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Abstract 

Impact of Flooding on Power System Restoration Following a Hurricane 

 

Grant Cruse, M.S. 

 

University of Pittsburgh, 2020 

 

 

 

 

Historically, hurricanes have been a major cause of devastation and widespread power 

outages in many areas of the United States. Since the 1970s, several popular methods for 

estimating hurricane intensity have been developed, but these have tended to focus solely on the 

amount of damage and outages that can be expected rather than the amount of time that will be 

required to restore power. Additionally, these methods allow for the inclusion of only a small 

number of variables, such as wind speeds and storm surge. In Krishnamurthy’s and Kwasinski’s 

“Characterization of Power System Outages Caused by Hurricanes through Localized Intensity 

Indices,” four metrics that describe the damage sustained by and the restoration times required for 

power systems that are affected by hurricanes were proposed as alternatives to the existing 

methods for estimating hurricane damage. These were maximum outage incidence, restoration 

times for 95% and 98% of the total number of outages, and average outage duration. Regression 

curves were generated by relating these indices to four variables that describe the intensity of the 

storms. The results showed that the generated curves fit the measured data very well, but they also 

seemed to suggest that there are other factors that may affect the metrics. In this work, three 

additional variables were included in the models to examine the impact of flooding on the metrics, 

particularly the amount of time that is required to restore outages. These were the flooded area in 

a county, the time until flood waters in a county receded, and the total area flooded by the 

hurricane. 
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1.0 Introduction 

Flooding due to the storm surge and rainfall from a hurricane has historically been shown 

to be a major cause of damage and loss of life [1]. In addition to these devastating effects, flooding 

has caused major delays during the power system restoration process that immediately follows a 

hurricane event because flood waters affect the accessibility of many areas, especially when the 

flooding impedes movement across major highway systems [2].  

In order to quantify the impact that flooding has on the amount of time required for 

restoration, the statistical models contained in [3] were updated to account for the extent of 

flooding that was experienced in various counties or parishes in the United States following a 

hurricane. The models previously related four variables, which were storm surge height, maximum 

sustained wind speed, time under storm conditions, and area on land affected by the hurricane, to 

four outage metrics: maximum outage incidence, 95% and 98% restoration times, and average 

outage duration. Regression curves were generated to graphically show these relationships, and 

the results from [3] showed that these curves were adequate representations of the measured data. 

However, they also seemed to suggest that there are other factors that may affect the metrics. 

Therefore, the purpose of this work was to achieve two goals. The first was to introduce 

new variables that quantify the effects of flooding so that the previous regression curves could be 

improved, and the second, based on the results, was to draw conclusions about how flooding affects 

the restoration process. Three additional variables were included in the models from [3] to examine 

the impact of flooding on the metrics, particularly the restoration times and the average outage 

duration. 
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1.1 Electric Utility Outage Restoration Process 

When weather disturbances with thunderstorms occur over an ocean, a tropical cyclone can 

form if water temperatures are warm enough and wind speed and direction remain constant in the 

atmosphere. If the wind speeds caused by the cyclone continue to increase, the storm could be 

classified as a hurricane, which indicates that there is a strong expectation that the storm will cause 

a significant amount of damage if it reaches land. The main hazards associated with hurricanes are 

wind speeds, rainfall, and storm surge, which is when water is pushed inland by the hurricane, and 

these can cause severe damage to a power system and lead to a large number of outages [4]. 

Although storms can vary in size and intensity, electric utilities tend to follow the same 

basic steps when restoring outages for any given storm event. The first of these is to perform 

damage assessments and make repairs to any essential equipment located at power generation 

plants. This step is given the highest priority because these sites are the primary sources of power 

production for the systems. The next steps in the process are to send crews to repair damaged or 

fallen transmission lines and essential equipment located at individual substations so that power 

can be properly supplied to local distribution systems. With power readily available for 

distribution, the crews then restore outages for sites that are deemed to be essential to the safety 

and health of the communities. These include hospitals, police and fire stations, and sanitation and 

communication facilities. Finally, the crews work to restore power to the other customers, starting 

with large service areas and concluding with isolated outages [5]. A summary of these steps is 

shown in Figure 1.1. 

In the case of hurricane events, the property damage and the number of outages experienced 

is likely to be severe when compared to events of a weaker intensity. Because of this, utilities 
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Figure 1.1 Steps Taken for Outage Restoration [5] 

 

often request help from other entities such as local contractors or employees from its service 

centers. Additionally, utilities sometimes form mutual assistance groups with one another, where 

one company will provide aid for another when requested [6]. In order to provide assistance, 

workers from utilities in the group may have to travel long distances to reach the affected area. 

Flooding can have significant effects on outage restoration. Most often, the flooding that 

is experienced after a hurricane event causes delays in the completion of each of the steps of the 

process. First, vehicles used by deployment crews can be easily subjected to sliding or floating 

instability even when water levels are low [7], and, as a result, when flood waters cover major 

highway systems, the crews may be unable to reach certain areas for extended periods of time. 

Additionally, flood waters can also deposit large amounts of debris on roads, which can further 

delay restoration [2]. 
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1.2 Issues with Determining Hurricane Intensity 

The most commonly used system for quantifying hurricane intensity has been the Saffir-

Simpson Hurricane Wind Scale (SSHWS), which was created by Herbert Saffir, who wanted to 

provide a simple way to estimate the amount of property damage that can be expected from a 

hurricane. He divided it into five categories that are determined based on the one-minute sustained 

wind speed that can be measured for a given hurricane, where category-1 is the weakest and 

category-5 is the strongest. Saffir submitted the scale to the National Hurricane Center (NHC), and 

the director at that time, Robert Simpson, added estimations for the expected range of pressure and 

storm surge height that could be expected for each category [8]. When the scale is used by the 

NHC and other organizations or individuals, the wind speed measurements are the only parameter 

used to determine the category of the hurricane. The Saffir-Simpson scale with wind speed and 

storm surge height ranges is shown in Table 1.1. 

 

Table 1.1 Original Saffir-Simpson Hurricane Scale [8], [9] 
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Despite the fact that the scale in Table 1.1 is simple to apply to any given tropical cyclone, 

it does have several issues with the implications of the categories. First, the wind speed ranges for 

each category are relatively large while the number of available categories is small, so the scale 

may not provide an accurate depiction of the intensity of the storm. For example, a change of one 

mile per hour could result in a change of category, which implies a large increase in intensity when, 

in reality, the change was much less significant [8]. Another issue is that storm surge predictions 

based on the scale have historically tended to be erroneous, particularly with many recent 

hurricanes. For example, Hurricanes Katrina and Ike were designated as category-3 and -2 storms 

respectively while their storm surge heights were more reflective of category-4 or -5 storms [3]. 

Because of this trend, the storm surge estimates were eventually removed from the scale [9].  

Finally, the scale can be beneficial for advisory warnings and damage predictions, but it does not 

directly provide estimates for the amount of time required for the restoration process that follows 

the storm event. 

Many other methods for determining hurricane intensity have been proposed since the 

creation of the SSHWS, such as the Hurricane Surge Index [8], Hurricane Hazard Index [8], and 

other, more complex models and statistical analyses [3]. However, each of these tends to provide 

information on a large geographical scale that is not suitable for accurate estimations of power 

system outages and the planning of outage restoration. Therefore, the objective of [3] was to 

provide a simple approach to estimate the potential effects of hurricanes on smaller geographic 

areas by integrating additional hurricane actions in addition to wind speed so that power grid 

planners could perform reliable risk assessments. 

In [3], nonlinear regression analyses were used to create sets of equations and curves that 

could be used as alternatives to the existing methods for predicting hurricane damage and expected 
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restoration times that are more suited for power grid planning. The results of these analyses 

indicated that the proposed alternatives were promising, but they also seemed to suggest that there 

were additional hurricane actions that were not being considered, particularly with the restoration 

times and the average outage durations. This work proposes that an important factor that was not 

included in [3] was the effects that flooding has on the restoration process. In this work, the models 

were updated to include three additional variables that quantify different aspects of the flooding 

that is experienced following a hurricane event. 
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2.0 Nonlinear Regression Analysis 

In this work, nonlinear regression analyses were used to determine the relationships 

between the outage metrics and the hurricane actions that were mentioned in Chapter 1.0. The 

primary goal of these analyses, in the context of this work, is to determine the curves that best fit 

the measured outage metric data. Unlike linear regression, there is not a closed-form expression 

for nonlinear regression for determining the best fit of a given data, so computer algorithms are 

commonly used to complete the analysis. 

2.1 Regression Functions 

Regression analysis is the process of determining the relationships between one or more 

independent variables, denoted as 𝑥1, 𝑥2, ... 𝑥𝑛, where n is the number of variables, and a dependent 

variable of interest, denoted as y. All variables involved in the analysis are comprised of several 

observations for the quantity that they represent [10]. For example, consider the variables listed in 

Table 2.1. This model consists of one independent variable, x, and a dependent variable, y, and 

several measurements of y were recorded for different values of x. In general, the relationship 

between independent and dependent variables can be expressed as 

 𝑦 ~ 𝑓(𝑥⃗, 𝑐) (2.1) 

where 𝑥⃗ is the vector of all independent variables, 𝑓 is the regression function that approximates 

y, and 𝑐 is the vector of all coefficients that are necessary for 𝑓 to be the best fit for y [10]. 
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When creating a model for a regression analysis, the first step is to determine the function 

𝑓. This can be achieved by plotting the observations of y against the observations of 𝑥⃗ and noting 

the distribution of the data points. For the variables listed in Table 2.1, the distribution can be seen 

in Figure 2.1. It appears to resemble a quadratic relationship, so, for this example, a good choice 

for the regression function would be 

 𝑦 ~ 𝑓(𝑥, 𝑐) = 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0 (2.2) 

 

Table 2.1 Example Data 

 

 

Figure 2.1 Plot of Example Data 
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2.2 Basis Functions 

In the example from the preceding section, only one independent variable was considered. 

However, in many applications, several independent variables may affect the distribution of the 

dependent variable, and their inclusion makes the model more complex. So, for two or more 

components in 𝑥⃗, the selection of a regression function becomes more difficult. Also, as more 

independent variables are included in the regression model, their relationships with the dependent 

variable become more complicated and are not always apparent. 

A method for systematically determining the relationships involves the use of basis 

functions that consist of different combinations of the independent variables [11]. Many different 

types of basis functions exist, but, in this work, polynomial basis functions were used exclusively 

and will be the focus of the following discussion. The general equation for these functions could 

potentially consist of the summation of all independent variables and all possible combinations of 

the products of the variables raised to all integer exponents. In order to limit the number of terms 

to a finite amount, the highest polynomial exponent is restricted to a certain value, and some 

combinations may be excluded. As an example, consider a polynomial basis function that consists 

of two independent variables, 𝑥1 and 𝑥2, and is limited to powers of 2. The function could have 

the following form: 

 

𝐵(𝑥⃗, 𝑝⃗) = 𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥1𝑥2 + 𝑝4𝑥1
2 + 𝑝5𝑥2

2 + 𝑝6𝑥1𝑥2
2 + 𝑝7𝑥1

2𝑥2

+ 𝑝8𝑥1
2𝑥2

2 

(2.3) 

where 𝑝⃗ is the vector of coefficients to be determined through the regression analysis and is a 

subset of 𝑐. In general, the dependent variable may not be characterized by all of the terms shown 
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in (2.3) because it may be affected more by particular independent variables than others, and the 

inclusion of more terms could increase the regression errors [3]. 

When a basis function is used with a regression function, (2.1) takes the following form: 

 𝑦 ~ 𝑓(𝐵, 𝑎⃗) (2.4) 

where 𝑎⃗ consists of all coefficients in 𝑐 that are not contained in 𝑝⃗. If the example from Section 

2.1 is altered so that there are two independent variables, but the distribution is still expected to 

follow a quadratic relationship, then the basis function of (2.3) can be used, and the regression 

function would be 

 𝑦 ~ 𝑓(𝑥⃗, 𝑐) = 𝑓(𝐵, 𝑎⃗) = 𝑎2𝐵2 + 𝑎1𝐵 + 𝑎0 (2.5) 

2.3 Coefficient Estimation 

The basic form of a nonlinear regression function can be determined by examining the 

distribution of the recorded data points, but the coefficients must be determined through 

algorithmic estimation methods. One of the most common of these methods and the one 

implemented in this work is estimation using nonlinear least squares. 

2.3.1 Method of Nonlinear Least Squares 

The goal of the method of nonlinear least squares is to obtain estimates for the values of 

each of the coefficients in the regression function that will allow the function to be the best 

prediction for the dependent variable of interest [12]. For the following, consider that 𝑚 is the total 

number of observations used with the variables, 𝑗 is a particular observation, ℓ is the total number 
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of coefficients used in the regression function, and 𝑘 is a particular coefficient. The error between 

the dependent variable of interest and the approximation of that variable obtained from the 

regression function for a particular observation is called a residual, and, if a basis function is used, 

these are given by 

 𝑟𝑗 = 𝑦𝑗 − 𝑓(𝑥⃗𝑗 , 𝑐) = 𝑦𝑗 − 𝑓(𝐵𝑗, 𝑎⃗) = 𝑦𝑗 − 𝑓(𝑝1𝑥1𝑗 + 𝑝2𝑥2𝑗 + ⋯ , 𝑎⃗) (2.6) 

The best estimations of the coefficients are those that minimize the sum of the squares of the 

residuals, 𝑆𝑓 [12], which is formulated as 

 𝑆𝑓 = ∑ 𝑟𝑗
2

𝑚

𝑗=1

 (2.7) 

A geometric interpretation of residuals can be seen in Figure 2.2, which uses the data from Table 

2.1. In this sense, a residual is the distance between an individual data point and a given regression 

curve. So, the curve that provides the best fit for the data is the one in which the sum of the squares 

of these distances is the smallest possible. In the figure, the formulation of the residual for the 

seventh observations of x and y from Table 2.1 is shown. 

 

 

Figure 2.2 Geometric Interpretation of a Sum of Squared Errors 
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 Mathematically, the sum is minimized when its gradient is equal to zero: 

 
𝜕𝑆𝑓

𝜕𝑐𝑘
= 2 ∑ 𝑟𝑗

𝜕𝑟𝑗

𝜕𝑐𝑘

𝑚

𝑗=1

= 0          (𝑘 = 1,2, … ℓ) (2.8) 

Because residuals are functions of both the independent variables and the coefficients, (2.8) lacks 

a closed-form solution for any observation. Therefore, algorithmic methods must be utilized to 

determine the best estimates [12]. Initial guess values must be provided for the coefficients, and 

these are iteratively refined until the gradients are as close to zero as is allowed by the algorithm. 

2.3.2 Coefficient of Determination 

When estimates of the coefficients are obtained using the method of nonlinear least 

squares, it is then possible to plot the regression curve that best fits the measured data. In order to 

quantify how well the curve represents the data, a figure of merit known as the coefficient of 

determination is commonly used [10]. This metric compares the sum of squared errors that is 

calculated from (2.7) to the sum of the squared errors that would be obtained if the average value 

of the data was used as the fitting curve instead of a regression curve. The average value of the 

data is 

 𝑦̅ =
1

𝑚
∑ 𝑦𝑗

𝑚

𝑗=1

 (2.9) 

and the total sum of squared errors between the data and its average is 

 𝑆𝑦̅ = ∑(𝑦𝑗 − 𝑦̅)
2

𝑚

𝑗=1

 (2.10) 

A geometric interpretation of these errors is shown in Figure 2.3. Again, the data from Table 2.1 

is used, and the formulation of the error between the third observation and the average is shown.  
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Figure 2.3 Geometric Interpretation of a Total Sum of Squared Errors 

 

The ordinary coefficient of determination [10] is 

 𝑅0
2 = 1 −

𝑆𝑓

𝑆𝑦̅
 (2.11) 

The maximum value of the coefficient is 1, which indicates that the generated regression curve is 

an exact fit for the data. As stated in Section 2.3.1, the goal of the method of nonlinear least squares 

is to minimize 𝑆𝑓. So, based on (2.11), the method provides the highest 𝑅0
2 value possible for the 

data.  

An issue with the interpretation of the metric calculated from (2.11) is that it monotonically 

increases with the number of independent variables that are included in the analysis. So, the value 

will continue to increase as more variables are introduced into the regression model regardless of 

whether the variables have any correlation with the data. A more accurate depiction of the 

goodness of the fit can be obtained from the adjusted coefficient of determination, which 

systematically reduces the value of the 𝑅0
2 to account for the number of variables that are used in 

the model [10]. The adjusted value can be calculated with 
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 𝑅2 = 1 −
(𝑚 − 1)(1 − 𝑅0

2)

𝑚 − 𝑛 − 1
 (2.12) 

All references to the coefficient of determination in Chapters 5.0 and 6.0 refer to the adjusted 

value. 

2.3.3 Implementation with MATLAB 

In this work, MATLAB was used to complete all regression analyses. The program 

contains various toolboxes that contain functions for nonlinear curve fitting, but the Statistics 

toolbox was used for the following two reasons: 

1) It allowed for more complicated regression functions. As explained in Section 2.2, the 

inclusion of a basis function makes a regression function more complex, and the resulting 

expression may be too complicated for implementation with basic MATLAB regression 

functions such as fminsearch. 

2) It automatically provided information such as the adjusted coefficient of determination and 

squared errors. Most toolboxes that allow for nonlinear curve fitting, such as the Symbolic and 

NAG toolboxes, require additional coding to obtain these values. 

The function fitnlm was used from the Statistics toolbox. The MATLAB code used to obtain the 

regression curves for the outage metrics can be seen in Appendix A. 



 15 

3.0 Definitions 

Important definitions include those for each of the outage metrics and hurricane actions 

that were mentioned previously as well as for three additional actions that are introduced in this 

work. Some definitions associated with floods are discussed first in order to provide context for 

the values used and decisions made that appear throughout the text.  

3.1 Flooding 

3.1.1 Classifications 

Hurricane flooding is commonly classified into two categories that differ in causes and 

duration. The most common of the two, coastal flooding, is primarily due to storm surge, where a 

hurricane’s winds force ocean water onto land areas along the coast. The severity of this flooding 

varies depending on many factors such as the size, wind strength, and speed of the storm, and it 

has historically been a leading cause of damage and loss of life during a hurricane event [13]. 

Additional causes of coastal flooding include rainfall and river discharge [1], but the effects of 

these during a hurricane event are typically much less apparent than that of storm surge. 

The second category is inland flooding and is usually the result of heavy precipitation [1]. 

This type can be further divided into two subcategories, which are fluvial and pluvial flooding. 

Fluvial flooding, or river flooding, occurs when a river’s water level rises above its banks due to 

excessive rainfall. Pluvial flooding, or surface water flooding, occurs when rainfall produces a 
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flood independently from bodies of water. A common cause of this is the accumulation of rainfall 

on hillsides or other elevated terrain that cannot effectively absorb the amount of water flowing on 

them. If there are few obstacles to impede the flow of water, it will quickly accumulate in flatter 

areas and produce flooding. Pluvial flooding can also occur when rainfall causes the water in 

drainage systems to overflow onto streets [13]. Although coastal flooding has been historically 

more widespread than inland flooding during a hurricane event, there are several examples of 

storms included in this work where inland flooding was more extensive. 

One of the major observed differences between the two categories is that, in general, inland 

flood waters tend to recede at a slower rate when compared to coastal flood waters due to the 

differences in topography [14]. The pathways that allow water to return to its sources tend to be 

more widespread for coastal flooding due to its close proximity to expansive bodies of water, and, 

as a result, the water may recede much more quickly. Additionally, for the case of pluvial flooding, 

there may not be any significant pathways if the flooded area is not near a river or stream. 

3.1.2 Annual Exceedance Probability 

In order to quantify the risk associated with floods and their effects, hydrologists have 

developed statistical methods to describe the occurrence of floods in different areas. One of the 

most widely used practices is the classification of flood levels based on an annual exceedance 

probability (AEP), which is the percent chance that a flood of a certain magnitude will be equaled 

or exceeded in any given year [15]. For example, a 10-percent AEP flood has a 10 percent chance 

of occurring each year. 

In the United States, the AEP flood stages for different areas throughout the country are 

determined by examining the peak streamflow measurements that are recorded each year at various 
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hydrologic monitoring stations near the sites [15]. These are operated by the United States 

Geological Survey (USGS) [16], and they typically record aspects of a river, stream, lake, or sea 

such as discharge or height of water. As more data is collected each year, the accuracy of the AEP 

flood stages increases, but this also implies that the defined values for the magnitude of these 

floods could change from year to year [15]. 

The United States government uses 1-percent AEP flood stages to determine costs for its 

National Flood Insurance Program, and, as a result, this has been the most widely used AEP for 

flood-related applications. Historically, it has been more common to use amounts of time, called 

recurrence intervals, rather than AEPs when describing floods. A 1-percent AEP flood correlates 

to a 100-year flood recurrence interval, and the interval can be interpreted in the following way: a 

100-year flood has a 1 in 100, or 1 percent, chance of occurring in a single year [15]. 

3.2 Outage Metrics and Hurricane Actions 

The work presented in [3] defined four metrics that quantify the effects that a hurricane can 

have on the power system in a county and the amount of time that deployment teams will need to 

restore power. The metrics can be calculated based on the measurements of hurricane actions that 

reflect the intensity of a hurricane. 

3.2.1 Outage Metrics 

The outage metrics reflect how a hurricane affected the power system in an area of interest, 

and, in the context of regression analysis, they are analogous to the dependent variable y that was 
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discussed in Chapter 2.0. They were derived from indices listed in IEEE 859 [17], and 

measurements for each of them were determined by examining outage data provided by various 

electric utilities that were recorded at regular intervals during a hurricane event. The metrics are 

defined as 

1)    Maximum Outage Incidence: the fraction of electricity customers in a county that lost power.  

2-3)  Restoration Times: the times, in days, needed to restore 95% and 98% of the total number of 

outages in a county since those outages first peaked. These particular percentages were 

selected because they are commonly reported by electric utilities as a measure of progress 

made during the restoration period. Additionally, these values account for the fact that, in the 

case of widespread devastation, some reported outages may not be able to be restored if 

infrastructure has been destroyed. 

4) Average Outage Duration: the average amount of time, in days, that was needed to restore a 

single outage in a county. Although this metric is similar to the restoration times, it accounts 

for the fact that a small percentage of the outages may take much longer to restore and may 

not be reflective of the majority of the progress that was made by utilities.   

3.2.2 Hurricane Actions 

The hurricane actions reflect the intensity of a hurricane that affected an area of interest, 

and they were used to obtain the independent variables used in the regression analyses. The four 

hurricane actions presented in [3] are defined as  

1) Storm Surge Height, Hi: the height of the water, in feet, that a hurricane forced inland in county 

i. It was measured with respect to a reference value, H0, that was considered to be equal to 4 

feet and is a typical minimum height of water for a category-1 storm. Measurements for this 
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action were obtained by using storm surge modelling programs or from storm surge contour 

maps compiled by the National Oceanic and Atmospheric Administration (NOAA). 

2) Maximum One Minute Sustained Wind Speed, Vi: the maximum wind speed, in miles per hour, 

measured at 10 meters above the Earth’s surface in county i during a one minute interval. These 

measurements were obtained from NHC storm reports or from wind fields produced for 

NOAA’s H*Wind dataset. This action was measured with respect to a reference value, V0, 

which is 39 miles per hour. This reference was selected because, as shown in Table 1.1, it is 

the minimum wind speed for the tropical storm classification of the SSHWS, and, when it is 

attained, conditions become unsafe for repair crews. 

3) Time Under Storm Conditions, TSi: the duration of time, in hours, that a county i experienced 

at least tropical storm wind speeds. It is measured with respect to a reference value, TS0, which 

is 12 hours and was determined based on observations made during field assessments. 

Measurements for this action were obtained from wind fields produced for NOAA’s H*Wind 

dataset. 

4) Area Affected by Hurricane, ASi: The total area of land, in square miles, across all applicable 

counties that experienced at least tropical storm wind speeds. It was measured with respect to 

a reference value, AS0, which is 35,342 square miles and is defined as the amount of area that 

is expected to be swept by a category-1 hurricane. Measurements for this action were obtained 

by analyzing the data contained in wind fields from NOAA’s H*Wind dataset. 

In this work, three additional actions that represent the effects of flooding were included in 

the regression analyses. The sources of information and the methods used to obtain data for these 

variables are discussed in Chapter 4.0. The actions are defined as 
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5) Area Flooded by Hurricane, AFi: the area of land, in square miles, within county i that 

experienced coastal or inland flooding. Because the area of one county can be significantly 

different from the area in another county, the reference value for this action, AF0, was different 

for each location. For coastal flooding, the expected area in the county that would be flooded 

by a category-1 hurricane was used as the reference, and, for inland flooding, the area of land 

that is part of a 1-percent AEP floodplain was used as the reference. 

6) Time Until Flood Waters Receded, TFi: the duration of time, in days, that a county i experienced 

flooding. Because of the differences between coastal and inland flooding that were summarized 

in Section 3.1.1, the reference value for this action, TF0, was considered to be three days for 

coastal flooding and five days for inland flooding. These values were selected based on 

observations made during field assessments. 

7) Total Area Flooded by Hurricane, ATFi: the total area of land, in square miles, across all 

applicable counties that experienced coastal or inland flooding. While AFi is representative of 

mobility within a county, ATFi is representative of the accessibility of a county. As discussed 

in Section 1.1, personnel commonly travel to a county to aid in the restoration of the power 

system, and this action serves to quantify the difficulty that out-of-county teams may have 

when trying to enter a certain location. The reference value for this action, ATF0, was different 

for each hurricane used in the analyses and was determined using the same criteria that was 

used with AF0. 

For the analyses presented in [3] and in this work, the independent variables that were used 

to form a basis function were defined as 

 𝑋 =
𝑋𝑖

𝑋0
   (3.1) 
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where X can be any one of H, V, TS, AS, AF, TF, or ATF, and the subscripts i and 0 indicate 

the measured value of X in a county and the reference value of the measurement, respectively. 

  



 22 

4.0 Data Collection for Flooding 

The two types of flood data that were collected for each of the hurricanes were the area on 

land that was flooded and the amount of time that passed until the flood waters receded. This 

chapter first discusses the magnitude of the damage and flooding experienced for each of the 

hurricanes considered and then highlights the sources of the data and the steps that were taken to 

calculate the flooding actions from these data. 

4.1 Overview of Hurricanes Considered 

Data from eight hurricanes from the 2004, 2005, and 2008 Atlantic hurricane seasons were 

used in the regression analyses. Each of these storms made landfall in the mainland United States 

in or near either Florida, Louisiana, or Texas, and counties or parishes from these states comprise 

the study regions for the analyses. A description of the damage and flooding associated with each 

of the hurricanes is presented below, and maps of the study regions with hurricane tracks can be 

seen in Figures 4.1 and 4.2. 

1) Charley, 2004: Hurricane Charley made landfall in southwestern Florida as a category-4 

hurricane. The storm was notable for its intense winds [18], and several counties experienced 

a maximum outage incidence of 80 percent or higher. Despite the powerful winds, flooding 

was restricted to the coasts, where it receded at a fast rate when compared to other storms 

considered in this work. 
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2) Ivan, 2004: This storm made landfall west of Florida and affected counties in the northwest 

part of the state where it was classified as a category-3 hurricane and caused a significant 

amount of storm surge [19]. As a result, the flooding associated with this storm mainly affected 

the coast. 

3) Dennis, 2005: Hurricane Dennis also made landfall in Florida, and, like Hurricane Charley, it 

did not cause widespread and prolonged flooding. 

4) Katrina, 2005: This storm, considered one of the most devastating natural disasters to affect 

the United States, caused substantial amounts of flooding in Louisiana. In particular, Orleans, 

Plaquemines, and St. Bernard parishes were largely devastated by the amount and breadth of 

water. Furthermore, nearly 80 percent of the city of New Orleans was flooded with water that 

was nearly 20 feet in height [20]. 

5) Wilma, 2005: Unlike the previous hurricanes, Hurricane Wilma predominantly caused inland 

flooding. It made landfall in southwestern Florida as a category-3 hurricane and continued east, 

causing widespread damage and flooding across the southern part of the state [21]. 

6) Dolly, 2008: Hurricane Dolly made landfall in Texas and affected counties in that state as well 

as parts of Mexico. It is unique among the storms considered because the amount of flooding 

that occurred in the study regions was very small and the flooding outside of the regions was 

significant. Because of this, the AF variable was negligible for each of the counties considered, 

but the ATF variable had a significant value. 

7) Gustav, 2008: Hurricane Gustav made landfall as a category-2 storm in southeastern Louisiana 

[22]. It caused some coastal flooding in the immediate areas where it made landfall, but it 

caused much more inland flooding as it continued throughout the state. 
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8) Ike, 2008: This storm, along with hurricane Katrina, was one of the costliest storms in United 

States history and caused extreme amounts of coastal flooding. It made landfall in southeastern 

Texas, but it also affected parishes in Louisiana [23]. 

   

                                  Charley, 2004                                                                         Ivan, 2004 

   

                                   Dennis, 2005                                                                        Katrina, 2005 

Counties or Parishes colored  were part of the study regions used in the analyses. 

Storm track for each hurricane is denoted by . 

Figure 4.1 Storm Tracks and Study Regions, Part 1 
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                                   Wilma, 2005                                                                           Dolly, 2008 

               

                                  Gustav, 2008                                                                              Ike, 2008 

Counties or Parishes colored  were part of the study regions used in the analyses. 

Storm track for each hurricane is denoted by . 

Figure 4.2 Storm Tracks and Study Regions, Part 2 
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4.2 Flooding Areas 

4.2.1 Hurricane Measurements 

Several flood inundation maps prepared by the Federal Emergency Management Agency 

(FEMA) [24], [25], [26], the Dartmouth Flood Observatory [27], and the Harris County Flood 

Control District [28] were used to estimate the approximate area of land in each of the study 

regions that was flooded. The FEMA map for flooding in Santa Rosa County, Florida, following 

Hurricane Ivan is shown in Figure 4.3 as an example.  

 

Figure 4.3 Hurricane Ivan Inundation Map for Santa Rosa County, Florida [25] 
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In order to obtain the measurements for the amount of land that was flooded, the ImageJ 

image processing software was used to filter the map images and calculate the number of square 

pixels that contain flooding. The filtered Santa Rosa County map that was obtained with ImageJ 

is shown in Figure 4.4. As shown in the figure, after the filtering settings were adjusted, the flooded 

portions of Figure 4.3 were the only part of the map that remained. 

 

 

Figure 4.4 Extracting the Flooded Area 

 

After filtering the maps, ImageJ was then used to calculate the area in square pixels. This 

was converted to square inches by using the resolution of the map image and then to square miles 

by using the map’s scale. The area conversions for each of the counties in Florida that experienced 

major flooding due to Hurricane Ivan are summarized in the red portion of Table 4.1. The total 

area measurements used to determine the ATF variable for each hurricane were obtained using a 

similar procedure. 
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4.2.2 Reference Measurements 

The reference area measurements for each county were obtained using the process that was 

described in the previous section, but screenshots of an interactive United States flooding map 

created by ArcGIS [29] were used instead of the storm inundation maps. The map’s settings could 

be adjusted so that the average flooding for each of the five main hurricane categories shown in 

Table 1.1 or the average 1-percent AEP flood zones were shown. For cases when the main type of 

flooding in a county from a hurricane was coastal flooding, the settings were adjusted so that the 

average flooding due to category-1 hurricanes was shown, and, when the main type was inland 

flooding, the settings were adjusted so that the 1-percent AEP flooding was shown. The screenshot 

used to obtain the reference area for Santa Rosa County, Florida, is shown in Figure 4.5. Because 

the flooding shown in Figure 4.3 was restricted to the coast, the settings used for the screenshot 

are for the average flooding from category-1 hurricanes. 

In order to accurately determine the flooded area in square miles from the screenshots, 

county borders were superimposed over the images and resized to match the resolution of the 

screenshots so that flooding outside of the county could be excluded, and scales that corresponded 

to the dimensions of the borders were added so that the area in square pixels could be converted. 

The screenshot for Santa Rosa County with the added scale and the screenshot after filtering are 

shown in Figure 4.6a and b respectively.  

The reference area conversions for each of the counties in Florida that experienced major 

flooding due to Hurricane Ivan are summarized in the blue portion of Table 4.1. After both AFi and 

AF0 were determined for all counties, the independent variable AF was calculated for each location 

by using (3.1), and these values are shown in the farthest right column of Table 4.1. 



 29 

 

Figure 4.5 Screenshot Used to Obtain Santa Rosa County Reference Area [29] 

 

   

                          (a) Screenshot with Scale                                                     (b) Filtered Screenshot 

Figure 4.6 Extracting the Reference Area 

 

Table 4.1 Calculation of AF for Hurricane Ivan 
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4.3 Flood Receding Times 

Receding time data for the study regions were obtained by examining hydrographs created 

from data recorded by USGS monitoring stations [16]. As discussed in Section 3.1.2, these stations 

collect measurements for gauge height and discharge, and changes in these data were used to 

identify the duration of flooding during hurricane events. The discharge hydrograph used for 

Okaloosa County, Florida, during Hurricane Ivan is shown in Figure 4.7. A list of all stations used 

to obtain the receding time data can be seen in Appendix B. In several parishes affected by 

Hurricane Katrina, none of the stations had available data from the time period of the storm, so 

estimates reported in the storm report prepared by the NHC [20] were used. 

 

 

 

Figure 4.7 Hydrograph Used for Okaloosa County, Florida [16] 
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Some monitoring stations have a designated level of gauge height or discharge that 

indicates that the body of water is likely experiencing flooding conditions. This level is known as 

the flood stage, and it is indicated by a red line as shown in Figure 4.7. To determine the receding 

times from the hydrographs, the date when the measured data first exceeded the flood stage and 

the date when the data decreased below the flood stage were determined, and the amount of time 

between these two dates was used. For cases where a flood stage was not provided by a station, 

the date that the magnitude of the measurements began to greatly increase and the date when the 

magnitude decreased to a new normal condition were identified, and the time between these two 

dates was used instead. 

In the example plot of Figure 4.7, the discharge began to increase substantially on 

September 15, 2004, which is when Hurricane Ivan made landfall in Florida. Midway through 

September 16, the discharge rose above the flood stage, and flooding conditions were experienced 

until September 21. So, based on the latter two dates, the flood receding time for Okaloosa County 

was determined to be approximately 4.5 days. The reference value for this measurement was 3 

days because the flooding was predominantly restricted to the coast, so the independent variable 

TF was calculated from (3.1) to be 1.5 for this case. 
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5.0 Results from Previous Work 

The basis function for the regression analyses that was used in [3] was constructed as the 

following response surface model: 

 

𝐿𝑇𝐶𝐼𝐼 = 𝑝1𝐻 + 𝑝2𝑉 + 𝑝3𝑇𝑆 + 𝑝4𝐴𝑆 + 𝑝5𝐻𝑉 + ⋯ + 𝑝20𝐻2𝑉2𝑇𝑆
2𝐴𝑆

2

+ 𝑝21𝐻𝑉2𝑇𝑆𝐴𝑆 + 𝑝22𝐻𝑉𝑇𝑆
2𝐴𝑆 + 𝑝23𝐻2𝑉2 + 𝑝24𝐻2𝑉2𝑇𝑆 

(5.1) 

where LTCII is called the local tropical cyclone intensity index, and 𝑝1, 𝑝2, ... 𝑝24  are the 

coefficients that would be found through the regression analyses. Each of the four outage metrics 

have different forms of (5.1), and the following naming conventions will be used: LTCIIMOI for 

maximum outage incidence, LTCIITrτ for the restoration times where τ can be either 95 or 98, and 

LTCIIAOD for average outage duration. As stated in Section 2.2, an outage metric may not be 

characterized by all of the terms shown in (5.1). 

5.1 Estimation of Coefficients 

5.1.1 Maximum Outage Incidence 

The following regression function was proposed as a general fit for the outage incidence 

based on the distribution of the data points: 

 𝑓1(𝐿𝑇𝐶𝐼𝐼𝑀𝑂𝐼 , 𝑎⃗) =
1

1 + 𝑒−𝑎1[ln(𝐿𝑇𝐶𝐼𝐼𝑀𝑂𝐼)−𝑎2]
  (5.2) 

The coefficients 𝑎1, 𝑎2, and 𝑝1, 𝑝2, ... 𝑝24 were found by minimizing the sum of squared residuals 

determined from (2.7), and the results showed that 𝑎⃗ = [𝑎2, 𝑎1] = [5.8, 2.6], and  
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𝐿𝑇𝐶𝐼𝐼𝑀𝑂𝐼 = 111𝑉 + 120𝐻𝑉 + 107𝑉𝐴𝑆  + 15𝐻𝑉𝐴𝑆 + 359𝑉2𝑇𝑆

 
 (5.3) 

For this curve, the R2 was found to be 0.8. 

5.1.2 Restoration Times 

The times taken to restore 95% and 98% of the peak number of outages were predicted to 

follow a third order polynomial form: 

 𝑓2(𝐿𝑇𝐶𝐼𝐼𝑇𝑟𝜏 , 𝑎⃗) = 𝑎3𝐿𝑇𝐶𝐼𝐼𝑇𝑟𝜏
3 + 𝑎2𝐿𝑇𝐶𝐼𝐼𝑇𝑟𝜏

2 + 𝑎1𝐿𝑇𝐶𝐼𝐼𝑇𝑟𝜏 + 𝑎0 (5.4) 

The analysis results indicated that, for 95% restoration, [𝑎3, 𝑎2, 𝑎1, 𝑎0] = [0, 0.009, 0.2, 0], and 

 𝐿𝑇𝐶𝐼𝐼𝑇𝑟95 = 14𝑉 + 2𝑇𝑆𝐴𝑆 + 2𝑉2𝑇𝑆   (5.5) 

For 98% restoration, [𝑎3, 𝑎2, 𝑎1, 𝑎0] = [0, 0.00983, 0.2, 0.137], and 

 𝐿𝑇𝐶𝐼𝐼𝑇𝑟98 = 15𝑉 + 2𝑉𝑇𝑆 + 𝑇𝑆𝐴𝑆  (5.6) 

For both curves, the R2 was 0.65.  

Some data points obtained for Hurricane Katrina were excluded from the analyses 

performed for these two metrics. The restoration period following this storm was notable for taking 

much longer than the other storms considered in this work, due in part to the unprecedented amount 

of damage in several of the parishes as well as the fact that Hurricane Rita impacted some of the 

same areas less than a month later [30]. Because of these abnormalities, the points likely do not 

provide an accurate portrayal of how utilities will respond to a hurricane of this magnitude, and, 

as a result, they were not considered. 
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5.1.3 Average Outage Duration 

This metric was predicted to follow the same cubic polynomial form as the restoration 

times: 

 𝑓2(𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷, 𝑎⃗) = 𝑎3𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷
3 + 𝑎2𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷

2 + 𝑎1𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷 + 𝑎0 (5.7) 

The polynomial constants were found to be [𝑎3, 𝑎2, 𝑎1, 𝑎0] = [0, 0, 0.28, 0], and  

 𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷 = 3𝑉 + 4𝑉𝐴𝑆 + 4𝑉2𝑇𝑆  (5.8) 

For this curve, the R2 was 0.51. The outage duration points that correspond to the parishes excluded 

for Hurricane Katrina that were discussed for the restoration times were also excluded for this 

metric. 

5.2 Regression Curves and Interpretations 

The curves for each metric are the red traces in Figure 5.1, and the blue data points are the 

measured values for the metrics in a particular county or parish. The outage incidence curve had 

the highest R2 value of the four indices, and the presence of all four hurricane action variables in 

(5.3) indicated that each of these had a significant correlation with the outage data. This can be 

explained by the fact that the actions quantify different aspects of the amount of damage that was 

sustained by the power system. For example, storm surge and wind speeds are major causes of 

power outages during a hurricane event, so these two variables were expected to have a strong 

influence on the LTCIIMOI. Additionally, the area affected by the hurricane and the time under 

storm conditions are reflective of the number of outages that can be expected because a larger area 
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and longer time make it much more likely for outages to occur, so these were also expected to be 

highly correlated with the outage incidence. 

 

 

 

Figure 5.1 Original Regression Curves 

 

Unlike the outage incidence, each of the four hurricane actions did not have a high 

correlation with the restoration times and average outage duration. In particular, none of the terms 

in (5.5), (5.6), or (5.8) had a dependence on storm surge height, and this is likely because this 

action is more reflective of damage caused to the power system rather than delays experienced 

during the restoration process. Conversely, the three remaining variables were each shown to have 
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a significant influence on these three metrics. For the area affected by the hurricane and the time 

under storm conditions, these variables can be interpreted as being representative of the amount of 

area that could require restoration and an amount of time that must be delayed until repair crews 

can begin to restore outages. 

The R2 values for the restoration times and average outage duration were significantly 

smaller than that of the outage incidence, which could be due to a variety of reasons. One 

possibility is that there are additional factors that were not considered in the regression analyses 

summarized in the previous section that have a significant correlation with the metrics. For this 

work, delays due to the flooding that is associated with hurricanes were proposed as one of these 

factors, and the results of the regression analyses with these considerations are summarized in the 

following chapter. 
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6.0 Incorporation of Flooding 

In the preceding chapter, the regression curve for the maximum outage incidence had the 

highest correlation to its measured data with a R2 of 0.8 while the curves for the restoration times 

and average outage duration were not as well-fitted to their corresponding data. The three flood 

actions that were defined in Section 3.2.2 were incorporated into the existing models in order to 

identify whether flooding considerations could improve the R2 values of these metrics. The same 

regression curve forms shown in (5.2), (5.4), and (5.7) were used in the regression analyses, and 

each of the coefficients were recalculated to identify any changes in the characterization of the 

outage metrics.  

The basis function used for the analyses had the following form: 

 

𝐿𝑇𝐶𝐼𝐼 = 𝑝1𝐻 + 𝑝2𝑉 + 𝑝3𝑇𝑆 + 𝑝4𝐴𝑆 + 𝑝5𝐴𝐹 + 𝑝6𝑇𝐹 + 𝑝7𝐴𝑇𝐹 + 𝑝8𝐻𝑉 + 𝑝9𝐻𝑇𝑆

+ ⋯ + 𝑝25𝐴𝑆𝐴𝑇𝐹 + 𝑝26𝐴𝐹𝑇𝐹 + 𝑝27𝐴𝐹𝐴𝑇𝐹 + 𝑝28𝑇𝐹𝐴𝑇𝐹 

(6.1) 

As stated in Section 2.2, an outage metric may not be characterized by all of the terms shown in 

(6.1), and their inclusion could increase the regression errors, which could decrease the value of 

the R2. Because of this, it was necessary to identify the terms that had little impact on the dependent 

variable and remove them from the regression model. In MATLAB, this was achieved by first 

completing a regression analysis with all 28 terms shown in (6.1), identifying the terms that had 

negligible coefficients, then completing the analysis again and repeating the process until all of the 

remaining terms were shown to have a significant impact on the characterization of the metric. 

The MATLAB code used to complete the analyses can be seen in Appendix A. 



 38 

6.1 Estimation of Coefficients 

6.1.1 Maximum Outage Incidence 

When each of the flooding variables were included in the basis function for the outage 

incidence, the R2 for the updated curve decreased from the previous value of 0.8 that was recorded 

in [3]. Based on the discussion of the adjusted coefficient of determination from Section 2.3.2, this 

suggested that the additional variables were not significantly correlated with the outage data. The 

reason for the unimproved nonlinear fit can be explained by the fact that outage incidence is 

characterized primarily by damaging actions such as the storm surge and wind speed rather than 

the flood actions, which have a greater association with the delays in restoration following the 

damage to the power system. For practical applications, the outage incidence curve shown in 

Figure 5.1 should still be used to obtain the best outage prediction possible from the included data. 

6.1.2 Restoration Times 

The cubic polynomial coefficients for 95% restoration were found to be [𝑎3, 𝑎2, 𝑎1, 𝑎0] = 

[0.297, -3.18, 11.1, -7.82], and 

 

𝐿𝑇𝐶𝐼𝐼𝑇𝑟95 = 0.92𝑉 + 2.8𝑇𝑆 + 0.84𝐴𝑆 − 3.4𝐴𝐹 + 5.2𝑇𝐹 − 0.82𝐴𝑇𝐹 − 0.72𝐻𝑇𝑆

+ 1.6𝐻𝐴𝑇𝐹 + 4.3𝑉𝐴𝐹 − 3.6𝑉𝑇𝐹 + 0.62𝑇𝑆𝐴𝑆 + 0.65𝑇𝑆𝑇𝐹

− 0.5𝑇𝑆𝐴𝑇𝐹 + 1.1𝐴𝑆𝐴𝐹 − 4.3𝐴𝑆𝑇𝐹 − 0.99𝐴𝑆𝐴𝑇𝐹 − 2.8𝐴𝐹𝐴𝑇𝐹

+ 3.3𝑇𝐹𝐴𝑇𝐹 

(6.2) 

For 98% restoration, the coefficients were [𝑎3, 𝑎2, 𝑎1, 𝑎0] = [0.345, -3.88, 14.3, -12], and 
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𝐿𝑇𝐶𝐼𝐼𝑇𝑟98 = 3𝑇𝑆 + 1.7𝐴𝑆 + 2𝑇𝐹 − 0.93𝐴𝑇𝐹 + 1.1𝐻𝑉 − 1.1𝐻𝑇𝑆 − 0.61𝐻𝐴𝑆

+ 2.1𝐻𝐴𝑇𝐹 + 1.8𝑉𝐴𝐹 − 1.2𝑉𝑇𝐹 + 0.66𝑇𝑆𝐴𝑆 − 0.47𝑇𝑆𝐴𝑇𝐹

+ 0.48𝐴𝑆𝐴𝐹 − 1.9𝐴𝑆𝑇𝐹 − 1.3𝐴𝑆𝐴𝑇𝐹 − 2.6𝐴𝐹𝐴𝑇𝐹 + 1.8𝑇𝐹𝐴𝑇𝐹 

(6.3) 

The majority of the terms in (6.2) and (6.3) have a dependence on at least one of the flood actions, 

which suggests that flooding does have a significant effect on the amount of time that is taken to 

restore outages. Additionally, the R2 for 95% restoration increased from 0.65 to 0.72, and the R2 

for 98% restoration increased from 0.65 to 0.71, which further indicates that the curves are now 

better correlated with their measured data. 

6.1.3 Average Outage Duration 

The cubic polynomial coefficients were [𝑎3, 𝑎2, 𝑎1, 𝑎0] = [0.0161, -0.358, 2.78, -4.28]. In 

Section 5.1.3, the results showed that the only coefficient that was not negligible was 𝑎1, and, as 

a result, the outage duration curve in Figure 5.1 was linear. With the inclusion of the new data, the 

other three coefficients had a larger role in the characterization of the data points, and the curve 

then had the shape of a third order polynomial function. The basis function for the outage duration 

was 

 

𝐿𝑇𝐶𝐼𝐼𝐴𝑂𝐷 = 4.4𝐻 − 1.9𝑉 − 1.9𝑇𝑆 + 6𝐴𝐹 − 4.1𝐴𝑇𝐹 − 1.8𝐻𝑉 − 3𝐻𝐴𝑆

+ 1.7𝐻𝐴𝑇𝐹 + 6.2𝑉𝑇𝑆 + 6.1𝑉𝐴𝑆 − 1.9𝑉𝑇𝐹 − 1.8𝑇𝑆𝐴𝑆 − 2.1𝑇𝑆𝑇𝐹

− 1.1𝐴𝑆𝐴𝐹 + 4.5𝐴𝑆𝑇𝐹 + 2.7𝐴𝑆𝐴𝑇𝐹 − 4.5𝐴𝐹𝐴𝑇𝐹 

(6.4) 

The value of the R2 increased from 0.51 to 0.69. The considerable improvement in the fit can be 

attributed partially to the fact that the excluded data points discussed in Section 5.1.3 were included 

in the analysis. As discussed in Section 3.2.1, the average outage duration accounts for the fact 
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that a small percentage of the outages may take much longer to restore than others, and, because 

the excluded data points fit into this category, they were reinstated for this analysis. 

6.2 Regression Curves and Interpretations 

The majority of the terms in (6.2), (6.3), and (6.4) have a dependence on the flooding 

variables, which indicates that effects from flooding do have a significant impact on the amount 

of time that is required for the restoration process. The most commonly recurring flooding variable 

was ATF while the least common was AF. As stated in Section 3.2.2, ATF is representative of the 

difficulty that out-of-county repair crews may face when trying to provide assistance in a county 

of interest, and, based on the results, this effect seemed to have the highest significance on the 

restoration process for each of the storms considered. The fact that TF is more represented in the 

final equations than AF indicates that, although flooded area in a county is an important factor, the 

time delay due to this flooding has a more significant role in characterizing the outage metrics. 

The new 95% restoration time, 98% restoration time, and average outage duration curves 

are the red traces in Figure 6.1. Each of these follows the same basic shape: the amount of time 

required increases substantially in the lower and higher ranges of intensity and remains almost 

unchanged for the mid-range of intensity. This contrasts the corresponding curves in Figure 5.1, 

which each displayed a steady increase in time for all ranges of intensity, and this could indicate 

that certain ranges of flooding intensity do not significantly impact the amount of time required 

for restoration.  

The largest errors between the data points and the curves occurred at lower values of each 

respective LTCII, where storm and flooding intensity were smaller, and damage was expected to  
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Figure 6.1 Updated Regression Curves 

 

be less severe. In the majority of these cases, the affected areas were in regions where a storm’s 

intensity diminished, that were on the edges of the wind-fields used to collect the wind speed data, 

or that did not have many USGS monitoring stations in which flood receding time data could be 

retrieved for the time period of the storm. 

Despite the fact that the incorporation of flooding with the models improved the R2 values 

for the restoration times and average outage duration, the values are still somewhat less than that 

of the outage incidence. The most likely cause of this is that a restoration period is affected not 

only by damaging actions and delays but also by factors that deal with human decisions such as 
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the logistical strategies and restoration techniques that are employed by utilities [3]. Still, the 

updated models now appear to more accurately represent the measured data.  
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7.0 Future Work and Conclusion 

Although the new regression curves are an improvement, there are still many aspects of 

the models that can be updated and more considerations that can be included. First, the models 

could possibly be improved by adding more terms to the LTCII of (6.1). For simplicity, the 

maximum number of terms that were included in this basis function was restricted to 28, and these 

consisted of each of the individual variables based on the seven hurricane actions and combinations 

of two of these variables.  However, additional terms that could be analyzed include combinations 

that consist of more than two variables as well as squared variables and combinations of squared 

variables, similar to those seen in (5.1). 

Additionally, the datasets can be expanded by including measurements from other storms 

that were not considered in this work. Several hurricanes have impacted the United States since 

2008, and data for many of these, including Hurricanes Isaac and Sandy from 2012 and Harvey, 

Irma, and Maria from 2017 have been collected. The inclusion of these storms could lead to 

improvements with the R2 values for the curves, or, at the very least, they could help to identify 

additional factors that have not been included in the models. 

Other factors associated with hurricanes can be incorporated into the models to examine 

their impact on the outage metrics. One additional hurricane action that has been proposed is the 

amount of debris from wind and flooding that accumulates in a county, which causes further delays 

for restoration after flood waters have receded [2]. Finally, the results of [3] and this work showed 

that the average outage duration has the smallest R2 of the four indices, so one area of focus for 

future work could be to identify and quantify other factors that may have a strong impact on this 

particular metric. 
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In this work, the statistical models introduced in [3] were updated to examine the impact 

of flooding on four metrics that characterize the damage sustained by and restoration times 

required for power systems when they are affected by hurricanes. Three additional variables, which 

are the flooded land area within a county or parish, the time until flood waters receded, and the 

total flooded area for a hurricane, were incorporated with the previous hurricane action variables. 

Regression analyses were used to obtain nonlinear fits for these metrics, and, based on the results, 

the three major conclusions were that 

1) Hurricane flooding did not appear to substantially affect the number of outages that can be 

expected from a hurricane. 

2) Hurricane flooding did have a significant impact on the amount of time that will be required 

to restore the outages. 

3) The total land area flooded by a hurricane had the largest impact on the restoration times when 

compared to the other aspects of flooding that were considered. This seemed to suggest that 

the accessibility of an affected county should be an important consideration for a utility’s 

restoration process. 

The inclusion of the three flooding actions improved the R2 values of the nonlinear fits for 

95% and 98% restoration times and the average outage duration, so the generated regression curves 

were better correlated with the measured data that they represent. The results of the regression 

analyses suggest that coastal and inland flooding are important factors that must be considered 

when planning network deployment strategies and determining logistics for power outage 

restoration following a hurricane event. 
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 – MATLAB Script for Regression Analyses 

To obtain the curves that were shown in Figure 6.1, a MATLAB script was created to 

complete regression analyses with the hurricane action and outage metric data. The program 

performed three major tasks: first, the hurricane action and outage metric data were read from a 

.xlsx file and stored in vector variables; then, the fitnlm function was used to complete the 

regression analysis; and, finally, the regression curve was plotted. Also, the program displayed a 

summary of the analysis in the MATLAB command window. 

Appendix A.1 Script Template 

% Script for Regression Analyses 

% Grant Cruse 

% Originally created May 2019, updated for flooding March 2020 

  

  

% READ FROM EXCEL 

H = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','C1:C336'); % Storm Surge Height 

V = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','D1:D336'); % Wind Speed 

T = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','E1:E336'); % Time Under Storm Conditions 

A = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','F1:F336'); % Area Affected by Hurricane 

AF = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','G1:G336'); % Area in County Flooded by Hurricane 

TF = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','H1:H336'); % Time Until Flood Waters Receded 

ATF = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','I1:I336'); % Total Area Flooded by Hurricane 

M = readtable('C:\Users\Grant\Desktop\Research Assistant\V2.xlsx', 

'Range','M1:M336'); % Outage Metric  

% M can be each outage metric. Change the column to access a different 

% metric. J = Outage Incidence, K = 95%, L = 98%, and M = Outage Duration. 

% So, in this example, outage duration is being plotted. 
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% CONVERT EXCEL DATA TO VECTORS 

X = zeros(length(table2array(H)),7); 

X(:,1) = table2array(H); 

X(:,2) = table2array(V); 

X(:,3) = table2array(T); 

X(:,4) = table2array(A); 

X(:,5) = table2array(AF); 

X(:,6) = table2array(TF); 

X(:,7) = table2array(ATF); 

M = table2array(M); 

  

 

% MODEL AND GUESSES 

% The following is the LTCII with all terms shown: 

% LTCII = p(5).*X(:,1) + p(6).*X(:,2) + p(7).*X(:,3) + p(8).*X(:,4) + 

p(9).*X(:,5) + p(10).*X(:,1).*X(:,2) + p(11).*X(:,1).*X(:,3) + 

p(12).*X(:,1).*X(:,4) + p(13).*X(:,1).*X(:,5) + p(14).*X(:,2).*X(:,3) + 

p(15).*X(:,2).*X(:,4) + p(16).*X(:,2).*X(:,5) + p(17).*X(:,3).*X(:,4) + 

p(18).*X(:,3).*X(:,5) + p(19).*X(:,4).*X(:,5) + p(20).*X(:,6) + 

p(21).*X(:,1).*X(:,6) + p(22).*X(:,2).*X(:,6) + p(23).*X(:,3).*X(:,6) + 

p(24).*X(:,4).*X(:,6) + p(25).*X(:,5).*X(:,6) + p(26).*X(:,7) + 

p(27).*X(:,1).*X(:,7) + p(28).*X(:,2).*X(:,7) + p(29).*X(:,3).*X(:,7) + 

p(30).*X(:,4).*X(:,7) + p(31).*X(:,5).*X(:,7) + p(32).*X(:,6).*X(:,7) 

% Original LTCII consists of 28 terms. These are eventually reduced to the 

% numbers seen in Chapter 6.0 after identifying and removing insignificant 

% terms. 

  

% Possible Forms for Regression Functions: 

% f1 = 1./(1 + exp(-p(1).*(log(LTCII) - p(2)))); or f2 = p(1).*(LTCII).^3 + 

p(2).*(LTCII).^2 + p(3).*(LTCII) + p(4); 

  

% For this example, f2 is used because outage duration is being plotted. 

f = @(p,X) p(1).*(p(5).*X(:,1) + p(6).*X(:,2) + p(7).*X(:,3) + p(8).*X(:,4) + 

p(9).*X(:,5) + p(10).*X(:,1).*X(:,2) + p(11).*X(:,1).*X(:,3) + 

p(12).*X(:,1).*X(:,4) + p(13).*X(:,1).*X(:,5) + p(14).*X(:,2).*X(:,3) + 

p(15).*X(:,2).*X(:,4) + p(16).*X(:,2).*X(:,5) + p(17).*X(:,3).*X(:,4) + 

p(18).*X(:,3).*X(:,5) + p(19).*X(:,4).*X(:,5) + p(20).*X(:,6) + 

p(21).*X(:,1).*X(:,6) + p(22).*X(:,2).*X(:,6) + p(23).*X(:,3).*X(:,6) + 

p(24).*X(:,4).*X(:,6) + p(25).*X(:,5).*X(:,6) + p(26).*X(:,7) + 

p(27).*X(:,1).*X(:,7) + p(28).*X(:,2).*X(:,7) + p(29).*X(:,3).*X(:,7) + 

p(30).*X(:,4).*X(:,7) + p(31).*X(:,5).*X(:,7) + p(32).*X(:,6).*X(:,7)).^3 + 

p(2).*(p(5).*X(:,1) + p(6).*X(:,2) + p(7).*X(:,3) + p(8).*X(:,4) + 

p(9).*X(:,5) + p(10).*X(:,1).*X(:,2) + p(11).*X(:,1).*X(:,3) + 

p(12).*X(:,1).*X(:,4) + p(13).*X(:,1).*X(:,5) + p(14).*X(:,2).*X(:,3) + 

p(15).*X(:,2).*X(:,4) + p(16).*X(:,2).*X(:,5) + p(17).*X(:,3).*X(:,4) + 

p(18).*X(:,3).*X(:,5) + p(19).*X(:,4).*X(:,5) + p(20).*X(:,6) + 

p(21).*X(:,1).*X(:,6) + p(22).*X(:,2).*X(:,6) + p(23).*X(:,3).*X(:,6) + 

p(24).*X(:,4).*X(:,6) + p(25).*X(:,5).*X(:,6) + p(26).*X(:,7) + 

p(27).*X(:,1).*X(:,7) + p(28).*X(:,2).*X(:,7) + p(29).*X(:,3).*X(:,7) + 

p(30).*X(:,4).*X(:,7) + p(31).*X(:,5).*X(:,7) + p(32).*X(:,6).*X(:,7)).^2 + 

p(3).*(p(5).*X(:,1) + p(6).*X(:,2) + p(7).*X(:,3) + p(8).*X(:,4) + 

p(9).*X(:,5) + p(10).*X(:,1).*X(:,2) + p(11).*X(:,1).*X(:,3) + 

p(12).*X(:,1).*X(:,4) + p(13).*X(:,1).*X(:,5) + p(14).*X(:,2).*X(:,3) + 

p(15).*X(:,2).*X(:,4) + p(16).*X(:,2).*X(:,5) + p(17).*X(:,3).*X(:,4) + 

p(18).*X(:,3).*X(:,5) + p(19).*X(:,4).*X(:,5) + p(20).*X(:,6) + 

p(21).*X(:,1).*X(:,6) + p(22).*X(:,2).*X(:,6) + p(23).*X(:,3).*X(:,6) + 

p(24).*X(:,4).*X(:,6) + p(25).*X(:,5).*X(:,6) + p(26).*X(:,7) + 
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p(27).*X(:,1).*X(:,7) + p(28).*X(:,2).*X(:,7) + p(29).*X(:,3).*X(:,7) + 

p(30).*X(:,4).*X(:,7) + p(31).*X(:,5).*X(:,7) + p(32).*X(:,6).*X(:,7)) + 

p(4); 

% Initial guesses for the algorithm 

pguess = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];  

 

 

% FIND COEFFICIENTS 

mdl = fitnlm(X,M,f,psave) % Perform regression analysis and print results in 

Command Window 

p = mdl.Coefficients.Estimate; % Save coefficients in variable "p" 

  

 

% PLOT DATA 

L1 = p(5).*X(:,1) + p(6).*X(:,2) + p(7).*X(:,3) + p(8).*X(:,4) + p(9).*X(:,5) 

+ p(10).*X(:,1).*X(:,2) + p(11).*X(:,1).*X(:,3) + p(12).*X(:,1).*X(:,4) + 

p(13).*X(:,1).*X(:,5) + p(14).*X(:,2).*X(:,3) + p(15).*X(:,2).*X(:,4) + 

p(16).*X(:,2).*X(:,5) + p(17).*X(:,3).*X(:,4) + p(18).*X(:,3).*X(:,5) + 

p(19).*X(:,4).*X(:,5) + p(20).*X(:,6) + p(21).*X(:,1).*X(:,6) + 

p(22).*X(:,2).*X(:,6) + p(23).*X(:,3).*X(:,6) + p(24).*X(:,4).*X(:,6) + 

p(25).*X(:,5).*X(:,6) + p(26).*X(:,7) + p(27).*X(:,1).*X(:,7) + 

p(28).*X(:,2).*X(:,7) + p(29).*X(:,3).*X(:,7) + p(30).*X(:,4).*X(:,7) + 

p(31).*X(:,5).*X(:,7) + p(32).*X(:,6).*X(:,7); % Determine vector of all 

LTCII values for each county using the estimated values of all coefficients 

L = min(L1):.01:max(L1); % Create a vector over the range of all LTCII values 

for plotting the curve 

f = p(1).*L.^3 + p(2).*L.^2 + p(3).*L + p(4); % Calculate the values for the 

regression curve 

  

plot(L,f,'r') % Plot regression curve 

hold on 

scatter(L1,M,'blue') % Plot metric data points 

xlabel('LTCII_A_O_D') 

ylim([0,25]) 

ylabel('Time (days)') 

title({'Average Outage Duration'},{'R^2 = 0.69'}) 

hold off 

Appendix A.2 Sample Analysis Summary 

After the fitnlm function was used to determine the values for each of the coefficients that 

provided the best fit for the desired metric, the program then displayed a summary of the analysis 

in the MATLAB command window. Several important results were listed, such as the values of 

each coefficient and the R2 for the nonlinear fit. The text shown below is the summary that was 
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obtained for the analysis with the average outage duration when the original 28 terms of LTCIIAOD 

were reduced to the 17 terms shown in (6.4). 

 

 

Estimated Coefficients: 

           Estimate      SE        tStat       pValue  

           ________    ______    __________    _______ 

 

    b1     0.016141    14.484     0.0011144    0.99911 

    b2     -0.35822    214.25     -0.001672    0.99867 

    b3       2.7831    831.93     0.0033453    0.99733 

    b4      -4.2785    3.6616       -1.1685    0.24349 

    b5       4.4229    1323.8     0.0033412    0.99734 

    b6      -1.8676    558.34    -0.0033449    0.99733 

    b7      -1.9337    577.54    -0.0033482    0.99733 

    b8       5.9989    1793.9     0.0033441    0.99733 

    b9      -1.8282    547.28    -0.0033405    0.99734 

    b10      -3.039    909.48    -0.0033415    0.99734 

    b11      6.1552      1841     0.0033435    0.99733 

    b12      6.1326    1834.7     0.0033426    0.99734 

    b13     -1.7536    525.19     -0.003339    0.99734 

    b14     -1.1363    339.29    -0.0033491    0.99733 

    b15     -1.9131    572.14    -0.0033438    0.99733 
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    b16     -2.0721    619.85    -0.0033429    0.99733 

    b17        4.53    1354.9     0.0033434    0.99733 

    b18     -4.0518    1212.8    -0.0033409    0.99734 

    b19      1.7486    523.38     0.0033409    0.99734 

    b20      2.7163    813.05     0.0033409    0.99734 

    b21     -4.4842      1342    -0.0033414    0.99734 

 

 

Number of observations: 335, Error degrees of freedom: 314 

Root Mean Squared Error: 1.31 

R-Squared: 0.711,  Adjusted R-Squared 0.692 

F-statistic vs. constant model: 38.5, p-value = 2.87e-72 
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 – List of USGS Monitoring Stations Used 

Table B.1 List of USGS Monitoring Stations by State [16] 

Station Number County/Parish Body of Water Data Available 

Florida 

02297310 De Soto Horse Creek Discharge 

02369000 Okaloosa Shoal River Discharge 

02370500 Santa Rosa Big Coldwater Creek Discharge 

02376500 Escambia Perdido River Discharge 

253044080555900 Monroe EDEN 3 Gauge Height 

Louisiana 

02492000 St. Tammany Bogue Chitto River Discharge 

02492600 St. Tammany Pearl River Gauge Height/Discharge 

073745257 Plaquemines Crooked Bayou Gauge Height 

07375000 St. Tammany Tchefuncte River Discharge 

07375500 Tangipahoa Tangipahoa River Discharge 

07376500 Tangipahoa Natalbany River Discharge 

07380200 Livingston Amite River Gauge Height 

07380401 Ascension Bayou Lafourche Gauge Height/Discharge 

07381000 Lafourche Bayou Lafourche Discharge 

07381600 St. Mary Lower Atchafalaya River Gauge Height/Discharge 

07385700 St. Martin Bayou Teche Gauge Height/Discharge 

Texas 

08041780 Orange Neches River Gauge Height/Discharge 

08042522 Jefferson Taylor-Alligator Bayou Gauge Height/Discharge 

08067252 Chambers Trinity River Gauge Height 

08076180 Harris Garners Bayou Gauge Height/Discharge 

08077740 Galveston La Marquee Levee Gauge Height/Discharge 

08079120 Brazoria Old Brazos River Gauge Height/Discharge 
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