
From quantum transport in semiconducting nanowires to hybrid

semiconducting-superconducting qubits

by

Azarin Zarassi

B.Sc, University of Tehran, 2012

M.Sc, University of Pittsburgh, 2014

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020



UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Azarin Zarassi

It was defended on

August 6, 2020

and approved by

Sergey M. Frolov, Dept. of Physics and Astronomy, University of Pittsburgh

Michael J. Hatridge, Dept. of Physics and Astronomy, University of Pittsburgh

David Pekker, Dept. of Physics and Astronomy, University of Pittsburgh

Rachel Bezanson, Dept. of Physics and Astronomy, University of Pittsburgh

Paul W. Leu, Dept of Industrial Engineering, University of Pittsburgh

ii



Copyright © by Azarin Zarassi

2020

iii



From quantum transport in semiconducting nanowires to hybrid

semiconducting-superconducting qubits

Azarin Zarassi, PhD

University of Pittsburgh, 2020

A practical quantum computer demands a physical quantum bit (qubit) that is scal-

able, has a well-defined initial state, and brings together coherence with reliable control and

read-out. A compelling idea is to put together a locally protected Majorana qubit with a

superconducting qubit. The superconducting qubit is used to read out the Majorana states

while the Majorana qubit may act as a quantum memory. This thesis presents a series of

studies on quantum transport in semiconducting nanowires coupled to superconductors to in-

vestigate various platforms for realizing Majorana. These studies are followed by microwave

measurements on superconducting circuits compatible with semiconducting-superconducting

heterostructures.

We first evaluate the potential of Ge/Si core/shell nanowires by achieving induced su-

perconductivity as well as estimating spin-orbit coupling. Next we explore the transport

mediated by Andreev bound states formed in InSb nanowire quantum. A subgap negative

differential conductance is investigated together with the coalescing Andreev resonances at

zero bias relevant for the correct interpretation of Majorana experiments done on the same

structures. We conclude our studies of semiconducting nanowires by exploring tunnel junc-

tions in Sn-InSb nanowires that are prepared by in-situ shadowing using nearby nanowires

and flakes. Tin shells are found to induce a hard superconducting gap persisting up to

high magnetic fields. We observe the two-electron charging effect from a small supercon-

ducting island of Sn-InSb. This effect is attributed to charge parity stability, which makes

this nanowire system an intriguing candidate for superconducting and topological quantum

circuits.

These Sn-InSb junctions are then used as the nonlinear element in a transmon qubit de-

sign where we observe a dispersive coupling between this nanowire Josephson junction and a

superconducting resonator. We also present our progress towards building a magnetic field

iv



resilient superconducting circuit that allows integration with semiconducting and topological

structures.

In the last chapter, InSb semiconducting nanowires are utilized as shadow masks prior to

superconductor deposition on an InAs quantum well. We study Josephson current properties

in Josephson junctions made from these nanowire shadows. Our results point to highly trans-

parent junctions that can be developed further for hybrid superconductor-semiconductor

qubit systems.
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1.0 Introduction

• Why do we care about hybrids of semiconductors and superconductors?

Bringing semiconducting nanostructures and superconductors together leads to novel

phenomena in mesoscopic physics with an ultimate goal of fault-tolerant quantum computa-

tion [1, 2, 3, 4, 5, 6]. Semiconductors can maintain their properties such as tunable carrier

densities, long mean free paths, spin-orbit and Zeeman couplings while inheriting super-

conducting properties when proximitized to superconductors. The interplay between these

properties can lead to rich and exotic physical phenomena like the formation of Majorana

fermions in these condensed matter systems. In this thesis we study quantum transport

in several nanostructure semiconducting systems in combination with superconductors, and

evaluate their potential for future quantum computation.

The invention of the transistor at Bell labs [7] was a historical moment that enabled the

exploitation of semiconductors in modern computing devices. Band structure and electronic

properties of semiconductors can be engineered by intentional introduction of impurities

(doping), stacking different materials on top of one another and creating heterostructures,

or by means of gating. Moreover, technological advancement facilitates the miniaturization

of semiconducting structures. As the size of semiconducting devices shrinks, the interactions

between electrons and quantum effects at mesoscopic scale become important. For example,

if the size of a transistor is reduced to nanoscale, conductance can be turned on and off

periodically as the result of the Coulomb interaction between electrons and charge quan-

tization. Such device is called a single-electron transistor [8]. In 1985, Richard Feynman

stated “it seems that the laws of physics present no barriers to reducing the size of com-

puters until bits are the size of atoms and quantum behavior holds dominant sway.” This

can be envisioned as encoding information in any two-level quantum system. Examples of

such systems are right and left circularly polarized states of the photon, spin up and down

of electrons, or two stable electronic states of trapped ions. Each of these two-level systems

is called a quantum bit or, for short, qubit. In 1998, Loss and DiVincenzo proposed to use

Zeeman-split single electron spin states confided in semiconducting quantum dots as qubits
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and perform quantum gate operations in coupled neighboring dots [9]. The first example

of such a qubit readout in single quantum dots1 was achieved by spin-to-charge conversion

followed by single-shot measurements of charge [10]. Single spin readout was followed by

coherent control and manipulation of single- and two-electron spin states in double quantum

dots [11, 12]. In two-electron double quantum dots, single and triplet spin states can be

introduced as qubit states. The initialization and readout of these qubit states rely on Pauli

spin blockade [13]: Transport of electrons between dots can be blocked by spin selection

rules. For instance if each dot has one electron and they form a triplet state ((1,1)-triplet),

the transport to (0,2)-singlet state will be prohibited. Moreover, Pauli spin blockade can

provide information about spin mixing and relaxation mechanisms [14, 15]. For example,

in the presence of a finite magnetic field, spin-orbit interaction can result in lifting of the

spin blockade as it couples singlet and triplet spin states. This mechanism can be used to

quantify the strength of spin-orbit coupling in a semiconductor. A strong spin-orbit inter-

action facilitates coherent control over single spins via an oscillating electric field generated

by a local gate [16]. This quality provides a means to study the potential of a semiconduct-

ing material for qubits residing in quantum dots. Moreover, as we mention below, strong

spin-orbit interaction is also one of the main ingredients for realizing Majorana modes in

semiconducting nanowires-superconductor hybrids. Later in the thesis we focus on the Pauli

spin blockade in double quantum dots defined in Ge/Si core/shell nanowires and estimate

spin-orbit coupling in this system.

Similarly, superconductors have been one of the pillars of technological advancement

since their discovery in 1911 by H. Kamerlingh Onnes. Below a certain temperature some

metals lose their electrical resistivity and go through a superconducting phase transition. In

1957, Bardeen, Cooper and Schrieffer introduced the microscopic theory of superconductivity

(BCS theory) [17]. In their model, below a critical temperature Tc, electrons with opposite

momentum and spin can bind together and form so-called Cooper pairs. These paired elec-

trons form a condensate which displays a gapped spectrum pinned to the Fermi level. This

superconducting gap at zero temperature is related to the critical temperature, ∆ = 1.76kBTc

1Quantum dots in semiconductors are structures that confine electrons or holes in three dimensions and
make their quantum mechanical energy levels observable. Quantum dots are also referred to as artificial
atoms for their quantized energy levels.
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and vanishes at the transition temperature. A superconductor can support a dissipation-less

current, also known as a supercurrent. Supercurrent vanishes in a bulk superconductor but

can flow between two superconducting banks that are separated by a non-superconducting

material (a weak link). This phenomenon, predicted by Brian Josephson in 1962, is con-

veniently called the Josephson effect and the physical structure that exhibits it is called a

Josephson junction [18]. The transport across a Josephson junction is mediated by Andreev

reflection at the interface of the superconductor and normal region [19]. Andreev reflection

at each interface converts pairs of quasiparticles from the weak link with energy less than

∆ to Cooper pairs in the superconductor [20]. Effectively, we can say a pair of correlated

electrons (Cooper pair with charge 2e) is transferred from one superconductor to the other,

creating a supercurrent flow across the junction. Andreev reflection will be covered in more

detail in the next chapter.

The first semiconductors used as weak links were thinned silicon wafers in 1974 [21]. In

semiconductors, the electron density can be controlled by electrostatic gating. Consequently,

the Josephson supercurrent can be controlled by a gate bias voltage in semiconducting weak

links. Ten years later the gate tunability was demonstrated in p-type single crystal Si [22] and

in the inversion layer on a p-type InAs [23]. In 1997, evidence of a proximity induced gap in

the electron system in the inversion layer of InAs in contact with niobium superconductor was

established [24]. Efforts have also been taken to improve inversion layers as well as growing

heterostructured materials for buried quantum wells in planar structures, thus allowing more

sophisticated device structures [25, 26, 27]. However, interface transparency seemed to be a

persistent limiting issue [28, 29]. An alternative platform for hybrids of superconductor and

semiconductors are semiconducting one-dimensional nanowires. Their confined structure

and large surface-to-volume ratio may comparatively ease down inducing superconductiv-

ity [30]. Moreover, the ability to synthesize nanowires with tunable chemical composition,

size, and morphology allows for wide variety of nanosystems ranging from photonics and

electronics to biological sensors [31, 32]. In 2005, proximity induced superconductivity was

achieved in n-type InAs semiconducting nanowire weak links [33] and enabled the study of

supercurrent coupled with Coulomb blockade in quantum dots [34]. In such systems the

magnitude of the supercurrent is controllable by gate electrodes, exhibiting a combination
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of/competition between superconducting and semiconducting properties, namely Coulomb

interaction, Zeeman effect and spin-orbit coupling [35, 34, 36, 37, 38]. In this thesis we

investigate induced superconductivity in Josephson junctions and quantum dots defined in

Ge/Si core/shell and InSb nanowires in proximity to superconductors such as NbTiN, Al

and Sn. Hybrids of quantum dots coupled to superconductors further provide a platform for

studying the physics of Andreev bound states - subgap quasiparticle excitations resulting

from successive Andreev reflections at the interfaces [39, 40, 41, 38, 42, 43]. Andreev bound

states resemble Majorana fermions. For example, they both evolve in magnetic field and

form a conductance peak at zero bias voltage. Our studies of Andreev bound states formed

in InSb nanowire quantum dots coupled to superconductors are helpful for the correct inter-

pretation of Majorana experiments done in similar structures. [44, 43, 45].

A Majorana fermion is a particle that is its own antiparticle arising from specific solution

to Dirac’s equation proposed by Ettore Majorana in 1937 [46]. Majorana himself thought

that neutrinos will be described by his solution, but the question of whether neutrinos are

Majorana fermions remains open, despite significant efforts [47]. The search for Majorana

fermions took an unexpected turn when they were proposed as quasiparticle excitations in

exotic solid state systems, providing a path to observing what we have failed to find in na-

ture in a man-made system [1, 48, 49, 50, 51, 4, 5]. In the middle of the superconducting

gap, where E = 0 (Fermi level), there can exist a quasiparticle for which the annihilation

and creation operation are the same, hence this particle is its own antiparticle [52]. In a

2001 theoretical proposal by Kitaev, Majorana fermions were realized at the ends of a one

dimensional, spin-polarized superconductor [1]. Without spin polarization, each end of the

superconductor will contain two Majorana fermions, one for each spin, and they will anni-

hilate. In 2010, Lutchyn et al. [4] and Oreg et al. [5] took Kitaev’s idea and expanded on

previous proposals by Sau et al. [50] and Alicea [51] and proposed a practical experimen-

tal setup based on readily available semiconductor-superconductor heterostructures. Their

setup consists of a ballistic semiconducting nanowire with a strong spin-orbit interaction that

is in proximity with a conventional superconductor in the presence of an external magnetic

field. A competition between the superconducting-induced gap and the Zeeman gap drives

the system to the topological phase transition. As soon as we enter the topological phase in

4



the nanowire, Majorana modes are pinned to the boundaries of the system (two ends of the

nanowire). A pair of Majorana bound states forms a two-level system and hence a qubit. In

qubits encoded in separated Majorana fermions, the information is stored nonlocally. This

protects the information from local sources of decoherence and provides a platform for fault

tolerant quantum memory [2, 3].

The non-local information storage makes it very challenging to control and coherently

transfer the information into and out of the system when needed. Superconducting qubits

(solid state electrical circuits based on Josephson junctions), on the other hand, are easy

to control, read out, and couple together [53, 54]. One can put together a superconducting

qubit with Majorana fermions and form a two-qubit hybrid quantum system that leverages

the advantages of both qubits via their coupling [55]. The superconducting qubit is used

to read out the Majorana states, while the other qubit may act as local quantum memory.

Hence, this hybrid system can be used as a building block for a full scale quantum computer.

Towards the end of this work we take preliminary steps to design and fabricate supercon-

ducting circuits compatible with the semiconducting-superconducting heterostructures that

we investigated.

•What is in this thesis? - Synopsis

We go over some background and theory related to physical concepts and structures

used in the thesis in Chapter 2. Device fabrication techniques and measurement setups used

throughout the thesis are explained in Chapter 3.

In Chapter 4 we evaluate the potential of Ge/Si core/shell nanowires for realizing Ma-

jorana states as well as spin based qubits. Holes in Ge/Si nanowires offer a relatively un-

explored platform for such studies [56, 57, 58]. They are expected to come with long spin

relaxation times owing to their p-wave wavefunction symmetry as well as their low abundance

of nonzero nuclear spin isotopes in group IV materials [59]. Furthermore, the spin-orbit in-

teraction is predicted [60] and suggested by experiments [61, 62, 63, 64] to be strong in Ge/Si

core/shell nanowires. We perform transport measurements on double quantum dots made

in these nanowires and extract spin-orbit coupling and g-factors by analyzing the data in

the Pauli spin blockade regime. Furthermore, we observe induced superconductivity and a

tunable supercurrent that persists in finite magnetic fields in NbTiN-Ge/Si-NbTiN Joseph-
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son junctions. We conclude that detailed tailoring in nanowire morphology is much needed

in order to enhance spin-orbit interaction and induced superconductivity to further consider

this system for (non)topological qubit studies.

In Chapter 5 and Chapter 6 we explore hybrids of InSb nanowires and multiple super-

conductors. InSb nanowire is a promising material for implementing advanced quantum

devices [65, 66]. Its high electron mobility, giant g-factor and strong spin-orbit interaction

makes it one of the main candidates in the search for topological superconductivity accompa-

nied by Majorana fermions [67, 68]. In Chapter 5 we study transport mediated by Andreev

bound states formed in InSb nanowire quantum dots. We show that the nontrivial densities

of states in the superconducting probes can drastically affect tunneling characteristics re-

sulting in additional transport resonances. Accurate understanding of Andreev spectroscopy

is important, because the presence of such additional resonances may complicate the inter-

pretation of Majorana experiments done on the same structures.

In Chapter 6 we present induced superconductivity in InSb nanowires from Sn super-

conducting shells that persists up to a significant magnetic field. We demonstrate the

two-electron charging effect that is crucial for long quasiparticle stability times. These

findings open avenues for superconducting and topological quantum circuits based on new

superconductor-semiconductor combinations. Until recently, the superconductors used in

hybrid systems in search of topological regimes were almost exclusively Al and Nb-family

superconductors. However, Al suffers from a relatively low critical magnetic field and tem-

perature, resulting in a small induced gap. And Nb-family superconductors have failed to

induce a superconducting gap void of quasiparticles, preventing the two-electron charging

effect, shortening coherence times and scrambling read out of a future topological qubit.

Superconducting qubits are typically fabricated with Al and have shown incredible

progress towards building a high-fidelity quantum processor [69]. However, the idea of in-

tegrating semiconducting qubits with their superconducting siblings to build a fault toler-

ant quantum computer naturally requires the superconducting qubits to operate in finite

magnetic fields which is a limitation for Al based circuits. In Chapter 7 we present some

preliminary studies on fabricating and characterizing field-resilient Nb-family superconduct-

ing microwave resonators which have been demonstrated previously to have high quality
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factors [70, 71, 72]. We also make our first attempt (ongoing project) to utilize Sn-InSb

nanowire Josephson junction as the nonlinear element in a transmon qubit design. The tun-

ability of nanowire transmons and their resilience to magnetic fields enables new means of

controlling the superconducting-semiconducting topological qubits [73, 74, 75, 76].

In Chapter 8 we use nanowires rather differently. We fabricate Josephson junctions on

InAs two-dimensional electron gas (2DEG) by in-situ evaporating Al while InSb nanowires

are serving as shadow masks [65, 66]. This technique eliminates the chemical etching process

generally used to define junctions on 2DEG systems. We study the behavior of supercur-

rent through these junctions as a function of magnetic field and microwave excitation. Our

data show a non-conventional behavior of supercurrent that may be attributed to anomalous

current-phase relations of these junctions. However, we refrain from drawing conclusions as

artefacts in our fabrication can introduce inhomogeneities and an alternative explanation for

our observations.

At last, concluding remarks are presented in Chapter 9.

7



2.0 Background information

In this chapter we briefly introduce a general Hamiltonian to describe the band structure

of semiconductors. We then expand the Hamiltonian by adding relevant interaction terms

such as Zeeman energy and spin-orbit coupling. These terms are further investigated in

quantum dot structures in Chapter 4. We briefly discuss quantum dots and the Pauli spin

blockade mechanism. Next we move on to superconductivity and give an introduction to the

physics of Andreev processes that we study at hybrid interfaces. Andreev spectroscopy is

further investigated in Chapter 5. Supercurrents in Josephson junctions are discussed and

used throughout this thesis to characterize superconductor-semiconductor interface quality

and induced superconductivity (Chapter 4, Chapter 6, Chapter 8). In the final part of this

chapter we give a short introduction to superconducting circuits (resonators and qubits) and

we later pursue to design, characterize and incorporate them into hybrid superconducting-

semiconducting circuit quantum electrodynamics devices in Chapter 7.

2.1 Hamiltonian for semiconductors1

The band structure of semiconductors comes from solving the Schrödinger equation for

noninteracting electrons in a periodic lattice potential:

[
−~2

2me

∇2 + V (r)]ψ(r) = Eψ(r) (1)

where V (r) = V (r+R) with translation vector R. This periodic potential can be expanded

in a Fourier series V (r) =
∑
G

VGe
iGr (G is a vector in the reciprocal lattice such that

GR = 2π). Using Bloch’s theorem and for a given wave vector k we can find a wavefunction

that solves the Schrodinger equation:

ψk(r) = eik·runk(r) (2)

1This section follows from Refs. [77, 78].
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where unk(r) is a periodic Bloch function with translation symmetry of the lattice and n is

the band index. Substituting this solution back into the Schrodinger equation we get

[
~2

2me

(−i∇+ k)2 + V (r)]unk(r) = Eunk(r),

([
p2

2me

+ V (r)] + [
~
me

k · p+
~2k2

2me

])unk(r) = Eunk(r) (3)

where p = −i~∇ is the momentum operator.

The relevant parts of the band structure for semiconducting nanostructures are close to

the band gap, i.e, near the minimum of the conduction band or the maximum of the valence

band.

For k = 0 we can assume eigenenergies En corresponding to eigenfunctions un0(r) ≡ |n〉

that can be used to expand unk(r) for arbitrary k. For small k we treat k-dependent terms

as perturbations to calculate energy dispersions. This method is called k ·p theory. We then

find that the solutions of Eq. 3 are

En(k) = En +
~2k2

2me

+
~2

m2
e

∑
m 6=n

|〈um0|k · p|un0〉|2

Em − En
. (4)

As in the case of free electrons this dispersion relation in the conduction band of a

semiconductor is parabolic with curvature that is described by the electron’s effective mass

1

meff

=
1

me

+
1

m2
e

|〈uc0|k · p|uv0〉|2

Ec − Ev
, (5)

leading to eigenenergies

Ec(k) = Ec +
~2k2

2meff

(6)

and Hamiltonian

H(k) =
~2k2

2meff

+ V (k). (7)

From Eq. 5 we see that the effective mass in semiconductors with large band gap

Eg = Ec−Ev tends to be bigger than in those with small band gaps. Eigenenergies become

quantized when the wavefunction is confined by either the boundaries of the semiconductor

or an external potential. When the confinement length becomes smaller than the Fermi wave-

length the spatial dimensionality of the Hamiltonian is reduced. Confining the wavefunction
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in one, two or three spatial dimensions then leads to a two-, one-, or zero-dimensional sys-

tem, i.e., two-dimensional electron gases, one-dimensional nanowires, and quantum dots,

respectively.

2.1.1 Zeeman energy

So far we have ignored the spin of electrons. The spin operator for electrons is defined

as S = 1
2
σ, where σ are the Pauli matrices. The magnetic dipole moment of an electron

can be described by the electronic spin via µ = −1
2
gµBσ, where µB is the Bohr magneton.

In an external magnetic field B a magnetic torque M = µ ×B acts on the electron. The

energy of the magnetic dipole moment in a magnetic field is then described by the Zeeman

Hamiltonian

HZ = −µ ·B =
1

2
gµBσ ·B (8)

2.1.2 Spin-orbit interaction

Another coupling term relevant to spin is the coupling between spin and orbital motion

when an electron moves in an electric field. An atom (or a crystal lattice) produces an

electric field E in its rest frame. An electron orbiting around the atom with momentum p

not only sees this pure electric field, but also an effective magnetic field B′ =
1

mec2
E × p

that interacts with electron spin. This field also induces a momentum-dependent spin-orbit

energy HSO =
gµB

2mec2
(E × p) · σ, which is the spin-orbit coupling. The electric field is the

gradient of the electrostatic potential V . In crystals the resulting spin-orbit field is

BSO(p) =
µB
mec2

(∇V × p) (9)

which can induce spin splitting for electrons in a lattice even with zero external field. Spin-

orbit interaction can also arise from the crystal and band structure of semiconductors, for

example, through Dresselhaus and Rashba spin-orbit couplings, which are most relevant to

this thesis.

In binary compound crystals such as zincblende structure of InSb or InAs quantum wells,

the two atoms have slightly different electronegativities to which there will be a permanent
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electric field associated. This electric field will be a perturbing term for electron spins

moving in the crystal’s potential. This perturbation term, which comes from bulk inversion

asymmetry, is referred to as the Dresselhaus contribution and is described by the following

Hamiltonian [79]:

Hbulk
D ∝ [σxpx(p

2
y − p2

z) + σypy(p
2
z − p2

x) + σzpz(p
2
x − p2

y)], (10)

where x, y and z are along crystal directions of (100), (010) and (001), respectively. For the

case of a two-dimensional electron gas (2DEG) confined along z, 〈pz〉 = 0 and 〈p2
z〉 is a fixed

value. The Hamiltonian can be rewritten as:

H
(001)
D ∝ [−σxpx〈p2

z〉+ σypy〈p2
z〉+ σxpxp

2
y − σypyp2

x] (11)

Due to strong confinement along z, 〈p2
z〉 � p2

x, p
2
y, this Hamiltonian reduces to the so-called

linear Dresselhaus spin-orbit:

HSO
D = β(−σxpx + σypy), (12)

in which β depends on 〈p2
z〉 and also the material properties.

On the other hand, the Rashba term arises from structural inversion asymmetry [80].

“Structural” refers to the electronic band structure that is manifested by offsetting band gaps

to create electron/hole confinement like in our Ge/Si core/shell nanowires or by stacking

layers of different materials on top of one another to create an electron confinement in InAs

quantum wells or by means of a gate voltage that creates asymmetry at the interface. There

will be an electric field associated to charges confined in a quantum well and the gate or

dopants on the quantum well. This electric field, too, perturbs spin. In such a case, the

spin-orbit interaction can be controlled by gate voltages, which results in a confining electric

field along z and the relative spin-orbit Hamiltonian will be

HR ∝ [E×p] · σ = Ez(−σxpy + σypx),

HSO
R = α(−σxpy + σypx)

(13)

The proportionality factor α (the effective spin-orbit strength) depends on the material, as
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well as external factors such as the orientation of the applied electric field.

Strong lateral confinement in one-dimensional quantum wires further results in 〈py〉 = 0,

which reduces Eq. 2.1.2 and Eq 2.1.2 to a single linear term dependent on px. The energy

dispersion ε(k) = ~2k2
x/2m is split by the one-dimensional spin-orbit interaction into two

parabolas to left and right moving states with fourfold degeneracy. Application of an external

magnetic field opens and energy gap at k = 0 and states within this gap are now twofold

degenerate. A combination of magnetic field and gate voltages to control the potential across

the wire then allows for the tunability of spin polarization across the wire.

2.2 Quantum dots2

Studies of spin states in quantum dots are largely motivated by the proposals to build a

spin-based quantum computer [9]. Quantum dots are semiconducting structures that confine

electrons or holes in a space that is smaller than the Fermi wavelength of these charge carriers.

Thus their energy levels are discrete, and quantum dots are referred to as artificial atoms.

Filling dots’ eigenenergies with electrons or holes follows rules from atomic physics such as

Hund’s rule, shell filling, etc. A schematic of a quantum dot that is connected to source and

drain reservoirs through tunnel barriers and is capacitively coupled to a gate is shown in

Fig. 2.1(a). This set-up allows the transport of current through the dot to be measured in

response to bias voltage and gate voltage. Below we will review charge and spin transport

in single and double quantum dots.

2.2.1 Single quantum dots

The basic model that can describe the physics of a quantum dot is called the Constant

Interaction Model, following Hanson et al. [81], and is based on two assumptions. On the

one hand, electrons in the dot have a capacitive coupling to source (CS) and drain (CD)

reservoirs as well as the gate (Cg). One the other hand, the single-particle energy spectrum

2This section follows from Refs. [77, 81]
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En is independent of these capacitive couplings. The total energy U(N) of a quantum dot

with N electrons (or holes) in the ground state is

U(N) =
1

2C
[−e(N −N0) + CSVS + CDVD + CGVG]2 +

N∑
n=1

En, (14)

Figure 2.1: (a) Schematics of a quantum dot coupled to a source and drain contacts through
tunneling barriers. The plunger gate allows us to tune the quantum mechanical energy states in
the quantum dot by controlling chemical potential in the dot via capacitive coupling. The current,
I through the dot measured on the drain depends of bias voltage Vb and gate voltage Vg. (b)
Coulomb blockade (CB) region evident in I − V trace through a quantum dot where for finite bias
voltage no current passes through the dot. (c) CB schematics when there is no accessible dot levels
(dot level is used as a short form for dot electrochemical potential) within the bias window. (d)
Tunneling of electrons (or holes) through accessible dot level within the bias window. (e) Transport
through the dot at high bias voltage where there are multiple dot levels and transition involving
excited states are available for tunneling. (f) Coulomb blockade diamonds in a single quantum dot
in Ge/Si core/shell nanowires defined between to adjacent gate electrodes. Color plot represents
differential conductance as a function of bias and gate voltages. The number of particles in the
dot is a fixed integer number N. In Ge/Si the charge carriers are holes, hence increasing the gate
voltage repels holes from the dot one by one.
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where N0 compensates for background charges, VS, VD, and Vg are voltages on source, drain,

and plunger gate, respectively. The electrochemical potential of the dot (the energy required

to add the Nth electron) is then

µ(N) = U(N)− U(N − 1) = EC(N −N0 −
1

2
)− EC

e
(CSVS + CDVD + CgVg) + EN , (15)

where EC =
e2

C is the charging energy The electrochemical potential µ(N) then consists of

two parts, an electrostatic energy to overcome the charging effect and a discrete level energy.

In transport scheme (Fig. 2.1(a)), applying a bias voltage between the source and the

drain Vb = VS − VD opens an energy window, known as bias window, between the elec-

trochemical potential of the source, µS, and the drain, µD. Transport of electrons through

the dot depends on the alignment of electrochemical potentials in the dot with respect to

µS − µD = −eVb, µS > µ(N) > µD. If this condition is not met for at least one value of

N the number of electrons on the dot remains fixed and no transport takes place. This is

called the Coulomb blockade (Fig. 2.1(c)), which can be lifted by tuning voltages (Eq. 15)

so that µ(N) is within the bias window (Fig. 2.1(d)).

At high source-drain bias voltage, multiple dot levels can lie within the bias window.

This allows excited states to participate in tunneling transitions (Fig. 2.1(e)). For instance,

for two successive ground states GS(N) and GS(N + 1) and excited states ES(N) and

ES(N + 1) we can have transitions such as ES(N)↔ GS(N + 1) and GS(N)↔ ES(N + 1)

fall within the bias window. These transitions manifest themselves within V-shaped regions

in (bias, gate)-plane as seen in Fig. 2.1(f). The transition between GS(N) and GS(N + 1)

defines the Coulomb blockade (outside of the V-shape) and the tunneling regime (within the

V-shape). Measuring the differential conductance dI/dVb as a function of the plunger gate

Vg and source–drain bias voltage Vb across a dot results in the so-called Coulomb blockade

diamonds shown in Fig. 2.1(f).

Thus far, we have not included the spin of electrons in the transport studies. In a quan-

tum dot with an odd number of electrons the spin state is either up or down. These two

spins states are degenerate at zero magnetic field, thus the ground state is a spin doublet

at lowest orbital. They spilt in the presence of a finite field with energy difference equal

to Zeeman splitting ∆EZ = gµBB. This mechanism allows for initialization and readout of
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qubits encoded in spin-up and spin-down states of electrons in quantum dots [9, 10, 82].

For a quantum dot with an even number of electrons, the ground state is a spin sin-

glet |S〉 = (| ↑↓〉 − | ↓↑〉)/
√

2 and the first excited states are spin triplets |T+〉 = | ↑↑〉,

|T0〉 = (| ↑↓〉+ | ↓↑〉)/
√

2, and |T−〉 = | ↓↓〉.

2.2.2 Double quantum dots

A double quantum dot (DQD) can be made by mutually coupling individual dots, through

capacitive and/or tunnel coupling. The electrochemical potential on each dot, and hence the

charge occupation (N1, N2), can be controlled by changing voltages on gates coupled to either

dot (Fig. 2.2(a)). Transport of charge carriers from source to drain through the DQD follows

this cycle: (N1, N2) → (N1 + 1, N2) → (N1, N2 + 1) → (N1, N2). At low source-drain bias

the transport is allowed when these three charge states are energetically degenerate, and the

electrochemical potential of both dots align with those of source and drain. This degeneracy

point is called a triple point. Fig. 2.2(b) schematically depicts the equilibrium (N1, N2)

charge number on each dot in the (gate, gate) plane. Such a transport plot is called a charge

stability diagram. At finite source-drain bias voltage, triple points grow into so-called bias

triangles, in which tunneling through excited states becomes accessible. Fig. 2.2(c) shows

the charge stability diagram for a Ge/Si DQD where the charge carriers are holes in the

valence band.

2.2.2.1 Pauli spin blockade

The rectification of current in DC transport through a DQD is called Pauli spin block-

ade [13]. The simplest case of Pauli blockade happens for the transport cycle when starting

with N1 = 0 and N2 = 1: (0, 1) → (1, 1) → (0, 2) → (0, 1). When there is only one charge

carrier in either one of the dots (0, 1) the spin states are either spin-up or spin-down. The

spin-up and spin-down states are degenerate at zero magnetic field, and at finite fields the

Zeeman effect lifts the spin degeneracy. For the (0, 2) charge state there are four spin states
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possible:

S(0, 2) = (| ↑2↓2〉 − | ↓2↑2〉)/
√

2

T+(0, 2) = | ↑2↑2〉

T0(0, 2) = (| ↑2↓2〉+ | ↓2↑2〉)/
√

2

T−(0, 2) = | ↓2↓2〉,

(16)

where triplet states are degenerate in the absence of a magnetic field. In this case a singlet

ground state is favored over excited triplet states as they involve higher orbital states that

are not available for small source-drain bias voltages, due to Pauli principle. The energy

difference between singlet and triplet states is called the singlet-triplet splitting EST .

Figure 2.2: (a) Diagram of two quantum dots coupled in series. Due to capacitive couplings each
gate effectively controls the chemical potential on both dots. (b) At low source-drain bias voltage
transport through DQD is only possible at triple points, shown in blue. Triple points together form
a hexagonal lattice. At a triple point, three different charge states are energetically degenerate. (c)
Charge stability diagram of a DQD made in Ge/Si core/shell nanowires by adjacent gates. The
coupling between the dots (CC) is also controllable by a gate voltage. (d) Transport schematics
of different points (color-coded) on a bias triangle that is not spin-blocked. Solid line represents
ground state and dashed line is an excited state that becomes accessible when double dots level
detuning increases.
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Similarly, for the (1, 1) charge configuration, we have singlet and triplet spin states. The

spin of the wavefunctions are as follow:

S(1, 1) = (| ↑1↓2〉 − | ↓1↑2〉)/
√

2

T+(1, 1) = | ↑1↑2〉

T0(1, 1) = (| ↑1↓2〉+ | ↓1↑2〉)/
√

2

T−(1, 1) = | ↓1↓2〉.

(17)

Electrons occupy separate orbitals in neighboring dots, hence the singlet–triplet splitting at

zero magnetic field is usually negligibly small. The (0, 1)→ (1, 1)→ (0, 2)→ (0, 1) spin

states near degeneracy points can be described by as follows [83]:

H0 = −ε|S(0, 2)〉〈S(0, 2)|+
√

2t(|S(1, 1)〉〈S(0, 2)|+ |S(0, 2)〉〈S(1, 1)|)

− gµBB(|T+(1, 1)〉〈T+(1, 1)| − |T−(1, 1)〉〈T−(1, 1)|),
(18)

where ε is the level detuning and t is the tunnel coupling between S(1, 1) and S(0, 2). If

ε < 0 the transport is blocked due to Coulomb blockade (red panel in Fig. 2.2(d)). For the

case of ε > 0, if the electrons form one of the triplet states T (1, 1), the electron in the first

dot will not be able to tunnel to the second dot, as T (0, 2) is too high in energy. The system

remains stuck in the (1, 1) charge state until the electron relaxes. Once the source-drain

bias is increased such that it exceeds singlet-triplet splitting, T (0, 2) states become available

from T (1, 1), and the blockade is lifted. Spin blockade can also be lifted by other means such

as photon-assisted tunneling and application of an external magnetic field. Some of these

spin relaxation and lifting processes are discussed in detail in Ref. [81]. In Chapter 4 we

thoroughly discuss spin mixing processes due to a combination of spin-orbit interaction and

Zeeman splitting.
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2.2.3 Spin-orbit interaction in quantum dots

In quantum dots electrons are confined in all three directions and the average momentum

is zero. This property means that spin-orbit interaction does not couple the Zeeman split

levels of a quantum dot with orbitals labeled with q:

〈q ↓ |HSO|q ↑〉 ∝ 〈q|px,y,z|q〉〈↓ |σ| ↑〉 = 0. (19)

However, spin-orbit interaction manifests itself as a perturbation term and couples states

with different orbital numbers. Thus quantum dot states are actually admixtures of spin

and orbital states:

|q ↑〉(1) = |q ↑〉+
∑
q′ 6=q

〈q′ ↓ |HSO|q ↑〉
Eq − Eq′ −∆EZ

|q′ ↓〉

|q ↓〉(1) = |q ↓〉+
∑
q′ 6=q

〈q′ ↑ |HSO|q ↓〉
Eq − Eq′ + ∆EZ

|q′ ↑〉,
(20)

in which ∆EZ is the unperturbed Zeeman energy. But this perturbation renormalizes the

Zeeman energy of electrons: ∆E
(1)
Z = E

(1)
↓ − E

(1)
↑ and that is why what we measure in

quantum dots is actually the effective g-factor. For the case of two-electron spin states, a

combination of spin-orbit interaction and Zeeman splitting due to the applied field enables

transitions between triplet and singlet configurations:

|Sq〉(1) = |Sq〉+
∑
q′ 6=q

〈T±q′|HSO|Sq〉
ET±q′ − ESq

|T±q′〉

|T0q〉(1) = |T0q〉
∑
q′ 6=q

〈T±q′|HSO|T0q〉
ET±q′ − ET0q

|T±q′〉

|T±q〉(1) = |T±q〉
∑
q′ 6=q

〈Sq′|HSO|T±q〉
ESq′ − ET±q

|Sq′〉+
∑
q′ 6=q

〈T0q
′|HSO|T±q〉

ET0q′ − ET±q
|T0q

′〉

(21)
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2.3 Superconductivity

A superconductor can support a dissipationless current below a critical temperature Tc,

and expel external magnetic fields up to a particular critical field Bc. Bardeen, Cooper

and Schrieffer (BCS) developed a microscopic theory that explained thermal, transport and

electromagnetic properties of superconductors [17]. In their model, the ground state of a

superconductor is a condensate of pairs of electrons with opposite momentum and spin that

form effective bosonic particles called Cooper pairs. This pairing is mediated by interactions

between electrons and the phonon field that compensates for the Coulomb repulsion between

electrons. BCS model leads to a gapped energy spectrum around Fermi level, |E| = 2∆,

where ∆ is the superconducting energy gap. The superconducting phase transition is charac-

terized by a complex valued order parameter (also called superconducting pairing potential),

∆k = ∆eiϕ, in which ϕ is the superconducting phase. The Hamiltonian describing this pair-

ing can be written as:

HBCS =
∑
kσ

εkc
†
kσckσ +

∑
kl

Vklc
†
k↑c
†
−k↓cl↑c−l↓, (22)

where εk =
(~k)2

2m∗ −EF (EF is the Fermi energy) accounts for noninteracting electrons (in the

absence of superconductivity), c†kσ (ckσ) creates (annihilates) an electron with momentum

k and spin σ, Vkl characterizes the attractive interaction between Cooper pairs. In the

mean-field approximation this pairing Hamiltonian takes the form:

HBCS =
∑
kσ

εkc
†
kσckσ +

∑
k

(∆kc
†
k↑c
†
−k↓ + h.c.). (23)

This Hamiltonian does not conserve particle number but spin and parity (even or odd number

of particles) are conserved. The Hamiltonian can be diagonalized and written in the standard

Bogoliubov-de Gennes (BdG) form:

HBCS =
∑

C†kHBdGCk

C†k =
(
c†k↑ c−k↓

)
HBdG =

 εk ∆k

∆∗k −εk


(24)
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The Schrödinger equation can be generalized to the BdG equation with plane wave solutions:

HBdG

 ψe(r)

ψh(r)

 = E

 ψe(r)

ψh(r)


 ψe(r)

ψh(r)

 = eikr

 ψe

ψh

 (25)

where for the two-component wavefunction in the electron and hole space
∣∣ψe(h)(r)

∣∣2 is the

probability of finding a quasiparticle in an electron-like (hole-like) state. The eigenenergies

are then

E = ±
√
ε2k + |∆k|2 (26)

and the density of states close to the Fermi energy follows from ρ(E) ≡ dε
dE (depicted in

Fig. 2.3(a)):

ρ(E) =


E√

E2−∆2
E > ∆

0 E < ∆

(27)

2.3.1 Semiconductor-superconductor interface

Now we consider the case where a normal metal (semiconductor in our case) and a su-

perconductor are brought together. We begin with the ideal case where there is no barrier

at the interface. An electron with energy E > ∆ from the semiconductor incident upon the

semiconductor-superconductor interface passes through as an electron or a hole-like quasi-

particle above the gap energy. However, for a normal electron with energy E < ∆, there are

no quasiparticle states available in the superconducting gap. When this electron reaches the

interface, it reflects back to the semiconductor as a hole transferring 2e charge across the

interface to the superconducting Cooper pair condensate. This process is known as Andreev

reflection [19]. For a perfect interface with no barriers at low temperature and bias voltage,

all incident electrons would undergo Andreev reflection, thus the subgap conductance would

be twice that of normal state. Nevertheless, in reality there will be normal reflection in
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Figure 2.3: (a) Superconducting density of states with energy gap ∆, where there are no single
quasiparticle states available. (b) Schematic of Andreev reflection for an incident electron with
energy EF < E < ∆ at the interface of a semiconductor (orange) and a superconductor (gray). (c)
Supercurrent flow between two superconducting electrodes with energy gap ∆ and superconducting
phases φ1 and φ2 that are separated by a weak link (a semiconductor in our experiments). In
addition to Andreev reflection there are generally normal reflections happening at the weak link
- superconductor interface due to some sort of barriers, for instance semiconductor native oxide.
The normal reflections are not depicted here.

addition to Andreev reflection at the interface due to Fermi velocity mismatch of the carri-

ers or rough interface between normal and superconducting regions. Blonder, Tinkham and

Klapwijk [84] introduced a δ-function potential barrier with strength Z at the interface (so-

called BTK model). Z describes the interface quality where Z = 0 means perfect Andreev

reflection. They solved the BdG equation with plane wave ansatz to treat the transmission

and reflection probabilities of an electron with energy E reaching the interface. There are

four possible outcomes for an incoming electron incident at the interface: reflected as a hole

(A(E) = a∗a) or an electron (B(E) = b∗b), transmitted as an electron (C(E) = c∗c(ψ2
e−ψ2

h))

or hole (D(E) = d∗d(ψ2
e − ψ2

h)) quasiparticle.

21



Ψinc =

 1

0

 eiker

Ψrefl = a

 0

1

 eikhr + b

 1

0

 e−iker

Ψtrans = c

 ψe

ψh

 eiqer + d

 ψe

ψh

 e−iqhr

(28)

Upon applying boundary conditions, the probability of each outcome is derived [84]. We

plot Andreev and normal reflection probabilities for different values of Z in Fig. 2.4.

Figure 2.4: Probabilities for Andreev and normal reflections, A(E) and B(E) plotted for different
Z values. At the two extreme limits Z = 0 and Z = 5 all electrons within the gap are Andreev and
normal reflected, respectively.

2.3.1.1 Experimental relevance in the tunneling regime

When a bias voltage is applied there will be nonequilibrium quasiparticles generated at

the interface. BTK model assumes the Fermi distribution for all incoming electrons and

the electrochemical potential of Cooper pairs is chosen as the reference level. Hence all

incoming electrons from a superconductor have a distribution function f0(E) while those
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from semiconductors are described by f0(E − eV ). The current across the interface must be

conserved. Thus on the semiconductor side we have

I ∼
∫ ∞
−∞

[f→(E)− f←(E)]dE (29)

where based on the description above f→(E) = f0(E−eV ) and f←(E) = A(E)(1−f→(−E))+

B(E)f←(E) + [C(E) +D(E)]f0(E). The current can then be rewritten as3

I ∼
∫ ∞
−∞

[f(E)− f(E − eV )][1 + A(E)−B(E)]dE (30)

The term 1+A(E)−B(E) is referred to as “transmission coefficient” from which we see An-

dreev reflection contributes to the current while normal reflection reduces it. The differential

conductance at the interface is then

G(V ) =
dI

dV
∼
∫ (
−df(E − eV )

dV

)
[1 + A(E)−B(E)]dE. (31)

In the tunneling regime where Z is large, (1 + A(E) − B(E)) −→ E√
E2−∆2

= ρ(E) which

is the superconductor density of states. Moreover, at low temperatures the derivative of the

Fermi distribution reduces to a δ-function. Eq. 31 reduces to

G(V ) =

ρ(eV ) Z � 1

1 + A(eV )−B(eV ) Z = 0

. (32)

In the tunneling regime for large Z the conductance is proportional to density of states.

Therefore, a measurement of conductance is an essential spectroscopic tool to get insight into

the density of states and the Andreev reflection process in a semiconductor-superconductor

structure, and this model provides useful information from experimental aspects.

Blonder et al. also showed that the asymptotic linear I − V curves derived from Eq. 30

exhibit an added “excess current” in the normal state (eV & ∆) that depends on Z, the

transparency of the interface. We use an extension of this model (OBTK) [85] to deduce the

transparency between Ge/Si core/shell nanowires and NbTiN superconductor in Chapter 4.

3Considering the following properties: A(E) = A(−E), A+B + C +D = 1, f0(−E) = 1− f0(E).
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2.3.2 Josephson effect and Andreev bound states

In 1962 Brian Josephson proposed that a supercurrent IS can flow between two super-

conducting electrodes separated by a non-superconducting region (a weak link) (Fig. 2.3(c)).

The weak link can be a thin insulating layer (original Josephson’s proposal), a normal metal,

a semiconductor or just a narrow geometrical constriction [20]. In this thesis we study the

Josephson effect in multiple Josephson junctions with semiconducting weak links (NbTiN-

Ge/Si-NbTiN in Chapter 4, Al-InSb-Al in Chapter 5, Sn-InSb-Sn in Chapter 6, and Al- InAs

2DEG-Al in Chapter 8). The Josephson current in these junctions is gate voltage tunable

and is sustained in relatively high magnetic fields, allowing them to potentially be used as

nonlinear elements in circuit quantum electrodynamics devices for both topological and non-

topological qubit designs.

The value of the supercurrent depends on the difference in the phase of the supercon-

ducting wavefunction in the two electrodes φ = φ2 − φ1 [18]

IS(φ) = Ic sinφ, (33)

where the critical current Ic in this current-phase relation (CPR) is the maximum super-

current that the junction can support. This sinusoidal CPR can successfully describe most

Josephson junctions made with different materials and synthesis technologies. More gen-

erally, however, CPR can deviate from simply sinusoidal form and include higher order

components [86, 87, 88]

IS = Σ[Insin(nφ) + Jncos(nφ)] (34)

with odd Jn terms vanishing in the presence of time-reversal symmetry, where Jn are the

Bessel functions.

The flow of supercurrent through a Josephson junction can be understood by considering

Cooper pair tunneling and Andreev processes at each interface. If quasiparticles in a single

channel weak link stay phase coherent, they form bound states of electron-hole pairs that

carry supercurrent between superconductor reservoirs with phase difference φ

I =
2e

~
dE

dφ
, (35)
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where E is the energy of the bound states, known as Andreev bound states (ABS). Ku-

lik [89] derived the wavefunction and energy levels of these excitations in a barrier-less

superconducting-normal metal-superconducting junction (SNS junction and can be general-

ized to semiconductors depicted in Fig. 2.3(c) with a weak link with length L) by solving

the BdG equation (Eq. 24) in which the order parameter is given by

∆(x) =


∆eiφ1 x < 0

0 0 < x < L

∆eiφ2 x > L

(36)

For E > ∆ the solution is a continuous spectrum while for E < ∆ there are discrete energy

levels.
E

∆

L

ξ
= 2 arccos

E

∆
± φ+ 2πn (37)

where ξ is the superconducting coherence length. For the short junction limit (L � ξ) the

two lowest eigenvalues are E± = ±∆ cos (
φ
2 ). Adding an interface barrier similar to BTK,

Beenakker solved for ABS energies in the short junction limit [90]:

EABS = ±∆

√
cos2(φ/2) + Z2

1 + Z2
= ±∆

√
1− T sin2 φ/2, (38)

where T = 1/(1 + Z2) is the conduction channel transmission probability. These sub-gap

states with |EABS| . ∆ are localized in the vicinity of the weak link and extend into the

superconducting reservoirs. This allows transport through Andreev bound states as well as

coupling the Andreev levels to superconducting resonators [91, 92, 93]. Substituting Eq. 38

back to Eq. 35 gives the current in a junction

I(φ) =
e∆

2~
Tsinφ√

1− Tsin2(φ/2)
, (39)

which reduces to Josephson current in Eq. 33 in the tunneling limit (T → 0).
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Figure 2.5: We plot Andreev bound state energy spectrum and current carried out by ABS for
different interface transparencies. The continuum spectrum is shaded grey.

2.3.2.1 Andreev bound states in a quantum dot

If a quantum dot is strongly coupled to superconducting leads, ABS can be induced in

the quantum dot. This results from the superconducting proximity effect, in which a trans-

parent contact between a superconductor and a normal metal results in superconductivity

in the normal region at mesoscopic scales. The Hamiltonian of this system can be writ-

ten as H = HQD +HLeadL/R
+ V . The quantum dot is modeled as a multiorbital Anderson

impurity, with levels εDi , and Coulomb interaction with charging energy U on the dot:

HQD =
∑
iσ

εDi d
†
iσdiσ + U

∑
i

ni↑ni↓, (40)

where d†σ creates an electron in the dot and niσ = d†iσdiσ. The BCS superconducting leads [20]

with energy levels εLk which allow more than one quasiparticle excitation in the supercon-

ducting lead, are described by the Hamiltonian:

HLeadL/R
=
∑
kσ

εLk c
†
kσckσ +

∑
k

(∆eiφc†k↑c
†
−k↓ + h.c.), (41)

in which c†kσ creates an electron with spin σ and wavevector k in the lead. And finally coupling

between leads and quantum dot states through a spin-independent hopping amplitude is

given by

V = t
∑
ikσ

d†iσckσ + h.c.. (42)

We study transport mediated by ABS in InSb nanowires with superconducting contacts in

Chapter 5 in which this model is discussed in more detail.
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2.3.3 Superconducting island

Let us now briefly discuss a superconducting island that is coupled to normal metal leads

and a gate [20, 94]. The energy on the island at zero bias (similar to that of a quantum

dot coupled to source and drain reservoirs) can be read from: E = 1
2Ctot

(Q0 + ne)2, where

Ctot is the sum of all capacitances, Q0 = CGVG is the gate charge, and n is the number of

electrons added to the island. This energy corresponds to a family of parabolas, one for each

integer value of n, plotted in Fig. 2.6. At degeneracy points the value of n in the ground

state changes. The electron pairing affects the potential energy on the island and modifies

its ground state. If the number of conduction electrons N4 on the island is even, the ground

state is fully paired; if N is odd, the ground state should contain one quasiparticle above the

energy gap ∆.

Figure 2.6: Island energy as a function of gate charge. Blue (orange) curves represent even (odd)
parity. Black dots indicate degeneracy points where n in the ground state changes and charge
transport without an energy barrier occurs at zero temperature. Grey shading represents a contin-
uum of quasiparticles above the gap for odd n values or in the normal island (a) with e periodicity.
(b) Superconducting island with ∆ < EC . (c) Superconducting island with ∆ > EC

Averin and Nazarov [95] introduced an addition energy to make a distinction between

these two ground states. This energy shifts the odd N parabolas by ∆ in energy while the

even N parabolas stay unchanged (Fig. 2.6(b) and (c)). The relative strength of ∆ and

charging energy EC on the island results in two situations: ∆ < EC and ∆ > EC .

In the first case, when sweeping the gate charge, electrons enter the island one at a

time. In the second situation, as the gate is swept the ground state always stays at even

N transitioning from N directly to N + 2. This is the 2e charging effect, which indicates

4It is assumed that the neutral island has even number of electrons so n (excess electrons) and N (con-
duction electrons) have the same parity.
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transport through the island without quasiparticle poisoning.

The ability to resolve charge parity on an island is essential for topological quantum

computing as well as transmon qubits, where it provides a qubit state readout mechanism.

In Chapter 6 we show this charge parity stability in a tin island on Sn-InSb nanowires.

2.4 Circuit quantum electrodynamics

In circuit quantum electrodynamics (circuit QED) an artificial atom is coupled to a

transmission feedline through a cavity resonator. The resonators are on-chip lithographi-

cally fabricated superconducting electronic components operating at microwave frequency.

The artificial atoms can be spin ensembles, quantum dots, Josephson junctions, Andreev

bound states, qubits or simply a two-level system [96, 97, 98, 99, 74, 100, 101, 102]. The

interaction between the artificial atom and resonators can be described by Jaynes-Cummings

Hamiltonian [103].

HJC = Hqubit +Hcavity +Hinteraction =
~ωq
2
σz + ~ωc(a†a+

1

2
) + ~g(a†σ− + aσ+), (43)

where ωq is the qubit frequency, σz = |g〉〈g| − |e〉〈e|, ωc is the resonator frequency, a† and a

are photon creation and annihilation operators, g is the coupling strength between qubit and

cavity, and σ− and σ+ are qubit lowering and raising operators, respectively. The coupling

Hamiltonian describes the interaction between the qubit and the cavity, i.e, excitations can

be swapped from the qubit to the resonator and vice versa.

Qubit-cavity detuning is defined as δ = |ωq − ωc|. In the limit of large detuning δ � g,

the coupling term yields a dispersive spectrum and the resonator experiences a qubit-state

dependent frequency shift. The dispersive approximation yields

Hdispersive =
~ωq
2
σz + ~ωc(a†a+

1

2
) + χa†aσz, (44)

where χ =
g2

δ is the dispersive shift [104]. This so-called forth order term manifests itself as

a change in the phase and magnitude of the transmission spectrum.

28



2.4.1 Superconducting resonators

Superconducting resonators are on-chip electronic circuits which demonstrate high qual-

ity factors and can have long coherence times5. They can mediate a strong coupling between

the transmission feedline and qubits, spins in quantum dots, etc [106, 107]. They also allow

for coupling of multiple qubits of different kinds through resonator modes [108, 96, 109, 110,

101, 111].

On-chip resonators are defined by patterning a thin superconducting film that is de-

posited onto a substrate. The superconductor is either selectively deposited or etched. The

former universally results in lossier resonant circuits due to a higher surface distribution of

two-level systems [112, 113, 70]. We employ two commonly used and well-developed res-

onator geometries in this thesis: coplanar waveguide resonators and compact LC resonators.

The resonances of both kinds are controllable by design, and we can have multiple resonators

with different fundamentals coupled to a transmission feedline in one chip. Below is a short

introduction to them. These resonators are then utilized to build hybrid semiconductor-

superconductor circuits.

2.4.1.1 Coplanar waveguide resonator

A coplanar waveguide (CPW) consists of a signal carrying center pin that is separated by

a gap from the ground plane on both sides. The electric field propagates in the gap between

the center pin feedline and the two ground planes. The impedance of the line is given by

the geometrical properties such as center line width w, gap spacing g, superconducting film

thickness t and the substrate dielectric material εr indicated on the bottom left panel of

Fig. 2.7. These parameters are set such that the impedance of CPW matches the 50 Ω

characteristic impedance of external coaxial cables to avoid partial reflection of the signal.

A CPW resonator is formed by interrupting the center pin feedline either on both ends

(half-wavelength CPW) or on one end while the other end is shorted to the ground plane

5The loss of a circuit is measured by quality factor, Q ∝ average energy stored
energy loss/second [105]. Thus the quality

factor is a characteristic of resonators where a higher Q means a lower loss.
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Figure 2.7: (Left) A λ/4 CPW resonator coupled to a transmission feedline. The cartoon indicates
the parameters that define the impedance of a CPW that is patterned on a sapphire substrate. t is
the thickness of superconducting film SC, w is the width of the CPW center pin, and g is the gap
between center pin and ground plane. (Right) A transmon capacitively coupled to a compacted
resonators which itself capacitively couples to a transmission feedline.
The coupling strength in this capacitive coupling scheme depends on the length of the resonator in
parallel to the feedline (lc) and the width of the ground plane between the two (gc). The longer lc
and the smaller gc result in stronger coupling. The coupling strength is inversely proportional to
coupling quality factor Qc.

(quarter-wavelength CPW). The resonant frequencies are given by:

λ/2 : fn =
c

√
εeff

n

2l
, λ/4 : fn =

c
√
εeff

2n− 1

4l
(n = 1, 2, 3, ...), (45)

where εeff = 1+εr
2 is effective dielectric permittivity of the device and l is the length of the

resonator. These fundamentals are calculated considering only geometrical inductance, Lg,

of the resonator in the resonant frequency expression (for quarter wavelength)

f0 =
1

4l
√
LgC

Lg =
µ0

4

K(k′)

K(k)

C = 4ε0εeff
K(k′)

K(k)
,

(46)

where µ0 and ε0 are vacuum permieability and permittivity, respectively, K are complete

elliptic integrals of the first kind, k = w
w+2g , and k2 + k′2 = 1.
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However, the total inductance is the sum of the aforementioned geometrical inductance

and the kinetic inductance. The kinetic energy attributed to moving electrons (current

flowing in a wire) results in a kinetic inductance that depends on geometry as well as λ

London penetration depth of the superconductor [114]:

LK = µ0
λ2

tw
G(t, w, g)

G(t, w, g) =
1

2k2K2(k)
[− ln

t

4w
−k ln

t

4(w + 2g)
+

2(w + g)

w + 2g
ln

g

w + g
],

(47)

from which we can see that decreasing the cross sectional area of the center pin (tw) results

in increasing kinetic inductance LK as G(t, w, g) is not sensitive to those parameters. This

derivation uses the assumption that the film thickness is smaller than the penetration depth

and the current density is uniform across the film thickness.

The resonant frequency with contributing kinetic inductance will then be

fK0 =
1

4l
√

(Lg + LK)C
. (48)

Thus the resonant frequency of a CPW resonator can be modified by the ratio of kinetic

inductance to total inductance. The kinetic inductance fraction is defined as

α =
LK

LK + Lg
(49)

and by measuring the resonant frequency fK0 and comparing it with 45 and 46 one can find

the kinetic inductance boost. In Chapter 7 we design and measure resonators based on

thin film Nb alloy family superconductors in which kinetic inductance modifies the resonant

frequency, resulting in shorter CPW resonators compared to thick film resonators where

kinetic inductance boost is not significant.

31



2.4.1.2 Compact resonator

A compact resonator consists of two parallel subresonators, one with a large inductance

and the other with a large capacitance. They are not considered fully lumped elements

as their size is comparable to the wavelength. The inductance is provided by a thin long

meandered wire and the capacitance comes from interdigitated fingers. Both the inductance

and the capacitance are characterized by the total length and the width of traces as well

as the spacing between them. The frequency ω0 of a compact resonator with inductance L,

capacitance C and impedance Z0 results from following relations:

C =
1

ω0Z0

, L =
Z0

ω0

(50)

and does not exhibit equally spaced fundamentals.

Ref. [115] provides an extensive study on different parameter values for these resonators

and their quality factors from which we extracted relevant scales for our resonator designs

in Chapter 7. These parameters provide more flexibility for improving the quality factors of

compact resonators compared to CPWs where only the center pin width and the gap size

are changeable.

The structure of these resonators, as shown in Fig. 2.7, makes them suitable for capacitive

coupling. We use a thick film Al superconductor for our first attempt to make a hybrid

superconductor-semiconductor transmon qubit in Chapter 7.

2.4.1.3 Resonator quality factor measurement

As mentioned earlier the quality factor is an indication of loss mechanisms in the sys-

tem at a given resonance. The higher the quality factor the longer a photon can resonate

before it is lost. Measuring transmission through the feedline can give information about

the resonant frequency fr, the resonator’s intrinsic quality factor Qi, and coupling factor Qc.

This measurement is called the “hanger measurement” and comes from the hanger coupling

of resonators to the transmission feedline as shown in Fig. 2.7. While measuring the trans-

mission and sweeping the frequency through the feedline, the signal will be absorbed in a

resonator at its resonant frequency. This will cause a dip in transmission and the deviation

from the transmission value away from the resonance is used to extract Qi. The width of
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this dip is a measure of the loaded quality factor defined as 1/Ql = 1/Qi + 1/Qc. One can

extract the values of the quality factors by fitting the Lorentzian transmission curve to the

complex-valued transmission S21 (detailed derivation from Ref [116, 115]):

S21 =
Qc + iQcQi(2

f−fr
fr

+ 2 δf
fr

)

Qi +Qc + 2iQcQi
f−fr
fr

(51)

where δf is characterizing asymmetry in the lineshape. If the lineshape is symmetric then

δf = 0. An example of an asymmetric hanger measurement and fitting is shown in Fig. 2.8.

Figure 2.8: Transmission response of a 50 nm thick NbTiN quarter wavelength CPW resonator
near its resonant frequency. Quality factors are extracted by fitting data using Eq. 51, Qi ≈ 30000
and Qc ≈ 6000.

2.4.2 Superconducting qubits

Superconducting qubits have shown great progress on the path of quantum information

and building a quantum processor [117, 69, 118]. They are based on Josephson tunnel
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junctions. The Josephson current shown in Eq. 33 results in low loss nonlinear inductance:

IJ = I0 sinϕ

V =
~
2e

dϕ

dt
dIJ
dt

=
2e

~
V I0 cosϕ

(52)

By definition V = LJ
dIJ
dt , thus the inductance is

LJ =
~
2e

1

I0 cosϕ
(53)

If one replaces the inductor in a quantum harmonic LC oscillator by a Josephson tunnel

junction which has a nonlinear inductance, the circuit can be described with an anharmonic

oscillator potential. The energy levels then have different spacing, where E01 6= E12, and

the two lowest levels can be used as the qubit basis. Generally, a large anharmonicity,

α = E01 − E12, is preferred in order to address ground and excited states without exciting

higher levels. One of the first circuits that was used as a two-level system was a Cooper

pair box (CPB) [119]. A CPB consists of a superconducting island that is separated from

a superconducting reservoir by a Josephson tunnel junction and a gate capacitor that adds

charges to the island. The two levels are the charge states of Cooper pairs from the island

tunneling on and off through the junction. CPB suffers from a very short coherence time

as the qubit states are very sensitive to charge fluctuations. The Hamiltonian of CPB

can be modified by adding additional circuit elements like capacitors and inductors. The

potential energy and qubit properties such as sensitivity to charge noise and anharmonicity

then can be engineered based on the relative energy scales of these circuit elements. Here

we give a short introduction to two alternative qubits that we attempted to build out of

hybrid superconducting-semiconducting circuits. They tackle the offset charge fluctuation

by shunting the Josephson junction in two different ways: by a large capacitor (transmon)

or a large inductor (fluxonium).
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2.4.2.1 Transmon

A transmon [120] consists of a Josephson junction in parallel with a large shunting

capacitor. The transmon is then less sensitive to charge noises by decreasing the charging

energy scale EJ � EC . Here EJ =
~
2eIc is the Josephson energy in which Ic is the junction’s

critical current, and EC =
e2

2C is the charging energy where C is the sum of the junction

and external capacitances. The Hamiltonian of a transmon is the same as that of a Cooper

pair box:

HT = −4EC
∂2

∂ϕ2
+ EJ cosϕ, (54)

where in the limit of EC � EJ , charge (n̂ = ∂
∂ϕ) is not a good quantum number anymore,

and α ∼ EC , that is reduced to orders of a couple of hundreds of MHz.

In Chapter 6 we will introduce a new superconductor-semiconductor hybrid (Sn-InSb)

which exhibits 2e-charging effect. 2e-periodic charging pattern that was previously only

seen in Al is an indication of long quasiparticle stability time [121]. Quasiparticle hopping

between superconducting islands or single electron tunneling is a source of decoherence as

fluctuations of the quasiparticle number on superconducting islands scramble qubit readout.

Hence, long quasiparticle stability time is essential for long transmon lifetime as well as

topological quantum computing [122, 123]. One can implement a transmon using hybrid

structure as a tunnel junction which allows tuning the transmon by means of local gate

voltages. The gate controls the carrier density in the semiconducting weak link which in

turn modifies Josephson energy as well as qubit fundamental frequency and anharmonicity.

Such devices have already been demonstrated in InAs nanowires and 2DEGs [74, 75, 100].

They have exhibited coherence times of ∼ 5 µs and demonstrated compatibility with external

magnetic fields up to 100 mT. In Chapter 7 we attempt to use Sn-InSb in hybrid transmon

circuit where higher critical field of tin compared to aluminum allows for entering a more

robust topological regime for parity protected quantum computation [122].

2.4.2.2 Fluxonium

A Fluxonium [124] circuit consists of a Josephson junction shunted by a large inductance

L and a capacitance C. This large inductance shunts charges across the junction and protects
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the circuit from low-frequency charge fluctuations, even when EJ and EC are comparable

(1 ≤ EJ/EC ≤ 10). Hence, there is no need for large shunting capacitance and anharmonicity

is not reduced. The Hamiltonian then gets an added inductive term:

HF = −4EC
∂2

∂ϕ2
+
EL
2
ϕ2 + EJ cos (ϕ− 2π

Φext

Φ0

), (55)

where EL =
(~/2e)2
L is the inductive energy. The inductance is large enough such that

EL � EJ which results in two well-separated potential minima when operated at the “sweet

spot” Φext = Φ0/2.

The so-called “superinductance” (an inductance whose impedance exceeds the resistance

quantum h/(2e)2 ' 6.5 kΩ at microwave frequencies below its self-resonant frequency ∼

100 nH) [125] is conventionally provided by an array of many Al/AlOx/Al tunnel junctions

in series. Ref. [126] recently demonstrated reproducible high coherence times (> 100µs) in

these conventional fluxoniums. However, the high number of many Josephson junctions per

qubit could be a serious fabrication challenge. Moreover, Ref. [55] proposes a scheme where

a fluxonium is coupled to a Majorana qubit for which the fluxonium needs to be able to

perform in external magnetic fields for entering the topological regime. Al/AlOx/Al tunnel

junctions are not field compatible, and one can provide the superinductance needed with

the high kinetic inductance of field resilient Nb family superconductors [71, 127, 128]. In

Chapter 7 we study meander nanowire resonators made from thin films of disordered NbTiN

superconductor sustaining their quality factors in finite magnetic fields.
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3.0 Fabrication methods and experimental setups

This chapter describes the fabrication methods for Ge/Si and InSb nanowire devices

as well as Josephson junction fabrication in InAs quantum well. Fabrication recipes for

superconducting circuits compatible with semiconductor nanowires are also discussed. The

last section of this chapter shows schematics of the measurement setups both for DC quantum

transport measurements in semiconducting systems and standard microwave techniques for

studying superconducting circuits.

3.1 Semiconductor structures

The Ge/Si nanowire growth was performed at the Center for Integrated Nanotechnologies

(CINT), U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los

Alamos National Laboratory and Sandia National Laboratories.

InSb nanowires were grown at Eindhoven University of Technology and then shipped to

Santa Barbara for depositing Al and Sn shells at University of California Santa Barbara.

InAs quantum well structures were fully grown at University of California Santa Barbara.

3.1.1 Ge/Si core/shell nanowires

The Ge/Si core/shell nanowires used in this thesis were grown in a low pressure, cold

wall chemical vapor deposition (CVD) system [129]. Au colloids with different diameters

were used on a (111) Ge substrate to grow the Ge core with radii of 10−15 nm. The Si shell

thicknesses were calibrated between 1 to 4 nm [130]. The inset schematics in Fig. 3.1 shows

the type II band alignment with a valence band offset of 500 meV between Ge and Si at the

core/shell interface, where holes accumulate in the Ge core as the Fermi level lies just below

its valence band edge. This free hole gas is present without any intentional doping in either

Ge or Si which is essential in eliminating scattering processes from ionized dopants [56].
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Fig. 3.1 shows room temperature gate pinch-off trace of a field effect transistor made with

these nanowires where we see ambipolar behavior of charge carriers. All devices measured

in this thesis are studied in the p-type depletion mode.

Figure 3.1: Inset: Due to an offset of 0.5 eV between Ge and Si valence bands, hole gas forms in
the Ge core. Room temperature pinch-off trace of a nanowire connected to two contact leads on
global back-gate chip showing ambipolarity.

Both Ge and Si are group IV elements with low abundance of nonzero nuclear spin iso-

topes [56], reducing hyperfine interactions. Furthermore, holes with their p-wave symmetry

weakly couple to nuclear spins, if any left, increasing spin relaxation times [59]. In addition,

the expected large spin-orbit interaction in the valence band [60] make these nanowires a

potential platform for electrical spin manipulation as well as studies of Majorana modes.

3.1.2 InSb nanowires

The InSb nanowires used in this thesis were grown by metal-organic vapor phase epi-

taxy (MOVPE) with high aspect ratios [131]. They have zincblende lattice structure with a

hexagonal cross section (also shown in Fig. 3.2). Their diameters are 80− 120 nm and they

are 2 − 4 µm long. Recent advances in engineering of these structures allow for high crys-

talline quality of superconductor-semiconductor junctions as well as for the precise location

and size of junctions [65, 132, 133, 134]. On the one hand, the giant g-factor and strong

spin-orbit interaction [135, 67] along with small band gap of ≈ 170 meV and high mobility up
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to 104 cm2/(Vs) makes these nanowires an extremely promising platform for Majorana stud-

ies [136]. On the other hand, the versatile nanowire weak link-superconductor compositions

endorse these structures for hybrid superconducting-semiconducting qubits.

3.1.3 Epi-Al/InAs 2DEG

InAs, like InSb, benefits from small band gap energy, large Landé g-factor and strong

spin-orbit interaction which are crucial for stability of non-trivial topological phases [136].

Moreover, a two-dimensional structure allows for wide variety of network design and scalabil-

ity. However, a highly transparent contact between InAs quantum well and Al superconduc-

tor was achieved a few years ago which made these systems available for hybrid devices [137].

The InGaAs-InAs-InGaAs quantum well used in this thesis were grown on a semi-insulating

InP (100) substrate, using a modified VG-V80H molecular beam epitaxy (MBE) system.

The InAs 2DEGs mobility is ≈ 25000 cm2/(Vs) with electron density of order of 1012/cm2

yielding mean free path of ≈ 200 nm. As shown in Fig. 3.2 InSb nanowires are deposited on

quantum well’s surface providing a shadow mask for Al superconducting layer.

Figure 3.2: Transmission electron microscope image of the cross-section of InAs quantum well. An
InSb nanowire with hexagonal cross-section is providing a shadow mask where there is a break in
the Al layer deposited on the 2DEG.
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3.2 Device fabrication

There are many steps in superconducting-semiconducting structure fabrication that need

to be working all at once to have a full working device. In this section I will go through

all fabrication steps for nanowire devices (Ge/Si, InSb, Al-InSb, and Sn-InSb), including

techniques used to improve the yields of working devices, the etching process for Al-InAs

2DEG-Al devices following Ref. [138], and superconducting circuits (NbTiN and Al res-

onators) for hybrid qubits.

3.2.1 General fabrication process for nanowires

1. Substrate and markers. All nanowire devices are made on doped Si substrate covered

with 285 nm thermal SiO2. (There is an extra layer of Si3N4 (30 nm) deposited on the

substrate to protect SiO2 against hydroflouric acid etch used in devices in Chapter 4.1.)

First, 64 bonding pads along with markers are patterned with photo-lithography followed

by metal deposition (Ti/Au 5/60 nm). Then using these markers a set of fine markers

are patterned across the chips with electron-beam (e-beam) lithography for alignment

purposes. These fine markers map the whole chips in areas of 100 × 100 µm2 which is

the common writing field size used in our e-beam lithography procedure (Fig. 3.3(a)).

Figure 3.3: (a) An overall SEM of gate chip with bonding pads and alignment markers. (b) InSb
nanowire placed on local bottom gate electrodes and contacted with source and drain leads. The
gate fingers spread out and connect to bonding pads shown in panel (a). (c) InSb nanowire placed
on a global backgate chip and semi-local side gates are lithographically added simultaneously with
source and drain leads.
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2. Gates. We use three gating methods: global back gate (backgate), local bottom gates

(bottomgates), and local-ish side gates (sidegates) (shown in Fig. 3.3(b) and (c)).

a. Back gate: The Si/SiO2 substrate serves as a global back gate for Ge/Si devices

in Chapter 4.1, Al-InSb devices in Chapter 5 and Sn-InSb devices in Chapter 6.

Almost all nanowires are pinched off within the range of our high voltage source

module which is ±60 V.

b. Bottom gates: Bottom gates are used to locally control the chemical potential along

semiconducting nanowires and define quantum dots in series. The fabrication pro-

cess of bottom gates used for devices in Chapter 4.2 and Chapter 5 are thoroughly

discussed in Ref. [139]. The dielectrics used to cover bottom gates and electrically

separate them from nanowires are HfO2 by atomic layer deposition (ALD), or chem-

ical vapor deposited (CVD) Si3N4. ALD grown HfO2 is more homogeneous with

lower possibility of pinholes and hence it is a more stable dielectric. Moreover, its

dielectric constant is larger meaning we would be able to operate in a smaller gate

voltage range.

c. Side gates: Side gates are extra control knobs for local control of chemical potential

along the nanowires with break tunnel junctions. Using back gate, we globally

control the electron density along the whole nanowire and side gates will be able to

effectively control the electron occupations in tunnel junctions and superconducting

islands in Al-InSb and Sn-InSb devices in chapters 5 and 6.

Side gates are also used in hybrid superconducting systems where substrates are

either undoped Si or sapphire and bottom gate fabrication is not a feasible and

effective design.

In all cases sidegates are fabricated in the same step when source and drain contacts

to nanowires are patterned, which I will explain below.

3. Nanowire transfer. We sonicate the substrate in acetone, followed by isopropyl alcohol

(IPA) and O2 plasma cleaning before putting down nanowires. Nanowires are then

transferred either onto a global back gate chip or onto bottom gates. with

a. Scanning electron microscope (SEM): Al-InSb nanowires for devices studied in Chap-

ter 5 were transferred under SEM by Erik Bakkers’s group in Eindhoven. This
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technique is necessary only when nanowires are too short to be picked up under an

optical microscope or there is a shortage of nanowires mother chip and is no longer

needed as the growth techniques are enhancing over years and more reliable.

b. Micromanipulator: All other nanowire devices studied in this thesis are transferred

using a micromanipulator under an optical microscope. We pick up nanowires with

either indium tips or tungsten tips using the van der Waals force. We make indium

tips from an indium bulb on a hot plate by sticking a needle into and out of it. These

tips are extremely soft and bend very easily which require us to remake them after

one or two nanowire transfers. The tungsten tips are harder which sometimes can

break nanowires but is a faster method. One just needs to spray some IPA on the

tip in case some nanowires are stuck to it and continue with the transfer.

Figure 3.4: Nanowire transfer setup. The nanowire chip and Back gate or bottom gate chip are
placed on the silver block. After locating the tip in the middle of eye piece field of view with 5X
zoom, we switch to 100X zoom in which we can see the nanowires for picking up. The tip control
knobs are most helpful for picking up nanowires and then for putting them down on the destination
chip we recommend using a combination of tip and stage control knobs to slightly rob the nanowire
on the surface until it falls down to the desired location.

4. Design. We dip the chip with nanowires in IPA and gently shake it. This removes those

nanowires that are not properly laid down on the substrate. Then we image nanowires
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and nearby markers with SEM. We use SEM to check for nanowires and gates quality,

and to locate junctions in Al-InSb and Sn-InSb. Markers are used to align images in a

CAD design program like KLayout. We then design lead contacts, side gates and bottom

gate fingers for relevant devices.

5. Coat electron beam resist. We use PMMA (polymethyl methacrylate) as high reso-

lution positive resist for e-beam lithography. The structures we pattern are from couple

hundreds of nanometers to few microns wide, and the thickness of films we either evap-

orate or sputter in following steps are 60− 150 nm thick. Considering these geometries

a successful resist profile should not be too thin (thinner than metal thickness) or too

thick (larger than narrowest structure designed, for example the spacing between source

and drain on nanowire). A resist that generically works for us well is PMMA 950K A4.

We spin it for one minute with a speed of 3000 − 4000 rpm which results in a homoge-

neous coat of 200− 250 nm thick. There is, however, a big problem with small size chips

(smaller than 1 × 1 cm2) where the resist leaves a thick and non-homogeneous profile

around the edges. In this case we either increase the spinning speed or we wash away the

resist and repeat the same procedure and be careful to put a smaller droplet of resist on

the chip and move on with the rough edges. The thick resist on the edge in these chips

with markers make it difficult to do initial alignment for e-beam patterning, but it will

be manageable if three out of four corners have a reasonable resist profile. Next we need

to get rid of the solvents in the resist before e-beam exposure.

a. Baked resist: This is the common way to prepare the resist. We bake the chip at

175◦C for 15 minutes. Before that we gently rub the chip on a piece of cleanroom

tissue with acetone to clean the back side of the chip from any resist as this can

sometimes cause charging issues and uneven focusing in the e-beam lithography

machine (EBL).

b. Cured resist: In the cases of Al-InSb and Sn-InSb nanowires we avoid baking the

chip as the high temperatures can cause diffusion of Al and Sn into InSb. Instead,

we cure the resist at room temperature by leaving the chip in a vacuum chamber for

about 24 hours. This is also the case for InAs 2DEG Josephson junction preparation.
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Figure 3.5: (a) The lift-off of the sputtered film may fail if the resist is too thin as it cannot strip
off the substrate. (b) For narrow structures an ideal thickness of resist and sputtered film is more
challenging to reach. As sputtering is non-directional the film deposits on the walls of the resist
structure and prevents the exposed narrow channel to receive as much material. These issues are
less severe in e-beam evaporation as it is directional, yet great caution needs to be taken for narrow
structures.

6. E-beam exposure. In an EBL machine a focused beam of electrons attack the polymer

resist molecules and break the bonds between them and leave the pattern that was

designed (the case is reversed for a negative tone resist). We developed some parameters

that are quite robust for most of the procedures in our laboratory. For patterns that

are larger than few microns we use 60 µm aperture size to decrease the exposure time,

however it is not always necessary. Other than this either a 30 µm or a 10 µm is

used for all nanowire devices fabrication. The latter with e-beam accelerating voltage

of 30 kV is sometimes used for sidegates that are closer than ∼ 50 − 100 nm together.

With an e-beam accelerating voltage of 10 kV for the 30 µm aperture a dose range of

110− 160 µC/cm2 results in reliable and reproducible patterns.

7. Develop. A developer is used to fully break the bonds of polymer and remove the resist

from exposed areas. We gently shake the chip in an infinity pattern for one minute in

MIBK:IPA - 1:3 followed by one minute rinse in IPA. We then inspect the chip under

an optical microscope to make sure there are no patterning issues such as misalignment

or missed patterns. Sometimes if the resist is not cured well there are sharp edges from

e-beam writing of patterns that only is resolved by striping the resist away and repeating

the steps 5 through 7.
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8. Remove resist residues. Gentle O2 plasma cleaning (500 mTorr and 50 W for 15

seconds) is used to remove any residual of developed resist from the surface of nanowire.

9. Surface oxide removal. This step is perhaps the most important one resulting in a

successful device with transparent contacts to a nanowire. There are three procedures

used for devices studied in Chapters 4 and 5 as discussed below. However, for Al-

InSb and Sn-InSb nanowires an atomic hydrogen cleaning step was done by our growth

collaborators before Al and Sn deposition. Details are discussed in Chapter 6.

a. BHF etch: A short (≈ 2 s) buffered hydrofluoric acid etch seems to be removing

the native oxide from Si shell on Ge/Si core/shell nanowires. The yield of junctions

with low resistance are low but this method results in transparent contacts. After

BHF etching for 2 seconds we deep the chip in water for one minute followed by a

second deep for another one minute to make sure there is no acid residue left on the

chip. A long acid etching is not recommended as it strips the PMMA. The SiO2 of

the substrate in global backgate chips is protected by CVD Si3N4 and the dielectric

on bottomgates is HfO2 which is immune to short BHF etching.

b. Sulfur passivation: To remove the surface oxide on bare InSb nanowires used in

Chapter 5 we use sulfur solution. (1) Mix and stir sulfur powder with ammonium

sulfide with ratio of 10 mL/g for 30 minutes (use a small magnetic stir bar). (2)

Dilute the ammonium solvent with water (1:250). (3) Bake the chip in the diluted

solution at 55◦C for 20 minutes. (4) Thoroughly rinse the chip with water and

blow dry. It is extremely important to have the solvent solution fully covered with

aluminum foil to block the light as light increases the etching rate and makes it less

controllable (more details can be find in Peng Yu’s thesis).

c. Argon ion mill: Al-InSb and Sn-InSb nanowires are covered by few nanometers of

AlOx for protection against oxidization. Before making contacts to Al and Sn in

these nanowires one needs to remove this oxide layer. This is done in deposition

system using Argon atoms to gently bombard the substrate.

i. Al-InSb. Done in AJA sputtering machine, 50 W, etch for 20 s with 40 s break

to prevent hitting, for total of 6 minutes.

ii. Sn-InSb. Done in Plassys e-beam evaporator, 250 V, 15 mA, mill for 30
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seconds, wait for the chamber pressure to drop to e−7 mTorr (which takes 15−

30 minutes), mill for another 30 seconds.

10. Metalization.

a. E-beam evaporation. Au, Pd, Ni were used to characterize Ge/Si nanowires in the

early stages of quantum dot studies. Pd and Al were used for Al-InSb and Sn-InSb

nanowire devices.

b. Magnetron sputtering. NbTiN has been extensively used to make both ohmic and

superconducting contacts to Ge/Si nanowire devices, as well as Al-InSb. However,

in the latter case the superconductivity is induces by Al as it will be discussed in

Chapter 5.

Effects of stacking Al and NbTiN on Ge/Si devices will be discussed in section 3.2.3.

11. Lift off. We leave the chip in acetone usually for overnight to fully resolve the resist in

remover and make sure of a clean and full lift off of metal layer on top of it. We use a

pipette to squirt acetone to the surface of the chip and assist with lifting off of any film

residues. Then we rinse the chip in IPA and blow dry.

Figure 3.6: Side-view schematics of series of e-beam lithography steps introduced above. The
proportions are not to scale.

12. Post lift-off (deposition) treatments. An essential post deposition step for Al-InSb

and Sn-InSb nanowires is capping with AlOx to terminate surface oxidation of thin Al
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and Sn shells. The following procedures were used to improve contact transparency and

suppress charge noises in Ge/Si devices.

a. Anneal Al

b. Encapsulate with Al2O3. This method is used to isolate the body of a device from

the environment and prevents interaction with nearby charges. The pinch-off trace

on backgate chips improved in the Coulomb blockade regime where it traced itself

sweeping backgate forward and backward. However, the same method on bottomgate

chips for DQD devices resulted in device instabilities such as increasing conductance

as a function of time, making it impossible to further study spin transport.

3.2.2 Annealing Al in Ge/Si devices1

To improve the yield of transparent contacts we explore contact annealing in the presence

of forming gas (5% H2 and 95% N2) at 1 bar. For NbTiN contacts with thin Al or Ti inter-

layers (3 nm), no measurable change in the saturation resistance is observed after annealing

at temperatures up to 400◦C for minutes. However, we observe that pure Al contacts alloy

rapidly, within seconds, at temperatures as low as 180◦C. Fig.3.7(a) displays the alloying of

200 nm regions next to each contact. Saturation junction resistances are reduced by more

than one order of magnitude after the annealing in some devices. Low resistance (≤ 10 kΩ)

devices are obtained with a high yield of ∼ 1/4 for pure Al contacts. It is important to be

aware of the Al-alloying effect because such low annealing temperature is close to the tem-

perature used during standard nanofabrication. For example, electron beam resist PMMA is

commonly baked at 175◦C, so if following fabrication steps such as top gates are performed

after pure Al contacts, those contacts are going to be annealed with the nanowires.

3.2.3 Effect of Al interlayer between Ge/Si nanowires and NbTiN2

In addition to improved contact tranparency we observe a systematic change in pinch-off

voltage as a function of Al interlayer ratio to NbTiN. With increasing thickness of the Al

1This section is adapted from Ref. [140].
2This section is adapted from Ref. [140].
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Figure 3.7: (a) Al-Ge/Si-Al device after a rapid annealing at 180◦C. The arrows indicate alloyed
regions of the nanowire. (b) Pinch-off voltages of 21 devices with various Al/NbTiN thicknesses.
The average value for each Al/NbTiN thickness combination is indicated by the red dot. (c)
Typical pinch-off traces of devices for various Al/NbTiN thickness combinations. The conductance
is normalized by conductance σ0 measured for each device at Vbg = −24 V.

interlayer, We find that the pinch-off voltages of the junctions decrease. Figs.3.7(b),(c) show

the low temperature pinch-off voltage data from many unannealed devices with different

Al and NbTiN layer thicknesses. Devices based on NbTiN with a thin Al interlayer have

large positive pinch-off voltages. The increase of Al thickness reduces the averaged pinch-off

voltages, which become negative for pure Al contacts. We argue that the pinch-off shift

is due to remote doping of the nanowire due to workfunction mismatch between the Ge
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core and the metal contacts. The workfunction of Ge (5.15 eV) [141] exceeds that of Al

(4.06 - 4.26 eV) [142] consistent with n-doping. The workfunction of NbTiN alloy is not

known, however the workfunctions of Nb (3.95 - 4.87 eV) [142] and TiN (4.5 eV) [143] are in

between those of Ge and Al, which suggests lower n-doping with NbTiN than with Al. For

thinner interlayers, no continuous Al film is formed and the contact is dominated by NbTiN.

As Al thickness is increased, the doping of the nanowire is increasingly determined by the

properties of the Al/Ge interface. The pinch-off voltages can also be affected by the interface

between the nanowire and the gate dielectric. We observe that the pinch-off voltages tend

to shift to more positive values when HfO2 is used instead of Si3N4. Interfacial charges at

the semiconductor/dielectric interfaces are likely responsible for this effect [144]. Combined,

the effects of dielectric and interlayer thickness on pinch-off allow for device working point

to be set to zero gate voltage, which is expected to minimize charge instabilities and gate

leakage. In addition to these fabrication methods, we investigated a cooling technique for

Ge/Si DQD devices to modify the pinch-off voltage further. The results of this bias cooling

technique is shown in Fig. 3.8.

Figure 3.8: Annealing Al for bottomgate chips is not feasible as the high temperatures melt the Au
electrode lines. Moreover, the HfO2 dielectric used on bottomgates further increases the pinch-off
voltage. This plot shows pinch-off trace (all bottomgates sweep together) of the same device in
three subsequent cooldowns with different applied gate voltages. While cooling down from room to
mK base temperature all gates are set to 0, -4 V, 4 V for red, blue, and orange traces, respectively.
We evidently see the pinch-off voltage reduces and move closer to zero for orange trace.
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3.2.4 Fabricating InAs quantum well smash junctions

Epitaxial growth of superconductor on two dimensional InAs quantum wells are fully

demonstrated in Refs. [137, 145], in which highly transparent Josephson junctions (JJs)

were demonstrated [146, 147]. Nevertheless, wet etching of the quantum well channel is

inevitable in those studies to define the junction channel. Here we remove the etching step

hence the junctions are immune from any chemical and physical contamination. We use

InSb semiconductor nanowires grown with vapor-liquid-solid mechanism as shadow masks

prior to superconductor deposition. Here we list the steps for sample preparation done by

our growth collaborators:

1. The InAs 2DEG is grown following the procedure fully explained in Ref. [145] using

molecular beam epitaxy (MBE) technique. Then its mobility, carrier density and sheet

resistance is measured at room temperature as well as at 2 K.

2. InAs 2DEG is transferred in-vacuo (without breaking ultra high vacuum (UHV)) to a

different UHV chamber. If the quantum well was grown earlier an atomic H cleaning

procedure would be added to clean the surface followed by waiting time for the sample

to cool down.

3. The nanowire mother chip is loaded in the same chamber. It is carefully mounted to

overlap perfectly with the quantum well sample. The nanowires are brought into contact

(“smash”) with quantum well’s surface where nanowires get transferred. The nanowires

can be InSb (what we used in Chapter 8) or InAs covered by etch resistant dielectric like

HfOx.

4. Transfer the quantum well sample with nanowires smashed into, to another intercon-

nected chamber for superconductor evaporation. Cool down the sample to ∼ 85 K for 2

hours.

5. Evaporate superconductor of choice with desired thickness. We used 10 − 15 nm Al in

these experiments.

6. Cap the surface with either oxygen exposure forming a controlled native oxide in vacuum

or with AlOx from an e-beam source in the UHV, forming a slightly more impermeable

controlled cap.
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7. Wait for the sample to warm up for about 45 minutes.

8. Load out and unmount the sample within 1 hour of finishing superconductor evaporation.

This time limit is really important as the gallium that is used to mount the sample in

the chamber melts below and around room temperature and spreads like wild fire across

the sample. And then the extra gallium needs to be rubbed off from the back of the

sample since it still can move from back of the sample to the face of it.

After the sample has reached us we prepare the junctions for measurements. The following

fabrication steps are taken:

1. Alignment markers. PMMA 950K A4 resist is spun and cured in a vacuum chamber

to prevent diffusion of Al. Markers are patterned all over the chip with EBL (same

parameters as discussed in 3.2.1) and 50 nm Pd is evaporated with e-beam evaporator.

As the chips is few mm2 and junctions are randomly spread throughout the whole chip

numbering the markers are useful to be able to find junctions and align to markers in

the following steps.

Note. InAs quantum well chips are very fragile and mounting them on EBL stage needs

extra caution for those who are used to handling Si and sapphire substrates.

2. Design leads and bonding pads. We then scan the chip with SEM and select junctions

that are far from the edges, and design all devices with their corresponding bonding pads.

Devices are consist of Josephson junctions and SQUIDs where two nanowires are found

close to each other to form a loop.

3. Deposit bonding pads. Repeating the procedure in the first step we pattern and

deposit bonding pads. We refrain from depositing Au to prevent possible formation of

purple plague between Al and Au.

4. Pattern leads. Leads are patterned with EBL (30 µm aperture, 10 kV acceleration,

dose of 200 µC/cm2) using a negative tone resist (ma-N 2403 spun for 1 minutes with

4000 rpm) that was also cured in vacuum, and developed with maD 522 (for 70 seconds)

followed by water (for 5 minutes). After developing the resist remains only where it was

exposed by e-beam to define junctions’ leads after etching.

5. Etch Al and quantum well. We exactly carried out steps fully explained in Ref. [138]
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to etch Al with Transene D followed by quantum well etch.

a. Transene D in heat bath at 50◦ C for 10 seconds.

b. DI water in heat bath at 50◦ C for 20 seconds. Keep swirling in an infinity movement.

c. DI water for 60 seconds. You could change from acid tweezers to carbon tweezers

after 40 seconds.

d. Blow dry with nitrogen for 1 minute.

e. 2DEG etch for 8 minutes. Use a stir bar at speed 4 to keep stirring the solution and

swirl the chip at approximately 1 Hz.

Your arms will be numb but you should keep going...

(etch solution → H2O/citric acid/H3PO4/H2O2 : 220mL/55mL/3mL/3mL)

f. DI water for 40 seconds.

g. Blow dry with nitrogen for 1 minute and switch to acid tweezers.

h. Transene D in heat bath at 50◦ C for 10 seconds, swirl carefully.

i. DI water in heat bath at 50◦ C for 20 seconds, swirl vigorously.

j. DI water for 40 seconds.

k. Blow dry with nitrogen for 1 minute.

3.2.5 Fabrication processes for superconducting circuits

For superconducting resonators used in this thesis we use two different fabrication pro-

cesses. One Nb-family resonators on sapphire substrate, and the other Al resonators on

undoped Si substrate. For both kinds we first deposit the desired material of the desired

thickness on a cleaned substrate. We then need to use similar lithography steps as explained

before to define and deposit fine markers. These markers are needed when we want to add

nanowires to the circuit.

3.2.5.1 Nb-family resonators

1. Deposit superconductor. Deposit 10 or 50 nm of NbTiN or NbN on a cleaned sapphire

chip. We clean the sapphire substrate by ultrasonicating in acetone and IPA, but trying

more rigorous cleaning techniques are encouraged.

52



Figure 3.9: An example of design CAD showing the pink CPW transmission line and λ/4 cavity
resonator, the purple meander resonator and black markers. The markers in the dashed blue box
are repeated on all four corners of the chip for alignment and cutting purposes. The white area
indicates the superconducting film. We note that the we are not showing squares of 4×4 µm2 that
will be added all over to trap magnetic vortices.

2. Define markers. We use 50 nm Au or Pd to achieve a reasonable contrast with Nb

films under EBL. The big black marker as shown in Fig. 3.9 defines the four corner of a

single resonator chip that is 2× 7 mm2. We map a 2 inch sapphire substrate with these

markers.

3. Pattern resonators. Spin coat PMMA 950 A 4K on either the 2 inch sapphire wafer

and then cut in in 4 smaller pieces or we could first cut the chip in 4 pieces and then

continue with fabrication. Pattern CPW transmission line, CPW resonators, and mean-

der resonators. We use 60 µm aperture, 20 kV acceleration, 250 µC/cm2 dose for CPWs

and 180 µC/cm2 dose for meander resonators.

a. Anticharge layer. For 10 nm thick films on a sapphire substrate one may need

to add a 10 nm thick Al anticharge layer on top of the PMMA resist to avoid

accumulation of electrons on the surface and drifting the beam preventing a stable

patterning. If an anticharging layer is added, Developer MFCD 26 is used to remove

it before developing PMMA with MIBK:IPA.

4. Etch. After developing we etch the patterns with mechanical ion milling (25 mA and

500 V). The etch rate is ∼ 1 nm/min.

5. Strip the resist. We leave the chip in Acetone and ultrasonicate for about an hour.
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The ion milling hard bakes the resist and it needs more time to be removed. We then do

a 15− 30 minutes oxygen plasma cleaning to get rid of any resist and organic residues.

6. Check for shorts. We check for no electrical shorts on the chip mainly between trans-

mission line and ground plane. The chip is now ready for cutting.

3.2.5.2 Al resonators

For these compact resonators that are made with optical lithography we first pattern

and etch the resonators and then add EBL defined markers.

Figure 3.10: The design CAD for compact resonators coupled to a CPW transmission line and
added gate lines. The pink patterns are written with optical maskless aligner followed by etching
to define the resonators. The etched pink crosses pointed to by blue arrows are then used to define
black fine markers with e-beam lithography.

1. Deposit superconductor. After cleaning an undoped pure Si wafer in Acetone and IPA

followed by a 5 minute oxygen plasma cleaning we deposit 150 nm Al on the substrate.

2. Coat resist. For this fabrication we use optical lithography resist S1805 which we spin

for 1 minute with 4000 rpm and bake at 115◦ for 2 minutes.

3. Pattern resonators. Using an optical maskless aligner we pattern CPW transmission

line and compact resonators one a full 3 or 4 inch Si wafer. We used a dose of 41 mJ/cm2.
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4. Develop and etch. We use a solutions of MICROPOSIT 351 developer:water, 100

mL:400 mL for 2 minutes to develop S1805 resist. This alkaline developer etches Al

while it is developing the resist. We also note that we found more reproducible results if

we use an abundant volume of developer for a full 3 or 4 inch wafer. For example using

a ratio of 50 mL:200 mK resulted in an underdeveloped pattern in some instances.

5. Etch more. The wet etching with developer leaves extra rough step-like edges on the

patterns. We finish off etching by 15 seconds of reactive ion etching BCl3/Cl2, 40/50 sccm

which results in sharp clean edges.

6. Define markers. We now can cut the full wafer in 4 smaller pieces and pattern and

deposit fine markers with EBL to prepare the chip for nanowire transfer and subsequent

lithography steps.
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3.3 Chip carriers

Figure 3.11: This figure is showing the chip carriers for (a) DC transport and (b, c) microwave
measurements. (a) A cold finger that thermally connects to the mixing chamber (MC) stage of a
dilution refrigerator from its top. The wire from room temperature to MC are thermally anchored
to each stage to cool down the electrons carrying signal. The wires pass through copper powder
filters which to cut out high frequency noise (up to a few GHz). Moreover, the RC filters with
cutout frequency around 10 kHz are mounted on the cold finger and a wiring breakout from them
goes to the printed circuit board (PCB) that holds the device chip. The inset is another version of
PCB that we can use on the same cold finger. The wire bonds connects the device leads and gates
to pins on the PCB. (b) A sapphire resonator chip with dimensions 2× 7 mm2 is mounted on and
bonded to a PCB that has 8 CPW lines running on it. SMP straight plugs on PCB (limited detent
Rosenberger 19S101-40ML5) connect to the center pin of CPWs. The PCB material is a copper
board with Rogers AD1000 dielectric and it was ordered from Cirexx. (c) The PCB mounts on a
copper Octobox and is covered by a shim to suppress extra resonances from the structure. (d) The
Octobox mounts directly on the MC stage of a dilution refrigerator.
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3.3.1 Dimensions in the Octobox

Table 3.1: Estimated resonant frequencies for components in an Octobox. Resonant frequency of

the TEnml(TMnml) mode is: f
E(M)
nml =

c
2π
√
µrεr

√(
p
E(M)
nm
a

)2

+
(
lπ
d

)2
, where p

E(M)
nm are the

roots of Bessel functions, a = 19.5 mm, d = 11.51 mm are the radius and height of the Octobox.
Almost are modes are outside our interest range of 2− 8 GHz.

Component Length (mm) Dielectric constant Estimated frequency (GHz)

Octobox TE111 a, d ≈ 1 (copper) 13.8

Octobox TM010 a, d ≈ 1 (copper) 6.02

Octobox TM110 a, d ≈ 1 (copper) 9.598

Octobox TM210 a, d ≈ 1 (copper) 12.86

Octobox TM011 a, d ≈ 1 (copper) 14.34

Chip slot length (width) 7 (2) 1 (vacuum) 21.4 (74.9)

Shim slot length (width) 8.92 (5.87) 1 (vacuum) 16.8 (25.5)

Shim slot depth 0.43 1 (vacuum) 349

Bonding wires 0.75 ≈ 1 (aluminum) 199
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3.4 Measurement schemes

Figure 3.12: DC transport measurement setup. Voltage and current biases along with voltages
on gate electrodes are applied to a device through digital to analogue converters (DACs). The
voltmeter reads the measured signal from both DC and lock-in amplifiers. The lock-in signal mea-
sures the differential conductance (or resistance) with suppressed noise with the expense of longer
measurement time. All DACs are powered by DC batteries to avoid interference and fluctuations
from city electricity and computers. The signal from computer to DACs is carried out by an optical
fiber. The breakout box between DACs and the device contains π filters at room temperature to
filter noises from 10 MHz to 100 MHz. The nanowire device and RC filters in blue dashed box sit
at mixing chamber stage of the dilution refrigerator.
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Figure 3.13: Microwave measurement setup. Cavity drive from vector network analyzer (VNA)
and the spectroscopic microwave drive for two-tone continuous wave spectroscopy from a signal
generator are combined in a single coax line at room temperature. The line is attenuated at the
4 K, still and 100 mK stages before connecting to an ECCOSORB (CR-124) or K&L low-pass
filter then connected to the chip transmission feedline. The feedline output is then isolated by a
circulator. The signal is amplified at the 4 K stage by a HEMT amplifier (LNF-LNC0.3-14A s/n
1269Z) and at room temperature by one or two Miteq amplifiers. The signal goes back to VNA
and digitized and saved for processing.
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4.0 Induced superconductivity and spin-orbit interaction in Ge/Si core/shell

nanowires1

In the context of topological quantum circuits transparent contacts between high criti-

cal field superconductors and semiconductor nanowires with large spin-orbit interaction and

Landé g-factor are crucial. Moreover, studies of spin blockade in quantum dots are largely

motivated by the proposals to build a spin-based quantum computer [9], as spin blockade

can be used for qubit initialization and readout [81, 11].

In the first section of this chapter we achieve such contacts between NbTiN and Ge/Si

core/shell nanowires. We demonstrate gate-tunable supercurrent in NbTiN-Ge/Si-NbTiN

junctions and observe supercurrents up to magnetic fields of 800 mT. The induced super-

conducting gap is characterized in the co-tunneling regime of transport through quantum

dots. We then perform transport measurements on double quantum dots defined in Ge/Si

core/shell nanowires in the second section to measure spin-orbit coupling by focusing on

Pauli spin blockade in the regime where tens of holes occupy each dot. We estimate a

lower bound on the spin-orbit parameter corresponding to an upper bound of lso = 500 nm

for the Rashba spin-orbit length. We also extract effective Landé g-factors up to 8.0 from

field-dependent spin blockade measurements.

1This chapter is adapted from Refs. [140, 148].
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4.1 High critical magnetic field superconducting contacts to Ge/Si core/shell

nanowires

4.1.1 Introduction

Josephson junctions based on semiconductor nanowires have become a fertile research

platform in recent years. Charge tunability of semiconductors has been used to implement

supercurrent transistors [35], Josephson π-junctions [34] and Cooper-pair beam splitters [36].

More recently, theoretical proposals for realizing Majorana zero modes in semiconductor -

superconductor hybrid structures [4, 5] have led to a series of experiments that began accu-

mulating evidence for these exotic quantum states [67, 149, 150, 151, 152, 68, 153]. Majorana

studies have focused on InAs and InSb nanowires which are characterized by strong spin-orbit

interaction, large effective Landé g-factors, ballistic transport along the NW, and induced

superconductivity in the NW.

Ge/Si core/shell nanowires have been proposed for Majorana studies owing to the strong

spin-orbit coupling in the valence band [154]. Recent experiments have established the one-

dimensional hole gas [56] and ballistic quantum transport [155]. Strong spin-orbit interaction

and large effective Landé g-factors have been extracted from both quantum dot and bulk

nanowire measurements [62, 64, 156, 155, 148]. The last component, induced superconduc-

tivity from high critical magnetic field superconductors, is missing. Although supercurrent

is observed in Al-Ge/Si-Al junctions [157], pure Al contacts are not suitable for topological

quantum circuits based on Majorana zero modes due to the low bulk critical magnetic field

of Al.

In this chapter, we report superconductivity in Ge/Si nanowires induced by niobium

titanium nitride (NbTiN) whose critical magnetic field is large. We demonstrate the Joseph-

son supercurrent through NbTiN-Ge/Si-NbTiN junctions to high magnetic fields of order 1

Tesla, as required for Majorana experiments. We evaluate the induced gap in the nanowire

through co-tunneling in the pinched-off regime of the junctions. The devices are fabricated

on doped Si substrates which serve as back gates. The substrates are covered by thermal

SiO2 (285 nm) and chemical vapor deposited Si3N4 (50 nm) (Fig. 4.1(a)). Ge/Si nanowires
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with core diameters of 20-40 nm and shell thickness of 2 nm [158, 159, 129, 130] are ran-

domly deposited on the substrate. The superconducting leads are patterned by electron

beam lithography with nominal spacing of 200 nm followed by magnetron sputtering of

NbTiN. One 3 nm interlayer of Ti (devices A and B) or Al (device C) is deposited prior

to NbTiN. Before the metal deposition, two-second buffered hydrofluoric acid etch is per-

formed to remove the native oxide on the surface of nanowires. Note that substrate has two

dielectric layers and the chemical vapor deposited Si3N4 is used to protect SiO2 from being

etched quickly. We perform transport measurements in a dilution refrigerator with the base

temperature of 40 mK.

4.1.2 Supercurrent and magnetic field dependence

Typical current-voltage (IV) characteristics are shown in Fig. 4.1(b). Because the charge

carriers in Ge/Si nanowires are holes, a more negative back gate voltage Vbg leads to a lower

normal state resistance (RN) and a higher switching supercurrent (Isw). The excess current

(Iexc) due to Andreev reflection extracted from the IV traces is in the range of 1 − 4 nA.

Contact transparency of ∼ 50% is estimated using the Octavio-Tinkham-Blonder-Klapwijk

theory from the ratio eIexcRN/∆ ∼ 0.05, where e is the elementary charge and the bulk gap

∆ is 1.7 mV given Tc = 11 K [85, 160]. Note that this is a lower bound estimate on the

contact transparency since the ratio above is reduced for finite length junctions [161]. On

the other hand, the eIswRN/∆ ratio is 0.03 which is lower than the theoretical limit of π.

Finite contact transparency and premature switching out of the supercurrent state caused

by thermal activation can contribute to the reduction of the IswRN product [20]. The fact

that supercurrent in Ge/Si nanowires is carried by holes which have a different momentum J

than electrons in the contact superconductor may also contribute to this reduction, though

this remains an open question.

Magnetic field evolution of supercurrents in two devices is presented in Figs.4.1(c,d).

The switch out of the supercurrent state and into the finite voltage state corresponds to

a peak in dV/dI. It is clearly visible up to 400 mT and 800 mT but can also be traced

to higher fields. Both devices demonstrate monotonous decrease in Isw as magnetic field
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Figure 4.1: (a) (Top) Scanning electron micrograph of a Ti/NbTiN-Ge/Si-Ti/NbTiN device. (Bot-
tom) Side view schematic of the device. (b) IV characteristics of device A at Vbg = −23 V (red),
0 V (blue) and 58 V (green). (c-d) The differential resistance dV/dI as a function of current bias
and magnetic field for device A at Vbg = −10 V (panel (c)) and device B at Vbg = 0 V (panel (d)).
In-plane magnetic field orientations are indicated by the cartoons.

is increased. The fact that supercurrent survives to higher fields in device B is consistent

with the field aligned closer to the nanowire axis in this device, which reduces the magnetic

flux threading the junction area for a given field. No nodes or oscillations in the switching

current are observed up to fields of 1 Tesla, throughout the range of resolved supercurrent

features. Assuming purely Fraunhofer-type interference within the junction only (zero field

in the leads), the first node is expected at 300 mT for device A and 600 mT for device B.

However, other geometrical factors such as the circular nanowire cross-section and Meissner

effect may contribute to the absence of the nodes. The semiconductor nanowires are tuned

to the multi-mode regime with several transverse one-dimensional subbands occupied, a

factor which favors critical current oscillations due to inter-mode interference influenced by
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magnetic field [162, 163]

Figure 4.2: (a) Coulomb diamond measurements on an accidental quantum dot in device C in the
near pinch-off regime, a dashed line marks a line cut shown in panel (b). (b) A line cut showing
dI/dV as a function of the bias voltage. Peaks separated by 4∆in are marked by dashed lines.

4.1.3 Induced superconducting gap

As part of evaluating the prospects of hybrid junctions studied here for the realization of

Majorana zero modes, we measure the induced superconducting gap ∆in. The gap is studied

in the pinched-off regime through unintentional quantum dots formed in the junctions near

pinch-off [164]. Fig. 4.2(a) shows differential conductance in device C as a function of back

gate voltage. The boundaries of Coulomb diamonds are broadened due to co-tunneling, as the

quantum dot barriers remain low. We observe a pair of sharp horizontal resonances of high

differential conductance located symmetrically around zero bias at Vsd = 2∆in = ± 440 µV.

At biases in between the peaks, conductance is suppressed but remains non-zero. Thus the

induced superconducting gap here is of the so-called “soft gap” type (see Fig. 4.2(b)). This

is not ideal for topological and hybrid quantum circuit applications since any subgap con-

ductance leads to qubit decoherence. While the underline cause remains mysterious, possible

attributes are disorder, quasiparticle poisoning [165, 166] and finite interface transparency.

We also notice that the soft gap observed here is of the same magnitude as in the early
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Majorana studies based on InSb nanowires [67, 152, 68]. Since the same NbTiN alloy are

used in both InSb and Ge/Si cases, the soft gap measured here indicates that the soft gap

is not unique to InSb-NbTiN hybrid structures and the “soft gap” may be associated to the

properties of the NbTiN film, such as its granularity and alloy disorder.

4.1.4 Conclusions

We have developed and optimized superconducting contacts to Ge/Si nanowires based on

NbTiN, and observed induced superconductivity up to magnetic fields of order 1 Tesla. Thus,

the set of ingredients required to pursue Majorana zero modes in Ge/Si nanowires is now

complete (the spin-orbit coupling term is discussed in the next section), and the integration

of these ingredients in Majorana devices can begin. An induced superconducting gap of

220 µeV has been measured. The sub-gap conductance remains significant and research on

suppressing the subgap conductance is desired [167].
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4.2 Magnetic field evolution of spin blockade in Ge/Si nanowire double

quantum dots

4.2.1 Introduction

Studies of spin blockade in quantum dots are largely motivated by the proposals to build

a spin-based quantum computer [9], as spin blockade can be used for qubit initialization and

readout [81, 11]. At the same time, spin blockade and its lifting mechanisms offer a direct

insight into spin relaxation and dephasing processes in semiconductors and provide deeper

understanding of interactions between spin localized in a quantum dot and its environment,

be it the lattice and its vibrations or nuclear spins, spin-orbit interaction, or coupling to

spins in nearby dots or in the lead reservoirs [168, 169, 14, 170, 15].

Holes in Ge/Si nanowires offer a relatively unexplored platform for such studies [56].

On the one hand, hyperfine interaction is expected to be greatly reduced owing to the low

abundance of nonzero nuclear spin isotopes in the group IV materials [171]. Moreover, holes

weakly couple to nuclear spins due to their p-wave Bloch wave symmetry, thus they are

expected to come with longer spin relaxation times [59]. Heavy/light hole degeneracy may

also influence the spin blockade regime [172]. On the other hand, spin-orbit interaction is

predicted [60] and suggested by experiments [61, 62, 63, 64] to be strong in Ge/Si core/shell

nanowires. This offers a path to electrical spin manipulation [16, 173], as well as to realizing

Majorana fermions [4, 5, 67, 57].

In this work we perform transport measurements on electrostatically defined double

quantum dots [81] made in Ge/Si core/shell nanowires, and detect Pauli spin blockade at

several charge degeneracy points. We expand and adapt a previously developed rate equation

model to analyze the magnetic-field evolution of the leakage current [174]. We also extract

relatively large effective g-factors, up to 8.0 [58, 175, 156], which is promising for Majorana

fermion and spin qubit implementations.

The devices are fabricated on n-doped Si substrates covered with 500 nm of thermal

silicon oxide and patterned with local gate arrays of Ti/Au stripes with a center to center

distance of 60 nm. The gates are covered by a 10 nm layer of HfO2 dielectric. Using a

66



micromanipulator [176] the nanowires with a typical length of 3–5 µm, core diameter of

20–30 nm, and shell thickness of 2 nm are placed on top of these gates as shown in the

inset of Fig. 4.3. After wet etching with buffered hydrofluoric acid, we sputter 15 nm of Al

followed by 42 nm of NbTiN on lithographically defined source and drain electrodes to make

ohmic contacts along with the contacts to the gates. We note that despite the fact that

Al and NbTiN are both superconductors the contact between the leads and the nanowire

has high resistance and low transparency in these devices, therefore no effects of induced

superconductivity are observed on the dots as opposed to nominally the same devices that

showed high contact transparency [140]. Furthermore, the applied source-drain bias exceeds

the superconducting gap of NbTiN, which remains superconducting at all fields applied

here. Thus we do not consider any contribution from the superconductivity of the leads on

the leakage current. The measurements are performed in a dilution refrigerator at a base

temperature of 30 mK.

4.2.2 Transport through double quantum dots

The double quantum dot is defined by applying positive voltages to three adjacent gates:

G1 and G3 are used to set the outer barriers, and G2 defines the interdot barrier. Since all

three gates are in close proximity they all influence the charge occupation of the dots, as

well as all three tunneling barriers.

The main panel of Fig. 4.3 shows the measured double dot charge stability diagram which

consists of a grid of charge degeneracy points connected by co-tunneling lines at higher charge

occupations. Many charge degeneracy points are observed before the gate-induced energy

barriers to the source and drain get too high to detect the current at the positive gate voltage

extremes of the plot. This is in strong contrast with quantum dots defined using similar gates

in InAs [15] or InSb [177] nanowires, where only a few charge degeneracy points are visible

between complete pinch-off and the open transmission regime. The current is too low to

measure at the charge degeneracy points corresponding to the last few holes in both dots,

meaning that the tunneling barriers pinch off completely before the dots are emptied. In the

regime studied here both dots still contain tens of holes. This is confirmed by asymmetric
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Figure 4.3: Current through the double dot as a function of voltage on G1 (V1) versus voltage on
G3 (V3) at a fixed voltage on G2. The measurement is taken with a source-drain bias of 4 mV and
at zero magnetic field. The inset shows a scanning electron micrograph of a representative Ge/Si
nanowire device with Al/NbTiN lithographic contacts (labeled “Source” and “Drain”) and tuning
gate electrodes labeled G1 to G3. The other gates are fixed at zero voltage.

gate tuning such that as holes are expelled from one dot, the occupation of the other dot

is increased and the tunneling barrier is lowered to ensure detectable current. The fact

that so many holes fit in a small volume of a double dot (less than 120 nm length and

30 nm diameter) is consistent with the large effective hole masses as compared to those of

electrons in III-V semiconductors, indicating that the hole wavefunctions are predominantly

of a heavy-hole character.
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4.2.3 Spin-orbit coupling and g-factor measurements in spin blocked double

quantum dot configuration

In double quantum dots with multiple charges per dot, spin blockade does not necessarily

occur at each (odd, odd) to (even, even) charge transition as expected for simple few-electron

quantum dots [15, 177, 81, 178, 179, 180]. In fact, spin blockade may not occur for multiple

transitions in a row [181]. This can be either due to the complex spin structure of the higher

orbital states or due to a suppressed energy splitting between the ground state singlet and

a higher orbital triplet.

When spin blockade does occur we assume that it can be effectively understood in the

same way as the simplest (1, 1)→ (0, 2) spin blockade: Close to zero detuning, the n’th hole

in the source dot can only enter the drain dot if it can form a spin-singlet state with the m’th

hole on the drain dot. Entering an (n − 1,m + 1) state in a triplet configuration requires

occupation of a higher orbital state which becomes energetically accessible only when an

additionally applied interdot energy level detuning ε exceeds the singlet-triplet energy level

splitting in the drain dot. For small detuning the system is thus expected to be blocked in

one of the three triplet states, which are in principle degenerate and split in energy under

the influence of a magnetic field due to the Zeeman effect. For clarity we will refer to the

(n,m) states as (1, 1) and to the (n− 1,m+ 1) states as (0, 2). Current through the double

dot in the spin blockade regime due to various spin non-conserving processes is referred to

as the leakage current.

The primary signature of spin blockade in this study comes from the magnetic field

dependence of the leakage current (Fig. 4.4), which can be explained in terms of the simple

spin blockade picture described above. We vary the (1,1) to (0,2) energy level detuning, ε by

scanning G1 and G3 perpendicular to the base of bias triangles (as indicated in the inset),

while stepping the magnetic field. The suppressed current observed for 0 < ε . 2 meV is

associated with spin blockade, and we interpret the sudden rise in current at ε ≈ 2 meV as

the (0, 2) triplet states becoming energetically accessible from the (1, 1) triplet states, thus

lifting the blockade. The associated singlet-triplet splitting of ∼ 2 meV is representative of

the several charge degeneracy points studied (see supplemental material).
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Figure 4.4: Current through the double quantum dot measured as a function of the detuning ε
and the magnetic field B, with an applied source-drain voltage of VSD = 6.5 mV. The magnetic
field is applied normal to the substrate plane. The resonances associated with T+(1, 1)→ T+(0, 2)
and T+(1, 1)→ S(0, 2) transitions are marked with dashed lines. From the field dependence of the
latter we find g = 8.0 ± 0.2. Inset: the charge degeneracy point at finite bias with the detuning
axis used in the main panel indicated by ε.

A smaller rise in the leakage current at lower detuning, marked with the tilted dashed

line in Fig. 4.4, is assigned to a resonance between the lowest (1, 1) state T+ and the singlet

S(0, 2) state: Below this resonance (for smaller ε), S(0, 2) is energetically not accessible from

the ground state T+(1, 1) and the system is in Coulomb blockade. Since the energy of S(0, 2)

is not expected to depend on the magnetic field, the B-dependence of this resonance reflects

the B-dependence of the energy of T+(1, 1). The pattern formed by two current resonances

marked by dashed lines T+(1, 1) → T (0, 2) and T+(1, 1) → S(0, 2) is the main signature

of spin blockade in this study. Note that a copy resonance follows the T+(1, 1) → S(0, 2)
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transition in field, which is not accounted for in the simple spin blockade picture used here.

Using the slope of the resonance labeled T+(1, 1)→ S(0, 2), we obtain g = 8.0± 0.2 for

Fig. 4.4. While full g-tensor measurements were not performed, we find lower g-factors for

fields deviating from normal to the substrate, in agreement with other studies (see supple-

mental material) [175, 156]. The highest g-factors extracted here are larger than previously

reported for Ge/Si nanowires [62, 175, 156]. One possible reason for this is larger wire di-

ameters used here: indeed, a relevant theory predicts diameter-dependent g-factors [60].

In Fig. 4.5a,b (left panels) we plot the measured leakage current in the spin blockade

regime of two representative charge degeneracy points which show a qualitatively different

field-dependent behavior. The current in Fig. 4.5(a) shows a single peak centered at zero

field, whereas in Fig. 4.5(b) we observe a double-peak structure with a dip at zero mag-

netic field. We note that beyond the difference in charge numbers, we cannot independently

quantify differences in other double dot parameters across the two regimes of Fig. 4.5. We

speculate that the interdot tunnel coupling as well as the couplings to the leads are not the

same in the two regimes.

A zero-field dip in the leakage current is known to occur in double dots hosted in materi-

als with strong spin-orbit interaction [14, 15, 182, 183, 184]. The dip is usually explained in

terms of a competition between different types of spin-mixing processes: The combination

of spin-orbit interaction and Zeeman splitting due to the applied field enables transitions

between triplet and singlet configurations. This mechanism becomes more efficient at higher

magnetic field and thus it produces a dip in the leakage current around zero field [174].

Other processes that mix spin states, such as the hyperfine interaction between the electrons

or holes and the nuclear spins in the host material [185] or spin-flip cotunneling processes

with the leads [186], can be independent of the magnetic field or even become less efficient

with increasing B. If one of such processes provides the dominant spin-mixing mechanism,

then there will appear no dip in the current around zero field. Since the spin-orbit-mediated

mechanism scales with the interdot tunnel coupling, one can expect to observe a transition

from having a zero-field dip to no zero-field dip when changing the tuning of the double dot.
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Figure 4.5: Magnetic field evolution of the leakage current in two different spin blockaded trans-
port configurations. In both cases the field is applied in the plane of the nanowire and gates,
perpendicular to the gates but making an angle of ∼ 30◦ with the wire. In the left panels we show
the dependence of the leakage current on magnetic field and detuning, and on the right side we
show the corresponding charge degeneracy points (top) and a line cut of the data at zero detuning
(bottom). The zero-detuning cuts include fits to the theory presented in the main text. (a) In this
configuration, where a bias voltage VSD = 6.5 mV is applied, the leakage current has a single-peak
structure both as function of the detuning and magnetic field. The corresponding charge stability
diagram is taken at B = 5 T. In the figure we plot two different theory curves on top of the data,
both with ξ = 0.03, g = 4.4, and an added constant current of 0.8 pA to account for the background
signal observed in the data. We further used Γ = 300 MHz, t = 50 µeV, γ = 0.0075, and α = 0.4
(solid red curve) and Γ = 25 MHz, t = 150 µeV, γ = 0.66, and α = 0.4 (dashed green curve). (b)
Leakage current at a different charge degeneracy point, with VSD = 4 mV. The corresponding bias
triangle is taken at B = 0 T. Here the current shows a double-peak structure in the magnetic field,
which can also be seen in the zero-detuning cut. The theory curve (red solid line) uses ξ = 0.03,
g = 4, Γ = 256 MHz, t = 150 µeV, γ = 0.061, and α = 0.37.
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4.2.4 Theoretical model

Ignoring the potentially more complicated nature of spin blockade in the valence band,

we assume that in the present case we can describe the leakage current with a model based

on the following ingredients: (i) S(1, 1), has the same singlet configuration as S(0, 2) and is

thus strongly coupled to that state, with a coupling energy t. (ii) The state S(0, 2) decays

to the drain lead with a rate Γ. Immediately after such a transition a new hole enters the

system from the source, bringing it in one of the (1, 1) states again. (iii) T±(1, 1) split off

in energy when a magnetic field is applied. (iv) Spin-orbit interaction results in a coherent

non-spin-conserving coupling between the (1, 1) triplet states and S(0, 2). The energy scale

characterizing spin-orbit coupling tso is proportional to t. (v) There can be other spin-mixing

and spin-relaxation processes causing transitions between the different (1, 1) states.

In our data both the dip and the peak are relatively wide: they appear on a field scale of

B ∼ 1 T which is of the order of 3 K. First of all, this rules out hyperfine interaction as the

dominant spin-mixing mechanism in the single-peak data of Fig. 4.5a. Hyperfine interaction

is known to lift spin blockade around zero field producing a peak in current, but the width

of the hyperfine peak is comparable to the typical magnitude of the effective nuclear fields in

the dots. We estimate the effective nuclear fields in the present system to be less than 10 mT,

which is orders of magnitude smaller than the peak width observed here [187]. Secondly,

the analytic theory of Ref. [174], which is often used to extract model parameters such as

the magnitude of spin-relaxation rates and α = tso/t, is valid for t, tso,B � Γ and also

assumes the spin-relaxation rates to be isotropic, based on the assumption B� T, where T

is the temperature. From here on we will use ~ = kB = gµB = e = 1. In the present case,

however, we have B� T for most fields of interest, and spin relaxation will thus mostly be

directed towards the (1, 1) ground state instead. Furthermore, the suppression of current

at the highest fields could indicate that B exceeds at these fields the effective level width

of S(0, 2) by such an amount that the system is pushed into a Coulomb blockade in the

lowest-lying (1, 1) triplet state.

We thus cannot straightforwardly apply the theory of Ref. [174] to model the data shown

in Fig. 4.5. Instead we present a modified version of the theory, where we include only spin
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relaxation to the ground state and do not expand in large Γ. We start from the five-level

Hamiltonian

H =



0 iB 0 0 iαt

−iB 0 0 0 iαt

0 0 0 0 iαt

0 0 0 0 t

−iαt −iαt −iαt t 0


, (56)

written in the basis {|Tx〉, |Ty〉, |Tz〉, |S〉, |S02〉}, where |Tx,y〉 = i1/2∓1/2{|T−〉 ∓ |T+〉}/
√

2 and

|Tz〉 = |T0〉 are the three (1, 1) triplet levels and |S〉 and |S02〉 the (1, 1) and (0, 2) singlets,

respectively. The interdot detuning was set to zero and α parametrizes the strength of the

effective spin-orbit interaction in the dots, where α ∼ 1 corresponds to the strong limit.

In principle, the three α’s coupling |Tx,y,z〉 to |S02〉 can be different, constituting a vector

α = (αx, αy, αz) (see Ref. [174]). The length of this vector corresponds to the strength of the

spin-orbit interaction and its direction is related to the direction of the effective spin-orbit

field. In a physical nanowire, the precise orientation of α depends on many details and is

hard to predict. We therefore make the simplifying assumption that all three components

are of the same magnitude. We diagonalize the Hamiltonian and use its eigenbasis to write

a time-evolution equation for the density matrix [174],

dρ̂

dt
= −i[Hdiag, ρ̂] + Γρ̂+ Γrelρ̂. (57)

The operator Γ describes (i) decay of all states |n〉 (with n = 0 . . . 4) to the drain lead

with the rates Γ|〈n|S02〉|2 and (ii) immediate reload into one of the eigenstates with the

probabilities {1− |〈n|S02〉|2}/4. For the relaxation operator Γrel we take a simple form: We

assume that all four excited states relax with the same rate Γrel to the ground state. At

B = 0 this ground state is an equal superposition of |S02〉 and the optimally coupled (1, 1)

state |m〉 = {|S〉 − iα1 · |~T 〉}/
√

1 + 3α2, and for B→∞ it develops into a pure |T+〉-state.

We first discuss this model on a qualitative level, and investigate how it differs from the

model of Ref. [174]. For small fields, B � Γ, the different spin relaxation model used here

only yields different numerical factors in some of the results. At B = 0 we have three blocked
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states at zero energy that can relax to the hybridized (1, 1)–(0, 2) ground state which quickly

decays to the drain lead; this results on average in four holes being transported through the

system in a time 3Γ−1
rel , thus yielding a leakage current of I(0) = 4

3
Γrel. Adding a finite

magnetic field induces a coupling of ∼ αB between two of the blocked states and |m〉, which

provides an alternative escape route and leads to an increase of the current.

This increase becomes significant only when the rate of this escape ∼ (αB)2Γ/t2 becomes

comparable to Γrel, which happens at B ∼ (t/α)
√

Γrel/Γ. For larger fields the current tends

to its maximum value Imax = 4Γrel, reached when only one truly blocked state is left and

on average four holes are transported in a time Γ−1
rel . We see that this picture predicts a

zero-field dip in the current of width Bdip ∼ (t/α)
√

Γrel/Γ and a maximal suppression of the

current, by a factor 3, at B = 0. This is, apart from numerical factors, the same result as

found in Ref. [174].

Qualitative differences appear when we investigate what happens at even higher fields.

Since Γ is finite in the present model and all relaxation is directed toward the ground state,

we can enter a situation of Coulomb blockade in the (1, 1) ground state |T+〉. When we

increase B, the current will thus eventually be suppressed to zero, producing in general a

double-peak structure in I(B). A näıve guess for the field scale where this suppression sets in

would be ∼ Γ: The level width of |S02〉 is set by Γ, and for B & Γ the escape rate from |T+〉

drops gradually to zero. However, the actual field scale of current decay is rather set by the

competition of this escape rate with Γrel: Only when the B-induced suppression becomes so

strong that escape from |T+〉 is the main bottleneck for the leakage current, the decrease in

current becomes significant. We thus compare this escape rate ∼ (αt)2Γ/B2 with Γrel and

find an estimate for the width of the overall double-peak structure Bc ∼ αt
√

Γ/Γrel.

We can also understand how our model could result in an apparent single-peak I(B).

Indeed, Bdip and Bc show a different dependence on the model parameters, and their ratio

Bdip/Bc ∼ Γrel/α
2Γ (which determines the relative visibility of the zero-field dip) could be

large or small, depending on the detailed tuning of all parameters. For Bdip/Bc � 1 one could

be in the situation where the central dip around zero field is too narrow to be observed.

We will now support these arguments with a more quantitative investigation of the

model. We can solve Eq. 57 in steady state, dρ̂/dt = 0, and find the current from the
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Figure 4.6: The current resulting from Eq. 58 for two different sets of parameters: t = 120 µeV,
α = 0.1, and γ = 2×10−3 (solid blue curve) and t = 3.5 µeV, α = 0.5, and γ = 10−4 (dashed green
curve).

resulting equilibrium occupation probabilities pn = ρ̂nn as I =
∑

n pnΓ|〈n|S02〉|2, yielding

I(B) = Γrel
[w − B2 + τ 2][w(1 + 4γ) + B2 − τ 2]

6γw2 + 2B2α2t2
, (58)

where we use the notation w =
√

(B2 − τ 2)2 + 8B2α2t2, the small parameter γ = Γrel/Γ, and

τ = t
√

1 + 3α2 (which is the total tunnel coupling energy). To obtain Eq. 58 we assumed

γ � 1, which we will also do below.

The current given by Eq. 58 indeed shows in general a double-peak structure. At zero

field we find I(0) = 4
3
Γrel, and the current has two maxima at B = ±τ where I = 4Γrel.

The half-width of the resulting zero-field dip follows as Bdip = t(
√
β2 + 2 − β)/

√
2, where

β = α/
√

6γ. In the limit of large β (small
√
γ/α) we find Bdip ≈ t

√
3γ/α. At high fields,

the current drops to zero, and from Eq. 58 we find the half-width-half-maximum of the full

double-peak structure to be Bc = t(
√
β2 + 2 + β)/

√
2 which reduces to Bc ≈ αt/

√
3γ for

large β. We see that in the limit of small γ these results agree with the conclusions of our

qualitative discussion above.

In Fig. 4.6 we plot I(B) for two different sets of parameters, illustrating how the model

can produce curves that appear to have double-peak as well as single-peak structures. The

solid curve shows a clear double-peak structure, which is indeed expected since the “visibility

parameter” Bdip/Bc ≈ 0.30 predicts a clearly distinguishable zero-field dip. In contrast, for
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the dashed curve Bdip/Bc ≈ 0.001. In this case, the current still has a dip around zero

field; its width, however, is ∼ 1000 times smaller than the overall width of the structure

and therefore invisible in the plot. Depending on all other parameters, this situation could

thus correspond to an experiment where the leakage current appears to have a single-peak

structure.

In order to connect our model to the experimental data in Fig. 4.5 and facilitate fitting

of the model parameters (see below), we include the likely scenario that g-factors in the two

dots are different. The effective g-factor for a localized hole depends on many microscopic

characteristics, among which the details of the confining potential [60], and is thus expected

to differ from dot to dot. Recent studies on similar materials found g-factors differing by

2–5% between two dots in a double dot [184, 188]. Such differences are smaller than the error

bars in our g-factor measurement, thus they cannot be verified in our devices but they need

to be considered due to their strong influence on the leakage current. The effect of having

different g-factors on the left and right dots (gL and gR) is a coherent mixing of |Tz〉 and

|S〉. As a result, the single blocked state left at finite field {|Tz〉 + iα|S〉}/
√

1 + α2 couples

to the decaying state {|S〉 − iα|Tz〉}/
√

1 + α2, thus lifting the blockade. The rate of this

decay of the last blocked state is Γξ ∼ (ξB)2Γ/t2, where ξ = 1
2
(gL − gR)/(gL + gR). This

decay competes with Γrel for being the bottleneck for the leakage current: If Γξ & Γrel then

the overall scale of the current will be set by Γξ.

To include the effect of a finite g-factor gradient into our model, we add a term Hξ =

ξB{|Tz〉〈S| + |S〉〈Tz|} to the Hamiltonian (56). We can again solve Eq. 57 in steady state

dρ̂/dt = 0 and arrive at an analytic expression for the current I(B) which we can fit to the

data (at this point we do not assume γ � 1). Fixing ξ = 0.03, we can obtain reasonable fits

to the double-peak data of Fig. 4.5b. Based on these results, we conclude that spin-orbit

parameter α is in the range ∼ 0.1–0.4. The single-peak data of Fig. 4.5a are harder to fit due

to lack of features, thus we cannot reasonably narrow down all the fit parameters. However,

theory curves with α in the same range as for the double-peak regime can show reasonable

agreement, see Fig. 4.5b.
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4.2.5 Conclusions

To conclude, assuming linear Rashba spin-orbit interaction as the dominant relaxation

term [60] in these gate-defined double quantum dots with α = 0.1–0.4, and a dot-to-dot

distance of order 50 nm, we find a spin-orbit length of lso = 100–500 nm. While this

corresponds to a substantial spin-orbit interaction, it does not greatly exceed that measured

in InAs or InSb nanowires. One possibility for this could be that α is not maximal for the field

orientation at which data is obtained here as a consequence of spin-orbit anisotropy [177],

although the magnetic field was not oriented in the direction expected for the spin-orbit field.

Another factor for lower-than-expected spin-orbit interaction is the low strain between the

thin Si shell and relatively thick Ge core. Thus, it is conceivable that spin-orbit interaction

can be enhanced by tailoring the nanowire morphology. A more detailed insight into spin-

orbit coupling and other double dot parameters could be obtained from electric dipole spin

resonance.

4.2.6 Supplemental material

4.2.6.1 Charge stability diagrams

We have measured three different nanowire devices, A, B, and C, in three different

dilution refrigerators all at base temperatures below 30 mK. All three devices have the same

fabrication recipe as mentioned in the main text. In this supplemental material we show

more data on Device A, the device investigated in the main text, as well as data from the

other two devices.

In Fig. 4.7 we show part of the charge stability diagram shown in Fig. 4.3, in both source-

drain bias directions. We remove parts of the scan with lower gate values from Fig. 4.3 to

improve the visibility of charge transitions with fewer hole occupation in dots and circle

some charge transitions with asymmetric current near the triangles bases to illustrate how

we search for spin blockaded transitions. Taking bias asymmetry near zero detuning as an

initial signature of a spin blockade candidate charge degeneracy point, we study the magnetic

field evolution to determine if spin blockade is present or not.

Fig. 4.8 shows the bias triangle of Fig. 4.5(b) at zero field where spin blockade is stronger,
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Figure 4.7: Double quantum dot charge stability diagrams in opposite bias directions (top: VSD =
4 mV, bottom: VSD = −4 mV). The plots show the absolute value of measured leakage current
across the dots from one reservoir to the other while scanning G1 versus G3 at a fixed G2. Some
charge transitions that show bias asymmetric behavior are circled.

and at finite magnetic field where the spin blockade is lifted. This figure illustrates that the

current suppression due to spin blockade is sometimes a subtle effect in the presence of highly

effective spin mixing mechanisms such as spin-orbit interaction.

In Fig. 4.9 we see a few charge transitions from Device B in two opposite bias directions.

These transitions manifest some indicators of possible spin blockade at zero magnetic field

such as suppressed current at the base of the triangles (green arrow), enhanced current on
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the side of the triangles that can be related to spin exchange with the reservoir leads (yellow

arrows), and triplet hats at the triangle tops (orange arrow). However, these features are not

conclusive for this set of triangles. In order to accurately identify spin blockade one needs

to study the magnetic field dependence of the leakage current, as shown for Device A.

Figure 4.8: Bias triangle of Fig. 4.5b in the main text at zero magnetic field (left) and at B = −0.8 T
(right) at VSD = 4 mV. The current is suppressed at the base of the triangle (lower left) at zero
field and there is an excess current at the side which can be representative of the hole exchange
between the dot and the reservoir where their Fermi energy levels are equal. At finite magnetic
field we can see the increase in the leakage current at the base of the triangle associated with lifting
the spin blockade.

In Fig. 4.10 we present magnetic field evolution of the leakage current obtained from

Device C. A similar pattern is observed here compared with Fig. 4.4, i.e. base of the triangle

moves to higher detuning with applied magnetic field. The top panel shows a charge degen-

eracy point studied at bias voltages VSD = ±4 meV. The bias triangle at positive bias is

smaller than the one in opposite bias suggesting the suppression of current at its base, which

we attribute to spin blockade. In the middle panel we show the leakage current as a function

of detuning ε (as indicated in the top left plot) and the applied magnetic field. In this regime

the the double-peak structure is observed in the field dependence at low detuning.

4.2.6.2 Positive and negative bias detuning sweeps

Fig. 4.11 shows the leakage current as a function of the magnetic field and the gate volt-

ages controlling the detuning, for both bias directions applied across the charge degeneracy

points studied in Fig. 4.4 (top) and Fig. 4.5(a) (bottom). The left panels show a field-

dependent behavior of the leakage current, where the detuning at which the current sets on
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Figure 4.9: Double quantum dot charge stability diagrams of Device B in opposite bias directions.
The plots show the absolute value of measured leakage current across the dots from one reservoir
to the other while scanning G1 versus G3 at a fixed G2. The arrows show characteristics of spin
blockade explained in the text.

increases with field, whereas in the right panels that are taken at the opposite bias direction

the leakage current onsets always at the bottom of the colormap (where zero detuning is

located) and the onset voltage does not demonstrate a linear magnetic field dependence.

Charge instabilities are responsible for the onset voltage fluctuations, these fluctuations are

not symmetric upon magnetic field reversal.

4.2.6.3 g-factor anisotropy

In Figs. 4.12 and 4.13 below we show multiple scans of the leakage current through

different double quantum dot configurations as a function of magnetic field and detuning for

Device A. As we see, not all the scans reveal very sharp steps in the current, but they are

still clear enough to read off an effective g-factor from the slope of the resonance associated

with T+(1, 1)→ S(0, 2) transition, as shown by dashed lines.

When extracting g-factors, we neglect the orbital effect of the magnetic field in the two

dots on the energy of the T+(1, 1) → S(0, 2) transition. The dots are likely occupied with

heavy holes with a large effective mass, m∗ = 0.2me, for which we estimate a shift of ≈ 10%
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Figure 4.10: Pauli spin blockade in Device C. Top: the bias triangle in two opposite source-drain
bias directions. The triangle in the left is smaller than the one on the right showing that the
current at its based is suppressed. The color plot is the absolute value of the leakage current.
Bottom: leakage current through the double quantum dot measured as a function of detuning and
magnetic field at VSD = 4 mV. The double-peak behavior highlighted by a line cut at zero detuning
corresponds to spin blockade.

in orbital level splitting using ∆E = ~
√
ω2

0 + ω2
c/4 − ~ω0 at B = 3 T, where ωc = ~eB/m∗

and ω0 ≈ 2 meV. At the same time, Zeeman shifts are comparable to the singlet-triplet

energy level spacing in the same field range greatly exceeding the estimated orbital effect for

these dots.

We apply magnetic fields in two different directions: (i) normal to the plane of the
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Figure 4.11: Magnetic field evolution of the leakage current in opposite bias directions for the two
double quantum dot configurations shown in Fig. 4.4 (top) and Fig. 4.5(a) (bottom) in the main
text. Source-drain biases are indicated in the panels

nanowire and local gates (B⊥) and (ii) in-plane with the nanowire and gates, where the

nanowire makes an angle of ∼ 30◦ with the field (Bz).

Fig. 4.12 shows the leakage current through a charge degeneracy point in both directions

of applied magnetic field. The slopes from which we can read the effective g-factors are

different for the two cases of applied field, larger for the out-of-plane magnetic field and

smaller for the in-plane field.

Fig. 4.13 shows more examples of the in-plane magnetic field evolution of the leakage

current at two other charge degeneracy points, where g-factor values deviate from those

measured in B⊥ shown in left panel of Fig. 4.12 and Fig. 4.4. Also from these scans we

extract a singlet-triplet energy splitting EST ∼ 1–2 meV.
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Figure 4.12: Leakage current as a function of magnetic field and detuning. Left: field is applied
normal to the substrate. Right: in-plane magnetic field. The dashed lines show the slope of the
resonance line moving as a function of filed and detuning from which we measure the effective
g-factor. The solid line is used to read the singlet-triplet energy splitting. It is not trivial for the
right panel to draw a solid line for this energy splitting.

Figure 4.13: Leakage current through two different double dot configurations both as a function
of in-plane magnetic field and detuning. Dashed lines are used to measure the effective g-factors
along the direction of the magnetic field, and the singlet-triplet energy splittings are shown by solid
lines.
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5.0 Mirage Andreev spectra generated by mesoscopic leads in nanowire

quantum dots1

In this chapter we study transport mediated by Andreev bound states formed in InSb

nanowire quantum dots. Two kinds of superconducting source and drain contacts are used:

epitaxial Al/InSb devices exhibit a doubling of tunneling resonances, while in NbTiN-InSb

devices Andreev spectra of the dot appear to be replicated multiple times at increasing

source-drain bias voltages. In both devices, a mirage of a crowded spectrum is created. To

describe the observations a model is developed that combines the effects of a soft induced gap

and of additional Andreev bound states both in the quantum dot and in the finite regions of

the nanowire adjacent to the quantum dot. Understanding of Andreev spectroscopy is im-

portant for the correct interpretation of Majorana experiments done on the same structures.

5.1 Introduction

The superconductor-semiconductor hybrids are of recent interest due to the possibility of

inducing topological superconductivity accompanied by Majorana bound states (MBS) [52,

190, 191, 192]. More generally, when a semiconductor is of finite size, proximity to a super-

conductor gives rise to subgap quasiparticle excitations, the so-called Andreev bound states

(ABS), that appear due to successive Andreev reflections at the interfaces. Single ABS have

been demonstrated in a variety of structures including self-assembled quantum dots, semi-

conductor nanowires, atomic break junctions, carbon nanotubes and graphene [193, 194, 40,

39, 195, 42, 196]. ABS exhibit many similarities to MBS, and therefore ABS can serve as a

prototypical system for Majorana studies [43, 45]. Furthermore, MBS are expected to evolve

from ABS across a topological phase transition [44, 153]. A powerful experimental method

for investigating both MBS and ABS is via tunneling, either from a nanofabricated probe or

by scanning tunneling spectroscopy [197, 198].

1This chapter is adapted from Ref. [189].
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In this chapter, we focus on the mesoscopic effects within the tunneling probes. We

show that the non-trivial densities of states (DOS) in the probes can drastically affect tun-

neling characteristics by generating multiple replicas of ABS. To experimentally investigate

these effects, we use semiconductor nanowires coupled to superconductors. ABS are in-

duced in a quantum dot by strongly coupling the dot to one superconducting contact. A

second superconducting contact and a nanowire segment adjacent to it act as a tunneling

probe. To explain our observations, we consider the effects of soft induced superconducting

gap in the nanowire, and of additional ABS induced in nanowire segments adjacent to the

dot. The surprising observation of sub-gap negative differential conductance (NDC) is found

to be consistent with a peak in the DOS of the probe at zero chemical potential, which

is present even at zero magnetic field. The exact origin of this anomalous DOS remains

an open question. Our findings emphasize the importance of understanding the spectral

structure of the measuring contacts to interpret tunneling experiments in mesoscopic sys-

tems. We expect them to be particularly relevant for the MBS search in similar nanowire

devices [67, 149, 153, 68, 152].

InSb nanowires are grown using metalorganic vapor phase epitaxy (MOVPE) [131]. We

investigate two devices that are drastically different both in the way they are gated and in the

way superconductivity is induced. The first is an Al/InSb device which shows a two-replica

tunneling spectrum that can be understood by only considering the effect of a soft induced

gap in the nanowire. Building on the simpler example of an Al/InSb device, we discuss the

second, NbTiN-InSb, device in which multiple replicas are observed. Properly describing

this effect requires a non-trivial DOS in the leads. All measurements are performed in a

dilution refrigerator with a base temperature of 30 mK.

5.2 Induced superconducting soft gap in Al/InSb nanowire

The Al/InSb device in Fig. 5.1(a) features an epitaxially-matched thin shell of Al de-

fined by molecular beam epitaxy (MBE), with a single break in the shell around which the

quantum dot is formed [65]. The wires were allowed to age in air which possibly accounts
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for softer induced gap. NbTiN contacts are fabricated on top of the Al shell of the nanowire

following Ref. [65], but superconductivity in the dot is primarily induced by the Al shell

since NbTiN is offset back from the break in the shell. A combination of the back and side

gates is used to define a quantum dot by lowering the electron density primarily near the

break in the Al shell. In practice, the side gate is fixed and only the effect of the back gate is

explored (see supplemental materials for quantum dot characterization). The dot is partially

defined by disorder which becomes prominent at low density.

In a hard-gap superconductor-superconductor tunnel junction, conductance is expected

to be zero for source-drain biases |V| < 2∆/e, where ∆ is the superconducting gap which is

typically 200 µeV in aluminum [199, 164]. If the probe features a soft induced gap, for exam-

ple due to microscopic semiconductor-superconductor interface properties, conductance can

be non-zero at lower biases. Fig. 5.1(b) illustrates how current can flow at a bias of V < ∆ if

a small DOS is present in the probe within the superconducting gap. Another current peak

is expected when the gap edge of the probe is aligned with the ABS in the dot, therefore the

same ABS is responsible for two peaks in transport.

In the Al/InSb device the conductance is non-zero for |V| & ∆/e, and two small con-

ductance peaks are found at V ≈ ±∆/e (Figs. 5.1(c),(d)) at zero applied magnetic field.

We argue that conductance in the range ∆/e < V < 2∆/e is due to the soft gap effect

which makes tunneling possible when the center of the induced gap in the probe is aligned

with ABS level in the dot located close to the gap edge, as in Fig. 5.1(b). Still, the largest

peaks at zero field are at ±2∆, which indicates that the subgap density of states is relatively

small. The resonances at ±2∆ are accompanied by negative differential conductance (NDC)

shadows around ∼ ±0.5 mV, which is typical for tunneling transport between two supercon-

ducting gap edges and arises due to a convolution of two DOS peaks [38].

The conductance peaks at ±∆ and ±2∆ evolve in magnetic field. Both resonances split

into two branches, one of which moves to higher bias, while the other moves to lower bias.

This indicates that we are observing Zeeman splitting of an ABS that is localized near the

gap edge at zero field [38]. The spectrum is replicated because the same ABS is probed by

the large density of states in the probe at V = ∆/e and by the small density of states at

V = 0/e. This is confirmed by that fact that the branches originating from ∆ are parallel
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to branches originating at 2∆ at low field.

At B = 0.3 T resonances that originated from ±∆ coalesce at zero bias, resulting in a

zero-bias peak [43]. At the same field kinks are observed in higher bias resonances around

V = ∆/e. The kinks appear because the positive and negative bias segments are shifted to

Figure 5.1: (a) scanning electron micrograph of a representative Al/InSb device. The shaded blue
regions show the Al thin shell with a break in the middle. (b) Illustrative energy diagrams of a soft
gap probe, a hard-gapped lead and an ABS in the dot (solid lines) for two different source drain
biases V ≈ ∆ (left) and V ≈ 2∆ (right). (c) and (d) magnetic field evolution of the two-terminal
transport. The field is applied parallel to the nanowire axis.
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+∆ and −∆ respectively by the probe at the gap edge. The superconducting gap in the Al

shell remains virtually unchanged at B = 0.3 T. This can be seen because the upper branch

of the 1∆ resonance meets exactly with the lower branch of the 2∆ resonance at that field.

The gap collapses at higher fields and vanishes at B≈ 1.0 T. The high critical field is due

to quenched orbital depairing in the thin Al shell. The low-bias replica follows the behavior

of the high bias replica reaching a local maximum at B≈ 0.7 T and collapsing to zero at

B≈ 1.0 T. At all fields, the replicas are separated by a bias of ∆(B)/e. We also note that

the upper branch at +2∆ appears to split into three resonances at small fields, with two of

the branches moving down, a non-universal effect which remains to be understood.

5.3 Andreev replica in NbTiN-InSb-NbTiN device

Having understood the doubling of tunneling resonances due to the soft gap effect, we

now discuss the less trivial behavior of the NbTiN-InSb device in which more than two

apparent replicas are observed (Fig. 5.2(a)). In this device no epitaxial Al shell is present

and the nanowire directly contacts the NbTiN electrodes. This device is fabricated atop of

an array of fine local gates with the center-to-center distance of 60 nm. The gate dielectric

is a 10 nm thick layer of HfO2. The quantum dot is fully defined by gates labeled t, p

and s for “tunneling”, “plunger” and “superconductor”. The dot is defined close to the

right superconductor and the barrier above gate s is tuned so as to strongly couple the right

superconductor and the dot. The left superconductor is separated from the dot by a segment

of a nanowire and a high tunneling barrier defined above gate t. We vary the occupation

of the dot with voltage Vp on the plunger gate. This device has been used in a previous

study [200].

Data in Fig. 5.2(b) show transport through the NbTiN-InSb device as a function of

plunger gate up to a high bias of 5 meV. The lowest bias resonances (closest to zero) exhibit

behavior typical for ABS in quantum dots: they form a “loop” by crossing zero bias twice at

approximately Vp = 520 mV and Vp = 540 mV. This is explained by the dot undergoing a

singlet-doublet ground state transition at the nodes of the loop [39, 40, 42, 43]. Interestingly,
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Figure 5.2: (a) Scanning electron micrograph of the NbTiN-InSb device. Green dot marks the
quantum dot, white line is a conceptual confining potential set by gates t, p and s. (b) Tunneling
conductance through the dot as a function of bias and Vp. Arrows point to four apparent replicas
of the lowest loop-like resonance. Data obtained at zero magnetic field. (c) Illustrative energy
diagram with the soft gap probe, two ABS on the dot (QD1 and QD2) and two ABS in the hard
gap lead (LEAD1 and LEAD2). (d) Theoretical model results as a function of dot on-site energy
εdot, with QD1,2 energies εD1 = εdot and εD2 = εdot − 1.7 meV, LEAD1,2 energies εL1 = 0.5 meV and
εL2 = 1.5 meV, induced pairing ΓS = 0.27 meV, parent gap ∆p = 2.7 meV and Coulomb energy
U = 6.8 meV.

four apparent resonances that follow the same behavior of the upper half-loop are observed

at increasing values of positive bias in the gate range. The highest bias resonance is at
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an energy consistent with twice the gap of bulk NbTiN, which has been measured to be

close to 2 meV (data not shown). Multiple Andreev reflections are known to generate a

series of subgap features, but this effect is typically observed in symmetric structures, while

here s and t barriers are tuned to be highly asymmetric. We also notice that the loop-like

resonances at the center of the gate range evolve smoothly into diagonal lines, most clearly

for Vp = 540− 560 mV. These diagonals resemble excited states of a quantum dot. This is

not expected for multiple Andreev reflection.

Figure 5.3: Tunneling differential conductance at zero field across a quantum dot between a soft-
gap superconducting electrode and a proximitized nanowire lead with a hard gap. The quantum
dot has one (a) or two (b-d) spinful levels, while the nanowire has zero (a,b), one (c) or two (d)
subgap Andreev bound states. Magnetic field is zero in all panels, simulation parameters similar
to those in Fig. 5.2(d).

We develop a model that includes a lead electrode with a hard gap on the right, a soft-gap

electrode on the left, and a quantum dot in between. To reproduce multiple replicated spec-

tra, we include additional ABS in the right lead, presumably confined within the nanowire

segment underneath the superconductor. Good qualitative agreement is found with two

ABS within the quantum dot and two ABS in the right lead, with the left lead acting as

a tunneling probe (Fig. 5.2(c)). Simulated conductance data are presented in Fig. 5.2(d).

The model exhibits multiple half-loop structures at higher bias, as well as the diagonal lines,

which indeed originate from the excited states in the dot. The horizontal resonances that
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bind the lowest loop are conventionally interpreted as the superconducting gap edge singu-

larities. In our experiment this feature is observed at the scale of 0.4 meV, far below the

NbTiN bulk gap. The model shows that the horizontal resonances are in fact the result

of the hybridization of the lowest-energy ABS in the dot with the lowest-energy ABS in

the lead. The state LEAD1 is not sensitive to gate p therefore it appears as a horizontal

resonance in the model. Calculations neglect spin-orbit coupling because the quantum dot

spectra are only weakly affected by spin-orbit coupling at zero magnetic field. We also note

that in practice, both devices studied in this paper likely have soft induced gaps on both

sides, however essential features are well captured with soft gap only on the probe side.

In order to illustrate the role of extra ABS, in Fig. 5.3 we present the results from the

same basic model, in which more and more states are added to the system in subsequent

panels. Fig 5.3(a) corresponds to a single spinful ABS QD1 in the quantum dot, and no ABS

in the lead. It shows an Andreev loop around zero bias due to a soft gap probe (white), and

a replica at the bulk gap edge (red). The Andreev loop separates the singlet regions (labeled

s0 and s2 in panel a) and a central doublet region d. The three regions, which have different

dot occupations (0 in s0, 1 in d and 2 in s2), appear separated by discontinuities in this

simulation due to the self-consistent mean-field approximation used for the interactions in

the quantum dot. In Fig. 5.3(b), a second ABS QD2 is added to the quantum dot separated

by 0.35 meV from QD1. At low bias, in the blue region, this yields a pair of resonances

most clearly seen in the s0 region. At high bias V > ∆/e = 2.7 mV, in the dark-red region,

additional parallel lines appear as replicas of the low bias QD1 and QD2 resonances.

In Fig. 5.3(c) we have a single ABS in the dot QD1 and an ABS in the lead (labeled

LEAD1). The latter introduces resonances that run largely parallel to the horizontal axis as

in Fig. 5.2(d). However, at the points where the lead ABS is resonant with the dot ABS the

features due to QD1 and LEAD1 exhibit anticrossings. The lowest bias resonance transforms

into a loop confined to ±0.5 meV, well below the superconducting gap. The doublet region

d contains more resonances than singlet regions s0 and s2 because ABS of different spins are

not degenerate in this region.

In Fig. 5.3(d), we again have two ABS in the lead and two in the dot, as in Fig. 5.2(d).

Comparing with Fig. 5.3(c), we can see additional loops forming in the low bias region, due
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to anticrossing of LEAD1 and LEAD2 with QD1 and QD2. The higher bias loops, as probed

by the soft gap in the left electrode, show a stronger bias asymmetry in terms of peak height

than the primary loop around zero bias. As already discussed, all of the low-bias features

develop strong replicas due to the gap edge in the probe (red) accompanied by NDC dips

(black).

5.4 Negative differential conductance within the superconducting gap

In Fig. 5.4 we focus on the NDC features observed in NbTiN-InSb devices since they

represent an open challenge. The unusual aspect is that NDC is observed at low bias,

well within the superconducting gap (Fig. 5.4(a)). The NDC regions trace out the loop-like

Andreev resonance, at certain instances dominating over the positive differential conductance

part. In differential conductance measurements, NDC often appears when two peaks in the

density of states are aligned in the probe and the lead. Tunneling current then exhibits

a peak which translates into a peak-dip structure in differential conductance. This is why

NDC is often observed when tunneling from one superconducting gap edge into another, at

high bias such as in Fig. 5.1(c) at V = 2∆/e. However, NDC at very low bias would require a

peak in the DOS of the probe at zero bias (Fig. 5.4(b)). Such a peak is included in the model

calculation in Fig. 5.2(d), it is responsible for NDC at low bias in the model. Shifting the

DOS peak in the probe to finite bias results in additional doubling of all resonant features

and poorly matches the experimental data (simulation not shown).

The origin of this deduced zero-bias DOS peak, observed in several devices, is unknown

at present, but it has significant implications for the interpretation of Majorana experiments

done in similar devices, since MBS also manifests as a zero-bias peak. One can rule out

Majorana as an explanation for this peak, because the subgap NDC is observed regardless of

the presence of magnetic field which is a necessary ingredient for MBS. A plausible scenario is

the presence of an accidental discrete zero-energy state in the probe region of the device. The

local gates in that part were tuned to highly positive voltages to avoid creating additional

quantum dots, and the superconducting contacts to the nanowire are highly transparent.
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Nevertheless, some bound states may also appear in the probe segment due to its finite size.

Other possibilities include though not limited to Fermi-edge singularities and Kondo effect

[38, 201].

Figure 5.4: (a) Data in the regime similar to Fig. 5.2(b). (b) Illustrative energy diagram with a
peak in the density of states in the left probe that aligns with ABS, and produces NDC in the
loop-like structure within the superconducting gap.

5.5 Conclusion

An important conclusion for Majorana experiments is that the tunneling probe can be

more complex than a Fermi level or a textbook superconducting DOS, as confined quantum

states can form in the adjacent nanowire sections, resulting in additional transport reso-

nances. The presence of such additional resonances may complicate the interpretation of

experiments aimed at detecting MBS in nanowires, and should be carefully considered.
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5.6 Supplemental material

Theoretical model. This section introduces the model of the form H = Hd +HR + V

for the quantum dot coupled to the right hard-gap superconducting electrode. The left

electrode is treated as a superconducting tunnel probe and is discussed later. The quantum

dot is modeled as a multiorbital Anderson model, with levels εDi , of the form

Hd =
∑
iσ

εDi d
†
iσdiσ + U

∑
i

ni↑ni↓ (59)

where niσ = d†iσdiσ. As usual, we model the coupling to the right superconductor by a self

energy Σ(ω) that captures the induced pairing ΓS in the dot resulting from the parent gap

∆p. In the Bogoliubov-de Gennes basis Di =
(
di↑, di↓, d

†
i↑, d

†
i↓

)
, this dot self-energy reads

ΣR(ω) =
1

2

ΓS√
∆2
p − ω2

∑
iσ

D†i


−ω 0 0 −∆p

0 −ω ∆p 0

0 ∆p −ω 0

−∆p 0 0 −ω

Di (60)

For the physics discussed here, it is a good approximation to solve the above superconducting

Anderson Hamiltonian in a Hartree-Fock mean field approximation, hence neglecting Kondo

correlations, for a discussion see e.g. Ref. [202]. Clearly, this standard model of a proximitized

quantum dot does not capture in full the experimental phenomenology (in particular the

replicas described in the main text), so we consider the possibility that the superconducting

electrode contains additional ABSs (owing to its finite length). The ABSs are described by

the term

HR =
1

2

∑
jσ

εLj cjσcjσ̄ + h.c., (61)

which is essentially a generalization of the so-called zero-bandwidth model to include more

than one quasiparticle excitation in the superconducting lead. Note that for the case of a two

orbital Anderson model coupled to a single quasiparticle excitation in the superconducting

lead (see Fig. 5.3(c)) our model recovers the double dot model of Ref. [203].
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Figure 5.5: Spectra of H = Hd +HR + ΣR corresponding to the transport simulations in Fig. 5.3,
where the self-energy ΣR(ω) of Eq. 60 is taken at ω = 0.

For simplicity, we assume that the ABS are uniformly coupled to the dot states through

a spin-independent hopping amplitude

V = t
∑
ijσ

d†iσcjσ + h.c., (62)

This minimal model for the quantum dot coupled to a finite-size superconducting lead fully

captures the physics resulting from a microscopic model describing a quantum dot coupled

to a finite proximitized nanowire (not shown).

The density of states at the dot is obtained by taking the trace over electron-like dot

states ρ(ω) = − 1
π
ImTrdotG of the retarded Green function G = [ω+ i0−H −ΣR(ω+ i0)]−1.

Tunneling spectroscopy is performed through the left superconducting lead, that is as-

sumed to be tunnel-coupled to the dot. Using the Keldysh formalism, it is possible to write

an expression for the current in terms of Green’s functions of the above model (for details,

see e.g. the supplemental information of Ref. [43]. For very asymmetric situations (such that

the one described here where the left superconducting lead just acts as a tunneling probe),

the lengthy Keldysh expression can be simplified and one can derive a tunnel-like expression
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of the current which is just a convolution of the DOS in the probe and the DOS at the

quantum dot of the form

I ∝
∫
ρ(ε)ρprobe(ε+ eV )[f(ε)− f(ε+ eV )]dε. (63)

The density of states in the probe contains a smooth gap, modelled as a Dynes-BCS function

ρprobe(ε) = Re ρBCS(ε+ iηD), with a phenomenological Dynes depairing imaginary part ηD =

0.01 meV and

ρBCS(ε) = ρ0
|ε|√

ε2 −∆2
p

, (64)

with ρ0 the DOS at the Fermi energy of the probe in the normal state. In simulations with

a zero bias peak in the probe, the latter is added as a Gaussian of width 0.25 meV.

Figure 5.6: (a) Bias vs. gate plot with a normal conductor probe. Positive dI/dV resonances are
depicted in red. (b) Energy diagram with ABS energy +ζ at resonance with the normal probe.
(c-d) Bias vs. gate plot and energy diagram with a hard gap superconducting probe. The blue
curves in (c) depict negative dI/dV resonances. (e-f) Bias vs. gate plot and energy diagram with a
soft gap superconducting probe (a uniform DOS within the gap). (g) Bias vs. gate plot and energy
diagram relevant for experiments on NbTiN/InSb devices. The soft gap probe has a DOS peak at
zero bias, which produces NDC at low bias in (g).

Here we are showing additional data from the Al/InSb discussed in the main text as

well as a second measured similar device where the Andreev replica is apparent and the
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superconductivity persists also to 1 T. Moreover, there are Josephson effect measurements

shown from both devices with measured switching current ≈ 5 nA. These measurements

indicate that these junctions could potentially be used as the nonlinear element in hybrid

qubits with Josephson energy of ≈ 2.5 GHz.

Figure 5.7: Differential conductance through the device as a function of bias and backgate voltage
shows the unintentional quantum dot present in the nanowire. The linecut corresponds to the
backgate voltage at which the data in Fig. 5.1 are taken. Data is obtained at zero applied magnetic
fields. At negative backgate voltages below -2.15 V, current-voltage characteristics resemble a hard
gap regime, however the induced gap likely remains soft and the suppressed conductance within
the gap is due to an increased tunnel barrier.
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Figure 5.8: (a) Tunneling conductance through the device as a function of bias and backgate voltage.
Gate voltages corresponding to panels (b) and (c) are marked with vertical dashed lines. (b)
Superconducting gap with no apparent additional resonances persists up to B = 1 T. In agreement
with data in Fig. 5.7, data obtained at more positive gate voltages, with more open tunnel barrier,
reveal subgap structure due to soft gap: (c) There are two resonances deviating from the gap edge
at finite magnetic field as well as apparent replicas of those resonances at half of the gap energy.

99



Figure 5.9: Measured differential resistance as a function of bias current and magnetic field for
Al/InSb deivce of main text. The switching current decreases at 0.1 T which is critical field of Al
but it persists up to higher fields consistent with gap measurements.

Figure 5.10: Measured differential resistance as a function of bias current and backgate voltage
for second Al/InSb device. The voltage dependence of supercurrent is evident where supercurrent
saturates at 30 V.
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6.0 Parity-preserving and magnetic field resilient superconductivity in InSb

nanowires with Sn shells1

In this chapter we study bottom-up grown semiconductor indium antimonide nanowires

that are coated with shells of tin. The shells are uniform in thickness. No interdiffusion is

observed at the interface between Sn and InSb. Tunnel junctions are prepared by in-situ

shadowing using nearby nanowires as well as flakes. A 15 nm thick shell of tin is found to

induce a hard superconducting gap in the range 600-700 µeV. Superconductivity persists up

to 4 T in magnetic field. A small island of Sn-InSb exhibits the coveted two-electron charging

effect, a hallmark of charge parity stability. The findings open avenues for superconducting

and topological quantum circuits based on new superconductor-semiconductor combinations.

6.1 Introduction

As we enter the era of intermediate-scale quantum circuits [69, 204], materials con-

siderations come into renewed focus through their impact on quantum gate fidelity. The

most successful solid state approaches rely either on superconductors [205], or on semicon-

ductors [206], with the future topological platform to require a hybrid of both [123]. The

search continues for the ultimate material capable of delivering low intrinsic decoherence.

In this context, the push for qubits based on Majorana zero modes that are expected to

be topologically immune to decoherence [207, 208, 209, 210] has accelerated the discovery

of high quality interfaces between superconducting metals and low-dimensional semiconduc-

tors [211, 137, 65, 212].

Only a few superconductors were explored for Majorana qubits, most notably aluminum

which is also the material of choice for transmon quantum processors [69]. Among advan-

tages of aluminum are its’ self-limiting native oxide and a hard induced gap in proximate

semiconductors [211, 167, 213, 65]. Due to this, aluminum is widely known to exhibit 2e

1This chapter is adapted from Ref. [134]
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charging in small islands, a fundamental property that makes it a low-decoherence super-

conductor [214, 215, 216, 217, 121, 151, 218, 219]. Among disadvantages of aluminum are

a relatively small superconducting gap equivalent to 1 K, and a low critical magnetic field.

This confines quantum computing to ultra-low temperatures and even further constrains

the design of future topological qubits which will require a precise balance of several energy

scales [220].

Here we present induced superconductivity in InSb nanowires [133, 131] with Sn shells.

InSb is the highest electron mobility group III-V semiconductor with strong spin-orbit cou-

pling [177] and large Landé g-factors in the conduction band [135]. These are the primary

ingredients of the Majorana recipe [4, 5], making InSb an optimal material for the investi-

gation of induced topological superconductivity [67, 150, 68, 152].

We find that InSb nanowires coupled to tin exhibit hard induced superconducting gap

up to 700 µeV. Superconductivity persists to a significant magnetic field, up to 4 Tesla for

15 nm thick Sn shells. Islands of tin do exhibit 2e-periodic charging patterns. This effect is

a landmark requirement for topological quantum computing as well as for transmon qubits,

as it is a pre-requisite for long quasiparticle stability times. Fluctuations of the quasiparti-

cle number on superconducting islands scramble qubit readout, while quasiparticle hopping

between islands is a source of decoherence [207, 208, 209, 210, 221]. Results are obtained

even though Sn and InSb exhibited no epitaxial relationship which was previously viewed as

essential [167, 65].

6.2 Hard induced superconducting gap in normal metal-superconductor

configuration

Our first goal is to investigate electron tunneling into Sn through InSb in the normal

metal-superconductor (N-S) configuration. For this we need a nanowire with only one end

covered by tin. We use the uncovered end to define a tunneling barrier and an N-contact. In

order to avoid damage to InSb that results from etching away part of the Sn shell, we employ

in-situ nanoscale shadowing [65, 219]. In this case it is an InSb flake, standing in front of
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the nanowire, that shadows the bottom of the wire during deposition of Sn in ultra-high

vacuum [132] (Fig. 6.1A). We expect that junctions defined by wet etching or lift-off would

yield similar results [222, 223].

Figure 6.1: (A) Scanning electron micrograph (SEM) showing a triangular InSb flake that stood in
the path of a beam of Sn atoms, shadowing the InSb nanowire standing behind. Dark streaks on
the InSb substrate are also due to shadowing of the Sn beam by nanowires and flakes. The inset
shows the direction of Sn beam and indicates the shadowed and exposed segments of the nanowire.
(B) SEM of an N-S device (device A) with a flake-shadowed Sn-InSb nanowire and Ti/Au contacts
and a side gate. Magnetic field is in the plane of the sample as shown by the arrow. (C) Zero
magnetic field tunneling conductance spectrum of device A in linear scale (top) and logarithmic
scale (bottom), VBG = 7.5 V, VSG = −0.4 V. (D) Magnetic field evolution (top) of the zero-field
spectrum shown in panel (C). Line cuts at two specific source-drain bias voltages are shown in the
bottom.

To prepare an N-S device the tin-coated nanowire is positioned onto a doped Si/SiOx

substrate which is used as a back gate (BG) (Fig. 6.1B). A side gate (SG) is used to define

and tune the tunneling barrier near the edge of the tin-free segment. The tunneling spectrum

reveals a two-orders-of-magnitude suppression in conductance around zero bias (Fig. 6.1C).

This so-called hard gap indicates the elimination of decoherence pathways due to disorder

and spurious subgap states. A superconducting tunneling peak is at ±680 µeV which is

comparable to the gap of tin. In magnetic field, the hard gap is found to persist beyond 2

Tesla, with the gap “softening” at higher fields and fully closing around 4 Tesla (Fig. 6.1D).

Magnetic field resilience is an indicator of a thin uniform shell and this resilience is another

advantage of Sn since topological, spin and some superconducting qubits operate at high

magnetic fields.
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6.3 Transparent Josephson tunnel junction

Next, we study superconductor-superconductor (S-S) devices with both ends of the

nanowire covered by tin, and only a narrow break in the shell to define an InSb weak

link (Fig. 6.2A). For this we use a previously developed method of shadowing the Sn flux by

criss-crossing nanowires [65]. We first study tunneling between two tin islands (Fig. 6.2B).

We observe a smooth nanowire pinch off void of accidental quantum dot states. Three finite-

bias resonances are observed, marked 4∆, 4∆/2 and 4∆/3 in Fig. 6.2B. This sequence is

a manifestation of Multiple Andreev Reflection processes, which are characteristic of trans-

parent S-S junctions. They correspond to 615 µeV ± 10 µeV which is somewhat smaller

than the gap observed in the N-S device (Fig. 6.1C). At VBG < −1 V only the 4∆ resonance

is observed. We interpret this as the superconducting tunneling regime. Because the S-S

tunneling resonance is a peak in current, it appears as a peak-dip structure in conductance.

The resonance at zero bias in Fig. 6.2B is the Josephson supercurrent. This effect is

best studied in the current-bias configuration (Fig. 6.2C). The switching current (Isw) from

superconducting to normal state is a peak in differential resistance. Isw decays smoothly

with more negative VBG. The current-voltage characteristics are weakly hysteretic which is

reflected in the asymmetry of Isw in positive and negative current bias. In magnetic field,

the Josephson effect is observed up to 1.5 T and remains significant with sharp switching

up to 0.5 T (see Supplementary Materials). This significant field range is a positive devel-

opment for schemes that require coupling and decoupling of topologically superconducting

islands at finite magnetic field for Majorana fusion or braiding [224, 225]. Measurements

on continuous-shell nanowires without shadow junctions yielded supercurrents in the range

20− 30 µA corresponding to the critical current density of 2× 106 A/cm2 (data in Supple-

mentary Materials). The extracted products IswRN (RN is the normal state resistance) are

in the range 125− 225 µeV, which is significant, and of the same order of magnitude as the

gap.
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Figure 6.2: (A) SEM of device B (S-S device). Inset zooms in the shadow junction where Sn shell
is visible. (B) Differential conductance as a function of source-drain voltage bias V and back gate
voltage, VBG. The double arrows mark resonances 4∆, 4∆/2 and 4∆/3. (C) Differential resistance
as a function of current bias I and VBG (bottom). Top panel shows extracted switching current
Isw (black) and IswRN (red) as a function of back gate voltage.

105



6.4 2-electron tunneling through tin island

The two-electron charging effect is central for topological quantum computing because

the states of a topological qubit are distinguished by even/odd island charge parity. If only

1e charging periodicity were observed, it would mean that despite a well-defined supercon-

ducting gap, electrons can be added to an island one at a time and the ability to distinguish

the states of a topological qubit is scrambled. 1e periodicity is also detrimental for transmon

qubits where single electron tunneling is a decoherence mechanism [221].

In Fig. 6.3 we present key findings on 2e charging of a tin island. The island is defined

between two nanowire-shadow junctions in the N-S-N geometry (Fig. 6.3A). At zero mag-

netic field, we observe a single family of Coulomb peak resonances consistent with charging

the entire island (Fig. 6.3B). At a finite magnetic field of 1 T, the frequency of Coulomb

resonances doubles (Fig. 6.3C, D). We attribute data at zero field to 2e charging, and data

at finite field to 1e charging. The transition from 2e to 1e is due to the superconducting

gap or the lowest subgap state dropping in energy below the charging energy, which we

estimate to be 0.3 meV (Figs. 6.3E, F). At finite magnetic field, it costs less energy to add

electrons to the island one-by-one, while near zero field, due to hard gap superconductivity,

it is advantageous to add electrons in pairs.

6.5 Interface characteristics between Sn shell and InSb nanowire

Tin is an unusual material which has two different crystal phases with a phase transition

at 13◦C. The low-temperature α-Sn has a diamond cubic lattice, while the high temperature

β-Sn is tetragonal. The electronic properties of both phases are very different. α-Sn is

a semimetal which can also be a topological insulator in monolayer form [226, 227, 228],

whereas β-Sn is a metal with a superconducting transition temperature of 3.7 K.

For tin on InSb nanowires we assess the structural properties and elemental distribution

using transmission electron microscopy (TEM). TEM images reveal a polycrystalline Sn

shell of uniform thickness around the InSb nanowire (Fig. 6.4A): the shell features grains
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Figure 6.3: (A) SEM of device C showing the Sn island, two shadow junctions with bare InSb,
side gates SG1 and SG2 and Ti/Au source-drain contacts which cover the outside Sn segments
and suppress superconductivity there. (B) and (C): 2e and 1e tunneling conductance resonances
measured at V = 0 at B = 0 T and B = 1 T, respectively. (D) Magnetic field evolution of
conductance along the dashed cut in panel (B). (E) and (F): V vs gate spectroscopy at B = 0 T
and B = 1 T, respectively. The duration of data acquisition for each panel is of order 1 hour, and
the parity pattern is reproducible over days.

of sizes 25 × 25 nm to 50 × 60 nm (see Supplementary Materials). The Sn-InSb interface

is abrupt and some Sn grains show epitaxial relationship with InSb. The high-resolution

annular bright field-scanning TEM image (Fig. 6.4C) shows a section of the interface where

the {111} planes of zincblende InSb are aligned with lattice planes of a Sn grain with a

lattice distance of 2.04 Å. This matches the {220} interplanar distance of β-Sn. This grain

is one of 13 analyzed along the same nanowire. 11 of the grains are identified as β-Sn from

the fast Fourier transform analysis of the interplanar distances (Fig. 6.4C, inset). Only two

of those β-Sn grains show a preferential epitaxial relationship with InSb. In contrast, α-Sn
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is lattice matched to InSb and can grow epitaxially [229]. The predominantly β-Sn shell

observed at room temperature by TEM is in agreement with superconductivity observed

at low temperatures, suggesting that no phase transformation of Sn occurred upon device

cooldown.

In addition to the uniform shell thickness, the nanowire shadow junctions used in S-S

and N-S-N devices are sharp with Sn islands defined abruptly on each side of the junction

Figure 6.4: (A) Side-view TEM image along the 〈112〉 zone axis showing a homogeneously thin
shell. (B) Higher magnification TEM of the AlOx (red) - Sn (green) - InSb (blue) stack. The Sn
grain boundaries are highlighted by arrows. (C) HR-STEM image of the Sn-InSb interface. The
insets show Fourier transforms to the left and to the right of the interface. (D) High-angle annular
dark-field STEM image of a shadow junction. (E) EDX elemental mapping of the shadow junction
in (D). The Al-rich layer (red) corresponds to AlOx, oxygen not shown for clarity.
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(Fig. 6.4C). Energy-dispersive x-ray spectroscopy (EDX) confirms that the Sn islands are

isolated from each other and no interdiffusion between Sn and In is detected (Fig. 6.4D). A

uniform 3-nm-thick AlOx passivation layer covers the entire nanowire, this layer maintains

integrity and smoothness of the shell on the scale of at least 3 months. Oxidation at the Sn-

InSb interfaces is not detected but cannot be fully excluded (see Supplementary Materials).

6.6 Conclusion

Our results illustrate that neither defect-free epitaxial wire-shell interfaces nor single

vacuum cycle growth of nanowire and shell are crucial requirements for the demonstration

of hard gap, field-resilient superconductivity and 2e charging. We conclude that the key

components in attaining robust induced superconductivity are (i) removal of InSb native

oxide using atomic hydrogen prior to Sn growth, followed by (ii) liquid nitrogen cooling of

the nanowires during metal evaporation to produce a homogeneous ultrathin shell and (iii)

immediate passivation of the wire-shell hybrid with a stable dielectric. Supplementary Fig-

ure 6.5 illustrates that when the sample is allowed to warm up without AlOx passivation

immediately after the cryogenic Sn shell growth, tin coagulates into discontinuous grains.

Without the need for epitaxial matching many more superconductor-semiconductor com-

binations can be tried in search for decoherence free qubit materials [219, 230, 231, 232, 223].

An immediate follow-up of our work are experiments on Sn-InSb devices in the Majorana

geometry in search for clear signatures of topological superconductivity, as well as charac-

terization of coherence times of Sn-based transmon qubits.
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6.7 Supporting materials and methods

6.7.1 Nanowire growth

InSb nanowires are grown using the vapor-liquid-solid technique in a horizontal metal-

organic vapor phase epitaxy reactor. The first nanowires used in this work are stemless

InSb nanowires with flakes as shadow objects (Fig. 6.1A) [133, 132]. Both InSb nanowires

and flakes are grown on an InSb (111)B substrate with a selective-area mask and gold as

catalyst. The second type of nanowires, shown in Figs. 6.2A and 6.3B are shadowed by

other nanowires [65]. The InP (100) substrates are etched to expose the two {111}B facets,

on which gold particles are deposited with an offset on the two opposing facets of a trench.

Nanowires grow towards each other, such that the front wire shadows the back wire. InSb

wires are grown on InP stems.

6.7.2 Sn shell growth

After transit in air (from Eindhoven to Santa Barbara), nanowire chips as grown are

loaded into vacuum for subsequent growth of Sn shells. The chips are gallium bonded to

3.3 mm thick, 90 mm diameter molybdenum blocks. The absence of a native nanowire

surface oxide is expected to be essential in aiding in inducing a hard superconducting gap

[211, 137, 65]. In order to remove the native InSb oxide, atomic hydrogen cleaning is per-

formed in a UHV chamber with a base pressure < 1 × 10−10 Torr at 380◦C (thermocouple

temperature) for 30 minutes, at an operating pressure of 5× 10−6 Torr consisting primarily

of hydrogen ambient [65]. Once cleaned, the samples are transferred in-vacuo to an ultra-

high vacuum chamber dedicated for metal evaporation (base pressure < 5 × 10−11 Torr).

Here, the nanowire samples are cooled to 85 ± 5K (−188 ± 5◦C) for 2 hours, prior to tin

evaporation. 15-nm-thick tin is then evaporated from an effusion cell at a growth rate of

7.5 nm/hr and an evaporation angle close to 60◦ from sample normal. This shallow evapo-

ration angle aids in-situ formation of Sn islands with nanowire or flake shadows. After Sn

evaporation, while the sample is still expected to be at cryogenic temperatures (due to the

thermal mass of the molybdenum block), it is moved to an interconnected UHV chamber
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for the electron-beam evaporation of a 3-nm-thick shell of AlOx, at normal incidence. This

is done to prevent coagulation of the evaporated tin layer on InSb nanowires like shown in

Fig. 6.5. The samples are then allowed to warm up to room temperature in vacuum.

Figure 6.5: SEM image of a 15 nm tin film on an InSb nanowire grown at 85 ± 5 K that was
allowed to warm up to 300 K in vacuum, without any immediate cap layer or oxidation. The tin
layer coagulates to form diconnected islands or droplets on the nanowire. In a separate sample,
such a film was also measured to be insulating across the wafer which confirms that the tin metal
droplets are discontinuous. It was also observed that coagulation of the tin layer could be avoided
by immediate oxidation of the tin film in a load lock but such films were found to show rapidly
changing superconducting properties over days which was attributed to continued oxidation of the
tin layer underneath. No such change was observed in tin films capped with AlOx which were found
to be robust on the scale of 3 months.

6.7.3 Device fabrication and measurements

Device fabrication is similar to previous work on wires with epitaxial Al film [65], also

used in Chapter 5. We made global back gate substrates with doped and thermally oxidized

Si wafers, then covered them with 75nm HfOx to get a better dielectric layer. Wires are

transferred onto substrates using a micromanipulator under an optical microscope. Con-

tacts and gates are patterned by electron-beam lithography by curing the resist at room

temperature in a vacuum chamber (operating pressure < 1 × 10−4 Torr) to avoid nanowire

heating and potential interdiffusion of Sn and In. Argon ion milling is performed to remove

the AlOx layer before evaporating 10/150 nm of Ti/Au. Measurements are performed in

a dilution refrigerator with a 30 mK base temperature using a combination of direct cur-

rent and lock-in techniques. All voltage bias data are two-terminal measurements. A series
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resistance of ≈ 5 kΩ due to measurement setup was taken into account in calculating con-

ductance in all figures as well as renormalizing V axis in Figs 6.2B, 6.6, 6.7A. TEM studies

were performed using a probe corrected microscope operated at 200 kV, equipped with a

100 mm2 EDS detector.

6.7.4 Supplementary figures

Figure 6.6: Additional gate dependence data for flake-shadowed device A studied in Fig. 6.1. Zero-
field hard gap regime displays the presence of a quantum dot in the vicinity of a tunnel barrier.
Soft gap is observed for higher magnetic fields up to 4T. VBG = 7.5 V.
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Figure 6.7: Additional data for device B studied in Fig. 6.2. (A) Differential conductance as a
function of bias voltage and back gate voltage in the extended gate range compared with Fig. 6.2.
(B) and (C) show magnetic field dependence at VBG = −1.075 V, and VBG = −0.95 V, respectively.
This device is at ≈ 60◦ angle with magnetic field and as a result the gap closes at B ≈ 0.4 T, a
lower field than in devices that were aligned parallel to the field, e.g. Fig. 6.1.
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Figure 6.8: Additional data for device C studied in Fig. 6.3. (A) Bias vs a combination of SG1 and
SG2 at different magnetic fields, in the same regime as Fig. 6.3E. (B) Gate dependent DC current
measured at 10 µV bias. The gates are scanned in the same regime as Fig. 6.3
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Figure 6.9: (A) SEM image of device D with a nanowire shadow defined break in the Sn shell.
The electron beam resist was baked to 175◦C in the process of making this device. Magnetic field
is applied parallel to this device. (B) Differential conductance as a function of bias voltage and
back gate voltage shows evolution from the supercurrent regime at more positive back gate to the
quantum dot regime for more negative back gate. V axis is as measured and not renormalized due
to series resistance. (C) Andreev bound states evolution in parallel magnetic fields at VBG = 1.4 V.
The resonances never reach zero bias due to hard gap. However, at B = 0.3− 0.4 T, the finite bias
resonances exhibit kinks. These are the points where Andreev bound states cross zero chemical
potential and undergo a ground state quantum phase transition. Resonances are shifted by ±∆(B)
in ± bias [189]. In an N-S device a zero-bias peak would have been observed instead of finite-bias
kinks. Gap remains open to 1.5 T in this device. (D) Current bias measurement in the more
positive back gate regime showing the gate evolution of supercurrent. (E) Extracted IswRN (blue)
and switching current (red) as a function of back gate voltage. (F) Magnetic field dependence of
critical current. Josephson effect persists up to 1.5 T. This is consistent with the magnetic field
decay of the induced gap (panel C). Previously, rapid decay of supercurrent in InSb nanowires was
reported on the scale of 100 mT [233]. It was explained in the context of interference of supercurrent
carried by multiple occupied subbands. Here, supercurrent remains significant up to 0.5 T. This
can be due to shorter junctions studied, enhanced screening of magnetic field by the Meissner effect
in the Sn contacts or due to a lower subband occupation.
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Figure 6.10: (A) SEM image of device E, a single shadow S-S device. The nanowire is aligned
parallel with magnetic field. (B) Differential conductance as a function of bias and back gate
voltages. V axis is as measured and not renormalized due to series resistance. (C) Magnetic
field evolution of conductance at VBG = −10 V. Near B = 1.75 T a zero bias conductance peak
emerges from coalescence of two higher bias resonances. At these high magnetic fields the induced
gap is soft, allowing for conductance at low bias, including the zero bias. The zero-bias peak is
approximately 0.1 2e2/h. We attribute this peak to a trivial zero-bias crossing by subgap Andreev
states.
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Figure 6.11: Device F is a two-shadow device of similar geometry to device C in Fig. 6.3, however
with a short Sn island of order 100 nm. For this device like device D the electron beam resist
was baked at 175◦C in the process of making side gates and contacts. Like device C, device F
has three gates: two side gates aligned with the shadow junctions and a back gate. In contrast
to device C which is in the N-S-N configuration, device F is in the S-S-S configuration with the
center Sn island having superconducting leads due to the Sn shell. Nanowire F is at a 30◦ angle
with magnetic field. (A) Zero-bias conductance showing a 2e-periodic pattern of resonances at zero
field and an 1e-periodic pattern at B = 0.4 T. Note that some resonances appear split. This is
due to a subgap state that is lower in energy than the charging energy [218]. (B) Magnetic field
evolution showing a transition from 2e-periodic to 1e-periodic pattern at finite field. (C) Differential
conductance as a function of bias voltage and a combination of back gate and side gate voltages
along the yellow dashed line in panel A. On the left, a zero-field scan reveals that the zero-bias
conductance resonances are due to supercurrent through the S-S-S device which here manifest as
zero-bias conductance peaks due to a voltage-bias measurement [234]. At finite field (right) a
pattern of Coulomb diamonds is observed and no supercurrent is observed.
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Figure 6.12: Device G has an uninterrupted Sn shell on an InSb nanowire without any shadows.
The nanowire is grown on an InP stem. (A) SEM image showing 4 Ti/Au contacts labeled 1 to 4
noting different configurations for 2-terminal current bias measurements. (B) 2-terminal differential
resistance as a function of bias current and magnetic field. Supercurrent persists up to 3 T, magnetic
field is aligned parallel with the nanowire. (C-E) Differential resistance at zero magnetic field from
different 2 terminal configurations. A variation in critical currents is observed along the shell with
critical current being the highest in the central region of the nanowire. One possible explanation
is the presence of grains of α-Sn which are not superconducting, with a random distribution along
the nanowire.
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Figure 6.13: Side view bright field TEM image acquired along the 〈110〉 zone axis showing multiple
Sn grains in the shell. Arrows and numbers are used to indicate the sizes of grains.

Figure 6.14: Side view TEM images of the core-shell interface, displaying four of the Sn grains
listed in Table S1. (A) Grain A, which cannot unambiguously be assigned to either α-Sn or β-Sn.
(B) Grain C, β-Sn grain epitaxially related to the InSb lattice. (C) Grain L, α-Sn. (D) Grain J,
β-Sn.

119



Table 6.1: Phase identification based on lattice spacings dhkl of 13 Sn grains imaged using high
resolution TEM. All dhkl values are determined from Fast Fourier Transform patterns constructed
from the HRTEM images. All patterns were calibrated by InSb lattice spacings present in the same
images. The 211α spacing is not allowed based on crystal symmetry, but can appear in HRTEM
images. The experimental inaccuracy in the dhkl values is estimated to be 2.0 percent considering
the limited number of pixels in the FFT patterns. Based on this criterion, apart from grains A and
L all grains can be assigned to the β-Sn phase. Grain R is presented in Fig. 6.4

Grain dhkl (exp) hkl β dhkl β (lit) % deviation from lit β hkl α dhkl α (lit) % deviation from lit α epitaxy

A 0.198 211 0.2010 -1.2% 311 0.1956 +1.5%

C 0.209 220 0.2065 +1.0% 311 0.1956 +6.7% YES

D 0.203 220 0.2065 -1.4% 311 0.1956 +4.1%

211 0.2010 +1.3% - - -

E 0.206 220 0.2065 -0.4% 311 0.1956 +5.1%

F 0.205 220 0.2065 -0.5% 311 0.1956 +5.0%

G 0.274 101 0.2772 -1.3% 211 0.264 +3.7%

I 0.282 101 0.2772 +1.7% 211 0.264 +6.7%

J 0.277 101 0.2772 -0.0% 211 0.264 +5.0%

K 0.203 220 0.2065 -1.8% 311 0.1956 +3.7%

L 0.267 101 0.2772 -3.7% 211 0.264 +1.1%

M 0.280 101 0.2772 +1.2% 211 0.264 +6.2%

N 0.287 200 0.2920 -0.8% - - -

R 0.204 220 0.2065 -1.2% - - -

0.149 112 0.1472 +1.3% - - -
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7.0 Superconducting-semiconducting hybrid circuits

In topological quantum computation information is stored nonlocally. This protects

the information from local sources of decoherence. It also makes it very challenging to

control and coherently transfer the information into and out of the system once we need it.

Hybrid superconducting qubits are proposed for initialization, read-out and gate operation

of topologically protected qubits through their mutual coupling [122, 55, 210]. All these

schemes naturally require the superconducting qubit to perform in high magnetic fields.

Thus the well-developed Al based technology is no more suitable. In the first section of

this chapter we are going to present our progress towards building a fluxonium qubit that

performs in finite magnetic fields. The resonators of this qubit are made of thin films of

disordered superconductors with high kinetic inductance and sustain their quality factors

in relatively high magnetic fields. The second section of the chapter includes our very first

attempt to realize a hybrid transmon qubit where a nanowire Josephson junction is shunted

by a large capacitor and is coupled to a compact resonator which in turn is capacitively

coupled to a transmission feedline. The resonators in this first generation of hybrid circuit

are made from Al and are not suitable for magnetic field applications.

7.1 Superconducting microwave circuits with high kinetic inductance

materials in high magnetic fields

In a recent proposal, a braidonium was proposed for robust quantum information storage

and manipulation, where braiding and readout are mediated by the 4π Josephson effect [210].

Braidonium’s initialization and readout element is a hybrid fluxonium-Majorana qubit [55].

This fluxonium needs to perform in finite magnetic fields to allow entering the topological

regime. We start with fabricating and characterizing superconducting resonators made of

field resilient Nb family superconductors. Our circuits, however, have shown limited perfor-

mance quality, due to fabrication drawbacks that will be explained in the coming sections.
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We lay out the proposed superconducting circuit design and measurements of circuit com-

ponents separately.

7.1.1 Fluxonium qubit

Fig. 7.1(a) is showing an example of a proposed fluxonium device. The qubit is in-

ductively coupled to a cavity resonator that in turn capacitively couples to a transmission

feedline. The fluxonium itself is made of a Josephson junction that is shunted by a large

inductance. Moreover, a gate can be added to control the supercurrent density in a semi-

conducting nanowire weak link. Fig. 7.1(b) and (c) are the plots of fluxonium eigenfunctions

and their corresponding transition frequencies from the fluxonium Hamiltonian:

H = −4EC
∂2

∂ϕ2
+
EL
2
ϕ2 + EJ cos (ϕ− 2π

Φext

Φ0

), (65)

in which we estimate the energy scales as the following:

• Charging energy predominantly comes from stray capacitance in the circuit:

EC/h ≈ 2 GHz

• Junction’s critical current defines Josephson energy which can be controlled by gate

in semiconducting weak links or by designed junction’s area in AlOx tunnel junctions:

EJ/h ≈ 12 GHz

• To enter the fluxonium regime the inductive energy has to be much smaller than charging

and Josephson energies. We expect this energy to be EL/h ≈ 0.7 GHz.

The expected inductive energy results in a large inductance (∼ 300 nH). This superinduc-

tance is provided by high kinetic inductance of thin films of disordered NbTiN superconductor

that is patterned into a meander nanowire resonator [71, 128, 127].

7.1.2 Superinductance meander resonator

The superinductor element of the fluxonium is a meander nanowire resonator that can be

treated as a lumped element1. The total inductance is dominated by the kinetic inductance

1For a lumped element the size of the circuit component is much smaller than its wavelength.
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Figure 7.1: (a) Top: circuit schematics of a fluxonium qubit inductively coupled to a cavity res-
onator that is capacitively coupled to a transmission feedline. Bottom: design of the proposed
fluxonium circuit. The red meander is the shunting inductance. (b) The effective potential en-
ergy with two well-separated potential minima and first three eigenfunctions at Φext = Φ0/2. (c)
Spectrum of transition frequencies g → e (blue), g → f (orange), g → h (green).

and can be 100− 1000 nH. The kinetic inductance is estimated by length, l, width, w, and

thickness of the nanowire, t, as well as the energy gap of the superconducting film [235]:

LK =
l

w

Rsqh

2π2∆

1

tanh ( ∆
2kBT

)
(66)

where Rsq is the sheet resistance in normal state (∼ 200 Ω/� for 10 nm thick NbTiN),

h is the Plank constant, ∆ = 1.764kBTc, kB is the Boltzmann constant, and Tc is the

superconducting critical temperature (∼ 12 K for NbTiN). The last part of the equation is

approximately equal to one. For the resonator shown in Fig. 7.2(a) where l ≈ 5500 µm and

w ≈ 150 nm we estimate LK ≈ 800 nH.

The resonators are fabricated on a sapphire substrate where a 10 nm film of NbTiN is

patterned by e-beam lithography and etched away by mechanical ion milling. We couple

the resonators directly to a transmission feedline that is fabricated simultaneously with the
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meanders. We study their frequency response using a vector network analyzer (VNA) to

obtain the resonators spectrum. Fig. 7.2(a) shows four meander resonators with different

resonant frequencies coupled to a coplanar waveguide (CPW) transmission feedline. They

all have qualitatively the same behavior and Fig. 7.2(b) shows the hanger measurement

from a resonator with resonant frequency fr = 2.152 GHz. Fitting the hanger transmission

spectrum using Eq. 51 results in Q ≈ 4000. Since these resonators are the inductive element

in the qubit design their low quality factor will be restricting qubit relaxation time. The

quality factor of meander resonator and qubit relaxation time are inversely related: T1 ∼
Q
fr

.

Thus T1 is limited to 2 µs.

Figure 7.2: (a) Four meander resonators as enlarged in the green box are capacitively coupled to a
transmission feedline. The light gray is NbTiN and the darker regions are sapphire substrate. The
two ground planes on both sides of the transmission feedline are stitched bond together to avoid
extra resonances on the chip. (b) Hanger measurement of a resonator where Qi = 5800, Qc = 8100,
and Ql = 3400. (c) Magnetic field resilience of these meander nanowire resonators. The downward
shift in resonant frequency is evident.

We then study the performance of these resonators in finite magnetic field as shown in

Fig. 7.2(c), where they sustain their quality factors of few thousands. There is a downward

shift in the resonant frequency that was previously explained as the result of increased kinetic

inductance due to breaking of Cooper pairs in external field [71].

This superinductor meander resonator will be inductively coupled to a quarter wavelength

(λ/4) CPW resonator by sharing their center pin conductor as shown in Fig. 7.3(a).
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7.1.3 Quarter wavelength coplanar waveguide resonator

The λ/4 CPW resonators are the cavities between qubit and transmission feedline.

Knowledge of their quality factors is essential for example for transferring the informa-

tion from the qubit to the transmission line as well as the duration of qubit pulses. We

use the same fabrication and measurement technique to characterize these resonators. Res-

onators with different resonance frequencies are coupled to a single transmission feedline

(Fig. 7.3(b)) where the complex-valued feedline transmission is used to obtain their quality

factors (Fig. 7.3(c - f)). We use two superconducting films from Nb family, NbTiN and NbN.

Each are studied for 10 and 50 nm thick films.

Figure 7.3: (a) Center pin of CPW resonator is tapered at its end to allow inductive coupling
to meander resonator. The open end of a λ/4 resonator is a current node and that is where the
inductive coupling is at its maximum. (b) A CPW resonator coupled to a transmission feedline.
The small dark squares are holes in the ground plane to trap magnetic vortices on the surface [72].
The ground plane between transmission feedline and resonator’s gap as well as the length of the
resonator in parallel with the transmission feedline are used in simulations to determine the coupling
factor, however the hanger measurements reveal a wide range of values for Qc for different film
thicknesses. (c) 50 nm thick NbTiN: Qi ≈ 30000, Qc ≈ 6000, α ≈ 2 (d) 10 nm thick NbTiN:
Qi ≈ 8000, Qc ≈ 24000, α ≈ 4 (e) 50 nm thick NbN: Qi ≈ 9000, Qc ≈ 9000, α ≈ 30 (f) 10 nm
thick NbN: Qi ≈ 3000, Qc ≈ 500, α ≈ 80.

Our measurements show generally higher quality factors for thicker films. Moreover,

NbTiN results in higher quality resonators compare to NbN. To estimate the kinetic in-

ductance boost in these resonators we compare the measured resonant frequency with what
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is expected without kinetic inductance, α = (
fexp
fmeas

)2 − 1. We estimate higher boosts for

thinner films and for NbN compare to NbTiN. The higher kinetic inductance in NbN results

in considerably shorter resonators. One drawback of fabricating both CPW and meander

resonators form NbN is an immeasurable meander resonance due to extremely high kinetic

inductance boost. We made a couple of attempts on fabricating meander resonators with

different lengths and failed to correspond each of them separately with a measured resonant

frequency.

Moreover, the width of the transmission feedline center pin needs to be adjusted based on

the thickness and kinetic inductance boost of superconducting films to match its impedance

as close as possible to 50 Ω2.

These resonators as well sustain their quality factors in finite magnetic fields. Here we

show rather a peculiar behavior of two 50 nm thick NbN CPW resonators which indicates the

importance of resonant frequencies in the quality factor of resonators. As evident in Fig. 7.4

the quality factors drop in magnetic field before they start to increase and go beyond zero

field value. The drop in Q can be due to coupling to magnetic impurities. These impurities

get pinned at higher fields where they cannot contribute to losses anymore and Q starts to

retrieve its zero field value [71]. However, coupling to magnetic impurities cannot explain

the increase in Q beyond Q(B = 0). We point out the resonant frequencies of these two

resonators shown here. At relatively small frequencies fr . 2 GHz, resonators can get cou-

pled to free electron spins at zero field resulting in reduced quality factors. At higher fields

spins deviate away and decouple from the resonator prompting increased quality factors. We

expect Qs to stop increasing and saturate at some finite field as shown by blue data points.

7.1.3.1 Two-level system dissipation

Our measurements of quality factors reveal values that are one order of magnitude smaller

than what are reported in the literature [70, 71, 72]. These lower than expected quality fac-

tors could be due to different etching process, mechanical ion milling versus commonly used

reactive ion etching method, the quality of superconducting film, the filtering in the mea-

2We design the center pin width to be ≈ 13.5 (32) µm for 50 (10) nm thick film. The gap for both film
thicknesses is ≈ 2 µm.
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Figure 7.4: Data shown for two 50 nm NbN CPW resonators in finite magnetic fields. Qi drops
before it increases and closely reaches a saturated value. The chip sits on top of the magnet and
the maximum field value cannot be reached to fully observe the saturation of Qi.

surement setup, etc. The mechanical ion milling in particular can result in high distribution

of two-level systems (TLS) that limit resonator performance. The main source of TLS are

defects on the substrate and dielectric material. For example sapphire has lower density

of TLS compare to SiO2 and resonators made on sapphire substrate generally have higher

quality factors. TLS are localized low-energy excitations i.e. defects that can trap charges to

tunnel between spatial quantum states. At low temperatures they are polarized into ground

state and ready to absorb photons from resonators which causes dissipation of energy and

lowers the quality factor. However, at high power or high temperatures TLS depolarize

and quality factors increase [70, 236]. We generally observe increased quality factors for all

resonators we fabricated as we increase excitation power. Moreover, we study temperature

dependence of NbN CPW resonators and observe Qi increases as temperature increases until

it reaches a maximum value at critical temperature of Al wire bonds where it abruptly drops.

This behavior further confirms TLS are dominant loss mechanism in our resonators giving

us insight on how to improve the quality factors of our resonators. Immediate actions we can

take is to carefully and rigorously clean the substrate before superconducting film deposition

and develop a gentle etching recipe to substitute the mechanical ion milling.
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Figure 7.5: Quality factor of 50 nm NbN CPW resonators increase as temperature is rising indi-
cating TLS are the dominant factor limiting resonator performance. The sharp drop close to 1.2 K
is due to Al wire bonds transitioning to normal conductor.

7.1.4 Outlook

We fabricated a superconducting circuit including cavity and superinductor resonators

with high kinetic inductance materials. These resonators maintain their quality factors in

finite magnetic fields, which facilitates operation of a fluxonium qubit in external magnetic

fields essential for Majorana experiments. We confirmed the lower than expected quality

factors in our resonators is due to our rough etching process that introduces a high distri-

bution of two-level systems leading to energy loss. The quality factors reported here will

result in relatively short yet expected to be measurable qubit relaxation times. Next we plan

to incorporate a semiconducting nanowire (Sn-InSb or Al-InSb) as the Josephson weak link

to complete the fluxonium circuit. However, this imposes some fabrication kinks that need

to be worked out. For example scanning electron imaging of a nanowire on an insulating

sapphire substrate is close to impossible due to charging of electron beams unless we are

able to take advantage of large areas of superconducting ground plane on the chip.
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7.1.5 Supplementary material

To start designing resonators for desired frequencies we took trial and error approach

since kinetic inductance boost was initially an unknown parameter to us. To character-

ize CPW resonators, we coupled 7 resonators to a single transmission feedline. They are

arranged in two groups, one group has three resonators with nominal (without kinetic in-

ductance boost) resonant frequencies around 6 GHz and the other has four resonators with

nominal resonances close to 9 GHz. We also use different couplings for each resonator in

each group to be able to associate the measured resonances with designed parameters. Table

below is an example of such trial. The coupling distance (dcoupling) is the width of the ground

plane between the gaps of the CPW resonator and transmission feedline. (−2 µm means the

transmission feedline and the resonator are sharing their gap.)

Table 7.1: Design parameters and measured resonances for a set of 50 nm thick NbTiN λ/4 CPW

resonators. As mentioned in the main text α = (
fexpected
fmeasured

)2 − 1 ≈ 2

Label length (µm) fr w/o KI (GHz) dcoupling (µm) fmeasured (GHz) Qi Qc

6 GHz 5023 6.42 -2 not detected

4770 6.76 0 3.696 21800 1800

4540 7.10 2 4.157 23700 5700

9 GHz 3352 9.62 -2 5.504 15000 400

3235 9.97 0 5.781 13100 500

3130 10.32 2 5.981 14800 2200

3025 10.66 4 6.234 17800 5100

It is worth noting that the set of resonators in table 7.1 are fabricated with photo

lithography technique with relatively similar quality factors with those resonators fabricated

by e-beam lithography. However, the precision of photo lithography could become limiting

for fabrication of meander resonators whose width are 100− 300 nm.

We also compare the quality factors in resonators where the superconducting film is

deposited after lithography and lifted off instead of being etched away. We fabricate and

measure two sets of resonators with similar design parameters as mentioned in table 7.1.

These resonators result in quality factors of ≈ 2000− 3000 which is one order of magnitude
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smaller than etched resonators. This reduced quality factor is expected due to immensely

high distribution of TLS and polymer resist residue on the substrate.

7.2 Sn-InSb hybrid superconducting qubit

Superconducting qubits are projected to provide a scalable approach for building a quan-

tum information processor [117] and they did not disappoint when quantum supremacy was

achieved using a quantum processor with 53 transmon qubits coupled together [69]. These

superconducting qubits are relying on Al/AlOx/Al tunnel junctions as the source of dis-

sipationless nonlinearity that provides non degenerate energy level spacings allowing for

individually addressable qubit states. Josephson coupling energy in these tunnel junctions is

fixed by design and fabrication, only allowing tuning transition frequencies and coupling by

flux biasing in a SQUID loop geometry. Flux-tuning is provided by superconducting loops

operating in mA scale potentially causing on-chip dissipation. Moreover, in this scheme,

Circuit QED is limited by aluminum’s bulk critical field of ∼ 10 mT. Using a semicon-

ducting Josephson element (in particular semiconducting nanowires that enable bottom-up

technology in hybrid superconducting-semiconducting devices) can provide a solution to such

constraints. On the one hand, field-effect tunability of semiconducting weak-link’s carrier

density allows for voltage control of Josephson coupling and frequency and potentially reduc-

ing dissipation. On the other hand, using magnetic field compatible superconductors opens

avenues to studying mesoscopic superconductivity and Andreev bound states in nanowire

junctions [91, 92, 93], as well as readout and control of Majorana bound states [122, 237].

To date, multiple experiments realized voltage and flux tunable InAs nanowire transmon

qubits [73, 74], implemented two-qubit gate operations in these hybrid transmons [109], and

investigated qubit magnetic field evolution up to 70 mT where the induced superconductiv-

ity from 30-nm thick epitaxial Al shell in InAs is smeared [75]. Here we report on our first

attempt to realize a hybrid transmon-like qubit using Sn-InSb nanowires that we character-

ized in Chapter 6. The superconductivity persists for fields above 2 T in these nanowires

and gate-tunable supercurrent up to 200 nA was demonstrated which corresponds to EJ/h
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up to 50 GHz allowing operation in transmon regime where EJ � EC .

7.2.1 Nonlinear nanowire circuit

To fabricate the devices we evaporate 150 nm Al film on an undoped Si substrate.

We then pattern and etch compact resonators that are capacitively coupled to a CPW

transmission feedline as well as to the large interdigitated transmon capacitor as shown in

Fig. 7.6(a). For etching we use a combination of chemical wet etching (MICROPOSIT 351

developer:water, 1:4 for 2 minutes3) followed by reactive ion etching (BCl3/Cl2, 40/50 sccm

for 15 seconds). Next, using a micromanipulator, we place Sn-InSb nanowires between the

leads of the interdigitated capacitor and contact the nanowire in a subsequent lithography

step4 (Fig. 7.6(b) and (c)).

7.2.1.1 Dispersive readout

We now verify the presence of the nonlinear nanowire Josephson element in the circuit

by measuring the high power response of transmission through the feedline near the funda-

mental frequency of the compact cavity resonator [238]. This measurement scheme uses the

dispersive readout that relies on the coupling of cavity and qubit. The Hamiltonian of a

qubit-cavity system in the dispersive regime can be written as

H = ~ωC(a†a+
1

2
) + ~ωQ(b†b+

1

2
) + ~α(b†b)2 + ~χ(a†ab†b) (67)

where a† (a) and b† (b) are raising (lowering) operators for cavity and qubit, respectively, α

is the anharmonicity of the qubit, and χ is the dispersive coupling. The energy eigenstates

of this Hamiltonian is then

E/~ = ωCNC + ωQNQ + αN2
Q + χNCNQ (68)

in whichNC andNQ correspond to the number of photons in the linear cavity and anharmonic

qubit, respectively. Eq. 68 can be rearranged to show that the cavity frequency when the

3This alkaline developer is used to develop the photolithography resist after patterning which simultane-
ously etches aluminum.

4The step by step procedure is found in Chapter 3
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Figure 7.6: (a) Optical overview of four cavity compact resonators coupled to a common CPW
transmission feedline. The interdigitated blocks of metal in the middle of the resonator provides
large capacitance for the qubit resulting in a much smaller EC than the estimated EJ from nanowire
junction. The chip also contains gate lines for electrostatic tuning of the junction, which we have
not used in this experiment. (b) SEM image showing the nanowire placed between leads of the
interdigitated capacitor. And contacted by evaporating 150 nm Al. (c) The nanowire Josephson
junction is pointed to by the orange arrow. The junction is prepared by in-situ shadowing using
nearby nanowires during Sn evaporation [65].

qubit is in the excited state is shifted from when the qubit is in the ground state: ωC →

ωC + χNQ. If we increase the driving power of the microwave tone sweeping close to the

cavity frequency, the qubit photon number alters due to the cavity-qubit coupling and the

cavity frequency shifts as shown in Fig. 7.7(a).

Next we search for “qubit”5 transition frequency fge by monitoring feedline transmission

at cavity frequency while sweeping a second continuous wave (two-tone CW spectroscopy).

We fix the cavity drive tone at a frequency shown by the black arrow in Fig. 7.7(a). This

point is chosen such that the frequency change is minimum throughout the sweeping range

of the second tone, yet the dispersive shift is measurable6. We sweep the second tone in

5Actually all we can claim at this point is some sort of anharmonic Josephson element.
6We can adjust this frequency accordingly while sweeping long intervals of the second tone.
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Figure 7.7: (a) High power response of transmission at the cavity frequency. The resonant frequency
shifts to lower values as the power of microwave tone is increasing. The red dashed line is the fit
to complex-valued feedline transmission Qi = 7000 and Qc = 2000. (b) Dispersive shift in the
amplitude of cavity frequency response at qubit transition frequency fge = 4.56 GHz. P cavitydrive =

−65 dBm. P qubitdrive = −35 dBm.

small steps of order 0.1 MHz until we observe the amplitude and phase of the cavity tone

changes as shown in Fig. 7.7(b). This is the measurement of dispersive shift in the cavity

that confirms presence of a nonlinear nanowire Josephson element in the superconducting

circuit. It is also colloquially called the presence of “forth order term” referring to the last

term in the Hamiltonian of Eq. 67.

In the two-tone CW spectroscopy the qubit drive (the second tone) is trying to rotate the

qubit but cavity is trying to measure it at the same time which means cavity is dephasing the

qubit, if the cavity power is high. We tried narrowing the peak in Fig. 7.7(b) by decreasing

the cavity power first but we soon got limited by the signal to noise ratio (SNR) and hit the

intrinsic coherence time of the qubit. Next step to make this peak narrower is to find the

optimal qubit drive power. If this power is too high the peak broadens because the qubit

can still rotate even if it is off resonance. We again lower the qubit drive power until we hit

the SNR limit. After finding the optimal values for our setup as noted in Fig. 7.7, the width

is ∼ 50 MHz wide which translates into a very short qubit lifetime in the order of tens of

nanoseconds (BW = 1/T ). This short qubit relaxation time can also limit the lifetime of

the cavity and explain low cavity quality factor for this compact aluminum resonator. These
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resonators are expected to have high qualities in order of few hundred thousands [115]. We

suspect presence of normal conductance in the nanowire channel or unwanted doping on the

substrate to cause this short relaxation time. In the next set of devices we will be adding

the electrostatic control knob to control the conductance through the channel and increase

the supercurrent in the nanowire junction which in turn increases the Josephson coupling

energy. In the supplementary section we explain how we estimated qubit parameters (fge, α

and χ) based on expected Josephson inductance.

7.2.2 Outlook

We fabricated and measured a nonlinear hybrid nanowire superconducting quantum cir-

cuit. The nonlinearity is evident in high power response of the cavity resonator as well as

dispersive shift in cavity resonance due to qubit photon number change. The signal band-

width of the ground to first excited state transition frequency (fge) is ∼ 50 MHz wide which

translates into a very short relaxation lifetime of order of tens of nanoseconds. A common

way to indirectly measure anharmonicity of the system is shown in Fig. 7.8 where increasing

the power of the qubit drive tone facilitates fgf/2 transition from which we can deduce α as

explained in the caption. We were not able to detect this signal in this experiment which may

have been due to the very short lifetime that causes the system to continuously lose energy

and always stay in a cold state making it challenging to observe a two-photon transition

to second excited state. We comment that these results are from one nanowire-resonator

device and more experiments specially with added gate tunability are needed to investigate

the coherence time, indicating qubit-cavity parameters and performing qubit pulses.

7.2.3 Black box quantization calculation

In this section we explain the procedure we used to estimate cavity and qubit frequencies,

cavity-qubit dispersive coupling strength χ, and qubit’s anharmonicity α. We use a software

called Ansys HFSS (High Frequency Structure Simulator) that is a commercial finite element

method solver for electromagnetic structures. Fig. 7.9(a) is showing the top view schematics

of our design in the software. The red rectangle is the center pin of the CPW transmission
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Figure 7.8: If the qubit drive power is large enough we can trigger a two photon process and transit
to the second excited state, fgf = fge + fef . However, with two-tone spectroscopy we are only able
to observe one photon processes. Hence if we see a dispersion it must be from fgf/2 = fge − α/2.
At finite temperature one may also be able to observe fef transition which actually requires a
three-tone spectroscopy. Data courtesy of Xi Cao.

feedline. That is separated from the yellow ground plane. The light green is the substrate

indicating the parts of the design that we etch in the fabrication process. The orange

structure is the compact cavity resonator. The meandering lines provide its inductance while

the long fingers are its capacitive part. The wide orange rectangles add to the capacitance

of the resonator while they provide the coupling to the qubit. The brown interdigitated

rectangles are the qubit’s capacitor. Widths of orange and brown rectangles as well as

the spacing between them control cavity-qubit coupling. The black square represents the

Josephson junction that can be modeled as a lumped RLC element in HFSS and specify its

inductance based on our estimation from junction’s critical current. Initially we simulated

the parameters based on L = 3 nH (IC ≈ 100 nA) which resulted in a qubit frequency

∼ 6.5 GHz. However, as shown in the dispersive measurement of Fig. 7.7 the qubit frequency

is ∼ 4.55 GHz. We then changed the value of inductance in the simulation to get a frequency

closer to the measured value: L = 12 nH→ IC = 27.5 nA.

To get the resonant frequency of the cavity we enclose this structure with a vacuum box

whose height is roughly three times larger than the substrate. We then define two wave ports
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Figure 7.9: (a) Top view of the circuit design. HFSS is a 3D simulator in which we can define
the thickness of the objects like 300 µm thick Si substrate. The 150 nm thick Al structures can
be essentially simulated as 2D objects. To get the estimated cavity frequency we define two wave
ports labeled 1 and 2 normalized to 50 Ω and sweep the frequency. The black arrows indicate the
direction of the electric field from feedline’s center pin to the ground plane. (b) Simulated feedline
transmission response close to the cavity resonance. (c) To calculate the admittance we add a
lumped port with infinite resistance connecting the capacitance block leads. The black arrow again
indicates the electric field direction. (d) Imaginary part of the admittance that is used to estimate
qubit frequency as well as anharmonicity and dispersive shift.

labeled as 1 and 2 in Fig. 7.9(a) to simulate the transition S21 through the feedline. The

simulated resonance is shown in Fig. 7.9(b) which tells us where we should approximately

expect the cavity resonator. This is a simulated measurement hence the internal quality

factor is essentially infinity but fitting the hanger measurement the coupling quality factor is

estimated in the order of hundred thousands which translates into a cavity lifetime of 50 µs.

However, the measurement in Fig. 7.7(a) indicates a lower quality resonator and lifetime of

0.4 µs.

We can estimate the spectrum of the quantum circuit (α and χ) by simulating the admit-
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tance at the port of the Josephson junction. This method is called Black-Box Quantization

and is fully explained in Ref. [239]. If the size of the Josephson junction is negligibly smaller

than the wavelength of the cavity mode, we can approximate the admittance of the linear

part of the junction by putting a lumped LC port in parallel with the rest of the linear

resonator. To do so we change the 2D brown blocks in part (a) of Fig. 7.9 to a 3D object

and add a lumped port with infinite resistance on top the junction as shown in Fig. 7.9(c).

We also terminate the red transmission feedline by 50 Ω ports. The resonant frequencies can

be determined by the poles of impedance Z or roots of the admittance Y :

Y (ω) ≡ Z−1(ω) =
M∑
p=1

(
−iωCp +

i

ωLp
+

1

Rp

)
(69)

where M is the number of modes, for us we have one qubit mode and one cavity mode.

The perturbed cavity-qubit Hamiltonian can be written in two linear and nonlinear parts

and we quote from Ref. [239]:

H = H0 +
1

2

∑
pp′

χpp′n̂pn̂p′ , (70)

where n̂p = a†pap. The nonlinear part is essentially similar to the last two terms of the

Hamiltonian in Eq. 67. αp ≡ χpp is the anharmonicity of the first excited state of mode p

and χpp′ = χp′p with p 6= p′ is the frequency shift of mode p due to the presence of single

excitation in mode p′:

χpp = −Lp
LJ

CJ
Cp
EC , χpp′ = −2

√
χppχp′p′ (71)

Due to the presence of Josephson junction with inductance LJ and capacitance CJ all modes

including the cavity mode acquire some anharmonicity, however negligible.
Lp
Cp

can be cal-

culated by an effective impedance that is defined as:√
Lp
Cp

= Zp
eff =

2

ωpIm[Y′(ωp)]
(72)

Thus knowing LJ it is sufficient to find the zeros of Y (ω) and the derivative of Im[Y (ω)] at its

zeros from Fig. 7.9(d) to calculate anharmonicity α and dispersive shift χ ≡ χpp′ . Considering

a Josephson junction with sinusoidal current-phase relation, with our simulations we are

expecting α = 170 MHz and χ = 3.7 MHz.
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8.0 Al-InAs-Al nanowire shadow junctions1

In this chapter we study supercurrent properties in Josephson junctions made with a

novel shadowing method. We use semiconducting nanowires as shadow mask on the surface

of InAs quantum well prior to Al deposition. The nanowires introduce breaks in the Al

superconducting layer that makes an epitaxial contact with InAs. The Josephson junctions

are then made by etching Al and the quantum well to only leave leads that are separated

by nanowire shadows. The distance between Al electrodes is of order 100 nm, shorter than

the mean free path in the quantum well (∼ 200 nm). IcRN and IexcRN products in these

junctions are comparable to theoretical expectations and previously reported values for epi-

taxial Al-InAs 2DEG Josephson junctions made with etching technique. We then perform

diffraction pattern measurements, Shapiro step measurements and SQUID measurements.

Diffraction pattern and interferometry measurements exhibit extra periodicity of supercur-

rent as the function of flux, while microwave measurements reveal half-integer Shapiro steps,

all pointing at an unexpected behavior of supercurrent where the simple sinusoidal current

phase relation does not fit the data. The origin of this anomaly is yet to be confirmed as

we show second harmonic Josephson current and a non-uniform current density along the

junction’s width caused by fabrication artefacts both result in same behavior of current as a

function of flux. Nonetheless, our ballistic and highly transparent junctions have the poten-

tial to be developed further for hybrid superconductor-semiconductor qubit systems as well

as topological quantum circuits.

1This chapter is an ongoing project. The measurements are done by myself, L. Jarjat, and V. van de
Sande. Simulations are carried out by L. Jarjat and D. Pekker. The 2DEG structure and nanowires are
grown by J.S. Lee, M. Pendharkar, A. McFadden, S.D. Harrington, G. Badawy, S. Gazibegovic, R. op het
Veld, E.P.A.M. Bakkers, and C.J. Palmstrøm. The TEM data are acquired by S. Tan. And the project is
supervised by S.M. Frolov.
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8.1 Nanowire shadowing method on two dimensional materials

Superconductor-semiconductor hybrids have been widely studied in search of topological

superconductivity [52, 190, 191, 192] as well as in hybrid transmon qubits [74, 109, 75, 76].

A highly transparent contact interface between superconductor and semiconductor is the

key to these studies. There are multiple superconductors exhibiting such contact to one di-

mensional semiconducting nanowires [65, 222, 134, 232]. However, nanowire devices require

bottom-up growth and gating techniques that can be restraining. Two-dimensional elec-

tron gases (2DEGs), on the other hand, with their top-down lithography process and gate

patterning allow for more liberty in complex designs and multiple device couplings [240].

Progress in hybrids of superconductors and two-dimensional systems includes demonstrat-

ing gate-tunable bipolar supercurrent in graphene [241], inducing superconductivity from

field-resilient Nb-family superconductors in InGaAs [242] and InSb [243] quantum wells,

achieving robust superconductivity with highly transparent contacts on InAs [137, 244] and

InAlSb [245] with epitaxial Al, and realizing supercurrent in Josephson field-effect transistors

carried by holes in Ge/SiGe [246, 247]. In particular, since 2016 when an epitaxial contact

between Al and InAs 2DEG was achieved, this structure has become a key candidate for

topological and hybrid qubit investigations [248, 212, 100].

The universal way to fabricate devices in these proximitized 2DEGs is to lithographi-

cally pattern junctions and mesas and wet etch Al and InAs quantum well stack. Here we

are investigating an alternative to this ex-situ etching by exploiting an in-situ shadowing

method to selectively deposit superconductor and eliminate the etching process. This allows

us to produce fabrication-free interfaces between many different 2D materials or surfaces of

3D crystals and metals or superconductors. We can use this method to rapidly characterize

materials combinations and interfaces qualities.

Conventional shadow masks used to suffer from low resolution patterning due to the large

distance between the mask and the target substrate. With recent advancements, nano-slit

shadow masks made of ∼ 100 nm thick Si3N4 membrane on silicon were used to fabricate

nanowires down to 50 nm wide and up to 100 µm long [249], as well as selective deposition of

superconducting islands on nanowires for topological qubit device design [208, 250]. These
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shadow masks can be cleaned and reused multiple times, however, they prove to be challeng-

ing to align with a target substrate with few micron long nanowires for selective growth of

superconducting film [250]. A way to minimize the distance between the shadowing object

and the target is having them on the same substrate. A method developed by Gazibegovic

et al. uses InSb nanowires grown with an offset on opposite trenches to shadow each other

during superconductor deposition and leave one, two or three breaks in the superconduct-

ing shell [65]. This method opened avenues to exploit different semiconductor nanowires,

nano-flakes, or on chip etched “bridges” to be used as shadow masks during superconducting

film deposition demonstrating flexible platform for growing hybrids with numerous geome-

tries [251, 134, 232, 219].

In this Chapter we use InSb nanowires to shadow InAs 2DEG for aluminum deposition.

In our method the nanowire is lying on the 2DEG’s surface and their shadows are used to

fabricate Al-InAs-Al Josephson junctions. In our devices we do not remove the nanowire

from the surface and they could be potentially used as a self-aligned top-gate, but also

they may create scattering in the quantum well. To evaluate the quality of junctions made

in-situ with this technique we study the Josephson current properties and characterize the

coherent charge transport across the quantum well and the interface transparency by mea-

suring products of critical current and excess current with normal resistance. We further

investigate dependence of supercurrent as a function of magnetic field (diffraction pattern

measurements) and microwave excitation (Shapiro steps measurements). We then perform

Josephson interferometry in dc-SQUID devices. Diffraction pattern and interferometry mea-

surements exhibit extra periodicity of supercurrent as the function of flux, while microwave

measurements reveal half-integer Shapiro steps. At first sight these measurements may sug-

gest a strong intrinsic second order Josephson harmonic, but we point out and emphasize our

peculiar device structure and fabrication artefact that can cause a non-uniform supercurrent

density along the width of the junctions resulting in similar extra periodicity of Josephson

current. Further work is being done as this thesis is being published to resolve this ambiguity.
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8.2 Device fabrication and characterization

InGaAs/InAs/InGaAs quantum well is grown by molecular beam epitaxy (MBE) tech-

nique following the procedure fully explained in Refs. [137, 145]. The mobility of the InAs

2DEG is ≈ 25000 cm2/(Vs) with electron density of order of 1012/cm2 yielding mean free

path of ≈ 200 nm obtained from transport measurements in van der Pauw geometry (data

not shown). As explained step by step in Chapter 3.2.4, prior to Al deposition a chip of

previously grown InSb nanowires is transferred in the MBE machine and is brought in touch

face to face with 2DEGs surface where nanowires get deposited. The chip is then trans-

ferred (without leaving the MBE) to the evaporation chamber where Al is evaporated and

nanowire shadows with length of 80 − 120 nm and width of few microns are made in-situ.

Fig. 8.1(a) illustrates this procedure in cartoon. The nanowires have a layer of native oxide

which prevents them from direct electric contact to the quantum well.

We start fabricating and preparing Josephson junctions for measurements by pattern-

ing and depositing Pd alignment markers mapping the chip and bonding pads around the

chip. We now need to define Josephson junctions by etching the superconductor away from

both ends of the finite size nanowire shadows. We use optical images of nanowires on the

2DEG’s surface to find shadows and design contacts and leads, as a 10 nm deep shadow is

difficult to see. For this, we pattern leads using negative tone resist (ma-N 2403). To prevent

Al diffusion the resist is cured in a vacuum chamber at room temperature. The leads run

continuously over a nanowire shadow. After developing, with ma-D 525 for 65 seconds and

water for 5 minutes, the resist strips off where it was not exposed by electron beam. Next we

etch Al and quantum well except where the leads and junctions are protected by the resist,

hence the junction area is not exposed to etchants and is undamaged. Al etches away with

Transene type-D and quantum well is etched by a citric acid, phosphoric acid and hydrogen

peroxide solution (220:55:3:3 H2O:citric acid:H3PO4:H2O2). We now have multiple junctions

ready for measurements that are all expected to be 100 − 120 nm long that is ∼ 100 nm

shorter than the mean free path in the quantum well and the transport is expected to be

between ballistic and diffusive limit (see supplementary for all 6 measured junctions’ sizes

and parameters). Fig. 8.1(b) shows a transmission electron microscope (TEM) image of a
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Figure 8.1: (a) Cartoon representation of transferred nanowires on InAs 2DEG’s surface in MBE
machine followed by Al evaporation, creating nanowire shadows instantly. The inset of the left
panel is top view optical micrograph image of 2DEG surface with nanowires after Al evaporation.
(b) TEM of cross-section of a device after measurements. Al-InAs quantum well heterostructure
with the break defined by InSb nanowire are distinctly resulted. (c) I − V characteristic of the
Josephson junction discussed in the main text, where no hysteresis is visible sweeping current bias
back and forth from positive to negative sides. This behavior is typical to other junctions measured
in the supplementary. The dashed grey line is to extrapolate excess current Iexc at the intercept
with V = 0. The inset is zoomed in to the supercurrent regime indicating measured switching
current. The right panel is plotting differential resistance of I − V curve revealing RN ≈ 78 Ω
resulting in IswRN ≈ 312 µV and IexcRN ≈ 413 µV.

junction’s cross-section after measurement.

The Josephson junctions in the ballistic and diffusive limits can be characterized by

products of IcRN and IexcRN . RN is the junction’s normal resistance well above the super-

conducting gap. Right panel in Fig. 8.1(c) shows differential resistance as the function of bias

current across the junction from which we extract RN ≈ 78 Ω for this junction. The critical

current Ic is the maximum current that can be carried by Andreev bound states across the

junction. Hence, it reflects the coherent charge transport through the semiconducting weak

link and is a measure of interference transparency as well as 2DEG’s mobility. The excess

current Iexc, on the other hand, is the result of Andreev reflections involving a charge transfer
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of 2e across the junction and primarily depends on the interface transparency [84].

The critical current can be compared to the superconducting gap by the relation IcRN =

α∆/e. Theoretical expected values of α for ballistic and diffusive limits are π and (π/2)1.32,

respectively [252, 253]. We note that what experimentally is measured is the switching cur-

rent Isw, the current at which the junction transitions from zero-resistance to finite-voltage

regime. In principle, Isw and Ic should be identical but factors such as finite temperature

and noise can lead to a switching current smaller than the critical current. We use the mea-

sured Isw for our analysis which in the worst case gives an underestimation for our junction’s

quality. Inset of Fig. 8.1(c) zooms in the supercurrent region as a function of current bias

across the junction from which Isw ≈ 4 µA. For this junction we have IswRN ≈ 312 µV,

resulting in α ∼ 1.5. The superconducting gap ∆Al ≈ 210 µeV which we extract from the

relation ∆ = 1.75kBTc, in which kB is the Boltzmann constant and Tc is the superconducting

transition temperature ≈ 1.4 K for a 10 nm Al film. The excess current Iexc is extracted

from current-voltage (I − V ) characteristics in the normal state where a linear fit of V (I)

intercepts with V = 0 as shown in Fig. 8.1(c). If there is no normal reflection the theo-

retical expected values for α′ = eIexcRN/∆ is 8/3 and π2/4 − 1 for ballistic and diffusive

junction limits, respectively [85, 254]. Here again using ∆Al ≈ 210 µeV and Iexc ≈ 5.3 µA

from our measurement (IexcRN ≈ 413 µV) we find α′ ∼ 1.97 which is close to the ballistic

regime. Our results are comparable to recent reported values on similar junctions made

with conventional etching process [147]. α′ can be directly used to extract the transparency

of the interface [85, 160]. We use the analytical results in Ref. [255] and find the BTK

interface transparency Z = 0.3 which results in the transmission probability of T = 92%

(T = 1/(1 + Z2)). This high interface transparency (the lower the Z the more transparent

the interface) is expected due to the large contact area between the 2DEG’s surface and

epitaxial Al.
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8.3 Supercurrent diffraction measurements

As shown earlier in Eq. 33 the current across the junction depends on the difference of

superconducting phases in the leads: IS(φ) = Ic sin(φ). We now define a gauge-invariant

phase in the presence of an applied perpendicular magnetic field:

γ = φ+
2π

Φ0

∮
C

A · ds, (73)

where Φ0 = h/2e and A is the magnetic vector potential. The integral passing through

electrodes and the weak link results in the total flux Φ enclosed by the junction:

Φ =

∫ L/2

−L/2
A · ds = BWL,

where W and L are the width and the length of the junction, respectively. The gauge-

invariant phase γ along the junction can be written as

γ(x) = φ0 +
2π

Φ0

BWx (74)

The Josephson current as a function of magnetic field will then be:

IS(B) =

∫ ∫ L/2

−L/2
jc(x, y) sin (φ0 +

2π

Φ0

BWx) dx dy, (75)

where
∫
jc(x, y) dy is the supercurrent density per unit length along x. However, here we

only consider a linear supercurrent density along the width of the junction from which we

can write the critical current as Ic = jc × L.

The maximum current as a function of flux threading the junction can be calculated to

get the form:

IS(Φ) = Ic

∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ (76)

which is referred to as the “Fraunhofer diffraction pattern” due to its analogy to the case of

light passing through a narrow rectangular slit, shown in Fig. 8.2(a). However, if the Joseph-

son current is of a more general form of Eq. 34 where IS = ΣIn sin(nφ), the supercurrent

diffraction pattern deviates from the Fraunhofer pattern. In Fig. 8.2(b) we are showing the

case where there is only the second harmonic present (IS = Ic2 sin 2φ) and as expected the

periodicity of the “Fraunhofer pattern” is halved. At last Fig. 8.2(c) is depicting where a
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Figure 8.2: Supercurrent as a function of flux threading a Josephson junction. (a) Current-phase
relation follows Josephson’s prediction where IS = Ic sin (φ) and it resembles the simple Fraunhofer
diffraction pattern. (b) The case if the supercurrent was a π periodic function of phase and second
harmonic Josephson current was the only present term IS = Ic sin 2φ. (c) If the current-phase
relation deviates from the sinusoidal form where both first and second harmonic terms contribute
to the flow of current the diffraction pattern results from maximizing jc1 sin (φ(x))+ jc2 sin (2φ(x)).
As the contribution of second order increases side local dips at half flux quantum appear. (d) Red
dots are the extracted points for switching current from data in Fig. 8.3. Black curve is the modeled
critical current where jc(x) = sinφ+ 1.77 sin 2φ.

comparable mixture of first and second harmonic are present together. Next we show the

resemblance of our experimental data to this case. We explore the evolution of the switching

current of the Josephson junction characterized in Fig. 8.1(c) as a function of a small out-

of-plane magnetic field. Fig. 8.3 is illustrating experimental diffraction measurements of this

junction that is ∼ 120 nm long and ∼ 8 µm wide. This scan clearly deviates from a simple

Fraunhofer pattern as a black arrow points to nodes at half flux quantum. The subsequent

peaks are skewed that can result from self-field effect of the junction and it evidently pre-

serves inversion symmetry, (I, B)→ (−I,−B).

Fig. 8.2(d) is the extracted switching current from Fig. 8.3 where we fit the data us-
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Figure 8.3: Measured differential resistance as a function of current bias I and perpendicular
magnetic field. Dark blue corresponds to supercurrent regime. Dark red and white peaks are
tracing supercurrent regime identify the measured switching current Isw. The black arrow points
to local minima at half flux quantum.

ing a supercurrent density in which both first and second harmonics are present. Doing

so results in a second order Josephson current that is comparable to or higher than the

first order Josephson current (
jc2
jc1

= 1.77). Such exotic current-phase relation can be re-

alized in the vicinity of 0 − π junction transition, at which the first Josephson harmonic

vanishes [256, 257, 258, 259]. However, we do not expect this to be the case for our semi-

conductor junctions at zero field. Additionally, in short ballistic junctions one would expect

a very anharmonic current phase relation in which all higher order Josephson currents are

present and the diffraction pattern resembles a Fraunhofer like pattern with no extra nodes.

Such a high anomalous second order Josephson harmonic is surprising as we are not observ-

ing any contributions from higher orders.

So far we treated the supercurrent density along the junction to be uniform in calculating

the integral of Eq. 75. Fig. 8.4(a) is showing a scanning electron micrograph of a typical

device we studied. The dark strip in the middle of the junction is universal to all our devices
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and represents a cross-linked polymer resist remaining on top of Al. We speculate that this

feature may produce a non-uniform supercurrent density along the width of the junction,

such that:

jc(y) = jcaθ(y − ya) sinφ+ jcbθ(ya − y)θ(y − yb) sinφ+ jcaθ(yb − y) sinφ, (77)

where y is the position along the width of the junction, jca and jcb are supercurrent densities

on the two outer sides of the junctions and the middle dark strip, respectively. Varying

relative jcb/jca results in different supercurrent diffraction patterns.

Figure 8.4: (a) SEM image of a device with residual ma-N 2403. The junction is defined underneath
the nanowire where it shadows the Al superconducting layer. (b) Modeled critical current for

various jcb/jca values as indicated in the legends. For
jcb
jca

= 1 (red curve) the supercurrent across

the junction as the function of flux resembles Fraunhofer diffraction pattern. (c) Fit to the data
jcb
jca

= 3.76, red dots extracted from Fig. 8.3.

Fig. 8.4(b) illustrates how the diffraction pattern deviates from Fraunhofer-like pattern as

the relative contribution of supercurrent density of the middle part of the junction increases.

We can roughly fit our data with this model assuming supercurrent density is approximately

4 times larger in the crossed-linked area than the density on either side, Fig. 8.4(c). There are,

however, some features in the data, for example the lifted nodes at integer flux quanta, that

could be better fit if we assume second order Josephson effect and non-uniform supercurrent

density both play essential roles in our devices.
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8.4 Shapiro steps

We next perform Shapiro steps measurements. We excite the junction with an ac signal

with frequency f , (ω/2π), and measure the switching current as a function of power of this

microwave signal. This results in a sequence of voltage plateaus in transport measurements

at the resonance condition and these plateaus line up with integer values nfΦ0, that is a

consequence of second Josephson relation:

dφ

dt
=

2π

Φ0

V (t) −→ φ(t) = φ0 + ω0t+
2π

Φ0ω
V1 sinωt (78)

where V (t) = V0 + V1 cosωt is the voltage across the junction and ω0 = 2π
Φ0
V0. Substituting

this relation for the phase difference across the junction back to Josephson’s first relation

(Eq. 33) and using Bessel functions for expansion, the supercurrent takes the form

IS = Ic
∑

(−1)nJn(
2π

Φ0ω
V1) sin(φ0 + ω0t− nωt), (79)

which only contributes to the DC transport when ω0 = nωt or Vn = nΦ0f .

As expected if the current-phase relation takes the general form of Eq. 34 and second

harmonic Josephson order contributes to the transport, plateaus with half-integer values

nfΦ0/2 can appear. Both integer and half-integer Shapiro steps are distinctly evident in

our measurements shown in Fig. 8.5(a). However, we refrain from concluding presence of

second harmonic Josephson effect as inhomogeneous supercurrent density may give rise to

half-integer Shapiro steps [260]. We point out that the first half-integer step in this plot

which is taken at zero magnetic field is missing. The evolution of the steps in magnetic flux

is shown in Fig. 8.5(b) where first half-integer step appears at B ≈ −75 µT. Missing Shapiro

steps has mostly been associated with topological superconductivity [261, 262]. However,

we emphasis that our junctions are in a topologically trivial state. Moreover, Landau-Zener

transition between low energy and high energy Andreev bound states in highly transparent

Josephson junctions is shown to be causing missing Shapiro steps [263]. This scenario may

be more related to our experiments but more detailed measurements, analysis, and modeling

are needed and under preparation by our group to come to a conclusion about observing

half-integer and missing Shapiro steps in this system.
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Figure 8.5: (Left) Measured differential resistance as a function of current bias I and power of
applied microwave excitation at f = 6.742 GHz. The peaks in differential resistance correspond
to Shapiro steps. Integer and half-integer voltage plateaus are marked. First half-integer plateau
is missing at zero magnetic flux. (Right) Evolution of the Shapiro steps as flux threading the
junction increases at f = 6.742 GHz. Half-integer steps start to fade away at B = -60 µT. But first
half-integer step exhibits a local maximum at B ≈ 75 µT.

8.5 Supercurrent oscillations in superconducting quantum interference device

Next we study the switching current modulations with magnetic flux enclosed in a su-

perconducting quantum interference device (SQUID). Fig. 8.7(a) is depicting the SQUID

loop studied here which encircles two junctions denoted as JJa and JJb, that have critical

current Ica , Icb and phase difference φa, φb, respectively. The supercurrent passing through

the SQUID is then divided between the two junctions (assuming the two junctions have

sinusoidal current-phase relation):

I = Ica sin(φa) + Icb sin(φb) (80)

in which flux quantization imposes the condition:

γ = φa − φb = 2π
Φext

Φ0

+ 2πn, (81)
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assuming the geometric inductance is negligible compared to Josephson inductance of the

junctions. If Ica = Icb the SQUID is called symmetric and its critical current as a function

of magnetic flux Φext is

Ic = 2Ica

∣∣∣∣cos(πΦext

Φ0

)∣∣∣∣ . (82)

However, practically the two junctions have different critical current values, making the

SQUID asymmetric. This asymmetry is parameterized by the ratio

α =
Ica − Icb
Ica + Icb

(83)

which modifies the SQUID critical current:

Ic = (Ica + Icb)

√
(1− α2) cos2(

πΦext

Φ0

) + α2 (84)

Fig. 8.6 is plotting this critical current for different values of α.

Figure 8.6: Modulations of SQUID critical current in external flux threading the loop for different
asymmetry parameter α.

If α� 1, meaning that the critical current of one junctions is much higher than the other,

the SQUID critical current takes approximately the constant value of the larger junction

with superimposed oscillations of the amplitude of the critical current of the other. This

way the current-phase relation of an unknown Josephson junction can be extracted from a

reference junction. Here, our junctions, however, are of similar size but could have slightly
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different critical current values. Fig. 8.7(b) shows the differential resistance of our SQUID

as a function of bias current and applied perpendicular magnetic field. We can distinguish

typical fast SQUID oscillations of the kind shown in Fig. 8.6 superimposed by the larger

scale much slower diffraction pattern from individual junctions. The junctions area are non-

negligible compare to SQUID size and changing field changes flux through both junctions

and the SQUID, hence this envelope function alters the amplitude of SQUID oscillations

depending on the flux.

Figure 8.7: (a) Scanning electron micrograph of a SQUID loop with two junctions, JJa and JJb.
The sizes of each junction is comparable to the size of the SQUID loop. (b) Differential resistance
of the SQUID device exhibiting fast SQUID oscillations of the switching current enveloped by
slower diffraction pattern from individual junctions. The large resistance at low current bias may
be due to a “spurious junctions” in series with one of the leads causing a premature switching to
normal state. In practice, if we could use a gate voltage to control the supercurrent of each junction
individually we would be able to turn off the SQUID oscillations and retreat the diffraction pattern
similar to what we showed in Fig. 8.3.

Fig. 8.10 in the supplementary shows the large scale SQUID oscillations upon which

we zoom in different regions and obtain data shown in Fig. 8.8. We note that from data

taken in Fig. 8.7(b) to these zoomed in oscillations there was a roughly 200 µT shift in

magnetic field from an unexpected flux jump. The zoomed-in SQUID oscillations exhibit

peculiar and rather unexpected features. In addition to different amplitude of the SQUID

oscillations we observe different periodicity in different magnetic field regions. Switching

current oscillations in Fig. 8.8(a) has doubled the frequency of oscillations in Fig. 8.8(c)

going through a transition regime in Fig. 8.8(b).

The doubling of frequency oscillations is expected for SQUIDs made of junctions with
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Figure 8.8: Measured differential resistance as a function of current bias and magnetic field thread-
ing the SQUID loop. Switching current pattern has half the periodicity in panel (a) compare to
panel (c). Panel (b) is a transition regime in between with a distorted amplitude. A vertical line-cut
is subtracted in panels (a) and (c) to increase the clarity of data. (d) Modeled critical currents for a
SQUID with two non-identical Josephson junctions with first and second order Josephson harmon-
ics. Simulation parameters used: (red solid line) jc1,a = 1.0, jc2,a = 0.05, jc1,b = 1.0, jc2,b = 0.05,
(blue dotted line) jc1,a = 1.2, jc2,a = 1.75, jc1,b = 0.75, jc2,b = 0.5, (black dashed line)
jc1,a = 0.6, jc2,a = 1.2, jc1,b = 0.4, jc2,b = 1.0.

a strong second order Josephson current. However, the periodicity of the pattern can be

affected by the asymmetry parameter α of the SQUID. α can be flux tunable because of

different critical current of the two junctions and different trapped magnetic flux nearby.

Modeling a SQUID with second order Josephson current and different α parameter can

produce different oscillations periodicity as shown in Fig. 8.8(d).

Again, we refrain from drawing firm conclusion on the presence of second harmonic effect

due to uncertainties arising from fabrication artefacts. We would like to note that these are

all preliminary analysis and require further device fabrication and measurements.
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8.6 Outlook

We fabricated Josephson junctions by using a novel nanowire shadowing technique and

eliminating etching mesas and junction channels. This process results in ballistic Josephson

junctions with product of excess current and normal resistance comparable to theoretical

value. We investigated the behavior of supercurrent as a function of flux threading junctions

and observed a deviation from simple Fraunhofer diffraction pattern. Shapiro step mea-

surements reveal both integer and half-integer voltage plateaus. Furthermore the doubling

of frequency of supercurrent oscillations in a SQUID as a function of flux point out to an

anomalous behavior of supercurrent in our devices. The origin of this anomaly is subject

to further device fabrication and experiments in which the artefacts of fabrication are taken

care of. These junctions can be utilized in semiconductor-superconductor hybrid qubits as

well as the search for topological superconductivity.

The InSb nanowires used for shadowing are also etched away, where they are not cov-

ered by polymer resist. Hence, the nanowires in these devices solely are used to define the

junctions. However, an immediate device enhancement is to use protected nanowires (fully

covered by etch-resistant dielectric such as HfOx) and use the nanowire as a top gate to

study gate dependence of supercurrent.

8.7 Supplementary material

In this section we present extended data from devices measured in the main text, as

well as data from other Josephson junctions all of which “suffer” from the crossed-link resist

residue like shown in Fig. 8.4(a).

The advantage of our novel fabrication of highly transparent Josephson junctions is

that its simplicity should guarantee a reasonable reproducibility rate. Out of 7 junctions

fabricated and properly bonded, only one did not display supercurrent. However, the area of

one junction to other is still subject to change due to fabrication artefacts. The devices also

showed robust behavior in two consecutive cooldowns. The specifics of all bonded junctions
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are presented in Table 8.1.

Table 8.1: Effective length Leff of a junction of width w can be obtained from the field periodicity
B0 of the diffraction pattern. We are not considering the possible varying effective width.

Device w [µm] B0 [mT] Isw [µA] Leff [µm]

1 8 0.15 4.1(0) 1.52

2 6 0.25 2.6(9) 1.28

3 6 0.28 2.9(0) 1.23

4 6 0.56 2.2(6) 0.62

5 6 0.46 2.8(2) 0.75

6 6 0.31 3.7(4) 1.01
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Figure 8.9: Differential resistance as a function of current bias and magnetic field for Devices 2 –
6 listed in Table 8.1. All devices show non-conventional supercurrent diffraction pattern. Device 1
is discussed in the main text.
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Figure 8.10: Extended SQUID oscillations. Fast SQUID oscillation are enveloped by a function
that differs from expected Fraunhofer pattern. The left inset is the extracted envelope function
which resembles the green curve in the right inset. Right inset: Modeled envelope function of
SQUID oscillations for junctions with no offset in their zero bias (red curve) and with an offset
bias (green curve), pointing out to the asymmetric SQUID with an offset in zero bias of the two
junctions.
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Figure 8.11: Device 2. Evolution of the Shapiro steps as flux through the junction increases at
f = 6.855 GHz. The first half-integer step appears at B = -50 µT and displays a local maximum
at B = -200 µT.
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9.0 Conclusions and outlook

In this thesis we studied materials properties and quantum transport in several different

nanostructures that are semiconductor nanowires coupled to superconductors. The goal of

these studies is to look for an optimal platform for realizing Majorana fermions that can

be developed to build a qubit that is protected against local sources of decoherence, known

as topological Majorana qubit. What’s more, these studies are also related to other qubit

platforms such as quantum dot spin qubit and semiconductor-superconductor hybrid qubits.

We started with studying physics effects such as spin-orbit coupling and induced super-

conductivity in Ge/Si core/shell nanowires in contact with NbTiN and Al superconductors

with prospects of both Majorana fermions and quantum dot spin qubits. Then we explored

quantum transport in InSb nanowires that are already extensively being investigated in Ma-

jorana studies owing to their high electron mobility, strong spin-orbit coupling and large

g-factor. First we try to get a better understanding of tunneling experiments in Al-InSb

and NbTiN-InSb heterostructures and then we improve the contact between InSb nanowire

and superconductors where a new superconducting material (Sn) is explored. These studies

are then followed by preliminary results from microwave measurements on superconducting

circuits that are compatible with semiconductor-superconductor heterostructures and will

be integrated in future qubit designs.

We achieved transparent superconducting contacts to Ge/Si core/shell nanowires based

on NbTiN (Chapter 4). Induced superconductivity sustains up to 1 T in external mag-

netic fields, in good comparison to fields needed to enter the topological regime [1]. These

nanowires demonstrated large effective g-factors up to 8 and substantial spin-orbit inter-

action corresponding to a spin-orbit length of lso = 100–500 nm in gate defined double

quantum dots. However, despite theoretical predictions for an extremely large spin-orbit

interaction [60], the measure value in our experiments, did not exceed those measured in

InAs and InSb nanowires. Possible reasons for this lower-than-expected spin-orbit coupling

could be: not optimal magnetic field orientation at which data was taken due to spin-orbit

anisotropy [177], and a low strain between thin Si shell and relatively thick Ge core demand-
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ing tailoring nanowire morphology. Since then the quality of interface between Ge core and

Si shell has been improved by in-situ HCl cleaning leading to higher hole mobility [264] and

more stable quantum dot devices [265, 266]. Very recently, these enhanced nanowires showed

a remarkably short spin-orbit length of ∼ 65 nm in similar experiments to ours done on dou-

ble quantum dots focusing on Pauli spin blockade regime [267]. Another development that

can be considered in tailoring these nanowires is a catalyst-free growth as Au can inevitably

introduce metal contamination in the semiconducting nanowire [268]. All things considered,

the valence band of Ge can be a platform for hybrid superconducting-semiconducting quan-

tum systems [269].

We then focused on the transport mediated by Andreev bound states formed in InSb

nanowire quantum dots strongly coupled to Al and NbTiN superconductors (Chapter 5).

We showed that a mirage of replicated Andreev spectra can result from a tunneling probe

that is more complex than a Fermi level or BCS superconducting DOS where confined An-

dreev bound states may form in the adjacent nanowire section under the superconductor.

Moreover, a negative differential conductance within the induced superconducting gap was

observed that could only be explained by a peak in the middle of the DOS of the supercon-

ducting probe. A peak at the Fermi level is one of the characteristics of Majorana zero modes

and our observation could complicate the interpretation of Majorana experiments done in

the similar superconductor-nanowire hybrid devices [67, 149, 153, 68, 152, 270].

Until recently, almost all experiments aiming at topological superconductivity in hy-

brids of superconductors and semiconducting nanowires used either Al or Nb(TiN) as the

superconductor of choice. However, Al suffers from relatively low critical magnetic field

and temperature, resulting in a small induced gap. And induced superconducting gap from

Nb-family superconductors is generally accompanied by subgap quasiparticles, shortening

coherence times and scrambling readout of a future topological qubit. Hence, we looked into

another superconductor - tin. We studied induced superconductivity in InSb nanowires that

are coated with uniform tin shells (Chapter 6). The induced superconducting gap is in the

range of 600− 700 µeV and it is void of subgap states. The gap slowly shrinks in magnetic

field and remains up to ∼ 4 T. Transparent tunnel junctions are prepared by in-situ shadow-

ing of nearby nanowires and flakes, resulting in different geometries like S-N-S (one nanowire
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shadow), N-S-N (two-nanowire shadow), and N-S (flake shadow). An immediate follow-up

for N-S geometry is to explore Andreev blockade transport that may occur in double quan-

tum dots with a superconducting lead [271] proposed in topological quantum computing

schemes for Majorana state readout [225, 208, 209]. In addition to robust induced super-

conductivity, we observed two-electron charging effect from a tin island that is of essence

for long quasiparticle stability time, which again puts this system in an immediate urge for

pursuing experiments aiming at detecting topological superconductivity and Majorana zero

modes, as well as for transmon qubits. Parallel to our efforts in the search of more supercon-

ductors to substitute Al and Nb(TiN), other groups have demonstrated promising results

as well. Pb islands recently are found to exhibit two-electron charging effect in Pb-InAs

hybrid structures [232]. A relatively large hard induced gap ∼ 1.25 meV from Pb in InAs

remains intact up to 8 T in magnetic field, which is remarkable. Moreover, developments

in shadowing techniques allows for in-situ device fabrication with different geometries while

looking for alternate superconductors [65, 230, 219].

We further plan to use Sb on a Si or sapphire substrate and explore its microwave re-

sponse as well as measuring its kinetic inductance boost to evaluate the potentials of this

material for transmon and fluxonium qubits. Among caveats of Sn when depositing thin

films is that it may easily ball up depending on the substrate, it oxidizes and is extremely

soft and scratchable. Therefore, some care needs to be taken in determining an optimal

thickness in addition to capping Sn with an AlOx layer to terminate self oxidation. In our

efforts to incorporate Sn in superconducting circuits we used Sn-InSb-Sn junctions as the

nonlinear element in a transmon-like design (Chapter 7.2). We observed a dispersive shift in

the phase and amplitude of resonant frequency of the cavity resonator at the transition fre-

quency of the nanowire junction. However, we were not able to perform pulse spectroscopy

mainly due to a very limited lifetime of order of tens of nanoseconds. These are preliminary

results that we obtained from this hybrid superconducting circuit semiconductor nanowire,

in which the resonators are made of Al and not compatible with magnetic field application.

Moreover, the substrate in use was a poor quality Si substrate that could further lowers the

qubit lifetime. For the next step we intend to substitute Al with field resilient Nb(Ti)N

resonators that we characterized in Chapter 7.1. The reason we started with Al for hybrid
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superconducting-semiconducting qubit scheme was the relatively low quality factors of our

Nb(Ti)N resonators in the range of few thousands to couple of tens of thousands depending

on the thickness of the film from 10 nm to 50 nm. We suspect presence of a high density

of two-level systems on our substrate caused by the rough mechanical ion milling process

we used for etching Nb(Ti)N is primarily responsible for low quality factors. We are op-

timizing etching of Nb(Ti)N with different thicknesses up to 150 nm using a more gentle

reactive ion etching process that should ideally increase the quality factors by one order of

magnitude [70, 71, 72]. The 150 nm thick resonators then can be immediately integrated

with Sn-InSb nanowires in a hybrid transmon structure [74, 73, 75] or in the future to probe

spinful Andreev bound states in these nanowire junctions [92, 93, 272]. Our current thin film

Nb(Ti)N resonators sustain their quality factors in finite magnetic fields and exhibit a kinetic

inductance boost of 2− 80 depending on the thickness and material of the superconductor,

which makes them suitable for a fluxonium qubit that may act as the readout circuit for

topological qubits [55, 210, 273].

Another semiconducting platform of interest are 2DEGs that allow for more flexible de-

signs than nanowires due to their top-down lithography and gating [240]. Interest in hybrids

of superconductors and 2DEGs has increased specifically since 2016 when an epitaxial con-

tact between InAs 2DEG and Al was achieved [137]. We used this platform and the nanowire

shadowing idea to study Josephson properties in junctions that are prepared by nanowire

shadow masks residing on the surface of the 2DEG. This way we eliminated the chemical

etching process that is generally needed to define mesas and junctions on 2DEGs. However,

we could risk creating scattering from the nanowire in the quantum well, which can be solved

by removing the nanowire after shadow creation. Our measurements, revealed highly trans-

parent ballistic junctions in which products of critical and excess current with normal state

resistance are comparable to theoretical values. We further performed diffraction pattern

measurements, Shapiro step measurements and SQUID measurements. Diffraction pattern

and interferometry measurements exhibit extra periodicity of supercurrent as the function

of flux, while microwave measurements reveal half-integer Shapiro steps, all pointing at an

unexpected behavior of supercurrent where the simple sinusoidal current phase relation did

not fit the data. The origin of this anomaly is yet to be confirmed as we showed second
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harmonic Josephson current and a non-uniform current density along the junction’s width

caused by fabrication artefacts both could result in same behavior of current as a function

of flux. To get a better understanding of behavior of supercurrent we will need to study its

gate dependence. The next generation of devices that we will be studying uses same shadow

mask nanowires as self-aligned top gates on top of the junction. beams unless we are able

to take advantage of large areas of superconducting ground plane on the chip.
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T. Schäpers, and D. Grützmacher. MBE growth of Al/InAs and Nb/InAs supercon-
ducting hybrid nanowire structures. Nanoscale, 9(43):16735–16741, 2017.

[232] T. Kanne, M. Marnauza, D. Olsteins, D. J. Carrad, J. E. Sestoft, J. de Bruijckere,
L. Zeng, E. Johnson, E. Olsson, K. Grove-Rasmussen, and J. Nyg̊ard. Epitaxial Pb
on InAs nanowires. arXiv:2002.11641, 2020.

[233] K. Zuo, V. Mourik, D. B. Szombati, B. Nijholt, D. J. van Woerkom, A. Geresdi,
J. Chen, V. P. Ostroukh, A. R. Akhmerov, S. R. Plissard, et al. Supercurrent Inter-
ference in Few-Mode Nanowire Josephson Junctions. Phys. Rev. Lett., 119:187704,
Nov 2017.

[234] J. van Veen, A. Proutski, T. Karzig, D. I. Pikulin, R. M. Lutchyn, J. Nyg̊ard,
P. Krogstrup, A. Geresdi, Leo P. Kouwenhoven, and John D. Watson. Magnetic-field-
dependent quasiparticle dynamics of nanowire single-Cooper-pair transistors. Phys.
Rev. B, 98:174502, Nov 2018.

[235] A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J Rooks, A. Fryd-
man, and D. E. Prober. Tunable superconducting nanoinductors. Nanotechnology,
21(44):445202, oct 2010.

185



[236] W. D. Oliver and P. B. Welander. Materials in superconducting quantum bits. MRS
Bulletin, 38(10):816–825, 2013.

[237] E. Ginossar and E. Grosfeld. Microwave transitions as a signature of coherent parity
mixing effects in the Majorana-transmon qubit. Nature Communications, 5(1):4772,
September 2014.

[238] L. S. Bishop, E. Ginossar, and S. M. Girvin. Response of the Strongly Driven Jaynes-
Cummings Oscillator. Phys. Rev. Lett., 105:100505, Sep 2010.

[239] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H. Devoret,
R. J. Schoelkopf, and S. M. Girvin. Black-Box Superconducting Circuit Quantization.
Phys. Rev. Lett., 108:240502, Jun 2012.

[240] M. Hell, M. Leijnse, and K. Flensberg. Two-Dimensional Platform for Networks of
Majorana Bound States. Phys. Rev. Lett., 118:107701, Mar 2017.

[241] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F.
Morpurgo. Bipolar supercurrent in graphene. Nature, 446(7131):56–59, Mar 2007.

[242] K. Delfanazari, R. K. Puddy, P. Ma, T. Yi, M. Cao, Y. Gul, I. Farrer, D. A. Ritchie,
H. J. Joyce, M. J. Kelly, and C. G. Smith. Proximity induced superconductivity in in-
dium gallium arsenide quantum wells. Journal of Magnetism and Magnetic Materials,
459:282–284, August 2018.

[243] C. T. Ke, C. M. Moehle, F. K. de Vries, C. Thomas, S. Metti, C. R. Guinn, R. Kallaher,
M. Lodari, G. Scappucci, T. Wang, et al. Ballistic superconductivity and tunable
π–junctions in InSb quantum wells. Nature Communications, 10(1), Aug 2019.

[244] M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak, M. Wimmer, A. R.
Akhmerov, J. A. Folk, K. Flensberg, J. Shabani, C. J. Palmstrøm, and et al.
Quantized conductance doubling and hard gap in a two-dimensional semiconduc-
tor–superconductor heterostructure. Nature Communications, 7(1), Sep 2016.

[245] W. Mayer, W. F. Schiela, J. Yuan, M. Hatefipour, W. L. Sarney, S. P. Svensson, A. C.
Leff, T. Campos, K. S. Wickramasinghe, M. C. Dartiailh, I. Zutic, and J. Shabani.
Superconducting proximity effect in InAsSb surface quantum wells with in-situ Al
contact, 2019.

186



[246] F. Vigneau, R. Mizokuchi, D. C. Zanuz, X. Huang, S. Tan, R. Maurand, S. M. Frolov,
A. Sammak, G. Scappucci, F. Lefloch, and et al. Germanium Quantum-Well Joseph-
son Field-Effect Transistors and Interferometers. Nano Letters, 19(2):1023–1027, Jan
2019.

[247] N. W. Hendrickx, M. L. V. Tagliaferri, M. Kouwenhoven, R. Li, D. P. Franke, A. Sam-
mak, A. Brinkman, G. Scappucci, and M. Veldhorst. Ballistic supercurrent discretiza-
tion and micrometer-long Josephson coupling in germanium. Phys. Rev. B, 99:075435,
Feb 2019.

[248] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M.
Marcus, and F. Nichele. Zero-Energy Modes from Coalescing Andreev States in a
Two-Dimensional Semiconductor-Superconductor Hybrid Platform. Phys. Rev. Lett.,
119:176805, Oct 2017.

[249] H. D. Tong, H. V. Jansen, N. R. Tas, V. J. Gadgil, E. T. Carlen, and A. van den Berg.
Simple Technique for Direct Patterning of Nanowires using a Nanoslit Shadow-Mask.
In TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and
Microsystems Conference, pages 191–194, 2007.

[250] M. Pendharkar. Molecular Beam Epitaxy of Low Dimensional Electron Systems for
Topological Quantum Computation. PhD thesis, University of California Santa Bar-
bara, 2019.

[251] F. Krizek, T. Kanne, D. Razmadze, E. Johnson, J. Nyg̊ard, C. M. Marcus, and
P. Krogstrup. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic
Basis. Nano Letters, 17(10):6090–6096, 2017. PMID: 28895746.

[252] K. K. Likharev. Superconducting weak links. Rev. Mod. Phys., 51:101–159, Jan 1979.

[253] I. O. Kulik and A. N. Omel’Yanchuk. Contribution to the microscopic theory of
the Josephson effect in superconducting bridges. Soviet Journal of Experimental and
Theoretical Physics Letters, 21:96, February 1975.

[254] S.N. Artemenko, A.F. Volkov, and A.V. Zaitsev. On the excess current in microbridges
S-c-S and S-c-N. Solid State Communications, 30(12):771 – 773, 1979.

[255] G. Niebler, G. Cuniberti, and T. Novotn. Analytical calculation of the excess cur-
rent in the Octavio–Tinkham–Blonder–Klapwijk theory. Supercond. Sci. Technol,
22:85016–7, 08 2009.

187



[256] N. M. Chtchelkatchev, W. Belzig, Yu. V. Nazarov, and C. Bruder. π-0 transition in
superconductor-ferromagnet-superconductor junctions. Journal of Experimental and
Theoretical Physics Letters, 74(6):323–327, Sep 2001.
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