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Abstract

Spectral analysis of biological processes poses a wide variety of complications. Statistical

learning techniques in both the frequentist and Bayesian frameworks are required overcome the

unique and varied challenges that exist in analyzing these data in a meaningful way. This disser-

tation presents new methodologies to address problems in multivariate stationary and univariate

nonstationary time series analysis.

The first method is motivated by the analysis of heart rate variability time series. Since it is non-

stationary, it poses a unique challenge: localized, accurate and interpretable descriptions of both

frequency and time are required. By reframing this question in a reduced-rank regression setting,

we propose a novel approach that produces a low-dimensional, empirical basis that is localized in

bands of time and frequency. To estimate this frequency-time basis, we apply penalized reduced

rank regression with singular value decomposition to the localized discrete Fourier transform. An

adaptive sparse fused lasso penalty is applied to the left and right singular vectors, resulting in

low-dimensional measures that are interpretable as localized bands in time and frequency. We then

apply this method to interpret the power spectrum of HRV measured on a single person over the

course of a night.

The second method considers the analysis of high dimensional resting-state electroencephalog-

raphy recorded on a group of first-episode psychosis subjects compared to a group of healthy con-

trols. This analysis poses two challenges. First, estimating the spectral density matrix in a high

dimensional setting. And second, incorporating covariates into the estimate of the spectral density.

To address these, we use a Bayesian factor model which decomposes the Fourier transform of the

time series into a matrix of factors and vector of factor loadings. The factor model is then embed-

ded into a mixture model with covariate dependent mixture weights. The method is then applied to

examine differences in the power spectrum for first-episode psychosis subjects vs healthy controls.
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Public health significance: As collection methods for time series data becomes ubiquitous in

biomedical research, there is an increasing need for statistical methodology that is robust enough

to handle the complicated and potentially high dimensionality of the data while retaining the flex-

ibility needed to answer real world questions of interest.
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1.0 Introduction

With the advancement of new technology for biomedical research and diagnosis comes a need

for statistical techniques to find meaningful patterns from increasingly complex time series data.

Often questions of interest have answers that are found by examining the frequency domain con-

tents of these data, such as in examining how stress affects the autonomic nervous system by

measuring oscillations in heart rate variability (HRV) (Hall et al., 2004) or using frequency band

characteristics of high-density electroencephalography (EEG) to look for early signs of schizophre-

nia (Ferrarelli et al., 2019). The challenges that are posed in the attempt to estimate these frequency

characteristics and interpret them are varied and complex. Therefore, a wide variety of statistical

tools are required to meet the needs of researchers attempting to glean information to address

modern problems such as these.

1.1 Frequency Domain Characteristics of a Time Series

Spectral analysis is the process used to examine the frequency characteristics of a signal. The

main idea is that every time series is composed of sine and cosine waves oscillating at different

frequencies. The power spectrum density of the process is akin to a frequency ANOVA, in that it

shows which frequencies are present in the time series and how much influence they have over the

signal. The Fourier transform is a powerful tool which allows us to calculate the spectral density.

This transformation takes the autocorrelation sequence of a random process and decomposes it into

its constituent frequencies (Shumway and Souffer, 2011).

Many current techniques used to estimate spectral densities are based upon the Fourier trans-

formation. A comprehensive review of Fourier-based methodology can be found by reading the

work by Brillinger (2002) or Shumway and Souffer (2011). Despite this large body of work de-

voted to estimating the power spectrum, there are still areas of advancement that need exploration.
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1.2 Nonstationary Spectral Analysis

One of the assumptions when using the Fourier transformation to estimate the power spectrum

is that the frequency characteristics of the time series do not vary over time. A time series that

meets this assumption is called stationary. However, in biological applications this assumption is

often violated. It is unreasonable, for example, to suppose that the heart beats at the same rate no

matter what level of stress a human body is undergoing. Signals with features that change over

time are called nonstationary.

Several existing techniques have been developed to handle nonstationary data. Most involve

breaking the time series up into smaller pieces, with the underlying assumption that the frequency

characteristics are evolving slowing over time (Adak, 1998). These smaller pieces are then consid-

ered piecewise stationary. The spectral density for a nonstationary process is represented as power

varying across both frequency and time. Dahlhaus (1997) provides a good review of existing

methodology to estimate this three dimensional surface.

1.3 High Dimensional Spectral Analysis

Nonstationarity is not the only complication that can arise when performing spectral analy-

sis. Another area for consideration is multivariate spectral analysis. When analyzing multivariate

signals researchers are not only interested in power for individual components, but also how they

relate to one another. For instance, the electrical potentials gathered from one subject’s EEG

measurement not only contain frequency information about individual electrodes, but also in how

different electrodes are correlated as a function of frequency. This relationship is called coherence.

While coherence provides important information about characteristics of the multivariate time

series, the downside is that at every frequency the power spectrum is represented as a complex

valued P × P Hermitian matrix, where P is the dimension of the time series. As the dimension of

the time series increases, the number of parameters that must be estimated increases as well which

can lead to ill conditioned matrices and unstable estimates. Wei (2019) provides an overview of

challenges and methods to perform analysis on multivariate time series.
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1.4 Outline of Work

This dissertation adds two new methods to the existing statistical toolbox in order to address

problems that arise when analyzing nonstationary time series and high dimensional multivariate

time series.

The first is detailed in Chapter 2 and is motivated by estimating the power spectrum of HRV

time series in a way that provides insight into the workings of the autonomic nervous system (Malik

et al., 1996). Because HRV is a nonstationary time series, it poses a specific challenge in that the

frequency characteristics of its power spectrum can vary over time (Priestley, 1965). Furthermore,

since time-varying power is estimated as a three dimensional surface, often clinicians use summa-

rizing measures in their research, such as power within a band of frequencies. Our method hopes

to provide an alternative by aiding in the interpretation of these structures by reframing the typical

locally stationary Fourier estimate of the time varying spectrum in a penalized reduced rank re-

gression setting. This allows for the power spectrum to be broken up into multiple unit-rank layers

that are formed by multiplying an “importance” singular value, a left singular “time” vector, and

a right singular “frequency” vector together. An adaptive sparse fused lasso penalty is imposed on

these vectors that introduces sparsity and smoothness into the estimate. These layers can then be

examined individually for patterns and the singular vectors provide a parsimonious representation

of the time- and frequency-varying characteristics of the power spectrum.

The second method, outlined in Chapter 3 is geared toward incorporating covariates into es-

timation of the spectral density matrix of high dimensional multivariate time series. This type of

methodology has many potential applications, but here we focus on the differences in 64 channel

high density resting state EEG between healthy controls and first-break psychosis patients. Typical

methodology involves averaging power across established frequency bands and using regression to

test for differences in covariates. However we provide an analysis that would allow us to estimate

the entire spectral density matrix conditional upon covariates. To do this, first we decrease the

dimensionality of the problem by representing the likelihood of the Fourier transformation of the

time series as a factor model. Then we model the covariate dependent spectral density matrix using

a Bayesian mixture model. Mixture weights are represented using multinomial regression with a

3



Polya-Gamma data augmentation and provide flexible output of the covariate dependent estimate

of the spectral density matrix.

Finally, in Chapter 4 a summary of the finding is given as well as suggestions for future work.

4



2.0 Empirical Localized Time-Frequency Analysis via Penalized Reduced Rank

Regression

2.1 Introduction

Analysis of the frequency-domain characteristics of a nonstationary time series has many im-

portant applications in the biomedical field. For instance, examining the frequencies present in

an EEG can give insight into functions of the brain (Valdés et al., 1992; Tang et al., 2013), the

spectrum of oximetry data can lead to a diagnosis of obstructive sleep apnoea (Álvarez et al.,

2009), and the power spectrum of heart rate variability (HRV) can give insight into functions of

the autonomic nervous system (ANS) (Hall et al., 2004). However, despite the ever-increasing

applications of nonstationary spectral analysis as a tool for understanding the human body, the

inherent complexity of such power spectra presents unique challenges.

Since a nonstationary time series has features that change over time, the resulting power spec-

trum is a time-frequency surface in three dimensional space. This makes meaningful interpretation

difficult. Adding to this challenge is the fact that typically only certain frequencies and times of the

power spectrum contain useful information, but it is often unclear how to localize those frequencies

and times from the surrounding white noise. Often clinical researchers resort to collapsing entire

frequency bands of the power spectrum. For instance, to examine HRV a common summarizing

measure is the ratio of the total power in the 0.05-0.15 Hz frequency band and the total power in

the 0.15-0.40 Hz frequency band (Hall et al., 2004; Bonnet and Arand, 1997). While this provides

a scaler measure of the power spectrum which can easily be used in basic statistical methods such

as ANOVA, it also leads to inaccurate inference by propagating uncertainty and fails to capture the

changing time-frequency dynamics of spectrum (Bruce et al., 2018).

There are several existing methods that deal with the estimation of the time-frequency surface.

One class of these assumes that the time-varying processes underlying the time series are evolv-

ing slowly enough that one can partition the series into locally stationary time blocks. The power

spectrum can then be estimated within each time block using traditional methods for stationary

time series such as the periodogram Priestley (1965); Dahlhaus (1997); Adak (1998). Extensions

5



of this method minimize bias in the periodogram due to spectral leakage by using windowing func-

tions or tapers Thomson (1982); Kim et al. (2018); Harris (1978). The estimates can be denoised

by smoothing the periodogram directly (Shumway and Souffer, 2011) or by using splines (Guo

et al., 2003). Typically important features of the power spectrum are localized using either fre-

quency band estimation (Schröder and Ombao, 2019; Bruce et al., 2019) or temporal change point

detection (Adak, 1998; Davis et al., 2006).

The SLEX model of Ombao et al. (2002) and its cousin Auto-SLEX (Ombao et al., 2001) use

specialized basis functions that are smooth and localized in time and frequency simultaneously.

However, choosing the best set of basis function for this method can be complicated and local-

ization is dependent upon having multiple time series classes to discriminate between (Ho et al.,

2008). Wavelet transform is another type of transformation which provides smooth, localized es-

timates of the power spectrum using a basis function called a mother wavelet that is scaled and

shifted across windows of time (Daubechies, 1990). The main advantage of a wavelet transform

over Fourier-based methods is that a wavelet uses longer time windows to calculate coefficients as-

sociated with lower frequencies and shorter time windows to calculate coefficients associated with

higher frequencies. This addresses the resolution issues associated with the fixed time windows

used in a Fourier transform (Zhang et al., 2003).For most biological applications, such as HRV,

one expects nearby frequencies to behave similarly and that some frequency bands will be related

through underlying dynamic processes. For example, a band of HRV frequencies could have simi-

lar characteristics during each period of REM throughout a night of sleep. In this scenario, the rich

basis that allows wavelets to estimate localized time-frequency features makes isolating frequency

bands in an interpretable manner challenging.

In this chapter we introduce a novel method that aims to provide a parsimonious, interpretable

estimate of the time-varying power spectrum of nonstationary time series which we call SpeLLL

(Spectra in Low rank Localized Layers). This method combines penalized reduced-rank regres-

sion with traditional Fourier techniques, leading to three unique properties. First, using singular

value decomposition (SVD) the power spectrum can be broken up into mutually exclusive low-rank

layers. These layers allow for related dynamics of the power spectrum to be examined individually.

Because of this unique layering, uninteresting processes can be visually excluded from the spec-

trum if desired to allow for examination of the relationship between processes of interest. Second,

6



an adaptive sparse fused lasso penalty imposes a smooth and sparse structure onto each layer of the

spectrum. The resulting estimate is less noisy and it is easy to locate related frequency bands and

time blocks that hold dominate features of the power spectrum. Furthermore, the tuning parame-

ters involved in the lasso give a large degree of control over the level of sparsity and smoothness

in a given layer. And third, because each of these layers is unit-rank it can be expressed simply as

the multiplication of two singular vectors (one associated with time and the other associated with

frequency) and a singular value. This parsimonious representation allows for easy interpretation

of the dominant time-varying or frequency-varying processes at play.

The rest of this chapter is outlined as follows. Section 2.2 gives a brief review of the underlying

time series methods and outlines methodology to transform a time series from the time domain

to the time-frequency domain. This common frequency domain technique is then reframed in

the reduced rank regression setting in Section 2.3 where we introduce penalized regression and

outline how to solve the resulting objective function. The results of a simulation study comparing

SpeLLL to known methods are shown and elaborated on in Section 2.4. The method is then

applied in Section 2.5 to examine characteristics of the HRV power spectrum for a chronically

stressed subject. Finally, Section 2.6 offers an overview of the results and concluding remarks.

2.2 Time Varying Power Spectrum

2.2.1 Piecewise Locally Stationary Time Series

Nonstationary processes have characteristics that change over time. However, if those charac-

teristics evolve slowly over time, then the process can be treated as locally stationary(Adak, 1998;

Priestley, 1965).

Using the time-varying Cramér representation, a zero-mean locally stationary time series Xt,T

for t = 1, ..., T can be represented as

Xt,T =

∫ 1/2

−1/2
A(u, ω)e2πitω dZ(ω) (2.1)

7



where dZ(ω) is an orthogonal increment, zero-mean process andA(u, ω) is a function of frequency

ω and time u such that A : [0, 1] × [−1/2, 1/2] → C with A(u, ω) = A(u,−ω). The time-

dependent power spectrum of Xt at time u is given by f(u, ω) = |A(u, ω)|2 (Adak, 1998).

We can break the time points u into B equal time blocks such that B = T/tb where tb is

the number of time points per block. Here, we assume that T is a multiple of B for the sake of

convenience. Let 0 = u0 < u1 < ... < uB = 1 denote the endpoints of each of the B time blocks.

Then for i = 1, ...B

Xt,T =
B∑
i=0

I (u)X
(i)
t

where X(i)
t , i = 1, ..., B are independent zero-mean stationary processes with spectra f (i)(ω) and

I (u) = 1 if u ∈ (ui, ui+1). Then it follows that the time-dependent spectrum of the piecewise

stationary process at time u is given by

f(u, ω) =
B∑
i=0

I(u)f (i)(ω) (2.2)

2.2.2 Estimate of Spectrum

Within each of the i = 1, ..., B time blocks we can estimate the local power spectrum f (i)(ω)

via the periodogram.

f (i)(ω) =
1

tB

∣∣∣ T∑
t=1

I (t/T )Xte
−2πiωt

∣∣∣2 (2.3)

Then, letting Q = tb/2, f (i)(ω) can be thought of as a 1×Q vector of power values at each of the

Fourier frequencies used to calculate the periodogram for the ith time block. We then use each f (i)

to build a matrix Y such that

YB×Q =


f (1)(ω)

f (2)(ω)
...

f (B)(ω)

 (2.4)

Here Y represents a rough estimate of the time-varying power spectrum. However, this es-

timate of the power spectrum is based on the periodogram which is known to be asymptotically

unbiased, but noisy and possessing a non-trivial bias in smaller sample sizes (Adak, 1998).
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2.3 Penalized Reduced Rank Regression

To further refine our estimate the of time varying power spectrum Y, we use penalized reduced

rank regression.

The multivariate regression model is given as

Y = XC + E

where Y is a n×Qmatrix of responses, X is a n×B matrix of predictors, C is aB×Q coefficient

matrix, and E is an n × Q matrix of error vectors assumed to be independently and identically

distributed (Reinsel and Velu, 1998). In our specific setting, Y is the Fourier transformed estimate

of the power spectrum that we seek to refine, and C is the final estimate of the power spectrum.

Covariates related to each time bin can be included in the model via the columns of X. Or if the

typical estimate of the power spectrum as a time-frequency surface is desired, X = IB.

Penalized reduced-rank regression uses two techniques to build upon classic multivariate re-

gression. The first is restricting the rank r of the coefficient matrix C to be r ≤ min(B,Q). This

implies that there are min(B,Q) − r linear restrictions on C (Reinsel and Velu, 1998). This rank

restriction allows for a parsimonious representation of the patterns found in the power spectrum.

The second is penalizing the terms of the coefficient matrix to introduce smoothness and sparsity

to estimate of the power spectrum C. Forcing sparsity into the model allows us to remove contri-

butions to the power spectrum from white noise while reducing the dimension of the time blocks

and frequency bins. Adding smoothness allows us to take advantage of the fact that contributions

to the spectrum from adjacent time blocks or frequency bins are likely to be similar. Our technique

for introducing the penalties builds upon the methodology introduced in Chen et al. (2012).

Chen et al. (2012) uses singular value decomposition (SVD) to express matrix C as the sum of

r rank one layers,

C = UDVT =
r∑

k=1

dkukv
T
k =

r∑
k=1

Ck,

where U is a B × r matrix of left singular vectors, V is a Q × r matrix of right singular vectors,

and D is a r × r diagonal matrix of ordered singular values such that d1 > d2 > ... > dr. The kth

rank one layer of C is then given by Ck = dkukv
T
k . We assume that all singular values are distinct.
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Using SVD to decompose C in this manner allows for an appealing interpretation of the es-

timate of the power spectrum. It breaks the power spectrum up into r mutually exclusive layers

which can be examined individually. Within each of the k layers, uk,(1×B) is associated with time

effects on the power spectrum and vk,(1×Q) is associated with frequency effects. dk gives the rela-

tive importance of the kth layer.

Where our method differs from Chen et al. (2012) is that an adaptive sparse fused lasso penalty

is then imposed on the triplets (dk,uk,vk) for each of the k = 1, .., r layers. The objective function

is given by

argmin
(d,u,v)

{
1

2
||Y−

r∑
k=1

dkukvTk ||2F +
r∑

k=1

Pe(λ
(1)
k , λ

(2)
k , λ

(3)
k , dk,uk, vk)

}
(2.5)

where ||uk||2 = ||vk||2 = 1. Here ||.||F indicates the the Frobenius norm, λk = (λ
(1)
k , λ

(2)
k , λ

(3)
k )

are the tuning parameters controlling the amount of sparsity and fusion in each layer, and Pe(.) is

the adaptive sparse fused lasso penalty given by

Pe(λ
(1)
k , λ

(2)
k , λ

(3)
k , dk,uk, vk) = λ

(1)
k

B∑
i=1

Q∑
j=1

w
(u)
ki w

(v)
kj w

(d)
k |dkukivku|+

λ
(2)
k

B∑
i=2

m
(u)
ki |dkuki − dkuk,i−1|+

λ
(3)
k

Q∑
j=2

m
(v)
kj |dkvkj − dkvk,j−1|.

w(u),v(u), w(d),m
(u), and m(v) are the adaptive weights which will be defined in subsection 2.3.1.

Within this penalty, λ(1)k controls the amount of sparsity by shrinking individual elements of uk

and vk to zero. The corresponds with zeroing out a time block or frequency bin from layer k of

the power spectrum. λ(2)k and λ(3)k control the smoothness of the estimate of the power spectrum

by penalizing the distance between adjacent elements of uk and vk, forcing similarity between

neighboring frequencies and times in the spectral estimate.
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2.3.1 Estimating a Single Layer

To estimate a single layer, we assume that r = 1 and therefore equation (2.5) reduces to

minimizing the following objective function with respect to (d,u,v).

1

2
||Y − dXuvT ||2F = λ(1)

B∑
i=1

Q∑
j=1

w
(u)
i w

(v)
j w(d)|duivu|+ (2.6)

λ(2)
B∑
i=2

m
(u)
i |dui − dui−1|+ λ(3)

Q∑
j=2

m
(v)
j |dvj − dvj−1|

where duvT is the SVD of a single rank one layer of C.

To create the weights we assume some consistent estimate of C is available, namely the ordi-

nary least squares (OLS) estimate C̆. The SVD of the OLS estimate is then given by d̆ŭv̆T and is

used to calculate the weights such that

w(d) = |d̆|−γ,

w
(u)
i = |ŭi|−γ,

w
(v)
j = |v̆i|−γ,

m
(u)
i = |ŭi − ŭi−1|−γ for i = 2, ..., B,

m
(v)
j = |v̆j − v̆j−1|−γ for j = 2, ..., Q.

where γ is a non-negative parameter. Zou (2006) further discusses values for γ, but on the basis of

our simulations we choose γ = .25.

The objective function (2.6) is multiconvex. For a fixed value of u, the minimization of ṽ = dv

is given by the objective function

1

2
||y −X(v)ṽ||2 + λ(1,v)

q∑
j=1

w∗j |ṽj|+ λ(3)
q∑
j=2

m∗j |ṽj − ṽj−1|, (2.7)

where y = vec(Y), X(v) = Iq ⊗ Xu, λ(1,v) = λ(1)
∑B

i=1w
(u)
i |ui|, w∗ = w(d)w(v), and m∗ =

w(d)m(v). The symbol ‘⊗’ denotes the Kronecker product. For this minimization we ignore the
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portion of equation (2.6) dealing with the fusion of u since it is constant with respect to ṽ. Rewrit-

ing in this fashion shows that (2.7) is simply an adaptive sparse fused lasso problem in ṽ.

For a fixed value of v the minimization with respect to ũ = du is given by the objective

function
1

2
||y −X(u)ũ||2 + λ(1,u)

p∑
i=1

w†i |ũi|+ λ(2)
p∑
i=2

m†i |ũi − ũi−1| (2.8)

where X(u) = v ⊗X, λ(1,u) = λ(1)
∑q

i=j w
(v)
j |vj|, w† = w(d)w(u), and m† = w(d)m(u). Similarly

as in (2.7), here we ignore the fusion of v since it is a constant with respect to ũ and notice that

(2.8) is also an adaptive sparse fused lasso problem.

By breaking (2.6) up in this manner we can take advantage of its structure and solve using block

coordinate descent. Namely, for fixed values of tuning parameters λ we can use the following

steps:

(a) Choose a non-zero initial value of û, ŭ being a convenient choice.

(b) Fix u = û. Minimize (2.7) to obtain ṽ. Set d̂ = ||ṽ||2 and v̂ = d̂−1ṽ

(c) Fix v = v̂. Minimize (2.8) to obtain ũ. Set d̂ = ||ũ||2 and û = d̂−1ũ

(d) Iterate steps (b) and (c) until Ĉ = d̂ûv̂T converges. Convergence is achieved when ||Ĉl −

Ĉl−1||F/||Ĉl−1||F < ε for the lth iteration and for some tolerance level ε.

This algorithm also works when u is updated first instead of v. Either way, for each step (b)

and (c), equation (2.6) becomes an adaptive sparse fused lasso problem which can be solved using

alternating direction method of multipliers (ADMM) within each step (Li et al., 2014; Boyd et al.,

2010). See Appendix A.1 for details.

2.3.1.1 Parameter Tuning There are three regularization parameters λ = (λ(1), λ(2), λ(3)) per

layer. For smaller problems it is possible to useK-fold cross validation (CV) to choose λ. However

as the sampling rate of the underlying time series increases, CV becomes very computationally

intense. Following the methodology of Chen et al. (2012), we use a Bayesian information criterion

(BIC) as a more computationally efficient method of choosing λ.

Let (d̂λ, ûλ, v̂λ) be the fitted value of (d,u,v) for the regularization parameter vector λ. Then

BIC(λ) = log[SSE(λ)] +
log(Qn)

Qn
df(λ) (2.9)
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where SSE(λ) = ||Y− d̂λXûλv̂λT ||2F is the sum of squared error. df(λ) is the degrees of freedom

of the model. The number of non-zero coefficients, given by

df(λ) =
B∑
i=1

I(ûλi 6= 0) +

Q∑
j=1

I(v̂λi 6= 0)− 1,

is an unbiased estimator of the degrees of freedom in a sparse fused lasso setting (Tibshirani et al.,

2005). One degree of freedom is lost because there are two constraints, ||u||2 = 1 and ||v||2 = 1

and one additional free parameter d (Chen et al., 2012).

Since tuning three parameters can be computationally intensive, we used a two-stage grid

search to determine the regularization path. In the first stage, a sparse grid is used to locate an

approximate region of values, λk(BIC1), which minimizes BIC. In the second stage, a finer grid

within a neighborhood of λk(BIC1) is used. This provides a speed advantage since for iteration t

we are able to use the estimate Ĉ from λt−1 as the initial guess for λt provided λt > λt+1.

2.3.1.2 Spectral Bands Frequency bands in the power spectrum Ĉk can be found where there

are adjacent groups of zero and non-zero elements of v̂. Similarly, temporal break points can be

found where there are neighboring zero and non-zero values of û.

2.3.2 Multiple Layers

To solve objective function (2.5) for r > 1 we follow the iterative exclusion extraction algo-

rithm used in (Chen et al., 2012). First an initial estimate Ċ is found using ordinary least squares

methodology and decomposed such that Ċ =
∑r

k=1 ḋku̇kv̇
T
k =

∑r
k=1 Ċk. Then we seek for a Ĉ

with a sparse, smooth SVD structure near Ċ by breaking up the problem into r individual rank one

regressions on layer Yk. The steps are as follows:

(a) For each k ∈ {1, ..., r}

(i) Construct the weights w(u),v(u), w(d),m
(u), and m(v) based on the SVD of Ċ.

(ii) Create the layer Yk = Y −X(Ċ− Ċk)

(iii) Find (d̂k, ûk, v̂k) by performing penalized reduced rank regression of Yk on X. The

tuning parameters λk can be found using CV or BIC.

(b) Set Ĉ =
∑r

k=1 d̂kûkv̂
T
k
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(c) Set Ċ = Ĉ and iterate over (a) and (b) until ||Ċ - Ĉ||/||Ċ|| < ε for some tolerance level ε.

Note that because of step (ii), the computations for step (iii) can be performed in parallel, speeding

up the process.

2.3.2.1 Choosing r Thus far we have assumed that the rank r of C is known. Chen and Chan

(2016) has shown that for a choice of rank r̂ > r all estimated layers Ĉk for k ∈ {r + 1, ..., r̂}

become vanishingly small. Therefore, it is better to overestimate r than underestimate it.

In practice, one way to choose an initial guess for r is to examine the singular values of the

initial guess d̆. From here a cutoff may be obtained of singular values that are too small to produce

a non-zero layer of Ĉ.

2.4 Simulations

2.4.1 Simulation Scenarios

There are three specific properties of SpeLLL that we were interested in examining via simu-

lation: accuracy in recovering the rank structure of the power spectrum, accuracy in localization in

time and frequency, and interpretablity.

For accuracy in estimation of the spectral layers, we compare the spectral estimate from

SpeLLL to the singular value decomposition of the estimate of the power spectrum recovered

from the multitaper method (Thomson, 1982), which is the average of multiple estimates of the

power spectrum generated from orthogonal tapers; a short time Fourier transformation (STFT)

with a Hanning window (Harris, 1978), which breaks the time series up into stationary pieces

using a windowing function; and a wavelet transform using the Morlet wavelet basis (Torrence

and Compo, 1998; Daubechies, 1990). Because the wavelet transform provides an estimate of the

power spectrum at each time point, unlike Fourier based methods which require time bins, we se-

lected a similar number of time points to use in the comparison to adjust for the finer grid of the

wavelet.
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Figure 2.1: Target power spectrum for simulation scenarios.

White noise, banding in frequency, banding in frequency and time target power spectra for simulation
scenarios to assess performance of SpeLLL.

To explore how accurate the localization properties of SpeLLL are, we will compare it to the

EBA method (Bruce et al., 2019), which is a Baysian technique that searches for frequency bands in

the power spectrum and PELT (Killick et al., 2012) which uses cost functions to look for temporal

break points. For interpretability, we visually examine the results of method as compared to the

estimates recovered by the multitaper, STFT and wavelet transform.

To evaluate the relative performance of the methods, we considered the three different simula-

tion scenarios similar to the scenarios in (Bruce et al., 2019). The first is simply white noise (WN)

with the following spectral density function

f1(u, ω) = 1 for ω ∈ (0, 0.05).

The second scenario involves banding in frequency (BF) and has the spectral density

f2(u, ω) =


5− 4u for ω ∈ (0, 0.15)

1 for ω ∈ [0.15, 0.35)

1 + 4u for ω ∈ [0.35, 0.5).

The third involves banding in both time and frequency (BFT) and has the spectral density

f3(u, ω) =

f2(u, ω) for u ∈ [0, 0.2] ∪ (0.4, 0.6] ∪ (0.8, 1]

f1(u, ω) for u ∈ (0.2, 0.4] ∪ (0.6, 0.8]
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The target spectrum for these scenarios are shown in Figure 2.1.

For each scenario we consider three different sampling densities T = 500, T = 5000, and

T = 15000. The number of blocks for each of these sample sizes is B = 25, 100, and 200

respectively.

2.4.2 Spectral Rank Structure Estimation

To measure the accuracy of the estimate of the power spectrum for each of the three methods

compared we used scaled mean squared error calculated for each spectral layer, SMSE = 100||Ci−

Ĉi||2F/BQ for i = 1, ..., r where r is the layer of the spectral density. Because the comparison

methods were not designed specifically to estimate the rank structure of the spectral density matrix,

we only examined the first r layers of each where r is the true value of the number of layers of the

spectral density. In practice, both the multitaper and STFT method contained a non-trivial amount

of information in layers greater than r. Table 2.1 shows the SMSE for each method under each

scenario.

In the WN scenario, SpeLLL has a lower SMSE than the STFT and wavelet estimate for all

three sample sizes. This is probably due to the fact that neither the STFT or the wavelet have a

means to remove white noise from the spectral estimate. It has a lower SMSE than multitaper for

T = 500 and ties for the two larger sample sizes. The smoothing feature of the multitaper method

seems to allow it to perform at a similar level to SpeLLL for this scenario.

In the BF scenario, SpeLLL recovers both layers of the rank structure of the power spectrum

more accurately than the other methods for all sample sizes, except in the T = 500 scenario for the

second layer. This layer is a little more complex in shape (see Figure 2.2) than the first layer and it

appears wavelet is slightly better at accurately capturing this dynamic in the smallest sample size.

But as T increases, SpeLLL’s ability to smooth the estimate and introduce zeroes again allows it

to be the most accurate method of the four.

In the BFT scenario, the wavelet is slightly more accurate for smaller sample sizes. But when

T = 15000 SpeLLL again is the most accurate method of the three. This reinforces the trend

seen in the BF scenario where as the sample size increases, the fusion and lasso penalty allow for

SpeLLL to recover the true rank structure of the matrix more accurately.
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Table 2.1: Comparison of SpeLLL to exisiting methods: rank structure.

Scenario Layer T SpeLLL Multitaper STFT Wavelet

WN First

500 1.10 (0.72) 1.93 (0.30) 8.94 (0.55) 5.88 (0.23)

5000 0.25 (0.16) 0.25 (0.03) 3.80 (0.05) 1.78 (0.04)

15000 0.06 (0.01) 0.06 (0.01) 1.55 (0.01) 1.04 (0.02)

BF

First

500 3.31 (0.55) 7.90 (0.65) 7.46 (0.72) 2.72 (0.22)

5000 0.64 (0.10) 1.57 (0.08) 4.03 (0.07) 0.85 (0.03)

15000 0.29 (0.03) 0.79 (0.03) 1.64 (0.06) 0.50 (0.01)

Second

500 2.21 (0.39) 4.63 (0.46) 5.66 (0.72) 1.20 (0.10)

5000 0.30 (0.10) 0.86 (0.08) 1.02 (0.06) 0.31 (0.02)

15000 0.11 (0.02) 0.36 (0.03) 0.40 (0.01) 0.18 (0.01)

BFT

First

500 3.29 (0.30) 6.38 (0.64) 8.28 (0.63) 2.12 (0.21)

5000 0.79 (0.10) 1.20 (0.09) 4.00 (0.06) 0.68 (0.03)

15000 0.29 (0.03) 0.59 (0.03) 1.63 (0.01) 0.40 (0.01)

Second

500 2.04 (0.27) 4.18 (0.45) 5.27 (0.64) 1.08 (0.10)

5000 0.38 (0.16) 0.77 (0.08) 0.91 (0.06) 0.28 (0.01)

15000 0.11 (0.02) 0.32 (0.03) 0.36 (0.01) 0.16 (0.01)

Scaled MSE reported as mean (standard deviation) of 1000 simulation runs.
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Table 2.2: Comparison of SpeLLL to existing methods: estimated number of bands in fre-

quency/time.

Time Frequency

Scenario T PELT SpeLLL Truth SpeLLL EBA Truth

WN

500 1.00 1.00 1 1.00 1.00 1

5000 1.00 1.00 1 1.00 1.00 1

15000 1.00 1.00 1 1.00 1.00 1

BF

500 1.02 1.06 1 3.37 1.37 3

5000 1.05 1.00 1 3.02 3.00 3

15000 1.46 1.00 1 3.00 3.33 3

BFT

500 1.08 7.31 5 2.50 1.18 3

5000 4.52 4.99 5 3.02 3.54 3

15000 5.00 4.99 5 3.01 3.01 3

Simulation results comparing the number of estimated frequency bands or temporal break points to true
value for 1000 simulation runs.
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2.4.3 Frequency and Time Localization

To measure the accuracy in localizing bands of frequency and time we use two metrics. The

first is simply the number of bands that exist in the power spectrum, denoted as b. For the white

noise scenario, b = 1 in both the frequency and time dimension. For the banding in frequency

scenario, b = 3 in the frequency dimension and b = 1 in the time dimension. For the banding in

frequency and time scenario, b = 3 in the frequency dimension and b = 5 in time dimension.

The second metric is the Rand Index, which is typically used in a clustering setting to measure

the accuracy of groupings of clustered points. In our setting, we can think of assigning time and

frequency bins to banded clusters and use the Rand Index to assess the accuracy of the partition

points for these clusters. The Rand Index ranges from 0 to 1, with values close to 1 indicating that

the estimate of the partitions are in the correct place (Rand, 1971).

The results for estimating b are shown in Table 2.2. In time, SpeLLL generally converged

much faster than PELT to the correct number of bands. In the banding in frequency scenario,

PELT seemed to find a number of false bands which only got worse as sample size increased. In

the banding in frequency and time scenario, SpeLLL was closer to the correct number of bands in

the low sample size and converged more rapidly to the correct number as sample size increased.

In frequency, SpeLLL also outperformed the EBA algorithm. This is especially true in low sample

sizes. SpeLLL converged to the proper number of frequency bands more quickly than EBA.

The results for assessing the accuracy of the band placement via the Rand Index is shown in

2.3. In time, SpeLLL outperformed PELT for every sample size in the banding in frequency and

banding in frequency/time scenarios. The issue with PELT finding false temporal breakpoints in

the banding in frequency scenario affected the Rand Index in banding in frequency. In frequency,

SpeLLL outperformed EBA for every sample size in the banding in frequency and banding in

frequency/time scenarios.

Overall, SpeLLL is not only able to estimate the number of bands better than EBA or PELT,

but it also places the location of the breakpoints for those bands much more accurately than either

method. This is especially true in low sample sizes.
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Table 2.3: Comparison of SpeLLL to existing methods: Rand Index for frequency/time bands.

Time Frequency

Scenario T PELT SpeLLL SpeLLL EBA

WN

500 1.00 1.00 1.00 1.00

5000 1.00 1.00 1.00 1.00

15000 1.00 1.00 1.00 1.00

BF

500 1.00 0.99 0.83 0.42

5000 0.99 1.00 0.97 0.80

15000 0.90 1.00 0.99 0.85

BFT

500 0.20 0.85 0.69 0.35

5000 0.77 0.99 0.96 0.80

15000 0.95 0.99 0.98 0.87

Simulation results comparing the Rank Index between methods for 1000 simulations runs.
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Figure 2.2: True and estimated rank structure for one run of banding in frequency.

True and estimated log power spectrum values from a single run of the banding in frequency scenario. The
top row shows the results from the first layer recovered by SpeLLL compared to the first layer of the SVD

of the true power spectrum. The bottom row compares the second layers.

2.4.4 Interpretablity

The one of the unique strengths of SpeLLL is the ability to break the power spectrum up into

layers which are then processed individually. Figure 2.2 shows each of the two spectral layers for

the banding in time scenario. We can clearly see that SpeLLL shrinks the white noise estimates

to zero and forces adjacent time and frequency bins to be similar to one another. Simulating this

scenario requires two steps. The first step involves running a high pass and a low pass filter over

two time series. The second step adds a coefficient which makes the high pass time series more

dominate later in time and the low pass time series more dominate early in time. Then the resulting

time series are combined.

Referring to Figure 2.2, we can see that the first layer shows two clearly defined bands of power,

one at low frequency and one at high frequency. The bands of high and low power are analogous

to the high and low pass filters used to generate this simulated time series. In layer 2 we see that

within the frequency bands captured by layer, power is increasing over time for high frequencies

and decreasing over time for low frequencies. This seems to correspond to adding the coefficient
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Figure 2.3: Visual comparison of û and v̂ between methods.

The recovered û and v̂ vectors for the first layer of the BFT scenario with T = 15000. The first row is the
true u and v, and the rest are from the four spectral estimation techniques considered in this section as

indicated by the plot titles.
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to make the high pass more dominate later in time and the low pass dominant early in time. By

breaking up the spectrum into layers and then smoothing and adding sparsity individually, SpeLLL

is able to clearly capture the processes involved in simulating the time series for these scenarios.

Another unique property which allows SpeLLL to recover interpretable estimates of the spec-

tral density is the smoothness and sparsity of the estimated u and v vectors. The u vector provides

a summary of the temporal dynamics and the v vector provides a summary of the frequency dy-

namics of the power spectrum. These vectors can also be created by performing SVD on other

methods, but the result is noisy and not sparse.

Figure 2.3 shows the û and v̂ vectors recovered for the first layer of the BFT scenario with

T = 15000. The top row is the u and v from the true power spectrum. We see that the changes in

time and frequency are generally smooth with an abrupt shift to zero during the time and frequency

periods of white noise for this scenario. The rows below show the û and v̂ recovered from each of

the methods tested in this section. When visually comparing the four methods, it is easy to see that

the fusion penalty introduced by SpeLLL allows the estimate of the u and v vectors to be much

less noisy than the other methods. This makes it easier to spot patterns across time or frequency.

The other noteworthy difference between SpeLLL and the other methods is that portions of the

û and v̂ vectors are set completely to zero. This makes identifying periods of white noise in the

power spectrum simple compared to the other methods where it is unclear whether the peaks in û

and v̂ are white noise or just areas of low power.

Overall, the smoothness and sparsity of the û and v̂ vectors recovered by SpeLLL make them

a powerful tool to be able to interpret time and frequency patterns in the power spectrum. This will

be well illustrated in the next section as we apply SpeLLL to real world data.

2.5 Application: Heart Rate Variability

Stress can have a negative impact on the way that we sleep. It is relatively straightforward

to examine how stress and worry delay the time it takes to fall asleep. However, it takes more

sophisticated techniques to study how stress affects the nonrapid eye movement (NREM) and rapid

eye movement (REM) stages of a night of sleep (Hall et al., 2004). Tracking how stress affects
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the body as it cycles between NREM, REM, and wakefulness is critical to understanding the full

picture of the relationship between sleep and stress. One method researchers are increasingly using

to attempt to quantify stress is through tracking the function of the autonomic nervous system

(ANS) by measuring heart rate variability (HRV) (Malik et al., 1996; Shaffer and Ginsberg, 2017;

Bonnet and Arand, 1997).

HRV is the elapsed time between consecutive heart beats. Power in certain frequencies of

the spectral density function of HRV is associated with arousal in different systems of the ANS.

Power in the high frequency (HF) band (0.15− 0.4 Hz) is associated with the parasympathetic, or

rest/relax, response. Increased power in lower frequency (LF) band (0.04− 0.15 Hz) accompanied

by a decline of power in the HF band is associated with the sympathetic, or stress, response. And

power in very low frequency (VLF) band (< .04 Hz) is associated with slow regulatory mecha-

nisms of the body (Malik et al., 1996). In general, REM sleep typically shows increased activity

in the sympathetic response and NREM sleep shows increased activity in the parasympathetic

response (Hall et al., 2004).

To examine the sleep characteristics of an individual under stress, we analyze the HRV time

series from a participant in the AgeWise Caregiver Study. Participants in this study were the

primary caregiver for spouses with Alzheimer’s, Parkinson’s, or other advanced forms of dementia

who reported disruptive sleep problems. For further information on inclusion/exclusion criteria for

this study, refer to (Taylor et al., 2015).

2.5.1 Data Processing

The HRV of the participant randomly selected from the study pool was detrended, interpolated,

and sampled at a rate of once per second over 8.6 hours of sleep. The resulting time series contained

T = 31680 time points. Figure 2.4 shows a plot of the resulting HRV time series. The colored

bar at the top represents which sleep stage (NREM, REM, or Awake) the participant was in at the

given time point. These sleep stages were derived from an electroencephalogram by a trained sleep

technician using established protocols.

This time series was then partitioned into thee minute intervals based on the suggestion by

(Malik et al., 1996), leading to B = 170 time blocks. A Fourier transform was then applied to
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Figure 2.4: Processed HRV data.

The processed HRV time series measured over the course of a night for a single participant. The
corresponding sleep stages as reported by a trained sleep technician are indicated in the colored bar at the

top of the plot. Blue = awake; green = NREM; orange = REM.

each time block to calculate the periodogram for each interval. Each of the B transformations was

then stacked to create a 170× 90 matrix Y. This matrix was then centered and logged.

Two different X matricies were used to analyze the data. For the first analysis we used X = I

to get a general estimate of the rank structure of the power spectrum. In the second analysis we

incorporated the sleep stage information into the columns of X. To do this, the time blocks were

further partitioned into sleep stage epochs where one epoch consisted of all adjacent time blocks

with the same sleep stage. For instance, the first b blocks of time where the participant was awake

would be one epoch. Then if the participant entered a period of NREM, the next b blocks would

be considered a second epoch and so on. All together there were 34 sleep stage epochs throughout

the night. The columns of X then consisted of indicators such that

X =
[
I(bi = 1)′, I(bi = 2)′, ..., I(bi = 34)′

]
for i = 1, ..., 170

where bi is the sleep epoch number for each time bin. Then the columns of X were permuted so

that the sleep stages were adjacent to each other. Namely, the first awake epoch was adjacent to

the second awake epoch and so on. The graph for the fusion penalty was then modified so that the
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Figure 2.5: First estimated layer of HRV log power spectrum for X = I.

First layer of HRV log power spectrum (left) and its corresponding û and v̂ vectors (right). Frequency time
points with zero value have been removed in the plot of Ĉ. The colored bar over the plot of û indicates

which sleep stage the participant was in for a given time bin. Blue=awake; green=NREM; orange=REM.
The colored bar over the plot of v̂ indicates which of the traditionally used frequency bands a given

frequency is in. Dark=VLF; medium=LF; light=HF.

last awake epoch would not be linked to the first NREM epoch and the last NREM epoch would

not be linked to the first REM epoch.

2.5.2 Analysis for X = I

Ordinary least squares reduced-rank regression was performed on Y to get an initial estimate

for the SpeLLL algorithm. The singular values of this initial estimate were examined and it was

determined that the rank of Y was 3. The algorithm was then applied to decompose, smooth, and

localize the HRV power spectrum.

Figure 2.5 shows the results for the first layer of the HRV power spectrum. The plot of Ĉ1

shows three regions of nonzero power. The plot of v̂1 indicates that most of this power occurs

in the VLF frequency band and extends into the LF frequency band. This seems to indicate a

slow, regulatory process that dominates the power spectrum throughout the night. Two additional

frequency bands occur in the HF band of the power spectrum. The plot of û1 shows no localization
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Figure 2.6: Second estimated layer of HRV log power spectrum for X = I.

Second layer of HRV log power spectrum (right) and its corresponding û and v̂ vectors (left). Frequency
time points with zero value have been removed in the plot of Ĉ. Color bar for û: Blue=awake,

green=NREM, orange=REM. Color bar for v̂: dark=VLF, medium=LF, light=HF.

in time (likely due to problems with resolving low frequency signals in time), but it does show

drops in power occurring in periods of NREM sleep directly before REM sleep.

Figure 2.6 shows the results for the second layer of the HRV power spectrum. The plot of Ĉ2

shows two regions of nonzero power, and the plot of v̂2 indicates that these bands occur in the VLF

and HF frequency range. For the HF band, the plot of û2 shows three main peaks of power which

correspond to periods of NREM sleep. Interestingly, these three periods are identifiable in Figure

2.4 as regions where the HRV time series is tighter about the zero axis. Since the parasympathetic

nervous system is more likely to be activated during NREM sleep (Bonnet and Arand, 1997), this

finding agrees with the current HRV literature.

Figure 2.7 shows the results for the third layer of the HRV power spectrum. The plot of Ĉ3

shows two bands of power, one lower frequency band, which has a peak early and a peak the end

of the night, and another which has a peak in the later half of the night. The plot of v̂3 indicates

that these two bands occur in the LF and HF frequency regions. Since the LF band includes

some influences from the sympathetic nervous system as well as the parasympathetic nervous

system, typically clinicians think of the sympathetic contribution to the HRV power spectrum in

27



Figure 2.7: Third layer of HRV log power spectrum for X = I.

Third layer of HRV log power spectrum (left) and its corresponding û and v̂ vectors (right). Frequency
time points with zero value have been removed in the plot of Ĉ. Color bar for û: Blue=awake,

green=NREM, orange=REM. Color bar for v̂: dark=VLF, medium=LF, light=HF.

terms of a ratio of LF/HF contributions (Bonnet and Arand, 1997). This shows up in this layer as

decreased regions of power in the HF band directly tied to increased regions of power in the LF

band. Examining the plot of û3 shows that the peaks of power in the LF band in the first half of

the night correspond to the first episode of REM and the awake period before the second episode

of REM. The peaks of power in the second half of the night occur in the HF band as the subject

rapidly cycles between awake, NREM, and REM and then the power switches to the LF band right

before the subject wakes up for the day.

The overall estimate of the HRV power spectrum is found by summing all three layers together.

Figure 2.8 showcases one unique feature of SpeLLL. If certain layers are not of particular interest

in examining features of the power spectrum, they can simply be left out of the summation as

a means of filtering out unimportant information. Here layer one dominates the estimate of the

power spectrum, but the VLF power band does not provide important information regarding how

the participant’s sleep varied over the course of the night. The plot of only layer two and three

gives a clearer view of where peaks of power occurred throughout the night and at what frequency.
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Figure 2.8: Final estimate of HRV log power spectrum for X = I.

Left: All three layers summed together for a final estimate of Ĉ. Right: The estimate of the spectrum
without the first layer, namely Ĉ2 + Ĉ3. This illustrates the ability of SpeLLL to remove less pertinent

information from the power spectrum if desired.

2.5.3 Analysis for Sleep Epoch X

Ordinary least squares regression was performed and it was determined that the rank of Ĉ for

this analysis is 2. Figure 2.9 shows the estimate of the power spectrum recovered from SpeLLL

and Figure 2.10 plots the û and v̂ vectors for both layers. In both layers the contribution to the

power spectrum from the epochs where the participant was awake were removed almost entirely.

The plots of v̂ for the first and second layer reflect patterns related to the LF/HF ratio that

researchers typically connect with the sympathetic response of the ANS. In layer 1 this ratio would

be large because of a concentration of power in the LF band and a smaller ridge of power in the HF

band indicating a stress response of the body. This pattern is seen in the earlier NREM and REM

epochs, perhaps indicating that the subject took longer to settle into restful sleep. It is also seen in

the later NREM and REM epochs as the participant shifts into wakefulness.

In layer 2, the plot of v̂2 shows a different LF/HF ratio. Here we see almost no contribution to

the power spectrum from the LF and a prominent ridge of power from the HF. This is consistent

with a parasympathetic response. This pattern occurs mostly in the middle sleep epochs for the

NREM stage as the subject settles in to restful sleep and is reversed in the final epoch of REM
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Figure 2.9: Estimated value of HRV log power spectrum for sleep epoch X.

The estimated value of Ĉ for each layer and overall. Time frequency points which contribute zero to the
estimate are removed from the plot for the first and second layers. The black lines within each layer plot
denotes the boundaries between sleep stage contributions to the estimate: left = Awake, middle = NREM,

right = REM.

Figure 2.10: Estimated left and right singular vectors for sleep epoch X.

Estimate of v̂ and û for first and second layer. Color bar for u: Blue=awake, green=NREM, orange=REM.
Color bar for v: dark=VLF, medium=LF, light=HF.
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sleep. This reversal could be due to an active dream or the sympathetic nervous system ramping

up in preparation for the morning.

Overall this analysis reflects similar dynamics to those seen when X = I, but summarized in a

more parsimonious way.

2.6 Discussion

The SpeLLL algorithm reframes a traditional method to handle nonstationary time series data

as a penalized reduced-rank regression problem. The unique advantages of moving to this frame-

work are threefold. First, it uses SVD to break the estimate of the power spectrum up into multiple

layers which can be examined individually. This brings out patterns in the data which may get lost

when the power spectrum is considered as a whole. In the first HRV analysis, dynamics captured

in the third layer were difficult to pick up on when viewing the power spectrum overall. However

when examined by itself, the increased power in the LF band for the first period of REM was quite

clear. Second, it imposes smoothness and sparsity to each layer of the spectral estimate which

greatly improves the interpretability of the output. This was shown in the HRV data as localized

bands in frequency and time that could be easily classified according to sleep stage or ANS fre-

quency band. Third, it provides a parsimonious estimate of the power spectrum, since each spectral

layer consists of only two vectors and a scaler. Plotting the u and v for the HRV data alongside

meaningful frequency and time categorizations allowed for easy examination of frequency and

time domain characteristics.

Additionally, this model allows for the incorporation of time or frequency specific covariates.

In the HRV analysis we used sleep stage epochs to include within the model further information of

interest. This provided us with interpretable LF/HF characteristics of the HRV power spectrum that

were less clear without using this information. Another potential source of covariate information

would be known frequency bands. One could transpose the matrix Y and create an X matrix which

indicates which frequency band a particular frequency bin landed in.

A more complicated extension would be to take advantage of the parsimonious output of

SpeLLL and extend it to the multiple time series case via penalized tensor principal components
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analysis. This would allow researchers to estimate a time-varying basis vector u and a frequency-

varying basis vector v for a larger number of participants. A third vector would then be added to

the mix which could give information on how the time/frequency basis vectors varied based on

subject level covariates.
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3.0 Weighted Factor Model for High Dimensional Stationary Time Series

3.1 Introduction

As time series data collection becomes easier, cheaper, and more prevalent, the amount of

research being done involving multiple processes measured over time has increased. Many re-

searchers are interested in finding patterns that exist within and across the power spectra of these

processes as well as how these patterns relate to covariates of interest. However, the analysis

becomes more challenging with increasing dimensionality of the time series.

For instance, the motivating application of this chapter involves the analysis of 64-channel high

density resting-state electronencephalography (EEG) measured on first-episode psychosis patients

(FEP) vs healthy controls (HC). Resting state EEG measures brain activity during wakefulness

while the subject is in a relaxed state. Because it is free of the confounding effects of level of

attention and motivation that exist in EEG measured while the subject is performing a task, the

frequency domain characteristics of this type of EEG can give insight into intrinsic differences in

brain function between HC and FEP (Khanna et al., 2015). These differences could potentially

serve as a clinical biomarker for schizophrenia. However because the dimensionality of the time

series information gathered by 64-channel EEG on each individual is so large, existing methodol-

ogy to analyze this type of data in relation to subject-level covariates is sparse.

The difficulties faced when performing this type of estimation are two-fold. First the high di-

mensionality of the problem requires that the number of parameters estimated at each frequency

is on the order of P 2, where P is the dimension of the time series. This poses serious computa-

tional challenges due to the unstable condition number of large spectral density matrices. Existing

methodology for analyzing high dimensional stationary time series includes shrinkage estimators

(Ledoit and Wolf, 2004; Bohm and von Sachs, 2009; Fiecas et al., 2010; Fiecas and Ombao, 2011;

Fiecas and von Sachs, 2014; Schneider-Luftman and Walden, 2016), which involves shrinking the

estimate of the spectral density to a target matrix; thresholding estimators (Sun et al., 2018), which

are extensions of recent developments in the field of covariance matrix estimators (Bickel and Lev-

ina, 2008; Cai and Zhou, 2011) and are derived from thresholding averaged periodiograms; and

33



factor models, which involve decomposing the time series into a vector of factors and a loading ma-

trix. Factor models have been extensively studied in the stationary time domain–see Ensor (2013)

for a review paper. However, there are few examples of factor models in the frequency domain

(Stoffer, 1999; Macaro and Prado, 2014; Li et al., 2019). Furthermore, none of these methods pro-

vide for the use of covariates in the estimation procedure or allow estimation of a common power

spectrum for multiple multivariate time series.

In the multiple univariate time series setting, Cadonna et al. (2019) and Bertolacci et al. (2019)

use a Bayesian mixture model to estimate power spectra dependent on covariates. AdaptSpecX

uses a Gibbs sampler to estimate the power spectrum of nonstationary multiple time series data.

White it allows for a large number of time series, it does not provide an adaptation to estimate the

coherence necessary for multiple multivariate spectral analysis. On the other hand, Cadonna et al.

(2019) does provide some discussion on how to adapt their method to accommodate the challenges

of analyzing multivariate time series data, but admit that in practice their method would only be

able to handle at most a 2-3 dimensional time series.

In this chapter we introduce a novel method for the estimation of covariate dependent high

dimensional stationary power spectra. Our approach uses an extension of the Whittle likelihood

based factor model representation of the power spectrum from Li et al. (2019) that allows us to

estimate a common spectral density for N independent multivariate time series. The use of a fac-

tor model paradigm allows us mitigate the challenges inherent in the high dimensional setting by

representing the spectral density matrix using a Q × P loading matrix where Q < P . This effec-

tively reduces the number of parameters to be estimated. Then we embed the resulting estimation

procedure into a Bayesian mixture model framework (Gelman et al., 2014). The power spectrum

is therefore decomposed into several basis functions multiplied by covariate dependent weights

modeled as a multinomial logistic regression. This allows us to estimate a spectral density matrix

conditional on any combination of subject-level covariates.

The rest of the chapter is outlined as follows. Section 3.2 gives an overview of the methodology

for this chapter and provides an outline of the sampling scheme used. A simulation study is then

performed in Section 3.3 to assess the performance of the model in known conditions. Then in

Section 3.4 the 64 channel EEG data is analyzed. And the chapter is concluded in Section 3.5 with

an overview of results.
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3.2 Methodology

The machinery for this model consists of two main parts. In section 3.2.1 we review the factor

model introduced by Li et al. (2019) to estimate the power spectrum from a single stationary high

dimensional multivariate time series. Then in section 3.2.2 we modify this framework to estimate

a common power spectrum from N multivariate time series. We extend this further in section 3.2.3

by embedding the factor model into a Bayesian mixture model framework which will allow us to

introduce covariates into the estimation procedure.

3.2.1 Likelihood for Single Multivariate Time Series

Let Xt = (X1,t, ..., XP,t)
′ for t = 1, ..., T be a single P dimensional vector-valued time series.

Xt has a factor model Cramér representation given by

Xt =

∫ 1

0

Λ(ω) exp(2πiωt)dZ(ω) + ε, (3.1)

that decomposes Xt into a set of Q common factors and factor loadings. Here dZ(ω) is an Q

dimensional mean-zero orthogonal incremental process with unit variance, ε is a P dimensional

white noise term, and Λ(ω) is a P ×Q loading matrix at frequency ω ∈ R.

The power spectrum is then given by

f(ω) = Λ(ω)Λ(ω)∗ + Σε (3.2)

where Λ∗ is the conjugate transpose of Λ and Σ is a P × P covariance matrix of ε. The spec-

tral matrix f(ω) then becomes a complex-valued Hermitian matrix of dimension P × P at every

frequency ω (Li et al., 2019; Ensor, 2013; Macaro and Prado, 2014).

The advantage of this structure is it allows for an infinite number of factors with quickly decay-

ing loadings. This is accomplished by using a tensor product penalized spline and multiplicative

gamma process shrinkage prior which is robust against the choice of number of factors. By choos-

ing Q < P the curse of dimensionality is mitigated somewhat allowing for estimation of high

dimensional spectra.

To map Xt into the frequency domain, the discrete Fourier transform at each frequency k is

used such that
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Yk = T−1/2
T∑
t=1

Xt exp(−2πiωkj), for k = 1, ..., K,

where ωk = k/T are the Fourier frequencies and K = b(T − 1)/2c. By some regularity

conditions, each Yk are independently distributed complex normal such that Yk ∼ CN(0, f(ωk))

(Brillinger, 2002).

Following Li et al. (2019), we let Dk =
∫ ωk

0
Z(ω) dω,Ek = T−1/2

∑T
t=1 εt exp(−2πiωkt), and

Λk = Λ(ωk). This leads us to

Yk ≈ ΛkDk + Ek,

with Dk ∼ CN(0, IQ) and Ek ∼ CN(0,Σε). Then the conditional Whittle likelihood for this

series is given by

L(Y|Λ,D,Σ) ≈
K∏
k=1

P∏
p=1

[
σ−1ε,p exp

(
σ−1ε,p |Ykp − Λ

(p)
k Dk|2

)]
(3.3)

where Y is the discrete Fourier transforms of the time series such that Ykp is the pth element of

Yk. Λ and D denote collections of loadings and factors respectively. And σ2
ε,p is the pth diagonal

element of Σε. We refer the interested reader to (Li et al., 2019) for the prior distributions of Λ and

σε,p for this model.

3.2.2 Likelihood for Multiple Multivariate Time Series

Now we wish to extend this model to include j = 1, ..., N independent multivariate time series.

Let Xjt = (Xj,1,t, ..., Xj,P,t) for t = 1, ..., T and j = 1, ..., N be the P dimensional multivariate

time series for the jth subject at time t. Similar to equation 3.1 above, this time series has a factor

model representation given by

Xjt =

∫ 1

0

Λ(ω) exp(2πiωt)dZj(ω) + ε, (3.4)

Here we assume that all N time series share a loading matrix Λ(ω), with individual factors and

independent identically distributed errors. Following the same methodology as above and Fourier

transforming the Xjt’s into the frequency domain gives

Yjk ≈ ΛkDjk + Ek
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where Djk, Ek, and Λk have the same distributions as in Section 3.2.1. It then follows that the

conditional Whittle likelihood for Y is

L(Y|Λ,D,Σ) ≈
N∏
j=1

K∏
k=1

P∏
p=1

[
σ−1ε,p exp

(
σ−2ε,p |Yjkp − ΛkpDjk|2

)]
(3.5)

Here the notation is the same as equation 3.3, but includes an extra subscript j to account for more

than one independent time multivariate series.

The prior that is chosen for σε,p is an independent Half-t(ν,Gε) where the hyperparameters are

known constants (Gelman, 2006). Often this distribution is modeled using a mixture of inverse

gamma distributions IG(a, b), with densities p(x) ∝ x−(a+1) exp(−b/x), x > 0 (Wand et al.,

2012). Here we use p(σ2
ε,p|gε,p) ∼ IG(ν/2, ν/gε,p) and p(gε,p) ∼ IG(1/2, 1/G2

ε,p).

The prior for Λ allows for the loadings to decay for large P , thus most of the information

exists in the first few factors. The real and imaginary parts of the entires are modeled using tensor

products of Bayesian penalized splines (Krafty et al., 2017; Li et al., 2019) and multiplicative

gamma process shrinkage priors (Bhattacharya and Dunson, 2011). Here the first S Demmler-

Reinsch basis functions are used such that

Re(Λpq(ω)) = αpq0 +
S−1∑
s=1

αpqs
√

2 cos(2πsω) (3.6)

Im(Λpq(ω)) =
S∑
s=1

βpqs
√

2 sin(2πsω). (3.7)

Krafty and Collinge (2013) shows that these basis functions improve performance by restrict-

ing the functions of the real parts of the matrix to be even and the imaginary parts to be odd.

Conditioned on a smoothing parameter τ 2, independent N(0, [2πs]−1τ 2) priors are placed on the

coefficients. To concentrate the information in the first q factors, we follow the methodology of

Li et al. (2019) and use a prior that is a tensor product of the penalize spline prior and a gamma

process shrinkage prior. The prior distributions for the spline coefficients then become

αpq0 ∼ N
(

0, ψ−1q(re)

)
, αpqs ∼ N

(
0, ψ−1q(re)τ

2
pq(re)(2πs)

−1
)

for s = 1, ..., S − 1

βpqs ∼ N
(

0, ψ−1q(im)τ
2
pq(im)(2πs)

−1
)

for s = 1, ..., S
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And the prior distributions for the smoothing and shrinkage parameters are

τpq(.) ∼ Half-t(ν,G2
τ )

φ1(.) ∼ G(a1, 1) and φq(.) ∼ G(a2, 1) for q ≥ 2

where a1 and a2 are fixed constants, (.) denotes (re) or (im), and ψq(.) =
∏q

h=1 φh(.).

The choice of these priors allows for two computational advantages. First the shrinkage pa-

rameters are increasing for a2 > 1, allowing for an infinite number of factors with decaying load-

ings. This provides a good representation of the multivariate spectrum and reduces sensitivity to

the number of factors chosen. Second we only require S < K basis functions for the Bayesian

smoothing spline, where K would be full rank. This allows us to simplify the computation without

introducing error into the fit (Krafty et al., 2017; Li and Krafty, 2019).

3.2.3 Introducing Covariates via a Bayesian Mixture Model

Suppose now that Xj for j = 1, ..., N has an M dimensional vector of associated covariates

vj = (v1, ..., vM)′. We incorporate vj into the estimate of the spectral density matrix via a finite

Bayesian mixture model with covariate-dependent mixture weights. The overall likelihood for Yj

is given by

L(Yj|vj,Λ,Σε,Dj) ∝
H∑
h=1

πh(vj)Lh(Yj|Λ(h),Σ(h)
ε ,D

(h)
j ) (3.8)

where h = 1, ..., H denotes the mixture component, Λ(h),Σ
(h)
ε ,D(h) are the parameters associated

with with hth component, and 0 ≤ πh(vj) ≤ 1 and
∑H

h=1 πh(vj) = 1 (Bertolacci et al., 2019;

Gelman et al., 2014).

To aid in the estimation of this model, latent variables zj ∈ {1, ..., H} are introduced such that

(Yj|zj = h) ∼ Lh(Yj|Λ(h),Σ(h)
ε ,D(h)),

where Lh is the conditional Whittle likelihood given in Equation 3.5. This formulation allows us

to estimate the parameters for component h using the Yj’s that are assigned to the hth component

by zj using the methodology previously recorded in Section 3.2.2.
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There exist many methods to model the mixture weight πh(v) such as the logit stick-breaking

prior of Rigon and Durante (2017) used by Bertolacci et al. (2019) in their spectral density mix-

ture model. Cadonna et al. (2019) model frequency weights using logistic regression. Here the

mixture weights are modeled using a multinomial logistic regression. Component membership

zj′ = (zj′1, ..., zj′H)′ where zj′h = I(zj = h) is regressed on covariates vj to estimate an m ×H

coefficient matrix γ. Then

πh(vj) =
exp(vjγh)∑H
h=1 exp(vjγh)

(3.9)

where γH has been constrained to 0 to maintain identifiability.

Classically a Metropolis-Hastings algorithm has been used to estimate γ for regression models

with binomial likelihoods. However, more recently Polson et al. (2013) showed that γ can be

sampled using a Gibbs sampler formulation by introducing a data-augmentation scheme which

incorporates a Polya-Gamma distributed latent variable. A multivariate normal prior is placed on

γh so that γh ∼MVN(m0h,V0h) and γh is sampled conditional on ηih where ηih is distributed as

a Polya-Gamma. For more details see Appendix section A.2.

3.2.4 Sampling Scheme

Let z = (z1, ..., zN), γ = γ1, ..., γH , Θh = {Λ(h),Σ
(h)
ε ,D

(h)
j }, Θ = {Θ1, ...,Θh}. Initialize all

parameters. Then the sampling scheme is as follows:

1. Draw (Θh|z,Y) for h = 1, ..., H using the methodology in section A.2.1.

2. Draw (z|γ,Θ,Y) for j = 1, ..., N using the methodology in A.2.3.

3. (γh|z) for h = 1, ..., H using the Polya-Gamma augmentation mentioned earlier in section.

More specifics of the posterior distributions can be found in A.2.4.

3.2.4.1 Label Swapping One issue to make note of in any mixture model setting is label swap-

ping (Gelman et al., 2014). In the analysis for Section 3.3 and Section 3.4, we are interested in the

total estimate of the power spectrum not in examining individual components directly. However,

if one wanted to perform inference using individual mixture components an order criteria could be

imposed as fourth step in the sampling scheme which would order the components by Frobenius

norm of Λ(h).
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3.3 Simulations

3.3.1 Simulation Scenario

To assess the performance of this method we assumed that N multivariate time series were

randomly sampled from two groups with basis functions x(1)t and x(2)t where

x
(1)
t = εt + Φ11εt−1 + Φ12εt−2

x
(2)
t = εt + Φ21εt−1 + Φ22εt−2.

The matrices Φ are P × P block diagonal such that Φ11 = IP/3 ⊗ Φ†11, Φ12 = IP/3 ⊗ Φ†12,

Φ21 = IP/3 ⊗ Φ†21, and Φ22 = IP/3 ⊗ Φ†22. Here ⊗ indicates the kronecker product, IP/3 is a

P/3× P/3 identity matrix, and

Φ†11 =


0.7 0 0

0.2 −0.6 0

0.1 0.2 0.6

 ,Φ†21 =


0.5 0 0

0.2 0.6 0

−0.1 −0.2 −0.6



Φ†12 =


0.3 0 0

0 0.3 0

0 0 0

 ,Φ†22 =


−0.3 0 0

0 0.3 0

0 0 0


The noise term εt ∼ NP (0,Ω) where Ω = IP/3 ⊗ Ω†. Ω† denotes a 3 × 3 matrix with 1s on the

diagonal and 0.5s on the off diagonal. Then the time series Xjt for j = 1, ..., N are simulated as

Xjt =

0.4x
(1)
t + 0.6x

(2)
t if vj = 0

0.6x
(1)
t + 0.4x

(2)
t if vj = 1

where vj ∼ BER(.5) indicates group membership and is the covariate of interest in the simulation.

The true power spectrum fj(ω) for j = 1, ..., N is then given by

fj(ω) =

0.42f (1)(ω) + 0.62f (2)(ω) if vj = 0

0.62f (1)(ω) + 0.42f (2)(ω) if vj = 1

where f (b)(ω) for b = 1, 2 is the power spectrum for the bth basis function, and

f (b)(ω) = Φ(b)(ω)ΩΦ(b)(ω)∗

with Φ(ω)(b) = I + Φb1 exp(−2πiω) + Φb2 exp(−4πiω).
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3.3.2 Performance Metrics

We seek to quantify predication accuracy and performance in estimating association of covari-

ate v with differences in the power spectrum.

Predication accuracy is measured using mean squared error (PMSE) obtained by averaging the

MSE for each frequency across all levels of covariates. In this case since the possible values of the

covariates are v = 1 and v = 0 the formula is given by

PMSE =

∑2
i=1

∑K
k=1 ||f̂i(ωk)− fi(ωk)||2F

2K

where ||.||F is the Frobenius norm and f̂i(ωk) is the estimated spectral density for v = i at Fourier

frequency k.

To assess whether the method recovers the true effect of covariate v we use the MSE of the

difference between v = 1 and v = 0.

EMSE =

∑K
k=1 ||∆̂f(ωk)−∆f(ωk)||2F

K

where ∆̂f(ωk) is the difference in spectral density for v = 0 and v = 1 at frequency k, namely

∆̂f(ωk) = f̂v=1(ωk)− f̂v=0(ωk)

3.3.3 Comparison

There are no existing methods which provide a covariate dependent estimate of the entire

power spectrum for multivariate time series. However, we seek to compare our method to an ad

hoc procedure a clinician could feasibly use to provide a covariate based spectral density estimate.

First the multivariate power spectrum is estimated individually on each time series using a

periodogram smoothed with a Daniell kernel. Then the matrix log of the P × P spectral density

matrix at each frequency for each subject is calculated. Each diagonal and off diagonal element

from the power spectrum from each time series is gathered into anN×k matrix. Then multivariate

regression is performed and the estimated spectral density for the ith jth component is calculated

as

Ŷij = Vβ
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Table 3.1: Simulation results comparing mixture model to regression model.

Mixture Model Regression

PMSE EMSE PMSE EMSE

n=40, p=9, t=500 0.18 (0.02) 0.22 (0.04) 0.54 (0.02) 0.26 (0.01)

n=80, p=9, t=500 0.15 (0.02) 0.16 (0.03) 0.52 (0.01) 0.20 (0.01)

n=40, p=18, t=500 0.63 (0.35) 0.78 (0.97) 2.22 (0.04) 1.06 (0.03)

n=40, p=9, t=1000 0.17 (0.01) 0.22 (0.03) 0.53 (0.01) 0.23 (0.01)

Results for simulations. PMSE = predicted mean squared error. EMSE = effect mean squared error.
Reported as mean (sd) over 100 simulated data sets.

where Ŷij is the estimated spectral density, β is the coefficient matrix obtained by regressing Y

on V. Then the spectrum is averaged across all v = 0 and v = 1 to create the ith jth component

of the estimated spectrum of v = 1 and v = 0. Then the final step involved piecing the resulting

spectral densities back together and taking the matrix exponential of each P × P matrix at each

frequency.

The performance of this method is compared to the performance of the Bayesian mixture model

on 100 datasets generated from the process described in 3.3.1. For these simulations we set the

number of smoothing splines S = 10, the number of possible mixture components H = 10, the

number of factors Q = dP/2e.

3.3.4 Simulation Results

The PMSE and EMSE generated by the simulations using the Bayesian mixture model and the

regression comparison method are reported in Table 3.1.

Our method outperforms the regression in every setting, both in estimating the value of the

spectral density matrix and also in estimating the difference between the estimate of v = 0 and

v = 1. This is especially true in the case when P = 18 as the prediction error for the regression is

42



nearly four times higher than that of the mixture model. This reflects the difficulties of estimating

high dimensional spectral matrices. In the other settings the PMSE is a little over twice that of

the mixture model. The value of EMSE is closer when comparing the two methods, but the mix-

ture model again proves to be more accurate at estimating the true distance between the spectral

matrices for v = 0 and v = 1.

Focusing specifically on the mixture model, the PMSE is generally lower than EMSE suggest-

ing that the method is slightly better at estimating predicted power spectra than difference in two

power spectra. However, the numbers are still comparable suggesting that its a robust method in

both settings. Comparing to the n = 40, p = 9, t = 500 setting, we see that the method per-

forms better when n or t increases since more information is being added to the model. However,

the accuracy decreases when the dimension doubles, which again reflects the difficulties of high

dimensional problems.

Figure 3.1 plots the estimated diagonal and off diagonal spectral density components for v = 0

and v = 1 against the predicted values for one data set in the n = 80, p = 9, t = 500 setting.

In components where the spectral matrix was less similar between v = 0 and v = 1, such as

the imaginary parts of the cross spectra, the recovered values more tightly overlay the truth. In

components where the spectral matrix is more similar the method still shows good separation

between the different covariate values.

3.4 Application: High Density EEG

Previous research has shown that there are intrinsic differences in the activity of healthy and

schizophrenic brains. Because resting state EEG is measured when the brain is not focusing on a

specific task, it is often utilized to quantify these differences (Khanna et al., 2015). Typically power

in traditionally defined frequency bands is assessed. Delta waves (< 5 Hz) are typically associated

with deep relaxation and sleep. Theta waves (5-7 Hz) tend to be most active during daydreaming

and sleep. Alpha waves (7-15 Hz) are usually the most activated during a restful activity while

awake. And beta waves (15-30 Hz) are associated with active thinking and concentration.
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Figure 3.1: True and recovered values from one run of simulation.

Estimated power spectrum for first three components from one simulated data set from the
n = 80, p = 9, t = 500 scenario. Orange is estimate for v = 1 and green is for v = 0. The solid line is the
recovered estimate and the dashed line is the true power spectrum. Top row: Power spectrum for first three

components, f1,1(ω), f2,2(ω), and f3,3(ω). Middle row: Real parts of the cross spectra f1,2(ω), f1,3(ω),
and f2,3(ω). Bottom row: Imaginary parts of the cross spectra f1,2(ω), f1,3(ω), and f2,3(ω).
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Research comparing schizophrenic subjects to healthy controls has shown a variety of results,

likely due to small sample sizes. However, a recent review paper by Newson and Thiagarajan

(2019) reports that the most consistent findings are lower power in the alpha frequency band for

schizophrenic patients and higher power in the delta and theta bands. This pattern of brain activity

is indicative of an inappropriate arousal state and leads to a reduced ability to focus on relevant

information. Interestingly some studies found that this trend held for the frontal part of the brain,

but was flipped for the posterior (Begic et al., 2019; Kim et al., 2015).

Another important aspect of EEG data analysis is looking at brain connectivity. Typically this

is measured using coherence between electrodes. In review papers focused on coherence between

electrode signals, researchers found that subjects with schizophrenia have increased coherence

compared with controls (French and Beumont, 1984). However, there was some conflicting re-

sults regarding frontal coherence in the delta and alpha frequency bands. Some studies reported

increased coherence while other studies reported decreased coherence (Leocani and Comi, 1999)

We use data gathered on first episode psychosis (FEP) and health control (HC) subjects to

demonstrate the effectiveness of the proposed method in quantifying the differences in the spectral

density between FEP and HC.

3.4.1 Study Data Processing

The total sample size of this data set was N = 43, with 17 of these being HC and 26 being

FEP. The FEP subjects were recruited from the emergency department of the Western Psychiatric

Hospital of the University of Pittsburgh Medical Center while the HC were gathered from the

community. All participants were ages 18 − 40 and had no illness or developmental disorder that

could potentially impact the central nervous system. EEG data was recorded using a 64-channel

high-density electroencephalography net using the 10-10 system while the subjects were told to sit

in a chair and relax. Signals were initially sampled at a rate of 250 Hz.

The data was then processed using MATLAB. Signals were down-sampled to 64 Hz and fil-

tered using a 1 Hz high-pass filter and a 58 Hz low-pass filter to isolate frequencies of interest.

Segments with large artifacts such as muscle activity or movement were removed from the record-

ing by a trained EEG data manager. Data was then referenced to the average of the channels, and
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more subtle artifacts such as ocular movement and cardiac signals were removed via independent

component analysis in EEGLAB (Delorme and Makeig, 2004).

3.4.2 Analysis Overview

The Bayesian mixture model method was fit to the data set using H = 10 components, S = 10

basis functions, and Q = 12 factors. It was run for a total of 10, 000 iterations with a burn in of

2, 500 iterations. In this section we specifically focus on four electrodes: FC5, which is on the

frontal left side of the brain, FC6, which is on the frontal right side of the brain; CP5 which is on

the posterior left side of the brain; and CP6, which is on the posterior right side of the brain. We

specifically choose electrodes from different hemispheres and different regions to see whether we

could recover the patterns in the spectral and coherence features of the electrodes reported in the

literature.

To assess spectral patterns in the electrodes, we plot the difference in power between HC and

FEP as well as 95% credible intervals. This allows us to get an idea of frequency of the spectra

which might be different between cases and controls. Additionally, we report frequency band

collapsed values ∫ b

a

fi,i(ω) dω

where a and b are the upper and lower range of the frequency band of interest and i indicates either

FC5, FC6, CP5, or CP6. This quantity and a 95% credible interval is reported for both HC and

FEP.

To assess coherence between electrodes, we plot the differences in pairwise squared coherences

given by
|fij(ω)|2

fii(ω)fjj(ω)

for i 6= j where i, j indicates either FC5, FC6, CP5, or CP6. We also report frequency band

collapsed values for squared coherences and the 95% credible interval for FEP and HC as

|
∫ b
a
fij(ω) dω|2∫ b

a
fii(ω) dω

∫ b
a
fjj(ω) dω

where again a and b are the upper and lower range of the frequency band of interest.
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Figure 3.2: Power spectrum: estimated differences.

Plot of estimated difference in power spectrum for four selected electrodes as well as the 95% credible
interval. Frequency bands are denoted as dotted red lines, delta, theta, low alpha, high alpha, beta.
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3.4.3 Results

Plots of the mixture components along with their respective mixture weights for FEP and HC

can be found in Appendix A.3.1.

3.4.3.1 Spectral Analysis of Individual Electrodes Figure 3.2 shows plots of the trajectory

and corresponding 95% credible intervals of the difference in the spectrum for HC and FEP across

frequency for the four electrodes of interest. Regions where the difference is greater than zero

mean that the power is higher for HC and regions where the difference is less than zero mean that

the power is higher for FEP. Frequency bands are denoted by dashed lines. The FC5 electrode

showed the most difference between HC and FEP, with significantly decreased power for FEP in

the theta, low/high alpha, and beta bands. CP5 and CP6 also showed decreased power for FEP in

portions of the low and high alpha band. FC6 and CP5 showed decreased power for FEP in the

higher frequencies of the delta band.

While we were able to replicate the finding of decreased alpha power for schizophrenic pa-

tients, we did not see the trend of increased delta and theta power. This could be due to several of

the studies in the review paper relying on subjects taking antipsychotic medication, which impacts

the generation of delta and theta band activity (Bochkarev et al., 2017). We also did not see a

difference in the pattern of the frontal and posterior spectral density, with both regions exhibit-

ing either lower power across frequency or no difference. Plots of all the spectral density for all

electrodes can be found in Appendix A.3.2.

Table 3.2 shows the frequency collapsed measures for HC and FEP and the associated 95%

credible intervals. Interestingly, when examining the frequency collapsed metrics the only signif-

icant differences appeared in the beta band of FC5 and CP5. This is likely a result of examining

covariate effect in Figure 3.2 vs prediction based on the in Table 3.2. Since frequency collapsed

measures are most often what is compared in the literature, this makes for an interesting dichotomy

which illustrates a strength of using a mixture model for this type of comparison- the mixture

model allows for an examination of frequencies of difference across the entire trajectory of the

power spectrum without relying on measures which summarize the frequency band.
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Table 3.2: Power spectrum: frequency band collapsed measures.

Delta Theta Low Alpha High Alpha Beta

FC5
HC 21.2 (19.3–22.6) 13.7 (11.1–17.4) 34.7 (29.4–41.4) 21.4 (19.2–24.1) 3.6 (3.3–4.1)
FEP 20.2 (17.7–22.0) 10.5 (9.2–12.1) 28.3 (22.9–34.7) 18.6 (15.6–21.9) 2.9 (2.6–3.1)

CP5
HC 65.6 (53.2–75.3) 22.9 (20.9–26.0) 52.2 (43.6–62.0) 28.2 (25.9–31.1) 4.8 (4.4–5.4)
FEP 59.8 (70.0–48.1) 19.5 (16.8–21.7) 46.3 (36.1–57.5) 24.8 (20.9–28.8) 3.9 (3.5–4.3)

CP6
HC 30.4 (25.6–34.7) 14.3 (13.7–15.0) 33.2 (30.7–36.4) 21.0 (20.2–22.0) 4.0 (3.8–4.1)
FEP 29.2 (24.9–33.3) 13.7 (12.0–15.5) 29.8 (25.2–34.2) 18.5 (16.0–20.5) 3.7 (3.3–3.9)

FC6
HC 23.4 (21.1–25.4) 11.7 (10.8–13.5) 26.4 (21.6–35.6) 17.9 (15.5–21.6) 3.1 (3.1–3.2)
FEP 21.8 (19.1–24.2) 11.3 (9.8–13.1) 25.0 (19.2–34.1) 16.6 (13.7–20.4) 2.9 (2.7–3.1)

Absolute power in collapsed frequency bands for power spectra for four selected electrodes. Reported as
estimate and 95% credible interval.

3.4.3.2 Coherence Between Electrodes Figure 3.3 illustrates plots of the coherence between

the electrodes of interest. Similar to Figure 3.2, regions below the x axis indicate higher coher-

ence in FEP while regions above the x axis indicate higher coherence in HC. Dashed lines denote

boundaries of traditionally defined frequency bands.

In general, interhemispheric coherence was higher across all frequency bands for FEP patients

except between the two frontal electrodes. These showed no difference except for a small range

of frequencies in the beta band. We also found decreased coherence within the left hemisphere for

FEP patients, and no difference in coherence within the right hemisphere. This finding is consistent

with the idea that schizophrenia is a disorder of connectivity within the brain (Lynall et al., 2010)

as well as some of the findings within French and Beumont (1984). A notable deviation from

the patterns discussed in French and Beumont (1984) is the coherence between electrodes within

the left hemisphere. Here FEP had decreased power compared to HC. This poses some questions

regarding inter vs intra hemispheric coherence as well as left vs right side of brain in FEP and HC.
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Figure 3.3: Coherence: estimated differences.

Plot of estimated difference in coherence between four selected electrodes as well as the 95% credible
interval. Frequency bands are denoted as dotted red lines, delta, theta, low alpha, high alpha, beta.
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Table 3.3: Coherence: frequency band collapsed measures.

Delta Theta Low Alpha High Alpha Beta

FC5-CP5
HC 0.11 (0.08–0.17) 0.23 (0.14–0.36) 0.22 (0.12–0.36) 0.27 (0.20–0.37) 0.19 (0.13–0.28)

FEP 0.08 (0.07–0.10) 0.13 (0.09–0.17) 0.12 (0.07–0.17) 0.16 (0.12–0.19) 0.11 (0.11–0.12)

FC5-CP6
HC 0.24 (0.16–0.30) 0.16 (0.08–0.23) 0.25 (0.14–0.35) 0.15 (0.08–0.20) 0.12 (0.07–0.17)

FEP 0.30 (0.26–0.34) 0.27 (0.24–0.30) 0.37 (0.32–0.40) 0.23 (0.20–0.26) 0.19 (0.18–0.21)

FC5-FC6
HC 0.04 (0.02–0.07) 0.02 (0.00–0.05) 0.07 (0.03–0.13) 0.11 (0.07–0.15) 0.01 (0.00–0.02)

FEP 0.05 (0.03–0.07) 0.01 (0.00–0.03) 0.05 (0.01–0.10) 0.09 (0.06–0.13) 0.00 (0.00–0.01)

CP5-CP6
HC 0.15 (0.09–0.20) 0.14 (0.07–0.21) 0.15 (0.08–0.21) 0.23 (0.11–0.32) 0.13 (0.06–0.20)

FEP 0.20 (0.17–0.23) 0.26 (0.23–0.31) 0.26 (0.22–0.32) 0.36 (0.34–0.39) 0.23 (0.21–0.27)

CP6-FC6
HC 0.38 (0.34–0.42) 0.28 (0.21–0.35) 0.21 (0.16–0.27) 0.24 (0.20–0.29) 0.19 (0.17–0.23)

FEP 0.34 (0.30–0.38) 0.24 (0.19–0.29) 0.18 (0.15–0.22) 0.21 (0.17–0.24) 0.18 (0.17–0.20)

CP5-FC6
HC 0.14 (0.08–0.20) 0.12 (0.03–0.21) 0.13 (0.03–0.24) 0.11 (0.03–0.18) 0.10 (0.03–0.17)

FEP 0.20 (0.17–0.23) 0.28 (0.24–0.33) 0.28 (0.23–0.34) 0.24 (0.20–0.28) 0.21 (0.19–0.24)

Absolute power in collapsed frequency bands for coherences between four selected electrodes. Reported as estimate and 95% credible interval.
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Table 3.3 shows the power in collapsed frequency bands for FEP and HC. In the delta fre-

quency bands, no significant difference was found between the two groups for any coherence mea-

sure. In the theta band FEP had a higher interhemisphere coherence, with the electrodes affected

being FC5-CP6 and CP5-CP6. In the low alpha band, FEP had higher coherence in the CP5-CP6

electrode pair. In the high alpha frequency band, FEP had lower coherence in FC5-CP5 and higher

coherence in the FC5-CP6, CP5-CP6, and CP5-FC6 pairings. And in the beta band, FEP had lower

coherence in FC5-CP5 and higher coherence in FC5-CP6 and CP5-CP6. This reflects similar, but

less sensitive findings to what was reported for Figure 3.3 and has a similar pattern to the findings

for the spectra from individual electrodes where the absolute power metrics are less sensitive to

differences than examining the entire trajectory.

3.5 Discussion

In this chapter we developed a method to examine the characteristics of high dimensional

spectral matrices dependent upon covariates of interest. This novel approach tackles the problem

of high dimensionality by using a factor model to lower the number of parameters that need to

be estimated, coupled with a prior that concentrates information into the first factors. This allows

for stable estimates of the spectral density matrix as well as increased computational efficiency.

Covariates are then introduced as weights in a Bayesian mixture model framework. This simplifies

the problem into the estimation of several spectral basis functions which contribute to the overall

estimate of the power spectrum through the covariate dependent weights.

As far as we know, this model is the first to deal with introducing covariates to the spec-

tral estimate in a high dimensional multivariate setting. Previous methods have either focused on

estimating high dimensional densities without covariates using such methodology as shrinkage,

thresholding, or factor models (Schneider-Luftman and Walden, 2016; Sun et al., 2018; Ensor,

2013); or have provided covariate dependent estimates in the multiple time series or low dimen-

sional multivariate setting (Cadonna et al., 2019; Bertolacci et al., 2019).

The main application of interest we were targeting was high density EEG. The advantages of

this model over traditional methods to analyze EEG data are threefold. First, the method easily
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outputs a smooth estimate of the spectral density for the entire trajectory across frequency for any

combination of covariates a clinician might be interested in. This allows for easy identification

of frequency dependent features. Second, traditional methodology involves using frequency band

collapsed measures coupled with regression that requires the use of correction for multiple com-

parisons. Because our method exists in the Bayesian framework and we use 95% credible intervals,

there is no need make such an adjustment. And third, our method is flexible enough to compare any

function of the spectral density that might be of interest. This includes frequency band collapsed

measures, differences in spectral densities, ect.

However, this method does not come without some drawbacks. First, implementing this

method is computationally intense, requiring a long run time and large amount of storage. This

can be alleviated somewhat by recoding the algorithm in packages such as Rcpp (Eddelbuettel

and François, 2011) and implementing smart coding techniques to reduce storage requirements.

And second, we rely on 95% credible intervals to conduct hypothesis testing which does not allow

for an overall global test of covariate association with power spectrum. This also could be over-

come by adding a step in the Gibbs sampler that would allow us to jump between a model with the

covariate of interest and a model without and output the probability of one model over the other.

Future work would involve implementing both of these things, as well as looking at possible

ways to extend the model. For instance, a hierarchical model could be implemented to model

the mixture weights which would allow for increased subject-level variability. Other models of

the mixture weights could also be explored, such a logit or probit stick breaking process. And

finally, another natural extension would be to modify the model to accommodate nonstationary

multivariate time series.
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4.0 Discussion

In this dissertation we introduce novel methodologies to perform spectral analysis under a va-

riety of different conditions. Specifically we were interested in creating an interpretable method

for estimating the rank structure of a univariate nonstationary time series and also in deriving a

method for covariate-dependent estimation of high dimensional multivariate spectral density ma-

trices. Each of these new tools has wide variety of potential applications.

The SpeLLL algorithm differs from previous offerings of nonstationary spectral analysis by

focusing specifically on recovering multiple low rank representations of the power spectrum. Pe-

nalized regression techniques introduce smoothness and sparsity into these estimates allowing for

clearer interpretation of time and frequency features. Smoothed plots of the û and v̂ vectors are

especially helpful in visualizing these features, and also allow for accurate placement of tempo-

ral break points and frequency bands. As an added feature, information about either the time or

frequency bins of the power spectrum can be incorporated into a design matrix X. In the HRV

application, we used sleep stage epochs to neatly summarize how the ANS functions throughout

a night of sleep. However, it would also be possible to transpose the Y matrix and incorporate

information about frequency bands in the design matrix. This is especially useful to clinicians who

are are specifically interested in power at frequency bands pre-defined in the literature.

SpeLLL can be useful in any situation exploring nonstationary signals. Our application specif-

ically involved tracking ECG of HRV throughout a night of sleep. But it could also be applied

to other biological processes such as examining the frequency characteristics of an EEG electrode

over time (Lim and Chia, 2015), or in analyzing data related to tremors in neurological diseases

(de Lima et al., 200), or in extracting features related to pulse oximetery and a diagnosis of sleep

apnea (Álvarez et al., 2009).

Further extensions of the SpeLLL algorithm could make it more flexible and more applicable

to a wider variety of signals. For instance, a natural extension would be to extend the algorithm to

handle multiple time series by using penalized tensor principal components analysis. Covariates

could be incorporated by ordering the Y matrices from each subject by covariate level. Another

area of future work would be to explore other types of penalties. A first step would be to incor-
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porate separate lasso penalties on the u and v vectors. Another interesting addition would be to

incorporate a group penalty to the regression (Simon et al., 2013). Adding a group penalty to v

would be a natural way to incorporate information about pre-specified frequency bands and could

be used in tandem with time-specific information added to the X matrix.

The SpeLLL algorithm has been coded in R, but further work needs to be done to submit it as

a package to the Comprehensive R Archive Network (CRAN). The ADMM algorithm portion of

it was coded in Rcpp (Eddelbuettel and François, 2011), but there are other functions that could

be translated into C++ to facilitate faster convergence.

In the stationary high dimensional setting, our Bayesian mixture model is the only existing

methodology which incorporates covariates into estimates of the spectral density matrix. Other

methods focus on multiple time series (Cadonna et al., 2019; Bertolacci et al., 2019) which does

not allow for an estimate of the coherence between two time series within the same subject. This

is particularly important in EEG analysis where coherence is thought of as a measure of brain

connectivity. By using penalized Bayesian splines the resulting estimates are smoothed across

frequency, and the prior placed on the factor matrix allows us to reduce the dimension of the

parameter space at each frequency to P×QwhereQ < P . This improves the stability of the matrix

and reduces computational complexity. Covariates are incorporated as weights in the mixture

model. Each component of the mixture model can be thought of as a basis function and, provided

the label swapping issue is dealt with, can also provide information about the power spectrum.

This method was specifically created to handle high density EEG signals, but could also be

incorporated in any multivariate setting. For instance, it could be applied to look for covariate

relationships with gait measurements in x, y, and z space (Henryk et al., 2019) or in looking at

covariate-dependent frequency characteristics of infectious disease surveillance in many different

areas at once (Pedeli and Karlis, 2019).

Future work in this area would include developing a robust method which would allow for a

statistical test of the covariate of interest. A natural candidate is a Bayes factor. However this would

require running the model twice and also becomes computationally unstable for longer series as

the likelihood for Y involves multiplying PQN elements together. One way to deal with this

would be to incorporate an indicator at each step to track which likelihood (covariate dependent

or not) has a higher probability at each step. Another potential extension of this model is into the
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nonstationary multivariate time series domain. This could be done by breaking the time series up

into smaller segments and running the model on each segment, similar to Li et al. (2019).

The code for this method was written in R and incorporates sampling the coefficients of the

Λ matrix in parallel to speed up computation. However, in order for the code to be usable by

researchers further work needs to be done to decrease computation time. The accuracy of the

likelihood for zj could also be increased by using the Rmpfr package (Mächler, 2013) which

would allow for arbitrary precision when calculating the likelihood of Yj for each component.
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Appendix

Additional Methodological Details

A.1 ADMM for Adaptive Sparse Fused Lasso

Here we provide additional details for using the alternating direction method of multipliers

(ADMM) algorithm (Boyd et al., 2010) to solve equations 2.7 and 2.8.

A.1.1 Theory

A general adaptive sparse fused lasso problem is given by minimizing

1

2
||y −Xb||2 + λ(1)

n∑
i=1

wi|bj|+ λ(2)
n∑
i=2

mi|bi − bi−1|. (.1)

with respect to b, where y is a vector of responses, X is a design matrix, and w and m are data

driven weights. Here λ(1) and λ(2) are the tuning parameters for the lasso and fusion penalties

respectively.

The minimization in Equation .1 can be rewritten as

1

2
||y −Xb||2 +

2n−2∑
i=1

λwi |aj| subject to Db− a = 0. (.2)

where λ(w) = (λ1w, λ2m)′ and D = [In|R]′, with R containing the graph for the fusion portion

of the penalty such that

R =


−1 1 0 . . . 0

0 −1 1
. . . ...

. . .
. . . . . . . . . 0

0 . . . 0 −1 1

 .
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Then the updating equations for the ADMM algorithm for the kth step with stepsize ρ are given

by

b(k) = (X′X + ρD′D)−1(X′y + ρD′(a(k−1) − z(k−1))),

a(k) = Sλw/ρ(Db(k) − z(k−1)).

z(k) = z(k−1) + Db(k) − a(k)

Here Sλw/ρ(Db(k) − z(k−1)) is the soft-thresholding operator given by Sj(k) = max(0, k − j) −

max(0,−k − j) and is applied element-wise to the vectors λw/ρ and Db(k) − z(k−1).

The algorithm converges when ||s1|| < ε1 and ||s2|| < ε2 where

s1 = ρD′(a(k) − a(k−1))

s2 = (Db(k) − a(k))

and ε1, ε2 are pre-specified error tolerances.

A.1.2 Rcpp Code

The ADMM algorithm was implemented using the Rcpp package (Eddelbuettel and François,

2011). By translating the R code to C++ the run time of the SpeLLL algorithm was greatly reduced.

#include <RcppArmadillo.h>
#include <soft_thresh.cpp>
#include <setZero.cpp>

using namespace arma;
// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat admmFAST(arma::mat x, arma::vec y, float lam1,
float lam2, float rho,
arma::vec initial, arma::mat D,
arma::vec m, arma::vec w,
float dtol, float ptol, float z_thresh, int maxiter)
{

arma::vec lambda = join_cols(lam1*w,lam2*m);
arma::vec alpha = D * initial;
int t = alpha.n_rows;
arma::vec z = arma::zeros<arma::vec>(t);
arma::mat beta_half = inv((x.t()*x) + (rho * D.t()*D));
arma::vec beta = arma::zeros<arma::vec>(initial.n_rows);

for (int i = 0; i < maxiter; ++i){

arma::vec alphak=alpha;

beta = beta_half * ((x.t()*y) + (rho*D.t() * (alpha-z)));
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arma::vec temp1 = (D * beta)+z;
arma::vec temp2 = lambda/rho;

alpha = sfThresh(temp1,temp2);

z = z + (D*beta) - alpha;

arma::vec d = rho * D.t() * (alpha-alphak);
arma::vec p = (D*beta) - alpha;

beta = setZero(beta, z_thresh);

if (norm(d,2) < dtol && norm(p,2) < ptol){
break;
}
}
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A.2 Further Details of Sampling Scheme

A.2.1 Drawing Θh

Following the sampling scheme given in (Li et al., 2019), but modified to draw Θh for Yj

j = 1, ..., N ,

1. The factor matrix Dj,k for k = 1, ..., K and j = 1, ..., N is sampled from the conditional

posterior distribution

p(Dj,k| · · · ) ∼ CN(µDkj,ΣDkj) (.3)

where µDkj
= ΣDkjΛ

∗
kΣ
−1
Dkj

Ykj and ΣDkj = (Λ∗kΣ
−1
ε Λk + IQ)−1.

2. Define Λ
(pq)
k as the pqth element of Λk. Then all K frequencies of Λ(pq) are modeled as

Λ(pq) = (Λ
(pq)
1 , ...,Λ

(pq)
K )′ = W (re)αpq + W (im)iβpq where αpq = (αpq0, ..., αpqS−1)

′ and

βpq = (β1pq, ..., βSpq)
′ are the coefficient vectors of the basis functions defined in equation

?? and W (.) are the design matrices of the basis functions. The posterior distributions of αpq

and βpq for p = 1, ..., P and q = 1, ..., Q are given by

p(αpq| · · · ) ∼ CN(µαpq ,Σαpq) (.4)

p(βpq| · · · ) ∼ CN(µβpq ,Σβpq). (.5)

where the mean and covariances of αpq and βpq are

Σαpq =
(

Ω(re)−1 + 2σ−2ε,p

N∑
j=1

K∑
k=1

|D(q)
jk |

2w
(re)′

k w
(re)
k

)−1
(.6)

µαpq
= 2σ−2ε,pΣαpq

( K∑
k=1

N∑
j=1

Re
[
Y ∗jkpD

(q)
jk −

(∑
h6=q

Λ
(ph)
k D

(h)
jk

)∗
D

(q)∗
jk

]
w

(re)′

k

)
(.7)

Σβpq =
(

Ω(re)−1 + 2σ−2ε,p

N∑
j=1

K∑
k=1

|D(q)
jk |

2w
(im)′

k w
(im)
k

)−1
(.8)

µβpq = 2σ−2ε,pΣβpq

( K∑
k=1

N∑
j=1

Im
[
Y ∗jkpD

(q)
jk −

(∑
h6=q

Λ
(ph)
k D

(h)
jk

)∗
D

(q)∗
jk

]
w

(im)′

k

)
. (.9)

(.10)
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Then if w(.)
k is the kth row of W (.),

Ω(re)
pq = diag

[
ψ−1q(re), (2πψq(re))

−1τ 2pq(re), ..., (2π(S − 1)ψq(re))
−1τ 2pq(re)

]
Ω(im)
pq = diag

[
(2πψq(im))

−1τ 2pq(im), ..., (2πSψq(im))
−1τ 2pq(im)

]
.

3. The smoothing parameters τ 2pq(.) for p = 1, ..., P , q = 1, ..., Q are sampled from the distribu-

tions

p(τ 2pq(re)| · · · ) ∼ IG

(
(S + ν − 1)

2
,
α̃′pqα̃pq

2ψ−1q
+

ν

gpq(re)

)

p(τ 2pq(im)| · · · ) ∼ IG

(
(S + ν)

2
,
β′pqβpq
2ψ−1q

+
ν

gpq(im)

)

where α̃pq = (αpq1, ..., αpq(s−1)). Then the hyperparameters gpq(.) are sampled from

p(gpq(.)| · · · ) ∼ IG

(
ν + 1

2
,
ν

τ 2pq(.)
+

1

G2
τ

)
4. The shrinkage parameters ψh(.) =

∏q
h=1 φh(.) are sampled from

p(φ1(re)| · · · ) ∼ Ga

(
a1 +

PQS

2
,

Q∑
q=1

Ψ
(1)
q(re)

P∑
p=1

α̃′pqα̃pq

2τ 2pq(re)
+ α2

pq0

)

p(φ1(im)| · · · ) ∼ Ga

(
a1 +

PQS

2
,

Q∑
q=1

Ψ
(1)
q(im)

P∑
p=1

β′pqβpq
2τ 2pq(im)

)

for h = 1, and for h ≥ 2

p(φh(re)| · · · ) ∼ Ga

(
a2 +

PS(Q− h+ 1)

2
,

Q∑
q=1

Ψ
(h)
q(re)

P∑
p=1

α̃′pqα̃pq

2τ 2pq(re)
+ α2

pq0

)

p(φh(im)| · · · ) ∼ Ga

(
a2 +

PS(Q− h+ 1)

2
,

Q∑
q=1

Ψ
(h)
q(im)

P∑
p=1

β′pqβpq
2τ 2pq(im)

)

where Ψ
(h)
q(.) =

∏q
t=1,t 6=h φh(.) for h = 1, ..., Q.
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5. The error variances σε,p for p = 1, ..., P are sampled as

p(σε,p| · · · ) ∼ IG

(
nK + ν

2
,

n∑
j=1

K∑
k=1

|Yjkp − Λ
(p)
k Djk|2 +

ν

gε,p

)
where the conditional distribution of the hyperparameter is given by

p(gε,p| · · · ) ∼ IG
(

(ν + 2)/2, ν/σ2
ε,p + 1/G2

ε

)

A.2.2 R Code to Draw Θ

An abbreviated version of the implementation in R of Section A.2.1 used to draw Θ for one

iteration of the Gibbs sampler. The full version uses an ’if else’ statement which implements a

slightly different version of the function when only a single Yk is allocated to a component.

#Fxn for stationary factor model.
#
#INPUTS:
#Y = Fourier of multiple multivariate TS
#input = object with parameters and model objects
#S = number of smoothing splines
#Q = number of factors
#v,G_e, G_tau, a1, a2 = hyperparameters
#
#OUTPUTS:
#Lambda = matrix of factors
#D = matrix of loadings
#sigep, g_p = variance and latent variable
#Tau_i, Tau_r, g_i, g_r = Smoothing parameters and latent variable
#rho_i, rho_r = Shrinkage parameters
#

#If n = 1 a slightly different code is used since Y is no longer an array.

stat.fact.draw.user <- function(Y, input,
S=10, Q=12, v=2, G_e=10, G_tau=10, a1=5,a2=1){

Lambda <- input$Lambda
sigma <- input$sigep
Tau_i <- input$Tau_i
Tau_r <- input$Tau_r
rho_i <- input$rho_i
rho_r <- input$rho_r
g_i <- input$g_i
g_r <- input$g_r
g_p <- input$g_p
Yi <- Y
dms <- dim(Yi)
p <- dms[2]
k <- dms[1]
n <- dms[3]

freq <- 1:k/(2*k)

if (length(dms) == 2){
n <- 1
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}

#Preallocate arrays
dist <- array(NA,c(k,p,n))
alphaalpha0 <- alphaalpha <- betabeta <- matrix(1,nrow=p,ncol=Q)
D_k <- array(NA,c(k,Q,n))
subq <- musum <- matrix(NA, nrow = k, ncol = n)
Lambda_temp <- array(0,c(p,Q,k))

#Create basis functions
w <- lin_basis_func(S,freq)

#--Draw Lambda
sigepinv <- diag(1/sigmaˆ2)

for (i in 1:k){

tempsig <- (cjt(Lambda[,,i]) %*% sigepinv %*% Lambda[,,i]) + diag(Q)
sigma_d <- chol.qr.inv(tempsig)
temp <- sigma_d$final %*% cjt(Lambda[,,i]) %*% sigepinv

for (l in 1:n){

mu_dk <- temp %*% (Yi[i,,l])
D <- mvnfast::rmvn(1,mu=c(Re(mu_dk),Im(mu_dk)),sigma=.5*t(sigma_d$invss))
D_k[i,,l] <- D[1:Q] + 1i*(D[(Q+1):(2*Q)])

}
}

psi_i <- cumprod(rho_i)
psi_r <- cumprod(rho_r)

for (m in 1:Q){
for (j in 1:p){

for (l in 1:n){
subq[,l] <- rowSums(D_k[,,l]*t(Lambda[j,,])) - D_k[,m,l]*Lambda[j,m,]
musum[,l] <- -D_k[,m,l]*Conj(subq[,l]) + Conj(Yi[,j,l])*D_k[,m,l]

}

musum2 <- apply(musum,1,sum)
Areal = 2*t(w$xx_r) %*% Re(musum2)/sigma[j]ˆ2
Aimag = -2*t(w$xx_i) %*% Im(musum2)/sigma[j]ˆ2

Dabs <- apply(D_k[,m,],1,function(a) sum(abs(a)ˆ2))

B1 = (2*t(w$xx_r*Dabs) %*% w$xx_r)/sigma[j]ˆ2
B2 = diag(c(psi_r[m],psi_r[m]*rep(1,S-1)/Tau_r[j,m]))
sigma_alpha <- solve(B1+B2)

mu_alpha <- sigma_alpha %*% Areal

B3 = (2*t(w$xx_i*Dabs) %*% w$xx_i)/sigma[j]ˆ2
B4 = diag(c(psi_i[m]*rep(1,S)/Tau_i[j,m]))
sigma_beta <- solve(B3+B4)

mu_beta <- sigma_beta %*% Aimag

alpha = mvnfast::rmvn(1, mu = mu_alpha, sigma = sigma_alpha)
beta = mvnfast::rmvn(1, mu = mu_beta, sigma = sigma_alpha)

templambda <- w$xx_r %*% t(alpha) + 1i * w$xx_i %*% t(beta)

Lambda_temp[j,m,] <- templambda

alphaalpha[j,m] <- t(alpha[-1]) %*% (alpha[-1]) #Stored for shrinkage and smoothing
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betabeta[j,m] <- beta %*% t(beta)
alphaalpha0[j,m] <- alpha[1]ˆ2
}
}

Lambda <- Lambda_temp

#--Draw Tau

tr <- alphaalpha %*% diag(psi_r)/2 + v/g_r
ti <- betabeta %*% diag(psi_i)/2 + v/g_i

Tau_r <- apply(tr, c(1,2), function(a) 1/rgamma(1,shape = (S+v-1)/2, rate = a))
Tau_i <- apply(ti, c(1,2), function(a) 1/rgamma(1,shape = (S+v)/2, rate = a))

g_r <- apply(Tau_r, c(1,2), function(a) 1/rgamma(1, shape = (v+1)/2, rate = v/a + 1/G_tauˆ2))
g_i <- apply(Tau_i, c(1,2), function(a) 1/rgamma(1, shape = (v+1)/2, rate = v/a + 1/G_tauˆ2))

#--Draw Rho

ra <- colSums(alphaalpha/(Tau_r)) + colSums(alphaalpha0)
rb <- colSums(betabeta/(Tau_i))

rho_r[1] <- rgamma(1, shape = a1 + (p*Q*S)/2, rate = 1 + .5* (1/rho_r[1])* psi_r %*% ra)
rho_i[1] <- rgamma(1, shape = a1 + (p*Q*S)/2, rate = 1 + .5* (1/rho_i[1])*psi_i %*% rb)

for (m in 2:Q){
rho_r[m] <- rgamma(1, shape = a2 + (p*(Q-m+1)*S)/2,

rate = 1 + .5*(1/rho_r[m])*psi_r[m:Q] %*% ra[m:Q])
rho_i[m] <- rgamma(1, shape = a2 + (p*(Q-m+1)*S)/2,

rate = 1 + .5*(1/rho_i[m])*psi_i[m:Q] %*% rb[m:Q])
}

#--Draw Sigma

for (i in 1:k){
for (l in 1:n){

dist[i,,l] <- abs(Yi[i,,l] - Lambda[,,i] %*% D_k[i,,l])ˆ2

}
}

dist2 <- apply(dist,2,sum)

srate<- dist2 + v/(g_p)
sigma <- sapply(srate, function(a) 1/rgamma(1,shape = n*k+v, rate = srate))

grate <- v/(sigma) + (1/G_eˆ2)
g_p <- sapply(grate, function(a) 1/rgamma(1, shape = (v+1)/2, rate = grate))

sigma <- sqrt(sigma)

}

return(list(Lambda = Lambda, D = D_k, sigep = sigma, Tau_i=Tau_i,
Tau_r=Tau_r, rho_i=rho_i, rho_r=rho_r, g_i=g_i, g_r=g_r, g_p=g_p))
}
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A.2.3 Drawing zi

The latent indicators for mixture component membership have the conditional probability mass

function of

p(zj = h| · · · ) =
πh(vj)L(Y

(h)
k |Θ(h))∑H

`=1 π`(vj)L(Y
(`)
k |Θ(`))

with ` = 1, ..., H . Computationally, this ratio can be unstable given that L(Y
(`)
k |Θ(`)) is the product

of p × k elements. When implemented in R, a modified version was used which divides the top

and bottom by πh(vj)L(Y
(h)
k |Θ(h)) to improve stability in computation.

A.2.4 Drawing πh(vj)

The weight for each component are drawn from a multinomial regression model that has been

augmented using a Polya-Gamma distribution (?). The update for each component h has two steps.

Let Cjh = log
∑

` 6=h v
′
jγ` and κh = I(zj = h)− 0.5. First draw γh from

p(γh|∆h) ∼ Nm(µγh,Σγh)

where m is the dimension of the covariate space, Σ−1h = V′∆hV + Im, and µγh = Σγh

(
V′(κh +

∆hch)
)

Then update hyperparameter ∆h = diag({δjh}) using

p(δjh|γh) ∼ PG(1, v′jγh − Cjh)
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Table A1: Estimated value of mixture weights.

HC FEP

Component 1 0.18 (0.05, 0.38) 0.00 (0.00, 0.04)

Component 2 0.06 (0.00, 0.20) 0.07 (0.01, 0.20)

Component 3 0.77 (0.55, 0.92) 0.69 (0.50, 0.85)

Component 4 0.00 (0.00, 0.00) 0.11 (0.02, 0.25)

Component 5 0.00 (0.00, 0.00) 0.12 (0.03, 0.26)

Estimate value of mixture weights and corresponding 95% credible interval for HC and FEP for each
component of the mixture model for the first 1000 iterations.

A.3 Additional Details for Analysis of EEG Data

A.3.1 Exploring Mixture Components

The section explores the mixture components recovered from the first 1000 iterations of the

sampler after burn in. The equation of the power spectrum conditioned on covariate vector v is

given by

f̂(ω|v) =
H∑
h=1

πh(v)
[
Λ(ω)(h)Λ(ω)(h)∗ + Σ(h)

e

]

for h = 1, ..., H . In our analysis of the EEG data, the number of mixture components recovered

by the model was H = 5 and label swapping was handled using the method discussed in 3.2.4.1.

Table A1 shows the estimated value of mixture weights πh(v) and corresponding 95% credible

intervals for the HC and FEP covariate patterns. Components 2 and 3 contributed to the estimate

of the power spectrum for both HC and FEP, with component 3 contributing the most overall.

Component 1 only added to the power spectrum for HC while components 4 and 5 only added to

the estimate for FEP.
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Figure A1, Figure A2, and Figure A3 plot the posterior estimate of the mixture components

for the power spectra, real part of the cross spectra, and imaginary part of the cross spectra for the

electrodes of interest in Section 3.4.

A.3.2 Plots of Spectral Density for All Electrodes

Figure A4 of this section shows plots of the difference between the diagonal elements of the

spectral density between HC and FEP, namely fi,i(ω|x = 0) − fi,i(ω|x = 1) for i = 1, ..., 64.

Positive values indicate areas where the density for HC had more power than FEP and vice versa

for the area with negative values. Frequency bands are denoted by vertical lines.
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Figure A1: Components of mixture model: power spectrum.

Graph of the components of the mixture model for the spectrum of FC5, CP5, CP6, FC6 electrodes.
Component 1 = black; component 2 = green; component 3 = orange; component 4 = red; component 5 =

blue. Dashed lines mark traditional boundaries for the delta, theta, low alpha, high alpha, and beta
frequency bands.
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Figure A2: Components of mixture model: real cross spectra.

Graph of the real components of the mixture model for the cross spectrum of FC5, CP5, CP6, FC6
electrodes. Component 1 = black; component 2 = green; component 3 = orange; component 4 = red;

component 5 = blue. Dashed lines mark traditional boundaries for the delta, theta, low alpha, high alpha,
and beta frequency bands.
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Figure A3: Components of mixture model: imaginary cross spectra.

Graph of the imaginary components of the mixture model for the cross spectrum of FC5, CP5, CP6, FC6
electrodes. Component 1 = black; component 2 = green; component 3 = orange; component 4 = red;

component 5 = blue. Dashed lines mark traditional boundaries for the delta, theta, low alpha, high alpha,
and beta frequency bands.
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Figure A4: Plots of the difference in estimated power and 95% credible intervals for each electrode.
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