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Theoretical investigation of photon manipulation for quantum computing and

quantum information processing

Chenxu Liu, PhD

University of Pittsburgh, 2020

Quantum computing and quantum information processing are fast developing fields. As

more and more qubits are integrated into the quantum computing systems, a deeper under-

standing and more careful modeling of the dynamics of these quantum systems in presence of

driving and/or loss are necessary, not only for optimizing existing quantum devices, but also

for designing and achieving novel method for more precise manipulation of these quantum

systems. Our work investigating these quantum systems is inspired by quantum optics, a

field focused on the quantum description of light and light-matter interactions.

In this thesis, we use the theoretical toolboxes provided by quantum optics as well as

condensed matter theory to investigate and model realistic quantum systems. Specifically, we

focus on the Nitrogen-vacancy centers in diamond crystal, a Josephson parametric amplifier

(that uses Josephson junctions as its non-linear elements), and plasmonic nanowire system.

With the knowledge of the dynamics of these systems, we proposed single-photon heralded

two-NV center quantum gates; designed and optimized the superconducting circuit for a

Josephson parametric amplifier to improve the amplifier’s saturation power; and designed

new methods for robust light manipulation using topologically protected plasmonic modes.

All the devices that we study are either ready to be implemented in experiments or have

already been built. Further, as discussed in this thesis, our theoretical analysis of NV-centers

can be extended to similar device types like solid-state defect centers, while our analysis of

Josephson parametric amplifiers can be extended to other types of superconducting circuit

systems.
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1.0 Introduction

The central topic of this thesis is the application of the tools of quantum optics to

quantum computers and other quantum information processing devices.

The creation of the laser, a much more coherent light source as compared to most light

sources that preceded it, highlighted the quantum nature of light and light-matter interac-

tion. Consequently, there has been significant work on the development of quantum optics,

a subject that studies the quantum nature of light and the light-matter interaction. Specif-

ically, quantum optics focuses on the full quantum theory for systems that have loss and

decoherence; a set of powerful theoretical tools is provided to understand and model driven-

dissipative systems. With a better understanding of light-matter systems, more precise

quantum manipulations can be applied to different quantum systems to prepare the system

into a specific quantum states, to perform gate operations, information processing, etc.

Quantum computers are expected to use the power of quantum entanglement to achieve

significant speedup as compared to classical computers. Ever since the idea of using quantum

computers to simulate quantum systems was proposed in 1981 by Richard Feynman [1], the

development of quantum computing systems that are able to perform reliable calculations is

one of the dreams of several generations of physicist.

The speedup that can be achieved by quantum computers can be quantified by investi-

gating computational complexity. In Section 1.1, we will briefly introduce the computational

complexity classes in computation theory. We describe computational complexity classes of

classical and quantum computers and highlight where quantum computing brings significant

speedup as compared to classical computing.

Achieving fault tolerant quantum computing is not only significant to solve some the hard

problems in classical computation theory, but is also important, via simulation of quantum

systems [2, 3], for providing better understanding of nature itself, e.g. to understand ther-

malization of highly disordered systems [4, 5, 6, 7], the excited states of many-body strong

correlated systems and black hole physics [8, 9, 10]. Over the past decade the pace of quan-

tum computing research has significantly accelerated, and moved into industrial labs (See

1



Table. 1). The latest state-of-the-art quantum computing systems have up to 54 qubits,

although these are still quite noisy. Last year, a Google machine performed a complex com-

puting task that is impossible to achieve in a realistic time with classical computers [11]

achieving so-called “quantum supremacy”. However, there are significant unsolved problems

on our road toward large-scale, fault tolerant quantum computer for reliable quantum sim-

ulation and algorithms. What’s more, there does not exist solid answers for the questions

which system, e.g. superconducting qubit systems, cold atoms systems or other systems,

and which method, directly coupling or via intermediate particles and measurements, for

gate operation is the best quantum system and gate schemes for fault-tolerant quantum

computing. To pave the road for a practical quantum computer, on one hand, the new

error correction schemes for quantum computing systems are required to fight against the

quantum loss channels, on the other hand, a more thorough understanding of the dynamics

of the qubits with couplings and novel methods to efficiently and precisely control the qubits

are required. Quantum optics, which also focus on the driven-dissipative systems, provides

the toolbox to understand and analyze these physical systems.

While in the process of construction of quantum computers, since the loss and decoher-

ence of the quantum system cannot be fully eliminated, the quantum signal can have low

signal-to-noise ratio. Further, to readout the calculation result from a quantum computer,

usually requires precise detection of the quantum states of the qubits. The investigation of

how to robustly transmit, manipulate and precisely acquire quantum information (detect

the states of the qubits) of the quantum systems are becoming increasingly significant.

On the road towards the goal of quantum computing, the understanding of the physical

system is essential to know the limitation of the system itself and optimize the physical

system for better computing and information processing capabilities. In this thesis, we apply

the theoretical tools, including quantum optics and other condensed matter techniques,

to three specific physical systems, (1) Nitrogen-Vacancy centers in diamond crystal, (2)

superconducting circuits and (3) nano-plamonc systems. In these quantum systems, we

apply the theoretical tools, especially the quantum optics, to build deeper understanding

and modeling of these physical systems and using these knowledge to achieve (1) quantum

gate operation for the qubits made by NV center electronic states, (2) understanding and

2



Table 1: A list of major quantum computing projects of commercial companies. The qubit

number is based on the most recent usable/commercial systems of the corresponding com-

pany. The notation “–” means no available quantum computing chip (processor) is available

yet. IonQ has 79 qubits addressable in the trapped ion setup.

Company
Qubit number

(year)
Chip system Computing scheme

Google 54 qubits (2019) [11] Superconducting qubit Universal gate based

IBM 53 qubits (2020) [12] Superconducting qubit Universal gate based

Intel 49 qubits (2018) [13] Superconducting qubit Universal gate based

Rigetti 31 qubits (2020) [14] Superconducting qubit Universal gate based

Microsoft
–

(2017) [15]
Topological quantum

computing using

Majorana Fermions

Universal gate based

IonQ 79 qubits* (2019) [16] Trapped ions Universal gate based

D-Wave
2000 qubits

(2017) [17]
Superconducting

devices

Quantum annealing

optimizing the performance of the quantum device for better quantum information processing

and (3) robust light manipulation using topological plasmonic modes.

The thesis discusses the application of the theory modeling and analysis to these phys-

ical systems and propose experimental realizable gate schemes, optimization of the perfor-

mance of the quantum devices and control on the quantum systems, to shed light towards

the advances in quantum information processing and quantum computers. The theoretical

treatment of these quantum systems are not limited to the specific devices, but can be easily

generalized to the other related systems.

In the following sections, we at first give a brief introduction to the computation com-
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plexity classes in Section 1.1. We introduce the computational complexity classes P, NP

and BPP for traditional computing systems and BQP class for quantum computers. We

explicitly point out the quantum algorithms can give significant improvement to some of

the hard problems in traditional computation theory. Even though the computation theory

is not a focus of the thesis, with the introduction of the classical and quantum complexity

classes, we hope to give a flavor to the power of the quantum computers, which motivates

the research on quantum computing and information processing.

In the later sections, we give brief introductions to the physical systems discussed in

the following chapters of the thesis. Specifically, in Section 1.2, we briefly introduced the

Nitrogen-Vacancy centers in diamond crystal. In Section 1.3, solid-state superconducting-

circuit systems and amplifiers based on Josephson nonlinearities are introduced. In Sec-

tion 1.4, a brief introduction to the topological modes in nano-plasmonic systems is given.

1.1 Computation classes and quantum algorithms with significant speedup

In this section, we give a brief introduction to the computation complexity classes. We

mainly focus on the complexity class P, NP, BPP and define the NP-complete problems

in a informal way. The discussion and definition of the complexity classes mainly follows

Refs. [18, 19].

The investigation of the computational complexity classes is to understand the complex-

ity of the different computational problems and the bounds of the computational efficiency

of the algorithms for these problems. In the discussion of the complexity classes, only the

decision problems, i.e., the problems whose answer is binary, either yes or not, are consid-

ered. It does not limit the generality of the discussion because all the other problems can be

reduced to decision problems.

For computing the problem in a classical computer, the problem needs to be encoded

into a sequence of binary strings as the inputs for the computer, or the so-called Turing

Machine (TM), a model that consists of the essential components of standard computation.

The problems that take these encoded binary strings as input are called concrete problems.
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If the input size of a concrete problem has size N and the problem can be solved in time

order O(Nk) on the deterministic TM, where k is a constant that does not depend on the size

of the input, the problem is polynomial-time solvable. The computational complexity class

P is formally defined as the set of the polynomial-time solvable concrete problems, i.e., the

complexity class P can be thought of as a set of problems that can be solved in polynomial

time using a classical computer. The example of the problems in complexity class P consists

of sorting an unsorted list, breadth first traversal and depth first traversal of a binary tree,

Dijkstra algorithm for graphs, etc.

Other than the problems that are known in complexity class P, there are harder problems.

Among all these problems, the problems that can be verified when they are provided a pos-

sible answer to the question on a deterministic TM in polynomial time forms the complexity

class NP. If a problem is solvable in polynomial time, it can be easily verified in polynomial

time, so the problems in class P is in class NP, i.e., class P is a subset of NP. However,

since solving a problem is usually harder than verifying a given solution of the problem, it

is widely assumed that there are problems that can be polynomial-time verified, but cannot

polynomial-time solvable, i.e., the class P is a proper subset of class NP. Within the NP

problems, there is a set of problems, which all the problems in NP class can be polynomial-

time reducible to these problems. The set of these problems is NP-complete problems. Note

that when a problem A can be reducible to another problem B1, the problem A is “no harder

than” problem B [19]. Therefore, the NP-complete problems are considered to be the hard-

est problems in NP class and if a polynomial-time algorithm is found to be able to solve one

of them, all the problems in NP can be solved in polynomial time, i.e., NP = P. If NP 6= P,

there is no polynomial-time algorithm to solve the NP-complete problems, which means the

NP-complete problems cannot be exact and efficiently solved by classical computers [19, 18].

The examples of NP-complete problems include cliques of undirected graphs, vertex cover

of undirected graphs, the travelling salesman problem, etc.

1The definition for NP class, NP-Complete and reducibility are rigorously defined using the formal-
language framework in Ref. [19], where the possible inputs for the problems are abstracted as the possible
strings of a language. A language is a set of all possible strings using allowed symbols (like the basic states
on the tape of a Turing machine, we restricted our symbols to be {0, 1} for the this discussion). Especially,
the language L1 can be polynomial-time reducible to another language L2, if there exists a polynomial-time
computable function f such that for all the strings x in language L1 iff f(x) is a string in L2, noted as
L1 ≤p L2. If language L is NP-complete, it must be in NP class and for any language L1 ∈ NP, L1 ≤p L.
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Another important complexity class for traditional computation is BPP, i.e., bounded

error probabilistic polynomial time. It consists of the problems that can be solved on a

probabilistic TM with a bounded error 1/3 for each run2 [18, 22]. The relation between BPP

and NP is still an active research area in computational complexity study. But the problems

in BPP can be considered as the problems that can be efficiently solved using a classical

computer [18].

Quantum computers should be able to perform significantly better than their classical

counterparts on certain tough problems. Some examples of this quantum speed up include

Shor’s algorithm [23, 24], Grover’s algorithms [25], and Simon’s algorithm [26]. Shor’s al-

gorithm focus on the integer prime factorization problem. The integer prime factorization

problem is an NP problem, however, it is widely suspected that it is not a problem in P,

nor an NP-complete problem either. Its best-known time complexity is sub-exponential in

classical computers. But with Shor’s algorithm, the problem can be solved in polynomial

time, which provides a considerable speedup turning a super-polynomial problem into a poly-

nomial problem. Grover’s algorithm focuses on searching an unstructured database. For a

classical method, the database with N entries needs to be examined one-by-one, which gives

a complexity O(N). Grover’s algorithm, on the other hand, improves the complexity to

O(
√
N), which is a quadratic improvement. Simons’s algorithm which focuses on Simon’s

problem [26], a problem that requires an exponential number of queries on a black-box

function in a classical algorithms, uses only polynomial number of queries with quantum

algorithm. Simons’s algorithm demonstrates the power of quantum computing to provide

exponential speed up on NP-hard problems in classical computation theory.

To further understand the power of the quantum computing, a new complexity class,

BQP complexity class (bounded-error quantum polynomial-time) is proposed. BQP class is

defined as the problems that can be solved with a bounded error 1/3 using a polynomial

2For a standard (deterministic) TM, when the symbol and the TM state is determined, the action to the
TM state is unique. A non-deterministic TM is a TM that allows to have multiple possible actions for a
single symbol read out from the tape and the state of the current TM. The performed action is determined by
a probability distribution on all possible actions. The probabilistic TM is a special type of non-deterministic
TM, in which the possible actions are binary. The formal definition of a non-deterministic TM can be found
in Chapter 4.5 of Ref. [20]. And the definition for probabilistic TM can be found in Chapter 8.2 of Ref. [21]
and Chapter 10.2 of Ref. [22].
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size quantum circuit3 [18, Pages 200-202]. The problems in BQP are the most interesting

problems which are expected to be efficiently solved by quantum computers. Currently,

it is suspected that with quantum computing, we may not be able to solve all NP and

NP-hard problems. But constructing large-scale quantum computers that implement these

algorithms and designing new quantum algorithms that can provide significant speedup to

hard problems in classical computation, and moving the problems into BQP class is still the

main goals of quantum computing algorithm research.

In recent quantum computing research, with more and more qubits being integrated

into the quantum computing systems (see Table 1), the power of the quantum computing

systems is also increasing. The state-of-the-art systems are still not able to achieve fault

tolerant universal quantum computing to implement complicated algorithms in BQP class to

experimentally demonstrate the quantum speedup, however, some tasks which are considered

to be hard in classical computation theory, e.g. the computation of a single amplitude (in

specific basis) of the state of a general quantum circuit [29], sampling the output from a

quantum system [30, 31], etc., are expected to be solvable using the current available quantum

system. Therefore, the power of the quantum computing can be demonstrated experimentally

to go beyond the capability of the classical computers (so called quantum supremacy) [32, 11],

especially, using the Boson sampling problem [11]. Further, the Quantum Approximate

Optimization Algorithm, which can be applied to max-cut problem, is also expected to be

able to demonstrate the quantum supremacy with near-term devices [33, 34, 35].

1.2 Nitrogen-Vacancy centers in diamond crystal

In this section, we briefly introduce the Nitrogen-Vacancy (NV) centers in diamond and

its application in quantum computing and quantum information process.

Nitrogen-Vacancy (NV) center is a type of defect color center in diamond crystal. It

3The BQP class can also be defined similar to BPP class, instead of using the classical Turing machine,
it uses a quantum Turing machine [27]. In Ref. [28], Yao pointed out that “any function computable in
polynomial time by a quantum Turing machine has a polynomial-size quantum circuit”. So these two
definition of BQP are equivalent.
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consists of diamond crystal in which a nitrogen atom replaces a carbon atom and one of the

four nearby carbon atoms is missing. The properties of NV centers in diamond make them

one of the most promising candidates for quantum computing and quantum information

processing. The most significant properties for NV centers that are beneficial for quantum

computing and quantum information processing include: (1) The ground state of NV center

electronic states is a spin triplet with total spin number S = 1. The ground state has a

zero magnetic field splitting 2.87 GHz, which are well separated in room temperature and

can be precisely initialized, addressed and manipulated by optical and microwave methods.

The manipulation of the electronic states of NV centers was experimentally demonstrated in

Ref. [36, 37, 38, 39] at room temperature. (2) NV centers also have very long spin coherence

time (∼ 1.8 ms in isotopically pure samples) [40] which is beneficial for performing long

sequence of quantum gate operations for quantum computing and quantum information pro-

cessing. (3) The NV centers can be easily fabricated in diamond crystal. (4) The NV centers

electronic spin states can easily couples to the external magnetic field and the energy of the

states are affected by temperature. Further, NV centers can exists in nano-size diamond

crystals, which can be easily integrated in biological systems. These advantages also make

NV centers widely used as magnetic sensors and thermal censers in the field of quantum

sensing [41, 42, 43].

The study of the NV centers starts in 1976. In Ref. [44], Davies et al investigated the

spectral property of the diamond crystal with defects and identified the transition that cor-

responded to the NV− ground state to the electronic excited states. Follow this work, several

spectral studies of the NV− defect centers led to the understanding of the electronic structure

of this system [45, 46, 47]. In Ref. [48], Gruber et al experimentally collect the fluorescence

from individual NV centers using a scanning confocal optical microscope, which opens the

word for using individual NV centers as single-photon sources or single qubits for quantum

computing and quantum information processing. In the works that followed [49, 50, 51],

the photon intensity self-correlation (g2) was measured, and especially in Ref. [51], it was

explicitly demonstrated that the NV centers can be used as a stable single-photon source,

which is important for quantum optics experiments, quantum information processing using

photons and measurement based quantum computing using photons. Further, the electronic
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states of the NV centers can be optically initialized and the electronic states can be opti-

cally read-out [36, 37]. The fact that NV center electronic states can be manipulated and

initialized optically makes it more controllable for quantum computing and information pro-

cessing. Following the work in Ref. [52], in which the coherent coupling between the NV

electronic spin and the nuclear spin of nearby 13C was reported, the seminal work of Dutt et

al, Ref. [38], showed that NV center electronic states combined with the nearby 13C nuclear

spin can be used as a long-lasting and controllable quantum register. Further, the entan-

glement of emitting photon states and the electronic state of NV center was experimentally

demonstrated [53], which sheds light on using the NV centers for quantum information pro-

cessing experimentally. The investigation of the usage of the NV centers, both the electronic

states, the nuclear spin states and the emitted photons in quantum information process-

ing, become increasingly popular and interesting [39, 54, 55, 56, 57]. Further, the quantum

entanglement of two NV center electronic states, using the photon-heralded methods, has

also been demonstrated in experiments [58, 59]. With the coherence of the emitted photon

polarization and the electronic spin states, the research on using NV center as a photon

source to generate photonic cluster states for measurement based quantum computing also

highlights the role of NV center in quantum computing [60, 61].

1.3 Superconducting circuits and Josephson parametric amplifiers

Superconducting circuits, which consist of superconducting wires and Josephson junc-

tions, are one of the most promising systems for quantum computing and quantum informa-

tion processing. The superconducting circuit systems have multiple advantages, (1) the bulk

of the superconducting circuits are made of superconducting wires, which have extremely low

loss when transmitting current, (2) the coupling between superconducting circuits elements

is relatively easily introduced, which makes the system itself be easily integrated together to

form large scale multi-qubit systems, (3) the design and fabrication of superconducting cir-

cuits on chip is not technically difficult [62]. The key element of the superconducting circuit

is the Josephson junctions, which consists of two bulk superconductors and a thin barrier
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in between. In 1962, B. D. Josephson pointed out that two bulk superconductors that are

coupled through a thin barrier can (1) exhibit an oscillating current when a DC voltage bias

is applied across the junction (the AC Josephson effect) and (2) can carry a current without

dissipation when phase biased (the DC Josephson effect) [63].

The DC Josephson effect introduces nonlinearity into microwave circuits, which can be

used to turn harmonic oscillators into anharmonic oscillators. The anharmonic oscillators

can then be made to act like artificial two-level atoms, also known as qubits. In experiments,

there are various realization of the superconducting qubits, e.g. the transmon qubits [64,

65, 66, 67], flux qubit [68, 69, 70, 71, 72], fluxonium qubits [73], etc, which are available for

quantum computing and quantum information process.

On the other hand, the nonlinearity of the Josephson junctions also provides a resource

for nonlinear coupling of different spatial microwave modes in a superconducting circuit. It

can play the role of the nonlinear media in nonlinear optics, but provides much stronger

nonlinearity. If one of the spatial microwave modes is strongly pumped, through the nonlin-

earity provided by the Josephson junction, the different spatial modes can be parametrically

coupled. The Josephson parametric amplifier takes advantage of the parametric coupling

process to provide photon gain to the signal mode of the amplifier from the pump mode.

Various Josephson Parametric Amplifier (JPA) circuits have recently been investigated.

These designs includes JPAs based on Superconducting Nonlinear Asymmetric Inductive

eLements (SNAILs) [74, 75, 76, 77]), flux pumped Superconducting QUantum Interference

Devices (SQUIDs) [78, 79, 80, 81, 82], and the Josephson Parametric Converters (JPCs) [83,

84, 85, 86, 87]). There are also designs for amplifiers that do not use cavities, e.g. the

traveling wave parametric amplifier (TWPA) [88, 89, 90]. For all these Josephson parametric

amplifiers, there is one remaining question to be used for large scale quantum information

processing, which is the maximum power of the input signal that the amplifiers can still

gives a constaint gain. In this thesis, we will address this problem of the system.
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1.4 Topological modes in plasmonic nano-structures

The interface between two electronic materials with topologically distinct band struc-

tures necessarily supports a topologically protected mode [91, 92, 93]. The robustness of this

mode arises from global symmetries like parity, space inversion, and time reversal [94, 95]. In

electronic systems, the topology of the electronic band structures can be controlled relatively

easily by either using materials properties (e.g. picking a suitable semiconductor [96]) or by

materials engineering (e.g, by making hybrid structures like quantum wells out of suitable

materials [97]). The combination of robustness of topological edge modes and the relative

ease of fabrication has resulted in an explosion of interest in these systems with applica-

tions ranging from decoherence-free quantum state manipulation [98] to electronic device

design [99, 100, 101].

Following the seminal work of [102], it was realized that topological band structures can

also exist in photonic systems. These ideas have been explored in a number of theoretical

proposals [103, 104, 105, 106, 107, 108, 109]. They have also been realized experimen-

tally in the following photonic crystal systems: gyromagnetic photonic crystal at microwave

frequencies [110], coupled whispering gallery mode optical resonators [111], optical waveg-

uides [112, 113], and plasmonic arrays [114, 115, 116].

The analysis of Refs. [112], which provides a mapping between electronic systems and

paraxial light propagation in photonic and plasmonic systems, inspired a number of works.

Here, we are concerned with the one-dimensional topological model of Su-Schrieffer-Heeger

(SSH) [117, 118], which was originally used to describe electron motion in polyacetylene

chains. The SSH model hosts topologically protected modes on domain boundaries, the

protection being provided by the sub-lattice (or chiral) symmetry which belongs to the AIII-

class of [94]. The mapping inspired by Rechtsman et al’s work was adopted to the SSH model

and explored experimentally in plasmonic nanowire arrays [114, 119] as well as photonic

crystals [113]. The propagation of plasmonic topological modes in graphene nanowires was

also explored theoretically in [120]. These works serve to establish the existence of optical

topological defect modes.

The following of sections of this thesis is structured as follows. In Chapter 2, we re-
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view the theory of quantum optics and open quantum system. especially some of the key

assumptions and the results of quantum optics treatment of driven-dissipative systems. In

Chapter 3, we discuss our investigation of the NV center systems, with the understanding of

the electronic states of negatively charged NV centers, we proposed single-photon heralded

two-NV center quantum gates. We also evaluate the gate performance using quantum trajec-

tory method. In Chapter 4, we investigate the the dynamic of the Josephson ring modulator

based Josephson parametric amplifier. We theoretically investigate how the nonlinearity pro-

vided by the Josephson junctions controls the saturation power of the amplifier. We further

design the device and optimize its saturation power by ∼ 15 dB compare to the previously

experimentally fabricated JPAs. In Chapter 6, we introduce a mapping between the parax-

ial plasmonic light and the lower dimensional time evolution of the electronic systems. We

design the metallic nanowire geometry to construct topological protected plasmonic modes,

similar to the SSH model in electronic systems. We further use the topologically protected

edge mode to achieve a waveguide, a spacial mode filter and beam splitter. In Chapter 7,

we present a brief conclusion of the main results.
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2.0 Theory of open quantum systems: a quantum description of dissipation

and decoherence

In this chapter, we review basic quantum optics, some of the main assumptions, the var-

ious regimes, and the main results in the treatment of the quantum systems that experience

dissipation and decoherence. Rather than focusing on the rigorous derivation, we focus on

the physical arguments of the validity of the assumptions and the key conditions for the

assumptions to be reasonable in quantum optics systems. The discussion in this chapter

mainly follows Refs. [121, 122, 123, 124].

2.1 Paradigm of quantum optical systems

In the general discussion of loss and decoherence in quantum systems, we assume that

the total system which is under consideration consist of two parts: (1) a subsystem which

contains a few degrees of freedom (DOF), which is the model for the quantum systems we

care about and (2) the rest of the system that has a large number of DOFs which the model

treats as the surrounding environment of the quantum system. We use the Hamiltonian

Hs to describe the subsystem (1) and HB [B for bath] to describe the rest of the system

(2). From now on, to be consistent with the quantum optics treatment, we will refer to the

subsystem (1) as the system and the rest of the system (2) as the bath (or reservoir) of the

system.

The system and the bath can couple through a coupling Hamiltonian V . Here we assume

the coupling strength between the system and the bath is weak, i.e., the dynamics of the

system-bath coupling is much slower than the dynamics of the system and bath.
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2.2 Master equation of the quantum systems with dissipation

With the model described in Sec. 2.1, the dynamics of the system and bath in the

interaction picture is,

∂tR
(I)(t) = −i

[
V, R(I)(t)

]
, (2.1)

where R(I)(t) is the density operator for both the system and the bath, which is given by

R(I)(t) = U †R(t)U , where U = e−i(HS+HB)t. We assume ~ = 1.

Formally integrate Eq. (2.1), which gives,

R(I)(t) = R(I)(t = t0)− i
∫ t

t0

[
V (t′), R(I)(t′)

]
dt′ (2.2)

and we plug back to Eq. (2.1),

∂tR
(I)(t) = −i

[
V (t), R(I)(t0)

]
−
∫ t

t0

[
V (t),

[
V (t′), R(I)(t′)

]]
dt′ (2.3)

Note that up to this point our description is exact.

Using this method, we can expand the equation of motion for the system and bath in

orders of the coupling strength. But to exactly solve this equation, it is hardly any easier

than the original Eq. (2.1). By solving Eq. (2.1), we not only know the dynamics of the

system, but also know the dynamics of the bath.

As the system and bath evolves, in reality, due to the existence of the system-bath

coupling, the system will be entangled with the bath. The exact time evolution of the whole

system and bath cannot be separated. However, in almost all the realistic quantum optics

systems, the dynamics of the bath is neither interesting to us, nor traceable in experimental

observation. Only the system itself can be measured and observed. If only the system itself

is observed, the system is in a mixed state, which can be described by its density operator

ρ = trB {R} (2.4)

where ρ is the density operator for the system itself and R is the density operator for the

system and bath together. The notation trB is the partial trace over the bath DOFs. So

our goal is to know how the state of the system evolves in terms of its density operator ρ

without solving the exact time-evolution of the system and bath. In the following, we will

14



make assumptions and apply approximations to simplify the Equation of motion (EOM)

by constructing effective dynamics of the system itself to reflect the effect of the actual

system-bath coupling, and finally eliminate the bath DOFs from the system dynamics.

To achieve the goal, we at first assume that the system-bath coupling strength is weak

compared to the dynamics of the system and bath. This approximation is Born approxima-

tion [124]. As in a quantum optics system, the frequency scale of the system dynamics are

typically in optical regime and so as the bath dynamics, while the system-bath coupling is

much slower than the optical frequency, the Born approximation is typically applicable to

quantum optical systems.

In addition, with the assumption that the bath is much larger than the system, or

even the bath itself is infinite, along with the Born approximation, the finite excitation and

information exchanged from the system to the bath only changes the bath state slightly from

the initial bath state. So we can approximate the state of the bath at any time in the time

scale that we interested in by the initial state of the bath (which can be either a pure state

or a mix state). As a result, the state of the system and bath can be approximated by

R(t) ∼ ρ(t)⊗ ρB(t0) (2.5)

We further assume that the initial state of the system and bath is not an entangled state,

i.e., R(t0) ∼ ρ(t0)⊗ ρB(t0). With the approximation Eq. (2.5), after taking partial trace on

the bath DOFs in Eq. (2.3), the EOM for the system is

∂tρ
(I)(t) = −i trB

{[
V (t), ρ(I)(t0)⊗ ρ(I)

B (t0)
]}

− trB

{∫ t

t0

[
V (t),

[
V (t′), ρ(I)(t′)⊗ ρ(I)

B (t0)
]]
dt′
} (2.6)

where super-index (I) is to show the density operators are in interaction picture.

We would to stress again that even though the approximation Eq. (2.5) is applied, because

of the actual entanglement of the system and bath DOFs due to the system-bath coupling,

after eliminating the bath, the system itself will not undergo unitary time-evolution, instead

it will suffer loss and decoherence. If the system is initialize in a pure state, it may evolve

into a mixed state in presence of the system-bath coupling, even under the approximation

Eq. (2.5).
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Here we want to highlight why this treatment is able to model the loss process of the

system itself. Notice that the bath itself may have a large bandwidth and it is much larger

than the system. When the excitation from the system is exchanged to the bath, it will take

much longer time for it to return back to the system. If the time scale we care about (given

by the dynamics of the system) is much slower than this revival time, the excitation from the

system can be considered as being lost, even though the whole system and bath experience

unitary time evolution. Note that if the bath DOF is infinite, the recurrence time would be

infinite. Therefore, the information (excitation) lost into the bath will never come back to

the system.

With further assumptions that explicitly define the bath initial states and the system-

bath coupling Hamiltonian, we can perform the partial trace of the bath DOFs and the time

integral to achieve the explicit form of master equation for the system itself. Especially in

this treatment, if the system-bath coupling has a broad bandwidth coupling and the coupling

strength as well as the density of states of the bath in the coupling window is smooth, the

Markov approximation can also be applied. With the Markov approximation, the coupling

strength and the bath density of states are approximated by constants (i.e., independent of

the frequency), which causes the bath time-correlation can be approximated by δ(t − t′).

With the Markov approximation, the system density operator in Eq. (2.6) can be replaced

by ρ(I)(t). We will carefully examine the Markov approximation in next section.

With the Born-Markov approximations, the equation of motion of motion for the system

density operator can be, in general, written in Lindblad form,

∂tρ(t) = −i [Hs, ρ(t)]−
∑
m

Γm
2

(
L̂†mL̂mρ(t) + ρL̂†mL̂m − 2L̂mρ(t)L̂†m

)
(2.7)

where ρ(t) is the system density operator, Hs is the system coupling Hamiltonian, L̂m is a

system operator, which is the quantum jump operator for the corresponding process and Γm

is the transition rates of the corresponding process. The master equation Eq. (2.7) is referred

as Lindblad master equation (or Lindbladian) and the terms that appears because of the

system-bath coupling (the second term on the right hand side of the Eq. (2.7), which has

quantum jump operators) are called Lindblad terms. Suppose the system is a single-mode

cavity and the cavity couples to a vacuum photon bath. Due to the cavity-bath coupling, the
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cavity photon will experience photon loss, i.e., the cavity photon can leak out of the cavity

and loss into the bath. In this system, the quantum jump operator for the cavity photon

loss is the photon operator â of the cavity mode. The terms that describes the photon loss

is

ΓD[â]ρ ≡ −Γ

2

(
â†âρ+ ρâ†â− 2âρâ†

)
(2.8)

where D[â]ρ is commonly referred as dissipator of the loss process.

2.3 An example of master equation derivation

In this section, we consider a simple physical system, a two-level atom couples to a single-

mode cavity field, to demonstrate how to derive the master equation for an open quantum

system. In this specific system, the single mode cavity field is considered to be the bath of

the quantum system, the two level atom. The EOM for the whole system is

∂tR = −i[H,R], (2.9)

where R is the density operator for the whole system (atom + cavity field), and the Hamil-

tonian is

H = H0 +Hint (2.10a)

H0 =
1

2
ω0σz +

∑
k

ωka
†
kak (2.10b)

Hint =
∑
k

iκk

[
a†kσ− − σ+ak

]
, (2.10c)

where ak (a†k) are the corresponding lowering and raising operators for the cavity mode

with wave vector k, and the operator σz, σ− and σ+ are atomic operators. We assume the

dispersion relation of the system is given by ωk = vp|k|, where vp is the wave speed for the

cavity field, and the cavity field is in the vacuum state. We further assume the initial state

of the whole system is in R(t = 0) = ρ(t = 0) ⊗ |vac〉〈vac|, where ρ is the density operator

for the two-level atom, and |vac〉 is the vacuum state of the cavity field.
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The EOM for the whole system in the interaction picture is

∂tR
(I) = −i[H(I)

int , R
(I)] (2.11a)

H
(I)
int =

∑
k

iκk

{
a†kσ− exp [i(ωk − ω0)t]− σ+ak exp [−i(ωk − ω0)t]

}
. (2.11b)

To derive the master equation for the atom, we explicitly perform the partial trace over the

bath DOFs in Eq (2.6) for this system. Notice that 〈ak〉 = 〈a†〉 = 0 for the vacuum cavity

field, the first order term is zero.

To calculate the second order terms in Eq. (2.6), we need to expand the commutator

relations and perform the time integration and sum over different k mode explicitly. Note

that the commutator can be expanded into

[
Hint(t),

[
Hint(t

′), ρ(I)(t′)ρB

]]
= Hint(t)Hint(t

′)ρ(I)(t′)ρB + ρ(I)(t′)ρBHint(t)Hint(t
′)

= −Hint(t)ρ
(I)(t′)ρBHint(t

′)−Hint(t
′)ρ(I)(t′)ρBHint(t),

(2.12)

where ρB = |vac〉〈vac| is the bath density operator. When we take the partial trace over the

bath DOFs, we notice that

trB

(
aka

†
k′ρB

)
≡ 〈aka†k′〉B = δk,k′ , trB

(
a†kak′ρB

)
≡ 〈a†kak′〉B = 0. (2.13)

In the first term in Eq. (2.12), the only term that survive after the partial trace over the

bath DOFs is

trB

{
Hint(t)Hint(t

′)ρ(I)(t′)ρB

}
=
∑
k,k′

κkκk′σ+σ−ρ
(I)(t′)ei(ω0−ωk)tei(ωk′−ω0)t′〈aka†k′〉 (2.14a)

=
∑
k

κ2
kσ+σ−ρ

(I)(t′)ei(ω0−ωk)(t−t′). (2.14b)

To further calculate the summation of all the k modes, we approximate

∑
k

→ L

2π

∫
dk =

L

πvp

∫
dωk (2.15)

where L is the length of the cavity, which is assumed to be large, c is the speed of light inside

the cavity field. We assume the atom will couples to the cavity modes propagating on both

direction, which causes an extra factor 2 when it is converted to frequency integral. With
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the finite system-bath coupling bandwidth, we assume that κk is only nonzero in the range

that ωk ∈ (ω0 − Γ/2, ω0 + Γ/2).

With the Born-Markov approximation, we assume that the coupling strength of the atom

and the cavity field is smooth such that in the coupling bandwidth, the coupling strength

κk can be well approximated by κk0 , where k0 = ω0/c. Further, we assume the coupling

bandwidth Γ is much larger than the time scale for the system dynamics (especially the

system dynamics caused by the system-bath coupling), the integral of frequency can be

approximated by a delta function, i.e.,

∑
k

κ2
kσ+σ−ρ

(I)(t′)ei(ω0−ωk)(t−t′) ∼
Lκ2

k0

2πvp
σ+σ−ρ

(I)(t′)

∫ ω0+ Γ
2

ω0−Γ
2

ei(ω0−ωk)(t−t′)dωk (2.16a)

∼
2Lκ2

k0

vp
σ+σ−ρ

(I)(t′)δΓ(t− t′) (2.16b)

where δΓ(t − t′) is assumed to be a “finite-width” delta function, i.e., the function can be

assumed to be a delta function when we integrate this function with another function that

slowly changes in the time scale given by the width Γ.

Therefore the contribution from the first term in Eq. (2.12) to the master equation is

−
∫ t

t0

trB

{
Hint(t)Hint(t

′)ρ(I)(t′)ρB

}
∼ −1

2

2Lκ2
k0

c
σ+σ−ρ

(I)(t) (2.17)

where we use the fact that the dynamics of the system state caused by the system-bath

coupling is much slower than the bandwidth Γ, such that δΓ(t− t′) is approximated by a real

delta function δ(t− t′).

Similarly, if we use the same procedure to calculate the contribution for the rest of three

terms in Eq. (2.12), by define the decay rate γ = 2Lκ2
k0
/vp, the master equation for the atom

density operator is

∂tρ
(I)(t) = −γ

2

(
σ+σ−ρ

(I)(t) + ρ(I)(t)σ+σ− − 2σ−ρ
(I)σ+

)
= γD[σ−]ρ(I), (2.18)

where D[σ−]ρ is the dissipator for the atom decay, which is similar as Eq. (2.8). Similarly,

for a single-mode light field couples to vacuum photon bath can be treated in the same way.
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2.4 Quantum Langevin equation and input-output relation

For simplicity, in the discussion of this section, we assume the bath is a single-mode

photon bath with Hamiltonian

HB =

∫
ω b†(ω)b(ω)dω (2.19)

where b(ω) is the bath operator with frequency ω, which satisfy commutation relation

[b(ω), b(ω′)] = δ(ω − ω′). Note that the bath can be easily expended to multi-mode cases,

e.g. a 1D infinite long waveguide, 3D free space electromagnetic field, etc. In these case,

the wave-vector k (or ~k for 3D electromagnetic field) is a better index to label the bath

operators, i.e.,

HB =

∫
ω(k) b†(k)b(k)dk (2.20a)

[b(k), b(k′)] = δ(k − k′), (2.20b)

where the mode frequency ω(k) is given by the dispersion relation. In this scenario, when

we transform the integral of all the modes wave-vector k to the integral of frequency ω, the

density of state D(ω) is needed. The Markov approximation also requires that the density

of state should also be smooth and slow varying inside the system-bath coupling bandwidth

as we discussed in previous section (section 2.2).

The system-bath coupling is assumed to be linear and in the form of

V = i

∫ ω0+Γ

ω0−Γ

κ(ω)
[
b†(ω)a− a†b(ω)

]
dω (2.21)

where a and a† are the system operators, ω0 is the optical frequency of the system and Γ

gives the system-bath coupling bandwidth.

With the system Hamiltonian HS, the Heisenberg equations for the operators can be

written as

∂tb(ω, t) =− iωb(ω, t) + κ(ω)a(t) (2.22a)

∂tc(t) =− i[c(t), HS] +

∫ ω0+Γ

ω0−Γ

κ(ω)
{
b†(ω, t)[c(t), a(t)]− [c(t), a†(t)]b(ω, t)

}
dω (2.22b)
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where c(t) is an arbitrary system operator. We explicitly write down the time variable t to

show that these operators are in the Heisenberg picture.

We can formally integrate the equations of bath operators b(ω, t) using the field operator

in the past (i.e., t > t0) as

b(ω, t) = exp[−iω(t− t0)]b(ω, t0) + κ(ω)

∫ t

t0

exp[−iω(t− t′)]a(t′)dt′ (2.23)

and plug back to the EOMs for the system operator and get

∂tc(t) = −i[c(t), HS]

+

∫
κ(ω)

[
eiω(t−t0)b†(ω, t0)[c(t), a(t)]− [c(t), a†(t)]e−iω(t−t0)b(ω, t0)

]
dω

+

∫
dω

∫ t

t0

dt′
{
κ2(ω)

(
eiω(t−t′)a†(t′)[c(t), a(t)]− [a(t), c(t)]e−iω(t−t′)a(t′)

)} (2.24)

where the integration of the frequency should be understood from (ω0 − Γ) to (ω0 + Γ).

To further simplify the equations of motion, we apply the first Markov approxima-

tion [122], in which we assume the system-bath coupling is smooth in the whole bandwidth,

such that the coupling strength can be approximated by a constant, i.e., κ(ω) ∼
√
γ/(2π),

where γ is a constant and does not depend on the frequency ω. With the first Markov

approximation, the integration over the whole coupling bandwidth can be performed in the

last term in Eq. (2.24). Note that since the frequency integration is not from −∞ to +∞,

the integration of the frequency does not give an exact δ(t− t′) function. Instead, the inte-

gration result can be thought of as a function which is peaked around t = t′, but has a finite

width on the order of Γ, which is noted as δΓ(t− t′). If the function (operator) in the time

integration changes much slower than Γ, we can approximately treat δΓ(t− t′) as a δ(t− t′),

otherwise, extra care should be paid.

However, in general, the Heisenberg picture system operators changes in the frequency

of optical frequency ω0. In typical quantum optics systems, the bandwidth Γ cannot be

comparable to the optical frequency ω0 (otherwise the coupling strength cannot be considered

a smooth function of frequency and the first Markov approximation is invalid). However, if we

transform to the interaction picture of the system operators, where the fast optical frequency
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oscillations are removed, we appreciate the fact that the integration of the frequency ω will

give an extra phase term that cancels all the fast oscillating terms in the time integral,∫ t

t0

dt′γ/(2π)

∫ ω0+Γ

ω0−Γ

dωe−iω(t−t′)a(t′) ∼ 1

2
γa(t). (2.25)

Based on Eq. (2.25), the final result of the integration matches the situation where we assume

the coupling bandwidth is “large” and the frequency integration can be extended to −∞

to +∞. But the above discussion of the Markov approximation relies on the existence of

the frequency hierarchy that ωS,c � Γ � ω0, where ωS,c is the system coupling dynamic

frequency [124].

Apply the first Markov approximation on the middle terms of Eq. (2.6), with further

definition of the “input” field as

bin(t) =
1√
2π

∫ ω0+Γ

ω0−Γ

e−iω(t−t0)b(ω, t0), (2.26)

the quantum Langevin equation can be written as

∂tc(t) =− i[c(t), HS]− [c(t), a†(t)]
[γ

2
+
√
γbin

]
+
[γ

2
+
√
γb†in

]
[c(t), a(t)] (2.27)

Further, we can also formly integrate the equation of bath operators b(ω, t) using the

field operator in the future (i.e., t < t1) as

b(ω, t) = exp[−iω(t− t1)]b(ω, t1)− κ(ω)

∫ t1

t

exp[−iω(t− t′)]a(t′)dt′ (2.28)

and define the “output” field as

bout(t) =
1√
2π

∫ ω0+Γ

ω0−Γ

e−iω(t−t1)b(ω, t1). (2.29)

The quantum input-output relation can be found as [124, 122],

bout(t)− bin(t) =
√
γa(t). (2.30)

How do we apply the quantum input-output formalism? Consider a superconducting

artificial atom [which acts as the system] to a single mode transmission line [which acts

as the bath]. If we send a microwave tone on the to the transmission line, we can solve

how the tone interacts with the superconducting artificial atom, and compute the output
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field. If the input tone is classical, we can approximate the input field operators using their

classical mean values. On the other hand, if the input signal has quantum noise, or if the

noise is one of the features we want to consider, we can leave the input and output field

as operators and compute the correlation function of the output field operator expectation

value, auto-correlation functions, etc.

2.5 Quantum trajectory method

To numerically solve the master equation of an open quantum system, we can expand

the density operator of the system as a matrix using the eigen-states of the quantum system,

and directly time evolve the master equation numerically. This is the numerical method we

applied to analyze the Josephson micromaser, which will be discussed in Chapter 5. In addi-

tion, especially for a quantum system whose Hilbert space is so large that the density matrix

cannot be efficiently stored, the quantum trajectory method provides a more efficient way to

numerically solve the master equation. Further, with a slight modification of the quantum

trajectory method, we can also simulate the open quantum system which is being observed,

in which the measurement gives back-action to the system. This is the main method we

used to calculate the Nitrogen-vacancy center unitary gate properties in Chapter 3. In this

section, we discuss the quantum trajectory method.

As we discussed in Section. 2.2, the system master equation can be written in Lindblad

form as Eq. (2.7). Here we can slightly rewrite the Lindblad master equation as

∂tρ(t) = −i
(
Heffρ(t)− ρ(t)H†eff

)
+
∑
m

(√
ΓmL̂m

)
ρ(t)

(√
ΓmL̂

†
m

)
(2.31)

where the effective Hamiltonian for the dissipative system Hsys is

Hsys = Hs − i
∑
m

Γm
2
L̂†mL̂m. (2.32)

Note that this effective system Hamiltonian is no longer Hermitian. With this non-Hermitian

system Hamiltonian, the system will experience loss or (and) decoherence. Consider the

cavity photon loss process discussed at the end of Sec. 2.2, in which the jump operator is
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the cavity photon operator â. The non-Hermitian term in the effective Hamiltonian decays

the population of non-zero photon number states. However, the density operator should

still keep unit trace, which is guaranteed by the last term in Eq. (2.31), which increases the

population of the one-photon lower state by the amount of population loss from the upper

photon states. This is the reason why this term is usually referred to as recycle term.

In the rest of this section, we give the essence of the quantum trajectory method and

then we show that the quantum trajectory method will give the same time evolution as the

master equation shown in Eqs. (2.7) and (2.31). The discussion in this section mainly follows

Ref. [124].

In the quantum trajectory method, we treat the system to always be in a pure state at

the coarse time steps δt. The state of the system can be be represented by |ψ(t)〉 at different

time steps. But the time evolution of the system state is stochastic instead. Each sample

of the stochastic time evolution of the system is treated as a possible “trajectory” of the

system evolution, and the actual system state that can be measured (which is a mixed state)

is given by the ensemble average of all these possible trajectories.

For each trajectory, we initialize the system to the same state |ψ(t = 0)〉. For each time

step, the system evolves to state

|ψm(t+ δt)〉 ∝ |ψ̃m(t+ δt)〉 ≡
(√

ΓmδtL̂m

)
|ψ(t)〉 (2.33)

with probability pm, where

pm = 〈ψ̃m(t+ δt)|ψ̃m(t+ δt)〉 = Γmδt〈ψ(t)|L̂†mL̂m|ψ(t)〉, (2.34)

or evolve to the state

|ψ0(t+ δt)〉 ∝ |ψ̃0(t+ δt)〉 ≡ (1− iHsysδt)|ψ(t)〉, (2.35)

with probability (1−
∑

m pm). Note that after each time step, the state of the system needs

to be renormalized.

24



To see that this time evolution is identical to the master equation in the first order of δt,

the density matrix after a single time step of the above stochastic evolution is

ρ(t+ δt) =
∑
m

pm|ψm〉〈ψm|+ (1− p)|ψ0〉〈ψ0|

=
∑
m

pm
|ψ̃m〉√
pm

〈ψ̃m|√
p,

+ (1− p) |ψ̃0〉√
1− p

〈ψ̃0|√
1− p

(2.36)

where |ψ0〉 and |ψ1〉 are given by Eqs. (2.35) and (2.33) with proper renormalization, re-

spectively. After expressing the Eq. (2.36) using the density operator at time t, i.e., ρ(t) =

|ψ(t)〉〈ψ(t)|,

ρ(t+ δt) =ρ(t)− i
(
Heffρ(t)− ρ(t)H†eff

)
δt+Hsysρ(t)H†sysδt

2

+
∑
m

(√
ΓmL̂m

)
ρ(t)

(√
ΓmL̂

†
m

)
δt.

(2.37)

Compare Eq. (2.37) with Eq. (2.31), these two methods agree up to the linear order of δt

and should be identical in the limit of δt→ 0.

The actual state of the system, in general, should be a mixed state, which is given by

the ensemble average of the trajectories. The physical quantities represented by operator Ô

measured at time t is given by

〈Ô(t)〉 = tr
[
Ôρ(t)

]
.

To evaluate the system state and the physical quantities at time tf using quantum tra-

jectory method, we can initialize multiple trajectories at initial time t0 with the same initial

state |ψ(t0)〉 and time evolve each trajectories according to the stochastic evolution rule till

final time tf . Then the mean value of the quantity 〈O(tf )〉 is

〈Ô(tf )〉 =
1

N

N∑
i=1

〈ψi(tf )|Ô|ψi(tf )〉, (2.38)

where i is the index for different trajectories and N is the total number of trajectories.
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If the master equation is linear, i.e., it could be expressed in the form of ∂tρ = Lρ, the

quantum regression theorem applies. In the quantum regression theory, if the single-time

average of a system operator Oi satisfies

〈Oi(t+ τ)〉 =
∑
j

cj(τ)〈Oj(t)〉 (2.39)

the two time correlation function for two system operators Oi and Ok, based on quantum

regression theorem, is

〈Oi(t+ τ)Ok(t)〉 =
∑
j

cj(τ)〈Oj(t)Ok(t)〉. (2.40)

With quantum regression theorem, the two-time correlation function, e.g. 〈A(t + τ)B(t)〉

where A and B are system operators, can also be calculated using quantum trajectory

method. In each quantum trajectories, the system is initialized to its initial state, |ψ0〉 and

stochastically time-evolve to time t. The state of the system is now noted as |φ(t)〉. Then

four auxiliary states are created at this time,

|ψR
±(t)〉 =

1√
µR
±

(1±B) |φ(t)〉 (2.41a)

|ψI
±(t)〉 =

1√
µI
±

(1± iB) |φ(t)〉 (2.41b)

where B is the system operator in two-time correlation function, µ
R(I)
± are the normalization

factors for each state. Then based on the master equation, these four auxiliary states are

stochastically time evolve to time (t+ τ). The two-time correlation function is calculated by

the trajectory average of [125, 124]

C(t+ τ) =
1

4

(
µR

+c
R
+ − µR

−c
R
− − iµI

+c
I
+ + iµI

−c
I
−
)
, (2.42)

where the parameters

c
R(I)
± = 〈ψR(I)

± (t+ τ)|A|ψR(I)
± (t+ τ)〉. (2.43)

To understand why this approach works, we notice that the trajectory average of a single

term is to calculate a two-time correlation function, e.g. the first term,

µR
+c̄

R
+ ∼ 〈ψ0|e−Lt(1 +B†)eLτAeLτ (1 +B)eLt|ψ0〉. (2.44)
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where L is the superoperator given by the master equation. Eq. (2.44) can be expanded into

four terms, the only term that survive after combining all four terms in Eq. (2.42) is

¯C(t+ τ) = Tr
{
e−L(t+τ)AeLτBeLtρ0

}
= 〈A(t+ τ)B(t)〉, (2.45)

where ρ0 = |ψ0〉〈ψ0| is the initial state density operator.

Compare the quantum trajectory method with the directly time evolve the master equa-

tion using the system density matrix, the quantum trajectory method requires less memory.

To see that, if the system state under investigation is in a N -dimensional Hilbert space,

the pure state of the system can be represented by a N -dimensional vector. But using the

density matrix, we need N × N coefficients to store. Further, even with the quantum tra-

jectory method, for some systems, e.g. the 100 spin-half particles, the state space can be

much larger than the computer memory. To deal with these system, the quantum trajectory

method can be easily integrate with the matrix-product-state representation of the many-

body wave function to reduce the memory cost. But since each time-evolution of the system

is a single trajectory of the trajectories ensemble, the time evolution needs to be run for

many times to build a relative reliable statistics to give prediction of the system dynamics.
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3.0 Single-photon heralded 2-qubit unitary gates for pairs of

Nitrogen-Vacancy centers in diamond

3.1 Introduction

Quantum computers are expected to achieve significant speedup compare to classical

computers to hard problems in classical computation theory [see Sec. 1.1 for detailed discus-

sion]. The key resource that enables quantum speedup is quantum entanglement. In order to

generate and harness this resource, it is essential to build high fidelity multi-qubit quantum

gates.

The electronic spin associated with the nitrogen-vacancy (NV) centers in diamond is

a promising qubit candidate for solid-state quantum computing. The spin states are well

defined, have long spin relaxation and coherence times, and can be optically addressed for

qubit initialization and readout for quantum operations. The qubits can be manipulated us-

ing either optical or microwave drive fields. However, a key missing ingredient for NV center

quantum computing is an experimental demonstration of a high-fidelity 2-qubit unitary gate

between NV centers at remote locations in the diamond lattice.

There are two main directions that have been investigated for coupling pairs of NV

centers. The first direction, which has been proposed theoretically [126], relies on collec-

tive dynamics of spin-chains to deterministically generate couplings between two remote NV

centers. The second direction, which has been investigated both theoretically and experi-

mentally, generates entanglement between two NV centers using a heralded method. Cabrillo

et al. showed that measurement can be used to project two-qubit quantum state of atoms

into an entangled state in Ref. [127]. The idea of heralded probabilistic entanglement gen-

eration was also theoretically proposed and studied in Refs. [128, 129, 130, 131, 132, 133].

The quantum entanglement of two NV centers using heralded method has also been ex-

plored experimentally. Bernien et al. observed quantum entanglement of spins of two NV

centers [58]. In a related work, Lee et al. demonstrated the entanglement of vibrational

modes of two macroscopic diamonds (but not NV centers) [134]. Pfaff et al. experimentally
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entangled spin states of two NV-centers, which they used for quantum teleportation [135].

Hensen et al. experimentally performed the Bell inequality test via entangling two separated

NV-center spin states [59]. It is important to point out that the measurement of the photon

in Refs. [58, 135, 59] is effectively a parity projector that projects the NV centers into a

maximally entangled state. The limitation of this approach is that while it can be used to

generate entanglement, it cannot be used to construct a 2-qubit unitary gate.

Inspiration for our work comes from a previous theoretical proposal for constructing a

heralded probabilistic 2-qubit unitary gate using generic atoms [136]. Specifically, Protsenko

et al. showed that quantum interference can be used to construct a 2-qubit unitary gate by

controlling the relative phase of the photons emitted by the two atoms. This interference

principle was later proposed for building 2-qubit gates between a pair of atoms in optical

cavities coupled by linear optics [132].

In this chapter, we propose an alternative 2-qubit unitary gate for Nitrogen-Vacancy

(NV) centers in diamond heralded by a single scattered photon. Further, we predict that

there exists a “magic” frequency which suppresses spin-state preserving scattering transitions

in favor of spin-flipping scattering transitions and a “balance” point where two spin-state

flipping scattering transitions are equal. Utilizing these frequencies, in combination with

a single mode diamond waveguide to collect and interfere the scattered photons, enables

the proposed 2-qubit gate to achieve high fidelity and high success probability. For success

probability approaching unity, the gate fidelity is ∼ 92%, while for fidelity approaching unity

the success rate approaches ∼ 34%.

A key advantage of our scheme is that, unlike the schemes in Refs. [58, 135, 59] that rely

on two-photon Hong-Ou-Mandel interference, the success of our entangling unitary gate is

heralded by a single photon detection. For example, if our protocol were implemented with

bulk optics and microfabricated solid-immersion lenses in diamond as has been previously

demonstrated, the detection probability is p ∼ 10−4 [58], and with a conservative repetition

rate ∼ 20 kHz, this would result in a successful entangling gate operation every 0.5 sec-

onds. By contrast, entanglement events occur every 10 minutes in the two-photon heralded

schemes, which represents orders of magnitude improvement in the clock rate. With further

improvements in collection efficiency using e.g. the nanobeam waveguides that we propose
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and analyze in this paper, and fast electronics, we can potentially achieve kHz - MHz clock

rates that would be comparable to superconducting qubit quantum information processors.

This chapter is organized as follows. In Sections 3.2 and 3.3 we describe the main ingredi-

ents of our 2-NV center unitary gate. In Section 3.2, we focus on the proposed experimental

setup and how to use interference to construct a unitary gate. In Section 3.3, we argue for the

existence of a “magic” frequency at which qubit state-preserving transitions are suppressed

and a “balance” frequency at which qubit state-flipping transitions are balanced. We propose

four gate operation schemes, three utilizing the “magic” frequency and one the “balance”

frequency, and analyzed their fidelity, success probability and unitarity. In Section 3.4, we

analyze the success probability and fidelity of the 2-qubit unitary gate with possible exper-

imental imperfections. We first build a qualitative understanding of the processes involved

in the qubit dynamics and their effects on gate fidelity. Then we perform a quantitative

analysis using the quantum trajectory method. Details of the proposed waveguide geometry,

photon collection efficiency, transition rate calculations and further discussion of gate fidelity

can be found in Section 3.5. We draw conclusions and present an outlook in section 3.6.

3.2 Proposed experimental setup for a 2-NV unitary gate

The experimental setup that we propose for a 2-qubit unitary gate using spin states of

two NV centers is shown in Fig. 1(a). The two NV centers are embedded into a single-mode

diamond waveguide, and are selected so that they are separated by (2n+ 1)/4-wavelengths,

where n is an integer. The separation ensures that the emitted photons have π/2 phase

difference when they are captured by the detectors. Both NV centers are aligned so that

their x, y, and z-directions [137] (i.e., the [112̄], [11̄0], [1̄1̄1̄], direction of the diamond crystal)

match the x, y, and z-directions of the waveguide (see Fig. 1(c)). State-flipping transitions in

both NV centers are pumped by a continuous-wave laser applied transverse to the waveguide

[in Fig. 1(a)]. The diamond waveguide collects and interferes the state-flipping scattered

photons from the NV centers. Two detectors detect the photons collected by the waveguide

from both ends to improve the detection efficiency. We note that depending on whether the
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Figure 1: (a) Schematic illustration for the proposed heralded two NV center quantum gate.

A sketch of the level diagram of NV centers is shown in (b). The NV centers can undergo

scattering transitions to flip the qubit states and emit scattered photons when they are driven

by an off-resonance continuous wave (CW) pump laser. The two NV centers with quarter

wavelength separation are in a single-mode diamond waveguide. The waveguide collects

and interferes the scattered photons emitted from the NV centers. The detectors monitor

the scattered photons collected by the diamond waveguide. The unitary gate operation is

heralded by the detection of a photon. (c) The coordinate system of an NV center (red

spheres – carbon; blue – vacancy; brown – nitrogen), relative to the crystallographic axes

of the diamond waveguide. The x̂, ŷ and ẑ directions of the NV center match those of the

waveguide, e.g. the [1̄1̄1̄] direction of diamond crystal (the red vector from the nitrogen to

the vacancy) coincides with the axial direction of the waveguide.
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detector on the left or on the right captures the photon we obtain slightly different unitary

gates, which we discuss below.

We begin by reviewing why the π/2 phase is critical to achieve a unitary gate [136].

Assume that the NV centers have suitable state-flipping transitions which flip the qubit

state between |0〉 and |1〉 and emit indistinguishable photons [Fig. 1(b)]. Next, suppose that

there is a phase difference of χ in the optical path from the two NV centers to the detector

(on the right). Consider the two initial states |0, 0〉 and |1, 1〉. If the detector on the right

clicks, the output states are |0, 1〉 + eiχ |1, 0〉 and |1, 0〉 + eiχ |0, 1〉. In order for our 2-qubit

gate to be unitary, these two output states must be orthogonal, hence χ = π/2 + nπ where

n is an integer. Similar logic applies to the cases in which the initial states are |1, 0〉 and

|0, 1〉.

When the right detector clicks, the unitary 2-qubit gate is described by the matrix:

Gr =
1√
2


0 1 i 0

1 0 0 i

i 0 0 1

0 i 1 0

 , (3.1)

in the |0, 0〉, |0, 1〉, |1, 0〉 and |1, 1〉 basis. On the other hand if the left detector clicks we

obtain the gate described by the matrix:

Gl =
1√
2


0 i 1 0

i 0 0 1

1 0 0 i

0 1 i 0

 . (3.2)

Note that if we wanted to obtain Gr, but the left detector clicks instead, we can apply the

single-qubit operation X1 ⊗X2 to both qubits to convert the gate operation in Eq. (3.2) to

the gate operation in Eq. (3.1). We note that Gr can be expressed in terms of the control-Z

(CZ) gate and single-qubit gates as

Gr =
1 + i√

2
(H ⊗H)

(
S−1 ⊗ S

)
CZ(H ⊗H), (3.3)
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where H is the Hadamard gate and S is the single-qubit π/2 phase gate

H =
1√
2

 1 1

1 −1

 , S =

 1 0

0 i

 , (3.4)

and therefore, our two-qubit gate, in combination with the available NV single-qubit gates,

forms a universal gate set.

3.3 Scattering transitions of an NV center for unitary 2-qubit gates

The main missing ingredient for constructing a 2-qubit gate with NV centers is finding

suitable state-flipping transitions between qubit states of NV centers that emit indistinguish-

able scattering photons. In this section, we explore the electronic structure of NV centers

and argue for the existence of suitable transitions.

Detailed information on electronic structures of NV centers can be found in Ref. [137, 138]

and in 3.5.2 of our paper. The electronic levels, including fine-structure, of NV centers

in diamond crystals without strain is shown in Fig. 2(a). The electronic ground state

of NV center is a spin triplet. The spin-spin interaction breaks the degeneracy of the

NV electronic ground state and splits the state |g1〉 = |g, Sz = 0〉 from the states |g2〉 =

1√
2

(|g, Sz = +1〉+ |g, Sz = −1〉) and |g3〉 = 1√
2

(|g, Sz = +1〉 − |g, Sz = −1〉) by the zero field

splitting D/h = 2.87 GHz. The manifold of excited states spans several GHz and consists

of four discrete sets of states with six states in total [see Fig. 2(a)]. These excited states can

be labeled by the irreducible representation of the C3V group and the Sz quantum number.

To simplify notation, we label them |ej〉, where j = 1 to 6. We note that in the presence

of spin-spin (SS) interactions Sz is not a good quantum number for the lowest four excited

states. However, as the SS interaction results in only a slight mixing between Sz = ±1

states and Sz = 0 states we label the eigenstates |e1〉, |e2〉, |e3〉 and |e4〉 by the dominant Sz

component.

We propose to use the two-fold degenerate Sz = ±1 spin states, |g2〉 and |g3〉, as the

logic 0 and 1 qubit states. We use scattering transitions pumped by an off-resonant laser to
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Figure 2: The sketch of the level diagram of NV center electronic states is shown in (a). The

electronic ground state |g〉 and excited state |e〉 splits due to the spin-orbit (SO) and spin-spin

(SS) interactions with the corresponding irreducible representations (irrep) of the C3V group

and approximated Sz quantum number. We choose to use state |g2〉 = 1√
2

(|+1〉+ |−1〉)

and state |g3〉 = i√
2

(|+1〉 − |−1〉) as the qubit states. We demonstrate the state-flipping

transitions in (b) and state-preserving transitions in (c). The state-flipping transitions are

the transitions that flips between qubit states |g2〉 and |g3〉. The other two transitions that

does not flip NV states are the state-preserving transitions.
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drive transitions between states |g2〉 and |g3〉 and hence flip the logic state [Fig. 2(b)]. The

scattered photons from the two state-flipping transitions have the same frequency because the

states |g2〉 and |g3〉 are energetically degenerate. There are two more scattering transitions

that can occur in principle, i.e., Rayleigh scatterings. These two transitions do not flip the

qubit state [Fig. 2(c)] and hence we call these transitions state-preserving transitions. The

scattered photons emitted from these two transitions have the same frequency as the ones

from state-flipping transitions. To ensure successful 2-qubit gate operation we must ensure

that the detectors only click on state-flipping and not state-preserving transitions.
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Figure 3: The magnitudes of state-preserving and state-flipping transition amplitudes given

in the R.H.S of Eq. (3.7) (blue lines) and Eq. (3.9) (yellow lines) as we shift the driving

light frequency νd. There are two frequency points that draw our attention: (1) the “magic”

point (labeled by red dashed arrow) at which the two state-preserving transition amplitudes

are strongly suppressed, (2) the “balance” point (labeled by blue solid arrow), where two

state-flipping transition amplitudes are balanced.

The two ingredients that go into the calculation of the optical transition rates are: (1) the

dipole matrix elements between NV center ground and excited states and (2) the interference

between virtual excitations of the various excited states.

The results of the rate calculations for the state-flipping and state-preserving transitions,

as a function of the drive frequency, are plotted in Fig. 3. We find that as we tune the

drive frequency the interference between virtual excitation paths results in the significant

35



variation of the transition rates. We identify two special frequencies: first, there is a “magic”

frequency for which the state-preserving transitions are approximately turned off. Second,

there is a “balance” point frequency for which the two state-flipping transition rates are

equal. We present the outline of the transition rate calculation in Section 3.3.1 (the details are

presented in 3.5.2). Next, we discuss four different schemes for building a 2-qubit gate using

the two special drive frequencies and different configurations of polarizers in the collection

path. Specifically, we discuss how different schemes can be used to optimize gate fidelity,

success probability, and unitarity. In Sections 3.3.2 and 3.3.3 we discuss gates schemes

M1, M2 and M3 that utilize “magic” frequency drive light. The three schemes differ by

drive light polarization and collection path configuration which let us optimize either gate

success probability or gate unitarity. In Section 3.3.4, we discuss the gate scheme B1, that

utilizes driving light frequency which makes the two state-flipping transitions balanced. We

summarize the configurations of the four gate operation schemes in Table. 2.

Table 2: The configurations of the four gate operation schemes. We list the driving light

frequency and polarization, and the collection path polarizer orientation for each schemes.

Polarizations that appear in brackets are alternative to the ones that appear with no brackets.

Gate Drive Drive Collection path

schemes frequency polarization filter polarization

M1 “magic” point x̂ (ŷ) ŷ (x̂)

M2 “magic” point x̂+ ŷ (x̂− ŷ) x̂− ŷ (x̂+ ŷ)

M3 “magic” point x̂+ ŷ (x̂− ŷ) x̂+ ŷ (x̂− ŷ)

B1 “balanced” point x̂ (ŷ) ŷ (x̂)
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3.3.1 Transition rate calculation: interference of virtual excitation paths

The dipole moment matrix after taking spin-orbital (SO) and spin-spin (SS) interaction

into account can be written as

p̂

p0

=

 −F21x̂ F21ŷ F22x̂ F22ŷ −F23ŷ F23x̂

F21ŷ F21x̂ −F22ŷ F22x̂ F23x̂ F23ŷ

 . (3.5)

Here, p0 is the scale of the dipole moment; the matrix is written in the basis p̂ij = 〈gi| p̂ |ej〉,

where i = 1 for |g2〉, i = 2 for |g3〉 and j = 1 to 6 for excited states |e1〉 to |e6〉; and the

factors F21, F22, F23 are three dimensionless parameters from the microscopic NV center

Hamiltonian, F21 = 0.7062, F22 = 0.0363, F23 = 1/
√

2 (see Ref. [137] and 3.5.2 for details).

The scattering transition rates between the states |g2〉 and |g3〉 can be calculated using

second order Fermi’s golden rule. According to Eq. (3.5), if the driving light is linearly

polarized along x̂ or ŷ direction, the photons from state-preserving transitions have the

same polarization as the incoming light, while the photons from the state-flipping transi-

tions have orthogonal polarization. Therefore, the state-flipping scattering photons can be

distinguished from state-preserving scattering photons by polarization. In general, the result

of perturbation theory can be expressed as

|gj〉 |σ̂1〉i
Hscatter−−−−→ Aσ̂1

p,j |gj〉 |σ̂1〉o + Aσ̂1
f,j |gk〉 |σ̂2〉o (3.6)

where j, k = 1, 2 and j 6= k, A’s represent the transition amplitudes, the incoming drive light

is in the polarization state σ̂1, and the outgoing light in the waveguide is in the polarization

state σ̂1 or σ̂2
1.

Let us consider the case in which the driving light is linearly polarized along either x̂ or ŷ

direction, and hence 〈σ̂1|σ̂2〉 = 0. We present the generic case in 3.5.3. Assuming the driving

light frequency is νd, based on the dipole moment matrix, the state-preserving transition

amplitudes can be worked out as,

Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

=
1

∆1

F 2
21 +

1

∆3

F 2
22 +

1

∆6

F 2
23 (3.7a)

1As we discuss in 3.5.1, the transverse directions of the NV centers are aligned to the transverse directions
of the waveguide, which leads to the x̂ and ŷ directions of the dipole moment to couple to two different guided
modes of the waveguide.
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Axp,3

A
(x)
0

=
Ayp,2

A
(y)
0

=
1

∆2

F 2
21 +

1

∆4

F 2
22 +

1

∆5

F 2
23 (3.7b)

where the ∆i = εe,i − εg − hνd is the energy mismatch, εe,i, εg are the energy of the excited

state |ei〉 and the ground state |g2〉, |g3〉. As we shift the driving light frequency νd, the

energy detuning of each excited level (∆i) changes. Two scale factors, A
(x)
0 and A

(y)
0 , are

defined as A
(σ)
0 = p2

0Ed,σE0u0, where Ed,σ is the driving light electric field along σ̂ direction,

E0 =
√
hνd/(2ε0) is the electric field associated with a single photon in the waveguide, u0

is the normalized waveguide mode profile at the location of the NV centers (see Eq. (3.44)

in 3.5.3) We assume that the electric fields of the two guided modes have the same u at the

location of the NV centers. In 3.5.3, we show that there is a region inside the waveguide

where the two modes have balanced coupling to the NV centers. See 3.5.3 for details. In

the following discussion, we assume these two parameters, A
(x)
0 and A

(y)
0 , are equal. We also

notice that the equality relations

Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

,
Ayp,2

A
(y)
0

=
Axp,3

A
(x)
0

(3.8)

hold if | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 | for all excited states.

Similarly, the state-flipping transition amplitudes are,

Axf,2

A
(x)
0

=
Ayf,3

A
(y)
0

= − 1

∆1

F 2
21 −

1

∆3

F 2
22 +

1

∆6

F 2
23 (3.9a)

Axf,3

A
(x)
0

=
Ayf,2

A
(y)
0

=
1

∆2

F 2
21 +

1

∆4

F 2
22 −

1

∆5

F 2
23 (3.9b)

Note that these two equality relations
Axf,2

A
(x)
0

=
Ayf,3

A
(y)
0

and
Ayf,2

A
(y)
0

=
Axf,3

A
(x)
0

do not rely on the special

symmetry in dipole moment elements. We plot the magnitudes of the R.H.S. of the Eq. (3.7)

and Eq. (3.9) in Fig. 3 as we shift the driving light frequency νd.
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3.3.2 M1 2-qubit gate scheme: “magic” frequency, x̂-polarized drive light

As we shift the driving light frequency νd, we notice that there is a “magic” point

where both state-preserving transition rates are highly suppressed because of the destructive

interference between the virtual paths through the different excited states (see Fig. 3).

When we use an x̂ polarized driving light, the scattered photons from state-preserving

transitions are polarized along the x̂ direction, while the polarization of the photons from

state-flipping transitions are orthogonal, i.e., along ŷ. We can use a polarizer to further filter

the state-flipping photons from the state-preserving photons. Heralding on the photons

coming through the polarizer, we achieve a 2-qubit gate on the NV centers. This is our

proposed gate scheme M1.

At the “magic” frequency the transition amplitudes satisfy Axp,2 = −Axp,3 > 0, Axf,2 < 0

and Axf,3 > 0. Therefore we define Axp,2 = −Axp,3 = Ap > 0 and define

A1 ≡ |Axf,2| = −Axf,2, A2 ≡ |Axf,3| = Axf,3. (3.10)

Since the state-preserving transition amplitudes satisfies Axp,2 = −Axp,3 > 0, we can also

define Ap = Axp,2 = −Axp,3.

At the “magic” frequency, however, the two state-flipping transition amplitudes are not

balanced. These two unbalanced transition amplitudes cause the resulting gate to be slightly

non-unitary. Assuming the polarizer is perfect and the right detector captures the heralding

photon, the 2-qubit gate is described by the matrix,

G(1),ub
r =


0 A2 iA2 0

−A1 0 0 iA2

−iA1 0 0 A2

0 −iA1 −A1 0

 (3.11)

in the basis |g2; g2〉, |g2; g3〉 and |g3; g2〉 and |g3; g3〉. If we have two balanced state-flipping

transitions, i.e., A1 = A2, after proper normalization, the gate operation is a 2-qubit unitary
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gate, and it can be written as

G(1),b
r =

1√
2


0 1 i 0

−1 0 0 i

−i 0 0 1

0 −i −1 0

 (3.12)

where we write down the gate operation in the same basis as Eq. (3.11). Notice that this

gate operation is different from the one shown in Eq. (3.1). This is because of the negative

state-flipping transition amplitude Axf,2. This gate is also equivalent to CZ gate combining

with single qubit gates as,

G(1),b
r =

1 + i√
2

(
(S−1H)⊗ (SH)

)
CZ
(
(HS−1)⊗ (HS)

)
(3.13)

where S, H are single qubit phase gate and Hadamard gate shown in Eq. (3.4). When the

two transition amplitudes are not balanced, i.e., A1 6= A2, the gate operation shown by

Eq. (3.11) is not unitary.

Now we calculate the entanglement fidelity of our 2-qubit gate. Notice that both the

entanglement fidelity and the average fidelity, which can be relatively easily calculated, is

proven to be related [139, 140]. Here, we use the entanglement fidelity for the quantum

channel to evaluate the quality of our gate [141]. Consider a quantum channel E acting on

quantum system Q. Suppose there is another quantum system R and there is a maximally

entangled state |φ〉 on system QR. The entanglement fidelity is defined as:

Fe(EQ) = 〈φ| [IR ⊗ EQ] (|φ〉 〈φ|) |φ〉 (3.14)

where IR is the action of the identity operation on the system R and EQ is the action of the

quantum channel on the system Q. In our scenario we considered a 2-qubit gate operation

instead of a quantum channel to transfer a quantum state. We adapt the above definition

to the entanglement fidelity of an imperfect quantum gate operation G as compared to the

ideal quantum gate operation U via:

Fe(UQ,GQ) = 〈φ|
[
IR ⊗ (U †Q ◦ GQ)

]
(|φ〉 〈φ|) |φ〉 (3.15)
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where UQ is the desired unitary gate operation on system Q and GQ is the non-ideal gate

operation, notation ◦ stands for composition of gate operations. Note that the quantum

operation G should be trace preserving, though it may be non-unitary. For example, the

quantum operation G, corresponding to the gate G
(1),ub
r , on the system density operator ρ

is,

G(1),ub
r (ρ) =

G
(1),ub
r ρ

[
G

(1),ub
r

]†
Tr

[
G

(1),ub
r ρ

[
G

(1),ub
r

]†] (3.16)

To apply the definition above to a two-qubit system, we need another two-qubit system

in order to construct a maximally entangled state over the four-qubits. We choose the

state |φ〉 =
∑4

j=1
1
2
|jR〉 |jQ〉, where |j〉 is |g2; g2〉, |g2; g3〉, |g3; g2〉, |g3; g3〉 for j = 1 to 4 on

corresponding 2-qubit systems. With the transition amplitudes calculated at the “magic”

frequency as A1 ∼ 0.1696 and A2 ∼ 0.2252, the entanglement fidelity of our gate operation

shown in Eq. (3.11) is

Fe(G(1),b
r ,G(1),ub

r ) =
(A1 + A2)2

2(A2
1 + A2

2)
∼ 0.981. (3.17)

3.3.3 M2 & M3 2-qubit gate schemes: “magic” frequency, x̂± ŷ-polarized drive

light

In this subsection, we discuss two schemes, M2 and M3, to perform the 2-qubit gate

operation at the “magic” frequency. In the M2 scheme, we choose (x̂+ ŷ) polarized driving

light with a (x̂ − ŷ) polarizer (mode filter) on the collection path. In the M3 scheme, we

also choose (x̂ + ŷ) polarized diving light, but use (x̂ + ŷ) polarizer. Scheme M2 results

in a slightly non-unitary gate with higher success probability as compared to scheme M3.

Scheme M3, on the other hand, results in a 2-qubit gate that is exactly unitary, but has a low

success probability. We note that similar schemes can be constructed with the alternative

choice of (x̂− ŷ) polarized drive light.

To understand the gate operation when we rotate the driving light polarization, we

need to know the scattered photon polarization. Suppose the driving photon is in state

|σ̂d〉 = cos(θ) |x̂〉i + sin(θ)eiφ |ŷ〉i. According to Eq. (3.6), if an NV center is initialized in |g2〉
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state, the final states of the NV center and the scattered photon are

|g2〉⊗ |σ̂d〉
Hscatter−−−−→ |Ψ2;σ̂d〉

= |g2〉
(
cos(θ)Axp,2 |x̂〉+ sin(θ)eiφAyp,2 |ŷ〉

)
+ |g3〉

(
cos(θ)Axf,2 |ŷ〉+ sin(θ)eiφAyf,2 |x̂〉

) (3.18)

where we use notation |Ψ2,σ̂d〉 to show the final state of the NV center and the scattered

photon when the initial state of NV center is |g2〉 and the drive light is |σ̂d〉. Using the

σ̂d polarized driving light to pump the transition from a single NV center in state |g2〉,

the state-preserving scattered photon is in state |σ̂p2〉 ∝ cos(θ)Axp,2 |x̂〉 + sin(θ)eiφAyp,2 |ŷ〉 up

to a normalization constant, while the state-flipping scattered photon is in state |σ̂f3 〉 ∝

cos(θ)Axf,2 |ŷ〉 + sin(θ)eiφAyf,2 |x̂〉. Similarly, the state of the photons from the scattering

process with initial state |g3〉 are |σ̂p3〉 ∝ Axp,3 cos(θ) |x̂〉 + Ayp,3 sin(θ) |ŷ〉 for state-preserving

photons, and |σ̂f3 〉 ∝ Axf,3 cos(θ) |ŷ〉+ Ayf,3 sin(θ)eiφ |x̂〉 for state-flipping photons.

As we rotate the driving light from the x̂ to ŷ direction, the scattered photons from

two state-flipping transitions do not have the same polarization, i.e., 〈σ̂f2 |σ̂
f
3 〉 6= 1 after the

proper normalization of states |σ̂f2 〉 and |σ̂f3 〉. This occurs because the transition amplitudes

Axf,2 = Ayf,3 6= Ayf,2 = Axf,3. Therefore, we need a polarizer on the collection path to erase the

quantum information carried by the state-flipping photons. If the NV center in state |gi〉 is

pumped with |σ̂d〉 drive light and the polarizer in the collection path only allows photons in

the state |p〉 = − sin(α) |x̂〉o + cos(α)eiβ |ŷ〉o, then the final state of the NV center heralded

by a photon detection is |ψp̂i,σ̂d〉 ∝ 〈p |Ψi;σ̂d〉.

By rotating the driving light polarization to the direction (x̂ + ŷ), i.e., |σ̂d〉i = |+〉 =

1√
2
(|x̂〉i+|ŷ〉i), we balance the state-flipping transition rates. In this case, the state-preserving

photons are polarized along (x̂ − ŷ) direction, and the state-flipping photons are polarized

at a small angle ±θ to the (x̂ − ŷ) direction, the sign being determined by the initial state

of the NV center (see Fig. 4).

In scheme M2, we erase quantum information carried by the state-flipping photon by

inserting a polarizer along the (x̂− ŷ) direction in the collection path. In scheme M3 we use

(x̂+ ŷ) polarizer instead.
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state-preserving: ̂x − ̂y

state-flipping 
θ

Figure 4: Polarization diagram for drive light polarized along (x̂ + ŷ). State-preserving

scattered photons are polarized along (x̂− ŷ). State flipping scattered photons are polarized

in a direction ±θ away from (x̂ − ŷ) (the sign being determined by the initial state of the

NV center).

We now analyze scheme M2 and come back to scheme M3 below. The polarizer only

allows photons in the state |p〉 = |−〉 = −1√
2
(|x̂〉o − |ŷ〉o) to reach the detector. Using the

relation of the transition amplitudes in Eq. (3.10), the transformation of a single NV center

state after the detector captures a heralding scattered photon is described by:

Ts =
Ā√

A2
p + Ā2

 Ap/Ā −1

1 −Ap/Ā

 (3.19)

in the basis |g2〉 and |g3〉, where Ā is the average state-flipping transition amplitude defined

as Ā = (A1 + A2)/2.

Again, assuming the right detector captures a photon, the 2-qubit gate can be described

by the matrix,

G(2)
r =

Ā

N



−(1+i)Ap
Ā

1 i 0

−1 (1−i)Ap
Ā

0 i

−i 0 (i−1)Ap
Ā

1

0 −i −1 (1+i)Ap
Ā

 (3.20)

in the basis of |g2; g2〉, |g2; g3〉 and |g3; g2〉 and |g3; g3〉, where the normalization constant is

defined as N2 = 2(A2
p + Ā2). Note that this gate is still not unitary. The non-unitarity is
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due to the existence of the residual state-preserving photons that cannot be filtered out from

the scattered light. However, since we are working at the “magic” frequency of the driving

light where the state-preserving transitions are highly suppressed, the gate unitarity is only

slightly broken. By the same argument as in Section 3.3.2, with state-preserving transition

amplitude Ap ∼ 0.0278, the entanglement fidelity of this gate is

Fe =
Ā2

Ā2 + A2
p

∼ 0.981. (3.21)

Since the polarization of the state-flipping photon is not aligned to the (x̂− ŷ) direction

exactly, the existence of the polarizer causes the desired photons to have a loss probability,

which decreases the gate success probability. In an ideal experimental setup, the gate opera-

tion fails if the first state-flipping photon fails to pass the polarizer. Therefore, we calculate

the probability that a photon emitted from the NV centers successfully passes the polarizer

to estimate the gate success probability. This probability is given by:

P− = 〈−|TrNV(ρ) |−〉 =
Ā2 + A2

p

(A2
1 + A2

2) /2 + A2
p

(3.22)

where ρ is the density operator for the NV centers and the scattered photon at the time

when the scattering process has occurred but the photon has not gone through the polarizer,

|−〉 = 1√
2

(− |x̂〉+ |ŷ〉) is the photon state that are allowed to pass the polarizer, TrNV is the

partial trace over all degrees of freedom of NV centers. In this case, the success probability

of our gate is 98.1%.

Scheme M3 is similar to scheme M2, except that we orient the polarizer along (x̂ + ŷ)

direction to only allow photons in state |p〉 = |+〉 = 1√
2

(x̂+ ŷ) to pass the polarizer. In

this case, the gate is perfectly unitary (when operated at the “magic” frequency). Following

arguments similar to the M2 scheme above, we find that the 2-qubit gate, conditioned on a

click in the right detector, is described by the matrix:

G(3)
r =

1√
2


0 1 i 0

1 0 0 i

i 0 0 1

0 i 1 0

 . (3.23)
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Note that this gate operation exactly matches Eq. (3.1).

However, since the scattered photons from state-flipping transitions are nearly polarized

along (x̂ − ŷ) direction, the component along the direction (x̂ + ŷ) is small, which causes

a low gate success probability as most state-flipping photons are stopped by the polarizer.

Similar to the previous case, the gate success probability is calculated as:

P+ = 〈+|TrNV (ρ) |+〉 =
(A1 − A2)2 /4

(A2
1 + A2

2) /2 + A2
p

∼ 1.9 %. (3.24)

3.3.4 B1 2-qubit gate scheme: “balance” frequency drive light

Because of the orthogonality of the dipole moment matrix discussed at the beginning of

Section 3.3.2, the scattered photons from state-preserving and state-flipping transitions can

be fully distinguished by polarization if the driving light is along x̂ or ŷ direction. Therefore,

besides the “magic” frequency of the driving light, we can find a frequency point for the

driving light to give us balanced state-flipping transitions and use a polarizer to discard

the state-preserving photons. This “balanced” point is shown in Fig. 3 by the blue arrow.

If the driving light is polarized along x̂ direction, at the “balance” frequency, the state-

flipping transition amplitudes satisfy Axf,2 = Axf,3. Combining this fact with a polarizer along

ŷ direction in the collection path, if the right detector captures the scattered photon, the

2-qubit unitary gate is described by the matrix

G(4)
r =

1√
2


0 1 i 0

1 0 0 i

i 0 0 1

0 i 1 0

 (3.25)

in the same basis as Eq. (3.11).

Unlike in scheme M3 that was described in the previous subsection, in scheme B1 the

state-preserving transition rate is comparable to the state-flipping transition rate. We now

point out that the existence of state-preserving transitions, though the scattered photons

from these transitions are completely filtered out, decoheres the initial states of the NV

centers.
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To understand the decoherence mechanism associated with the state-preserving transi-

tions, we construct the master equation to describe the time evolution of the NV center. We

assume the NV centers are driven by a x̂ polarized light and the polarizer in the collection

path is along ŷ direction. For simplicity, we assume the emitted photons only couple to the

right propagating modes of the waveguide and are detected by the right detector. Since the

state-preserving photons are polarized along ŷ, while the state-flipping photons are polarized

along x̂, they couple to two different waveguide modes (see 3.5.1 for details). We further

assume the driving light is weak and far-detuned from the excited states, so we can construct

an effective Hamiltonian to describe the scattering process where only ground states |g2〉 and

|g3〉 of NV centers appear (see 3.5.3 for details). Therefore, we can treat each NV center

as a two-level system. We further treat the two waveguide modes as two thermal baths at

temperature zero and trace out the photon degrees of freedom, so that the master equation

for the NV centers is:

∂tρ = B
(

2L̂ρL̂† − L̂†L̂ρ− ρL̂†L̂
)

(3.26a)

+B
(

2ĜρĜ† − Ĝ†ρĜ− ĜρĜ†
)
,

L̂ = A
(x)
f,2

(
iσ

(1)
23 + σ

(2)
23

)
+ A

(x)
f,3

(
iσ

(1)
32 + σ

(2)
32

)
, (3.26b)

Ĝ = A
(x)
p,2

(
iσ

(1)
22 + σ

(2)
22

)
+ A

(x)
p,3

(
iσ

(1)
33 + σ

(2)
33

)
, (3.26c)

where L̂ and Ĝ are two jump operators describing the state-flipping transitions and state-

preserving transitions respectively, the operator σ
(i)
jk is the operator acting on i-th NV center

and flips NV state from |gj〉 to state |gk〉, i.e., σ
(i)
jk = |gk〉 〈gj| for i-th NV center, and B = 2πneff

c~2

is a constant, where neff is the mode effective refractive index (see Eq. (3.53) in 3.5.3). We

find that the second term in the master equation involving Ĝ causes the off-diagonal elements

of the two-NV density matrix to decay if the state-preserving transitions are not balanced.

This means that if our initial state is prepared in an entangled state of two NV centers, the

entanglement between the two NV centers is destroyed by these undetected state-preserving

transitions, which will also limit our gate operation time at this frequency point.

We can also calculate the gate success probability using a similar method to the one

illustrated by Eq. (3.22) and Eq. (3.24), which we find to be 37.4%. Note that the suc-

cess probability is a “first-photon” success probability, which means we know in advance
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the scatter has happened and a single scattered photon has already been emitted into the

waveguide mode. In the more realistic case, we can only monitor the detector and we have

no information whether the state-preserving transitions happens or not. Gate fidelity and

success probability for this case will be discussed in Section. 3.4 using quantum trajectory

method.

3.4 2-qubit gate fidelity and success probability

In this section, we analyze the fidelity and success probability of our proposed 2-qubit

gate for NV centers with possible experimental imperfections. First of all, we notice that NV

centers have a phonon side bind which causes Raman scatterings. However, these scattered

photons do not have same frequencies as the driving light so that we can filter out and also

monitor these photons. The existence of the phonon side band decreases the gate success

probability, but does not decrease the gate fidelity. In the following discussion, we ignore

the phonon side band and mainly focus on (1) the imperfect scattered photon collection and

detection efficiency of the experimental setup, (2) the unbalanced state-flipping transition

rates, and (3) possible population loss from the |g2〉 and |g3〉 manifold. We use quantum

trajectory simulations with continuous measurement of the scattered photons to estimate

the output state fidelity and success probability with different gate operation schemes and

photon collection strategies. In the simulations we use the transition amplitudes calculated at

the corresponding driving light frequency and take different types of imperfections together

into consideration.

3.4.1 Imperfect scattered photon collection and detection efficiency

Unlike the quantum entanglement proposals in Ref. [127, 128, 129, 130, 131], when

applying a unitary gate to two NV centers, in general, we do not know in advance which

states these NV centers are. Therefore the NV centers cannot be reset back to initial input

state to re-apply the gate operation. It is critical to detect the first state-flipping photon from
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the two NV centers to perform the unitary gate operation successfully. One possible error

source in real experiment for our proposed 2-qubit gate is the imperfect photon collection

and detection efficiency of the experimental setup, which we now discuss.

If the detection efficiency of the setup is imperfect, any loss of the heralding photons

indicates that undetected state-flipping transitions occurred on either of the two qubits.

After missing one or several scattered photons, a photon detection projects the NV centers

into an undesired 2-qubit state, which degrades the gate fidelity. To estimate the quality of

the gate operation with imperfect photon detection efficiency, we perform quantum trajectory

calculation with continuous measurement of the scattered photons to numerically investigate

the gate fidelity and success probability.

In our model, because we only consider the scattering between the states |g2〉 and |g3〉,

we treat NV centers as 2-level systems by using the effective Hamiltonian for the scattering

process (see 3.5.3 for details). For simplicity, we ignore other imperfections, i.e., our 2-qubit

gate is working at a fictitious driving frequency at which two state-preserving transitions

are perfectly suppressed and the two state-flipping transitions are balanced. Therefore, the

transition amplitudes in Eq. (3.26) satisfy Axp,2 = Axp,3 = 0 and Axf,2 = Axf,3 ≡ A and thus the

master equation can be written as,

∂ρ

∂t
= −Γ

2

(
L̂†L̂ρ+ ρL̂†L̂− 2L̂ρL̂†

)
(3.27a)

L̂ = iσ
(1)
23 + σ

(2)
23 + iσ

(1)
32 + σ

(2)
32 (3.27b)

where Γ = B|A|2 is the state-flipping transition rates, σ
(i)
jk = |gk〉 〈gj| is the operator for

i-th NV transiting from state |gj〉 to state |gk〉 with j, k = 2, 3. Because in the present

consideration, the two state-flipping transitions are balanced, the output state fidelity for

all possible input states should be the same and hence the output state fidelity for a certain

input state is the gate fidelity. We choose state |ψi〉 = |g2〉 ⊗ |g2〉 as the input state. We

labels the 2-NV state |gi〉 ⊗ |gj〉 as |gi; gj〉.

To calculate the output state fidelity of input state |ψi〉 = |g2; g2〉, at the beginning of

each trajectory, we initialize both NV centers in |g2〉 state and stochastically evolve the two

NV centers according to the master equation in Eq. (3.27) conditioned on the measurement

result from the detector. When a photon is emitted from NV center, it has probability η to
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be detected by the detector, otherwise the photon is lost into the bath. The photon detection

is a projection measurement, with the jump operator L̂ in Eq. (3.27) as the measurement

projector. When a scattered photon is detected by the detector, the density matrix collapses

to ρ′ ∝ L̂ρL̂† up to a normalization constant. It is obvious that if the detection efficiency

η = 1, the gate operation is a 2-qubit unitary gate described by Gr in Eq. (3.1).

Figure 5: Unitary gate fidelity, F , drops as overall scattered photon collection efficiency, η,

decreases with the first gate operation strategy (see main text).

The first strategy to perform the 2-qubit unitary gate is to run the trajectory until

we receive a photon by the detector. In real experiment, it is equivalent to running the

experiments until a photon is detected without limiting the collection time window. When

a photon is detected, we stop the time evolution of the trajectory and calculate the output

state fidelity using the target state |ψt〉 = Gr |ψi〉 = 1√
2

(|g2; g3〉+ i |g3; g2〉). Since we do

not limit the total time to end the protocol, we always have a positive detection result and

thus the gate is always considered as success. However, the gate fidelity suffers from the

missing photon cases. We ran 1000 independent trajectories in total to build up statistics

for the gate fidelity. The gate fidelity as a function of overall photon detection efficiency (η)

is shown in Fig. 5. The numerical simulation matches our expectation that as the collection

efficiency drops, it becomes more and more likely that the first scattered photon is missed,

and hence the overall output state fidelity drops. When the collection efficiency η = 1, the
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fidelity is 1. The fidelity drops to 0.5 when the overall photon detection efficiency drops

to η ∼ 0.45. Based on the proposed geometry of the diamond waveguide, we calculate the

overall collection efficiency of the diamond waveguide to be 85% (see Appendix for details).

At the 85% photon collection efficiency, the gate fidelity is 0.8547± 0.0040.

Figure 6: The missing scattered photon cases degrade the gate fidelity when photon detection

efficiency is imperfect. Using the second gate operation strategy (see main text), the the

gate fidelity [in (a)] and success probability [in (b)] is investigated numerically as a function

of maximum collection time window (∆τ). The overall photon detection efficiency is 85%.

The second strategy aims to improve gate fidelity with an imperfect photon detection

efficiency, by limiting the maximum photon collection time window. This will help to rule

out missing photon cases and improve the fidelity of the 2-qubit gate operation. However, as

we decrease the collection window, it is possible not to detect any photons within the time

bin, and hence the gate success probability is expected to drop as we shrink the collection

window. We numerically investigate the output state fidelity and success probability as we

change the duration of collection window. We use the same quantum trajectory method with

a collection efficiency η to stochastically time evolve the master equation in Eq. (3.27). We

still use the state |ψi〉 = |g2; g2〉 as the input state and |ψt〉 = 1√
2
(|g2; g3〉 + i |g3; g2〉) as the

target state. If we get a positive detection result within the collection window, we stop the

trajectory and measure the output state fidelity. Otherwise, if no scattered photon is detected

till the end of the collection window, we reckon the gate fails and stop the trajectory. The
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numerically calculated average gate fidelity and gate success probability with η = 0.85 as we

change the collection window is plotted in Fig. 6(a) and Fig. 6(b) respectively. The average

gate fidelity improves as we shrink the collection window, but the success probability drops,

as we expected. For example, if we choose the collection window Γ∆τ = 0.1, the fidelity

can be improved to 0.9857 ± 0.0007, however, the success probability of the gate decreases

to 0.155. To conclude, this gate operation strategy trades the successful probability for high

gate fidelity.

We want to point out that Ref. [142] shows that constructing a graph or cluster state

requires a minimum success probability of 1/3. In our numerical simulations this threshold

can be met by setting the collection window to be Γ∆τ = 0.3, which results in the gate

success probability of 0.397 and an average output state fidelity of 0.9588± 0.0013.

3.4.2 Unbalanced state-flipping transitions

In the above calculation, we assumed that the two state-flipping transition rates are

balanced. However, this assumption does not have to hold. For example, in scheme M1,

which we discuss in Section 3.3.2, the transition rates for the two state-flipping transitions

are different. Furthermore, the state-flipping transition rates of two NV centers may also be

different (e.g. due to different coupling strength to the waveguide modes). In Section 3.3.2,

we considered the gate fidelity when the state-flipping transitions rates are not equal, but

two NV centers are identical. In this subsection we consider a more general case when the

two state-flipping transitions of two NV centers emit indistinguishable scattered photons,

but the rates can be different. We analyze the gate operation and the gate fidelity.

When the state-flipping transition rates are different from one NV center to the other

one, we use A
(i)
1 and A

(i)
2 to note the transition amplitude for state-flipping transitions

from |g2〉 to |g3〉 and |g3〉 to |g2〉 of i-th NV center. Here we assume there is no state-

preserving transitions and detection efficiency is 1 to only focus on the imperfection caused

by the unbalanced state-preserving transitions. We also assume the state-flipping transition

amplitudes are all positive.

Similar to the previous subsection, we assume the scattered photons only couples to the
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right-propagating modes, and thus the master equation of the two NV centers in this case

is similar to the master equation shown in Eq. (3.26) as,

∂ρ

∂t
= −B

2

(
L̂†L̂ρ+ ρL̂†L̂− 2L̂ρL̂†

)
(3.28a)

L̂ = iA
(1)
1 σ

(1)
23 + A

(2)
1 σ

(2)
23 + iA

(1)
2 σ

(1)
32 + A

(2)
2 σ

(2)
32 (3.28b)

When a photon is captured by the detector, it corresponded to a projection measurement

onto the NV centers which is described by the jump operator L̂. Therefore the gate operation

can be described by the matrix,

L̂ =


0 A

(2)
2 iA

(1)
2 0

A
(2)
1 0 0 iA

(1)
2

iA
(1)
1 0 0 A

(2)
2

0 iA
(1)
1 A

(2)
1 0

 (3.29)

in the same basis as Eq. (3.11). We can use the same method as discussed in Section 3.3.2 to

estimate the gate fidelity. We can define Ā as the average of these four state-flipping transi-

tion amplitudes as Ā =
∑

i,j A
(i)
j /4 and the derivations of each specific transition amplitude

from this average amplitude by δi,j = A
(i)
j − Ā. When the four transition amplitudes are not

severely unbalanced, i.e.,
∣∣δi,j/Ā∣∣ � 1, we can expand the output state fidelity in series of

δi,j/Ā. In general, the gate fidelity will drop linearly as δ2
i,j/Ā

2 increases. As we see from

Section 3.3.2, when A
(1)
i = A

(2)
i , the deviation of the transition amplitudes δi,1 = −δi,2 ≡ δ.

The gate fidelity can then be expanded as,

F =
Ā2

Ā2 + δ2
∼ 1− δ2

Ā2
(3.30)

Let’s also discuss the case when two state-flipping transition amplitudes for a single NV

center are balanced, however, the same transitions for different NV centers have a constant

transition amplitude offset. In this case, we assume A
(1)
j = Ā − δ, and A

(2)
j = Ā + δ. The

gate fidelity is also given by Eq. (3.30).
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3.4.3 Overall output state fidelity

In this subsection, we evaluate the gate quality by numerically simulating the output

state fidelity and success probability with the four possible gate operation schemes discussed

in Section 3.3 combined with the two proposed collection strategies discussed in Section 3.4.1.

The four gate operation schemes are summarized in Table. 2. The two collection strategies

are collecting the photon (1) without and (2) with a maximum collection window ∆τ .

With all four gate operation schemes, we explore the output state fidelity when state

|ψ1〉 = |g2; g2〉, |ψ2〉 = |g2; g3〉 and |ψ3〉 = 1√
2

(|g2; g2〉+ i |g3; g3〉) as the gate input states us-

ing quantum trajectory simulation with continuous measurement on the scattered photons.

We set the overall collection efficiency of the photons through the polarizer to 85%. The gate

average fidelity and gate success probability without and with a maximum collection time

window ∆τ = 0.1/Γ̄f is shown in Table 3. Here, Γ̄f is the average state-flipping transition

rates, Γ̄f = (A2
1 + A2

2) /2, where A1 and A2 is the absolute value of the state-flipping tran-

sition amplitudes at the working frequency [see Eq. (3.6)]. We also listed the output state

fidelity with corresponding gate operation schemes with perfect photon detection efficiency

and infinite pump power for reference, which set a theoretical upper bound for the output

state fidelity in the corresponding cases.

To estimate the gate fidelity of the different schemes we use the worst output state fidelity

in Table 3. M3 and B1 are two schemes that are perfectly unitary in ideal conditions. When

we don’t setup a finite collection window, since the gate operation scheme M3 suffers low

success probability, even with perfect collection efficiency, the output state fidelity drops

significantly from unity. This is because most of the detected photons are from the long-

time scatter events, i.e., the NV center system tends to relax to its steady state before the

heralding photon is detected. Therefore, it is equivalent to applying the gate to the steady

state of the master equation, which gives an output state fidelity ≈ 0.25. If we don’t limit

the collection window, the gate operation scheme B1 has significantly different output state

fidelity when the input state is |ψ1〉 (or |ψ2〉) and |ψ3〉. This is because the undetected

state-preserving transitions decohere the input state, even though they do not flip the NV

spin states and their photons are perfectly separated from the state-flipping photons. The
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Table 3: Output state fidelity and gate success probability for input states |Ψ1〉 = |g2; g2〉,

|Ψ2〉 = |g2; g3〉, |Ψ3〉 = 1√
2
(|g2; g2〉 + i |g3; g3〉) with the four gate operation schemes, M1,

M2, M3 and B1 (see Table. 2), when the photon collection efficiency is perfect (labeled

Perfect Collection), imperfect with an infinite photon collection time window (labeled η =

0.85, Γ̄f∆τ = ∞), and imperfect with a finite photon collection time window (labeled η =

0.85, Γ̄f∆τ = 0.1). Note for the case of perfect collection, and the case of imperfect collection

with infinite photon collection time window P = 1.

Input Perfect η = 0.85 η = 0.85

State Collection Γ̄f∆τ =∞ Γ̄f∆τ = 0.1

F F F P

M1

|Ψ1〉 1.0 0.848± 0.004 0.9896± 0.0006 0.106

|Ψ2〉 0.981 0.837± 0.005 0.9704± 0.0005 0.164

|Ψ3〉 0.981 0.824± 0.005 0.9665± 0.0006 0.156

M2

|Ψ1〉 0.981 0.819± 0.005 0.9683± 0.0006 0.172

|Ψ2〉 0.981 0.824± 0.005 0.9678± 0.0006 0.166

|Ψ3〉 0.981 0.823± 0.005 0.9683± 0.0006 0.169

M3

|Ψ1〉 1.0 0.255± 0.002 0.916± 0.004 0.0037

|Ψ2〉 1.0 0.256± 0.002 0.902± 0.004 0.0035

|Ψ3〉 1.0 0.255± 0.002 0.911± 0.004 0.0033

B1

|Ψ1〉 1.0 0.859± 0.004 0.9870± 0.0006 0.172

|Ψ2〉 1.0 0.857± 0.004 0.9842± 0.0007 0.153

|Ψ3〉 1.0 0.571± 0.006 0.906± 0.004 0.150
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input state |ψ3〉 decoheres to an equal mixture of states |g2; g2〉 and |g3; g3〉, which makes the

output state-fidelity drop to ≈ 0.5. The finite collection time window helps to discard the

long-time detection events, which improves the output-state fidelity significantly, especially

for the gate operation scheme M3.

Gate operation schemes M1 and M2 are not perfectly unitary even in the ideal case.

However, since the polarizer setup has little probability to block the state-flipping photons

and the state-preserving transitions are highly suppressed due to the “magic” frequency of

the driving light, these two schemes behave much better when the collection time is not

limited. When we have a finite collection window, the output state fidelity also improves.

Compared to the gate operation schemes M3 and B1, the schemes M1 and M2 have better

output state fidelity.

We comment that schemes M3 and B1 can, in principle, reach sufficiently high fidelity

so as to overcome the error correction threshold. This would make it possible to implement

error correction codes like the surface code [143, 144]. At present, achieving this goal requires

(1) significant progress in optical single photon detectors and (2) device optimization that

is closely tied to the device fabrication process.

3.4.4 Population loss due to the transition out of the |g2〉, |g3〉 manifold

Any process that transfers population out of |g2〉 and |g3〉manifold, i.e., to the other states

like |g1〉, results in no further photon detections after this “leakage” transition happens. This

will degrade the success probability of the gate. There are two possible leakage paths, (1)

by the Raman scattering process to state |g1〉, (2) by exciting to the NV electronic excited

states then by the non-radiative relaxation through the meta-stable states of NV centers to

|g1〉.

To examine the effect of spin Raman transition from logic states |g2〉 and |g3〉 to state

|g1〉, we refer to the dipole matrix in Eq. (3.41) in 3.5.2, and calculate the leakage transition

amplitudes as,

Axl,2

A
(x)
0

=
1

∆1

F21F11 −
1

∆3

F22F12 (3.31a)
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Figure 7: We study the population leakage from state |g2〉 and |g3〉 manifold into state

|g1〉 state caused by spin-Raman transitions. We plot the transition rate under the same

pumping laser as in Fig. 3. The “magic” frequency is pointed out by the red dashed arrow

while the “balance” frequency is labeled by the blue solid arrow. The population leakage

rate by spin-Raman transition is much slower than the state-flipping transitions shown in

Fig. 3 and hence we do not expect to see large population within the detection window.
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Ayl,2

A
(y)
0

= − 1

∆1

F21F11 +
1

∆3

F22F12 (3.31b)

Axl,3

A
(y)
0

= − 1

∆2

F21F11 +
1

∆4

F22F12 (3.31c)

Ayl,3

A
(x)
0

= − 1

∆1

F21F11 +
1

∆3

F22F12 (3.31d)

Where F11 = 0.0513 and F12 = 0.9987 are two dimensionless parameters from the dipole

moments between eigenstates of spin-orbit and spin-spin Hamiltonian of single NV centers

(see Eq. (3.41) in 3.5.2), ∆i are the energy mismatch for excited level |ei〉. If we consider

the fact that the excited states |e1〉 and |e2〉, |e3〉 and |e4〉 are energetically degenerate, i.e.,

∆1 = ∆2, ∆3 = ∆4, these four transition amplitudes satisfies − Axl,2

A
(x)
0

=
Ayl,2

A
(y)
0

=
Axl,3

A
(y)
0

=
Ayl,3

A
(x)
0

.

We plot the magnitude of R.H.S of Eq. (3.31) in Fig. 7, and label the “magic” point and

“balance” point by red dashed and blue solid arrows respectively. At the “balance” point,

the leak transition amplitudes are two orders of magnitudes smaller than the state-flipping

transition amplitudes and hence have little impact on the gate operation scheme B1. The

population of the NV centers in ground states |g2〉 and |g3〉 decays slowly to |g1〉 due to the

existence of the leakage transitions, which sets a maximum gate operation window to avoid

significant population loss.

At the “magic” point, the leak transition amplitudes are comparable to the state-

preserving transition amplitudes. Note that this suppression is not due to the interference.

Instead, it is mainly suppressed by the small mixing of excited spin Sz = 0 states with spin

Sz = ±1 states that caused by the spin-spin interaction [137]. Compared to the state-flipping

transition amplitudes, the leakage transition amplitudes are approximately ten times smaller

than the state-flipping transition amplitudes. The gate operation schemes working at the

“magic” frequencies are not severely affected.

To quantitatively estimate the effect of the non-radiative relaxation process, we approx-

imate the dynamics of NV centers with the metastable spin-singlet states as a three-level

system, ground state |0〉, excited state |1〉 and meta-stable state |2〉. The transition between

states |0〉 and |1〉 are driven by an off-resonance classical laser field. The non-radiative relax-

ation process from state |1〉 to meta-stable state |2〉 are modeled by the coupling to a thermal
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optical phonon bath with temperature zero. Therefore the dynamics can be described by

the master equation

∂tρ = −i(2π) [−δσ00 + ΩR (σ01 + σ10) , ρ] + Lρ, (3.32a)

Lρ = −ΓNR
2

(σ11ρ+ ρσ11 − 2σ21ρσ12) , (3.32b)

where operators σij are defined by σij = |i〉〈j|, hδ = ε1 − ε0 − hνd is the detuning of the

drive field, εi is the energy of the state |i〉, hΩR = p0Ed is the Rabi frequency, p0 is the

dipole moment for the optical transition between |0〉 and |1〉, which is approximated as

p0 ≈ 5.2 Debye (see 3.5.3 and Ref. [145]), Ed is the driving light electric field, ΓNR is the

non-radiative relaxation rate from state |1〉 to |2〉.

We estimate the non-radiative relaxation rate ΓNR by the lifetime of the excited levels of

NV centers. In Ref. [138], a six-level model is introduced to describe the NV center electronic

structure. The excited manifold is simplified as two states with quantum number Sz = 0

and Sz = ±1, with measured lifetime 12.0 ns and 7.8 ns respectively [146]. We further

assume that the excited state Sz = 0 has no relaxation path to the meta-stable state and the

radiative relaxation from excited states back to ground states of NV centers are the same,

and hence the non-radiative relaxation rate from excited state Sz = ±1 can be estimated

using the difference of the lifetimes of these two excited states as ΓNR ≈ 44.9 MHz.

We approximate the detuning by the smallest detuning of our driving light, to one of

the four excited states with Sz ∼ ±1, i.e., |e1〉, |e2〉, |e5〉 and |e6〉. If our proposed gate is

working at the “magic” frequency of the driving light, the detuning δ ≈ 3.95 GHz for a ŷ

polarized driving light and 5.11 GHz for a x̂ polarized driving light. Clearly, ΓNR/δ � 1, so

that we work in the dressed-state basis and then treat the Lindblad term Lρ in Eq. (3.32)

as a perturbation.

In our previous treatment of scattering transitions, we implicitly assumed that the Rabi

frequency is small compared to detuning, i.e., ΩR/δ � 1. The dressed state basis for the

Hamiltonian in Eq. (3.32) is |−〉 ∼ |0〉 − ΩR
δ
|1〉 and |+〉 ∼ |1〉+ ΩR

δ
|0〉. If all the population

is in state |0〉 at the beginning, we would expect most of the population will be remain in

the state |−〉 after we start driving the Rabi oscillation. Since the non-radiative relaxation

removes the population in state |1〉 only, the decay rate for the population in state |−〉 is
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Γ− ∼ ΓNRσ11 |−〉 〈−|σ11 ∼ ΓNR
Ω2
R

δ2 ∝ E2
d . As we show in 3.5.3, the state-flipping transition

rate at the “magic” point is Γt ∼ Γ0 ∝ E2
d , we can calculate the ratio between the lower

state-flipping transition rates versus the non-radiative relaxation rate as Γt/Γ− ∼ 1.63 and

0.975 for x̂ and ŷ polarized driving light respectively, which are independent of the driving

strength Ed. These two ratios set a hard limit on the collection time window of the scattered

photon before the population is lost.

We perform the same calculation at the “balance” point, and determine the hard limit

on the collection window. As the “balance” point is located between the excited states |e5〉

and |e6〉, this balance frequency for gate operation is more vulnerable to population loss.

The transition ratio Γt/Γ− is calculated as 0.744 and 0.412 for x̂ and ŷ polarized driving

light at “balance” point. We summarize the parameters we used and the results in Table 4

for reference.

3.5 Detailed calculation for two-qubit gate schemes for NV centers

3.5.1 Waveguide modes and the NV center coupling strength

In this section of the appendix, we analyze the triangular diamond waveguide and its

mode profiles. The triangular diamond waveguide we proposed in our paper has 300 nm

edge. The diamond waveguide can be experimentally fabricate using anisotropic plasma

etching [147]. The mode profiles are calculated by solving eigenproblem of discretized trans-

verse Maxwell equation using Lumerical Mode solution solver. There are only two degenerate

guided modes at the “magic” frequency. The mode profiles are shown in Fig. 8. The modes

are normalized according to,

∫
dxdyεr(x, y) ~E∗m(x, y) · ~En(x, y) = δm,n (3.33)

where indices m and n are for modes, εr is the relative permittivity.

To calculate the light collection efficiency of the diamond waveguide, we treat the NV-

center as a dipole moment ~p = |p| · p̂ located at position ~r0, where p̂ is the unit vector along
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(c)(b)(a)

(d) (e) (f)

Figure 8: The mode profiles of the triangular diamond waveguide. The waveguide has 300

nm edge. The diamond waveguide supports two degenerate propagating modes. Mode 1 Ex,

Ey and Ez components are plotted in (a) to (c), while mode 2 components are plotted in (d)

to (f).
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the dipole moment. We only consider the dipole interaction between NV-centers and the

modes inside the waveguide. If we have a well defined mode in the cross-section, whose

electric field is ~En(~r), the emission rate from the NV-center to this mode Γn is proportional

to |p|2 · | ~En(~r0) · p̂|2. For a complete set of orthonormal modes in space with frequency of

emission light { ~En(~r)}, the total rate can be calculated as Γtotal =
∑

n|p|2 · | ~En(~r0) · p̂|2.

Therefore, the collection efficiency of the waveguide is,

η(~r0) =

∑′
n| ~En(~r0) · p̂|2∑
n| ~En(~r0) · p̂|2

, (3.34)

where
∑′

n is the summation over the guided modes only, an
∑

n is the summation over all

the modes in the complete set of orthonormal modes.

Figure 9: The diamond waveguide collection efficiency of the Raman photon emitted from

a NV-center located in the cross-section of the waveguide. The NV-center is modeled as

a dipole moment. The black triangle labeled in the plot shows the diamond waveguide

boundary. The collection efficiency of photons when the dipole moment is pointing along x,

y and z direction is plotted in (a), (b) and (c).

In the numerical approach, we cannot solve an infinite large region. Instead, we solve the

modes using a finite size cross-section region. The boundary condition around the region is

chosen as perfect matched layer (PML) to simulate the infinite space. We plot the collection

efficiency of the diamond waveguide with a dipole moment pointing along x, y and z direction

at different position in this cross-section in Fig. 9. From the figure, the collection efficiency
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for a NV-center whose electric dipole moment is along the x or y direction is η ≈ 0.86.

However, when the dipole moment is pointing along z direction, the collection efficiency

is poor because a dipole moment pointing along z direction mainly radiates in a direction

transverse to the direction of the waveguide.

Assuming the NV center is centered in the waveguide, i.e., x, y ∼ 0, and the NV center is

orientated as Fig. 1(c) shows, the optical dipole moment is along the transverse direction of

the waveguide. According to Fig. 9, the NV center optical transitions with x̂ dipole moment

strongly couples to the mode 1 and almost no coupling to mode 2, while the transitions with

ŷ dipole moment strongly couples to the mode 2 and almost no coupling to mode 1.

3.5.2 Dipole moment of NV-centers without external magnetic field

In this section, we discuss the NV center dipole moment matrix for optical transitions

between electronic ground and excited state of NV centers with spin-orbit, spin-spin interac-

tions, and with strain field in diamond crystal. We assume there is no magnetic field applied

to the NV center. Here, we follow the notation of Ref. [137], which gives a detailed review

of the electronic properties of negatively charged NV centers. We want to stress that the

directions x̂, ŷ and ẑ in this section are the intrinsic directions of an NV center. The direction

ẑ is defined as the axial direction of NV center, i.e., the direction along the nitrogen atom

and the vacancy site, which is the [111] direction of the diamond crystal.

The NV center electronic fine states structure is shown in Fig. 3(a) of our main paper.

Here we assume the dipole moment operator ~̂p between the molecule orbits of NV-centers

are,

〈ex| ~̂p |a1〉 = p0 · x̂ , 〈ey| ~̂p |a1〉 = p0 · ŷ (3.35)

where |a1〉, |ex〉 and |ey〉 are molecule orbits of NV centers [137], x̂ and ŷ are unit vector

pointing along x or y direction. We note that the state |ey〉 has intrinsic dipole moment and

〈ex| ~̂p |ey〉 is non-zero. However, since we only consider the transition between spin-triplet

ground states and excited states of an NV center, the assumption in Eq. (3.35) is enough.

The equality of the magnitude of these two dipole moment is guaranteed by Wigner-Echart

theorem.
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Using Eq. (3.35) with Table 1 (and Table A.1) in Ref. [137], we can calculate the dipole

moment operators between the electronic fine levels of ground and excited states. Here we

only consider spin 1 states whose energy is inside the diamond band gap. Because the dipole

transition does not interact with spin degree of freedom, the spin projection along z direction

should be invariant. The non-zero dipole moment operator elements between definite orbital

symmetry states are:

〈A2, 1, 0| ~̂p |Ex, 1, 0〉 = p0 · ŷ (3.36a)

〈A2, 1, 0| ~̂p |Ey, 1, 0〉 = p0 · x̂ (3.36b)

〈A2, 1,+1| ~̂p |Ex, 1,+1〉 = p0 · ŷ (3.36c)

〈A2, 1,+1| ~̂p |Ex, 1,+1〉 = p0 · x̂ (3.36d)

〈A2, 1,−1| ~̂p |Ex, 1,−1〉 = p0 · ŷ (3.36e)

〈A2, 1,−1| ~̂p |Ex, 1,−1〉 = p0 · x̂ (3.36f)

Here the states are labeled as |k, S, Sz〉, where k labels the lattice symmetry group irreducible

representations, S is the spin quantum number, Sz is the z-direction spin projection quantum

number. These states can be found in Ref. [137] Table 1 and Table A.1. For completeness,

we list them using hole representation here,

|A2, 1, 0〉 = (|exēy〉+ |ēxey〉) /
√

2 (3.37a)

|Ex, 1, 0〉 = (|ā1ex〉+ |a1ēx〉) /
√

2 (3.37b)

|Ey, 1, 0〉 = (|ā1ey〉+ |a1ēy〉) /
√

2 (3.37c)

|A2, 1, 1〉 = |ēxēy〉 (3.37d)

|Ex, 1, 1〉 = |ā1ēx〉 (3.37e)

|Ey, 1, 1〉 = |ā1ēy〉 (3.37f)

|A2, 1,−1〉 = |exey〉 (3.37g)

|Ex, 1,−1〉 = |a1ex〉 (3.37h)

|Ey, 1,−1〉 = |a1ey〉 (3.37i)

where the bar denotes spin-down.
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Similarly, we can also find the dipole moment operators between definite spin-orbital

symmetry states which are shown in Table 1 of Ref. [137]. The states |g1〉, |g2〉 and |g3〉 are

used to label states ΦSO
1,A1

, ΦSO
2,E,x and ΦSO

2,E,y in Ref. [137] respectively. Since these states do

not mix under spin-orbit and spin-spin interactions, we write them down explicitly here for

ease of use later,

|g1〉 = |A2, 1, 0〉 (3.38a)

|g2〉 =
−1√

2
(|A2, 1, 1〉 − |A2, 1,−1〉) (3.38b)

|g3〉 =
−i√

2
(|A2, 1, 1〉+ |A2, 1,−1〉) . (3.38c)

We also write down the excited fine levels with definite spin-orbit symmetry, which we label

|e1〉 to |e6〉 here (these are labeled ΦSO
5,E,x, ΦSO

5,E,y, ΦSO
6,E,x, ΦSO

6,E,x, ΦSO
7,A2

and ΦSO
8,A1

in Ref. [137]):

|e1〉 = ΦSO
5,E,x =

1

2
[−i (|Ex, 1, 1〉+ |Ex, 1,−1〉) (3.39a)

− (− |Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e2〉 = ΦSO
5,E,y =

1

2
[− (− |Ex, 1, 1〉+ |Ex, 1,−1〉) (3.39b)

+ i (|Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e3〉 = ΦSO
6,E,x = − |Ey, 1, 0〉 (3.39c)

|e4〉 = ΦSO
6,E,y = |Ex, 1, 0〉 (3.39d)

|e5〉 = ΦSO
7,A2

=
1

2
[(− |Ex, 1, 1〉+ |Ex, 1,−1〉) (3.39e)

+ i (|Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e6〉 = ΦSO
8,A1

=
1

2
[−i (|Ex, 1, 1〉+ |Ex, 1,−1〉) (3.39f)

+ (− |Ey, 1, 1〉+ |Ey, 1,−1〉)]

The non-zero dipole moment operator matrix elements can be calculated for states of definite

spin-orbital (SO) symmetry using the molecular orbitals. The dipole moment operators
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between the SO ground and excited state are labeled ~̂pi,j = 〈gi| ~̂p |ej〉, and can be represented

as a matrix:

~̂pi,j = p0 ·


0 0 x̂ ŷ 0 0

− x̂√
2

ŷ√
2

0 0 − ŷ√
2

x̂√
2

ŷ√
2

x̂√
2

0 0 x̂√
2

ŷ√
2

 . (3.40)

Here 0 indicates forbidden in dipole transitions. Note, this dipole moment operator matrix

is consistent with the group symmetry prediction shown in Table A.4 of the Ref. [137].

Furthermore, the spin-orbit interaction and spin-spin (SS) Hamiltonian given in the basis

of SO states can be found in Ref. [137] Table 2 and Table 3. Due to the large energy separation

between the electronic ground states and excited states, the matrix elements out of the block

of ground states or excited states are ignored, i.e., the perturbation theory can applied to the

electronic ground states and excited states separately. The perturbation Hamiltonian for SO

and SS interactions in ground state manifold, Vg = V
(SO)
g + V

(SS)
g , is diagonal, which means

the states |g1〉, |g2〉 and |g3〉 are still the eigenstates of the NV-center with SO interaction

(V
(SO)
g ) and SS interaction (V

(SS)
g ). However, the perturbation Hamiltonian in the excited

state manifold, Ve = V
(SO)
e + V

(SS)
e , is not diagonal. Besides affecting the level splitting, the

perturbation interaction Hamiltonian results in mixing of the excited state.

We can find a unitary matrix Ue to diagonalize the excited state perturbation Hamilto-

nian Ve by UeVeU
†
e . The eigenstates of the new basis can be transformed from the SO basis

by applying the unitary matrix Ue to the SO basis. Therefore, the dipole moment operator

between the ground states and the new excited states can be found by treating
(
~̂pi,j

)
in

Eq. (3.40) as a matrix and applying
(
~̂pi,j

)
·U †e . After taking the SS interactions into con-

sideration, the excited state |e1〉 mixes with state |e3〉, state |e2〉 mixes |e4〉, which results in

small but non-zero dipole moment matrix elements between ground states |g2〉 and |g3〉 to

the excited states |e3〉 and |e4〉. The eigenstates that diagonalize the SO and SS interaction

Hamiltonian in NV electronic excited states are noted as SS basis of the NV center excited

states and they are labeled as |ẽi〉 for i = 1 to 6. Note that the notation |ei〉 in our main

paper refers to the SS basis states instead. The dipole moment operator between NV ground
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states and SS basis states of excited states is

~̂p

p0

=


−F11x̂ −F11ŷ F12x̂ F12ŷ ~0 ~0

−F21x̂ F21ŷ −F22x̂ F22ŷ −F23ŷ F23x̂

F21ŷ F21x̂ F22ŷ F22x̂ F23x̂ F23ŷ

 (3.41)

where F11 = 0.0513, F12 = 0.9987, F21 = 0.7062, F22 = 0.0363, F23 = 1/
√

2.

The strain field (~ξ) can also affect the NV electronic states. The strain field interactions

to the NV electronic ground states are much smaller than the interactions to the excited

states. Therefore we ignore the strain interaction to the NV ground states and only consider

the excited state mixing due to the strain field. According to Ref. [137], axial strain field

(ξz) does not mix the excited states, it only shifts the energy of the excited states and hence

the dipole moment matrix does not change. However, the interaction Hamiltonian due to

transverse strain field ξx and ξy has off-diagonal matrix elements in the SO basis of excited

states, which means the transverse strain field mixes the SO basis of excited states.

Assume the transverse strain field is small so that the group symmetry of NV center is

still preserved. The interaction Hamiltonian for x̂-direction strain field is

H(ξx) =



0 0 0 0 0 −E

0 0 0 0 E 0

0 0 E 0 0 0

0 0 0 −E 0 0

0 E 0 0 0 0

−E 0 0 0 0 0


(3.42)

in the basis of the SO basis states, where E is the interaction strength introduced by x̂

direction strain field. From the Hamiltonian, the excited state |e1〉 mixes with state |e6〉,

state |e2〉 mixes with state |e5〉. Since the dipole moment between the states |e1〉, |e6〉 and

ground states has the same direction, we should expected that the dipole moment elements

between SS basis states 〈ẽ1| ~̂p |gj〉 and 〈ẽ6| ~̂p |gj〉 for j = 2, 3 does not change directions, which

can be easily checked after diagonalize the SO, SS with the strain field coupling Hamiltonian.
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Similar to the 〈ẽ2| ~̂p |gj〉 and 〈ẽ5| ~̂p |gj〉. Besides, due to the perturbation introduced by x̂-

direction strain field, the degeneracy of excited states |ẽ1〉 and |ẽ2〉 as well as the degeneracy

of states |ẽ3〉 and |ẽ4〉 is broken.

The Hamiltonian for small ŷ-direction strain field in diamond crystal is,

H(ξy) =



0 0 0 0 −E 0

0 0 0 0 0 −E

0 0 0 −E 0 0

0 0 −E 0 0 0

−E 0 0 0 0 0

0 −E 0 0 0 0


(3.43)

where E is the interaction energy due to the ŷ direction strain field. The ŷ direction strain

field mixes the excited state |e1〉 with |e5〉, state |e2〉 with |e6〉 and state |e3〉 with |e4〉. The

dipole moment 〈ẽi| ~̂p |gj〉 for i = 1 to 6 and j = 2, 3 does not point along x̂ or ŷ directions

any more. Instead, the dipole moment between the same excited state and the two ground

states |g2〉 and |g3〉 are no longer orthogonal. This feature of the dipole moment matrix

causes that the scattering light from state-preserving and state-flipping transitions are not

polarized along perpendicular directions.

3.5.3 Transition rates and scattered photon polarization

In this section, we present the details of the scattering rate calculation. To estimate the

magnitude of the dipole moment, we modeled the relaxation from the electronic excited state

with Sz = 0 (e.g |e3〉), back to ground state with Sz = 0 (e.g. |g1〉) as a two-level system

spontaneous relaxation process. If we ignore the slow relaxation processes from state |e3〉

to the other two ground state levels |g2〉 and |g3〉, then the lifetime of state |e3〉, which is

13 ns [138], can be used to estimate the value of dipole moment. The magnitude of dipole

moment estimated based on this method is |p| = e|d| = 5.2 Debye [145], where e is the

electron charge.

As we pointed out in 3.5.1 and 3.5.2 the NV center dipole moments for optical transition

between ground and excited states are along the transverse direction. Therefore, we choose

68



to match the axial direction of NV centers (ẑ direction) to the waveguide ẑ direction to have

optimum coupling efficiency. We also choose to match the NV center intrinsic transverse

directions x̂ and ŷ with the waveguide transverse direction x̂ and ŷ as Fig. 1(c) shows.

To calculate the scattering transition rates between ground states |g2〉 and |g3〉, we con-

sider a single NV center residing inside an infinitely long waveguide shown in 3.5.1. The quan-

tized guided waveguide mode in a length L waveguide, with wavevector along the waveguide

axial direction kz and mode index m is [148]:

Êkz ,m = E0(kz)~ukz ,m(x, y)akz ,m
1√
L
eikzz−iωkz t + h.c., (3.44)

where akz ,m is the annihilation operator for photons with kz and mode m, ωkz is the angular

frequency of the mode photon, which can be determined by the waveguide dispersion rela-

tions, E0(kz) =
√

~ωkz/2ε0 in which ε0 is the vacuum permittivity, ~ukz ,m(x, y) is the mode

profile on the cross section of the waveguide. The mode profile is normalized according to

the normalization condition,∫
dxdy εr(x, y)~u∗kz ,m(x, y) · ~ukz ,n(x, y) = δm,n (3.45)

To simplify the calculation, we assume the NV centers only couple to the driving light

and the waveguide modes, and ignore the coupling to the non-guided modes. We further

assume the driving light is a classical field while the waveguide modes are quantized. The

interaction Hamiltonian is,

Hint =Hdrive +Hguide (3.46a)

Hdrive =

[∑
i,j

~E∗d(~r0) · ~̂pi,j |gi〉 〈ej| ei(ωd−ωej,gi)t + h.c.

]
(3.46b)

Hguide =

[∑
i,j

∑
kz

∑
mk

E0(kz)
(
~ukz ,mk(~r0) · ~̂p∗i,j

)
akz ,m |ej〉 〈gi| e

i(ωej,gi−ν~k,λ) + h.c.

]
. (3.46c)

Hdrive is for the interaction between the NV center and the driving light. The classical

electromagnetic field, ~E(~r)eiωdt, is the driving laser light. ~̂pi,j is defined as 〈gi| ~̂p |ej〉, where

|ej〉 is the eigenstates of electronic excited state of NV center. Hguide is for the interaction

with the waveguide guided modes, ~r0 is the position of the NV center. The summation index
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i = 1 to 3, while index j = 1 to 6. The mode index m goes through all the guided modes in

the waveguide with wave vector kz.

Note that the photon scattering process from ground state |gi〉 to the ground state |gi′〉 is

a second order process. We use second order Fermi’s golden rule to calculate the transition

rates. Assuming that initially there are no photons in the guided modes, and hence the initial

state is |Ψi〉 = |gi〉 ⊗ |0〉, where |0〉 is the vacuum guided mode fields, while the scattering

final state is |Ψf〉 = |gi′〉 ⊗ |1m〉, where |1m〉 is the state for one photon inside the guided

mode m. Based on the second order Fermi’s Golden Rule, the transition rate from initial

state |gi〉 ⊗ |0〉 to final state |gi′〉 ⊗ |1m〉 is,

Γi→i′ =
2π

~
δ(εf − εi)×

∣∣∣∣∣
6∑
j=1

〈Ψf |
Hguide |ej〉 |0〉 〈0| 〈ej|Hdrive

~ωd + εg,i − εe,j
|Ψi〉

∣∣∣∣∣
2

(3.47)

where εg,i and εe,j are for the energy of NV states |gi〉 and |ej〉, ωd is the driving light angular

frequency. We define an effective Hamiltonian for Raman transition as,

Heff =
6∑
j=1

Hguide |ej〉 |0〉 〈0| 〈ej|Hdrive

~ωd + εg,i − εe,j

=
∑
kz ,m

6∑
j=1

Akz ,m(~r0)

∆j

(ûkz ,m · p̂i′,j)
∗
(
λ̂d · p̂i,j

)
a†kz ,m

(3.48)

where Akz ,m(~r0) is a constant defined as E0(kz)u
∗
kz ,m

Edp
2
0, energy mismatch ∆j is defined as

~ωd+εg,i−εe,j. The variable ukz ,m is the magnitude of the waveguide mode with wave-vector

kz and mode index m at the NV position ~r0, ûkz ,m is the unit vector along the electric field

of the mode at the NV center location, p̂i,j is defined as p̂i,j = ~pi,j/p0 in which ~pi,j is the

dipole moment operator elements between ground state |gi〉 and excited |ej〉. The driving

field magnitude at the NV location is noted as Ed, while its polarization direction is labeled

as λ̂d. The transition amplitude can be written as 〈Ψf |Heff |Ψi〉.

As we pointed out in 3.5.1, at the “magic” frequency, there are only two guided modes

supported by the diamond waveguide. Further, mode 1 and mode 2 only have non-zero Ex

or Ey components respectively (when the NV center is centered in the waveguide: x, y ∼ 0).

Therefore, the transitions with x̂ dipole and transitions with ŷ dipole couple to different

modes. If we also assume that at the NV center location, Ex(~r0) of mode 1 is equal to Ey(~r0)
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of mode 2, the constant A does not depend on mode number m. If we only considered

the modes which respect the energy conservation, and use x̂ polarized light to drive the

transitions, the effective Hamiltonian can be written as,

Heff,kz0

Akz0
=

(
F 2

21

∆1

+
F 2

22

∆3

+
F 2

23

∆6

)
|g2〉 〈g2| a†kz0,2 +

(
F 2

21

∆2

+
F 2

22

∆4

+
F 2

23

∆5

)
|g3〉 〈g3| a†kz0,2

+

(
−F 2

21

∆1

+
−F 2

22

∆3

+
F 2

23

∆6

)
|g3〉 〈g2| a†kz0,1 +

(
F 2

21

∆2

+
F 2

22

∆4

+
−F 2

23

∆5

)
|g2〉 〈g3| a†kz0,1

(3.49)

where we adopt the dipole moment operator expression in Eq. (3.41). The first and second

terms give the state-preserving transitions, while the third and fourth terms give the state-

flipping transitions. According to Eq. (3.49), photons from state-preserving transitions and

state-flipping transitions have perpendicular polarizations, and hence they couple to two

different modes. Similarly, if the driving light is polarized along ŷ direction, following the

same argument, it is easy to show that the photons from state-preserving transitions are

coupled to mode 2, while photons from state-preserving transitions are coupled to the mode 1

instead. The orthogonal polarization of photons is a feature that originates in the orthogonal

dipole moment between the ground states |g2〉, |g3〉 and the same excited state |ej〉, i.e.,

〈g2| ~̂p |ej〉 · 〈g3| ~̂p |ej〉 = 0 (3.50)

for j = 1 to 6 (we call this property orthogonality). The perturbation on the excited

state energy, the dipole moment elements and the x̂ direction strain field interaction, does

not change this dipole moment property, and hence orthogonal polarization of photons is

still expected from state-preserving and state-flipping transitions. If this feature does not

persist, e.g. adding ŷ direction strain field, the photons coming from state-flipping and

state-preserving transitions become non-orthogonally polarized.

The “magic” point is the point where both state-preserving transitions are highly sup-

pressed. According to the Eq. (3.49), this requires,

F 2
21

∆1

+
F 2

22

∆3

+
F 2

23

∆6

= 0 (3.51a)

F 2
21

∆2

+
F 2

22

∆4

+
F 2

23

∆5

= 0 (3.51b)
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However, there is no driving light frequency that can satisfy both equations. Instead, we

choose to minimize the larger rates of these two transitions to improve the gate fidelity, i.e.,

to minimize

Max

[∣∣∣∣F 2
21

∆1

+
F 2

22

∆3

+
F 2

23

∆6

∣∣∣∣ , ∣∣∣∣F 2
21

∆2

+
F 2

22

∆4

+
F 2

23

∆5

∣∣∣∣] .
We found this is equivalent to solving the equation:(

F 2
21

∆1

+
F 2

22

∆3

+
F 2

23

∆6

)2

=

(
F 2

21

∆2

+
F 2

22

∆4

+
F 2

23

∆5

)2

, (3.52)

which gives the frequency of the “magic” point used in the main manuscript.

The transition rates at the “magic” point can be calculated using Fermi’s golden rule.

We sum over all the possible kz and m to get the transition rate from the initial state |gi〉

to final state |gi′〉:

Γi→i′ =
πneffωdp

4
0|u|2|Ed|2

c~ε0

×

∣∣∣∣∣∑
j,m

1

∆j

(ûm · p̂i′,j)∗
(
λ̂d · p̂i,j

)∣∣∣∣∣
2

. (3.53)

Here, neff is the effective refractive index for the modes at the frequency of the driving light,

the dispersion relation of the guided modes at the driving light frequency is ω = (c/neff)kz.

We also assume the NV center is located at a point where the Ex field of mode 1 is equal to

the Ey field of mode 2, which is represented as u, while the Ey of mode 1 and Ex of mode 2

is zero. The unit vectors ûm and λ̂d shows the direction of the guided field in waveguide and

the driving field at the NV location. To convert the term inside | . . . |2 to a dimensionless

parameter, we define ∆j = hν0∆̃j where ν0 = 1 GHz. Therefore we can define a rate constant

Γ0 and a dimensionless parameter Gi,i′ so that the transition rate Γi→i′ = Γ0Gi,i′(ωd), where

Γ0 =
neffωdp

4
0|u|2|Ed|2

4πc~3ε0ν0

(3.54)

Gi,i′ =

∣∣∣∣∣∑
j,m

1

∆̃j

(ûm · p̂i′,j)∗
(
λ̂d · p̂i,j

)∣∣∣∣∣
2

(3.55)

By solving the mode profiles at the “magic” frequency, the effective refractive index of

these two modes are neff = 1.580. At x = 0, after properly normalize the mode fields using

Eq. (3.45), we can find a point which satisfies our assumptions, i.e., Ex,1(y0) = Ey,2(y0) (see

Fig. 10). At this point, u = 2.4847µm−1. We estimate the electric field of the driving light

by a 1µW plane wave focused with a 1µm2 region. The transition rate constant is calculated

as Γ0 = 20.78 MHz.
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y (  m)

Figure 10: Ex component of mode 1 and Ey component of mode 2 at x = 0 of the waveguide.

We can find a point (red circle) that satisfies Ex,1 = Ey,2.

3.5.4 Gate fidelity and tolerance of the magic point against NV electronic state

perturbation

In this section, we provide a more detailed discussion and analysis of how perturbations

to NV electronic states affect the drive frequency (especially the “magic” frequency) and

the gate fidelity. We focused on three types of perturbations: (1) shifts of the excited state

energy /effect of an NV center, (2) perturbation of the dipole moment matrix elements and

(3) small transverse strain fields inside the diamond crystal. We also analyze how each of

the perturbation affects the polarization of the emitted photons. We mainly focus on the

effect of perturbation at the “magic” point and explore how these perturbations affect gate

fidelity for the gate operation schemes M1, M2, and M3.

First, we consider perturbations that shift the energy of NV excited states. Since this

type of perturbations does not affect the dipole moment between the ground states and

excited states, the orthogonal property of scattered photon polarizations that are utilized

by M1 and B1 are preserved. However, shifts of the excited state energies changes the

transition amplitudes and hence may shift the position of the “magic” point. Changes in

the state-flipping amplitudes affect the imbalance of the two state-flipping transitions rates,

thus affect gate fidelity in scheme M1. Changes of the state-preserving transition amplitudes
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Figure 11: Tolerance of the “magic” point to shifts of the fine levels of the NV excited states.

We perturb the energy of each level (∆Ee,i) by ±1 GHz. We plot the shift of the “magic”

frequency relative to the unperturbed case as we perturb the energy of each excited state.

affect the suppression at the “magic” frequency, which affects the gate fidelity of scheme M2.

To quantitatively explore the effects of the shifting of NV center electronic excited states,

we artificially shift the energy of the excited states |e1〉 to |e6〉 one-by-one by ±1 GHz, while

leave the dipole moments unchanged. With the energy level perturbation, we search around

the original “magic” frequency to find a new “magic” frequency that minimize both state-

flipping transition amplitudes. The shift of the “magic” frequency as we shift each of the

excited state energies is plotted in Fig. 11.

Assuming that the imbalance of the two state-flipping transition amplitudes is small,

i.e., |A1−A2|
A1+A2

� 1, where A1 and A2 are defined in Eq. (3.10), enables us to expand the gate

fidelity of scheme M1 as:

Fe,1 =
(A1 + A2)2

2 (A2
1 + A2

2)
=

Ā2

Ā2 + ∆A2
∼ 1− ∆A2

Ā2
(3.56)

where Ā = (A1 + A2)/2 and ∆A = |A1 − A2|/2. We calculate the gate infidelity (1 − Fe1)

in each cases with gate operation scheme M1 and show it in Fig. 12(a). As we shift each

excited state energy of the NV center by ±1 GHz, the gate fidelity of gate operation scheme
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M1 is only slightly affected. In the worst case, when we shift the energy of state |e2〉 by

+1 GHz, the gate fidelity drops to ∼ 0.96.

Figure 12: Shifting the energy of excited states also affects the state-preserving and state-

flipping transition rates. In (a), we plot the gate infidelity of scheme M1 due to the imbalance

in the state-flipping transition rates as we perturb the energy of each excited state. In (b), we

plot the gate infidelity of scheme M2 caused by the leakage of the state-preserving photons

as we perturb the energy of each excited state.

The gate operation scheme M2 is not affected by the imbalance of state-flipping transi-

tions. However, because the state-preserving transition relation
Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

= −Ayp,2

A
(y)
0

= −Axp,3

A
(x)
0

holds, when drive light is polarized along (x̂ + ŷ) direction, the state-preserving scattered

photons are still along (x̂− ŷ) direction, which causes leakage of the state-preserving photons

to the detector. Since we are working at the “magic” point where the state-preserving tran-

sitions are highly suppressed, we can also expand the gate fidelity of gate operation scheme

M2 as:

Fe,2 =
Ā2

Ā2 + A2
p

∼ 1−
A2
p

Ā2
(3.57)

where Ap is the magnitude of the state-preserving transition amplitudes. In Fig. 12(b), we

plot the gate infidelity of the scheme M2. When shifting energy of state |e1〉 by +1 GHz, the

gate infidelity increases ∼ 0.04. Again, the gate operation fidelity is only slightly affected by

the excited state energy level shifting.

Scheme M3 is not effected by shifting the excited state levels. Because the dipole moment

is not affected, when the drive light is polarized along (x̂+ ŷ) direction, the state-preserving
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photons are still polarized along (x̂− ŷ) direction. The collection path polarizer along (x̂+ ŷ)

can fully eliminate the state-preserving photons. The polarizations of the two types of state-

flipping photons still deviated from (x̂−ŷ) direction by ±θ (see Fig. 4), where θ is determined

by the imbalance of the state-flipping transitions. However, since these two directions are

centered on the direction (x̂− ŷ), after the polarizer, the two state-flipping transition rates

are balanced.
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Figure 13: We plot the entanglement gate fidelity for gate operation schemes M1 to M3 at

the “magic” frequency of the drive light when we add dipole moment mismatch in (a). If the

NV centers are driven by a (x̂+ ŷ) polarized light, because the four transition amplitudes are

not all balanced, the two kinds of state-preserving photons, i.e., |g2〉 → |g2〉 and |g3〉 → |g3〉,

are no longer polarized along (x̂− ŷ) direction. We plot the polarization angle of the state-

preserving photons with respect to (x̂ − ŷ) direction as a function of dipole mismatch in

(b).

Second, we explore the effect of perturbations that modify the dipole moments of the

NV centers. In 3.5.2, we constructed the dipole moment using Eq. (3.35). Let 〈ex| ~̂p |a1〉 =

p0x ·x̂, 〈ey| ~̂p |a1〉 = p0y ·ŷ, then C3v symmetry in combination with the Wigner-Eckart theorem

guarantees that p0x = p0y, which is consistent with the assumptions in Eq. (3.35). Here

we assume there might be certain types of perturbations that break this relation and give

p0x/p0y 6= 1. Notice, that these perturbations break the state-preserving amplitudes relation,

i.e., | 〈g2| p̂ |ei〉 | 6= | 〈g3| p̂ |ei〉 |, which voids the origin of the equality of state-preserving

transition amplitudes in Eq. (3.8). Therefore, we will have four different state-preserving
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transition amplitudes. If we assume p0y = p0, as we shift p0x, in dipole moment matrix in

Eq. (3.41), the components along ŷ direction do not change, while the components along x̂

change by a factor Ox = p0x/p0 and hence the state-preserving transition amplitudes become

Ãxp,2 = O2
xA

x
p,2 and Ãxp,3 = O2

xA
x
p,3.

At the unperturbed “magic” point, the state-preserving transition amplitudes satisfy
Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

= −Ayp,2

A
(y)
0

= −Axp,3

A
(x)
0

. Under the dipole moment perturbation we obtain:

Ãxp,2

A
(x)
0

= −
Ãxp,3

A
(x)
0

= O2
x

Ãyp,3

A
(y)
0

= −O2
x

Ãyp,2

A
(y)
0

. (3.58)

Even through we cannot suppress all four state-preserving transition amplitudes to the same

level, we can still achieve a good suppression for Ãxp,2 and Ãxp,3 at the original “magic” point if

the dipole mismatch factor Ox is close to identity and hence we still use this drive frequency

point as a “magic” point under perturbation.

We also notice that the orthogonality property of the dipole matrix persists, i.e.,

〈g2| p̂ |ej〉 · 〈g3| p̂ |ej〉 = 0 (3.59)

for j = 1 to 6. Due to this feature, if the drive is polarized along x̂ or ŷ direction, the

state-flipping photons are polarized along the direction perpendicular to state-preserving

photons. Hence, the drive and polarizer setup in M1 can fully eliminate the state-preserving

Raman photons from the collection path. Moreover, according to the state-flipping transition

amplitudes in Eq. (3.9), when the perturbation gives mismatch factor Ox 6= 1, the state-

flipping transition amplitudes are all enhanced (or shrunk) by a factor of Ox. Based on

Eq. (3.56), the gate fidelity for scheme M1 is not affected by the dipole moment perturbation,

as shown in Fig. 13(a).

When the drive is polarized along (x̂ + ŷ) direction, due to the fact that the four state-

preserving transition amplitudes in Eq. (3.58) are not all equal at “magic” point, the state-

preserving photons are not polarized along (x̂ − ŷ). We plot the deviation of the state-

preserving transition photon polarization direction from (x̂ − ŷ) as the dipole mismatch

changes in Fig. 13(b). Due to the rotation of the polarization direction of state-preserving

photons, the state-preserving transition amplitudes seen after a (x̂− ŷ) polarizer also varies.
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However, as the state-flipping transition amplitudes after the polarizer is much larger than

the state-preserving transitions amplitudes, the gate operation scheme M2 is tolerant to

small dipole mismatch as shown in Fig. 13(a). When the dipole moment mismatch is large

(e.g. ∼ 0.5), the gate fidelity of M2 drops by ∼ 0.01.

The gate fidelity of scheme M3 is strongly affected by the dipole moment perturbation as

shown in Fig. 13(a). The polarizer setup in M3 is along (x̂+ ŷ) direction, which blocks most

of the state-flipping photons. However, under the dipole moment perturbation, the state-

preserving photons are not polarized along (x̂ − ŷ) direction, which breaks the unitarity of

scheme M3. Further, the leakage of the state-preserving photons through the polarizer can

be as strong as the state-flipping photons, which strongly affects the gate fidelity. Since

the two kinds of state-preserving photons are linearly polarized along the same direction, it

is possible to rotate the polarizer on the collection path to completely eliminate the state-

preserving photons. However, the two state-flipping transitions seen after the polarizer are

not balanced anymore. In this way, we can improve the fidelity of scheme M3, but the gate

is no longer perfectly unitary.

Third, we consider perturbations due to a strain field in the diamond crystal. A strain

field applied along the x̂ (ŷ) direction mixes the NV excited states via the perturbation

Hamiltonian Eq. (3.42) (Eq. (3.43)). The strain field also acts on the ground state man-

ifold, however, it only shifts the energy of the |g2〉 and |g3〉 states. Here, we ignore the

impact of the strain fields on the ground states and only focus on the excited states. Due

to the mixing of the excited states, the dipole moment matrix does not preserve the prop-

erty | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 | and hence we expect the four state-preserving transition

amplitudes to be different. Moreover, in the presence of a strain field, it is impossible to

find a frequency point to make all four transitions balanced. Instead, in the vicinity of the

unperturbed “magic” frequency, there is a window of drive frequencies in which the state-

preserving transitions are suppressed. Therefore, we can still use the unperturbed “magic”

point as the drive frequency in the presence of a weak strain field.

Strain field applied in the x̂ direction mixes the states |e1〉 ↔ |e6〉, and |e2〉 ↔ |e5〉. Note,

the dipole moments between a certain ground state and the two excited states that are being

mixed have the same direction. Hence, while the magnitude of the dipole moment between

78



Figure 14: We add x̂ direction strain fields in diamond crystal to induce interaction with

strength E(ξx) [see Eq.(3.42). The gate entanglement fidelity of schemes M1, M2 and M3

are plotted in (a) for x̂ direction strain field. In (b), we apply x̂ polarized driving light

and plot the transition amplitudes (Trans. Amp.) as a function of the x̂ direction strain

field, ξx. We observe that the two state-flipping transition amplitudes are unbalanced and

weakly affected by the strain. In (c), we apply (x̂ + ŷ) polarized driving light, and plot

the polarization angles of state-preserving and state-flipping photons with respect to the

(x̂ − ŷ) direction (top panel) and the magnitude of the state-preserving and state-flipping

transition amplitudes (bottom panel) as a function of the x̂ direction strain field. Note that

the magnitudes of two state-flipping transition amplitudes (top lines in the bottom panel)

are the same as we perturb the x-direction strain field.
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ground and excited states is affected by strain, its direction is not. Therefore, the orthogonal

properties of the dipole moment [see Eq. (3.50)] are preserved with the x̂ direction strain

field perturbation.

In Fig. 14(a) we plot the gate entanglement fidelity for schemes M1, M2, and M3 as

a function of strain in the x̂ direction [expressed via the matrix element E in Eq. (3.42)].

We observe that strain has essentially no effect on the M1 scheme, weak effect on the M2

scheme, and strong effect on the M3 scheme.

To understand the effect of the x̂ strain field on the gate fidelity, we begin by plotting

its effect on the non-zero state-preserving and state-flipping transition amplitudes at the

“magic” frequency [see Fig. 14(b)]. We observe that in the presence of a small x̂ strain

field the state-flipping transitions are only slightly affected [see the bright green (the top

and bottom) lines in Fig. 14(b)], while the state preserving transition amplitudes are still

suppressed [see the middle four lines in Fig. 14(b)].

In scheme M1, state-preserving photons can be blocked by the polarizer on the collection

path due to the orthogonality property of the dipole moment matrix elements. As the state-

flipping transitions are only slightly affected by the x̂ direction strain field, the gate fidelity

of M1 is almost flat [see the blue curves with dots in Fig. 14(a)].

When the drive is polarized along (x̂+ ŷ) direction, since the transition amplitudes Axf,2

and Axf,3 only slightly affected by the x̂ strain field [see Fig. 14(b)], neither the rates nor

the polarizations of the state-flipping photons are heavily affected [see green curve with

diamond markers and red curve with triangles in Fig. 14(c) top panel]. However, the x̂

strain field shifts the four state preserving transition amplitudes a lot, which causes the

increase of the state-preserving transition rates [see blue solid line and orange dashed line in

Fig. 14(c) bottom panel]. Note that the polarization of the state-preserving photons points

along (x̂ − ŷ) direction without strain field is because that the state-preserving transition

amplitudes satisfy Axp,2 = Ayp,3 = −Ayp,2 = −Axp,3 at the “magic” point. The non-zero x̂ strain

field destroys this feature, which causes the polarization of the state-preserving photons

deviates from (x̂ − ŷ) direction [see blue curves with dots and orange curve with square

markers in Fig. 14(c) top panel].

In M2, the polarizer on the collection path is along (x̂ − ŷ) direction, which still al-
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lows most of the state-flipping photons passing through. In non-perturbed case, the state-

preserving photons are polarized along (x̂− ŷ) direction, which can pass the collection path

polarizer for certain. With the x̂ strain field perturbation, the more the polarization of the

state-preserving photons deviates from (x̂ − ŷ) direction, the less probable the photon can

pass the collection path polarizer. However, the x-direction strain field also boost the gen-

eration rates of the state-preserving photons [see Fig. 14(c) bottom panel]. Combining these

two factors, the overall gate fidelity for scheme M2 drops to ∼ 0.95 as the x-direction strain

field increases to 1 GHz [see Fig. 14(a)].

However, in scheme M3, the collection path (x̂ + ŷ) polarizer blocks most of the state-

flipping photons, which makes this scheme fragile to the leaking state-preserving photons.

The key for the success of M3 in the non-perturbed case is the fact that state-preserving

photons is polarized along (x̂− ŷ) direction. However, as we increase the x̂ strain field, the

polarization of the state-preserving photons are not exactly aligned (x̂ − ŷ) direction [see

Fig. 14(c) top panel], which deteriorates the gate fidelity as shown in Fig. 14(a).

Figure 15: We add ŷ direction strain fields in diamond crystal to induce interaction with

strength E(ξy) [see Eq.(3.43)]. The gate entanglement fidelity of schemes M1, M2 and M3

are plotted in (b).

The entanglement gate fidelity Fe when ŷ direction strain field is applied to the diamond

crystal is plotted in Fig. 15. The ŷ direction strain field mixes the states |e1〉 ↔ |e5〉,

|e2〉 ↔ |e6〉, and |e3〉 ↔ |e4〉. The mixing of the states results in the loss of the dipole moment
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orthogonality property. Therefore, for drive photons polarized along x̂ direction the state-

preserving photons are not necessarily polarized along x̂, nor the state-flipping photons along

ŷ. The polarization of both state-preserving photons and state-flipping photons relative to

the ŷ direction is plotted in Fig. 16(a) top panel. As we vary the ŷ direction strain field, the

polarization of the two kinds of state-flipping photons remains nearly along the ŷ direction

[see the green curve with diamond markers and the red curve with triangle markers in

Fig. 16(a) top panel], but the polarization of state-preserving photons changes significantly

[see the blue curve with dots and the orange curve with square markers in Fig. 16(a) top

panel].

For scheme M1 (with x̂ polarized drive), there are two main sources of error: (1) unbal-

anced state-flipping transitions as before and (2) ŷ photons from state-preserving transitions

that leak past the polarizer. We plot the polarization angle with respect to the ŷ direction

and the magnitude of the transition amplitudes for both state-preserving and state-flipping

transitions in Fig. 16(a). As we increase the perturbation of y-direction strain field, the

state-preserving transition amplitudes are slightly increased [see the blue solid line and the

orange dashed line in Fig. 16(a) bottom panel]. Combining with the fact that polarization

of the state-preserving photons are no longer along x̂ direction exactly [see the blue curves

with dots and the orange curves with square markers in Fig. 16(a) top panel], the leaking

state-preserving photons to the detector decreases the gate fidelity to ∼ 0.95 as we change

ŷ direction strain field to ∼ ±1 GHz.

Similarly, when the drive is along (x̂ + ŷ) direction, the polarization features that were

utilized in gate operation schemes M2 and M3 are no longer valid. We plot the deviation of

the polarization angle of all scattered photons with respect to the polarizer direction in M2,

i.e., (x̂ − ŷ), in the top panel of Fig. 15. The polarization of the state-flipping photons are

slightly affected by the ŷ-direction strain field, while the state-preserving photon polarization

rotates ∼ 54◦ as we increase ŷ-direction strain field to ±1 GHz. The amplitudes of the state-

preserving and state-flipping transitions are plotted in the bottom panel of Fig. 16(b). We

observe that the transition amplitudes are only slightly affected by the applied ŷ-direction

strain field. Therefore, to understand the effect of y-direction strain field on schemes M2

and M3, we mainly focus on the rotation of the scattered photon polarizations.
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Figure 16: We add ŷ direction strain fields in diamond crystal to induce interaction with

strength E(ξy) [see Eq.(3.43)]. In (a), we apply x̂ polarized driving light and plot the

polarization angles of the state-preserving and state-flipping photons with respect to the x̂

direction (top panel) and the magnitude of the state-preserving and state-flipping transition

amplitudes (bottom panel) as a function of the ŷ direction strain field. In (b), we apply

(x̂ + ŷ) polarized driving light and plot the polarization angles of the state-preserving and

state-flipping photons to the (x̂ − ŷ) direction (top panel) and the magnitude of the state-

preserving and state-flipping transition amplitudes (bottom panel) as a function of the ŷ

direction strain field. Note that the curves for the magnitudes of the two state-flipping

transition amplitudes are overlapped (top curves in the bottom panel). The curves of two

state-preserving transition amplitudes are overlapped (bottom curves in the bottom panel).
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The main error source in scheme M2 without perturbation is the leakage of state-

preserving photons past the polarizer in the collection path. As we change the ŷ-direction

strain field, the state-preserving transitions are only slightly affected, while the polarization

of the state-preserving photons rotates away from the collection path polarizer direction,

i.e., (x̂ − ŷ) direction [see Fig. 16(b)]. The state-preserving photons thus have a smaller

probability to get past the polarizer in the collection path. Consequently, the gate fidelity

for scheme M2 slightly improves as a result of ŷ-direction strain field perturbation, as we

show in Fig. 15.

On the other hand, the perfect gate fidelity of scheme M3 in the absence of perturbation

is based on the fact that all state-preserving photons are polarized along (x̂ − ŷ) direction

and hence are stopped by the polarizer in the collection path (along with most of the state-

flipping photons). Large rotation angle of the state-preserving photon polarization makes

the leakage rate of the state-preserving photons comparable to that of the state-flipping

photons. This quickly degrades the gate fidelity as we show in Fig. 15.

3.6 Summary and outlook

In this chapter, we proposed a 2-qubit unitary quantum gate to achieve quantum logic

operations using two NV centers. We theoretically analyzed how a photon is scattered by

an NV center, taking care of the interference between different excitation paths. We found

that for scattering rates between two electronic spin states (|Sz = ±1〉) there are two special

frequencies for the driving light: a “magic” frequency at which the state conserving scattering

rate is suppressed and a “balanced” frequency at which the state-flipping transition rates are

equal. We analyzed the gate unitarity, fidelity and success probability for each of the schemes

with possible experimental imperfections. When the photon collection efficiency is ∼ 0.85,

the gate fidelity of the most reliable scheme can reach ∼ 0.97 when we impose a photon

collection window 0.1/Γ̄f , where Γ̄f is the averaged state-flipping transition rate. While

decreasing the photon collection window can improve the gate fidelity, the corresponding

decrease in the success probability will have to be mitigated by some other means to ensure
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we stay above the threshold for cluster or graph-state quantum computing. The proposed

scheme could also be extended to other qubits such as Silicon-vacancy in diamond, or to

localized vibronic states of the NV or other defect centers where the larger energy splittings

can allow for quantum computing even at room temperature.
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4.0 Optimizing Josephson ring modulator based Josephson parametric

amplifiers via full Hamiltonian control

4.1 Introduction

Amplification is a key element in quantum sensing and quantum information processing.

For example, readout of superconducting qubits requires a microwave amplifier that adds as

little noise to the signal as possible [149], ideally approaching the quantum limit [150, 151,

152]. Recently, low-noise parametric amplifiers powered by the nonlinearity of Josephson

junctions have been realized and are in regular use in superconducting quantum information

experiments [153, 154, 78, 83, 84, 155, 156, 157, 158, 159].

To evaluate the performance of a practical parametric amplifier there are three aspects

that are equally important: (1) added noise at the quantum limit [152, 83, 84, 155, 156, 160],

(2) broad-band amplification [161, 162, 160, 163, 164], and (3) high saturation power [165,

84, 87, 166, 167, 85, 75, 168], i.e., the ability to maintain desired gain for a large input

signal power [169]. The last requirement has been especially hard to achieve in Josephson

parametric amplifiers and will be the focus of this paper.

In previous works on Josephson parametric amplifiers, it was assumed that saturation

power is limited by pump depletion [165, 84, 87, 166, 168]. This is a natural explanation, as

the amplifier gain is a very sensitive function of the flux of the applied pump photons. Thus,

as the input power is increased, and more pump photons are converted to signal photons,

the gain falls. However, in Refs. [167, 85, 75, 170] it was pointed out that the fourth order

nonlinear couplings (i.e., the Kerr terms), inherent in Josephson-junction based amplifiers,

can also limit the saturation power. These terms induce a shift in the mode frequencies of

the amplifier as a function of signal power, which can cause the amplifier to either decrease or

increase its gain. Thus, we adopt the definition of saturation power as the lowest input power

that causes the amplifier’s gain to either increase or decrease by 1dB, which we abbreviate

as P±1dB.

In this chapter, we address the question: for a given device, does pump depletion, Kerr
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Figure 17: The saturation power for the JRM-based Josephson parametric amplifier with

various JRM inductance ratio β and participation ratio p. The amplifier has a sweet spot,

in which saturation power is maximal, in the low β and intermediate p regime regime;

Optimizing β and p, we find saturation power of P±1 dB ∼ −104.8 dBm at β ≈ 3.5, 1/p ≈ 7.0.

For small p and large β, the amplifier is not able to reach the desired reflection gain (of 20 dB);

this region is labeled in white. In the intermediate p regime (1/p ∼ 4 to 10), as we lower β, the

saturation power first increases, hits the sweet spot, and then abruptly drops. To understand

this behavior we refer to Fig. 28a, which shows that the gain at large signal powers tends

to increase as β decreases. This trend is at first beneficial to the amplifier, as the gain vs.

signal power curve flattens out. However, at even lower β the gain tends to increase with

signal power (a feature that we call the “shark-fin”) resulting in the amplifier saturating to

21 dB (see Fig. 28a, β = 3 curve) and hence the saturation power abruptly decreasing. The

sweet spot of the saturation power is located at the edge of the this “reflection gain boost”

regime.
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Figure 18: The minimum truncation order needed to converge small-signal reflection gain of

the amplifier to 20± 0.3 dB. In our main text, we show that the convergence order of small-

signal reflection gain gives a good prediction on the convergence order of the saturation power

(see Fig. 28b & c). In the small-β, large-p corner, the third order truncation is enough to

make the time-solver convergence to the desired 20 dB reflection gain. While as we decrease

the participation ratio, the higher and higher order is needed to converge the truncated

theory, which shows that the full-order simulation is needed to predict the performance of

the amplifier near the sweet spot.
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terms, or higher-order nonlinearities limit the saturation power P±1dB? Yet how do we tame

these limitations to optimize the device by maximizing P±1dB? Our analysis and results are

generally applicable for all amplifiers based on third-order couplings, including JPAs based

on Superconducting Nonlinear Asymmetric Inductive eLements (SNAILs) [74, 75, 76, 77]),

flux pumped Superconducting QUantum Interference Devices (SQUIDs) [78, 79, 80, 81, 82],

and the Josephson Parametric Converters (JPCs) [83, 84, 85, 86, 87]). These techniques

we develop may also be of use in the simulation of non-cavity based amplifiers, such as the

traveling wave parametric amplifier (TWPA) [88, 89, 90].

In the JPC, three microwave modes (a,b,c) are coupled via a ring of four Josephson

Junctions [the so-called Josephson Ring Modulator (JRM), see Fig. 19(b) shaded part, for

example]. A third-order coupling (g3ϕaϕbϕc) between the fluxes (ϕi) of three microwave

modes is obtained by applying a static magnetic flux to the JRM ring. Phase-preserving

gain is obtained by pumping one mode (typically c) far off resonance at the sum frequency

of the other two (a and b), with the gain amplitude being controlled by the strength of the

pump drive.

We now discuss the main results of our investigation, which are summarized in Figs. 17

and 18. Previously, descriptions of JPC’s relied on expanding the nonlinear couplings be-

tween the three microwave modes in a power series of cross- and self- couplings. The power

series was truncated at the lowest possible order, typically fourth (i.e., corresponding to the

cross- and self-Kerr terms) [84, 156, 85, 162]. In the present chapter, we compare these

power series expansions with the exact numerical solutions in the framework of semi-classic

input-output theory. Our first main finding is that there is indeed a sweet spot for operating

a JPA, see Fig. 17, at which P±1dB is maximized. The sweet spot appears for moderate

values of the two circuit parameters: participation ratios p ∼ 1/7 and shunt inductance

(β = LJ/Lin ∼ 3.5, where Lin is the shunt inductance, LJ = ϕ0/I0 is the Josephson in-

ductance, ϕ0 = ~/2e is the reduced flux quantum, and I0 is the Josephson junction critical

current). Our second main finding is that in the vicinity of the sweet spot nonlinear terms

up to at least 7th order are comparable in magnitude and hence truncating the power series

description at fourth order is invalid, see Fig. 18. The second main result can be interpreted

from two complementary perspectives. First, the sweet spot corresponds to high pump pow-
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ers and hence the energy of Josephson junctions cannot be modeled by a harmonic potential

anymore. Second, different orders of the power series expansion have either a positive or a

negative effect on the gain as a function of signal power; when the magnitudes of terms at

different orders are comparable the terms cancel each other resulting in a boost of P±1dB. We

hypothesize that the second main finding is a generic feature for Josephson junction based

parametric amplifiers.

Before moving to a detailed development of our theory, we provide a summary of the key

steps of our investigation and outline the structure of our paper.

We begin by noting that in addition to the above-mentioned parameters p and β, the

magnetic flux through the JRM ϕext = (2π/ϕ0)Φext is another important control parameter.

For conventional JRMs [84, 83], at non-zero values of applied flux there are non-zero cross-

and self-coupling at all orders (4th, 5th, etc.). However, we have recently realized that a

linearly-shunted variant of the JRM [156, 162] can null all even-order couplings at a special

flux bias point (ϕext = 2π), which we call the Kerr nulling point. The same nulling is also

observed in SNAIL-based devices [74]. In the context of a JPC with participation ratio

p < 1, even couplings come back but remain much smaller than at generic values of ϕext.

Therefore throughout this paper, we focus on ϕext at or in the vicinity of the Kerr nulling

point.

We calculate the saturation power using semi-classical equations of motion for the mi-

crowave modes, which are derived using input-output theory from the Lagrangian for a

lumped-circuit model of the JPA. When we consider higher than third-order couplings,

these equations are not generally analytically solvable. To analyze the saturation power

for a given set of parameters, we compare numerical integration of the full nonlinear equa-

tions to solutions of various, artificially truncated versions of the equations obtained using

both numerical integration and perturbation theory. We begin by investigating the effects of

pump depletion. To do so, we analyze the dynamics of all the modes with interactions trun-

cated at third order. Using classical perturbation theory to eliminate the dynamics of the

pump mode (c), we find, in contradiction with the basic understanding of pump ‘depletion’,

that the first corrections are a complex fourth order cross-Kerr coupling between modes a

and b, and an associated two-photon loss process in which pairs of a and b photons decay
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into the c mode, that effectively increase the pump strength. The dynamically generate Kerr

terms act similarly to the intrinsic Kerr terms, including giving rise to saturation to higher

gain when the pump mode frequency is positively detuned from the sum frequency. Further,

in the shunted JRM, we can partially cancel the real part of the dynamically generated Kerr

by tuning the applied flux near the Kerr nulling-point so as to generate an opposite sign in-

trinsic Kerr. Thus, the presence of judicious intrinsic Kerr can be a virtue, and the ultimate

pump ‘depletion’ limit is set by the imaginary Kerr and two-photon loss. Increasing the β

value of the JRM reduces these effects and increase the JPCs saturation power. Away from

the nulling point, these depletion effects are overwhelmed by the intrinsic Kerr effects, and

the device is Kerr-limited in agreement with our previous results.

Next, we perform calculations with full nonlinearity, and find that saturation power stops

increasing at high β. We find that this is primarily due to certain 5th order terms of the

form (ϕ2
a + ϕ2

b)ϕaϕbϕc. These terms modulate the effective parametric coupling strength as

a function of the input signal power thus shifting the amplifier away from the desired gain

by increasing the effective parametric coupling (in fact, throughout this work we failed to

identify a scenario in which the amplifier ‘runs out of pump power’).

To suppress the strength of these terms relative to the desired third order coupling, we

introduce an additional control knob by adding outer linear inductors Lout in series with

the JRM. The participation ratio p = LJRM/(2Lout + LJRM), where LJRM is the effective

inductance of the JRM, controls what fraction of the mode power is carried by the JRM.

Decreasing p results in the suppression of all coupling terms; however, the higher-order

coupling terms decrease faster than the lower order ones. Thus, if the saturation power is

limited by intrinsic 5th order terms, we can increase the saturation power by decreasing the

participation ratio p. We remark that as the pump power is increased, the cross-coupling

terms result in a shift of the JPA frequencies that must be compensated, which we do for

each value of p and β. Tuning both p and β we can find a sweet spot for the operation of

the JPC, as discussed above.

In general, the mode frequencies shift with applied pump power. This, combined with the

fact that JPAs can function with pump detunings comparable to the bandwidth of the res-

onators on which they are based, makes comparing theory and experiment very complicated.
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For concreteness, our simulations vary the applied pump and signal frequencies to identify

the bias condition which requires minimum applied pump power to achieve 20 dB of gain.

These points can be readily identified in experiment [85]. However, there has been a recent

observation in SNAIL-based JPAs that deliberate pump detuning can additionally enhance

device performance [76], and serve as an in situ control to complement the Hamiltonian

engineering we discuss in this work.

This paper is organized as follows. In Sec. 4.2, we focus on the closed model of JPA

circuit (without input-output ports). We start by reviewing the basic theory of circuits

with inductors, capacitors and Josephson junctions in subsection 4.2.1. In subsection 4.2.2,

we include the external shunted capacitors with JRM, and present the normal modes of

the JPA circuit model using Lagrangian dynamics. In Section 4.3, we further include the

input-output ports into the circuit model of the JPA, and construct the equations of motion

to describe the dynamics of the circuit. In Section 4.4, we investigate the limitation on

the saturation power of the JPA without external series inductors. Specifically, we analyze

the 3rd order theory using both numerical and perturbative approaches in Sec. 4.4.3. We

compare these results with the effect of Kerr nonlinearities in Sec. 4.4.4 and identify the

dynamically generated Kerr terms and the two-photon loss processes. Intrinsic fifth- and

higher-order nonlinear couplings are investigated in Sec. 4.4.5. We put these results together

in Sec. 4.4.1 and identify which effect is responsible for limiting the saturation power in

different parametric regimes. In Sec. 4.5 we consider the consequence of the series inductors

outside of it. We show that the series inductors, which suppress the participation ratio of the

JRM, can be used to improve the dynamic range of the JRM. We discuss how to optimize the

saturation power of the JPA, taking into account both series inductors and full nonlinearities

in Section 4.6. In Sec. 4.7, we further explore how the saturation power is affected by the

magnetic field bias, the modes’ decay rates and stray inductors in series of the Josephson

junction in JRM loop. We provide an outlook on the performance of Josephson junction

based amplifiers in Section 4.9.
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4.2 Equations of motion for circuits made of Josephson junctions

In this section, we review the theory of lumped circuits elements. We start from the

Lagrangian treatment of single circuit elements in subsection 4.2.1. Then in subsection 4.2.2,

we work on the JRM and the closed JPA circuit model and solved the normal mode profiles

of the JRM.

4.2.1 Lagrangian description of linear inductance, Josephson junctions and ca-

pacitors

The equations of motion (EOM) that describe the dynamics of a circuit with Josephson

junctions, inductors, and capacitors can be derived using the formalism of Lagrangian dy-

namics, which naturally leads to Kirchhoff’s law. We use the dimensionless flux on each node

of the circuit, ϕj(t) = 1
φ0

∫ t
−∞ Vj(t

′)dt′, as the set of generalized coordinates. The Lagrangian

L[{ϕj, ϕ̇j}] is defined as

L = T [{ϕ̇j}]− U [{ϕj}], (4.1)

where T is the kinetic energy associated with the capacitors and U is the potential energy

associated with the inductors and the Josephson junctions. Using Fig. 19(a) to define the

nodes and current direction for each type of circuit element, we observe that each capacitor

contributes

EC =
C

2
φ2

0 (ϕ̇1 − ϕ̇2)2 (4.2)

to T [{ϕ̇j}], while each inductor and each Josephson junction contributes

EL =
φ2

0

2L
(ϕ2 − ϕ1)2, (4.3)

EJ = −φ0ic cos (ϕ2 − ϕ1) , (4.4)

to U [{ϕj}], where ic is the critical current of the Josephson junctions. The current across a

capacitor is

− 1

φ0

(δEC/δϕ1) =
1

φ0

(δEC/δϕ2)
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Figure 19: In (a) we show the typical circuit elements that we will focus on in this paper, a

linear inductor with inductance L, a capacitor with capacitance C and a Josephson junction

with critical current ic. The node phase and the convention for the current is labeled on each

element drawings. The circuit model for the JRM-based JPA circuit is shown in (b). The

circuit model for a linear inductance shunted Josephson Ring Modulator (JRM) is shaded

in red. We connected the linear inductance shunted JRM with the capacitors and the input-

output ports. We assume the normal modes are symmetrically driven by the ports. For

the port corresponds to mode ϕa, we use the green arrows to show the input and output

(reflected) current flow direction. For b-mode, we only use the green arrow to show the flow

direction of the input current. The connection of the c-port is not shown in the plot. The

c-port also drives the corresponding mode profile symmetrically. The corresponding normal

modes, including three nontrivial modes ϕa, ϕb and ϕc and one trivial mode ϕm, are shown

in (c).

, while the current across an inductor is

1

φ0

(δEL/δϕ1) = − 1

φ0

(δEL/δϕ2)

and across a Josephson junction

1

φ0

(δEJ/δϕ1) = − 1

φ0

(δEJ/δϕ2).
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Using the Lagriangian L of the circuit elements, the current that flows out of each node of

the circuit is

Jj = − 1

φ0

(δL/δϕj).

To obtain the equations of motion (EOMs) we extremize the action by setting Jj = 0, which

corresponds to enforcing Kirchhoff’s law.

Next, we apply the Lagrangian formalism to derive the potential energy of the linear-

inductor-shunted JRM, the key component at the heart of the JPA, shown in Fig. 19(b),

which is shaded in red. The potential energy of the JRM circuit 1 is

EJRM =
φ2

0

2Lin

4∑
j=1

(ϕj − ϕE)2 − φ0ic

4∑
i=1

cos
[
ϕi+1 − ϕi −

ϕext

4

]
, (4.5)

where ϕj’s are the phases of the superconductors on the nodes [see Fig. 19(b)] and we adapt

the convention that ϕ5 = ϕ1 for the summation. The external magnetic flux though the

JRM circuit Φext controls the parameter ϕext = Φext/φ0. Applying Kirchhoff’s law to node

E, we obtain ϕE = 1
4

(ϕ1 + ϕ2 + ϕ3 + ϕ4).

4.2.2 Normal modes of the Josephson parametric amplifier

In this sebsection, we focus on the equations of motion of the closed circuit model of the

JPA (i.e., ignore the input-output ports) and analyze the normal mode profile of the JPA

circuit (see Fig. 19(b), but without input ports).

The potential energy of the shunted JRM was derived in the previous subsection, see

Eq. (4.5). The kinetic energy associated with the capacitors [Fig. 19(b)], Eq. (4.2), is

Ec = φ2
0

(
Caϕ̇1

2 + Cbϕ̇2
2 + Caϕ̇3

2 + Cbϕ̇4
2
)
, (4.6)

Which gives the Lagrangian L = Ec − EJRM. The EOM of this closed circuit can be con-

structed using Lagrange’s equation, e.g. for a node flux ϕj,

2Cjϕ̈j +
1

Lin

(ϕj − ϕE) +
1

LJ

[
sin
(
ϕj − ϕj+1 +

ϕext

4

)
1Throughout our paper, we make the assumption that the JRM circuit is symmetric, that is all four inner

inductors are identical and all four Josephson junctions are identical.

95



− sin
(
ϕj−1 − ϕj +

ϕext

4

)]
= 0, (4.7)

where ϕj is the node phases, j = 1, 2, 3, 4, and we use the index convention that ϕ0 = ϕ4,

ϕ5 = ϕ1. According to the Fig. 19(b), the node capacitance are C1 = C3 = Ca and

C2 = C4 = Cb. The Josephson inductance LJ = φ0/ic.

To analyze the normal modes of the circuit, we assume we have chosen suitable values

for the parameters so that the ground state of the circuit is ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0, and

expand in small oscillations to obtain a linearized set of EOMs around the ground state.

The corresponding normal coordinates, which we denote as [ϕM ] in vector form, are related

to the node fluxes via [ϕ] = [A].[ϕM ], where transformation matrix [A] is

[A] =


1 1

2
0 − Cb

(Ca+Cb)

1 0 1
2

Ca
(Ca+Cb)

1 −1
2

0 − Cb
(Ca+Cb)

1 0 −1
2

Ca
(Ca+Cb)

 , (4.8)

and the flux coordinates vectors are defined as [ϕ] = (ϕ1, ϕ2, ϕ3, ϕ4)ᵀ and [ϕM ] = (ϕm, ϕa, ϕb,

ϕc)
ᵀ. Inverting this transformation, we obtain the expression for the normal modes in terms

of the node fluxes,

ϕa = ϕ1 − ϕ3, (4.9a)

ϕb = ϕ2 − ϕ4, (4.9b)

ϕc = −1

2
(ϕ1 + ϕ3 − ϕ2 − ϕ4) (4.9c)

ϕm =
Ca

2(Ca + Cb)

(
ϕ1 +

Cb
Ca
ϕ2 + ϕ3 +

Cb
Ca
ϕ4

)
. (4.9d)

The profiles for the normal modes, ϕa, ϕb, ϕc and ϕm are sketched in Fig. 19(c). The normal

mode ϕm has zero frequency and it is not coupled with any of the other three modes [see

Eq. (4.11)]. Therefore, ϕm is a trivial mode, which can be safely ignored in our following

discussion. The corresponding frequencies for the other three nontrivial modes are

ω2
a =

LJ + 2Lin cos
(
ϕext

4

)
2CaLinLJ

, (4.10a)

ω2
b =

LJ + 2Lin cos
(
ϕext

4

)
2CbLinLJ

, (4.10b)
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ω2
c =

Ca + Cb
CaCb

·
LJ + 4Lin cos

(
ϕext

4

)
4LinLJ

. (4.10c)

With the coordinate transformation given by the model matrix [A] [see Eq. (4.8)], we

can re-write the potential energy of the JPA (the energy of JRM circuit) using the normal

modes ϕa, ϕb and ϕc, as

EJRM =− 4EJ

[
cos
(ϕa

2

)
cos
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
+ sin

(ϕa
2

)
sin
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
+

φ2
0

4Lin

(
ϕ2
a + ϕ2

b + 2ϕ2
c

) (4.11)

where EJ = φ0ic is the Josephson energy.

We observe from Eq. (4.11) that the four Josephson junctions on the outer arms of the

JRM provide nonlinear couplings between the normal modes of the circuit. Assuming that

the ground state of the circuit is ϕa = ϕb = ϕc = 0, and it is stable as we tune the external

magnetic flux bias, we can expand the nonlinear coupling terms around the ground state as

EJRM ∼
[
φ2

0

4Lin

+
EJ

2
cos
(ϕext

4

)] (
ϕ2
a + ϕ2

b

)
+

[
φ2

0

2Lin

+ 2EJ cos
(ϕext

4

)]
ϕ2
c

−EJ sin
(ϕext

4

)
ϕaϕbϕc −

1

96
EJ cos

(ϕext

4

) (
ϕ4
a + ϕ4

b + 16ϕ4
c

)
+

1

16
EJ cos

(ϕext

4

) (
ϕ2
aϕ

2
b + 4ϕ2

aϕ
2
c + 4ϕ2

bϕ
2
c

)
+ ...

(4.12)

Because of the parity of the cosine and sine functions, the cosine terms in Eq. (4.11) con-

tribute the even order coupling terms while the sine terms contributes the odd order coupling

terms. The nonlinear couplings are controlled by the external magnetic flux bias ϕext. The

third order nonlinear coupling is the desired term for a non-degenerate Josephson parametric

amplifier, while all the higher order couplings are unwanted. The Kerr nulling point [74, 162]

is achieved by setting the external magnetic flux to ϕext = 2π (and assuming that the ground

state ϕa = ϕb = ϕc = 0 remains stable), and we find that all the even order nonlinear cou-

plings are turned off.
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4.3 Input-output theory of the Josephson parametric amplifier

The linear-inductor shunted JRM described in the previous section is the core elements

of the Josephson parametric amplifier. In order to build the JPA, we add input-output lines

and external parallel capacitors to the JRM, see Fig. 19(b). In Section 4.5 we will extend

the description of the JPA by adding stray and series inductors to the JRM.

In order to fully model the JPA, we need to describe the input-output properties of the

JPA circuit. In Subsec. 4.3.1 we introduce input-output theory, and apply it to the problem

of modeling drive and response of the JPA. In Subsec. 4.3.2 we present the full nonlinear

equations of motion that describe the JPA circuit.

4.3.1 Input-output relation for the Josephson parametric amplifier

To solve the full dynamics of the JPA with amplification process, we need to be able to

describe the microwave signals that are sent into and extracted (either reflected or trans-

mitted) from the circuit. Therefore, we need to connect the input-output ports to the JPA

circuit and include the description of them in the EOMs.

To simplify the problem, we assume that the drives perfectly match the profiles of the

corresponding normal modes, as shown schematically for modes a and b in Fig. 19(a). Take

mode a as an example. We send in a microwave signal with the amplitude of the voltage

Va,in = φ0ϕ̇a,in into the port for this mode. The corresponding current flow from the trans-

mission line to the amplifier is Ia,in =
Va,in
Za

, where Za is the impedance of the transmission

line. The voltage applied to node 1 and node 3 are V1 = φ0

2
ϕ̇a,in and V3 = −φ0

2
ϕ̇a,in, respec-

tively. While the output microwave signal has output voltage amplitude Va,out = φ0ϕ̇a,out

and the output current is Ia,out = Va,out

Za
.

At the nodes which connect to the transmission line, e.g. nodes 1 and 3 for a mode,

the voltage and current should be single-valued. This requirement induces an input-output

condition

Va,in + Va,out = Va = V1 − V3 (4.13a)

Ia,in − Ia,out = I1,a = −I3,a, (4.13b)
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where I1,a (I3,a) is the net current flow into node 1 (3) of the amplifier from the port.

Because the output signals should be determined by the input signals, we eliminate the

output variables from the input-output relation so that it can be combined with the current

relation inside the JRM to construct the EOMs for the open circuit model

I1,a = −I3,a =
2Va,in
Za
− φ0 (ϕ̇1 − ϕ̇3)

Za
. (4.14)

Given the the drives (inputs), we can solve for the mode fluxes using the EOMs, and then

obtain the outputs using the input-output relations. For example, the output voltage on

port a is determined by

Va,out = φ0 (ϕ̇1 − ϕ̇3)− Va,in. (4.15)

In the remainder of this paper we focus on the reflection gain of the JPA which is obtained

from a phase-preserving amplification process. The input signal to be amplified by the JPA

is a single-frequency tone. The amplified output is the reflected signal at the same frequency.

Using the Josephson relation relating voltage and flux, we observe that the reflected voltage

gain is equal to the reflected flux gain. Therefore, we use the input-output relation for the

mode flux, e.g. for port a we have

ϕa,out = ϕ1 − ϕ3 − ϕa,in. (4.16)

The analysis of input-output ports for mode b and c is similar. For b-port we have

I2,b = −I4,b =
2Vb,in
Zb
− φ0 (ϕ̇2 − ϕ̇4)

Zb
(4.17a)

Vb,out = φ0 (ϕ̇2 − ϕ̇4)− Vb,in, (4.17b)

and for c-port

I2,c = I4,c = −I1,c = −I3,c

=

√
2Vc,in
Zc

− φ0

2Zc
(ϕ̇2 + ϕ̇4 − ϕ̇1 − ϕ̇3) (4.18a)

Vc,out =

√
2φ0

2
(ϕ̇2 + ϕ̇4 − ϕ̇1 − ϕ̇3)− Vc,in. (4.18b)
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The extra factor
√

2 that app[ears for the c port is due to the microwave power being split

50/50 between the two transmission lines that drive all four nodes simultaneously.

When constructing the EOM with input-output ports, we should consider the current

contribution from all the input-output ports together. For example, the net current injected

through node 1 should have contributions from the drive applied to both ports for mode a

and mode c, i.e., I1,net = I1,a + I1,c.

4.3.2 Full nonlinear equations of motion for the Josephson parametric amplifier

In this subsection, we combine the circuit model for JPA with the input-output relations

to construct the full nonlinear EOMs of the JPA. We will take node 1 as an illustrative

example and then give the full set of EOMs for the circuit. Note that the left hand side of

the EOM for the closed circuit model of the JRM in Eq. (4.7) is equivalent to the current

relation at node 1, except for a constant factor φ0. To construct the EOM for the open

circuit with all the driving ports, we should take the net current injected into node 1 to

replace the right hand side of the Eq. (4.7). Applying this procedure to all nodes we obtain

the EOMs

ϕ̈1 +
(3ϕ1 − ϕ2 − ϕ3 − ϕ4)

8CaLin

+
1

2CaLJ

[
sin
(
ϕ1 − ϕ2 +

ϕext

4

)
− sin

(
ϕ4 − ϕ1 +

ϕext

4

)]
(4.19a)

=
1

2Caφ0

(I1,a + I1,c) ,

ϕ̈2 +
(3ϕ2 − ϕ1 − ϕ3 − ϕ4)

8CbLin

+
1

2CbLJ

[
sin
(
ϕ2 − ϕ3 +

ϕext

4

)
− sin

(
ϕ1 − ϕ2 +

ϕext

4

)]
(4.19b)

=
1

2Cbφ0

(I2,b + I2,c) ,

ϕ̈3 +
(3ϕ3 − ϕ1 − ϕ2 − ϕ4)

8CaLin

+
1

2CaLJ

[
sin
(
ϕ3 − ϕ4 +

ϕext

4

)
− sin

(
ϕ2 − ϕ3 +

ϕext

4

)]
(4.19c)

=
1

2Caφ0

(I3,a + I3,c) ,

100



ϕ̈4 +
(3ϕ4 − ϕ1 − ϕ2 − ϕ3)

8CbLin

+
1

2CbLJ

[
sin
(
ϕ4 − ϕ1 +

ϕext

4

)
− sin

(
ϕ3 − ϕ4 +

ϕext

4

)]
(4.19d)

=
1

2Cbφ0

(I4,b + I4,c) .

where the net currents injected from each of the ports to the corresponding nodes are given

in Eqs. (4.14), (4.17) and (4.18). Using the transformation of Eq. (4.8) we obtain the EOMs

using the normal modes

ϕ̈a + γaϕ̇a +
ϕa

2CaLin

+
2

CaLJ

[
sin
(ϕa

2

)
cos
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
− cos

(ϕa
2

)
sin
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
= 2γa∂tϕa,in(t) (4.20a)

ϕ̈b + γbϕ̇b +
ϕb

2CbLin

+
2

CbLJ

[
cos
(ϕa

2

)
sin
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
− sin

(ϕa
2

)
cos
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
= 2γb∂tϕb,in(t) (4.20b)

ϕ̈c + γcϕ̇c +
ϕc

CcLin

+
4

CcLJ

[
cos
(ϕa

2

)
cos
(ϕb

2

)
sin (ϕc) cos

(ϕext

4

)
− sin

(ϕa
2

)
sin
(ϕb

2

)
cos (ϕc) sin

(ϕext

4

)]
=
√

2γc∂tϕc,in(t) (4.20c)

where we define the effective capacitance for the c mode as Cc = 4CaCb
Ca+Cb

. The mode decay

rates γa, γb and γc are given by γa = (CaZa)
−1, γb = (CbZb)

−1 and γc = Ca+Cb
2CaCbZc

. We convert

the input-output relations of Eqs. (4.15), (4.17b) and (4.18b) into input-output relations for

flux

ϕa,out = ϕa − ϕa,in (4.21a)

ϕb,out = ϕb − ϕb,in (4.21b)

ϕc,out =
√

2ϕc − ϕc,in. (4.21c)

The response of the JPA can be fully described using Eqs. (4.20) and (4.21).

Finally, we point out that it is useful to use the normal modes of the JRM as the

coordinates for writing the EOMs as it makes the analysis of the effects of the various orders

of nonlinear coupling easier to understand. On the other hand, using the node fluxes as

coordinates is useful as they are more naturally connected to Kirchhoff’s law, especially

when we want to include experimental imperfections.
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4.4 Saturation power of a JPA (unit participation ratio)

In this section, we first obtain the saturation power of the JPA as described by the exact

nonlinear EOMs discussed in subsection 4.3.2. Next, we analyze how higher-order nonlinear

couplings affect the dynamics of the JPA with the goal of understanding which couplings

control the saturation power of the parametric amplifier, to give us guidance on how to

improve the saturation power.

We begin with Subsec. 4.4.1, in which we summarize our main results concerning the

dependence of the saturation power on the parameter

β = LJ/Lin. (4.22)

Specifically, we compare numerical solution of the full nonlinear model with numerical solu-

tions of truncated models as well as perturbation theory results. We show that for small β

the limitation on saturation power comes from dynamically generated Kerr-like terms, while

for large β saturation power is limited by 5th order non-linearities of the JRM. The details

of the analytical calculations are provided in the following subsections.

In Subsec. 4.4.2, we remind ourselves of the exact analytical solution for the ideal third

order amplifier in which the signal is so weak that it does not perturb the pump (i.e., the

stiff-pump case). Next, in Subsec. 4.4.3 we consider the case of a third order amplifier with

input signal sufficiently strong such that it can affect the pump (i.e., the soft pump case).

In this Subsection we construct a classical perturbation expansion (in which the stiff pump

solution corresponds to the zeroth order solution and the first order correction) and find that

it leads to the generation of an effective cross-Kerr term, and a pair of two-photon loss terms,

one of which could be thought of as and imaginary cross-Kerr term. In Subsec. 4.4.4) we

compare the effects of the dynamically generated terms to intrinsic Kerr terms. We analyze

fifth and higher order couplings in Subsec. 4.4.5).

A note about notation: Throughout this section, we refer to the a-mode as the signal

mode, b-mode as the idler mode, and c-mode as the pump mode with intrinsic frequencies ωa,

ωb and ωc. To simplify the discussion of the perturbative expansion, we only consider the case

in which we assume that (1) the parametric amplifier is on resonance, i.e., δ = ωS − ωa = 0
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(where ωS is the frequency of the signal tone) and εp = ωP − (ωa + ωb) = 0 (where ωP is the

pump tone frequency), so that ωS = ωa, ωI = ωb and ωP = ωa + ωb, (2) the magnetic flux

bias is set to the Kerr nulling point, i.e., ϕext = 2π, (3) an input tone is only sent to the

signal mode and there is no input to the idler mode.

4.4.1 Main result: saturation power as a function of β

In this subsection, we will compare the exact numerical solution of the full nonlinear

EOMs of the JPA to various approximate solutions in order to identify the effects that limit

saturation power.

For concreteness, we fix the following parameters: The magnetic field bias is fixed at

ϕext = 2π, the mode frequencies are fixed at ωa/(2π) = 7.5 GHz and ωb/(2π) = 5.0 GHz

(ωc/(2π) = 6.37 GHz is fixed by the JPA circuit), the decay rates of the modes are fixed at

γa/(2π) = γb/(2π) = γc/(2π) = 0.1 GHz, and the critical current of the Josephson junctions

is fixed at ic = 1µA. Throughout, we will set the amplitude of the pump to achieve 20dB

reflection gain (at small signal powers). This leaves us with one independent parameter: the

JRM inductance ratio β.

We shall now analyze saturation of the amplifier as a function of β. We find it conve-

nient to use saturation input signal flux |ϕa,in(ωa)| as opposed to P±1dB because the former

saturates to a constant value at high β while the latter grows linearly at high β. We note

that the two quantities are related by the formula

P±1dB =
φ2

0

2Za

∣∣∂2
t ϕa,in(t)

∣∣2 =
1

2
Caφ

2
0γaω

2
a |ϕa,in(ωa)|2 . (4.23)

At the nulling point, the EOMs do not explicitly depend on the Josephson junction

critical current ic. Therefore, the dynamics of the circuit in terms of the dimensionless fluxes

ϕa, ϕb, and ϕc are invariant if we fix ωa, ωb, γa, γb, γc and β. However, ic is needed to connect

the dimensionless fluxes to dimensional variables. Specifically, the connection requires the

mode capacitance, see Eq. (4.23). At the nulling point, the mode capacitance is set by the

mode frequency and Lin [e.g. Ca = 1/(ω2
aLin)] and Lin is set by ic, see Eq (4.22). In the

following, we will analyze saturation power in terms of dimensionless fluxes.
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(b)

(a)

Figure 20: We plot the saturation flux |ϕa,in| of the JPA as we change JRM inductance

ratio β = LJ/Lin. The amplifier saturates to 19 dB and 19.9 dB in (a) and (b) respectively.

The saturation flux from numerical integration of full nonlinear EOMs, SoP-3rd order and

StP-5th order nonlinear models of JPA is plotted as blue, orange and dark green solid lines

in both subplots. The saturation fluxes are also obtained by the perturbation analysis for

the SoP-3rd order and StP-5th order nonlinear models. We plot the third order and fifth

order perturbation results as dashed lines and dash-dotted lines. In (a), the perturbation

saturation fluxes do not agree well with the numerical ones. This is because the saturation

fluxes are already out of the radius of convergence of the perturbation series. While in

(b), they have a good agreement. Parameters chosen: ϕext = 2π, the mode frequencies

ωa/(2π) = 7.5 GHz, ωb/(2π) = 5.0 GHz, mode decay rates γ/(2π) = 100 MHz for all three

modes. The critical current is set to ic = 1 µA. We tune the inner shunted inductance Lin

to tune β.
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In Fig 20 we plot the saturation flux as a function of β obtained using the full nonlinear

EOMs as well as various truncated EOMs and perturbation theory. In panel (a) of the figure

we use the conventional criteria that saturation occurs when the gain change by ±1 dB, while

in panel (b) we use the tighter condition that gain changes by ±0.1 dB. We observe that the

saturation flux has two different regimes. At small β the saturation flux grows linearly with

β, while at high β it saturates to a constant.

To understand the limiting mechanisms in both β regimes, we compare the saturation

flux ϕa,in obtained from the numerical integration of full nonlinear EOMs with the various

truncated EOMs. We mainly focus on two nonlinear truncated models: (1) soft-pump

third order truncated model (SoP-3rd), in which the EOMs of the amplifier are obtained by

truncating the Josephson energy to 3rd order in mode fluxes; (2) the stiff-pump fifth order

truncated model (StP-5th), in which the Josephson energy is truncated to 5th order in mode

fluxes and we ignore the back-action of the signal and idler modes on pump mode dynamics.

We begin by considering the small β regime. Comparing the saturation flux obtained

from the numerical integration of full nonlinear EOMs with the above two truncated EOMs,

we see that the saturation flux ϕa,in of the full nonlinear EOMs most closely matches the

EOMs of SoP-3rd order model of the amplifier, which indicates the soft-pump condition is

the dominating limitation in this regime.

In the soft-pump model, saturation power is limited by the dynamically generated Kerr

term. This term shifts the signal and idler modes off resonance as the power in these modes

builds up. We describe the details of this process in Subsections 4.4.3 and 4.4.4. In the small

β regime, the saturation flux of the amplifier increases as we increase β [see Fig. 20(a)]. This

is because increasing β effectively decreases the nonlinear coupling strength of the amplifier

and therefore decreasing the effective strength of the dynamically generated Kerr term.

This conclusion is supported by comparing (see Fig. 20) the exact numerics on the SoP-3rd

model (labeled SoP-3rd) with a perturbative analysis of the same model which captures the

generated Kerr terms (labeled SoP-3rd 5th order).

In large β regime, the saturation flux obtained from full nonlinear model saturates to

a constant value (see Fig. 20, “All-order” line). This behavior diverges from the prediction

of the SoP-3rd order nonlinear model (“SoP-3rd” line) but it is consistent with the StP-5th
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order nonlinear model (“StP-5th” line), which indicates that the dominating limitation in

the large β regime is the intrinsic 5th order nonlinearity of the JRM energy. Perturbation

theory analysis of the StP-5th order nonlinear model (“StP-5th 3rd order” and “StP-5th 5th

order” lines, see Subsec. 4.4.5) indicates that the saturation flux depends on the ratio of the

fifth order and the third order nonlinear couplings arising from the Josephson non-linearity,

and is therefore independent of β. As we increase β, the limitation on the saturation power

placed by the generated cross-Kerr couplings decreases and hence the mechanism limiting

the amplifier’s saturation flux changes from generated cross-Kerr couplings to fifth order

nonlinearity of the JRM energy. The β at which the mechanism controlling saturation flux

changes is controlled by the decay rates as β ∝ γ−1/2. For our choice of parameters this

change of mechanism occurs at β ∼ 6.

4.4.2 Ideal parametric amplifier, 3rd order coupling with stiff pump approxi-

mation

In this subsection, we remind ourselves with the solution of ideal parametric amplifier.

The ideal parametric amplifier can be exactly solved in frequency domain such that we can

also verify the reliability of the numerical solutions.

In an ideal parametric amplifier, the only coupling present is a third order coupling

between the signal, idler and pump mode that results in parametric amplification. Further,

the pump mode strength is considered to be strong compared to the power consumed by

the amplification, such that the pump mode dynamics can be treated independently of the

signal and idler modes. This approximation is commonly referred to as the “stiff-pump

approximation” (StP). The EOMs to describe the parametric amplifier can be derived from

the full nonlinear EOMs in Eq. (4.20) by expanding the nonlinear coupling terms to second

order in mode fluxes ϕ’s (2nd order in EOMs corresponding to 3rd order in Lagrangian).

Under the stiff-pump approximation, we can effectively remove the three mode coupling

terms in the EOM for the pump mode

ϕ̈c + γcϕ̇c + ω2
cϕc =

√
2γc∂tϕc,in(t). (4.24)
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Figure 21: The reflection gain of an ideal parametric amplifier calculated by both scattering

matrix (red dashed line) and time-domain numerical evolution (blue line). The response

of the ideal amplifier can be faithfully simulated by the time-domain numerical method

with a reasonable reflection gain. The black dashed line shows the bias point beyond which

the amplifier is unstable. Our time-domain numerical solution start to deviated form the

scattering matrix calculation at ∼ 2.1. This is because the numerical accuracy of the time-

domain solver. In the insert, we increase the final time tf of the time-solver. We notice a

better and better convergence to the analytical solution (red dashed line). This is caused

by a numerical instability that occurs near the divergence point of the amplifier, Eq. (4.32).

Parameters chosen: ϕext = 2π, ωa/(2π) = 7.5 GHz, ωb/(2π) = 5.0 GHz, γa = γb = γc =

2π × 0.01 GHz and ic = 1.0 µA. Time constant τ0 = 4000f−1
a where fa is the signal mode

frequency.
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ϕc obtained from this equation acts as a time-dependent parameter in the EOMs for the a

and b modes

ϕ̈a + γaϕ̇a + ω2
aϕa −

2ω2
a

β
ϕbϕc = 2γa∂tϕa,in(t), (4.25a)

ϕ̈b + γbϕ̇b + ω2
bϕb −

2ω2
b

β
ϕaϕc = 2γb∂tϕb,in(t). (4.25b)

Assuming the pump tone is ϕc,in(t) = ϕc,ine
−iωP t+c.c., we find that ϕc(t) = ϕc(ωP )e−iωP t+c.c.

where,

ϕc(ωP ) =
−i
√

2γcωP
ω2
c − ω2

P − iγcωP
ϕc,in (4.26)

Substituting the c-mode flux ϕc in Eq. (4.25) the EOMs for a and b modes become linear

and can be solved in the frequency domain. The Fourier components of the a and b modes,

under the rotating-wave approximation, are

ϕa(ωa) =
2γ̃aγ̃b

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
ϕa,in (4.27a)

ϕ∗b(ωb) =
4igγ̃aϕ

∗
c(ωP )

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
ϕa,in (4.27b)

where we define the dimensionless decay rates γ̃j = γj/ωj, the dimensionless three-mode

coupling strength g = (1/β) sin
(
ϕext

4

)
= 1/β, which is obtained from a series expansion of

the dimensionless potential energy

EJRM ≡
[
(φ2

0/Lin)
]−1

EJRM. (4.28)

Here we assume the input tone is ϕa,in = ϕa,ine
−iωat + c.c. and there is no input into idler (b)

mode.

The linear response of the ideal parametric amplifier is obtained using scattering matrix

formalism. The EOMs of an ideal parametric amplifier can be written in matrix form as

[M ].[ϕ] = 2[γ̃].[ϕin], where

[M ] =

 γ̃a −2igϕc(ωP )

2igϕ∗c(ωP ) γ̃b

 , (4.29)

[γ̃] =

 γ̃a

γ̃b

 . (4.30)
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The scattering matrix, which is defined by [ϕout] = [S].[ϕin], is given by [S] = 2[M−1].[γ̃]−

I2×2, where we have used the input-output relation [ϕ] = [ϕin] + [ϕout] and I2×2 is the 2× 2

identity matrix,

[S] =

 2γ̃aγ̃b
γ̃aγ̃b−4g2|ϕc(ωP )|2 − 1 − 4igγ̃bϕc(ωP )

γ̃aγ̃b−4g2|ϕc(ωP )|2

4igγ̃aϕ∗c(ωP )

γ̃aγ̃b−4g2|ϕc(ωP )|2
2γ̃aγ̃b

γ̃aγ̃b−4g2|ϕc(ωP )|2 − 1

 . (4.31)

The reflection gain of the signal mode (in units of power) is defined as G0 = |[S]11|2. To get

large gain (G0 � 1), the pump mode strength should be tuned to

2g |ϕc(ωP )| ∼
√
γ̃aγ̃b. (4.32)

Alternatively, we can obtain the response of the JPA using time-domain numerical in-

tegration. First, we solve for the mode variables inside the JPA circuit with specific signal

and pump inputs. Next, we use the input-output relation to find the output signal and

then we obtain the reflection gain of the amplifier. Specifically, to solve the dynamics of

the parametric amplifier, we set the input signal as ϕa,in(t) = ϕ̄a,in cos(ωSt) and ϕb,in = 0,

and numerically integrate the EOMs [Eq. (4.25)]. Here we note that ϕ̄a,in = 2ϕa,in, which

is defined in Eq. (4.27). In Fig. 21, we show the comparison of the reflection gain obtained

using numerical integration (red dashed line) and the scattering matrix solution (blue solid

line). The two solutions start out identical. However, as we increase the pump mode strength

ϕc,in, we notice that as the reflection gain starts diverging (G0 ∼ 35 dB, see the insert of

Fig. 21) from the analytical solution. This is because the numerical solver need a longer

and longer time window to establish the steady-state solution of the nonlinear EOMs as we

move towards the unstable point (vertical dashed line). To optimize the run time, here and

later in the paper, we choose the time-window for our solver so that the numerical solution

saturates for amplification of ∼ 20 dB.

In the unstable regime the reflection flux on the signal mode diverges exponentially with

time, as the amplifier will never run out of power under the StP approximation. Therefore,

in this regime the time-domain solver gives a large unphysical reflection gain (as we cut it

off at some large, but finite time).
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4.4.3 JPA with third order coupling, relaxing the stiff-pump approximation

As we increase the input signal strength, the power supplied to the pump mode will

eventually be comparable to the power consumed by amplification, where the amplifier will

significantly deviate from the ideal parametric amplifier. In this subsection, we reinstate the

action of the signal and idler modes on the pump mode. Since the pump mode strength

is affected by the signal and idler mode strengths, we refer to it as the “Soft-pump” (SoP)

condition.

Figure 22: We consider the soft-pump condition with third order coupling and calculate the

reflection gain of the amplifier. We slightly detune the pump drive frequency from the sum

frequency of the signal and idler mode frequency. When the pump frequency detuning εp is

negative (green dash-dotted line), the reflection gain is further suppressed compared with on-

resonance drive (orange dashed line). However, when the pump frequency detuning is positive

(blue line), the “shark fin” feature reappears, which was understood as the consequence of

the existence of Kerr nonlinearity in the amplifier system.

The EOMs for the Soft-pump third order model of the JPA can be obtained by expanding

the full nonlinear EOMs [Eq. (4.20)] and truncating all three EOMs to second order in mode

fluxes. That is, we use Eq. (4.25) to describe a and b modes and modify Eq. (4.24) for the c
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mode as

ϕ̈c + γcϕ̇c + ω2
cϕc −

ω2
c

β
ϕaϕb =

√
2γc∂tϕc,in(t). (4.33)

Unlike the StP approximation, the c mode flux ϕc can no longer be treated as a time-

dependent parameter unaffected by a and b modes. While we can no longer obtain an

exact analytical solution to these EOMs, we use perturbation theory as well as time-domain

numerical integration to seek the dynamics of the amplifier.

In Fig. 22, we plot the reflection gain obtained by numerical integration. The reflection

gain of the amplifier is no longer independent of the input signal power, instead we see that

the reflection gain deviates from 20 dB as we increase the signal mode power. Moreover, as

we change the detuning of the pump mode relative to the sum frequency of the signal and

idler mode, the deviation of the reflection gain changes from negative to positive. While

a deviation towards smaller gain (which occurs at negative or zero detuning) is consistent

with the pump saturation scenario, a deviation towards higher gain (which occurs at positive

detuning) is not. The “shark fin” feature we observe here, in which the gain first deviates

up and then down, has been previously attributed to intrinsic Kerr couplings [85]. The fact

that the “shark fin” reappears without an intrinsic Kerr term gives us a hint that SoP-3rd

order couplings can generate an effective Kerr nonlinearity.

To fully understand the effect of the SoP condition, we use classical perturbation theory to

analyze the dynamics of the circuit. Below, we explain the essential steps of the perturbation

analysis. Then, we focus on the SoP-3rd order truncated model and compute the parametric

dependence of the saturation flux of the amplifier.

4.4.3.1 Classical perturbation theory for the Josephson parametric amplifier

The small parameter in our perturbative expansion is the input fluxes to the signal and idler

modes, ϕa,in and ϕb,in. We can expand the mode fluxes in a series as

ϕj(t) = ϕ
(0)
j (t) + ϕ

(1)
j (t) + ϕ

(2)
j (t)... (4.34)
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for j = a, b, c. The EOM of the signal mode flux ϕa after series expansion is

(
∂2
t + γa∂t + ω2

a

) (
ϕ(1)
a (t) + ϕ(2)

a (t) + ...
)
−2ω2

a

β

(
ϕ

(1)
b (t) + ϕ

(2)
b (t) + ...

)
×(

ϕ(0)
c (t) + ϕ(1)

c (t) + ...
)

= 2γa∂tϕa,in(t).

(4.35)

The idler and pump mode EOMs are similar.

In the absence of inputs to the signal and idler modes, we obtain the zeroth order solution

of the EOMs. Since the amplifier should be stable, there should be no output in the signal

and idler modes when there is no input, i.e., ϕ
(0)
a = ϕ

(0)
b = 0. Therefore, the only nonzero

zeroth order solution is for the pump mode, which is given by

ϕ̈(0)
c + γcϕ̇

(0)
c + ω2

cϕ
(0)
c =

√
2γc∂tϕc,in(t). (4.36)

This equation matches the StP c mode EOM [see Eq. (4.24)], the zeroth-order solution for

ϕc is given in Eq. (4.26). We can then solve the higher corrections to signal, idler and pump

mode fluxes by matching the terms in the EOMs order-by-order. For example, the equations

for first order corrections ϕ
(1)
a and ϕ

(1)
b are identical to the ideal parametric amplifier, and

hence they are given by the StP solution Eq. (4.27), while the first order correction to the

pump mode flux is ϕ
(1)
c = 0.

As the first order correction to the pump mode is zero, there are no second order cor-

rections to the signal and idler mode fluxes. While the second order correction to the pump

mode has two frequency components: Σ = ωS+ωI and ∆ = ωS−ωI with Fourier components

ϕ(2)
c (Σ) = fΣ

1

β
ϕ(1)
a (ωS)ϕ

(1)
b (ωI) (4.37a)

ϕ(2)
c (∆) = f∆

1

β
ϕ(1)
a (ωS)ϕ

(1)∗
b (ωI), (4.37b)

where the two dimensionless parameters fΣ and f∆ are defined as

fΣ =
ω2
c

ω2
c − Σ2 − iγcΣ

, (4.38a)

f∆ =
ω2
c

ω2
c −∆2 − iγc∆

. (4.38b)
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Both of these two frequency components contribute to the third order correction to the signal

and idler mode flux with frequency ωS and ωI .

To obtain the third order corrections to the signal and idler mode fluxes we define an

effective drive vector that is comprised of all the contributions from lower orders, utilizing

Eq. (4.37) to express ϕ
(2)
c in terms of ϕ

(1)
a and ϕ

(1)
b

[ϕ
(3)
d ] =

 2g2 (f∆ + fΣ)ϕ
(1)
a

∣∣∣ϕ(1)
b

∣∣∣2
2g2 (f∆ + f ∗Σ)ϕ

(1)∗
b

∣∣∣ϕ(1)
a

∣∣∣2
 . (4.39)

The third order correction to the signal and idler mode is given by [ϕ(3)] = [M−1].[i].[ϕ
(3)
d ],

where [M ] is the same matrix as in the discussion of the ideal parametric amplifier Eq. (4.29),

and [i] = diag{i,−i} is a diagonal 2× 2 matrix. The signal mode 3rd order correction is

ϕ(3)
a =

(
1

β

)2{
2i[M−1]11 (fΣ + f∆)ϕ(1)

a

∣∣∣ϕ(1)
b

∣∣∣2
− 2i[M−1]21 (f ∗Σ + f∆)ϕ

(1)∗
b

∣∣ϕ(1)
a

∣∣2} . (4.40)

Using this expression we obtain the corrections to the reflection gain up to second order

G(2) = |ϕ(1)
a (ωS) +ϕ

(3)
a (ωS)−ϕa,in|2/|ϕa,in|2. Similarly, we can solve the perturbation theory

order-by-order till the desired order.

Here we want to stress that we only focus on the main frequency components of signal and

idler modes, i.e., ϕa(ωa) and ϕb(ωb) and ignore the higher order harmonics. This assumption

is also applied when we consider the higher than 3rd order nonlinear couplings in the JPA

truncated EOMs, e.g. in StP-Kerr nonlinear truncated model (discussed in subsec. 4.4.4)

and StP-5th order truncated model (discussed in subsec. 4.4.5).

Further, we point out that the above discussion is easily generalized to the case when

ωS 6= ωa, ωI 6= ωb and (or) ϕext 6= 2π.

Next, we consider the question, how the perturbation on the reflection gain can be used to

compute the saturation power of the amplifier. The saturation power is defined as the input

power at which the amplifier’s reflection gain changes by 1 dB. At the limit ϕa,in → 0, the

reflection gain of the amplifier is noted as G0, which is given by G0 = |ϕ(1)
a − ϕa,in|2/|ϕa,in|2.
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As we increase the input signal strength ϕa,in to reach 1 dB suppression of the reflection

gain, the corrected gain (in power unit) should satisfy,

G =

∣∣∣ϕ(1)
a + ϕ

(c)
a − ϕa,in

∣∣∣2
|ϕa,in|2

= 10−0.1G0 (4.41)

where ϕ
(c)
a is the higher order corrections to the signal mode flux in perturbation theory. In

the high gain limit (G0 � 1), we can estimate the criteria by,

∣∣ϕ(c)
a

∣∣ / ∣∣ϕ(1)
a

∣∣ = ε ≡ 10−0.05 − 1. (4.42)

Note ε depends on the definition of the threshold for the gain change at the amplifier satu-

ration.

4.4.3.2 Perturbative analysis on SoP third order EOM We apply the above pertur-

bation analysis to SoP-3rd order truncated model to understand the mechanism of amplifier

saturation in this model. Before we proceed to calculate the corrections to the reflection gain,

we estimate the matrix elements in the inverse of the parametric matrix [M ] [see Eq. (4.29)]

in high gain limit, i.e.,

GA ≡
√
G0 = 2γ̃a[M

−1]11 − 1 =
2γ̃aγ̃b

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
− 1� 1. (4.43)

Therefore, we can approximate 2γ̃a[M
−1]11 ∼ GA and hence ϕ

(1)
a (ωa) ∼ GAϕa,in. The ma-

trix element [M−1]21 can be approximated by −iGA/(2
√
γ̃aγ̃b), which can be seen from the

relation [M−1]21 = −i2gϕ(0)∗
c ([M−1]11)/γ̃b and

√
γ̃aγ̃b ∼ 2g|ϕ(0)

c |.

The third order correction to signal mode strength is given by the Eq. (4.40), which

becomes

ϕ(3)
a (ωb) ∼ 2

g2

γ̃a
G4
AIm(fΣ)ϕ3

a,in (4.44)

in the high gain approximation.

To calculate the saturation flux, we let ϕ
(3)
a ∼ εϕ

(1)
a and solve for ϕa,in, where ε is given

in Eq. (4.42). The saturation flux given by 3rd order perturbation is

ϕa,in,±1 dB ∼ G
−3/4
0

√
ε

√
γ̃b
g

Im(fΣ)−1/2. (4.45)
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where G0 is the small-signal reflection gain of the amplifier. The saturation flux given

by third order perturbation theory of SoP-3rd nonlinear model is plotted as orange (light

gray) dashed line in Fig. 20(a) 2. We notice that the saturation flux predicted by 3rd order

perturbation theory does not agree well with the numerical simulation (“SoP-3rd” line). The

disagreement also occurs when we tighten the criteria for amplifier saturation to 0.1 dB (see

Fig. 20(b) “SoP-3rd 3rd order” line).

To explain the disagreement between the perturbation theory and the numerical integra-

tion method, we correct the signal mode flux to the next non-zero order, which is at fifth

order in ϕa,in. To solve the fifth order correction of signal and idler mode fluxes, we follow

the same strategy as demonstrated above. The only nonzero fourth order correction is ϕ
(4)
c ,

with two frequency components, ϕ
(4)
c (Σ) and ϕ

(4)
c (∆). The fifth order correction to the signal

mode strength ϕ
(5)
a is

ϕ(5)
a ∼

g4

γ̃2
G

5/2
0 Re [fΣ + f∆]2 ϕ5

a,in (4.46)

where we use the fact that imaginary parts of f∆ and fΣ are much smaller than their real

parts and hence we ignore the contribution from their imaginary parts. The saturation flux

can be estimated by |ϕ(5)
a | ∼ ε|ϕ(1)

a | as,

ϕa,in,±1 dB ∼ G
−5/8
0

√
γ̃b
g

[ ε
2

Re(fΣ + f∆)−1
]1/4

(4.47)

Compared with the saturation flux given by third order perturbation, the fifth order cor-

rection is more significant as f∆ and fΣ are almost real. However, in third order perturbation

theory, the contribution of real parts of f∆ and fΣ is canceled, but they will appear in next

order perturbation, which dominates the saturation.

The saturation flux correction till fifth order perturbation is obtained by directively

solving Eq. (4.41) for ϕa,in, where the corrections of signal mode strength ϕ
(c)
a = ϕ

(3)
a + ϕ

(5)
a .

The saturation flux corrected upto fifth order [“SoP-3rd 5th order” line in Fig. 20(a) and

(b)] have better agreement with the numerical solution.

However, in both third order and fifth order perturbation analysis, the saturation flux

with 1 dB gain change does not agree well with the numerical solution [see Fig. 20(a)].

2To be more accurate, we directly solve ϕ
(3)
a = εϕ

(1)
a without high-gain assumption for the perturbation

curves in Fig. 20.
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This is because the saturation flux for ±1 dB is beyond the radius of convergence of the

perturbation series. In order to validate the perturbation analysis, we tight the criteria for

amplifier saturation to change of the amplifier gain by±0.1 dB, which makes the signal flux

to stay in the radius of convergence. In Fig. 20(b), the saturation flux corrected to fifth

order (“SoP-3rd 5th order” line) has a much better agreement with the numerical methods

[“SoP-3rd” line in Fig. 20(b)].

We notice that the saturation flux is inversely proportional to g = 1/β, and hence we

expect that it can be increased by decreasing the three-mode coupling strength (increasing

β). At the same time, the pump strength must be increased in order to reach G0. This

procedure, in effect, makes the pump stiffer.

4.4.4 Intrinsic and generated Kerr couplings

In this subsection, we comment on the generation of effective Kerr terms and compare

it with the intrinsic cross-Kerr couplings in the Lagrangian. In the perturbation analysis, if

we expand the pump mode strength to second order, the effective EOMs of the signal and

idler modes contains a cross Kerr coupling term, in the form of ϕa|ϕb|2 for the signal mode

and |ϕa|2ϕb for the idler mode (see, e.g. Eq. (4.40)). We will show that these generated Kerr

terms limit the saturation power (at least for small β).

To construct an understanding of this mechanism, we use perturbation theory to analyze

the StP amplifier with an intrinsic cross Kerr kab, and compare it with the SoP-3rd order

nonlinear amplifier. As we discussed in subsection 4.4.2, in the stiff pump approximation,

we treat the pump mode flux, ϕc, as a time-dependent parameter that is independent of

the signal and idler modes. The EOMs for the signal and idler modes can be obtained by

adding the terms 4kabϕaϕ
2
b and 4kabϕ

2
aϕb to the left-hand-side of Eq. (4.25a) and (4.25b),

respectively.

In perturbation analysis, following the discussion in the previous subsection, we expand

the signal and idler mode fluxes in the order of ϕa,in and ϕb,in. We further assume that the

amplifier is stable, i.e., there is no output from the amplifier if there is no input, which gives

the zeroth order solution of signal and idler modes as ϕ
(0)
a = ϕ

(0)
b = 0. The first order solution
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of signal and idler mode fluxes repeats the solution of ideal parametric amplifier [Eq. (4.27)]

and the next non-zero correction appears at third order. The corresponding drive term is

[ϕ
(3)
d ] =

 8kabϕ
(1)
a (ωS)

∣∣∣ϕ(1)
b (ωI)

∣∣∣2
8kabϕ

(1)∗
b (ωI)

∣∣∣ϕ(1)
a (ωS)

∣∣∣2
 . (4.48)

Comparing with Eq. (4.39), we see that the soft-pump condition gives an effective signal-idler

Kerr coupling strength

keff
ab =

1

4
g2 [f∆ + Re(fΣ)] . (4.49)

We note that this effective Kerr coupling is complex as f∆ is complex. We also observe that

there is an additional term in Eq. (4.39), that we label qeff
ab = (1/4)g2Im(fΣ), which cannot

be mapped onto a Kerr coupling (as the signal and idler parts have opposite sign).

Further, as the intrinsic cross Kerr coupling kab is real, the third order correction to

the signal mode in StP cross-Kerr amplifier model is zero. If we proceed to next non-zero

order correction to the signal and idler mode, and compare the drive term with the one from

StP-3rd order truncated model in same perturbation order, we identify the same effective

Kerr coupling strength as Eq. (4.49).

To check the correspondence and understand to what degree the saturation power of

SoP-3rd order amplifier is limited by the generated effective Kerr coupling, we manually

add an intrinsic cross Kerr coupling, kabϕ
2
aϕ

2
b , in the SoP-3rd order truncated Lagrangian,

and observe the saturation power of the amplifier as we tune kab (see Fig 23(a) and (b),

SoP-3rd line). We observe that in both small β (see Fig. 23(a), β = 1.2) and large β (see

Fig. 23(b), β = 10.0), as we tune the intrinsic Kerr term, the saturation power is maximized

at the point indicated by the dashed red line. This maximum corresponds to the value of

the intrinsic Kerr term that best cancels the generated Kerr coupling (kab = −Re[keff
ab ]) and

hence provides a maximum boost to the saturation power. We also notice that the maximum

peak on Fig. 23(a) has a shift from the full compensation point (kab = −Re[keff
ab ]). This is

caused by the existence of imaginary term of fΣ. In perturbation analysis, if we turn off the

imaginary part of fΣ, the peak is perfectly centered at the full-compensation point.

We also compare the saturation power obtained with SoP 3rd order (blue solid lines)

to the StP with intrinsic cross-Kerr term kab (orange dahsed lines). In order to make the
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(a) (b)

Figure 23: We compare three different cases, soft-pump with third order coupling (SoP-3rd),

Stiff-pump with Kerr coupling (StP-4th) and soft pump truncated till the third order with

fifth order couplings between signal and idler mode (SoP-3rd + 5th). For each cases, we

manually turn on a cross-Kerr coupling kab. For StP-4th case, the plot is shifted by −k(eff)
ab .

The vertical red dashed line shows the location where the real part of the dynamically gen-

erated cross-Kerr is fully compensated by the intrinsic cross-Kerr coupling. The parameters

chosen: ωa/(2π) = 7.5 GHz, ωb/(2π) = 5.0 GHz, γj/(2π) = 100 MHz. We set β = 1.2 [in

(a)] and 10.0 [in (b)]. The critical current is ic = 1.0 µA.

comparison more direct, we shift kab for the StP-Kerr amplifier by the computed value of

the generated Re[keff
ab ] of the SoP-3rd order amplifier (i.e., we line up the peaks). We observe

that away from the saturation power peak the two models are in good agreement, which

supports the correspondence. Further, if we focus on kab = 0 point on the plot, i.e., the

point at which SoP-3rd order model has no added intrinsic kab, the saturation power of SoP-

3rd order amplifier (blue solid lines) matches the shifted StP cross-Kerr nonlinear amplifier

(orange dashed lines) in both Fig. 23(a) and (b). Therefore, we conclude that it is indeed the

generated Kerr coupling that is limiting the saturation power of the SoP-3rd order model.

However, near the saturation power maximum the two models diverge: the saturation

power of the StP-Kerr amplifier becomes infinite as the intrinsic Kerr nonlinearity becomes

zero, while the saturation power of the SoP-3rd order amplifier remains finite. This is caused
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by the imagniary part of keff
ab and the qeff

ab , which cannot be compensated by a real intrinsic

cross-Kerr coupling kab.

We can understand the Im[keff
ab ] and the qeff

ab terms as a two-photon loss channel, i.e., in

which a photon in the signal mode and a photon in the idler mode combine and are lost in

the pump mode. Both of the terms can be mapped to an imaginary energy which represents

the decay of the signal and idler mode fluxes. Specifically, Im(fΣ) term represents the loss

of a photon in signal mode and a photon in idler mode to a pump photon with frequency

ω = Σ, while Im(f∆) term represents the loss to a ω = ∆ pump photon.

4.4.5 Fifth and higher order nonlinearities

As we pointed out in Eq. (4.47), the saturation flux increases as we decrease the three-

mode coupling strength g (by increase β). However, as we increase β, the saturation flux

diverges from the SoP-3rd order model (see Fig. 20). This is because the saturation flux

is so large that higher order nonlinear couplings becomes the limiting mechanism to the

saturation flux. In this subsection, we focus on the higher order couplings and show how

they limit the saturation flux of the amplifier.

At the Kerr nulling point, ϕext = 2π, the Kerr couplings are turned off, and hence the

next nonzero order of nonlinear couplings are fifth order in mode fluxes. The fifth order

terms in the expansion of the dimensionless potential energy of the JRM, Eq. (4.28), are

E (5)
JRM = haϕ

3
aϕbϕc + hbϕaϕ

3
bϕc + hcϕaϕbϕ

3
c , (4.50)

where ha = hb = 1
24β

sin
(
ϕext

4

)
and hc = 1

6β
sin
(
ϕext

4

)
. To understand the direct effects of

the fifth order couplings, we apply stiff-pump approximation and only include 3rd and 5th

order nonlinear coupling terms into the EOMs (kerr couplings are turned off at ϕext = 2π).

Among the three fifth order terms, ha and hb terms are more significant as in stiff-pump

approximation where c mode is treated as stiff, the term hcϕ
2
cϕaϕbϕc only shifts the pump

mode flux to reach the desired gain G0 and does not causes saturation. However, haϕ
2
aϕaϕbϕc

and hbϕ
2
bϕaϕbϕc terms dynamically shift the effective third order coupling strength as we

increase the input signal power, which saturates the amplifier.
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Again, we apply perturbation theory to analyze the StP-5th order amplifier following

the discussion in subsection 4.4.3. The lowest order solution of the signal and idler mode

fluxes are at first order, which repeats the solution of the ideal parametric amplifier. The

next nonzero correction appears at third order with equation [M ].[ϕ(3)] = −[i].[ϕ
(3)
d ], where

[i] is a 2× 2 diagonal matrix with elements {i,−i} and the corresponding drive term is

[ϕ
(3)
d ] =

 12haϕc

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)∗
b + 6haϕ

∗
c

(
ϕ

(1)
a

)2

ϕ
(1)
b + 6hbϕc

∣∣∣ϕ(1)
b

∣∣∣2 ϕ(1)∗
b

6haϕ
∗
c

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)
a + 12hbϕ

∗
c

∣∣∣ϕ(1)
b

∣∣∣2 ϕ(1)
a + 6hbϕc

(
ϕ

(1)∗
b

)2

ϕ
(1)∗
a

 . (4.51)

In the high-gain limit, the third order correction of the signal mode flux is

ϕ(3)
a ∼ 4

h

g

(
1 +

γ̃a
γ̃b

)
G2

0ϕ
3
a,in, (4.52)

where h = ha = hb is the dimensionless fifth order coupling strength. Following the same

method, we get an estimate on the saturation flux

ϕa,in,±1dB ∼

√
ε
g

4h

(
1 +

γ̃a
γ̃b

)
G
−3/4
0 . (4.53)

We note that the ratio g/h is independent of β. As we increase β to reduce the limitation

placed by SoP-3rd order model, Eq. (4.47), we eventually hit the limit that is given by StP-

5th order nonlinear model, Eq. (4.53), i.e., the dominating limiting mechanisms on saturation

flux switches.

To be more explicit, similar to the effective cross-Kerr compensation illustrated in sub-

sec. 4.4.4, we add fifth order nonlinear coupling terms into the SoP-3rd order nonlinear model,

which is labeled as “SoP-3rd+5th” in Fig. 23 (green lines). In the small β regime [Fig. 23(a)],

except around the generated cross-Kerr full compensation region, the SoP-3rd+5th order

nonlinear model closely follows the SoP-3rd order model, especially at kab = 0 point where

there is no intrinsic kab added to both of the models. This indicates that at low β regime, the

dominating limitation on the saturation power is given by the generated effective cross-Kerr

coupling from the SoP-3rd order nonlinear coupling. However, when β is large [Fig. 23(b)],

the saturation flux calculated from these two models disagrees. With additional fifth order

nonlinear couplings, the saturation flux is heavily suppressed, which shows that the fifth
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order nonlinear couplings dominates the SoP-3rd effects in limiting the saturation power of

the amplifier.

Furthermore, in the large β regime, the fifth order nonlinear couplings in the JPA La-

grangian is the dominating limitation on the saturation power in full nonlinear EOMs of JPA

among all the nonlinear couplings. To prove it, we numerically solve the saturation flux of

the StP-5th order truncated model of JPA (“StP-5th” line in Fig. 20) and compare it with

saturation flux obtained from the full nonlinear EOMs (“All-orders” line in Fig. 20). The

saturation flux from StP-5th order model matches the saturation flux of full nonlinear JPA

model in large β regime perfectly.

The saturation flux computed by numerical integration of StP-5th order nonlinear model

is independent of parameter β, which agrees with the perturbation analysis. To further

validate the perturbation theory, we plot the saturation flux from third order perturbation

in Fig. 20(a) (“StP-5th 3rd order” line) for comparison. We notice that the perturbation

result does not have a good quantitative agreement with the numerical solution. This is

because the saturation flux is outside the radius of convergence of the perturbation series.

If we tighten the criteria for amplifier saturation to the signal mode flux that causes the

gain to change by ±0.1 dB instead, the third order perturbation on StP-5th has much

better agreement with the numerical solutions (see Fig. 20(b) “StP-5th” line and “StP-5th

3rd order” line). However, to perfectly match the numerical solution, we need next order

correction, i.e., fifth order correction to signal mode flux. The result saturation flux is plotted

in Fig. 20(b) as the red dot-dashed line.

Similarly, for the higher order nonlinear couplings in the Lagrangian, e.g. the seventh

order in the Hamiltonian, we can still apply the perturbation theory to analyze the saturation

flux. Here we focus on one of the seventh order couplings, −laaϕ4
aϕaϕbϕc, to finalize the

discussion. According to Eq. (4.12), laa is sin
(
ϕext

4

)
/(1920β). We still consider the truncated

EOMs of the amplifier under stiff-pump approximation.

Following the same procedures discussed above, the lowest order solution of signal and

idler mode fluxes are in first order and are given by the ideal parametric amplifier solution

in Eq. (4.27). However, the next nonzero correction to signal and idler mode fluxes appears
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at fifth order with the corresponding drive term,

[ϕ
(5)
d ] = 20

∣∣ϕ(1)
a

∣∣2 3laa

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)∗
b ϕc + 2

(
ϕ

(1)
a

)2

ϕ
(1)
b ϕ∗c

laa

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)
a ϕ∗c

 . (4.54)

The saturation flux given by this order of perturbation theory obeys

ϕa,in,±1dB ∼
(
g

laa

)1/4

G
−5/8
0 . (4.55)

This limit does not depend on β either. With StP-7th order truncated nonlinear model,

where we include 3rd, 5th and 7th order nonlinear couplings in JPA Lagrangian (even orders

are turned off at ϕext = 2π), the existence of the 7th-order nonlinear couplings contributes

to a small correction to the saturation flux at large β. However, the fifth order term remains

the dominant factor in determining the saturation flux.

To conclude this section, for a JRM based JPA that is operated at the nulling point with

fixed mode frequencies and mode linewidth, saturation flux can be increased by increasing

β which suppresses the effects of generated Kerr couplings. As we move to large β regime,

if we want to further improve the saturation power of the amplifier, we need to reduce the

fifth and higher order nonlinear coupling strengths with respect to the third order coupling

strength in the Lagrangian. In Ref. [85], we notice that the imperfect participation ratio

p 6= 1 caused by nonzero linear inductance in series of JRM circuit, is one of the candidates

for the suggested suppression, which will be discussed in the following sections.

4.5 Effects of participation ratio

In this section, we focus on the effects of reducing participation ratio by introducing

outer linear inductors in series with the JRM circuit [Lout in Fig. 24].

When there are external resonators connected to the JRM, the flux injected from the

microwave ports is shared between the JRM and the external resonators and hence the JRM

nonlinearity is attenuated. To model this effect, four outer linear inductors Lout are added

in series with the JRM circuit [see Fig. 24]. These inductors and the JRM can be treated as
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Figure 24: A more realistic circuit model for JRM, in which we include stray inductance

Lstray in series of Josephson junctions and outer linear inductance Lout in series of JRM. The

fluxes associated with each nodes are labeled on the plot.

a “flux-divider” type circuit. Further, as the input-output ports are connected to the outer

nodes and there is no capacitors connecting the inner nodes to ground, we treat the fluxes

of outer nodes (ϕ̃j) as free coordinates, while the inner node fluxes (ϕj) are restricted by the

Kirchhoff’s current relation. The potential energy of JRM becomes

E = Eout + EJRM

=
∑
j

φ2
0

Lout

(ϕ̃j − ϕj)2 + EJRM(ϕ1, ϕ2, ϕ3, ϕ4).
(4.56)

The EOM for node flux ϕ̃j are

¨̃ϕj +
1

CjLout

(ϕ̃j − ϕj) = INj, (4.57)

where j = 1, 2, 3, 4 and the node capacitance Cj = Ca for j = 1, 3 and Cj = Cb for j = 2, 4.

The right hand side, INj is the corresponding input terms derived in Eq. (4.19) for each node
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flux. The inner node fluxes ϕj are restricted by

ϕ̃j =ϕj + ζ

{
1

β
sin
(
ϕj − ϕj+1 +

ϕext

4

)
− 1

β
sin
(
ϕj−1 − ϕj +

ϕext

4

)
+

1

4

(
3ϕj −

∑
k 6=j

ϕk

)} (4.58)

where ζ = Lout/Lin and we apply index convention that ϕ0 = ϕ4, ϕ5 = ϕ1. As the symmetry

of the JRM still persist, the normal mode profiles in terms of the outer node fluxes ϕ̃’s are

identical to the ones without outer linear inductance, i.e., the normal mode coordinates are

given by [ϕ̃M ] = [A−1].[ϕ̃], where the model matrix [A] is identical to Eq. (4.8). This can

also be derived from the linearization of the JPA’s EOMs [Eq. (4.57)] and the constrains in

Eq. (4.58). But the frequencies of the normal modes are shifted

ω2
a,(b) =

1

2Ca,(b)Lin

β + 2 cos
(
ϕext

4

)
β + βζ + 2ζ cos

(
ϕext

4

) , (4.59a)

ω2
c =

1

CcLin

β + 4 cos
(
ϕext

4

)
β + βζ + 4ζ cos

(
ϕext

4

) , (4.59b)

where Cc = 4CaCb
Ca+Cb

.

The question of how the nonlinear couplings shift when we add Lout into the JRM circuit

is hard to directly analyze by the expanding the JRM potential energy in terms of normal

modes around the ground state, as the constrains [Eq. (4.58)] are hard to invert. To obtain

the nonlinear coupling strengths, we can either numerically calculate the derivatives of the

potential energy with respect to the mode fluxes or using analytical perturbation expansion

to get an approximate inversion relation of Eq. (4.58) and find the non-linear couplings. Here

we stop at fourth-order non-linearities (in energy).

To solve the self-Kerr kjj and cross-Kerr kij nonlinear coupling strengths, we can calculate

the fourth order derivatives of the circuit potential energy E with respect to the normal

coordinates ϕ̃a, ϕ̃b and ϕ̃c, i.e.,

kjj =
1

24

∂4E
∂ϕ̃4

j

, kij =
1

4

∂4E
∂ϕ̃2

i∂ϕ̃
2
j

. (4.60)

where E is dimensionless energy of JRM circuit defined as E = (Lin/φ
2
0)E.
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It is straightforward to use inner node fluxes to express the energy E in Eq. (4.56), and

hence find an analytical expression for the derivatives with respect to inner node fluxes.

However, to calculate derivatives with respect to the outer node fluxes requires the Jacobian

matrix [J ] = [∂ϕ
∂ϕ̃

], which effectively requires inversion of the constrains in Eq. (4.58).

To analytically solve this problem and give us a hint on the how the outer linear induc-

tance will affect the nonlinear couplings, we apply the perturbation expansion around the

ground state (ϕ̃j = 0) to obtain an approximate inverse transformation and find the Jaco-

bian. To simplify the discussion, we assume Ca = Cb. We note that this assumption does

not affect the nonlinear coupling strengths which are independent of the c mode. Further,

the method we discussed below can be easily generalized to the case when Ca 6= Cb.

We at first define a set of new variables using the normal mode transformation matrix

[A], but use the inner node fluxes instead, noted as [ϕM ] = [A−1].[ϕ]. Therefore, the relation

in Eq. (4.58) using normal coordinates [ϕ̃M ] and inner node coordinates [ϕM ] is

ϕ̃j = (1 + ζ)ϕj + (2 )
2ζ

β

∂

∂ϕj
E (0)

JRM (4.61)

where E (0)
JRM is given in Eq. (4.28), the factor (2 ) only exists for a and b modes. Here we only

focus on the three nontrivial modes, ϕ̃a, ϕ̃b and ϕ̃c. The circuit ground state is assumed to

be stable and at ϕ̃a = ϕ̃b = ϕ̃c = 0 (which we confirm numerically). Further, at this stable

ground state, the inner node fluxes are also zero. Since we only focus on the Kerr coupling

strength in the vicinity of the ground state, the exact inner node fluxes that obey the inverse

relation of Eq. (4.61) can be expanded in series of the small oscillations of the normal modes

ϕ̃j’s. That is, ϕj ∼ 0 + ϕ
(1)
j + ϕ

(2)
j + ....

We plug the expansion of inner node fluxes back to Eq. (4.58) and match the terms with

order-by-order. The lowest order solutions appear at the first order in normal coordinates

ϕ
(1)
a,b =

[
1 + ζ +

2ζ

β
cos
(ϕext

4

)]−1

ϕ̃a,b, (4.62a)

ϕ(1)
c =

[
1 + ζ +

4ζ

β
cos
(ϕext

4

)]−1

ϕ̃c. (4.62b)

At this order, we can extract the definition of participation ratio for signal and idler mode

as pa,b =
[
1 + ζ + 2ζ

β
cos
(
ϕext

4

)]−1

and for pump mode as pc =
[
1 + ζ + 4ζ

β
cos
(
ϕext

4

)]−1

. If

we bias the circuit at ϕext = 2π, all three participation ratios become p0 = 1
1+ζ

.
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The second order correction to the inner node fluxes are

ϕ(2)
a = pa

2ζ

β
sin
(ϕext

4

)
ϕ

(1)
b ϕ(1)

c , (4.63a)

ϕ
(2)
b = pb

2ζ

β
sin
(ϕext

4

)
ϕ

(1)
b ϕ(1)

c , (4.63b)

ϕ(2)
c = pc

ζ

β
sin
(ϕext

4

)
ϕ(1)
a ϕ

(1)
b . (4.63c)

The corresponding approximate inverse transformation of Eq. (4.58) is ϕj ∼ ϕ
(1)
j ({ϕ̃}) +

ϕ
(2)
j ({ϕ̃}) for j = a, b, c. At second order, it is sufficient to calculate the three mode coupling

strength, as we only need at most the second order derivatives to the Jacobian matrix

elements. The dimensionless three mode coupling strength are

g(ζ) ≡ ∂3E
∂ϕ̃a∂ϕ̃b∂ϕ̃c

= papbpcg(0), (4.64)

where g(0) is the three-mode coupling strength with unit participation ratio. Based on

Eq. (4.64), decreasing the participation ratio by increasing Lout reduces the corresponding

third order coupling strength, which is beneficial to reduce the limitation placed by the

effective cross-Kerr nonlinearity generated by SoP-3rd order nonlinear couplings, and hence

it is beneficial to improving the saturation power of the amplifier in the small β regime.

However, to calculate the fourth order derivatives, we need at least third order correction

to the inner node fluxes. Following the same strategy, the third order correction of the inverse

transformation for normal coordinate ϕa is

ϕ(3)
a =

p4
aζ

12β
cos
(ϕext

4

)
ϕ̃3
a +

p2
ap

2
bζ

4β2

[
β cos

(ϕext

4

)
+ 8pcζ sin2

(ϕext

4

)]
ϕ̃aϕ̃

2
b

+
p2
ap

2
cζ

4β2

[
β cos

(ϕext

4

)
+ 4pbζ sin2

(ϕext

4

)]
ϕ̃aϕ̃

2
c

(4.65)

and the relations for ϕ
(3)
b and ϕ

(3)
c can be derived similarly. The inverse relation from

Eq. (4.58) is ϕj ∼ ϕ
(1)
j ({ϕ̃}) + ϕ

(2)
j ({ϕ̃}) + ϕ

(3)
j ({ϕ̃}). The Kerr coupling strengths can

be obtained from Eq. (4.60) with Jacobian derived from the perturbation expansion. For

example kab is

kab(ζ) = −
β3
{
β(1 + ζ) cos

(
ϕext

4

)
+ 2ζ

[
−3 + cos

(
ϕext

4

)
+ 8 sin

(
ϕext

4

)]}
16
[
β + βζ + 2ζ cos

(
ϕext

4

)]4 [
β + βζ + 4ζ cos

(
ϕext

4

)] . (4.66)
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Figure 25: We calculate the Kerr coupling strength kaa (a) and kab (b) as we sweep external

magnetic field bias ϕext when participation ratio 1/p = 1.1. The perturbation solution (lines)

and numerical solution (dots) agree well. In (a) for all three β values, the self-Kerr coupling

strength kaa can always be turned off at the Kerr nulling point ϕext = 2π. However, in (c),

we notice that the the magnetic field bias ϕext to turn off cross-Kerr coupling kab depends

on the choice of β. This means the exact Kerr nulling point of the does not exist any more

when the participation ratio is not unity. Parameters chosen: three mode decay rates are

γ/(2π) = 0.1 GHz, the critial current of the junctions is ic = 1.0 µA. The outer linear

inductance ratio ζ = 0.1. The rest of the circuit elements are set by the mode frequencies

at ϕext = 2π, and they remains when we tune the external flux bias.

The self-Kerr coupling strength kaa and the cross-Kerr coupling strength kab are plotted

in Fig. 25(a) and (b), respectively. The Kerr nonlinear coupling strengths (kaa and kab) are

calculated via both numerical method (dots) and the above perturbation method (lines). In

all three β values, the perturbation analysis matches the numerical solution well. Further,

we notice that the self-Kerr coupling strength can still be turned off at the ϕext = 2π (Kerr

nulling point) no matter what β value we choose [see Fig. 25(a)]. But the cross-Kerr couplings

cannot be turned off at this magnetic bias point when participation ratio is not unity [see

Fig. 25(b)].

The breakdown of the universal Kerr nulling point is also demonstrated by Eq. (4.66).

The ϕext that makes the numerator of Eq. (4.66) zero depends on the choice of β and
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ζ. This indicates that as we turn the participation ratio to be smaller than unity, some

nonlinear couplings that are previously killed by Kerr nulling point can reappear in the

JPA Lagrangian. These extra nonlinear couplings are a consequence of the nonlinearity of

the inner JRM circuit. As we mentioned, the JRM circuit with outer linear inductance

shown in Fig. 24 can be treated as a phase divider, i.e., the phase across the outer nodes

are divided to the phase across the outer linear inductors (Lout) and the phase across inner

JRM nodes governed by the effective inductance of the inner JRM. Naively, if the divider is

linear, we would expect the JRM with outer linear inductance generates nonlinear coupling

strengths that are suppressed by the participation ratio (which does not depend on the mode

flux), e.g. kab(ζ) = p2
ap

2
bkab(0) and kab(0) = 0 is the cross-Kerr coupling strength of a JRM

without outer linear inductance. However, as the effective inductance of inner JRM circuit

is nonlinear, the total phase is not divided linearly, i.e., the more precise participation ratio

defined as p = ϕ̃/ϕ will change as the input flux oscillates as it is indeed a function of the

outer node fluxes. Therefore, the normal modes experience extra nonlinearities as compared

to the naive analysis. The re-apprearace of these extra nonlinearities will limit the saturation

power of the amplifier.

However, for a general ϕext, the Kerr couplings are suppressed roughly by ∼ p4. If we

calculate one order up, the fifth order nonlinear coupling strength is suppressed by ∼ p5.

This indicates that the non-unity participation ratio can help to suppress the higher order

nonlinear couplings with respect to the third order, which is beneficial for improving the

saturation power of the amplifier. We will focus on the quantitative understand of how

these two factors compete with each other and further optimize the saturation power of the

amplifier in next section.

4.6 Optimizing the JPA using participation ratio

As demonstrated in the above section, the outer linear inductance impacts the saturation

power of the JPA in both negative and positive ways. In this section we describe the effects

of the outer linear inductance quantitatively using numerics to obtain the saturation power
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of the JPA as we sweep the JRM inductance ratio (β) and participation ratio (p).

Figure 26: The optimization of the pump configuration. We sweep the signal mode detuning

δ = ωS− ω̄a and the pump tone detuning εp = ωP −(ω̄a+ ω̄b) and fix the pump tone strength.

The maximum gain is labeled by the black dot. The maximum gain is achieved when the

signal tone matches the mode frequency and the pump mode matches the sum frequency

of the signal and idler mode. The parameters used: γ/2π = 0.2 GHz, ω̄a/2π = 7.5 GHz,

ω̄b/2π = 5.0 GHz, β = 3.0, 1/p = 8.0.

Because of the presence of the outer linear inductance, even order nonlinear coupling

terms reappears in the EOMs. The presence of these higher order couplings results in a shift

of the mode frequencies. For example, the nonzero cross-Kerr coupling strength kacϕ
2
aϕ

2
c

and kbcϕ
2
bϕ

2
c causes the signal and idler mode frequencies to be dependent on the pump

mode strength, which shifts the signal and idler mode frequencies away from the bare mode

frequencies calculated from the normal mode analysis. To correctly pump the amplifier with

the sum frequency of mode and idler mode frequencies and probe the signal with the correct

signal mode frequency, as well as set the amplifier’s small-signal reflection gain to 20 dB, we

need to adjust the pump tone frequency and pump tone strength at the same time. Before we

129



perform the numerical calculation of the amplifier’s reflection gain as we tune the input tone

strength and extract the saturation power, we need to find the correct pump configurations

and the signal mode frequency under that pump configuration.

To compensate for the frequency shifts and find the optimum pump configuration and

corresponding signal mode frequency for JPA, we numerically optimize the pump tone fre-

quency and strength. To solve this optimization problem, we notice that the amplifier is

expected to consume the least pump tone input flux to reach the desired small-signal reflec-

tion gain when the amplifier is perfectly on resonance with its mode frequencies, i.e., ωS = ωa

and ωP = ωa +ωb. Therefore, we split the optimization process into two optimization tasks:

(1) for a given input pump tone strength ϕc,in, find the optimimal pump tone frequency

and signal mode frequency and (2) find the desired pump tone strength ϕc,in to get 20 dB

small-signal reflection gain with the corresponding optimized pump tone frequency. In (1),

we fix the pump tone strength ϕc,in and sweep signal tone and pump tone frequencies to find

the parameters which maximize the reflection gain (a typical sweep is shown in Fig. 26). In

(2), we use a binary search to find the desired pump strength ϕc,in for 20 dB reflection gain.

Figure 27: In this plot, we show the reflection gain of the amplifier as we increase the input

signal power. We focus on a point which is away from the boundary shown in Fig. 24.

The resulting saturation power sweep of the JPA is shown in Fig. 17. In the large β

regime (β > 4.0), as we decrease the participation ratio, the saturation power increases.
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However, at the same time, the pump power for 20 dB reflection gain also increase, until

the JRM reaches the full nonlinear regime and we cannot inject enough power to get 20 dB

reflection gain anymore. However, in the low β regime (β < 4.0), when the participation ratio

is less than unity, even though we firstly optimize the pump configuration to compensate

for mode shifting, we still found that the reflection gain of the amplifier increases before it

starts to drop (“shark fin”). This causes the amplifier to saturate as gain increases to 21 dB.

If we move out of this regime by reducing the participation ratio or increase β, the “shark

fin” reduces and we find a band of sweet spots of the JPA saturation power. The reflection

gain of the JPA with configurations around one of the sweet spots is shown in Fig. 27, with

the the blue curve corresponding to the sweet spot at β = 3.5, 1/p = 7.0. As we decrease β

to 3.0, the JPA saturates as gain touches 21 dB [green dash-dotted curve in Fig. 27], while

as we increase β to 4.0 the “shark fin” disappears but the saturation power decreases.

To understand the dominating limitations placed by different nonlinear terms in the JPA

Hamiltonian, especially around the sweet spot, we truncate the Hamiltonian order-by-order

and analyze the performance of the truncated model. We keep the pump configurations iden-

tical to the full-order analysis and increase the truncation order from 3rd order to 8th order.

In Fig. 28(a), we focus on the sweet spot β = 3.5, 1/p = 7.0, and compare the truncated

theory with the full-nonlinear solution. At small signal input, the nonlinear couplings up to

7th order are needed to converge to desired 20 dB reflection gain. This is a sign that the

high order nonlinear coupling terms play an important role in the dynamics of the JPA. As

we increase the signal power, the truncation to 4th order analysis does not show an obvious

“shark fin” feature. However, when we include the higher order coupling terms, e.g. 5th to

8th, the “shark fin” appears. The truncated 5th order analysis supports another mechanism

that causes the amplifier to saturate to 21 dB which is different from the one discussion in

Ref. [85], that is the fifth order terms, e.g. ϕ2
aϕaϕbϕc term, can shift the bias condition by

shifting the effective third order coupling strength to drive the amplifier towards the unstable

regime causing the reflection gain to rise. Further, as we discussed above, the external linear

inductors breakdown the perfect nulling point for even order nonlinear couplings, the 6th

order and 8th order terms can survive at the nulling point. From 5th order to 8th order

truncation, the large signal input behavior oscillates, which is a sign that we are reaching
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Figure 28: We test the reflection gain of the truncated model for β = 4.5 and 1/p ∼ 4.0 as

we increase the input signal power Pa,in in (a). In the calculation for the truncated model, we

only truncate the JRM potential energy to the desired order, but fix the pump configuration

as the full-order case. The reflection gain solved from truncated model also converge to the

full-order analysis (red solid line) pretty well we truncated to 7th order. But as we decrease

p further to push the configuration closer to the boundary (1/p = 7.0) in (b), the higher and

higher order terms are needed to have a good approximation to the full-order performance.
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the convergence point of the series expansion casued by the competition between different

orders. We also compare it with a point away from the sweet spot in Fig. 28(b) (β = 3.5,

1/p = 4.0). At this point, the 5th order truncation already converges to 20 dB reflection gain

and the 7th order theory gives a good approximation to full order analysis with moderate

input signal power. We conclude that the boost in performance of the amplifier at the sweet

spot is a result of taking advantage of all orders, and hence cannot be modeled using a low

order truncated theory.

4.7 Effects of tuning the external magnetic field, decay rates, and stray

inductance

In this section, we further explore how the saturation power of the amplifier is affected

by the magnetic field bias (ϕext), the modes’ decay rates (γ), and stray inductance in the

JRM loop [Lstray in Fig. 24].

In Fig. 29, we plots the saturation power of the amplifier as we perturb the magnetic field

bias and decay rates of JPA. Here we focus on the line of 1/p = 7.0 in Fig. 29(a) and (b),

and focus on the line of β = 3.5 in (c) and (d). In Fig. 29(a) and (c), we explore the effects

of tuning the magnetic field bias. We at first set the JPA circuit parameters at ϕext = 2π.

We then operate the JPA at ϕext = 1.9π and ϕext = 2.1π, respectively. We notice that as

we perturb the magnetic field to ϕext = 1.9π, the optimum saturation power is achieved at

larger β values [see Fig. 29(a)] and smaller participation ratio p [see Fig. 29(c)]. By tuning

β, the saturation power of the amplifier improves from −104.8 dBm to −103.9 dBm, while

by tuning p, it improves to −104.1 dBm. This indicates that the optimal magnetic field

bias occurs at somewhat lower magnetic field as compared to the Kerr nulling point. The

corresponding sweet spot of the amplifier has larger β and lower p compare to the present

setting.

In Fig. 29(b) and (d), we change the JPA modes’ decay rates by 10 MHz to explore the

effects of different decay rates to the JPA saturation power. In large β regime, increasing the

JPA mode decay rates causes the regime in which we cannot obtain 20 dB (see Fig. 17) gain
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Figure 29: The saturation power of the JPA with external magnetic field bias and mode

decay rates perturbation. In (a) and (c) we perturb the JPA external magnetic field bias

from 2π by ±0.1π. We assume the JPA circuit parameters are fixed with bias ϕext = 2π,

and then we operate the JPA at the perturbed magnetic field bias. In (b) and (d) we set

the circuit parameters of JPA to change the modes’ decay rates from γ/2π = 0.2 GHz by

±10 MHz. In (a) and (b), we focus on the JPA settings with 1/p = 7.0 and investigate the

effect of the perturbation while in (c) and (d), we focus on the settings with β = 3.5.

to become larger. For example at γ/2π = 0.21 GHz, the JPA with β = 6.0 and 1/p = 7.0

can no longer reach 20 dB reflection gain while a comparable JRM with γ/2π = 0.20 GHz

could. The amplifier’s optimum saturation power is also achieved at a lower β value as we

increase the decay rates [see Fig. 29(b)]. However, as we tune the decay rates by ±10 MHz,

the maximum saturation power of the amplifier at 1/p = 7.0 shows little change. Similarly,

in Fig. 29(d), we perturb the modes’ decay rates by ±10 MHz on JPA with different p but a

fixed β (β = 3.5). The amplifier’s optimum saturation power is achieved at a lower p value
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as we decrease the decay rates [see Fig. 29(d)]], while the maximum saturation power of the

amplifier still shows little change.

Figure 30: We compare the saturation power of the amplifier without stray inductance

(α = 0, dashed curves) and with stray inductance (α = 0.1 slide curves). We tested three

different settings of JPA, β = 3.0, 3.5 and 4.0, respectively. All of them have 1/p = 7.0. We

compare the reflection gain of the amplifier as we increase the signal power Pa. For all three

cases, the saturation power is suppressed. The existence of the stray inductance enhances

the shark fin, which causes the amplifier at previous sweet spot (1/p = 7.0 and β = 3.5)

saturates to 21 dB instead.

Finally we consider the effect of stray inductors (Lstray in Fig. 25). We include stray

inductance such that α = Lstray/LJ = 0.1 and compare the reflection gain of the amplifier

as we increase the signal power (Pa). Note that when the stray inductance is nonzero, the

Kerr nulling point is shifted away from ϕext = 2π (see discussion in subsec. 4.8), especially,

when α = 0.1, the Kerr nulling point is at ϕext ∼ 2.49π. We will operator the JPA at this

magnetic field bias when the participation ratio is not unity. In Fig. 30, we compare three

different settings of JPA, 1/p = 7.0, β = 3.0 (blue curves), 1/p = 7.0, β = 3.5 (orange curves)

and 1/p = 7.0, β = 4.0 (green curves). In all three different sittings, we notice enhancement

of the “shark fin”, which causes the JPA at the previous sweet spot (β = 3.5, orange dashed

curve) saturates to 21 dB instead, which greatly reduce the saturation power at this point
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(from −104.8 dBm to −120 dBm). At β = 4.0, without stray inductors, the reflection gain

of the amplifier monotonically decreases as the signal power increases (dashed green line),

while at α = 0.1 there is a shallow increases (see solid green line). Besides, the saturation

power slightly drops from −107.5 dBm to −108.7 dBm.

4.8 The effect of stray inductance with unit participation ratio

In this section, we focus on the effect of the existence of nonzero stray inductance with

unit participation ratio. This discussion is also provided in Ref. [162].

Stable

2-fold

Figure 31: The stability diagram of the ground state of the JPA when we have nonzero stray

inductance. We assume Lout = 0 and set β = 4.0. The blue region (labeled as “stable”)

shows the stable region of the JPA ground state, while in orange region (labeled as “2-fold”),

the JPA ground state is doubly degenerate. In the red region (unlabeled region), JPA has

four-fold degenerate ground state. The green line shows the position of the nulling point.

The circuit model of JRM circuit with stray inductance is in Fig 25(a). When the stray

inductance is nonzero, similar to shunted JRM circuit, we can write the potential energy of
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JRM circuit as,

EJRM =
φ2

0

2Lin

∑
j

(ϕj − ϕE)2 +
∑
j

Earm (δj) , (4.67)

where ϕE = 1
4
(ϕ1 + ϕ2 + ϕ3 + ϕ4), the arm energy, Earm, is the total energy of the stray

inductor and the Josephson junction on one arm of the JRM, δj = ϕj − ϕj+1 + ϕext

4
is the

total phase difference across the j-th arm. Take one of the arms as an example,

Harm(δ1) =
φ2

0

2Lstray

(ϕ1 − ϕ5)2 − φ2
0

LJ

cos
(
ϕ5 − ϕ2 +

ϕext

4

)
, (4.68)

where the phase on node ϕ5 is constrained by the current relation at the corresponding node,

δ1 −∆ϕ = α sin (∆ϕ) , (4.69)

where α = Lstray/LJ, δ1 = ϕ1 − ϕ2 + ϕext

4
is the total phase difference of the arm and ∆ϕ

is the phase across the junction, defined as ∆ϕ = ϕ5 − ϕ2 + ϕext

4
. Suppose we focus on

the case where the external magnetic flux is around 2π, when α is small (α < 2.80), the

nonlinear relation in Eq. (4.69) only has a single root when the total phase across the arm

is determined.

To determine the self-Kerr kjj and cross-Kerr kij coupling strengths, we can use the

derivatives of the dimensionless JRM energy as,

kjj =
1

24

∂4EJRM

∂ϕ4
j

, kij =
1

4

∂4EJRM

∂ϕ2
i∂ϕ

2
j

. (4.70)

Before we carry on the derivative, we appreciate the fact that the phase difference across the

arms are linearly dependent on the node fluxes, and the node fluxes are linearly dependent on

the normal mode coordinates. Since the inner linear inductance only contribute the energy

which are quadratic to the node phases, there will be no contribution to the Kerr couplings.

Because the four arms of the JRM is symmetric, the arm Hamiltonian for four arms should

have identical form in terms of the phase difference δ. To finalize the calculation, the forth

order derivatives with respect to normal modes in general can be calculated as,

∂4

∂ϕ2
i∂ϕ

2
j

EJRM =
∑
l

∂4

∂ϕ2
i∂ϕ

2
j

Earm(δl)

=
∑
l

(
∂4

∂δ4
Earm

)(
∂δl
∂ϕi

)2(
∂δl
∂ϕj

)2

.

(4.71)
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Therefore, for both self-Kerr couplings and cross-Kerr couplings, there is a common factor

∂4
δEarm, so that the nulling point still exists at the external magnetic bias to let ∂4

δEarm = 0.

However, as we increase the stray inductance α, which effectively decrease the inductance

ratio β, it causes the ground state to be more and more unstable. Adding to it, increasing

α causes the nulling point to shift from ϕext = 2π to higher magnetic bias. At a relative

large α, the nulling point may end up in the unstable regime and become unreachable in real

experiment. In Fig. 31, we plot the ground state stability diagram as we change external

magnetic flux and α, we further plot shifting of the nulling points as we change α [green

curve in Fig 31]. In Fig. 31, we set the JRM inductance ratio β = 4.0 and when α ∼ 0.4,

the nulling point hits the boundary of the unstable regime, which means the nulling point

does not exist in experiment any longer.

4.9 Summary and outlook

In conclusion, we have investigated the nonlinear couplings of the JRM based JPA and

how these different nonlinear couplings controls the performance of the parametric amplifier.

In our analysis, we have adapted both perturbative and time-domain numerical methods to

give us a full understanding of the circuit dynamics. By considering the full nonlinear

Hamiltonian of the device, we show that we can fully optimize the performance of the

amplifier, and achieve a ∼ 10 to 15 dB improvement of the saturation power of the JRM

based JPA for a range of circuit parameters. Our method for numerically modeling multi-

port circuits of inductors, capacitors, and Josephson junctions is also applicable to more

complex circuits and pumping schemes, which can create JPAs with addition virtues such as

extremely broad (and gain-independent) bandwidth and directional amplification [171, 79,

172, 160, 163, 162].
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5.0 Theory of a Josephson micromaser: using the Josephson junction

nonlinearity to exceed the Schawlow-Townes limit and generate quantum light

In this chapter we propose building a microwave laser (MASER) that uses elements

of superconducting quantum computers: high quality factor cavities, transmon qubits as

artificial atoms, and Josephson junctions as nonlinear coupling elements. The proposed

maser explores a new direction in laser physics: the use of highly nonlinear elements to

control light. As a demonstration, we show that we can design a maser with a linewidth

that is ten times narrower than the Schawlow-Townes limits on the linewidth of conventional

laser and maser systems.

The main components of a laser are a gain medium and a high quality cavity. The

gain medium hosts atoms that can be pumped into a population inverted state (in which

an excited level has higher occupation than the ground state) using an incoherent light

source. Lasing occurs when the rate at which photons are emitted into the cavity exceeds

the rate at which photons are lost from the cavity. This linear instability is re-stabilized by

the depletion of the population inverted state, which is itself controlled by the rate of the

incoherent pump. The linewidth of conventional lasers is limited by the noise inherent to the

system, which has two main sources: the noise coming from photons entering the cavity and

from photons leaving the cavity as laser light. The Schawlow-Townes limit is approached

upon the minimization of these two sources of noise. It is precisely the reduction of these two

noise sources, which we achieve by using inductors and Josephson junctions to engineering

nonlinear couplings, that allows us to circumvent the Schawlow-Townes limit. In addition to

being of fundamental interest, we envision that our new approach to laser physics will find

applications in superconducting quantum machines and perhaps also in metrology.

Superconducting quantum devices that utilize Josephson effect are one of the most

promising and mature technologies for achieving large-scale quantum computing. One of

the shortcomings of this architecture is the lack of an on-chip (in-fridge) coherent microwave

source. Instead, room temperature sources are used in conjunction with low temperature

attenuators that reduce the thermal noise. This setup is inconvenient as (1) it requires a
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large number of microwave lines to pass into the fridge and (2) the attenuators produce a

considerable amount of heat that needs to be absorbed by the dilution refrigerator. The

proposed micromaser provides for a very energy-efficient solution. It will only require noisy

DC power to run (using the AC Josephson effect to pump the artificial atom) eliminating

the need for AC lines. Further, it would operate at fridge temperatures, and hence would

not need attenuation meaning that most of the pump power can be converted into coherent

light. More broadly, the proposed maser could be used to generate quantum light, such as

correlated photon pairs, which is an important resource for quantum information processing.

Finally, the proposed maser system could find applications in metrology, both as a low-

noise system and as a system that can generate quantum light. The proposed maser itself

could potentially be used as a time standard (accurate over short times). More speculatively,

the maser principles could be applied to improve the performance of microwave atomic clocks.

5.1 Introduction

The nonlinearity of the Josephson junctions has been used to construct a number of qubit

and quantum gate designs [173, 174, 64, 68, 69, 175, 176]. The ease of integration of the su-

perconducting qubits and fast speed of the gate operation makes it one of the most attractive

system for quantum computing. Further, with the development of the Josephson parametric

amplifiers, which also take advantages of the nonlinearity of the Josephson junctions, the

on-chip quantum computing and quantum information processing systems have been devel-

oped (IBM, Google, D-WAVE, etc, see Table. 1). However, an on-chip coherent microwave

photon source (or maser) is still the missing component of the full on-chip superconducting

circuit based solution for quantum computing and quantum information process.

The superconducting circuit qubits can be viewed as artificial atoms that have a two-

level level structure, just like the two-level model for typical atoms in cavity-QED systems.

Therefore, using the superconducting circuit qubits with the microwave cavity or resonators

to achieve artificial atom-cavity coupling, and other quantum optics experiments, has been

investigated [177, 178, 179, 180, 181]. Because the superconducting circuit system is different
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from the atom-cavity picture of cavity-QED, it is also referred to as circuit-QED [182, 183].

With the success of the circuit-QED experiments involving qubit-resonator coupling, the

question of whether lasing of the superconducting circuit can be achieved arises.

The problems of how to construct a maser using Josephson junction has been discussed

for a long time. Hatakenaka and Kurihara discussed theoretically proposed a Josephson

cascade micromaser using the Josephson effect in Ref. [184]. The coupling between Josephson

junctions and cavities to be used for light generation was further explored theoretically and

experimentally [185, 186, 187, 188, 189, 190, 191, 192]. Using a superconducting qubit as

an artificial atom in a maser system, similar to the atomic laser model was theoretically

proposed [193, 189]. This idea of using superconducting qubit as the laser pump media was

experimentally demonstrated in Ref. [194], where Astafiev et al used a charge qubit coupling

to a superconducting resonator, which acts as an atom inside the cavity, to construct a maser

system. Following this work, with the strong coupling between the Josephson junction based

superconducting qubit and the microwave resonator or cavity, the “single-atom maser” type

system is further explored experimentally in Refs. [195] and theoretically [196] to achieve

coherent light and quantum light generation from on-chip devices.

In this thesis, we proposed to use a pair of transmon qubits to construct an artificial

atom for a Josephson maser system. Further, we proposed to use the nonlinearity provided

by the Josephson junctions to generate nonlinear coupling not only between pump media

and cavity, but also between the cavity and the bath (transmission line) to generate narrow-

linewidth light. The linewidth of our proposed Josephson micromaser can be suppressed to

∼ 10 times narrower than the Schawlow-Townes limit, which is the standard linewidth limit

for a conventional laser.

Specifically, a conventional laser consists of three key ingredients, (1) the pump media

which can be pump to have population inversion to pump the laser cavity, (2) the laser

cavity which can be coherently pumped, (3) the bath of the cavity field, which is essential

for laser output. For a typical atomic laser, the pump media is modeled by three-level atoms.

The cavity is an optical cavity, which can be modeled by a single mode cavity. The bath of

the cavity field, which is naturally to be considered as the electromagnetic field outside the

cavity and can be modeled by a vacuum thermal bath. Further, to achieve an active laser,
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the couplings between these three elements is needed. In a conventional laser, especially for

an atomic laser, the cavity-atom and cavity-bath coupling are all linear couplings.

In superconducting circuit system, the strongly nonlinearity of the Josephson junction is

the key to the construction of superconducting qubits. For example, a Josephson junction

shunted by a capacitor (in parallel) can form a nonlinear harmonic oscillator, which is referred

to as transmon qubit [64, 65]. Because of the strong nonlinearity, the photon that is on

resonance to the transition from ground state to the first excited state, is far detuned from

the transition between first excited state to the second excited states, which effectivly turns

this non-linear resonator into a two-level system, i.e., a qubit.

Because of the nonlinearity of the transmon qubit, it can be treated as an artificial atom,

which is easily mapped to the pump media in the atomic laser model. Meanwhile, in the

Josephson circuit system, we can use either a superconducting coplanar waveguide resonator

or microwave cavity to be the maser cavity. The cavity can couple to a transmission line,

which acts the role of the output bath, to receive the output microwave light.

Figure 32: Conventional Josephson micromaser circuit model. In the model, a SNAIL qubit

couples to a transmon qubit, which acts the role of the pump media. The LC resonator acts

the role of the maser cavity, while the transmission is the output bath. These elements are

linearly capacitivly coupled together.

Similar to a conventional atomic laser system, the different components of the Josephson

micromaser, i.e., the transmon qubit, the cavity and the transmission line, can be capacitivly

142



coupled to achieve linear couplings and the Josephson micromaser can be built as shown in

Fig. 32. Because the single photon transition between the ground and the second excited

state of a transmon is forbidden, we will use an alternative transmon-type qubit which we

will refer to as the SNAIL qubit. In the SNAIL qubit the Josephson junction of the transmon

is replaced by a Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL) [74],

which has a third order nonlinearty that allows the SNAIL qubit to be pumped from the

ground to the second excited state by a single photon. We will take this notion one step

further by coupling a SNAIL qubit to a transmon qubit, and use the third order nonlin-

earity to drive both qubits to the first excited state. This process is discussed in details

in Section. 5.5. The cavity of the Josephson micromaser can be modeled by LC resonator,

whose frequency is set by ωc = 1/
√
LcCc. Using incoherent drive on the SANIL-transmon

qubit pair, the transmon qubit can be pumped to have population inversion. Using linear

coupling between the transmon qubit and the cavity, the cavity field can be pumped by the

transmon qubit to achieve lasing. Through the linear coupling between the cavity and the

transmission line, the laser light (microwave) is emitted from the cavity to the transmission

line.

In Ref. [197], Wiseman showed that using the Susskind-Glogower operator [198] of the

cavity field

ê =
∑
n

|n〉〈n+ 1|, (5.1)

for atom-cavity coupling can remove the cavity field phase noise coming from the cavity

pump process and suppress the linewidth of the laser field by a factor of 1/2 beyond the

standard limit of the conventional laser light, i.e., the Schawlow-Townes limit. Inspired

by Ref. [197], We examine the nonlinear couplings for not only the atom-cavity coupling,

but also the cavity-bath coupling for our Josephson micromaser system and show that the

nonlinear coupling can indeed suppress the linewidth of the laser light even further, beyond

the 1/2 of the Schawlow-Townes limit.

With the nonlinearity of the Josephson junctions, the coupling between the cavity and

the pump media, the cavity and the transmission line can be engineered. Instead of the

linear capacitive coupling shown in Fig. 32, we can use Josephson junctions to provide the

nonlinear couplings which can mimic the Susskind operator. Using nonlinear couplings, the
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Josephson micromaser can emit not only coherent microwaves, but also light that is more

quantum. Especially, in this chapter, we demonstrate that by replacing the linear coupling

between the laser components (the green shaded region in Fig. 32) by nonlinear coupling

circuits which consist of Josephson junctions and linear inductors, the Josephson micromaser

light can have much narrower linewidth than the Schawlow-Townes limit.

In the following sections, we focus on the different components of the Josephson micro-

maser and the couplings between these components. Specifically, in Section 5.2, we introduce

some of the helpful theorems and derivations that will be used in constructing the theoretical

treatment of the Josephson micromaser. In Section 5.3, we review the linewidth suppression

by the Susskind operator in Ref. [197], and we explore the case that using the Susskind

operator for the cavity-bath coupling also. We show that the linewidth of the laser can be

further suppressed. In Section 5.4, we discuss the second quantized treatment of the cavity

field and the transmission line. Then we focus on the nonlinear coupling circuit and shows

that the nonlinear coupling circuit can mimic the performance of the Susskind operator. In

Section 5.5, we discuss the treatment of the Josephson micromaser pump media, i.e., the

SNAIL qubit and the transmon qubit. We show that by the bath engineering on the trans-

mon qubit using the SNAIL qubit as shown in Fig. 32, we can achieve the effective incoherent

drive on the transmon qubit. In Section 5.6, we analysis the nonlinear coupling between the

transmon qubit and the maser cavity. We also consider the quantum Josephson micromaser

system as a whole and calculate the linewidth of the maser in Section 5.7. We show that

the laser linewidth can be further suppressed beyond the 1/2 of the Schawlow-Townes limit.

We conclude the chapter in Section 5.8.

5.2 Important theorems and derivation for Josephson micromaser system

In this section, we review some of the theorems and results which are helpful for the

later discussion of the cavity-bath nonlinear coupling. In Section 5.2.1, we review the Baker-

Campbell-Hausdorff formula. In Section 5.2.3 and 5.2.2, we discuss the treatment of the

cosine of the field operators and how to expand the field operator cosine into normal ordered
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terms.

5.2.1 Baker-Campbell-Hausdorff (BCH) formula

Suppose there are two operators X̂ and Ŷ , the commutator of the operators satisfies

[
X̂, [X̂, Ŷ ]

]
= 0 =

[
Ŷ , [X̂, Ŷ ]

]
(5.2)

Based on Baker-Campbell-Hausdorff formula,

exp(X̂) exp(Ŷ ) = exp

(
X̂ + Ŷ +

1

2
[X̂, Ŷ ]

)
. (5.3)

If we further assume that the commutator [X̂, Ŷ ] is a constant, the BCH formula can be

simplified as

exp(X̂) exp(Ŷ ) = exp
(
X̂ + Ŷ

)
exp

(
1

2
[X̂, Ŷ ]

)
⇒ exp

(
X̂ + Ŷ

)
= exp(X̂) exp(Ŷ ) exp

(
1

2
[X̂, Ŷ ]

)
.

(5.4)

5.2.2 Transformation of a cosine of field operators

Suppose the Hermitian operator X̂ acts on a N -dimensional Hilbert space, with eigen-

states and eigenvalues

X̂|xi〉 = xi|xi〉. (5.5)

The operator is equivalently

X̂ =
N∑
i=1

xi|xi〉〈xi| (5.6)

Suppose that the basis we are interested in is different from the eigenbasis of X̂. Let the basis

elements be denoted by |n〉, and the basis transformation by the unitary U . The operator

X̂ in this basis is

X̂ =
∑
i,j

xij|i〉〈j| (5.7)

where xij is given by

xij =
∑
i

xkUikU
∗
jk (5.8)
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where xk’s are the eigenvalues of X̂.

Any function of the operator X̂ can be expressed using its eigenstates {|xi〉} and eigen-

values xi. For example for the case of the cosine function:

cos X̂ =
∑
i

cos (xi)|xi〉〈xi|. (5.9)

Applying this notion twice, we can express the cosine of an operator as the sum of exponen-

tials of the operator

cos(X̂) =
∑
j

1

2

(
ei xj + e−i xj

)
|xi〉〈xi| =

1

2

(
ei X̂ + e−i X̂

)
(5.10)

5.2.3 Expansion of the cosine of the field operators

In the treatment of the Josephson junction induced coupling between superconducting

devices, especially for the quantized theory, the coupling Hamiltonian given by the Josephson

junction contains the cosine of the phase operators. Note that the phase operator for an LC

oscillator or a transmission line, similar to the position operator for the Harmonic oscillator,

satisfies

φ̂ = φ̃c(â+ â†), (5.11)

where φ̃c is a constant of proportionality. However, direct analytical calculation using cosine

of the operators is tough. If we directly expand the Hamiltonian in the order of φ̃c, it is

hard to count the order in terms of the field operators. To see this, suppose we expand the

Hamiltonian

H = − cos
[
φ̃c(â+ â†)

]
, (5.12)

in the order of φ̃c. Naively, the expansion would be

H ∼ −
(

1− 1

2
φ̃2
c(â+ â†)2 +

1

4!
φ̃4
c(â+ â†)4 + ...

)
(5.13)

Note that because of the commutator relation of â and â†, higher order terms in φ̃c can

contain lower orders in the field operators. However, especially when we want to calculate

the mean value of the terms in vacuum state, the order in field operator expansion is more

important to consider. To see this, we compare the second and fourth order terms in φ̃c and
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observe that both have terms that are constant and terms that are second order in the field

operators.

(
â+ â†

)2
= â2 +

(
â†
)2

+ 2â†â+ 1 (5.14a)(
â+ â†

)4
= â4 +

(
â†
)4

+ 4â†â3 + 4
(
â†
)3
â+ 6

(
â†
)2
â2 (5.14b)

+ 6
(
â†
)2

+ 6â2 + 8â†â+ 5

To obtain an expansion in the order of field operator while the terms are aligned in

normal order, we use the expansion of the operator cosine [Eq. (5.10)] combined with BCH

formula [Eq. (5.4)],

H =− 1

2

(
eiφ̃c(â+â†) + e−iφ̃c(â+â†)

)
=− 1

2
e−φ̃

2
c/2
(
eiφ̃câ

†
eiφ̃câ + e−iφ̃câ

†
e−iφ̃câ

) (5.15)

where we use the fact that φ̃c is real. In Eq. (5.15), the normal order of field operators is

naturally guaranteed upon series expansion of the exponential of operators.

5.3 Narrowing of linewidth by nonlinear couplings

In this section, we consider the linewidth of the laser light. We start from the review of

the conventional laser theory in Section 5.3.1 and 5.3.2. We construct the master equation

of the conventional laser system in Section 5.3.1 and solve for the linewidth of the laser in

Section 5.3.2. We also show that the linewidth of the conventional laser has a limit, which

is referred as Schawlow-Townes limit. In Section 5.3.3, we first show that the nonlinear

atom-cavity coupling can further suppress the linewidth of the laser light by a factor of 1/2

of the Schawlow-Townes limit, as pointed out in Ref. [197]. Then, we extend the linewidth

suppression scheme of Wiseman in Ref. [197], and explore the possibility to further suppress

the linewidth of laser light by applying nonlinear coupling not only between atom and cavity,

but also between cavity and the bath. We conclude section 5.3.3 by showing that the

linewidth of laser light can be decreased beyond the 1/2 of the Schawlow-Townes that was

established in Ref. [197].
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5.3.1 Master equation of conventional laser theory

In this subsection, we review the conventional laser theory to understand the laser

linewidth. The theoretical treatment mainly follows the discussion in Chapter 11 of Ref. [121]

and Chapter 16-17 of Ref. [199]. We will review the conventional laser model and then focus

on the single-atom laser model for the Josephson micromaser proposed in Fig. 44. We will

map the theoretical treatment of the single-atom model for the Josephson micromaser to the

conventional laser model.

Figure 33: The sketch of the single-atom laser model for the linear Josephson micromaser

given in Fig. 32.

A realistic model for the atomic laser is to model the pump media as a cluster of atoms.

Two of the atom levels are the laser levels, between which the transition are coupled with

the cavity field. The atoms can still be modeled by two-level atoms, and are effectively

incoherently pumped from the lower laser level to the higher one. The detailed treatment

of this laser model can be found in Chapter 11 of Ref. [121]. The sketch of the conventional

atomic laser system is similar to the system shown in Fig. 33 except that the pump media

is a cluster of atoms. Assume the pump media consists of N identical atoms, and the atoms

couples to the cavity field by the Jaynes–Cummings Hamiltonian, i.e.,

V =
∑
i

Vi = g
(
σ

(i)
+ a+ a†σ

(i)
−

)
, (5.16)

where we assume all the atoms couples to the field uniformly and the operator a and a† are

the lowering and raising operators for the cavity field and σ
(i)
− and σ

(i)
+ are for the i-th atom.

In this model, the direct coupling between the atoms are ignored, but the atoms can couple
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through the cavity field. In addition to the cavity-atom coupling, there are also cavity loss

and incoherent drive to the atoms, which can be described by the dissipators (which are

superoperators that act on density matrices)

D[a]ρ = −1

2

(
a†aρ+ ρa†a− 2aρa†

)
(5.17a)

D[σ
(i)
+ ]ρ = −1

2

(
σ

(i)
− σ

(i)
+ ρ+ ρσ

(i)
− σ

(i)
+ − 2σ

(i)
+ ρσ

(i)
−

)
. (5.17b)

The state of the N atoms and the cavity field is described by its density operator R, which

satisfies the the master equation,

∂tR = −i
∑
i

[Vi, R] +
∑
i

λaD[σ
(i)
+ ]R + ΓcD[a]R, (5.18)

where λa is the incoherent pumping rate and Γc is the cavity decay rate, and R is again

the density operator for the cavity field and the N atoms in the cavity. To understand the

property of the laser light, we want to reduce the equation of motion (EOM) for the cavity

field and the pump atoms to an effective EOM of the cavity field itself. The cavity field itself

can be described by its density operator ρ = TrA{R}, where TrA is the partial trace over all

the atomic degrees of freedom (DOFs). To perform the partial trace over the atomic DOFs

on Eq. (5.18), we begin by focusing on the cavity-atom coupling term

TrA

{∑
i

[Vi, R]

}
=
∑
i

Tr(i)Tr
(i)
A [Vi, R] =

∑
i

Tr(i)[Vi, ρ
i], (5.19)

where Tr(i) is the trace over the states of the i-th atom, Tr
(i)
A is the trace over all the DOFs

of the pump atoms except for the i-th atom and ρi = Tr
(i)
A {R} is the density operator for

the cavity field and the i-th atom. Similar to the second term in Eq. (5.18),

TrA

{∑
i

λaD[σ
(i)
+ ]R

}
=
∑
i

TriλaD[σ
(i)
+ ]ρ(i). (5.20)

We further assume that the pump media can be approximated by N atoms that are in

the same state. This state is the average of the actual states of the atoms. Under this

assumption, the cavity-pump media coupling can be treated as the cavity field couples to

the mean state of the atoms. With this assumption, we can define an “averaged” density
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operator for one of the atoms and the cavity field as ρ̃, where we ignore the index for the

atom, as the atoms are all in the same state. The density operator ρ̃ is given by

ρ̃ =
1

N

∑
i

ρ(i) (5.21)

and the state of the cavity is

ρ = 〈g|ρ̃|g〉+ 〈e|ρ̃|e〉. (5.22)

The effective master equation for the “averaged” atom-cavity density operator is

∂tρ̃ = −i[v, ρ̃] + λaD[σ+]ρ̃+ γcD[a]ρ̃ (5.23a)

v = g
(
σ+a+ a†σ−

)
(5.23b)

where σ+ and σ− are the operators for the “averaged” atom Hilbert space.

For a typical laser model, the cavity decay is slow compared to the atom-cavity dynamics,

in the following discussion, we ignore the cavity loss at first. After we write down the effective

dynamics of the cavity field by adiabatically eliminate the atomic DOFs, the cavity loss is

put back to the master equation of the cavity field.

The master equation Eq. (5.23) without cavity decay can be expanded in the state of

this averaged atom and the cavity field, |g(e)〉 ⊗ |n〉 as,

∂tρ̃en−1,en′−1 = −ig
(√

nρ̃gn,en′−1 −
√
n′ρ̃en−1,gn′

)
+ λaρ̃gn−1,gn′−1 (5.24a)

∂tρ̃gn,gn = −ig
(√

nρ̃en−1,gn′ −
√
n′ρ̃gn,en′−1

)
− λaρ̃gn,gn′ (5.24b)

∂tρ̃en−1,gn′ = −ig
(√

nρ̃gn,gn′ −
√
n′ρ̃en−1,en′−1

)
− λa

2
ρ̃en−1,gn′ (5.24c)

∂tρ̃gn,en′−1 = −ig
(√

nρ̃en−1,en′−1 −
√
n′ρ̃gn,gn′

)
− λa

2
ρ̃gn,en′−1. (5.24d)

Note that the density operator for the cavity field satisfies

ρn,n′ = ρ̃gn,gn′ + ρ̃en,en′ , (5.25)

and the time-evolution of the cavity field density operator satisfies

∂tρn,n′ =− ig
(√

nρ̃en−1,gn′ −
√
n′ρ̃gn,en′−1 +

√
n+ 1ρ̃gn+1,en′

−
√
n′ + 1ρ̃en,gn′+1

)
.

(5.26)
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To further the construction the master equation for the cavity field, the relation between

the components of the averaged atom-cavity density operator and the cavity field density

operator is required.

We can replace the last term in Eq. (5.24a) and get

∂tρ̃en−1,en′−1 =− ig
(√

nρ̃gn,en′−1 −
√
n′ρ̃en−1,gn′

)
+ λaρn−1,n′−1

− λaρ̃en−1,en′−1.
(5.27)

The laser system equations, Eq. (5.27) with Eqs. (5.24b), (5.24c) and (5.24d) form a closed

set of equations for the components of the average atom-cavity field operator ρ̃, except for the

component of the cavity field density operator ρn,n′ . If we further assume that the dynamics

of the cavity field is slow compared to the cavity-atom coupling, in this coarse-grained time

step which is long compared to the cavity-atom dynamics, but short compared to the laser

cavity field dynamics, ρn−1,n′−1 can be thought as a constant and the fast oscillation of the

averaged atom-cavity density operator components is not important to the understanding

of the time-evolution of the cavity field. This is a perfect scenario for adiabatic elimination,

and therefore we set the time derivatives of ρ̃ to be zero. Then the averaged atom-cavity

density operator components on the coarse-grained time steps satisfies

[ρ̃]n,n′ = [M ]−1
n,n′ [ρ]n−1,n′−1 (5.28)

where we express the above equations in matrix form,

[ρ̃]n,n′ =


ρ̃en−1,en′−1

ρ̃gn,gn′

ρ̃en−1,gn′

ρ̃gn,en′−1

 , [ρ]n,n′ =


λaρn,n′

0

0

0

 (5.29)

and

[M ]n,n′ =


−λa ig

√
n′ −ig

√
n

−λa −ig
√
n ig

√
n′

ig
√
n′ −ig

√
n −λa/2

−ig
√
n ig

√
n′ −λa/2

 . (5.30)
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With the Eq. (5.28), the dynamics of the cavity field [Eq. (5.26)] on the coarse time steps is

∂tρn,n′ = −
N ′n,n′A

1 +Nn,n′B/A
ρn,n′ +

√
nn′A

1 +Nn−1,n′−1B/A
ρn−1,n′−1 (5.31)

where the linear gain coefficient A, self-saturation coefficient B, and the dimensionless factors

N and N ′ are

A =
4g2

λa
(5.32a)

B =
32g4

λ3
a

(5.32b)

Nn,n′ =
1

2
(n+ n′ + 2) +

(n− n′)2B
16A

(5.32c)

N ′n,n′ =
1

2
(n+ n′ + 2) +

(n− n′)2B
8A

(5.32d)

If we treat B/A � 1, and expand the Eq. (5.31) to the second lowest order, the master

equation in Eq. (5.31) (with cavity loss term) can be treated as the coefficient from of

∂tρ =− A
2

[
aa†ρ+ ρaa† − 2a†ρa

]
+
B
8

[
ρ(aa†)2 + (aa†)2ρ− 4a†ρaa†a

−4a†aa†ρa+ 6aa†ρaa†
]

+ ΓcD[a]ρ,

(5.33)

where the first term is a linear pump to the cavity field process while the second term can

be regarded as the reabsorption process. For a laser which is lasing, the cavity should be

pumped faster than the loss process. Therefore the lasing threshold is A ≥ Γc.

Here, we would like to stress that the time derivative in Eq. (5.31) is on the coarse

time steps. In addition, the laser model we considered is different from the discussion in

Chapter 11 of Ref. [121], where in our discussion, there is no population loss out of the

laser levels, nor a pumping process to pump the population back to the laser levels. In the

more complex laser model of Ref. [121], the population pump into the laser level can be

mapped onto the process that the atom is prepared in its initial state and injected into the

cavity to interact with the cavity field, while the population loss out of the laser levels can

be thought of as the process that the atoms, after interacting to the cavity field for some

time period, leave the cavity and no longer interact with the cavity field. This setup is

called a micromaser, and via the above mapping we see that the conventional laser model

is equivalent to the treatment of a micromaser. If the atoms are initially prepared into a
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population inverted states, the laser field effectively experiences an incoherent drive, and the

atom beam can be treated as a bath of the laser cavity field. With the atom-bath treatment,

it is more natural and easier to derive the linear pump and re-absorption terms in Eq. (5.33).

A good reference of the atom-bath treatment of the micromaser model of the conventional

laser system is Section 16-17 of Ref. [199].

At last, with the cavity decay terms, the full master equation for the cavity field in Fock

basis is

∂tρn,n′ =−
N ′n,n′A

1 +Nn,n′B/A
ρn,n′ +

√
nn′A

1 +Nn−1,n′−1B/A
ρn−1,n′−1

− Γc
2

(n+ n′)ρn,n′ + Γc
√

(n+ 1)(n′ + 1)ρn+1,n′+1.

(5.34)

The master equation does not mix the components with different |n−n′| (different diagonal

bands in density matrix in Fock basis), and it is a three-term recurrent differential equations.

The diagonal terms, i.e., terms with n = n′, give the photon distribution of the laser field.

The first off-diagonal matrix elements, i.e., |n′ − n′| = 1 terms, gives the laser linewidth,

which will be discussed in the following subsection. The steady state of these set of equations

can be solved by “detailed balanced” condition. Here we use the diagonal elements as an

example, which obey the equation,

∂tPn = − (n+ 1)A
1 + (n+ 1)B/A

Pn +
nA

1 + nB/A
Pn−1 − ΓcnPn + Γc(n+ 1)Pn+1, (5.35)

where Pn = ρn,n, which is also the probability of having n photon in the cavity field. Note

that Eq. (5.35) can also be thought of the probability flow between the states with (n− 1),

n and (n+ 1) photons, especially, the first two terms on RHS of Eq. (5.35) is the propability

flow from n to (n + 1) state and from (n − 1) state to n state, which is given by the laser

pump process, while the last two terms are the probability flow from the n to (n−1) photon

state and from (n + 1) to n photon state, which is given by the cavity loss process. In the

steady state, since the system probability for different photon number state should be steady,

these probability flows should balance with each other. Therefore, we can get the “detailed

balance” condition that

ΓcnPn =
nA

1 + nB/A
Pn−1 ⇒ Pn =

A/Γc
1 + nB/A

Pn−1, (5.36)
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which becomes a recurrence relation between the probability with different photon numbers

in the cavity field. Then the steady state photon distribution can be solved by

Pm =
m∏
n=1

A/Γc
1 + nB/A

P0 (5.37a)

+∞∑
n=0

Pn = 1. (5.37b)

The example of the photon distribution of the laser cavity field for two sets of parameters

are shown in Fig. 34. In Fig. 34a we set A = 1.2, the photon distribution of the laser field

does not match a Poisson distribution, but as we increase linear pump strength A to 1.8,

the photon distribution becomes more similar to the Poisson distribution.

(a)

0 100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025

n

p[
n]

(b)

1000 1200 1400 1600 1800 2000
0.000

0.002

0.004

0.006

0.008

0.010

n

p[
n]

Laser field
Poission Light

Figure 34: The photon distribution of the laser light and the Poisson distribution with the

same mean photon number. For both subplots, we set Γc = 1.0 and B = 0.001. In (a)

A = 1.2 and in (b) A = 1.8. Notice that the laser is far above the threshold, the laser

distribution is similar to a Poisson distribution.

Finally, we want to stress that in the model of our linear Josephson micromaser shown in

Fig. 32, there is only a single two-level atom which interacts with the cavity field. Therefore,

the dynamics of the laser system is exactly modeled by the master equation in Eq. (5.23).

Note that the Josephson micormaser directly maps to a “single-atom” maser. All the dis-

cussion on the photon distribution and the linewidth can be directly solved by solving the

dynamics of the atom and the cavity field, i.e., Eq. (5.23).
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5.3.2 Conventional laser linewidth, Schawlow-Townes limit

The laser linewidth is related to the fluctuations, in time, of the phase of the laser light

field. The spectrum of the light field is given by the Fourier transform of the two-time

correlation function of the field, i.e., 〈E(t + τ)E(t)〉, or equivalently, 〈a†(t + τ)a(t)〉. If the

light field is perfectly coherent, i.e., 〈a†(t + τ)a(t)〉 ∼ exp(iωτ), the spectrum of the light

field is a delta function, which has zero linewidth. On the other hand, if there is phase noise,

the two-time correlation function decays, and the linewidth is given by the decay rate of the

two-time correlation function 〈a†(t+ τ)a(t)〉. To compute the two-time correlation function,

we assume that the Born-Markov approximation still applies to this system, and apply the

quantum regression theorem [see Section 2.5]. Because we only care about the time-decay

of the two time correlation function, i.e., the cj(τ)’s in Eqs. (2.39) and (2.40), we can obtain

these time-dependent factors by solving the single-time average 〈a(t + τ)〉 instead. This is

equivalent to computing ρn,n−1(t + τ) or ρn−1,n(t + τ). An analytical solution of the laser

linewidth can be derived using the detailed balance condition, similar to the solution of the

photon distribution of the laser field.

To use the detailed balance condition to solve the equations for the first off-diagonal

elements ρn−1,n(t+ τ), Eq. (5.34) needs to be rewritten in the form of

∂tρn,n+1 = −1

2
µnρn,n+1 + cn−1ρn−1,n + dn+1ρn+1,n+2 − (cn + dn)ρn,n+1 (5.38)

where µn, cn and dn are coefficients that depends on n. With the detailed balance condition

cnρn,n+1 = dn+1ρn+1,n+2, we can assume the solution of the elements of the density operator

is in the form of ρn,n+1 = e−Dn(t)ρn,n+1(t = 0). We can plug back this tentative solution into

Eq. (5.38), and expand to the lowest order to get a solution for D(t) ∼ 1
2
Dt, where D is the

linewidth of the laser field,

D = µn ∼
1

4

(
A+ Γc
〈n〉

− 3B/2 + B2/(16A)

〈n〉(1 + 〈n〉B/A)

)
∼ A+ Γc

4〈n〉
. (5.39)

Based on the above expression of the laser linewidth, the phase noise of the laser light comes

from two different sources, the gain process and loss process [197, 200]. Because when the
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laser is active, the laser must be above the threshold, i.e., A ≥ Γc. Therefore there is a limit

on the laser linewidth, called the Schawlow-Townes limit,

DST =
Γc

2〈n〉
. (5.40)

Here we comment on obtaining the laser linewidth with numerical methods. One can

extract the laser linewidth by directly evaluating the two-time correlation function, 〈a†(t +

τ)a(t)〉. The Fourier transform of the two-time correlation function gives the spectrum of the

laser line, which should be have a Lorentzian form, and the linewidth can be extracted from

this spectrum. Another way to calculate the linewidth is to apply the quantum regression

theorem and numerically solve the time evolution of the cavity field when the cavity field is

initialized to some initial state, e.g. a coherent state with a definite phase. After solving the

cavity state, extract the time evolution of the off-diagonal elements of the density matrix

ρn,n+1 and fit it to an exponential decay, where the decay constant is the linewidth of the

cavity field. The last method, which is heavily used in our discussion, is to treat the laser

system master equation in a form

∂tρ = L̂ρ, (5.41)

where L̂ is the super-operator which acts on the density operator of the system. The real

part of the eigenvalues of L̂ must be either zero or negative, corresponding to either steady

state or decaying solutions. For laser systems the spectrum of the super-operator L̂ should

have exactly one eigenstate ρ0 with a zero eigenvalue, i.e., L̂ρ0 = 0. This eigenstate, ρ0,

corresponds to the steady state of the laser system. The rest of the eigenstates should

all have trace zero. Let ρ1 be the eigenstate with the largest real part, or the smallest

|Re(λ)| among all the other eigenvalues, s.t. L̂ρ1 = λ1ρ1. The linewidth of the laser field is

well approximated by |Re(λ1)|. With the quantum regression theorem, the laser linewidth

can be extracted by the phase diffusion of the electric field (〈a(t)〉) instead. The short-

time phase diffusion performance, which is given by the large |Re(λ1)|, only contributes to

the large frequency components. Especially when the laser linewidth is narrow, it is well

approximated by the the eigenvalue with smallest |Re(λ)|.

In Fig. 35, we use the numerics to obtain the spectrum of the super-operators for the 2-

level incoherently driven single atom-cavity laser model for our Josephson micromaser shown
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Figure 35: The conventional Josephson micromaser linewidth as we tune the cavity linewidth

Γc. We set g = 0.1, λa = 10.0. The blue dots are the numerical calculation from the spectrum

of the super-operator, while the orange dots are from the analytical solution in Eq. (5.39).

in Fig. 32. We direct solve the spectrum of the super-operator by truncating the photon

number inside the cavity at 350 photons and find the linewidth of the laser, which is shown

as the blue dots. We further set λa = 10, and the atom-cavity coupling strength g = 0.1

and tune the cavity bare linewidth, Γc. Note that at small Γc, especially at Γc < 0.0034, the

linewidth from the spectrum method increases greatly from the predicted analytical result

from Eq. (5.39), which is shown as the orange dots in Fig. 35. This occurs because the mean

number of photons in the cavity reaches the truncation threshold of 350 photons, and hence

the cavity state represented in this truncated space has a larger error as compared to the

true state. But in moderate parameters, when the photon is in the order of ∼ 100 to 200

photons, the spectrum solution matches the analytical solution perfectly. As Γc increases,

the laser approaching the lasing threshold and the mean photon number inside the cavity

drops to 〈n〉 < 5, which causes the analytical solution diverges from the laser linewidth in

Eq. (5.39).
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5.3.3 Using nonlinear coupling between cavity and atom to circumvent the

Schawlow-Townes limit

In Ref. [197], it was shown that by using the Susskind operator

ê =
∑
n

|n− 1〉〈n|, (5.42)

to replace the normal photon lowering operator a in the cavity-bath coupling Hamiltonian,

the linewidth of the cavity field can be suppressed by a factor of 1/2. Compared with the

normal photon operator

a =
∑
n

√
n|n− 1〉〈n|, (5.43)

the Susskind operator does not have any Boson amplification. If the Susskind operator is

applied to the cavity-atom coupling, the time for a full swap of the excitation from the atom

to the cavity does not depend on the cavity photon number. Consequently, the cavity field

gain process using the ê† does not introduce any phase noise to the cavity field. This can

also be seen from the fact that the Susskind operator can be treated as the exponential of

the phase operator [197, 198].

In order to verify the prediction that the linewidth of a laser can be reduced to 1/2 the

Schawlow-Townes limit, we take our single-atom laser model of the Josephson micromaser

and replace the atom cavity coupling Hamiltonian g
(
σ+a+ a†σ−

)
→ g

(
σ+e+ e†σ−

)
. We

numerically find the spectrum of the resulting superoperator, and obtain the linewidth using

the eigenvalue with the largest non-zero real part. The resulting linewidth (in units of the

Schawlow-Townes linewidth) is plotted as a function of pump strength in Fig. 36. The

figure shows that once the pump strength becomes sufficiently strong (i.e., beyond the lasing

threshold), the linewidth becomes fixed to 1/2 the Schawlow-Townes limit. This is indeed

the expected result from Eq. (5.39) after we turn off the atom-cavity noise by setting A = 0.

Inspired by Wiseman’s discussion in Ref. [197], we argue that if the system-bath coupling

is also nonlinear, such that the loss of the cavity is described by the dissipator D[ê]ρ, instead

of the linear loss dissipator D[a]ρ, the phase noise of the cavity field from the loss process

can also be reduced. Therefore, the cavity linewidth can be further suppressed, even beyond

1/2 of the Schawlow-Townes limit.
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Figure 36: The linewidth of the single-atom laser with the Susskind operator for the atom-

cavity coupling. We see the linewidth is suppressed to be 1/2 of the Schawlow-Townes limit.

To examine our hypothesis, we take our single-atom laser model of the Josephson micro-

maser, and replace both the the atom-cavity coupling (as Wiseman suggested in Ref. [197])

and the cavity dissipator by the equivalent terms with a→ e. In order to stabilize the cavity

field, we also add a weak normal loss to the cavity (i.e., a conventional dissipator D[a]ρ).

The system is described by

∂tρ = −i[vNL, ρ] + λaD[σ+]ρ+ ΓNLD[ê]ρ+ ΓcD[a]ρ (5.44)

where the nonlinear coupling Hamiltonian is

vNL = g
(
σ+ê+ σ−ê

†) , (5.45)

the incoherent drive to the two-level atom and the normal cavity loss are given in Eq. (5.17b)

and (5.17a), and the nonlinear loss term is

D[ê]ρ = −1

2

(
ê†êρ+ ρê†ê− 2êρê†

)
. (5.46)
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As the cavity loss process is no longer dominated by Γc, we generalize the definition of the

Schawlow-Townes limit by replacing 〈n〉Γc by the laser luminosity

DST =
1

4〈n〉
Pout

~ω〈n〉
, (5.47)

where Pout is the output power of the laser and ω is the output laser light frequency. The

term Pout/(~ω) is the emission rate of the photons from the cavity. In the current system,

the modified Schawlow-Townes limit is

DST =
1

4〈n〉2
(
ΓcTr[aρa†] + ΓNLTr[êρê†]

)
. (5.48)
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Figure 37: The linewidth of the nonlinear laser. The laser system is described by the master

equation Eq. (5.44). The phase noise from both the pump process and loss process are

suppressed. The parameters we choose are Γc = 0.005, ΓNL = 0.3 and g = 1.0.

The linewidth of laser with the nonlinear coupling given by the Susskind operator ê for

both the cavity-atom coupling and cavity-bath coupling is shown in Fig. 37. The linewidth

of this nonlinear laser is much narrower than the Schawlow-Townes limit, even below the

1/2 of the Schawlow-Townes limit found in Ref. [197].

Note that the essence of the Susskind operator ê is that it lacks the Boson amplification.

Even though there are already works [197, 201, 202, 203, 204, 205] looking at various ways
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to construct the Susskind operator in physical system, as far as we know (1) we are the first

to apply the Susskind operator to cavity-bath coupling in laser systems and (2) we have

come up with a completely novel way to implement the Susskind operator using supercon-

ducting circuit systems. In the following sections, we discuss our approach for building an

approximate Susskind operator using the nonlinearity properties of Josephson junctions.

5.4 Nonlinear cavity-bath coupling in Josephson micromaser

5.4.1 Model of the cavity-to-transmission line coupler

In this subsection, we introduce the circuit model for the nonlinear coupling between the

cavity and the transmission line and construct the corresponding quantum Hamiltonian.

Figure 38: The proposed circuit model for introducing nonlinear coupling between the cavity

and the transmission line. The Josephson junctions labeled as red are π-junctions, which

are to compensate the dispersion of the cavity field and the transmission line brought by the

nonlinear coupling circuit.

The coupling circuit between the cavity and the transmission line is shown in Fig. 38. The

goal of the discussion in this section is to understand the cavity-transmission line nonlinear

coupling, and treat the transmission line as the bath of the system and trace out from the

system dynamics to get the master equation for the cavity field. Therefore, in this discussion,
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we ignore the modeling of the artificial atom that is used to pump the cavity in the first

place, and focus on the cavity and the transmission line.

Further, we assume the weak coupling regime, in which the energy scale of the coupling

circuit EJ is much weaker than the energy scale given by the cavity frequency ω = 1/
√
LcCc.

In the weak coupling regime, the typical master equation treatment is still applicable.

In addition, on the first pass we will ignore the π-junction in Fig. 38. These junctions

are included in the circuit in order to compensate for the nonlinear dispersive shift of the

cavity induced by the Josephson junctions in the coupling circuit. The energy scale of these

π-junctions is the same order as the coupling circuit, and hence we can ignore the effect of

these junctions in the lowest order treatment.

5.4.2 The quantization of cavity field

The Josephson micomaser cavity is modeled by an LC resonator. The classical La-

grangian of the cavity consists of the energy of the capacitor, which is treated as the kinetic

energy, and the energy of the linear inductor, which is treated as the potential energy. The

classical Lagrangian is

Lc =
1

2
CcΦ̇

2
c −

1

2Lc
Φ2
c , (5.49)

where Φc is the flux across the linear inductor, which is related to the phase on the cavity

node ϕc via Φc = φ0ϕc, where φ0 = ~/(2e) is the flux quantum. If we treat the node flux Φc

as the general coordinate, the momentum is

pc =
∂L
∂Φ̇c

= CcΦ̇c = Qc (5.50)

where Qc is the charge across the capacitor. The Hamiltonian of the LC resonator is

Hc =
Q2
c

2Cc
+

Φ2
c

2Lc
. (5.51)

With this quadratic Hamiltonian of the LC resonator, it can be quantized similar to the

Harmonic oscillator,

Q̂c =− i
√

~
2Zc

(
â− â†

)
(5.52a)

162



Φ̂c =

√
~Zc
2

(
â+ â†

)
(5.52b)

where Zc is the characteristic impedance of the LC resonator, Zc =
√
Lc/Cc. The Hamil-

tonian is Hc = ~ωcâ†â. The frequency of the LC resonator is ωc = 1/
√
LcCc. The voltage

on the cavity node is Vc = Φ̇c and the current flow in the LC resonator, i.e., through the

capacitor, is Ic = Q̇c. We can express the voltage and current operators using the raising

and lowering operators via

V̂c =− i

~
[Φ̂c, Hc] = −iω

√
~Zc
2

(
â− â†

)
, (5.53a)

Îc =− i

~
[Q̂c, Hc] = ω

√
~

2Zc

(
â+ â†

)
. (5.53b)

As the coupling circuit are inductive elements, we will focus on the phase of the cavity

node,

ϕ̂c = φ̃c0
(
â+ â†

)
, (5.54)

where φ̃c0 is a dimenionless quantity defined as

φ̃c0 =
1

φ0

√
~Zc
2
. (5.55)

5.4.3 Treatment of the transmission line

The basic equation to model a perfect transmission line is the telegrapher’s equation. To

construct the telegrapher’s equation we consider a single segment of the transmission line

is [see Fig. 39]. The current flow in this segment is I(x) and the voltage at the beginning

of the segment is V (x). The effective inductance of this segment is Ldx and the effective

capacitance is Cdx. Note that here L and C are inductance and capacitance per unit length.

We obtain the current flow through the inductor using Faraday’s law

I(x, t) = − 1

Ldx

∫ t

−∞
dτ (V (x+ dx, τ)− V (x, τ)) . (5.56)

The currents through the inductors and capcitors are connected by Krikoff’s law, e.g. on

node B we obtain

I(x, t)− I(x+ dx, t) = Ic(t) = (Cdx)
dV (x+ dx, t)

dt
. (5.57)
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Figure 39: The lumped element model for the lossless transmission line. The unit length

inductance of the transmission line is given by L, while the unit capacitance is C. The

current flow and the voltage across the transmission line are I and V .

Taking partial derivative with respect to time t on both sides of Eq. (5.56) and dividing by

dx on both sides of Eq. (5.57), and then taking the limit dx → 0 of both equations, we get

the telegrapher’s equation

∂V (x, t)

∂x
= −L∂I(x, t)

∂t
(5.58a)

∂I(x, t)

∂x
= −C∂V (x, t)

∂t
. (5.58b)

Further, if we define the generalized flux as

Φ(x, t) =

∫ t

−∞
dτV (x, τ), (5.59)

and note that I = dQ
dt

where Q is a charge quantity, the equations for the generalized flux

and charge are in the same form of the Telegrapher’s equations in Eq. (5.58).

In telegrapher’s equations in Eq. (5.58), we can take partial derivative with respect to x

in Eq. (5.58a) and get

∂2
xV (x, t) + LC ∂2

t V (x, t) = 0 (5.60a)

∂xI(x, t) = −C ∂tV (x, t), (5.60b)
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which is a wave equation of both V (x, t) and I(x, t). Note that the wave speed is vp = 1/
√
LC

and the character impedance of the transmission line is ZT =
√
L/C.

The transmission line can also be treated using Lagrangian dynamics. The transmission

line Lagrangian and Hamiltonian dynamics follows the discussion in Ref. [206]. By using the

node flux as the generalized coordinates, the Lagrangian of the transmission line segment is

dL =
Cdx

2
Φ̇2(x+ dx)− 1

2Ldx
(Φ(x+ dx)− Φ(x))2 (5.61)

In the continuous limit where dx→ 0, the Lagrangian density is L = dL
dx

. The transmission

line Lagrangian is

L =
C

2
Φ̇2(x)− 1

2L
[∂xΦ(x)]2 (5.62a)

L =

∫ l

0

Ldx (5.62b)

where l is the total length of the transmission line.

The canonical momentum with respect to the flux along the transmission line is

π(x) =
∂L

∂Φ̇(x)
= CΦ̇(x) = q(x) (5.63)

which is the charge density along the transmission line. With Legendre transformation, the

transmission line Hamiltonian using the generalized flux and the charge density along the

transmission line becomes

H =

∫ l

0

H(x, t)dx (5.64a)

H =π(x, t)Φ̇(x, t)− L(x, t) =
q2(x, t)

2C
+

1

2L
[∂xΦ(x, t)]2 (5.64b)

The equation of motion can be constructed using the Lagrange equation as

d

dt

(
∂L
∂Φ̇

)
+

d

dx

(
∂L

∂(∂xΦ)

)
− ∂L
∂x

= 0. (5.65)

With the Lagrangian density in Eq. (5.62), the EOM using the generalized node flux Φ(x, t)

is

CΦ̈(x)− 1

L
∂2
xΦ(x) = 0 (5.66)
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Notice that the EOM of the transmission line using the node general flux is still a wave

equation. The wave speed is vp = 1/
√
LC. Similarly, the EOM can also be derived using

Hamiltonian dynamics as

Φ̇(x) =
δH
δq

=
q(x)

C
(5.67a)

q̇(x) = −δH
δΦ

= −
(
∂

∂Φ
− ∂x

∂

∂(∂xΦ)

)
H =

1

L
∂2
xΦ(x). (5.67b)

To use the transmission line as a bath, we assume that the transmission line is infinitely

long. However, for ease of discussion, we will follow the discussion of the box quantization

of the free space electromagnetic wave, i.e., we assume the transmission line has a finite size

l and quantize the field of the transmission line, then take the limit l → ∞ for the infinite

transmission line.

5.4.3.1 Transmission line eigenmodes with periodic boundary conditions We

assume that the left end of the transmission line is at x = 0 and the right end is x = l.

The eigenmode solution of the transmission line with length l depends on the boundary

conditions on both ends. In our discussion, we at first assume the transmission line has

periodic boundary condition on both ends of the transmission line. The eigenmodes of the

transmission line can be assumed to have the form of propagating waves

Φ(x, t) =
∑
k

Φk(t) =
∑
k

φ(k, t)eikx, (5.68)

where k is the wave-vector, and the EOM [Eq. (5.66)] is

φ̈(k, t) + v2
pk

2φ(k, t) = 0. (5.69)

Solving the above equation, the dispersion relation is

ωk = vp|k| (5.70)

and ωk is the frequency of the k mode of the transmission line. We note that the frequency is

always non-negative while k can be either positive or negative. The right propagating modes

are the modes with positive k, while left propagating modes are the modes with negative k.
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Because the generalized flux should be real valued, the normal modes should satisfy

φ(k) = φ∗(−k). (5.71)

Further, note that on the length l transmission line with periodic boundary conditions, the

wave vector can be chosen as k = 2πn/l, where n is an integer. The orthogonality relation

of the normal modes is

1

l

∫ l

0

Φk1(x)Φk2(x)dx = φ(k1)φ(−k1)δ(k1,−k2) = |φ(k1)|2δ(k1,−k2) (5.72)

5.4.3.2 The effect of open boundary condition For a more realistic consideration,

we consider the case in which both ends of the transmission line are open. When the

transmission line is open, there is no current flowing through (or out of) both ends of the

transmission line. In telegrapher’s equation Eq. (5.58a), if we perform the integral with

respect to time and use the definition of the generalized flux Φ(x, t) =
∫ t
V (s, τ)dτ ,

∂xΦ(x, t) = −L I(x, t). (5.73)

If we use the sine and cosine functions as the normal mode basis for the modes,

Φ(x, t) =
∑
k

(αk(t) cos(kx) + βk(t) sin(kx)) , (5.74)

and applying the boundary condition for the current at x = 0, i.e., I(0, t) = 0,

∂xΦ(x, t)|x=0 =
∑
k

(kβk)e
−iωkt = 0 (5.75)

we obtain βk = 0, ∀k. Therefore, the normal modes can only be cosines. While on the other

boundary x = l, similarly, we have∑
k

[−kαk sin(kl)] = 0, (5.76)

which results kl = πn, where n is an integer. So the normal modes of the transmission line

with open boundary conditions are

Φ(x, t) =
∑
k

Φk(x, t) =
∑
k

φobc(k, t) cos(kx) (5.77)
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Because the normal modes Φk(x) should be real, φobc(k) are real. Compared with the

normal modes expression in periodic boundary condition, we effectively assumes φk = φ−k

for expression in Eq. (5.68) to make the normal mode profiles exactly match the Eq. (5.77).

So if the realistic transmission line is considered to have open-ends, the periodic boundary

condition on the transmission line is still somewhat applicable. We just need to force φ(k) =

φ(−k) to get open boundary condition solutions1. Therefore, in the following we will only

focus on the transmission line with periodic boundary condition.

5.4.4 Transmission line field 2nd quantization

Here we still consider the periodic boundary condition for the transmission line, in which

the general flux field can be expressed in k-space normal modes as Eq. (5.68). Similarly, the

canonical momentum density function can also be written as

q(x, t) =
∑
k

q(k, t)eikx (5.78)

The transmission line Hamiltonian can be expressed as

H =

∫ l

0

dx
+∞∑

k,k′=−∞

[
1

2C
q(k, t)q(k′, t)− k k′

2L
φ(k, t)φ(k′, t)

]
ei(k+k′)x,

=
+∞∑

k=−∞

l

[
1

2C
q(k, t)q(−k, t) +

k2

2L
φ(k, t)φ(−k, t)

] (5.79)

where we use the orthogonal relation∫ l

0

ei(k+k′)xdx = lδ(k,−k′), {k, k′} =
2π

l
{n, n′} (5.80)

where n and n′ are integers.

With the help of the relation

+∞∑
k=−∞

{q(−k, t)φ(k, t)− q(k, t)φ(−k, t)} = 0, (5.81)

1Note that the k values differs by a factor of 2 in periodic boundary condition with the open boundary
condition case. When treating the open boundary conditions using the result of the periodic boundary
condition results, we have to be careful about these factors. However, as we are coupling to the phase (and
not the current) the analytical parametric dependence is identical.
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and use the fact that the fields are real, i.e., φ(k, t) = φ(−k, t) and q(k, t) = q(−k, t), the

Hamiltonian of the transmission line can be written as

H =
+∞∑

k=−∞

A∗(k, t)A(k, t) (5.82)

where the auxiliary field A(k, t) is defined as

A(k, t) =
√
l

[√
1

2C
q(k, t) + i

√
k2

2L
φ(k, t)

]
. (5.83)

Apply the inverse transformation of Eqs. (5.68) and (5.78), the auxiliary field can be ex-

pressed as

A(k, t) =
1√
l

∫ l

0

[
1√
2C

q(x, t) + i

√
k2

2L
φ(x, t)

]
e−ikxdx. (5.84)

The Poisson bracket of the fields satisfies

[q(x), q(x′)]PB = 0 = [φ(x), φ(x′)]PB (5.85a)

[φ(x), q(x′)]PB = δ(x− x′). (5.85b)

The Poisson bracket for the auxiliary field is

[A∗(k), A(k)]PB = −i 1

2
√
CL

(|k|+ |k′|) δ(k, k′) = −iωkδ(k, k′), (5.86)

where we use the speed of the wave in the transmission line vp = 1/
√
CL and the dispersion

relation ωk = vp|k|. Then we can normalize the field by define

α(k, t) =
1
√
ωk
A(k, t), (5.87)

where Poisson bracket for the new field α(k, t) is

[α∗(k), α(k′)]PB = −iδ(k, k′). (5.88)

With the canonical quantization process, we promote α(k, t) as operator
√
~âk(t), and

promote the Poisson bracket [Eq. (5.88)] to commutation relation

[â†k(t), âk′(t)] = δ(k, k′) (5.89)
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The quantized Hamiltonian for the transmission line is

H =
∑
k

~ωk
2

(
â†k(t)âk(t) + âk(t)â

†
k(t)
)
. (5.90)

Note that the time-evolution of the operators ak(t) is given by the Heisenberg equation

∂tâk(t) =
1

i~
[âk(t), H(t)] = −iωkâk(t) (5.91)

if we define âk = âk(t = 0), the time-evolution of operator âk(t) = âke
−iωkt. The quantized

field for field φ(k) and q(k) is given by

q̂(k) =

√
~ωkC

2l

(
âk + â†−k

)
(5.92a)

φ̂(k) = −i
√

~Zvp
2lωk

(
âk − â†−k

)
(5.92b)

where vp = 1/
√
LC is the wave speed along the transmission line, Z =

√
L/C is the

characteristic impedance of the transmission line. Similarly, the fields φ(x) and q(x) are

q̂(x) =
+∞∑

k=−∞

√
~ωkC

2l

(
âke

ikx + â†ke
−ikx

)
(5.93a)

φ̂(x) = −i
+∞∑

k=−∞

√
~Zvp
2lωk

(
âke

ikx − â†ke
−ikx

)
(5.93b)

where in the second term of the both equations, we redefine the wave-vector k to be −k.

170



5.4.5 Quantized coupling Hamiltonian

In the discussion in Section 5.4.1, the classical coupling Hamiltonian can be written as

H = −EJ cos (ϕc − ϕT ) +
φ2

0

2L
(ϕc − ϕT )2 + E ′J cos(ϕc) + E ′′J cos(ϕT ), (5.94)

where the coupling Josephson junction energy EJ, the coupling linear inductance L, the

π-junction Josephson energy E ′J and the node phases ϕc and ϕT are labeled in Fig. 38. The

π-junctions are used to correct the dispersion given by the nonlinear coupling between the

cavity and the transmission line. Here we will ignore these two π junctions at the beginning

of the discussion. Further, we define a dimensionless parameter r =
φ2

0

2L
/EJ, such that the

coupling Hamiltonian without the π junctions is

H/EJ = − cos (ϕc − ϕT ) + r (ϕc − ϕT )2 . (5.95)

To consider the quantized nonlinear coupling Hamiltonian, we can replace the node phase

on cavity side, ϕc, by the dimenionless LC resonator flux in Eq. (5.52b) and the node phase

on transmission line site ϕT can be substitute by the dimenioness field operator at x = 0 in

Eq. (5.93b)2,

ϕ̂c = ϕ̃c
(
â+ â†

)
(5.96a)

ϕ̂T = −i
∑
k

ϕ̃T (k)
(
b̂k − b̂†k

)
(5.96b)

where we use â, b̂ for operators in the LC resonator and the transmission line, respectively.

The dimensionless parameters ϕ̃c and ϕ̃T (k) are defined as

ϕ̃c =
1

φ0

√
~Zc
2
, ϕ̃T (k) =

1

φ0

√
~ZT

2

√
vp
lωk

(5.97)

where Zc is the impedance of the LC resonantor, ZT is the characteristic impedance of the

transmission line, vp is the wave speed along the transmission line, l is the length of the

transmission line, ωk is the frequency of the k mode of the transmission line.

2We assume the coupling circuit connects to one end of the transmission line which is x = 0.
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Let us estimate the the ratio of the parameters ϕ̃c and ϕ̃T

ϕ̃T
ϕ̃c

=

√
ZT
Zc

√
vp
lωk

. (5.98)

The impedance of the cavity and the transmission line are of the same order, however, the

second term is∼ 0.080 for a 1 m long transmission line with microwave speed vp approximated

by the speed of light and the mode frequency at 7.5 GHz. Because the typical bandwidth for

the system-bath coupling of quantum optics systems is only a small fraction of the optical

frequency (in this case 7.5 GHz), so with the above parameters, the parameter ϕ̃T (k) can be

treated as a small parameter compared with ϕ̃c for all the modes in the the bandwidth of the

system-bath coupling. Therefore, we may expanded the system-bath coupling Hamiltonian

(cos(∆ϕ̂) term) in the order of bath operators.

The phase difference across the coupling circuit after second quantization is

∆ϕ̂ ≡ ϕ̂c − ϕ̂T = ϕ̃c
(
â+ â†

)
+ i
∑
k

ϕ̃T (k)
(
b̂k − b̂†k

)
. (5.99)

The cavity-transmission line coupling Hamiltonian

H/EJ = − cos (∆ϕ̂) + r (∆ϕ̂)2 , (5.100)

and can be expanded in orders of transmission line field operators. Notice that the nonlinear

coupling between the transmission line and the cavity field is provided by the Josephson

junction (first term). The nonlinear coupling can be expanded using the transformation in

Eq. (5.10) as

cos (∆ϕ̂) =
1

2

(
eiϕ̂c−iϕ̂T + e−iϕ̂c+iϕ̂T

)
=

1

2

(
eiϕ̂ce−iϕ̂T + e−iϕ̂ceiϕ̂T

)
, (5.101)

where in the second term we use the fact that the cavity operators commute with the

transmission line operators. Further, because the transmission line operators satisfy

[b̂k, b̂
†
k′ ] = δ(k, k′), (5.102)

the exponential of the field operators can be simplified as

eiϕ̂T =
∏
k

eϕ̃T (k)(b̂k−b̂†k), e−iϕ̂T =
∏
k

e−ϕ̃T (k)(b̂k−b̂†k) (5.103)
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The nonlinear coupling given by Eq. (5.101) can be expanded as the normal ordered

terms in the order of transmission line operators using Eq. (5.15),

eiϕ̂c = e−ϕ̃
2
c/2eiϕ̃câ

†
eiϕ̃câ, (5.104a)

e−iϕ̂c = e−ϕ̃
2
c/2e−iϕ̃câ

†
e−iϕ̃câ, (5.104b)

eϕ̂T (k) = e−ϕ̃
2
T (k)/2e−ϕ̃T b̂

†
keϕ̃T b̂k , (5.104c)

e−ϕ̂T (k) = e−ϕ̃
2
T (k)/2eϕ̃T b̂

†
ke−ϕ̃T b̂k . (5.104d)

Expanding each term with operators using the expansion of exponential function we get

e±iϕ̂c = e−ϕ̃
2
c/2

∞∑
n,m=0

(±iϕ̃c)n+m

n! ·m!

(
â†
)n
âm (5.105a)

e±ϕ̂T (k) = e−ϕ̃
2
T (k)/2

∞∑
n,m=0

(∓1)n(±1)m
ϕ̃n+m
T (k)

n! ·m!

(
b̂†k

)n
b̂mk . (5.105b)

With the expansion of the operators given in Eqs. (5.101), (5.103), (5.104) and (5.105),

we can expand the nonlinear coupling Hamiltonian in the order of transmission line field

operators. The expansion of Eq. (5.100) to third order in field operators yields

H/EJ = hsys + htl + h1 + h2 + h3 + ... (5.106)

where hsys and htl are the dimensionless Hamiltonian acting solely on the cavity field and the

transmission line, respectively. The cavity-transmission line coupling is expanded in orders

of the transmission line field operators and the first, second and third order terms are labeled

as h1, h2 and h3.

hsys = −

(∏
k

e−ϕ̃
2
T (k)/2

)
1

2

(
eiϕ̂c + e−iϕ̂c

)
+ rϕ̂2

c ≡ −CTL cos (ϕ̂c) + rϕ̂2
c , (5.107a)

hTL = −e−ϕ̃2
c/2

1

2

(
eiϕ̂T + e−iϕ̂T

)
+ rϕ̂2

T ≡ −Cc cos (ϕ̂T ) + rϕ̂2
T , (5.107b)

where CTL and Cc are two constants. Notice that hsys and htl, induced by the coupling circuit,

contributes new nonlinearities to the cavity and the transmission line. These nonlinearities,

especially the nonlinearity of the cavity field, will degrade the laser performance by adding

shifting the cavity frequency as the number of photons in the cavity increases. To compensate
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the dispersion of the cavity field and the transmission line, we include two π junctions as

shown in Fig. 38, in which the Josephson energies satisfy

E ′J = CTLEJ, E ′′J = CcEJ. (5.108)

These π-junctions cancel out the non-linear contributions of hsys and htl that lead to dephas-

ing. Consequently, in the following discussion we focus on the remaining terms, which are

the cavity-transmission line coupling terms h1, h2 and h3.

Next, we move on to h1, h2, and h3 terms of Eq. (5.106)

h1 = −CTL

2

∑
k

ϕ̃T (k)
{

(b†k − bk)e
iϕ̂c + (bk − b†k)e

−iϕ̂c
}

(5.109a)

= −iCTL

∑
k

ϕ̃T (k)(b†k − bk) sin (ϕ̂c) + 2irϕ̂c
∑
k

ϕ̃T (k)
(
bk − b†k

)
,

h2 = −CTL

{∑
k

ϕ̃2
T (k)

2

(
b2
k +

(
b†k

)2

− b†kbk
)

(5.109b)

+
∑
k,q

′
ϕ̃T (k)ϕ̃T (q)

(
bkbq + b†kb

†
q − 2b†kbq

)}
[cos (ϕ̂c)− 1] ,

h3 = −iCTL

{∑
k

ϕ̃3
T (k)

6

[(
b†k

)3

− 3
(
b†k

)2

bk + 3b†kb
2
k − b3

k

]
(5.109c)

+
∑
k,q

′ ϕ̃2
T (k)ϕ̃T (q)

2

[(
b†k

)2

+ b2
k − 2b†kbk

] (
b†q − bq

)
+
∑
k,q,p

′
ϕ̃T (k)ϕ̃T (q)ϕ̃T (p)

(
b†k − bk

) (
b†q − bq

) (
b†p − bp

)}
sin (ϕ̂c) ,

where the summation
∑

k is from −∞ to +∞, the summations with prime
∑′

k,q and
∑′

k,q,p

omit the terms in which any of the summation indices are equal. The phase operator ϕ̂c

is given in Eq. (5.96a) and the dimensionless constant for transmission line node phase

quantization ϕ̃T (k) is given in Eq. (5.97). Similarly, the higher order terms can also be

expanded and calculated.
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5.4.6 Master equation for the nonlinear loss of the cavity

Here we treat the cavity field as our “system” and the transmission line field as the

“bath”. In this section, we focus on the nonlinear coupling introduced by the coupling

circuit given by Fig. 38 and trace out the dynamics of the bath degrees of freedom (DOFs)

and derive the master equation for the cavity field.

First, we want to point out that throughout the derivation we have assumed that the

coupling strength is weak compared to the system dynamics (which is given by the optical

frequency of the cavity field, typically in the GHz range for superconducting circuits). We

have also assumed that the number of the photons in the cavity is not so large as to make

the effective coupling strength exceed the optical frequency of the cavity (due to Boson

enhancement). In this regime, the rotating wave approximation applies and we can remove

the terms that do not conserves the excitation number in the coupling Hamiltonian. Note

that the transmission line has an infinite number of k-modes, which behave as a bath that

is much larger than the system itself. We, therefore, make the usual assumption that the

system-bath coupling strength and the density of states in the bandwidth of system-bath

coupling is smooth. The coupling bandwidth (noted as θ) is assumed to be larger than the

frequency scale for dynamics of the system-bath coupling, but smaller than the frequency

scale for dynamics of the system itself (optical frequency). This hierarchy of frequency scales

allows us to apply the Born-Markov approximation, i.e., that the bath has no memory.

Next, using the rotating wave approximation and Born-Markov approximation, we will

go through the derivation of the master equation by tracing out the bath DOFs (similar

to the derivation of master equation in Chapter 8 of Ref. [121]). We will proceed from h1

to h2 and h3, identifying the quantum jump operators for the cavity field induced by the

cavity-bath coupling.

The general procedures for the following derivation is listed below:

1. From the target order nonlinear coupling Hamiltonian terms, expand the Hamiltonian

into a polynomial function of operators.

2. Apply the rotating wave approximation to the system-bath coupling Hamiltonian by

dropping the terms that do not conserve the excitation number.
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3. Expand the equation of motion of the system-bath density operator to second order

in coupling Hamiltonian. Apply Born-Markov approximation and trace out the bath

degrees of freedoms. Because the operational temperature of the superconducting circuit

devices is typically in 10 mK range, and the frequency of the laser system is in the range

of 5 to 10 GHz, the thermal excitation is negligible, we will treat the transmission line

as a vacuum bath for the laser cavity.

5.4.6.1 Jump operators for the cavity induced by coupling to the transmis-

sion line: first order terms The first order coupling Hamiltonian terms is given by

Eq. (5.109a). We begin by expanding the sine function of the cavity field operators sin(ϕ̂c)

sin(ϕ̂c) =
1

2i

(
eiϕ̂c − e−iϕ̂c

)
=
e−ϕ̃

2
c/2

2i

(
eiϕ̃câ

†
eiϕ̃câ − e−iϕ̃câ†e−iϕ̃câ

)
= e−ϕ̃

2
c/2

[
+∞∑
m,n=0

1− (−1)m+n

2i

(iϕ̃c)
m+n

m! · n!

(
a†
)n
am

] (5.110)

Using this expansion and applying the rotating wave approximation to h1 of Eq. (5.109a),

and restoring dimensions of energy, we obtain

H1 = −iEJCTLe
−ϕ̃2

c/2
∑
k

∞∑
n=0

(−1)n
ϕ̃T (k)ϕ̃2n+1

c

n! · (n+ 1)!

[
b†k
(
a†
)n
an+1

−bk
(
a†
)n+1

an
]

+ 2irEJϕ̃c
∑
k

ϕ̃T (k)
(
a†bk − b†ka

)
.

(5.111)

Defining the nonlinear operator for the cavity field

Â1 = CTLe
−ϕ̃2

c/2

∞∑
n=0

(−1)n
ϕ̃2n+1
c

n! · (n+ 1)!

(
a†
)n
an+1 + 2rϕ̃ca, (5.112)

and the coupling strength

κk = EJϕ̃T (k)/~, (5.113)

the first order Hamiltonian can be re-written as

H1 = −i
∑
k

~κk
(
b†kÂ− bkÂ

†
)
. (5.114)
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Applying the Born-Markov approximation, similar to the discussion in Section 2.3, we obtain

the master equation for the first order term

∂tρ(t) = − i
~

[Hsys, ρ(t)]− Γ1

2

(
Â†Âρ+ ρÂ†Â− 2Âρ(t)Â†

)
(5.115)

where

Γ1 =
E2

J

~2

(
~ZT
2φ2

0

)
1

ωc
. (5.116)

Before we further examine if the dissipator D[Â], i.e., the last bracket of the master

equation, gives the desired nonlinear loss to the cavity field to suppress the linewidth of

the cavity field, a few remarks about estimating the constants contained in the nonlinear

operator expression is useful.

First, we want to estimate CTL, which is given by Eq. (5.107). In the quantum optics

regime, we assume that the transmission line has a large length, where we can assume l→∞.

In this limit, we can approximate the summation of k by the integral of k as

∑
k

→ 1

2π

∫
dk. (5.117)

Further, in quantum optics regime, especially for the system that Born-Markov approxima-

tion applies, the cavity frequency is the dominant frequency to the coupling bandwidth θ

and the system-bath coupling strength. Here we explicitly assume that the cutoff frequencies

for the system-bath coupling are ωL = ωc− θ/2 and ωH = ωc + θ/2, while the corresponding

cutoff wave-vectors are kL and kH
3. The constant CTL can be calculated as

CTL =
∏
k

e−
ϕ̃T (k)

2 = exp

[
−1

2

kH∑
k=kL

(
1

φ2
0

~ZT
2

)
1

kl

]

→ exp

[
−2

1

4π

(
1

φ2
0

~ZT
2

)∫ kH

kL

1

k
dk

]
= exp

(
− 1

φ2
0

~ZT
4π

)
ωH
ωL

.

(5.118)

3Here there will be another factor of 2, which is because of the coupling to the left-propagating modes
and the right-propagating modes.
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Next, we adopt the assumption that θ/ωc � 1, so the ratio ωH/ωL can be expanded in the

order of θ/ωc, and CTL,

CTL = exp

(
− 1

φ2
0

~ZT
4π

)[
1 +

θ

ωc
+

θ2

2ω2
c

+ o

(
θ3

ω3
c

)]
. (5.119)

If we choose the characteristic impedance of the transmission line as ZT = 50 Ω. the lowest

order approximation of the parameter CTL is 0.9961.

The constant Cc can also be directly calculated with the given circuit parameters

Cc ≡ exp

[
−1

2

1

φ2
0

~Zc
2

]
. (5.120)

This constant, if we assume the cavity impedance is 50 Ω, is 0.9880.

To further examine the nonlinear property of the cavity operator Â, we assume the

transmission line has the characteristic impedance ZT = 50 Ω, cavity field (LC resonator)

has impedance Zc = 50 Ω. The ratio parameter r = 0.4. The parameters are summarized in

Table 5. We plot the matrix element of nonlinear Â operator, 〈n|Â|n + 1〉, as a function of

cavity state photon number n in Fig. 40. We observe that there is a sweet spot, at n ∼ 100,

for which langlen|Â|n+ 1〉 is almost independent of the photon number. In this sweet spot,

the operator Â approximates the Susskind operator ê. As we demonstrate in Section 5.3.3,

this property of Â decreases the laser linewidth much in the same way that ê did the same

in Section 5.3.3.

Table 5: Chosen circuit parameters and the derived constants in the nonlinear system jump

operator Â in Eq. (5.112) for Fig. 40.

Parameters ZT Zc r ϕ̃c Cc CTL

Value 50 Ω 50 Ω 0.4 0.1560 0.9880 0.9961
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Figure 40: Transition amplitude of nonlinear cavity operator Â given in Eq. (5.112) with

parameters given in Table 5. We notice the flatten region in the transition amplitude 〈n|Â|n+

1〉 as a function of the state photon number n.

5.4.6.2 Second order terms The second order term in the expansion of the coupling

Hamiltonian is given by Eq. (5.109b). Under the rotating wave approximation (and restoring

dimensions), the second order term is

H2/(−EJCTLCc) =

−

(∑
k

ϕ̃2
T (k)

2

(
b†k

)2

+
∑
k,q

′
ϕ̃T (k)ϕ̃T (q)b†kb

†
q

)∑
n

(−1)nϕ̃2n+2
c

n! · (n+ 2)!

(
a†
)n
an+2

−

(∑
k

ϕ̃2
T (k)

2
b2
k +

∑
k,q

′
ϕ̃T (k)ϕ̃T (q)bkbq

)∑
n

(−1)nϕ̃2n+2
c

n! · (n+ 2)!

(
a†
)n+2

an

−

(∑
k

ϕ̃2
T (k)b†kbk +

∑
k,q

′
2ϕ̃T (k)ϕ̃T (q)b†kbq

)∑
n

(−1)nϕ̃2n
c

(n!)2

(
a†a
)n
.

(5.121)

where the summation
∑′ does not contains the terms that have the same indices.

Suppose the density operator of the cavity is given by ρ(t) and the transmission line

is assumed to be a vacuum bath. the master equation given by the nonlinear coupling

Hamiltonian H2 in Eq. (5.121) is

∂tρ(t) = − i
~

TrB[H2(t), R(t0)]− 1

~2
TrB

∫ t

t0

[H2(t), [H2(τ), R(τ)]] dτ (5.122)
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where R is the density operator for the system (cavity) and the bath (transmission line),

which can be approximated by R(t) ∼ ρ(t) ⊗ ρB and ρB = |vac〉〈vac| where |vac〉 is the

vacuum state of the bath (transmission line). The partial trace of the bath DOFs is

TrB{··} =
∑

{nk1
,nk2

,...}
〈nk1 , nk2 , ...| · ·|nk1 , nk2 , ...〉 (5.123)

where |nk1 , nk2 , ...〉 = |nk1〉|nk2〉..., |nki〉 is the nki-photon Fock state of the mode k = ki.

Note that because in H2, all the terms are aligned in the normal order, the first term in

Eq. (5.122) is zero. We will focus on the second term of Eq. (5.122). After expansion of the

commutation relation, the Eq. (5.122) is

ρ̇ = − 1

~2
TrB

∫ t

t0

dτ {H2(t)H2(τ)ρ(τ)⊗ ρB + ρ(τ)⊗ ρBH2(τ)H2(t)

−H2(t)ρ(τ)⊗ ρBH2(τ)−H2(τ)ρ(τ)⊗ ρBH2(t)}
(5.124)

Note that the Hamiltonian H2 should be considered as the interaction picture Hamiltonian,

where the transformation is U = exp(H0), where H0 is

H0 = ~ωca†a+
∑
k

~ωk b†kbk (5.125)

Next, we will work term by term in Eq. (5.124) to get master equation for the cavity field.

We start from the term

T3 ≡
1

~2

∫ t

t0

dτTrB {H2(t)ρ(τ)⊗ ρBH2(τ)} . (5.126)

As the transmission line is assumed to be a vacuum bath, and the coupling Hamiltonian H2

is in normal order, the partial trace will kill all the terms that contains lowering operators

for the bath DOFs. The Hamiltonian terms that survive in T3 partial trace is

H2,1,(I)(t)

(EJCTLCc)
≡ h2,1,(I)(t) =

∑
k

h2,1,kk,(I) +
∑
k,q

′
h2,1,kq,(I) (5.127a)

h2,1,kk,(I)(t) =
ϕ̃2
T (k)

2

(
b†k

)2

Â2e
i2(ωk−ωc)t (5.127b)

h2,1,kq,(I)(t) = ϕ̃T (k)ϕ̃T (q)b†kb
†
qÂ2e

i(ωk+ωq−2ωc)t, (5.127c)
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where the cavity nonlinear operator Â2 is defined as

Â2 =
∑
n

(−1)nϕ̃2n+2
c

n! · (n+ 2)!

(
a†
)n
an+2 (5.128)

and the Eq. (5.126) is

T3 ~2

(EJCTLCc)2
=

∫ t

t0

dτ

{∑
k

〈2k|h2,1,kk,(I)(t)|vac〉ρ〈vac|h†2,1,kk,(I)(τ)|2k〉

+
∑
k,q

′
〈1k, 1q|h2,1,kq,(I)(t)|vac〉ρ〈vac|h†2,1,kq,(I)(τ)|1k, 1q〉

}
,

(5.129)

where we apply the bath state orthogonality relations and remove all the zero terms. Further,

the term

〈2k|h2,1,kk,(I)(t)|vac〉 =

√
2ϕ̃2

T (k)

2
Â2e

i2(ωk−ωc)t (5.130a)

〈1k, 1q|h2,1,kq,(I)(t)|vac〉 = ϕ̃T (k)ϕ̃T (q)Â2e
i(ωk+ωq−2ωc)t (5.130b)

For the first term, which is involved in the time integral of the first line of Eq. (5.129)

(noted as T3,1), after apply the Born-Markov approximation, and define kc = ωc/vp and take

Eq. (5.117), the term T3,1 is

T3,1 = (CTLCc)2E
2
J

~2

l

2πvp

∫ t

t0

dτ

∫ ωH

ωL

dωk
ϕ̃4
T (k)

2
Â2ρ(τ)Â†2e

i2(ωk−ωc)t (5.131a)

= (CTLCc)2 1

8

(
~ZT
2φ2

0

)
E2

J

~2ωc
ϕ̃2
T (kc)Â2ρ(t)Â†2 (5.131b)

= Γ2,1Â2ρ(t)Â†2. (5.131c)

Similar to the definition of the nonlienar operator of the cavity field in first order coupling,

we can redefine the nonlinear operator for second order as

Â′2 = (CTLCc)Â2 (5.132)

and then the associated rate is

Γ̂′2,1 =
1

(CTLCc)2
Γ2,1 =

1

8

(
~ZT
2φ2

0

)
E2

J

~2ωc
ϕ̃2
T (kc) (5.133)
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Compared with the rate associated with the first order coupling Hamiltonian, Γ1 [see Eq.

(5.116)], the rate associated with this term is

Γ′2,1/Γ1 =
1

8
ϕ̃2
T (kc). (5.134)

For a realistic setup, where we assume the transmission is 1 m long, the cavity frequency

is 7.5 GHz, and the speed of microwave along the transmission line is speed of light, and

the characterestic impedance of the transmission line is 50 Ω, the quantization parameter

ϕ̃T (kc) ∼ 0.0124. So this process is much slower than the first order coupling, which is

controlled by the small parameter ϕ̃2
T (kc), which is equivalent to the small parameter 2πvp

ωcl

[see Eq. (5.141)]. Especially, as the transmission line l→∞ (approaching theoretical limit),

this term → 0.

The second line of the Eq. (5.129) (noted as T3,2) is

T3,2 = (CTLCc)2E
2
J

~2

(∑
k,q

−
∑
k

δk,q

)
ϕ̃2
T (k)ϕ̃2

T (q)Â2e
i(ωk+ωq−2ωc)(t−τ) (5.135)

Note the second summation term is similar to the calculation in Eq. (5.131), and it is

2Γ2,1Â2ρ(t)Â†2.

The first summation term

T3,2 + 2Γ2,1Â2ρ(t)Â†2 = (CTLCc)2E
2
J

~2

l2

(2πvp)2

∫ t

t0

dτ

∫ ωH

ωL

dωk

∫ ωH

ωL

dωq (5.136)

×
{
ϕ̃2
T (k)ϕ̃2

T (q)Â2ρ(τ)Â†2e
i(ωk+ωq−2ωc)t

}
With Born-Markov approximation, we replace ϕ̃Tk and ϕ̃T q by the central frequency mode

kc = ωk/vp, and because of the fast oscillation term ei(ωk+ωq−2ωc)t, only the modes that

satisfies ωk + ωq = 2ωc will have large contribution, we can approximate the integral of two

modes frequencies by θ
∫
dω̄ where ω̄ = (ωk +ωq)/2, and θ is the coupling bandwidth. Then

the integral in Eq. (5.137a) is

T3,2 + 2Γ2,1Â2ρ(t)Â†2 = (CTLCc)2E
2
J

~2

l2θ

(2πvp)2
ϕ̃4
T (kc)

∫ t

t0

dτ

∫
dω̄ (5.137a)

×
{
Â2ρ(τ)Â†2e

2i(ω̄−ωc)t
}
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= (CTLCc)2 1

4π

(
~ZT
2φ2

0

)2
E2

J

~2ωc

θ

ωc
Â2ρ(t)Â†2 (5.137b)

≡ Γ2,2Â2ρ(t)Â†2 (5.137c)

Note that this term is also slow compared to the first order dynamics. Similarly, to consis-

tently compare with the first order rate in Eq. (5.116), we redefine the cavity operator Â as

Eq. (5.132) and the rate associated rate Γ′2,2 as

Γ′2,2 =
1

(CTLCc)2
Γ2,2 =

1

4π

(
~ZT
2φ2

0

)2
E2

J

~2ωc

θ

ωc
(5.138)

and then the ratio for the rates

Γ′2,2
Γ1

=
1

4π

(
~ZT
2φ2

0

)
θ

ωc
, (5.139)

where if the transmission line impedance is 50 Ω, the term
(

~ZT
2φ2

0

)
∼ 0.1560 and in the

quantum optics system assumption, θ/ωc � 1. So this second order coupling dynamics is

also slower than the first order coupling dynamics, and is controlled by the small parameter

θ/ωc.

Similarly, we can perform the same preocedure for the other three terms and obtain the

master equation induced by H2

∂tρ(t) = −Γ2D[Â2]ρ(t) (5.140a)

D[Â2]ρ(t) = −1

2

(
Â†2Â2ρ+ ρÂ†2Â2 − 2Â2ρ(t)Â†2

)
(5.140b)

Â2 = CTLCc
∑
n

(−1)nϕ̃2n+2
c

n! · (n+ 2)!

(
a†
)n
an+2 (5.140c)

Γ2 =

[
1

4π

(
~ZT
2φ2

0

)2
E2

J

~2ωc

][
θ

ωc
− πvp

2lωc

]
(5.140d)

Finally, I want to note that the above derivation is valid when the length of the trans-

mission line is large. This is consistent with the Born-Markov approximation. We assume in

a coupling bandwidth θ � ωc, the number of modes in this bandwidth is still much greater
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than the system DOFs, so the transmission line must be considered to be long, in which the

integer

nc ≡
kcl

2π
=

ωcl

2πvp
� 1, (5.141)

such that we can find an other integer nθ which satisfies |nθ−nc| � 1 and nθ/nc � 1. In the

regime where l → ∞, the rate of the quantum process given by H2 nonlinear system-bath

coupling is given by Γ′2,2 term [Eq. (5.138)], and is controlled by small parameter θ/ωc which

does not depend on the length of the transmission line.

5.4.6.3 Third order terms Similar to the discussion in Section 5.4.6.2, after we apply

the rotating-wave approximation, the third order Hamiltonian is given by

H3

EJCcCTL

=i

{(∑
k

ϕ̃3
T (k)

6
(b†k)

3 +
∑
k,q

′ ϕ̃T (k)ϕ̃T (q)

2
(b†k)

2b†q (5.142a)

+
∑
k,q,p

′
ϕ̃T (k)ϕ̃T (q)ϕ̃T (p)b†kb

†
qb
†
p

)∑
n

(−1)nϕ̃2n+3
c

n! · (n+ 3)!
(a†)nan+3 − h.c.

}

−i

{[∑
k

ϕ̃3
T (k)

2
(b†k)

2bk +
∑
k,q

′
ϕ̃2
T (k)ϕ̃T (q)

(
b†qb
†
kbk +

1

2
(b†k)

2bq

)
(5.142b)

+
∑
k,q,p

′
6ϕ̃T (k)ϕ̃T (q)ϕ̃T (p)b†kb

†
qbk

]∑
n

(−1)nϕ̃2n+1
c

n! · (n+ 1)!
(a†)nan+1 − h.c.

}

Follow the same argument in Section 5.4.6.2, the only Hamiltonian term that contributes to

the system dynamics when the bath is in vacuum state is the first term in Eq. (5.142a). We

can define a system nonlinear operator

Â3 = CcCTL

∑
n

(−1)nϕ̃2n+3
c

n! · (n+ 3)!
(a†)nan+3. (5.143)

In Eq. (5.142a), there are three terms, the first term,
∑

k
ϕ̃3
T (k)

6
(b†k)

3 term, will give a Lindblad

term in master equation of cavity field as D[Â3]ρ(t) with rate Γ3,1. This process is further

suppressed by the small parameter 1/nc [see Eq. (5.141)] as

Γ3,1

Γ1

∝ n−2
c =

(
2πvp
ωcl

)2

. (5.144)
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The second term,
∑

k,q(b
†
k)

2b†q term, will give a Lindbald term D[Â3]ρ(t) with rate Γ3,2,

Γ3,2

Γ1

∝ 1

nc

θ

ωc
=

(
2πvp
ωcl

)
θ

ωc
, (5.145)

where θ is the coupling bandwidth. The third term
∑

k,q,p b
†
kb
†
qb
†
p givens the same Lindblad

term with rate Γ3,3,
Γ3,3

Γ1

∝ θ2

ω2
c

. (5.146)

In the limit where l → ∞, the third term is dominant, but is still further suppressed by

θ/ωc, even compared with the second order dynamics.

Figure 41: In (a), we show the three-level model of the laser pump media (atom) where only

coherent drives are permitted. In (b), we show the circuit diagram of the SNAIL qubit and

transmon qubit composite system, in which the effective incoherent drive of the transmon

qubit can be achieved.

5.5 Engineering an artificial atom with population inversion

Previously we assumed that there is an incoherent pump process that induces population

inversion. In this chapter we will analyze how to build such an incoherent pump.

As a first, more realistic, step is to consider a three-level-atom model [see Fig. 41] for the

pump media, where the transition between the ground state |g〉 and the second excited state
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|f〉 is coherently driven while the second excited state experiences a fast decay to the excited

state |e〉. If the decay process is sufficiently fast, as the population of the atom is driven to

the state |f〉 it quickly relaxes to |e〉 to achieve population inversion on the lasing levels |g〉

and |e〉. However, the transition between |g〉 and |f〉 for a transmon qubit is forbidden by

selection rules, and thus it cannot be easily pumped. Therefore, we propose adding a SNAIL

qubit to the transmon qubit to form a composite system. The key feature of the SNAIL

qubit is that it has third order nonlinearity that makes the |g〉 → |f〉 transition allowed.

The level structure of the two qubit system is shown in Fig. 42. Because the transmon

qubit is a strongly anharmonic oscillator, we use |gt〉, |et〉 and |ft〉 to represent its ground,

first and second excited states, respectively. The SNAIL qubit is a weak nonlinear device,

where we use |0s〉, |1s〉 and |2s〉, etc to represent the states of the SNAIL qubit system.

Figure 42: The level structure of the SNAIL qubit and the transmon qubit. The gray

thin lines are the levels that are weekly populated in the pumping scheme discussed in

Section 5.5. The blue line is the parametric drive on the composite system, the red arrow

show the transition of the composite system due to the coupling to the laser cavity. The

dashed arrow shows the relaxation process of the SNAIL qubit. The think solid lines show

the transition that are in resonance, while the thin solid lines show the ones that are not in

resonance (because of the anharmonicity of the transmon qubit).

When the SNAIL qubit (operator ŝ for the SNAIL qubit), which has third order nonlin-

earity, couples to the transmon qubit (operator t̂ for the transmon qubit), the state of the

transmon qubit and the SNAIL qubit forms dressed states, i.e., ŝ′ and t̂′. In the dressed
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state basis, the third order nonlinearity of the SNAIL qubit provides the nonlinear coupling

between the dressed states of the transmon qubit and the SNAIL qubit. Especially, the term

ŝ′†ŝ′t̂′ can be used to parametrically drive both the SNAIL qubit and the transmon qubit

such that the composite system experiences a two-photon drive to excite the SNAIL qubit

and the transon qubit at the same time. This transition is shown in Fig. 42 as the blue

arrows. If the SNAIL qubit couples to a lossy cavity, such that the relaxation of the SNAIL

qubit [see Fig. 42, black dashed arrows] is fast compare to the pump process (and also the

transmon-cavity coupling, see Fig. 42 red arrows), the SNAIL qubit and the transmon qubit

can form an effective three-level atom, in which the ground state (|g〉 in Fig. 41a) is the state

|0sgt〉, and the state |f〉 in Fig. 41a is the excited state for both the qubits, i.e., |1s, et〉 and

the state |e〉 in Fig. 41(a) is the state |0s, et〉 in Fig. 42.

The Hamiltonian of a SNAIL qubit coupled to a transmon qubit is

H = HT +HS +Hcouple (5.147a)

HT = ωtt̂
†t̂+ ktt̂

†t̂†t̂t̂ (5.147b)

HS = ωsŝ
†ŝ+ g3

(
ŝ†ŝ†ŝ+ ŝ†ŝŝ

)
(5.147c)

Hcouple = g2

(
ŝ†t̂+ t̂†ŝ

)
(5.147d)

where ŝ (t̂) is the operator for the SNAIL qubit and the transmon qubit. We truncate the

Hamiltonian of the transmon qubit and the SNAIL qubit to the lowest order nonlinearity, and

we further ignore the third order nonlinear terms ŝ†ŝ†ŝ† and ŝŝŝ in SNAIL qubit Hamiltonian,

as these terms are far-off detuned and should have small effect on the overall dynamics.

We further assume that the SNAIL qubit and transmon qubit modes are strongly detuned

compared with the linear coupling, i.e., 2∆ = |ωs − ωt| � g2, which causes the modes

of the transmon and SNAIL qubits to be weakly dressed. In the dressed basis, the third

order nonlinearity of the bare SNAIL mode gives third order nonlinear coupling between the

dressed SNAIL and transmon modes as H3 = s′†s′t′ + h.c., where s′ and t′ are the dressed

SNAIL and transmon mode operators. When we drive the SNAIL mode with a classical

drive

Hd = Ωd exp [i (ωs + ωt) t] s+ h.c., (5.148)
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In the dressed basis, the classical drive on the bare SNAIL mode causes the SNAIL mode has

a fast oscillating component with frequency (ωs + ωt). This components, through the third

order nonlinear coupling H3, the dressed SNAIL and transmon mode undergo a parametric

two-photon pump process (see blue arrows in Fig. 42).

If we further couples the SNAIL mode with a lossy cavity, which causes the bare SNAIL

mode to have a fast decay compared to the pump process, e.g., from |0s, gt〉 to |1s, et〉, the

population pumped to |1s, et〉 fast relaxes to state |0s, et〉. With the coherent pump (blue

arrow in Fig. 42) and the loss process (black dashed arrows in Fig. 42), it effective enables

an incoherent drive to the transmon qubit. Further, as the population builds up on state

|0s, et〉, because the transmon qubit is a strong nonlinear device, the two-photon transition

|0s, et〉 to |1s, ft〉 is far detuned from the classical pump frequency, which makes the state

|1s, ft〉 and |0s, ft〉 is weakly populated.

(a) (b)

Figure 43: The population of the composite quantum system and the transmon qubit with

coherent drive on the SNAIL qubit. In (a) we plot the population on the composite system

levels |0s, gt〉 (blue line), |0s, et〉 (orange line), |1s, et〉 (green line), |0s, ft〉 (vermilion line)

and |1s, gt〉 (purple line) with coherent drive on the SNAIL mode. Except the state |0s, gt〉,

|0s, et〉 and |0s, gt〉, the other states are weakly populated. In (b), we plot the population on

the transmon qubit. The population of the transmon qubit is pumped from the ground state

|gt〉 (blue line) to |et〉 (orange line). The higher state |ft〉 (green line) is rarely populated.

Parameters chosen: ωs/2π = 7.2 GHz, ωt/2π = 6.7 GHz, g2/2π = 0.05 GHz, g3/2π =

0.05 GHz, Ωd/2π = 2.0 GHz, γ/2π = 5 MHz, k/2π = −0.3 GHz.
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The whole composite quantum system can be described by the master equation

∂tρSt − i[H +Hd, ρSt] + γD[s]ρSt (5.149a)

D[s]ρSt = −1

2

(
s†sρSt + ρSts

†s− 2sρSts
†) (5.149b)

where ρSt is the density operator for the composite system of the coupled SNAIL and trans-

mon qubits, the system Hamiltonian is in Eq. (5.147), and the classical drive Hamiltonian is

in Eq. (5.148) and Eq. (5.149b) is the dissipation of the SNAIL mode.

The dynamics of the composite quantum system in presence of the coherent drive can be

obtained by solving the master equation Eq. (5.149). As the higher levels of the composite

systems are weakly populated, we truncated the Hilbert space of the SNAIL qubit to max-

imally allow 6 photons, and transmon qubit for 3 photons and numerically time-evolve the

master equation Eq. (5.149) in the truncated Hilbert space.

In the numerical calculation, we set the SNAIL qubit to have mode frequency ωs/(2π) =

7.2 GHz with third order nonlinearity g/(2π) = 50 MHz, while the transmon qubit to have

mode frequency ωt/(2π) = 6.7 GHz with fourth order nonlinear strength k/(2π) = −0.3 GHz.

The linear coupling strength between two qubits is g2/(2π) = 50 MHz. The SNAIL qubit

is coherently pumped by a classical drive with Ωd/(2π) = 2.0 GHz. The relaxation for the

SNAIL mode is γ/(2π) = 5 MHz. The population of the lower excitation states for the

composite systems are shown in Fig. 43a. In Fig. 43a, the population of the state |0s, gt〉 is

pumped to state |1s, et〉 and then relaxes to |0s, et〉, which effectively drives the population

from |0s, gt〉 to state |0s, et〉. For a long enough pumping time, the population will be pumped

into level |0s, et〉. We also notice that the population for the state |0s, gt〉, |0s, et〉 and |1s, gt〉

is fast oscillating4. This is caused by the classical drive on the SNAIL qubit such that the

SNAIL mode has a fast oscillating components with frequency (ωs+ωt). In Fig. 43b, we plot

the population of the ground, first and second excited states of the transmon qubit. The

population on the transmon qubit is pumped from the ground state |gt〉 to |et〉. From both

plots in Fig. 43, the higher excited states of the composite systems (e.g., |0s, ft〉 and |1s, gt〉)

has little population, especially the second excited state of the transmon qubit |ft〉, which

justifies the truncation of the composite system Hilbert space in our numerical calculation.

4we did not sample the population curves in Fig. 43a extremely fine to capture the correct oscillation
frequency for better view of the long-time behavior of all the curves.
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5.6 Transmon qubit-cavity nonlinear coupling

In this section, we introduce a nonlinear coupling circuit for coupling the artificial atom to

the cavity. The circuit is very similar to the one discussed in Section 5.4.5. In this section, in

order to simplify the discussion, we treat the artificial atom as a two-level system (a transmon

qubit) with an incoherent pump that generates level inversion. The detailed discussion of

the more realistic model of the pump media and the pump process is be discussed in the

Section 5.5.

5.6.1 Model discussion

Figure 44: The circuit model for the nonlinear coupling between the transmon qubit and

the cavity. The red junctions are π-junctions, which is to compensate the extra nonlinearity

induced to the transmon qubit and the cavity field due to the coupling circuit.

The proposed atom-cavity nonlinear coupling circuit is shown in Fig. 44. We assume the

coupling given by the nonlinear circuit model is weak compared to the optical frequencies,

i.e., the frequency of the transmon qubit and the frequency of the cavity light. The nonlinear

coupling strength is controlled by the coupling Josephson junction energy, which is labeled

as EJ and the linear inductance L in Fig. 44.

In our model, the cavity field is modeled by an LC resonator. After second quantization,

the node phase ϕc of the cavity is given by Eq. (5.96a). The node phase of the transmon
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qubit ϕt is

ϕ̂t = ϕ̃tσx (5.150)

where ϕ̃t = 1
φ0

√
~Zt
2

and Zt =
√

LJt

Ct
is the impedance of the transmon qubit, σx is the x

Pauli matrix. The nonlinear coupling Hamiltonian is

Hac = −EJ cos(ϕ̂c − ϕ̂t) + racEJ(ϕ̂c − ϕ̂t)2 + E ′J cos(ϕ̂t) + E ′′J cos(ϕ̂c), (5.151)

where we assume rac =
φ2

0

2LEJ
, which is the ratio of the linear inductance energy and the

Josephson energy of the coupling circuit.

5.6.2 Nonlinear cavity operator under rotating wave approximation

Similarly, we can also adopt the treatment of the operator cosines discussed in Sec-

tion 5.2.2 and 5.2.3 to construct a nonlinear operator for the cavity field under rotating wave

approximation. Especially, for the term cos(ϕ̂c− ϕ̂t). Also we note that the transmon qubit

operators and the cavity operators commute,

cos(ϕ̂c − ϕ̂t) =
1

2

(
e−iϕ̂teiϕ̂c + eiϕ̂te−iϕ̂c

)
=

1

2
e−ϕ̃

2
c/2
(
e−iϕ̂teiϕ̃ca

†
eiϕ̃ca + eiϕ̂te−iϕ̃ca

†
e−iϕ̃ca

)
.

(5.152)

Note that

exp (iϕ̃tσx) = cos(ϕ̃t) + i sin(ϕ̃t)σx (5.153a)

exp (−iϕ̃tσx) = cos(ϕ̃t)− i sin(ϕ̃t)σx, (5.153b)

We can separate a term in the nonlinear coupling from expansion of Eq. (5.152) that is solely

acting on the cavity field, denoted as Hc

Hc = −EJ cos(ϕ̃t) cos(ϕ̂c), (5.154)

which introduce dispersion to the cavity field. We again employ π-junctions with Josephson

energy E ′J = EJe
−ϕ̃2

c and E ′′J = EJ cos(ϕ̃t) to compensate this nonlinearity of the transmon
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qubit and the cavity field. After we absorb the extra linear frequency shifts into the Hamil-

tonian of the transmon qubit and the cavity, the nonlinear coupling Hamiltonian becomes

Hac = −EJσx
{

sin(ϕ̃t) sin
[
ϕ̃c(a

† + a)
]

+ 2rϕ̃tϕ̃c(a
† + a)

}
. (5.155)

After applying the rotating wave approximation, the atom-cavity coupling is

Hac,RWA = −EJ

(
σ+Âa + σ−Â

†
a

)
, (5.156)

with the cavity nonlinear operator

Âa = Cc sin (ϕ̃t)
∑
n

(−1)nϕ̃2n+1
c

n! · (n+ 1)!
(a†)nan+1 + 2racϕ̃tϕ̃ca, (5.157)

where Cc is defined in Eq. (5.120).

Again, we will estimate the magnitude of the parameter ϕ̃t for guidance. In experimental

settings, the frequency of the transmon qubit is in GHz range, while the Josephson junction

critical current can range from 10 nA to 10 µA. Note that

ϕ̃t =
1

φ0

√
~Zt
2

=

√
~ωt
φ0Ic

(5.158)

where ωt is the transmon frequency, Ic is the junction critical current. The parameter ϕ̃t

is to vary in the range of 0.04 to 1.23. Especially, if the critical current is 100 nA and the

transmon frequency is 7.5 GHz, the ϕ̃t ∼ 0.389. Notice that in Eq. (5.157), the factor ϕ̃t

controls relative magnitude of the factor before linear term a to the factor before higher

order nonlinear terms. By tuning this parameter, we can make the linear term to balance

the nonlinear terms to give the Boson amplification reduction region in Fig. 45.

Again, we examine the transition amplitude from the cavity photon number state |n+1〉

to |n〉 by this operator, i.e., 〈n|Âa|n+ 1〉. The set of circuit parameters are given in Table 6.

Next, we verify our derivation of the Âa operator by comparing it with a numerical

derivation. Since there is only as single cavity mode being considered, we can truncate

the normal photon operators a in a finite dimensional Hilbert space, i.e., manually add a

restriction that the photon number in the cavity must be below N . Then we can express the

coupling Hamiltonian in Hilbert space Hac = Ha ⊗ Hc,trunc, where Ha is the Hilbert space
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Figure 45: The transition amplitude of the nonlinear operator for the cavity field Âa, which

is given by Eq. (5.157). We compare the analytical solution from Eq. (5.157) (red dots) with

the exact matrix representation of the nonlinear coupling Hamiltonian in Eq. (5.156) (blue

line).

of the two-level atom and Hc,trunc is the truncated Hilbert space of the cavity photon field.

With the finite dimensional Hilbert space Hac, the phase difference operator ∆ϕ̂ = ϕ̂c − ϕ̂t
can be expanded as a finite dimensional matrix in the orthonormal basis {|g〉⊗|n〉, |e〉⊗|n〉}

where |g〉 and |e〉 is the ground and excited state of the atom, |n〉 is the photon number state

of the cavity. With the matrix representation of the operator ∆ϕ̂, its eigen-basis can be

found, noted as {|ψi〉}, with corresponding eigenvalues {λi}. Then the cosine of the phase

difference operator can be expressed using the eigenbasis as

Hac/EJ ∼ − cos(∆ϕ̂) + rac∆ϕ̂
2 =

∑
i

[
cos(λi) + racλ

2
i

]
|ψi〉〈ψi|, (5.159)

where we ignore the term for the π-junction as it does not contribute to the coupling between

the cavity mode and the transmon qubit.

After apply the rotating wave approximation, to compare with the operator given in

Eq. (5.157), we also calculate the transition amplitude, however for both the atom and the

photon states, as 〈e, n|Hac/EJ|g, n + 1〉, which is plotted as the blue line in Fig. 45. The
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Table 6: Chosen circuit parameters and the derived constants in the nonlinear system jump

operator Âa in Eq. (5.157) for Fig. 45.

Parameters ωc Ic Zc rac

Value 7.5 GHz 0.1 µA 50 Ω 0.4

Parameters Zt ϕ̃t ϕ̃c Cc
Value 155.1 Ω 0.3886 0.1560 0.9880

oscillation around n ∼ 300 is because of the truncation we make. But compare with the oper-

ator expansion approach [Eq. (5.157)] the two transition amplitudes matches perfectly. This

shows support for our operator expansion approach. Further, from the transition amplitude

plot, there exists a region for the cavity photon that the transition between nearby photon

number states given by the nonlinear operator Âa does not have the Boson amplification (or

Boson amplification is largely suppressed), which is the key for further suppressing the laser

linewidth beyond the Schawlow-Townes limit [197].

5.7 The suppression of the Josephson micromaser linewdith beyond

Schawlow-Townes limit

In this section, we construct a theoretical model for the laser system. The model dis-

cussed in this section is build from real circuit elements: Josephson junctions, inductors,

capacitors and transmission lines, and consequently it is very close to what can be build

in the lab with real superconducting circuits. However, the model does still lacks certain

details: precise modeling for the pump process for the transmon qubit, a model of trans-

mission line bandwidth, and capacitors between the transmon qubit and the cavity as well

as the cavity and the transmission line. The main goal of this section is to build a realistic

theoretical proof of concept model which is easy to analyze and which demonstrates that
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a laser system with the nonlinear couplings can have laser linewidth significantly narrower

than the Schawlow-Townes limit of classical laser theory.

5.7.1 2-level incoherent pump atom model for the Josephson laser

The model of the Josephson nonlinear laser system is similar to the atomic laser model

shown in Fig. 33, except that the coupling between the atom and cavity and the dissipation

process of the cavity is nonlinear, given by the nonlinear cavity operators in Eq. (5.157)

and Eq. (5.112), respectively. In this mode, the transmon qubit is modeled by the two-level

atom. The pump process discussed in Section. 5.5 is modeled by an incoherent pump process

from the ground state to the excited state. The cavity is again modeled by a single-mode

photon field. The coupling between the transmon qubit and the cavity field is given by the

nonlinear coupling in Eq. (5.156). The cavity couples to a photon bath, which is a model for

the transmission line discussed in the Section 5.4. The dissipation process can be modeled

by a Lindblad term as Eq. (5.115) with nonlinear bath operator given in Eq. (5.112). The

system can be described by the master equation,

∂tρ(t) = −i[H0 +Hac, ρ(t)]− ΓpD[σ+]ρ(t)− ΓcD[Â1]ρ(t) (5.160a)

H0 =
1

2
ωtσz + ωca

†a (5.160b)

Hac = g
(
σ+Âa + Â†aσ−

)
(5.160c)

D[σ+]ρ(t) = −1

2
[σ−σ+ρ(t) + ρ(t)σ−σ+ − 2σ+ρ(t)σ−] (5.160d)

D[Â1]ρ(t) = −1

2

[
Â†1Â1ρ(t) + ρ(t)Â†1Â1 − 2Â1ρ(t)Â†1

]
(5.160e)

Â1 =
CTLCc

CTLCc + 2r

∞∑
n=0

(−1)n
ϕ̃2n
c

n! · (n+ 1)!

(
a†
)n
an+1 +

2rϕ̃c
CTLCc + 2r

a (5.160f)

Note that compared with Eq. (5.112), we redefine the nonlinear cavity operator Â1. In the

new definition in Eq. (5.160f), by dividing the constant factor (CTLCc + 2r)ϕ̃c to make sure

the lowest term (a) has coefficient 1, which is easier to compare with a normal cavity loss

term.
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5.7.2 Beyond the Schawlow-Townes limit

At first, we will focus on the transmon qubit-cavity coupling under rotating wave ap-

proximation. Then we will move to the more general discussion by including terms that are

dropped in rotating wave approximation, the higher order loss terms for the cavity field, etc.
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Figure 46: The mean photon number 〈n〉. (a) and the linewidth of the cavity field D in unit

of Schawlow-Townes limit DST (b). At the narrowest point the laser linewidth is 9.2% of

the Schawlow-Townes limit.

With the above approximation, we set pump strength Γp = 1.0, and Γc = 0.01228 and

sweep the transmon qubit-cavity coupling strength g. The mean photon number and the

linewidth of the laser light (in the unit of the Standard limit) are plotted in Fig. 46. We

observe in Fig. 46a, at g ∼ 1.12, the mean photon number is in the flattened region of the

nonlinear cavity operator, as shown in Fig. 40. At the same coupling strength, we observe

in Fig. 46b, that the linewidth of the laser reaches the narrowest point with respect to the

Schawlow-Townes limit, becoming just 9.2% of DST . The photon distribution in the cavity

at g = 1.12 is plotted in Fig. 47. Compared with the photon distribution of a conventional

laser, in which the photon distribution is a Poisson distribution, the photon distribution in

Fig. 47 has distortion in the regime where the transition amplitude is flat for the nonlinear

coupling operator. We summarize all the parameters used for Fig. 47 in Table 7.
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Figure 47: The photon distribution of the proposed nonlinear Josephson micromaser using

the nonlinear coupling circuit. The photon distribution in the cavity is calculated using the

parameters g = 1.12, Γp = 1.0 and Γc = 0.01228.

5.7.3 Non-excitation number conserving terms in atom-cavity coupling and

higher-order cavity loss processes

In this section, we explore some complication of the model. We focus on the non-

excitation-number-conserving terms in the atom-cavity nonlinear coupling and the effects of

the higher order terms in the cavity loss process. We show that the non-excitation-number-

conserving terms in the atom-cavity coupling does not have an obvious effect on the system

dynamics, which justifies our treatment of the laser system.

First, the atom-cavity coupling has terms that do not conserves the excitation number

that were dropped in the rotating wave approximation. In Fig. 48a, we compare the atom-

cavity coupling with rotating wave approximation (excitation number conserving terms only)

and the coupling with not only excitation number conserving terms, but also the two-photon

and three-photon processes (excitation number change is less than 3). We observe that there

is essentially no difference between the two calculations thus validating the rotating wave

approximation. In Fig. 48b, we add second order terms in the cavity-bath coupling. In the

calculation, we set θ/ωc = 0.5, we still don’t identify any observable difference and thus

conclude that the higher order terms do not affect the linewidth very much.
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Table 7: Chosen circuit parameters, the derived constants and the dynamical parameters in

the nonlinear system for Fig. 47.

Parameters ωc Ic Zc rac Zt

Value 7.5 GHz 0.1 µA 50 Ω 0.41 155.1 Ω

Parameters ϕ̃t ϕ̃c Cc ZT CT
Value 0.3886 0.1560 0.9880 155.1 Ω 0.9961

Parameters r g Γp Γc

Value 0.42 1.12 1.0 0.01228
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Figure 48: We add extra terms to system dynamics and check their effect on the laser

linewidth. In (a), we add terms that do not respect the rotating wave approximation on

the atom-cavity coupling. In (b), we add the Lindblad term that corresponds to the second

order terms in the transmission line field operators. We assume the coupling bandwidth

θ/ωc = 0.5. In both subplots, the blue line is the original solution without complications.

The orange dots are the linewidth calculated with the complication. Adding these terms

does not affect the linewidth solution much.
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5.8 Summary

In this chapter, we presented the theory of a narrow-linewidth Josephson micromaser, in

which we use a transmon qubit as the pump media, and strongly coupled it to a microwave

resonator to achieve lasing. The quantum system Hamiltonian and bath environment can

be engineered to achieve more powerful quantum manipulation on the system. Specifically,

we use a transmon-type qubit with SNAIL element to bath engineer the transmon qubit to

achieve an effective incoherent drive on the transmon qubit to obtain population inversion.

We further take advantages of the nonlinear coupling provided by the Josephson junctions

in superconducting circuit to construct a Josephson micromaser that emits quantum light.

By carefully engineering the nonlinear coupling between the transmon qubit and the maser

cavity (resonator), as well as between the maser cavity (resonator) and the transmission

line (the bath), the emitted light from the nonlinear Josephson micromaser system has a

narrow linewidth that is beyond the Schawlow-Townes limit, the standard linewidth of the

conventional laser with linear coupling. For the parameters we chose, the linewidth of the

nonlinear Josephson micromaser can be ∼ 10% of the Schawlow-Townes limit.

Our work on the nonlinear Josephson micromaser not only provides a pathway to on-

chip narrow-linewidht Josephson micromasers for quantum computing applications, but also

shows the power of the nonlinearity of the Josephson junctions in circuit-QED systems. As

a strongly nonlinear element in superconducting circuit system, Josephson junctions can

provide more versatile nonlinear couplings which are hard to obtain in normal cavity-QED

systems. It also opens a new regime of quantum optics, a regime with relative strong non-

linearity between the atom and cavity, which provides more tools for quantum manipulation

of the quantum states of superconducting circuit systems.
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6.0 Robust manipulation of light using topologically protected plasmonic

modes

In this chapter, we explore how to use Su-Shrieffer-Heeger model plasmonic topological

modes to manipulate light. We provide an in-depth analysis of the topological defect modes,

similar to the ones experimentally observed in [113, 114], and propose applications of these

modes in plasmonic systems. We show that the proposed setup allows us not only to guide

light but also to robustly manipulate it by shifting the topological defect modes, as a function

of axial position, inside the structure. Using full 3D finite-difference-time-domain (FDTD)

solutions of the Maxwell equations, we demonstrate a beam splitter and a spatial mode filter

(that couples light from a pair of bulk modes to a pair of topological defect modes). Further,

we analyze tolerance to manufacturing defects. While topological robustness to disorder that

is invariant in the axial direction (i.e., time-independent disorder in electronic systems) has

been extensively studied before, here we analyze tolerance to disorder that varies in the axial

direction (i.e., time-dependent disorder in electronic systems). We investigate two types of

defects: (a) defects in nanowire positions, that violate sublattice symmetry exponentially

weakly and (b) defects in nano-wire diameter, that violate sublattice symmetry strongly.

Using the 3D FDTD calculations we show that our structures are very tolerant to type (a)

defects and reasonably tolerant to type (b) defects with transverse length-scales comparable

to inter-nanowire spacing, as long as the axial length-scales are larger than the inverse

topological band gap.

6.1 Finite-Difference-Time-Domain method for numerical simulation of

electromagnetic field evolution

Finite-Difference-Time-Domain (FDTD) method is one of the most important numeri-

cal methods of computational electromagnetism. It is also the main numerical method we

used in this project. Compared with other numerical methods of computational electro-
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magnetism like the Finite Element Method (FEM), Finite Difference Frequency Domain

(FDFD) methods, FDTD method focus more on the time-evolution of the electromagnetic

(EM) field inside the region of interests, which is more suitable to work with problems of EM

wave propagation. In this section, we briefly introduce the essence of the FDTD method,

including how to use finite difference to approximate the derivatives, the Yee grid and Yee

algorithm for time-evolve the EM field. The discussion in this section is influenced by the

discussion in Refs. [207, 208, 209].

(a) (b)

(c)

Figure 49: Visualization of the Yee grids. In (a) we show the Yee grid in 3D with both the E

and H components. In (b) and (c), we show the 2D plane for the TE and TM components

of the EM fields.

In classical electrodynamics, the electromagnetic field is described by the Maxwell equa-

tion [210],

∇× E = − 1

µ

∂

∂t
H (6.1a)

∇ ·D = ρ (6.1b)

∇×H =
D

∂t
+ J (6.1c)
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∇ ·B = 0 (6.1d)

where ρ is the free charge density, E, D, B and H are electric field and electric displacement

field, magnetic flux density and magnetic field, respectively. The E, D, B and H are

connected through the media permittivity ε and permeability µ,

D = εE B = µH. (6.2)

In general, the permittivity ε and permeability µ are tensors, i.e., Di = εijEj where i, j can

be x, y, z.

In a realistic system when a solution of the EM field is needed, in most of the cases, the

system itself is so complected that an analytical solution of Maxwell equations [Eq. (6.1)]

with the boundary conditions is impossible. We need numerical methods to approximate the

exact solution of Maxwell equations, a set of coupled partial differential equations. FDTD is

one of these numerical methods, especially for simulating the time-evolution of the EM field

(e.g. light propagation).

To approximate the EM field and the Maxwell equations, we recall that a continuous

function f(x) can be approximated by the values on a set of discrete sampling point, e.g.

{f(x1), f(x2), ...f(xn)}. The derivative of the function f(x), which is defined as

d

dx
f(x0) = lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x
, (6.3)

can also be approximated by a finite difference,

d

dx
f(x0) ∼ ∆f(x0)

∆x
=
f(x0 + ∆x)− f(x0)

∆x
. (6.4)

Note that there are multiple ways to approximate the (1st order) function derivatives using

finite difference. The Eq. (6.4), as it uses the point x = x0 + ∆x which is in the forward

direction of the point x = x0, is referred as forward difference formula. Similarly, there are

backward difference as
∆f(x0)

∆x
=
f(x0)− f(x0 −∆x)

∆x
, (6.5)

and central difference as

∆f(x0)

∆x
=
f(x0 + ∆x)− f(x0 −∆x)

2∆x
, (6.6)
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Different finite difference formulas will result in different approximation accuracy. To ap-

proximate the accuracy of these finite differences, we expand the function around the point

of interest x = x0 as,

f(x0 ±∆x) = f(x0)± df(x0)

dx
∆x+

1

2

d2f(x0)

dx2
∆x2 ± 1

6

d3f(x0)

dx3
∆x3 + ... (6.7)

The forward difference is

∆f(x0)

∆x
=
df(x0)

dx
+

1

2

d2f(x0)

dx2
∆x+ ... (6.8)

With Eq. (6.8), using the forward difference formula to approximate the function derivative

gives an error o(∆x). Similarly, the backward difference also gives an error o(∆x). However,

the central difference has better performance, as the ∆x2 term in the Taylor expansion

[Eq. (6.7)] is canceled, which gives an error o(∆x2) for the approximated differentiation

value.

To get more accurate approximation to the function derivatives, we can include more

nearby points in the finite difference formula, by canceling more higher order terms in the

Taylor expansion. The examples can be found in [208]. Further, the higher order derivatives

of the function can also be approximated by finite difference. One of the most commonly

used formula for second order derivative is

d2

dx2
f(x0) ∼ ∆2f(x0)

∆x2
=
f(x0 + ∆x) + f(x0 −∆x)− 2f(x0)

∆x2
(6.9)

which gives an accuracy o(∆x2)

In FDTD method, the central difference for spacial derivative is applied to approximate

the spacial partial derivatives in Maxwell equations for numerically solving the equations.

To optimize the memory usage of the numerical method (i.e., the number of grid points

but still get a descent accuracy), Kane Yee, in his famous work Ref. [211], proposed to use

the staggered grids for the electric and magnetic fields. This method of meshing the EM

field and the corresponding updating rules are called Yee algorithm. Here for simplicity,

we introduce the Yee grid and the update rules without source, i.e., J = 0 and the media

is isotropic i.e., the permittivity ε and permeability µ of the media are scalers. The more

detailed description with source current and charge can be found in Ref. [207].
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The Yee grid in 3D for all components of electric field E and magnetic field H are shown

in Fig 49(a). The Electric field and the magnetic field components are not sampled with the

same grid mesh. Instead, they are sampled on the different middle points of the edges of two

staggered cubic cells. The slice cut along xy plane of these two cells are plotted in Fig. 49(b)

(blue) and 49(c) (red). For a TE light propagating along the z direction, the field components

Ez, Hx, Hy are important, which corresponds to the plane shown in Fig. 49(b), while for TM

light propagating along z direction, the field components Hz, Ex, Ey are important, which

corresponds to Fig. 49(c). We refer these two surfaces of the Yee-grid as TE surface and TM

surface.

We assume the mesh is equal-spacing, i.e., the Yee cells have unit length ∆x, ∆y and ∆z,

respectively. We further assume the sampling of the EM field has a constant time interval

∆t. The grid point location can be rewritten as (x, y, z) = (i∆x, j∆y, k∆z) and the time

t = l∆t, where i, j, k can be integers and half integers while l can only be integers. For

simplicity, we will use these indices to label the field components in our following discussion

of the update rule of Yee algorithm and further assume all the indices can only be integer.

According to the Yee grid shown in Fig. 49(a), if we assume the Ez components are at the

mesh points (i, j, k), where i, j, k are all integers, [noted as Ez(i, j, k, l), l is for time], the rest

of the field components are meshed as Hx(i, j − 1/2, k, l), Hy(i− 1/2, j, k, l) [see Fig. 49(b)],

Hz(i − 1/2, j − 1/2, k + 1/2, l), Ex(i − 1/2, j, k + 1/2, l) and Ey(i, j − 1/2, k + 1/2, l) [see

Fig. 49(c)].

Let’s focus on the Maxwell equations [Eq. (6.1)] to understand how the finite differ-

ence approximated Maxwell equations are constructed for numerical time-evolve the EM

field. The curl relations [Eqs. (6.1a) and (6.1c)] in the Maxwell equations are re-written in

component form as

∂yEz − ∂zEy = − 1

µx
Hx (6.10a)

∂zEx − ∂xEz = − 1

µy
Hy (6.10b)

∂xEy − ∂yEx = − 1

µz
Hz (6.10c)
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for Eq. (6.1a) and

∂yHz − ∂zHy = εxEx (6.11a)

∂zHx − ∂xHz = εyEy (6.11b)

∂xHy − ∂yHx = εzEz (6.11c)

for Eq. (6.1c). Because in FDTD method, the time evolve the EM field from previous time

steps to the further time is the key question. So the most intuitive approach to approximate

the partial derivatives with respect to time is to use the backward difference and treat the EM

field components on the current time step as the quantities that are waiting to be solved 1.

With the Yee-grid shown in Fig. 49(a), it is natural to use the central difference formula

to approximate the spatial partial derivatives. The approximated finite difference equations

are

∆Ez(i, j + 1, k, l − 1)

∆y
−

∆Ey(i, j − 1
2
, k + 1

2
, l − 1)

∆z
(6.12a)

= − 1

µx(i, j − 1
2
, k)

∆Hx(i, j − 1
2
, k, l)

∆t

∆Ex(i− 1
2
, j, k + 1

2
, l − 1)

∆z
− ∆Ez(i, j, k, l − 1)

∆x
(6.12b)

= − 1

µy(i− 1
2
, j, k)

∆Hy(i− 1
2
, j, k, l)

∆t

∆Ey(i+ 1, j + 1
2
, k + 1

2
, l − 1)

∆x
−

∆Ex(i+ 1
2
, j + 1, k + 1

2
, l − 1)

∆y
(6.12c)

= − 1

µz(i+ 1
2
, j + 1

2
, k + 1

2
)

∆Hz(i+ 1
2
, j + 1

2
, k + 1

2
, l)

∆t

for Eq. (6.1a) and

∆Hz(i− 1
2
, j + 1

2
, k − 1

2
, l − 1)

∆y
−

∆Hy(i− 1
2
, j, k, l − 1)

∆z
(6.13a)

1There is no restriction that we cannot use the central difference formula for time derivatives. With
central difference formula, we add a set of new unknown parameters into the set of difference equations,
which are the field components in the future time step. The method is no longer explicit, i.e., we need to
solve the whole set linear equations to get the EM field on current and future time steps instead of only
solving a single equation to update the field component on a grid point. The implicit method will be much
slower than the explicit method we discussed in the main text. However, the implicit method can be more
numerically stable than the explicit one. The stability of these two numerical methods is beyond the scope
of this discussion, but can be found in Ref. [207].
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= εx(i, j −
1

2
, k − 1

2
)
∆Ex(i− 1

2
, j, k − 1

2
, l)

∆t
∆Hx(i, j − 1

2
, k, l − 1)

∆z
−

∆Hz(i+ 1
2
, j − 1

2
, k − 1

2
, l − 1)

∆x
(6.13b)

= εy(i, j −
1

2
, k − 1

2
)
∆Ey(i, j − 1

2
, k − 1

2
, l)

∆t
∆Hy(i+ 1

2
, j, k, l − 1)

∆x
−

∆Ex(i, j + 1
2
, k, l − 1)

∆y
= εz(i, j, k)

∆Ez(i, j, k, l)

∆t
(6.13c)

for Eq. (6.1c). where the field finite difference is defined as

∆Eα(ix, jy, kz, lt)

∆x
=
Eα(ix + 1, jy, kz, lt)− Eα(ix, jy, kz, lt)

∆x
(6.14)

where α = x, y, z and ix, jy, kz, lt can be integers and half integers depends on the Yee grid of

the specific field component. The finite differences for y, z and t are similar. Notice that on

the left hand side of the Eqs. (6.12) and (6.13), all the field components are on the previous

time step (l − 1), while on the right hand side the only unknown quantities are the field

components at the corresponding grid point for the current time step. Providing the EM

field information for previous time step, the EM field on the grid points at current time step

can be explicitly solved by the Eq. (6.12) and (6.13). Then we can time-evolve the EM field

using the finite difference equations till the finish time step.

6.2 Guiding light using topological defect modes

Consider a system that is almost translationally invariant along the axial, i.e., z-direction.

Our goal is to describe paraxial modes, time-harmonic electromagnetic waves that propagate

at small angles to the z-axis. For paraxial TM-modes it is natural to focus on the transverse

components of the electric field [212, 213] and to separate out the fast oscillating part,

Ex = ψx(x, y, z)eiβ0z and Ey = ψy(x, y, z)eiβ0z, where β0 = ω/c. The propagation of paraxial

TM-modes is governed by the paraxial Schrödinger equation (see appendix for details)

[
− c

2β0

∇2
⊥ + V

] ψx

ψy

 = i c ∂z

 ψx

ψy

 , (6.15)
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where, ∇2
⊥ = ∂2

x + ∂2
y , V (x, y, z) describes the position of the metal nanowires, and we have

neglected ∂2
zψ{x,y} as per the paraxial approximation. Eq. (6.15) has the form of the two-

dimensional time-dependent Schrödinger equation with c ∂z → ∂t, ψ{x,y} – the wave function,

and H ≡ −(c/2β0)∇2
⊥ + V (x, y, z) – the Hamiltonian operator. Thus, stationary states of

H become the TM modes of paraxial light that propagate along the z-direction and the

eigenenergies E of H become the z-wavenumbers βz = β0 − ε/c. In [112], Rechtsman et al

showed that this analogy can be used to gain intuition about the topological structure of

electromagnetic waves by mapping solutions of the Schrödinger equation with non-trivial

topology onto the Helmholtz equation.

Let us now consider the SSH model, which was originally used for studying electrons

in polyacetylene. The backbone of polyacetylene is a chain of carbon atoms with staggered

single and double bonds, schematically depicted in Fig. 50(a). (Here, we assume that the

pattern of single and double bonds does not have intrinsic dynamics, but is instead a pre-

scribed function of time.) The discretized version of the Hamiltonian describing the hopping

of spinless electrons along the backbone of polyacetylene is

HSSH = −
∑
i

ti,i+1

(
c†ici+1 + c†i+1ci

)
(6.16)

where the operator ci (c†i ) annihilates (creates) an electron on the i-th carbon atom and

the hopping matrix element ti,i+1 = t1(t2) if the bond between sites i and i + 1 is a single

(double) bond. The unit cell of this model consists of a two atom dimer. Let us assume

the hopping strength within a dimer is t1 and the hopping strength between the atoms

belonging to two nearby dimers is t2. Applying the Fourier transform to the Hamiltonian,

i.e., c2n =
∑

k ake
ikRn and c2n+1 =

∑
k bke

ikRn, where k is the wave vector, R is the unit cell

size, and n is the unit cell index, we obtain

HSSH = −
∑
k

(
t1 + t2e

−ikR) a†kbk + h.c. (6.17)

This Hamiltonian can be written as a 2 × 2 matrix Hk = ~h(k) · ~σ, where ~σ = {σx, σy} is a

vector of Pauli matrices and ~h(k) = {t1 + t2 cos(kR), t2 sin(kR)}. Note that ||~h(k)|| is non-

zero throughout the Brillouin zone, indicating that the two bands of the SSH model never
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Figure 50: (a) Single-double bond pattern in a polyacetylene chain with a kink defect. The

red disks show the carbon atoms. (b) Analogous nanowire array with staggered spacing

and a kink defect. (c) Staggered nanowire spacing leads to a band gap for the bulk modes

(red), the topological defect mode appears in the middle of the band gap (blue). (d,f) The

positions of nanowires in the array without (d) and with (f) a domain wall. (e,g) Spreading of

light in the nanowire array without (e) and with (g) a domain wall. The topological defect

mode bound to the domain wall is observed guiding light in (g). For this figure we used

ε = −45.83 + 2.49× 10−9i (the real part of the permittivity is identical to that of silver and

the imaginary part was chosen to be very small to highlight the guidance by the topological

defect mode.) Geometry parameters used: diameter 200 nm, center-to center spacing 300

and 500 nm, wavelength λ = 1µm.

touch. As k traverses the Brillouin zone in 1D, going from −π/R to π/R, ~h(k) goes around

a circle centered at t1 with radius t2. The number of times this trajectory winds around

the origin is a topological invariant, being either 0 if t1 < t2 or 1 if t1 > t2, corresponding

to the two distinct topological phases of the SSH chain. The winding number is directly
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related to the Zak phase φZac =
∫ π/R
−π/R 〈ψ|i∂k|ψ〉 dk, which is the 1D equivalence of the Berry

phase in higher dimensions [214, 215]. The existence of a topologically protected mode at

the boundary of two topologically distinct domains is prescribed by the Atiyah-Singer index

theorem [216].

A domain wall in the single-bond double-bond pattern of the chain, as depicted in

Fig. 50(a), is a topological defect: locally changing the bond strength around the kink

cannot eliminate it as the single- double-bond pattern is a non-local property. Domain walls

can, however, be eliminated in pairs by moving them towards each other, as the single-

double-bond pattern far away from where the domain walls are being merged is not effected

by the merger. Moreover, each domain wall must host a mid-gap state, a topological defect

mode, that is localized in the vicinity of the domain wall.

We now investigate the optical equivalent of the SSH topological defect modes in plas-

monic crystals. Consider a plasmonic crystal that consists of an array of parallel nanowires

with staggered spacing as depicted in Fig. 50(b). The Helmholtz-Schrödinger analogy tells

us that for each eigenmode of the SSH Hamiltonian Eq. (6.16), there is an equivalent electro-

magnetic mode in the plasmonic crystal. We note that the fermionic commutation relations

do not play a role here as we are considering the non-interacting case; hence, we can replace

the operator c†i that creates an electron in a carbon atom atomic orbital by the operator b†i

that create a surface plasmon on the i-th nanowire. (We present the details of the connection

between the continuous and discrete Hamiltonians in the appendix.) Thus the band gap in

the electronic system maps onto a βz gap in the plasmonic system. Moreover, electronic

states that are localized on domain walls (and appear inside the band gap) map directly

onto guided plasmonic states that propagate along the domain walls in the z-direction [and

appear in the βz gap, see Fig. 50(c)].

Now consider injecting a spatially truncated plane wave into a plasmonic crystal with

staggered spacing but no domain walls [Fig. 50(d)]. This is equivalent to injecting an electron

into polyacetylene using a local probe like an STM tip. Because the electron is being injected

locally, it overlaps many k-modes, and hence the electron wave-packet will spatially spread

out as time advances. Similarly, the plasmonic wave packet will expand in the transverse

direction as it advances along the z-direction. To illustrate this expansion we introduce the

209



normalized Poynting vector Pz in the x-z plane that cuts through the middle of the nanowire

array

Pz(x, y = 0, z) =
~S(x, y = 0, z) · ẑ∫
dx dy ~S(x, y, z) · ẑ

, (6.18)

where ~S is the non-normalized Poynting vector and ẑ is the unit vector along the z-direction.

Figure 50(e) shows the spreading out of a plasmonic wave-packet obtained using 3D FDTD

simulation of the plasmonic crystal. Completing the analogy, the group velocity of the

electron in polyacetylene corresponds to the opening angle of the light cone in the plasmonic

crystal.

The introduction of a topological defect into the plasmonic crystal [see Fig. 50(b)] gives

rise to a localized mode. We expect that light injected in the vicinity of the topological

defect couples both to the localized defect mode as well as to the bulk modes. We plot the

results of injecting a truncated plane wave into a plasmonic crystal with a topological defect

[Fig. 50(f)] in Fig. 50(g). In accord with our expectations, we observe that light coupled

into the bulk modes forms a diffracting fan, while light coupled into the topological mode

propagates without spreading transversely.

We comment that light guided by a topological defect mode is spatially concentrated.

As a figure of merit, we consider the quantity λ2Pz, where λ is the free space wavelength,

which measures how much the light is squeezed spatially as compared with diffraction limited

optics (λ2Pz ≈ 1 at diffraction limit). Plasmonic confinement of light in the topologically

guided mode of the structure depicted in Fig. 50(g) results in λ2Pz ≈ 16.6.

6.3 Manipulation of light using topological defect modes

In the electronic system, there are two well-established operations for manipulating topo-

logical defect modes: (i) shifting the position of a topological domain wall causes the asso-

ciated topological defect mode to be carried along with the domain wall, and (ii) pairs of

domain walls can be nucleated and pulled apart, causing two of the bulk modes to be turned

into topological defect modes. In this section, we explicitly apply these operations to achieve
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topological manipulation of light in the plasmonic crystal of metal nanowires.

In the Helmholtz-Schrödinger correspondence, ∂t is mapped to c∂z, so that time depen-

dent manipulation in the electronic system is mapped onto axial dependent manipulation

in the plasmonic crystal. For instance, the time-dependent shifting of domain walls in the

electronic picture is mapped to the shifting of the domain walls as a function of the axial

position z in the plasmonic crystal, which we achieve through the variation of the nanowire

spacing as a function of z.

6.3.1 Topological spatial mode filter

Nucleating two domain walls in the middle of the SSH chain and adiabatically moving

them apart results in a spectral flow in which a pair of delocalized electronic states, one from

the upper bulk band and one from the lower, are adiabatically transformed into the two mid-

gap states spatially localized on the domain walls. We take advantage of this spectral flow

to perform spatial mode filtering of light using a plasmonic crystal.

Specifically, we design a plasmonic crystal with a pair of domain walls that are created

inside the array and shifted apart as a function of z, see Fig. 51(a). Two of the bulk modes

at the input side (z = 0) of the array are mapped into the two topological defect modes

on the output side (z = 200µm) by the spectral flow, see Fig. 51(b). If one of these two

bulk modes is injected into the array, after propagation, the maximum of the light intensity

on the output side will be strongly localized around the kinks. To verify this behavior, we

perform full 3D FDTD simulations of the structure depicted in Fig. 51(a), and plot the

results in Fig. 51(c). We observe that the majority of the light flux is indeed guided into the

topological defect modes. On the other hand, if we inject any other bulk mode on the input

side it will be rejected by the mode filter and the output light flux in the vicinity of the

domain walls will be small (see appendix). We note that the topological defect modes are

not always in the center of the band-gap [see Fig. 51(e)] as we are locally slightly breaking

the sub-lattice symmetry. Indeed, topological protection endows our device with robustness

against exactly these types of perturbations.

211



Figure 51: (a,d) Nanowire array geometry for a spatial mode filter (a) and a beam splitter

(d). Blue lines indicate the positions of the nanowires and red dashed lines the position

of the kinks. (b,e) Spectral flow of bulk modes (blue) and the topological defect modes

(red) as a function of z for the spatial mode filter (b) and the beam splitter (e). (c,f) Light

propagation through the spatial mode filter (c) and the beam splitter (f), red dashed lines

indicate the position of the kinks (see text). Parameters used are same as Fig. 50.
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Figure 52: (a,b) Topological defect mode propagation in a nanowire array with a pertur-

bation. The red nanowire is shifted away from its original position indicated by the black

dashed line. The smoothness parameter is w = 25µm in (a) and w = 6.25µm in (b). (see

text for details) (c) Fraction of flux retained in the topological defect mode η in a structure

with a shifted nanowire perturbation. We vary the smoothness parameter w and fix the

displacement parameter δx = 150 nm. (d) η in a structure with a nanowire diameter per-

turbation, the nanowire diameter parameter δd is varied and w = 25µm is fixed. Materials

and nanowire geometry parameters are same as Fig. 50.
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6.3.2 Beam splitter with topological defect modes

Consider the geometry of a nanowire array depicted in Fig. 51(d): two domain walls that

are well separated spatially on the input and output sides of the structure are brought close

together in the middle of the structure. The propagation of the two topological defect modes

can be described by the Landau-Zener Hamiltonian, in which the coupling is controlled by the

spatial separation of the domain walls. The spectral flow of the array along the z direction

is shown in Fig. 51(e). When the domain walls are well separated, the topological defect

modes are non-interacting, and hence both are in the middle of the gap. As the domain

walls are moved closer, the topological defect modes begin to interact and the degeneracy is

broken. By controlling the interaction strength and the length of the interaction region it is

possible to construct a 50-50 beam splitter. We perform 3D FDTD simulation of the beam

splitter in which we inject light into one of the defect modes on the input side and observe

an equal superposition of light in the two defect modes on the output side [see Fig. 51(f)].

6.4 Tolerance to perturbations in wire placement and diameter

Consider a structure in which a topological defect mode is guided by a kink that is be-

ing shifted as a function of z [see Fig. 52]. To test the tolerance of the light manipulation

to perturbations (e.g. manufacturing defects), we measure the amount of light that leaks

from the topological defect mode into the bulk modes due to perturbations in the plasmonic

nanowire structure. This is a particularly stringent test of mode transport fidelity, as per-

turbations near the domain wall can affect the structure of the defect mode directly as well

as how the defect mode hops from nanowire-to-nanowire as the domain wall is shifted. As

it is not possible to test the tolerance to all kinds of perturbations, we focus on two specific

types that are likely to occur in experimental situations: meander of a single nanowire and

distortions in the diameter of a single nanowire. We note that topological robustness only

protect defect modes when they are moved infinitely slowly. In a realistic plasmonic system

we would rather move the defect modes as fast as possible to avoid absorption losses which
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has the potential to break the adiabatic approximation. It is the tolerance of light manip-

ulation rather than topological mode robustness protected by the chiral symmetry that is

examined in this section.

In Figs. 52(a) and 52(b), we compare the results of 3D FDTD simulation for two test

structures in which we displace one of the nanowires by the addition of a meander M(z) =

δx e−(z−z0)2/w2
. In Fig. 52(a) the meander is smooth with w = 25µm, while in Fig. 52(b)

the meander is abrupt with w = 6.25µm. The positions of unperturbed wires are indicated

with black lines, the original position of the perturbed wire is indicated with black dashed

line and its new position with the red line. The color scale shows Pz for light that is injected

into the topological defect mode on the left side of the structure. We observe that if the

meander is sufficiently smooth the topological mode remains guided along the domain wall

[Fig. 52(a)]. However, if the meander is too abrupt there is significant leakage of light into

the bulk modes [Fig. 52(b)].

What role does topological protection play here? The spectral flow calculation (see Ap-

pendix D) shows that the topological defect mode βz shifts as M(z) becomes large. This fea-

ture is due to the existence of next-nearest-neighbor (NNN) coupling between the nanowires

which breaks the sublattice symmetry. As the NNN coupling is exponentially small, the

topological defect mode is well protected from nanowire meander disorder (see Appendix D

for details).

Despite the topological protection from perturbations that respects sub-lattice symmetry,

these perturbations can still break adiabaticity (i.e., an abrupt meander) to give heavy

leakage. This is a consequence of the fact that while topological protection ensures that the

defect mode is pinned to the middle of the topological band-gap, the wave function of the

topological mode still depends on the perturbation. Thus if the perturbation is turned on

sufficiently abruptly, on a length scale ≈ ∆βz, adiabaticity will break down. To quantify the

amount of leakage caused by a perturbation, we introduce the quantity η,

η =
1

2

∫
dx dy ( ~Eα × ~H + ~E × ~Hα) · ẑ, (6.19)

where ~Eα and ~Hα are the electric and magnetic fields that correspond to the guided mode

(η = 1 perfect guidance, η = 0 complete leakage). In Fig. 52(c) we plot η as a function of
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the smoothness parameter w. We observe a dramatic loss of adiabaticity for w . 10µm.

Perturbations of the nanowire diameter, as opposed to position, are potentially more

problematic as these explicitly break the sublattice symmetry [by affecting the plasmon self-

energy]. We investigate a series of structures similar to the one depicted in Fig. 52(a), but

instead of shifting the red wire, we modify its diameter D(z) = D0 − δd e−(z−z0)2/w2
, where

D0 = 200 nm is the unperturbed diameter. We plot η as a function of δd in Fig. 52(d).

We observe robustness to small perturbations followed by a sharp drop in η for large per-

turbations. The loss of transport fidelity is again associated with the loss of adiabaticity.

However, due to the sublattice symmetry breaking nature of the perturbation, the loss of

adiabaticity occurs prematurely as the defect mode is pushed close to the edge of the topo-

logical band-gap. That is the defect mode is indeed protected from small perturbations in

the nanowire diameter (and other non-avoidable symmetry-breaking perturbations) by the

topological band gap.

In summary, the device is quite tolerant to perturbations in both the nanowire position

and diameter. Indeed, the device is very tolerant to nanowire position errors, which preserves

the chiral symmetry if the NNN interaction is ignored. In order to see strong leakage from

the topological defect mode into the bulk modes we need to displace a nanowire until it

is almost touching its neighbor. The device is more sensitive to nanowire diameter which

breaks the chiral symmetry, however it is still tolerant to diameter errors of ∼ 30%.

6.5 Detailed discussion and calculation of the topological plasmonic system

6.5.1 The paraxial Schrödinger equations

The propagation of electromagnetic waves is governed by the Helmholtz equation

(
∇2 +

ω2

c2
ε

) ~E

~B

 = −

 ∇
(
ε−1∇ε · ~E

)
ε−1∇ε×

(
∇× ~B

)
 (6.20)

where ε(x, y, z) is the position-dependent relative permittivity, ~E(x, y, z), ~B(x, y, z) are the

electric and magnetic field components, and the right hand side encodes the boundary con-
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ditions at the metal-air interface. For the case of dielectric waveguides, the dielectric con-

stant tends to vary gently, and hence the terms on the right hand side of Eq. (6.20) can

be neglected. Therefore it is natural to obtain the paraxial Schödinger equation from the

Helmholtz equation for Ez. For metallic structures variations of ε cannot be neglected. How-

ever, for structures that are translationally invariant in z-direction, ∇ε only has transverse

components. Hence, it is natural to focus on the transverse components Ex and Ey, as the

Helmholtz equations for those components have closed form. For TM-modes propagating

at small angles to the z-axis it is natural to implement the paraxial approximation, which

leads us to the paraxial Schrödinger equation, Eq. (6.15). The potential energy operator,

that appears in Eq. (6.15), is given by

V (x, y, z) =
ω

2
(1− ε) + c

 ∇x

(∇xε
ε

)
∇x

(
∇yε
ε

)
∇y

(∇xε
ε

)
∇y

(
∇yε
ε

)
 ,

where the second term accounts for the boundary conditions at the metal-air interface.

6.5.2 Connecting the continuous and discrete Helmholtz equations

In this subsection, we connect the continuous description of electromagnetic waves shown

in Eq. (6.15) with the discrete description of the SSH model given by the Hamiltonian

HSSH = −
∑
i

ti,i+1

(
c†ici+1 + c†i+1ci

)
+ vic

†
ici. (6.21)

This Hamiltonian is an extension of Eq. (6.16), where we have added the on-site energy

vi which will be used to describe the plasmon self-energy. We note that this connection

is only precise in the limit of weak coupling (i.e., when the distance between nanowires is

sufficiently large compared to the wavelength of light). In the strong coupling limit the

topological properties of the Helmholtz equation remain intact but the tight-binding model

can no longer be used to accurately describe light propagation. Consequently we use full 3D

FDTD solutions of the Helmholtz equation throughout the main text.

Our strategy to make the connection is to (1) describe the plasmon “self-energy” by mod-

eling a single nanowire, and (2) describe the plasmon hopping by modeling two nanowires.
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We begin by considering a single nanowire of the type that makes up the plasmonic crystal.

The single nanowire has a well defined plasmon mode, i.e., a radially symmetric solution of

Eq. (6.15) of the form ψ(x, y, z) = ψ1(x, y)eiβ1z. We can capture the plasmon self-energy β1,

by setting vi = c(β0 − β1) in Eq. (6.21).
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Figure 53: (a) The splitting of the symmetric and antisymmetric plasmon modes (for λ =

1µm in vacuum) in a system of two parallel silver nanowires with 100 nm radius, as a

function of the nanowire center-to-center separation s. The black dashed line indicates the

single nanowire eigenvalue β1. (b) Extracted tight-binding parameter t as a function of

spacing between two nanowires. The tight-binding model starts to break down when the

spacing between the two nanowire goes below 0.5µm (indicated by the dashed red line).
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Next, we consider the plasmon modes of a system of two parallel nanowires separated

by distance s. The plasmon spectrum is now composed of two modes ψ± with eigenvalues

β±. These are approximately the symmetric ψ+ ≈ (ψ1(x + s/2, y) + ψ1(x − s/2, y))/
√

2

and the antisymmetric ψ− ≈ (ψ1(x+ s/2, y)−ψ1(x− s/2, y))/
√

2 combinations of the single

nanowire modes. Comparing this spectrum with the spectrum of the two site discrete model,

we identify t = (β+ − β−)/2. In Fig. 53(a) we plot βz of the symmetric and antisymmetric

modes obtained using the Helmholtz equations as a function of s. We observe that the

splitting of the symmetric and antisymmetric modes with respect to the single-nanowire β1

(black dash line) is even for s > 0.5µm and hence we can extract the tight binding parameter

t. For s < 0.5µm the splitting becomes uneven signaling the breakdown of the tight binding

model. We plot the extracted tight-binding parameter t = (β+ − β−)/2, which is applicable

for s > 0.5µm, in Fig. 53(b).

6.5.3 Mode filtering

In Fig. 54 we demonstrate an example of mode rejection by the mode filter. We inject a

mode that is not adiabatically connected to the two topological defect modes in the structure.

The light flux spreads out over the whole structure except for the area in the vicinity of the

two topological defects.
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Figure 54: Mode rejection by the mode filtering nanowire array. On the input (left) side of

the nanowire array, a bulk mode that is orthogonal to the two select modes, is injected into

the nanowire array. On the output (right) side there is essentially no light in the vicinity of

the two topological defect modes.
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Figure 55: Light propagation along structures with a perturbation on the position of one of

the nanowires. (a) Light flux (top panel) and the spectral flow (bottom panel) in a structure

with no perturbation. (b)-(f) Light flux (top panel), meander M(z) (middle panel), and

spectral flow (bottom panel) in structures with one of the nanowires displaced from its

original position (dashed line in top panel) to a new position (red line in top panel). The

nanowire is displaced by δx = 150 nm over a width of w = 25.00µm (b), 18.75µm (c),

12.50µm (d), 10.00µm (e), 6.25µm (f).
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Figure 56: Same as Fig. 55, except we perturb the diameter D(z) of the red nanowire. We

fix the perturbation width at w = 25µm, and shrink the nanowire diameter by δD = 25.0 nm

(a), δD = 50.0 nm (b), δD = 62.5 nm (c), δD = 75.0 nm (d), δD = 87.5 nm (e), δD = 100 nm

(f).
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6.5.4 Tolerance to fabrication error

In this set of figures we provide additional data for the same set of structures that

were used to construct Fig. 52 of the main text. The data demonstrate the tolerance of

the topological defect mode manipulation against perturbation in nanowire position and

diameter. The top panel of Fig 55(a) shows the light flux computed using 3D FDTD in

a structure with a single topological defect shifting across the nanowire array. Light is

injected into the topological defect mode on the left side of the array. The light is guided

in the middle of the nanowire array and remains confined to the topological defect until it

exits the array on the right side. The bottom panel of Fig 55(a) shows the spectral flow of

the βz spectrum as a function of position along the wire (similar to Figs. 51(b) and 51(e) of

the main text). The spectrum plot shows that the defect mode is well separated from the

bulk modes throughout the structure.

Next, we test tolerance to perturbations by displacing the red nanowire by a Gaussian

with maximum displacement of δx and a width w. In Figs. 55(b)-55(f) we plot the light

flux, wire displacement, and the spectral flow of the βz spectrum as a function of z for

δx = 150 nm and w ranging from 25µm to 6.25µm. From the light flux plots (top panels),

we observe that the light intensity is well guided when w & 12.5µm. For w . 10.00µm, light

flux heavily leaks into the bulk modes. The reason for this, is the breaking of adiabaticity

as w . 1/∆βz.

Figure. 56 is similar to Fig. 55, except we perturb the diameter D of the red nanowire.

The unperturbed nanowire has a diameter of 200 nm, and we shrink it by 25.0nm to 100.0 nm

in Figs. 56(a)-56(f). The perturbation profiles have a fixed width of 25µm. Topological mode

guidance starts to break down when the diameter shrinks by 87.5 nm as the βz of the guided

mode is approaching the bulk spectrum.

We note that the topological defect modes in Fig. 55 are shifted slightly from the middle

of the band gap when we introduce disorder on the nanowire position. This shift is caused by

the exponentially weak next-nearest-neighbor (NNN) hopping of the plasmons, which breaks

the sub-lattice symmetry. Indeed, the effect of the NNN interaction on the energy of the

topological defect mode (in polyacetylene) has been studied before [217, 218, 219, 220].
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6.5.5 Decay of the topological defect mode

Figure 57: The Figure of Merit (∆βLd/(2π)) as a function of the free space wavelength (λ0)

for a silver nanowire array with nanowire diameter 400 nm, 800 nm and 1200 nm. The major

and minor surface-to-surface spacing is 350 nm and 50 nm respectively. The dashed lines

show the topological defect with minor spacing around the defect while the solid lines show

the topological defect with major spacing, as indicated in the insets.

In this section, we compute the decay length of the topological defect modes using com-

plex susceptibility for silver nanowire structures. We use Lumerical Mode Solution numerical

eigenmode solver to obtain complex βz and extract the decay length for two types of topo-

logical defects (see Fig. 57 inset). Specifically, we simulate a nanowire array consisting of 7

nanowires with periodic boundary conditions. The nanowires have a diameter of either 400,

800, or 1200 nm and staggered surface-to-surface spacing of 50 nm and 350 nm. The key

figure of merit is FOM = ∆βzLd/(2π). Here, ∆βz is the topological band gap, which sets

the length scale for adiabatic manipulation of topological defects; Ld = 1/Im[βz] is the decay

length for the topologically guided mode.

In Fig. 57 we plot the FOM as a function of free space wavelength (λ0) for two flavors

of topological defects: domain wall with major spacing (solid lines) and domain wall with

minor spacing (dashed lines). We observe that FOM for topological defects with major

spacing is larger than the FOM for defects with minor spacing. The reason for this is the

large penetration of the electric field into the nanowires for the kink with minor spacing [see
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Figure 58: The electric field z component (Ez) of the topological defect mode around two

kinds of defects, (a) a topological defect with major spacing, and (b) a defect with minor

spacing. The Ez field is calculated based on a 400 nm diameter silver nanowire array with a

staggered surface-to-surface spacing 50 nm and 350 nm. The dashed circles show the position

of the nanowires.
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plots of the mode structure, Fig. 58]. We also observe that the FOM has a broad maximum

around 900 nm, which defines an optimal wavelength for silver structures. The maximum is a

result of the competition between the topological band gap (which decreases with increasing

wavelength) and the decay length (which increases with increasing wavelength). Finally,

we observe that the FOM for domain wall with major spacing is larger for larger diameter

nanowires, which is a consequence of the suppression of Ld as the wire diameter becomes

smaller than wavelength.

Figure 59: The schematic nanowire array geometry at the beginning of an array with minor-

spacing defect (a), and major-spacing defect (b). The beginning of the nanowire array is

staggered to match the phase different between the nearby nanowires in topological defect

mode. The length difference between the nanowire is determined by the exaction method

and plasmonic mode wavelength in the nanowire array.

6.5.6 Phase matching to improve coupling to the topological defect mode

Finally, we make a remark regarding Ref. [114], which claims to experimentally detect

topologically guided modes in the type of structures that we propose. We found that the
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analysis carried out in Ref. [114] is flawed. Specifically, (i) there is breakdown of the coupled-

mode theory, which predicts velocities of modes that are faster than the speed of light (ii)

there is zero overlap of the injected mode with the topological mode in minor-spacing defect

array due to symmetry reasons.

The the self-energy in the coupled mode theory results in the real part of mode index

β = 1.047k0, where k0 is the free space wavenumber. According to their coupled mode

theory calculation, the lower band edge reaches βz ≈ β − 0.225 k0, which corresponds to

βz ≈ 0.822k0. This value of the mode index indicates that the mode is propagating faster

than the speed of light, which signals the breakdown of the coupled mode theory.

The topological protected defect modes in major-spacing case is symmetric while minor-

spacing case tends to have an anti-symmetric nature [see Fig. 58]. In real experiment, if the

plasmonic mode is injected directly into the beginning of the nanowire array without any

modification of the plasmonic field, the mode is likely to be symmetric and fails to couple

to the topological defect mode in minor-spacing case. Here we proposed a way of modifying

the length of the nanowires at the beginning of the nanowire array to induce phase difference

between the nanowires [see Fig. 59], in order to improve topological mode coupling efficiency.

If we assume a truncated plane wave injected into the plasmonic nanowire arrays shown in

Fig. 59 from above and the plasmon is excited at the edges of each nanowire, in order the

achieve the π-phase shift between the defect nanowire and the nearby nanowires [see Fig.

58], the nanowire length difference should be ∆l = π/β, where β is the wave-number of the

plasmonic mode. The different staggered pattern in minor-spacing defect array [Fig. 59(a)]

and major-spacing defect array [Fig. 59(b)] is because of the distinct phase profile of the

topological defect modes in these two nanowire arrays.

6.6 Outlook and summary

One of the key issue of plasmonic devices is the absorption of light due to finite optical

conductivity in metals and hence a small but finite imaginary part of the dielectric constant.

A useful figure of merit is FOM = ∆βzLd/(2π) the product of the decay length and the
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topological band gap. The FOM counts how many adiabatic operations we can do on a

topologically guided mode before it decays by 1/e. The proposed topological mode filter

and beam splitter both require ∼ 50 operations. For silver nanostructures with λ ∼ 900 nm

(in vacuum), we find that the FOM ∼ 5− 20 depending on the details of the structure (see

appendix). From the experimental perspective, these are appealing length scales due to the

availability of lasers and the ease of nano-fabrication. Moreover, for demonstration purposes

the attenuation is quite reasonable. Applications would require further optimization of the

structure to limit attenuation.

In summary, we have provided an in-depth analysis of the plasmonic analogue of the

topological protected defect modes in the SSH model theoretically. We have explored using

topological defect modes to manipulate light. Specifically, we numerically demonstrated the

functionality of two devices: a mode filter and a beam splitter. Moreover, we showed that

light manipulation is tolerant to fabrication errors in nanowire diameter and very tolerant

to fabrication errors in nanowire displacement.
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7.0 Conclusions

To conclude, we summarize the key results of the theoretical investigation on the quantum

systems discussed in this thesis.

In Chapter 3, we investigate the electronic structures of the Nitrogen-Vacancy centers in

diamond. With the understanding of the electronic structures and the transitions between

the electronic states of NV centers, inspired by Ref. [136], we proposed two-qubit quantum

gates for pairs of NV centers in diamond heralded on a single scattered photon. We modeled

the coupling between NV centers and the diamond waveguide for light collection to analyze

the gate fidelity and success rate. With the photon collection efficiency approaching ∼ 0.85,

the gate fidelity can reach ∼ 0.97, when we impose a photon collection window of 0.1 times

of averaged state-flipping transition rates.

In Chapter 4, we investigated the dynamics of a Josephson Ring Modulator based Joseph-

son parametric amplifier (JPA). Using the circuit input-output relations, we modeled the re-

sponse of the JPA and the reflection gain of the amplifier beyond the linear approximation.

We notice that the saturation performance of JPA is controlled by the nonlinearity provided

by the Josephson junctions, not only the lowest order (3rd order nonlinearity), but also

more higher order nonlinarities. To further optimize the saturation power of the device, we

proposed to use the outer linear inductance to diluting the higher order nonlinear couplings.

We numerically optimize the JPA and achieve ∼ 15 dB saturation power improvement. The

analytical model for the Josephson devices discussed in this paper also helps to explain and

model the other physical processes and similar devices in Prof. Michael Hatridge’s lab.

In Chapter 5, we present the theory of a narrow-linewidth Josephson micromaser. We

show that using a transmon-type qubit with SNAIL element to bath engineer the transmon

qubit to achieve an effective incoherent drive on the transmon qubit to make it population

inversion. We further take advantages of the nonlinear coupling provided by the Joseph-

son junctions in superconducting circuit to construct a Josephson micromaser that emits

quantum light. By carefully engineering the nonlinear coupling between the transmon qubit

and the maser cavity (resonator), as well as between the maser cavity (resonator) and the
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transmission line (the bath), the emitted light from the nonlinear Josephson micromaser

system has a narrow linewidth that is beyond the linewidth of the Schawlow-Townes limit,

the standard linewidth of the conventional laser with linear coupling. In the parameters

we chose, the linewidth of the nonlinear Josephson micromaser can be ∼ 0.10 times of the

Schawlow-Townes limit.

In Chapter 6, we focus on the plamsonic nanowire system that consists of paraxial

nanowire arrays. In these nanowire arrays where the paraxial approximation is applied,

the plasmon propagation along the axial direction can be mapped to the time-evolution of

the lower dimensional quantum system. we designed the geometry of the nanowire arrays

to map the plasmon propagation to Su-Schrieffer-Heeger model, where the edge modes in

plasmonic array maps to the topologically protected modes in SSH model. We use the

topological mode in the plamonic array to robustly manipulate the light. Specifically, we

proposed a topological waveguide, a spatial mode filter and a beam splitter, and check the

functionality of the proposed devices by 3D FDTD numerical method.
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[161] Lafe Spietz, Kent Irwin, and José Aumentado. Superconducting quantum interference
device amplifiers with over 27 ghz of gain-bandwidth product operated in the 4–8 ghz
frequency range. Applied Physics Letters, 95(9):092505, 2009.

246



[162] T. C. Chien, O. Lanes, C. Liu, X. Cao, P. Lu, S. Motz, G. Liu, D. Pekker, and
M. Hatridge. Multiparametric amplification and qubit measurement with a kerr-free
josephson ring modulator, 2019.

[163] A. Metelmann and A. A. Clerk. Nonreciprocal photon transmission and amplification
via reservoir engineering. Phys. Rev. X, 5:021025, Jun 2015.

[164] Q. Zhong, S. K. Ozdemir, A. Eisfeld, A. Metelmann, and R. El-Ganainy. Exceptional
points-based optical amplifiers, 2019.

[165] Archana Kamal, Adam Marblestone, and Michel Devoret. Signal-to-pump back action
and self-oscillation in double-pump josephson parametric amplifier. Phys. Rev. B,
79:184301, May 2009.

[166] Christopher Eichler and Andreas Wallraff. Controlling the dynamic range of a joseph-
son parametric amplifier. EPJ Quantum Technology, 1(1):2, Jan 2014.

[167] Bogdan A. Kochetov and Arkady Fedorov. Higher-order nonlinear effects in a joseph-
son parametric amplifier. Phys. Rev. B, 92:224304, Dec 2015.

[168] Ananda Roy and Michel Devoret. Quantum-limited parametric amplification with
josephson circuits in the regime of pump depletion. Phys. Rev. B, 98:045405, Jul
2018.

[169] D.M. Pozar. Microwave Engineering, 4th Edition. Wiley, 2011.

[170] Saeed Khan, A. Metelmann, and Hakan Türeci. Quantum nonlinear dynamics of non-
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