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Recent advances in high-throughput sequencing have generated different types of high-

dimensional omics data. Even though remarkable progress has been made in statistical

inference of high-dimensional Gaussian graphical model (GGM) for gene co-expression net-

work analysis and sparse canonical correlation analysis (CCA) for multi-omics study, efficient

computation is always a big concern, and methods beyond Gaussian assumption are even

largely unknown. To address both computational and methodological challenges, this disser-

tation covers efficient implementations of statistical inference of high-dimensional GGM (the

first part) and novel statistical methods for count-valued RNA-seq data in gene co-expression

network analysis (the second part) and heavy-tailed CITE-seq data in multi-omics study (the

third part).

In the first part of the dissertation, we develop an extensive and efficient R package named

SILGGM (Statistical Inference of Large-scale Gaussian Graphical Model) that includes four

main approaches in statistical inference of high-dimensional GGM. Extensive comparisons

illustrate that SILGGM can accelerate existing implementations from several to dozens of or-

ders of magnitudes without loss of accuracy. The package is freely available via CRAN at

https://cran.r-project.org/package=SILGGM.

In the second part of the dissertation, we propose a novel two-step procedure in both

edge-wise and global statistical inference of three modified Poisson-type graphical models

using a cutting-edge generalized low-dimensional projection approach for bias correction.

An extensive simulation study illustrates asymptotic normality of edge-wise inference and

more accurate inferential results in multiple testing compared to the sole estimation and

the inferential method under normal assumption. The application to a novel count-valued

RNA-seq data set of childhood atopic asthma in Puerto Ricans demonstrates more biologi-

cally meaningful results compared to the sole estimation and the inferential methods based
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on Gaussian and nonparanormal graphical models.

In the third part of the dissertation, we propose R-CoLaR, a novel Robust Convex

Program with group-Lasso Refinement combining the cutting-edge tail-robust covariance es-

timation for sparse CCA. Numerical studies and the analysis of the heavy-tailed CITE-seq

data of a mucosa-associated lymphoid tissue (MALT) tumor have successfully illustrated

the validity and noticeable advantages of R-CoLaR over existing methods of sparse CCA in

more accurate estimation and better interpretation of protein-RNA correlation.

Keywords: Gene co-expression network; Multi-omics; High-dimensional statistical infer-

ence; Efficient package; Modified Poisson graphical model; RNA-seq; Bias correction;

Sparse CCA; Heavy-tailed; Tail-robust covariance estimation.
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1.0 Introduction

1.1 Background

High-dimensional statistical estimation and inference is a big field in modern statistical

theory and applications. Below are some necessary topics related to the development of

this dissertation, including regression, undirected graphical models and canonical correlation

analysis (CCA) under high-dimensional settings. For a more comprehensive overview of

the development of high-dimensional statistics, see the following well-written textbooks:

Bühlmann and van de Geer (2011), Giraud (2014), Hastie et al. (2015).

In many applications of biological research, statistical relationship among the variables

has been extensively paid attention to. One typical case is to study the relationship between

the variables (or features) and the response, or in other words, to identify the set of variables

that influence the response. If there is a response vector y ∈ Rn and a covariate matrix

X ∈ Rn×p with n to be the number of observations and p to be the number of covariates

under consideration, the classical linear regression model is defined as

y = Xβ + ε, (1.1)

where β ∈ Rp is denoted as a vector of regression coefficients, and εi is denoted as an error

term which follows i.i.d. normal distributionN (0, σ2) for i = 1, 2, ..., n. Under the traditional

low-dimensional setting with fixed p and increasing sample size n, it is well known that the

least squares estimator β̂lse can be obtained via minimizing the sum of squared errors, that

is

β̂lse = arg min
β∈Rp

1

2n
||y −Xβ||22. (1.2)

β̂lse has many good statistical properties like consistency and efficiency. However, in the era

of “big data”, there are explosive data sets with p allowed to be larger than n. Under these

high-dimensional settings, the traditional approach fails to obtain a consistent estimator of
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β, because the inverse of the covariance matrix XᵀX is ill-defined. A popular approach that

tailors to the high-dimensional linear regression is the Lasso (Tibshirani, 1996), i.e.,

β̂Lasso = arg min
β∈Rp

1

2n
||y −Xβ||22 + λ||β||1. (1.3)

The extra `1 penalty on the coefficients of β results in a sparse solution of β̂Lasso, and the

number of zero entries is controlled by the tuning parameter λ. A broad range of literatures

have studied theoretical properties of Lasso including the rate of convergence under a variety

of norms and the consistency in support recovery under some mild conditions assumed on

X, see for example Zhao and Yu (2006), Wainwright (2009), Candès and Plan (2009) and

Bühlmann and van de Geer (2011). Later on, the scaled Lasso (Sun and Zhang, 2012)

was proposed as an alternative approach to deal with the high-dimensional linear regression

problems (see also an equivalent approach in Belloni et al. (2011)). The scaled Lasso is to

esimate the regression coefficients β and the noise level σ jointly, i.e.

(β̂scaledLasso, σ̂scaledLasso) = arg min
β∈Rp,σ>0

||y −Xβ||22
2σ

+
nσ

2
+ λ||β||1. (1.4)

A major advantage of the scaled Lasso over the Lasso is the tuning-free property, which

enables the usage of a pre-determined universal tuning parameter λ. In the past six years,

the rigorous statistical inference of high-dimensional regressions has been developed to make

the confidence interval and the hypothesis testing of the estimators available, see for example

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanmard and Montanari (2014).

The main idea of these techniques is to correct the bias of the Lasso estimator β̂Lasso or the

scaled Lasso estimator β̂scaledLasso to an acceptable level. For example in Zhang and Zhang

(2014), the de-biased estimator of coefficient for Xj (the column j of X) is defined as

β̂debiasedj = β̂Lassoj +
vᵀj (y −Xβ̂Lasso)

vᵀjXj

, (1.5)

where vj ∈ Rn is a carefully chosen score vector. One popular choice of vj is vj = Xj−X−j γ̂j,

which resembles the residual of the Lasso regression of Xj on X−j (the covariate matrix

without column j). Intuitively, the second term on the right-hand side of (1.5) projects

the residual to the direction of vj so as to correct the bias of β̂Lassoj . Theoretically, each

β̂debiasedj has been proved asymptotically normal under a certain sparsity assumption on β
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and a certain assumption on the design matrix X.

The second case for the statistical relationship is to study the conditional dependen-

cies among the covariates X = (X1, X2, ..., Xp) and visualize them in a network structure.

The undirected graphical model (or the Markov random field) is a powerful tool for these

specific purposes. Each graph is defined as G = (V,E), which consists of a node set

V = (X1, X2,..., Xp) and an edge set E = {pairs of (i, j) if there is an undirected edge

between Xi and Xj}. According to Lauritzen (1996), the two nodes Xi and Xj are condi-

tionally independent given the conditions of all the other variables if there is no edge between

them; otherwise, they are conditionally independent. The Gaussian graphical model (GGM)

is one of the most commonly used models in this field with X following a multivariate nor-

mal distribution. For GGM, it is well known that a conditional independence between Xi

and Xj is equivalent to a zero entry of (i, j)th element (ωij = 0) of the precision matrix

Ω = (ωij)p×p = Σ−1, an inverse of the covariance matrix Σ of X (Lauritzen, 1996). In the

past decade, the estimation of the high-dimensional GGM has been paid more attention to.

In summary, there are two types of approaches: 1. the graphical Lasso (Yuan and Lin, 2007),

a log-likelihood based approach with a penalty on the precision matrix; 2. the neighborhood

selection (Meinshausen and Bühlmann, 2006), a penalized regression approach for each node

Xi on the other nodes X−i which is closely related to the Lasso-type regressions in (1.3) and

(1.4). Following these two directions, the rigorous statistical inference of high-dimensional

GGM has been developed in the past seven years to allow the edge-wise confidence interval

and the p-value of each ωij, and the multiple testing for all the ωij’s, see for example Ren

et al. (2015), Janková and van de Geer (2015, 2017) and Liu (2013). These approaches of

statistical inference essentially rely on the initial estimation to derive a test statistic that

follows an asymptotically normal distribution at
√
n rate.

Moreover, the study of the statistical relationship between two or more types of data has

recently played a much more important role in different areas. Particularly in the genomics

studies, analsysis on the different types of omics data (or multi-omics data analysis) helps

us to better understand a complex biological mechanism. The canonical correlation anal-

ysis (CCA) (Hotelling, 1936) is an important technique to study the relationship between

two types of data. Essentially, CCA is to find the canonical directions that maximize the
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correlation between the two data sets after projecting onto them. Suppose that there are

two data sets X ∈ Rn×p and Y ∈ Rn×q with the number of observations to be n and the

dimensions to be p and q respectively. In the regime of low-dimensional settings with fixed

p, q and increasing n, CCA can be well solved by the singluar value decomposition (SVD)

(Hotelling, 1936). But in high-dimensional settings, the conventional SVD approach fails

because the inverses of sample covariance matrices Σ̂
−1

x and Σ̂
−1

y are ill-defined. Within the

past decade, many efforts have been made in developing the new methods of sparse CCA

that tailor to the high-dimensional data analysis, see for example Witten and Tibshirani

(2009), Chen et al. (2019), Gao et al. (2015), Gao et al. (2017) and Suo et al. (2017).

1.2 Overview of the dissertation

The dissertation is motivated by two types of popular studies in biological research: gene

co-expression network analysis and multi-omics study for explanation of complex biological

processes and diseases. Gene expression data sets are explosively generated and are usually

large-scale with the number of genes (or dimension) p to a thousand or a ten-thousand

level. There is an urgent demand for developing an efficient software package for analysis of

large amount of high-dimensional data. More importantly, most methods mentioned above

are applicable to Gaussian or sub-Gaussian data. However, many omics data sets are non-

Gaussian and even have heavy tails, for example, count-valued RNA-seq data and data from

the state-of-the-art cellular indexing of transcriptomes and epitopes by sequencing (CITE-

seq). Therefore, there is also an urgent demand for developing new methods that tailor to

analysis of those non-Gaussian data sets.

In Chapter 2, we focus on the implementation of the statistical inference approaches

for high-dimensional Gaussian graphical model (GGM) in large-scale gene co-expression

network analysis. Even though the theoretical part of the rigorous statistical inference of

high-dimensional GGM has been well developed, there is lack of practical usage for these

methods in the real biological network analysis due to no available efficient and user-friendly

software packages. In order to narrow the gap between the theory and the practice, we
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develop an efficient and extensive R package named SILGGM (Zhang et al., 2018b) which

involves four cutting-edge approaches (Ren et al., 2015; Janková and van de Geer, 2015,

2017; Liu, 2013) that tailor to the edge-wise and the global inference of high-dimensional

GGM. The development of SILGGM has dramatically accelerated current implementations

and allowed the computation of very large-scale settings with even ten thousand of variables

available. Furthermore, we compare and validate the accuracy of all the approaches in the

very high-dimensional settings with p to a ten-thousand level using SILGGM. The different

situations to use which method have been discussed based on our comparison studies. In

the end, applications of SILGGM to a novel single-cell RNA-seq data set with pan T cells for

large-scale gene network analysis have shown the advantages of these approaches.

In Chapter 3, we go a step further and pay attention to the method development for

the statistical inference of high-dimensional non-Gaussian graphical models, particularly the

modified Poisson-type graphical models. Even though GGM is powerful and has been widely

used in many applications, it is not suitable for the count-valued data that are discrete and

non-negative without any ad hoc transformation. Due to the prevelance of count-valued

data in reality (e.g. RNA-seq data), the novel methods for the statistical inference of those

non-Gaussian graphical models are necessary. We focus on the three modified Poisson-type

graphical models, see Yang et al. (2013) and Inouye et al. (2016). Based on the idea of

the debiased approach shown in (1.5) from Zhang and Zhang (2014) and Li et al. (2016),

we propose a novel two-step procedure for the edge-wise and the global inference of their

conditional dependencies. It should be noted that the statistical inference of those high-

dimensional non-Gaussian graphical models are more challenging than the ones of GGM due

to the incondordance between conditional dependencies and precision matrices. Besides,

we have also provided a computationally efficient implementation to achieve the proposed

approach. Extensive numerical studies and applications to a novel RNA-seq gene expression

data set of childhood atopic asthma in Puerto Ricans have illustrated the advantages of our

proposed method with more accurate and more biologically meaningful inferential results

over existing methods under normal and nonparanormal assumptions.

In Chapter 4, we further develop a new method for the estimation of sparse CCA in the

non-Gaussian data, particularly the ones with heavy-tailed distributions due to the increasing
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popularity of multi-omics study in biological research. There has been several efforts made

on the theoretical and methodological development of sparse CCA under high-dimensional

settings, see Witten et al. (2009), Chen et al. (2019), Gao et al. (2017) and Suo et al. (2017).

One of the examples is the approach of convex optimization with group-Lasso refinement

(CoLaR) from Gao et al. (2017). The approach of CoLaR works well under the situations

where data has a normal or a roughly normal distribution. However, the estimation errors

from the current CoLaR fail to be controlled well if the data has a heavy-tailed distribution

(e.g. Student’s t, Pareto or Log-normal) due to its non-robust sample covariance estimation.

Moreover, we illustrate that the phenomenon of heavy-tailed distributions is common in

real data sets even though normalization or an ad-hoc transformation has been made, for

example, CITE-seq data which provides abundance of RNA-seq and surface proteins on a

same set of cells simultaneously and opens a new door for study on cell-level protein-RNA

correlation. Therefore, based on the novel approaches in recent development of tail-robust

covariance matrix estimation (Catoni, 2016; Avella-Medina et al., 2018; Ke et al., 2019), we

propose a new method called R-CoLaR by robustifying covariance matrix estimation within

the current framework of CoLaR. Numerical studies and applications to the CITE-seq data

of a mucosa-associated lymphoid tissue (MALT) tumor have shown noticeable advantages

of R-CoLaR over existing methods of sparse CCA on heavy-tailed distributions.

In Chapter 5, we provide an overall summary of the three main chapters and a brief

discussion of their future works.
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2.0 SILGGM: An Extensive R Package for Efficient Statistical Inference in

Large-Scale Gene Networks

2.1 Introduction

Gene co-expression network is an undirected graph, where each node represents a gene

and each edge between two genes shows a significant co-expression relationship (Stuart et al.,

2003). It has been of great biological interests and widely used in exploring underlying mech-

anisms of complex biological processes since the co-expressed genes are usually functionally

related and share a same pathway (Weirauch, 2011; Filteau et al., 2013; Gaiteri et al., 2014;

Parikshak et al., 2015). However, it is always a concern whether the inferred gene network

structure is trustworthy or not. A partial correlation-based approach to assess the condi-

tional dependence of two genes given the conditions of other genes in a network is a more

reliable choice to infer a gene network since the marginal correlation may fail to reflect a true

gene-gene relationship without considering other genes’ effects. Gaussian graphical model

(GGM) is a typical statistical model to interpret gene dependence with the conditions of

other genes.

Previous high-throughput sequencing technologies like microarray and bulk RNA-seq

have generated many high-dimensional gene expression data sets with a huge number of

genes, but these data sets usually have a small number of subjects or samples. Recently, the

emergence of the droplet-based single-cell RNA-seq (Macosko et al., 2015; Mazutis et al.,

2013) has made the cell-level gene measurements available, and its increasing availability

has led to a growing number of even larger gene expression data sets which generally have

thousands of subjects and tens of thousands of genes. These high-dimensional settings have

imposed bigger statistical and computational challenges in obtaining a reliable gene network.

Due to the assumption of the intrinsically sparse structure of a gene network, two main

streams of approaches have been developed in estimating conditional dependence of genes us-

ing high-dimensional GGM: (i.) the graphical Lasso, which is a penalized-likelihood approach

for precision matrix of GGM (Yuan and Lin, 2007; Friedman et al., 2008; d’Aspremont et al.,
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2008) and (ii.) a neighbourhood-based approach with a penalized regression (Meinshausen

and Bühlmann, 2006; Yuan, 2010; Sun and Zhang, 2013). Over the recent seven years, more

important efforts have been made in rigorous statistical inference of gene-gene conditional

dependence with high-dimensional GGM: the bivariate nodewise scaled Lasso (B NW SL)

(Ren et al., 2015), the de-sparsified nodewise scaled Lasso (D-S NW SL) (Janková and van de

Geer, 2017), the de-sparsified graphical Lasso (D-S GL) (Janková and van de Geer, 2015)

and the GGM estimation with false discovery rate (FDR) control using scaled Lasso or Lasso

(GFC SL or GFC L) (Liu, 2013). These approaches have two main advantages over the ones

in sole estimation: (i). the obtained estimators of conditional dependence are more precise

and asymptotically efficient with each variance equal to the inverse of Fisher information;

(ii). the estimators are asymptotically normal under a minimal sparsity condition (e.g. the

maximum node degree satisfies s = o(
√
n/ log(p))), so the corresponding confidence inter-

vals or p-values are provided besides point estimators for identifying a more reliable gene

network.

There are some existing software packages for gene co-expression network analysis. For

example, the popular R package WGCNA (Langfelder and Horvath, 2008) provides functions to

construct a gene co-expression network based on the marginal correlations. In terms of the

partial correlation-based approaches particularly for large-scale settings, glasso (Friedman

et al., 2008) and huge (Zhao et al., 2012) are two widely adopted packages for fast estima-

tion of gene-gene conditional dependence based on the high-dimensional GGM. More recent

packages include FastCLIME (Pang et al., 2014), flare (Li et al., 2015) and XMRF (Wan

et al., 2016). Unlike the marginal correlation-based approaches and high-dimensional GGM

estimation, there are in practice few efficient packages or algorithms for the aforementioned

approaches of rigorous statistical inference with the partial correlations that are supposed to

be more powerful in large-scale gene-gene network analysis. FastGGM (Wang et al., 2016) is

the recently developed package for an efficient and tuning-free implementation of B NW SL

and has made the method computationally feasible to tens of thousands of genes. However,

some redundant steps in the algorithm can be further improved and the outputs in only a

matrix format make the package less friendly to users. Except FastGGM, no efficient R pack-

age has been proposed for the other above related works, and the expensive computation of
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näıve implementation also remains a challenge for these approaches.

To enhance the influence of these cutting-edge statistical inference works in practical

usage and address the computational challenge in high-dimensional settings even with large

sample sizes, we develop a more comprehensive package called SILGGM (Statistical Inference

of Large-scale Gaussian Graphical Model) that includes B NW SL, D-S NW SL, D-S GL

and GFC SL or GFC L. SILGGM has significantly increased the efficiency of each approach

using fast algorithms, the Rcpp library (Eddelbuettel et al., 2011) and some additional opti-

mizations. It also provides a consistent framework of statistically efficient inference on both

individual gene pair and all gene pairs by extending the implementation of B NW SL, D-

S NW SL and D-S GL to global inference with FDR control under the framework of GFC SL

or GFC L. Compared to FastGGM, SILGGM has several advantages. First, some steps in inner

product calculations are optimized in the core algorithm of SILGGM, so B NW SL is per-

formed even faster than its implementation in FastGGM. Second, SILGGM can accommodate

users’ different research purposes with a new functionality of global inference for FDR control

and with more flexible choices of methods. Third, based on users’ preference, the outputs in

SILGGM can also be saved in a table format that is able to be further used directly in mul-

tiple platforms for network visualization like Cytoscape (Shannon et al., 2003), BisoGenet

(Martin et al., 2010) and BiNA (Gerasch et al., 2014). Overall, the package SILGGM is an

extensive and user-friendly tool that aims to facilitate large-scale gene network analysis with

rigorous statistical inference and to show more trustworthy statistical results in a biological

sense.

2.2 Design and implementation

In GGM, a set of p-dimensional random variables X = (X1, X2, ..., Xp)
ᵀ follows a mul-

tivariate normal distribution with mean µ (assuming µ = 0 without loss of generality) and

covariance matrix Σ. The conditional dependence between each pair of variables is reflected

in a precision matrix Ω = (ωij)p×p = Σ−1, the inverse of Σ. For instance, if Xi and Xj

are conditionally dependent, then equivalently, the corresponding element in Ω is ωij 6= 0
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(Lauritzen, 1996). In the gene network analysis, we regard Xi as the ith gene. Therefore,

the inference between gene i and j is equivalent to the inference of an individual ωij, and

the global inference of whole-scale gene pairs is based on a multiple testing procedure with

all ωij’s.

2.2.1 Software architecture

We focus on the high-dimensional settings with p (the number of genes) allowed to be

far larger than n (the number of subjects). The SILGGM package has one main function

SILGGM() with various arguments and its workflow is described in Figure 2.1.

Figure 2.1: The workflow of the SILGGM package.
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The setup of the SILGGM() function is very simple. It only takes an n by p gene expres-

sion data matrix as an input. The gene names can be specified in each column by users.

Without loss of generality, the data matrix is further centralized by subtracting its mean or

standardized by subtracting the mean and adjusting the variance to one before the formal

statistical inference, but the final results are returned in an original scale.

The method argument in the function SILGGM() supports four approaches in rigorous

statistical inference: B NW SL, D-S NW SL, D-S GL, GFC SL or GFC L. In the original

four papers, the first three methods are developed for inference of each individual ωij, while

the last one is proposed particularly for simultaneous inference of all ωij’s. All of the four

methods (see more details in Appendix A.1) can be summarized into two steps. The first

step involves a Lasso-type regularization approach. The graphical Lasso is performed in

D-S GL, while O(p) or O(sp) runs of nodewise Lasso-type regressions are conducted among

the other three methods. The second step is to obtain (p2 − p) /2 test statistics: (i.) the

estimators ω̂ij’s for B NW SL; (ii.) the de-sparsified estimators ω̌ij’s for D-S NW SL and

D-S GL; (iii.) the de-sparsified newly-constructed test statistics T̂ij’s for GFC SL or GFC L,

each of which is asymptotically efficient and normal at
√
n rate under a minimal sparseness

condition.

As it can be seen, GFC SL or GFC L essentially relies on asymptotically normal test

statistics for testing on ωij’s, so the implementations of the other three methods can also be

extended to global inference under its FDR framework (Liu, 2013) that has been rigorously

proved to be valid in high-dimensional settings. The global argument in the function deter-

mines whether or not to perform global inference in the other three methods. Since global

inference needs FDR control, an α-level sequence with α = 0.05, 0.1 is pre-specified by the

alpha argument in the function, and it can be customized by users with different values.

Outputs are shown with the different types of inference. For individual inference of gene

i and j, SILGGM not only provides the estimator ω̂ij or ω̌ij, but also obtains the associated

confidence interval, z-score and p-value. Each output of gene i and j is encoded in the (i, j)th

element of a p by p symmetric matrix with diagonal elements equal to 0. For global inference

with a pre-specified α-level sequence, SILGGM further returns the estimated FDR sequence

based on T̂ij’s or z-scores of ω̂ij’s or ω̌ij’s, the corresponding threshold sequence for absolute
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values of test statistics and a series of decisions for conditional dependence between each

gene pair (a list of p by p adjacency matrices with each off-diagonal element value of 1 =

conditionally dependent or 0 = conditionally independent). If the true structure of a gene

network is available (e.g. a simulation study or a real study with sufficient prior knowledge),

SILGGM also includes the estimated power sequence with respect to the estimated FDR se-

quence. Users can input the true structure in a matrix format via the true graph argument

in the SILGGM() function.

In addition to present the above outputs from both individual and global inference in

a matrix format, the function SILGGM() provides the cytoscape format argument as an

alternative to show them in a table format that can be saved as a .csv file by using the

csv save argument to a directory specified by the directory argument. The .csv file is

compatible with multiple popular platforms for network visualization. In order to show the

validity of this alternative, we have applied SILGGM to to a public gene expression microarray

data set on the lymphoblastoid cells of n = 258 asthmatic children (Brazma et al., 2003;

Liang et al., 2013) and p = 1953 genes with the largest inter-sample variance by using the

method GFC SL with an FDR control at the level of 0.05. Figure 2.2(A) gives a table in

the .csv file with the 20 most significant gene pairs based on a rank of the absolute values

of test statistics T̂ij’s with the hub gene CLK1 that has been proved to be susceptible to

asthma (Verheyen et al., 2004). The first two columns (“gene 1” and “gene 2”) show the

names of each non-overlapped gene pair. The following column “test statistic” indicates

the test statistic T̂ij of gene i and j. At the end, the column “global decision 0.05” shows

the decision for conditional dependence between each gene pair under global inference with

FDR control at the 0.05 level. All the gene pairs are conditionally dependent in this exam-

ple. Furthermore, we import the .csv file to Cytoscape (version 3.4.0) and obtain the

corresponding network visualization shown in Figure 2.2(B).

2.2.2 Features of efficient implementations

Computational efficiency is a prominent advantage of SILGGM. The core algorithms in

the package are developed with the Rcpp library (Eddelbuettel et al., 2011) which highly

12



Figure 2.2: An example of table-format outputs and the corresponding network visualization.

(A) A table in the .csv file generated by the SILGGM package using the method GFC SL.

(B) The corresponding network visualization.
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speeds up the loop operation and makes the implementation of C++ code available in R. In

addition to the fast programming language, there are many other key features of efficient

implementations making SILGGM feasible in high-dimensional settings. We outline the details

according to the two summarized steps of all the approaches as below.

In the first step, based on the same optimization in FastGGM (Wang et al., 2016), we

pre-calculate and save the covariance matrix to avoid its repetitive calculation before solving

each Lasso-type problem. Then, we apply the cyclical coordinate descent algorithm with

covariance update (Friedman et al., 2010) that has been shown much faster than other com-

peting methods like the LARS procedure (Efron et al., 2004) in solving Lasso-type problems.

To further increase the efficiency, some tuning-free schemes (e.g. the scaled Lasso with tun-

ing parameter λ =
√

2 log(p/
√
n)/n, the graphical Lasso with a certain λ =

√
log(p)/n

suggested in Janková and van de Geer (2015) are applied to avoid inefficient tuning selec-

tion. Our coding with the scaled Lasso is more efficient than directly using the package

scalreg (Sun and Zhang, 2013) which is built on the lars package (Efron et al., 2004). To

conduct the graphical Lasso in D-S GL, we use the package glasso (version 1.8) due to

the great improvement in its efficiency by the screening procedures (Witten et al., 2011). In

addition, for GFC L which requires tuning selection for FDR control, we apply the “warm

start” optimizations (Friedman et al., 2010) to boost the procedure.

In the second step, we facilitate inner product operations to derive each de-sparsified test

statistic. To be more specific, we consider the sparsity of Lasso-type estimators from the first

step and make inner product calculations only on the non-zero elements. For D-S NW SL

or D-S GL, to obtain ω̌ij needs an inner product which requires a total number of operations

O(p3) with näıve calculation (see (A.7) and (A.10) in Appendix A.1). By considering the

sparsity, the total number of operations can be reduced to O(sp2), and s is usually much

smaller than p in high-dimensional settings.

In addition to the aforementioned optimizations, we optimize the inner product opera-

tions between the whole data matrix and regression coefficients by considering the sparsity

of estimated coefficients when solving each scaled Lasso problem. The idea behind the opti-

mization is same as the one used in the second step, and it reduces the redundant steps and

enables B NW SL to perform even faster in SILGGM than in FastGGM.
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2.3 Results

We illustrate the efficiency of SILGGM through simulation studies and real data analysis.

In simulation, we considered four popular graph structures for gene network studies: Band

graph, Hub graph, Erdős - Rényi (E-R) random graph and Scale-free random graph, as shown

in Figure 2.3 that was generated by the R package huge. We not only evaluated time efficiency

of SILGGM, but also made an extensive validation testing the estimation accuracy of SILGGM

for both individual and global inference particularly in the very high-dimensional scenarios.

More detailed results about individual and global inference are presented in Appendices A.3

and A.4 respectively. The real data analysis of SILGGM is based on a novel single-cell RNA-seq

study on the gene expression of Pan T cells.

2.3.1 Performance benchmark in simulation

To the best of our knowledge, the online MATLAB code (see “models.txt” and “GFC-

lasso.txt” from http://math.sjtu.edu.cn/faculty/weidongl/Publication/code.rar) is

the only publicly available implementation of GFC L prior to the development of SILGGM.

In order to compare its time performance with GFC L implementation in SILGGM, we set

n = 100 and simulated three types of graph settings: Band, Hub and E-R (see the details

of the graph settings in Appendix A.2), same as those in Liu (2013) with p = 50, 100, 200.

Total timings (in seconds) over 100 replications on a single CPU were recorded for GFC L

with FDR control at the 0.1 and the 0.2 levels using SILGGM and the MATLAB code, as

shown in Table 2.1. GFC L implemented with SILGGM is generally around 60 times faster

among all the scenarios and can be up to 70 times in some cases. The above simulations

were conducted on a PC with Intel Core i5-3230M CPU @ 2.60GHz. The significant speed

improvement in GFC L implementation is mainly due to the incorporation of Rcpp library

and the optimization of redundant steps of FDR calculation in tuning selection for FDR

control.

Then, we evaluated the timing performance of B NW SL using SILGGM compared to

the current package FastGGM. As shown in Table 2.2, the E-R graph settings (see Ap-
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Figure 2.3: Four possible graph structures in simulation studies.
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Table 2.1: Total timings (in seconds) of GFC L (SILGGM) and GFC L (MATLAB).

GFC L (SILGGM) GFC L (MATLAB)

p 50 100 200 50 100 200

Band 22.1 77.8 370.9 1396.2 4730.5 20039.3

Hub 22.8 84.1 363.7 1556.8 5227.7 19747.2

E-R 20.2 89.6 377.3 1495.7 5627.0 21482.2

pendix A.2) same as those in Wang et al. (2016) were simulated with n = 400, 800 and

p = 800, 1000, 2000, 5000, 10000 to make sure that the expected node degree of each graph,

which is the value of π (the probability of ωij 6= 0 for i 6= j) times p, is around 4 or 5.

The first column of Table 2.2 also gives the estimated average node degree of each case. We

carried out the experiments on a Linux server with Intel Xeon CPU E5-2695 v2 @ 2.40GHz.

To be as fair as possible, we performed B NW SL without global inference in SILGGM, so the

outputs are same as the ones from FastGGM. Timings (in seconds) for one run on a single

CPU with both SILGGM and FastGGM are reported in Table 2.2 using the same simulated

data set from each graph setting. As it can be seen, B NW SL is implemented even faster in

SILGGM among all of the scenarios, and the computational cost of each scenario is reduced

by 20% to 56%.

In addition to the time evaluation, we validated the accuracy of estimation results from

all the approaches for both individual and global inference in the very large-scale settings

with relatively small sample sizes (n = 800, p = 5000 and n = 800, p = 10000).

We at first assessed the performance of individual inference of each (i, j)th gene pair

(H0 : ωij = 0 vs. H1 : ωij 6= 0) in terms of the estimation for an entire graph. The em-

pirical Type I error (the probability of falsely rejecting H0 when there is actually a known

zero partial correlation between gene i and j) under a pre-specified level of 0.05 for p-values

and the corresponding Type II error (the probability of failing to reject H1 when there is
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Table 2.2: Total timings (in seconds) of B NW SL (SILGGM) and B NW SL (FastGGM).

Average node degree π p n B NW SL (SILGGM) B NW SL (FastGGM)

4.045 0.005 800 400 24.9 36.6

4.994 0.005 1000 800 72.8 145.2

4.970 0.0025 2000 800 411.7 938.5

5.0264 0.001 5000 800 5772.6 8663.7

5.0498 0.0005 10000 800 40080.6 49650.2

actually a known non-zero partial correlation between gene i and j) were measured for Band

graph (same as that described in Liu (2013)), E-R graph (same as that described in Liu

(2013)) and Scale-free graph (see Appendix A.3). The good performance of the empirical

Type I and Type II error rates has shown the validity of all the approaches in the package

SILGGM for individual inference even in the very high-dimensional scenarios (see more de-

tailed results in Appendix A.3). To make a further comparison for individual inference, we

also evaluated the average empirical coverage probabilities for the 95% confidence intervals

of the ωij’s for the “non-zero partial correlation” set (a set of all pairs with non-zero ωij’s)

and the “zero partial correlation” set (a set of all pairs with zero ωij’s) respectively. Since

GFC SL or GFC L provides no confidence intervals, we included the other three approaches

here. According to the results from the three graph settings, the overall performance of

the confidence intervals among B NW SL, D-S NW SL and D-S GL are good in terms of

the entire graph structure. But in terms of the confidence intervals for the non-zero partial

correlations, B NW SL and D-S NW SL outperform D-S GL. Moreover, the performance of

B NW SL is more stable than that of D-S NW SL in the different settings (see more details

in Appendix A.3). Therefore, for individual inference of a gene pair which further requires

the information of a confidence interval, B NW SL is a more desirable choice compared to

the other approaches, but D-S NW SL can be an alternative to save time for the very high-
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dimensional cases.

Then, we evaluated the performance of global inference of all gene pairs for the overall

partial correlation recovery in the very large-scale settings based on the same three graph

settings (Band, E-R and Scale-free) used in individual inference. Unlike individual inference,

global inference generally requires a multiple testing procedure for tests on all H0 : ωij = 0

vs. H1 : ωij 6= 0 with 1 ≤ i < j ≤ p simultaneously. Therefore, to make global inference

of all gene pairs in a large graph, we always recommend controlling FDR to avoid the in-

flation of false positives. The testing results from the three graph settings indicate that the

FDRs of all the methods are effectively controlled below the desired level for both p = 5000

and p = 10000. The corresponding power values (the proportions of the correctly identified

elements among the known non-zero partial correlations) and the Matthews correlation co-

efficients (MCCs) also demonstrate comparably good performance of all the methods (see

Appendix A.4 for more details). Overall speaking, the good performance of FDR, power and

MCC has shown the validity of all the approaches in correctly identifying the zero and the

non-zero partial correlations in a global sense even for the very high-dimensional scenarios.

2.3.2 Gene network analysis in a droplet-based single-cell data set with pan T

cells

We also applied the SILGGM package to a novel public single-cell RNA-seq data set with

pan T cells isolated from peripheral blood mononuclear cells of a healthy human donor

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/

t 3k). The data set generated by the latest CellRanger pipeline (Zheng et al., 2017) in-

cludes n = 3555 cells. After filtering out the unexpressed genes, we considered p = 2000

genes with the largest inter-sample variance.

Since the genes in the data set are measured with the unique molecular identifier (UMI)

counts (Islam et al., 2014), we need to transform the count values before the use of SILGGM.

According to Jia et al. (2017), it is reasonable to take a log 2(UMI counts +1) transforma-

tion and to perform a nonparanormal transformation (Liu et al., 2009) using the function

huge.npn() in the package huge on the continuized data to make it Gaussian because the
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transformation procedure preserves the underlying network structure. Then, we performed

each approach in SILGGM under global inference with FDR control at the 0.01 level. As com-

parison studies, we also applied the graphical Lasso (GLasso) using the package huge, the

marginal correlation-based approach with the Pearson’s correlation (PearsonCorr) and the

maximum likelihood estimation (MLE) of the partial correlation by directly inverting sample

covariance matrix to the same transformed data set. GLasso was run with the default pa-

rameters except using the rotational information criterion (Zhao et al., 2012; Lysen, 2009) for

tuning selection. Since GLasso only provides point estimates, a non-zero partial-correlation

estimate here implies a conditional dependence between the gene pair. For PearsonCorr and

MLE, we used the same thresholding procedure among the other approaches in SILGGM to

control FDR at the 0.01 level based on the z-scores of the Fisher z-transformation of Pear-

son’s correlation and the z-scores of MLEs on all the gene pairs.

Motivated by Jia et al. (2017), we applied the power law (Clauset et al., 2009; Adamic

et al., 2001) to evaluate the performance of the overall network structure inferred by the

different approaches. The power law illustrates the relationship p(m) ∝ m−λ for some posi-

tive λ. Here, m refers to the node degree, and p(m) denotes the probability of the m-degree

nodes. Many studies have indicated that biological networks are scale-free, and the node

degrees possess a power-law distribution (Barabási and Albert, 1999; Barabasi and Oltvai,

2004; Almaas and Barabási, 2006; Lima-Mendez and van Helden, 2009). The log 2 − log 2

plots of degree distribution of inferred networks are shown in Figure 2.4, where the blue

curves are fitted by the R function lowess(). All the approaches in our package SILGGM fit

the power-law relationship well, but Glasso, PearsonCorr and MLE do not. Even if n > p in

this data set, the values of n and p share the same order such that MLE becomes unstable

and increases bias of estimation. Thus, all the inferred network structures by SILGGM are

biologically meaningful and much more reliable. Furthermore, we can see that the perfor-

mance of the other three methods based on the nodewise Lasso-type regressions in SILGGM

is even better than that of D-S GL since the plot of D-S GL shows some noise in the tail.
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Figure 2.4: The log 2− log 2 plots of degree distribution of inferred networks by the different

approaches.

2.4 Conclusion and discussion

The source code of the package and a complete reference manual including dependen-

cies, usage of all package functions and associated examples are freely available via CRAN

at https://cran.r-project.org/package=SILGGM. The details of package installation are

described in Appendix A.5.

The package SILGGM is computationally efficient compared to the MATLAB implementa-

tion of GFC L and the R package FastGGM. Since R is a publicly free platform and has been

more widely used in biological research compared to MATLAB which is a piece of commercially

licensed software and has less accessibility to biologists, the R platform-based SILGGM will

play a more important role in accelerating the biological gene network studies. SILGGM is

also statistically efficient with both individual and global inference due to the theoretical

justification of the four approaches and the validation of estimation accuracy in simulation
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studies. The analytical results from the single-cell data with Pan T cells further reflect the

statistical efficiency of SILGGM since inferred gene networks are more reliable. Moreover, the

comprehensiveness of SILGGM allows users to have more flexible choices of methods depend-

ing on the specific purpose of their study. Due to its computational feasibility, analytical

reliability in results and methodological comprehensiveness, SILGGM can become a valuable

and powerful tool to a wide range of biological researchers for high-dimensional or even whole

genome-wide co-expression network analysis.

In practice, users have flexible options on the approaches provided by SILGGM with re-

spect to the specific purpose of their study. In a whole genome-wide study which is based

on global inference of all gene pairs, GFC L is the one we recommend when n is small (e.g.

n = 100) because the tuning selection in GFC L is beneficial for FDR control. When n

becomes larger (e.g. n = 800) but may be still relatively small to p, users can choose any

of the four approaches due to their similar performance among the different settings (see

Appendix A.4 for more details). If the study purpose is to evaluate a small set of genes

such as certain gene pathways that contribute to an important biological mechanism or a

particular gene such as a hub gene that is closely related to a specific disease, among the in-

ference results from all gene pairs, we recommend users choosing B NW SL since it provides

confidence intervals in addition to p-values and its performance of confidence intervals is

always good in the different settings (see Appendix A.3 for detailed comparisons). In a very

large-scale setting with p increased to a ten thousand level, D-S NW SL is an alternative

to save running time. Alternatively, if only the information of p-values is needed, we also

recommend GFC SL or GFC L.

Besides high-dimensional microarray and bulk RNA-seq data, we intend to promote the

application of SILGGM to single-cell RNA-seq data with both large n and p. The data sets

from single-cell RNA-seq have substantial advantages over the ones from population-level

microarray or bulk RNA-seq for us to explore the structure of a gene co-expression network

due to larger sample sizes (Macosko et al., 2015) and inherent cell-to-cell variability. Ac-

cording to Wills et al. (2013), the gene network from a single-cell study is able to further

reveal potential functionally-related gene pairs which are masked from the bulk sequencing.
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3.0 Inference of Large Modified Poisson-Type Graphical Models: Application

to RNA-Seq Data in Childhood Atopic Asthma Studies

3.1 Introduction

Recent developments of high-throughput sequencing technologies have generated un-

precedented amounts of RNA-seq data for transcriptomics. Network studies of conditional

dependency among genes provide new insights to understand a complex biological process

or disease.

Gaussian graphical model (GGM) has been widely used in characterizing the conditional

relationships among genes in a biological network. However, discrete omics data sets from

the next generation sequencing technology are common because the count values are usually

used to quantify the genetic or genomic information. One typical example is the bulk RNA-

seq data which summarizes the expression of each gene using the number of counts mapped

to it. Another example is the droplet-based single-cell RNA-seq data which quantifies the

cell-level gene expression with unique molecular identifiers (UMIs) (Islam et al., 2014), a

direct counting of transcript copies. Therefore, the use of GGM on those non-Gaussian

discrete-type data requires a continuous transformation, for example, using the fragments

per kilo base of transcript per milliona (FPKM) or a log transformation on the count values.

Converting count values into continuous values tends to alter their biological meanings with

the straightforward interpretation and sometimes can be inappropriate (Zwiener et al., 2014).

Poisson distribution, however, is a popular choice and has been shown more reasonable than

using FPKM in modeling the count data (Anders and Huber, 2010). To describe the con-

ditional dependency among genes from count-valued omics data, Besag (1974) proposed a

natural extension of the univariate Poisson model to a multivariate case, and Yang et al.

(2015) further extended this to a general graphical model setting called the Poisson graph-

ical model (PGM). Moreover, three modified Poisson-type graphical models: the truncated

PGM (TPGM), the sub-linear PGM (SPGM) (Yang et al., 2013) and the square-root PGM

(SqrtPGM) (Inouye et al., 2016), were proposed to overcome the major drawback of PGM
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for count data modeling (see Section 3.2 for more details).

On the other hand, omics data sets are usually large-scale with the number of genes p

allowed to be far larger than the sample size n. To provide reliable estimation for pairwise

conditional dependency with its confidence interval and p-value under such settings, statis-

tical inference of high-dimensional GGM has been well developed within the recent seven

years, see Liu (2013), Ren et al. (2015), Janková and van de Geer (2015, 2017). Inference

of large non-Gaussian graphical models has recently started being paid attention to, see Li

et al. (2016) and Cai et al. (2019) for Ising graphical model (IGM). Unfortunately, all current

methods based on the three aforementioned high-dimensional modified Poisson-type graph-

ical models only involve estimation, and a unified framework for their statistical inference is

still largely unknown.

In this chapter, we intend to propose a new inferential procedure that particularly tailors

to the analysis of non-negative, discrete and high-dimensional transcriptomic data based on

the modified Poisson-type graphical models. Our motivation comes from the novel RNA-seq

gene expression data from the study of the Epigenetic Variation and Childhood Asthma

in Puerto Ricans (EVA-PR) aged 9-20 years (Forno et al., 2019). To our knowledge, it is

the first study of atopic asthma in nasal epithelium of a large sample of Hispanic children.

Further details of the data are deferred to Appendix B.1.

Atopic asthma is one of the most prevalent diseases affecting all ages, but efficient meth-

ods for its accurate diagnosis are still under development. Clinicians have recently considered

using nasal epithelial samples which are much easier to extract and more disease-relevant to

replace white blood cell samples in study of the pathogenesis of atopic asthma. According

to Forno et al. (2019), studies in nasal epithelial samples provide promising results in iden-

tifying epigenetic variants of childhood atopic asthma in Puerto Ricans. Besides, Pandey

et al. (2018) has illustrated differentially expressed genes from transcriptomic profiles that

are more closely related to the mechanism of asthma using adult nasal epithelial samples.

However, conditional dependence among genes underlying atopic asthma from nasal epithe-

lium is largely unknown, a knowledge of which will no doubt facilitate its accurate diagnosis

and the development of its precision medicine.

Inspired by the cutting-edge low-dimensional projection estimator (LDPE) approach in
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inference of high-dimensional linear regression (Zhang and Zhang, 2014) and the recent devel-

opments in statistical inference of large IGM, we have developed a novel two-step procedure

in inference of pairwise conditional dependency from large modified Poisson-type graphical

models. The first step involves `1-penalized node-wise regressions, and the second step is

based on a likelihood-based non-linear projection which relies on the graph structure itself

and is intrinsically different from the essentially linear projection approach considered in

van de Geer et al. (2014) for generalized linear models. For further details, please refer to

Section 3.3. From the computational perspective, our method only requires O(p) `1-penalized

regressions due to the novelty of our second step, and is computationally less intensive than

the composite likelihood approach and the score matching method proposed in Wang and

Kolar (2016) and Yu et al. (2016) respectively targeting on exponential family graphical

model inference.

In Section 3.2, we briefly review the properties of three typical modified Poisson-type

graphical models. We formally propose a general framework of our procedure with its ap-

plication to the three modified Poisson-type models in Section 3.3. Section 3.4 includes

implementations with selection of tuning parameters. Then, we demonstrate the validity

and advantages of our procedure through simulations in Section 3.5 and a real application

to the motivating RNA-seq gene expression data of childhood allergic asthma in Section 3.6.

We finally conclude with discussion in Section 3.7.

3.2 The modified Poisson-type graphical models

Let X = (X1, X2, ..., Xp)
ᵀ be a sequence of genes with each Xi ∈ {0, 1, 2, ...} for i =

1, 2, ..., p. An undirected Poisson graph G = (V,E) associated with X consists of the node

set V = {X1, X2, ..., Xp} and the edge set E = {pairs of (i, j) if there is an undirected edge be-

tween Xi and Xj}. Xi and Xj are conditionally dependent given all the other genes {Xr, r 6=

i, j} if and only if there is an edge between the two nodes. More formally speaking, the joint

distribution of PGM (Yang et al., 2015) is defined as Pψ,Θ(X) = exp(
∑

1≤i<j≤p θijXiXj +∑p
i=1(ψiXi − log(Xi!)) − A(ψ,Θ)), where A(ψ,Θ) is the log-normalization constant. The

25



parameter θij represents the pairwise strength between nodes Xi and Xj and is encoded in

a parameter set Θ. It is easy to see that Xi and Xj are conditionally independent if and

only if θij = 0. Therefore, if the two nodes are connected in a graph, we set θij 6= 0; oth-

erwise, θij = 0. However, PGM can only model negative pairwise dependency (or θij ≤ 0)

if A (ψ,Θ) < +∞ is achieved. This fact is due to x2/ log(x!) → +∞ as x → +∞, which

can be shown by the Stirling’s approximation. To overcome the major constraint of PGM,

three modified Poisson-type graphical models are proposed in the literature to allow for both

positive and negative dependencies between pairwise nodes.

3.2.1 TPGM

Since the domain of PGM is {0, 1, ...}p, the quadratic terms dominate the distribution

when count values are very large, which leads to negative dependency. Therefore, a natural

remedy is to truncate the domain of each node to a finite level so as to capture both positive

and negative dependencies. We can make a reasonable assumption that each node Xi is

bounded by a finite number Di with i = 1, 2, ..., p. The joint distribution of TPGM (Yang

et al., 2013) is defined as

Pψ,Θ(X) ∝ exp(

p∑
i=1

ψiXi +
∑

1≤i<j≤p

θijXiXj −
p∑
i=1

log(Xi!)), (3.1)

which has the same format as PGM but with a different log-normalization constant due to

the domain Xi ∈ {0, 1, ..., Di} for i = 1, 2, ..., p. We mention that the Ising graphical model

(IGM) studied in Ravikumar et al. (2010), Li et al. (2016) and Cai et al. (2019) is a special

case of TPGM when Di = 1 for all i = 1, 2, ..., p.

3.2.2 SPGM

Unlike TPGM, Yang et al. (2013) also proposed sub-linear PGM (SPGM), an alternative

to modify the original PGM without a change on the domain of each node. Specifically,

by replacing the linear statistic of each node in ψiXi and θijXiXj in (3.1) with a newly-

constructed statistic that increases even slower than a linear term, both positive and negative

dependencies are allowed in the modified distribution without a domination of quadratic
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terms when the value of each node goes to +∞. Therefore, a modified statistic for each node

Xi with i = 1, 2, ..., p is defined as

S(Xi) =


Xi if Xi ≤ Di0

− 1
2(Di1−Di0)

X2
i + Di1

Di1−Di0Xi − D2
i0

2(Di1−Di0)
if Di0 < Xi ≤ Di1

Di0+Di1
2

if Xi ≥ Di1,

where Di0 and Di1 are pre-defined thresholds. The joint distribution of SPGM is thus defined

as

Pψ,Θ(X) ∝ exp(

p∑
i=1

ψiS(Xi) +
∑

1≤i<j≤p

θijS(Xi)S(Xj)−
p∑
i=1

log(Xi!)).

SPGM will be close to the original PGM as the upper threshold Di1 → +∞. In particular,

SPGM still has a relatively thick tail, which is approachable to the Poisson case.

3.2.3 SqrtPGM

In addition to the aforementioned two models, Inouye et al. (2016) proposed a new class

of parametric graphical model called Square Root Graphical Model that allows both positive

and negative dependencies. In the Poisson case, SqrtPGM essentially uses square root to

replace the linear statistic of each node in ψiXi and θijXiXj in (3.1), so the interaction terms

become linear to avoid the problem that the quadratic terms dominate the distribution when

the value of each node goes to +∞. The joint distribution of SqrtPGM is thus defined as

Pψ,Θ(X) ∝ exp(

p∑
i=1

ψi
√
Xi +

∑
1≤i<j≤p

θij
√
Xi

√
Xj −

p∑
i=1

log(Xi!)).

3.2.4 A unified representation

Let T (X) and B(X) be the sufficient statistic and the base measure respectively. All

three modified Poisson-type graphical models can be described in the following generalized

joint distribution,

Pψ,Θ(X) ∝ exp(

p∑
i=1

ψiT (Xi) +
∑

1≤i<j≤p

θijT (Xi)T (Xj) +

p∑
i=1

B(Xi)). (3.2)

27



Table 3.1: Sufficient statistics, base measures and domain of Xi in the three models.

Model T (X) B(X) Domain of Xi

TPGM X − log(X!) {0, 1, ..., Di}

SPGM S(X) − log(X!) {0,1,...}

SqrtPGM
√
X − log(X!) {0,1,...}

The corresponding sufficient statistic, base measure, domain of Xi for each model are sum-

marized in Table 3.1. Although so far we only define those θij for which i < j, we set θij = θji

to ease our notation whenever θij, i > j is used hereafter.

3.3 Statistical inference of modified Poisson-type graphical models

We first introduce a general two-step procedure to obtain each de-biased estimator θ̃ij

of conditional dependency between variables Xi and Xj, with applications to three modified

Poisson-type graphical models specified later. The goal is to achieve the desired asymptotic

normality (nFij)
1/2(θ̃ij − θij) → N (0, 1) with a bounded variance (Fij)

−1 as (n, p) → +∞

under certain sparsity condition of the graph. In addition, we also introduce a global test to

discover the entire graph structure.

3.3.1 The general framework

The first step is to provide a globally good initial estimator θ̂ij of θij, and the second step

is to correct the potential bias of θ̂ij via a variant of LDPE approach (Zhang and Zhang,

2014) to obtain the final estimator θ̃ij.

Step 1 (Initialization): From the joint distribution (3.2), we can obtain that the con-

ditional distribution of the random variable Xi given all other random variables X−i =
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(X1, ..., Xi−1, Xi+1, ..., Xp)
ᵀ belongs to the univariate exponential family. More specifically,

the log-likelihood function log(Pηi (Xi|X−i)) can be written as T (Xi)µi + B(Xi) − f(µi)

with the parameters ηi = (ψi, θi) = (ψi, θi1, θi2, ..., θi(i−1), θi(i+1), ..., θip)
ᵀ ∈ Rp and the

sufficient statistic T (Xi). In the above equation, we have µi = ψi +
∑

j 6=i θijT (Xj), and

f(µi) is the log-normalization term. To ease notations, we introduce X∗ = (1, Xᵀ)ᵀ, and

X∗−i = (1, X1, ..., Xi−1, Xi+1, ..., Xp)
ᵀ denotes the subvector of X∗ with Xi removed. Similarly

we denote T (X∗−i) = (1, T (X1), T (X2), ..., T (Xi−1), T (Xi+1), ..., T (Xp))
ᵀ. Therefore, we have

a simple notation of µi = T (X∗−i)
ᵀηi.

Due to the sparse structure of a biological network, the whole parameter set Θ is com-

monly assumed sparse in the sense that θij = 0 for most pairs of (i, j). Thus, it is natural

to estimate Θ by solving p `1-penalized node-wise regressions with i = 1, 2, ..., p based on

the conditional distribution Pηi (Xi|X−i). Suppose that X(1), X(2), ..., X(n) are denoted as n

i.i.d. samples from the joint distribution Pψ,Θ(X). θi ∈ Rp−1 can be estimated by solving

the following convex optimization problem

η̂i = (ψ̂i, θ̂i) = arg min
ηi

{l(ηi; {X(k)}nk=1) + λi||θi||1}, (3.3)

where λi is a tuning parameter, and the negative joint log-likelihood function l(ηi; {X(k)}nk=1)

= −
∑n

k=1 log(Pηi(X
(k)
i |X

(k)
−i )) takes the form with µ

(k)
i = T (X

∗(k)
−i )ᵀηi

l(ηi; {X(k)}nk=1) = −
n∑
k=1

(T (X
(k)
i )µ

(k)
i +B(X

(k)
i )− f(µ

(k)
i )).

Of note, we only penalize θi instead of entire ηi. If one has certain prior knowledge of the

biological network such as group or order structure, then the generic `1 penalty can be re-

placed by group Lasso or fused Lasso. To demonstrate the general purpose, we only use

generic `1 in our algorithm.

High-dimensional generalized linear model theory suggests that the estimator θ̂i has good

statistical properties in a global sense under certain regularity conditions. Indeed, the exist-

ing method for estimation of entire graph took this approach with theoretical justifications

(Yang et al., 2013; Inouye et al., 2016). However, this step itself is not sufficient for our

inference purpose due to the bias incurred from the `1 penalty.

Step 2 (Likelihood-based Bias Correction): In this step, we take a variant of LDPE
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approach to correct the bias of θ̂ij obtained from (3.3) for each pair (i, j) with i < j.

The original LDPE (Zhang and Zhang, 2014) can be seen as an extension of the least

squares estimator in the classical theory of linear model to the high dimensional settings.

We first briefly review the intuition before LDPE. For a low-dimensional linear model with

n < p, Y = Zβ + ε ∈ Rn, where Y = (Y (1), ..., Y (n))ᵀ, ε = (ε(1), ..., ε(n))ᵀ, β = (β1, ..., βp)
ᵀ and

the jth column of Z is Zj = (Z
(1)
j , ..., Z

(n)
j )ᵀ, the least squares estimator of βj can be written

as a linear projection of Y onto the orthogonal complement of the column space of Z−j. In

other words, with a score vector V = (v1, v2, ...vn)ᵀ, we have

β̃projj =

∑n
k=1 vkY

(k)∑n
k=1 vkZ

(k)
j

= βj +

∑n
k=1 vkε

(k)∑n
k=1 vkZ

(k)
j

+
∑
l 6=j

∑n
k=1 vkZ

(k)
l βl∑n

k=1 vkZ
(k)
j

,

and when V = Z⊥j , the third term vanishes, resulting in the desired least squares estimator

β̃projj = βj +
∑n

k=1 vkε
(k)/(

∑n
k=1 vkZ

(k)
j ). However, in high-dimensional case with p > n and

Z in general position, the orthogonal complement of the column space of Z−j vanishes and

thus the ideal score vector is undefined as Z⊥j = 0. Following the linear-based projection

idea but with a general nonzero score vector V , the third term in the decomposition above

presents a nonzero bias. Although we do not know the exact bias term as β is unknown, this

analysis of the linear estimator suggests a one-step bias correction with an initial estimator

β̂,

β̃j = β̃projj −
∑
l 6=j

∑n
k=1 vkZ

(k)
l β̂l∑n

k=1 vkZ
(k)
j

= β̂j +

∑n
k=1 vi(Y

(k) − Z(k)ᵀβ̂)∑n
k=1 vkZ

(k)
j

.

Therefore, with a globally good initial estimator β̂ and a well-chosen score vector V , it is

expected that the bias due to the third term becomes negligible, resulting in an asymptoti-

cally normal estimator β̃j.

Since LDPE was originally introduced in linear model, for our model we first linearize

the node-wise regression using initial estimators. The parameter of interest θi is encoded

in µi, which corresponds to the sufficient statistic T (Xi). For this reason, we expand the

conditional expectation of T (Xi) given X−i, which equals the first derivative of f(µi). To

further ease our notations, we denote the first and second derivatives of f(·) by ḟ(·) and f̈(·)

respectively. Then at the population level, we have the following decomposition

T (Xi) = Eηi (T (Xi)|X−i) + εi = ḟ(µi) + εi = ḟ(T (X∗−i)
ᵀηi) + εi, (3.4)
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where εi has zero mean given X−i. Since η̂i is a globally good estimator of ηi obtained in

(3.3), we may take a local Taylor expansion of ḟ(µi) about µ̂i with µ̂i = T (X∗−i)
ᵀη̂i, that

is, ḟ(µi) = ḟ(µ̂i) + f̈(µ̂i)T (X∗−i)
ᵀ(ηi − η̂i) + Re, where Re denotes the remainder term. By

rearranging terms in above equation, we have the following linearized version of (3.4),

T (Xi)− ḟ(µ̂i) + f̈(µ̂i)T (X∗−i)
ᵀη̂i = f̈(µ̂i)T (X∗−i)

ᵀηi + (Re+ εi) .

We are in the position to apply the projection-based idea to the regression above with

i.i.d. observations. Specifically, to obtain a better estimator of θij (i < j) given some initial

estimator η̂i = (ψ̂i, θ̂i), one needs to find an appropriate score vector V = (v1, v2, ..., vn)ᵀ ∈ Rn

and apply a one-step bias correction from η̂i as follows

θ̃ij = θ̂ij +

∑n
k=1 vk(T (X

(k)
i )− ḟ(µ̂

(k)
i ))∑n

k=1 vkf̈(µ̂
(k)
i )T (X

(k)
j )

(1 ≤ i < j ≤ p). (3.5)

With some algebra, it is easy to see that the decomposition of the estimation error for θ̃ij

becomes

θ̃ij − θij =
1
n

∑n
k=1 vkε

(k)
i

1
n

∑n
k=1 vkf̈(µ̂

(k)
i )T (X

(k)
j )

+
1
n

∑n
k=1 vkRe

(k)

1
n

∑n
k=1 vkf̈(µ̂

(k)
i )T (X

(k)
j )

+

1
n

∑n
k=1 vkf̈(µ̂

(k)
i )T (X

∗(k)
−{i,j})

ᵀ(ηi,−j − η̂i,−j)
1
n

∑n
k=1 vkf̈(µ̂

(k)
i )T (X

(k)
j )

.

(3.6)

The first term in the right-hand side of (3.6) is denoted as the error term, and the second

and the third terms can be regarded as the bias terms. Intuitively, to achieve the inference

purpose, we need to pick an V such that the bias terms are asymptotically negligible with

respect to the error term while the error term has asymptotic normality with root-n consis-

tency.

To achieve our goal discussed in last paragraph, we look for a population version of V

first. Denote 〈a, b〉 = E(af̈(µi)b). To have a centered asymptotic normality for the first

(error) term, it suffices to pick V as any function of X−i as εi has mean zero given X−i. In-

deed, for such a choice, we have E (V εi) = 0 with variance Var(V εi) = 〈V, V 〉. Consequently,

the entire first term has the desired asymptotic normality. We leave the mathematical

derivation of these facts in Appendix B.3. Besides, for the second (bias) term, we expect

that with a reasonable choice of V , this term itself is small since it contains a remainder
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term Re from the second order Taylor expansion. It remains to find a specific V under

this constraint (that is, V is a measurable function of X−i) so that the third (bias) term

is negligible. To this end, ideally one needs that 〈V, T (X−{i,j})〉 is a zero vector, where

X−{i,j} = (X1, ..., Xi−1, Xi+1, ..., Xj−1, Xj+1, ..., Xp)
ᵀ and T (X−{i,j}) ∈ Rp−2 is defined ac-

cordingly. Then it is reasonable to expect the third term is small given that η̂i is a globally

good estimator.

The major novelty of our method is on the choice of score vector V . Intrinsic to the

graphical model joint distribution (3.2), we propose to choose the population V based on

the conditional expectation of Xj given X−{i,j} with respect to the inner product 〈a, b〉 as

follows

V = T (Xj)−
Eηi,ηj(T (Xj)f̈(µi)|T (X−{i,j}))

Eηi,ηj(f̈(µi)|T (X−{i,j}))

:= T (Xj)− g(T (X−{i,j}), ηi, ηj).

(3.7)

It is worthwhile to point out that the conditional expectation function g(·) depends on

unknown parameters only through ηi and ηj. In particular, µi is known given ηi. By our

choice, one can check that 〈V,m(T (X−{i,j}))〉 = 0 for any measurable function m(·). Thus,

we have achieved that 〈V, T (X−{i,j})〉 is a zero vector, and at the population level, the third

(bias) term in (3.6) becomes zero.

Remark 1. Our choice of the score V is new and intrinsic to the joint likelihood of the

specific graphical model. Other methods of bias correction for GLMs were discussed in lit-

erature, e.g., van de Geer et al. (2014). The difference is that our construction of V relies

on the explicit knowledge of joint conditional distribution of T (Xj) given all other covari-

ates T (X−{i,j}) in which the conditional expectation of T (Xj) is a non-linear function of

T (X−{i,j}). In contrast, the method proposed in van de Geer et al. (2014) does not impose

the specific conditional likelihood pattern but essentially assumes certain linear sparsity struc-

ture among all covariates, and thus the proposed score vector is linear. We emphasize that

this linear sparsity structure is invalid in general in our graphical model settings. For the

reasons above, we call this step of our method the likelihood-based bias correction.

In the end, given the population expression of V in (3.7), we need to represent the

empirical element vk in the score vector V . Denote the oracle score of the kth observation
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as v
(o)
k = T (X

(k)
j ) − g(T (X

(k)
−{i,j}), ηi, ηj). Here we call v

(o)
k the oracle score since ηi, ηj are

unknown to us. Those points where T (X
(k)
−{i,j}) has explained most variability of T (X

(k)
j )

would receive scores with a small magnitude, and thus play a less significant role in our

method. Intuitively, we expect that the first term in the right-hand side of (3.6) dominates

θ̃ij − θij with our choice of V . One can show that if ignoring the minor difference between

f̈(µi) and f̈(µ̂i), then the asymptotic variance of this first term is F−1
ij , where

Fij = Eηi,ηj((T (Xj)− g(T (X−{i,j}), ηi, ηj))
2f̈(µi)) = 〈V, V 〉.

We leave its mathematical derivation in Appendix B.3. Thanks to the globally good estima-

tors η̂i and η̂j obtained from Step 1, it is natural for us to finally use the plugged-in estimator

of the oracle, vk = T (X
(k)
j )− g(T (X

(k)
−{i,j}), η̂i, η̂j) in the bias correction step (3.5). We defer

the specification of complete implementations in Section 3.4.

Intuitively, we expect that our choice of the non-linear score vector leads to the following

asymptotic normality under some regularity conditions

√
nFij(θ̃ij − θij)→ N (0, 1) .

While we do not have access to Fij due to its dependence on unknown parameters, it is

natural to replace it by the empirical estimator 1
n

∑n
k=1 v

2
kf̈(µ̂

(k)
i ). Therefore, we expect the

following asymptotic normality result(
n∑
k=1

v2
kf̈(µ̂

(k)
i )

)1/2

(θ̃ij − θij)→ N (0, 1) . (3.8)

3.3.2 Applications to three modified Poisson-type graphical models

We apply the proposed general framework of statistical inference to the three modified

Poisson-type graphical models described in Section 3.2. Our current method for modified-

Poisson graphical models can be treated as an extension of Li et al. (2016), which only

considered Ising graphical model, a special case of TPGM.

Each node-wise regression in Step 1 for all three models relies on the conditional distri-

bution Pηi(Xi|X−i). A more specific representation is provided as
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Pηi (Xi|X−i) =
exp

[
T (Xi)(ψi +

∑
j 6=i θijT (Xj)) +B(Xi))

]
∑Di

m=0 exp
[
T (m)(ψi +

∑
j 6=i θijT (Xj)) +B(m)

] , (3.9)

where the corresponding sufficient statistic and the base measure for each model are referred

to Table 3.1. The threshold Di for each Xi is finite in TPGM, while its value becomes +∞

in the other two models.

The bias correction in Step 2 needs the knowledge of f(µi) which is the denominator

of the right-hand side of (3.9) for the three models. Specifically, the expression of f(µi)

for each of three models is shown in Table 3.2, and the details of corresponding ḟ(µi) and

f̈(µi) are referred to Tables B.3 and B.4 in Appendix B.4. Moreover, the expression of vk

in each model is based on the function g(T (X−{i,j}), ηi, ηj). In general, the expression of

g(T (X−{i,j}), ηi, ηj) can be presented as

g(T (X−{i,j}), ηi, ηj) =
Eηi,ηj

[
T (Xj)f̈(µi)|T (X−{i,j})

]
Eηi,ηj

[
f̈(µi)|T (X−{i,j})

]
=

∑Dj
k2=0(T (k2) · f̈(θijT (k2) + T (X∗−{i,j})

ᵀηi,−j) ·Q)∑Dj
k2=0(f̈(θijT (k2) + T (X∗−{i,j})

ᵀηi,−j) ·Q)

with

Q =

Di∑
k1=0

exp(T (k1)T (X∗−{i,j})
ᵀηi,−j + T (k2)T (X∗−{i,j})

ᵀηj,−i

+B(k1) +B(k2) + θijT (k1)T (k2)),

where ηi,−j is the subvector of ηi with θij removed and ηj,−i is the subvector of ηj with θji

removed. Specific g(T (X−{i,j}), ηi, ηj) for each model is summarized in Table 3.3, and the

details of corresponding Q are shown in Table B.5 in Appendix B.4.

3.3.3 Multiple testing with false discovery rate control

If the structure of an overall graph is paid attention to, then there involves a multiple

testing problem for all θij’s

H0 : θij = 0 vs . H1 : θij 6= 0 (1 ≤ i < j ≤ p) (3.10)
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Table 3.2: Details of f(µi) in the three models.

Model f(µi)

TPGM log(
∑Di

m=0 exp(mµi − log(m!)))

SPGM log(
∑+∞

m=0 exp(S(m)µi − log(m!)))

SqrtPGM log(
∑+∞

m=0 exp(
√
mµi − log(m!)))

that tests all pairs simultaneously. One of the most popular large-scale multiple testing

procedures is the false discovery rate (FDR) analysis (Benjamini and Hochberg, 1995). It

is well known that the false discovery rate FDR(t) = E(FDP(t)) is the expectation of false

discovery proportion (FDP), which is defined as

FDP(t) =

∑
(i,j)∈H0

I{|T̂ij| ≥ t}
max{

∑
1≤i<j≤p I{|T̂ij| ≥ t}, 1}

, (3.11)

where T̂ij is some generic test statistic for each individual hypothesis with a given threshold

level t, H0 = {(i, j) : i < j, θij = 0} denotes the set of true nulls (i.e., the edge set E), the

numerator is the total number of false positives, and the denominator is the total number of

rejections. The numerator in (3.11) is generally unknown, but under certain mild sparsity

assumption of the underlying graph, one can estimate it by 2(1−Φ(t))(p2−p)/2 as suggested

in Liu (2013), where Φ(·) is a standard normal CDF.

The test statistic in our case is T̂ij = (
∑n

k=1 v
2
kf̈(µ̂

(k)
i ))

1
2 θ̃ij, a standardized version of θ̃ij.

Following the idea in Liu (2013), we set a pre-defined level of FDR as 0 < α < 1 and choose

the threshold of the test statistic as

t̂ = inf

{
0 ≤ t ≤ 2

√
log p :

2(1− Φ(t))(p2 − p)/2
max{

∑
1≤i<j≤p I{|T̂ij| ≥ t}, 1}

≤ α

}
. (3.12)
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Table 3.3: Details of g(T (X−{i,j}), ηi, ηj) in the three models.

Model g(T (X−{i,j}), ηi, ηj)

TPGM
∑Dj
k2=0(k2·f̈(θijk2+X∗ᵀ−{i,j}ηi,−j)·Q)∑Dj
k2=0(f̈(θijk2+X∗ᵀ−{i,j}ηi,−j)·Q)

SPGM
∑+∞
k2=0(S(k2)·f̈(θijS(k2)+S(X∗{−i,j})

ᵀηi,−j)·Q)∑+∞
k2=0(f̈(θijS(k2)+S(X∗−{i,j})

ᵀηi,−j)·Q)

SqrtPGM
∑+∞
k2=0(

√
k2·f̈(θij

√
k2+
√
X∗−{i,j}

ᵀ
ηi,−j)·Q)∑+∞

k2=0(f̈(θij
√
k2+
√
X∗−{i,j}

ᵀ
ηi,−j)·Q)

We reject H0 in (3.10) if |T̂ij| ≥ t̂. If no t̂ can be obtained, we set t̂ = 2
√

log p as under

null the distribution of each T̂ij is expected to be close to a standard normal such that the

largest magnitude of those (p2 − p)/2 statistics is no larger than 2
√

log p with probability

going to 1. Although we do not provide any theory, we comment that with the constraint

t ≤ 2
√

log p in (3.12), the weak dependency among all T̂ij’s will not influence the FDR

control asymptotically. For further theoretical justification, please refer to Liu (2013).

3.4 Implementations for graph inference

3.4.1 Algorithm

Step 1 involves a node-wise `1-penalized regression for each node Xi on all other nodes

X−i, see Ravikumar et al. (2010), Yang et al. (2013). Here, the intercept ψi is excluded from

the penalization. The total computational complexity of Step 1 is essentially equivalent

to solving O(p) `1-penalized regression problems. Each problem can be solved efficiently

using the proximal gradient descent. Set T (X∗) as the n× (p+ 1) matrix with the kth row

being T (X∗(k))ᵀ for k = 1, ..., n. In addition, all the regressions rely on a single matrix with
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the ijth element being the inner product between the ith and jth columns of T (X∗) which

includes O(np2) operations. The pre-calculation of this matrix can help avoid its repetitive

calculation.

The bias correction for the parameter set Θ in Step 2 has a total of O(p2) loops,

and each loop for θ̂ij involves the calculation of inner products
∑

r 6={i,j} θ̂irT (X
(k)
r ) and∑

r 6={i,j} θ̂jrT (X
(k)
r ) for all k = 1, ..., n. The näıve matrix calculation tends to increase the

computational complexity to O(np3). To simplify the computational steps, we pre-calculate

the inner product between each T (X
∗(k)
−i ) and the initial estimators η̂i and save the value in

a prediction matrix which can be repetitively used for the inner product calculation within

each loop. It can be seen that the pre-calculation of the prediction matrix helps reduce the

computational complexity of these inner products to O(np2).

Besides the aforementioned implementations with high computational convenience, all

the algorithms are achieved with the Rcpp library. Due to the lack of closed-form expressions

for the normalization terms in the conditional distributions of SPGM and SqrtPGM, the nu-

merical approximations that require a summation from zero to a large number are highly

involved with many loop operations. The usage of Rcpp library, which incorporates the ef-

ficient C++ code under the R environment, helps lower the computational burden for loops.

In the end, we summarize all the steps of our two-step inference method in Algorithm 1.

3.4.2 Selection of tuning parameters

The tuning parameter λi in (3.3) controls the neighborhood sparsity of each node Xi

or the number of edges extending out from Xi, so we need to select a sequence of λi with

i = 1, 2, ..., p for initial estimators in Step 1. According to the different purpose of inference,

we provide two ways for selection of tuning parameters.

We at first focus on the inference of each individual θij. The extended BIC (EBIC) cri-

terion has been well studied under the regime of high-dimensional graphical models (Barber

and Drton, 2015). We write EBIC for each regression as follows,

EBICγ(J) = 2l(ηi; {X(k)}nk=1) + |J |(log(n) + 2γ log(p− 1)), (3.13)
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where l(ηi; {X(k)}nk=1) = −
∑n

k=1 log(Pηi(X
(k)
i |X

(k)
−i )), |J | is the cardinality of J = {j : j 6=

i and θ̂ij 6= 0}, and some universal γ ≥ 0. Following the suggestion in Barber and Drton

(2015), we set γ = 0.5 as the default value in real implementations and select the tuning

parameters that minimize (3.13).

For multiple testing, the tuning parameters are chosen as in Liu (2013) to guarantee

2(1− Φ(t))(p2 − p)/2 as close to
∑

(i,j)∈H0
I{|T̂ij| ≥ t} as possible. We leave further details

in Appendix B.5.

Algorithm 1 Statistical inference of the modified Poisson-type graphical models

• Step 1: Initialization

1. Pre-calculate and save the inner product matrix, where the ijth element denotes the

inner product between the column i and column j of T (X∗).

2. For each Xi, i = 1, 2, ..., p, do node-wise `1-penalized regression (3.3).

3. Obtain each initial estimator θ̂ij for Step 2.

• Step 2: Likelihood-based Bias Correction

1. Pre-calculate and save the n × p prediction matrix M , where each element µ̂
(k)
i

denotes the inner product of T (X
∗(k)
−i ) and η̂i with k = 1, 2, ..., n and i = 1, 2, ..., p.

2. For each i = 1, 2, ..., p− 1, do:

(a.) Calculate ḟ(µ̂
(k)
i ) and f̈(µ̂

(k)
i ) in (3.5) with k = 1, ..., n.

(b.) With each fixed i, for each j = i+ 1, i+ 2, ..., p, do:

(i.) Calculate q
(k)
1 = µ̂

(k)
i − θ̂ijT (X

(k)
j ) and q

(k)
2 = µ̂

(k)
j − θ̂jiT (X

(k)
i ) with

k = 1, ..., n.

(ii.) Plug q
(k)
1 and q

(k)
2 into (3.7) to obtain the score vector V .

(iii.) Generate the final estimator θ̃ij in (3.5).

3. Estimate the standard deviation, the 95% confidence interval, the p-value and the

z-score for each θ̃ij.

To ensure the validity of EBIC to select tuning parameters, we further performed a

comprehensive study of hyperparameter selection. We compared inferred networks between

the proposed method and the sole estimation procedure with only node-wise `1-penalized
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regressions using EBIC and cross validation under both simulation settings and the real data

application in Sections 3.5-3.6. It is intriguing to notice that the proposed method is robust

to different hyperparameter selection methods, while the sole estimation is very sensitive to

various model selection criteria. Moreover, the proposed method can reach a better balance

between false and true discovers than the sole estimation based on different hyperparameter

selection methods. More details are left in Appendix B.6.

3.5 Simulations

To show the validity of the proposed two-step procedure, we evaluated its performance

from two-folds: 1. Asymptotic normality; 2. False discovery rate control for multiple testing.

We considered four different graph settings: (a) the Chain graph with two consecutive nodes

arranged to be connected, (b) the Grid graph (4-nearest neighbor graph) with nodes arranged

to a lattice with maximal degree d = 4, (c) the Erdős-Rényi (E-R) random graph with

average node degree d = 4, and (d) the Scale-free network (Barabási and Albert, 1999). We

generated random samples from the three modified Poisson-type models via Gibbs sampling

(Zhang et al., 2017). The first 5000 draws were discarded in the burn-in period. Then, we

took one sample every 100 draws to guarantee independence. In addition, we also compared

the proposed method to the popular Gaussian graphical model estimation with FDR control

using Lasso (GFC L) (Liu, 2013) by evaluating their performance on simulated RNA-seq

data.

3.5.1 Asymptotic normality

The lattice size of Grid graph is
√
p × √p here. For each given graph, we generated 100

data sets with n = 300, p = 100 and 400 respectively from the three models with each of

nonzero entries drawn randomly from the set (−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4). Other

parameter details in the three models are described as below,

• TPGM: The intercept term ψi = 0, and the threshold value Di = 3.
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• SPGM: The intercept term ψi = −0.5, and two threshold values Di0 = 3 and Di1 = 6.

• SqrtPGM: The intercept term ψi = 0.

The proposed estimates of each pairwise parameter were obtained based on Algorithm 1

with EBIC criterion for selection of tuning parameters in all the graph settings. Figure 3.1

shows the histograms of randomly selected entries that cover all possible values of true

parameters from the three modified Poisson-type graphical models under high-dimensional

settings with p = 400 for Scale-free graph. Each red curve is denoted as the approximate

Gaussian density of a particular entry. It can be seen that the histograms of each entry

match with the corresponding normal distribution very well. The histograms for Scale-free

graph with p = 100 and the other three graph settings are referred to Figures B.5-B.10 in

Appendix B.7.1. Similarly, all the histograms of estimated entries are also in good accordance

with their corresponding normal distributions.

The (1 − α) confidence interval for each θij can be derived straightforwardly from the

asymptotic normality in (3.8):

(θ̃ij − zα/2(
n∑
k=1

v2
kf̈(µ̂

(k)
i ))−1/2, θ̃ij + zα/2(

n∑
k=1

v2
kf̈(µ̂

(k)
i ))−1/2),

where zα/2 is the z-score with the right tail probability equal to α/2, i.e., P (N (0, 1) > zα/2) =

α/2.

In addition, we also evaluated the performance of empirical coverage probabilities of

the 95% confidence intervals of θij’s to demonstrate the validity of our inference results.

Considering the sparse structures of both graph settings, we separated all θij’s into two sets:

the edge S0 and non-edge Sc0:

S0 = {(i, j) : θij 6= 0}, Sc0 = {(i, j) : θij = 0}.

Then, based on all the estimates θ̃ij’s, the average empirical coverage probabilities of the

95% confidence intervals were evaluated in S0 and Sc0 respectively. Table 3.4 reports the

medians (standard deviations) of average empirical coverage probabilities of the 95% con-

fidence intervals over 100 replications for p = 400. As we can see, all results are close to

0.95, the target confidence level. Additional simulation results towards individual inference
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Figure 3.1: Histograms of the estimated pairwise entries for p = 400 from the three models

in Scale-free graph.
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Table 3.4: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 with p = 400.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 300, p = 400

TPGM 0.9436 0.9352 0.9284 0.9311 0.9511 0.9508 0.9497 0.9501

(0.0118) (0.0087) (0.0081) (0.0117) (0.0010) (0.0010) (0.0012) (0.0009)

SPGM 0.9499 0.9153 0.8910 0.9135 0.9528 0.9536 0.9519 0.9505

(0.0118) (0.0087) (0.0100) (0.0109) (0.0010) (0.0011) (0.0011) (0.0009)

SqrtPGM 0.9524 0.9512 0.9512 0.9549 0.9512 0.9501 0.9501 0.9510

(0.0110) (0.0087) (0.0087) (0.0108) (0.0009) (0.0009) (0.0010) (0.0008)

with p = 100, a smaller sample size (n = 150 and 100) and using simulation settings in

Section 3.5.2 are summarized in Tables B.11-B.14 in Appendix B.7.2.

3.5.2 False discovery rate control for multiple testing

To evaluate the performance of our estimates for multiple testing with false discovery rate

(FDR) control, we considered the four graphs with a two-block structure. More specifically,

the first half of nodes form one block, leaving the remaining nodes as another block. Two

cases were evaluated: p = 200 and 400. The detailed parameter settings are described as

below,

• TPGM: Each of non-zero entries is randomly drawn: (i.) either −0.3 or 0.3 in Block 1;

(ii.) either −0.4 or 0.4 in Block 2. For both blocks, each intercept term ψi = −0.5, and

each threshold value Di = 3.

• SPGM: Each of non-zero entries is randomly drawn: (i.) either −0.3 or 0.3 in Block 1;

(ii.) either −0.4 or 0.4 in Block 2. For two blocks, the intercept term ψi is: (i.) −0.5 for
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Chain and Scale-free graphs; (ii.) −1 for Grid and E-R graphs. Two threshold values

Di0 = 2 and Di1 = 5.

• SqrtPGM: Each of non-zero entries is randomly drawn: (i.) either −0.6 or 0.6 in Block

1; (ii.) either −0.9 or 0.9 in Block 2. The intercept term ψi = 0.
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Figure 3.2: ROC curves based on TPRs and FPRs for the proposed inferential procedure

and the sole estimation in the case of p = 400.

For each of the two cases, we generated 100 data sets with n = 400. We investigated

the performance of our procedure by evaluating true positive rate (TPR) and false positive

rate (FPR) over a range of FDR control levels. Here, we used the tuning selection scheme

described in Appendix B.5 for multiple testing. To compare, we also applied the sole esti-

mation procedure with node-wise `1-penalized regressions in each same data set through a
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range of regularization parameters. The medians of TPRs and FPRs at each cut-off over 100

replications from the two procedures are presented in the receiver operating characteristic

(ROC) curves for p = 400, as shown in Figure 3.2. It can be seen that all curves from

the proposed inferential procedure lie above the ones from the sole estimation and show no-

ticeably better performance in detecting true conditional dependency while simultaneously

maintaining false discovers at a low level. ROC curves for p = 200 which share similar

patterns are shown in Figure B.11 in Appendix B.7.3.

Furthermore, we report the medians (standard deviations) of empirical FDRs with pre-

specified levels 0.1 and 0.2 for both p = 200 and 400 in Table 3.5. The medians (standard

deviations) of their corresponding power values are shown in Table 3.6. The empirical FDRs

are well controlled at the desired levels with a relatively good performance of power. Addi-

tional simulation results towards global inference with a smaller sample size (n = 150) are

summarized in Tables B.15-B.16 in Appendix B.7.3.

3.5.3 Evaluation on simulated RNA-seq data

We further evaluated the performance of the proposed method by comparing it to GFC L

on simulated RNA-seq data. Even though there is a broad existing literature on how to

simulate an RNA-seq data set, see Gerard (2020) for example, there is barely any method

that can incorporate the structure of conditional dependence among genes. Therefore, we

proposed a new procedure to simulate an RNA-seq data set by incorporating conditional

dependence among genes as below,

(a) (Incorporation of conditional dependence) A simulated normalized count-valued

RNA-seq data set with n samples and p genes is generated via Gibbs sampling from

SqrtPGM with Scale-free graph.

(b) (Pseudo-random number addition) A randomly generated number from uniform

distribution between 0 and 1 is added to each element of the simulated count data to

ensure randomness.

(c) (Inverse power transform) Inverse power transform is performed on the data matrix

with some value of β from a real data application.

44



Table 3.5: Medians (standard deviations) of empirical false discovery rates.

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200

TPGM 0.0892 0.0948 0.0939 0.0939 0.1777 0.1794 0.1792 0.1856

(0.0277) (0.0188) (0.0189) (0.0246) (0.0397) (0.0260) (0.0277) (0.0338)

SPGM 0.0858 0.0840 0.0964 0.0938 0.1744 0.1623 0.1760 0.1895

(0.0259) (0.0209) (0.0222) (0.0253) (0.0327) (0.0261) (0.0299) (0.0361)

SqrtPGM 0.0884 0.0903 0.0955 0.0956 0.1762 0.1784 0.1721 0.1810

(0.0237) (0.0323) (0.0277) (0.0262) (0.0327) (0.0318) (0.0368) (0.0346)

n = 400, p = 400

TPGM 0.0940 0.1007 0.1120 0.0937 0.1866 0.1931 0.2052 0.1939

(0.0142) (0.0128) (0.0187) (0.0225) (0.0205) (0.0204) (0.0213) (0.0251)

SPGM 0.0998 0.1154 0.1159 0.1054 0.1852 0.2032 0.2145 0.2092

(0.0212) (0.0173) (0.0141) (0.0242) (0.0218) (0.0231) (0.0201) (0.0249)

SqrtPGM 0.0986 0.0907 0.0997 0.0976 0.2016 0.1818 0.1885 0.2021

(0.0197) (0.0117) (0.0123) (0.0176) (0.0280) (0.0174) (0.0152) (0.0254)
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Table 3.6: Medians (standard deviations) of power values for corresponding FDR control

levels.

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200

TPGM 0.7222 0.7116 0.7867 0.7727 0.7828 0.7619 0.8329 0.8131

(0.0236) (0.0215) (0.0197) (0.0230) (0.0234) (0.0204) (0.0161) (0.0215)

SPGM 0.7172 0.4881 0.4746 0.7449 0.7677 0.5556 0.5278 0.7879

(0.0226) (0.0256) (0.0228) (0.0247) (0.0241) (0.0238) (0.0241) (0.0238)

SqrtPGM 0.8838 0.7460 0.6613 0.8939 0.9192 0.8069 0.7295 0.9242

(0.0238) (0.0227) (0.0336) (0.0198) (0.0197) (0.0218) (0.0327) (0.0167)

n = 400, p = 400

TPGM 0.6357 0.7131 0.6463 0.6131 0.6910 0.7592 0.6920 0.6633

(0.0177) (0.0114) (0.0123) (0.0164) (0.0183) (0.0113) (0.0122) (0.0168)

SPGM 0.6646 0.4347 0.5087 0.6796 0.7186 0.4908 0.5538 0.7236

(0.0163) (0.0161) (0.0157) (0.0166) (0.0188) (0.0150) (0.0154) (0.0179)

SqrtPGM 0.8492 0.6966 0.6467 0.8065 0.8920 0.7652 0.7107 0.8492

(0.0185) (0.0161) (0.0141) (0.0185) (0.0157) (0.0146) (0.0138) (0.0185)
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(d) (Final count generation) Elements are rounded down to its nearest integer to obtain

the final simulated RNA-seq data set.

Real RNA−seq data of childhood atopic asthma
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Figure 3.3: (A) Histogram of real RNA-seq data of childhood atopic asthma. (B) Histogram

of typical simulated RNA-seq data. (C) ROC-type curves based on TPRs and FDRs for the

proposed inferential procedure (SqrtPGM and SPGM) and GFC L on simulated RNA-seq

data.

Here, we considered the two-block Scale-free graph in Section 3.5.2 to depict the conditional

dependence among genes because a graph with power-law topology generally illustrates the

structure of a real biological network (Barabási and Albert, 1999), and SqrtPGM was adopted

in (a) due to its more flexibility than SPGM and TPGM which usually need pre-defined

thresholds. The procedure was motivated by the pre-processing steps in Allen and Liu

(2013) on original RNA-seq data which mainly rely on a power transform Xβ for 0 < β < 1

to make count values close to some Poisson-type distribution. We intended to perform inverse

power transform in (c) with the value of β that can be borrowed from a real data application.

For example, the pre-processing on our motivating count-valued RNA-seq data of childhood

atopic asthma returned β = 0.2517, so we took β = 0.2517 here.

We used the proposed procedure to generate 100 simulated RNA-seq data sets with

n = 300 and p = 400. Figures 3.3(A) and 3.3(B) demonstrate the histograms of count

values from the real data set of childhood atopic asthma and a typical simulated RNA-seq

data set. As it can be seen, the distribution shape of simulated RNA-seq data is quite
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close to that of a real data set which illustrates decaying proportions of large count values.

Before implementation of the proposed method, we took a power transformation on the

simulated data sets with β = 0.2517 and rounded down each element of data matrices to its

nearest integer to obtain the normalized count-valued data sets. Before implementation of

GFC L, we used a log and nonparanormal transformation (Liu et al., 2009) to continuize and

gaussianize the simulated data sets (Jia et al., 2017). We implemented our proposed method

using SqrtPGM and SPGM because they are more general Poisson-type distributions than

TPGM. For SPGM, we naturally set 0 as the lower bound Di0 and count maximum of each

column as the upper bound Di1. GFC L was implemented with the R package SILGGM (Zhang

et al., 2018b).

The evaluation of methods depends on the performance of TPR over a range of varying

FDR control levels. The medians of TPRs and FDRs over 100 replications from our approach

(SqrtPGM and SPGM) and GFC L are illustrated in the ROC-type curves in Figure 3.3(C).

Both curves from our approach with SqrtPGM and SPGM lie above the one from GFC L,

which indicates that our proposed method is noticeably more capable of capturing built-

in features than GFC L while controlling FDRs around same levels. Furthermore, we also

reported all the medians (standard deviations) of empirical FDRs and corresponding power

values with pre-specified levels α = 0.1 and 0.2 in Table 3.7. The power values from the

proposed method with SqrtPGM and SPGM are both greater than those from GFC L while

all the empirical FDRs are very similar. Therefore, our method can capture the built-

in features better than GFC L in terms of all the results from simulated RNA-seq data.

Additional comparison with a smaller sample size (n = 150) is shown in Table B.17 in

Appendix B.7.4.

3.6 Application to RNA-seq data of childhood allergic asthma

We applied our proposed approach to the motivating RNA-seq gene expression data that

illustrates the count-valued transcripts of genes from the nasal epithelial cells of n = 157

children (62 females and 95 males) with allergic asthma in Puerto Ricans. These children
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Table 3.7: Medians (standard deviations) of empirical FDRs and power values from our

proposed method (SqrtPGM and SPGM) and GFC L on simulated RNA-seq data with

FDR controlled at levels α = 0.1 and 0.2.

Proposed (SqrtPGM) Proposed (SPGM) GFC L

FDR Power FDR Power FDR Power

α = 0.1

0.1023 0.6445 0.1143 0.5842 0.0993 0.4786

(0.0181) (0.0259) (0.0191) (0.0224) (0.0250) (0.0237)

α = 0.2

0.1965 0.7085 0.2295 0.6508 0.2018 0.5553

(0.0234) (0.0240) (0.0208) (0.0224) (0.0248) (0.0236)

have an average age of 15.3 years with a median total IgE (Immunoglobulin E) of 372 IU/mL,

which is high due to atopic asthma. More detailed demographic information of these children

is deferred to Table B.1 in Appendix B.1. Before using the proposed approach, we normalized

the RNA-seq data following the pre-processing steps described in Allen and Liu (2013). The

pre-processing steps adjust sequencing depth for all the genes and filter out the genes with

low inter-sample variance. Besides, the possible overdispersion and the batch effects in the

data have also been adjusted. The normalization was implemented with the processSeq

function in the R package XMRF (Wan et al., 2016). After pre-processing, the normalized

data is more approachable to a Poisson-type distribution than the original one, see the

comparison of histograms in Figure B.12 in Appendix B.8.1. The normalized data includes

p = 500 genes.
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Figure 3.4: The log 2-log 2 plots of degree distribution for the inferred networks (NA: not

available).

We inferred gene network using the proposed method in the three models with FDR

control at level 0.001. We naturally set count maximum of each column as the upper bound

Di in TPGM and Di1 in SPGM respectively, and 0 as the lower bound Di0 in SPGM. As

comparison studies, we also constructed gene network using only the estimation results from

Step 1 of the procedure based on EBIC criterion. It is well known that biological net-

work usually has a scale-free (or power-law) pattern (Barabási and Albert, 1999; Almaas

and Barabási, 2006), that is, p(λ) ∝ λ−α, where λ and p(λ) are denoted as node degree

and its corresponding probability respectively, and α is a positive number. The overall net-

work structure was then evaluated by measuring the correlation between the log 2 of node

degree and the log 2 of its corresponding probability. A correlation closer to −1 indicates

a better conformation to the power law. Figure 3.4 illustrates the log 2-log 2 plots of node

degree distribution for inferred networks and their corresponding correlation measurements.
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As it can be seen, the correlation values based on the proposed inferential procedure are

all around −0.9 and much closer to −1 in TPGM and SPGM, while the values are compa-

rable with the sole estimation in SqrtPGM. Although the correlation values are still good,

the sole estimation generally leads to a much sparser network and fails to capture complex

co-expression structures, particularly for TPGM which has a maximum node degree of 1

and barely demonstrates any informative interactions. Additional evaluations of the overall

network structure based on the two graphical model methods under normal assumption are

shown in Figure B.13 in Appendix B.8.2. Due to their failure to conform the power law with

an unreliable inferred network structure, we did not include them for further analysis.

In addition to evaluating the overall network structure, we also studied community struc-

ture of all the inferred networks using the eigenspectrum of the modularity matrix (Newman,

2006) so as to explore important gene pathways within the identified gene modules to atopic

asthma. Besides the aforementioned methods with three modified Poisson-type models, we

included GFC L and the nonparanormal SKEPTIC estimator (Liu et al., 2012) as com-

parison studies. To ensure the fairness in comparison, we extracted the same 500 genes

from the original data and made a log and nonparanormal transformation to continuize and

gaussianize the count values according to Jia et al. (2017) before the use of GFC L. The

nonparanormal transformation was achieved with the huge.npn() function in the R package

huge (Zhao et al., 2012), and GFC L was implemented with the R package SILGGM with FDR

control at level 0.001. For nonparanormal SKEPTIC, we obtained Spearman’s rho statistics

from the original count-valued data with 500 genes by using the huge.npn() function. Then,

the graphical Lasso was implemented to estimate networks. The resulting estimated graph

was finally selected by the EBIC criterion. Table 3.8 demonstrates the identified big gene

modules with a size of at least 30 genes from the inferred gene networks. It can be seen

that the proposed method successfully detects 2 to 4 big gene modules among three models,

while the sole estimation in TPGM and SqrtPGM, GFC L and nonparanormal SKEPTIC

fail to identify informative ones.

51



Table 3.8: The big gene modules identified by different approaches (NA: no modules with a

size of at least 30 genes available).

Method Size of big modules Number of big modules

Proposed (TPGM) 312, 169 2

Proposed (SPGM) 229, 75, 120 3

Proposed (SqrtPGM) 48, 164, 120, 114 4

Estimation (TPGM) NA 0

Estimation (SPGM) 49, 32 2

Estimation (SqrtPGM) NA 0

GFC L NA 0

Nonparanormal SKEPTIC NA 0

We further performed gene pathway enrichment analysis on the identified big modules

in Table 3.8 using ToppGene Suite (Chen et al., 2009) with FDR control at level 0.05 based

on the Benjamini-Hochberg (B-H) procedure, see Table B.22 in Appendix B.8.8 for complete

results. From those modules identified by the proposed inferential procedure, we found some

pathways that are shared within three models and critical to atopic asthma, for example,

metal sequestration by antimicrobial proteins and FasL/CD95L signaling. The antimicro-

bial activity of S100A8/A9 proteins can induce a metal-witholding response by starving

pathogens with metal nutrients in inflamed upper airway due to the chronic autoimmune

diseases like asthma, according to Van Crombruggen et al. (2016). The potential role of Fas

and its ligand (FasL) signaling pathway in asthma has been intensively studied. For example,

the resistance of T helper type 2 (Th2) cells to normal degree of apoptosis induced by Fas

and its ligand prolongs or delays resolution of inflammation in atopic asthma (Potapinska

and Demkow, 2009). Williams et al. (2018) has recently demonstrated that non-apoptotic

Fas signaling on T cells promotes resolution of Th2-mediated airway inflammation. More
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Figure 3.5: Some enriched pathways from the proposed inferential procedure in SqrtPGM.
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interestingly, we also noticed some unique pathways enriched from the different modules in

the three models, as shown in Figure 3.5 for SqrtPGM and Figure B.14 in Appendix B.8.3

for TPGM and SPGM. For example, CLEC7A/inflammasome pathway from TPGM, known

as dectin-1 and a major receptor to β-glucans (an important group of allergens from house

dust mites) (Hadebe et al., 2018), has recently been shown to protect against asthma and

allergies (Gour et al., 2018). TRAIL signaling pathway from SPGM has appeared to have

a detrimental role in allergic asthma by upregulating inflammation and immune responses,

in terms of Braithwaite et al. (2018). More unique pathways were enriched from SqrtPGM,

such as JAK-STAT signaling pathway, Interleukin-4 and 13 (IL-4/IL-13) signaling pathway,

and Interleukin-6 (IL-6) signaling pathway. JAK-STAT signaling pathway has been shown

to play an important role in the development of atopic asthma by differentiating Th2 cells

from näıve T cells (Vale, 2016) and regulating the level of IgE (Zhang et al., 2018a). IL-4/IL-

13 signaling pathway is central for IgE regulation, and genetic alterations in this pathway

reveals its significance to the development of childhood atopic asthma (Kabesch et al., 2006).

IL-6 signaling pathway has been evidenced to play an active role in pathogenesis of asthma,

thus IL-6 can be a potential target for its treatment (Rincon and Irvin, 2012). However, the

identified gene modules from the sole estimation are not capable of reflecting critical gene

pathways about allergic asthma compared with the proposed inferential procedure. The

gene interactions of the module in SqrtPGM with enriched JAK-STAT signaling pathway,

as well as their corresponding interactions in TPGM and SPGM, are further presented in

Figure B.15 in Appendix B.8.4.

Then, we investigated interactions among the 12 genes included in the JAK-STAT sig-

naling pathway which is the most significant enriched pathway from SqrtPGM and also the

one enriched using a total of 500 genes with FDR control at the 0.05 level, see Table B.21 in

Appendix B.8.7. Targeting this pathway will be therapeutically effective on asthma pathol-

ogy (Vale, 2016). The inferred gene interactions from our procedure, the sole estimation,

GFC L and nonparanormal SKEPTIC are demonstrated at a fixed panel in Figure 3.6. As

we can see, the sole estimation, GFC L and nonparanormal SKEPTIC can barely detect any

informative interactions except the one between IL6 and CSF3. Conversely, our procedure

is capable of identifying more meaningful interactions related to atopic asthma in addition

54



to the one between IL6 and CSF3, for example, IL6R and IL6ST from TPGM, and CSF3

and CSF3R from SqrtPGM. The activation of IL6R requires an association with IL6ST so

as to regulate the immune response. CSF3R, which is associated with asthma, is known

as the receptor for CSF3 and should be involved in granulopoiesis during the inflammatory

process. According to a more recent study in Wang et al. (2019), CSF3 is identified as a

major effector that promotes infection-dependent transition to severe asthma, and inhibition

of CSF3R can be a potential strategy for preventing the pathological inflammation. These

suggest that the sole estimation, GFC L and nonparanormal SKEPTIC may neglect impor-

tant functional relationships between genes closely related to atopic asthma.
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Figure 3.6: The inferred interactions of genes within the JAK-STAT signaling pathway.

Last but not least, the inferred networks from our approach can capture important hub

genes that are closely associated with asthma and allergy, for example, NTRK2 (21 and 50

connections to other genes in SPGM and SqrtPGM respectively) and GSN (27, 23 and 71

connections to other genes in TPGM, SPGM and SqrtPGM respectively). The two genes

are also listed as the top differentially expressed genes in Forno et al. (2020) and are well
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replicated by the two external cohorts from Giovannini-Chami et al. (2012) and Yang et al.

(2017). However, the sole estimation, GFC L and nonparanormal SKEPTIC fail to identify

these important hub genes.

In summary, our refined inference is more useful compared to the sole estimation, GFC L

and nonparanormal SKEPTIC. It not only reveals more significant pathways related to atopic

asthma, but also captures more complex gene co-expression structures and important hub

genes. The sole estimation and the inferential methods based on Gaussian and nonparanor-

mal graphical models may lead to information loss and are less powerful to obtain informative

disease-relevant results. Therefore, our procedure can be potentially useful for new treat-

ment development in atopic asthma. To further demonstrate the advantages of our proposed

method, we performed additional analysis of GFC L on transcript per million (TPM) values

from RNA-seq data and an additional comparison of methods on a well-characterized data

set with some established “ground truth”, see Appendices B.8.5 and B.8.6 for more details.

3.7 Conclusion and discussion

We have developed a novel procedure for statistical inference of three modified Poisson-

type graphical models which provides reliable confidence intervals and p-values of pairwise

edge and desirable false discovery rate control of multiple edges to tailor the network anal-

ysis of non-negative, discrete and high-dimensional data. The procedure essentially relies

on the intrinsic property of graphical models and is different from the existing regression-

based bias correction. Compared to the sole estimation approach, the proposed method is

robust to different hyperparameter selection criteria, which results in its noticeably better

performance in inferring a more biologically meaningful network by identifying more true

signals while simultaneously controlling false discovers at a reasonably low level. Compared

to the application of graphical model methods under normal and nonparanormal assump-

tions, the proposed method tends to reveal more biological meaningful networks and is more

capable of capturing important gene interactions with less information loss. From Yang

et al. (2013), they mentioned another modified Poisson-type model called quadratic Pois-
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son graphical model (QPGM). However, unlike the desired Poisson tail, QPGM is more like

Gaussian distribution and has Gaussian-esque thin tail. Due to this major drawback, we do

not consider QPGM here.

The proposed method can be applied to more different types of omics data even though

it is mainly motivated by the count-valued RNA-seq, for example, DNA copy number varia-

tion (CNV) data and single nucleotide polymorphism (SNP) data for genomics. In practice,

TPGM is more suitable for the context with a relatively small range of discrete values such

as CNV or SNP data. For RNA-seq data which generally has much larger discrete values,

we recommend to explore SPGM or SqrtPGM first because they are more general Poisson-

type distributions and allow a broader set of feasible parameters for pairwise conditional

dependence than TPGM. Indeed, when the upper bound Di of TPGM becomes larger, the

behavior of TPGM tends to be closer to original PGM, which suffers from the limitation of

negative pairwise dependency. With sufficient computational resource, we suggest to explore

all three models by comparing the results of overall network inference, gene modularity detec-

tion, and gene network construction for important pathways according to different purpose

of each study.
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4.0 R-CoLaR: Robust Convex Program with Group-Lasso Refinement for

Sparse CCA: Application to Heavy-Tailed CITE-Seq Data

4.1 Introduction

Recent technological advances have allowed high-throughput measurements for different

layers of a biological system and generated large amount of multi-omics data, for example,

DNA copy number variation (CNV) data and single nucleotide polymorphism (SNP) data

for genomics, DNA methylation data for epigenomics, RNA-seq data for transcriptomics,

and protein data for proteinomics. Integrative analysis combining data from different omic

levels helps to better elucidate their interrelation and joint influences on the disease processes

(Sun and Hu, 2016).

Canonical correlation analysis (CCA) (Hotelling, 1936) is an important statistical method

in multivariate analysis to explore the association between two sets of variables. On the

population level, for two random vectors X ∈ Rp and Y ∈ Rq, CCA aims to identify the

canonical coefficient vectors uj ∈ Rp and vj ∈ Rq recursively that maximize the canonical

correlation λj = Corr(uᵀjX, v
ᵀ
jY ) between canonical variables uᵀjX and vᵀjY based on the

following criterion:

(uj, vj) = arg max
u,v

uᵀΣxyv

s.t. uᵀΣxu = vᵀΣyv = 1;

uᵀΣxul = 0, vᵀΣyvl = 0,∀1 ≤ l ≤ j − 1,

(4.1)

where Σx = Cov(X,X), Σy = Cov(Y, Y ) and Σxy = Cov(X, Y ). Under low-dimensional

settings, the problem (4.1) is straightforward to be solved by the singular value decompo-

sition (SVD) on Σ
−1/2
x ΣxyΣ

−1/2
y . But in genomic study, omics data sets are generally high-

dimensional with large p or q. Thus, this SVD approach for classical CCA may not work

under these high-dimensional settings due to the ill-defined inverse of covariance matrices

Σ−1
x and Σ−1

y .
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To cope with high-dimensional omics data analysis, sparse CCA has been extensively

studied within the recent ten years by imposing sparsity constraints on the structure of

canonical coefficient vectors, which leads to more interpretable results with a small set of

nonzero coordinates (Witten et al., 2009; Witten and Tibshirani, 2009; Hardoon and Shawe-

Taylor, 2011; Chen et al., 2019; Gao et al., 2015, 2017; Suo et al., 2017). There are two

main streams of sparse CCA approaches. One line is based on Witten et al. (2009) and Suo

et al. (2017). Witten et al. (2009) developed a penalized matrix decomposition approach

for sparse CCA under the assumption of Σx = Ip and Σy = Iq, which instead is unsuitable

for more general structures of Σx and Σy. To circumvent this major drawback, Suo et al.

(2017) proposed to solve sparse CCA to permit general structures of Σx and Σy using the

linearized alternating direction method with multipliers (ADMM) following the alternating

minimization approach in Witten et al. (2009). From here on, we name this approach as

SCCA-ADMM. Another line is based on Chen et al. (2019), Gao et al. (2015) and Gao

et al. (2017) which also laid theoretical foundation of sparse CCA. Chen et al. (2019) pro-

posed a CAPIT (standing for canonical correlation analysis via precision adjusted iterative

thresholding) method to estimate sparse canonical coefficient vectors under some known

structures of precision matrices (the inverse of covariance matrices). However, structures of

covariance or precision matrices are generally unknown. To relax this condition, Gao et al.

(2017) proposed CoLaR (standing for Convex program with group-Lasso Refinement) to

solve sparse CCA in two stages without prior knowledge of covariance or precision matrices.

In addition to theoretical and methodological development, there is also a broad existing

literature about applications of sparse CCA in genomic research. Witten et al. (2009) and

Witten and Tibshirani (2009) applied sparse CCA to study the relationship between gene

expression and CNV data on a same set of subjects for the breast cancer and the diffuse

large B-cell lymphoma (DLBCL). Parkhomenko et al. (2009) used sparse CCA to identify

sets of genes that are correlated with SNPs for the chronic fatigue syndrome (CSF). Lê Cao

et al. (2009) performed sparse CCA on gene expression profiles of 60 human tumor cell lines

from two different platforms. Furthermore, Safo et al. (2018) applied sparse CCA to study

the association between DNA methylation and gene expression profiles for the breast cancer.

However, all the aforementioned methods and applications of sparse CCA which depend on
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Figure 4.1: Histograms of normalized UMI and ADT counts for CITE-seq data of a MALT

tumor.

sample covariance estimation of Σx, Σy and Σxy are not robust to data with heavy-tailed

distributions.

Data with heavy-tailed distributions is actually common in genomic study. One typi-

cal example is the data from cellular indexing of transcriptomes and epitopes by sequenc-

ing (CITE-seq) which allows RNA-sequencing and information on cell surface proteins with

available antibodies simultaneously at a single-cell level. The abundance of RNA and surface

proteins is quantified by counts of unique molecular identifiers (UMI) and antibody-derived

tags (ADT) respectively for a same set of single cells. The availability of CITE-seq data has

paved a new way to learn protein-RNA correlation at a single-cell level, which aids in the

identification of novel tumor subtypes and also permits the discovery of rare subpopulations

of cells (Tirosh and Suvà, 2019). Figure 4.1 presents the histograms of normalized UMI and

ADT from RNA-seq and surface proteins on a same set of single cells for a CITE-seq data

set of a dissociated extranodal marginal zone B-cell lymphoma (MALT: mucosa-associated

lymphoid tissue). As it can be seen, even after normalization using the standard workflow of

Seurat (Stuart et al., 2019), both normalized UMI and ADT counts still have heavy-tailed
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distributions. Due to the heavy-tailed nature of CITE-seq data, sample covariance matrices

may not be robust, and the existing sparse CCA approaches may lead to inaccurate results

and fail to identify important features.

In this chapter, we propose a novel procedure named with robust CoLaR (R-CoLaR)

which consists of two parts that tailor to heavy-tailed settings such as CITE-seq data. The

first part is to robustify sample covariance using the cutting-edge tail robustness estimation

(Catoni, 2016; Avella-Medina et al., 2018; Ke et al., 2019), and the second part is to modify

the convex optimization of original CoLaR by replacing sample covariance estimators with

these robustified ones. Compared to existing sparse CCA methods, R-CoLaR maintains the

interpretability of sparse CCA and overcomes their constrains under heavy-tailed distribu-

tions.

The chapter is organized as follows. Section 4.2 contains a detailed description for the

procedure of R-CoLaR. Section 4.3 demonstrates the validity and noticeable advantages of

R-CoLaR over existing sparse CCA approaches such as CoLaR and SCCA-ADMM using

both simulation studies and application to the CITE-seq data of a MALT tumor. We finally

conclude with discussion in Section 4.4.

4.2 Methods

Let X = (X1, ..., Xn)ᵀ be one omics data set with n subjects and p dimensions and

Y = (Y1, ..., Yn)ᵀ be another omics data set with q dimensions from the same group of

subjects. X and Y consist of i.i.d. rows (or copies) of Xk = (Xk1, ..., Xkp)
ᵀ ∈ Rp and

Yk = (Yk1, ..., Ykq)
ᵀ ∈ Rq respectively with k = 1, 2, ..., n.

As mentioned in Section 4.1, the existing methods of sparse CCA (Gao et al., 2017; Suo

et al., 2017) are not suitable for data with heavy-tailed distributions due to non-robustness of

their sample covariance estimators. Therefore, our proposed R-CoLaR is to robustify sample

covariance estimators and make them as an integral part to modify the convex optimization

of original CoLaR. The procedure consists of two parts. The first part is to provide robust

estimation for covariance matrices of Σx, Σy and Σxy. The second part is to plug these
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robust estimated covariance matrices into the framework of CoLaR to solve the sparse CCA

problem. From now on, we denote C = (X,Y ) as the n by (p+ q) combined data set of X

and Y . The covariance matrix of compound data is

ΣC =

Σx Σxy

Σᵀ
xy Σy

 . (4.2)

4.2.1 Robustification of covariance matrix

In the first part, we follow the two tail robustness estimation approaches to robustify the

sample covariance matrix proposed by Ke et al. (2019): 1. Element-wise truncated estimator;

2. Huber-type M-estimator.

The element-wise truncated estimator is to truncate data so as to eliminate effects of

heavy-tailed noises, so each resulting estimator has sub-Gaussian tails. Its implementation

depends on the truncation operator

ψτ (w) = (|w| ∧ τ) sign(w), w ∈ R, (4.3)

where τ is a robustification parameter and |w| ∧ τ = min(|w|, τ). The idea behind element-

wise truncated estimator is essentially based on the truncation of the U-statistic of sample

covariance matrix of C which can be represented as

Σ̂C =
1

N

N∑
i=1

(EiE
ᵀ
i )/2, N = n(n− 1)/2, (4.4)

where {E1, E2, ..., EN} = {C1 − C2, C1 − C3, ..., Cn−1 − Cn} denotes the difference between

each pair of different samples of the compound data set C. The use of U-statistic is free of

mean estimation, which avoids the error of mean estimators under heavy-tailed distributions

and also avoids additional steps to estimate mean using existing robust methods that further

increase both statistical variability and computational complexity. The truncation operator

in (4.3) is applied to each element of Σ̂C in (4.4) to obtain the truncated estimator of

covariance matrix

Σ̂
T
C = (σ̂Tkl)1≤k,l≤(p+q), σ̂Tkl =

1

N

N∑
i=1

ψτkl(EikEil/2), (4.5)
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and Σ̂
T
x , Σ̂

T
y and Σ̂

T
xy are the corresponding element-wise truncated estimators of Σx, Σy

and Σxy in (4.2).

Another estimation approach is the Huber-type M-estimator which depends on the Huber

loss (Huber, 1964)

Lτ (w) =

w
2/2, if |w| ≤ τ,

τ |w| − τ 2/2, if |w| > τ,

(4.6)

where τ is also a robustification parameter like the one in (4.3). The Huber loss can be

regarded as a specific type of truncation and is closely related to the truncation operator

in (4.3). Similar to the idea of element-wise truncated estimator, the Huber loss in (4.6) is

applied to solve an M-estimation problem for each element of covariance matrix such that

Σ̂
H
C = (σ̂Hkl)1≤k,l≤(p+q), σ̂Hkl = arg min

θ∈R

N∑
i=1

Lτkl(EikEil/2− θ), (4.7)

where Σ̂
H
x , Σ̂

H
y and Σ̂

H
xy are the corresponding Huber-type M-estimators of Σx, Σy and Σxy

in (4.2).

How to calibrate the robustification parameter τ is critical. On the one hand, a small

constant level of τ results in non-negligible bias of estimators. For example, for Huber

loss with τ = 0, the population minimizer of (4.7) becomes the median of EikEil/2, which

is different from the mean of EikEil/2 for most distributions. On the other hand, a very

large τ leads to non-robust estimators which fail to concentrate tightly around the true

expectation. How to choose τ is one recent focus in the field of theoretical statistics which

aims to reach an optimal bias-robustness tradeoff with finite-sample concentration for large

covariance estimators (Avella-Medina et al., 2018).

For element-wise truncated estimators, it turns out that an “ideal” choice of τkl should

adapt to the sample size n and the dimension (p+ q) such that τkl � vkl
√

n
log(p+q)

as shown

in Avella-Medina et al. (2018) and Ke et al. (2019), where vkl = E(Z2
i ) denotes the second

moment of Zi. Ke et al. (2019) further derived a sharp constant in front of the order of τkl and

introduced a data-driven procedure to automatically tune the robustification parameters,
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which in practice avoids extensive computational cost incurred by cross validation. More

specifically,

τkl = vkl

√
m

2 log(p+ q) + t
, (4.8)

where m = bn/2c (the greatest integer not exceeding n/2), and the adjustable parame-

ter t indicates the confidence level 1 − 2e−t at which the truncated estimator is concen-

trated around the true covariance, see Theorem 3.1 of Ke et al. (2019) for further de-

tails. A näıve estimator of vkl is (1/N)
∑N

i=1 Z
2
i , but it tends to overestimate the true

value under heavy-tailed distributions. Therefore, a more reasonable and robust estimator is

(1/N)
∑N

i=1 ψ
2
τkl

(Zi) = (1/N)
∑N

i=1(Z2
i ∧τ 2

kl), which is based on the robustification parameter

τkl using the truncation operator in (4.3). For this reason, we can finally obtain (4.9) by

plugging this estimator into (4.8) as below,

1

N

N∑
i=1

(Z2
i ∧ τ 2

kl)

τ 2
kl

=
2 log(p+ q) + t

m
, τkl > 0, (4.9)

where {Z1, ..., ZN} = {E1kE1l/2, ..., ENkENl/2}. An adaptive estimator τ̂kl is obtained by

solving (4.9). It is easy to see that there is a unique solution of τkl in (4.9) if 2 log(p+q)+t <

(m/N)
∑N

i=1 I{Zi 6= 0}.

Based on the similar idea for element-wise truncated estimators, a data-driven estimator

τ̂kl for Huber-type M-estimators (Ke et al., 2019) can be obtained by solving both θ and τkl

together using the following system of equations

f1(θ, τkl) =
1

N

N∑
i=1

{(Zi − θ)2 ∧ τ 2
kl}

τ 2
kl

− 2 log(p+ q) + t

n
= 0, (4.10)

f2(θ, τkl) =
N∑
i=1

ψτkl(Zi − θ) = 0, (4.11)

where θ ∈ R denotes E(Zi), the first moment (or mean) of Zi. Different from (4.9), (4.10)

actually depends on the truncated estimator for the variance of Zi rather than its second

moment. (4.11) is to obtain a good estimator of E(Zi) even under heavy-tailed distributions

based on the robustification parameter τkl using the truncation operator in (4.3). Through

a similar argument like that in Wang et al. (2020), it can be shown that there is a unique

solution of τkl in (4.10) if 2 log(p+ q) + t < (n/N)
∑N

i=1 I{Zi 6= 0} and a unique solution of θ
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in (4.11) for any τkl > 0. Specifically, we can iteratively solve f1(θ(s−1), τ
(s)
kl ) and f2(θ(s), τ

(s)
kl )

in (4.10) and (4.11) for s = 1, 2, ... by starting with the initial θ(0) = (1/N)
∑N

i=1 Zi until

both θ(s) and τ
(s)
kl converge.

Finally, for the adjustable parameter t in (4.9) and (4.10), the choice of t = log(n) is

recommended by Ke et al. (2019) in practical use, but its value can be customized to accom-

modate different situations.

Both Huber-type M-estimators and estimators defined via element-wise truncation cali-

brate the robustification parameter τkl for a bias-robustness tradeoff to achieve tail robust-

ness. Different from truncation-based estimators which truncate around zero as shown in

(4.5), M-estimators truncate around the true expectation as shown in (4.7). In a finite-sample

case, Huber-type M-estimators can outperform the element-wise truncation-based estimators

due to smaller bias. But this subtle difference between the two types of estimators becomes

insignificant when the sample size n becomes larger.

4.2.2 Robust sparse CCA

In the second part, we modify the two-stage framework of CoLaR proposed by Gao et al.

(2017) by replacing the sample covariance estimators with the robust covariance estimators

introduced in Section 4.2.1. In practice, we need to guarantee the positive definiteness of

Σ̂
H
x (or Σ̂

T
x ) and Σ̂

H
y (or Σ̂

T
y ) for feasible solutions when working on the convex optimization

problems of CoLaR. Since Σ̂
H
x (or Σ̂

T
x ) and Σ̂

H
y (or Σ̂

T
y ) may not be positive definite partic-

ularly under high-dimensional settings, we instead use their nearest positive definite matrix

with distance characterized by Frobenius norms (Higham, 2002) before plugging them into

problems.

The idea of CoLaR is to solve problems of sparse CCA in two stages to finally extract

adaptive estimators of U = [u1, u2, ..., ur] and V = [v1, v2, ..., vr] (two collections of canonical

coefficient vectors) which achieve desirable estimation rates for U and V separately. For

convenience, we use Huber-type M-estimators Σ̂
H
x , Σ̂

H
y and Σ̂

H
xy in the following elaboration.

The corresponding covariance estimators can be easily replaced by element-wise truncated

estimators Σ̂
T
x , Σ̂

T
y and Σ̂

T
xy as well.
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The purpose of initial stage is to deal with the following original sparse CCA problem

with sparsity constraints:

max
U∈Rp×r,V ∈Rq×r

Tr(UᵀΣ̂
H
xyV )

s.t. UᵀΣ̂
H
x U = V ᵀΣ̂

H
y V = Ir, |Su| ≤ su, |Sv| ≤ sv,

(4.12)

where Su and Sv are the indices of nonzero rows in U and V respectively, and |Su| ≤ su

and |Sv| ≤ sv represent that the sizes of Su and Sv can be even smaller than some sparsity

levels su ≤ p and sv ≤ q. However, the program (4.12) is non-convex and computationally

infeasible with `0 norms. Therefore, instead of solving (4.12) directly, the initial stage is to

view U and V as a whole and provide a joint estimator of F = UV ᵀ by solving a convex

relaxation program of (4.12):

max
F∈Rp×q

Tr(Σ̂
Hᵀ

xy F )− ρ||F ||1

s.t. ||Σ̂
H 1

2

x F Σ̂
H 1

2

y ||∗ ≤ r, ||Σ̂
H 1

2

x F Σ̂
H 1

2

y ||op ≤ 1,

(4.13)

where Tr(.) denotes the trace of a matrix, and ρ is a penalty parameter that controls sparsity.

||.||∗ and ||.||op are denoted as the nuclear norm and the operator norm respectively. As we

can see from (4.13), the nuclear and operator norms are bounded by r and 1, and the

program is convex which can be solved efficiently by ADMM algorithm. However, the joint

estimator F̂ may still neglect some separate intrinsic structures of U and V . Therefore, we

need another stage to further refine the current results. In spite of the drawback of F̂ , it is

still a globally good estimator spanned by the initial estimated canonical coefficient vectors

Û (0) and V̂ (0) (the first r left and right singular vectors from F̂ ), which is sufficient to achieve

the final estimators of U and V in the refined stage.

The purpose of refined stage is thus to improve Û (0) and V̂ (0) from the initial stage

so as to get final estimators Û and V̂ by taking the separate structures of U and V into

consideration. With the knowledge of Û (0) and V̂ (0), the refined stage aims to solve the

sparse CCA problem:

min
U∈Rp×r

Tr(UᵀΣ̂
H
x U)− 2 Tr(UᵀΣ̂

H
xyV̂

(0))

s.t. |Su| ≤ su.

(4.14)
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and

min
V ∈Rq×r

Tr(V ᵀΣ̂
H
y V )− 2 Tr(V ᵀΣ̂

H
xyÛ

(0))

s.t. |Sv| ≤ sv.

(4.15)

The programs (4.14) and (4.15) can be viewed as a regression interpretation of CCA with

sparsity constraints for U and V . To obtain Û (or V̂ ) is equivalent to solve a multivariate

regression problem when V̂ (0) (or Û (0)) is known. If we view the rows of U (or V ) as groups,

then the regression interpretation of CCA leads to the following convex relaxation problem

of (4.14) with group-Lasso:

min
U∈Rp×r

Tr(UᵀΣ̂
H
x U)− 2 Tr(UᵀΣ̂

H
xyV̂

(0)) + ρu

p∑
j=1

||Uj.||, (4.16)

where
∑p

j=1 ||Uj.|| is the sum of the `2 norm of the rows of U as the group sparsity penalty,

and ρu is a tuning parameter that controls sparsity of U . Similar to (4.16) for U , we have

the following problem with group-Lasso for V :

min
V ∈Rq×r

Tr(V ᵀΣ̂
H
y V )− 2 Tr(V ᵀΣ̂

Hᵀ

xy Û
(0)) + ρv

q∑
j=1

||Vj.||, (4.17)

where
∑q

j=1 ||Vj.|| is the sum of the `2 norm of the rows of V , and ρv is another tuning

parameter that controls sparsity of V . The final estimators Û and V̂ of U and V are derived

after solving problems (4.16) and (4.17) and normalizing the results with Huber-type robust

covariance estimators Σ̂
H
x and Σ̂

H
y respectively.

4.3 Results

4.3.1 Simulation study

We evaluated the validity of R-CoLaR based on its accuracy of estimation and perfor-

mance of feature selection under two cases: 1. single pair of canonical coefficient vectors; 2.
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two pairs of canonical coefficient vectors among four different distributions.

For both cases, we considered the following compound covariance matrix

ΣC =

Σx Σxy

Σᵀ
xy Σy

 ,

where Σx = Σy = Σ has a Toeplitz structure: Σ = (σij) with σij = 0.5|i−j| for all i, j, and

Σxy = ΣxUΛV ᵀΣy includes two collections of canonical coefficient vectors U = [u1, u2, ..., ur]

and V = [v1, v2, ..., vr] and the ordered canonical correlations Λ = diag(λ1, ..., λr) with 1 >

λ1 ≥ ... ≥ λr > 0. It can be seen that r = 1 and 2 for cases of single pair and two pairs of

canonical coefficient vectors respectively. Moreover, the number of row sparsity was chosen

to be 5 for both U and V , and their positions were randomly sampled from the rows of U and

V respectively. Each nonzero value was then chosen randomly from the uniform distribution

between -2 and 2. In the end, U and V were normalized with respect to Σx and Σy to

guarantee UᵀΣxU = V ᵀΣyV = Ir.

Based on the aforementioned true settings for both cases, we generated 100 data sets of

X and Y respectively. The details to simulate each data set of X and Y are as follows. We

at first generated an n× (p+ q) data matrix D1 where each element is i.i.d. with a certain

distribution. Then, we scaled D1 to D2 using true means and true standard deviations.

Finally, D2 was further rescaled to obtain the final data set D3 = D2(ΣC)1/2. The first p

columns of D3 represent a data set of X, while the remaining columns consist of a data set

of Y . Here, we set n = 150, p = 200 and q = 200. We considered four distributions same as

those in Ke et al. (2019) to generate D1:

• Normal distribution. Each element of D1 is i.i.d. with the standard normal distribution.

• Student’s t distribution. D2 = D1/
√

3, where each element of D1 is i.i.d. and follows

Student’s t distribution with 3 degrees of freedom.

• Pareto distribution. D2 = 2(D1− 3/2)/
√

3, where each entry of D1 is i.i.d. with Pareto

distribution with shape parameter 3 and scale parameter 1.

• Log-normal distribution. D2 = (D1 − e0.5)/
√
e2 − e, where each element of D1 is i.i.d.

with Log-normal distribution with parameters µ = 0 and σ = 1.
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4.3.1.1 Case I: single pair of canonical coefficient vectors For the single case, the

true pair of canonical coefficient vectors is denoted as (u1, v1), and the rank of Σxy is r = 1.

We set the true canonical correlation λ1 = 0.9 here.

We denoted R-CoLaRH with Huber-type M-estimators Σ̂
H
x , Σ̂

H
y and Σ̂

H
xy and R-CoLaRT

with element-wise truncated estimators Σ̂
T
x , Σ̂

T
y and Σ̂

T
xy as covariance estimation respec-

tively. When performing R-CoLaR, we used the R function nearPD() to compute their

nearest positive definite approximation to guarantee the positive definiteness of Σ̂
H
x , Σ̂

H
y ,

Σ̂
T
x and Σ̂

T
y . In the second part to perform sparse CCA, the tuning parameter in the initial

stage was set at ρ = 0.5
√

log(p ∨ q)/n where p ∨ q = max(p, q), and the tuning param-

eters in the refined stage were set at ρu = b
√

(r + log(p))/n and ρv = b
√

(r + log(q))/n

with b = 0.5. To compare with R-CoLaR, we performed original CoLaR with sample co-

variance estimators Σ̂x, Σ̂y and Σ̂xy using default tuning parameters ρ = 0.5
√

log(p ∨ q)/n

and ρu = ρv = b
√

(r + log(p ∨ q))/n from the authors’ package with b = 0.5. We also

performed SCCA-ADMM (Suo et al., 2017) with tuning parameters τu = b1

√
log(p)/n and

τv = b1

√
log(q)/n with b1 = 0.5 as another comparison study.

We at first evaluated the accuracy of estimated pair of canonical coefficient vectors (û1, v̂1)

from all methods based on two different types of errors:

• Error 1: min(||â− a||22, ||â+ a||22) with â = û1/||û1||2 (or v̂1/||v̂1||2) and a = u1/||u1||2 (or

v1/||v1||2) (Suo et al., 2017; Chen et al., 2019).

• Error 2: infw∈{−1,1} ||Σ1/2(ẑw − z)||2F with Σ = Σx (or Σy), ẑ = û1 (or v̂1) and z = u1

(or v1) (Gao et al., 2017), where ||.||F is the Frobenius norm.

Error 1 essentially measures the sin angle expanded by the estimator û1 (or v̂1) and the

ground truth u1 (or v1) with normalized lengths. Error 2 depicts the prediction loss which is

the expected squared error for predicting canonical variables Xu1 (or Y v1) using Xû1 (or

Y v̂1). Due to the capability of capturing important features from data for robust sparse CCA

and sparse CCA, we then evaluated the performance of feature selection on the estimated

pair of canonical coefficient vectors (û1, v̂1). We made an additional thresholding step on

(û1, v̂1) to keep those non-zero entries with absolute magnitudes greater than 1×10−4. In the

ground truth (u1, v1) of our simulation settings, the numbers of non-zero and zero elements
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are 5 and 195 respectively for both u1 and v1. Three metrics were used to measure the

performance of identifying true signals and simultaneously controlling false discovers,

• True positive (TP): the number of true signals (or non-zero elements) in û1 (or v̂1)

compared to u1 (or v1).

• True negative (TN): the number of true non-signals (or zero elements) in û1 (or v̂1)

compared to u1 (or v1).

• The Matthews correlation coefficient (MCC): = TP×TN−FP×FN√
(TP + FP)×(TP + FN)×(TN + FP)×(TN + FN)

,

where FP = false positives (the number of false signals) and FN = false negatives (the

number of false non-signals). It is a more robust metric to the case with class imbalance

(e.g. the number of true signals is much less than that of non-signals), and its value

lies in the interval between −1 and 1. A value of 1 indicates a perfect identification,

while a value of −1 demonstrates a totally wrong identification. A value of 0 illustrates

a random guess.

Tables 4.1-4.4 report medians of all metrics from different methods based on the four

distributions. Here, we independently summarized the results from initial stages of R-CoLaR

and CoLaR as well. Table 4.1 shows the results of comparison on Normal distribution. R-

CoLaRH (initial) and R-CoLaRT (initial) show very similar performance to CoLaR (initial)

on all the metrics. Likewise, the results from R-CoLaRH and R-CoLaRT are similar to

CoLaR. These methods after the refined stage further reduce two errors and improve the

identification of TPs while slightly sacrificing the performance of TNs. SCCA-ADMM is

slightly better than R-CoLaR and CoLaR on two types of errors. Under our expectation, R-

CoLaR illustrates equivalently good performance as CoLaR and SCCA-ADMM on Normal

distribution. From Tables 4.2-4.4 under settings of heavy-tailed distributions, R-CoLaR

shows noticeable advantages over CoLaR and SCCA-ADMM. As it can be seen, Errors 1

and 2 even from R-CoLaRH (initial) and R-CoLaRT (initial) are significantly lower than

those from CoLaR (initial), CoLaR and SCCA-ADMM. The values of Error 1 from CoLaR

(initial), CoLaR and SCCA-ADMM are all close to 2 (the maximum value), implying that

the estimated canonical coefficient vectors are nearly orthogonal to the ground truth. R-

CoLaRH and R-CoLaRT further improve performance of errors. The refined stage in the

70



original CoLaR fails to reduce errors under these heavy-tailed distributions. Moreover, R-

CoLaRH and R-CoLaRT further manifest their advantages in identifying true positives on

Student’s t, Pareto and Log-normal distributions, as shown in Tables 4.2-4.4. CoLaR and

SCCA-ADMM barely detect important true signals, while both R-CoLaRH and R-CoLaRT

are capable of identifying 4 out of 5 true positives and maintaining true negatives close to

195 as well. In terms of the TNs, it is clearly to notice that the original CoLaR after the

refined stage does not control false discovers very well. In addition, the MCCs of R-CoLaRH

and R-CoLaRT are obviously better than those of CoLaR and SCCA-ADMM which are very

close to 0 and equivalent to a random guess in feature selection.

In summary, R-CoLaR is equivalently good as CoLaR and SCCA-ADMM on Normal

distribution and particularly superior than these sparse CCA approaches on the heavy-tailed

distributions in terms of both accuracy and feature selection under the case of single pair of

canonical coefficient vectors.

Table 4.1: Method comparison under the single case on Normal distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR SCCA-ADMM

(initial) (initial) (initial)

û1

Error 1 0.2024 0.1034 0.1767 0.0865 0.1788 0.0873 0.0207

Error 2 0.1593 0.0739 0.1417 0.0661 0.1424 0.0658 0.0343

TP 3 4 4 4 4 4 4

TN 195 186 195 185 195 185 192

MCC 0.7707 0.4774 0.7707 0.4581 0.7707 0.4581 0.6665

v̂1

Error 1 0.4025 0.0694 0.3614 0.0579 0.3646 0.0577 0.0343

Error 2 0.3895 0.0664 0.3467 0.0563 0.3484 0.0567 0.0354

TP 2 4 2 4 2 4 5

TN 195 188.5 195 189 195 189 192

MCC 0.6276 0.5834 0.6276 0.5837 0.6276 0.5955 0.7228
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Table 4.2: Method comparison under the single case on Student’s t distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR SCCA-ADMM

(initial) (initial) (initial)

û1

Error 1 0.2790 0.0999 0.2511 0.0893 2.0000 1.9594 2.0000

Error 2 0.2485 0.0889 0.2142 0.0802 1.3086 1.3224 1.4129

TP 3 4 3 4 0 1 0

TN 195 192 195 188 192.5 172 182

MCC 0.7707 0.6210 0.7707 0.5233 -0.0114 0.0031 -0.0367

v̂1

Error 1 0.4721 0.1006 0.4721 0.0810 2.0000 1.9951 2.0000

Error 2 0.4952 0.1097 0.4464 0.0906 1.3246 1.3532 1.3686

TP 1 4 1 4 0 1 0

TN 195 192 195 190 193 172.5 183

MCC 0.4427 0.6665 0.4427 0.6210 -0.0114 -0.0229 -0.0386
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Table 4.3: Method comparison under the single case on Pareto distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR SCCA-ADMM

(initial) (initial) (initial)

û1

Error 1 0.7073 0.2002 0.7826 0.2794 2.0000 1.9999 2.0000

Error 2 0.7480 0.3219 0.5925 0.3210 1.3419 1.3351 1.4013

TP 2 4 2 3 0 0.5 0

TN 195 194 194 189 190.5 177 188

MCC 0.6276 0.7707 0.4427 0.5111 -0.0161 -0.0246 -0.0269

v̂1

Error 1 0.4721 0.2500 0.4721 0.2699 2.0000 2.0000 2.0000

Error 2 0.6870 0.3999 0.5905 0.3062 1.2734 1.2754 1.3105

TP 1 3 1 4 0 0 0

TN 195 193.5 194.5 189 192 179 188

MCC 0.4427 0.6634 0.4427 0.5111 -0.0161 -0.0327 -0.0305
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Table 4.4: Method comparison under the single case on Log-normal distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR SCCA-ADMM

(initial) (initial) (initial)

û1

Error 1 0.4275 0.1486 0.3640 0.1784 2.0000 1.9943 2.0000

Error 2 0.4504 0.1745 0.3139 0.1371 1.3293 1.3125 1.3537

TP 2 4 2 4 0 1 0

TN 195 193.5 195 189 191.5 173 185

MCC 0.6276 0.7228 0.6276 0.5510 -0.0114 0.0083 -0.0327

v̂1

Error 1 0.4721 0.1790 0.4721 0.1426 2.0000 1.9975 2.0000

Error 2 0.5653 0.2210 0.4572 0.1494 1.3645 1.3666 1.3626

TP 1 4 1.5 4 0 1 0

TN 195 193 195 189 190.5 173 185

MCC 0.4427 0.6665 0.4427 0.5243 -0.0161 0.0010 -0.0348
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4.3.1.2 Case II: two pairs of canonical coefficient vectors For the multiple case,

the collections of true canonical coefficient vectors are denoted as U = [u1, u2] and V =

[v1, v2], and the rank of Σxy is r = 2. We set the true canonical correlations λ1 = 0.9 and

λ2 = 0.8. Both R-CoLaR and CoLaR were implemented using the same procedure and

tuning parameters as those in Section 4.3.1.1 for the single case. Here, we did not include

SCCA-ADMM as a comparison because it was mainly developed for the single case.

Similar to the single case, we at first evaluated the accuracy of estimated canonical

coefficient vectors Û = [û1, û2] and V̂ = [v̂1, v̂2] using the following two different types of

errors which generalize their versions in Section 4.3.1.1 to matrix cases:

• Error 1: ||ÂÂᵀ − AAᵀ||2F , where Â represents r left singular vectors after SVD of Û (or

V̂ ), and A denotes r left singular vectors after SVD of U (or V ) (Suo et al., 2017; Chen

et al., 2019) with r = 2 here.

• Error 2: infW∈O(r) ||Σ1/2(ẐW − Z)||2F with Σ = Σx (or Σy), Ẑ = Û (or V̂ ) and Z = U

(or V ) (Gao et al., 2017), where O(r) denotes the set of all r × r orthogonal matrices

with r = 2 here.

Error 1 measures the difference between the subspace spanned by canonical coefficient vectors

Â and A. Error 2 is the prediction loss where we need to find a W from all possible 2 × 2

orthogonal matrices that minimizes its quantity. Then, we evaluated the performance of

feature selection on the estimated canonical coefficient vectors Û and V̂ . We also kept only

the non-zero elements whose absolute magnitudes are greater than 1 × 10−4. Unlike the

single case in Section 4.3.1.1, we here measured the rows of Û and V̂ with slightly different

definitions of TP and TN. Three metrics were also adopted to measure the performance of

identifying true signals while simultaneously controlling false discovers,

• TP: the number of true non-zero rows (e.g. both û1 (or v̂1) and û2 (or v̂2) are non-zero)

in Û (or V̂ ) compared to those in U (or V ).

• TN: the number of true zero rows (e.g. either û1 (or v̂1) or û2 (or v̂2) is zero) in Û (or

V̂ ) compared to those in U (or V ).

• MCC: = TP×TN−FP×FN√
(TP + FP)×(TP + FN)×(TN + FP)×(TN + FN)

.
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In the ground truth of U and V , the number of true non-zero and zero rows are 5 and 195

respectively.

Tables 4.5-4.8 report medians of all the metrics from R-CoLaR and CoLaR on four dif-

ferent distributions for the multiple case. From Table 4.5, it is expected to see that all the

metrics in terms of accuracy and feature selection are quite similar among R-CoLaRH (ini-

tial), R-CoLaRT (initial) and CoLaR (initial) on Normal distribution. Likewise, R-CoLaRH,

R-CoLaRT and CoLaR show similar results as well. R-CoLaR shows significant advantages

over CoLaR on heavy-tailed distributions, as shown in Tables 4.6-4.8. In terms of accuracy,

Errors 1 and 2 from R-CoLaRH (initial) and R-CoLaRT (initial) are noticeably lower than

those from CoLaR (initial) and CoLaR. The values of Error 1 from CoLaR (initial) and

CoLaR are all close to 4 (the maximum value), implying that the subspace spanned by the

estimated canonical coefficient vectors is nearly orthogonal to the ground truth. Moreover,

R-CoLaRH and R-CoLaRT after the refined stage further improve accuracy and significantly

lower the two errors. On asymmetric heavy-tailed distributions like Pareto and Log-normal,

R-CoLaRH with Huber-type M-estimators can be even more accurate than R-CoLaRT with

truncation-based estimators. This may be due to that those asymmetric distributions could

amplify the subtle difference between the two types of estimators discussed at the end of

Section 4.2.1. In terms of feature selection, R-CoLaRH and R-CoLaRT are capable of con-

sistently identifying 4 or 5 out of 5 true positives while at the same time maintaining high

true negatives as well, and they are more powerful than R-CoLaRH (initial) and R-CoLaRT

(initial) in identifying true signals particularly on Pareto and Log-normal distributions. Both

CoLaR (initial) and CoLaR fail to identify all the true positives, and CoLaR also leads to

high false positives in terms of low values of TNs. As for MCCs, R-CoLaR is obviously

better than CoLaR whose values are very close to 0 and equivalent to a random guess, and

R-CoLaR (initial) can be better than R-CoLaR due to its more balanced TPs and TNs.

Moreover, it is worthwhile to notice that R-CoLaRH can be even better on Pareto and Log-

normal distributions considering both accuracy and feature selection.

To summarize, R-CoLaR is equivalently good as CoLaR on Normal distribution and par-

ticularly superior than CoLaR on the heavy-tailed distributions in terms of both accuracy

and feature selection. Under the case of two pairs of canonical coefficient vectors, R-CoLaRH
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with Huber-type M-estimators shows even better performance on asymmetric heavy-tailed

distributions.

Table 4.5: Method comparison under the multiple case on Normal distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR

(initial) (initial) (initial)

Û

Error 1 0.9343 0.2361 0.7409 0.1828 0.7505 0.1814

Error 2 0.4905 0.1216 0.3781 0.0934 0.3829 0.0942

TP 5 5 5 5 5 5

TN 194 180 195 181 195 181

MCC 0.8921 0.4804 0.9013 0.4942 0.9105 0.4942

V̂

Error 1 0.8740 0.2470 0.6797 0.1915 0.6833 0.1910

Error 2 0.4659 0.1289 0.3636 0.0983 0.3698 0.0987

TP 5 5 5 5 5 5

TN 194 180 194.5 179 195 180

MCC 0.8921 0.4804 0.9105 0.4675 0.9105 0.4804

4.3.2 Application to CITE-seq data of a MALT tumor

We applied R-CoLaR, CoLaR and SCCA-ADMM to the CITE-seq data mentioned in

Section 4.1 from a MALT tumor stained with 17 TotalSeq-B antibodies, including CD3,

CD4, CD8a, CD14, CD15, CD16, CD56, CD19, CD25, CD45RA, CD45RO, PD-1, TIGIT,

CD127, IgG2a, IgG1 and IgG2b. The estimated first pairs of canonical coefficient vectors

were compared among all the approaches.

The data set was downloaded from the 10X Genomics website: https://support.10xge

nomics.com/single-cell-gene-expression/datasets/3.0.0/malt 10k protein v3.
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Table 4.6: Method comparison under the multiple case on Student’s t distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR

(initial) (initial) (initial)

Û

Error 1 1.4155 0.3520 1.1726 0.3211 3.9964 3.9775

Error 2 0.8879 0.2302 0.7028 0.1961 2.4166 2.4738

TP 4 5 4 5 1 2

TN 195 189 194 181 184 151

MCC 0.8408 0.6637 0.7949 0.4942 0.0014 0.0363

V̂

Error 1 1.2797 0.3308 1.0849 0.2737 3.9960 3.9736

Error 2 0.8733 0.2050 0.6728 0.1508 2.5746 2.5592

TP 4 5 5 5 1 3

TN 195 187 194 182 181 146.5

MCC 0.8921 0.6073 0.7845 0.5092 0.0478 0.0832
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Table 4.7: Method comparison under the multiple case on Pareto distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR

(initial) (initial) (initial)

Û

Error 1 2.0726 1.0778 2.7174 2.2171 4.0000 3.9957

Error 2 1.9533 0.8978 2.2754 1.9973 2.7471 2.7162

TP 2 4 2 4 0 2

TN 195 193 193 181 184.5 157

MCC 0.6276 0.7845 0.4346 0.3850 -0.0161 0.0273

V̂

Error 1 2.0635 0.9775 2.5425 2.2802 4.0000 3.9980

Error 2 1.8959 0.8535 2.2120 1.9350 2.6165 2.5952

TP 2 4 2 4 0 1

TN 195 193 193 181 188 161.5

MCC 0.6276 0.7845 0.5072 0.3683 -0.0198 -0.0010
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Table 4.8: Method comparison under the multiple case on Log-normal distribution.

R-CoLaRH R-CoLaRH R-CoLaRT R-CoLaRT CoLaR CoLaR

(initial) (initial) (initial)

Û

Error 1 1.7294 0.4070 2.2188 2.0928 4.0000 3.9901

Error 2 1.1631 0.2785 1.6271 1.5221 2.6824 2.6590

TP 3 5 3 5 0 2

TN 195 191 193 177.5 185 153

MCC 0.7707 0.7377 0.6307 0.3794 -0.0161 0.0533

V̂

Error 1 1.5007 0.3786 2.2376 2.0671 4.0000 3.9926

Error 2 1.0827 0.2817 1.6175 1.4833 2.6753 2.6696

TP 3 5 3 5 0 2

TN 195 191 193 178 183.5 151

MCC 0.7707 0.7377 0.6118 0.4079 -0.0161 0.0401
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Following a standard workflow of pre-processing from Seurat (Stuart et al., 2019), we fil-

tered cells that have unique gene counts over 2500 or less than 200 and that have > 5%

mitochondrial counts. Then, we took log-normalization of UMI counts for the single-cell

RNA-seq and extracted top 1000 highly variable genes based on the algorithm implemented

by Seurat that accounts for mean-variance relationship (Stuart et al., 2019). Unlike the

typical log-normalization, the ADT data was normalized by a centered log-ratio for each

antibody on the same set of cells as recommended by Stuart et al. (2019). In the end, the

normalized RNA-seq data with n = 736 cells and p = 1000 most highly variable genes and

the normalized ADT data with q = 17 antibodies on the same set of cells were used for

further analysis.

When implementing R-CoLaRH, R-CoLaRT and CoLaR, we used the same tuning pa-

rameter ρ = 0.5
√

log(p ∨ q)/n in the initial stage. In the refined stage, we used five-

fold cross validation to select a value of b from the candidate set b = {0.5, 1, 1.5, 2} for

ρu = b
√

(r + log(p))/n and ρv = b
√

(r + log(q))/n of R-CoLaR and for the common penalty

ρu = ρv = b
√

(r + log(p ∨ q))/n of original CoLaR with r = 1. Similarly, the common

value of b1 for penalty levels τu = b1

√
log(p)/n and τv = b1

√
log(q)/n of SCCA-ADMM

was also selected via five-fold cross validation from the candidate set b1 = {0.5, 1, 1.5, 2}.

Specifically, four folds were used as a training set (X
(l)
train,Y

(l)
train), and one fold was used as

a testing set (X
(l)
test,Y

(l)
test) with l = 1, 2, ..., 5. The first pair of canonical coefficient vectors

(û
(l)
1 , v̂

(l)
1 ) was obtained from the training set. Then, the value of b (or b1) was selected as

the one that maximizes the canonical correlation on the projected data (X
(l)
testû

(l)
1 ,Y

(l)
testv̂

(l)
1 )

with the testing set. The canonical correlations of R-CoLaRH and R-CoLaRT were calcu-

lated from the robust covariance of (X
(l)
testû

(l)
1 ,Y

(l)
testv̂

(l)
1 ) using the Huber-type M-estimator

and the element-wise truncated estimator respectively. Finally, the estimated (û1, v̂1) whose

non-zero elements have absolute magnitudes greater than 1 × 10−4 was obtained from the

selected b and b1 using the complete data.

Table 4.9 demonstrates the number of genes and ADTs identified from all the aforemen-

tioned approaches. It can be seen that R-CoLaRH and R-CoLaRT can generally detect more

genes and ADTs compared to CoLaR and SCCA-ADMM, and SCCA-ADMM is particularly

conservative in identifying functionally important genes. Specific lists of ADTs and genes
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Table 4.9: The identified number of genes and ADTs from all the approaches.

Number of genes Number of ADTs

R-CoLaRH 40 7

R-CoLaRT 35 8

CoLaR 35 6

SCCA-ADMM 20 5

for all the approaches are shown in Tables 4.10 and 4.11 respectively, where boldface with

an asterisk represents a gene or an ADT that is not identified by CoLaR or SCCA-ADMM,

and boldface with two asterisks is denoted as a gene or an ADT that fails to be identified

by both CoLaR and SCCA-ADMM.

In terms of ADTs on cell surface in Table 4.10, R-CoLaRH and R-CoLaRT are capable of

identifying the PD-1 protein which is expressed on the cell surface of T lymphocytes. Ample

evidence has confirmed that markedly elevated PD-1 levels in tumor-infiltrating T cells in-

hibit immune responses, and clinical PD-1 blockade is a promising immunotherapy for B-cell

lymphomas (Xu-Monette et al., 2018). However, SCCA-ADMM fails to detect this impor-

tant protein. Furthermore, R-CoLaR can identify the TIGIT and the CD45RA proteins that

are important to B-cell lymphomas, while both CoLaR and SCCA-ADMM are not capable

of detecting them. The TIGIT protein has also been shown to mark intratumoral T cells,

and it is identified as a frequently expressed coinhibitory receptor of PD-1. Thus, TIGIT and

PD-1 coblockade deserves to be further studied to promote antitumor responses for B-cell

non-Hodgkin lymphoma, according to Josefsson et al. (2019). The CD45RA protein has been

shown to typically exhibit positive immunophenotypes in the tumor cells among patients di-

agnosed as low-grade MALT lymphoma of the nasopharynx (El-Banhawy and El-Desoky,

2005). Therefore, R-CoLaRH and R-CoLaRT are more powerful in capturing functionally

important proteins related to MALT or other types of B-cell lymphomas in addition to the
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ones captured by CoLaR and SCCA-ADMM.

In terms of genes in Table 4.11, all the methods can detect ITM2A that regulates im-

Table 4.10: Lists of identified ADTs from all the approaches (Boldface with an asterisk: not

appeared in CoLaR or SCCA-ADMM; Boldface with two asterisks: not appeared in both

CoLaR and SCCA-ADMM).

ADT

R-CoLaRH R-CoLaRT CoLaR SCCA-ADMM

CD3 CD3 CD3 CD3

CD4 CD4 CD4 CD4

CD19 CD19 CD19 CD19

CD45RO CD45RO CD45RO CD45RO

PD-1* PD-1* PD-1 CD127

TIGIT** TIGIT** CD127

CD127 CD127

CD45RA**

mune response and has high expression in CD4+ T cells. The gene has also recently been

shown as generally co-expressed with PD-1 (Andor et al., 2019). However, R-CoLaR can

identify more important genes related to MALT lymphoma such as HSP90AA1, RGCC and

PIK3R1, compared to SCCA-ADMM. HSP90AA1, which belongs to the HSP90 family of

genes, closely interacts with BCL-6 gene (Cerchietti et al., 2009) that is suggested as a

marker for transformation of MALT lymphoma (Flossbach et al., 2011) and that is believed

to facilitate the proliferation of CD19+ B lymphocytes and the differentiation of CD4+

T cells (Crotty et al., 2010). RGCC, which may contribute to regulate the cell cycle of

CD4+ T cells (Tegla et al., 2015), enhances the activity of CDK1 gene that is believed to be

actively associated with the evolution of H.pylori -associated gastritis to MALT lymphoma

in the modulation of cellular death by apoptosis, cellular proliferation and transformation

(Banerjee et al., 2000). PIK3R1 is an important gene within the PI3K/AKT pathway which
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is negatively regulated by PD-1 activity in malignant T cells (Wartewig and Ruland, 2019).

Then, compared to CoLaR, R-CoLaRH can further identify ANXA1 gene which plays a

role in increasing proliferation and activation of CD3 T cells (D’Acquisto et al., 2007). It

is also a specific marker of hairy cell leukemia (Falini et al., 2004) and can be helpful to

distinguish it from other B-cell lymphomas like MALT. Moreover, R-CoLaRH is capable of

identifying additional important genes like GZMK and HLA-DQB1 compared to both Co-

LaR and SCCA-ADMM. GZMK is over-expressed in cytotoxic T cells with CD3 or CD4

antibodies, which reflects a host anti-lymphoma response (Schuhmacher et al., 2016). HLA-

DQB1, which binds peptides derived from antigens and presents them on the cell surface

to be recognized by CD4 T cells, is shown to have a high prevalence of mutation among

patients with MALT lymphoma according to Filip et al. (2018). Therefore, R-CoLaR can

detect more functionally important genes associated with cell surface proteins for MALT

and other B-cell lymphomas than CoLaR and SCCA-ADMM.

Taken together, the proposed method R-CoLaR is better in interpreting the gene-protein

relationship for the mechanism of MALT or other types of B-cell lymphomas than CoLaR

and SCCA-ADMM.

4.4 Conclusion and discussion

We have developed a novel robust sparse CCA procedure R-CoLaR that extends its ap-

plication to data with heavy-tailed distributions. In simulation studies, compared to existing

sparse CCA methods such as CoLaR and SCCA-ADMM, R-CoLaR shares similar perfor-

mance under non-heavy-tailed distributions and shows noticeable advantages with lower er-

rors of estimated canonical coefficient vectors and more accurate feature selection of nonzero

coordinates under heavy-tailed distributions. In application of the CITE-seq data, R-CoLaR

is more powerful in identifying sets of genes correlated with cell surface proteins, which in-

terprets the mechanism of MALT better than CoLaR and SCCA-ADMM. In practical use,

R-CoLaRH with Huber-type M-estimators is recommended in a case with relatively small n

due to its even better performance with finite sample sizes. When the sample size n becomes
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larger, R-CoLaRT with element-wise truncated estimators is a better option because it is

more computationally efficient with no need of mean estimation.

Table 4.11: Lists of identified genes from all the approaches (Boldface with an asterisk: not

appeared in CoLaR or SCCA-ADMM; Boldface with two asterisks: not appeared in both

CoLaR and SCCA-ADMM).

Gene

R-CoLaRH R-CoLaRT CoLaR SCCA-ADMM

IGKC, CD79A IGKC, CD79A IGKC, CD79A IGKC, CD79A

IGHM, HLA-DRA IGHM, HLA-DRA IGHM, HLA-DRA IGHM, HLA-DRA

GZMK**, CD74 CD74, CD83 CD74, CD83 CD74, ANXA1

ANXA1*, IGHA1** NEAT1*, IGLC2* NEAT1, IGLC2 CD83, HLA-DPA1

CD83, NEAT1* HLA-DPA1, MS4A1 HLA-DPA1, MS4A1 MS4A1, HLA-DPB1

IGLC2*, HLA-DPA1 HLA-DPB1, IL32 HLA-DPB1, IL32 IL32, RGS1

MS4A1, HLA-DPB1 YBX3*, GRASP* YBX3, GRASP ITM2A, TRBC1

HLA-DQB1**, IL32 RGS1, MAF* RGS1, MAF IL7R, GAPDH

YBX3*, GRASP* HSP90AA1*, ITM2A HSP90AA1, ITM2A SRGN, TSPYL2

RGS1, MAF* BATF*, TRBC1 BATF, TRBC1 KLF6, TRBC2

HSP90AA1*, ITM2A BANK1*, IL7R BANK1, IL7R

BATF*, TRBC1 RTKN2*, CD48* RTKN2, CD48

BANK1*, IL7R GAPDH, SRGN GAPDH, SRGN

RTKN2*, CD48* TSPYL2, RGCC* TSPYL2, RGCC

GAPDH, SRGN FKBP5*, H2AFZ* FKBP5, H2AFZ

TSPYL2, RGCC* PIK3R1*, KLF6 PIK3R1, KLF6

FKBP5*, CARD16** IL6ST*, TRBC2 IL6ST, TRBC2

H2AFZ*, PIK3R1* TRAT1* TRAT1

KLF6, IL6ST*

TRBC2, TRAT1*
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5.0 Discussion and Future Works

5.1 Discussion

Gene co-expression network analysis and multi-omics study are two popular types of

studies in biological research. The high dimensions, the discreteness and even the heavy-

tailed distributions of omics data have posed great challenges in both computation and

methodology. To address the computational challenge, we have developed an efficient and

unified package SILGGM for statistical inference of high-dimensional Gaussian graphical model

in large-scale gene network analysis in Chapter 2. To further address the challenge from

discrete and non-negative omics data in biological network analysis, we have proposed a

novel two-step procedure for statistical inference of high-dimensional modified Poisson-type

graphical models in Chapter 3. To cope with high-dimensional omics data even with the

heavy-tailed phenomenon in multi-omics study, we have proposed a novel robust sparse CCA

procedure named with R-CoLaR in Chapter 4.

5.2 Future works

For Chapter 2, we will add parallel computing to SILGGM so as to allow users to use

multiple clusters for bigger data analysis since the droplet-based single-cell technology will

further increase the sample size (Macosko et al., 2015). In addition, the new feature for the

rigorous statistical inference of high-dimensional multiple gene networks is another potential

extension of our package because differential gene network analysis among different cell types

or cells of multiple individuals is being paid more attention to.

For Chapter 3, there are several limitations of our proposed method which need future

study. On the one hand, the proposed method is not symmetric between i and j in estimating

each θij, and generally depends on the ordering of variables. One can naively apply a sample

splitting scheme for symmetrization. More specifically, we randomly split the data into two
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halves. Then for each fixed pair i < j, we fit the first half of the data into our method to

obtain estimator θ̃ij, and then apply the second half to our method with i and j switched to

obtain θ̃ji. The final asymptotically normal estimator is the average of these two independent

estimators θ̃symij = (θ̃ij + θ̃ji)/2. However, both that sample splitting scheme only uses part

of the data for inference and that the result depends on the random split of the data make

it less preferred in practice. Some preliminary analysis suggests that sample splitting is not

necessary for asymptotic normality of θ̃symij but the dependency between θ̃ij and θ̃ji obtained

with the same entire samples requires a refined theoretical analysis. We thus leave it as a

future work. On the other hand, our method allows only a single discrete-type data set as

an input. Due to the increasing popularity of multi-omics study, the integrative network

analysis of multi-layered data sets with both continuous and discrete values is a promising

future direction. To this end, we will further expand our procedure to more generalized or

mixed-type exponential family graphical models as a future work.

For Chapter 4, there are several potential extensions of R-CoLaR that need future study.

On the one hand, we intend to incorporate phenotype (e.g. disease status, cell status etc.)

of subjects into the current framework of R-CoLaR as a guidance for results also associated

with phenotype of each observation. On the other hand, R-CoLaR can be extended to a

multiple framework that allows more different types of omics data for analysis. In this sense,

how to determine the canonical correlation with more than two data sets will be also an

interesting problem that needs to be addressed.
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Appendix A Supplement to Chapter 2

A.1 Theoretical procedures of each method included in the package SILGGM

Without loss of generality, we assume that X = (X1, ..., Xp) is an n × p matrix, where 

each row vector (Xk1, ..., Xkp)
ᵀ for 1 ≤ k ≤ n follows a p-dimensional independently and 

identically multivariate normal distribution with mean 0 and covariance matrix Σ. The 

precision matrix is denoted as Ω = (ωij )p×p = Σ−1, where i, j = 1, 2, ..., p.

A.1.1 The bivariate nodewise scaled Lasso

B NW SL (Ren et al., 2015) is to make inference on each ωij with i 6= j. Based on the 

bivariate conditional normal distribution with index set A = {i, j},

XA|XAc ∼ N
(
−Ω−1

A,AΩA,Ac ,Ω
−1
A,A

)
, ΩA,A =

ωii ωij

ωji ωjj

 , (A.1)

the bivariate nodewise scaled Lasso regression of the two variables in A against the other

variables in Ac is proposed,

arg min
β∈Rp−2,σ>0

{
||Xm −XAcβ||2

2nσ
+
σ

2
+ λ

∑
k∈Ac

||Xk||√
n
|βk|

}
, m ∈ A = {i, j}. (A.2)

Here, each run of scaled Lasso regression is tuning-free, and the tuning parameter is taken

as λ =
√

2 log(p/
√
n)/n. The estimated residual ε̂A = XA −XAc β̂A can be obtained once

β̂A is estimated from (A.2). Then, Ω for variables i and j can be estimated:

Ω̂A,A =

ω̂ii ω̂ij

ω̂ji ω̂jj

 =

(
1

n
ε̂ᵀAε̂A

)−1

, A = {i, j}. (A.3)

Under the minimal sparseness assumption s = o(
√
n/ log(p)), each estimator ω̂ij has

been shown asymptotically normal and efficient,√
n(ω̂iiω̂jj + ω̂2

ij)
−1 (ω̂ij − ωij)

D−→ N (0, 1). (A.4)
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According to (A.4), we can estimate the corresponding p-value and confidence interval of 

each ωij . The näıve implementation of the procedure requires O(p2) runs of scaled Lasso 

regression, but the total number of runs of regression can be reduced to O(sp) in terms of 

the comments in Ren et al. (2015) and the implementation in Wang et al. (2016).

A.1.2    The de-sparsified nodewise scaled Lasso

D-S NW SL (Janková and van de Geer, 2017) is based on the p runs of nodewise scaled

Lasso regression for ith variable against all the other variables ic,

arg min
βi∈Rp−1,σ>0

{
||Xi −X ic||2

2nσ
+
σ

2
+ λ

∑
k∈ic
|βik|

}
. (A.5)

Again, the tuning parameter for each run of regression is taken as λ =
√

2 log(p/
√
n)/n.

Unlike the previous B NW SL, the procedure deals with the coefficients rather than the

regression noise. If β̂i’s are the estimated coefficients from (A.5), we can define σ̂2
i = ||Xi −

X ic β̂i||2/n, σ̃2
i = σ̂2

i + λσ̂i||β̂i||1 and B̂i = (−β̂i,1, ...,−β̂i,i−1, 1,−β̂i,i+1, ...,−β̂i,p)ᵀ. Then, the

ith column of Ω can be estimated:

ω̂i = B̂i/σ̃
2
i . (A.6)

However, it is well known that the initial estimators in (A.6) have bias, so the authors

have proposed a bias correction procedure on ω̂ij. Under the Karush-Kuhn-Tucker (KKT)

conditions, the desparsified (or de-biased) estimator ω̌ij is

ω̌ij = ω̂ij + ω̂ji − ω̂ᵀ
i Σ̂ω̂j, (A.7)

where Σ̂ = XᵀX/n.

Under the minimal sparseness assumption s = o(
√
n/ log(p)), each de-biased estimator

ω̌ij has achieved the asymptotically efficient result with

√
n(ω̂iiω̂jj + ω̂2

ij)
−1 (ω̌ij − ωij)

D−→ N (0, 1). (A.8)

According to (A.8), the corresponding p-value and confidence interval can be estimated for

each ωij.
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A.1.3     The de-sparsified graphical Lasso

D-S GL (Janková and van de Geer, 2015) also depends on a bias correction procedure

which is very similar to the one in D-S NW SL. However, the initial estimator Ω = (ω̂ij )p×p 

here is obtained by solving a graphical Lasso optimization problem for Ω:

arg min
Ω

{
Tr(ΩᵀΣ̂)− log det(Ω) + λ||Ω||1,off

}
. (A.9)

Even though (A.9) is not tuning-free, the tuning parameter can be taken as λ =
√

log(p)/n

according to the suggestion in Janková and van de Geer (2015). Then, with the same idea

of bias correction in D-S NW SL, the desparsified (or de-biased) estimator Ω̌ = (ω̌ij)p×p is

Ω̌ = 2Ω̂− Ω̂Σ̂Ω̂. (A.10)

Under the minimal sparseness assumption s = o(
√
n/ log(p)), each de-biased estimator

ω̌ij achieves the same asymptotically efficient result as the one in (A.8).

A.1.4 The Gaussian graphical model (GGM) estimation with false discovery

rate (FDR) control using scaled Lasso or Lasso

While the previous three methods are originally developed for individual inference of each

ωij, GFC SL or GFC L (Liu, 2013) is proposed particularly for global inference of all ωij’s.

The approach is based on a bias correction procedure on the sample covariance of residuals

between each pair of variables i and j. In order to obtain the estimators of residuals, the

first step of the method needs p runs of nodewise scaled Lasso regression same as those in

(A.5) or nodewise Lasso regression for ith variable against all the other variables ic as below,

arg min
βi∈Rp−1

{
||Xi −X icβi||2

2n
+ λi

∑
k∈ic
|βik|

}
. (A.11)

If the estimated coefficients β̂i’s are obtained from (A.5) or (A.11), then we can obtain the

estimated residual ε̂i = Xi−X ic β̂i and the estimated sample covariance of residuals between
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(i, j)th pair of variables r̂ij = 1
n

∑n
i=1 ε̂kiε̂kj. The second step is to make a bias correction on

r̂ij to obtain

Tij =
1

n

(
n∑
k=1

ε̂kiε̂kj +
n∑
k=1

ε̂2kiβ̂ji +
n∑
k=1

ε̂2kjβ̂i(j−1)

)
, 1 ≤ i < j ≤ p (A.12)

and construct a new test statistic

T̂ij =

√
n

r̂iir̂jj
Tij (A.13)

for the multiple testing

H0 : ωij = 0 vs . H1 : ωij 6= 0. (A.14)

Under the null hypothesis in (A.14) and the same minimal sparseness assumption as before,

(A.13) has an asymptotically normal result with

T̂ij
D−→ N (0, 1). (A.15)

Since GFC SL or GFC L is developed for global inference, another main component

of this method is to provide a novel framework for FDR control that has been theoretically

proved valid in high-dimensional settings. It is well known that the false discovery proportion

(FDP) with a threshold t can be written as

FDP(t) =
∑

(i,j)∈H0

I
{
|T̂ij| ≥ t

}
/max

{ ∑
1≤i<j≤p

I{|T̂ij| ≥ t}, 1

}
. (A.16)

To control FDR needs to control (A.16) since we have E(FDP(t)) = FDR(t). The numerator

of (A.16) is generally unknown, but according to Liu (2013), the author has proved that

∑
(i,j)∈H0

I{|T̂ij| ≥ t} ≈ 2(1− Φ(t))(p2 − p)/2, (A.17)

where Φ(.) is a standard normal cumulative distribution function. Therefore, we can choose

the threshold

t̂ = inf

0 ≤ t ≤ 2
√

log p :
2(1− Φ(t))(p2 − p)/2

max
{∑

1≤i<j≤p I{|T̂ij| ≥ t}, 1
} ≤ α

 , 0 ≤ α ≤ 1, (A.18)

91



where α is a pre-defined level of FDR control. We reject H0 in (A.14) if |T̂ij| ≥ t̂.

As an alternative to the tuning-free scaled Lasso regression, each run of (A.11) for Xi

against X ic requires a selection of the tuning parameter λi = δ
√
σ̂2
ii log(p)/n, where σ̂2

ii =∑n
k=1X

2
ki/n, with a data-driven choice of δ from 0 to 2. The following data-driven scheme

is used based on the result in (A.17):

δ = l̂/N,

l̂ = arg min
0≤l≤2N

9∑
k=3

(∑
1≤i<j≤p I{|T̂ij(l/N)| ≥ Φ−1(1− k/20)}

k(p2 − p)/20
− 1

)2

.
(A.19)

Here, N = 20 is set by default, and a different value of N can be set up in practice.

Since the previous three methods have asymptotically normal results in terms of (A.4) 

and (A.8), the FDR framework described in (A.17) and (A.18) can also be applied to them by 

replacing T̂ij with a different test statistic based on ω̂ij or ω̂ij . Therefore, the implementations 

of B NW SL, D-S NW SL and D-S GL are allowed for global inference as well.

A.2 The graph settings for time evaluation in simulation studies

A.2.1 Time evaluation on the GGM estimation with FDR control using Lasso

• Band graph: a p by p precision matrix Ω = (ωij)p×p with ωi,i+1 = ωi+1,i = 0.6,

ωi,i+2 = ωi+2,i = 0.3 and the other off-diagonal elements ωij = 0 for |i − j| ≥ 3. The

diagonal entries of Ω are ωii = 1 for i = 1, 2, 3, ..., p. The expected node degree of the

graph is 4.

• Hub graph: an initial p by p matrix Ω
′

= (ωij)p×p with ωij = ωji = 0.5 for i =

10(r − 1) + 1, 10(r − 1) + 2 ≤ j ≤ 10(r − 1) + 10 and 1 ≤ r ≤ p/10 and the other

off-diagonal entries of 0. The diagonal entries of Ω
′

are ωii = 1 for i = 1, 2, 3, ..., p. To

make the matrix positive definite, the final precision matrix is Ω = Ω
′
+ (|λmin|+ 0.05)Ip,

where λmin is the minimum eigenvalue of Ω
′
, and Ip is a p by p identity matrix. For p/10

variables or nodes in the graph, the expected node degree is 10.
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• E-R graph: an initial p by pmatrix Ω
′
= (ωij)p×p with each offdiagonal entry ωij = ωji =

µij∗φij, where µij is a uniform random variable between 0.4 and 0.8, and φij is a Bernoulli

random variable (1 means success and 0 means failure) with the success probability of

min(0.05, 5/p). The diagonal entries of Ω
′

are ωii = 1 for i = 1, 2, 3, ..., p. To make the

matrix positive definite, the final precision matrix is Ω = Ω
′
+ (|λmin| + 0.05)Ip, where

λmin is the minimum eigenvalue of Ω
′
, and Ip is a p by p identity matrix. The expected

node degree is 5 if p ≥ 100; otherwise, it is 0.05p.

A.2.2 Time evaluation on the bivariate nodewise scaled Lasso

• E-R graph: an initial p by p matrix Ω
′

= (ωij)p×p with each offdiagonal entry ωij =

ωji = a value randomly picked from the set {0.3, 0.6, 1}, where the probability of each

ωij = ωji 6= 0 is π. The diagonal entries of Ω
′

are all set as 4. Then, all the elements

including the diagonals in the bottom right block with a size of p/2 × p/2 in Ω
′

are

multiplied by 2. The final precision matrix is now denoted as Ω. The expected node

degree of the graph is πp.

A.3 Testing on the accuracy of individual inference

In this section, we present the details of evaluation on the accuracy of individual inference

of each ωij (or gene pair) for the cases with n = 800, p = 5000 and n = 800, p = 10000. We

considered three graph settings described as below:

• Band graph: a p by p precision matrix Ω = (ωij)p×p with ωi,i+1 = ωi+1,i = 0.6,

ωi,i+2 = ωi+2,i = 0.3 and the other off-diagonal elements ωij = 0 for |i − j| ≥ 3. The

diagonal entries of Ω are ωii = 1 for i = 1, 2, 3, ..., p. The expected node degree of the

graph is 4.

• E-R graph: an initial p by pmatrix Ω
′
= (ωij)p×p with each offdiagonal entry ωij = ωji =

µij∗φij, where µij is a uniform random variable between 0.4 and 0.8, and φij is a Bernoulli

random variable (1 means success and 0 means failure) with the success probability of
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min(0.05, 5/p). The diagonal entries of Ω
′

are ωii = 1 for i = 1, 2, 3, ..., p. To make the

matrix positive definite, the final precision matrix is Ω = Ω
′
+ (|λmin| + 0.05)Ip, where

λmin is the minimum eigenvalue of Ω
′
, and Ip is a p by p identity matrix. The expected

node degree of the graph is 5 for p = 5000 and 10000.

• Scale-free graph: By using the preferential attachment scheme, we started with a single

node (or gene) and no edges in the first time step. Then, in each time step, a new gene is

added, and the newly-added gene initiates an edge to one of the old genes. An old gene

i is selected based on the probability p(i) ∝ d(i)0.01 + 1, where d(i) is the node degree

of gene i in the current time step and 0.01 is the power of the preferential attachment.

Therefore, the total number of edges in the entire generated graph is given by p−1. The

above procedure is achieved by the implementation of the function barabasi.game() in

the R package igraph. Therefore, we generated a p by p adjacency matrix A = (aij)p×p

with each off-diagonal element aij = 1 if there is a non-zero partial correlation between

gene i and j; otherwise, aij = 0. The diagonal elements of A are all equal to 0. Then,

we generated an initial p by p matrix Ω
′

= (ωij)p×p and set any off-diagonal element

ωij = 0.3 if its corresponding aij = 1. To make the matrix positive definite, the final

precision matrix is Ω = Ω
′
+ (|λmin + 0.2|)Ip, where λmin is the minimum eigenvalue of

Ω
′
, and Ip is a p by p identity matrix. The following histograms in Figure A.1 show that

the node degree distribution of Scale-free graph for p = 5000 and p = 10000 follows a

power law. The expected node degree of the graph is around 2 for p = 5000 and 10000.

Under each of the three graph settings, we simulated 100 data sets. We customized

GFC L to be implemented among 5 candidates of tuning parameters for tuning selection,

and the other approaches in SILGGM were run with default parameters. We set a pre-specified

level of 0.05 on the estimated p-value of each ωij. In terms of the estimated p-values of all

ωij’s in an entire graph, the mean of the estimated Type I error under the 0.05 level and

the corresponding mean of the estimated Type II error over the 100 replications for Band

graph, E-R graph and Scale-free graph are reported in Table A.1. The results indicate that

all the approaches control the Type I error well in these large scales (p = 5000 and 10000)

for individual testing on each gene pair. Also, a non-zero partial correlation can be correctly

identified in the case of either p = 5000 or 10000 since the corresponding Type II error for
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Figure A.1: Histograms of node degrees of Scale-free graph. The left plot illustrates the

case of p = 5000, and the right plot shows the node degree distribution when p = 10000.
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all the simulation settings are around 0.

The validation with Type I and Type II errors for individual inference of whether a known

zero or a non-zero partial correlation can be correctly identified based on the information of

p-values implies no differences among all the approaches. To make a further comparison for

individual inference, we then evaluated the average empirical coverage probabilities for the

95% confidence intervals of the ωij’s for the “non-zero partial correlation” set S0 (a set of

all pairs with non-zero ωij’s) and the “zero partial correlation” set Sc0 (a set of all pairs with

zero ωij’s) respectively.

Table A.1: Type I and II errors of all the methods under three graph settings.

Type I error (0.05 level) Type II error

Band E-R Scale-free Band E-R Scale-free

n = 800, p = 5000

B NW SL 0.0496 0.0496 0.0495 0 9.4× 10−4 5.6× 10−5

D-S NW SL 0.0228 0.0280 0.0427 0 1.6× 10−3 6.0× 10−5

D-S GL 0.0006 0.0315 0.0415 0 8.0× 10−4 5.8× 10−5

GFC SL 0.0501 0.0501 0.0501 0 9.3× 10−4 5.4× 10−5

GFC L 0.0503 0.0501 0.0501 0 1.3× 10−3 4.8× 10−5

n = 800, p = 10000

B NW SL 0.0496 0.0496 0.0495 0 6.0× 10−4 7.0× 10−5

D-S NW SL 0.0221 0.0276 0.0432 0 1.1× 10−3 8.0× 10−5

D-S GL 0.0002 0.0300 0.0431 0 5.6× 10−4 8.0× 10−5

GFC SL 0.0501 0.0501 0.0501 0 6.0× 10−4 7.0× 10−5

GFC L 0.0502 0.0501 0.0501 0 8.9× 10−4 6.0× 10−5

Based on the same 100 replications, we report the mean of 100 estimated average coverage

probabilities of the 95% confidence intervals of ωij’s in S0 and Sc0 respectively for Band graph,

E-R graph and Scale-free graph in Table A.2.
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Table A.2: Average empirical coverage probabilities of the 95% confidence intervals in S0

and Sc0 under three graph settings.

S0 Sc0

Band E-R Scale-free Band E-R Scale-free

n = 800, p = 5000

B NW SL 0.9505 0.8588 0.9330 0.9504 0.9504 0.9505

D-S NW SL 0.7864 0.9454 0.9459 0.9772 0.9720 0.9573

D-S GL 0.5355 0.7967 0.9354 0.9994 0.9685 0.9585

n = 800, p = 10000

B NW SL 0.9496 0.8452 0.9361 0.9504 0.9504 0.9505

D-S NW SL 0.7368 0.9448 0.9467 0.9779 0.9724 0.9568

D-S GL 0.5538 0.7801 0.9397 0.9998 0.9700 0.9569

Since GFC SL or GFC L provides no confidence intervals, we included the other three

approaches here. As it can be seen, the results of empirical coverage probabilities in Sc0

coincide the ones in Type I error rates, and they are all good with our desired level 0.95.

For Scale-free graph with p = 5000 and 10000, the empirical coverage probabilities of the

three methods in S0 are all around 0.95 as well. However, there are some differences in

S0 for Band graph and E-R graph. For Band graph, B NW SL particularly outperforms

D-S NW SL and D-S GL since its empirical coverage probabilities in S0 are well around the

desired level, while the empirical coverage probabilities of D-S NW SL in S0 are less than

0.80, and the results of D-S GL in S0 are around 0.55. For E-R graph, D-S NW SL is the

best one with the empirical coverage probabilities in S0 close to the desired level, but the

differences in results among the three methods are much less significant than the ones in

Band graph. The empirical coverage probabilities of B NW SL in S0 are still around 0.85,

and the results of D-S GL can be around 0.80 as well.
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According to the results from the three graph settings, the overall performance of the

confidence intervals among the three methods are good since Sc0 is a major part of the sparse

graph settings. But in terms of the confidence intervals in S0 or the nonzero partial correla-

tions, B NW SL and D-S NW SL perform better than D-S GL. Moreover, the performance

of B NW SL is more stable than that of D-S NW SL.

A.4 Testing on the accuracy of global inference

In this section, we show the details of evaluation on the accuracy of global inference which

requires a simultaneous testing on all ωij’s (or gene pairs) with H0 : ωij = 0 vs. H1 : ωij 6= 0

for 1 ≤ i < j ≤ p. We considered the same three graph settings as shown in Appendix A.3.

As for accuracy metrics, we used false discovery rate (FDR), power and the Matthews

correlation coefficient (MCC). FDR is the expected proportion of false “discoveries” (the

number of incorrect rejections on H0’s) among the total “discoveries” (the total number of

rejections on H0’s). We need to control FDR to avoid the inflation of false positives through

global inference. The details of the FDR procedure are referred to Appendix A.1. As the

second measure, the corresponding power is to show to what extent that the total number

of true non-zero partial correlations can be correctly identified through the FDR procedure.

Besides FDR and the corresponding power, we also considered MCC as the third measure.

Here, MCC is used to gauge how well the known zero partial correlations and the known non-

zero partial correlations can be correctly identified through the FDR procedure. It is well

known that MCC is even robust to class imbalances, so it tailors to our sparse graph settings

which have far more the zero partial correlations than the non-zero partial correlations. Note

that MCC lies in the interval between -1 and 1. A value of 1 indicates a perfect selection of

all the known zero and the non-zero partial correlations, while a value of -1 implies a total

disagreement between prediction and the true partial correlations. A value of 0 means a

random guess. Therefore, a closer value of MCC to 1 suggests a better identification of the

overall zero and non-zero partial correlations.

98



For each of the three graph settings, we used the same 100 simulated datasets in Ap-

pendix A.3. When implementing all the approaches, we set the argument alpha = 0.05 to

denote a pre-specified level of 0.05 for FDR control. We further set the argument global =

TRUE when implementing D-S NW SL, D-S GL and B NW SL to include global inference.

In addition, we customized GFC L to be implemented among 5 candidates of tuning param-

eters for tuning selection. With the 100 simulated data sets and the pre-specified level of

FDR set at α = 0.05, the average empirical FDRs of all the graph settings for p = 5000 and

p = 10000, the corresponding mean power values and the corresponding average MCCs are

reported in Table A.3.

Table A.3: Empirical false discovery rates at α = 0.05, corresponding power values and

MCCs of all the methods under three graph settings.

Band E-R Scale-free

FDR Power MCC FDR Power MCC FDR Power MCC

n = 800, p = 5000

B NW SL 0.039 1.000 0.981 0.039 0.924 0.942 0.036 0.937 0.950

D-S NW SL 0.002 1.000 0.999 0.009 0.894 0.941 0.030 0.933 0.952

D-S GL 0.010 1.000 0.995 0.015 0.920 0.952 0.023 0.931 0.954

GFC SL 0.037 1.000 0.982 0.037 0.916 0.939 0.044 0.942 0.949

GFC L 0.047 1.000 0.976 0.033 0.901 0.934 0.045 0.947 0.951

n = 800, p = 10000

B NW SL 0.037 1.000 0.981 0.037 0.921 0.942 0.034 0.881 0.922

D-S NW SL 0.002 1.000 0.999 0.008 0.888 0.938 0.029 0.876 0.922

D-S GL 0.014 0.999 0.993 0.012 0.911 0.948 0.025 0.874 0.923

GFC SL 0.036 1.000 0.982 0.037 0.913 0.938 0.045 0.893 0.924

GFC L 0.047 1.000 0.976 0.033 0.896 0.931 0.045 0.899 0.926

As we can see, the FDRs of all the methods for the three graph settings are effectively

controlled below the desired 0.05 level for both p = 5000 and p = 10000. In terms of Band
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graph, almost all the power values are 1 such that the nonzero partial correlations can be

correctly identified under the well-controlled FDRs. MCCs of all the methods are close to 1,

indicating a near-perfect identification of the overall zero and non-zero partial correlations.

For E-R graph, all the approaches have comparable results of power and MCC, and the

performance of B NW SL is slightly better considering both power and MCC. Similarly, the

results of power and MCC of all the methods are also very close for Scale-free graph, and

the performance of GFC L is slightly better according to power and MCC. Even though

the overall results are slightly worse for E-R graph and Scale-free graph due to their far

more randomized structures than Band graph, all the methods still show high values of

power and MCC even in the cases of p = 10000. When p = 10000, all the power values

are around 0.90, and the MCCs are about 0.95 for E-R graph. For Scale-free graph, the

power values of all the methods are almost 0.90, and the MCCs are still more than 0.92.

Among the three graph settings, even though the FDRs of D-S NW SL and D-S GL are

controlled more conservatively below the desired level, their power values and MCCs do

not suffer a noticeably negative impact, and some results are even better compared to the

other approaches in some particular settings. Therefore, all the approaches have shown good

performance in correctly identifying the zero and the nonzero partial correlations in a global

sense even for the very high-dimensional scenarios. In addition, we also clarified the mean

numbers of false positives (incorrect rejections on the true H0’s) of each approach and the

corresponding mean false positive rates (the proportions of false positives among the true

H0’s) in the previous benchmarking with the FDR procedure in Table A.4 based on the 100

replications. We can see from the tables that all the false positive rates are close to 0. In

other words, the observed false positive numbers are acceptable given the huge number of

true negatives (true H0’s).

A.5 The package installation

• Windows users should install Rtools before installation of this package.

• The package SILGGM is available on CRAN and can be installed using the following R com-
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Table A.4: Numbers of false positives and false positive rates of all the methods under three

graph settings.

Number of false positives False positive rate

Band E-R Scale-free Band E-R Scale-free

n = 800, p = 5000

B NW SL 401.8 466.1 175.5 3.2× 10−5 3.7× 10−5 1.4× 10−5

D-S NW SL 24.1 105.3 142.2 1.9× 10−6 8.4× 10−6 1.1× 10−5

D-S GL 98.7 175.0 111.6 7.9× 10−6 1.4× 10−5 9.0× 10−6

GFC SL 378.7 443.6 215.7 3.0× 10−5 3.6× 10−5 1.7× 10−5

GFC L 493.3 384.6 225.1 4.0× 10−5 3.1× 10−5 1.8× 10−5

n = 800, p = 10000

B NW SL 768.7 882.1 311.4 1.5× 10−5 1.8× 10−5 6.3× 10−6

D-S NW SL 42.3 172.7 264.4 8.5× 10−7 3.5× 10−6 5.3× 10−6

D-S GL 282.5 278.7 225.1 5.7× 10−6 5.6× 10−6 4.5× 10−6

GFC SL 751.8 875.0 415.6 1.5× 10−5 1.8× 10−5 8.3× 10−6

GFC L 976.5 748.9 427.4 2.0× 10−5 1.5× 10−5 8.6× 10−6
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mands:

install.packages("Rcpp")

install.packages("SILGGM")

The first line can be omitted if “install dependencies” is checked in the R package installer.

• When the source code file “SILGGM 1.0.0.tar.gz” is downloaded from CRAN, the package

can also be installed:

install.packages("Rcpp")

install.packages(pkgs = "SILGGM_1.0.0. tar.gz",

repos = NULL , type = "source")
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Appendix B Supplement to Chapter 3

B.1 RNA-seq gene expression data of childhood atopic asthma

The RNA-seq data set comes from the Epigenetic Variation and Childhood Asthma

in Puerto Ricans (EVA-PR) study, a case-control cohort study for children or adolescents

aged from 9 to 20 years recruited from Feb 12, 2014 to May 8, 2017 with a multistage

probability sampling (Forno et al., 2019). The purpose of this study is to figure out how

genetic or genomic features influence and lead to the development of childhood asthma or

atopic asthma particularly among the Hispanic group. Before RNA extraction, a protocol

in a subset of nasal samples was implemented to select CD326(+) nasal epithelial cells to

alleviate potential effects of different cell types. RNA was extracted from nasal specimens

from the inferior turbinate and was sequenced using paired-end reads at 75 cycles and with

80M reads per sample (Forno et al., 2020). In this analysis, we focus on n = 157 children

with atopic asthma, defined as a doctor’s diagnosis of asthma and atopy (≥ 1 positive IgE to

aeroallergens), because the case group is more eligible to explain the disease mechanism. The

demographic information of the 157 children with atopic asthma is detailed in Table B.1.

B.2 Notation summary for Section 3.3

For convenience, all the important notations related to ηi and µi that will be frequently

used in this Section 3.3 are summarized in Table B.2 with their corresponding descriptions.

B.3 Properties on the population score variable V

In this section, we provide details on a few facts mentioned in Section 3.3.1.

We first show that E (V εi) = 0 with variance Var(V εi) = 〈V, V 〉 if V is a measurable
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Table B.1: Characteristics of children with atopic asthma in EVA-PR study. Numbers rep-

resent (%) for categorical variables, and mean (standard deviation) or median [interquartile

range] for continuous variables.

Children with atopic asthma

Age (years) 15.3 (2.9)

Sex, n(%) 62 (39.5%) females, 95 (60.5%) males

Race/ethnicity 100% Hispanic/Latino

Total IgE (IU/mL) 372 [208-805]

Number of specific IgE+ 2 [1-3]

Table B.2: A summary of notations related to ηi and µi.

Notation Description

ηi = (ψi, θi) ψi: intercept; θi: pairwise parameter

µi = T (X∗−i)
ᵀηi Canonical parameter of the conditional distribution Pηi(Xi|X−i)

f(µi) Log-partition of log(Pηi (Xi|X−i))

ḟ(µi) Conditional expectation of T (Xi) given X−i

f̈(µi) Conditional variance of T (Xi) given X−i

104



function of X−i. Indeed, since V only depends on X−i, it is clear that,

E(V εi) = E(E(V εi)|X−i) = E(V E(εi|X−i)) = 0.

In addition, by using the same strategy, the variance of V εi is

E(V εi)
2 = E(E(V εi)

2|X−i)

= E(V 2 · E{(T (Xi)− ḟ(T (X∗−i)
ᵀηi)|X−i)

= E(V 2f̈(µi)) = 〈V, V 〉,

where we have used equation (3.4) that εi = T (Xi)− ḟ(T (X∗−i)
ᵀηi) and the definition 〈a, b〉 =

E(af̈(µi)b).

We next show that by the choice of score variable V shown in (3.7), we have that

〈V,m(T (X−{i,j}))〉 = 0 for any measurable function m(·). Indeed, by the definition of the

inner product, it suffices to show E(V f̈(µi)|X−{i,j}) = 0. To see this, we note that

E
(
V f̈(µi)|X−{i,j}

)
= E

[(
T (Xj)−

Eηi,ηj(T (Xj)f̈(µi)|T (X−{i,j}))

Eηi,ηj(f̈(µi)|T (X−{i,j}))

)
· f̈(µi)|X−{i,j}

]
= E

[
T (Xj)f̈(µi)|X−{i,j}

]
− E

[
T (Xj)f̈(µi)|X−{i,j}

]
= 0.

Finally, we show that if we ignore the minor difference between f̈(µi) and f̈(µ̂i), then

the asymptotic variance of the entire first term in the decomposition (3.6) is F−1
ij when

using empirical (oracle) score vector (v
(o)
1 , ..., v

(o)
n )ᵀ. Recall that Fij = Eηi,ηj((T (Xj) −

Eηi,ηj (T (Xj)f̈(µi)|T (X−{i,j}))

Eηi,ηj (f̈(µi)|T (X−{i,j}))
)2f̈(µi)) = 〈V, V 〉. Indeed, we have shown that the population ver-

sion of the numerator V εi has zero mean and variance 〈V, V 〉. Consequently, by CLT, the

numerator itself (standardized by multiplying
√
n) in (3.7) weakly converges to N(0, 〈V, V 〉)

when using the empirical score vector. Therefore, our claim can be immediately obtained
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by applying the Slutsky’s theorem and the weak Law of Large Numbers, together with the

fact that E(V f̈(µi)T (Xj)) = 〈V, V 〉. To show the last equality, we note that,

E
(
V f̈(µi)T (Xj)

)
= E

[
V f̈(µi) ·

(
V + g

(
X−{i,j}, ηi, ηj

))]
= E

[
V 2f̈(µi)

]
+ E

[
V f̈(µi)g

(
X−{i,j}, ηi, ηj

)]
= 〈V, V 〉+ 〈V, g

(
X−{i,j}, ηi, ηj

)
〉

= 〈V, V 〉,

where we used that g
(
X−{i,j}, ηi, ηj

)
is a function of T (X−{i,j}).

B.4 Detailed expression of ḟ(µi), f̈(µi) and Q in three models

We demonstrate the detailed expression of ḟ(µi) and f̈(µi) in Tables B.3 and B.4 corre-

sponding to f(µi) for three modified Poisson-type graphical models described in Section 3.2.

The details of Q with respect to g(T (X−{i,j}), ηi, ηj) are illustrated in Table B.5.

Table B.3: Details of ḟ(µi) in three models.

Model ḟ(µi)

TPGM
∑Di
m=0m·exp(mµi−log(m!))∑Di
m=0 exp(mµi−log(m!))

SPGM
∑+∞
m=0 S(m)·exp(S(m)µi−log(m!))∑+∞

m=0 exp(S(m)µi−log(m!))

SqrtPGM
∑+∞
m=0

√
m·exp(

√
mµi−log(m!))∑+∞

m=0 exp(
√
mµi−log(m!))

106



Table B.4: Details of f̈(µi) in three models.

Model f̈(µi)

TPGM
∑Di
m=0m

2·exp(mµi−log(m!))∑Di
m=0 exp(mµi−log(m!))

−
(∑Di

m=0m·exp(mµi−log(m!))∑Di
m=0 exp(mµi−log(m!))

)2

SPGM
∑+∞
m=0 S(m)2·exp(S(m)µi−log(m!))∑+∞

m=0 exp(S(m)µi−log(m!))
−
(∑+∞

m=0 S(m)·exp(S(m)µi−log(m!))∑+∞
m=0 exp(S(m)µi−log(m!))

)2

SqrtPGM
∑+∞
m=0m·exp(

√
mµi−log(m!))∑+∞

m=0 exp(
√
mµi−log(m!))

−
(∑+∞

m=0

√
m·exp(

√
mµi−log(m!))∑+∞

m=0 exp(
√
mµi−log(m!))

)2

Table B.5: Details of Q for g(T (X−{i,j}), ηi, ηj) in three models.

Model Q

TPGM

Di∑
k1=0

exp(k1X
∗ᵀ
−{i,j}ηi,−j + k2X

∗ᵀ
−{i,j}ηj,−i

− log(k1!)− log(k2!) + θ̂ijk1k2)

SPGM

+∞∑
k1=0

exp(S(k1)S(X∗{−i,j})
ᵀηi,−j + S(k2)S(X∗{−i,j})

ᵀηj,−i

− log(k1!)− log(k2!) + θijS(k1)S(k2))

SqrtPGM

+∞∑
k1=0

exp(
√
k1

√
X∗−{i,j}

ᵀ
ηi,−j +

√
k2

√
X∗−{i,j}

ᵀ
ηj,−i − log(k1!)

− log(k2!) + θij
√
k1

√
k2)
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B.5 Selection of tuning parameters for multiple testing

The multiple testing for all θij’s with 1 ≤ i < j ≤ p simultaneously requires selection of

tuning parameters λi = δ
√
σ̂2
ii log(p)/n for each node-wise regression of Xi on other variables

X−i with n samples, where σ̂2
ii denotes certain estimated variance of Xi given X−i, and δ

is a positive constant. Therefore, each λi is determined by two quantities: the estimated

σ̂2
ii and δ, which leads to the following two-step data-driven tuning procedure. The first

step is to estimate each σ2
ii from node-wise regression of Xi on X−i. Based on the extended

BIC (EBIC) criterion (Barber and Drton, 2015), we can obtain the estimator η̂i. Then, we

estimate σ2
ii using the maximal component of f̈(µ̂

(k)
i ) from n samples with k = 1, 2, ..., n. In

other words,

σ̂2
ii = max

1≤k≤n
f̈(µ̂

(k)
i ), µ̂

(k)
i = T (X

∗(k)
−i )ᵀη̂i.

The second step is a data-driven procedure for selection of the constant δ following Liu

(2013). To guarantee that 2(1−Φ(t))(p2−p)/2 is close to
∑

(i,j)∈H0
I{|T̂ij| ≥ t}, we select an

appropriate δ between 0 and a relatively large upper bound L (e.g., L = 2) via the following

optimization

δ = l̂/N,

l̂ = arg min
0≤l≤LN

9∑
k=3

(∑
1≤i<j≤p I{|T̂ij(l/N)| ≥ Φ−1(1− k/20)}

k(p2 − p)/20
− 1

)2

,

where T̂ij(l/N) is the corresponding test statistic (recall that T̂ij = (
∑n

k=1 v
2
kf̈(µ̂

(k)
i ))

1
2 θ̃ij)

when we use δ = l/N in the chosen tuning parameter λi, and N is a pre-specified integer

number. In our simulations and real application, we set N = 10. For further details, please

refer to Liu (2013).

B.6 Comparison of different hyperparameter selection methods

We further compared inferred networks on both simulation settings and the real data

application in Sections 3.5 and 3.6 using cross validation as the hyperparameter selection
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method.

We at first evaluated the performance of cross validation as the hyperparameter selection

method under simulation settings. Similar to EBIC in individual inference, we used 10-fold

cross validation to select a tuning parameter on each node-wise regression that minimizes

the average negative joint conditional log-likelihood function shown in (3.3) over testing

sets. For global inference with multiple testing, we also incorporated cross validation into

the tuning selection scheme like EBIC so as to guarantee 2(1 − Φ(t))(p2 − p)/2 as close to∑
(i,j)∈H0

I{|T̂ij| ≥ t} as possible.

Table B.6: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 from cross validation.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 300, p = 100

TPGM 0.9495 0.9524 0.9421 0.9495 0.9610 0.9670 0.9652 0.9602

(0.0232) (0.0146) (0.0146) (0.0244) (0.0023) (0.0025) (0.0024) (0.0028)

SPGM 0.9495 0.8836 0.9319 0.9495 0.9578 0.9643 0.9643 0.9586

(0.0245) (0.0194) (0.0153) (0.0216) (0.0030) (0.0026) (0.0028) (0.0029)

SqrtPGM 0.9495 0.9524 0.9481 0.9596 0.9551 0.9544 0.9539 0.9546

(0.0198) (0.0156) (0.0161) (0.0216) (0.0032) (0.0036) (0.0033) (0.0031)

n = 300, p = 400

TPGM 0.9236 0.9063 0.9209 0.9173 0.9555 0.9446 0.9459 0.9543

(0.0134) (0.0098) (0.0091) (0.0129) (0.0010) (0.0016) (0.0015) (0.0010)

SPGM 0.9373 0.8697 0.8587 0.8997 0.9624 0.9417 0.9374 0.9547

(0.0139) (0.0109) (0.0125) (0.0111) (0.0009) (0.0013) (0.0015) (0.0009)

SqrtPGM 0.9536 0.9538 0.9536 0.9524 0.9558 0.9568 0.9564 0.9553

(0.0107) (0.0080) (0.0080) (0.0112) (0.0010) (0.0009) (0.0010) (0.0010)

Based on the same simulated data sets from the graph settings for individual inference

in Section 3.5.1, we report the medians (standard deviations) of average empirical coverage
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probabilities of 95% confidence intervals of θij’s in the edge set S0 = {(i, j) : θij 6= 0} and the

non-edge set Sc0 = {(i, j) : θij = 0} over 100 replications for p = 100 and 400 in Table B.6.

As it can be seen, all the results from both low- and high-dimensional settings are close to

0.95, our target confidence level, and they are very similar to the ones with EBIC shown in

Table 3.4. For global inference, we evaluated the performance of true positive rate (TPR)

and false positive rate (FPR) over a range of false discovery rate (FDR) control levels by

comparing their values to the ones with EBIC using the same simulated data sets from the

graph settings in Section 3.5.2. The medians of TPRs and FPRs at each cut-off over 100

replications from the two different hyperparameter selection methods are presented in the

receiver operating characteristic (ROC) curves for p = 200 and 400, as shown in Figures B.1

and B.2. As we can see, all the red solid curves from EBIC overlap the black dashed curves

from cross validation in both low- and high-dimensional settings, which indicates that the

two different hyperparameter selection methods provide equivalently good results in global

inference. We further reported the medians of the empirical FDRs with pre-specified levels

0.1 and 0.2 for both p = 200 and 400 in Table B.7. The medians of their corresponding

power values are shown in Table B.8. Like the results from EBIC shown in Tables 3.5

and 3.6, the empirical FDRs from cross validation are also well controlled at the desired levels

with a relatively good performance of power. Therefore, our proposed two-step inferential

procedure is robust to different hyperparameter selection methods, which is a noticeable

advantage over the sole estimation approach that highly depends on a specific model selection

criterion. To further illustrate this advantage, we also summarized the empirical FDRs and

corresponding power values from the sole estimation approach which only involves the first

step of our method using EBIC and cross validation based on the same simulated data sets

in Section 3.5.2, as shown in Tables B.9 and B.10 for four graph settings. As it can be seen,

the estimated networks are totally different by EBIC and cross validation in terms of distinct

FDRs and powers, which indicates that the two hyperparameter selection methods generate

inconsistent results in the sole estimation. The FDRs can be around level 0.1 or 0.2 from the

sole estimation with EBIC, but the corresponding power values are much smaller compared

to the ones from our proposed method with EBIC at the desired FDR control level α = 0.1

or 0.2 in Table 3.6. For cross validation, even though the sole estimation approach seems
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Figure B.1: ROC curves based on TPRs and FPRs for the proposed inferential procedure

with EBIC and cross validation in the case of p = 200.

111



to identify more signals with high powers, it generates much more false discovers than those

from the proposed method shown in Table B.7 as well. Therefore, our proposed method is

capable of reaching a much better trade-off between false and true discovers than the sole

estimation approach.
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Figure B.2: ROC curves based on TPRs and FPRs for the proposed inferential procedure

with EBIC and cross validation in the case of p = 400.

Besides the simulation settings, we also evaluated the performance of cross validation in

the real data application of n = 157 children with atopic asthma in Puerto Rico and p = 500

genes. We inferred gene networks using the proposed method with cross validation on the

three models with FDR control at level 0.001. As comparison studies, we also constructed

gene networks using the sole estimation approach which involves only the first step of our
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proposed procedure based on cross validation. Like the evaluation of the constructed net-

works with EBIC, we also evaluated the inferred networks with cross validation about how

their patterns are close to the scale-free (or power-law) topology which generally depicts the

structure of a real biological network. We can numerically measure the correlation between

the log 2 of node degree and the log 2 of its corresponding probability. A correlation closer

to −1 indicates a better conformation to the power law. Figure B.3 shows the log 2-log 2

plots of node degree distribution for inferred networks from cross validation and their corre-

sponding correlation measurements.

Compared to Figure 3.4, the proposed method with either EBIC or cross validation pro-

vides biologically meaningful gene networks with correlation values around −0.9, which tends

to generate less false discovers. On the contrary, the selected gene networks from the sole es-

timation by cross validation show very dense structures that are highly likely to include many

false discovers and fail to follow the scale-free topology, and they are quite different from

the ones selected from the sole estimation approach by EBIC. Again, our proposed method

is robust to different hyperparameter selection methods and can consistently demonstrate

inferred gene networks with a biologically meaningful structure, while the sole estimation is

sensitive to a certain model selection criterion. Furthermore, the proposed method is capable

of reaching a better trade-off between false and true discovers than the sole estimation which

fails to detect any gene interactions with TPGM using EBIC as shown in Figure 3.4 and is

very likely to incur inflated false discovers using cross validation as illustrated in Figure B.3.

In conclusion, we have uncovered two advantages of our proposed method over the sole

estimation approach after a careful and comprehensive study of hyperparameter selection.

First, the proposed method is robust to different hyperparameter selection methods, while

the sole estimation is very sensitive to various model selection criteria. Second, the proposed

method can reach a much better balance between false and true discovers than the sole

estimation based on different hyperparameter selection methods.
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Figure B.3: The log 2-log 2 plots of degree distribution for the inferred networks from the

proposed approach and the sole estimation with cross validation.
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Table B.7: Medians (standard deviations) of empirical false discovery rates from cross

validation.

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200

TPGM 0.0918 0.0973 0.0964 0.0938 0.1825 0.1770 0.1844 0.1838

(0.0282) (0.0195) (0.0195) (0.0245) (0.0401) (0.0260) (0.0277) (0.0348)

SPGM 0.0858 0.0862 0.1007 0.0973 0.1737 0.1644 0.1815 0.1919

(0.0261) (0.0193) (0.0227) (0.0266) (0.0326) (0.0266) (0.0323) (0.0364)

SqrtPGM 0.0884 0.0900 0.0933 0.0949 0.1743 0.1794 0.1734 0.1844

(0.0226) (0.0327) (0.0237) (0.0263) (0.0316) (0.0324) (0.0257) (0.0350)

n = 400, p = 400

TPGM 0.0951 0.1011 0.1145 0.0986 0.1865 0.1945 0.2084 0.1964

(0.0128) (0.0163) (0.0195) (0.0198) (0.0209) (0.0228) (0.0161) (0.0247)

SPGM 0.1033 0.1154 0.1206 0.1022 0.1874 0.2063 0.2160 0.2108

(0.0219) (0.0196) (0.0155) (0.0234) (0.0226) (0.0233) (0.0209) (0.0284)

SqrtPGM 0.1018 0.0950 0.0992 0.0964 0.2022 0.1865 0.1868 0.1974

(0.0191) (0.0171) (0.0138) (0.0168) (0.0299) (0.0263) (0.0193) (0.0247)
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Table B.8: Medians (standard deviations) of power values for corresponding FDR control

levels from cross validation.

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200

TPGM 0.7222 0.7222 0.7954 0.7753 0.7828 0.7685 0.8357 0.8131

(0.0233) (0.0209) (0.0193) (0.0228) (0.0242) (0.0190) (0.0162) (0.0209)

SPGM 0.7121 0.4868 0.4661 0.7424 0.7677 0.5556 0.5254 0.7879

(0.0227) (0.0257) (0.0246) (0.0251) (0.0241) (0.0255) (0.0253) (0.0239)

SqrtPGM 0.8838 0.7513 0.6675 0.8939 0.9192 0.8082 0.7320 0.9242

(0.0237) (0.0239) (0.0333) (0.0199) (0.0198) (0.0216) (0.0313) (0.0168)

n = 400, p = 400

TPGM 0.6357 0.7157 0.6543 0.6131 0.6910 0.7606 0.6969 0.6683

(0.0185) (0.0096) (0.0123) (0.0172) (0.0193) (0.0098) (0.0125) (0.0175)

SPGM 0.6658 0.4373 0.5062 0.6759 0.7198 0.4927 0.5563 0.7249

(0.0167) (0.0140) (0.0172) (0.0172) (0.0194) (0.0141) (0.0141) (0.0203)

SqrtPGM 0.8518 0.7117 0.6485 0.8053 0.8907 0.7724 0.7107 0.8455

(0.0192) (0.0197) (0.0155) (0.0200) (0.0163) (0.0166) (0.0161) (0.0193)
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Table B.9: Medians (standard deviations) of empirical FDRs and power values from the

sole estimation with EBIC and cross validation under Chain and Scale-free graph settings.

Chain Scale-free

EBIC Cross validation EBIC Cross validation

FDR Power FDR Power FDR Power FDR Power

n = 400, p = 200

TPGM 0.0814 0.5051 0.9426 0.9141 0.1042 0.6010 0.9544 0.9242

(0.0234) (0.0265) (0.0052) (0.0202) (0.0238) (0.0258) (0.0039) (0.0190)

SPGM 0.1156 0.5152 0.9617 0.9141 0.1308 0.5606 0.9738 0.9394

(0.0289) (0.0221) (0.0036) (0.0219) (0.0227) (0.0238) (0.0016) (0.0165)

SqrtPGM 0.1281 0.6364 0.9655 0.8636 0.1229 0.7121 0.9416 0.8737

(0.0286) (0.0306) (0.0045) (0.0188) (0.0213) (0.0332) (0.0085) (0.0225)

n = 400, p = 400

TPGM 0.0767 0.4322 0.9853 0.8643 0.0718 0.4296 0.9813 0.8731

(0.0163) (0.0130) (0.0010) (0.0186) (0.0221) (0.0182) (0.0014) (0.0209)

SPGM 0.1062 0.4523 0.9853 0.9121 0.1137 0.4548 0.9912 0.9259

(0.0180) (0.0185) (0.0007) (0.0172) (0.0168) (0.0147) (0.0003) (0.0114)

SqrtPGM 0.1034 0.5553 0.9936 0.8291 0.1036 0.5452 0.9905 0.9008

(0.0142) (0.0261) (0.0002) (0.0145) (0.0140) (0.0279) (0.0004) (0.0153)
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Table B.10: Medians (standard deviations) of empirical FDRs and power values from the

sole estimation with EBIC and cross validation under Grid and E-R graph settings.

Grid E-R

EBIC Cross validation EBIC Cross validation

FDR Power FDR Power FDR Power FDR Power

n = 400, p = 200

TPGM 0.1170 0.5238 0.9735 0.9365 0.1298 0.6297 0.9734 0.9568

(0.0199) (0.0194) (0.0006) (0.0105) (0.0178) (0.0169) (0.0009) (0.0113)

SPGM 0.1226 0.3069 0.8960 0.7950 0.1884 0.3245 0.9223 0.7942

(0.0268) (0.0191) (0.0056) (0.0212) (0.0264) (0.0144) (0.0048) (0.0198)

SqrtPGM 0.1447 0.5291 0.9492 0.8267 0.1204 0.4739 0.9536 0.7816

(0.0599) (0.0276) (0.0045) (0.0252) (0.0207) (0.0255) (0.0037) (0.0293)

n = 400, p = 400

TPGM 0.1017 0.5020 0.9895 0.9565 0.1081 0.4691 0.9882 0.9154

(0.0157) (0.0128) (0.0001) (0.0083) (0.0170) (0.0102) (0.0002) (0.0093)

SPGM 0.1347 0.2573 0.9772 0.7652 0.1400 0.3373 0.9768 0.8094

(0.0211) (0.0105) (0.0008) (0.0204) (0.0210) (0.0121) (0.0008) (0.0124)

SqrtPGM 0.1217 0.4459 0.9890 0.8384 0.1054 0.4237 0.9861 0.7485

(0.0200) (0.0177) (0.0001) (0.0162) (0.0455) (0.0187) (0.0004) (0.0189)
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B.7 Additional simulation results

B.7.1 Additional histograms of the pairwise estimates for Chain, Grid, E-R

and Scale-free graph settings

Figure B.4 shows the histograms of estimated entries with p = 100 for Scale-free graph,

and Figures B.5-B.10 show the histograms of randomly selected pairwise estimates that

cover all the possible values of true parameters from the three modified Poisson-type graph-

ical models with p = 100 and 400 for Chain, Grid and E-R graph settings.
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Figure B.4: Histograms of the estimated pairwise entries for p = 100 from the three models

in Scale-free graph.
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Figure B.5: Histograms of the estimated pairwise entries for p = 100 from the three models

in Chain graph.
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Figure B.6: Histograms of the estimated pairwise entries for p = 100 from the three models

in Grid graph.
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Figure B.7: Histograms of the estimated pairwise entries for p = 100 from the three models

in E-R random graph.
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Figure B.8: Histograms of the estimated pairwise entries for p = 400 from the three models

in Chain graph.

123



TPGM (θ45 = 0.4)

θ~45

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

TPGM (θ2, 22 = −0.2)

θ~2, 22

D
en

si
ty

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

0
1

2
3

4
5

6
7

TPGM (θ10, 11 = −0.1)

θ~10, 11

D
en

si
ty

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

0
1

2
3

4
5

TPGM (θ58 = 0)

θ~58

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

6

SPGM (θ7, 27 = −0.4)

θ~7, 27

D
en

si
ty

−0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4

SPGM (θ45 = 0.1)

θ~45

D
en

si
ty

−0.2 0.0 0.2 0.4

0
1

2
3

4

SPGM (θ14, 15 = −0.2)

θ~14, 15

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2

0
1

2
3

4

SPGM (θ47 = 0)

θ~47

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4

SqrtPGM (θ56 = −0.3)

θ~56

D
en

si
ty

−0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SqrtPGM (θ10, 11 = 0.3)

θ~10, 11

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SqrtPGM (θ23, 24 = 0.2)

θ~23, 24

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SqrtPGM (θ49 = 0)

θ~49

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure B.9: Histograms of the estimated pairwise entries for p = 400 from the three models

in Grid graph.
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Figure B.10: Histograms of the estimated pairwise entries for p = 400 from the three models

in E-R random graph.
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B.7.2 Additional simulation on individual inference

The medians (standard deviations) of average empirical coverage probabilities of the 95%

confidence intervals over 100 replications for p = 100 are reported in Table B.11. As we can 

see, all results are close to 0.95, the target confidence level.

We further considered smaller sample sizes with n = 150 and 100 under simulation 

settings in Section 3.5.1 to evaluate the performance of asymptotic normality for individual 

inference. In addition, we also included the simulation settings in Section 3.5.2 to show the 

performance of asymptotic normality for individual inference.

We report the medians (standard deviations) of average empirical coverage probabilities 

of 95% confidence intervals of θij ’s in the edge set S0 = {(i, j) : θij 6= 0} and the non-edge 

set S0
c = {(i, j) : θij = 0} over 100 replications for p = 100 and 400 with n = 150 and 100 

under simulation settings in Section 3.5.1 in Tables B.12 and B.13 respectively. The medians 

(standard deviations) of empirical coverage probabilities of 95% confidence intervals using 

the simulation settings in Section 3.5.2 are reported in Table B.14. As we can see, all results 

are close to 0.95, the target confidence level.
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Table B.11: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 with p = 100.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 300, p = 100

TPGM 0.9495 0.9365 0.9263 0.9394 0.9524 0.9525 0.9491 0.9514

(0.0218) (0.0170) (0.0193) (0.0251) (0.0030) (0.0033) (0.0033) (0.0036)

SPGM 0.9495 0.9101 0.9108 0.9394 0.9514 0.9548 0.9509 0.9506

(0.0221) (0.0193) (0.0160) (0.0203) (0.0032) (0.0038) (0.0041) (0.0034)

SqrtPGM 0.9495 0.9524 0.9481 0.9495 0.9512 0.9504 0.9491 0.9516

(0.0199) (0.0156) (0.0135) (0.0209) (0.0033) (0.0036) (0.0036) (0.0032)

B.7.3 Additional simulation on global inference

ROC curves for p = 200 are shown in Figure B.11. Likewise, all curves from the proposed 

inferential procedure lie above the ones from the sole estimation.

We further considered a smaller sample size with n = 150 to evaluate the performance 

of multiple testing with FDR control. We report the medians (standard deviations) of em-

pirical FDRs with pre-specified levels 0.1 and 0.2 for both p = 200 and 400 in Table B.15. 

The medians (standard deviations) of their corresponding power values are reported in Ta-

ble B.16. Due to the sparsity assumption with the maximum node degree s = o(
√
n/ log(p))

for high-dimensional statistical inference, we only included Chain and Scale-free graphs in

the results. Because the maximum node degree is s = 4 for both Grid and E-R graph

settings, the required sample sizes n need to be far larger than 150 to meet the sparsity

assumption when p = 100 (e.g. n = 340) and p = 400 (e.g. n = 575). From the results

in Tables B.15 and B.16, it is worthwhile to notice that the FDRs can be still controlled

quite well around the desired levels even in the case of Scale-free graph with n = 150 and

p = 400 among all the three modified Poisson-type graphical models. Since the biological
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Table B.12: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 with n = 150.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 150, p = 100

TPGM 0.9495 0.9365 0.9263 0.9394 0.9491 0.9460 0.9451 0.9486

(0.0238) (0.0165) (0.0174) (0.0248) (0.0039) (0.0043) (0.0040) (0.0040)

SPGM 0.9596 0.9100 0.9155 0.9495 0.9503 0.9537 0.9485 0.9499

(0.0206) (0.0196) (0.0202) (0.0223) (0.0036) (0.0042) (0.0043) (0.0034)

SqrtPGM 0.9596 0.9471 0.9528 0.9545 0.9511 0.9500 0.9496 0.9509

(0.0189) (0.0160) (0.0154) (0.0233) (0.0031) (0.0038) (0.0032) (0.0028)

n = 150, p = 400

TPGM 0.9449 0.9371 0.9322 0.9311 0.9478 0.9441 0.9441 0.9459

(0.0096) (0.0076) (0.0098) (0.0149) (0.0012) (0.0013) (0.0015) (0.0012)

SPGM 0.9474 0.9255 0.9051 0.9323 0.9507 0.9492 0.9489 0.9492

(0.0121) (0.0096) (0.0092) (0.0111) (0.0010) (0.0013) (0.0016) (0.0011)

SqrtPGM 0.9524 0.9525 0.9512 0.9549 0.9507 0.9497 0.9497 0.9503

(0.0126) (0.0073) (0.0071) (0.0091) (0.0009) (0.0011) (0.0009) (0.0011)
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Table B.13: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 with n = 100.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 100, p = 100

TPGM 0.9495 0.9365 0.9316 0.9394 0.9470 0.9444 0.9430 0.9460

(0.0225) (0.0157) (0.0209) (0.0233) (0.0036) (0.0042) (0.0038) (0.0039)

SPGM 0.9596 0.9127 0.9155 0.9495 0.9489 0.9507 0.9460 0.9485

(0.0197) (0.0208) (0.0186) (0.0226) (0.0039) (0.0043) (0.0043) (0.0041)

SqrtPGM 0.9495 0.9524 0.9528 0.9596 0.9510 0.9506 0.9503 0.9505

(0.0223) (0.0161) (0.0167) (0.0217) (0.0033) (0.0032) (0.0035) (0.0032)

n = 100, p = 400

TPGM 0.9511 0.9422 0.9340 0.9411 0.9454 0.9414 0.9418 0.9446

(0.0115) (0.0095) (0.0097) (0.0110) (0.0010) (0.0011) (0.0020) (0.0016)

SPGM 0.9499 0.9262 0.9105 0.9298 0.9495 0.9458 0.9459 0.9474

(0.0119) (0.0109) (0.0092) (0.0112) (0.0013) (0.0017) (0.0013) (0.0012)

SqrtPGM 0.9524 0.9519 0.9487 0.9511 0.9505 0.9497 0.9500 0.9508

(0.0144) (0.0067) (0.0082) (0.0127) (0.0007) (0.0012) (0.0008) (0.0010)
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Table B.14: Medians (standard deviations) of empirical coverage probabilities of the 95%

confidence intervals in S0 and Sc0 with simulation settings in Section 3.5.2.

S0 Sc0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200

TPGM 0.9495 0.9234 0.9150 0.9343 0.9536 0.9541 0.9559 0.9546

(0.0144) (0.0133) (0.0131) (0.0168) (0.0015) (0.0019) (0.0018) (0.0016)

SPGM 0.9495 0.9444 0.9395 0.9192 0.9555 0.9523 0.9543 0.9549

(0.0151) (0.0127) (0.0120) (0.0159) (0.0017) (0.0017) (0.0016) (0.0016)

SqrtPGM 0.9192 0.9074 0.8784 0.9091 0.9558 0.9525 0.9502 0.9552

(0.0190) (0.0148) (0.0169) (0.0204) (0.0016) (0.0019) (0.0030) (0.0016)

n = 400, p = 400

TPGM 0.9510 0.9248 0.9210 0.9347 0.9532 0.9548 0.9546 0.9519

(0.0092) (0.0100) (0.0098) (0.0134) (0.0009) (0.0008) (0.0015) (0.0008)

SPGM 0.9497 0.9314 0.9251 0.9221 0.9538 0.9522 0.9536 0.9531

(0.0127) (0.0099) (0.0105) (0.0131) (0.0009) (0.0011) (0.0009) (0.0009)

SqrtPGM 0.9196 0.9090 0.8858 0.8970 0.9541 0.9521 0.9505 0.9524

(0.0134) (0.0121) (0.0106) (0.0169) (0.0009) (0.0008) (0.0014) (0.0010)
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network has a scale-free pattern in our application which has about 150 observations, the

simulation results here to some extent provide additional evidence that the application from

our proposed method is reliable.

Table B.15: Medians (standard deviations) of empirical false discovery rates with n = 150.

α = 0.1 α = 0.2

Chain Scale-free Chain Scale-free

n = 150, p = 200

TPGM 0.0800 (0.0449) 0.0983 (0.0373) 0.1711 (0.0501) 0.1903 (0.0438)

SPGM 0.0876 (0.0346) 0.0968 (0.0385) 0.1686 (0.0386) 0.1789 (0.0452)

SqrtPGM 0.1065 (0.0397) 0.1136 (0.0412) 0.1808 (0.0456) 0.1813 (0.0462)

n = 150, p = 400

TPGM 0.0933 (0.0338) 0.1224 (0.0308) 0.1862 (0.0418) 0.2096 (0.0412)

SPGM 0.1016 (0.0313) 0.1280 (0.0294) 0.1978 (0.0335) 0.2210 (0.0333)

SqrtPGM 0.1340 (0.0286) 0.1372 (0.0401) 0.1871 (0.0315) 0.2269 (0.0388)

B.7.4 Additional simulation on simulated RNA-seq data

All the medians (standard deviations) of empirical FDRs and corresponding power values 

with n = 150 and pre-specified levels α = 0.1 and 0.2 are reported in Table B.17. Again, the 

proposed method can capture the built-in features better than GFC L.
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Figure B.11: ROC curves based on TPRs and FPRs for the proposed inferential procedure

and the sole estimation in the case of p = 200.
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Table B.16: Medians (standard deviations) of power values for corresponding FDR control

levels with n = 150.

α = 0.1 α = 0.2

Chain Scale-free Chain Scale-free

n = 150, p = 200

TPGM 0.2323 (0.0342) 0.3308 (0.0332) 0.2879 (0.0372) 0.3939 (0.0358)

SPGM 0.3232 (0.0265) 0.3535 (0.0343) 0.3737 (0.0311) 0.4066 (0.0335)

SqrtPGM 0.3030 (0.0346) 0.3232 (0.0385) 0.3965 (0.0384) 0.3939 (0.0406)

n = 150, p = 400

TPGM 0.2098 (0.0191) 0.2048 (0.0209) 0.2563 (0.0176) 0.2475 (0.0237)

SPGM 0.2299 (0.0238) 0.2789 (0.0187) 0.2827 (0.0216) 0.3254 (0.0204)

SqrtPGM 0.2437 (0.0242) 0.2111 (0.0254) 0.3166 (0.0205) 0.2802 (0.0300)

Table B.17: Medians (standard deviations) of empirical FDRs and power values from our

proposed method (SqrtPGM and SPGM) and GFC L on simulated RNA-seq data with

n = 150 and FDR controlled at levels α = 0.1 and 0.2.

Proposed (SqrtPGM) Proposed (SPGM) GFC L

FDR Power FDR Power FDR Power

α = 0.1

0.1436 0.2324 0.1197 0.2111 0.1124 0.1118

(0.0438) (0.0265) (0.0345) (0.0283) (0.0466) (0.0260)

α = 0.2

0.2219 0.2927 0.1993 0.2638 0.2265 0.1709

(0.0508) (0.0320) (0.0345) (0.0296) (0.0364) (0.0303)
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B.8 Additional results in real data application

B.8.1 Comparison between original and normalized counts

The histograms of original and normalized counts of RNA-seq data are shown in

Figure B.12.
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Figure B.12: Histograms of the genes for the original and the pre-process RNA-seq data.

B.8.2 Additional evaluations for the overall network structure

We further compared our proposed approach with two other approaches under normal

distribution assumption: c-level partial correlation graph estimation (c-level PC) (Qiu and

Zhou, 2018) and sparse partial correlation estimation (SPACE) (Peng et al., 2009) on eval-

uation of the overall inferred network structure.

Before performing c-level PC and SPACE, we extracted the same p = 500 genes from

the original RNA-seq gene expression data among the n = 157 children with atopic asthma

in Puerto Ricans and made a log plus nonparanormal transformation (Liu et al., 2009) to

continuize and gaussianize the count values in terms of Jia et al. (2017). Then, we performed

c-level PC and SPACE on the normalized data after transformation. For c-level PC, we imple-
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mented it using the code from the author’s Github repository: https://github.com/yumouq

iu/Estimating-c-level-partial-correlation. To be consistent with our application, we

chose level c = 0 and also determined the FDR control at a pre-specified level of 0.001. For

SPACE, we implemented it using the function space.joint() in the R package space with

the weight that is proportional to the estimated degree of each node, which would result in

a preferential attachment effect and make the estimated network closer to a real biological

network with a power-law (or scale-free) pattern (Barabási and Albert, 1999).

Figure B.13 illustrates the log 2-log 2 plots of node degree distribution based on the

inferred networks from c-level PC and SPACE with their corresponding correlation mea-

surements. As we can see, the correlations are −0.71 and −0.53 for c-level PC and SPACE

respectively. The values demonstrate weaker negative linear relationship than those from

the proposed approach, which provides evidence that the inferred networks from the two

approaches for graphical models under normal distribution assumption do not conform the

power law well.
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Figure B.13: The log 2-log 2 plots of degree distribution for the inferred networks from

c-level PC and SPACE.
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Figure B.14: Some enriched pathways from the proposed inferential procedure in TPGM

and SPGM.
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B.8.3 Some enriched pathways using the proposed method in TPGM and

SPGM

Figure B.14 illustrates some enriched pathways from the modules in TPGM and SPGM.

B.8.4 Gene interactions of the module in SqrtPGM with enriched JAK-STAT

signaling pathway and their corresponding interactions in TPGM and 

SPGM

Figure B.15 presents the gene interactions of the module in SqrtPGM where the JAK-

STAT signaling pathway is enriched and their corresponding interactions in TPGM and 

SPGM in a fixed panel. As expected, SqrtPGM shows 77 gene connections which are more 

than those identified in TPGM (27 connections) and SPGM (6 connections). The gene 

connections in SqrtPGM include all those identified in SPGM and 14 out of 27 identified in 

TPGM. Moreover, it is interesting to notice two hub genes DYNLT1 and TRIM22 shown in 

yellow ovals in SqrtPGM, and they are both related to atopic asthma. DYNLT1 is shown to be 

one of the top genes to be associated with atopic dermatitis, which is closely related to atopic 

asthma. TRIM22, which involves in antiviral response regulated by an interferon pathway, 

has the strongest association with leukotriene receptor antagonist treatment to childhood 

asthma, according to Perez-Garcia et al. (2020).

B.8.5 Additional analysis on TPM values from the RNA-seq data of childhood

atopic asthma

We evaluated the performance of GFC L on the TPM values of the same 500 genes

among 157 children with atopic asthma in Puerto Rico. Since TPM still spans a wide range

of values, we took a log transformation before implementing GFC L. To ensure the fairness

in comparison, we also set FDR control at level 0.001 which is same as the one used in other

approaches.

We at first evaluated the identified gene modules. Table B.18 illustrates sizes and num-

bers of all different identified gene modules from the inferred network of GFC L. It can be
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Figure B.15: Gene interactions in the module with enriched JAK-STAT signaling pathway

in SqrtPGM and their corresponding interactions in TPGM and SPGM.
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seen that GFC L still fails to detect big gene modules with a size of at least 30 genes like the

ones from our proposed method. These gene modules have the largest size of 5 genes. Then,

we evaluated the inferred interactions from GFC L among the 12 genes in the JAK-STAT

signaling pathway. However, GFC L is not capable of identifying important gene interactions

even using TPM values.

Table B.18: The identified gene modules by GFC L on TPM values.

Size of gene modules Number of gene modules

1 436

2 19

3 7

4 0

5 1

In summary, the results from GFC L on the TPM values provide additional convincing 

evidence that our proposed approach is more capable of detecting big gene modules and 

capturing gene interactions within important functional gene pathways related to atopic 

asthma.

B.8.6 Additional comparison of methods on liver cytochrome P450s

We further evaluated the validity of our proposed approach by comparing with the ex-

isting methods on a well-characterized and simpler data set with some established “ground 

truth”. It is a count-valued RNA-seq data set for a liver cytochrome P450s subnetwork 

from humans with n = 100 samples and p = 44 genes, and we downloaded the data from 

the Supplementary Materials of Jia et al. (2017). Liver cytochrome P450s play important 

roles in drug metabolism, and P450 enzymes are particularly functionally included in the 

metabolism of various endogenous and exogenous chemicals (De Montellano, 2005). Through 

experimental work, Yang et al. (2010) uncovered a subnetwork of P450 regulatory system for
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human liver shown in Figure 5C in their paper, where the known regulators and P450 genes

are shown in blue rectangles and red ovals respectively. We can regard it as some established

“ground truth”. Our purpose is to evaluate how the proposed method can recover or identify

the gene interactions from the “ground truth” using the count-valued RNA-seq data set with

a comparison to GFC L.

We at first evaluated the scale-free (or power-law) topology (Barabási and Albert, 1999)

of inferred networks from different methods so as to ensure the reliability of network struc-

ture for further analysis. After implementing the pre-processing steps in Allen and Liu

(2013) to normalize the original count-valued RNA-seq data, we performed the proposed

approach using TPGM, SPGM and SqrtPGM with FDR control at levels 0.001, 0.005, 0.01,

0.05, 0.1 and 0.15. As a comparison study, we also implemented GFC L on the normalized

data after a log and nonparanormal transformation (Jia et al., 2017) on the original count

values at same levels of FDR control. We further summarized the node degree distribution

of all the inferred networks from different methods at each pre-specified level of FDR con-

trol. An inferred network with a better conformation to the power law illustrates its closer

features to a real biological network. The power law can be described as p(λ) ∈ λ−α, where

λ and p(λ) are denoted as node degree and its corresponding probability, and α is a posi-

tive number. Numerically, it can be measured by the correlation between the log 2 of node

degree and the log 2 of its corresponding probability. A correlation closer to −1 indicates a

better conformation to the power law. The correlation values with respect to each level of

FDR control from our proposed approach with three models and GFC L are reported in Ta-

ble B.19. Overall speaking, our proposed approach generates networks that are much more

consistently follow scale-free topology than GFC L. When pre-specified levels become 0.1

and 0.15, the correlation values from GFC L are −0.4322 and 0.1344, which indicates that

the inferred networks are highly deviated from a scale-free pattern. The correlation values

from our approach with TPGM and SqrtPGM are consistently around −0.8 or −0.9. Even

though the performance of SPGM is not as good as the other two models when FDR level

is relaxed, its correlation value can be around −0.6 at level 0.15, which is still much better

than GFC L. We also included the results from nonparanormal SKEPTIC (Liu et al., 2012)

with graphical Lasso as another comparison study, which directly estimates graphical model
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structure using Spearman’s rho or Kendall’s tau. Because it is a sole estimation approach,

we adopted the EBIC criterion (Foygel and Drton, 2010) to select an estimated graph. The

correlation value from the selected graph using nonparanormal SKEPTIC is 0.2548, which

indicates that the graph structure does not follow scale-free topology.

We then evaluated the identified gene interactions from inferred networks of GFC L and

the proposed approach with FDR control at level 0.001 because all of them follow scale-

free topology well with negative correlation values stronger than −0.9. The four genes:

AK097548s, BC019583, ENST00000301162 and NM 173466 in the “ground truth” were ex-

cluded from the study since they are non protein-coding genes, and their information is

unavailable in the original data. In terms of the proposed approach, we focused on the

results with SPGM due to its slightly better performance than TPGM and SqrtPGM in

this application. We listed the identified gene interactions that overlap the subnetwork from

Yang et al. (2010) using our proposed approach with SPGM and GFC L in Table B.20.

As it can be seen, our proposed approach with SPGM can capture most of these interac-

tions identified from GFC L, for example, CYP3A4 and CYP3A43, BCL6 and NCOA7, and

CYP2A13 and CYP2A7. Moreover, the proposed approach with SPGM can recover more

functionally important interactions between the known cytochrome P450 genes shown in red

ovals of Figure 5C in Yang et al. (2010) than GFC L, for example, CYP2C8 and CYP2C9,

CYP2B6 and CYP2B7P1, and CYP2A6 and CYP2A7.

In summary, our proposed approach can generate gene networks with more consistent

scale-free topology compared to the existing methods such as GFC L and nonparanormal

SKEPTIC, and it is also capable of identifying more important interactions between the

known cytochrome P450 genes shown in the “ground truth” subnetwork compared to GFC L.
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Table B.19: Correlations between the log 2 of node degree and the log 2 of its corresponding

probability of inferred networks.

FDR level

0.001 0.005 0.01 0.05 0.10 0.15

GFC L -0.9304 -0.9304 -0.9304 -0.7734 -0.4322 0.1344

Proposed (TPGM) -0.9395 -0.9000 -0.9000 -0.8788 -0.8192 -0.8041

Proposed (SPGM) -0.9105 -0.8216 -0.7007 -0.6336 -0.5887 -0.5999

Proposed (SqrtPGM) -0.9398 -0.9393 -0.9278 -0.9151 -0.9342 -0.8439

Table B.20: The identified gene interactions that overlap the subnetwork from Yang et al.

(2010) by GFC L and the proposed approach with SPGM.

GFC L Proposed (SPGM)

CYP3A4 —— CYP3A43 CYP3A4 —— CYP3A43

CYP2A7 —— CYP2A13 CYP2A7 —— CYP2A13

AKR1D1 —— GLYAT CYP2C9 —— CYP2C8

NCOA7 —— BCL6 NCOA7 —— BCL6

ETNK2 —— NR1I2 CYP2B6 —— CYP2B7P1

CYP2A7 —— CYP2A6

FMO3 —— SLC10A1

SLC10A1 —— AKR1D1
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Table B.21: Enriched significant gene pathways from 500 genes.

Pathway name P-value FDR

Metal sequestration by antimicrobial proteins 3.73e−6 3.79e−3

FAS signaling pathway 4.68e−6 3.79e−3

Apoptotic cleavage of cellular proteins 2.35e−5 1.26e−2

HIV-I Nef: negative effector of Fas and TNF 4.50e−5 1.55e−2

FAS signaling pathway (CD95) 4.81e−5 1.55e−2

FasL/CD95L signaling 1.11e−4 2.76e−2

HIV-1 Nef: Negative effector of Fas and TNF-alpha 1.20e−4 2.76e−2

Apoptotic execution phase 1.79e−4 3.62e−2

JAK-STAT signaling pathway 2.23e−4 4.01e−2

B.8.7     Enriched significant gene pathways from 500 genes

The enriched significant gene pathways with FDR control at level 0.05 from all of the 500 

genes are shown in Table B.21.

B.8.8     All the enriched significant gene pathways from the identified big gene

modules

All the enriched significant gene pathways with FDR control at level 0.05 from the

identified big gene modules are shown in Table B.22. Two identified big gene modules from the

sole estimation with SPGM, see Table 3.8, fail to enrich any significant gene pathways based

on the 0.05 level of FDR control. Therefore, we only include the significant results from our

method with the three models.
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Table B.22: All the enriched significant gene pathways from the big gene modules.

Proposed (TPGM) (Module 1: size = 312)

Pathway name P-value FDR

Metal sequestration by antimicrobial proteins 5.66e−7 7.44e−4

Apoptotic cleavage of cellular proteins 1.62e−5 1.07e−2

Genes encoding secreted soluble factors 2.96e−5 1.30e−2

Apoptotic execution phase 9.70e−5 3.18e−2

Proposed (TPGM) (Module 2: size = 169)

Pathway name P-value FDR

Inositol phosphate metabolism, Ins(1,3,4,5)P4 =>

Ins(1,3,4)P3 => myo-inositol 3.96e−5 1.42e−2

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 5.35e−5 1.42e−2

Synthesis of IP2, IP, and Ins in the cytosol 7.68e−5 1.42e−2

FAS signaling pathway (CD95) 8.80e−5 1.42e−2

HIV-I Nef: negative effector of Fas and TNF 9.43e−5 1.42e−2

HIV-1 Nef: Negative effector of Fas and TNF-alpha 1.63e−4 2.01e−2

Gonadotropin-releasing hormone receptor pathway 1.87e−4 2.01e−2

RIG-I-like receptor signaling pathway 2.31e−4 2.17e−2

TNF receptor signaling pathway 4.00e−4 3.24e−2

MAP00562 Inositol phosphate metabolism 4.31e−4 3.24e−2

Inositol phosphate metabolism 5.16e−4 3.53e−2

FasL/CD95L signaling 6.16e−4 3.87e−2

Ceramide signaling pathway 6.73e−4 3.90e−2

BBSome-mediated cargo-targeting to cilium 7.70e−4 4.14e−2

CLEC7A/inflammasome pathway 9.20e−4 4.62e−2

Phosphatidylinositol signaling system 1.04e−3 4.89e−2

Proposed (SPGM) (Module 1: size = 229)

Pathway name P-value FDR

Metal sequestration by antimicrobial proteins 1.73e−7 1.64e−4
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Table B.22: All the enriched significant gene pathways from the big gene modules (Contin-

ued).

Proposed (SPGM) (Module 3: size = 120)

Pathway name P-value FDR

Inositol phosphate metabolism, Ins(1,3,4,5)P4 =>

Ins(1,3,4)P3 => myo-inositol 9.13e−5 4.05e−2

Inositol phosphate metabolism 1.29e−4 4.05e−2

Synthesis of IP2, IP, and Ins in the cytosol 1.77e−4 4.18e−2

Proposed (SPGM) (Module 3: size = 120)

Pathway name P-value FDR

FAS signaling pathway (CD95) 1.07e−6 3.82e−4

FAS signaling pathway 1.27e−6 3.82e−4

HIV-I Nef: negative effector of Fas and TNF 1.55e−6 3.82e−4

HIV-1 Nef: Negative effector of Fas and TNF-alpha 6.44e−5 9.55e−3

Caspase-mediated cleavage of cytoskeletal proteins 6.47e−5 9.55e−3

Caspase cascade in apoptosis 2.64e−4 3.25e−2

Caspase Cascade in Apoptosis 3.83e−4 3.53e−2

FasL/CD95L signaling 3.83e−4 3.53e−2

Apoptosis signaling pathway 4.40e−4 3.61e−2

Extrinsic apoptotic 5.72e−4 4.22e−2

TNFR1 signaling pathway 7.69e−4 4.83e−2

TRAIL signaling 7.97e−4 4.83e−2

Pyruvate metabolic 8.50e−4 4.83e−2

Proposed (SqrtPGM) (Module 1: size = 48)

Pathway name P-value FDR

JAK-STAT signaling pathway 1.74e−9 7.51e−7

Signaling by interleukins 1.32e−8 2.84e−6

Cytokine signaling in immune system 5.08e−8 7.29e−6

Hematopoietic cell lineage 7.86e−8 8.47e−6
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Table B.22: All the enriched significant gene pathways from the big gene modules (Contin-

ued).

Proposed (SqrtPGM) (Module 1: size = 48)

Pathway name P-value FDR

Cytokine-cytokine receptor interaction 1.28e−7 1.10e−5

RAF-independent MAPK1/3 activation 1.95e−5 1.40e−3

FasL mediated signaling pathway 3.13e−5 1.73e−3

Interleukin-6 family signaling 3.20e−5 1.73e−3

FasL/CD95L signaling 5.22e−5 2.50e−3

Innate immune system 9.78e−5 4.22e−3

PI3K-Akt signaling pathway 1.14e−4 4.48e−3

Interleukin-4 and 13 signaling 1.33e−4 4.77e−3

Inositol phosphate metabolism 1.72e−4 4.90e−3

MAPK1(ERK2) activation 1.87e−4 4.90e−3

Inositol phosphate metabolism, Ins(1,3,4,5)P4 =>

Ins(1,3,4)P3 => myo-inositol 1.87e−4 4.90e−3

The TNF-type receptor Fas induces apoptosis on ligand binding 1.87e−4 4.90e−3

MAPK3(ERK1) activation 2.33e−4 4.90e−3

Measles 2.47e−4 4.90e−3

MAPK1/MAPK3 signaling 2.70e−4 4.90e−3

STAT3 pathway 2.84e−4 4.90e−3

Dimerization of procaspase-8 2.84e−4 4.90e−3

Regulation by c-FLIP 2.84e−4 4.90e−3

Interleukin-6 signaling 2.84e−4 4.90e−3

Synthesis of IP2, IP, and Ins in the cytosol 2.84e−4 4.90e−3

CASP8 activity is inhibited 2.84e−4 4.90e−3

Non-alcoholic fatty liver disease (NAFLD) 3.71e−4 6.15e−3

Regulation of necroptotic cell death 4.69e−4 7.48e−3

MAPK family signaling cascades 5.21e−4 7.51e−3

Regulation of hematopoiesis by cytokines 5.40e−4 7.51e−3
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Table B.22: All the enriched significant gene pathways from the big gene modules (Contin-

ued).

Proposed (SqrtPGM) (Module 1: size = 48)

Pathway name P-value FDR

Erythrocyte differentiation pathway 5.40e−4 7.51e−3

Inositol metabolism 5.40e−4 7.51e−3

Inositol phosphate metabolism 5.84e−4 7.81e−3

RIPK1-mediated regulated necrosis 6.16e−4 7.81e−3

Regulated necrosis 6.16e−4 7.81e−3

Ligand-dependent caspase activation 6.97e−4 8.35e−3

IL 17 signaling pathway 6.97e−4 8.35e−3

Herpes simplex infection 8.38e−4 9.66e−3

Apoptosis is mediated by caspases, cysteine

proteases arranged in a proteolytic cascade 8.74e−4 9.66e−3

MAP00562 Inositol phosphate metabolism 8.74e−4 9.66e−3

3-phosphoinositide degradation 9.70e−4 1.02e−2

Superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism 9.70e−4 1.02e−2

Role of ERBB2 in signal transduction and oncology 1.18e−3 1.18e−2

IL 6 signaling pathway 1.18e−3 1.18e−2

Interleukin signaling pathway 1.24e−3 1.22e−2

IL-17 signaling pathway 1.28e−3 1.23e−2

Phosphatidylinositol signaling system 1.45e−3 1.36e−2

Apoptosis signaling pathway 1.67e−3 1.50e−2

Chagas disease (American trypanosomiasis) 1.67e−3 1.50e−2

Insulin signaling 1.77e−3 1.56e−2

Caspase activation via extrinsic apoptotic signaling pathway 1.91e−3 1.62e−2

Th17 cell differentiation 1.92e−3 1.62e−2

Pathways in cancer 1.98e−3 1.65e−2

Cytokines and inflammatory response 2.05e−3 1.66e−2

FAS signaling pathway (CD95) 2.19e−3 1.75e−2
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Table B.22: All the enriched significant gene pathways from the big gene modules (Contin-

ued).

Proposed (SqrtPGM) (Module 1: size = 48)

Pathway name P-value FDR

Interleukin-6 signaling 2.34e−3 1.78e−2

FAS signaling pathway 2.34e−3 1.78e−2

Activated TLR4 signaling 2.36e−3 1.78e−2

Interleukin receptor SHC signaling 2.85e−3 2.10e−2

FAS (CD95) signaling pathway 2.97e−3 2.10e−2

HIV-1 Nef: Negative effector of Fas and TNF-alpha 2.97e−3 2.10e−2

African trypanosomiasis 2.97e−3 2.10e−2

Toll like receptor 4 (TLR4) cascade 3.05e−3 2.12e−2

Interleukin-2 signaling 3.13e−3 2.14e−2

IL-2 receptor beta chain in T cell activation 3.50e−3 2.34e−2

Interleukin-3, 5 and GM-CSF signaling 3.53e−3 2.34e−2

Apoptotic cleavage of cellular proteins 3.68e−3 2.40e−2

Apoptosis 3.94e−3 2.54e−2

Graft-versus-host disease 4.06e−3 2.57e−2

Hepatitis B 4.44e−3 2.75e−2

IL6-mediated signaling events 4.46e−3 2.75e−2

Keratinocyte differentiation 5.09e−3 3.09e−2

Toll-like receptors cascades 5.26e−3 3.15e−2

G beta:gamma signaling through PI3Kgamma 5.53e−3 3.22e−2

Calcineurin-regulated NFAT-dependent transcription in lymphocytes 5.53e−3 3.22e−2

Interleukin-10 signaling 5.76e−3 3.27e−2

Malaria 5.76e−3 3.27e−2

Downstream signaling in naive CD8+ T cells 5.99e−3 3.27e−2

Synthesis of PIPs at the plasma membrane 5.99e−3 3.27e−2

Death receptor signaling 5.99e−3 3.27e−2

G-protein beta:gamma signaling 6.22e−3 3.35e−2

148



Table B.22: All the enriched significant gene pathways from the big gene modules (Contin-

ued).

Proposed (SqrtPGM) (Module 1: size = 48)

Pathway name P-value FDR

Apoptotic execution phase 6.71e−3 3.57e−2

GPVI-mediated activation cascade 6.96e−3 3.66e−2

Legionellosis 7.21e−3 3.74e−2

Apoptosis 7.51e−3 3.84e−2

Signaling by SCF-KIT 7.57e−3 3.84e−2

Programmed cell death 7.87e−3 3.90e−2

Genes encoding secreted soluble factors 7.88e−3 3.90e−2

HIV-I Nef: negative effector of Fas and TNF 7.99e−3 3.91e−2

Axon guidance 8.38e−3 4.06e−2

IL12-mediated signaling events 8.81e−3 4.22e−2

Ion influx/efflux at host-pathogen interface 9.29e−3 4.35e−2

Activation, myristolyation of BID and translocation to mitochondria 9.29e−3 4.35e−2

Proposed (SqrtPGM) (Module 4: size = 114)

Pathway name P-value FDR

Metal sequestration by antimicrobial proteins 3.66e−6 2.74e−3
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