
  

TGitle Pa 

Characterization of Adult Onset Lamin B1 Depletion in an Inducible  

Knockout Mouse Model 

 

 

 

 

 

 

 

 

 

by 

 

Anushe Munir 

 

BS Applied Biosciences, National University of Sciences and Technology, 2017 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Department of Human Genetics 

 

Graduate School of Public Health in partial fulfillment 

  

of the requirements for the degree of 

 

Master of Science 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2020



 ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

 

GRADUATE SCHOOL OF PUBLIC HEALTH 

 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Anushe Munir 

 

 

It was defended on 

 

June 11, 2020 

 

and approved by 

 

Robert D. Nicholls, DPhil Professor of Pediatrics, School of Medicine, University of Pittsburgh 

 

 

Zsolt Urban, PhD, Associate Professor of Human Genetics, Graduate School of Public Health, 

University of Pittsburgh 

 

 

Thesis Advisor: Quasar S. Padiath, MBBS, PhD, Associate Professor of Human Genetics, 

Graduate School of Public Health, University of Pittsburgh 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Anushe Munir 

 

2020 

 

 

 

 



 iv 

Abstract 
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Anushe Munir, MS 

 

University of Pittsburgh, 2020 

 

 

Abstract 

Autosomal dominant leukodystrophy (ADLD) is a rare, adult onset neurological disorder. 

It is a type of leukodystrophy that initially presents with autonomic dysfunction leading to 

cerebellar and pyramidal abnormalities as the disease progresses. ADLD is caused by an 

overexpression of LMNB1 located on chromosome 5q23.2. Currently numerous potential therapies 

are being investigated where the aim is to reduce this gene’s overexpression in an attempt to 

manage the symptoms. However, previous research carried out using knockout mouse models has 

established Lmnb1 as a critical component essential during development. Studies focusing on total 

Lmnb1 knockout mice recorded postnatal lethality due to multiple pathologies impacting organ 

development and severe abnormalities in skeletal structure. The public health significance of our 

study lies in how we aim to explore the effects of Lmnb1 reduction in adulthood as a precursor to 

developing effective therapies for ADLD. We demonstrate how the ablation of Lmnb1 in adult 

mice impacts their phenotype; behavior and overall molecular makeup, in an attempt to observe 

any deleterious effects that may arise. Using a tamoxifen inducible Cre/LoxP system, we created 

conditional knockout mice where the Lmnb1 gene was targeted for deletion only in adulthood. 

After collecting, quantifying and studying our behavioral, molecular, and immunofluorescence 

data we were able to demonstrate that reduced Lmnb1 expression in adulthood produced no 

obvious pathological alterations.  
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1.0 Introduction 

1.1 Autosomal Dominant Leukodystrophy (ADLD) 

Myelin, a critical component of all vertebrate nervous systems, is synthesized by 

oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous 

system (PNS). It is an insulating layer that encapsulates and protects axons and is responsible for 

facilitating the rapid transmission of  nerve impulses [1] (figure 1). Demyelination or the loss of 

myelin can occur either as a primary pathology or secondary to other diseases that affect the CNS 

and PNS. Leukodystrophies (LD) are a large group of highly heterogeneous, inherited diseases 

involving the CNS that primarily impact myelin. They are distinct from multiple sclerosis (MS) as 

they are usually caused by mutations in single genes with each gene defect translating into a 

different type of LD [2].  One such leukodystrophy is Autosomal Dominant Leukodystrophy 

(ADLD).   

 

 

 

 

 

 

 

 

Figure 1: Neuron Illustration 
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Figure 1: Simple diagrammatic representation of a neuron showing the how the myelin sheath 

encapsulates the axons aiding in nerve impulse transmission. (Image source: US National Institutes of 

Health https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts) 

 

ADLD is a rare adult onset neurological disorder manifesting in the fourth or fifth decade 

of life [3]. The exact prevalence rate is unknown, however documented cases have been observed 

in families from around the world with various ethnic origins; French-Canadian [4], Japanese [5], 

Italian [6]. It initially  presents with autonomic dysfunction with symptoms that include loss of 

bladder control, erectile dysfunction, postural hypotension and constipation [7].  Further disease 

progression can result in increased complications including cerebellar and pyramidal abnormalities 

(weakness and spasticity observed in upper and lower extremities), with some severe cases also 

developing cognitive dysfunction during the advanced stage. In the early stages it can be difficult 

to diagnose ADLD with the possible differential diagnosis being other leukodystrophies that have 

an adult onset or multiple sclerosis (MS) and Vitamin B12 deficiencies [7]. For a definitive 

diagnosis a Magnetic Resonance Imaging (MRI) is carried out, where specific brain and spinal 

cord demyelination patterns are used as the indication of ADLD [8].  

1.2 Molecular Mechanism 

ADLD is caused by the duplication of the lamin b1 gene (LMNB1) on chr 5q23.2 [5]. Tissue 

analysis of normal and ADLD samples confirmed increased LMNB1 expression levels in the 

affected individuals compared to the controls [5]. The LMNB1 protein is a type of intermediate 

filament protein which, with other lamin proteins, works to provide structural support to the 

nuclear envelope. The lamin proteins, lamin A/C and lamin B1/B2, also play a significant role in 

https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts
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gene expression, DNA replication and nuclear support [9]. Even though the A- and B- type lamins 

work interactively to maintain structural integrity of the nuclear lamina, they still have independent 

functions and varying gene expression patterns. A-type lamins, lamin A and C, are 

developmentally regulated proteins primarily expressed in most differentiated cells. Aside from 

their structural role, these lamins are found to be localized in the nucleoplasm near sites of RNA 

processing and DNA synthesis suggesting their involvement in processes like gene expression and 

DNA replication  [9]. The B-type lamin proteins are expressed largely during the stages of 

development and cellular differentiation. Lmnb1 knockout embryos showed multiple 

abnormalities in different areas of the brain with abnormal layering of neurons in the cerebral 

cortex, reduced number of neurons overall and multiple defects in the cerebellum and 

hippocampus [10].  While many studies have since been conducted to further analyze this gene 

duplication, the exact mechanisms by which this overexpression results in ADLD is, for now, 

uncertain.  

Further investigations to decode the molecular mechanism involved in ADLD disease 

progression led to the creation of oligodendrocyte specific transgenic mice models overexpressing 

the LMNB1 protein. Findings indicated that oligodendrocyte specific Lmnb1 overexpression was 

sufficient to induce molecular and pathological defects similar to those found in ADLD patients. 

These mice exhibited significant myelin sheath abnormalities along with axonal disintegration, a 

significantly higher myelin-axon unit degradation cohort, cognitive and memory impairments and 

progressive motor impairment when compared to the wild type controls [11]. Building on this 

previous research another study also based on oligodendrocyte specific transgenic mice, identified 

significant lipid dysregulation. Based on their findings, the researchers hypothesize that lipid 

dysregulation may have a critical contribution that leads to the demyelination phenotype and other 
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secondary pathologies like inflammation that exacerbate myelin sheath injury ultimately leading 

to neuronal cell death and axonal damage [12]. Further research studies will allow more definitive 

mechanisms to come forward, adding to our present knowledge and also confirming current 

findings. 

1.3 Knock Out Mouse Models and ADLD 

Research using total Lmnb1 knockouts have been insightful in further understanding the 

role of this protein in development. Studies that generated total Lmnb1 knockouts showed postnatal 

lethality due to respiratory failure, decreased body sizes and microcephaly compared to a normal 

control group [13]. Lmnb1 knockout mice generated by another group exhibited perinatal lethality 

and multiple abnormalities in the skeletal structure, lungs and brain [14]. 

To understand the role of proteins that result in lethality when knocked out embryonically, 

conditional knockouts may be generated whereby the ablation of these proteins can be regulated 

in a cell specific and temporal manner.  The Cre-LoxP system is a valuable tool used by researchers 

to generate these conditional knockouts models, both tissue/organ specific and inducible 

knockouts [15]. The general mechanism of the Cre-LoxP system involves the flanking of the gene 

of interest with LoxP sites, which is then recognized by a single Cre-recombinase and subsequently 

excised [16]. Using this methodology allows for researchers to have a more stage-specific and 

tissue-specific control over gene expression.  For inducible knockouts tamoxifen is needed and it 

allows downstream processing leading to the knockout.  In this system, a modified Cre protein is 

generated, via fusion with the Estrogen Receptor (ER) containing a mutated ligand domain. In the 

presence of tamoxifen, the Cre-ER bound protein undergoes nuclear translocation [16]. Through 
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this mechanism Cre recombinase can recognize the LoxP sites flanking gene of interest producing 

the required knockout via excision of the DNA segment between the LoxP sites. 

Conditional Lmnb1 knockout in forebrain (fb) specific neurons resulted in neuronal 

migration defects, an overall smaller number of neurons and significantly small cerebral cortices 

[10]. This study helped prove that LMNB1 protein reduction was enough to cause severe 

neurodevelopmental abnormalities resulting in a significantly smaller forebrain (figure 2). 

However, it is important to remember that in this case the knockout of Lmnb1 also occurred during 

embryonic development albeit only in forebrain neurons. 

 

 

 

 

 

 

 

Figure 2: Forebrain-specific deletion of Lamin b1 

 

Figure 2: shows the effect of forebrain-specific laminb1 deletion has on the overall size and 

morphology of the brain [10]. (A) normal brain without Lmnb1 deletion (B) and (C) significantly 

small forebrain because of fb-specific knockout.  

1.4 Public Health Significance 

ADLD is a rare disease which currently does not have any treatment. This presents a vital 

clinical need for research and further investigation. Based on previous studies it has been 

C B A 
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confirmed that ADLD in humans is caused by a LMNB1 duplication and resultant overexpression 

[5]. Research at the Padiath lab is focusing on reducing expression levels of LMNB1 in adulthood 

as a potential therapeutic strategy for ADLD. Based on previous studies in mice it is well known 

that Lmnb1 ablation results in lethality during development. However currently, it is unclear 

whether reducing Lmnb1 levels specifically in adulthood would have any detrimental effect. 

Understanding this would be an important consideration for the future development of any ADLD 

therapy based on reducing Lmnb1 expression. My project is significant as we will explore the 

effects of Lmnb1 reduction during adulthood, in mice, as a precursor to developing therapies for 

ADLD.  

1.5 Specific Aims and Project Description 

Characterize and study a conditional knockout mouse model where Lmnb1 is ablated 

ubiquitously during adulthood using the Cre-LoxP system.  

Aim 1: Generation and characterization of mice where Lmnb1 has been ablated 

ubiquitously in all tissues during adulthood. Lmnb1 floxed (Lmnb1 fl/fl) mice will be crossed to 

transgenic mice where Cre is ubiquitously expressed upon the administration of tamoxifen. The 

UBC Cre ERT; Lmnb1 fl/fl mice (cKO) will be injected with tamoxifen at 2 months old to ablate 

Lmnb11 expression.  A Lmnb1 fl/fl cohort (Ctrl) will also be generated and simultaneously injected 

with tamoxifen to produce the most suitable controls for the course of our study. We will confirm 

that Lmnb1 is reduced at both the protein and RNA levels in a variety of different tissues. 
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Aim 2: Study the effect of Lmnb1 ablation on behavior and histopathology of our cohort. 

We will identify whether knockout of Lmnb1 during adulthood has any obvious phenotypic effects 

that result in abnormalities.  

For the behavioral analysis of the cohort, rotarod and open field tests would be conducted. 

For the rotarod the mice are trained to run on a rod and the time at which they fall off the rod is 

recorded. For open-field analysis mice are individually allowed to explore the open-field chambers 

and multiple motor parameters are recorded using infrared detectors. These tests will serve a dual 

purpose and will allow us to understand their cognitive capabilities (with the training) and also 

their motor function which would be measured by their ability to run on the rod and how long they 

can run/ stay on the rod for. This paired with an assessment of exploratory and locomotor activity 

during the open-field test will provide us with the means to perform a comprehensive qualitative 

analysis. In cases where limb functionality is compromised it would be difficult for the mice to 

produce similar results to the Ctrl cohort allowing us to draw definitive conclusions. Since the 

germline knockouts exhibit significant CNS abnormalities, studying cognitive and motor function 

in the adult ablated Lmnb1 mice is a logical approach. We will also carry out gross morphological 

and histopathological analysis of the brain and spinal cord from the LMNB1 ablated mice. 
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2.0 Materials and Methods: 

2.1 Generation and breeding of the mice 

Two groups of mice were needed for the course of this study: conditional knockouts (cKO) 

and control group (Ctrl). The UBC Cre ERT (Jackson Laboratories stock No.008085) mice were 

mated to homozygous Lmnb1 fl/fl [10], (Jackson Laboratories stock No. 032558) mice to produce 

UBC Cre ERT; Lmnb1 fl/+. These UBC Cre ERT; Lmnb1 fl/+ were then crossed to Lmnb1fl/fl 

(Ctrl) in order to produce 25% of our conditional knockout (ckO) with the genotype UBC Cre 

ERT; Lmnb1 fl/fl mice and 25% Lmnb1 fl/fl (Ctrl). Other possible genotypes produced were 25%  

Lmnb1 fl/+ and 25% UBC Cre ERT; Lmnb1 fl/+ (figure 6A). 

Tamoxifen injections were administered intraperitoneally (IP) to both the control group 

and cKO mice. The mice were between 3-4 months old when the 1st injections were administered. 

Tamoxifen (Sigma) was dissolved in corn oil (Sigma) at 20 mg/ml and administered at 75mg/kg 

body weight for 5 consecutive days on 3 separate occasions. 2-week breaks were administered 

between injection days to minimize stress on the cohort (figure 3). Rotarod was conducted 4 

months post 1st tamoxifen injection and open field was conducted 6 months post 1st injection, due 

to some logistical reasons we were unable to conduct both tests within the same month. Mice were 

euthanized followed by harvested for tissue, 5 months post 1st injection of Tamoxifen when the 

mice were between 7 and 9 months old.  
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Figure 3: Tamoxifen IP injections and project schematic 

 

Figure 3: Schematic of our tamoxifen injections and overall materials and methods. Injections were 

administered over a 2-month time period, at 3 separate occasions with 2 week breaks in between 

to ensure no extra stress on the mouse cohort. Followed by behavior analysis tests and tissue 

harvest procedures.  

2.2 Rotarod Behavior Analysis 

To assess motor coordination and motor skill learning, the rotarod behavior analysis test 

was performed at the Rodent Behavior Analysis Core (RBAC) University of Pittsburgh based on 

Preclinical Phenotyping Core (PPC) approved protocols. Briefly, the test began with an hour-long 

habituation. With a sample size of n=11Ctrl and n=10 cKO, the mice were gently placed on the 

rotating cylindrical rod such that they interfered with the infrared beam (figure 4). The rod 

accelerates from 0 to 30 rotations per minute (RPM), increasing 0.2 revolutions per 1 second (150 

seconds total) and stops at a final speed of 40 RPM. The rod rotates for a total set time of 300 

seconds (s) and the exact point at which the mouse falls off the rod and hence, is no longer in 

contact with the infrared beam, is recorded. The parameters tested were latency average, body 

weight, latency trails by genotypes and strain. Statistical analysis was conducted using Graph Pad 

Prism software and comparison between the Ctrl and cKO cohort was drawn. 

2-week break 
2-week break 

First batch of 
Tam. IP 

injections 
administered

Second batch of 
Tam. IP 

injections 
administered

Last batch of 
Tam.  IP 
Injections 

administered

Behaviour 
analysis

Tissue Harvest
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Figure 4: Rotarod apparatus 

 

Figure 4: Illustration representative of the rotarod equipment used to conduct the behavior analysis 

test. Each mouse is placed on the rod, separated by dividers. The total time they remain running 

while the rod rotates is recorded once the mice fall off.  

2.3 Open field activity monitoring test 

Open field was performed at the RBAC at the University of Pittsburgh in a controlled 

environment, based on PPC approved protocols.  We worked with a sample size of n=8 for each 

group (i.e. Ctrl and cKO), with ages ranging from 8 months to 10 months at the time of the analysis. 

Mice were individually placed into an open-field chamber (43 x 43 x 30 cm; Med Associates) 

(figure 5) and were allowed to explore for 60 minutes while data was collected. Infrared beams 

and monitors within the chambers allowed all our parameters of interest to be measured: Margin 

time, vertical time, total distance travelled, ambulatory time. A comparison was drawn between 

the Ctrl and cKO mice and the data was analyzed using Excel and Graph Pad Prism software.  
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Figure 5: Open field apparatus 

 

Figure 5: Illustration representative of the Open field behavior analysis test conducted. Each 

individual mouse is placed in a chamber, as shown, and is allowed to freely explore the area. 

Infrared beams sensors record every movement and produce data that is then analyzed.  

2.4 Tissue Harvest and Processing 

The mice were euthanized using the CO2 chamber according to approved protocols, 

weighed and then harvested for tissue. For the purpose of our study we collected forebrain, spinal 

cord, heart and liver tissue. All samples were temporarily stored in liquid nitrogen followed by 

storage at -80°C until ready for further processing. The tissue samples were used for the isolation 

of genomic DNA, RNA and protein.  

A standard genotyping PCR was conducted using gDNA extracted from a forebrain 

sample, via the Gentra Puregene Tissue Kit (Qiagen) according to the manufacturer’s instructions. 

Using standard PCR protocols, lamin b1 allele in Ctrl cohort was identified by amplifying 2 

regions of 1.5kb and 643 bp product as a means to cross verify the genotypes (figure 6B). The 

same primers generated a PCR fragment of 348 bp in the cKO mice (figure 6C). Genotyping 

primers and sequences are detailed in table 3. 
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2.5 RNA extraction and real time PCR 

Samples were processed for RNA isolation in TRIzol (Invitrogen) using a motorized 

homogenizer (Kimble) and extracted based on the manufacturer’s protocols. cDNA was 

synthesized from 1µg of RNA, from the previous step, using Qscript (Quanta Bio). Real-time PCR 

was conducted using SYBR Green SuperMix (Quanta Bio) and the experiment was run on an ABI 

Quant Studio 12K Flex (Biosystems). Data was analyzed using the ΔΔCT method [17] using the 

following primers: Ms. Lb1 to detect laminb1 expression levels and β-Actin (Actb) as the 

endogenous control. Real-time PCR primer sequences are in table 4. 

2.6 Western Blot Analysis 

Cellular protein (35-40 µg) was extracted using 1x proteinase inhibitor and T-PER cocktail 

solution (Thermo Scientific). Protein concentration was measured using the BCA protein assay kit 

(Thermo Scientific). The analysis was performed with dilutions of 35-40 µg of protein for each 

individual sample. Protein samples were run on a 10% Acrylamide gel (Bio-Rad) and then 

transferred to nitrocellulose membrane (Bio-Rad) for detection. The blocking step involved the 

use of 3% non-fat dry milk, made using 1X TBS and powdered milk, set on a gentle shaker for 1 

hour at room temperature.  The membranes were incubated over night with primary antibodies 

diluted in 1x Odessy blocking buffer with 0.1% Tween-20 (Fisher) at 4°C with gentle shaking. 

Primary antibodies used and their dilutions are listed in table 1. The next morning, membranes 

were washed thrice, for 10 minutes each, with TBS-T (TBS +0.1%Tween 20), and further 

incubated with secondary antibodies in Odessy blocking buffer and 0.1% Tween 20 for 1 hour at 



 13 

room temperature in black boxes to reduces any light exposure. After a repetition of the washing 

step the membranes were scanned, analyzed and quantified using the LI-COR Odyssey CLx infrared 

scanner and Image Studio software (LI-COR Biosciences). Secondary antibody details are listed in 

table 2. 

2.7 Cell culture and Immunohistochemistry 

Ear fibroblast cells were cultured from ear tissue obtained from 10-month-old Ctrl and cKO 

mice, both had been injected with tamoxifen. The ear punches were ground and incubated with 

dispase II 1 mg/mL in DMEMF-12 (Millipore #SCM133) and collagenase II 1 mg/mL in 

DMEMF-12 (MPBio #100502) for 2 hours at 37 °C with gentle mixing every 20-30 minutes. The 

pieces were then washed with DMEM (high glucose DMEM (Corning) supplemented with 10% 

FBS (Fisher) and centrifuged to produce a pellet and discard the supernatant. After a few washes 

we resuspend the pellet in DMEME complete (high glucose DMEM (Corning) supplemented with 

10% FBS (Fisher), 2mM L-glutamine (Millipore), and 1% Penicillin streptomycin (Hyclone)) 

before proceeding to plate in 6-well dish to allow cells to proliferate and be passaged as usual. The 

cells were added onto glass coverslips and incubated at 37 °C until they reached the desired 

confluency of 70-90%. To fix the cells we began with washing them with 1X DPBS (Sigma), 

followed by 4% formaldehyde (Ted Pella) in PBS for 15 minutes at room temperature. After 

washing with PBS, blocking and permeabilization was performed simultaneously, for 1 hour at 

room temperature, using the blocking buffer:1X PBS +5% normal donkey serum (Jackson 

ImmunoResearch) +0.3% Triton X-100 (Sigma). Primary antibodies were diluted using the above 

described blocking buffer and incubated with cells overnight at 4°C. Primary antibodies used and 
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their dilutions are listed in table 1. The next day, primary antibody dilutions were discarded, and 

cells were washed with PBS thrice for 5 minutes each at room temperature. Next step involved the 

use of secondary antibodies, FITC and Cy3 as listed in table 2, each diluted with 1:350 PBS and 

incubated with the cells at room temperature in the dark for 1 hour. Cells were washed thrice again 

with PBS before being mounted onto glass microscope slides using vectashield antifade mounting 

medium with DAPI (Vector Laboratories). The images were taken with Leica DM5000B upright 

microscope with a 40x lens magnification and a Leica DFC310 FX digital camera.  

2.8 Weight Analysis 

A bi-weekly weight in (g) was recorded for a total of 30 weeks, in order to analyze any 

weight changes that might be significantly different between the Ctrl and the cKO mice. The 

statistical analysis was done using Graph Pad Prism software. 
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3.0 Results 

3.1 Reduced Lmnb1 expression found in cKO mice 

UBC Cre ERT; Lmnb1 fl/+ mice were crossed to Lmnb1 fl/fl mice to produce offspring 

with the desired genotype for our cKO mice i.e. UBC Cre ERT; Lmnb1 fl/fl (figure 6A). To 

confirm the genotypes of mice and to confirm that tamoxifen administration ablated the Lmnb1 

gene we used genotyping PCR primers designed to amplify specific regions in control and cKO 

mice (figure 6B and 6C). Amplification of Ctrl samples results in the production of 2 fragments 

each, 1.5kb and 643 bp, compared to 1 fragment of 348 bp in samples from cKO mice. In figure 

6D the PCR shows results obtained using genomic DNA extracted from forebrain samples and the 

positive controls used are previously confirmed Ctrl and cKO samples. This genotyping 

experiment confirmed that Lmnb1 had been successfully knocked out in the cKO mice while still 

intact in our Ctrl cohort, preparing us for the following molecular analysis techniques. We 

expected to see a reduction in LMNB1 levels only in the conditional knockout mice cohort.  
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Figure 6: Generation of mice and genotyping 

 

Figure 6: (A) Schematic of how the cKO mice i.e.UBC Cre ERT; Lmnb1 fl/fl mouse were produced 

and all possible genotypes (B) shows the fragments produced in Ctrl by primers LoxPF3, LoxPR2, 

LoxPR3 (C) shows the fragment amplified in cKO mice samples. Figure C shows the PCR results 

using previously described primers. The controls used are positive controls for both Ctrl and cKO 

and the gel is run with ladders on each end of the gel. (D) gel results of genotyping PCR showing 

2 bands produced after amplification in the Ctrl samples as described above and only 1 band in the 

cKO knockout mice as a result of the tamoxifen induced knockout. 

 

IHC performed using ear fibroblast cells from Ctrl (figure 7A) and cKO (figure 7B) 

respectively showed a reduced percentage of lamin b1 expression in the knockout mice. Cells were 

counted from 5 different fields within the same slide. Assessment of the data obtained by IHC 

established that only 37.9% of the total number of cKO cells expressed Lmnb1 protein when 

compared to the Ctrl (figure 7C). A t-test performed allowed us to calculate a p value of 0.0079, 

with p<0.05 considered significant, showing how the difference in LMNB1 expression seen in the 

Ctrl and cKO cells is statistically significant. 

 

D 
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Figure 7: Immunohistochemistry imaging and quantification 

 

Figure 7: (A) Ctrl ear fibroblasts cells stained with DAPI (blue), Lmnb1 (green). A normal amount 

of LMNB1 stained cells are seen. (B) cKO ear fibroblasts cells stained with DAPI (blue), Lmnb1 

(green). A reduced number of Lb1 stained cells are seen.  (C) Bar graph shows the % expression 

of Lb1 positive cells in ckO and Ctrl groups with a p-value=0.007. 
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Real-time PCR and immunoblot analysis used RNA and protein lysates obtained from 

forebrain, spinal cord, heart and liver for each individual mouse. The sample size for this analysis 

was n=3 for each cohort. Tissue samples isolated; i.e. forebrain, spinal cord, heart and liver, from 

each individual mouse were obtained and treated independently. Results are shown in figure 8. In 

the real time PCR results, all cKO samples show a significant reduction in Lmnb1 expression 

across all tissues (figure 8A). Statistical analysis test, using the Ctrl samples as controls, rendered 

significant p values as shown in figure 8A. Protein expression patterns reported in our immunoblot 

were more variable with significant p values in the forebrain and spinal cord only (figure 8B). A 

t-test was used to analyze the statistical significance in both our RNA and protein expression data. 

An immunoblot representative image is also shown (figure 8C). Older data carried out by another 

lab member, however, is consistent with a significant reduction in LMNB1 protein expression 

(figure 8D). This discrepancy maybe due to technical issues, or alternatively due to a difference 

in the knockout percentage. Our aim was to repeat our western blot in order to produce the most 

reliable and accurate result however we were unable to do that because of the labs being closed 

down temporarily owing to the coronavirus pandemic.  
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Figure 8: Real-time PCR data and immunoblot analysis 

 

Figure 8: (A)Real-time PCR data showing the average mouse Lmnb1 RNA expression, significant 

p-values are reported with fb rendering p=0.01 and the p=0.02 in the other tissues. (B) Immunoblot 

data showing the average laminb1 protein expression pattern obtained, significance is reported in 

Fb and Liv only with p values <0.05, differences seen in Sc and Hrt are not significant. (C) Western 

blot of liver protein lysates run on an acrylamide gel obtained from 4 Ctrl and 3 cKO mice. (D) 

Protein expression obtained in previously run data to show the drastic reduction in expression (n=1 

Ctrl and n=1 cKO). 

 

3.2 No recognizable differences in brain development and overall weight 

A cursory comparison of the whole brain between the Ctrl and cKO did not show any 
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neurodevelopmental abnormalities leading to the underdevelopment of the brain, as described 

earlier [10] (figure 2). Here we are able to demonstrate how Lmnb1 reduction, to 30-40 % levels, 

in adulthood has no such effects as the brains of both Ctrl and cKO mice look grossly similar. We 

were also planning to carry out immunohistochemical analysis of the brain tissue from the two 

groups of mice to determine whether there were any abnormalities in the cellular organization of 

key structures of the CNS such are the cortex and cerebellum that were shown to be disrupted in 

the global Lmnb1 knockouts. However, our plans were disrupted by the coronavirus outbreak. 

Throughout the course of the study, until the mice were harvested, their weight in grams 

(g) was recorded bi-weekly to observe any gain or loss and to identify if any significant differences 

in weight could be observed. A bi-weekly analysis was done (figure 9B), it included data from a 

total of 13 mice including both males and females, spanning 30 weeks in total. The beginning and 

end weights (figure 9C) were also separately quantified to see which group experienced more 

changes in weight and whether it was significant. The unpaired t-test found no significance with p 

values of 0.28 and 0.91 respectively. An overall percentage change in weight, using the beginning 

and the end weights, was analyzed using ordinary one-way ANOVA and a p-value of > 0.05 

showed no significant differences.    
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Figure 9: Brain morphology and weight analysis 

 

Figure 9: No significant differences observed between the brains and the weight data. (A) Two 

perfused, para-formaldehyde fixed mouse brains placed side by side for comparison. Ctrl. (left) 

and cKO (right) do not exhibit any obvious differences in size, or gross morphology. (B) Biweekly 

% gain/loss analysis including all males and females over a period of 30 weeks, consisting of a 

total of 13 mice. (C) Comparison of beginning weights and final weights between cKO and Ctrl, 

p-value =0.28 for beginning weight and p-value =0.91 for final weight. (D) Overall % change in 

weight using the beginning and end weights, the difference seen is not significant with a p-value 

of 0.13 
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3.3 No differences in behavioral activity in cKO and Ctrl mice 

The behavior analysis portion of our study included the rotarod test and the open field. 

Data collected and analyzed form both these methods showed no significant differences in the 

parameters measured (figure 10A and 10B). This led us to conclude that no significant phenotypic 

differences existed between the two groups. Using an unpaired t test to analyze the latency average 

we were able to calculate a p value > 0.05 and conclude that the result was not statistically 

significant.  

 

 

 

 

 

 

 

Figure 10: Rotarod data analysis 

 

Figure 10: Sample size n=11 (Ctrl) and n=10 (cKO). No significant differences between cKO and 

Ctrl mice. (A) shows the latency to fall for all 3 trials conducted for cKO and Ctrl. (B) Latency 

average showing the average time mice from each cohort stayed on the rotarod. Difference 

between both groups was not significant with a p-value =0.93  
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The open field analysis allowed us to further investigate if any deleterious effects had been 

produced as a result of knocking out Lmnb1. We measured different parameters i.e. margin time, 

total distance, vertical activity, rest time movement time etc (figure11). Statistical analysis 

included the use of 2way ANOVA tests for all our parameters except ambulatory episode average 

velocity, ambulatory episode peak velocity and ambulatory episode median velocity. For those last 

parameters we used an unpaired t-test for statistical analysis.  After our analysis we were able to 

conclude how each parameter showed no significant difference between the control and cKO 

groups based on our p-values which were all > 0.05, consistent with our findings in the rotarod 

test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Open field data analysis 

 

Figure 11: Sample size n=8 for each cohort (Ctrl and cKO). Data obtained from open field analysis 

shows no significant differences between cKO and Ctrl mice. All parameters measured and 
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quantified are shown in the diagrams in the figure above, and although variations existed none of 

the differences were significant with all p-values > 0.05. 
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4.0 Discussion 

As previously discussed, ADLD is a rare condition that manifests in adulthood with an 

autosomal dominant inheritance pattern. The fact that no effective treatment exists poses an 

important public health problem. With research work now focusing on potential therapies to reduce 

LMNB1 overexpression during adulthood, our project directly examines if Lmnb1 reduction during 

adulthood, in mice, produces any deleterious effects.     

In the current study we establish how Lmnb1 knocked out, to 30-40%, in adulthood does 

not have any significant detrimental effects on behavior, activity and overall normal physical 

functionality. The mice used were closely monitored in the mouse facility throughout the duration 

of the study, and the control (Ctrl) and conditional knockout (cKO) mice were physically 

indistinguishable. They showed no signs and symptoms characteristic of ADLD like forelimb 

paralysis or difficulty in movement, eating and drinking etc. The results of the behavior analysis 

tests also remained consistent with this observation and there was no significant difference in 

activity recorded between both our study groups. Using genotyping techniques, we confirmed that 

the gene ablation had successfully taken place in our knockout mice, to 30-40% levels, while the 

control group retained normal Lmnb1 functionality.  With our molecular data we further studied 

the changes in RNA and protein expression patterns in different tissues i.e. forebrain, spinal cord, 

heart and liver. Analyzing these expression patterns gave us an understanding of the changes 

produced in all tissues after the knockout was induced.  

It is important to point out that the assays that we have used rule out only gross 

morphological and behavioral alterations and more subtle abnormalities could still exist. A more 

detailed histological and molecular examination of various tissues is warranted to conclude that 
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LMNB1 loss during adulthood has no deleterious effects.  It is also important to note the significant 

role LMNB1 plays in proliferation and its relation to the residual levels of gene and protein 

expression observed in our molecular analysis. In our cKO cohort we observe a residual expression 

of the protein, one major reason for this could be the possible proliferation and growth of cells that 

still contain LMNB1, while cells that no longer express Lmnb1 will not proliferate and hence be 

seen in smaller numbers.  

Studies conducted on other genetic conditions like Huntington’s disease have also reported 

similar occurrences.  Ablation of the target gene, Htt, in embryonic mouse models and even young 

mice  results in postnatal death due to secondary pathologies however reducing the same target 

gene i.e. Htt in adulthood is reportedly non-deleterious [18]. This suggests that although these 

genes are vital for normal development, they may no longer be critical during adulthood.  

As a result of our study, we conclude that ablation of Lmnb1 levels to 30-40%, in adulthood 

produces no significantly deleterious effects. This suggests that reducing LMNB1 levels during 

adulthood, at least to no more than 30-40%, is a potentially viable therapeutic strategy that might 

not produce any deleterious side effects and hence should be studied further. Since our results 

show 30-40% Lmnb1 activity remaining, after the knockout was administered, it would also be 

worthwhile for future studies to focus on identifying whether there is a lower threshold level below 

which phenotypic manifestations might occur. 
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Appendix: Tables  

Table 1: Table of primary antibodies 

 

 

 

 

 

 

Table 2: Table of secondary antibodies 

 

 

 

 

 

 

 

Primary 

Antibody 

Source Company Catalog # WB Dilution IHC Dilution 

Anti-Lamin B1 Rabbit Abcam ab16048 

 

1:4000 1:500 

Anti-Beta-

Actin Loading 

control 

Mouse Invitrogen MA5-15739 

 
1:5000  

Anti- Beta IV 

Tubulin-

Loading 

Control 

Rat Abcam ab179509 

 

1:1000  

Anti- GAPDH Mouse Thermo MA5-15738 

 

1:5000  

Secondary 

Antibody 

Source Company Catalog # WB Dilution # IHC 

Dilution 

Anti-Mouse 

IRDye 680LT 

Goat LI-COR 

Biosciences 

926-68020 

 

1:10000  

Anti-Rabbit 

IRDye 800CW 

Donkey LI-COR 

Biosciences 

926-32213 

 

1:10000  

Anti-Rat 

IRDye 680 LT 

Goat LI-COR 

Biosciences 

925-68029 

 

1:10000  

Anti-Rabbit 

FITC 

Donkey Jackson 

ImmunoResearch 

711-095-152 

 

 1:350 

Anti-Mouse Cy3 Donkey Jackson 

ImmunoResearch 

715-165-150  1:350 



 30 

 

 

 

 

 

Table 3: Table of genotyping primer sequences 

 

Genotyping primers Sequence   

(5´-3´) 

Product size (bp) 

Lmnb1-LoxPR3 ACACAATCACAACCTTGCCTTG Lb1-fl/fl= 2 bands of 1.5 

kb and 653 bp 

 

Lb1= 1 band of 348 bp 
Lmnb1-LoxPR2 GGGGTCACATCAAATCACCTA 

Lmnb1 LoxPF3 GAGATGCCAGAGACTCAGTGAA  

 

 

 

 

 

Table 4: Table of real-time PCR primer sequences 

 

Real-time PCR Primers Sequence (5´-3´) 

Mouse. Laminb1 

GCTGCTCAATTATGCCAAGAAG 

GCCGCATCCTTAGAGTTTAGT 

Mouse. Actb 

CCACTGCCGCATCCTCTTCC 

CTCGTTGCCAATAGTGATGACCTG 
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