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Abstract 

Effect of Prolonged Non-Traumatic Noise Exposure on Unvoiced Speech Recognition 

 

Mengchao Zhang, MEd 

 

University of Pittsburgh, 2020 

 

 

 

 

Animal models in the past decade have shown that noise exposure may affect temporal 

envelope processing at supra-threshold levels while the absolute hearing threshold remains in the 

normal range. However, human studies have failed to consistently find such issue due to poor 

control of the participants’ noise exposure history and the measure sensitivity. The current study 

operationally defined non-traumatic noise exposure (NTNE) to be noise exposure at dental schools 

because of its distinctive high-pass spectral feature, non-traumatic nature, and systematic exposure 

schedule across dental students of different years. Temporal envelope processing was examined 

through unvoiced speech recognition interrupted by noise or by silence. The results showed that 

people who had systematic exposure to dental noise performed more poorly on tasks of temporal 

envelope processing than the exposed people. The effect of high-frequency NTNE on temporal 

envelope processing was more robust inside than outside the spectral band of dental noise and was 

more obvious in conditions that required finer temporal resolution (e.g faster noise modulation 

rate) than in those requiring less fine temporal resolution (e.g. slower noise modulation rate). 

Furthermore, there was a significant performance difference between the exposed and the 

unexposed groups on tasks of spectral envelope processing at low frequency. Meanwhile, the two 

groups performed similarly in tasks near threshold. Additional analyses showed that factors such 

as age, years of musical training, non-dental noise exposure history and peripheral auditory 

function were not able to explain the variance of the performance in tasks of temporal or spectral 

envelope processing. The findings from the current study support the general assumptions from 



 v 

animal models of NTNE that temporal and spectral envelope processing issues related to NTNE 

likely occur in retro-cochlear sites, at supra-threshold levels, and could be easily overlooked by 

clinically routine audiologic screening. 
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1.0 Background 

1.1 Statement of the problem 

Sound is often represented in the form of a wave that records the pressure change in the 

medium over time. Sound is also represented by the mechanic vibrations of ear drum attached to 

the ossicle chain in the middle ear, through the tonotopic response of the cochlea and then by the 

electrical pulses of the auditory nerves that are stimulated at a fixed phase of the pressure variation; 

the representation from the auditory nerve is refined in the central auditory system (CAS) and 

eventually interpreted by the perceiver. If any parts along the auditory pathway fail to represent 

the sound as designed, it will likely decrease the accuracy of the final interpretation. 

For many decades, noise exposure has been considered 'safe' or 'non-traumatic' as long as 

the absolute hearing threshold maintains within the normal range (Saunders et al., 1985; 

Eggermont, 2017). However, animal studies in the past decade have shown that non-traumatic 

noise exposure, even at daily-activity levels, could negatively impact the integrity of the auditory 

pathway (Kujawa & Liberman, 2009; Lin et al., 2011; Furman et al., 2013; Valero et al., 2017; 

Munguia et al., 2013; Sheppard et al., 2017; Pienkowski & Eggermont, 2009; Pienkowski & 

Eggermont, 2010a, 2010b; Pienkowski et al., 2011; Zhou & Merzenich, 2012; Fernandez et al., 

2020). Naturally, many researchers proposed that non-traumatic noise exposure (NTNE) would 

compromise the representation of sound, causing poor auditory perception that is overlooked by 

routine audiologic exams. One of the frequently proposed auditory processing skills affected by 

NTNE was temporal envelope processing. 
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The reason that temporal envelope processing was highly likely affected by NTNE 

stemmed from the mechanism of NTNE. Briefly, NTNE was found to selectively damage the 

synapses between the inner hair cells (IHC) and the group of auditory nerve fibers (ANF) that were 

responsible for encoding intensity at supra-threshold levels, but the synapses of other ANFs that 

encoded near-threshold sound were less affected (Kujawa & Liberman, 2009; Lin et al., 2011; 

Furman et al., 2013). One of the consequences of such selective loss of high-intensity ANFs is that 

the auditory system loses its ability to faithfully represent the amplitude changes of a sound at 

supra-threshold levels, limiting the detection, the discrimination and the use of amplitude changes 

of the sound. These findings prompted the current study to ask: 

1) Do people who had a specific type of NTNE perform differently on tasks of temporal 

envelope processing from people who were unexposed?  

Furthermore, cortical-level studies have shown that NTNE even at moderate sound level 

produced maladaptive long-term changes. These changes were observed in both temporal 

processing or spectral processing and were found to be frequency-specific and supra-threshold 

(Pienkowski & Eggermont, 2010a; Munguia et al., 2013; Pienkowski et al., 2013; Sheppard et al., 

2017; Pienkowski, 2018). Therefore, the current study continued to ask:  

2) Do people who had a specific type of NTNE also perform differently on tasks of spectral 

envelope processing from people who were unexposed? 

3) If there is a difference between the exposed and the unexposed, will the difference be 

frequency specific?  

4) Will the difference occur at only supra-threshold levels? 

Unfortunately, findings from past human studies examined the effect of NTNE only on 

temporal envelope processing and the conclusions have been inconsistent. In short, the past human 
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studies used tasks based on detection or discrimination of amplitude modulation of sound to 

examine temporal envelope processing, which may indicate issues like off-frequency listening or 

central auditory compensation which may decrease the effect size. The other critical reason of 

inconsistent finding in human studies was the lack of control for listeners’ noise exposure history, 

specifically, their highly variable exposure history such as noise exposure schedule, exposure 

intensity and noise spectral composition may further reduce the effect size.  

The primary purpose of this study, therefore, was to examine the effect of NTNE on 

envelope processing, especially temporal envelope processing, while exerting more control over 

measures and exposure. The study also examined whether the effect of NTNE on envelope 

processing was frequency specific and occurred only at supra-threshold level. 

Section 1.2 of this document provides a review on the mechanism of NTNE and its relation 

to poorer temporal envelope processing in animal studies. Then, section 1.3 provides a review on 

the human studies that examined the relationship between noise exposure and temporal envelope 

processing and a summary on the issues of conventional measures of temporal envelope 

processing. Lastly, section 1.4 provides the rationales for the population of interest and the 

measures that were used in the current study. 

1.2 Non-traumatic noise exposure in animal studies 

1.2.1 Auditory nerve fiber, its classes and functions in temporal envelope coding 

Auditory nerve fibers (ANF) are found at the bases of the hair cells inside the cochlea. The 

afferent fibers carry the information into the CAS from inner hair cells while the efferent fibers 
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bring information from the CAS back to the hair cells. About 90% of the afferent ANFs are heavily 

myelinated type I fibers. The type I ANFs are often classified based on the spontaneous rates 

(Sachs and Abbas, 1974; Liberman, 1978). The ANFs with high spontaneous rates (HSR, > 18 

spike/sec) are largest in quantity (60%), have low thresholds and low saturation levels. The ANFs 

with low spontaneous rates (LSR, < 18 spike/sec) are fewer in quantity, have high thresholds (up 

to 40 dB SPL) and high saturation levels (Figure 1).  

 

Figure 1. Schematic rate-level functions of ANFs with high (blue) and low (red) spontaneous rates 

The ANFs with different dynamic ranges allow sound amplitude and amplitude change 

over time (i.e. temporal envelope) to be encoded properly at all intensities. To near-threshold, low-

intensity sound, fibers with HSR actively respond and continue to increase firing rates with 

increasing stimulus level until firing rates saturate at around 30 dB above threshold (Sachs and 

Abbas, 1975), above which increasing stimulus level does not change the firing rates. Meanwhile, 

the saturation level of the fibers with HRS just hits the thresholds of fibers with LSR and these 

fibers start to increase their firing rates with further increase of stimulus level, not showing 

saturation even at fairly high intensities (e.g. 100 dB SPL). The collaboration between the two 
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classes of ANFs ensures the proper encoding of the temporal envelope of a sound at a wide range 

of intensities. 

1.2.2 Effect of non-traumatic noise exposure on auditory nerve fibers 

Animal researches over the past decade have found that noise exposure could undo the 

collaboration among the ANFs with different spontaneous rates through selective damage to the 

ANFs with LSR while sparing the hair cells and the other ANFs with HSR (Kujawa & Liberman, 

2009; Lin et al., 2011; Furman et al., 2013). Specifically, animals were exposed to brief and intense 

noise which would normally produce an acute threshold shift in distortion product otoacoustic 

emission (DPOAE) and wave I of auditory brainstem response (ABR), suggesting a temporary 

dysfunction in the outer hair cells (OHC) and the auditory nerves. But the thresholds of both 

measures returned to baseline if the animals were given enough time in quiet, leaving a 

misconception that the functions of the OHCs and the ANFs were recovered. However, ABR wave 

I amplitude at supra-threshold levels have shown irreversible and drastic decrease at higher 

intensities, indicating that the NTNE had potentially affected the ability of the ANFs to encode 

amplitude at high intensities (Kujawa & Liberman, 2009; Lin et al., 2011; Furman et al., 2013; 

Hickox & Liberman, 2014). Furthermore, Shaheen et al. (2015) observed significantly lower 

envelope following response (EFR) from the ANFs with characteristic frequencies (CF) at the 

affected spectral regions, indicating that the affected ANFs were unable to properly phase-lock to 

the temporal envelope of the sound. 

Furthermore, the effect of NTNE seemed to be frequency specific. Greater loss of synapses 

consistently occurred at and above the frequency band of the noise than below the frequency band 

of the noise in studies using octave-band noise (OBN) (Kujawa & Liberman, 2009; Lin et al., 
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2011; Furman et al., 2013; Chen et al., 2019), or at the higher frequency side than at the lower 

frequency side in studies using broad-band noise (BBN) (Liu et al. 2012; Shi et al., 2013; Shi et 

al., 2016).  

1.2.3 Effect of non-traumatic noise exposure on central auditory system 

The effect of NTNE on temporal envelope processing is not confined to short-term noise 

exposure at intense levels (Fernandez et al., 2020) and is certainly not confined to the ANFs. Many 

studies of cat and rodent models found a detrimental effect of the noise exposure that was presented 

at daily environmental levels as long as the exposure last long enough. Michael Merzenich, Jos 

Eggermont and many others’ works discovered long-lasting maladaptive changes at the subcortical 

and cortical auditory nuclei after the animals were exposed to prolonged moderate-level noise (e.g. 

65 to 80 dB SPL for 4 to 12 weeks). These changes occurred in both temporal and spectral 

processing, including increase spontaneous activity (Pienkowski & Eggermont, 2009; Munguia et 

al., 2013; Pienkowski et al., 2013), reduced inhibitory neurons (Zhou & Merzenich, 2012; 

Munguia et al., 2013; Kamal et al., 2013; Lau et al., 2015), broadened frequency tuning curves 

(Zhou et al., 2011; Zhou & Merzenich, 2012; Kamal et al., 2013), disrupted excitation duration 

and peak latency (Pienkowski & Eggermont, 2009), disrupted cortical tonotopic representation for 

neuronal CFs in and outside the frequency band of the noise (Pienkowski & Eggermont, 2009; 

Pienkowski & Eggermont, 2010a, 2010b; Pienkowski et al., 2011, 2013) and so on. As Fernandez 

et al. (2020) estimated that continuous noise exposure at 75 to 85 dB SPL over 8 hours a day could 

already result in 10 to 40% loss of auditory nerve synapses, it is possible that the pathological 

effect of the prolonged moderate level of noise exposure would begin from the ANFs and extend 
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into the auditory cortex, causing issues of temporal envelope processing throughout the central 

auditory pathway. 

Like the studies concerning the ANFs, the effect of NTNE on the CAS also appeared to be 

frequency-specific, but the findings were more complicated. For example, prolonged moderate-

level noise exposure usually increased the overall spontaneous activity of the auditory cortex 

regardless of the neuronal CFs and the bandwidth of the noise (Pienkowski & Eggermont, 2009; 

Munguia et al., 2013; Pienkowski et al., 2013). Meanwhile, the driven response was often found 

decreasing within the frequency band of the noise and increasing outside the frequency band of 

the noise (Pienkowski & Eggermont, 2009; Pienkowski & Eggermont, 2010b; Munguia et al., 

2013; Pienkowski et al., 2013). The extent of decreased driven response was also affected by the 

steepness of the noise spectral slope. In summary, the effect of NTNE on the CAS depended on 

the spectral features of the noise, such as noise bandwidth, noise band center frequency, steepness 

of the noise spectral slope, etc., and also showed frequency specificity. 

1.2.4 Summary for animal studies 

Due to the different experimental conditions across the animal models of the ANFs and of 

the CAS, it is difficult to form a comprehensive model to describe the configuration and the extent 

of pathological changes that can be predicted by the level, the schedule, and the spectral features 

of the exposed noise. This lack of a unified theory on NTNE does pose challenges to generate a 

clear hypothesis on the auditory perceptual consequences in relation to noise exposure. However, 

it is evident based on the animal studies that noise exposure could spare the capacity of the auditory 

system to detect and encode soft-level sound but not spare temporal envelope processing or even 

other auditory processing of the ANFs and of the CAS at supra-threshold levels. And these supra-
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threshold processing issues could be long-lasting or even irreversible, and they could occur post 

noise exposure with short duration at intense levels or with long duration at moderate levels. The 

effect of noise exposure on the ANFs was more apparent at and above the frequency band of the 

noise (or at the higher end of the frequency band of the noise) while the effect on the auditory 

cortex was detrimental at the frequency band of the noise (e.g. decreased cortical representation). 

In other words, the effect of noise exposure on the auditory units with CFs within the frequency 

band of the noise was not entirely identical to the units with CFs outside the frequency band of the 

noise. Therefore, human studies should be careful to search for participants who had similar noise 

exposure profiles that had involved a noise with a distinctive spectral band, to test them with 

measures specifically designed for the noise spectrum and to avoid any confounding contributions 

of the unaffected auditory units from off-frequency regions. 

1.3 Non-traumatic noise exposure in human studies 

In this section, conventional measures of temporal envelope processing are briefly 

explained first. Then, past human studies that have used these conventional measures to examine 

the relationship between noise exposure and temporal envelope processing are reviewed. In short, 

human studies have not consistently shown supra-threshold envelope processing issues among 

people with higher noise exposure. The potential pitfalls of these studies are discussed at the end 

of the section. 
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1.3.1 Conventional behavioral and electrophysiological measures for testing temporal 

envelope processing 

Temporal envelope processing reflects the ability to encode amplitude change over time. 

Conventional behavioral measures assess temporal envelope processing by examining the 

individual’s ability to detect or discriminate amplitude modulation (Moore, 2013). In an amplitude 

modulation detection task, the listener is presented with a set of at least two tones (or noise bursts), 

one of which is processed to contain structured amplitude fluctuation that the listener needs to pick 

out. The amount of amplitude fluctuation is controlled through the depth of modulation. The 

smallest detectable fluctuation is taken as the amplitude modulation detection threshold. In an 

amplitude modulation discrimination task, the listener is instructed to discriminate whether pairs 

of amplitude modulated (AM) tones (or noise bursts) are identical. The smallest detectable 

amplitude fluctuation to differentiate the two sound tokens is taken as the discrimination threshold. 

Electrophysiological measures, such as the EFR, assess temporal envelope processing by 

quantifying the ability of the brain to phase lock the amplitude modulation. To record the EFR in 

an animal, electrodes are placed near the auditory units of interest, and the voltage change of the 

electrodes in response to a stimulus is measured. The stimulus can be an AM tone of which the 

carrier frequency coincides with the CF of the interested ANF and the envelope is modulated by 

another lower frequency sinusoid. The strength of phase-locking to the envelope and the frequency 

of the phase-locking response can be used to reflect the temporal envelope precision of the ANFs 

with CF identical to the carrier tone (Bharadwaj et al., 2015; Shinn-Cunningham et al., 2017). In 

human listeners, the EFR is recorded non-invasively at far-field sites, usually with the recording 

electrodes placed on the scalp, and responses from a wide range of auditory neurons and nuclei 

are recorded. 
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The above measures have been utilized in human studies that examined the relationship 

between noise exposure and temporal envelope processing. The next section reviews the findings 

from these studies. 

1.3.2 Review of human studies about the effect of non-traumatic noise exposure on 

temporal envelope processing 

Kumar et al. (2012) compared temporal processing skills and speech in noise between train 

drivers with normal audiograms and age-matched individuals without excessive noise exposure. 

The results showed that the noise-exposed groups, especially between age 30 to 50 years old, 

performed significantly worse than the age-matched controls on modulation detection at higher 

modulation frequencies (60 and 200 Hz), on duration pattern test and on speech in noise test, 

supporting deficiency of temporal envelope processing among individuals with noise exposure but 

normal hearing thresholds. 

Stone et al. (2008) as well as Stone and Moore (2014) examined the amplitude modulation 

discrimination for people with excessive noise exposure but normal hearing thresholds and found 

the discrimination only at near-threshold level but not at supra-threshold levels was poorer in the 

highly exposed group. This finding did support poorer temporal envelope processing in noise-

exposed human listeners, but the occurrence of the issue near threshold contradicted the prediction 

that the deficits should occur well above threshold. 

Paul et al. (2017, 2018) examined AM detection and EFR between young adults of 18 to 

19 years old with high or low noise exposure history. They presented the AM stimuli in narrow-

band noise and the noise was presented at different levels as a way to engage the ANFs with 
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different SRs. Their primary outcome did not consistently support the relationship between noise 

exposure and the performance of AM detection or EFR strength (Paul et al., 2018).  

Füllgrabe et al. (2020) used frequency discrimination limen and AM regularity test to 

examine the relationship between noise exposure and temporal processing. The carrier frequency 

of the target stimuli was chosen at 4 kHz as they suspected this frequency to be most susceptible 

to noise exposure at least based on literature from noise-induced hearing loss. Their finding did 

not support the relationship between noise exposure and temporal processing among people with 

normal hearing thresholds from 0.25 to 4 kHz. 

A few studies (Stamper & Johnson, 2015a, 2015b; Bramhall et al., 2017) examined the 

amplitude of ABR wave I among human listeners and found reduced wave I amplitude in 

individuals with noise exposure but normal audiograms. Their results indirectly supported the 

selective loss of high-intensity ANFs and the potential existence of temporal envelope processing 

issues.  

Stamper and Johnson (2015a, 2015b) examined the relationship between personal noise 

exposure history and the pure-tone audiogram, the amplitude of DPOAE, and the amplitude of 

ABR wave I and wave V, among young adults (age 19 to 28). The results showed a negative 

relationship between wave I amplitude and noise exposure experience, but the relationship was 

only held for female subjects, not for male subjects.  

Bramhall and her colleagues (2017) measured DPOAEs and ABRs among young veterans 

with or without significant noise exposure and young civilians with or without a history of firearm 

use. The four groups were found similar in pure-tone audiograms and DPOAE input/output 

functions, but the two groups without excessive noise exposure showed greater amplitudes of ABR 

wave I than the two groups with excessive noise exposure.  
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Liberman and his colleagues (2016) examined ABR wave I amplitude as well as 

compressed or reverberated speech in noise between people with and without excessive noise 

exposure. They found that the group with more noise exposure performed significantly more 

poorly than the less exposed group on compressed and reverberated word recognition in noise, 

which may indicate some issues in general temporal processing. However, their study did not find 

reduced ABR wave I amplitude in the group with more exposure, which seemed to contradict the 

notion that the loss of high-intensity ANFs was responsible for poorer temporal processing skills. 

Prendergast et al. (2017a, 2017b) and Yeend et al. (2017) were the studies that have tested 

a large number of participants (N > 100) but did not find the relationship between noise exposure 

and temporal envelope processing. In specific, amplitude modulation detection, EFR and ABR 

wave I amplitude at soft and high levels were tested to evaluate temporal envelope processing and 

the loss of high-intensity ANFs. They also tested other types of auditory processing skills, 

including frequency discrimination, sound localization, speech recognition in noise, and so on. 

The lack of a strong correlation between noise exposure and various auditory perceptual skills 

raised some concerns and debates on the existence of such selective ANF loss in human listeners. 

The inconsistency among the human studies also prompted researchers to reconsider the sensitivity 

of the conventional measures and the optimal population for studying this issue. 

1.3.3 Summary for human studies 

The potential causes regarding the lack of consistency in studies of noise exposure and 

temporal envelope processing among human listeners are discussed below. 

The issues of using amplitude modulation detection or discrimination to assess temporal 

envelope processing are possibly two. First, off-frequency responses brought by the spread of 
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excitation for high-intensity stimuli will recruit the responses of normal units which then 

overwhelm the responses of abnormal units, causing the testing outcomes to appear normal. 

(Ruggero et al., 2000). Second, the CAS is exceptional at coding AM sound starting even from the 

cochlear nucleus, which is the central nuclei that the ANFs connect to (Frisina, Smith & 

Chamberlain, 1990; Rhode & Greenberg, 1994). For example, octopus neurons in the cochlear 

nucleus are sensitive to AM sound and receive input from ANFs across a wide range of CFs (Rhode 

et al., 1983), so the detection of amplitude modulation can still be signaled through auditory units 

at off-frequency regions. The same argument can be used in the case of EFR. When EFR to AM 

tones were measured at near-field (i.e. ANF) and far-field (i.e. scalp) sites in animals with NTNE, 

the response collected through near-field recording showed much poorer performance for the 

exposed animals than for the controls, but there was no significant group difference through far-

field recording (Chen et al., 2019), supporting the potential confounding contribution from off-

frequency regions and the CAS. 

Furthermore, since the effect of NTNE is frequency-specific (e.g. Kujawa & Liberman, 

2009; Lin et al., 2011; Furman et al., 2013; Chen et al., 2019), showing more damage to the 

auditory units with CFs within or above the frequency band of the noise, it is important to develop 

a task that can manifest the encoding capacity of only the affected auditory units while keeping 

the unaffected units away from  ‘participating’ the encoding of the stimulus. Recruiting 

participants from a wide range of noise exposure profiles, unfortunately, will not help to determine 

the frequency regions that are most likely affected by NTNE. Therefore, the current study 

concluded that when studying the effect of NTNE in human listeners, it is important to search for 

participants who had similar noise exposure profiles; the spectral features of the exposed noise 

should be as distinctive from environmental noise as possible; the measures should be carefully 



 14 

designed to reflect as much as possible the effect within the noise spectrum while avoiding the 

confounding contributions of the unaffected auditory units. Having said that, the next section 

introduces the population of interests and the measure that may meet these criteria. 

1.4 Rationales for the population and the measures to assess temporal envelope processing 

in relation to non-traumatic noise exposure 

1.4.1 Introducing the population of interest 

The population of interest in the current study is the dental school students. Dental school 

students are chosen for several reasons. First, the noise exposure at a dental office is spectrally 

distinctive from the noise exposure at daily environments. The spectra of daily environmental 

noise usually appear low-pass filtered (LPF) with sound energy concentrating below 2 kHz (Can 

et al., 2010; Bořil et al., 2012; Rämö et al., 2013; Albert & Decato, 2017). The spectra of the dental 

noise, on the other hand, usually appear high-pass filtered (HPF) with sound energy concentrating 

above 4 kHz (Fernandes et al., 2006; Choosong et al., 2011) (Figure 2). This distinction between 

the environmental and the dental noise spectra allows the frequency-specific measures of envelope 

processing to be designed. 
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Figure 2. Spectra of the environmental noise at dental clinics and preclinics (replotted from Fernandes et al., 

2006) and of the commonly used devices at dental clinics (replotted from Choosong et al., 2001) 

Moreover, modern-day dental devices produce sound at non-traumatic levels as the overall 

levels at dental pre-clinics and clinics normally occur below 85 dB SPL (Chen et al., 2013; Al-

Dujaili et al., 2014; Myers et al., 2016; Ai et al., 2017; da Cunha et al., 2017; Ahmed & Ali, 2017) 

and the levels of most of the handheld devices occur below 80 dB SPL (Bahannan et al., 1993; 

Nassiri et al., 1993; Setcos et al., 1998; Fernandes et al., 2006; Mojarad et al., 2009; Elmehdi, 

2010; Kadanakuppe, et al., 2011; Qsaibati & Ibrahim, 2014; Yousuf et al., 2014; Myers et al., 

2016; Goswami et al., 2017). Noise exposure dose measurement also has shown that the 8-hour 

time-weight average (TWA) level of most dental students ranges from 70 to 80 dB SPL (Choosong 

et al., 2011; Burk & Neitzel, 2016), which is below legislative standards (85 dBA for 8 hours, 

NIOSH, 1998). 

Therefore, if the amount of environmental noise exposure, as well as other demographic 

and audiologic factors, can be controlled between young dental professionals and young non-

dental listeners, neither having hearing loss, then any observable group difference in an auditory 

perceptual task may be related to the additional non-traumatic exposure of dental noise. 
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1.4.2 Introducing the measure 

As was mentioned earlier, temporal envelope processing was conventionally assessed 

through behavioral tasks, like amplitude modulation detection and discrimination, or 

electrophysiological measures, like EFR, but these measures cannot avoid the confounding 

contributions from off-frequency auditory units and the CAS. Here, unvoiced speech recognition 

is introduced as the measure of the current study to assess temporal envelope processing in people 

with or without NTNE. 

1.4.2.1 What is unvoiced speech? 

Speech can be decomposed into temporal envelopes and temporal fine structures (TFS) 

(Rosen, 1992; Moore, 2019). When the TFS is replaced by noise or sinusoids through vocoding 

techniques, speech remains highly intelligible despite that recognition only depends on the spectro-

temporal envelopes of the signal (e.g. Shannon et al., 1995; Dorman et al., 1997; Dorman & 

Loizou, 1998; Loizou et al., 1999). Unvoiced speech is a type of such envelope-based speech that 

is entirely noise-excited and preserves spectro-temporal envelopes at high fidelity. An example of 

unvoiced speech in real life is whispered speech where periodic glottal pulses are replaced by 

aperiodic noise as the excitation source, but the vocal track and the articulators work as filters that 

shape the source excitation spectrally and temporally to form various speech tokens (Fant, 1970). 

Unvoiced speech can also be synthesized through extracting spectro-temporal envelopes from 

natural utterances and exciting the envelopes with random noise (Kawahara & Irino, 2005; 

Kawahara et al., 2009).  
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1.4.2.2 Advantages of unvoiced speech recognition 

Speech recognition is an object-based listening task where each frequency region has its 

unique contribution to intelligibility (ANSI, S3.5-1997). If noise exposure selectively affects 

envelope processing in a limited frequency region, auditory neurons in other frequency regions 

will be occupied in processing information within their own CFs and so off-frequency contribution 

can be greatly reduced, allowing the compromised envelope processing in a specific frequency to 

emerge. Moreover, the failure to encode information at lower-level auditory centers cannot be 

compensated by the processing at higher-level auditory centers, for there is no available 

information to begin with. Consequently, degraded envelope processing in a specific frequency 

region will lead to poorer recognition of the speech information in that frequency region. 

Since the current study was interested in envelope processing in both temporal and spectral 

domains, the other advantage of unvoiced speech was that the target ability can be easily 

emphasized toward one of the two types of processing through presenting the unvoiced speech in 

either temporally or spectrally challenging environments. Specifically, the study presented the 

speech in maskers that were either temporally or spectrally notched to force the listeners to use the 

information in the temporal or spectral domains, which is also called ‘glimpsing’ or ‘dip-listening’ 

(Cooke, 2006). If poorer performance is observed in one of the challenged processing domains, it 

indicates less efficient use of the information in that specific domain. 

Lastly, given that unvoiced speech is acoustically redundant and that the noise in a dental 

office is high frequency centered, the study proposed to high-pass filter and low-pass filter the 

unvoiced speech so the performance may primarily reflect the processing in and outside the 

spectral region of the exposed noise, respectively, potentially unraveling the frequency-specific 

effect of NTNE on envelope processing. 
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1.4.2.3 Potential challenges of using unvoiced speech recognition 

One potential issue for using unvoiced speech to reflect temporal envelope processing is 

that unvoiced speech in quiet could be insensitive to a broader temporal window. Many studies 

have shown that modulation rate above 30 Hz contributed little to the intelligibility of natural 

speech in quiet (Drullman et al., 1994; Hou & Pavlovic, 1994; Arai et al., 1999; Chi et al., 2005; 

Elliott & Theunissen, 2009; Chait et al., 2015). A study that used noise-vocoded speech with rich 

spectral channels also has shown that vocoded speech intelligibility decreased drastically only 

when the modulation below 16 Hz was removed (Van der Horst et al., 1999).  

Therefore, the current study should use unvoiced speech recognition in acoustic 

challenging conditions. As was described in the previous section, one of the tasks was to test 

unvoiced speech recognition in temporally modulated noise, examining how well the listeners 

could use the speech information in the temporal gaps where signal-to-noise (SNR) was favorable 

for speech understanding. Poorer temporal envelope processing, in theory, will lead to an 

incomplete representation of the signal and, more importantly, unprecise representation of the 

temporal gaps of the noise, preventing the information in the gaps from being efficiently accessed 

by the listeners and hence leading to poorer recognition performance in this type of noise. The 

other task for temporal envelope processing was to present unvoiced speech interrupted by silent 

gaps at various rates. Based on Jin & Nelson’s studies (2006, 2010), the ability to recognize speech 

that was interrupted by noise or by silence was supported by the same temporal processing 

mechanism, as the performances of these two tasks were highly correlated among listeners with 

hearing impairments and listeners with normal hearing. If temporal envelope processing is affected 

by NTNE, the faithful encoding of the interrupted unvoiced speech envelopes should be negatively 

impacted, like the unvoiced speech in temporally modulated noise. 
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1.4.3 Summary of the proposed methodology 

The current project proposed to study dental professionals as the population of interest 

because of the distinctive spectral features and the non-traumatic nature of the dental noise. The 

study also proposed to assess temporal envelope processing by using unvoiced speech recognition 

under various acoustic challenging conditions. The stimuli were proposed to be high-pass or low-

pass filtered to examine any frequency-specific effect of NTNE on temporal envelope processing. 

The methodology of the current study should help avoid off-frequency listening and consider 

central auditory contributions, improving the sensitivity of the task to detect temporal envelope 

processing issues related to NTNE. 
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2.0 Experiment 1: Non-Traumatic Noise Exposure on Unvoiced Speech Recognition in 

Noise 

2.1 Introduction 

Experiment 1 examines the listeners’ ability to recognize unvoiced speech in quiet and in 

different types of noise. Noise maskers included steady-state unmodulated noise (UN), temporally 

modulated noises (TMN) with modulation rate at 16 Hz or 32 Hz, and spectrally modulated noise 

(SMN). All stimuli were HPF and LPF so that the performance could ideally reflect as much as 

possible the effect of non-traumatic dental noise exposure in and outside the dental noise spectrum, 

respectively. 

Unvoiced speech intelligibility depends on both the spectral and temporal envelope cues 

(Kawahara & Irino, 2005; Kawahara et al., 2009; Irino et al., 2012). When unvoiced speech is 

presented in TMN, a listener is forced to weigh the temporal envelope cues more heavily for speech 

understanding (Feston & Plomp, 1990; George et al., 2006; Jin & Nelson., 2006). For people who 

have been exposed to non-traumatic noise, the internal representations of the speech and the TMN 

can be inaccurately encoded at supra-threshold levels, causing the listeners to have lower access 

to the speech information in the noise temporal gaps and impairing their speech recognition 

performance. Furthermore, because the temporal gaps at higher modulation rates are briefer and 

require finer temporal resolution to be accurately encoded, poorer temporal envelope processing 

should be more susceptible to noise with higher modulation rates than noise with lower modulation 

rates (Dubno et al., 2003). Therefore, it is additionally hypothesized that the difference between 
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the dental-noise-exposed and the unexposed groups will be more obvious in faster-modulated 

TMN than in slower-modulated TMN. 

The current experiment also used unvoiced speech recognition in SMN as a task to reflect 

spectral envelope processing after NTNE. Animal studies have argued that the effect of NTNE on 

the auditory system was not constrained to the temporal domains, such as broadened frequency 

tuning curve (Zhou et al., 2011; Zhou & Merzenich, 2012; Kamal et al., 2013) and reorganization 

of cortical tonotopic maps (Pienkowski & Eggermont, 2009; Pienkowski & Eggermont, 2010a, 

2010b; Pienkowski et al., 2011, 2013). Additionally, the ANFs with LSR are the primary task force 

to encode spectral envelopes at high intensities as the ANFs with HSR saturate in firing rates 

(Sachs & Young, 1979; May et al., 1996; Reiss et al., 2011). With these high-intensity fibers 

damaged after NTNE, the rate-profile representation of spectral envelope by the auditory fibers 

will likely appear smoothed out at high intensities. Given that no human studies specifically 

explored the effect of NTNE on spectral envelope processing, the current experiment explored this 

issue by comparing unvoiced speech in SMN between the dental-noise-exposed and unexposed 

groups. 

Lastly, the unvoiced speech was presented in quiet and in UN as two baseline conditions. 

In quiet, unvoiced speech recognition is hypothesized to show no difference between the exposed 

and the unexposed groups, because speech intelligibility in quiet is usually unharmed without the 

modulated components above 30 Hz, indicating that unvoiced speech recognition in quiet could 

still be robust in the presence of poorer temporal resolution. Likewise, it is hypothesized that there 

will be no difference in unvoiced speech recognition in UN between the two groups because there 

are no spectral or temporal gaps to assess the speech information under favorable SNRs for speech 

understanding. 
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2.2 Methods 

2.2.1 Participants 

2.2.1.1 Overview of the screening procedures and inclusion criteria 

Participants were recruited through being approached in person, in flyers, via emails, and 

Pitt+Me service (a research participant recruitment program offered through Clinical and 

Translational Science Institute at the University of Pittsburgh). All participants first received 

demographic screening by filling out a background form and a questionnaire that surveyed their 

general noise exposure history. Participants in the experimental group filled out an additional 

questionnaire that surveyed their dental noise exposure history. Participants who passed the 

demographic screening then received audiologic screening, which included tympanometry of a 

226-Hz tone in each ear, the ipsilateral acoustic reflex from 0.5 to 4 kHz at the left ear, DPOAE 

from 1 to 8 kHz in each ear and pure-tone audiometry from 0.25 to 8 kHz in each ear. Participants 

must have met all of the demographic and audiologic criteria to be eligible for the formal 

experiments. 

Section 2.2.1.2 introduces the demographic information form and the inclusion criteria of 

demographic screening. Sections 2.2.1.3 and 2.2.1.4 introduce the details of the general noise 

exposure questionnaire and the dental noise exposure questionnaire, respectively. Section 2.2.1.5 

introduces the details of the audiologic screening. Section 2.2.1.6 describes the inclusion criteria 

and the demographics of the participants who passed the screenings and completed the entire 

experiments. 
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2.2.1.2 Demographic screening 

Demographic information was collected with a subject background form (sample page in 

Figure 3 and enlarged form in Appendix A). The questions in the form covered issues that would 

determine the eligibility of the participants demographically, such as the participants’ hearing-

related health history, past medical history, and so on. Participants who met the criteria 1 to 6 in 

Table 1 then filled out the general noise exposure questionnaire for determining eligibility for 

criteria 7 and 8. Those who passed all the demographic inclusion criteria were allowed to proceed 

to the audiologic screening. 

 

Figure 3. Sample page of the subject background form (see Appendix A for higher resolution) 

 

SUBJECT BACKGROUND FORM 
(check the one that applies, explain if needed) 
 
Gender: male _____    female _____    transgender _____ 
 
Date of birth (DD/MM/YYYY): ________________________     Age: ___________ 
 
Highest education level: ____________________________________ 
 
Current academic major: ___________________________________ 
 
Country of birth: ___________ 
 
First language: __________ 
 
History 
1.  Have you been diagnosed with hearing issue before (e.g. hearing loss, ear infection, etc.)?  
No_____ Yes_____   
If yes, when and what type of hearing issue: 
___________________________________________________________________ 
 
2.  Any drainage from the ear within the past 90 days?  No_____ Yes_____ 
 
3.  Have you experienced any dizziness, balance problems, or falls?  
No_____ Yes_____ 
 
4.  Have you had any pain/discomfort in your ears within the past 90 days?  No_____ Yes_____ 
 
If yes, rate on a scale of 0 (no discomfort) to 10 (worst possible) ___________ 
 
5. Have you ever lost hearing in one ear suddenly?  No_____ Yes_____ 
 
6. Do you have frequent noises or ringing in your ears?   No_____ Yes_____  

 
If yes, which ear: left_____   right_____ 
The frequency of occurrence: Constant _____ Intermittent _____   
When does it start to frequently occur? _________________________________ 

 
7. Have you received any medical or surgical treatment for hearing loss?  
No_____ Yes_____ 
 

------TURN OVER TO BACK PAGE------ 
 

8. Have you ever been exposed to loud noise?   
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Table 1. Inclusion criteria for demographic screening 

Category Inclusion criteria 

Demographic 

screening 

1. Age: 22 to 30 years old 

2. Male and female 

3. English as the first language 

4. No hearing issues in the past or at the time of screening, including otological 

disorders, ear infection, otitis media, or hearing loss.  

5. No neurological, neurophysiological or neuropsychological disorders, and no brain 

trauma. 

6. Perception of tinnitus allowed for the experimental group only if it occurred since 

starting dental school  

7. No history of frequent impulse noise exposure 

8. Occupational noise exposure cannot exceed NIOSH standard (85 dBA for 8 hours, 

NIOSH, 1998) 

2.2.1.3 General noise exposure questionnaire 

The questionnaire used for collecting general noise exposure history was revised from the 

Exposed Noise and Hearing Disorders of Conscripts (ENHDC) by Jokitulppo et al. (2006). The 

original ENHDC collects information on a wide range of noisy activities that can be used to 

calculate lifetime noise exposure in equivalent sound exposure level (Leq). The estimate of Leq was 

used to determine whether the daily noise exposure was non-traumatic.  

The revised ENHDC (Figure 4) preserved the overall structure and the noisy activities from 

the original questionnaire but also added noisy activities mentioned in other more recent noise 

exposure questionnaires (Henry et al., 2015; Johnson et al., 2017). In specific, 1) ‘attending 

concerts and festivals or other musical events’ was re-worded into two activities, 'attending 

concerts and festivals with acoustic system' and 'attending concerts and festivals with amplified 

system'; 2) ‘listening to a portable stereo’ was deleted; 3) ‘attending or participating outdoor sports 
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events (e.g. football)', 'attending car or truck race', 'riding in private airplanes', 'attending any other 

events with amplified public music or announcement system' were added to the category of leisure 

time noise activities (Henry et al., 2015; Johnson et al., 2017); 4) ‘any work involving power tools, 

such as chainsaws, etc.’ and ‘'any work involving driving heavy equipment or machinery, such as 

trucks, lawn mowers, leaf blowers, tractors, etc.’ were added to occupational noise exposure 

(Henry et al., 2015; Johnson et al., 2017). The revised ENHDC was able to quantify noise exposure 

in the recent one year, three years, and over the participant’s lifetime.  

 

Figure 4. Sample noise exposure history questionnaire (see Appendix B for higher resolution) 
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To compute the lifetime noise exposure for a participant in the control group, first, the 

exposure dose for each noisy activity was computed using EQ 1 (NIOSH, 1998; Neitzel et al., 

2004): 

𝐷𝑖 =  
𝐶𝑖

(8760∗𝑁𝑖) 2(𝐿𝑖−79) 3⁄⁄
 ×  100        (EQ 1) 

Here, N is the number of years which the noise exposure needs to be computed out of. C 

is the number of hours participating in that activity during the time specified by number of years 

(i.e. N). L is the average sound pressure level of that activity. And i represents the ordinal 

number of a particular noisy activity. To compute noise exposure over the past one year, then N 

was assigned to be 1 and the information from the general noise exposure questionnaire under 

columns ‘estimate of loudness’, ‘number of hours per week’ and ‘number of weeks over past 52 

weeks (1 year)’ was needed (Figure 4). To compute lifetime noise exposure, N was assigned 1, 2 

and the number that equals to participant’s current age subtracted by 3 to represent the total time 

duration 'in the past one year', 'in the past 3 to 1 years (2 years)' and 'from birth to 3 years ago', 

respectively. On the other hand, C was the actual time spent on each noisy activity, which should 

be estimated for each of the three stages of life. Then, the dose, Di, for each activity at each stage 

of life was computed using EQ 1. 

Second, the number of hours participating in other regular activities was calculated by 

subtracting the total hours of noisy activity from the total hours of lifetime. These activities were 

pre-determined to occur at 64 dB SPL on average (Johnson et al., 2017). In this way, the dose for 

regular activity was also computed using EQ 1. 

Lastly, the doses of all activities, noisy and regular, were summed and converted into Leq 

with EQ 2 to quantify lifetime noise exposure in sound pressure level:  

𝐿𝑒𝑞 = [10 × 𝑙𝑜𝑔10 (
∑ 𝐷𝑖

100
)] + 79         (EQ 2) 
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2.2.1.4 Dental noise exposure questionnaire 

The dental noise exposure questionnaire surveyed the frequency and duration that a 

participant used the dental devices during their study at the graduate program of dentistry at the 

University of Pittsburgh (Figure 5). The listed devices covered those from pre-clinics, clinics, and 

laboratories. The intensity and spectral analyses of these devices have also been conducted to 

provide a more accurate estimate of the Leq for a dental student. 

 

Figure 5. Sample dental noise exposure questionnaire (see Appendix B for higher resolution) 

The way to estimate the Leq for participants of the experimental group followed the general 

procedures described for estimating general noise exposure Leq. The dose of exposure to dental 

noise was calculated as a separate source of noisy activity. The total hours and the exposure dose 
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of regular non-noisy activity were re-calculated by subtracting the total hours of dental and non-

dental noisy activities from total hours of the individual’s lifetime.  

2.2.1.5 Audiologic screening 

The audiologic screening included otoscopic exam, tympanometry, acoustic reflex, 

DPOAE, and pure-tone audiogram. The otoscopic exam was conducted at both ears using a 

handheld Welch Allyn otoscopy. An eligible participant should show no occlusion of the ear canal 

and intact eardrums (Table 2).  

Tympanogram was tested at both ears with a 226-Hz tone presented through a testing probe 

from GSI Tympstar Middle Ear Analyzer. Participants were asked to restrain movement, 

swallowing or conversation during the test. Tester compared the measurements of compliance, 

middle ear pressure and ear canal volume for each ear with inclusion criteria for tympanogram 

(Table 2) 

Acoustic reflex was also conducted using GSI Tympstar Middle Ear Analyzer. Ipsilateral 

and contralateral acoustic reflexes were measured at each ear with a probe tone of 0.5, 1, 2, and 4 

kHz presented at 95 dB SPL. The responses (in ml) of ipsilateral stimulation at the left ear were 

used to determine eligibility (Table 2) because the stimuli in the unvoiced speech tests were only 

presented at the left ear. 

DPOAE was measured through Intelligent Hearing System (IHS). The frequency range of 

the DPOAE spanned from 1 to 8 kHz with 3 frequency points per octave, so F2 frequencies were 

1104, 1392, 1753, 2207, 2783, 3506, 4419, 5566, 7012, 8838, 11133, 14028, 17671 Hz. The F2/F1 

ratio was 1.22. The presentation levels for L1 and L2 were 65 and 55 dB SPL, respectively. 

Eligibility was determined based on the SNR from 1 to 8 kHz (Table 2). Responses from 8 to 16 
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kHz were also recorded but was only used to analyze the effect of dental noise exposure on high-

frequency hearing (Chapter 4). 

The audiometric screening was also conducted. Pure tones from 0.25 to 8 kHz were 

generated through the Otosuite software installed on a desktop outside the booth. The desktop was 

connected to a Madsen Astera 2 Otometrics Audiometry that presented the tones through a pair of 

ER-3 insert earphones to the participants. The participants sat inside a soundproof booth and 

pressed a handheld bottom to indicate response to the tone. At each frequency, a tone was presented 

at 25 or 30 dB HL, decreased by 10 dB if it was heard, or increase by 5 dB if no response was 

given. Absolute thresholds were not searched in this case, but participants who were able to hear 

at or below 20 dB HL at each frequency were considered eligible (Table 2). Additionally, absolute 

thresholds were searched and recorded for tones at 12.5, 14, and 16 kHz at both ears, which were 

used to analyze the effect of dental noise exposure on high-frequency hearing (Chapter 4). In this 

case, the lowest intensity where participants gave 2 out of 3 correct responses was recorded as the 

absolute threshold at that frequency. 
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Table 2. Inclusion criteria for audiologic screening 

Category Inclusion criteria 

Audiologic 

screening 

• Otoscopic exam (both ears): no occlusion, intact ear drum with clear cone of light 

(Roeser et al., 2007) 

• Tympanometry to 226-Hz tone (both ears): compliance between 0.3 ml to 1.8 ml, 

middle ear pressure between -150 daPa to +150 daPa, ear canal volume between 0.6 

cc to 2.0 cc (Roeser et al., 2007) 

• Ipsilateral acoustic reflex to pulsed tones at 0.5, 1, 2 and 4 kHz (left ear): response ≥ 

0.02 ml (Roeser et al., 2007) 

• DPOAE with f2 from 1 to 8 kHz, 3 points/octave (both ears), L1 = 65 dB SPL and 

L2 = 55 dB SPL: SNR ≥ 6 dB for 80% of the test points from 1 to 8 kHz (Roeser et 

al., 2007; Hall, 2000) 

• Pure-tone audiogram at 0.25, 0.5, 1, 2, 3, 4, 6 and 8 kHz (both ears): threshold at 

each frequency ≤ 20 dB HL (ANSI, 2004) 

2.2.1.6 Eligible participants 

A total of 86 participants from ages 22 to 30 were screened. Thirty-four out of 86 were 

excluded: 1) thirty-two failed the demographic screening, 2) two passed the demographic 

screening but failed the audiologic screening (ear canal completely occluded by ear wax). 

Eventually, 52 participants passed both the demographic and the audiologic screening and 

completed the unvoiced speech experiments.  
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Table 3. Descriptive and inferential statistics of the demographic information for the control and the 

experimental groups 

Variable Group Mean ± SD Range F-statistics (p-value) 

Age CTL 24.6 ± 2.1 22 - 30 1.847 (0.180) 

EXP 25.3 ± 1.7 23 - 29 

Lifetime Leq (dental and non-

dental noise combined) 

CTL 75.1 ± 5.6 66.5 - 87.7 8.240 (0.006) 

EXP 78.7 ± 2.7 72.9 - 82.0 

Lifetime Leq 

(non-dental noise only) 

CTL 75.1 ± 5.6 66.5 - 87.7 0.028 (0.867) 

EXP 75.3 ± 4.3 65.2 - 81.7 

Lifetime Leq 

(dental noise only) 

CTL 0 0 13164.561 (0.000) 

EXP 74.6 ± 3.4 67.5 - 80.7 

Years of musical training CTL 3.4 ± 4.7 0 - 18 0.292 (0.591) 

EXP 2.7 ± 3.8 0 - 11 

Participants in the experimental (EXP) group were twenty-five second to fourth-year 

graduate students from the School of Dental Medicine at the University of Pittsburgh (female, n = 

15) with average age 25.3 years (standard deviation [SD] = 1.7). Five participants were the second-

year dental students (female, n = 4), twelve the third-year students (female, n =7), and eight the 

fourth-year students (female, n = 4). Participants in the control (CTL) group were twenty-seven 

graduate students and professionals with at least bachelor’s degrees (female, n = 25) of average 

age 24.6 years (SD = 2.1). Table 3 shows the descriptive data of age, lifetime Leq to non-dental 

noise, to dental noise, to both types of noise combined, and the number of years of musical training. 

A one-way analysis of variance (ANOVA) was conducted for each outcome variable. The lifetime 

Leq with dental and non-dental noise combined is significantly higher for the EXP group than for 

the CTL group by about 3.6 dB, F(1, 50) = 8.240, p = 0.006. When considering the lifetime Leq 

with non-dental noise exposure only, there is no significant difference between the two groups, p 
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> 0.05. There is also no significant difference between the two groups in age or in the years of 

musical training, p > 0.05.  

For the EXP group, the Leq of lifetime dental noise exposure systematically and 

significantly increased with the number of years at dental school, where the Leq of the 2nd, the 3rd, 

and the 4th year students were 71.2 dB SPL (SD = 1.4), 74.4 dB SPL (SD = 3.2), 77.1 dB SPL (SD 

= 2.6), respectively. Only 3 out of 25 participants in the EXP reported experience wearing earplugs 

when they were using the student handpieces. Three different participants in EXP reported 

experience with ringing in the ear, but the tinnitus occurred intermittently, randomly or at night, 

and did not seem to relate to the experience with using drills at dental school. 

2.2.2 Stimuli 

2.2.2.1 Target speech 

The source speech stimuli were IEEE sentences (Rothauser, 1969) spoken by an adult 

female in standard English sampled at 44.1 kHz (spectrum spanning from 0.08 to 12 kHz). The 

IEEE sentences are advantageous because there are a large number of sentences in the corpus to 

meet the needs of the current study conditions, and all sentence lists are phonetically balanced, 

low in contextual cues, and ecologically more valid than words.  

The speech stimuli were first processed into unvoiced utterance using TANDEM-

STRAIGHT. TANDEM-STRAIGHT is a source-filter vocoder that was written in MATLAB 

(MathWorks, Natick, MA). In essence, the vocoder generated an unvoiced version of a naturally 

uttered speech token through extracting the envelopes of the natural utterance and exciting the 

envelopes with random noise (Kawahara & Irino, 2005; Kawahara et al., 2009). The resulting 

unvoiced token preserved high spectral richness and sounded like whisper speech. Unvoiced 
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tokens were generated following the instructions from Kawahara et al. (2009) under the default 

settings of the vocoder. 

 

Figure 6. Speech intelligibility as a function of cut-off frequencies of LPF and HPF unvoiced speech (n = 5) 

Unvoiced speech tokens were then processed into the LPF and the HPF versions of the 

speech using a 40th-order Butterworth infinite impulse response (IIR) band-pass filter. Through a 

pilot study, the cut-off frequencies of the filters were determined to achieve the narrowest 

passbands where young normal-hearing listeners scored 90% accuracy within twenty IEEE 

sentences. The passbands were determined to be 0.08 to 2.3 kHz for the LPF speech and 1.7 to 12 

kHz for the HPF speech (Figure 6).  

2.2.2.2 Noise maskers 

There were four types of maskers, UN, 16-Hz TMN, 32-Hz TMN, and SMN. A full-band 

masker with spectral shape matching the long-term average spectrum of the IEEE sentences was 

first generated. Next, the masker was LPF or HPF, using the same filter specifications for the 
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filtered unvoiced speech, to produce the filtered unmodulated masker (i.e. the filtered UN, Figure 

7).  

 

Figure 7. Spectra of the full-band UN (solid line), LPF UN (dashed line) and HPF UN (dotted line) 

To generate the filtered TMN, the unfiltered unmodulated speech-shaped noise was 

multiplied in the time domain by a sine wave with amplitude from 0 to 1 and then was LPF or 

HPF. The current study used 16-Hz and 32-Hz sine waves to modulate the unmodulated noise, 

creating the slower-modulated and the faster-modulated TMNs (Figure 8). The modulation rates 

were determined through a pilot study in which 16-Hz and 32-Hz TMN showed a greater amount 

of masking release than the TMNs modulated at 1, 2, 4, 8, or 64 Hz. These two modulation rates 

were also used in Grose et al. (2009) that used natural speech in TMN to compare temporal 

envelope processing between young and older adults. 
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Figure 8. Time-domain waveforms of the full-band UN (black waves in both panels), of LPF 16-Hz TMN 

(grey wave in the upper panel), and of HPF 16-Hz TMN (grey wave in the lower panel) 

Spectrally modulated noise is a type of noise with spectral gaps in the frequency domain. 

The SMN used in the current study contained spectral gaps that were 3 equivalent rectangular 

bands (ERB) wide and interleaved with passbands which were also 3 ERBs wide (Figure 9). The 

spectral gap width was determined based on previous studies (Peters et al., 1998; Hall et al., 2012) 

and also through a pilot study where 3-ERB gapped SMN produced robust amount of masking 

release with the lowest variation out of 1-, 2-, 3-, 4-, 6- and 8-ERB gapped SMNs. The SMNs were 

obtained by passing the UN through a bank of 40th-order Butterworth IIR band-pass filters. The 

passband cut-off frequencies of the LPF and the HPF SMNs are shown in Table 4. 
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Table 4. Passband frequencies of the SMNs 

Filtering condition Passband 

No. 

Lower band cut-off frequency 

(Hz) 

Upper band cut-off frequency 

(Hz) 

LPF Passband 1 80 198 

Passband 2 360 585 

Passband 3 894 1322 

Passband 4 1913 2729 

HPF Passband 1 1913 2729 

Passband 2 3856 5413 

Passband 3 7562 10530 

 

Figure 9. Spectra of the full-band UN, LPF SMN, and HPF SMN 

Indeed, ERB, octave, Hz, Q3 (width of the tuning curve at 3 dB above threshold), and Q10 

(width of the tuning curve at 10 dB above threshold) are all units to describe frequency selectivity 

and are interchangeable with each other (Patterson, 1976; Glasberg & Moore, 1990). However, 

since ERB was designed to express the output of the auditory filter, that was originally described 

with two back-to-back exponential functions with a rounded top, now in form of a rectangle-

shaped filter, the width of the auditory filter can be quantified in a more simplified and 
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straightforward manner than in other units. Although using ERB deliberately ignores any level-

dependent change of auditory filter width, the current study only presented the task either in quiet 

or in noise at a fixed level, so the level-dependent change of auditory filter width is not a concern 

for the current study. 

2.2.3 Procedures 

All tasks were conducted in a soundproof booth. Stimuli were controlled through 

MATLAB scripts on a MacBook Pro, which connected to a pair of AKG K240 MKII supra-aural 

headphones. All the stimuli of the unvoiced speech perception tasks were presented monaurally to 

the left ear. Before the testing, 40 filtered unvoiced sentences (20 for each filtering condition) were 

presented to the participants to repeat to familiarize themselves with the task. Naturally uttered 

sentences were presented as feedbacks at the end of each repetition. Participants who scored lower 

than 90% for the first 20 sentences at a given filtering condition were presented with an additional 

10 sentences. Participants who did not achieve 80% accuracy even after given the additional 

sentences were excluded from the study, which the current study has not encountered during data 

collection. 

The familiarity session was followed by unvoiced speech recognition in quiet. The 

performance was measured in absolute speech recognition threshold (ASRT), the softest sound 

pressure level where the participant achieved 50% accuracy. The ASRT was measured through a 

one-down-one-up adaptive procedure (Levitt, 1971). The level of the sentence was elevated if the 

participant repeated incorrectly and reduced if the participant repeated correctly. The first sentence 

started at 0 dB SPL where the participant could not perceive the sentence and was presented 

repeatedly until the participant gave a correct response. The rest of the sentences were presented 
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only once. The step size started with 4 dB and turned 2 dB after two reversals. Correctly repeating 

3 or more key words was scored as a correct response and correctly repeating 2 or fewer keywords 

was scored as an incorrect response. The omission of the ending 's' was counted correct but the 

omission of 'ed' or replacing phonemes was considered incorrect. Three IEEE lists were used in 

one block. A total of two blocks were used, one for each filtering condition (LPF, HPF). The 

sequence of the filtering conditions was randomized. A block stopped: (1) at the end of 20 

sentences if the participant achieved at least 10 reversals, (2) at the sentence where 10 reversals 

were achieved if the participant did not achieve 10 reversals within 20 sentences and did not 

complete 30 sentences, or (3) at the 30th sentence if the participant did not achieve 10 reversals. If 

it was the third case, one more block of the same condition was given, and the average of the 

ASRTs from both blocks under the same condition was taken as the final performance. The ASRT 

of a given block was taken as the average of the sound pressure levels at all but the first 2 reversals. 

No feedback was given during the testing. After completing unvoiced speech recognition in quiet, 

participants first complete either unvoiced speech recognition in noise or silence-interrupted 

unvoiced speech test (Chapter 3).  

Unvoiced speech recognition in noise was measured by speech recognition threshold 

(SRT), which is the SNR where the participant achieved 50% accuracy. The SRT in noise was 

determined through a one-down-one-up adaptive procedure. The noise level was fixed at 65 dB 

SPL and the sentence level was adaptively varied. The SNR of the first sentence was -4 dB. The 

first sentence was presented repeatedly until the participant gave a correct response. The rule of 

changing step size, the scoring criteria, and the condition stopping rule of the unvoiced speech in 

noise tasks were identical to those of the unvoiced speech in quiet. The SRT was taken as the 

average of the SNRs of all but the first 2 reversals. There were 8 conditions (i.e. 8 blocks) for the 
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unvoiced speech in noise (Table 5) and each condition used 3 IEEE lists. If a participant was not 

able to achieve 10 reversals by the end of the third list, one more block of the same condition was 

tested, and the average of the two SRTs from the same condition was taken as the final 

performance. The sequence of the conditions was randomly determined by a random number 

generator function in MATLAB. No feedback was given during the testing.  

All the data were analyzed in IBM SPSS Statistics 26.0. 

Table 5. Test conditions of unvoiced speech in noise and their abbreviations 

Noise Filtering conditions 

LPF HPF 

Unmodulated LPUN HPUN 

Spectrally modulated LPSMN HPSMN 

Temporally modulated at 16 Hz LPTMN16 HPTMN16 

Temporally modulated at 32 Hz LPTMN32 HPTMN32 

2.3 Results 

2.3.1 Unvoiced speech recognition in quiet 

The ASRT measured from unvoiced speech recognition in quiet was analyzed through 2 

(group) × 2 (filtering) mixed-model ANOVA. Based on the Shapiro-Wilk test of normality, the 

performance of LPF speech in quiet of the CTL group violates the normality assumption, W(27) = 

0.842, p = 0.001. Nonetheless, the assumption of normality is loosened in this case for the sample 

size is large enough (Wickens & Keppel, 2004). The group means and SDs of unvoiced speech in 

quiet are plotted in Figure 10. There is no significant main effect of filtering, F(1, 50) = 3.637, p 
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= 0.062, ηp2 = 0.068, of group, F(1, 50) = 2.757, p = 0.103, ηp2 = 0.052, or interaction between 

filtering and group, F(1) = 0.360, p = 0.551, ηp2 = 0.007.  

 

Figure 10. Performance of LPF and HPF unvoiced speech in quiet: dark grey, CTL group; light grey, EXP 

group (error bars: 95% CI) 

Table 6. Simple effect comparisons between the two groups when filtering is controlled 

Filtering 

condition 

Group Mean ± SD 

(in dB SPL) 

Mean difference 

(CTL – EXP) 

F-statistics 

(p-value) 

LPF CTL 23.7 ± 3.7 -1.2 1.286 (0.262) 

EXP 24.8 ± 3.7 

HPF CTL 22.4 ± 3.2 -1.8 3.069 (0.086) 

EXP 23.2 ± 3.7 

 

A simple effects analysis reveals no significant difference in ASRT between the two groups 

when filtering is controlled, p > 0.05 (Table 6). There is also no significant difference in ASRT 

between the two filtering conditions within any given group, p > 0.05 (Table 7). 
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Table 7. Simple effect comparisons between the two filtering conditions when group is controlled 

Group Mean difference 

(LPF - HPF) 

F-statistics 

(p-value) 

CTL 1.3 3.270 (0.077) 

EXP 0.7 0.822(0.369) 

2.3.2 Unvoiced speech recognition in temporally modulated noise: SRT 

The SRT measured from unvoiced speech recognition in noise was analyzed through 2 

(group) × 2 (filtering) × 4 (masker) mixed-model ANOVA. Here, speech recognition in SMN is 

included in the analysis to avoid the inflation of the overall type I error, but the performances under 

SMN is presented in the next sections (2.3.4 and 2.3.5). Based on the Shapiro-Wilk test of 

normality, data of unvoiced speech in unmodulated and in temporally modulated noise of both 

groups satisfy the assumption of normality, p > 0.05.  

The Mauchly’s test of sphericity shows that the assumption of homogeneity of variance is 

violated for the interaction between the two within-subject factors (filtering × masker), χ2(5) = 

13.231, p = 0.021. The ANOVA shows that there is significant main effects of group, F(1, 50) = 

6.584, p = 0.013, ηp2 = 0.116, of filtering, F(1, 50) = 20.292, p = 0.000, ηp2 = 0.289, and of masker, 

F(1, 50) = 50.889, p = 0.000, ηp2 = 0.504. There are also significant interactions between group 

and masker, F(3, 150) = 2.741, p = 0.045, ηp2 = 0.052, and between filtering and masker after 

Greenhouse-Geisser correction, F(2.545, 127.231) = 5.851, p = 0.002, ηp2 = 0.105. There is no 

significant interaction between group and filtering or across the three factors. 
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To examine whether non-traumatic dental noise exposure affects temporal envelope 

processing, the first simple effects analysis compares the performance between the two groups 

when filtering and masker are controlled. As is shown in Figure 11, there is no significant group 

difference in SRTs of LPF unvoiced speech in UN or in TMNs, p > 0.05, though the mean SRTs 

of the CTL group appear lower than those of the EXP group for 16-Hz (mean difference [MD] = 

0.8 dB, standard error [SE] = 0.8 dB) and 32-Hz TMNs (MD = 1.0 dB, SE = 0.6 dB). There is also 

no significant group difference in SRTs of HPF unvoiced speech in UN or in 16-Hz TMN, F(1, 

50) = 3.481, p = 0.068, ηp2 = 0.065, though the mean SRT of the CTL group appears lower than 

that of the EXP group (MD = 1 dB, SE = 0.6 dB). However, the SRT of the CTL group is 

significantly lower than that of the EXP group for 32-Hz TMN (MD = 3.1 dB, SE = 0.8 dB), F(1, 

50) = 14.112, p = 0.000, ηp2 = 0.220. 

 

Figure 11. SRTs of unvoiced speech in UN (0Hz), 16-Hz and 32-Hz TMNs under each filtering condition: left 

panel, LPF; right panel, HPF; dark grey, CTL group; light grey, EXP group. Error bars: 95% CI. *, p < 

0.05; **, p < 0.01; ***, p < 0.001. 
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unvoiced speech in TMN may provide information from another perspective on whether the two 

groups perceived cues at low- and high-frequency-centered speech differently. As is shown in 

Figure 12, the CTL group show increasing mean SRT difference between the two filtering 

conditions with increasing modulation rate of the noise: at 16-Hz, the SRT for the HPF speech is 

significantly lower than that for the LPF speech by 2.3 dB on average (SE = 0.7 dB), F(1, 50) = 

10.290, p = 0.002, ηp2 = 0.171; at 32-Hz, the SRT for the HPF speech is even lower than that for 

the LPF speech by 3.1 dB on average (SE = 0.7 dB), F(1, 50) = 19.351, p = 0.000, ηp2 = 0.279. 

The EXP group show a similar trend that the SRTs for the HPF speech appear lower than those 

for the LPF speech in TMNs, but these mean differences are smaller in magnitude compared to 

those observed in the CTL group and are not statistically significant for any modulation rate, p > 

0.05. 

 

Figure 12. SRTs of unvoiced speech in UN (0Hz) and TMN within each group: left panel, CTL group; right 

panel, EXP group; drak grey, LPF; light grey, HPF. Error bars: 95% CI. *, p < 0.05; **, p < 0.01; ***, p < 

0.001. 
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2.3.3 Unvoiced speech recognition in temporally modulated noise: masking release 

The amount of masking release (MR) was also analyzed as a dependent variable under the 

effect of noise exposure (group), speech filtering, and temporal modulation rate (masker). 

Conventionally speaking, MR quantifies the benefit that a listener may take to assist speech 

understanding by listening for the information in the temporal gaps where SNR is favorable. The 

amount of MR was computed by subtracting the SRT in the UN by the SRT in the TMNs for each 

participant.  

A 2 (group) × 2 (filtering) × 3 (masker) mixed-model ANOVA was conducted to analyze 

the MR. Mauchly’s test of sphericity shows that the assumption of homogeneity of variance is 

violated for the interaction between the two within-subject factors (filtering × masker), χ2(2) = 

12.037, p = 0.002. There are significant main effects of group, F(1, 50) = 10.988, p = 0.002, ηp2 = 

0.180, of filtering, F(1, 50) = 19.022, p = 0.000, ηp2 = 0.276, and of masker, F(1, 50) = 11.916, p 

= 0.000, ηp2 = 0.192. There are no significant 2-way interactions between any pairs of the three 

factors nor 3-way interactions among the three factors. 
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Figure 13. Masking release of unvoiced speech in TMN under each filtering condition. Error bars: 95% CI. *, 

p < 0.05; **, p < 0.01; ***, p < 0.001. 

The simple effects analysis was conducted to examine whether the outcome patterns 

observed for SRT would occur for MR. First, the performance between the two groups was 

compared when filtering and masker were controlled. As is shown in Figure 13, there is no 

significant group difference in MR for LPF speech in 16-Hz or 32-Hz TMNs, p > 0.05, though the 

mean MR of the CTL group appears larger than that of the EXP group for 16-Hz (mean difference 

[MD] = 0.9 dB, standard error [SE] = 0.8 dB) and 32-Hz TMNs (MD = 1.1 dB, SE = 0.8 dB). 

There is also no significant group difference in MR for HPF speech in 16-Hz TMN, F(1, 50) = 

3.060, p = 0.086, ηp2 = 0.058, though the mean MR of the CTL group appears larger than that of 

the EXP group (MD = 1.8 dB, SE = 1.1 dB). However, like the pattern observed for SRT, the MR 

of the CTL group is significantly larger than that of the EXP group in 32-Hz TMN (MD = 3.0 dB, 

SE = 0.8 dB), F(1, 50) = 12.790, p = 0.001, ηp2 = 0.204. 

 

Figure 14. Masking release of unvoiced speech in TMN within group. Error bars: 95% CI. *, p < 0.05; **, p < 

0.01; ***, p < 0.001. 
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Second, the performance between the two filtering conditions within each group was also 

analyzed for each modulation rate (Figure 14). The CTL group show increasing mean MR 

difference between the two filtering conditions with increasing modulation rate of the noise: at 16-

Hz, the MR for the HPF speech is significantly larger than that for the LPF speech by 2.6 dB on 

average (SE = 0.7 dB), F(1, 50) = 7.967, p = 0.007, ηp2 = 0.137; at 32-Hz, the MR for the HPF 

speech is even larger than that for the LPF speech by 3.3 dB on average (SE = 0.7 dB), F(1, 50) = 

16.424, p = 0.000, ηp2 = 0.247. The EXP group once more show a similar trend that the MR for 

the HPF speech appears larger than that for the LPF speech, but the mean MR differences are 

smaller in magnitude compared to those observed in the CTL group (16-Hz by mean of 1.6 dB; 

32-Hz by mean of 1.4 dB) and are not statistically significant for any modulation rate, p > 0.05. 

2.3.4 Unvoiced speech recognition in spectrally modulated noise: SRT 

Performance of unvoiced speech in SMN was analyzed along with the other types of 

maskers through the 2 (group) × 2 (filtering) × 4 (masker) mixed-model ANOVA in section 2.3.2. 

The simple effects analysis first shows that the SRT of LPF unvoiced speech in SMN is 

significantly lower for the CTL group than for the EXP group (MD = 1.5 dB, SE = 0.6 dB), F(1, 

50) = 6.853, p = 0.012, ηp2 = 0.121, but there is no significant group difference for the SRT of the 

HPF speech in SMN (MD = 0.9 dB, SE = 1.1 dB), p > 0.05, despite that the average SRTs of both 

filtering conditions appear lower for the CTL group than for the EXP group (Figure 15). 
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Figure 15. SRTs of unvoiced speech in SMN under each filtering condition. Error bars: 95% CI. *, p < 0.05; 

**, p < 0.01; ***, p < 0.001. 

The simple effects analysis also compared the SRTs for the two filtering conditions within 

each group. Both groups score significantly lower SRT for the HPF speech than for the LPF speech 

and the difference between the filtering conditions appear larger for the EXP group than for the 

CTL group (Figure 16). For the CTL group, the SRT for the LPF condition is higher than that for 

the HPF conditions by 1.8 dB on average (SE = 0.7 dB), F(1, 50) = 5.741, p = 0.020, ηp2 = 0.103. 

For the EXP group, the SRT for the LPF condition is higher than that for the HPF conditions by 

2.3 dB on average (SE = 0.8 dB), F(1, 50) = 9.413, p = 0.003, ηp2 = 0.158. 
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Figure 16. SRTs of unvoiced speech in SMN within each group. Error bars: 95% CI. *, p < 0.05; **, p < 0.01; 

***, p < 0.001. 

2.3.5 Unvoiced speech recognition in spectrally modulated noise: masking release 

The amount of MR was also computed for the unvoiced speech recognition in SMN and 

analyzed through the 2 (group) × 2 (filtering) × 3 (masker) mixed-model ANOVA in section 2.2.3. 

The simple effects analysis shows that despite that the amount of MR is on average smaller for the 

EXP group than for the CTL group under both filtering conditions (LPF, MD = 1.6 dB, SE = 0.8 

dB; HPF, MD = 0.9 dB, SE = 1.2 dB), the group difference in MR does not reach statistical 

significance for the LPF condition, F(1, 50) = 3.853, p = 0.055, ηp2 = 0.072, or for the HPF 

condition, F(1, 50) = 0.606, p = 0.440, ηp2 = 0.012 (Figure 17, left panel). The mean difference 

between the two filtering conditions reach statistical significance within both groups and the result 

patterns are similar. For the CTL group, the MR for the HPF condition is significantly larger than 

for the LPF condition by mean of 2.0 dB (SE = 1.0 dB), F(1, 50) = 4.185, p = 0.046, ηp2 = 0.077. 
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For the EXP group, the MR for the HPF condition is significantly larger than for the LPF condition 

by mean of 2.7 dB (SE = 1.0 dB), F(1, 50) = 6.935, p = 0.007, ηp2 = 0.122. 

 

Figure 17. Masking release of unvoiced speech in SMN for clustered filtering conditions (left panel) and 

clustered group (right panel) (error bars: 95% CI) 
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This chapter examines the relation of NTNE to temporal envelope processing by 

comparing unvoiced speech recognition performance between a group of dental school students 

(i.e. the EXP group) and a group of young adults with similar demographic and audiologic profiles 

but without the dental noise exposure (i.e. the CTL group). The speech stimuli were low-pass or 

high-pass filtered in an attempt to reveal any frequency-specific effect of high-frequency dental 
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band and presented in TMN. The negative impact of NTNE on temporal envelope processing 

appeared more obvious when the modulation rate of the noise was at 32 Hz than at 16 Hz.  

(2) NTNE was also related to poorer spectral envelope processing, affecting the EXP group 

in their ability to recognize unvoiced speech when the stimuli were constrained outside the 

frequency band of the noise and presented in SMN. This is a novel finding as no previous studies 

have explored the relationship between NTNE and spectral resolution. 

(3) The performances of the EXP and the CTL groups were not significantly different from 

each other for unvoiced speech recognition in quiet, indicating that the effect of NTNE on envelope 

processing occurs only at supra-threshold levels, but not at near-threshold levels, which supports 

the findings of animal studies of NTNE.  

(4) There was no group difference in the performance of recognizing LPF unvoiced speech 

in TMN or HPF unvoiced speech in SMN. This suggests that NTNE spared temporal envelope 

processing outside the frequency band of the noise and spectral envelope processing inside the 

frequency band of the noise, but the insensitivity of the measures could not be excluded.  

2.4.1 The relationship between non-traumatic noise exposure and temporal envelope 

processing 

Experiment 1 has shown that the EXP group performed significantly more poorly than the 

CTL group in TMN for HPF conditions. This indicates that people exposed to non-traumatic noise 

may be less efficient in using the temporal envelope information within the frequency band of the 

noise exposure than people who were not exposed. Although the SRT and the MR for 16-Hz HPF 

TMN did not show a statistically significant difference between the groups, the outcome patterns 

across the two filtering conditions within each group appeared inconsistent between the EXP and 
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the CTL groups. Specifically, the CTL group performed significantly better in the HPF conditions 

than in the LPF conditions for both 16-Hz and 32-Hz TMNs, but the EXP performed similarly 

between the two filtering conditions for both TMNs, indicating that the EXP group essentially 

perform differently from the CTL group in 16-Hz TMN for the HPF condition. The inefficiency 

of using temporal envelope cues in temporally fluctuated noise was more noticeable when the 

modulation rate of the noise was higher.  

However, this relationship between NTNE and poorer temporal envelope processing is less 

clear at frequency regions outside the frequency band of the noise. When the unvoiced speech was 

LPF, the recognition performance of the CTL group was on average better than the EXP group at 

both noise modulation rates, but the group difference at neither rate reached statistical significance. 

This non-significant result can be explained by a lack of negative impact of NTNE on temporal 

envelope processing outside the frequency band of the noise. However, an alternative explanation 

is that perhaps unvoiced speech at lower frequency does not carry temporal envelope cues that are 

as important for speech intelligibility. In other words, if there is a group difference in temporal 

envelope processing outside the frequency band of the noise, LPF unvoiced speech in TMN was 

not sensitive enough to reveal it. 

Let’s consider the possibility of the alternative explanation for now. The low-pass filtering 

process in the current study retained the speech information between 80 to 2300 Hz, which means 

that a listener could loosely identify the following phonetic features in the LPF unvoiced speech: 

(1) most of the vowels except the second formant (F2) of /i/, (2) most of the sonorant consonants 

except /j/, (3) all the stop consonants (/b/, /p/, /d/, /t/, /g/, /k/) followed by vowels other than /i/, (4) 

the affricatives /tʃ/ (/dʒ/), and (5) most of the fricatives which would be perceived but perhaps not 

discriminated. All monophthongs and diphthongs except those containing /i/ might be identified 
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because most of the vowel F2 are below 2.5 kHz (Peterson & Barney, 1952; Hillenbrand et al., 

1995). Similarly, most of the sonorant consonants might be also identified because they will sound 

like unvoiced vowels after the unvoicing process and so the possible indiscriminative sonorant 

might just be /j/ due to its resemblance to /i/. Stop consonants can be identified because their place 

of articulation is determined by the second formant transitions, which mostly span below 2500 Hz 

if the consonant is not followed by /i/ (Cooper et al., 1952). The voicing feature of the stop 

consonants could no longer be signaled by first formant transition due to the unvoicing process but 

could still be signaled by voice onset time (VOT), which is a temporal envelope cue (Liberman et 

al., 1958; Rosen, 1992; Benkí, 2001). Affricative /tʃ/ (/dʒ/) may also be identified based on its 

manner of articulation, which is a temporal envelope cue (Rosen, 1992), and further discrimination 

between voiceless /tʃ/ and voiced /dʒ/ is based on the duration of frication, which is also a temporal 

envelope cue after unvoicing (Cole & Cooper, 1975). Fricatives like /ʃ/ (/ʒ/), /f/ (/v/), /θ/ (/ð/) might 

be perceived because their spectral energy could span from 1.5 or 2 kHz up to 8 kHz, but they 

might not be precisely identified because the spectral cues for identification usually reside above 

2.3 kHz. The coarse distinction among the obstruent consonants with three manners of articulation 

(i.e. stops, fricatives and affricatives) might be preserved because the manner of articulation is 

encoded as temporal envelope cues (Rosen, 1992). Lastly, /s/ (/z/) might be greatly attenuated and 

unperceived because its spectral energy concentrates above 4 kHz. Based on these acoustic 

analyses of the phonetics, it does not appear that the intelligibility of LPF unvoiced speech was 

single-handedly dominated by spectral envelope cues. Instead, both spectral envelope cues and 

temporal envelope cues contributed significantly to recognizing LPF unvoiced speech. Therefore, 

it is likely that poorer temporal envelope processing may not necessarily affect LPF unvoiced 

speech intelligibility in TMN due to the existence of spectral cues. 
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Based on these concerns, Experiment 2 was conducted in Chapter 3 to explore the 

theoretical relationship between temporal envelope processing and LPF vocoded speech 

recognition. Experiment 2 aims to address the extent to which poor temporal envelope processing 

will degrade the intelligibility of LPF vocoded speech when there are little spectral envelope cues. 

In short, the results from Experiment 2 show that poor temporal envelope processing negatively 

impacts both LPF and HPF vocoded speech in TMN but more drastic degradation in performance 

was observed for the HPF than the LPF conditions. Some past studies have shown that temporal 

resolution of the auditory system depends on frequency region and that temporal resolution is 

poorer at lower frequencies than at higher frequencies (Viemeister, 1979; Formby & Muir, 1988; 

Plack & Moore, 1990; Yost & Sheft, 1997), which might explain the non-significant group 

difference for the LPF condition. In summary, Experiment 1 concludes that the impact of NTNE 

on temporal envelope processing outside the frequency band of the noise is minor or negligible 

compared to that inside the frequency band of the noise. 

2.4.2 The relationship between non-traumatic noise exposure and spectral envelope 

processing 

This chapter also explores the relation of NTNE to spectral envelope processing. Spectral 

envelope processing could, in theory, be at risk if high-intensity ANFs are selectively damaged by 

NTNE, but no past studies have researched this topic in human subjects. The result showed that 

the EXP group performed significantly more poorly than the CTL group for unvoiced speech 

recognition in SMN only in the LPF condition, but not in the HPF condition. This result could 

suggest that the impact of NTNE on spectral envelope processing might occur only outside the 

frequency of the exposed noise. But just like the argument concerning temporal envelope 
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processing, an alternative explanation for the result is that the HPF unvoiced speech does not 

possess the spectral details which require exceptional spectral resolution from the auditory system. 

In other words, the task of HPF unvoiced speech recognition in SMN is not sensitive enough to 

pick up spectral envelope processing issues at high frequencies. 

Let’s examine the alternative explanation from the acoustics of the phonetics once again. 

The high-pass filtering process retained the speech information between 1.7 to 12 kHz, which 

means that a listener could roughly identify the following phonetics in the HPF unvoiced speech: 

(1) almost all the fricative and affricative consonants such as /s/ (/z/), /ʃ/ (/ʒ/), /f/ (/v/), /θ/ (/ð/), /tʃ/ 

(/dʒ/), (2) the F2 and F3 of vowels like /i/, /I/, /e/ for they have high-frequency F2 (Peterson & 

Barney, 1952; Hillenbrand et al., 1995), (3) the stops consonants /b/, /p/, /d/, /t/, /g/, /k/ only when 

they are followed by vowels with high-frequency F2, such as /i/, /I/, /e/ (Delattre et al., 1955). 

Meanwhile, most of the vowels with F2 at lower frequencies (e.g. /u/, /o/, /a/, /æ/) and the sonorant 

consonants (e.g. /m/, /l/, /n/, /ŋ/, /j/, /w/) were greatly attenuated by high-pass filtering, leaving the 

intelligibility of the HPF unvoiced speech mostly dependent on the obstruent consonants and a 

small number of vowels. Discrimination of the obstruent consonants across different manners (i.e. 

stops, fricatives and affricatives) should be largely unaffected in the HPF condition because 

discriminating the manner of articulation depends primarily on temporal envelope cues (Rosen, 

1992). Discriminating voiced and voiceless pairs within a given manner could no longer depend 

on the vibration of the vocal fold, so voicing cue can only depend on VOT, which is also a temporal 

envelope cue (Rosen, 1992). The place of articulation within stop consonants can be discriminated 

based on the F2 trajectories but only when the consonants are followed by /i/, /I/, /e/. The place of 

articulation within fricatives or within affricatives is based on the spectral envelopes and spectral 

bandwidth (e.g. /s/ spanned from 4 to 8 kHz, /ʃ/ from 2 to 8 kHz, /f/ and /θ/ from 1.5 to 8 kHz). In 
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summary, for HPF unvoiced speech recognition, the intelligibility depends heavily on the accurate 

encoding of the temporal envelope for the manner of articulation and voicing cues and limitedly 

on the spectral envelope cues when identifying the place of articulation for stop consonants 

followed by /i/, /I/, /e/, or for fricatives. Furthermore, the spectral resolution to identify the place 

of articulation for fricatives is not so demanding, because most of the fricatives and affricatives 

possess a broadband frequency response. It is possible that the only occasions that need fine 

spectral envelope coding for the HPF condition are to identify stop consonants when they were 

followed by /i/, /I/, /e/. Based on these analyses, it is suggested that the intelligibility of HPF 

unvoiced speech is single-handedly dominated by temporal envelope cues, which is different from 

the situation of LPF unvoiced speech. This discrepancy between the LPF and HPF speech where 

the relative contributions of temporal and spectral envelope cues to intelligibility are different may 

also explain why the SRT for the HPF speech generally appeared much better than for the LPF 

speech in TMN. For now, it is concluded that even if there is an issue in spectral envelope 

processing at high frequencies after dental noise exposure, the task of HPF unvoiced speech 

recognition in SMN will be inconclusive to reveal the issue. 

With that being concluded, it is worth thinking whether the integrity of spectral resolution 

at high frequencies is necessary to human listeners. The speech cues at higher frequency regions 

do not require high spectral resolution and spectral resolution of the auditory system is usually 

poor at high frequency in the first place, which may have naturally led humans to produce sound 

with little requirement of fine spectral resolution at high frequencies. Nonetheless, if future study 

wishes to examine spectral resolution at high frequency, conventional methods that assess auditory 

filter width or frequency tuning curve will be more appropriate than HPF unvoiced speech 

recognition in SMN. 



 56 

2.4.3 Summary of this experiment 

The current experiment shows that the EXP group who have been exposed over time to 

dental noise performed more poorly than those without the dental noise exposure on speech 

recognition that requires the use of supra-threshold temporal or spectral envelope cues. The result 

suggests that there is a relationship between NTNE and poorer supra-threshold temporal envelope 

processing, supporting the general assumption of the animal models of NTNE. The noise-induced 

temporal envelope processing issue occurred more noticeably within the frequency band of the 

noise and was more obvious when the task had a higher reliance on temporal resolution. The lack 

of group differences for unvoiced speech recognition in the LPF condition may suggest that the 

negative impact of NTNE on temporal envelope processing is frequency-specific but may also 

result from the insensitivity of the LPF unvoiced speech recognition in TMN to poorer temporal 

envelope processing. Therefore, Experiment 2 was conducted in Chapter 3 to examine whether the 

LPF and HPF unvoiced speech recognition in TMN was equally sensitive to reflect poorer 

temporal resolution. Furthermore, in Experiment 3, silence-interrupted unvoiced speech test, 

which was suggested to share the same mechanism as speech interrupted by noise (Jin & Nelson, 

2010), was used to examine the effect of dental noise exposure on temporal envelope processing. 

The experiment provided some additional pieces of evidence on the effect of NTNE on temporal 

envelope processing and on the frequency specificity of NTNE. 

The result of the current experiment also suggests that there is a relationship between 

NTNE and poorer supra-threshold spectral envelope processing, which was based on an extension 

from the general hypothesis of the animal model and was a novel finding in human studies. The 

noise-induced spectral envelope processing issue occurs in frequency region outside the frequency 

band of the noise, but not within the frequency band of the noise. Based on linguistic accounts, the 
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absent effect of NTNE within the frequency band of the noise may likely result from the 

insensitivity of the measure at high frequency.  
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3.0 Experiment 2: Sensitivity of low-pass and high-pass filtered unvoiced speech 

recognition to broadened temporal integration window 

3.1 Introduction 

Experiment 1 showed that poorer temporal envelope processing was related to NTNE as 

young listeners with dental noise exposure performed significantly worse on unvoiced speech 

recognition in TMN than those without the exposure when the test stimuli were constrained within 

the dental noise band. However, since there was no group difference in speech recognition in TMN 

outside the dental noise band, it was unclear whether the non-significant difference resulted from 

lack of noticeable impact of NTNE on temporal envelope processing outside the frequency band 

of the noise, or from the insensitivity of LPF unvoiced speech task to poorer temporal envelope 

processing. To attempt to clarify this issue, the current experiment whether speech perception with 

primarily temporal envelope cues would be sensitive to degraded temporal envelope processing 

and whether the sensitivity was similar at LPF and HPF conditions.  

Temporal envelope processing was manipulated by paradigmatically smoothing the 

temporal envelopes of the speech using temporal integration windows of different lengths after the 

unvoiced speech was passed through a 4-channel vocoder. The vocoding process greatly reduced 

the spectral resolution of the signal, so intelligibility was predominantly reliant upon temporal 

envelope cues. The stimuli were LPF or HPF and presented in quiet or in TMN. 32-Hz TMN was 

used in this simulation study because briefer temporal gaps that result from the higher modulation 

rates are more readily filled in by the smoothing process.  
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3.2 Methods 

3.2.1 Participants 

Participants were ten newly recruited female young adults whose mean age was 21.9 years 

(range 21 to 23 years) and were tested to have audiometric thresholds ≤ 20 dB HL from 0.25 to 8 

kHz. All participants were undergraduate students from the University of Pittsburgh. Because there 

were not enough sentence stimuli for each participant to complete all conditions in Experiment 2, 

five of them completed HPF conditions, and the rest completed LPF conditions.  

3.2.2 Stimuli 

The speech stimuli in Experiment 2 were LPF or HPF unvoiced sentences with smoothed 

temporal envelopes. Unvoiced IEEE sentences from Experiment 1 were first passed through a 

four-channel vocoder (40th-order Butterworth IIR filters) with cut-off frequencies listed in Table 

8. The temporal envelope of the signal in each channel was then extracted by half-wave 

rectification and low-pass filtering (40th-order Butterworth IIR filter with cut-off frequency at 256 

Hz). MATLAB function filtfilt was used to avoid any phase delay caused by low-pass 

filtering. The TFS of the signal in each channel was also extracted through Hilbert transform for 

later speech synthesis. The extracted envelopes were convolved with a Hamming window to create 

smoother envelopes. The size of the Hamming window was 128, 64, 48, 32, 16, 8 or 4 Hz. Note 

that the shape of the temporal window is not perfectly symmetric in time domain (Moore et al., 

1988).  Hamming window was chosen for simplicity reason and it was chosen over rectangular 

window because the stop-band frequency response of Hamming window is relatively lower 
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(Oppenheim & Schafer, 2010), meaning that the envelope would be less contaminated by 

unwanted modulations from the stopband. The smoothed envelopes were used to modulate the 

TFSs extracted earlier from the same band. The modulated signals were filtered again with the 

corresponding band-pass filters in the first step and were summed to produce the filtered 

temporally smoothed unvoiced speech. The maskers were LPF or HPF 32-Hz SAM noises that 

were temporally smoothed in the same way as the speech stimuli. 

In total, there were 8 smoothing conditions under each filtering: one unsmoothed condition 

and seven smoothed conditions (128-Hz, 64-Hz, 48-Hz, 32-Hz, 16-Hz, 8-Hz and 4-Hz windows). 

The unsmoothed version was the filtered unvoiced speech used in Experiment 1 without the 

channel-vocoding process, which had the richest spectral and temporal envelope details among all 

the versions. The smoothed version by a 128-Hz window should retain the rich temporal envelope 

details but lose the spectral resolution. 

Table 8. Cut-off frequencies of the lower and the upper sides of the band-pass filters for LPF and 

HPF unvoiced speech 

Filtering condition Channel No. Lower cut-off Upper cut-off 

LPF 1 80 305 

2 305 669 

3 669 1270 

4 1270 2300 

HPF 1 1700 2652 

2 2652 4178 

3 4178 6812 

4 6812 12000 
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3.2.3 Procedures 

Experiment 2 contained two tasks. Before the first task, participants were randomly 

assigned to one of the two filtering conditions (LPF or HPF) and completed a familiarization 

session with 20 filtered unvoiced IEEE sentences. Then, they completed the first task, which was 

filtered unvoiced speech recognition in quiet. Participants repeated to 80 filtered unvoiced IEEE 

sentences where every 10 sentences (50 keywords) were presented for a smoothing condition (8 

conditions in total). For the unsmoothed condition, target stimuli were filtered unvoiced speech 

without the vocoding process. All conditions in quiet were randomized. Sentences were presented 

at 65 dB SPL. The scoring criteria followed those described in Experiment 1. The percent correct 

was computed as the outcome variable for unvoiced speech recognition in quiet. 

The second task examined the effect of temporal envelope smoothing on unvoiced speech 

recognition in 32-Hz SAM noise. Again, there were eight temporal smoothing conditions 

(unsmoothed, 128-, 64-, 48-, 32-, 16-, 8- and 4-Hz windows). All conditions were randomized. 

The testing procedures followed those described in Experiment 1, except that the highest 

presentation level of the sentence was set at 91 dB SPL (i.e. 16 dB SNR) to prevent any potential 

damage or discomfort in hearing. Like Experiment 1, SRT was used as the outcome measure. 
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3.3 Results 

3.3.1 Unvoiced speech recognition in quiet as a function of the temporal window 

Despite small sample size, the Shapiro-Wilk test shows that the data from Experiment 2 

follow a normal distribution, p > 0.05. A 2 (filtering) by 8 (window) mixed-model ANOVA was 

performed on the intelligibility of temporally smoothed unvoiced speech in quiet (Figure 18). The 

results show that there are no main effects of window or filtering, p > 0.05, and simple effects 

multiple comparisons show no significant difference in performance between any of the two 

window sizes at any given filtering condition, p > 0.05. There is also no significant difference in 

performance between the two filtering conditions at any given window size, p > 0.05. 

 

Figure 18. Speech intelligibility of temporally smoothed LPF (dark grey) and HPF (light grey) unvoiced 

speech in quiet as a function of temporal integration window. Error bars: 95% CI. Uns: unsmoothed. 
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3.3.2 Unvoiced speech recognition in 32-Hz TMN as a function of the temporal window 

A 2 (filtering) by 8 (window) mixed-model ANOVA was conducted for the SRT of 

temporally smoothed unvoiced speech in 32-Hz SAM noise. The results show that there are 

significant main effects of window, F(7, 56) = 71.300, p = 0.000, ηp2 = 0.899, of filtering, F(1, 8) 

= 10.209, p = 0.013, ηp2 = 0.561, and significant interaction between window and filtering, F(7) = 

2.919, p = 0.011, ηp2 = 0.267 (Figure 19).  

 

Figure 19. SRT of temporally smoothed LPF (dark grey) and HPF (light grey) unvoiced speech in 32-Hz SAM 

noise as a function of temporal window. The horizontal bracket indicates a significant difference (p < 0.05) 

between the 128-Hz condition and another given smoothed condition. Error bars: 95% CI. Uns: unsmoothed. 

The simple effects multiple comparisons show that there is an initial increase of SRTs from 

unsmoothed condition to 128-Hz window for both filtering conditions (LPF: MD = 4.8 dB, p = 

0.025; HPF: MD = 6.2 dB, p = 0.005). The mean SRT continues to increase for both filtering 

conditions from 128-Hz to 64-Hz window. The difference of SRTs between 128-Hz and 64-Hz 

windows is significant for HPF speech (MD = 6.1 dB, p = 0.042), but not for the LPF speech 
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recognition probably due to large standard deviation and small sample size (MD = 3.7 dB, p = 

0.583).  For the HPF condition, the SRT for the 128-Hz window is significantly lower than the 

SRTs for all the other broader windows. For the LPF condition, the SRT for the 128-Hz window 

is only significantly lower than for the 8-Hz window (MD = 5.5 dB, p = 0.037), though the mean 

SRT for 128-Hz appears lower compared to all the other broader windows. When comparing the 

SRTs between the filtering conditions at a given window size, the SRTs of LPF speech on average 

appear lower than those of HPF speech and significant difference is found for 32 Hz (MD = 2.1 

dB, p = 0.017), 16 Hz (MD = 3.2 dB, p = 0.011) and 4Hz (MD = 3.4 dB, p = 0.003) windows. 

3.4 Interim discussion 

Based on the discussion of Experiment 1, it was concluded that the intelligibility of HPF 

unvoiced speech depended predominantly on temporal envelope cues while the intelligibility of 

LPF unvoiced speech was determined by both spectral and temporal envelope cues. The reduced 

proportion of temporal contribution to LPF speech recognition (in contrast to the HPF condition) 

was interpreted as LPF unvoiced speech recognition being less sensitive to poorer temporal 

envelope processing, so the lack of group difference for the LPF speech in TMN cannot fully 

exclude that NTNE could still affect temporal processing outside the frequency band of the noise. 

This experiment, therefore, was conducted to examine whether LPF unvoiced speech was as 

sensitive to poorer temporal envelope processing as HPF speech. To do this, spectral details were 

greatly reduced, and intelligibility of both filtered speeches relied only on temporal envelopes.  

It was first observed that, for unvoiced speech recognition in quiet, increasing temporal 

window did not lead to a monotonic decrease of speech intelligibility for either filtering conditions, 
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suggesting that even when intelligibility of vocoded speech is contributed by only temporal 

envelope cues, speech in quiet is not sensitive to poorer temporal envelope processing, which 

explains why people with complaints of hearing in noise could show no signs of hearing loss or 

degraded intelligibility in an acoustically amiable environment. This is consistent with many 

studies which have examined the effect of temporal window size on natural or vocoded speech 

recognition and found that modulation rate above 20 to 30 Hz contributes negligibly to speech 

intelligibility in quiet (Drullman et al., 1994; Hou & Pavlovic, 1994; Arai et al., 1999; Chi et al., 

2005; Elliott & Theunissen, 2009; Chait et al., 2015). For example, Hou and Pavlovic (1994) 

studied temporal window size from 130 to 33 Hz on natural speech intelligibility and found that 

speech intelligibility decreased by around 10% when temporal window increased from 130-Hz to 

60-Hz but did not continue to decrease with increasing temporal window size, which resembled 

the finding from the current study. Souza and Rosen (2009) examined the effect of temporal 

resolution on vocoded speech recognition in quiet and no significant difference was found in the 

performance of recognizing speech with temporal envelope filtered below 30 or 300 Hz. In short, 

the current results suggest that neither LPF nor HPF vocoded unvoiced speech recognition is 

capable of reflecting poorer temporal envelope processing if it is presented in quiet. 

For vocoded unvoiced speech recognition in 32-Hz TMN, it was observed that at first when 

spectral resolution was degraded (i.e. at 128-Hz condition), the SNR needed to achieve 50% of 

intelligibility was similar for the two filtering conditions (Figure 18). But once the window size 

doubled (i.e. 64 Hz), which is poorer than temporal resolution related to the tone in gap test at low 

frequency (i.e. 13 ms or 77 Hz based on the tone in gap test; Plack & Moore, 1990),  listeners 

showed poorer performance on average for both filtering conditions, but the increase of SRT was 

greater for the HPF condition than the LPF condition. There was a trend that the SRT for the LPF 
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condition increased with increasing size of the window, but the mean SRTs of the LPF condition 

always appeared better than those of the HPF. In other words, when speech intelligibility of both 

filtering conditions depends only on temporal envelopes, the magnitude of performance 

degradation in response to a broadened temporal window is larger for the HPF than for the LPF 

speech. This suggests that LPF unvoiced speech recognition in 32-Hz TMN is not as sensitive as 

the HPF condition to demonstrate poorer temporal envelope processing. However, it also does not 

exclude that LPF unvoiced speech recognition in 32-Hz TMN cannot reflect poor temporal 

processing at all, because when the window size increased from 128 Hz to 64 Hz which is beyond 

the normal low-frequency temporal resolution, performance of the SRT of LPF unvoiced speech 

recognition did get worse. Therefore, the results from Experiment 1 and 2 thus far suggest that 

NTNE affects temporal envelope processing within the frequency band of the noise more severely 

than outside the frequency band of the noise, but it is still an open question how severe the effect 

is outside the frequency band of the noise: is there a minor effect or simply no effect? In 

Experiment 3, temporal envelope processing after non-traumatic dental noise exposure was 

examined with an experiment using the perception of unvoiced speech interrupted by silent gaps.  
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4.0 Experiment 3: Non-Traumatic Noise Exposure on Silence-Interrupted Unvoiced Speech 

Recognition 

4.1 Introduction 

As it is still unclear through unvoiced speech recognition in noise whether NTNE affects 

temporal envelope processing outside the exposed noise band, the current experiment used silence-

interrupted unvoiced speech recognition to assess temporal envelope processing. 

 

Figure 20. Intelligibility of temporally interrupted speech in quiet as a function of interruption rate from past 

studies. Dotted line: natural speech. Dashed line: filtered natural speech. Solid line: noise-vocoded speech. 
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(Miller & Licklider, 1950) and have been expanding since then (Huggins, 1975; Powers & Wilcox, 

1977; Bashford et al., 1988; Bashford et al., 1992; Bashford et al., 1996; Nelson & Jin, 2004; Jin 

& Nelson, 2010; Wang & Humes, 2010; Shafiro et al., 2011; Bhargava & Baskent, 2012; Shafiro 
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interruption rate (Figure 20, solid lines) and that when the gaps are filled with noise, the speech 

intelligibility improved (e.g. Miller & Licklider, 1950; Bashford et al., 1996). Previously, it was 

argued that recognizing speech in TMN depends on the listener to make use of the information in 

the temporal gaps where the SNR was favorable for speech understanding, also called ‘glimpsing’ 

(‘dip-listening) (Cooke, 2006). Here, recognizing interrupted speech is similar to recognizing 

speech in TMN, as the listener glimpses pieces of speech segments to make sense of the speech. 

Therefore, it was proposed that recognizing silence-interrupted speech and speech in TMN was 

supported by the same temporal processing mechanism. This hypothesis was supported by a paper 

examining silence and noise interrupted natural speech (Jin and Nelson, 2010). Jin and Nelson 

(2010) examined the performances of these two tasks of people with normal hearing and with 

hearing impairments and found a strong correlation (r = 0.8 to 0.9) between the two tasks when 

they examined the group with hearing impairments alone and when the two groups were combined. 

Despite the fact that there are no published reports directly comparing silence and noise interrupted 

unvoiced speech recognition, the current study considered the silence interrupted unvoiced speech 

test a viable alternative of the noise interrupted unvoiced speech test to reflect temporal envelope 

processing. It was expected that NTNE would affect temporal envelope processing within the 

frequency band of the noise, resulting in a larger group difference for the HPF condition than for 

the LPF condition, just as Experiment 1. Meanwhile, whether there would be a group difference 

for the LPF condition is an exploratory question here. 
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4.2 Methods 

4.2.1 Participants 

Participants from Experiment 1 also participated in this experiment (see section 2.2.1). In 

short, the EXP group were 25 second-to fourth-year dental students and the CTL groups were 27 

young adults without dental noise exposure. Participants in neither group showed signs of hearing 

impairments or other auditory-related health issues. 

4.2.2 Stimuli 

Filtered unvoiced IEEE sentences from Experiment 1 were temporally interrupted by silent 

gaps at interruption rates 12, 24, or 48 Hz. The shape of the gating was a square wave. Two pilot 

studies were conducted to examine intelligibility of speech interrupted at rate 2, 4, 8, 12, 16, 24, 

32, 48, and 64 Hz. The pilot results showed that when interruption rates were lower than 10 Hz, 

the intelligibility was at floor level, potentially because entire syllables or phonemes were masked 

by silent gaps (Houtgast & Steeneken, 1985; Rosen, 1992). At rates above 16 Hz, the interruptions 

occur within phonemic boundaries and the listener has access to multiple ‘looks’ of the phoneme 

(Houtgast & Steeneken, 1985; Poeppel, 2003) and hence the intelligibility improved 

monotonically (Figure 21). At 64 Hz, the intelligibility dropped again as listeners started to 

perceive buzz-like sound brought by the 64-Hz interruption which greatly interfered with the 

completion of the task. 
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Figure 21. Pilot study on the interrupted unvoiced speech intelligibility as a function of rate. Left panel: 

results from 3 listeners at stage 1. Right panel: results from an additional 6 listeners at stage 2. 

Therefore, 12, 24, and 48 Hz were chosen as the interruption rates. The processing 

parameters used in the current study are given in Table 9. In short, periodic square wave at rate 12, 

24 or 48 Hz was used to interrupt the filtered unvoiced sentence with a 50% duty cycle. Each 

square wave contained 5-ms raised-cosine ramp to reduce the onset transient sound. Figure 22 

shows an example of an interrupted sentence at an interruption rate of 12 Hz. 

Table 9. Parameters of the silence-interrupted unvoiced speech 

Parameters Values 

Duty cycle 50% 

Interruption rate (Hz) 12, 24, 48 

Window shape Square wave 

Ramp of each window 5-ms raised cosine 

Gating depth 100% 
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Figure 22. Time domain waveforms of the original sentence and the silence-interrupted sentence 

(interruption rate 12 Hz). 

4.2.3 Procedures 

There were six conditions for the interrupted unvoiced speech task (Table 10). The order 

of the conditions was randomized for every participant. Twenty-five sentences were presented in 

each condition with no feedback. The first five sentences of each condition were presented to get 

the participant ready for the condition and the intelligibility was computed based on the last 20 

sentences of each condition. Sentence presentation was 62 dB SPL to compensate for the loss of 

half the speech information.  

Table 10. Test conditions of interrupted unvoiced speech their abbreviations 

Interruption rate Filtering conditions 

LPF HPF 

12 LP12 HP12 

24 LP24 HP24 

48 LP48 HP48 
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4.3 Results 

Performance of silence-interrupted unvoiced speech recognition in noise was analyzed 

through 2 (group) × 2 (filtering) × 3 (rate) mixed-model ANOVA. Mauchly’s test of sphericity 

shows that the assumption of homogeneity of variance is satisfied for rate and interaction between 

speech and rate. The ANOVA shows that there are significant main effects of filtering, F(1, 50) = 

497.995, p = 0.000, ηp2 = 0.909, and of rate, F(1, 50) = 400.271, p = 0.000, ηp2 = 0.889. There are 

also significant interactions between group and rate, F(2, 100) = 3.188, p = 0.045, ηp2 = 0.060, and 

between filtering and rate, F(2,100) = 9.954, p = 0.000, ηp2 = 0.116. 

 

Figure 23. Recognition accuracy (%) of silence-interruped unvoiced speech under each filtering condition. 

Error bars: 95% CI. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

The simple effects analysis first examines the performance between the two groups when 

filtering and rate are controlled. As is shown in Figure 23, there is no significant group difference 

in recognition accuracy for either filtering condition when the interruption rates are lower (i.e. 12 

Hz and 24 Hz). At 48-Hz, the scores of the CTL group are on average higher than the EXP group 

at both filtering conditions (LPF: MD = 5.3%, SE = 2.1%; HPF: MD = 6.7%, SE = 4.6%), but 
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statistical significance is only found for the LPF condition, F(1, 50) = 6.243, p = 0.016, ηp2 = 0.111. 

Meanwhile, it is also shown that the performance for the LPF conditions is consistently better than 

for the HPF conditions within both groups (Figure 24). 

 

Figure 24. Recognition accuracy (%) of silence-interruped unvoiced speech under within each group. Error 

bars: 95% CI. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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outside the frequency band of the noise with statistical significance. The magnitude of score 
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12 24 48

Interruption rate (Hz)

0

20

40

60

80

100

S
c
o

re
 (

%
)

CTL

LPF

HPF

12 24 48

Interruption rate (Hz)

0

20

40

60

80

100

S
c
o

re
 (

%
)

EXP

LPF

HPF

***

***

***

***

***

***



 74 

 

Figure 25. Headcount of the participants at various scores. Top panels: LPF. Bottom panels: HPF. From left 

to right: 12, 24, and 48 Hz. Within each panel, blue: CTL group; red: EXP group. 

Through visual inspection, it can be observed in Figure 25 (right panels) that for the 48-Hz 

condition, there are more participants in the CTL group who score high in accuracy than in the 

EXP group, which may have contributed to the better mean scores in the CTL group. However, 

for the HPF 48-Hz condition, there are a few participants from both groups who score a lot worse 

than the high scorers within their own group. One participant from the CTL group score only 8% 

for the HPF 48-Hz condition. In other words, for some reasons, a few participants performed near-

floor for the HPF condition even when the interruption gaps were relatively small, and these floor 

performances significantly increased the individual variability within the group and rendered the 

between-group difference statistically non-significant. 

So, does the non-significant group difference in the HPF 48-Hz condition undo the group 

difference observed for the HPF speech in 32-Hz TMN (HPTMN32)? Not so much. First, the 

experiment does show that despite large individual variability, the mean difference between the 

CTL EXP CTL EXP CTL EXP
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two groups grew with increasing interruption rate. This suggests that under the conditions which 

require finer temporal resolution, the EXP group are less capable of keeping up with the CTL 

group, just like the findings from Experiment 1 that the group difference grows more obvious when 

the modulation rate of the TMN increases from 16-Hz to 32-Hz. Second, Pearson correlation 

shows that the performance of HPTMN32 is significantly correlated with the performance of 

interrupted speech at 48-Hz for both the LPF (LP48), r(50) = -0.355, p = 0.010, and the HPF 

conditions (HP48), r(50) = -0.382, p = 0.005, meaning that faster silence-interrupted speech shares 

the temporal processing mechanism as the faster noise-interrupted speech to some extent. But the 

correlation coefficients are not as high as those observed in Jin and Nelson (2010), suggesting that 

some other factors may account for the large variations for HP48. 

The large variations for HP48 might result from the high difficulty level of the HPF 

interrupted speech compared to the LPF condition. As was discussed in earlier chapters, HPF 

unvoiced speech recognition predominantly depends on temporal envelope cues while LPF 

unvoiced speech recognition could depend on both temporal and spectral envelope cues. 

Interrupting the HPF and the LPF unvoiced speech with the same rate and duty cycle might disrupt 

the HPF speech recognition more severely, which is inferred from the results that listeners 

performed more poorly for the HPF than for the LPF conditions at all interruption rates. It may be 

more ideal in future studies to only use 48-Hz as the interruption rate but with various duty cycles.  

In addition to the task being too difficult, the similar top-down abilities between the two 

groups might have contributed to the non-different HP48 performances. Many previous studies 

have found that interrupted speech recognition not only depended on the listeners’ ability to hear 

the remained phonemes, but also on the top-down linguistic knowledge and context cues to make 

sense from the remained phonemes (Bashford et al. 1992; Sivonen et al. 2006; Grossberg and 



 76 

Kazerounian 2011). Meanwhile, this study has purposefully avoided top-down influences by using 

the target sentences with low context cues and by recruiting the participants with comparable 

educational backgrounds. If there were top-down influences, the two groups would not have shown 

similar performance in some tasks (e.g. HPUN) and different in others (e.g. HPTMN32). Therefore, 

for a task that requires both bottom-up and top-down processes, the lack of a group difference in 

top-down abilities may have ameliorated the difference in the bottom-up abilities. 

In summary, Experiment 3 in this chapter shows a subtle difference in temporal envelope 

processing between the EXP and the CTL groups in the LPF condition. Through the silence-

interrupted unvoiced speech test, the group difference is more obvious at faster interruption rates 

than slower rates, echoing the findings from unvoiced speech recognition in TMN. Combining the 

findings from this and the previous two experiments, there is more confidence to suggest that 1) 

poorer temporal envelope processing is related to NTNE, 2) the effect of NTNE is relatively small 

outside the exposed noise band compared to inside the frequency band of the noise, and 3) the 

negative impact of NTNE on temporal envelope processing is more obvious when the task required 

finer temporal resolution. With these conclusions established, the next chapter aims to address 

whether NTNE is first related to degradation in peripheral auditory function or audibility, which 

might act as some intermediate factors to contribute to poorer temporal envelope processing. 
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5.0 Additional analyses: Contributions of Demographic and Audiologic Factors to 

Temporal and Spectral Envelope Processing 

Since it has been established in the previous chapters that there was an effect of NTNE on 

temporal and spectral envelope processing under certain conditions, this chapter aimed to address 

some follow-up research questions by examining the effect of NTNE on peripheral auditory 

function, on hearing sensitivity as well as examining the relative contributions of demographic and 

audiologic factors to temporal and spectral envelope processing. 

The first follow-up analysis aims to address whether NTNE could negatively impact 

peripheral auditory function at standard and extended high frequencies (EHF) (section 5.1), 

and if yes, whether these defected peripheral auditory functions could meaningfully explain 

the poorer temporal envelope processing discovered in the previous experiments (i.e. 

HPTMN16, HPTMN32). The reason to explore EHF listening was that there were some animal 

studies using NTNE discovering that OHC loss did occur post NTNE but only at EHFs, almost 2 

octaves above the exposed noise band (Liberman et al., 2015; Fernandez et al., 2020). There was 

also a study in human listeners by Prendergast et al., (2017) that showed significantly poorer EHF 

hearing threshold among listeners with high noise exposure than those with low exposure. As 

auditory functions at EHFs are usually not tested in audiologic clinics, the potential damage from 

NTNE to EHF regions may also be considered as an indicator of noise-related hearing issues that 

have been hidden or largely neglected in routine audiologic exams. It should be noted that animal 

models have only suggested the NTNE-induced hidden hearing issues to originate from retro-

cochlear sites and to occur at supra-threshold levels. Therefore, it is hypothesized that there would 

be no clinically meaningful difference between the EXP and the CTL groups on the outcomes of 



 78 

peripheral auditory screening at standard audiometric frequencies (e.g. acoustic reflex amplitude 

from 0.5 to 4 kHz, DPOAE amplitude from 1 to 8 kHz). 

Second, the previous chapters showed that high-frequency NTNE could negatively impact 

spectral envelope processing outside the frequency band of the noise, but the magnitude of impact 

(MD = 1.8 dB) was not as large as for temporal envelope processing within the frequency band of 

the noise (MD = 3.1 dB). Additionally, the high-frequency NTNE was found to have a negligibly 

small effect on temporal envelope processing outside the frequency band of the noise. Such 

reduced effects of NTNE outside the frequency band of the noise could be related to the acoustic 

nature of the LPF unvoiced speech. However, since LPF unvoiced speech was constrained below 

2.3 kHz, which is around the cut-off frequency of the environmental noise, it was also questioned 

whether the lack of significant group difference in low frequencies was due to the large individual 

differences within a group and/or the similar between-group environmental noise exposure profile. 

For this reason, the second follow-up analysis (section 5.2) examines whether demographic 

factors, such as non-dental noise exposure history, and peripheral audiologic function may 

explain the variation of performances in spectral and temporal envelope processing outside 

the frequency band of the noise. 

5.1 Effect of NTNE on peripheral auditory functions and extended high frequency listening 

In this section, data from audiologic screenings are first reduced in dimensions so that the 

outcome variables are relatively independent from each other (section 5.1.1). Then, the effect of 

NTNE (i.e. EXP vs CTL groups) on these audiologic variables is analyzed (section 5.1.2).  
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5.1.1 Raw data cleaning 

5.1.1.1 Raw data 

In Experiment 1, participants’ audiologic exam outcomes were recorded during the 

audiologic screening to determine their eligibility for the speech experiments. Here, the outcomes 

from these audiologic screening were used as the raw data.  

Table 11. Audiologic data used as outcome variables 

Test category Outcome variables and test frequencies 

Middle ear muscle 

reflex 

Amplitude of left ipsilateral acoustic reflex (ml) to pulsed 

tones at 0.5, 1, 2 and 4 kHz  

Inner ear OHC 

functions 

SNR (dB) for left-ear DPOAE at f2 frequencies 0.55, 0.7, 

0.88, 1.1, 1.4, 1.7, 2.2, 2.8, 3.5, 4.4, 5.5, 7, 8.8, 11.1, 14, 17 

kHz. L1 = 65 dB SPL, L2 = 55 dB SPL. 

High frequency 

sensitivity 

Left-ear pure-tone absolute threshold (dB HL) at 12.5, 14 

and 16 kHz 

5.1.1.2 Dimension reduction 

 

There were 16 frequency points for the raw data of DPOAE. If the data were directly used 

for ANOVA to compare the group difference, it could increase the number of false negatives. 

Therefore, before ANOVA was conducted, the dimension of the DPOAE data was reduced to a 

clinically explainable level. 

Figure 26 shows the correlation coefficient matrix of the different levels of acoustic reflex 

(axis labels starting with ‘AR’), DPOAE (axis labels with only digits), and EHF pure-tone average 

(axis labels starting with ‘A’). The outcomes at different frequencies of DPOAE are relatively 

strongly correlated to outcomes at adjacent frequencies. Additionally, the acoustic reflex 
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amplitudes at 0.5 to 1 kHz are moderately correlated with DPOAE amplitude at 1.7 and 2.2 kHz. 

If these factors are entered into a multiple regression model without dimension reduction, it will 

inevitably cause severe collinearity issues. Therefore, exploratory factor analysis was conducted 

to provide some rationales on which test and what test frequencies could be grouped together. 

 

Figure 26. Matrix of correlation coefficients among the outcomes of the audiologic screenings. Axis labels are 

in the form of ‘test + test frequency (kHz)’. AR: acoustic reflex. A: audiogram. Labels without a test letter 

belong to DPOAE. Negative correlation coefficients were set to 0 only for the purpose of visual clarity. Boxes 

with white solid lines encircled the items for different tests. Boxes with dotted lines encircled the items within 

the tests that were grouped together for analysis. 

First, Kaiser-Meyer-Olkin (KMO) measure was used to verify the sampling adequacy for 

the analysis, KMO = 0.583, Bartlett’s test of sphericity χ2(253) = 699.985, p = 0.000, indicating 

that the sample size is mediocre for factor analysis. Four frequencies from acoustic reflex, 16 

frequencies from DPOAE and 3 frequencies from EHF pure-tone threshold were factor analyzed 
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using principal component analysis with Varimax (orthogonal) rotation and criterion eigenvalue 

greater than 1. The analysis yields 7 factors that explain 73.9% of the variance for these variables: 

Factor 1, the acoustic reflex amplitude, accounted for 15.9% of the variance. Factor 2, the 

low-frequency DPOAE, accounted for 14.8% of the variance. Factor 3, the EHF pure-tone 

threshold, accounted for 9.5% of the variance. Factor 4, the mid-frequency DPOAE, accounted for 

8.9% of the variance. Factor 5, the low-to-mid-frequency DPOAE, accounted for 8.5% of the 

variance. Factor 6, the high-frequency DPOAE, accounted for 8.3% of the variance. Lastly, Factor 

7, the EHF DPOAE, accounted for 7.9% of the variance. The only unused variable is DPOAE 

amplitude at 17 kHz, which did not meaningfully contribute to any factor. 
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Table 12. Exploratory Factor Analysis of the Audiologic Exams 

Test Frequency 

(kHz) 

Factor 

1 

AR 

2 

low 

frequency 

DPOAE 

3 

HF 

PTA 

4 

mid 

frequency 

DPOAE 

5 

low to mid 

frequency 

DPOAE 

6 

high 

frequency 

DPOAE 

7 

EHF 

DPOAE 

Acoustic 

reflex 

0.5 .899 .071 -.091 -.018 .181 -.136 .144 

1 .923 .109 -.041 .082 .211 -.073 .139 

2 .947 .095 -.080 .079 .081 .017 .058 

4 .855 .086 -.215 -.081 .037 .156 -.070 

DPOAE 0.55 .016 .746 -.043 .022 -.153 -.040 -.012 

0.7 .103 .662 .103 -.018 .061 .273 -.134 

0.88 .082 .807 .123 .014 .026 -.247 .089 

1.1 .061 .812 -.107 -.141 .152 .035 .005 

1.4 .109 .743 -.244 .251 .320 -.191 .025 

1.7 .119 .557 -.117 .214 .488 .072 .271 

2.2 .236 .195 -.281 .080 .741 .038 .018 

2.8 .281 .026 -.071 .079 .793 .136 -.244 

3.5 -.136 -.085 .107 .728 .375 -.192 .001 

4.4 .159 -.065 -.075 .672 .133 .284 -.032 

5.5 .095 .357 -.079 .714 -.273 .240 -.099 

7 -.209 .009 -.336 .515 .013 .451 .277 

8.8 -.038 -.103 -.068 .161 .040 .805 .220 

11.1 .105 -.073 .100 -.015 -.166 .286 .710 

14 .072 .088 -.179 -.042 .007 .109 .826 

17 -.018 -.017 -.140 -.072 -.069 -.708 -.056 
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Table 12 Continued 

EHF 

PTA 

12.5 -.177 .014 .585 -.070 -.068 .181 -.513 

14 -.132 -.019 .834 -.264 -.140 .062 .055 

16 -.166 -.070 .829 .162 -.130 -.049 -.101 

 

The factor analysis correctly assigned the measurements from acoustic reflex and EHF 

pure-tone threshold to their original tests and created five levels of DPOAE variables, each 

covering a narrow frequency region. However, there were also some frequencies contributing to 

both newly loaded DPOAE factors. Specifically, response at 1.7 kHz contributed to both factor 2 

(low-frequency DPOAE) and factor 5 (low-to-mid-frequency DPOAE) while response at 7 kHz 

contributed to both factor 4 (mid-frequency DPOAE) and factor 6 (high-frequency DPOAE).  

For simplicity, factor 2 and factor 5 were combined into low-frequency DPOAE while 

factor 4 and factor 6 were combined into high-frequency DPOAE. The resulting factors for the 

peripheral audiologic functions and hearing sensitivity are listed in Table 13. In Figure 27, the 

correlation coefficient matrix of the new outcome variables of the audiologic screening shows that 

the correlations between different pairs of new variables are fairly low, allowing them to be 

analyzed as predictors of independent source in later multiple regression analyses. 
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Table 13. Audiologic data used as outcome variables 

Test 

category 

Outcome variables and test frequencies New outcome variable label 

Middle ear 

muscle reflex 

Average amplitude of left ipsilateral acoustic 

reflex (ml) to pulsed tones at 0.5, 1, 2 and 4 kHz  

Low-to-mid-frequency acoustic 

reflex (LMF AR) 

Inner ear 

OHC 

functions 

Average DPOAE amplitude (dB SNR) at f2 of 

0.55, 0.7, 0.88, 1.1, 1.4, 1.7, 2.2, 2.8 kHz 

Low frequency DPOAE (LF 

DPOAE) 

Average DPOAE amplitude (dB SNR) at f2 of 3.5, 

4.4, 5.5, 7, 8.8 kHz 

High frequency DPOAE (HF 

DPOAE) 

Average DPOAE amplitude (dB SNR) at f2 of 

11.1 and 14 kHz 

EHF DPOAE  

High 

frequency 

sensitivity 

Average pure-tone absolute threshold (dB HL) at 

12.5, 14 and 16 kHz 

EHF pure-tone average (PTA) 

 

 

Figure 27. Matrix of correlation coefficients among the new outcome variables of the audiologic screenings 



 85 

5.1.2 Effect of NTNE on peripheral auditory functions and extended high frequency 

listening 

5.1.2.1 Effect of NTNE on middle ear muscle reflex 

The effect of NTNE on middle ear muscle reflex was analyzed through one-way ANOVA. 

The independent variable was group (EXP vs CTL) and the dependent variable was low-to-mid-

frequency (LMF) acoustic reflex (AR) amplitude, which was the mean amplitude of acoustic reflex 

from 0.5 to 4 kHz. 

The result shows that while the mean reflex amplitude appears larger for the CTL group 

(mean = 0.12 ml, SD = 0.08 ml) than for the EXP group (mean = 0.09 ml, SD = 0.05), the difference 

was not statistically significant, F(1,50) = 2.266, p = 0.139 (Figure 28).  

 

Figure 28. Acoustic reflex amplitude between groups at each test frequency and on average. 

5.1.2.2 Effect of NTNE on DPOAE 

The effect of NTNE on DPOAE amplitude was analyzed through a 2 (group) × 3 

(frequency) mixed-model ANOVA. Mauchly’s test of sphericity shows that the assumption of 

homogeneity of variance is violated for frequency, χ2(2) = 7.643, p = 0.022. The result shows that 
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there is significant main effects of frequency after Greenhouse-Geisser correction, F(1.748, 

87.380) = 105.025, p = 0.000, ηp2 = 0.677. There is no significant main effect of group or 

interaction between group and frequency, p > 0.05. The simple effects multiple comparisons also 

do not show a statistically significant group difference at any given frequency condition, p > 0.05 

(Figure 29). 

 

Figure 29. DPOAE amplitude between groups at each test frequency and on average at low frequency (LF), 

high frequency (HF) and extendend high frequency (EHF) regions 

5.1.2.3 Effect of NTNE on extended high-frequency pure-tone average 

The effect of NTNE on the EHF pure-tone average (PTA) thresholds was analyzed through 

one-way ANOVA. The independent variable was group and the dependent variable was EHF PTA, 

which was the mean of the absolute thresholds from 12.5 to 16 kHz. 

The result shows that while the EHF PTA appears lower for the CTL group (mean = 6.6 

dB HL, SD = 10.9 dB) than for the EXP group (mean = 9.2 dB HL, SD = 10.1 dB), the difference 

was not statistically significant, F(1,50) = 0.792, p = 0.378 (Figure 30).  
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Figure 30. Audiogram at extended high frequencies between groups 

5.1.3 Summary of the effect of NTNE on peripheral auditory functions and extended high-

frequency listening 

As is shown in the results, the middle ear acoustic reflex response, outer hair cell functions 

or high-frequency hearing sensitivity appeared unrelated to whether a listener has been exposed to 

non-traumatic high-frequency dental noise. Therefore, no further multiple regression analysis was 

conducted to examine whether the peripheral audiologic status after NTNE meaningfully 

contributed to the group difference in temporal envelope processing inside the frequency band of 

the noise.  
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5.2 Contributions of demographic factors and peripheral audiologic screening outcomes to 

temporal and spectral envelope processing outside the exposed noise band 

One of the questions remaining from previous chapters is why the effect of high-frequency 

NTNE is relatively small on spectral and temporal envelope processing outside the frequency band 

of the noise. To understand how much the exposure to dental noise may account for the variance 

of spectral and temporal envelope processing compared to other factors,  simple linear correlation 

and hierarchical multiple linear regression (HMLR) were used to analyze the contributions of 

various demographic and peripheral audiologic factors to temporal and spectral envelope 

processing outside the frequency band of the noise. The outcome variables of interest were the 

SRTs of LPF unvoiced speech recognition in 16-Hz TMN, in 32-Hz TMN, in SMN as well as the 

performance of silence-interrupted LPF unvoiced speech recognition at 48 Hz. 

5.2.1 Correlation and regression factors/predictors 

Table 14 lists the factors or predictors for the correlation and linear regression analyses. To 

build the HMLR model, the sequence of factors being added to each step of the model was 

demographic factors first and audiologic factors next. For demographic factors, the basic 

information such as participants’ age and years of music training was added in step 1, and lifetime 

noise exposure histories, including Leq of non-dental and dental noise exposure, were added in step 

2. Then, audiologic factors including the outcomes from middle-ear to inner-ear screening 

measures were added, the sequence of which follows the anatomical structure for sound 

transmission in the peripheral auditory system. The EHF DPOAE and PTA were excluded from 

the model because the information in these frequencies does not contribute to speech intelligibility 
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and should not provide a theoretically meaningful interpretation of the speech-related outcome 

variables. This HMLR model was used for all the outcome variables from unvoiced speech tests. 

Table 14. Outcome variables for correlation/regression analysis and their orders entering the HMLR model  

Step No. Category Factors (unit) 

1 Demographic: basic  Age (years), years of musical training (years) 

2 Demographic: noise 

exposure  

Lifetime dental noise exposure Leq (dB SPL) 

Lifetime non-dental noise exposure Leq (dB SPL) 

3 Middle ear function LMF AR (ml) 

4 Inner ear OHC 

function 

LF DP (dB SNR) 

HF DP (dB SNR) 

5.2.2 Contributions to temporal envelope processing outside noise band 

Previous chapters of the study showed that temporal envelope processing outside the 

frequency band of the noise was not significantly different between the two groups, supported by 

the findings that there was no group difference in LPF speech in 16-Hz (LPTMN16) or 32-Hz 

TMNs (LPTMN32) and that there was a significant but small group difference in 48-Hz interrupted 

LPF speech (LP48). The analysis here examines whether other demographic or audiologic factors 

than dental noise exposure could account for the variance of LPTMN16, LPTMN32, and LP48. 

Based on the Pearson correlation, there are no significant correlations between any two of 

the predictors so multicollinearity should not occur (see Appendix C.1 for diagnostic statistics). 

However, there are also no significant correlations between the outcome variables of the LPF 

unvoiced speech recognition in TMNs (i.e. LPTMN16, LPTMN32) and any of the predictors. In 

other words, there are no linear relationships between any of the demographic or audiologic 

predictors and LPF unvoiced speech recognition performance in 16-Hz TMN or in 32-Hz TMN. 
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The lack of a linear relationship between the predictors and the outcome variable rendered further 

multiple linear regression futile. The results suggest that demographic information like age, years 

of musical training and lifetime noise exposure level, and peripheral audiologic functions like 

middle ear muscle reflex and OHC integrity do not account for the variance of LPF unvoiced 

speech recognition performance in TMN.  

On the other hand, there is a significant correlation between dental noise exposure Leq and 

LP48, r(50) = -0.332, p = 0.016, and a marginally significant correlation between acoustic reflex 

amplitude and LP48, r(50) = 0.275, p = 0.049 (Table 15).  

Table 15. Correlation between outcome variables of temporal envelope processing outside the frequency band 

of the noise and demographic or audiologic predictors 

 Demographic predictors Audiologic predictors 

Age Years of 

Music 

Non-

dental Leq 

Dental 

Leq 

LMF 

AR 

LP DP HP DP 

LPTMN r -.165 -.232 .051 .145 -.157 -.117 -.256 

p .243 .097 .720 .305 .266 .410 .067 

LPTMN32 r .130 .205 .080 .234 -.135 -.138 -.146 

p .360 .145 .571 .096 .341 .329 .303 

LP48 r .068 .239 -.088 -.332* .275* -.004 -.062 

p .633 .089 .537 .016 .049 .976 .664 

In this case, the HMLR model was built for LP48. Tests of normality, homoscedasticity, 

and multicollinearity are not violated (see Appendix C.1 for details). The analysis summary is 

shown in Table 16. When age and years of musical training were entered (Model 1), the model 

does not significantly predict the performance of LP48, F(2, 49) = 0.045, p = 0.956. When lifetime 

non-dental noise exposure Leq and dental noise exposure Leq are entered, they improve the 

prediction but are not significant, R2 change = 0.110, F(2, 47) = 3.115, p = 0.054. However, the t-

test for individual regression coefficients shows that lifetime dental noise exposure Leq is a 
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significant predictor for LP48, but the lack of significant contribution from non-dental noise 

exposure Leq may have watered down the effect. Additional predictors from middle ear acoustic 

reflex and DPOAE amplitude for Model 3 and Model 4 do not significantly increase the 

predictability of the model, p > 0.05. The final model (Model 4) explains 21.9% of the variance in 

LP48, but lifetime dental noise exposure is the only significant predictor. 

Table 16. HMLR model for LP48 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

Individual 

regression 

coefficients 

R-

squared 

R-

squared 

change 

B SE ß t-statistics 

Model 1  0.059 0.059 

Age 

Music 

.175 

.440 

.575 

.262 

.042 

.234 

.304 

1.678 

 

Model 2  0.169 0.110 

Age 

Music 

Dental Leq 

Non-dental Leq 

.454 

.372 

-.072 

-.033 

.577 

.255 

.029 

.221 

.110 

.198 

-.339 

-.020 

.787 

1.455 

-2.478* 

-.147 

 

Model 3  0.203 0.035 

Age 

Music 

Dental Leq 

Non-dental Leq 

LMF AR 

.508 

.260 

-.064 

-.108 

24.317 

.572 

.265 

.029 

.225 

17.219 

.123 

.138 

-.302 

-.068 

.203 

.887 

.980 

-2.195* 

-.481 

1.412 
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Table 16 continued 

Model 4  0.219 0.015 

Age 

Music 

Dental Leq 

Non-dental Leq 

LMF AR 

LF DP 

HF DP 

.375 

.343 

-.062 

-.111 

25.891 

-.135 

-.202 

.616 

.283 

.030 

.231 

18.467 

.271 

.279 

.091 

.182 

-.292 

-.070 

.217 

-.076 

-.101 

.609 

1.210 

-2.062* 

-.483 

1.402 

-.496 

-.722 

 

*p<0.05; ** p<0.01 

5.2.3 Contributions to spectral envelope processing outside noise band 

Following the similar procedures for analyzing the outcome variables for temporal 

envelope processing, the Pearson correlation was first conducted to examine whether there was a 

linear relationship between the demographic or audiologic factors and the performance of LPF 

unvoiced speech in SMN (LPSMN). The result shows that only lifetime dental noise exposure Leq 

is significantly correlated with LPSMN. 

Table 17. Correlation between outcome variable of spectral envelope processing outside the frequency band 

of the noise and demographic or audiologic predictors 

 Demographic predictors Audiologic predictors 

Age Years of 

Music 

Non-

dental Leq 

Dental 

Leq 

LMF 

AR 

LP DP HP DP 

LPSMN r .060 .121 -.223 .337* -.076 .055 -.090 

p .675 .393 .111 .015 .592 .698 .525 
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Tests of normality, homoscedasticity, and multicollinearity are not violated for LPSMN 

(see Appendix C.1 for details), so the HMLR model is built for LPSMN. The analysis summary is 

shown in Table 18. The HMLR model shows that lifetime dental noise exposure Leq is the only 

significant predictor for LPSMN, while age, years of musical training, non-dental noise exposure, 

middle ear reflex, or inner ear OHC functions fail to account for the variance of LPSMN. The final 

model (Model 4) explains 19.9% of the variance in LPSMN. 

Table 18. HMLR model for LPSMN 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

Individual 

regression 

coefficients 

R-

squared 

R-

squared 

change 

B SE ß t-statistics 

Model 1  0.017 0.017 

Age 

Music 

.054 

.060 

.162 

.074 

.047 

.116 

.330 

.813 

 

Model 2  0.185 0.168 

Age 

Music 

Dental Leq 

Non-dental Leq 

-.088 

.061 

.022 

-.102 

.158 

.070 

.008 

.060 

-.078 

.117 

.368 

-.230 

-.559 

.871 

2.717** 

-1.682 

 

Model 3  0.185 0.000 

Age 

Music 

Dental Leq 

Non-dental Leq 

LMF AR 

-.088 

.060 

.022 

-.102 

.190 

.160 

.074 

.008 

.063 

4.812 

-.077 

.116 

.369 

-.231 

.006 

-.550 

.811 

2.647* 

-1.626 

.039 
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Table 18 continued 

Model 4  0.199 0.014 

Age 

Music 

Dental Leq 

Non-dental Leq 

LMF AR 

LF DP 

HF DP 

-.092 

.079 

.021 

-.097 

-.374 

.007 

-.068 

.172 

.079 

.008 

.065 

5.166 

.076 

.078 

-.081 

.152 

.366 

-.221 

-.011 

.014 

-.124 

-.536 

.995 

2.554* 

-1.511 

-.072 

.092 

-.876 

 

*p<0.05; ** p<0.01 

5.3 Interim Discussion 

This chapter provides additional analyses on whether NTNE negatively impacts peripheral 

auditory function at standard audiometric and EHF regions (section 5.1) and whether demographic 

and peripheral audiologic factors could account for the variance of performance in spectral and 

temporal envelope processing outside the frequency band of the noise (section 5.2). 

The results first show that there was no significant difference between the EXP and the 

CTL groups on acoustic reflex amplitude, on DPOAE amplitude at regularly tested frequencies, 

on DPOAE amplitude at EHFs, or on EHF pure-tone averages. The hypothesis that acoustic reflex 

may be negatively impacted by NTNE originated from the argument that the damage of high-

intensity ANFs (i.e. fibers with LSR) would reduce the capacity to encode high-intensity sound, 

which would consequently reduce the amount of stimulation in the CAS to the stapedius muscles 

(Valero et al., 2017; Valero et al., 2018). However, it should be noted that since the acoustic reflex 

is usually stimulated by high-intensity sound, the range of excitation on the basilar membrane will 
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be broad and many ANFs from less noise-impacted regions may respond to the stimulus, causing 

confounding contributions from off-frequency regions. This explanation is supported by the 

current study where significantly high correlations are among the acoustic reflex amplitudes at 

different frequencies. The current finding suggests that acoustic reflex is theoretically and 

empirically insensitive as a screening tool to reflect the loss of high-intensity ANFs at a restrained 

frequency region. 

A small number of animal studies have suggested that OHCs at frequencies almost 2 

octaves above the exposed noise band show irreversible damage after NTNE (Liberman et al., 

2015; Fernandez et al., 2020). Therefore, studies have suggested that EHF hearing thresholds may 

serve as an early indicator for noise-related hidden hearing issues. Furthermore, many studies on 

age-related hearing deficits have argued that EHF thresholds (above 8 kHz) start to elevate well 

before there are signs of elevated thresholds at routinely tested speech frequencies (i.e. 0.25 to 8 

kHz) (see Rodríguez Valiente, 2014 for review). As some animal studies have further shown that 

noise exposure at an early age could accelerate the onset of age-related hearing loss (Sergeyenko 

et al., 2013; Fernandez et al., 2015), the idea that EHF listening may be related to NTNE was 

reinstated. However, the current analyses did not find a significant group difference in EHF 

hearing thresholds. One potential explanation is that the lifetime environmental noise exposure Leq 

for both groups are similar (Table 3) and that the dental noise exposure Leq is not traumatic for the 

EXP group (only 74 dB SPL on average). Eggermont and his colleagues who exposed cats with 

prolonged moderate-level noise exposure have not found abnormal hearing sensitivity post 

exposure (e.g. Pienkowski & Eggermont, 2009). Furthermore, the current participants were all 

below 30 years old so age-related hearing issues like high-frequency hearing loss should be 
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eliminated. If time allows, a longitudinal study will be more suitable to address whether there is 

an early onset of EHF issues for people with NTNE, but it is beyond the scope of this study. 

This chapter also shows that apart from dental-noise exposure history, neither the 

demographic factors nor the outcomes from peripheral audiologic screening could explain the 

variance of the performance on spectral and temporal envelope processing outside the frequency 

band of the noise. Taken collectively, the findings from the current study consolidate the 

conclusions that poor temporal and spectral envelope processing related to NTNE likely occurs at 

super-threshold levels, at retro-cochlear sites and can be overlooked by clinically routine 

audiologic screenings. 
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6.0 Discussion 

6.1 Summary of the current findings 

The current study aimed to address the following research questions:  

1) Do people who had a specific type of NTNE perform differently on tasks of temporal 

envelope processing from people who were unexposed?  

2) Do people who had a specific type of NTNE perform differently on tasks of spectral 

envelope processing from people who were unexposed?   

3) If there is a difference between the exposed and the unexposed, will the difference be 

frequency-specific? 

4) Will the difference occur at only supra-threshold levels? 

The current study operationally defined NTNE as exposure to noise in the dental school 

clinics, because of its distinctive high-pass spectral feature, non-traumatic nature, and systematic 

exposure schedule across dental students of different years. Temporal envelope processing was 

examined using unvoiced speech recognition in TMN and silence-interrupted unvoiced speech 

recognition. Spectral envelope processing was examined using unvoiced speech recognition in 

SMN. And all the stimuli were either low-pass or high-pass filtered to examine the frequency-

specific effects of NTNE. Unvoiced speech recognition in quiet was also tested to examine spectro-

temporal processing near-threshold.  

As is summarized in Table 19, people who were exposed to a specific type of NTNE 

performed poorly on tasks of temporal envelope processing compared to people who were 

unexposed. The effect of NTNE on temporal envelope processing is more robust within the 
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spectral band of the exposed noise than outside the band. The results also suggest that the negative 

effect of NTNE on temporal envelope processing is more obvious in conditions that required finer 

temporal resolution (e.g. faster modulation rates for TMN or silence interruption) than in those 

requiring less fine temporal resolution (e.g. slower modulation rates for TMN or silence 

interruption).  

Table 19. Summary of the study conclusions 

           Processing ability 

Frequency  

specificity 

Near-

threshold 

listening 

Supra-threshold temporal 

envelope processing 

Supra-threshold spectral 

envelope processing 

Effect of NTNE within noise 

band 

Not affected Affected; more obvious when 

requiring finer temporal 

resolution 

Unclear, lack of measure 

sensitivity 

Effect of NTNE outside noise 

band 

Not affected Mildly affected, unexplained 

by demographic or 

audiologic factors 

Affected, unexplained by 

demographic or audiologic 

factors 

 

Furthermore, NTNE is also associated with reduced spectral envelope processing. The 

effect was found outside the exposed noise band, supporting findings from animal studies that the 

spectral receptive field and neural responses are enhanced outside the noise band (e.g. Pienkowski 

& Eggermont, 2009). Although the current measure is insensitive to spectral envelope processing 

inside the frequency band of the noise, the negative effect of NTNE on spectral envelope 

processing is a novel finding which could be further explored with other measures of spectral 

resolution. 
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The current study also examined the effect of NTNE on perceptual processing near 

threshold, but found no significant group difference, which supports the hypothesis from animal 

studies that the effect of NTNE is largely supra-threshold. 

Lastly, additional analyses showed that factors such as age, years of musical training, non-

dental environmental noise exposure history, and peripheral auditory screening outcomes did not 

significantly contribute to the variance of the performance in tasks of temporal or spectral envelope 

processing outside the frequency band of the noise. And there was no group difference in the 

outcome variables for EHF listening. These findings suggest that the supra-threshold temporal and 

spectral envelope processing relates to NTNE occurred retro-cochlear and could be neglected by 

clinically routine audiologic screenings. 

6.2 Effect of non-traumatic noise exposure on temporal envelope processing 

6.2.1 Current finding vs. past findings 

One of the significant findings of the current study is that people who have been exposed 

to high-frequency non-traumatic dental noise perform significantly more poorly than people 

without such exposure to recognize unvoiced speech in amplitude-modulated noise, especially at 

high frequency which is inside the frequency band of the exposed noise. This is the first time that 

unvoiced speech recognition is used to examine and support the effect of NTNE on temporal 

envelope processing. 

Early studies that attempted to examine noise-related temporal envelope processing have 

been inconclusive due to issues in their measures and/or choice of participants. To measure 
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temporal envelope processing, most studies have used amplitude modulation detection 

(psychophysical) or EFR (electrophysiological). Findings from Prendergast and colleagues did not 

support the existence of noise-related temporal envelope processing issues (Prendergast et al., 

2017a, 2017b), but their measures were not controlled to eliminate off-frequency listening or 

central contribution to AM encoding. Paul et al. (2017, 2018) examined AM detection and EFR 

between young adults of 18 to 19 years old with high or low noise exposure history. Their measures 

controlled for off-frequency listening by presenting the stimulus in narrow-band noise and the 

noise was presented at different levels as a way to engage the ANFs with different SRs. Their 

primary outcome showed no relationship between noise exposure and the performance of AM 

detection or EFR strength. At one point, their analysis seemed to support that the higher exposed 

group showed lower EFR strength when the stimulus was presented at 40 dB spectrum level, but 

the result was soon contradicted by the non-significant group difference for stimulus at 45 dB 

spectrum level (Paul et al., 2018). Yeend et al. (2017) and Füllgrabe et al. (2020) controlled the 

issue of off-frequency listening by presenting the AM targets in threshold-equalizing noise and 

have found no relation between NTNE and temporal processing. The measures used in both studies 

were designed to reflect temporal processing only at high frequency, as noise-induced hearing loss 

often occurs with a notch on the audiogram at 4 kHz, but they did not further examine the temporal 

processing within the frequency band of the exposed noise, which should be primarily 

environmental noise with energy below 2 kHz in their cases. As the current findings have 

successfully shown that NTNE is related to poor temporal envelope processing and the effect of 

exposure is more obvious to temporal envelope processing inside the frequency band of the noise, 

future studies may consider examining temporal processing using the unvoiced speech recognition 
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in fast modulated noise alongside with the refined AM-based measures (e.g. AM detection, EFR 

in noise). 

6.2.2 Speculations on the form of degraded temporal envelope processing related to NTNE 

Poor temporal processing takes different forms of physiological changes in animal studies 

(see Appendix Table 2 for a summary). Studies at the auditory nerve level have suggested that the 

loss of high-intensity fibers most likely smoothens the temporal envelope (e.g. Shaheen et al., 

2015) but has not specified that the smoothing effect is a result of broader temporal integration 

window. Thus, there is no direct evidence from animal studies at ANFs to suggest that temporal 

gaps are inaccurately encoded by the remaining low-intensity fibers with HSR. Meanwhile, animal 

studies at cortical levels have shown that neural phase-locking to pulse onsets diminished with 

increasing pulse rate more drastically for animals with NTNE (Zhou et al., 2011; Liu et al., 2012; 

Shi et al., 2013), suggesting that temporal gaps are not precisely encoded after NTNE and that the 

impact of NTNE in central auditory physiology could evolve in its form from the ANFs to the 

auditory cortex. Other research groups have also observed that cortical regions with CFs outside 

the frequency band of the noise showed greater ringing, while regions with CFs inside the 

frequency band of the noise no longer responded to their original CFs (Pienkowski & Eggermont, 

2009; Pienkowski & Eggermont, 2010a, 2010b; Pienkowski et al., 2011, 2013). These results 

suggest a potential mixture of issues like broader temporal integration window and information 

misrepresentation. 

The current study did not aim to provide a precise locus of lesions or to describe the exact 

form of degraded temporal processing. However, based on the glimpsing model (Cooke, 2006), 

interrupted speech recognition requires a listener to use the pieces of speech information that are 
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present in the noise or silent gaps. If the auditory system has a poor temporal resolution in the form 

of greater forward masking or broader temporal integration window, there will be greater masking 

of the speech segments in the temporal gaps of the noise as a result, causing poor speech 

recognition performance in TMN (Jin & Nelson, 2006). Similarly, for silence interrupted speech, 

a broader temporal window may increase the amount of forward masking from the preceding to 

the following speech fragments and so degrade speech intelligibility (Jin and Nelson, 2010). 

Furthermore, under the broadened temporal window hypothesis, conditions of higher modulation 

rates will be more susceptible to smoothing effects, causing degraded temporal resolution. These 

assumptions of degraded speech perception due to broadening of the temporal window are 

supported by the current findings that the group with NTNE performed more poorly than the group 

without the NTNE in noise- or silence-interrupted speech recognition, and that the effect of NTNE 

becomes more obvious when the task has higher demands on temporal resolution. If the 

physiological effect of NTNE is simply information misrepresentation, the magnitude of group 

differences should not depend on the modulation rate.  

6.2.3 Poor temporal envelope processing manifests at higher modulation rates in noise- and 

silence-interrupted speech recognition 

The current study shows that different interruption rates for interrupted speech recognition 

are not equally sensitive to poorer temporal processing. Specifically, it was shown that poor 

temporal envelope processing was more obvious when the interruption rates were around 32 to 48 

Hz instead of 12 to 24 Hz or even lower rates. 
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Figure 31. Modulation spectra in normalized modulation index (upper panels) and the PDFs of modulation 

energy (lower panels) of unvoiced speech (colored) and noise (grey). Left panels are for LPF speech and right 

panels HPF speech. Speech modulation spectra were processed in four channels with one color representing 

the modulation spectra from the same channels, and three lines in the same color represent the modulation 

spectra from three different sets of speech stimuli. The modulation spectra for each TMN was processed in 

one channel with the most prominent peak at the rate of modulation. The darkest grey stems represented the 

modulation spectra of 4-Hz TMN and the lightest grey 32-Hz TMN. 

The reason that temporal processing is less affected at low rates is likely related to the time 

scale of syllable and phoneme production in English. At low rates, an entire syllable can be masked 

or silenced by an interruption, making temporal processing a less effective remediation (Figure 

31). For example, if we imagine speech intelligibility at extremely low rates, interruptions may 

mask entire words, while other whole words will be intact, and speech intelligibility is then a 

function of the amount of speech information that is present rather than as a function of temporal 

resolution (Figure 32). 
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Figure 32. Unpublished pilot data of SRT of LPF (dark grey) and HPF (light grey) unvoiced speech in TMN 

of different modulation rates (N = 25). Error bars: 95% CI. 

On the other hand, when the interruption rate is at 16 to 24 Hz, the listener has multiple 

looks at the syllable. If temporal resolution is poor, the listener will have less access to the 

segments within the syllables, resulting in poor recognition performance. Then, as the interruption 

rate further increases to 32 to 48 Hz, the multiple looks occur within the phonemic boundaries and 

speech recognition requires even finer temporal resolution. If future studies examine temporal 

processing using interrupted speech recognition, it should be considered to use faster modulation 

rates that are within phonemic boundaries and requires finer temporal resolution, such as 32 to 48 

Hz. 
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6.2.4 On the frequency-specific effect of non-traumatic noise exposure on temporal 

envelope processing 

The current study found that the effect of high-frequency dental noise exposure on temporal 

envelope processing was less severe at low frequency than at high frequency, suggesting that the 

effect of NTNE on temporal processing may be more obvious inside than outside the frequency 

band of the noise. 

The small effect of noise exposure outside the frequency band of the noise may be a result 

of the similar Leq of non-dental noise exposure between the EXP and the CTL groups. In other 

words, because the noise exposure of interest here is high-frequency, the small group difference at 

low frequency region is likely the result of relatively similar exposure dose to low-frequency noise 

between the groups. Experiment 2 suggests that the lack of substantial group difference of temporal 

processing at low frequencies could also result from the lower demand of temporal resolution at 

low frequencies (Viemeister, 1979; Shailer & Moore, 1983; Formby & Muir, 1988; Plack & 

Moore, 1990). Therefore, the current study does not clarify this issue and more researches are 

needed to address the frequency-specific effect of NTNE with different center frequency. 

6.3 Probing the mechanisms of poorer spectral envelope processing 

The current study shows that the effect of NTNE is related to poor spectral envelope 

processing. Specifically, the effect was found outside the frequency band of the noise. The 

mechanism of poorer spectral envelope processing may be similar to that of poorer temporal 

envelope processing. That is, broadened auditory filter smoothed the spectral gaps of the noise 
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with unwanted energy, decreasing the SNR in the spectral gaps and deteriorating speech 

intelligibility (Baer & Moore, 1993; Boothroyd et al., 1996; Gnansia et al., 2009).  

Animal models of NTNE have also suggested similar issues both at ANFs and at cortical 

levels (see Appendix Table 3 for summary). At the auditory nerve level, a lack of contributions 

from the ANFs with LSR would lead to a smoothed spectrum, causing lower spectral contrast 

(Sachs & Young, 1979; May et al., 1996; Reiss et al., 2011). At cortical levels, neuronal frequency 

tuning curves were found broadened after NTNE, which was an evident physiological counterpart 

to broadened auditory filters (Zhou et al., 2011; Zhou & Merzenich, 2012; Kamal et al., 2013). 

With this novel finding concerning reduced spectral processing post NTNE, future studies 

may consider using a conventional notched noise paradigm (NNP) to examine spectral resolution 

in people with NTNE. The conventional NNP will be more advantageous than unvoiced speech 

recognition in SMN, because the NNP is designed to avoid off-frequency listening and allows 

measurement of auditory filter at any center frequencies. The NNP is more time-consuming than 

unvoiced speech recognition in SMN, but it can provide spectral resolution at higher frequencies, 

which the speech-based method cannot. 

6.4 Limitations and future directions 

Due to the limitation of measure sensitivity, there are still some unaddressed questions 

from the current study that are worth exploring in the future. 

The first issue is the frequency-specific nature of NTNE. Indeed, the current study found 

that the effect of NTNE was more obvious inside than outside the frequency band of the noise, but 

this conclusion was established based on high-frequency noise exposure. In other words, the 
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conclusion concerning the frequency-specific effect of NTNE from this study is limited to high-

frequency noise exposure. Future studies should consider examining the effect of low-frequency 

noise exposure on temporal processing at both low and high frequencies. 

The second issue is the selection of a sensitive measure to reflect changes in temporal 

envelope processing at low frequencies. Future studies may use the vocoded speech recognition 

used in Experiment 2, which ensures that speech intelligibility relies on temporal envelope 

processing. The potential downside of using vocoded speech with low spectral details is that such 

speech does not show the benefit of masking release in TMN (Nelson et al., 2003; Qin & Oxenham, 

2003; Stickney et al., 2004; Ihlefeld et al., 2010; Fogerty et al., 2016), which causes difficulty in 

quantifying the ability to use the information in temporal gaps. Therefore, degraded temporal 

resolution can only be demonstrated by comparison with a control group. The second potential 

measure for temporal envelope processing that may control for off-frequency contribution is 

psychoacoustic tasks based on detecting or using across-frequency modulation, such as co-

modulation masking release (CMR). In CMR tasks, amplitude modulation with the same 

modulation rate is perceptually grouped across frequency regions to form a sound object, 

improving the detection of sound with uncorrelated temporal envelope (Hall & Grose, 1990). If 

the ability to encode amplitude modulation at a given frequency region is reduced, the grouping 

across frequency may become less efficient, and hence the ability to detect the uncorrelated sound 

is affected (Ernst et al., 2010). The third optional measure is to use the AM-based measures, such 

as AM detection and EFR presented in narrow-band noise, so that off-frequency listening can be 

eliminated. Although many past studies using these measures have not found the relationship 

between noise exposure and temporal envelope processing (Prendergast et al., 2017a, 2017b; Paul 

et al., 2017, 2018; Yeend et al., 2017; Füllgrabe et al., 2020), these non-significant results may 
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have suffered from poor choice of participants in terms of controlling their noise exposure 

background or the lack of correspondence between the exposure frequency and the test frequency. 

The current study shows that dental school students may be a viable population to study the 

perceptual consequences of NTNE, as dental noise exposure is highly distinctive from the daily 

environmental noise exposure in spectral domain and is rarely experienced by people outside 

dental professions. 

The third issue is whether NTNE would only impact spectral envelope processing outside 

the frequency band of the noise. The degradation of spectral resolution outside the frequency band 

of the noise is not limited to studies of NTNE. Normally speaking, large inhibitory response areas 

have been observed in the neuronal spectral receptive fields (SRF) from the cochlear nucleus in 

the CAS, even by single-tone stimulation (Young & Brownell, 1976; Rhode, 1999), which is 

different from the response of ANFs where single tone stimulation only produces all-excitatory 

SRF (Liberman & Dodds, 1984; Narayan et al., 1998). Many studies of traumatic noise exposure 

have shown that inhibitory areas in the SRF of the central auditory neurons turned into large 

excitatory areas post traumatic noise exposure (Cai et al., 2009; Ma & Young, 2006; Li et al., 

2015; Ropp et al., 2014). Such changes in excitatory-inhibitory response area are considered to be 

a compensatory mechanism of the central auditory system to tune up the gain and to maintain 

neural internal homeostasis in the absence of sound input (Eggermont, 2017), which was proposed 

to account for noise-related tinnitus (Kaltenbach et al., 2004; Munguia et al., 2013; Auerbach et 

al., 2014; Noreña, 2015). Interestingly, Eggermont and his colleagues have also observed similar 

issues in the cat model of NTNE. They discovered that cortical response was enhanced to stimuli 

right outside the spectral edges of the noise but was reduced to stimuli within the frequency band 

of the noise. This increased response to edge frequency is considered a form of excitatory-
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inhibitory imbalance and echoes the finding in the current study that spectral envelope processing 

of people with NTNE is worse outside the frequency band of the noise. However, it is still unclear 

from the current study whether poor spectral processing is limited to frequencies outside the noise 

spectrum. To study this question in the future, people with noise exposure at low frequency should 

be tested with measures like LPF unvoiced speech recognition in SMN.  

This study provides a new and flexible way to assess temporal envelope processing at high 

frequency, which is the task of HPF unvoiced speech recognition in 32-Hz TMN. The duration of 

administering this condition is about 4 minutes. The HPF unvoiced speech is perceived to resemble 

natural whisper speech, so participants have enough experience with this type of speech in real 

life. As the audiologic research and clinical community are exploring the potential use of the tests 

that are already in audiologic clinics to identify noise-related hidden hearing deficits, such as 

middle-ear muscle reflex, OAE, ABR wave I amplitude, medial olivocochlear reflex (MOCR) 

(Bhatt, 2017; Guest et al., 2018; Smith et al., 2019; Bhatt & Wang, 2019; Shehorn et al., 2020; 

Bramhall et al., 2020), the current study provides a new measure potentially as a part of a test 

battery of hidden hearing deficits and the measure can be administered rather quickly in clinical 

settings. 
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7.0 Conclusion 

Animal models from the past decade have suggested that noise exposure can affect 

temporal envelope processing at supra-threshold levels even though the absolute hearing 

thresholds and the peripheral auditory function appear normal. This issue has been considered a 

form of hidden hearing deficits that may account for the phenomenon that people without hearing 

impairments show difficulty listening in acoustically challenging environments. However, human 

studies have failed to consistently find the relationship between noise exposure and temporal 

envelope processing or other auditory processing tasks among listeners without hearing 

impairments, an outcome that has very likely resulted from poor control of the participants’ noise 

exposure history and the measure sensitivity.  

The current study examined the effect of NTNE by comparing temporal envelope 

processing of young adults who studied at dental schools to that of young adults without dental 

noise exposure. Temporal envelope processing was examined through unvoiced speech 

recognition interrupted by noise or by silence. The results show that the group with dental noise 

exposure performed more poorly than the group without the exposure. The effect of high-

frequency NTNE on temporal envelope processing was found to be more robust within the spectral 

band of the dental noise than outside the spectral band. The effect was also more obvious in 

conditions that required finer temporal resolution (e.g faster noise modulation rate) than in those 

requiring less fine temporal resolution (e.g. slower noise modulation rate). Furthermore, the study 

examined spectral envelope processing between the two groups and found that the exposed group 

did not perform as well as the unexposed group when spectral processing was examined at low 

frequencies. On the other hand, factors such as age, years of musical training, non-dental noise 
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exposure history, and the outcomes from peripheral auditory function screening were not able to 

explain the variance of the performance in the tasks of temporal and spectral envelope processing. 

And the two groups performed similarly when the task of spectro-temporal envelope processing 

was presented near threshold. In conclusion, the findings from this study contribute a new piece 

of evidence to the field of auditory research that NTNE is related to temporal and spectral envelope 

processing issues, and that as the animal models have suggested, such noise-related listening issues 

occur in retro-cochlear sites, at supra-threshold levels, and could be easily overlooked by clinically 

routine audiologic screening.  
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Appendix A Subject demographic form 

 

Appendix Figure 1. Subject background form (Page 1) 

SUBJECT BACKGROUND FORM 
(check the one that applies, explain if needed) 
 
Gender: male _____    female _____    transgender _____ 
 
Date of birth (DD/MM/YYYY): ________________________     Age: ___________ 
 
Highest education level: ____________________________________ 
 
Current academic major: ___________________________________ 
 
Country of birth: ___________ 
 
First language: __________ 
 
History 
1.  Have you been diagnosed with hearing issue before (e.g. hearing loss, ear infection, etc.)?  
No_____ Yes_____   
If yes, when and what type of hearing issue: 
___________________________________________________________________ 
 
2.  Any drainage from the ear within the past 90 days?  No_____ Yes_____ 
 
3.  Have you experienced any dizziness, balance problems, or falls?  
No_____ Yes_____ 
 
4.  Have you had any pain/discomfort in your ears within the past 90 days?  No_____ Yes_____ 
 
If yes, rate on a scale of 0 (no discomfort) to 10 (worst possible) ___________ 
 
5. Have you ever lost hearing in one ear suddenly?  No_____ Yes_____ 
 
6. Do you have frequent noises or ringing in your ears?   No_____ Yes_____  

 
If yes, which ear: left_____   right_____ 
The frequency of occurrence: Constant _____ Intermittent _____   
When does it start to frequently occur? _________________________________ 

 
7. Have you received any medical or surgical treatment for hearing loss?  
No_____ Yes_____ 
 

------TURN OVER TO BACK PAGE------ 
 

8. Have you ever been exposed to loud noise?   
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Appendix Figure 2. Subject background form (Page 2) 
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Appendix B Noise exposure questionnaires 

 

Appendix Figure 3. General noise exposure questionnaire 
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Appendix Figure 4. Dental noise exposure questionnaire  
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Appendix C Diagnostic criteria and statistics of the hierarchical multiple linear regression 

model 

This section includes the diagnostic criteria and the resulting statistics for building the 

HMLR model in section 5.2. 

Appendix Table 1 listed the statistical tests for these assumptions, the proposed criteria of 

the assumptions being met, and the solution when an assumption was violated (Cohen, Cohen, 

West & Aiken, 2003). 

Appendix Table 1. Assumptions of multiple linear regression 

Assumptions Procedures and Measures Proposed criteria of 

assumptions being met 

Solution when 

an assumption is 

violated 

Linearity 1. Plot the standardized 

residuals against the predicted 

values 

2. Plot the standardized 

residuals against each IV 

The data points should 

scatter randomly around a 

horizontal line at error = 0 

Exclude or 

transform IVs 

Polynomial 

regression 

Normality of 

residuals 

1. Histogram of standardized 

residuals 

Histogram of standardized 

residuals show mean, 

kurtosis and skewness 

approximately equal to zero; 

Examine subset 

data pattern 

Examine outlier 

Transformation 

of DV 2. Q-Q plot of standardized 

residuals 

Q-Q plot: data point closely 

hug around the straight line 

of expected normal 

distribution; 

3. Shapiro-Wilk test S-W test P > 0.05 
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Appendix Table 1 continued 

Homoscedasticity 1. Plot the standardized 

residuals against the predicted 

values 

We should observe a uniform 

thickness on the scatter cloud 

around the horizontal line at a 

residual of zero. 

Transformation 

of DV 

Weighted least 

squares method 

2. Plot the standardized 

residuals against each IV 

Residuals have constant 

variance across values of the 

IV 

3. Breusch-Pagan test 

(Breusch & Pagan, 1979) 

B-P test P > 0.05 

Multicollinearity Variance inflation factor (VIF) VIF above 10 indicates 

severe multicollinearity 

Average data 

from IVs of the 

same measure 

Factor analysis 

Drop 

unexplainable 

IVs 

Identifying 

outliers and 

influential data 

point 

1. Generate univariate plots 

including histograms, boxplots 

and detrended Q-Q plot, as 

well as bivariate scatterplots of 

the IV and the DV 

Data point away from the 

trend line of the rest of the 

data based on visual 

inspection 

Input the correct 

data for the 

outlier or report 

the model with 

and without the 

outlier 2. Centered Leverage for 

outlying X observations 

2k/n for large N 

3k/n for small N 

3. Externally studentized 

residuals   

3.0 or 4.0 for large N; 

2.0 for small N 

4. Compute DFFITS 

For large N: >   

For small N: >  1.0 

5. Compute DFBETAS 

For large N:  

For small N: > 1.0 
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Appendix C.1 Assumption check for outcome variables of LPF unvoiced speech tests 

Assumption check was conducted for the performance of the LPF unvoiced speech 

recognition in SMN (LPSMN) as well as of the silence interrupted LPF unvoiced speech 

recognition at 48 Hz (LP48). Statistics of normality test is listed in Appendix Figure 5. The 

assumption of normality was not violated for either outcome variables. 

 

Appendix Figure 5. SPSS output for test of normality for LPSMN and LP48 

    

Appendix Figure 6. SPSS plot of standardized residuals against standardized predicted value for 

homoscedasticity. Left: LP48. Right: LPSMN  

Statistics of homoscedasticity are displayed in Appendix Figure 6, which shows that for 

both outcome variables, homoscedasticity was not violated.  

Statistics of multicollinearity are displayed in Appendix Figure 7, which shows that for 

both outcome variables, there was no severe issue of multicollinearity. 
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Appendix Figure 7. SPSS output for multicollinearity. Left: LP48. Right: LPSMN. LifetimeDNE: dental noise 

exposure. LifeNDNE: non-dental noise exposure. LEipsiAR: left ear ipsilateral acoustic reflex. 

LEDP0.5_2.8K: low frequency DPOAE. LEDP3.5_8.8K: high frquency DPOAE. 

 



 120 

Appendix D Summary of findings and potentially affected auditory processing from animal 

models of NTNE 

 

Appendix Table 2. Summary of findings and potentially affected basic auditory processing and temporal 

processing from animal models of NTNE 

Source 

study * 
Paradigm 

Frequency 

region 
Threshold 

Supra-

threshold 

intensity 

System noise 

Temporal processing 

Onset phase 

locking (to 

pulse train) 

Excitation 

duration 

Envelope phase 

locking (temporal 

envelope processing) 

1 

Moderate-level 

prolonged sharp-

edged broadband 

noise (BBN) 

At NB 

Ⓞ 

no 

change Ⓞ 

no change 

⨉ 

increased SFR, 

assume enhanced 
 

⨉ 

missing 

⨉ 

assume abnormal 

Outside NB 

Ⓞ 

no 

change 

⨉ 

increased SFR, 

assume enhanced 

⨉ 

lengthened 

⨉ 

assume abnormal 

3 

Moderate-level 

prolonged 

intermittent sharp-

edged BBN 

At NB 

Ⓞ 

no 

change 

     

Outside NB 

Ⓞ 

no 

change 

     

5, 6 

Moderate-level 

prolonged factory 

noise 

At NB 

Ⓞ 

no 

change 

 

⨉ 

increased SFR, 

assume enhanced 

 
Ⓞ 

no change 

Ⓞ 

assume normal 

Outside NB 

Ⓞ 

no 

change 

 

⨉ 

increased SFR, 

assume enhanced 

 
Ⓞ 

no change 

Ⓞ 

assume normal 

9, 21, 22 

Moderate-level 

prolonged flat 

spectrum BBN 

Low-

frequency end 

of NB 
Ⓞ 

no 

change 

 ⨉ 

reduced inhibitory 

neurons, assume 

enhanced 

⨉ AC 

not follow 

fast-rate pulses 

  

High-
frequency end 

of NB 
   

2, 5, 6, 

7, 8 

Moderate-level 

prolonged sharp-

edged octave-band 

noise (OBN) 

At NB 

Ⓞ 

no 

change 

Ⓞ AC 

⨉ ANF 

⨉ 

increased SFR, 

assume enhanced 

 
⨉ 

missing 

⨉ 

assume abnormal 

Outside NB 

Ⓞ 

no 

change 

Ⓞ AC 

⨉ ANF 

Ⓞ 

no change 
   

6 

Moderate-level 

prolonged  

sloped OBN 

At NB 

Ⓞ 

no 

change 

Ⓞ 

no change 
    

Outside NB 

Ⓞ 

no 

change 

Ⓞ 

no change 
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Appendix Table 2 continued 

2, 4, 5 

Moderate-level 

prolonged sharp-edged narrow 

band noise pairs 

At & between 

NBs 

Ⓞ 

no 

change 

Ⓞ 

no 

change 

Ⓞ 

no change 
   

Outside NBs 

Ⓞ 

no 

change 

Ⓞ 

no 

change 

⨉ 

increased SFR, assume 

enhanced 

   

13 – 20 
Intense short-term OBN 

(chronic exam) 

At NB 

Ⓞ 

no 

change 

⨉ ANF 

⨉ IC 

⨉ 

increased SFR, assume 

enhanced 

 

Ⓞ 

no 

change 

Ⓞ 

no change 

Above NB 

Ⓞ 

no 

change 

⨉ ANF 

Ⓞ IC 

⨉ 

increased SFR, assume 

enhanced 

 
⨉ 

reduced 

10 - 12, 

21 

Intense short-term BBN 

(chronic exam) 

At NB 

Ⓞ 

no 

change 

⨉ ANF  
⨉ ANF 

not follow fast-

rate clicks 

 

⨉ 

assume 

abnormal 

Above NB 

Ⓞ 

no 

change 

⨉ ANF  

⨉ 

assume 

normal 

 

* Numeric codes of source studies: 1, Pienkowski & Eggermont, 2009; 2, Pienkowski & Eggermont, 2010a; 

3, Pienkowski & Eggermont, 2010b; 4, Pienkowski, Munguia & Eggermont, 2011; 5, Munguia, Pienkowski & 

Eggermont, 2013; 6, Pienkowski, Munguia & Eggermont, 2013; 7, Sheppard et al., 2017; 8, Pienkowski, 2018; 9, 

Zhou & Merzenich, 2012; 10, Liu, Wang, Shi, Almuklass, He, et al. 2012; 11, Shi, Liu, He, Guo et al., 2013; 12, Shi, 

Chang, Li., Aiken, Liu, & Wang, 2016; 13, Hickox & Liberman, 2014; 14, Liberman, Suzuki & Liberman, 2015; 15, 

Kujawa & Liberman, 2009; 16, Wang & Ren, 2012; 17, Lin, Furman, Kujawa & Liberman, 2011; 18, Furman, Kujawa 

& Liberman, 2013; 19, Lobarinas, Spankovich & Le Prell, 2017; 20, Shaheen, Valero & Liberman, 2015; 21, Zhou et 

al., 2011; 22, Kamal et al., 2013; 21, Hesse et al., 2016 
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Appendix Table 3. Summary of findings and potentially affected spectral processing from animal models of 

NTNE (see Table 20 for source study) 

Source 

study 
Paradigm Frequency region 

Spectral processing 

Place coding/tonotopic 

map 

TFS coding 

(pitch) 

Spectral receptive 

field 

Spectral shape 

processing 

1 

Moderate-level 

prolonged sharp-edged broadband 

noise (BBN) 

At NB 
⨉ 

missing 

⨉ 

assume 

abnormal 

⨉ 

suppressed 

⨉ 

assume abnormal 

Outside NB 
⨉ 

enhanced 
 

⨉ 

enhanced 

⨉ 

assume abnormal 

3 

Moderate-level 

prolonged intermittent sharp-edged 

BBN 

At NB 
⨉ 

missing 

⨉ 

assume 

abnormal 

⨉ 

weakened 

⨉ 

assume abnormal 

Outside NB   
⨉ 

enhanced 

⨉ 

assume abnormal 

5, 6 
Moderate-level 

prolonged factory noise 

At NB 
Ⓞ 

no change 
 

Ⓞ 

not suppressed 
 

Outside NB 
Ⓞ 

no change 
 

⨉ 

enhanced 

⨉ 

assume abnormal 

9, 21, 22 
Moderate-level 

prolonged flat spectrum BBN 

Low-frequency end 

of NB 

⨉ 

missing ⨉ 

abnormal 

⨉ 

broader FTC 

⨉ 

assume abnormal 

High-frequency end 

of NB 

⨉ 

enhanced 

⨉ 

broader FTC 

⨉ 

assume abnormal 

2, 5, 6, 7, 

8 

Moderate-level 

prolonged sharp-edged octave-band 

noise (OBN) 

At NB 
⨉ 

missing 

⨉ 

assume 

abnormal 

⨉  

AC, missing 

IC, enhanced 

⨉ 

assume abnormal 

Outside NB 
⨉ 

suppressed 
 

⨉  

AC, missing  

near NB 

IC, enhanced 

⨉ 

assume abnormal 

6 

Moderate-level 

prolonged  

sloped OBN 

At NB 
⨉ 

weakened 
   

Outside NB 
⨉ 

weakened in 2 oct 
   

2, 4, 5 

Moderate-level 

prolonged sharp-edged narrow band 

noise pairs 

At & between NBs 
⨉ 

missing 

⨉ 

assume 

abnormal 

⨉ 

missing 

⨉ 

assume abnormal 

Outside NBs 
⨉ 

enhanced 
 

⨉ 

enhanced 

⨉ 

assume abnormal 

13 – 20 
Intense short-term OBN 

(chronic exam) 

At NB   ⨉ 

reduced LSR ANF  

⨉ 

assume abnormal Above NB   

10 - 12, 21 
Intense short-term BBN 

(chronic exam) 
At NB   

⨉ 

assume reduced LSR 

ANF 

⨉ 

assume abnormal 
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