

applying the proposed wear leveling techniques, I observed the significant endurance im-

provements by 285% and 324% for Naı̈ve and XWL, respectively. Moreover, the proposed

wear leveling XWL shows 14% more lifetime enhancement. In conclusion, by using proposed

concept of effective write as well as the address remapping algorithm, the lifetime of crossbar

ReRAM memory is effectively improved.

To evaluate the impact of interval length, Figure 27 compares the normalized endurance

improvements with different intervals, i.e., 104, 5× 104 and 105. From the figure, the effec-

tiveness of endurance improvement diminishes as interval gets longer for most benchmarks.

On average, the normalized endurance improvements by using XWL with intervals of 104,

5 × 104 and 105 are 324%, 216% and 166%, respectively. This indicates that the proposed

XWL can still significantly improve the endurance of crossbar ReRAM memory even with

longer address remapping intervals.

61

0

2

4

6

fer fas gem bzi zeu gcc gmean

N
or
m
al
iz
ed

En
du

ra
nc
e NoWL Naïve XWL

Figure 26: Comparison of normalized endurance.

0

1

2

3

4

5

6

fer fas gem bzi zeu gcc gmean

N
or
m
al
iz
ed

En
du

ra
nc
e 104 5x104 105104 5x104 105

Figure 27: Comparison of normalized endurance with different remapping intervals.

62

6.3.2 Performance Overhead

The data swapping after address remapping is inevitable for wear leveling, while it also

contributes major performance overhead [19, 117]. I also evaluate the performance overhead

of introducing the proposed wear leveling techniques. Figure 28 shows the swapping overhead

in performance by using Naı̈ve and XWL designs. The swapping overhead is defined as follows:

Swapping Overhead =
tdata swapping

texecution
(6.4)

where tdata swapping and texecution represent total data swapping time and execution time in

cycles through whole memory system lifetime, which indicates the overall percentage of

ReRAM crossbar lifetime are used for data migration. Overall, Naı̈ve and XWL incur 6.5%

and 6.1% performance overheads respectively. Though the XWL may potentially result in less

hot ReRAM pages write to the rows with smaller RESET latency as well as a larger number

of data swapping through the whole system lifetime, its performance loss is slightly better

than Naı̈ve since the XWL can much better improve the endurance cycles than Naı̈ve.

0
0.02
0.04
0.06
0.08
0.1
0.12

fer fas gem bzi zeu gcc gmean

Sw
ap

pi
ng

O
ve
rh
ea
d Naïve XWL

Figure 28: Comparison of data swapping overhead.

63

6.4 Conclusion

In this chapter, I focus on mitigating the write endurance degradation from IR drop by

proposing a novel wear leveling scheme for crossbar ReRAM memory. Specifically, based on

the study the write endurance variation issue in crossbar ReRAM memory in Chapter 4, in

which I observe that the effective write, which indicates actual the degree of ReRAM wearing

out, dynamically changes in runtime with different data patterns and row addresses, I propose

a novel wear leveling scheme based on effective write to enhance lifetime of crossbar ReRAM

memory. To the best of my knowledge, this work is the first study specifically on addressing

the write endurance issue for crossbar ReRAM memory. The final evaluation results reveal

that, my design improves write endurance by 324%, compared to the baseline design.

64

7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network

Accelerators

7.1 Background

In this section, I discuss about the ReRAM crossbar array and its applications as neural

network accelerators, and also briefly introduce the neural network training.

7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing

Figure 29 illustrates an ReRAM crossbar architecture, in which each ReRAM cell is

connected to a worldline and bitline at their crosspoint. With a voltage stress, ReRAM

cell behaves as resistive devices obeying Ohm’s law. Hence, the current flowing through

each cell depends on its resistance and voltage stress. With a vector of n input voltages

V = [V0, ..., Vn−3, Vn−2, Vn−1] from wordlines to one particular column of ReRAM cells, as

highlighted in red in Figure 29, aggregated analog current I =
∑n−1

n=0 Vi ·Gi outputs from the

bitline, where Gi is the conductance (the reciprocal of resistance, Gi = 1/Ri) of the ReRAM

cell. If the voltage V and conductance G are treated as input vectors, the output I = V·G is

naturally a result from a mathematical dot-product calculation by V and G. Since such dot-

product operations are predominantly performed in neural network computing, with weight

matrices represented by different resistance levels in ReRAM cells, they can be efficiently

processed inside ReRAM crossbars.

7.1.2 Neural Network Training

Figure 30 shows an example of neural network training, which is composed of a for-

ward and a backward propagation. In forward propagation, an input vector [x0, x1, ..., xn]

is fed into the network while calculating the intermediate neurons with weight matrices

W1,W2, ...,W4 in each layer. Afterwards, an output vector [y0, y1, ..., ym] is computed and

taken by a loss function to estimate the difference with labeled data. As soon as the loss is

65

ReRAM based Dot-Product Engine
…

…

…

…

… … … …

V0

Vn-3

Vn-2

Vn-1

I0=V0*G0

In-3=Vn-3*Gn-3

In-2=Vn-2*Gn-2

In-1=Vn-1*Gn-1

I=V0*G0+…+Vn-3*Gn-3+ Vn-2*Gn-2 + Vn-1*Gn-1

Figure 29: An ReRAM crossbar based dot-product engine.

66

obtained, a backward propagation starts by sending the loss back to all layers of the neural

network. During this stage, weight matrices are frequently updated with the loss by using:

∆Wi = −LR· ∂Loss
∂Wi

, where ∆Wi is the update to each of weight matrix, LR is the learning

rate, and i = 1, 2, ..., 4 denotes the number of the layer.

x0

x1

xn

y0!

W0 W1 W2 W3

Input Output

Forward

Backward

∂Loss
∂W0

∂Loss
∂W1

∂Loss
∂W2

∂Loss
∂W3

y1!

ym"

Loss Function

Figure 30: Neural network training with weight updates.

7.2 Motivation

In this section, I analyze the ReRAM wearing out mechanism and stochastic switching

behaviors, which lead to proposing innovative solutions for mitigating endurance degradation

of ReRAM crossbars during the training.

7.2.1 ReRAM Cell Endurance Model

The wearing out mechanism of ReRAM cell has been long studied [69, 86, 14, 34], which

all generally believe excessive programming conditions, such as long programming pulse

width and strong pulse amplitude than necessary, i.e., over-SET/-RESET, degrade ReRAM

67

cell endurance. In order to analytically model ReRAM endurance degradation, it is necessary

to identify the key factors that can limit the write cycles of an ReRAM cell.

7.2.1.1 Tunneling Gap Distance and Roff/Ron Figure 31 shows the how resistance

level is determined during ReRAM cell switching. As discussed in Chapter 2, a forma-

tion/rupture of CFs in an ReRAM cell happens during SET/RESET processes. For an

instance of RESET process shown in Figure 31, with a negative voltage stress on top elec-

trode, the CFs are dissolved. The stronger RESET condition can lead to less amount of

residual CFs, and thereby the cell exhibits a larger resistance. Based on the ReRAM cell

model presented in previous work [110, 13, 40], the concept of tunneling gap distance g,

which denotes an average distance from the top of residual CFs to the top electrode layer,

is used to indicate the resistance level of an ReRAM cell during switching. An I − V char-

acteristic equation in an ReRAM cell can be represented as I = I0exp(−g/g0)sinh(V/V0),

where I0, g0 and V0 are fitting constants [13]. In the figure, a tunneling gap g2 is larger than

g1, which implies that a stronger programming condition is needed for switching the cell to

g2 than g1. Consequently, an ReRAM cell with a tunneling gap g2 has a larger resistance

than the one with g1.

Bottom Electrode

ReRAM Cell Resistance vs.
Tunneling Gap

Top Electrode

Oxygen Vacancy

-VRESET

Metal Oxide

Tunneling Gaps

Residual CF
(Conductive Filaments)

g1

g2

Tunneling Gap

R

Figure 31: ReRAM cell switching and its resistance.

Recent studies [103, 59] report that the SET process is abrupt and RESET process is

more gradual, and prior studies [110, 105, 114, 99] also present that RESET takes much

68

longer time and consumes much more energy than SET operation. Therefore, in this work,

I assume SET operation is fast and accurate without consuming much energy, and the

endurance degradation principally comes from RESET operation. I also assume that each

SET operation accurately switches the cell to Ron, and thus the Roff/Ron ratio is determined

by RESET operation condition. However, it is worth noting that my proposed schemes are

also applicable to different ReRAM switching assumptions, such as symmetric SET/RESET

operations. With a fixed or variable Roff/Ron ratio, the relationship between endurance

degradation and programming strategies are different, which consequently results in different

endurance enhancement solutions.

7.2.1.2 Fixed Roff/Ron During Programming With a fixed Roff/Ron ratio, recent

studies [86, 115] reveal a tradeoff between endurance and programming latency that a longer

programming pulse without over-RESET the cell can prolong the cell endurance. The hy-

pothesis of this argument is to switch an ReRAM cell to a fixed resistance level, that is to

say, the g is unchanged under different switches [86]. The tradeoff of endurance and write

latency can be approximated as: Endurance ≈ (tW/t0)
C , where tW is the write latency and

t0 and C are fitting parameters. The same C = 2 is used as [115] in this work. Based

on this observation, a concept of effective write is proposed in Chapter 4 to estimate the

endurance degradation in ReRAM crossbars with taking sneak current issue and RESET

latency discrepancy into consideration. As reported in Chapter 6, it is necessary to adopt

optimal RESET latency at runtime to avoid excessive write strength. In this chapter, the

effective write is adopted as the metric to estimate the degrees of wearing out an ReRAM

cell and computed by Equation 4.3.

7.2.1.3 Variable Roff/Ron During Programming In contrast to a fixed Roff/Ron

scenario where prolonging RESET duration to mitigate endurance degradation can be used,

with a flexible Roff/Ron, the endurance is improved in a different approach. A recent re-

search [69] demonstrates that the ReRAM endurance is significantly correlated to Roff/Ron

ratio. The larger Roff/Ron is, the shorter the lifetime of an ReRAM cell can have. Ad-

ditionally, the programming pulse width, i.e., RESET latency in this work, is proportional

69

to Roff/Ron ratio. Based on above two observations, an analytical model is presented by

using data from [69] with CuTex/HfO2 material (which has the best endurance and hence

is suitable for neural network training) to estimate the lifetime of an ReRAM cell in different

RESET latencies:

Endurance ≈ a · eb·WM (7.1)

and

WM ≈ p0 · t+ p1 (7.2)

where WM denotes the Roff/Ron, t is RESET latency and a, b, p0, p1 are fitting constants.

While shortening the RESET latency linearly decreases the Roff/Ron ratio, the endurance

is exponentially improved by a reduced Roff/Ron. Equation 7.1 and 7.2 together imply that

appropriately optimizing RESET latency may help to achieve better endurance.

7.2.2 ReRAM Stochastic Switching

Though with an appropriate RESET condition, the ReRAM cell can be switched to a

targeted resistance level by forming a certain tunneling gap g. However, we should also realize

that the programming on ReRAM cell is a stochastic switching [55]. Previous studies [55, 25,

84] report that the switching behaviors of an ReRAM cell is stochastic, and its probability

is predictable with modeling the correlation between programming conditions and successful

switching rate. It is worth noting that, a successful switching rate here is defined as —

how many successful read-out values (SLC reading mode with values ‘0’/‘1’) are as expected

out of total read attempts under the same read voltage condition [25], which indicates that a

targeted Roff/Ron should be achieved in order to provide enough read margin. Otherwise,

a reduced Roff/Ron can lead to a uncertain switching.

Two major programming conditions — RESET pulse width (time) and height (ampli-

tude), have significant impact on switching probability. They both in fact affect on Roff/Ron

as discussed before. In this work, following Equation 7.3, as reported in [84] with RESET

conditions from Chapter 5, is used to model the correlation between switching probability

and RESET time under different pulse heights:

P =
1

2
erfc(− ln tw − ln τ√

2σ
) (7.3)

70

where the P is the ReRAM cell switching probability, erfc(x) is a complementary error

function, tw represents RESET pulse width (write latency), τ and σ are fitting parameters.

Figure 32 plots a group of curves with ReRAM cell switching probabilities at different

RESET voltage widths and heights. In this work, I assume these optimized RESET latencies

from Chapter 5 guarantee a 100% cell switching. When applying a shorter RESET timing

than those under the same data pattern, the switching probability is smaller than 100% and

can be predictably computed with Equation 7.3.

50 100 150 200
RESET Voltage Pulse Width t

w

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
w

it
c
h
in

g
 P

ro
b
a
b
ili

ty
 P

2.780V
2.783V
2.784V
2.790V
2.791V
2.800V
2.805V
2.815V
2.823V
2.836V
2.847V
2.863V
2.876V
2.894V
2.912V
2.931V
2.952V

Figure 32: The correlation between switching probability and RESET voltage width with

different RESET pulse heights.

71

7.3 Proposed Designs

In this section, I elaborate the proposed framework, ReNEW, which can effectively im-

prove the endurance of ReRAM crossbar based neural network accelerators.

7.3.1 Training NN with SLC ReRAM

As shown in Figure 33, the ReRAM crossbar based neural network accelerator adopted in

this work has a similar architecture to PRIME [16]. This architecture is composed of several

banks, each of which further consists of many ReRAM crossbars. The ReRAM crossbars can

be partitioned into memory array and compute array based on their usage. Memory arrays

are to store temporary data, while compute arrays primarily perform in-memory dot-product

calculations.

Different from most of prior work [9, 73, 85, 116] where Multi-Level Cell (MLC) ReRAM

crossbars are adopted for neural network training, I propose to program ReRAM crossbars in

Single-Level Cell (SLC) mode for training, but well-trained weight matrices for inference task

are still programmed in MLC mode. This is because, compared to MLC ReRAM crossbars,

using SLC ReRAM crossbars for neural network training owns following advantages: (1)

Since an iterative scheme and a large RHRS/RLRS ratio are usually necessary for MLC

ReRAM programming, write endurance of an SLC ReRAM cell can be as much as 4-6

magnitudes better than MLC ReRAM according to prior study [72]. (2) With similar reasons

to (1), programming an SLC ReRAM cell also performs better than an MLC ReRAM [106]

cell in performance and energy-efficiency. As shown in Figure 33, 8-bit fixed-point numbers

are used to represent weight data. It is worth noting that, though I assume bits within

the same weight data are stored consecutively in one row, my proposed schemes are also

applicable to different weight mapping approaches without significant changes. To store each

of this 8-bit weight data, 8 cells in an SLC ReRAM crossbar are required, however, only 2

cells (if 4-bit per cell is assumed) are enough in an MLC crossbar array. Even though MLC

ReRAM is several times denser than SLC ReRAM (depends on the resistance levels), the

capacity loss is potentially compensated by reloading weights onto SLC ReRAM crossbars for

72

a few times. A comparison of MLC and SLC ReRAM crossbars for neural network training

is presented in the experiment section of this chapter. To enable using multiple cells for

representing one weight data, a bit slicing technique [22] is adopted to support dot-product

calculations on SLC ReRAM crossbars. In addition, necessary compute units for shift-add

operations are also needed to generate final results.

After the completion of neural network training, the trained weights shall be re-programmed

into ReRAM crossbar arrays in MLC mode. This is because, during the training, partition-

ing and reloading weights onto crossbars are possibly needed due to limited capacity of SLC

ReRAM crossbars. However, an inference task usually demands near real-time response.

Hence, reloading weights with using crossbars in SLC mode may be not suitable for the

inference. Besides, writing well-trained weights into crossbars is not a frequent operation

during the inference, therefore, the energy and performance cost are more acceptable than

during the training.

ReRAM banks
ReRAM banks

Memory Arrays

Compute Arrays
CPU

ReRAM banks

Memory Arrays

Compute Arrays

SLC mode
during NN training

MLC mode
during NN inference

Fixed-point weight<0:3>:<4:7>

xx
…

Figure 33: An overview of ReRAM crossbar based accelerator for neural network computing.

73

7.3.2 Optimized Programming Order

The study in Chapter 6 on write endurance variation shows that having more LRS

cells along bitlines benefits the lifetime of ReRAM cells under the premise of no over-SET/-

RESET cells. This observation leads to optimizing the weight updates order by programming

cells from ‘0’ to ‘1’ (SET operations) before performing RESET operations. Figure 34

illustrates a comparison of a sequential weight update, which is essentially a row-major

order, and the proposed optimized programming scheme that first performs SET operations

to increase the number LRS cells in ReRAM crossbars, and then RESET the rest of cells.

By employing the optimized programming order, the effective writes brought by each RE-

SET are expected to decrease, since more LRS cells have been generated beforehand. As a

side note, this optimization guarantees successful switching since the targeted Roff/Ron shall

be achieved, and it only prolongs endurance as Equation 4.3. Therefore, it can be safely ap-

plied to either LSB (least-significant bits) columns or MSB (most-significant bits) 1 columns

as it basically does not introduce switching errors. Moreover, this optimized programming

order does not introduce latency penalty since separate SET and RESET programming

phases are also needed in the baseline row-major order [105].

7.3.3 Shortened RESET operation

As discussed in Section 7.2, by shrinking Roff/Ron, the lifetime of ReRAM cells can

be exponentially improved. Equation 7.2 proves that a shortened RESET latency linearly

reduces Roff/Ron. With observations above, I propose to shorten RESET time on selected

columns in ReRAM crossbars, such as those contain LSB, to extend their lifetime.

Though a shortened RESET duration significantly mitigates endurance degradation, in

the meantime it potentially brings switching errors, which possibly further results in an accu-

racy loss. To address this, I propose to exploit the intrinsic error-tolerance characteristic of

neural network training, which has been widely reported in prior studies [122, 29], to mitigate

the accuracy loss. Intuitively, it is possible to achieve a sweet spot in the tradeoff between

1In this work, I denote MSB/LSB as the most/least significant half in each weight data, e.g., 4 most-
significant bits and 4 least-significant bits for an 8-bit weight number.

74

Proposed Pre-SET based
optimal update order

ReRAM crossbar ReRAM crossbar

xx x

x xx

Baseline weight update
in row-major order

Pre-SET

RESET2

1

RESET SET

Figure 34: A comparison of the baseline weight update in row-major order and the proposed

optimized programming order.

accuracy and ReRAM crossbar lifetime by tuning the programming time. Table 9 shows

my study on the accuracy degradation with different switching probabilities 2. Compared

to the 8-bit fixed point weight scheme with 100% switching probability, a 95% of switching

probability in LSB for both of MLP and CNN model only slightly degrades accuracy by

0.33% and 0.14% respectively. However, if a 95% of switching probability applies to both

of MSB and LSB in weight matrices, training of neural network models cannot converge.

Therefore, I propose to only shorten the RESET timing on LSB columns in order to avoid

a significant accuracy loss.

A basic workflow of the proposed scheme is shown in Figure 35. A neural network

dependent switching error tolerance, such as 5% of switching error tolerance used in this

work by default, is first decided. This tolerance value is then sent to a look-up table,

which maps switching probabilities to their corresponding RESET latencies, to determine

the shortened RESET timing. After this, programming commands with optimized RESET

timing are issued to LSB columns, while precise programming is applied to MSB columns.

2The experimental methodologies are presented in Section 7.4 in detail.

75

Table 9: Model accuracy degradation with different switching probabilities.

Weight Precision MLP CNN

4b-MSB (100%)-4b-LSB (100%) 97.86% 90.31%

4b-MSB (100%)-4b-LSB (95%) 97.53% 90.17%

4b-MSB (95%)-4b-LSB (95%) 27.41% 19.56%

ReRAM crossbar

x x x

x x

Precise MSB RESET

Shortened LSB RESET

RESET Latency

P
NN dependent error
tolerance in LSB

Figure 35: The precise RESET on MSB columns and shortened RESET on LSB columns.

76

7.3.4 Column Group Shift and Update

With shortened RESET operations on LSB columns applied, intuitively there will be a

discrepancy in effective writes across LSB and MSB columns in crossbar arrays. Besides, a

recent study [9] also observed a severe unbalance writes distribution in ReRAM crossbars

during the neural network training. To address this issue, I propose to shift and update each

half length of weight data within column groups for every training iteration, as illustrated in

Figure 36. Each column group has all MSB or LSB columns from different weight data that

are stored along same bitlines. With assuming 4-bit MSB/LSB and 512 rows in an array, a

column group is a 512 × 4 data chunk that contains 512 4-bit LSB or MSB columns. This

technique is inspired by a conventional wear-leveling technique for NVM based main mem-

ory [125], which is proposed to periodically shift rows and swap pages to improve endurance.

However, this work proposes to shift and update weight data on all column groups in each

iteration. In addition, shifting and swapping techniques for NVM based main memory incur

a huge performance overhead by data exchanging, whereas the proposed shift and update

scheme only requires the address remapping and it can be performed in each iteration, since

weight matrices are updated in each training iteration and not necessarily preserved.

MSB0 LSB0 MSB1 LSB1

ReRAM crossbar

MSBn-1 LSBn-1 MSBn LSBn

MSB0 LSB0 MSB1LSB1

ReRAM crossbar

MSBn-1 LSBn-1 MSBnLSBn

Iteration: i Iteration: i+1

…… …… …… ……

Figure 36: The proposed column group shift and update scheme.

77

7.4 Experimental Setup

As summarized in Table 10, I build two neural network models — MLP and CNN, with

Theano [89], and then generate weight matrices by training two models on MNIST [51] and

SVHN [70] datasets respectively. In this work, I test model accuracy with using different

precisions of fixed-point weight matrices, and assume input data and intermediate feature

maps are accurate. Batch normalization is also adopted in neural network models. For

the purpose of evaluating the effectiveness of proposed techniques, I develop a simulator to

estimate lifetime of ReRAM crossbars, each of which is a 512×512 array and can contain up

to 64 8-bit fixed-point weights per row. This simulator takes weight matrices generated from

neural network training as inputs. With a fixed-size of ReRAM crossbar, weight matrices

are partitioned and reloaded onto crossbars when the size of matrix is too large for a single

crossbar. In opposition, multiple small weight matrices can reside in the same physical

ReRAM crossbar to maximize the utilization. The effective write, which is computed with

Equation 4.3, is used to accumulate wearing out effect on each cell. I adopt RESET latencies

from Chapter 5 with different bitline data patterns as the optimal programming strategy,

and use a conservative timing for the naive solution. I also compare the proposed techniques

with 512 × 512 MLC ReRAM crossbar baselines. I assume one MLC ReRAM cell has 16

resistance levels, i.e., 4-bit data per cell, and it is worn out 1000× (MLC1000) and 100×

(MLC100) faster than SLC [72]. All evaluated schemes are summarized as below:

• MLC100 and MLC1000 are MLC ReRAM crossbar baselines, assuming to have 100× and

1000× effective writes than baseline SLC for each write respectively.

• SLC is an SLC ReRAM crossbar baseline with a conventional programming strategy.

• SLC-OP is an SLC ReRAM crossbar baseline with an optimized programming strategy.

• ReNEW has all proposed techniques to enhance lifetime of ReRAM crossbars. I evaluate

ReNEW with different switching probabilities, ReNEW-0.95 (95%, default), ReNEW-0.90

(90%) and ReNEW-0.85 (85%).

In the preceding section, I introduce my experimental methodologies. The evaluation

results and analysis for the proposed techniques are presented in following sections.

78

Table 10: Neural networks and datasets.

Model Dataset Network Topology

MLP MNIST 784-240-240-10

CNN SVHN conv5x32-pool3-conv4x64-pool3-1000-400-10

7.5 Accuracy and Lifetime of ReRAM Crossbars Tradeoff

Table 11 summarizes a tradeoff among the model accuracy, bit-width selection and

switching probability of MLP and CNN. The baseline is a 16-bit fixed-point weight scheme,

which consists of 8-bit MSB and 8-bit LSB, without switching errors (100% switching prob-

ability). In either MLP or CNN model, this baseline weight precision can achieve the best

accuracy.

As reported in recent studies [126, 28, 10], using low bit-width weights for neural network

training can reduce computation complexity, energy consumption while maintaining accept-

able accuracy. By storing a less number of bits in weight matrices, the lifetime of ReRAM

crossbars can be improved. To prove that my proposed schemes can further mitigate en-

durance degradation with low bit-width weight matrices, I compare 16-bit, 8-bit and 4-bit

weights with no errors (100% switching probability) schemes for MLP and CNN models, and

conclude that the 8-bit weight scheme for both models achieves the best tradeoff between

accuracy and weight length. Using the 4-bit weight matrices in either of two models results

in a failure of convergence to an acceptable accuracy.

With the 8-bit weight scheme selected, I further evaluate the impact of switching proba-

bility on accuracy. As discussed in Section 7.3, a 95% switching probability in both MSB and

LSB of a weight data results in unsuccessful convergence. I then compare the accuracy with

different switching probabilities, i.e., 95%, 90% and 85%, for LSB in weight data from both of

MLP and CNN models. With decreased switching probabilities from 95% to 85%, the accu-

racy loss slightly increases in MLP model by 0.35%, 0.51% and 0.54% compared to the 16-bit

79

weight scheme respectively, however, the accuracy loss of CNN model dramatically increases

by 0.51%, 3.23% and 34.3% respectively. Therefore, I select the 95% switching probability

for the MLP model by default but a sensitivity study of different switching probabilities

for LSB in weight matrices is presented in a later subsection. For the CNN model, I also

select the switching probability of 95% in LSB due to an unacceptable accuracy degradation

incurred by other schemes.

7.6 Lifetime Improvement

To show the effectiveness of my proposed techniques, I evaluate total effective writes, the

maximum number of writes in the worst-case cell for a fully connected layer (FC-784x240) in

the MLP model and a convolutional layer (CONV4x64) in the CNN model, and also conduct

a sensitivity study for ReNEW with different switching probabilities.

7.6.1 Total Effective Writes

Figure 37 shows a comparison in total effective writes for MLP layer FC-784x240 and

CNN layer CONV4x64. Specifically, in Figure 37a, I compare the total effective writes among

all schemes on ReRAM crossbars until their training converges to the best accuracy. For

the FC-784x240 in MLP, ReNEW saves 500.3×, 50.0×, 2.83× and 1.60× total effective writes

compared to MLC1000, MLC100, SLC and SLC-OP respectively. For CONV4x64 layer in CNN,

ReNEW reduces 432.6×, 43.3×, 2.04× and 1.17× total effective writes compared to MLC1000,

MLC100, SLC and SLC-OP respectively. Since training with ReNEW only has 84 epochs, which

is 14 less than the ones with 100% switching probability, I also compare the total number

of effective writes for MLP layer FC-784x240 among all schemes with the same number of

84 training epochs (ReNEW and baselines for CNN layer CONV4x64 all experience 98 epochs

of training.). Figure 37b shows that, even with the same number of training epochs, ReNEW

can still reduce total effective writes by 431.68×, 43.17×, 2.42× and 1.37× than MLC1000,

MLC100, SLC and SLC-OP respectively.

80

T
ab

le
11

:
T

ra
d
eo

ff
b

et
w

ee
n

m
o
d
el

ac
cu

ra
cy

lo
ss

an
d

p
re

ci
si

on
s

of
w

ei
gh

t
d
at

a.

M
L
P

C
N
N

W
e
ig
h
t
P
re

c
is
io
n

(S
w
it
ch

in
g
P
ro

b
.)

A
c
c
u
ra

c
y

(A
c
c
u
ra

c
y
L
o
ss
)

E
p
o
ch

W
e
ig
h
t
P
re

c
is
io
n

(S
w
it
ch

in
g
P
ro

b
.)

A
c
c
u
ra

c
y

(A
c
c
u
ra

c
y
L
o
ss
)

E
p
o
ch

8
b

-M
S

B
(1

0
0
%

)-
8b

-L
S

B
(1

00
%

)
97

.8
8% -

85
8b

-M
S

B
(1

00
%

)-
8b

-L
S

B
(1

00
%

)
90

.6
8% -

97

4
b

-M
S

B
(1

0
0
%

)-
4b

-L
S

B
(1

00
%

)
97

.8
6%

(-
0.

02
%

)
98

4b
-M

S
B

(1
00

%
)-

4b
-L

S
B

10
0%

)
90

.3
1%

(-
0.

37
%

)
98

4
b

-M
S

B
(1

0
0
%

)-
4b

-L
S

B
(9

5%
)

97
.5

3%
(-

0.
35

%
)

84
4b

-M
S

B
(1

00
%

)-
4b

-L
S

B
(9

5%
)

90
.1

7%
(-

0.
51

%
)

98

4
b

-M
S

B
(1

0
0
%

)-
4b

-L
S

B
(9

0%
)

97
.3

7%
(-

0.
51

%
)

97
4b

-M
S

B
(1

00
%

)-
4b

-L
S

B
(9

0%
)

87
.4

5%
(-

3.
23

%
)

57

4
b

-M
S

B
(1

0
0
%

)-
4b

-L
S

B
(8

5%
)

97
.3

4%
(-

0.
54

%
)

77
4b

-M
S

B
(1

00
%

)-
4b

-L
S

B
(8

5%
)

56
.3

4%
(-

34
.3

4%
)

10
0

4
b

-M
S

B
(9

5
%

)-
4
b

-L
S

B
(9

5
%

)
27

.4
1%

(-
70

.4
7%

)
92

4b
-M

S
B

(9
5%

)-
4b

-L
S

B
(9

5%
)

19
.5

6%
(-

71
.1

2%
)

17

2
b

-M
S

B
(1

0
0
%

)-
2b

-L
S

B
(1

00
%

)
16

.4
5%

(-
81

.4
3%

)
20

2b
-M

S
B

(1
00

%
)-

2b
-L

S
B

(1
00

%
)

19
.5

6%
(-

71
.1

2%
)

0

81

7.38E+10

7.38E+09

4.17E+08

2.37E+08

1.48E+08

5.82E+10

5.82E+09

2.74E+08

1.58E+08

1.35E+08

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

M
LC

10
00

M
LC

10
0

SL
C

SL
C-

O
P

Re
N

EW

M
LC

10
00

M
LC

10
0

SL
C

SL
C-

O
P

Re
N

EW

MLP:FC-784-240 CNN:CONV4x64

Ef
fe

ct
iv

e
W

rit
es

(a)

6.37E+10

6.37E+09

3.57E+08

2.03E+08

1.48E+08

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

M
LC
10
00

M
LC
10
0

SL
C

SL
C-
O
P

Re
N
EW

MLP:FC-784-240

(b)

Figure 37: Total effective writes comparison for MLP and CNN models. (a) Training with

different epochs until a convergence to the best accuracy. (b) Effective writes comparison for

the MLP layer FC-784x240 among all schemes with the same number of 84 training epochs.

82

Additionally, I investigate and show the contribution ratio of two techniques — shortened

RESET timing and optimized programming order, used to reduce total effective writes, with

MLP layer FC-784x240 in Figure 38a and CNN layer CONV4x64 in Figure 38b. In both of

two layers, the major contribution to the reduction in effective writes is from the shortened

RESET timing (85.77% and 60.25% respectively). Therefore, with a greater shortened RE-

SET timing, a larger reduction in effective writes is expected to be achieved, especially for

those highly error tolerant neural networks.

85.77%

14.23%

Shortened RESET
Optimized Order

(a)

60.25%

39.75%

Shortened RESET
Optimized Order

(b)

Figure 38: The contribution ratio of shortened RESET timing and optimized programming

order techniques for the reduction in effective writes with (a) MLP layer FC-784x240 and

(b) CNN layer CONV4x64.

7.6.2 The Maximum Number of Effective Writes in Worst-case Cell

In addition to the evaluation for total effective writes, I also compare the maximum

number of effective writes in the worst-case ReRAM cell, which experiences the most accu-

mulated effective writes during the training, among all schemes with MLP layer FC-784x240

in Figure 39a, and CNN layer CONV4x64 in Figure 39b. For the FC-784x240 in MLP, with 14

less epochs of training, ReNEW reduces the maximum number of effective writes by 212.79×,

21.28×, 3.60× and 1.70× compared to MLC1000, MLC100, SLC and SLC-OP respectively. How-

ever, even with the same number of training epoch of 84, ReNEW can still reduce the maxi-

mum effective writes by 182.67×, 18.27×, 3.13× and 1.48× than MLC1000, MLC100, SLC and

83

SLC-OP respectively. For CONV4x64 layer in CNN, ReNEW can help to improve the maximum

effective writes by 460.03×, 46.00×, 2.82× and 1.33× in 98 training epochs when compared

to MLC1000, MLC100, SLC and SLC-OP respectively. These experimental results prove that

the proposed techniques can help to evenly distribute writes across all ReRAM cells during

the neural network training.

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1 11 21 31 41 51 61 71 81 91

M
ax

im
um

 #
 o

f E
ffe

ct
iv

e
W

rit
es

 in
 th

e
W

or
st

-c
as

e
Ce

ll

MLP Training Epoch

MLC1000 MLC100
SLC SLC-OP
ReNEW

(a)

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 11 21 31 41 51 61 71 81 91
CNN Training Epoch

MLC1000 MLC100
SLC SLC-OP
ReNEW

(b)

Figure 39: A comparison of the maximum number of effective writes in the worst-case

ReRAM cell for (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64.

7.6.3 Sensitivity to Switching Probability

As discussed previously, by decreasing the switching probability for MLP model from 95%

to 85%, the accuracy loss does not significantly increase. To better understand the tradeoff

between endurance improvement and switching probability, I test the lifetime enhancement

for ReNEW with different switching probabilities, i.e., 95% (ReNEW-0.95), 90% (ReNEW-0.90)

and 85% (ReNEW-0.85), as shown in Figure 40. Specifically, Figure 40a compares the total ef-

fective writes and accuracy loss in MLP layer FC-784x240 for ReNEW-0.95, ReNEW-0.90 and

ReNEW-0.85. Overall, ReNEW-0.85 outperforms ReNEW-0.95 and ReNEW-0.90 by 1.19× and

1.31× in total effective writes reduction, while at a cost of 0.19% and 0.03% degraded accu-

racy respectively. ReNEW-0.90 has a larger number of total effective writes than ReNEW-0.95

84

since it is trained with more epochs. As shown in Figure 40b, with a same number of 77

training epochs, ReNEW-0.90 reduces a greater number of effective writes than ReNEW-0.95,

and ReNEW-0.85 still has the smallest number of effective writes (1.09× and 1.04× smaller

than ReNEW-0.95 and ReNEW-0.90 respectively). This proves that, the smaller switching

probability is, a greater endurance improvement is achieved with given the same amount of

updates. Figure 40c presents a comparison of maximum number of effective writes for MLP

layer FC-784x240, wherein ReNEW-0.85 achieves a smaller number maximum effective writes

than ReNEW-0.95 and ReNEW-0.90 by 1.28× and 1.20× when all three schemes converge to

the best accuracy. With the same number of 77 training epochs, ReNEW-0.85 outperforms

ReNEW-0.95 and ReNEW-0.90 by 1.10× and 1.07× respectively.

1.48E+08

1.62E+08

1.24E+08

0.95

0.96

0.97

0.98

5.0E+07

1.0E+08

1.5E+08

2.0E+08

ReNEW-0.95

ReNEW-0.90

ReNEW-0.85

Ac
cu

ra
cy

Ef
fe

ct
iv

e
W

rit
es

(a)

1.35E+08

1.29E+08

1.24E+08

5.0E+07

1.0E+08

1.5E+08

2.0E+08

ReNEW-0.95

ReNEW-0.90

ReNEW-0.85

Ef
fe

ct
iv

e
W

rit
es

(b)

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1 11 21 31 41 51 61 71 81 91M
ax

im
um

 #
 o

f E
ffe

ct
iv

e
W

rit
es

 in
 th

e
W

or
st

-c
as

e
Ce

ll

MLP Training Epoch

ReNEW-0.95
ReNEW-0.90
ReNEW-0.85

(c)

Figure 40: A sensitivity study for ReNEW with different switching probabilities in MLP layer

FC-784x240: (a) total effective writes and accuracy with different training epochs, (b) total

effective writes with a same number of training epochs, and (c) the maximum number of

effective writes.

85

7.7 Conclusion

In this chapter, with the analyses of the endurance degradation mechanism in ReRAM

cell, I propose a novel framework, ReNEW, to enhance the lifetime of the ReRAM crossbar

based neural network accelerators, especially for neural network training in which frequent

weight updates are required. The experimental evaluations show that, the proposed ReNEW

reduces the total effective writes to ReRAM crossbar based accelerators by up to 500.3×,

50.0×, 2.83× and 1.60× over two MLC baselines, SLC baseline and SLC design with optimal

timing, respectively.

86

8.0 Accelerating 3D Vertical Resistive Memory

8.1 Background and Motivation

In this section, I present a brief introduction to the 3D-VRAM array architecture and

its sneak current issue.

8.1.1 3D-VRAM Array Architecture

Though 2D ReRAM crossbars have achieved a remarkable high density with a planar

cell size of 4F 2 [105] as disussed in prior chapters, to further improve the density and reduce

the cost per bit for ReRAM memories remains demanding. Two typical 3D stacked ReRAM

architectures, i.e., 3D-HRAM and 3D-VRAM, are proposed to overcome this challenge, both

of which stem from an intuitive idea – stacking multiple layers of ReRAM crossbars vertically.

In this chapter, I focus on 3D-VRAM technology as it can be fabricated at a lower cost

with a large number of vertical layers [107]. Figure 41 depicts an architecture of 3D-VRAM

array. In such an architecture, multiple plane electrodes, which is connected to Word-Lines

(WLs), are vertically stacked and isolated (x-y plane). The pillar electrodes are intersected

perpendicularly by plane electrodes along z-axis in the figure. ReRAM cells in a 3D-VRAM

are placed between plane and pillar electrodes. At the bottom of every pillar electrode, an

access transistor is attached to enable addressing one single plane, which is essentially a

planar ReRAM crossbar array (x-z plane), and also separates it from Bit-Lines (BLs)

(along y-axis). The gates of access transistors are connected to Source-Lines (SLs) (x-axis).

8.1.2 Sneak Current Issue in 3D-VRAM Arrays

My study in the preceding chapters and many prior studies [105, 114] have demonstrated

that the performance, particularly for write latency, and reliability are significantly hurt by

sneak current in 2D ReRAM crossbars. Similarly, there also exists sneak current in 3D-

VRAM arrays. To write or read bits from a 3D-VRAM array, WLs, SLs and BLs are

87

x
y

z

Bit-Line (BL)

Source-Line (SL) Access Transistor

Plane Electrode (WL)

Pillar Electrode

Cell

Figure 41: The architecture of a 3D-VRAM array.

properly biased with voltage supplies. For example, a write operation requires to apply

VRESET on the selected WL and VRESET/2 to all other WLs, Vg on the selected SL, and 0V

to the rest of SLs. Similarly, the selected BLs are biased to 0V and others are to VRESET/2.

We may notice that, except for the target cells, there a huge amount of cells are half-selected

during cell switching, which thereby produce enormous sneak paths.

While an analysis for the sneak paths is critical for improving write performance in

3D-VRAM arrays, it is more challenging than that in a 2D ReRAM crossbar, since there

is a larger number of half-selected cells and 3D interconnections between cells are more

sophisticated. For an instance, as observed in [104], there are significantly larger number

of half-selected cells on the selected WL, compared to that in 2D ReRAM crossbars. I will

shortly discuss about how to mitigate the performance degradation in a 3D-VRAM array.

8.2 Proposed Designs

In this section, I elaborate my designs, including an in-memory data encoding scheme, a

data pattern estimator for assessing cell resistance distributions, and a write time reduction

scheme, for reducing the average write latency and, in particular, that of RESET operations.

88

8.2.1 Data Pattern Optimization

A key observation of voltage drop in 3D-VRAM is that the more number of LRS cells a

memory array has, the larger voltage drop the target cells suffer during the RESET process.

This is because larger sneak currents are generated and thereby reduce cell access voltage

with more LRS cells. Consequently, limiting the number of LRS cells stored in 3D-VRAM1

shall be able to mitigate voltage drops and improve the RESET speed. For this purpose, I

propose a simple yet effective encoding scheme Flip-n-Store, to ensure that the number of

LRS cells is no more than 50% of total cells in a 3D-VRAM array. Flip-n-Store focuses on

minimizing the number of LRS cells in each word, as illustrated by the example as follows.

In the example shown in Figure 42, 8-bit new data that have more than n/2 of word

length (4 in this case) LRS cells is written. Hence, flip bit is set to 1 and this new data is

inverted as the new target. Though more than n/2-bit data are written in this case, with this

data encoding scheme, there are ideally no more than 50% of cells are in LRS. By limiting

the number of LRS cells, Flip-n-Store can also limit the number of RESET operations up to

n/2.

Old data:
New data:

Written data:

Flip bit: 0
LRS # > N/2

Flip bit: 1

RESET phase:
SET phase:

3 RESETs
2 SETs

0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1

0 0 0 0 1 1 0 0

x 0 0 x x x 0 x
x x x x 1 1 x x

Figure 42: An example of the proposed Flip-n-Store scheme.

The proposed scheme Flip-n-Store shares similarity with previously proposed data encod-

ing schemes for NVM [109, 17, 105]. However, they have different design goals — Flip-n-Store

focuses on the number of LRS cells after write while previously proposed schemes are write

1In this work, I refer data patterns to the percentage of LRS cells in a 3D-VRAM array, and interchange-
ably use two terms.

89

optimization schemes, i.e., DCW [109] and Flip-n-Write [17] were proposed to reduce the

number of modified cells at write time; [105] was proposed to reduce the number of RESET

operations at write time. Therefore, as long as the number of LRS cells is reduced for the

data after write, Flip-n-Store may increase the number of modified bits at write time.

Given that the leakage currents and voltage drops depend heavily on the number of

LRS cells, Flip-n-Store effectively optimizes the data patterns in 3D-VRAM arrays and

thus improves the write performance. To illustrate its effectiveness, I evaluate the RESET

voltage stress on the target cells and RESET latency for different sizes (Nb × Ns × Nl) of

3D-VRAM arrays2. As shown in Figure 43, with Flip-n-Store, there are at most 50% of cells

that are written into LRS. Consequently, the worst-case RESET voltages and latencies are

significantly improved for two different 3D-VRAM array configurations.

1.5
1.7
1.9
2.1
2.3
2.5

128x128x8 64x64x32

RE
SE

T
Vo

lta
ge Baseline Flip-n-Store

(a)

5960.3

1665.8

570.9

289

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

128x128x8 64x64x32

RE
SE

T
La

te
nc

y

Baseline Flip-n-Store

(b)

Figure 43: Comparisons of the worst-case (a) RESET voltages and (b) RESET latency

between baseline and Flip-n-Store scheme in different sizes of 3D-VRAM arrays.

8.2.2 RESET Latency Variation

By reducing the worst-case number of LRS cells from 100% in the baseline to 50% in

Flip-n-Store, the RESET latency can be effectively improved in 3D-VRAM. However, the

50% estimation is still pessimistic as the numbers of LRS and HRS cells are often biased,

23D-VRAM modeling parameters and methodologies are presented in Section 8.3.

90

e.g., memory words are often initialized to 0s (HRS cells) and the high order bits of small

integer values are 0s (HRS cells). As a result, there is a large gap between the performance of

Flip-n-Store and the performance of an Oracle scheme, i.e., the hypothetical optimal scheme

that knows the exact number and distribution of LRS cells.

To further explore the opportunities in reducing RESET latency, I perform a study on

data patterns in 3D-VRAM and summarize the results in Figure 44. The figure plots the

RESET voltage drop and the RESET latency with different percentages of LRS cells in

selected WLs (SWLs) and the unselected WLs (UWLs). From the figure, I observe that the

percentages of LRS cells in both SWLs and UWLs are important in determining the RESET

latency while the percentages of LRS cells in SWLs are more critical. When there are more

LRS cells, the RESET voltages decreases (i.e., having larger voltage drops) and thus the

RESET delays increase for different sizes of 3D-VRAM arrays.

While data pattern based voltage drop has been observed in 2D ReRAM arrays in Chap-

ter 4, my study in this chapter shows that it becomes more severe in 3D-VRAM arrays. In

particular, due to the large number of leakage paths in 3D-VRAM, the data patterns (i.e.,

the number of LRS cells) in both SWLs and UWLs determine the RESET latency while the

bitline data patterns matter in 2D ReRAM crossbars. This makes it less desirable to devise

a profile-guided RESET latency estimation scheme as that for 2D ReRAM arrays discussed

in Chapter 5. This is because, to achieve accurate profiling, it is necessary to profile the per-

centages of LRS cells along different SWLs and UWLs, and create a large multi-dimensional

mapping table to determine the latency at runtime. Maintaining such a table would incur

large space and time overheads.

8.2.3 Data Patterns Estimation

Given that the RESET latency is highly sensitive to data patterns, I propose to leverage

the analog current aggregation feature for ReRAM crossbars and adapt it in 3D-VRAM

arrays for data pattern estimation.

Figure 45 illustrates how to estimate the data pattern at runtime. As shown in the

figure, the percentage of LRS cells of one column (in red) is estimated using its output

91

2

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

0.00%
6.25%

12.50%
18.75%
25.00%
31.25%
37.50%
43.75%
50.00%

RESET Voltage

LR
S

%
 in

 SW
L

0.
00

%
6.

25
%

12
.5

0%
18

.7
5%

25
.0

0%
31

.2
5%

37
.5

0%
43

.7
5%

50
.0

0%

LR
S

%
 in

 U
W

Ls

(a
)

1
2
8
×

12
8
×

8

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

0.00%
6.25%

12.50%
18.75%
25.00%
31.25%
37.50%
43.75%
50.00%

RESET Latency

LR
S

%
 in

 SW
L

0.
00

%
6.

25
%

12
.5

0%
18

.7
5%

25
.0

0%
31

.2
5%

37
.5

0%
43

.7
5%

50
.0

0%

LR
S

%
 in

 U
W

Ls

(b
)

12
8
×

12
8
×

8

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

0.00%
6.25%

12.50%
18.75%
25.00%
31.25%
37.50%
43.75%
50.00%

RESET Voltage

LR
S

%
 in

 SW
L

0.
00

%
6.

25
%

12
.5

0%
18

.7
5%

25
.0

0%
31

.2
5%

37
.5

0%
43

.7
5%

50
.0

0%

LR
S

%
 in

 U
W

Ls

(c
)

64
×

64
×

32

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

0.00%
6.25%

12.50%
18.75%
25.00%
31.25%
37.50%
43.75%
50.00%

RESET Latency

LR
S

%
 in

 SW
L

0.
00

%
6.

25
%

12
.5

0%
18

.7
5%

25
.0

0%
31

.2
5%

37
.5

0%
43

.7
5%

50
.0

0%

LR
S

%
 in

 U
W

Ls

(d
)

64
×

64
×

32

F
ig

u
re

44
:

V
ar

ia
ti

on
s

of
R

E
S
E

T
vo

lt
ag

e
an

d
la

te
n
cy

w
it

h
L

R
S

p
er

ce
n
ta

ge
s

in
se

le
ct

ed
W

L
(S

W
L

)
an

d
u
n
se

le
ct

ed
W

L
s

(U
W

L
s)

in
d
iff

er
en

t
si

ze
s

of
3D

-V
R

A
M

ar
ra

y
s.

92

analog current, which is later converted into a dp-cnt value. When performing the data

pattern estimation, it is known that the analog current flowing through all cells that are

being read is proportional to the number of LRS cells. This operation repeats in different

BLs with a few rounds (which depends on the number of shared ADC units, by default, 8

ADC units are used) to complete the data pattern estimation for all cells in the WL plane.

Since the estimation operation consumes energy and introduces extra latency, the wr-cnt is

used to adjust the frequency of data profiling by only performing estimations when wr-cnt

reaches to a predefined value. wr-cnt increments after a write and reset to zero after an

estimation is performed.

The following summarizes the key features of the proposed pattern estimator.

• Addressing: in a 3D-VRAM array, SLs are introduced to select a certain vertical plane,

and help activate one or multiple cells with BLs and WL. Therefore, in order to aggregate

current flowing through all cells along the same BL, all of SLs need to be activated and

turn on access transistors. A recent work [57] adopts a similar idea for neural network

computing in 3D-VRAM arrays.

• Estimated data patterns: since the proposed design only cares data patterns in each

vertical layer of 3D-VRAM array, a target WL plane is opened while others are grounded

for the estimation purpose. The correlation between RESET latency and data patterns

in 3D-VRAM arrays is a new challenge and not studied in prior work.

• Counters: the data pattern counters are attached to vertical layers, which is unlike the

2D profiler presented in Chapter 5. In each array, Nl of counters dp-cnt are stored for

recording data patterns, and Nl of counters wr-cnt are used to track writes between

intervals.

In the preceding section, I discuss that naively extending 2D profiler [99] to 3D-VRAM

tends to incur large overhead. I next differentiate the design in Figure 45 to such a design. By

extending 2D profiler in 3D-VRAM arrays, the percentages of LRS cells of SWLs and UWLs

at different layers have to be profiled, recorded in different counters, and updated according

when there is a write operation. A multi-dimensional lookup table to correlate the data

patterns and their corresponding RESET latencies is also needed to be constructed. This

93

SL
0

–S
L 3:

V g…

…

BL0 – BL3

VREAD

0V

dp-cnt{ai, WL0}, wr-cnt{ai, WL0}

dp-cnt{ai, WL3}, wr-cnt{ai, WL3}

…

arrayi

M
U
X

Other BLs
ADC

Figure 45: An example of data pattern estimation for WL planes in a 4×4×4 3D-VRAM

array.

leads to unacceptable runtime and space overheads. Instead, the data pattern estimation

in Figure 45 is much light-weighted. While theoretically it is less accurate, my experiments

show that it achieves good tradeoff between accuracy and space/runtime overheads.

8.2.4 Write Latency Reduction with Safe and Aggressive RESET

I next elaborate the RESET latency reduction scheme with the counters for estimating

the runtime data patterns. An example of the proposed RESET latency reduction scheme

is presented in Figure 46. In this example, the array size is 128×128×8, and the number of

read/write bits n is 8 in each array, and thereby one 64B cacheline is read from or written

to 64 arrays. After obtaining the data patterns, i.e., the percentage of LRS cells, an optimal

RESET latency can be fetched from a lookup table based on data pattern counters. The data

pattern estimation precision is 1/16, which means there are 16 equal LRS cells percentage

ranges, each of which is 6.25% of total cells. The estimation frequency is defined as the

number of writes that makes the data pattern counter increment at the worst-case scenario.

By default, the estimation frequency is set to be 256 writes. With my data encoding scheme,

94

00
0

...
...

10
0

10
1

11
0

11
1

00
0

18
0

...
...

19
4.
3

19
6

19
7.
3

19
8.
3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

10
0

36
1

...
...

41
4

42
0.
2

42
5.
3

42
9.
5

10
1

39
8

...
...

46
1.
3

46
9

47
5

48
0

11
0

43
2.
2

...
...

50
5.
3

51
4

52
1

52
7

11
1

46
4

...
...

54
6.
2

55
6

56
4

57
0.
9

LR
S

%
Cn

t
[0
,6
.2
5%

)
00
0

...
...

...
...

[2
5%

,3
1.
25
%
)

10
0

[3
1.
25
%
,3
7.
5)

10
1

[3
7.
5%

,4
3.
75
)

11
0

[4
3.
75
,5
0%

]
11
1

LR
S

%
 in

 S
W

L

LR
S

%
 in

 U
W

L

D
et

er
m

in
in

g
ar

ra
y

R
ES

ET
la

te
nc

y

00
0

...
...

10
0

10
1

11
0

11
1

00
0

18
0

...
...

19
4.
3

19
6

19
7.
3

19
8.
3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

10
0

36
1

...
...

41
4

42
0.
2

42
5.
3

42
9.
5

10
1

39
8

...
...

46
1.
3

46
9

47
5

48
0

11
0

43
2.
2

...
...

50
5.
3

51
4

52
1

52
7

11
1

46
4

...
...

54
6.
2

55
6

56
4

57
0.
9

LR
S

%
Cn

t
[0
,6
.2
5%

)
00
0

...
...

...
...

[2
5%

,3
1.
25
%
)

10
0

[3
1.
25
%
,3
7.
5)

10
1

[3
7.
5%

,4
3.
75
)

11
0

[4
3.
75
,5
0%

]
11
1

LR
S

%
 in

 S
W

L
LR

S
%

 in
 U

W
L R
ec

or
de

d
D

at
a

Pa
tte

rn
 C

ou
nt

er
s

R
ES

ET
 L

at
en

cy
 L

oo
ku

p
Ta

bl
e

D
at

a
pa

tte
rn

s
es

tim
at

io
n

Sa

fe
 R

ES
ET

A
gg

re
ss

iv
e

R
ES

ET

dp
-c

nt
’=

 d
p-

cn
t

dp
-c

nt
’=

 d
p-

cn
t+

1>
7?

7:
 d

p-
cn

t+
1

g0
To

p
El

ec
tr

od
e

M
et

al
 O

xi
de

B
ot

to
m

 E
le

ct
ro

de

-V
R

ES
ET

0V

C
Fs

g1

Se
co

nd
 R

ES
ET

:
t =

 5
27

-4
75

Ve
rif

y
R

ea
d

… A
rr

ay
w

ith
th

e
w

or
st

-c
as

e
R

ES
ET

la
te

nc
y

F
ig

u
re

46
:

A
n

ex
am

p
le

of
p
ro

p
os

ed
w

ri
te

la
te

n
cy

re
d
u
ct

io
n

sc
h
em

e
(W

h
il
e

a
sa

fe
-R

E
S
E

T
al

w
ay

s
fi
n
is

h
es

in
on

e
R

E
S
E

T
ro

u
n
d
,

an
ag

gr
es

si
ve

R
E

S
E

T
m

ay
go

th
ro

u
gh

R
E

S
E

T
-r

ea
d
-R

E
S
E

T
th

re
e

ro
u
n
d
s)

.

95

each write at most brings no more than n/2 LRS cells into an array, i.e., equal or less than

4 LRS cells in this case. I next discuss how to determine RESET latency with array data

patterns by following two schemes.

8.2.4.1 Safe RESET Though this work aims at reducing RESET latency, a successful

switching should be of the first importance. This is guaranteed by following rules:

Rule 1: The worst-case latency across all 64 arrays that share one cacheline is always

used.

Rule 2: After an updated data pattern is periodically obtained at runtime, there can

be up to 1024 (256× 4) of LRS cells during an interval. Therefore, the LRS cells percentage

has to be conservatively estimated as if all new writes bring as many LRS cells as possible,

and thereby it reaches to the next higher range if not exceeds 50%.

In the example, the RESET latency of 527ns is determined and applied to all 64 arrays

in this way.

8.2.4.2 Aggressive RESET The scheme of safe RESET is the baseline for write latency

reduction with conservative assumptions. It is possible to further aggressively reduce write

latency by relaxing the guidelines in the scheme of safe RESET.

Since Rule 2 assumes the worst-case scenario that does not happen often, it is feasible

to relax this rule and RESET a cell with an aggressively reduced latency.

The example shown in Figure 46 illustrates this idea. Instead of using worst-case es-

timation, the number of LRS is assumed to have a small increase after many writes. The

rationale behind this approach is that, I optimistically assume the numbers of LRS and HRS

cells that are added during an interval are roughly the same. After an aggressive RESET

completes, an extra read is introduced to verify if the switching is successful:

1. If it is successful, RESET is speeded up by using a shorter latency, i.e., 475ns instead of

527ns in the example. Assume the read latency is tREAD, the gain is (527-475-tREAD) ns.

2. If it is not successful, a second round RESET operation has to be issued to complete the

switching. In Figure 46, if the first round RESET is not successful, a second round RE-

SET with (527-475) ns is issued. In this case, writing the cell is finished in (527+tREAD)

96

ns instead of the 527ns baseline. This is similar to the write-and-verify programming

scheme widely applied in Multi-Level Cell (MLC) ReRAM [106], but here a second write

is only occasionally applied if the first one was not successful.

8.2.5 Discussion

8.2.5.1 Other LRS Cells Reduction Schemes Other than the proposed encoding

scheme, I also adopt compression and data shifting presented in Chapter 5 to reduce LRS

cells. The compression also helps to mitigate the capacity loss of additional flip bits in the

encoding scheme Flip-n-Store.

8.2.5.2 Overhead Since flip bits in Flip-n-Store consume 1/n storage overhead, a larger

n helps to reduce this overhead. However, this also requires more sense amplifiers and

write drivers, which have significant large area [104]. Therefore, a compression technique to

mitigate this overhead, which is similarly adopted in [105].

The storage overhead of counters depends on the array size. For an instance, for a

128 × 128 × 8 array, 8 dp-cnt and wr-cnt are used. With a 1/16 estimation precision and

the encoding scheme applied, one dp-cnt is 3-bit and wr-cnt is 8-bit, and thus there is

totally 11B of counter overhead per array.

For the overhead of data pattern estimator, the same ADC unit and peripheral circuitry

setup is used as in Chapter 5 where eight 8-bit ADC units are shared in one bank.

8.3 Experimental Methodologies

8.3.1 3D-VRAM Array Modeling

I adopt the Verilog-A ReRAM cell device model from [40], and build and simulate an

HSPICE circuit model for 3D-VRAM array with similar parameters the approaches presented

in [107, 104, 56]. Table 12 summarizes the key parameters of the 3D-VRAM array.

97

Table 12: 3D-VRAM array model parameters.

Metric Description Values

Nb Number of BLs 128, 64

Ns Number of SLs 128, 64

Nl Number of stacked layers 8, 32

n Number of bits to read/write in parallel 8

Tox Switching layer thickness 5nm

d Pillar electrode diameter 20nm

Hm/Hi Thickness of a wordline plane/an isolation layer 40nm/20nm

F Feature size 22nm

AR Etching aspect ratio 32, 64

VWRITE Write voltage ±3.0V

VREAD Read voltage 0.6V

Vg Gate voltage on selected SLs 3.3V

W/L NMOS transistor size: width/length 44nm/22nm

- Copper piller/plane interconnect resisitivity 60Ω · nm

98

8.3.2 Configuration and Simulation

In this chapter, I evaluate the memory latency, performance and dynamic energy for pro-

posed designs with an in-house architectural simulator. Table 13 summarizes the simulation

configuration. The default 3D-VRAM array size is 128 × 128 × 8. In the memory latency

evaluations, I use the metric Reduction:

Reduction = LatencyBL/Latencyscheme (8.1)

where LatencyBL and Latencyscheme denote the write/read latency in baseline BL and one

of proposed schemes respectively, to evaluate the effectiveness of proposed design in write

latency reduction. In the evaluation for system performance, I adopt the metric Instruction

Per Cycle (IPC) Improvement:

IPC Improvement = IPCscheme/IPCBL (8.2)

where IPCBL and IPCscheme denote the IPC in baseline BL and evaluated schemes respec-

tively. Similarly, a formula of Reduction = EnergyScheme/EnergyBL is used to evaluate the

dynamic energy consumption in the experiments.

Table 13: Simulator configuration.

CPU 4 4GHz cores, single issue in-order

L1 I/D-cache Private, 16KB/core, 4-way, 64B line, 2 cycles

L2 cache Private, 1MB/core; 8-way, 64B line, 10 cycles

3D-VRAM memory

4GB, 1 channel, 4 ranks/channel, 8 1Gb chips/rank

8 banks/chip, 1024 128× 128× 8 3D-VRAM arrays/bank

READ: 18ns; SET: 10ns;

RESET: latency depends on runtime data patterns

99

8.3.3 Benchmarks

As summarized in Table 14, I select ten benchmarks with a diversity of memory intensities

from SPEC2006 [31] and PARSEC [5] benchmark suites, and collect their memory traces

with Intel Pintool [61] as inputs for the architectural simulator.

Table 14: Description of benchmarks.

Write Intensity Name Benchmark Suite WPKI RPKI

High

milc SPEC2006 54.55 95.45

bodytrack PARSEC 28.09 126.68

lbm SPEC2006 21.50 28.67

mcf SPEC2006 16.31 23.79

Medium

hmmer SPEC2006 2.91 2.94

leslie3d SPEC2006 1.12 7.16

sjeng SPEC2006 0.29 0.37

Low

sphinx SPEC2006 0.087 11.86

calculix SPEC2006 0.087 0.11

x264 PARSEC 0.064 1.49

8.3.4 Compared Schemes

In the evaluations, I compare following schemes to show the effectiveness of the proposed

design:

• BL is the baseline 128× 128× 8 3D-VRAM array design.

• Flip-n-Store is BL with proposed Flip-n-Store scheme.

• SAFE WR is Flip-n-Store with proposed safe RESET scheme to achieve write latency

reduction.

100

• AGG WR is Flip-n-Store with proposed aggressive RESET scheme to opportunistically

further improve write performance, which is ideally expected to show the best perfor-

mance.

8.4 Evaluation Results and Analysis

8.4.1 Write Latency Reduction

Figure 47 shows the results of write latency reduction comparison among all schemes.

Flip-n-Store, SAFE WR and AGG WR reduce write latency compared to BL by 10.28×, 22.05×

and 25.98× respectively. In particular, AGG WR outperforms SAFE WR in write latency reduc-

tion by 17.8% on average, which shows that the opportunities for RESET latency reduction

is well exploited by the proposed opportunistic RESET scheme.

0

5

10

15

20

25

30

35

40

milc

bodytr
ack lbm mcf

hmmer

les
lie

3d
sje

ng
sp

hinx

ca
lcu

lix
x2

64

gm
ean

BL Flip-n-Store SAFE_WR AGG_WR

W
rit

e
La

te
nc

y
Re

du
ct

io
n

Figure 47: The write latency reduction comparison.

101

8.4.2 Read Latency Reduction

Figure 48 shows a comparison for memory read latency reduction across all schemes.

Flip-n-Store, SAFE WR and AGG WR reduce read latency compared to BL by 6.91×, 11.22×

and 12.32× respectively. Though my scheme focuses on write latency reduction, the average

memory read latency is also effectively shortened, which is consequently helpful to improve

the overall performance.

0

5

10

15

20

25

30

milc

bodytr
ack lbm mcf

hmmer

les
lie

3d
sje

ng
sp

hinx

ca
lcu

lix
x2

64
gm

ean

BL Flip-n-Store SAFE_WR AGG_WR

Re
ad

La
te

nc
y

Re
du

ct
io

n

Figure 48: The read latency reduction comparison.

8.4.3 System Performance Improvement

An overall system performance comparison, which is measured by IPC that is normalized

to BL, is presented in Figure 48. This figure shows that Flip-n-Store, SAFE WR and AGG WR

significantly improves the overall performance compared to BL by 4.72×, 6.52× and 6.92×

respectively. Benchmarks that have high memory intensity, in particular for write operations,

has a larger improvement, since they can benefit from my proposed designs to a greater

extent than those are with a lower memory intensity. Not surprisingly, AGG WR outperforms

102

all other schemes in the system performance evaluation since it can well exploit the runtime

data patterns with aggressively reducing RESET latency.

0
2
4
6
8
10
12
14
16
18
20

milc

bodytr
ack lbm mcf

hmmer

les
lie

3d
sje

ng
sp

hinx

ca
lcu

lix
x2

64

gm
ean

BL Flip-n-Store SAFE_WR AGG_WR

IP
C

Im
pr

ov
em

en
t

Figure 49: The IPC improvement comparison.

8.4.4 Dynamic Energy Reduction

In addition to latency and performance evaluations, a comparison of dynamic energy

among all schemes is also presented in Figure 50. Dynamic memory energy primarily comes

from read, write and the overhead of estimating data patterns. Memory read energy remains

unchanged since the proposed design does not change read operations. The energy overhead

is produced by operations of data pattern estimation, which specifically includes energy

consumed by reading ReRAM cells, the ADC units and peripheral circuits used during the

profiling. The evaluation shows that Flip-n-Store, SAFE WR and AGG WR greatly reduce

the dynamic energy compared to BL by 49.8%, 52.0% and 52.4% respectively. Since the

dynamic energy reduction comes from write operations, for certain benchmarks in which

read operations are far more intensive than write operations, e.g., sphinx and x264, the

103

dynamic energy reduction is limited. Besides, on average, the energy overhead from data

pattern estimations in AGG WR is only 0.63%, which is negligible.

8.5 Conclusion

For the purpose of reducing write latency in 3D-VRAM arrays, in this chapter, I pro-

pose an in-memory data encoding scheme, an data pattern estimators, and an opportunis-

tic write latency reduction scheme. Specifically, two different approaches, i.e., safe- and

aggressive- RESET time estimation schemes, are presented to optimize RESET latency un-

der the premise of successful switching, based on the runtime estimation of data patterns

in a 3D-VRAM array. Experimental evaluations show that, on average, the proposed de-

sign reduces write latency by 25.98×, improves overall performance by 6.92× and reduces

dynamic energy consumption by 52.4% compared to a baseline design.

104

0

0.
2

0.
4

0.
6

0.
81

1.
2

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

BL
Flip-n-Store

SAFE_WR
AGG_WR

m
ilc

bo
dy

tr
ac

k
lb

m
m

cf
hm

m
er

le
sli

e3
d

sje
ng

sp
hi

nx
ca

lcu
lix

x2
64

av
er

ag
e

Dynamic Energy Reduction

w
rit

e
re

ad
es

tim
at

io
n

F
ig

u
re

50
:

T
h
e

d
y
n
am

ic
en

er
gy

re
d
u
ct

io
n

co
m

p
ar

is
on

.

105

9.0 Conclusions

This chapter concludes contributions, impacts, limitations and future research directions,

of this dissertation study.

9.1 Summary of Contributions

In this dissertation, to overcome the challenges of performance and endurance issues in

ReRAM crossbars, I propose a comprehensive set of techniques as follows.

I first study the correlation between the RESET latency of an ReRAM row and the

number of the cells in low resistance state (LRS) on selected bitlines. I observe that the

more LRS cells there are in the bitline, the larger IR drop the sneak current brings, and the

longer time the RESET operation takes. Another observation is, the impact diminishes as

the row becomes closer to the write driver.

Based on the observation that the RESET latency strongly correlates to the number of

cells in LRS along bit lines, I propose a novel profiling-based ReRAM design, which can

exploit the discrepancy of RESET latency. The in-memory processing capability of ReRAM

is leveraged to implement a low overhead runtime profiler. By dynamically detecting the

number of LRS cells, RESET timing is dynamically adjusted and significant performance

and energy consumption improvements are archived. In addition, in order to mitigate the

profiling overhead, two optimization techniques — selective profiling and fine-grained pro-

filing, are presented. They both effectively achieve significant profiling energy reduction by

reducing the number of profiling operations and halving the number of being read wordlines

during a profiling operation, respectively.

For write endurance issue, I focus on mitigating the write endurance degradation from IR

drop by proposing a novel wear leveling scheme for crossbar ReRAM memory. Specifically,

I study the write endurance variation issue in crossbar ReRAM memory, and observe that

the effective write, which indicates actual the degree of ReRAM wearing out, dynamically

106

changes at runtime with different data patterns and row addresses. A novel wear leveling

scheme is proposed based on effective write to enhance lifetime of crossbar ReRAM memory.

Lastly, I examine two extended scenarios: (1) the endurance issue in ReRAM crossbar

based accelerators for neural network computing and (2) the long write latency in 3D-VRAM

arrays. For the first scenario, as such accelerators suffer from short programming cycles when

weights that stored in ReRAM cells are frequently updated during the training phase, a set

of schemes are proposed to prolong the lifetime of the ReRAM crossbar based accelerators,

particularly for neural network training, by exploiting the wearing out mechanism of ReRAM

cells. For the second scenario, an in-memory data encoding scheme to reduce the worst-case

number of LRS cells, a data pattern estimator for assessing cell resistance distributions, and

a write time reduction scheme that opportunistically reduces RESET latency with runtime

data patterns are proposed.

9.2 Impacts

Modern applications, e.g., big data analytics, video streaming and graphical games,

exhibit increasing demand for large capacity memory. However, DRAM, the de facto choice

for main memory, faces low density, short refreshing interval and scalability challenges at

20nm and beyond [44]. Resistive Memory (ReRAM) has recently emerged as a promising

candidate for architecting future large capacity main memory [101, 99, 105, 82]. It has

many advantages such as non-volatility, no refreshing, high density and almost-zero standby

power. Comparing to other non-volatile memory technologies, ReRAM has better density

and scalability than those of STT-MRAM, and better write performance than that of PCM.

ReRAM cell arrays often adopt the crossbar architecture to achieve the smallest 4F 2

planar cell size [105]. ReRAM crossbars enable the construction of dense main memory with

large capacity, but face large sneaky currents and IR drop issues [99, 114, 82] — the leakage

currents flowing through half-selected cells during writes are not negligible. Adopting access

diodes helps to mitigate the issue, but cannot eliminate it completely.

107

To mitigate sneaky current and IR drop in ReRAM crossbars, ReRAM writes, in partic-

ular, RESET operations, conservatively adopt the worst-case latency. Recent studies have

optimized the write latency from one latency fitting all cells in the crossbar to different la-

tencies based on row address, i.e., writing the rows that are close to the write drivers can

finish faster due to smaller IR drop on their cells [105, 114]. However, these prior researches

did not take runtime in-memory data patterns into considerations for dynamically deter-

mining an optimal write latency. Besides, to ensure write reliability, ReRAM write drivers

choose larger than ideal write voltages, which over-SET/over-RESET many cells at runtime

and lead to severely degraded chip lifetime. With the issues above essentially addressed, I

believe my dissertation study will benefit the academic research community and industry for

the following reasons.

9.2.1 Accelerating the Deployment of Crossbar ReRAM as Main Memories

First, in the dissertation, a group of innovative solutions are proposed to overcome the

challenges of performance and endurance issues in ReRAM crossbars discussed above. Since

the performance and reliability of ReRAM crossbars are critical to its adoption as a replace-

ment of DRAM, the proposed schemes enable constructing crossbar ReRAM basaed main

memories with large capacity more practically in the near future, as a result of significantly

reduced write latency and improved endurance. By analyzing the nonideal properties and

tackling the aforementioned issues of ReRAM crossbars, this dissertation study accelerates

their commercialization and deployment in modern computing systems.

9.2.2 Achieving Larger Improvements with Technology Scaling Down

Second, with technology scaling down to smaller feature sizes, we expect future ReRAM

chips are fabricated with larger sizes of crossbar arrays. Whereas this fast technology ad-

vancement remarkably enlarges the capacity of ReRAM chips, the IR drop issue is expected

to exacerbate due to the large wire resistance of large ReRAM crossbar arrays. Since this

dissertation focuses on addressing the performance and endurance degradation caused by IR

108

drop issue, my proposed techniques potentially can achieve larger improvements in future

ReRAM chips.

9.2.3 Highlighting the Importance of In-memory Data Patterns to Performance

and Endurance

Third, based on the observations presented in Chapter 4, this dissertation reveals the

importance of in-memory data patterns to performance and endurance for crossbar ReRAM.

To the best of my knowledge, this work is the first architectural innovation that exploits the

bitline data patterns to dynamically accelerate RESET operations in ReRAM crossbars. The

proposed data pattern profiling technique creatively exploits the intrinsic analog current

accumulation feature of ReRAM crossbars, while the IR drop issue itself arises from the

structure and voltage biasing of crossbar arrays. I believe my dissertation study can inspire

computer architects to explore innovative architectural designs for ReRAM crossbars with

an emphasis on runtime data patterns and their impacts on performance and reliability.

9.2.4 Emphasizing Collaborative Efforts from Different Perspectives for Mem-

ory System Design

Fourth, the motivation of this dissertation study stems from circuit level observations,

however, architectural enhancements are later proposed to mitigate the performance and

endurance degradation. Therefore, this dissertation can serve as an example to show the

effectiveness and significance of collaborative efforts from different perspectives, i.e., a holistic

circuit-architecture study in this dissertation, to address the performance and reliability

issues in modern memory systems.

109

9.2.5 Advancing the Development in Data Storage and Computing Applications

of Crossbar ReRAM

Lastly, two extended scenarios are examined, including ReRAM crossbar based neural

network accelerators and 3D-VRAM arrays, both of which are promising applications of

the ReRAM crossbar structure in the near future [62, 54]. Not only for planar ReRAM

crossbar based main memories, this dissertation study also proposes solutions to alleviate

limited write endurance and long write latency, which are identified as major bottlenecks

that prevent the development in applications of crossbar ReRAM, for computing in memory

and large-capacity 3D-VRAM chips.

9.3 Limitations

The main limitations of this dissertation study come from experimental methodologies.

First, due to the limited experimental capability, the evaluations for ReRAM crossbars are

simulated in HSPICE with a widely used Verilog-A model [40], which only models a subset

of ReRAM cells. Although this dissertation adopts a representative ReRAM cell model,

however, prior studies [69, 112] revealed that the ReRAM cells with different materials

can exhibit different characteristics. Besides, the evaluation results may be influenced by

how accurate the analytical model in [40] reflects the switching behaviors of an ReRAM cell.

Second, due to the absence of details, I can only try my best to implement the state-of-the-art

design following the paper [114] and conduct a fair comparison with a same set of benchmarks

in Chapter 5. However, it is worth noting that, whereas there are such limitations on ReRAM

cell modeling and implementing the state-of-the-art design, the conclusion — the proposed

solutions achieve significant improvements compared to either baselines or the state-of-the-

art design, drawn in this dissertation remains the same. This is because: (1) the proposed

techniques are expected to be applicable to a wide range of ReRAM cells and crossbars as

long as they share the similar switching behaviors and the IR drop issue in general, and

(2) my implementation of the state-of-the-art design has little impact on the fairness of

110

comparisons since the proposed design is built upon this prior work by incorporating the

scheme presented in [114].

9.4 Future Research Directions

This dissertation proposes a variety of architectural solutions to improve performance

and endurance for crossbar resistive memory, however, there are still potential research

opportunities which are worth explorations in the future.

9.4.1 MLC ReRAM Crossbars

The first possible research direction in the future is improving performance and endurance

for MLC (Multi-Level Cell) ReRAM crossbars. In this dissertation, I focus on exploring

optimal solutions for SLC (Single-Level Cell) ReRAM crossbars, since SLC ReRAM crossbars

are more durable and faster than its MLC counterpart. Although my proposed designs in

the dissertation are also applicable to different ReRAM technologies, it is still desirable

to further investigate effective solutions to improve performance and endurance for MLC

ReRAM crossbars that have a much higher storage density, since they do introduce new

challenges to researchers.

According to prior work [106], the write latency for MLC ReRAM is significantly longer

than SLC ReRAM due to its iterative programming scheme that takes much more cycles

to complete. In addition, the lifetime of an MLC ReRAM cell can be several magnitudes

shorter than an SLC ReRAM cell [72]. Therefore, it is worthwhile to explore in-memory data

patterns or encoding schemes in order to speed up write requests in MLC ReRAM crossbars

and also improve their write endurance with architectural innovations.

9.4.2 Approximate Computing with ReRAM Crossbars

Approximate computing [118, 46, 64, 78, 42, 79] is a new computation paradigm proposed

in recent years to exploit the intrinsic error-resilience feature of certain applications for

111

saving energy or improving performance. In an approximate computing application, instead

of accurate computation results, approximate outputs with an acceptable error are sufficient.

When adopting ReRAM crossbars as main memories presented in Chapter 5, 6 and 8, the

successful switching is strictly guaranteed with the appropriate optimal RESET timing, while

inaccurate programming is allowed to prolong the lifetime of ReRAM crossbars by exploiting

wearing out mechanism and intrinsic error tolerance feature of neural network training in

Chapter 7. Similar to the neural network computing, the emerging approximate computing

applications also do not require error-free writes to every byte, and thereby the accurate

RESET timing for programming each cell is not necessary.

As discussed in Chapter 7, the programming on ReRAM cell is a probability switching

according to previous studies [55, 25, 84]. The the switching behaviors of an ReRAM cell

is stochastic, and its probability is predictable by modeling the correlation between pro-

gramming conditions and successful switching rate with Equation 7.3. For the nature of

approximate computing applications, it is not necessary to guarantee 100% switching prob-

ability when programming ReRAM cells. Therefore, it is worthwhile to explore novel write

strategies to improve performance as well as endurance for approximate computing with

ReRAM crossbars.

112

Bibliography

[1] Armin Haj Aboutalebi and Lide Duan. Raps: Restore-aware policy selection for stt-
mram-based main memory under read disturbance. In Computer Design (ICCD),
2017 IEEE International Conference on, pages 625–632. IEEE, 2017.

[2] Alaa Alameldeen and David Wood. Frequent pattern compression: A significance-
based compression scheme for l2 caches. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2004.

[3] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce Jacob, Chau-
Wen Tseng, and Donald Yeung. Biobench: A benchmark suite of bioinformatics
applications. In Performance Analysis of Systems and Software, 2005. ISPASS 2005.
IEEE International Symposium on, pages 2–9. IEEE, 2005.

[4] Majed Valad Beigi and Gokhan Memik. Thermal-aware optimizations of reram-based
neuromorphic computing systems. In Proceedings of the 55th Annual Design Automa-
tion Conference, page 39. ACM, 2018.

[5] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling, Bench-
marking and Simulation, volume 2011, 2009.

[6] Mehrdad Biglari, Tobias Lieske, and Dietmar Fey. High-endurance bipolar reram-
based non-volatile flip-flops with run-time tunable resistive states. In 2018
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH),
pages 1–6. IEEE, 2018.

[7] Mahdi Nazm Bojnordi and Engin Ipek. Memristive boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning. In High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium on, pages 1–13.
IEEE, 2016.

[8] Pedro Bruel, Sai Rahul Chalamalasetti, Chris Dalton, Izzat El Hajj, Alfredo Goldman,
Catherine Graves, Wen-mei Hwu, Phil Laplante, Dejan Milojicic, Geoffrey Ndu, et al.
Generalize or die: Operating systems support for memristor-based accelerators. In
2017 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8.
IEEE, 2017.

[9] Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, and Huazhong
Yang. Long live time: improving lifetime for training-in-memory engines by struc-
tured gradient sparsification. In Proceedings of the 55th Annual Design Automation
Conference, page 107. ACM, 2018.

113

[10] Yi Cai, Tianqi Tang, Lixue Xia, Ming Cheng, Zhenhua Zhu, Yu Wang, and Huazhong
Yang. Training low bitwidth convolutional neural network on rram. In Proceedings of
the 23rd Asia and South Pacific design automation conference, pages 117–122. IEEE
Press, 2018.

[11] Meng-Fan Chang, Albert Lee, Pin-Cheng Chen, Chrong Jung Lin, Ya-Chin King,
Shyh-Shyuan Sheu, and Tzu-Kun Ku. Challenges and circuit techniques for energy-
efficient on-chip nonvolatile memory using memristive devices. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 5(2):183–193, 2015.

[12] Pai-Yu Chen, Zhiwei Li, and Shimeng Yu. Design tradeoffs of vertical rram-based
3-d cross-point array. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(12):3460–3467, 2016.

[13] Pai-Yu Chen and Shimeng Yu. Compact modeling of rram devices and its applications
in 1t1r and 1s1r array design. IEEE Transactions on Electron Devices, 62(12):4022–
4028, 2015.

[14] Yang Yin Chen, Bogdan Govoreanu, Ludovic Goux, Robin Degraeve, Andrea Fantini,
Gouri Sankar Kar, Dirk J Wouters, Guido Groeseneken, Jorge A Kittl, Malgorzata
Jurczak, et al. Balancing set/reset pulse for > 1010 endurance in HfO2/Hf 1t1r
bipolar rram. IEEE Transactions on Electron devices, 59(12):3243–3249, 2012.

[15] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning super-
computer. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 609–622. IEEE Computer Society, 2014.

[16] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,
and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In Proceedings of the 43rd International
Symposium on Computer Architecture, pages 27–39. IEEE Press, 2016.

[17] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic technique to
improve pram write performance, energy and endurance. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pages 347–357.
IEEE, 2009.

[18] Yexin Deng, Peng Huang, Bing Chen, Xiaolin Yang, Bin Gao, Juncheng Wang, Lang
Zeng, Gang Du, Jinfeng Kang, and Xiaoyan Liu. Rram crossbar array with cell
selection device: A device and circuit interaction study. IEEE Trans. Electron Devices,
60(2):719–726, 2013.

[19] Jianbo Dong, Lei Zhang, Yinhe Han, Ying Wang, and Xiaowei Li. Wear rate level-
ing: Lifetime enhancement of pram with endurance variation. In Design Automation
Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 972–977. IEEE, 2011.

114

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 31(7):994–1007, July 2012.

[21] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang, and
Engin Ipek. Enabling scientific computing on memristive accelerators. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pages 367–382. IEEE, 2018.

[22] Ben Feinberg, Shibo Wang, and Engin Ipek. Making memristive neural network
accelerators reliable. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 52–65. IEEE, 2018.

[23] Alexandre P Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem,
and Daniel Mossé. Increasing pcm main memory lifetime. In Proceedings of the
conference on design, automation and test in Europe, pages 914–919. European Design
and Automation Association, 2010.

[24] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-memory data parallel processor.
In Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1–14. ACM, 2018.

[25] Siddharth Gaba, Phil Knag, Zhengya Zhang, and Wei Lu. Memristive devices for
stochastic computing. In Circuits and Systems (ISCAS), 2014 IEEE International
Symposium on, pages 2592–2595. IEEE, 2014.

[26] Ligang Gao, Fabien Alibart, and Dmitri B Strukov. Analog-input analog-weight dot-
product operation with ag/a-si/pt memristive devices. In VLSI and System-on-Chip,
2012 (VLSI-SoC), IEEE/IFIP 20th International Conference on, pages 88–93. IEEE,
2012.

[27] B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu,
L Goux, S Clima, R Degraeve, et al. 10× 10nm 2 hf/hfo x crossbar resistive ram
with excellent performance, reliability and low-energy operation. In Electron Devices
Meeting (IEDM), 2011 IEEE International, pages 31–6. IEEE, 2011.

[28] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. In International Conference on Machine
Learning, pages 1737–1746, 2015.

[29] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented approx-
imation of convolutional neural networks. arXiv preprint arXiv:1604.03168, 2016.

[30] Lei Han, Zhaoyan Shen, Zili Shao, H Howie Huang, and Tao Li. A novel reram-based
processing-in-memory architecture for graph computing. In Non-Volatile Memory
Systems and Applications Symposium (NVMSA), 2017 IEEE 6th, pages 1–6. IEEE,
2017.

115

[31] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[32] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica Davila,
Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley Williams.
Dot-product engine for neuromorphic computing: programming 1t1m crossbar to ac-
celerate matrix-vector multiplication. In Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[33] Jiun-Jia Huang, Yi-Ming Tseng, Wun-Cheng Luo, Chung-Wei Hsu, and Tuo-Hung
Hou. One selector-one resistor (1s1r) crossbar array for high-density flexible memory
applications. In Electron Devices Meeting (IEDM), 2011 IEEE International, pages
31–7. IEEE, 2011.

[34] P Huang, B Chen, YJ Wang, FF Zhang, L Shen, R Liu, L Zeng, G Du, X Zhang,
B Gao, et al. Analytic model of endurance degradation and its practical applications
for operation scheme optimization in metal oxide based rram. In Electron Devices
Meeting (IEDM), 2013 IEEE International, pages 22–5. IEEE, 2013.

[35] Satoru Ito, Yukio Hayakawa, Zhiqiang Wei, Shunsaku Muraoka, Koichi Kawashima,
Hideto Kotani, Kazuyuki Kouno, Masayoshi Nakamura, Guo An Du, Jiann Fu Chen,
et al. Reram technologies for embedded memory and further applications. In 2018
IEEE International Memory Workshop (IMW), pages 1–4. IEEE, 2018.

[36] Houxiang Ji, Li Jiang, Tianjian Li, Naifeng Jing, Jing Ke, and Xiaoyao Liang. Hubpa:
high utilization bidirectional pipeline architecture for neuromorphic computing. In
Proceedings of the 24th Asia and South Pacific Design Automation Conference, pages
249–254. ACM, 2019.

[37] Lei Jiang, Wujie Wen, Danghui Wang, and Lide Duan. Improving read performance
of stt-mram based main memories through smash read and flexible read. In Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific, pages 31–36.
IEEE, 2016.

[38] Lei Jiang, Bo Zhao, Youtao Zhang, Jun Yang, and Bruce R Childers. Improving write
operations in mlc phase change memory. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pages 1–10. IEEE, 2012.

[39] Zizhen Jiang, Shengjun Qin, Haitong Li, Shosuke Fujii, Dongjin Lee, Simon Wong,
and H-S Philip Wong. Selector requirements for tera-bit ultra-high-density 3d vertical
rram. In 2018 IEEE Symposium on VLSI Technology, pages 107–108. IEEE, 2018.

[40] Zizhen Jiang, Shimeng Yu, Yi Wu, Jesse H Engel, Ximeng Guan, and H-S Philip
Wong. Verilog-a compact model for oxide-based resistive random access memory
(rram). In Simulation of Semiconductor Processes and Devices (SISPAD), 2014 In-
ternational Conference on, pages 41–44. IEEE, 2014.

116

[41] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pages 1–
12. IEEE, 2017.

[42] Matthias Jung, Deepak M Mathew, Christian Weis, and Norbert Wehn. Efficient reli-
ability management in socs-an approximate dram perspective. In Design Automation
Conference (ASP-DAC), 2016 21st Asia and South Pacific, pages 390–394. IEEE,
2016.

[43] JF Kang, HT Li, P Huang, Z Chen, B Gao, XY Liu, ZZ Jiang, and H-SP Wong.
Modeling and design optimization of reram. In Design Automation Conference (ASP-
DAC), 2015 20th Asia and South Pacific, pages 576–581. IEEE, 2015.

[44] Uksong Kang, Hak-soo Yu, Churoo Park, Hongzhong Zheng, John Halbert, Kuljit
Bains, S Jang, and Joo Sun Choi. Co-architecting controllers and dram to enhance
dram process scaling. In The memory forum, 2014.

[45] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014.

[46] Daya S Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke. Rumba: An
online quality management system for approximate computing. In Computer Archi-
tecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pages
554–566. IEEE, 2015.

[47] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[49] Lukas Kull, Thomas Toifl, Martin Schmatz, Pier Andrea Francese, Christian Menolfi,
Matthias Brandli, Marcel Kossel, Thomas Morf, Toke Meyer Andersen, and Yusuf
Leblebici. A 3.1 mw 8b 1.2 gs/s single-channel asynchronous sar adc with alternate
comparators for enhanced speed in 32 nm digital soi cmos. IEEE Journal of Solid-
State Circuits, 48(12):3049–3058, 2013.

[50] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
Evaluating stt-ram as an energy-efficient main memory alternative. In Performance
Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on,
pages 256–267. IEEE, 2013.

117

[51] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[52] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. Phase-change technology and the future of main memory.
IEEE micro, 30(1), 2010.

[53] Matthew Kay Fei Lee, Yingnan Cui, Thannirmalai Somu, Tao Luo, Jun Zhou,
Wai Teng Tang, Weng-Fai Wong, and Rick Siow Mong Goh. A system-level simulator
for rram-based neuromorphic computing chips. ACM Transactions on Architecture
and Code Optimization (TACO), 15(4):64, 2019.

[54] Hai Helen Li, Yiran Chen, Chenchen Liu, John Paul Strachan, and Noraica Davila.
Looking ahead for resistive memory technology: A broad perspective on reram tech-
nology for future storage and computing. IEEE Consumer Electronics Magazine,
6(1):94–103, 2017.

[55] Haitong Li, Peng Huang, Bin Gao, Xiaoyan Liu, Jinfeng Kang, and H-S Philip Wong.
Device and circuit interaction analysis of stochastic behaviors in cross-point rram
arrays. IEEE Transactions on Electron Devices, 64(12):4928–4936, 2017.

[56] Zhiwei Li, Pai-Yu Chen, Haijun Liu, Qingjiang Li, Hui Xu, and Shimeng Yu. Quasi-
analytical model of 3-d vertical-rram array architecture for mb-level design. IEEE
Transactions on Electron Devices, 64(4):1568–1574, 2017.

[57] Zhiwei Li, Pai-Yu Chen, Hui Xu, and Shimeng Yu. Design of ternary neural network
with 3-d vertical rram array. IEEE Transactions on Electron Devices, 64(6):2721–
2727, 2017.

[58] Jiale Liang and H-S Philip Wong. Cross-point memory array without cell selectors –
device characteristics and data storage pattern dependencies. IEEE Transactions on
Electron Devices, 57(10):2531–2538, 2010.

[59] J. Lin and J. Yuan. Analysis and simulation of capacitor-less reram-based stochastic
neurons for the in-memory spiking neural network. IEEE Transactions on Biomedical
Circuits and Systems, 12(5):1004–1017, 2018.

[60] Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. Rescuing memristor-based
neuromorphic design with high defects. In Design Automation Conference (DAC),
2017 54th ACM/EDAC/IEEE, pages 1–6. IEEE, 2017.

[61] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In Proceedings

118

of the 2005 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’05, page 190–200, New York, NY, USA, 2005. Association for
Computing Machinery.

[62] Siddheswar Maikap and Writam Banerjee. In quest of nonfilamentary switching: A
synergistic approach of dual nanostructure engineering to improve the variability and
reliability of resistive random-access-memory devices. Advanced Electronic Materials,
page 2000209, 2020.

[63] Manqing Mao, Yu Cao, Shimeng Yu, and Chaitali Chakrabarti. Programming strate-
gies to improve energy efficiency and reliability of reram memory systems. In Signal
Processing Systems (SiPS), 2015 IEEE Workshop on, pages 1–6. IEEE, 2015.

[64] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger.
Doppelgänger: a cache for approximate computing. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, pages 50–61. ACM, 2015.

[65] Sparsh Mittal, Jeffrey S Vetter, and Lei Jiang. Addressing read-disturbance issue in
stt-ram by data compression and selective duplication. IEEE Computer Architecture
Letters, 16(2):94–98, 2017.

[66] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0:
A tool to model large caches. HP laboratories, pages 22–31, 2009.

[67] Jakob Mustafa and Rainer Waser. A novel reference scheme for reading passive resis-
tive crossbar memories. IEEE Transactions on Nanotechnology, 5(6):687–691, 2006.

[68] Anirban Nag, Rajeev Balasubramonian, Vivek Srikumar, Ross Walker, Ali Shafiee,
John Paul Strachan, and Naveen Muralimanohar. Newton: Gravitating towards the
physical limits of crossbar acceleration. IEEE Micro, 38(5):41–49, 2018.

[69] C Nail, G Molas, P Blaise, G Piccolboni, B Sklenard, C Cagli, M Bernard, A Roule,
M Azzaz, E Vianello, et al. Understanding rram endurance, retention and window
margin trade-off using experimental results and simulations. In Electron Devices Meet-
ing (IEDM), 2016 IEEE International, pages 4–5. IEEE, 2016.

[70] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

[71] Leibin Ni, Zichuan Liu, Wenhao Song, J Joshua Yang, Hao Yu, Kanwen Wang, and
Yuangang Wang. An energy-efficient and high-throughput bitwise cnn on sneak-path-
free digital reram crossbar. In Low Power Electronics and Design (ISLPED, 2017
IEEE/ACM International Symposium on, pages 1–6. IEEE, 2017.

119

[72] Dimin Niu, Qiaosha Zou, Cong Xu, and Yuan Xie. Low power multi-level-cell resistive
memory design with incomplete data mapping. In 2013 IEEE 31st International
Conference on Computer Design (ICCD), pages 131–137. IEEE, 2013.

[73] Ximing Qiao, Xiong Cao, Huanrui Yang, Linghao Song, and Hai Li. Atomlayer: a
universal reram-based cnn accelerator with atomic layer computation. In Proceedings
of the 55th Annual Design Automation Conference, page 103. ACM, 2018.

[74] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan,
Luis Lastras, and Bulent Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 14–23. ACM, 2009.

[75] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable high
performance main memory system using phase-change memory technology. ACM
SIGARCH Computer Architecture News, 37(3):24–33, 2009.

[76] Musfiq Rahman, Bruce R Childers, and Sangyeun Cho. Comet+: Continuous online
memory testing with multi-threading extension. IEEE Transactions on Computers,
63(7):1668–1681, 2013.

[77] Morteza Ramezani, Nima Elyasi, Mohammad Arjomand, Mahmut T Kandemir, and
Anand Sivasubramaniam. Exploring the impact of memory block permutation on per-
formance of a crossbar reram main memory. In Workload Characterization (IISWC),
2017 IEEE International Symposium on, pages 167–176. IEEE, 2017.

[78] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage
in solid-state memories. ACM Transactions on Computer Systems (TOCS), 32(3):9,
2014.

[79] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel. The
bunker cache for spatio-value approximation. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[80] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S Lee. Security refresh: prevent
malicious wear-out and increase durability for phase-change memory with dynam-
ically randomized address mapping. ACM SIGARCH computer architecture news,
38(3):383–394, 2010.

[81] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
In Proceedings of the 43rd International Symposium on Computer Architecture, pages
14–26. IEEE Press, 2016.

[82] Manjunath Shevgoor, Naveen Muralimanohar, Rajeev Balasubramonian, and
Yoocharn Jeon. Improving memristor memory with sneak current sharing. In Com-

120

puter Design (ICCD), 2015 33rd IEEE International Conference on, pages 549–556.
IEEE, 2015.

[83] Sangho Shin, Kyungmin Kim, and Sung-Mo Kang. Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense resistance
for rrams. Proceedings of the IEEE, 100(6):2021–2032, 2012.

[84] Masataka Shirasawa, Mlandeli Ernest Dlamini, and Yoshinari Kamakura. Kinetic
monte carlo simulation for switching probability of reram. In Future of Electron
Devices, Kansai (IMFEDK), 2016 IEEE International Meeting for, pages 1–1. IEEE,
2016.

[85] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined reram-
based accelerator for deep learning. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 541–552. IEEE, 2017.

[86] Dmitri B Strukov. Endurance-write-speed tradeoffs in nonvolatile memories. Applied
Physics A, 122(4):302, 2016.

[87] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1–9, 2015.

[88] Zhensen Tang, Yao Wang, Yaqing Chi, and Liang Fang. Comprehensive sensing
current analysis and its guideline for the worst-case scenario of rram read operation.
Electronics, 7(10):224, 2018.

[89] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin
Bayer, Anatoly Belikov, et al. Theano: A python framework for fast computation of
mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

[90] Ad J Van de Goor and Issam BS Tlili. March tests for word-oriented memories. In
Proceedings Design, Automation and Test in Europe, pages 501–508. IEEE, 1998.

[91] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural
networks on cpus. In in Deep Learning and Unsupervised Feature Learning Workshop,
NIPS. Citeseer, 2011.

[92] Chengning Wang, Dan Feng, Jingning Liu, Wei Tong, Bing Wu, and Yang Zhang.
Daws: Exploiting crossbar characteristics for improving write performance of high
density resistive memory. In Computer Design (ICCD), 2017 IEEE International
Conference on, pages 281–288. IEEE, 2017.

[93] Chengning Wang, Dan Feng, Wei Tong, Jingning Liu, Zheng Li, Jiayi Chang, Yang
Zhang, Bing Wu, Jie Xu, Wei Zhao, Yilin Li, and Ruoxi Ren. Cross-point resistive

121

memory: Nonideal properties and solutions. ACM Trans. Des. Autom. Electron. Syst.,
24(4), June 2019.

[94] Ching-Hua Wang, Connor McClellan, Yuanyuan Shi, Xin Zheng, Victoria Chen, Mario
Lanza, Eric Pop, and H-S Philip Wong. 3d monolithic stacked 1t1r cells using mono-
layer mos 2 fet and hbn rram fabricated at low (150◦c) temperature. In 2018 IEEE
International Electron Devices Meeting (IEDM), pages 22–5. IEEE, 2018.

[95] Weijia Wang and Bill Lin. Trained biased number representation for reram-based
neural network accelerators. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 15(2):15, 2019.

[96] Wen Wen, Youtao Zhang, and Jun Yang. Read error resilient mlc stt-mram based
last level cache. In Computer Design (ICCD), 2017 IEEE International Conference
on, pages 455–462. IEEE, 2017.

[97] Wen Wen, Youtao Zhang, and Jun Yang. Wear leveling for crossbar resistive memory.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2018. © 2018 IEEE. Reprinted, with permission, from Wen Wen, Youtao
Zhang and Jun Yang, Wear Leveling for Crossbar Resistive Memory, June 2018.

[98] Wen Wen, Youtao Zhang, and Jun Yang. Renew: Enhancing lifetime for reram cross-
bar based neural network accelerators. In 2019 IEEE 37th International Conference
on Computer Design (ICCD), pages 487–496. IEEE, 2019. © 2019 IEEE. Reprinted,
with permission, from Wen Wen, Youtao Zhang and Jun Yang, ReNEW: Enhancing
Lifetime for ReRAM Crossbar Based Neural Network Accelerators, November 2019.

[99] Wen Wen, Lei Zhao, Youtao Zhang, and Jun Yang. Speeding up crossbar resistive
memory by exploiting in-memory data patterns. In Computer-Aided Design (ICCAD),
2016 IEEE/ACM International Conference on, pages 261–267. IEEE, 2017.

[100] Wen Wen, Lei Zhao, Youtao Zhang, and Jun Yang. Exploiting in-memory data pat-
terns for performance improvement on crossbar resistive memory. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019. © 2019 IEEE.
Reprinted, with permission, from Wen Wen, Lei Zhao, Youtao Zhang and Jun Yang,
Exploiting In-memory Data Patterns for Performance Improvement on Crossbar Re-
sistive Memory, September 2019.

[101] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu
Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. Metal–oxide rram. Pro-
ceedings of the IEEE, 100(6):1951–1970, 2012.

[102] Huaqiang Wu, Xiao Hu Wang, Bin Gao, Ning Deng, Zhichao Lu, Brent Haukness,
Gary Bronner, and He Qian. Resistive random access memory for future information
processing system. Proceedings of the IEEE, 2017.

122

[103] Wei Wu, Huaqiang Wu, Bin Gao, Ning Deng, Shimeng Yu, and He Qian. Improving
analog switching in hfo x-based resistive memory with a thermal enhanced layer. IEEE
Electron Device Letters, 38(8):1019–1022, 2017.

[104] Cong Xu, Pai-Yu Chen, Dimin Niu, Yang Zheng, Shimeng Yu, and Yuan Xie. Ar-
chitecting 3d vertical resistive memory for next-generation storage systems. In 2014
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
55–62. IEEE, 2014.

[105] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang,
Shimeng Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory
architectures. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, pages 476–488. IEEE, 2015.

[106] Cong Xu, Dimin Niu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie.
Understanding the trade-offs in multi-level cell reram memory design. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2013.

[107] Cong Xu, Dimin Niu, Shimeng Yu, and Yuan Xie. Modeling and design analysis of
3d vertical resistive memory—a low cost cross-point architecture. In 2014 19th Asia
and South Pacific design automation conference (ASP-DAC), pages 825–830. IEEE,
2014.

[108] Hao Yan, Lei Jiang, Lide Duan, Wei-Ming Lin, and Eugene John. Flowpap and
flowrer: Improving energy efficiency and performance for stt-mram-based handheld
devices under read disturbance. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):132, 2017.

[109] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and
Byoung-Gon Yu. A low power phase-change random access memory using a data-
comparison write scheme. In 2007 IEEE International Symposium on Circuits and
Systems, pages 3014–3017. IEEE, 2007.

[110] Shimeng Yu, Ximeng Guan, and H-S Philip Wong. On the switching parameter vari-
ation of metal oxide rram—part ii: Model corroboration and device design strategy.
IEEE Transactions on Electron Devices, 59(4):1183–1188, 2012.

[111] Jianhui Yue and Yifeng Zhu. Accelerating write by exploiting pcm asymmetries.
In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on, pages 282–293. IEEE, 2013.

[112] Furqan Zahoor, Tun Zainal Azni Zulkifli, and Farooq Ahmad Khanday. Resistive ran-
dom access memory (rram): an overview of materials, switching mechanism, perfor-
mance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Research
Letters, 15:1–26, 2020.

123

[113] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Op-
timizing fpga-based accelerator design for deep convolutional neural networks. In Pro-
ceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 161–170. ACM, 2015.

[114] Hang Zhang, Nong Xiao, Fang Liu, and Zhiguang Chen. Leader: Accelerating reram-
based main memory by leveraging access latency discrepancy in crossbar arrays. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016, pages
756–761. IEEE, 2016.

[115] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and Frederic T
Chong. Mellow writes: Extending lifetime in resistive memories through selective
slow write backs. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on, pages 519–531. IEEE, 2016.

[116] Shuhang Zhang, Grace Li Zhang, Bing Li, Hai Helen Li, and Ulf Schlichtmann. Aging-
aware lifetime enhancement for memristor-based neuromorphic computing. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1751–
1756. IEEE, 2019.

[117] Xian Zhang and Guangyu Sun. Toss-up wear leveling: Protecting phase-change mem-
ories from inconsistent write patterns. In Proceedings of the 54th Annual Design
Automation Conference 2017, page 3. ACM, 2017.

[118] Xianwei Zhang, Youtao Zhang, Bruce R Childers, and Jun Yang. Drmp: Mixed
precision-aware dram for high performance approximate and precise computing. In
Parallel Architectures and Compilation Techniques (PACT), 2017 26th International
Conference on, pages 53–63. IEEE, 2017.

[119] Yang Zhang, Dan Feng, Jingning Liu, Wei Tong, Bing Wu, and Caihua Fang. A novel
reram-based main memory structure for optimizing access latency and reliability. In
Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE, pages 1–6.
IEEE, 2017.

[120] Yang Zhang, Dan Feng, Wei Tong, Yu Hua, Jingning Liu, Zhipeng Tan, Chengn-
ing Wang, Bing Wu, Zheng Li, and Gaoxiang Xu. Cacf: A novel circuit architec-
ture co-optimization framework for improving performance, reliability and energy of
reram-based main memory system. ACM Transactions on Architecture and Code
Optimization (TACO), 15(2):22, 2018.

[121] Lei Zhao, Lei Jiang, Youtao Zhang, Nong Xiao, and Jun Yang. Constructing fast
and energy efficient 1tnr based reram crossbar memory. In The 18th International
Symposium on Quality Electronic Design (ISQED), 2017.

[122] Lei Zhao, Youtao Zhang, and Jun Yang. Aep: An error-bearing neural network accel-
erator for energy efficiency and model protection. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1047–1053. IEEE, 2017.

124

[123] Mengying Zhao, Lei Jiang, Youtao Zhang, and Chun Jason Xue. Slc-enabled wear
leveling for mlc pcm considering process variation. In Proceedings of the 51st Annual
Design Automation Conference, pages 1–6. ACM, 2014.

[124] Jiantao Zhou, Kuk-Hwan Kim, and Wei Lu. Crossbar rram arrays: Selector de-
vice requirements during read operation. IEEE Transactions on Electron Devices,
61(5):1369–1376, 2014.

[125] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient
main memory using phase change memory technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09, page 14–23,
New York, NY, USA, 2009. Association for Computing Machinery.

[126] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

[127] Zhenhua Zhu, Hanbo Sun, Yujun Lin, Guohao Dai, Lixue Xia, Song Han, Yu Wang,
and Huazhong Yang. A configurable multi-precision cnn computing framework based
on single bit rram. In Proceedings of the 56th Annual Design Automation Conference
2019, page 56. ACM, 2019.

[128] F. Zokaee and L. Jiang. Mitigating voltage drop in resistive memories by dynamic
reset voltage regulation and partition reset. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 275–286, 2020.

[129] Farzaneh Zokaee, Mingzhe Zhang, Xiaochun Ye, Dongrui Fan, and Lei Jiang. Magma:
A monolithic 3d vertical heterogeneous reram-based main memory architecture. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2019.

125

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. A brief summary of proposed schemes in the dissertation.
	2. ReRAM model parameters
	3. The tWR (ns) for RESET operation
	4. Comparing the profiling overhead in one bank
	5. System configuration
	6. Benchmarks characterization
	7. System configuration
	8. Benchmark summary
	9. Model accuracy degradation with different switching probabilities.
	10. Neural networks and datasets.
	11. Tradeoff between model accuracy loss and precisions of weight data.
	12. 3D-VRAM array model parameters.
	13. Simulator configuration.
	14. Description of benchmarks.

	List of Figures
	1. The ReRAM cell structure and two resistance states.
	2. ReRAM cell structure and basic (SET/RESET) programming operations.
	3. The three typical ReRAM array structures.
	4. The IR drop issue in ReRAM crossbar array.
	5. The sneaky currents during RESET and SET operations.
	6. Subfigures (a) to (h) show that the variations of RESET latency and voltage drop at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address 0 is the farthest row from driver, and Row Address 511 is the nearest row to the driver.
	7. Subfigures show that the variations of (a) voltage drop on selected cells and (b) RESET latency and (c) effective writes at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address Group 0 represents farthest rows from drivers, and Row Address Group 7 consists of nearest rows to the drivers.
	8. An overview of the proposed low-overhead runtime profiling scheme.
	9. The profiling current vs. LRS cell percentage in 512×512 ReRAM crossbar array.
	10. The rows with different addresses are mapped to 8 groups with different worst-case RESET latencies.
	11. An example of how my proposed online profiling works and how to determine the RESET timing.
	12. Reducing LRS cells through data compress: (a) logic view; (b) shift in each mat.
	13. The dynamic energy distribution when adopting the proposed profiling technique.
	14. The scheme of proposed selective profiling.
	15. The scheme of proposed fine-grained profiling.
	16. The comparison of memory write latency.
	17. The comparison of memory read latency.
	18. The performance comparison. The benchmarks are categorized into High, Medium and Low memory intensity types based on RPKI and WPKI.
	19. The number of profiling operation performed with optimized techniques on mats (Normalized to PROF).
	20. The profiling energy with optimized techniques (Normalized to PROF).
	21. The comparison of dynamic energy and Energy-Delay Product (EDP).
	22. The sensitivity of performance and memory dynamic energy consumption when using (a) different numbers of ADC units; and (b) different ReRAM mat sizes.
	23. The basic workflow of XWL.
	24. Profiling bitline data pattern for (1) optimized RESET latency and (2) estimating effective writes.
	25. An example of PA to RA address remapping.
	26. Comparison of normalized endurance.
	27. Comparison of normalized endurance with different remapping intervals.
	28. Comparison of data swapping overhead.
	29. An ReRAM crossbar based dot-product engine.
	30. Neural network training with weight updates.
	31. ReRAM cell switching and its resistance.
	32. The correlation between switching probability and RESET voltage width with different RESET pulse heights.
	33. An overview of ReRAM crossbar based accelerator for neural network computing.
	34. A comparison of the baseline weight update in row-major order and the proposed optimized programming order.
	35. The precise RESET on MSB columns and shortened RESET on LSB columns.
	36. The proposed column group shift and update scheme.
	37. Total effective writes comparison for MLP and CNN models. (a) Training with different epochs until a convergence to the best accuracy. (b) Effective writes comparison for the MLP layer FC-784x240 among all schemes with the same number of 84 training epochs.
	38. The contribution ratio of shortened RESET timing and optimized programming order techniques for the reduction in effective writes with (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64.
	39. A comparison of the maximum number of effective writes in the worst-case ReRAM cell for (a) MLP layer FC-784x240 and (b) CNN layer CONV4x64.
	40. A sensitivity study for ReNEW with different switching probabilities in MLP layer FC-784x240: (a) total effective writes and accuracy with different training epochs, (b) total effective writes with a same number of training epochs, and (c) the maximum number of effective writes.
	41. The architecture of a 3D-VRAM array.
	42. An example of the proposed Flip-n-Store scheme.
	43. Comparisons of the worst-case (a) RESET voltages and (b) RESET latency between baseline and Flip-n-Store scheme in different sizes of 3D-VRAM arrays.
	44. Variations of RESET voltage and latency with LRS percentages in selected WL (SWL) and unselected WLs (UWLs) in different sizes of 3D-VRAM arrays.
	45. An example of data pattern estimation for WL planes in a 4×4×4 3D-VRAM array.
	46. An example of proposed write latency reduction scheme (While a safe-RESET always finishes in one RESET round, an aggressive RESET may go through RESET-read-RESET three rounds).
	47. The write latency reduction comparison.
	48. The read latency reduction comparison.
	49. The IPC improvement comparison.
	50. The dynamic energy reduction comparison.

	Preface
	1.0 Introduction
	1.1 The Challenges in Deployment of ReRAM Crossbars
	1.1.1 Write Performance Bottleneck
	1.1.2 Limited Write Endurance
	1.1.3 Lifetime Issue in ReRAM Crossbar Based In-memory Computing
	1.1.4 Write Performance Issue in 3D Vertical ReRAM

	1.2 Research Overview
	1.3 Contributions
	1.3.1 Speeding Up RESET Operation
	1.3.2 Improving Write Endurance
	1.3.3 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accelerators
	1.3.4 Accelerating 3D Vertical Resistive Memories with Opportunistic Write Latency Reduction

	1.4 Dissertation Organization

	2.0 Preliminaries
	2.1 ReRAM Cell Structure
	2.2 ReRAM Programming
	2.3 ReRAM Crossbar Array Structure
	2.4 IR Drop Issue

	3.0 Prior Art
	3.1 Performance of ReRAM Crossbars
	3.1.1 Studies on RESET Operation
	3.1.2 Data Patterns in ReRAM Crossbars
	3.1.3 RESET Latency Discrepancy

	3.2 Endurance of ReRAM Crossbars
	3.2.1 Wear Leveling for Non-volatile Memories
	3.2.2 Endurance for ReRAM Crossbar-based Neural Network Accelerators
	3.2.3 Improving Endurance by Exploiting Stochastic Switching

	3.3 Intrinsic In-Memory Processing Capability of ReRAM Crossbars
	3.3.1 Current Accumulation Feature
	3.3.2 Neural Network Computing with ReRAM

	3.4 Data Encoding for NVM

	4.0 Observations
	4.1 The Correlation between RESET Latency and the Number of LRS Cells
	4.2 Endurance Variation in ReRAM Crossbars
	4.2.1 Effective Write
	4.2.2 Design Challenge

	5.0 Speeding Up RESET Operation
	5.1 Low-Overhead Runtime Profiling
	5.1.1 An Overview
	5.1.2 Design Details of Runtime Profiling
	5.1.3 Determine the RESET Timing
	5.1.3.1 Online Profiling Operation
	5.1.3.2 Write Operation with Optimal RESET Timing

	5.1.4 Reduce Bitline LRS Cells
	5.1.5 Overhead Analysis

	5.2 Profiling Optimization
	5.2.1 Profiling Energy Overhead Analysis
	5.2.2 Selective Profiling
	5.2.3 Fine-grained Profiling

	5.3 Experimental Setup
	5.3.1 Modeling and Simulation Methodologies
	5.3.2 Workload Characterization
	5.3.3 Schemes for Evaluations

	5.4 Evaluation Results and Analysis
	5.4.1 Memory Access Latency
	5.4.2 System Performance
	5.4.3 Effectiveness of Profiling Optimization
	5.4.4 Memory Energy Efficiency
	5.4.5 Sensitivity Study
	5.4.5.1 Sensitivity to Number of ADC units.
	5.4.5.2 Sensitivity to Mat Sizes.

	5.5 Conclusion

	6.0 Improving Write Endurance
	6.1 XWL: Wear Leveling for Crossbar ReRAM Memory
	6.1.1 An Overview
	6.1.2 Design Details
	6.1.2.1 Effective and Raw Write
	6.1.2.2 Updating Write Tables
	6.1.2.3 Address-Remapping Algorithm
	6.1.2.4 Design Overhead

	6.1.3 Process Variation Issue

	6.2 Experimental Setup
	6.3 Evaluation Results
	6.3.1 Endurance Improvement
	6.3.2 Performance Overhead

	6.4 Conclusion

	7.0 Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accelerators
	7.1 Background
	7.1.1 ReRAM Crossbar and Its Application for Neural Network Computing
	7.1.2 Neural Network Training

	7.2 Motivation
	7.2.1 ReRAM Cell Endurance Model
	7.2.1.1 Tunneling Gap Distance and Roff/Ron
	7.2.1.2 Fixed Roff/Ron During Programming
	7.2.1.3 Variable Roff/Ron During Programming

	7.2.2 ReRAM Stochastic Switching

	7.3 Proposed Designs
	7.3.1 Training NN with SLC ReRAM
	7.3.2 Optimized Programming Order
	7.3.3 Shortened RESET operation
	7.3.4 Column Group Shift and Update

	7.4 Experimental Setup
	7.5 Accuracy and Lifetime of ReRAM Crossbars Tradeoff
	7.6 Lifetime Improvement
	7.6.1 Total Effective Writes
	7.6.2 The Maximum Number of Effective Writes in Worst-case Cell
	7.6.3 Sensitivity to Switching Probability

	7.7 Conclusion

	8.0 Accelerating 3D Vertical Resistive Memory
	8.1 Background and Motivation
	8.1.1 3D-VRAM Array Architecture
	8.1.2 Sneak Current Issue in 3D-VRAM Arrays

	8.2 Proposed Designs
	8.2.1 Data Pattern Optimization
	8.2.2 RESET Latency Variation
	8.2.3 Data Patterns Estimation
	8.2.4 Write Latency Reduction with Safe and Aggressive RESET
	8.2.4.1 Safe RESET
	8.2.4.2 Aggressive RESET

	8.2.5 Discussion
	8.2.5.1 Other LRS Cells Reduction Schemes
	8.2.5.2 Overhead

	8.3 Experimental Methodologies
	8.3.1 3D-VRAM Array Modeling
	8.3.2 Configuration and Simulation
	8.3.3 Benchmarks
	8.3.4 Compared Schemes

	8.4 Evaluation Results and Analysis
	8.4.1 Write Latency Reduction
	8.4.2 Read Latency Reduction
	8.4.3 System Performance Improvement
	8.4.4 Dynamic Energy Reduction

	8.5 Conclusion

	9.0 Conclusions
	9.1 Summary of Contributions
	9.2 Impacts
	9.2.1 Accelerating the Deployment of Crossbar ReRAM as Main Memories
	9.2.2 Achieving Larger Improvements with Technology Scaling Down
	9.2.3 Highlighting the Importance of In-memory Data Patterns to Performance and Endurance
	9.2.4 Emphasizing Collaborative Efforts from Different Perspectives for Memory System Design
	9.2.5 Advancing the Development in Data Storage and Computing Applications of Crossbar ReRAM

	9.3 Limitations
	9.4 Future Research Directions
	9.4.1 MLC ReRAM Crossbars
	9.4.2 Approximate Computing with ReRAM Crossbars

	Bibliography

