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Abstract 

 

Cardiovascular disease (CVD) continues to be the leading cause of death in the United 

States despite decades of improvement in many risk factors. Public health literature often identifies 

the high prevalence of obesity as a contributor to the CVD burden. Excessive gestational weight 

gain (GWG) is emerging as a potential modifiable risk factor for obesity among those who give 

birth. However, there is no consensus as to whether excessive GWG contributes to CVD. Because 

obesity is a heterogeneous condition, it is important to evaluate the specific health sequela of a 

given risk factor. The overall objective of this dissertation is to investigate the role of excessive 

GWG in long-term maternal cardiovascular health. Using observational data, we estimated 

associations between excessive GWG and cardiovascular risk factors, and quantified the statistical 

bias around estimates. In the first aim of this dissertation, we estimated the association between 

number of births with excessive GWG and midlife BMI in a sample of parous participants in the 

multi-ethnic cohort Study of Women’s Health Across the Nation. We found that each additional 

excessive GWG pregnancy was associated with increased maternal BMI at midlife independent of 

demographic, behavioral, and other reproductive factors. In aim 2, we quantified the potential 

statistical bias around these estimates to evaluate their susceptibility to common sources of 

systematic error. Using multiple imputation and misclassification-weighted regressions, we found 

that our estimates were generally robust to bias. In aim 3, we evaluate whether excessive GWG 

impacts atherosclerotic CVD risk score or chronic inflammation using 20 years of prospective 
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follow-up across midlife. We found that a history of excessive GWG was associated with a small 

but statistically significant increase in maternal CVD risk score, and moderate increase in 

inflammation.  

Public health significance: Our findings underscore the importance of prenatal care in 

supporting long-term maternal health, and highlight inflammation as a potential pathway linking 

reproductive history to CVD. Further, we illustrate that observational data can provide valuable 

epidemiologic insights even in the presence of likely systematic error.  
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1.0 Introduction 

Cardiovascular disease (CVD) is a major cause of mortality and morbidity in the United 

States. This is despite decades of improvement in some CVD risk factors such as smoking and 

cholesterol management. The continuing burden of CVD in the US is widely attributed to the 

increasing prevalence of obesity.  

Over one-third of US adults have an obese body mass index, with the highest prevalence 

rate among women in their midlife. It is well established that those with obesity are at an elevated 

risk of CVD. Prevention of obesity, however, is challenging. Many of the known risk factors for 

adult obesity are difficult to intervene on. These include characteristics such as genetic 

susceptibility, childhood obesity, history of childhood abuse, and health disparities associated with 

race, ethnicity and socioeconomic status. 

Excessive weight gain during pregnancy is emerging as a potential modifiable risk factor 

for midlife obesity among people who give birth. Gestational weight gain (GWG) is a vital 

component of healthy fetal development, but many pregnant people gain in excess of clinical 

recommendations. Epidemiologic studies have consistently shown excessive GWG in a single 

pregnancy to be positively associated with higher maternal weight years after the birth. However, 

there is no consensus on whether reproductive factors that are associated with obesity, such as 

GWG, are therefore associated with CVD risk. GWG has rarely been evaluated for association 

with long-term maternal cardiovascular health, with conflicting results. 

The lack of a consistent connection between excessive GWG and cardiovascular risk may 

be due to several factors. Obesity is increasingly being understood as a heterogeneous condition. 

The cardiovascular risk of obesity may vary by the distribution of adipose tissue in the body or 
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other factors. It is possible that excessive GWG contributes to development of a lower risk 

phenotype of obesity with weakened effects on CVD. In addition, studies of reproductive history 

with long-term follow-up are vulnerable to multiple sources of statistical bias. Associations 

observed between excessive GWG and obesity may be influenced by systematic error.  

The goal of this dissertation is to evaluate whether excessive GWG increases women’s 

susceptibility to a high-risk phenotype of obesity. By applying a rigorous methodology, we aim to 

identify key associations on the potential pathway between excessive GWG, maternal midlife 

obesity, and CVD. We will also quantify statistical bias in the association between excessive GWG 

and midlife obesity.   

This introductory chapter is organized as follows: First, section 1.1 discusses the 

epidemiology of each step in the potential pathway from excessive GWG to cardiovascular risk 

factors including obesity, and from risk factors to CVD. Section 1.2 provides a brief overview of 

the biological mechanisms driving the development of CVD. Special emphasis is placed on gaps 

in the literature regarding obesity’s role in this process. Next, section 1.3 describes common 

obstacles and methodological solutions in researching health characteristics that develop over the 

life course. Finally, the dissertation’s specific aims and conceptual model are presented in section 

1.4. 
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1.1 Epidemiology of Excessive Gestational Weight Gain and Cardiovascular Disease 

1.1.1 Prevalence of CVD and its primary risk factors in the US 

Over 250,000 women die of CVD each year in the United States.1 In fact, CVD remains 

the leading cause of death for US adults.1 This is despite historic improvements in CVD risk factors 

such as total cholesterol and smoking in the population since the 1960’s.2,3 The definition of CVD 

generally includes atherosclerotic disease such as myocardial infarction, angina, revascularization, 

stroke, and peripheral arterial disease, as well as heart failure and atrial fibrillation.4 

The primary risk factors for CVD are age, sex, race, hypertension, smoking, diabetes, and 

dyslipidemia.5 Risk-enhancing factors include family history, elevated glucose, chronic 

inflammation, early age at menopause, and obesity.4 Prior reductions in prevalence of hypertension 

and dyslipidemia have stalled in recent years. In 2015-2016, 29 percent of US adults had 

hypertension, with a majority of cases (52%) being uncontrolled.6 In the same time period, 12.4 

percent of adults had high total cholesterol (≥ 240 mg/dL).7 Meanwhile, diabetes and obesity 

prevalence have increased.8-10 The current prevalence of diabetes among US adults is estimated at 

14 percent, with 4.3 percent undiagnosed.11 Finally, although smoking has dropped over the 

decades, 19.3 percent of US adults continue to be current smokers today.12 

1.1.2 Obesity as a risk-enhancing factor for CVD  

Obesity is a highly prevalent characteristic in the United States. Nearly 40 percent of US 

adults have an obese BMI, defined clinically as ≥ 30 kg/m2.13 Women in their midlife (40-59 years 

of age) have the highest rate of obesity of any age and sex group at 44.7 percent.13 For some race 
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and ethnicity groups, these rates are even higher. Among US adults age 20 years and older, Black 

women have the highest prevalence of obesity at 54.8 percent, followed by Hispanic women at 

50.6 percent, compared to the average of 41.1 percent for women overall.13 

Having an obese BMI is associated with increased risk of coronary heart disease, ischemic 

stroke, and fatal cardiovascular disease.14 Furthermore, obesity is linked to other CVD risk factors 

such as hypertension15 and diabetes.14 These risks and high prevalence in the population have made 

obesity a major public health concern. 

However, the direct effect of obesity on CVD is not well understood. Obesity is highly 

comorbid with other risk factors such as diabetes and dyslipidemia. Previous literature including 

large pooled cohort designs have demonstrated that much of the effect of obesity on CHD events 

and stroke can be accounted for through other risk factors. A collaborative meta-analysis of 58 

prospective studies representing over 200,000 participants found that individually, increasing BMI 

and waist circumference were both associated with hazard of incident coronary heart disease event 

or stroke. However, neither measure improved prediction beyond that of other risk factors such as 

diabetes, lipids, blood pressure, CRP, smoking, and sex.16 A second collaborative meta-analysis 

of 97 prospective cohorts representing 1.8 million participants found that roughly half the coronary 

heart disease risk and 75 percent of the stroke risk attributable to BMI were mediated through 

blood pressure, cholesterol, and glucose.17 

Although it is an established CVD risk factor in populations, obesity is not a consistent 

predictor on an individual level.18 This may be due to interactions between obesity and metabolic 

health status. Individuals can be metabolically healthy or unhealthy at any BMI category.18,19 

Individuals with an obese BMI and a healthy metabolic profile are considered metabolically 

healthy obese (MHO) in some literature. The definition of metabolic health among those with 
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obesity varies, but generally refers to absence of hypertension, high fasting blood glucose, and 

dyslipidemia. Some definitions also include waist circumference, CRP, HOMA-IR, or 

cardiorespiratory fitness.18,20,21 The proportion of those with obesity who are metabolically healthy 

varies greatly across studies because of heterogeneity in study populations and the lack of a 

consistent definition.22,23 

Individuals with MHO may be at intermediate risk between those with a metabolically 

healthy normal weight phenotype and a metabolically unhealthy obese phenotype.24 For example, 

a 2018 analysis of the Nurses’ Health Study found that women of normal weight with a 

metabolically unhealthy phenotype were at greater risk of cardiovascular disease than women with 

an obese BMI who were metabolically healthy. Having a metabolically healthy phenotype was 

protective against cardiovascular disease in all BMI categories.21 These results are consistent with 

a large meta-analysis of prospective studies.25 

The controversial “obesity paradox” is a related but distinct phenomenon discussed in the 

literature. This refers to results found in multiple studies that associate an obese BMI with better 

prognosis among those with established cardiovascular disease.26,27 Studies taking a causal 

approach however have suggested that this effect may be explained by residual confounding.28-30 

1.1.3 Excessive gestational weight gain and maternal midlife obesity 

Gestational weight gain (GWG) is a vital component of pregnancy. GWG reflects the development 

of the fetus as well as critical resources such as the placenta, amniotic fluid, and mammary 

glands.31 The Institute of Medicine (IOM) has published clinical guidelines for the amount of 

weight gain needed to support a healthy pregnancy.31,32 Total pregnancy weight gain is 
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characterized as “inadequate,” “adequate,” or “excessive” depending on pre-pregnancy BMI 

category.  

Most pregnant people in the US gain outside of the recommended range for adequate 

GWG. Surveillance data report that 20.9 percent have inadequate gain and 47.2 percent have 

excessive gain.33 Among people with an overweight or obese BMI prior to pregnancy, over 60 

percent have excessive gain.33 Cohort studies of pregnancy have also consistently observed over 

40 percent of pregnant people to exceed the IOM guidelines.34-38  

Previous studies have demonstrated an association between excessive GWG in a single 

pregnancy and long-term maternal weight. Multiple studies have estimated the impact of increased 

GWG on maternal weight at an average of 7 to 9 years following the birth. McClure et al39 

observed a 3.9 kg weight gain difference and odds ratio of 2.9 for obesity among women with 

excessive GWG compared to those with adequate GWG, adjusting for pre-pregnancy BMI. Davis 

et al40 estimated a hazard ratio for obesity of 2.41 at an average 8 years of follow-up among over 

3,000 women participating in the National Longitudinal Survey of Youth 1979. Additional 

evidence of the association between excessive GWG and increased maternal weight has been 

observed in various US populations41-43 and a large Danish cohort.44 

Some evidence supports an association more than fifteen years post-partum.45-47 Using 18-

years of follow up from the National Longitudinal Survey of Youth 1979, Cohen et al46 found that 

maternal obesity prevalence was higher at midlife among women with a history of excessive 

GWG. Mamun et al45 estimated a four-fold increase in the odds of obesity among women with 

excessive GWG compared to those without at 21 years following the index birth. Finally, a causal 

analysis by Abrams et al47 estimated that prevention of excessive GWG in a woman’s first 
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pregnancy could reduce the prevalence of midlife obesity by 3 percent among White mothers (from 

26.8 to 23.8%) and by over 6 percent among Black mothers (from 49.7 to 43.0%).  

Despite these findings, significant gaps in knowledge linking excessive GWG to maternal 

obesity remain. This literature has consistently found an association independent of parity, 

socioeconomic status, and race. However, pregnancy complications, gestational age, and 

characteristics at the outcome measure such as physical activity or diet are rarely included. Few 

studies have considered whether weight characteristics across multiple pregnancies have a 

cumulative effect on maternal health.46,47 None to our knowledge have considered GWG across all 

pregnancies in participants’ reproductive history.  If the impact is cumulative, prevention strategies 

could improve long-term maternal health even when implemented in later pregnancies. 

Furthermore, there is little research on whether the association between excessive GWG and later 

maternal weight varies across racial or ethnic groups. The association has rarely been stratified by 

race or ethnicity,47 and no study to our knowledge based in the US has stratified by race or ethnicity 

in a cohort with representation of participants from any Asian background.  

1.1.4 Excessive GWG and cardiovascular risk factors 

Little research is available on GWG adequacy and maternal CVD risk factors outside of 

obesity. One cohort of 500 women with 8 years postpartum follow-up showed no significant 

difference in maternal triglycerides, LDL, total cholesterol, or metabolic syndrome prevalence 

between those with excessive versus adequate GWG.39 A prospective study of 3,000 women found 

that those with excessive GWG were 1.47 times more likely to experience diabetes at 21 years 

post-partum compared to women with adequate GWG. The association was completely mediated 

through BMI at follow-up.48 Conversely, analysis of a cohort of 800 women did not find an 
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association between continuous GWG amount and insulin resistance at a much shorter follow-up 

length of 3 years postpartum.42 

1.1.5 Other reproductive factors and CVD risk 

Many reproductive factors outside of weight can influence maternal health. Characteristics 

such as parity, pregnancy complications, and breastfeeding may confound or modify the effect of 

excessive GWG on CVD risk. Some characteristics have a direct effect on CVD risk, while others 

share risk factors with CVD. Understanding the potential relationships between these factors is 

critical to identifying the independent contribution of excessive GWG to CVD risk.  

Parity has been shown to be positively associated with maternal insulin resistance later in 

life in multiple populations of women.49-52 However, one large study found no association between 

parity and the odds of diabetes.53 The literature on parity as an independent predictor for maternal 

CVD is conflicting.54-58 A recent meta-analysis suggests that the relationship between number of 

births and cardiovascular mortality may follow a J-shaped pattern .59 However, the parity literature 

is difficult to interpret because most studies do not account for GWG or pregnancy complications. 

Pregnancy complications likely account for part of the CVD risk previously attributed to 

parity.60 Increases in CVD risk factors such as triglycerides and inflammatory markers are 

expected in pregnancy61 but generally return to prepregnancy levels postpartum.62 In pregnancies 

with complications, however, vascular and endothelial dysfunction can continue after birth.62 

Complications such as preeclampsia and gestational diabetes are associated with later maternal 

CVD risk.4,54,63-65 These conditions may contribute to CVD risk or, alternatively, serve as a marker 

of preexisting subclinical dysfunction.62 
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Experiencing a preterm birth is associated with maternal CVD risk factors,66 and CVD 

events years after pregnancy.67,68 Notably, the study of preterm birth is difficult because it shares 

risk factors with CVD including smoking, hypertension, and diabetes 61 as well as dyslipidemia.69 

However, an analysis of over 70,000 parous women in the Nurses’ Health Study found an 

increased hazard of CVD events among those who had experienced a preterm birth, independent 

of other CV risk factors.68 Additionally, there is evidence that maternal weight and GWG impact 

risk of preterm birth.70-72 Inadequate GWG is associated with risk of preterm birth, but the 

association is stronger among underweight women.70,72 Excessive GWG is not consistently shown 

to contribute to risk of preterm birth, but this may vary by race. 73,74 

Finally, breastfeeding has been associated with lower risk of diabetes,53,75,76 and there is 

limited evidence that it is protective against CVD.55,77 Although it is widely believed anecdotally 

that breastfeeding also improves postpartum weight loss, the literature does not consistently 

confirm this.78,79 This may be because breastfeeding as an exposure is difficult to define 

consistently across studies.79 

1.2 Identification of Biologic Pathways to Link Excessive GWG with CVD  

1.2.1 Primary processes of CVD development 

CVD can be characterized mechanistically as pathological restriction of blood flow. This 

primarily occurs due to atherosclerotic blockage or hypertensive damage to blood vessels. 

Dyslipidemia, inflammation, and elevated glucose can contribute to these processes. These risk 

factors are often comorbid, making the independent contributions difficult to quantify.  
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Atherosclerosis is the hallmark of many forms of CVD. The atherosclerotic process is 

driven by excess cholesterol in the blood stream and inflammation. Lipids including cholesterol 

are important components of all human cells. Being water insoluble, lipids must be attached to 

proteins to be transported through the body. The resulting lipoproteins are classified by density 

and have different effects on atherosclerosis. Low-density lipoproteins (LDL) carry cholesterol 

from the liver to peripheral tissue. However, LDL and other pro-atherosclerotic lipoproteins that 

are not taken up by peripheral tissue can remain in the circulatory system and become toxic.80 

These can also enter blood vessel endothelium and become oxidized. An immune response is then 

triggered to clear the damaged lipoprotein.81   

Inflammation is a key process in atherosclerotic development and progression. As immune 

cells try to clear modified lipoproteins in the endothelium, large foam cells build up. Local 

inflammation is induced including immune cell cytokine release resulting in smooth muscle cell 

migration from the media to the intima and subsequent proliferation.  The accumulation of lipid-

laden foam cells and smooth muscle cells within the intima eventually results in a growing lesion 

or atherosclerotic plaque. Chronic inflammation can also disrupt existing plaques, which can lead 

to thrombosis.82 Oxidative stress and inflammation have a cyclic relationship that continues the 

process.83,84 

Hypertension is also a major driver of CVD. The heart, blood vessels, and kidneys all have 

a role in the regulation of blood pressure. Heart rate and blood vessel dilation impact blood 

pressure change in the short term.85 In contrast, long-term changes in blood pressure involve renal 

function or vascular remodeling including media thickening.86 When blood pressure increases 

consistently outside of the normal range—systolic > 140 or diastolic > 90 for adults under age 60 

87—this is considered hypertension. Shear stress on the vascular endothelium due to increased 
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blood pressure may initiate atherosclerotic lesion development.82 However, hypertension also 

contributes to CVD outside of the atherosclerotic process as thickening and stiffening of the 

arterial walls contribute to impaired blood flow. Hypertension is also a cause of hemorrhagic stroke 

and a risk factor for atrial fibrillation. 

Finally, diabetes and elevated glucose are also contributors to CVD. Individuals with 

diabetes are more likely to have dyslipidemia, hypertension, and advanced atherosclerosis 

compared to non-diabetic individuals. This may be due to increased inflammation, oxidation, or 

macrophage infiltration, triggered by hyperglycemia.88,89 Hyperglycemia independent of diabetes 

status contributes to increased oxidation that can produce vascular damage. Hyperglycemia has 

also been observed to increase lipolysis, releasing fatty acids into the circulation.89 

1.2.2 Measuring cardiovascular risk  

An ongoing project in CVD prevention is the development of clinical measures to capture 

the multi-faceted process of atherosclerotic disease. Quantifying the contributions of dyslipidemia, 

hypertension, diabetes, and inflammation as individual risk factors is cumbersome and difficult to 

interpret. Cardiovascular risk scores are a practical approach to summarize CVD risk. Validated 

risk scores provide a single measure to concisely represent CVD risk in epidemiologic research, 

or guide patient decision-making in a clinical setting.  

The atherosclerotic CVD (ASCVD) risk score is based on the most recent literature on the 

impact of traditional CVD risk factors.5 Developed by the American Heart Association and the 

American College of Cardiology, the ASCVD risk score measures the 10-year risk of developing 

a first atherosclerotic CVD event. Events include nonfatal myocardial infarction, coronary heart 

disease death, and fatal or nonfatal stroke. The score calculation is derived from 5 community-
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based cohorts of Black and White participants and is comprised of diabetes status, age, total 

cholesterol, high density lipoprotein cholesterol, systolic blood pressure, blood pressure 

medication use, and current smoking status. Each component is multiplied by a race-specific 

coefficient, summed for a total score, and transformed by an overall race-specific formula.5 The 

ASCVD score has been externally validated as predictive of CVD events.90 It has also 

demonstrated good calibration to discriminate risk at the decision threshold of 7.5% in both women 

and men,90 and it is an appropriate measure of absolute and relative CVD risk. 

1.2.3 Biology of obesity development   

Obesity is characterized by excessive accumulation of adipose tissue. Total adipose tissue 

as a percentage of body weight varies across individuals, ranging from 5 to 60 percent.91 Adipose 

tissue is comprised of various cell types, categorized as adipocytes, preadipocytes, and non-

adipocyte cells. Adipocytes are the main cells of adipose tissue, and store energy in the form of 

triglyceride droplets.92 Non-adipocyte cells in the tissue include macrophages, immune cells, 

fibroblasts, connective tissue, vasculature, and neural tissue. Excess energy intake causes adipose 

tissue volume to increase as free fatty acids and glycerol are converted to triglycerides and stored. 

Individuals show heterogeneity in their adaptive response to a continued positive energy 

imbalance.93 Adipose tissue gain is determined by an individual’s total energy expenditure rate. 

Total energy expenditure is comprised of resting and active energy expenditure, and varies across 

individuals. Further, weight gain can increase the resting metabolic rate, but the degree of 

metabolic change depends on the relative difference in adipose tissue volume versus skeletal 

muscle.93 Gene-environment interactions can also impact the amount of adipose tissue that 

develops in the presence of overnutrition.  
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External factors can contribute to individual differences in adiposity. Physical activity can 

moderate weight gain through epigenetic changes.94,95 Changes in gene expression may also be 

triggered by diet. A high fat diet has been shown to modulate expression in tissues such as liver, 

adipose, muscle, and hypothalamus.96 Some studies have suggested a high sugar diet may lead to 

changes in transcription in liver tissues.96 Finally, exposure to some environmental chemicals 

including certain pesticides, plasticizers, and endocrine disruptors, may increase individual 

susceptibility to obesity.96 

1.2.4 Contributions of obesity to CVD  

Biologically, obesity may contribute to atherosclerotic development through inflammation. 

Adipocyte cells secrete adipokines—biologically active molecules including proteins and 

cytokines. Many adipokines have established metabolic or immune roles.92 Adipokines include 

both pro- and anti-inflammatory proteins, as well as MCP-1, which attracts macrophages.97 

Important adipokines include leptin, adiponectin (considered anti-atherogenic and anti-

inflammatory), IL-6, and TNF-alpha.  

Pro-inflammatory cytokines such as leptin promote vascular atherosclerosis.98-100 

Similarly, IL-6 and TNF-alpha have been shown to increase vascular inflammation and decrease 

insulin signaling.97 Immune cells also contribute to endothelial dysfunction and oxidative stress in 

the development of atherosclerosis.100 Processes common to adipose tissue and atherosclerosis are 

infiltration of macrophages, activation of T cells, and production of cytokines.101 Inflammation 

may activate other factors contributing to a positive feedback loop.101 

Adipose tissue contributes to insulin resistance in liver and skeletal muscle tissue. 

Triglycerides stored in adipocytes can be decomposed into free fatty acids and glycerol through 
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lipolysis. These components are then released from the adipocyte. Free fatty acids are bound to 

albumin and routed to muscle, liver, or another adipocyte through reesterification.91 Lipid load in 

the liver can drive hepatic insulin resistance.102 Accumulation of lipids in muscle cells can exceed 

cellular ability of lipid oxidation. This can lead to the development of toxic lipid intermediates that 

impair insulin signaling. When this occurs, increased insulin resistance is then compensated by 

increased insulin secretion.102 Glycerol released from lipolysis is sent to the liver and converted 

into glucose.91 

Finally, obesity also contributes to hypertension through multiple pathways. Increases in 

insulin, leptin, and renin stimulate the sympathetic nervous system.15 In addition, obesity triggers 

increased renal reabsorption of sodium through multiple mechanisms.15 Both pathways can result 

in long-term increase in blood pressure. 

1.2.5 Obesity phenotypes 

The most prominent theory for the variation of health risk among those with obesity is 

subcutaneous versus visceral adiposity phenotypes. When exposed to a positive energy imbalance, 

individuals are heterogeneous in their physiological capacity to store excess energy, both in how 

much and where fat is deposited.103 Subcutaneous adipose tissue (SAT) is the first destination for 

storage.97 Major subcutaneous stores are abdominal, gluteal, and femoral (thigh). Abdominal SAT 

accumulates between the skin and peritoneal membrane in two layers, superficial and deep, that 

are divided by connective tissue.91 

When SAT storage capacity is exceeded by amount of energy imbalance or impaired by 

genetics or environmental stressors, triglycerides are deposited in other areas, which can lead to 

accumulation of visceral adipose tissue (VAT).104 VAT accumulates around the digestive organs 
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in the intraperitoneal and retroperitoneal areas within the abdominal cavity.91 This includes the 

omentum, a store of adipose tissue attached to the stomach within the peritoneal cavity. VAT can 

also be stored in the retroperitoneal area, i.e. along the posterior abdominal wall, near the 

kidneys.103 

Subcutaneous and visceral adipose tissue vary in vascularity, cell size, receptors, and 

chemical secretion. VAT is more vascular and more heavily innervated than SAT. VAT is also 

more metabolically and immunologically active. It is more likely to be infiltrated by immune cells, 

so more often secretes proinflammatory, proatherogenic cytokines as well as free fatty acids.91,102 

Conversely, SAT is more active in absorbing free fatty acids and triglycerides.102  

VAT is more consistently associated with dyslipidemia, hypertension, atherosclerosis, 

adipocytokine imbalance, and inflammation than SAT.103 Obesity that presents with more VAT is 

associated with impaired insulin sensitivity and increase production of VLDL.22 Because of its 

location within the abdominal cavity, venous blood from VAT drains to the liver via the portal 

vein. SAT venous blood drains into systemic circulation. Therefore, adipokines and free fatty acids 

excreted by VAT have direct route to the liver.26,97 Retroperitoneal fat may be particularly 

important for hypertension due to its proximity to the kidneys.103 

Notably, SAT contained in the lower body (gluteal and leg) has been observed to be 

inversely associated with CVD risk factors and events.26,103 Furthermore, while lifestyle-based 

weight loss improves metabolic function, removal of SAT (e.g. liposuction) has not shown 

benefits.91 

Adiposity that favors VAT accumulation compared to SAT is also described as the 

abdominal obesity phenotype. Despite the evidence in support of the VAT hypothesis, measures 

that differentiate between visceral and subcutaneous adipose tissue have not shown consistent 
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advantage for predicting metabolic risk.102 Further, while VAT is generally associated with 

atherosclerotic development, studies vary on whether association remains after adjusting for other 

risk factors.105 The clinical utility of including VAT measures to identify high risk individuals has 

not been established conclusively.105 

An alternative theory of heterogeneous obesity related to the abdominal obesity phenotype 

focuses on ectopic adipose tissue. Some researchers argue that VAT is not the driver of risk but a 

marker of accumulation of more bioactive ectopic adipose tissue deposition. Ectopic adipose tissue 

accumulates as small depots where triglycerides are not physiologically stored, including the liver, 

pancreas, heart, and skeletal muscle.91,103 Lipotoxicity in these tissues causes insulin resistance.91 

Ectopic adipose tissue in the heart (epicardial AT) has bidirectional communication with the 

myocardium.106 Most but not all studies of epicardial AT have found association with progression 

of atherosclerosis.105 Similarly, interhepatic ectopic adipose tissue is closely linked to insulin 

resistance in liver, skeletal muscle, and adipose tissue.102 Obesity with higher hepatic fat has been 

linked to type-2 diabetes and atherosclerosis.22 

Adipose tissue accumulates both through the generation of new adipocytes (hyperplasia) 

and growth in cell size of existing adipocytes (hypertrophia). A third theory proposes that adipose 

tissue growth via hypertrophia induces higher CV risk compared to hyperplasia. Small adipocytes 

actively absorb free fatty acids but over time will grow larger. These enlarged adipocytes become 

insulin-resistant and promote lipolysis. Enlarged adipocytes show imbalanced adipocytokine 

production that favors pro-inflammatory factors. This explanation is also related to the VAT 

theory, as SAT has a greater ability to generate new preadipocytes compared to VAT 91. VAT is 

also more likely to contain larger, older adipocytes.97 Hypoxia in adipose tissue induced by the 

expansion of adipocytes may also contribute to inflammation.106,107 
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Finally, some researchers propose that the heterogeneity of cardiovascular risk imparted 

by obesity is due to metabolic compensation in other tissue. For example, some researchers 

propose that physical fitness is a protective factor for metabolic health regardless of weight. 

However, there is not consistent evidence supporting this.18 A related theory is metabolic capacity 

versus metabolic load. This states that the metabolic load of total adipose tissue may be offset by 

the metabolic capacity of fat-free mass in an individual. Body composition and cardiometabolic 

risk may be inversely linked through skeletal muscle mass. This is a compelling idea but not 

supported in studies comparing fat and fat-free mass in similar weight individuals.102 

1.2.6 The contributions of excessive GWG to obesity and obesity phenotypes 

It is biologically plausible that excessive GWG could contribute to increased maternal 

weight after birth. Maternal components such as total body water, protein, and adipose tissue 

account for approximately 65 percent of weight gained during pregnancy.31 GWG amount 

correlates highly with fat accrual, and over 40 percent of the maternal tissue gained is estimated to 

be adipose tissue.31 According to the IOM’s 2009 review, the range of mean GWG among women 

with normal prepregnancy BMI is 10 to 14 kilograms. Women with overweight and obese 

prepregnancy BMI are generally observed with lower mean GWG, between 8 to 12 kilograms in 

previous studies.31 Recently, several large multiethnic US cohorts and record reviews have found 

similar ranges among women with singleton live births.108-110  

Weight increase in non-pregnant individuals depends on an imbalance of energy intake 

with resting and active energy expenditure. During pregnancy, however, there is evidence that both 

resting energy expenditure and weight—including fat mass—increase without a corresponding 

increase in energy intake.111,112 The mechanisms behind this phenomenon are not well understood. 
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Pregnant individuals with a greater increase in resting energy expenditure have been observed to 

have less fat mass accrual compared to those with a more moderate increase.113 

Maternal fat accretion during pregnancy is mainly subcutaneous and deposited in the upper 

and lower trunk.31 However, there is some evidence that excessive GWG favors adipose tissue, 

including VAT. In a cohort of 49 pregnant women with overweight and obese prepregnancy BMI, 

amount of weight gain correlated positively with fat mass change.114 Those with excessive GWG 

had a greater increase in fat mass compared to those with adequate GWG (5.2 kg versus 0.2 kg). 

In a prospective study of 52 pregnant women with and without gestational diabetes, those with a 

lean BMI gained a similar quantity of fat mass and lean body mass to those with an obese BMI.115 

Based on skinfold measures, most of the increase in adipose tissue during pregnancy developed in 

the upper thigh, suprailiac (waist), and costal (rib) regions. Lean women accrued more of their 

adipose tissue in peripheral depots compared to obese women who gained more centrally, in the 

suprailiac region.115 Bone mineral and body water also increase during pregnancy and should be 

accounted for in measures of body composition. However, total body water accumulation during 

pregnancy does not appear to differ by prepregnancy BMI, while fat mass accumulation does.31 

In the postpartum period, weight retention is positively correlated with total GWG116 and 

total fat mass gain during pregnancy, but not with fat free mass gain.117,118 Postpartum weight 

retention favors fat accumulated in the trunk, and may include VAT.31,119 In a cohort of 41 pregnant 

women with live, singleton births in Korea, total body water and fat free mass decreased from day 

2 following delivery to 6 weeks postpartum. Notably, fat mass and VAT area increased despite 

overall decrease in weight.120 Weight gain in the postpartum period was also observed in a small 

cohort of US Black women.121 
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In a group of 93 pregnant women participating in a substudy of the Toronto Abdominal 

Visceral Obesity Study, visceral adipose tissue depth increased from mean (sd) of 4.1 (1.7) cm at 

week 11-14 gestation to 4.5 (1.8) cm at 6-12 weeks postpartum. There was not strong agreement 

between weight retention and VAT in this study. While 23 percent of women increased BMI from 

first trimester to the postpartum follow-up but lost VAT depth, 12 percent decreased in BMI but 

showed but gained VAT depth. An increase in VAT depth was associated with higher HOMA-IR 

at follow-up than an increase in BMI.122 

Finally, a cohort of 302 pregnant Black and Dominican women in New York looked at 

long-term maternal body fat. This study found a positive association between excessive GWG and 

maternal percent body fat at 7 years postpartum. Further, the study reported a significant, negative 

interaction between excessive GWG and prepregnancy BMI on maternal body fat at follow-up.43 

1.3 Challenges in Studying the Long-Term Effects of Reproductive Health 

1.3.1 Potential sources of systematic error 

While nearly all modern epidemiologic studies present estimates of random error such as 

confidence intervals, the quantification of systematic error is rare in the literature.123 This is despite 

the fact that sources of systematic error including uncontrolled confounding, selection bias, and 

measurement error are common in practice.  Systematic error (bias) has the potential to 

misrepresent the strength of an association, or even lead to incorrect inference. Quantitative bias 

analysis allows epidemiologists to evaluate the direction, magnitude, and potential uncertainty 

around systematic error.124 
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Long-term followup in a study allows for the prospective observation of outcomes that 

develop over time. However, a significant drawback to longterm studies is participant loss. If 

participants do not return to later study visits due to factors related to the exposure and outcome 

of interest, estimates of association can be biased. This is often the case in epidemiologic studies. 

Demographic characteristics associated with health outcomes, as well as worsening health, are 

commonly related to participant attrition.125-127 This is considered a form of selection bias. 

A second potential source of bias in these data is recall bias. Retrospective self-report is a 

common method for collecting data on reproductive history.128 Characteristics such as GWG are 

practical to gather retrospectively, especially if information on more than one pregnancy is needed. 

However, the utility of retrospective self-report relies on the accuracy of participant memory. Self-

report of pregnancy weight can be valid and reliable129,130 but longer recall time can reduce the 

quality of these measures.128 

Women often underestimate pre-pregnancy weight and overestimate GWG.128 Some 

women who had adequate GWG are therefore misclassified as having excessive GWG. This results 

in overestimation of the prevalence of excessive GWG in the epidemiologic literature. A meta-

analysis by Headen et al. found moderate misclassification of GWG adequacy in studies relying 

on maternal recall of weight.128 Among studies measuring pregnancy weight characteristics 

multiple years after birth, the mean deviation from the true value was less than 1 kg. However, the 

magnitude of error varied widely among women and was significantly greater among those with 

higher BMIs and those of minority race/ethnicity.  
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1.3.2 Multiple imputation to address bias due to missing data 

Multiple imputation is an established method to address selection bias.131 This approach 

generates datasets with created values for missing data. Imputation is typically based on a model 

for the underlying distribution of the missing values. Each generated dataset is used in a separate 

analysis model, and parameters from these models are averaged to produce a single set of pooled 

estimates. Multiple imputation can reduce bias in cases where data are missing from the outcome, 

exposure, or covariates.132 

When data are missing across more than one variable, values can be imputed through 

chained equations.133 Multiple imputations by chained equations (MICE) is a flexible approach in 

which missing values are imputed sequentially for each variable conditional on all other variables 

in the model. These sequential imputations are traditionally regression-based models. Regression-

based MICE can accommodate imputation of continuous, binary, and categorical variables. 

However, it requires specification of the distribution of each variable to be imputed.  

Multiple imputation assumes that values are missing at random. Missing at random 

describes a study in which the characteristics related to having missing data have been observed.131 

If an unobserved characteristic is associated with having missing data after conditioning on 

observed data (i.e. data are missing not at random), complete case analysis and use of multiple 

imputation may yield biased results. Therefore, the mechanisms driving missingness in a given 

study must be well understood and relevant characteristics observed. 

An alternative method to address missing data is inverse probability weighting, in which 

the investigator specifies a model to predict the probability of having complete data. The resulting 

probabilities are then used to create a weighted pseudo-population with complete data that reflects 

the full study population. Associations estimated from the pseudo-population represent what 
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would have been observed if no one had been censored by loss to follow-up. MICE may be 

preferred in applications where only a few persons with a given set of characteristics have complete 

data, as predicted probabilities of missingness can result in extreme weights. Secondly, weighted 

analysis models use only observed data, and are therefore less efficient than estimation under 

multiple imputation.  

Multiple imputation is reasonably robust in generating unbiased estimates when the 

imputation model is misspecified.131 One exception, however, is the imputation of non-linear 

relationships between variables. Common approaches such as regression-based and predictive 

mean matching imputation do not always perform well in the presence of interactions.134-137 

Interactions and polynomial terms may not be appropriately represented in imputed data. This 

caveat is important in modeling the effect of GWG adequacy on maternal health. Preliminary 

analysis suggests that history of preterm birth is an effect modifier of GWG adequacy on midlife 

obesity.  

Proposed solutions include the “just another variable” technique and non-parametric 

approaches such as decision trees. In the “just another variable” approach, the interaction term is 

included in imputation models as its own variable. This approach can produce unbiased estimates 

from imputed data when one component of the interaction is missing.134,138 However, methods in 

the literature do not address interactions in which both variables are missing together. In these 

data, preterm birth status is missing in women with missing GWG adequacy. 

Decision trees, also known as recursive partitioning, predict missing values by splitting 

observed data into similar subsets. Subsequent splits are conditional on previous splits. Because 

variables can be reused in multiple splits, interactions present in the observed data are represented. 

Further, trees do not require any distributional assumptions. Decision trees have been used in 
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imputation, although often with a single resulting imputed dataset.136,139-142 These approaches 

alone may be more biased than parametric MICE.143 Furthermore, the creation of a single dataset 

fails to account for the uncertainty of missing values.139 However, incorporating tree-based 

imputation within MICE can improve performance. This approach has been shown to result in less 

biased estimates compared to regression-based MICE when interaction effects are 

hypothesized.136,143 This approach has a number of strengths, as it can impute missing values in 

multiple variables, accommodate interactions, and account for uncertainty around imputed values. 

1.3.3 Quantification of recall bias 

Analytic options to evaluate self-report include validation studies, reliability estimates, and 

sensitivity analysis. Validation studies require an objective or gold-standard measure to compare 

with self-reported values. Alternatively, reliability estimates require multiple occurrences of the 

same measure per participant. Formulas for reliability include percent agreement and the Kappa 

statistic, which represents the proportion of observed agreement between repeated measures 

beyond that expected by chance.  

Validation and reliability analysis describe the level of confidence an investigator may 

have in a measure. To quantify the impact of bias on estimates of association, however, a 

sensitivity analysis is necessary.144 Sensitivity analysis for misclassification of the exposure 

involves choosing parameters of sensitivity and specificity for the measure. To include multiple 

covariates, sensitivity and specificity or positive and negative predictive values can be used to 

create weights for observed combinations of exposure and outcome.145 Weights are applied to 

multivariate logistic regression to estimate bias-adjusted associations given each set of parameters 

specified with jackknife estimates of standard error.145,146 In a fixed-parameter approach to 
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sensitivity analysis, single values are specified for each model. In a probabilistic approach, the 

investigator specifies distributions around chosen values to account further for uncertainty of the 

parameters.144,147 Either approach can handle non-differential or differential misclassification.123 

Sensitivity analyses are highly dependent on the bias parameters chosen by the 

investigator. Results can vary widely depending on sensitivity and specificity values or 

distributions.144 Providing parameters close to those of the measurement of interest is required to 

approximate the “true” association.123 Because the accuracy of a measure in a specific cohort is 

unknown without additional validation data, it is important to obtain documented rates from the 

literature when possible.  

1.3.4 Data Source: The Study of Women’s Health Across the Nation  

This dissertation uses data from the Study of Women’s Health Across the Nation (SWAN), 

which is an ongoing prospective, multiethnic, multi-center study of women in midlife and later 

life. The 22-year study has been an important source of research on the menopausal transition and 

reproductive health.148-150 Notably, it is one of the few cohort studies that captured lifetime 

reproductive history in US women. SWAN’s many strengths include an ethnically and 

geographically diverse population and longitudinal measurement of large array of characteristics. 

The main areas of study focus are menstrual patterns and reproductive hormones, menopausal 

symptoms, psychosocial characteristics, cardiovascular measures, physical functioning and 

activity, cognitive functioning, bone health, medications, and sleep.  

The SWAN cohort is made up of 3302 women enrolled from seven cities: Boston, MA, 

Chicago, IL, Detroit, MI, Los Angeles, CA, Oakland, CA, Newark, NJ, and Pittsburgh, PA. All 

sites enrolled women who identified as Non-Hispanic White as well as women from one additional 
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race or ethnic group: Black, Hispanic, Japanese, or Chinese. Since enrollment began in 1996, 

SWAN has conducted a screening interview, baseline visit, and 16 follow-up visits. (Please see 

Appendix A for study acknowledgements). 

Selection bias is a potential concern in SWAN data. Over the 16 follow-up visits, women 

who return to the study are systematically different from those who leave. Our preliminary analysis 

suggests that nearly one third of the women who reported having live births in the baseline 

interview are missing from the reproductive history questionnaire, which was conducted at a later 

study visit. The women with the missing exposure data are different from those with full data in a 

number of ways including race/ethnicity, BMI, and smoking status.  

These data may also be impacted by recall bias. Because the SWAN reproductive history 

questionnaire was given roughly 25 years following the participants’ last birth, our measure of 

GWG adequacy is vulnerable to systematic error. If women with obesity at midlife are more likely 

to be misclassified with excessive GWG than other parous women, bias could account for some 

or all of the association observed. In this case, both absolute and relative measures of association 

may be biased. 

1.4 Specific Aims and Conceptual Model 

1.4.1 Specific Aims 

Specific Aim 1: To evaluate the number of excessive gestational weight gain (GWG) pregnancies 

as a predictor of obesity in early midlife. Excessive GWG will be defined as a pregnancy resulting 

in live birth with reported weight gain above IOM guidelines for singleton births.  
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Hypothesis 1: The number of excessive GWG pregnancies will be positively associated with odds 

of obesity in early midlife (age 42 to 52), independent of other reproductive factors, physical 

activity, diet, and socioeconomic status. Analysis will also test whether the association varies by 

race/ethnicity or parity.  

Specific Aim 2. Estimate potential bias in estimates of association between GWG and midlife 

obesity. 

Sub-aim 2a: Estimates of association between excessive GWG and obesity will be evaluated for 

selection bias due to participant attrition using multiple imputation of missing exposure values.  

Sub-aim 2b: Estimates of association between excessive GWG and midlife obesity will be 

evaluated for misclassification of the exposure using fixed-parameter sensitivity analysis of bias.  

Specific Aim 3. To evaluate the long-term metabolic and cardiovascular impact of GWG. 

Hypothesis 2: A history of excessive GWG will be positively associated with atherosclerotic 

disease risk score at a mean follow-up of 17 years following early midlife, through a pathway 

largely mediated by midlife obesity.  

Hypothesis 3: A history of excessive GWG will be positively associated with inflammation 

measured by C-reactive protein at a mean follow-up of 17 years following early midlife, through 

a pathway largely mediated by midlife obesity. 
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2.1 Abstract 

Background: Excessive weight gain during pregnancy is common and has been shown to be 

associated with increased long-term maternal weight. However, less is known on whether there 

is a cumulative effect of excessive gestational weight gain (GWG) over multiple pregnancies. 
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Methods: Data from the Study of Women’s Health Across the Nation were used, restricted to 

parous women with no history of stillbirth or premature birth. The effect of the number of 

excessive GWG pregnancies on BMI in midlife (age 42 to 53) was analyzed using multivariable 

linear regression. Fully adjusted models included parity, inadequate GWG, demographic, and 

behavioral characteristics. 

Results:  The 1181 women included in this analysis reported a total of 2693 births. Overall, 466 

(39.5%) were categorized as having at least one pregnancy with excessive GWG. The median BMI 

at midlife was 26.0 kg/m2 (IQR: 22.5, 31.1).  In fully adjusted models, each additional pregnancy 

with excessive GWG was associated with 0.021 higher estimated log BMI (p=0.031). Among 

women with 1 to 3 births, adjusted mean (95% CI) BMI for those with 0, 1, 2, and 3 excessive 

GWG pregnancies was: 25.4 (24.9, 25.9), 26.8 (26.1, 27.5), 27.5 (26.6, 28.4), and 28.8 (27.3, 30.5), 

respectively. 

Conclusion: In this multi-ethnic study of women with a history of term live births, the number of 

pregnancies with excessive GWG was associated with increased maternal BMI in midlife. Our 

findings suggest that prevention of excessive GWG at any point in a woman’s reproductive history 

can have an impact on long-term maternal health. 

2.2 Introduction 

More than one in three adults in the United States have obesity, with the highest prevalence 

among women in midlife.151 Those with obesity are at an elevated risk of adverse health outcomes 

including type 2 diabetes and fatal coronary heart disease.152 Prevention of obesity is complicated 
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by social, behavioral, and biological factors.153 Therefore, the identification of modifiable risk 

factors is a key public health concern.  

A potential opportunity for obesity prevention prior to midlife is during pregnancy. 

Excessive gestational weight gain (GWG) is common33 and is associated with long-term weight.154 

Findings from cohort studies suggest that over 40 percent of pregnant women exceed clinical 

guidelines for GWG adequacy.36,37 This can have a long-term impact on maternal health. Excessive 

GWG has been linked to increased weight43 and higher odds of obesity39,40 over five years after 

pregnancy. Some evidence supports an association remaining more than fifteen years.45,46 

While the current literature consistently shows a positive association of excessive GWG in 

a single pregnancy with maternal weight later in life, the impact of GWG over a woman’s entire 

reproductive history is not well understood. Few studies have considered whether weight 

characteristics across multiple pregnancies have a cumulative effect on maternal health.46,47 None 

to our knowledge have estimated the effect of GWG adequacy in all of a woman’s pregnancies 

while controlling for lifestyle factors. The Study of Women’s Health Across the Nation (SWAN) 

provides an opportunity to incorporate the full reproductive history of participants. The 22-year 

prospective SWAN study has been an important source of data on the menopausal transition and 

reproductive health.148-150 It is one of the few cohort studies that captured lifetime reproductive 

history in US women. The goal of this analysis was to evaluate how GWG adequacy across all a 

woman’s pregnancies contributed to obesity in midlife among primiparous and multiparous 

SWAN participants.  
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2.3 Methods 

2.3.1 Participants 

SWAN Cohort: This analysis involves a subset of women participating in the Study of 

Women’s Health Across the Nation (SWAN), which is an ongoing prospective, multiethnic, multi-

center study of women over the menopausal transition. The SWAN cohort is made up of 3302 

women enrolled from seven cities: Boston, MA, Chicago, IL, Detroit, MI, Los Angeles, CA, 

Oakland, CA, Newark, NJ, and Pittsburgh, PA. Enrollment began in 1996 with the following 

primary eligibility criteria: age 42 to 52, having at least one menstrual period in previous 3 months, 

no exogenous hormone use in previous three months, intact uterus, at least one ovary, and self-

identification with a designated racial/ethnic group recruited by site. All sites enrolled women who 

identified as Non-Hispanic White as well as women from one additional race or ethnic group: Non-

Hispanic Black, Hispanic, Japanese, or Chinese. More information on the sampling strategy for 

SWAN has been published previously 155. IRB approval was obtained with each site institution 

and written consent given by all participants. 

Data Collection: A comprehensive reproductive history questionnaire was administered at 

the thirteenth follow-up visit (conducted in 2011 to 2013), which included prepregnancy weight, 

GWG amount, and gestational age for each live birth. Although SWAN also collected GWG 

amount for each pregnancy at the baseline visit (conducted in 1996 to 1997), prepregnancy weight 

and gestational age was not assessed at that time and all reproductive characteristics in our primary 

analysis were obtained from the visit 13 questionnaire.  

Analytic Sample: The goal of this analysis was to evaluate the association between 

excessive GWG and midlife obesity among women with a history of term, singleton, live births. 
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Therefore, the analytic sample was drawn from women who reported 1 or more live births at term 

in their lifetime (n=2732). Women with a history of anorexia, bulimia, or thyroid disorders (n=303) 

were excluded.  

Of the 2429 women reporting live birth(s) with no history of disordered eating or thyroid 

disease, 1639 completed a reproductive history questionnaire at SWAN follow-up visit 13. Those 

with multigestational births or pregnancies that lasted 5 months or longer resulting in stillbirth or 

premature birth were excluded (n=263). Additionally, women with missing outcome data (n=14), 

missing prepregnancy or gestational weight data for more than one pregnancy or for their only 

pregnancy if primiparous (n=73), as well as one participant who reported a birth after the outcome 

of midlife BMI was measured were excluded. Two additional women who reported GWG outside 

likely biological plausibility as defined in previous literature were excluded 156,157. In sensitivity 

analyses, participants with missing covariate values (n=105) were included using mean 

imputation. Estimates for main predictors did not differ meaningfully between the complete case 

and imputed models (results not shown). Results presented are from complete-case analyses. The 

final analytic sample included 1181 women representing 2693 singleton, term births. Figure 2-1 

outlines participant eligibility and exclusions. 

2.3.2 Measures 

Exposure: Prepregnancy weight and pregnancy weight gain amount for each live birth 

reported were collected by retrospective self-report at visit 13 (when women ranged in age from 

56 to 68). Interviews were conducted in English, Spanish, Cantonese, and Japanese depending on 

site and participant. Prepregnancy BMI was calculated with the retrospective prepregnancy weight 

collected at visit 13 and height measured at baseline (visit 0). Adequacy of GWG, the primary 
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exposure, was calculated for each pregnancy based on the Institute of Medicine’s 2009 guidelines 

31 and characterized as “inadequate,” “adequate,” or “excessive” as per prepregnancy BMI 

category (see Appendix B, Table 1).  The Institute of Medicine guidelines represent the current 

state of knowledge on the impact of GWG on infant and maternal health. Because these are the 

most clinically relevant today, we applied the 2009 recommendations in this analysis as opposed 

to prior standards. 

Alternative BMI cutoffs were used for Japanese and Chinese participants, with overweight 

defined as ≥23 kg/m2 and obese as ≥25 kg/m2. This is consistent with recommendations from the 

Western Pacific Region WHO and based on literature demonstrating higher body fat in Asians at 

lower BMI values compared to European heritage populations.158 Prior research supports these 

cut-offs  for Japanese and Chinese populations living in Asia159-162  and people of Asian heritage 

living in North America 163,164. No adjustments were made to GWG adequacy cut-points as the 

IOM recommends these guidelines across racial/ethnic groups. Recent research has supported use 

of the IOM guidelines to predict maternal outcomes in Asian and Asian American 

populations.165,166 

Outcome: The primary outcome was midlife BMI (kg/m2), calculated from weight and 

height measured at the SWAN baseline visit by trained staff according to a standard protocol when 

women ranged in age from 42 to 53 years. Obesity was defined as BMI ≥ 30 kg/m2 for Caucasian, 

Black, and Hispanic women and BMI ≥ 25 kg/m2 for Japanese and Chinese women as noted above. 

Covariates: Covariates collected at the baseline visit – concurrent with the outcome 

assessment – were age (years), race/ethnicity (Non-Hispanic Black, Chinese, Japanese, Hispanic, 

Non-Hispanic White), education level (categorized as high school or less, some college/college 

degree, or post-college study), age at first pregnancy (years), time since last pregnancy (years), 
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smoking status at midlife (current, previous, or never smoker), adolescent BMI (kg/m2), difficulty 

in paying for basics (somewhat hard/very hard, or not very hard), menopausal status 

(premenopause or early perimenopause), daily caloric intake (kcal), physical activity (score), and 

stress level (score). Study site was also included as a covariate. 

Adolescent BMI was collected by participant recall of high school weight. Menopausal 

status was assessed by self-report of bleeding over the 12 months prior to study visit. Caloric intake 

at midlife was calculated from responses to a modified Block interviewer-assisted food frequency 

questionnaire completed at the SWAN baseline visit 167. The total physical activity score is derived 

from an adaptation of the Kaiser Permanente Health Plan Activity Survey used previously by 

SWAN investigators 168. The score ranges from 1-15 and represents the sum of responses to 11 

physical activity questions covering sports activities, non-sport leisure activities, and 

household/childcare activities. Stress is represented by a score summing the frequency of feeling 

overwhelmed during the past two weeks (1=Never to 5=Very Often) based on four component 

questions in the SWAN screener. Scores range from 4 (low stress) to 20 (high stress).  

Additional reproductive history characteristics retrospectively self-reported at visit 13 were 

parity, number of pregnancies with a gestational hypertensive disorder, and number of pregnancies 

with gestational diabetes.  

2.3.3 Statistical Analysis 

Data transformations: The outcome measure BMI was transformed by natural log when 

treated continuously to account for skewed distribution.  

Descriptive statistics for participant characteristics: We summarized participant 

characteristics for the full analytic sample and stratified by whether a woman had ever experienced 
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a pregnancy with excessive GWG. Categorical characteristics are presented by number and percent 

of women with differences evaluated by chi-square test. Continuous variables with approximately 

normal distributions are presented by mean and standard deviation, and compared by two-sided t 

tests. Adolescent and midlife BMI are presented by median and interquartile range with two-sided 

Wilcoxon p-values. 

Modeling midlife BMI: The primary exposure was the number of pregnancies in a woman’s 

life with excessive GWG. We used nonparametric locally-weighted scatterplot smoothing (loess) 

regression on number of excessive GWG pregnancies to identify the functional form of the 

association with midlife BMI.169 The association between number of pregnancies with excessive 

GWG per woman and midlife log BMI was estimated by linear regression. A priori hypotheses of 

interaction between excessive GWG with parity and with race/ethnicity were tested in separate 

fully-adjusted models.  

Unadjusted, minimally adjusted, and fully adjusted results are reported. Modelling the 

outcome as log-transformed BMI best fits the distribution of the data and demonstrates the 

attenuation of effect with the addition of covariates across models. To provide a clinically-relevant 

interpretation, adjusted means of log BMI were estimated for women with 1 to 3 births (n=1027) 

by treating number of excessive GWG pregnancies categorically. Adjusted means were back-

transformed to the original scale for presentation. Bonferroni-adjusted p-values were calculated 

for pairwise group comparisons. 

Modeling odds of midlife obesity: Odds ratios and 95% confidence intervals for obesity at 

midlife were estimated by logistic regression using the number of excessive GWG pregnancies as 

a continuous predictor. To assess the potential impact of the timing of excessive GWG across 

pregnancies, odds ratios and 95% confidence intervals for obesity were also estimated by logistic 
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regression using the GWG adequacy of each woman’s last birth as a categorical predictor (among 

women with 1 to 3 births).  

Reliability of the GWG Measure: In order to evaluate the reliability of the primary exposure 

variable—self-reported GWG—the difference between the GWG reported at the study baseline 

visit and at follow-up visit 13 were calculated for each pregnancy. Mean and standard deviation of 

these differences as well as Spearman correlations between the two GWG amounts are reported 

stratified by birth number. We tested whether the difference between the two GWG values varied 

by midlife obesity status with two-sample t tests. Because preliminary results indicated poorer 

correlation for GWG amounts reported on the 5th or higher birth, sensitivity analyses were 

performed for the fully adjusted linear regression models of midlife BMI by excluding the n=13 

women with ≥ 5 births. 

All analyses were performed using SAS v. 9.4 (SAS Institute, Cary, NC, USA).  

2.4 Results 

Participant characteristics: In total, 985 women were excluded from the analytic sample 

for missing data. These participants were different from the women included in the present analysis 

in several ways including race/ethnicity and educational attainment (see Appendix B, Table 2). 

Table 2-1 shows participant characteristics by excessive GWG status. Of the 1181 SWAN 

participants included, 715 (60.5%) women reported having no pregnancy with excessive GWG, 

and 466 (39.5%) reported one or more. Appendix B, Table 3 presents a cross tabulation of number 

of excessive GWG pregnancies by parity. Participants reported up to 8 births, with a mean parity 

of 2.3 births. Parity did not differ significantly by whether a woman had any excessive GWG 
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pregnancies. The mean time between the last birth and the outcome measure of midlife BMI was 

15.0 ± 6.73 years. 

Women who had ever experienced an excessive GWG pregnancy—compared to no 

excessive GWG pregnancies—were more likely to be Black and less likely to be Japanese than 

White. Additionally, women who had one or more excessive GWG pregnancies reported higher 

mean adolescent BMI, were younger at first pregnancy, were less likely to be never-smokers, and 

had a lower mean physical activity score at midlife in unadjusted comparisons. The mean age at 

the outcome time point was 46.6 ± 2.64 years. The median midlife BMI was 26.0 kg/m2, and nearly 

one-third of participants had an obese BMI (32.7%). Median midlife BMI was 4.4 units higher 

among those who reported one or more excessive GWG pregnancies compared to those who did 

not (p<0.001). The prevalence of obesity at midlife was also higher among those with one or more 

excessive GWG pregnancies (47.6 %) compared to those with none (22.9%, p<0.001). 

Modeling midlife BMI:  A loess plot indicated an increase in BMI with each additional 

excessive GWG pregnancy (Figure 2-2). A change in slope after the first pregnancy with excessive 

GWG suggested a difference in the effect between none and any compared to the overall number 

of such pregnancies. To address this, we included a dichotomous term representing no excessive 

GWG pregnancies (coded as 0) versus one or more (coded as 1). This adjustment accounts for the 

piecewise nature of the slope.  

Each excessive GWG pregnancy was associated with an increase of 0.078 log BMI units 

in the unadjusted model (Table 2-2). This association was attenuated to a coefficient of 0.020 log 

BMI units in the minimally adjusted model but remained statistically significant. Addition of the 

potential mediating variables—number of pregnancies with hypertensive disorder and number 

with gestational diabetes—did not substantially change the estimated effect size or p-value for the 
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main exposure. Hypertensive disorder was a significant, independent predictor of midlife BMI 

(p=0.001), while gestational diabetes was not (p=0.270). The interaction terms tested between 

excessive GWG with parity and with race/ethnicity were not significant (p > 0.7) and were not 

included in final models (results not shown). Potential collinearity of predictor variables was 

evaluated by variance inflation factor and determined not to be present (all values of VIF were < 

4, results not shown). 

Women with excessive GWG pregnancies had a higher midlife mean BMI compared to 

those with none (Table 2-3). Women with no excessive GWG had an adjusted marginal mean BMI 

of 25.4 kg/m2 at midlife (95% CI=24.9, 25.9) compared to a BMI of 28.8 kg/m2 for those reporting 

excessive GWG in three pregnancies (95% CI=27.3, 30.5). The adjusted mean BMI values for 

each increase from 1 to 3 excessive GWG pregnancies show a statistically significant monotonic 

relationship.  

Modeling odds of midlife obesity: Each additional pregnancy with excessive GWG was 

associated with a 64% increase in odds of obesity at midlife (OR=1.64, 95% CI= 1.20, 2.25) in the 

fully adjusted model (p=0.002, see Figure 2-3). We also evaluated the relationship between GWG 

adequacy in the last pregnancy and odds of midlife obesity for those with 1 to 3 births (Figure 2-

4). Among women with 1 birth, having excessive gestational weight gain in their pregnancy was 

not significantly associated with odds of obesity at midlife (p=0.719). Among women with two 

births, the association between excessive GWG in the second pregnancy and obesity was non-

significant (p=0.185), although suggestive of increased odds with an OR of 1.78 (95% CI=0.93, 

3.40). Excessive GWG in the third of three births was significantly associated with 3.5 times higher 

odds of obesity at midlife (OR= 3.54, 95% CI=1.37, 9.14, p=0.027) in fully adjusted models 

including adjustment for the GWG adequacy of the first and second pregnancies.  
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Reliability of GWG Measure: The mean differences and Spearman correlations of self-

reported GWG amount collected at the baseline visit and again at follow-up 13 for each birth are 

presented in Appendix B, Table 4.  The mean difference ranged from a low of 1.8 pounds for the 

first birth to a high of 9.0 pounds for the 6th birth. Self-report in this cohort showed moderate 

reliability for the first 4 births reported, with Spearman R2 values ranging from 0.73 for the first 

birth to 0.57 for the fourth birth. Correlation of GWG amount per birth was significant (p<0.001) 

for the first 4 births reported, but not for the 5th birth and beyond.  

The mean difference in GWG amounts reported, stratified by birth number, did not differ 

by midlife obesity status (Satterthwaite p-values > 0.17 per birth). However, the variability of 

mean difference was greater among women with an obese midlife BMI compared to those without 

(equality of variance F-test p-values < 0.01 per birth). Linear regression models of log-transformed 

BMI that excluded women with 5 or more births showed similar results to those of the primary 

analysis (Appendix B, Table 5). In fully adjusted models, excluding women with 5 or more births 

strengthened the association between the number of excessive GWG pregnancies and midlife BMI 

(Beta= 0.025, p= 0.017), and attenuated the effect of having any versus no excessive GWG 

pregnancies (Beta= 0.036, p=0.062). 

2.5 Discussion 

In this multi-ethnic cohort of parous women, 39.5% reported GWG that exceeded IOM 

recommendations in at least one pregnancy, consistent with prior observations.33,36,37 The outcome 

of midlife obesity was experienced by 32.7% of women, measured at an average age of 46.6 (± 

2.64). Nearly half (47.6%) of women with excessive GWG had an obese BMI at midlife, compared 
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to 22.9% of those who had never experienced excessive GWG. Our analysis found that each 

pregnancy with excessive GWG in a woman’s life was associated with a 64% increase in the odds 

of obesity at midlife. This association did not vary by race/ethnicity and was independent of factors 

including parity, years since last birth, and physical activity level. Finally, results comparing the 

odds of obesity by GWG adequacy in a woman’s last pregnancy were inconclusive. This suggests 

that the total number of excessive GWG pregnancies may have more influence on maternal weight 

than the order of GWG adequacy across pregnancies.  

To the current literature, our study adds evidence of a cumulative effect of multiple 

pregnancies with excessive GWG on long term maternal health, independent of parity. Beyond the 

impact of ever versus never experiencing an excessive GWG pregnancy, each additional excessive 

GWG pregnancy contributed to higher mean midlife BMI. Notably, we demonstrated that this 

association extends to women of Japanese and Chinese ethnic backgrounds, who are rarely 

included in US studies of GWG.166 

Our results are consistent with previous studies demonstrating an association between 

excessive GWG in a single pregnancy and increased long-term maternal weight.43,44,154 Few 

studies to date have sought to incorporate weight gain over multiple pregnancies.46,47 Cohen et al. 

found that the prevalence of obesity at age 40 increased with the number of excessive GWG 

pregnancies in a nationally-representative cohort.46 Consistent with our study, the ordering of 

GWG adequacy across pregnancies did not affect the prevalence of obesity. Using the same cohort 

as the Cohen analysis, Abrams et al47 estimated the impact of eliminating excessive GWG on 

incident obesity at a population level. Their analysis found that intervening in either the first or 

second pregnancy could significantly reduce the prevalence of midlife obesity among mothers.  
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The inter-pregnancy period is also of interest in understanding the impact of GWG across 

multiple pregnancies. Excessive GWG is positively correlated with increased postpartum weight 

retention.117,118,170 Additionally, much of the effect of GWG on long-term maternal weight may be 

mediated through short term postpartum weight retention.44 However, GWG adequacy remains an 

important opportunity for prevention, as the amount of weight retained postpartum depends on the 

amount gained during pregnancy. Further research is necessary to clarify the role of pregnancy 

complications. In our analysis, the number of pregnancies with hypertensive disorder was 

significantly associated with midlife BMI in fully adjusted models, while gestational diabetes was 

not. This finding should be investigated further in studies with more precise measures of pregnancy 

complications. In addition, the association between GWG and midlife weight may differ for 

women with preterm births. While we excluded women with a history of preterm birth, work by 

McClure et al. observed an association between excessive GWG in a single pregnancy and later 

maternal weight in a cohort that oversampled for small-for-gestational-age and preterm births.39 

Future research measuring GWG across multiple pregnancies including those with complications 

and preterm delivery would add to our understanding of the topic in a broader population of 

women.  

Our study has several strengths. As noted, the ability to measure reproductive 

characteristics for all of our participants’ births is unique in the literature. We were also able to 

capture GWG adequacy. Adequacy, which incorporates prepregnancy BMI, is a better 

representation of the health impacts of pregnancy weight compared to GWG amount alone. The 

use of adequacy also allowed us to adjust for inadequate GWG, so that adjusted models do not 

conflate insufficient gain with our definition of healthy gain. In addition, we had clinical 

measurement for the outcome of midlife BMI, rather than relying on self-reported weight and 
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height. Finally, our analysis leveraged a key strength of SWAN, the depth of descriptive covariates 

available for this cohort. The collection of high-quality measures of lifestyle characteristics 

including diet, physical activity, and stress enabled us to adjust for a wide range of potentially 

confounding characteristics. 

Limitations of this study include the retrospective exposure measurement and loss to 

follow-up in the cohort. Our measure of GWG relied on retrospective self-report collected an 

average of 30 years after the last birth. Previous research suggests that women often underestimate 

prepregnancy weight and overestimate GWG.128 Therefore, the prevalence of excessive GWG may 

be overestimated in studies relying on self-recall. Misclassification of women with adequate GWG 

as having excessive GWG could bias estimates toward the null. A meta-analysis by Headen et al. 

found moderate misclassification of GWG adequacy in studies relying on maternal recall of 

weight. Among studies measuring weight characteristics years after birth, mean deviation from 

true values was less than 1kg. However, the magnitude of error varied widely and was significantly 

greater among women with higher BMIs and those of minority race/ethnicity. In our data, repeated 

measures of self-reported GWG taken an average of 15.5 years apart showed moderate reliability, 

and the mean difference did not vary by obesity status. Moreover, the primary results were robust 

in sensitivity analyses.  Smaller correlations between the two reports for participants with 5+ births 

may reflect increased difficulty recalling weight gain for each individual pregnancy. Despite 

known error, maternal recall has been used often in the literature as a practical measure to capture 

reproductive history. Collecting data prospectively for our hypothesis would be challenging given 

the long time period between exposures in pregnancy and midlife outcomes. 

Secondly, the loss of participants between the baseline visit and follow-up visit 13 was 

differential. Women who were excluded from this analysis due to missing data were different from 
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included participants by several attributes. We sought to address this by adjusting for 

characteristics predictive of loss to follow-up such as stress, physical activity, and difficulty paying 

for basics.171 However, it is possible that our estimates include selection bias due to loss to follow-

up. 

Our results contribute to growing evidence that excessive GWG impacts long-term 

maternal health. The implications of these findings are particularly relevant in light of recent 

research that questions the strength of association of GWG adequacy with gestational and birth 

outcomes.172 Interventions to promote adequate GWG serve as maternal obesity prevention, in 

addition to impacts on birth and perinatal outcomes. Because over 90 percent of pregnant women 

receive some prenatal care in the US,173 pregnancy can be seen as an important opportunity to 

protect women’s long-term health. 

2.6 Conclusion 

In summary, our study found that each additional birth with excessive GWG was associated 

with an increase in mean maternal BMI at midlife. The cumulative effect we observed over 

multiple pregnancies implies that prevention of excessive GWG at any point in a woman’s 

reproductive history can have an impact on long-term health. This highlights the importance of 

clinical counseling about healthy weight during pregnancy as an approach to obesity prevention. 

Studies with clinical measures of gestational weight gain should be conducted to confirm our 

findings. Further research could inform public health strategies for obesity prevention, as well as 

the clinical approach to maternal weight gain. 
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2.7 Tables and Figures 

Table 2-1 Aim 1 Participant Characteristics 

  
    

 Pregnancies with Excessive 
Gestational Weight Gain  

  

    All Women None One or More p 

Number of Women (%)   1181 715 (60.5) 466 (39.5)  

Sociodemographic Characteristics         

Age, mean ± SD 46.6 ± 2.64 46.9 ± 2.67 46.3 ± 2.57 <.001 

Race/Ethnicity, n (%)         <.001 
  Black 309 (26.2) 167 (23.4) 142 (30.5)   
  White 559 (47.3) 323 (45.2) 236 (50.6)   
  Chinese 116 (9.8) 83 (11.6) 33 (7.1)   
  Hispanic 72 (6.1) 48 (6.7) 24 (5.2)   
  Japanese 125 (10.6) 94 (13.1) 31 (6.7)   

Education, n (%)      0.664 
  High school or less 253 (21.4) 147 (20.6) 106 (22.7)   
  Some college/degree 652 (55.2) 400 (55.9) 252 (54.1)   
  Post-college study 276 (23.4) 168 (23.5) 108 (23.2)   

Smoking Status, n (%)      <.001 
  Never smoker 724 (61.3) 471 (65.9) 253 (54.3)   
  Past smoker 297 (25.1) 164 (22.9) 133 (28.5)   
  Current smoker 160 (13.5) 80 (11.2) 80 (17.2)   

Adolescent BMI, median (IQR) 
20.5 (19.0, 
22.2) 

20.2 (18.8, 
21.6) 

21.0 (19.4, 
22.9) 

<.001 

Difficulty Paying for Basics, n (%)      0.340 
  Very or somewhat hard 414 (35.1) 243 (34) 171 (36.7)   
  Not very hard 767 (64.9) 472 (66) 295 (63.3)   

Menopausal Status, n (%)      0.665 
  Early perimenopause 516 (43.7) 316 (44.2) 200 (42.9)   
  Pre menopause 665 (56.3) 399 (55.8) 266 (57.1)   

Perceived Stress Score, mean ± SD 8.4 ± 2.90 8.4 ± 2.81 8.5 ± 3.04 0.482 

Total Caloric Intake, mean ± SD 1826 ± 725.7 1816 ± 737.2 
1842.6 ± 
708.2 

0.536 

Physical Activity Score, mean ± SD 7.9 ± 1.76 8.0 ± 1.75 7.7 ± 1.76 0.009 

Reproductive History         

Parity, mean ± SD 2.3 ± 1.07 2.2 ± 1.07 2.3 ± 1.07 0.127 

Years Since Last Birth, mean ± SD 15.0 ± 6.73  15.2 ± 6.80 14.8 ± 6.62 0.280 
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Age Pregnant First Time, mean ± SD 24.1 ± 5.48 24.4 ± 5.33 23.7 ± 5.68 0.017 

Number of Excessive GWG 
Pregnancies, n (%)   

   ─ 

  0 715 (60.5) 715 (100) ─   
  1 263 (22.3) ─ 263 (56.4)   
  2 138 (11.7) ─ 138 (29.6)   
  3 + 65 (5.5) ─ 65 (13.9)   

Number of Inadequate GWG 
Pregnancies, n (%)   

   ─ 

  0 723 (61.2) 315 (44.1) 408 (87.6)   
  1 216 (18.3) 170 (23.8) 46 (9.9)   
  2 156 (13.2) 148 (20.7) 8 (1.7)   
  3 + 86 (7.3) 82 (11.5) 4 (0.9)   

Outcome Status      

Body mass index, median (IQR) 
26.0 (22.5, 
31.1) 

24.5 (21.8, 
28.2) 

29.0 (24.6, 
34.6) 

<.001 

Obesity, n (%)  386 (32.7) 164 (22.9) 222 (47.6) <.001 
 

SD, standard deviation; IQR, interquartile range; BMI, body mass index; GWG, gestational weight gain. 
 

     
 

 

 

 

 

 

 

 

 

 

 

Table 2-1 Continued 
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Table 2-2 Change in Log-Transformed BMI at Midlife per Number of Pregnancies with Excessive 

Gestational Weight Gain 

Predictor Slope se p 

Model 1, Unadjusted   

Number Excessive GWG Pregnancies 0.078 0.007 <.001 

    
Model 2, Minimally Adjusted*  

Number Excessive GWG Pregnancies 0.02 0.01 0.036 

Number Inadequate GWG Pregnancies -0.012 0.005 0.03 

Any Excessive GWG Pregnancies (0/1) 0.048 0.018 0.008 

Parity 0.009 0.006 0.143 

    
Model 3, Fully Adjusted†  

Number Excessive GWG Pregnancies 0.021 0.01 0.031 

Number Inadequate GWG Pregnancies -0.011 0.005 0.042 

Any Excessive GWG Pregnancies (0/1) 0.044 0.018 0.015 

Parity 0.008 0.006 0.193 

Number Pregnancies with Hypertensive 
Disorder 

0.044 0.014 0.001 

Number Pregnancies with Gestational 
Diabetes 

0.02 0.019 0.27 

 

 

Table 2-3 Adjusted marginal mean BMI in midlife by number of pregnancies with excessive gestational 

weight gain, among women with 1 to 3 births 

Number Excessive GWG Pregnancies  LS Mean BMI (95% CI)*   

 0 (n=625) 25.35 (24.85─25.85)  

 1 (n=233) 26.80 (26.11─27.51)  

 2 (n=130) 27.46 (26.59─28.36)  

  3 (n=39) 28.83 (27.25─30.50)  

BMI, body mass index; GWG, gestational weight gain. 

*Data are least squares mean BMI from fully adjusted model. Model adjusted for number of 
pregnancies with inadequate GWG, parity, study site, age at outcome measure, 
race/ethnicity, education, smoking, adolescent BMI, difficulty paying for basics, menopausal 
status, stress score, caloric intake, physical activity score, years since last birth, age first 
pregnant, number of pregnancies with hypertensive disorder and number pregnancies with 
gestational diabetes. 
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Figure 2-1 Aim 1 Participant and Data-Collection Flow-Chart 
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Figure 2-2 Loess Plot of Midlife BMI by Number of Excessive GWG Pregnancies 
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Figure 2-3 Adjusted Odds Ratios and 95% Confidence Intervals of Midlife Obesity 

Figure Legend: OR, odds ratio; GWG, gestational weight gain 
Model adjusted for variables shown as well as study site, age at outcome measure, race/ethnicity, 
education, smoking, adolescent BMI, difficulty paying for basics, menopausal status, stress score, caloric 
intake, physical activity score, years since last birth, and age first pregnant. 
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Figure 2-4 Odds Ratios and 95% Confidence Intervals of Midlife Obesity by GWG Adequacy in the Last 

Pregnancy, Adjusted for GWG Adequacy of Prior Pregnancies, Among Women with 1 to 3 Births 
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3.1 Abstract 

Background: Quantitative bias analysis is an accessible, but under-utilized, tool to address 

systematic error in epidemiology studies. We present a multiple-bias analytic approach to 

estimate the association between excessive gestational weight gain and maternal midlife obesity. 

Our objective was to account for selection bias due to missing data and misclassification bias due 

to self-report.  

Methods: Participants were from the multi-ethnic Study of Women’s Health Across the Nation. 

Obesity was defined by waist circumference measured in 1996 to 1997 when women were age 

42 to 53. Gestational weight gain was measured retrospectively by self-recall and was missing 

for over 40% of participants. We estimated relative risk (RR) and 95% confidence intervals (CI) 

of obesity at midlife for presence versus absence of excessive gestational weight gain in any 

pregnancy. We imputed missing data via multiple imputation, and used weighted regression to 

account for misclassification.  
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Results: Among the 2,339 women in this analysis, 937 (40.1%) experienced obesity in midlife. 

In complete case analysis, women with any excessive gestational weight gain had an estimated 

40% greater risk of obesity (RR=1.40, CI=1.13, 1.74), adjusted for confounders. Imputing data 

resulted in a similar estimate (RR=1.38, CI=1.16, 1.64), while RR weighted for misclassification 

ranged from 1.10 (0.91, 1.34) to 4.45 (3.49, 5.68) depending on the assumed sensitivity and 

specificity. Only models with improbable assumptions produced CIs that included a null result.  

Conclusions: The inference of a positive association between excessive gestational weight gain 

and midlife obesity is robust to methods accounting for selection and misclassification bias. 

3.2 Introduction 

Quantitative bias analysis is an important but under-utilized tool in life course 

epidemiology. To measure characteristics that develop over time, studies often require long 

follow-up or retrospective data collection. Both approaches are vulnerable to systematic error. This 

error may or may not bias estimates of association away from the true effect, and intuition around 

these biases is generally poor.174,175 A range of accessible analytic options have been developed to 

quantify the potential bias around an estimate.124,176 

We present a multiple-bias analysis of the association observed between excessive 

gestational weight gain and midlife obesity in the Study of Women’s Health Across the Nation. 

This study is a longitudinal cohort with over twenty years of prospective follow-up. It is one of the 

few studies in the United States to collect data on each birth in a participant’s lifetime. However, 

like many longitudinal studies, some measures are vulnerable to systematic error.  
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We identified two potential sources of systematic error in the reproductive history data: 

participant attrition and use of self-recall to measure pregnancy characteristics. Nearly one third 

of cohort participants who would otherwise be eligible for this analysis had missing data, primarily 

due to study dropout. Because participant attrition is often related to demographic and clinical 

characteristics that are associated with health outcomes,125-127 substantial loss to follow-up may 

induce critical selection bias. Misclassification bias was also a concern in these data. Our primary 

exposure, gestational weight gain, was measured by retrospective self-report at an average of 30 

years after the participants’ last birth. Self-recall is a common measure for pregnancy weight 

characteristics128 and moderate validity and reliability have been documented.128-130 However, 

measurement error of self-recalled pregnancy weight characteristics has been observed to bias 

associations between gestational weight gain and birth outcomes.177 

Having identified these challenges, our objective was to estimate the association between 

excessive gestational weight gain and maternal obesity at midlife in the cohort, accounting for 

selection and misclassification biases.   

3.3 Methods 

3.3.1 Participants 

The Study of Women’s Health Across the Nation is a prospective, multiethnic, multi-center 

study designed to follow women through the menopause transition. The study was conducted at 

seven sites: Boston, MA, Chicago, IL, Detroit, MI, Los Angeles, CA, Oakland, CA, Newark, NJ, 

and Pittsburgh, PA. Each site recruited women who identified as Non-Hispanic White as well as 
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women from one additional race or ethnic group: Non-Hispanic Black, Hispanic, Japanese, or 

Chinese. Enrollment began in 1996 with the following primary eligibility criteria: age 42 to 52, 

having at least 1 menstrual period in the previous 3 months, no exogenous hormone use in the 

previous 3 months, intact uterus, at least 1 ovary, and self-identification with a designated 

racial/ethnic group recruited by site. More information on the sampling strategy for the study has 

been published previously.155 IRB approval was obtained with each site institution and written 

consent given by all participants. 

Participants were eligible for this analysis if they reported a history of live birth(s) at the 

baseline interview (conducted from 1996 to 1997). A subset of these eligible women were retained 

through the 13th follow-up visit (conducted in 2011 to 2013). This visit included a full reproductive 

history questionnaire, in which participants were asked to recall prepregnancy weight and 

gestational age for each birth. This allowed us to calculate adequacy of gestational weight gain per 

birth and account for preterm births.  

Women were excluded from this analysis if they reported at baseline a history of stillbirth 

or multifetal birth. Women with a history of underactive thyroid were also excluded due to known 

associations between hypothyroidism and pregnancy complications,178,179 and because we did not 

know whether the reported thyroid condition was diagnosed before, during, or after pregnancies. 

Women were excluded for missing the outcome (midlife waist circumference), pregnancy outcome 

data (i.e. live birth, stillbirth, miscarriage, or abortion), later reporting a birth that occurred after 

the outcome assessment, or later reporting conflicting information on pregnancy outcomes.  
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3.3.2 Measures 

Outcome: Midlife Abdominal Obesity. The primary outcome was midlife abdominal 

obesity based on waist circumference measured at the cohort baseline visit when women ranged 

in age from 42 to 53 years. Waist circumference was measured by trained staff according to a 

standard protocol. Abdominal obesity was defined as a waist circumference > 80 cm for Japanese 

and Chinese women and ≥ 88 for White, Hispanic, and Black women. All participants included in 

the analytic sample had a measure for waist circumference, therefore no outcome values were 

imputed.  

Exposure: History of Excessive Gestational Weight Gain. The primary exposure was 

defined as ever-having a pregnancy with excessive gestational weight gain. Total gestational 

weight gain for each live birth was collected by retrospective self-report at visit 13, when women 

ranged in age from 56 to 68. Prepregnancy body mass index (BMI) was calculated with 

retrospective prepregnancy weight collected at visit 13 and height measured in-clinic at the 

baseline visit. Each pregnancy was categorized as having inadequate, adequate, or excessive 

gestational weight gain per the Institute of Medicine’s 2009 guidelines.31 Pregnancies reported as 

term births were categorized by adequacy range, and those reported as preterm were categorized 

by rate (see Appendix B, Table 1).  

Covariates. Covariates collected at the baseline visit – concurrent with the outcome 

assessment – were age (years), race/ethnicity (Non-Hispanic Black, Chinese, Japanese, Hispanic, 

Non-Hispanic White), parity, education level (categorized as high school or less, some 

college/college degree, or post-college study), age at first pregnancy (years), time since last 

pregnancy (years), smoking status (current, previous, or never smoker), adolescent BMI (kg/m2), 

difficulty in paying for basics (somewhat hard/very hard, or not very hard), menopausal status 
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(premenopause or early perimenopause), daily caloric intake (kcal), physical activity (score), and 

stress level (score). Study site was also included as a covariate. 

Characteristics measured by retrospective self-report at follow-up 13 were maternal weight 

prior to the first pregnancy (transformed into categorical BMI, see Appendix B, Table 1), 

gestational age for each pregnancy, number of pregnancies with a gestational hypertensive 

disorder, and number of pregnancies with gestational diabetes.  

Auxiliary Variables. Multiple imputation models included all analysis variables and 

characteristics we hypothesized to be associated with loss-to-follow up, based on previous 

literature.125-127,180-186 These were: current health insurance (yes/no), current employment status 

(yes/no worked for pay in the last 2 weeks), language acculturation (high versus low or medium), 

domestic violence (yes/no report of being “Slapped, kicked, or otherwise hurt by husband/partner 

or someone else important to you” in the past year), very upsetting or stressful life event in the 

past year (yes/no), marital status (yes/no currently married), comorbidities (yes/no self-report of 

ever had: heart attack/MI or angina, diabetes, arthritis or osteoarthritis, high blood pressure or 

hypertension, high cholesterol, overactive thyroid, osteoporosis, stroke, angina, or heart attack), 

social support (score 0-16), depression (CES-D scale score 0-60), hostility/cynicism (score 0-13), 

and four quality of life scores (0-100) calculated from the 36-Item Short Form Health Survey (SF-

36): physical functioning, pain, vitality, and social functioning. All auxiliary variables were 

measured at the baseline visit.  

3.3.3 Statistical Analysis  

Participant Characteristics. Participant characteristics are presented overall and stratified 

by missing data status. We also summarized participant characteristics among women with 
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complete data, stratified by whether women had reported any pregnancies with excessive 

gestational weight gain or none. Categorical variables are shown as number (%), continuous 

variables with approximately normal distribution are shown as mean and standard deviation, and 

those with a skewed distribution are shown by median with first and third quartile values.  

Analysis Models. Exposure, outcome, and confounding characteristics were determined 

with the guidance of a directed acyclic graph (Appendix B, Figure 1). Based on preliminary 

analysis, we additionally hypothesized that preterm birth status modified the effect of gestational 

weight gain adequacy on maternal midlife waist circumference. The base model estimated relative 

risk and 95% confidence intervals of abdominal obesity for ever- versus never-having excessive 

gestational weight gain using generalized linear regression under the Poisson distribution with a 

log link.  

Accounting for Missing Data. To assess which characteristics drove missingness in our 

data, we modeled missingness with logistic regression as a function of all auxiliary variables (listed 

above) as well as the analysis variables that were available for all participants: site, race/ethnicity, 

parity, age, waist circumference, smoking, education, difficulty paying for basics, menopause 

status, stress score, caloric intake, and physical activity. We structured this descriptive analysis as 

a backward selection regression with study site and race/ethnicity forced into the model.  

We imputed missing reproductive exposures as continuous values representing the number 

of pregnancies with excessive gestational weight gain, inadequate gestational weight gain, 

hypertensive disorder of pregnancy, and gestational diabetes. Some confounder variables also had 

missing data and were imputed. Our imputation method was multiple imputation by chained 

equations (MICE). MICE is a widely used, flexible method to address missing data. Because we 

hypothesized an interaction between inadequate gestational weight gain and preterm birth in the 
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data structure, we looked for an imputation method that could accommodate non-linear 

relationships. Classification and regression tree (CART) algorithms have been put forward in the 

literature as a promising method to create imputed datasets that maintain interactions.136,187,188 We 

also included a more traditional approach using predictive mean matching and logistic regression 

within the MICE model for comparison. Appendix B, Figure 2 illustrates the imputation process 

using CART and traditional MICE. 

We created 10 imputed datasets for each imputation method. Diagnostics included visual 

inspection of trace plots to assess convergence of models. In addition, we compared the 

distributions of the primary imputed variables—the number of pregnancies with excessive 

gestational weight gain, number with inadequate gestational weight gain, and number of preterm 

births—between observed and imputed values. While under the missing at random assumption the 

distribution of imputed versus observed values may differ, distributions should be consistent 

conditional on the probability of being observed. Therefore, we also estimated predicted 

probabilities of being observed within each imputed dataset, averaged the probabilities across 

imputed datasets per participant, and plotted them against each imputed variable.189 

Accounting for Misclassification. To adjust estimates for misclassification of the exposure, 

we first calculated misclassification weights based on published sensitivity and specificity values 

for gestational weight gain recall.128,190,191 We then estimated relative risk of midlife obesity in 

univariate and confounder-adjusted models weighted for misclassification.146 We checked the 

resulting weighted risk estimates against alternative bias adjustment methods.144,147  

Validation studies of pregnancy weight characteristics measured by maternal recall are well 

summarized by Headen et al.128 Women often underestimate pre-pregnancy weight177 and 

overestimate gestational weight gain, resulting in a trend of over-reported excessive gestational 
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weight gain prevalence in the literature.128 Among studies measuring pregnancy weight 

characteristics multiple years after birth, the mean deviation from the true value was less than 1 

kg. However, the magnitude of error varied widely among women and was significantly greater 

among those with higher BMIs and those of minority race/ethnicity.128 These trends have been 

supported in more recent validation studies.129,192-194 

Because studies define misclassification inconsistently, with most presenting only a 

measure of correlation, we went to supplementary materials when available to directly calculate 

observed sensitivity and specificity as guideposts in creating weights. We assumed that women’s 

self-recall of pregnancy weight was better than chance, i.e. sensitivity + specificity > 1.  

McClure et al190 assessed the validity of maternal recall of gestational weight gain 

adequacy among 503 women at an average follow-up of 8 years postpartum. Based on their 

published data, we calculated that the overall sensitivity and specificity of recalling excessive 

gestational weight gain in a single pregnancy was 80% and 73%, respectively. Bodnar et al191 

compared gestational weight gain adequacy based on birth certificate data, which relies on self-

report of prepregnancy weight collected at delivery, with medical records in 1204 women. This 

validation sample was selected using a balanced design stratified by race, weight, and gestational 

age categories from a large birth registry sample (n=853,559). From supplementary materials we 

calculated sensitivity of 85% and specificity of 86% within the validation sample for reporting 

high gestational weight gain (defined as reporting total gestational weight gain > 80th percentile). 

We also applied these rates to the reported agreement in the larger birth registry sample, resulting 

in sensitivity of 79% and specificity of 92%. We then tested a range of sensitivity and specificity 

values around these benchmarks.  
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We further hypothesized that women with the outcome of abdominal obesity at midlife 

may be more likely to over-report excessive gestational weight gain than those without obesity. 

This misclassification scenario is of particular concern as it could induce an artifactual positive 

association between excessive gestational weight gain and midlife obesity. We tested 20 

combinations of sensitivity and specificity stratified by outcome status. Our references for 

differential misclassification were again from supplementary data published by Bodnar.191 Within 

the validation sample, women with an obese BMI (n=575) had sensitivity of 76% and specificity 

of 85% compared to those with underweight, normal, or overweight prepregnancy BMI (n=618), 

who had sensitivity of 94% and specificity 87%. When agreement was applied to the registry 

sample, women reported with lower sensitivity and higher specificity compared to the validation 

sample (Table 3-5).  

Software. Imputation models were run using the R mice package195 in R version 3.6.1.196 

All other analyses were run in SAS v. 9.4 (SAS Institute, Cary, NC, USA). 

3.4 Results 

3.4.1 Participant Characteristics 

The analytic sample included 2339 women representing 5605 births. Reproductive history 

or covariate data were missing for 999 (42.7%) participants (Figure 3-1). Of the 999 women with 

missing data, 590 (59.1%) were inactive in the study by visit 13, including 71 deaths. Women with 

missing data were more likely to be Black or Hispanic than White, had higher mean parity (2.5 

births versus 2.3 births), and were more likely to have lower educational attainment compared to 
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those with complete data (Table 3-1). Women with missing data were more likely to experience 

the outcome of midlife abdominal obesity (45.2%) compared to those with complete data (36.3%).  

Among women with full data (n=1340 participants, 3097 births), 544 (40.6%) reported at 

least one pregnancy with excessive gestational weight gain and 151 (11.3%) reported one or more 

preterm births (Table 3-2). Women who had experienced any excessive gestational weight gain 

pregnancy(ies) were more likely to have an overweight or obese BMI prior to their first pregnancy 

and to have abdominal obesity in midlife compared to parous women with no excessive gestational 

weight gain. There was little difference in reported stress, caloric intake, and physical activity at 

midlife between the gestational weight gain groups.  

3.4.2 Complete Case Analysis 

Among women with complete data, ever-having excessive gestational weight gain was 

associated with a relative risk for abdominal obesity of 1.81 (1.57, 2.09) in the unadjusted model 

(Table 3-3). This was attenuated to 1.40 (1.13, 1.74) in the confounder-adjusted model.  This model 

included an interaction term between inadequate gestational weight gain and preterm birth (RR: 

1.18, 95% CI: 1.01, 1.37). RR estimates for the inadequate gestational weight gain pregnancies 

and preterm births main effects were each less than one with confidence intervals that included 

one. The interaction term indicates that the relative risk for women with the combination of both 

inadequate gestational weight gain pregnancies and preterm births (compared to no inadequate 

gestational weight gain pregnancies and no preterm births) is not as low as the product of the two 

individual effects.  
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3.4.3 Accounting for Missing Data 

Our logistic regression to model missingness with backward variable selection indicated 

that study site, lower language acculturation, lower educational attainment, lack of health 

insurance, smoking, higher parity, lower baseline age, and lower social support were associated 

with increased odds of having missing data (Appendix B, Table 6).  

Compared to the observed data, imputed datasets showed higher proportions of women 

with excessive gestational weight gain pregnancies and preterm births (Appendix B, Table 7). 

Diagnostic scatter plots of the number of excessive gestational weight gain pregnancies against the 

predicted probability of being observed per woman appeared consistent between the observed and 

imputed data (Appendix B, Figure 3).  

Table 3-3 shows estimates of the risk of midlife obesity for the main exposures in 

unadjusted and confounder-adjusted models based on the observed and the imputed data. Both 

imputation methods resulted in consistent but diminished associations between ever-had excessive 

gestational weight gain and midlife abdominal obesity. Pooled estimates in confounder-adjusted 

models attenuated the observed RR (95% CI) of 1.40 (1.13, 1.74) to 1.31 (1.12, 1.54) using 

traditional MICE datasets and 1.38 (1.16, 1.64) using CART-imputed datasets. Pooled estimates 

were consistent with the complete case analysis in that the risk associated with excessive 

gestational weight gain was stronger than that of parity. However, no meaningful interaction 

between inadequate gestational weight gain and preterm birth was detected in the analyses of the 

imputed data (RR: 1.03, 95% CI: 0.96-0.97, 1.10 in both sets of imputed data). As expected, pooled 

estimates had improved precision over the complete case analysis.  
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3.4.4 Accounting for Misclassification 

Of the 1340 women observed with a full reproductive history questionnaire, 269 of the 486 

(55.4%) with midlife obesity reported ever-having excessive gestational weight gain, compared to 

275 of the 854 (32.2%) without midlife obesity. All estimates weighted for non-differential 

misclassification were further from the null compared to the observed estimate (Table 3-4). At the 

guidepost values of sensitivity=80% and specificity=75%, the RR (95% CI) for obesity increased 

from 1.81 (1.57, 2.09) to 3.11 (2.60 3.72) in the univariate model and from 1.40 (1.13, 1.74) to 

2.32 (1.91, 2.82) when adjusting for confounders.  

Table 3-5 presents estimates of RR of obesity for those with excessive gestational weight 

gain compared to those without, weighted for misclassification assuming that misreporting 

differed by outcome status. Our starting point assumption of sensitivity=95%, specificity=85% 

(without obesity), sensitivity=75%, specificity=85% (with obesity), resulted in a univariate RR of 

3.34 (2.76, 4.03) and confounder-adjusted RR of 2.61 (2.11, 3.22). In all combinations tested, only 

the confounder-adjusted model assuming 10-point lower sensitivity and 20-point higher specificity 

among those without midlife obesity compared to those with obesity moved the confidence interval 

for the RR to include a null result. Models weighted for sensitivity and specificity values based 

directly from published validation studies moved estimates away from the null. Figure 3-2 

illustrates the results of scenarios assuming sensitivity of 75 and 85% among those without midlife 

obesity.  
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3.5 Discussion 

In this multi-ethnic cohort of US women, the association between a history of excessive 

gestational weight gain and risk of midlife obesity persisted after accounting for selection and 

misclassification biases. Imputation of missing exposure data in over 40% of participants 

attenuated the point estimate but did not change the interpretation. Misclassification due to self-

recall of the exposure was unlikely to account for the association. Most plausible scenarios to 

adjust for misclassification moved estimates away from the null. 

Excessive gestational weight gain has been linked to maternal obesity in a number of 

observational studies.39-47 Our findings provide further evidence that excessive gestational weight 

gain is a risk factor for long-term maternal obesity, and a stronger driver of maternal weight than 

parity.40,41,46 However, the relationships between parity, prepregnancy BMI, and long-term 

maternal weight are not well understood.197 Higher pre-pregnancy BMI is a risk factor for 

excessive gestational weight gain.198-200 Women with higher prepregnancy BMI are more likely to 

experience excessive gestational weight gain and have higher postpartum BMI compared to other 

parous women. Our data support an association between excessive gestational weight gain and 

midlife obesity independent of both parity and prepregnancy BMI.39,44 

Most relationships observed in the complete case analysis were maintained in the imputed 

data. Pooled estimates across the two imputation methods were similar. In addition, distributions 

of imputed data from both methods were comparable to observed data when plotted against the 

probability of being observed. One difference in the pooled imputation results compared to 

complete case results was an attenuation of the interaction term between inadequate gestational 

weight gain and preterm birth such that the interaction was no longer clinically meaningful. The 
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mitigation of this estimate may suggest that the observed interaction is an artifact of the missing 

data pattern, as the CART algorithm should represent interactions if present in the data.  

Self-recall is a practical approach to collect reproductive history information. We 

previously reported on the reliability of gestational weight gain self-report in this cohort.201 

Repeated recall of gestational weight gain amount was moderately correlated, with poorer 

reliability among women in higher parity groups. Validation studies have shown a small mean 

difference but high variability when comparing maternal self-recall to in-person measures of 

pregnancy weight characteristics.128 In our data, all non-differential misclassification scenarios 

tested moved the estimate away from null. This is an often assumed, but not guaranteed, 

phenomenon depending on patterns of confounding.202 Misclassification scenarios reflecting 

higher rates of over-reporting among women with the outcome of midlife obesity (i.e. lower 

specificity) also moved the RR estimate away from null in most tested combinations, including 

the two scenarios based on published validation data. Estimates with a confidence interval that 

included a null result required that women with midlife obesity have better recall if they had 

experienced excessive gestational weight gain (sensitivity of 85% versus 75%), but much poorer 

recall if they had not experienced excessive gestational weight gain (specificity of 75% versus 

95%), compared to their counterparts without obesity in midlife. In contrast, as the sensitivity of 

recall among those wihout midlife obesity increased, estimates moved away from the null.   

A strength of this analysis is the comprehensive nature of the Study of Women’s Health 

Across the Nation. We were able to draw from a wide range of descriptive variables in analytic 

and imputation models. A further strength was the study’s rigorous data collection methods and 

validity of measures, including important confounders such as physical activity and diet. Our 

analytic outcome, waist circumference, was collected in-clinic by trained staff. Finally, the study 
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sample represented women from five racial/ethnic groups including those of Japanese and Chinese 

descent, who are underrepresented in reproductive history studies within the US. 

A lack of validity research directly relevant to our data is a limitation to this analysis. 

Sensitivity analyses are highly dependent on the bias parameters chosen by the investigator. 

Results can vary widely depending on sensitivity and specificity values or distributions tested.144 

Because the accuracy of a measure in a specific cohort is unknown without internal validation 

data, it is important to obtain documented rates from the literature when possible. Providing 

parameters close to those of the measurement of interest is required to approximate the “true” 

association.123 

In summary, we sought to provide an applied example of quantitative bias analysis in life 

course epidemiology while investigating a clinically-relevant question in reproductive health. We 

estimated the risk of midlife obesity associated with a history of excessive gestational weight gain, 

and explored the susceptibility of this estimate to common sources of statistical bias. We found 

that systematic error was unlikely to account for the observed association. Useful information on 

risk factors can be gained from observational data even in the presence of likely systematic error, 

as evidenced by this analysis. 
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3.6 Tables and Figures 

Table 3-1 Aim 2 Participant Characteristics at Time of Midlife Waist Circumference Assessment 

    Total  Missing Data Status 

    

(n=2339) Complete Case 
Analysis Sample 

(n=1340) 

Missing Reproductive 
History or Covariate 

(n=999)  

Age, mean (SD) 46.4 (2.67) 46.6 (2.64) 46.2 (2.70) 

Race/Ethnicity, n (%)        

  Black 705 (30.1) 364 (27.2) 341 (34.1) 

  White 999 (42.7) 628 (46.9) 371 (37.1) 

  Chinese 188 (8.0) 123 (9.2) 65 (6.5) 

  Hispanic 235 (10.0) 89 (6.6) 146 (14.6) 

  Japanese 212 (9.1) 136 (10.1) 76 (7.6) 
Education, n (%)        

  High school or less 645 (27.9) 298 (22.2) 347 (35.6) 
  Some college or degree 1239 (53.5) 745 (55.6) 494 (50.7) 

  Post-college study 431 (18.6) 297 (22.2) 134 (13.7) 
Smoking Status, n (%)        

  Never smoker 1358 (58.1) 823 (61.4) 535 (53.7) 
  Past smoker 544 (23.3) 335 (25.0) 209 (21.0) 

  Current smoker 435 (18.6) 182 (13.6) 253 (25.4) 

Adolescent BMI, median (Q1, Q3) 20.5 (19, 22) 20.4 (19, 22) 20.5 (19, 23) 

Difficulty Paying for Basics, n (%)        

  Not very hard 1332 (57.3) 846 (63.1) 486 (49.4) 

  Somewhat or very hard 991 (42.7) 494 (36.9) 497 (50.6) 
Menopausal Status, n (%)        

  Pre menopause 1261 (54.3) 745 (55.6) 516 (52.6) 
  Early perimenopause 1061 (45.7) 595 (44.4) 466 (47.5) 

Perceived Stress Score, mean (SD) 8.6 (2.97) 8.5 (2.92) 8.9 (3.04) 
Total Caloric Intake, mean (SD) 1870 (778.6) 1834 (739.9) 1920 (826.0) 

Physical Activity Score, mean (SD) 7.7 (1.77) 7.8 (1.76) 7.5 (1.77) 
Parity, mean (SD) 2.4 (1.13) 2.3 (1.08) 2.5 (1.19) 
Years Since Last Birth, mean (SD) 15.1 (6.72) 15.0 (6.77) 15.2 (6.66) 

Age Pregnant First Time, mean (SD) 23.4 (5.48) 24.0 (5.46) 22.6 (5.42) 
Waist circumference (cm), median 
(Q1, Q3) 83.0 (74, 95) 81.3 (73, 93) 85.0 (75, 97) 
Abdominal obesity, n (%) 937 (40.1) 486 (36.3) 451 (45.2) 
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Table 3-2 Participant Characteristics Among Those with Observed Reproductive History 

    Total  Pregnancies with Excessive GWG 
    (n=1340) None (n=796) One or More (n=544) 

Age, mean (SD) 46.6 (2.64) 46.8 (2.67) 46.2 (2.55) 
Race/Ethnicity, n (%)        
  Black 364 (27.2) 199 (25.0) 165 (30.3) 
  White 628 (46.9) 355 (44.6) 273 (50.2) 
  Chinese 123 (9.2) 87 (10.9) 36 (6.6) 
  Hispanic 89 (6.6) 54 (6.8) 35 (6.4) 
  Japanese 136 (10.1) 101 (12.7) 35 (6.4) 
Education, n (%)        
  High school or less 298 (22.2) 168 (21.1) 130 (23.9) 
  Some college or degree 745 (55.6) 449 (56.4) 296 (54.4) 
  Post-college study 297 (22.2) 179 (22.5) 118 (21.7) 
Smoking Status, n (%)        
  Never smoker 823 (61.4) 525 (66.0) 298 (54.8) 
  Past smoker 335 (25.0) 174 (21.9) 161 (29.6) 
  Current smoker 182 (13.6) 97 (12.2) 85 (15.6) 
Adolescent BMI, median (Q1, Q3) 20.4 (18.9, 22.2) 20.2 (18.8, 21.6) 20.9 (19.2, 22.8) 
Difficulty Paying for Basics, n (%)        
  Not very hard 846 (63.1) 508 (63.8) 338 (62.1) 
  Somewhat or very hard 494 (36.9) 288 (36.2) 206 (37.9) 
Menopausal Status, n (%)        
  Pre menopause 745 (55.6) 435 (54.6) 310 (57.0) 
  Early perimenopause 595 (44.4) 361 (45.4) 234 (43.0) 
Perceived Stress Score, mean (SD) 8.5 (2.92) 8.4 (2.86) 8.5 (3.02) 
Total Caloric Intake, mean (SD) 1834 (739.9) 1830 (752.1) 1841 (722.4) 
Physical Activity Score, mean (SD) 7.8 (1.76) 7.9 (1.77) 7.7 (1.74) 
Parity, mean (SD) 2.3 (1.08) 2.3 (1.09) 2.4 (1.05) 
Years Since Last Birth, mean (SD) 15.0 (6.77) 15.3 (6.89) 14.5 (6.56) 
Age Pregnant First Time, mean (SD) 24.0 (5.46) 24.2 (5.42) 23.5 (5.5) 
Number of Excessive GWG Pregnancies, n (%)       
  0 796 (59.4) 796 (100) 0 (0) 
  1 312 (23.3) 0 (0) 312 (57.4) 
  2 156 (11.6) 0 (0) 156 (28.7) 
  3 + 76 (5.7) 0 (0) 76 (14.0) 
Any Preterm Birth, n (%)   151 (11.3) 77 (9.7) 74 (13.6) 
BMI Category Prior to First Birth      
  Underweight 171 (12.8) 115 (14.5) 56 (10.3) 
  Normal weight BMI 989 (73.8) 620 (77.9) 369 (67.8) 
  Overweight 125 (9.3) 43 (5.4) 82 (15.1) 
  Obese 55 (4.1) 18 (2.3) 37 (6.8) 
Waist circumference (cm), median 
(Q1, Q3) 81.3 (73.4, 93.0) 78.4 (71.7, 87.5) 87.1 (77.5, 100.2) 
Abdominal obesity, n (%) 486 (36.3) 217 (27.3) 269 (49.4) 
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Table 3-3 Complete Case and Pooled Regression Estimates: Relative Risk of Midlife Obesity 

Predictor Complete Case  Pooled Traditional MICE Pooled CART 

  (n=1340) (n=2339) (n=2339) 

 RR 95% CI RR 95% CI RR 95% CI 

Model 1: Unadjusted  
Ever had excessive GWG a 1.81 (1.57, 2.09) 1.67 (1.50, 1.86) 1.68 (1.50, 1.87) 

            

Model 2:  Adjusted b        

Ever had excessive GWG 1.40 (1.13, 1.74) 1.31 (1.12, 1.54) 1.38 (1.16, 1.64) 

Parity 1.07 (0.97, 1.18) 1.08 (1.01, 1.16) 1.07 (1.00, 1.15) 

Inadequate GWG pregnancies 0.93 (0.82, 1.04) 0.96 (0.88, 1.06) 0.98 (0.90, 1.06) 

Gestational hypertension 1.13 (0.92, 1.39) 1.06 (0.91, 1.23) 1.10 (0.94, 1.29) 

Gestational Diabetes  1.20 (0.87, 1.64) 1.11 (0.90, 1.36) 1.01 (0.79, 1.29) 

Preterm Births  0.79 (0.59, 1.07) 0.94 (0.78, 1.12) 0.94 (0.78, 1.13) 

Inadequate GWG*Preterm Birth 1.18 (1.01, 1.37) 1.03 (0.96, 1.10) 1.03 (0.97, 1.10) 

 

Footnotes: 
a Abbreviations: CI, confidence interval; GWG, gestational weight gain; RR, relative risk.  
b Model 2 adjusted for variables shown as well as study site, age at outcome measure, race/ethnicity, 
education, smoking, adolescent BMI, difficulty paying for basics, menopause status, stress score, caloric 
intake, physical activity score, years since last birth, age first pregnant, and BMI category prior to the 
first pregnancy.
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Table 3-4 Misclassification-Adjusted RR (95% CI) of Midlife Abdominal Obesity for Ever-had Versus No 

Excessive Gestational Weight Gain 

Sensitivity Specificity Univariate  Confounder-Adjusted a 

(%) (%) RR (95% CI) RR (95% CI) 

75 75 3.41 (2.84, 4.09) 2.55 (2.10, 3.11) 

75 85 2.76 (2.28, 3.34) 2.14 (1.74, 2.63) 

75 b 95 2.48 (2.03, 3.02) 1.95 (1.57, 2.42) 

80 75 3.11 (2.60 3.72) 2.32 (1.91, 2.82) 

80 85 2.52 (2.10, 3.03) 1.95 (1.60, 2.39) 

80 95 2.26 (1.87, 2.73) 1.78 (1.44, 2.19) 

85 75 2.91 (2.44, 3.48) 2.16 (1.78, 2.63) 

85 85 2.36 (1.97, 2.83) 1.82 (1.49, 2.23) 

85 95 2.12 (1.76, 2.55) 1.66 (1.35, 2.05) 

90 75 2.77 (2.32, 3.32) 2.05 (1.68, 2.49) 

90 85 2.25 (1.88, 2.69) 1.73 (1.42, 2.11) 

90 95 2.02 (1.68, 2.42) 1.58 (1.28, 1.94) 

 

Footnotes:  
a Confounder-adjusted model includes number inadequate gestational weight gain pregnancies, parity, 
number pregnancies with hypertensive disorder, number pregnancies with gestational diabetes, 
preterm birth, an interaction term for inadequate gestational weight gain by preterm birth, study site, 
age at outcome measure, race/ethnicity, education, smoking, adolescent BMI, difficulty paying for 
basics, menopause status, stress score, caloric intake, physical activity score, years since last birth,  age 
first pregnant, and BMI category prior to the first pregnancy. 
b Bold font indicates sensitivity and specificity values estimated from previous validation studies. 
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Table 3-5 Misclassification-Adjusted RR (95% CI) of Midlife Obesity for Ever-had Versus No Excessive 

Gestational Weight Gain, Assuming Differential Misreporting by Outcome Status 

Those without obesity Those with obesity   

Sensitivity Specificity Sensitivity Specificity Univariate Confounder-Adjusted a 
(%) (%) (%) (%) RR (95% CI) RR (95% CI) 

75 85 65 85 4.61 (3.68, 5.78) 3.59 (2.83, 4.56) 
75 85 65 75 3.72 (3.02, 4.58) 2.88 (2.31, 3.59) 
75 95 65 75 2.87 (2.33, 3.53) 2.25 (1.81, 2.81) 
75 85 75 85 2.76 (2.28, 3.34) 2.14 (1.74, 2.63) 
75 95 75 75 1.76 (1.46, 2.11) 1.41 (1.16, 1.71) 
75 85 85 85 2.11 (1.76, 2.53) 1.64 (1.35, 2.00) 
75 85 85 75 1.77 (1.48, 2.12) 1.40 (1.16, 1.69) 
75 95 85 75 1.35 (1.13, 1.61) 1.10 (0.91, 1.34) 

85 b 90 65 90 4.94 (3.91, 6.24) 3.94 (3.07, 5.06) 
85 95 65 75 3.25 (2.64, 4.00) 2.56 (2.05, 3.20) 
85 85 75 85 3.07 (2.54, 3.71) 2.39 (1.94, 2.94) 
85 95 75 75 1.99 (1.66, 2.39) 1.58 (1.29, 1.92) 
85 85 85 85 2.36 (1.97, 2.83) 1.82 (1.49, 2.23) 
85 95 85 75 1.53 (1.28, 1.83) 1.23 (1.01, 1.49) 
95 85 65 85 5.55 (4.43, 6.95) 4.45 (3.49, 5.68) 
95 95 65 75 3.58 (2.91, 4.40) 2.85 (2.27, 3.57) 
95 85 75 85 3.34 (2.76, 4.03) 2.61 (2.11, 3.22) 
95 95 75 75 2.20 (1.83, 2.64) 1.73 (1.42, 2.11) 
95 85 85 85 2.57 (2.15, 3.08) 1.99 (1.62, 2.43) 
95 95 85 75 1.70 (1.42, 2.03) 1.34 (1.10, 1.63) 

 

Footnotes:  
a Confounder-adjusted model includes number inadequate gestational weight gain pregnancies, parity,  
number pregnancies with hypertensive disorder, number pregnancies with gestational diabetes, 
preterm birth, an interaction term for inadequate gestational weight gain by preterm birth, study site, 
age at outcome measure, race/ethnicity, education, smoking, adolescent BMI, difficulty paying for 
basics, menopause status, stress score, caloric intake, physical activity score, years since last birth,  age 
first pregnant, and BMI category prior to the first pregnancy. 
b Bold font indicates sensitivity and specificity values estimated from previous validation studies. 
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Figure 3-1 Aim 2 Participant Flow-Chart 

Figure legend: Figure illustrates participant eligibility and missing data for selecting the analytic sample 
from the Study of Women’s Health Across the Nation.  
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Figure 3-2 Relative Risk of Midlife Obesity for Ever- versus Never-Had Excessive Gestational Weight Gain, 

Confounder-Adjusted, by Sensitivity and Specificity of Self-Report 

Figure Legend: Primary axis shows relative risk of midlife obesity with 95% confidence intervals. 
Secondary axis shows the sensitivity and specificity values assumed for each model, which are stratified 
by midlife obesity status. Model 0 represents the observed estimate (i.e. sensitivity=100%, 
specificity=100%). All models adjust for the following confounders: number inadequate gestational 
weight gain pregnancies, parity, number pregnancies with hypertensive disorder, number pregnancies 
with gestational diabetes, preterm birth, interaction term for inadequate gestational weight gain by 
preterm birth, study site, age at outcome measure, race/ethnicity, education, smoking, adolescent BMI, 
difficulty paying for basics, menopause status, stress score, caloric intake, physical activity score, years 
since last birth, age first pregnant, and BMI category prior to the first pregnancy. 
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4.0 Excessive Gestational Weight Gain and Long-Term Maternal Cardiovascular Risk: 

Two Decades of Follow-up in the Study of Women’s Health Across the Nation  

Franya Hutchins1, Samar R El Khoudary1, Janet Catov1, Robert Krafty2, Alicia Colvin1, Emma 

Barinas-Mitchell1, Maria M Brooks1. 

 

1.  University of Pittsburgh Graduate School of Public Health, Epidemiology, Pittsburgh, PA    

2.  University of Pittsburgh Graduate School of Public Health, Biostatistics, Pittsburgh, PA 

4.1 Abstract 

 

Background: Excessive gestational weight gain (GWG) is consistently linked with long-term 

maternal risk of obesity. However, the literature on GWG and cardiovascular risk factors such as 

dyslipidemia, diabetes, and chronic inflammation is minimal and conflicting. We sought to 

evaluate whether a history of excessive GWG contributes to atherosclerotic cardiovascular risk 

among parous women in midlife.  

Methods: Data were from the multi-ethnic cohort Study of Women’s Health Across the Nation. 

Excessive GWG was collected by self-recall of pregnancy weight and defined according to 

Institute of Medicine guidelines. Outcomes were the atherosclerotic cardiovascular disease 

(ASCVD) risk score and C-reactive protein (CRP), measured at 11 study visits conducted from 
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1996 to 2017. Our primary analysis estimated the effect of excessive GWG on log-transformed 

ASCVD score and CRP via linear mixed model regression. 

Results: The analytic sample was comprised of 1318 women with 3049 births. Over 40% (536) 

reported one or more pregnancies with excessive GWG. In unadjusted longitudinal models, a 

history of excessive GWG was associated with a 29.6% increase in ASCVD risk score (95% 

CI=18.2, 42.1) and 89.2% (63.2, 119.4) increase in CRP. Associations were attenuated to a 16.1% 

(6.8, 26.2) increase in ASCVD score and 49.9% (29.9, 73.1) in CRP with the addition of 

confounders including parity, demographic characteristics, and physical activity. Confounder-

adjusted models estimated a mean 10-year ASCVD risk of 9.8% (9.2, 10.5) versus 9.5% (8.9, 10.1) 

and mean CRP of 2.20 mg/l (1.89, 2.57) versus 1.85 mg/l (1.61, 2,14) at 20 years of midlife follow-

up for those with and without excessive GWG, respectively.  

Conclusions: In this multi-ethnic cohort of parous women, a history of excessive GWG was 

associated with a small but statistically significant increase in atherosclerotic CVD risk, and a 

moderate, statistically significant increase in CRP across midlife. More research is necessary to 

understand the mechanisms underlying the pathway between excessive GWG and long-term 

maternal cardiovascular health.  

4.2 Introduction  

Obesity is a highly prevalent13 risk-enhancing factor for cardiovascular disease.203 In the 

United States, women in their midlife experience the highest rates of obesity.13 An opportunity to 

prevent obesity ahead of midlife is during pregnancy. Excessive gestational weight gain is 

common33,37 and has consistently been linked with increased long-term maternal 
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weight.39,40,43,44,46,170 Prevention of excessive gestational weight gain could lead to population-

level declines in obesity rates.47  

Despite the link between obesity and cardiovascular disease, research has not consistently 

observed an association between excessive gestational weight gain and increased cardiovascular 

risk.39,42,48 This could be due to difficulty in implementing studies with sufficient follow-up to 

observe reproductive characteristics and long-term cardiovascular outcomes. Alternatively, 

excessive gestational weight gain may contribute to a low-risk phenotype of obesity. Research 

increasingly supports a view of obesity as a heterogeneous characteristic.18,19,23,25 The risk 

conveyed by obesity appears to vary by metabolic function,17 a relationship that is not well 

understood and may change over time.21,22,204 In addition to traditional cardiovascular risk factors, 

inflammation is gaining interest as a key part of the atherosclerotic pathway.205-207 Due to its 

relationship with metabolic function, inflammation may be part of the mechanism linking obesity 

and cardiovascular risk.208-211 No study to our knowledge has sought to evaluate the hypothetical 

pathway of excessive gestational weight gain through maternal obesity and long-term chronic 

inflammation. 

The objective of this study is to evaluate the long-term impact of excessive gestational 

weight gain on cardiovascular risk in the multi-ethnic cohort Study of Women’s Health Across the 

Nation (SWAN). The SWAN study has been an important source of data on women’s health 

through midlife and provides over 20 years of prospective follow-up.148,149,212  

We use the atherosclerotic cardiovascular disease (ASCVD) risk score and the 

inflammatory biomarker C-reactive protein (CRP) to describe participants’ cardiovascular risk 

profile. The ASCVD score is a clinically relevant and interpretable representation of the most 

recent literature on the effect of traditional CVD risk factors. Using C-reactive protein as a 
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secondary outcome, our analysis captures dyslipidemia, hypertension, diabetes, and inflammation. 

Specifically, we hypothesized that a history of excessive gestational weight gain would be 

associated with increased ASCVD risk score and CRP among parous women as they transition 

through midlife into early old age. 

4.3 Methods 

4.3.1 Participants  

SWAN is an ongoing, prospective cohort study designed to observe health characteristics 

in women through the menopause transition. The SWAN cohort is made up of 3302 women 

enrolled from seven cities: Boston, MA, Chicago, IL, Detroit, MI, Los Angeles, CA, Oakland, CA, 

Newark, NJ, and Pittsburgh, PA. Enrollment began in 1996 with the following primary eligibility 

criteria: age 42 to 52, having at least one menstrual period in the previous 3 months, no exogenous 

hormone use in the previous three months, intact uterus, at least one ovary, and self-identification 

with a designated racial/ethnic group recruited by site. All sites enrolled women who identified as 

Non-Hispanic White as well as women from one additional race or ethnic group: Non-Hispanic 

Black, Hispanic, Japanese, or Chinese. Information on the sampling strategy for SWAN has been 

published previously.212 IRB approval was obtained with each site institution and written consent 

given by all participants. The SWAN study includes a baseline visit (conducted from 1996 to 

1997), and 16 follow-up visits.  

Figure 4-1 illustrates the eligibility and exclusions of the participant sample for this 

analysis. At the baseline visit, 2733 SWAN participants reported a history of live birth(s). Women 
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were excluded if they reported history of underactive thyroid disorder (n=195), current hormone 

use (n=6), or history of stillbirth or multifetal birth (n=154) at baseline.  Women with missing 

waist circumference, ASCVD score, or C-reactive protein measure at baseline were excluded 

(n=78). An additional 17 women were excluded for reporting conflicting birth information during 

follow-up or reporting a birth after the baseline visit. The remaining 2283 women were considered 

eligible for the analysis. 

A subset of these eligible women were retained through the 13th follow-up visit (conducted 

in 2011 to 2013), which included a comprehensive reproductive history questionnaire. This 

questionnaire collected pre-pregnancy weight and gestational age for each birth, which are 

necessary to calculate gestational weight gain adequacy. Women who are missing the reproductive 

history questionnaire (n=750), questionnaire items, or covariate values measured at baseline 

(n=215) were excluded from the complete case sample but included in the imputed data sample 

(see below). The final analytic sample was 1318 women with 3049 births in complete case 

analyses, and 2283 women with 5475 births in imputed data analyses.  

4.3.2 Measures  

Outcomes: The outcomes in this analysis are the ASCVD risk score and C-reactive protein. 

Each was collected at baseline and at 10 of the 16 SWAN follow-up visits, representing 20 years 

of prospective follow-up. 

The ASCVD risk score measures the 10-year risk of developing a first atherosclerotic 

cardiovascular disease event. Events include nonfatal myocardial infarction, coronary heart 

disease death or fatal or nonfatal stroke. The score was developed by a working group of the 

American Heart Association and the American College of Cardiology, and is calculated using the 
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following components: use of blood pressure medications, current smoking status, current diabetes 

status, and log-transformed values of age, total cholesterol, high density lipoprotein (HDL) 

cholesterol, and systolic blood pressure (measures described below). Each component is multiplied 

by a race-specific coefficient, summed for a total score, and transformed by an overall race-specific 

formula.5 The ASCVD score is available for SWAN baseline and follow-up visits 1, 3-7, 9, 12, 

13, and 15. It was set to missing if any component values were missing. 

ASCVD score components were measured as follows: The use of blood pressure 

medications was ascertained through medication data collected during the interview and also at 

the time of specimen collection (baseline through visit 10), or via a separate worksheet (visits 12-

15).  The medication data were reviewed, identified, and coded by SWAN Coordinating Center 

personnel. Medications were then coded to therapeutic class(es) according to the Iowa Drug 

Information System (IDIS) database. Participants were considered to have diabetes if they met any 

of the following criteria: A. Use of anti-diabetic medication at any visit; B. Had a fasting glucose 

≥126 (while not on steroids) at 2 consecutive visits or on 50% of at least 3 attended visits; or, C. 

Had two visits with self-reported diabetes and at least one visit with fasting glucose ≥126 (while 

not on steroids).  Total and HDL cholesterol were analyzed in serum and plasma from fasting 

blood samples obtained at baseline and follow-up visits 1, 3-7, 9, and 12-15. Samples were 

analyzed at the Medical Research Laboratory (MRL) of Lexington, Kentucky or the University of 

Michigan Pathology laboratory (Ann Arbor, Michigan) depending on visit. Lipid values were 

calibrated to be comparable across changes in lab. Blood pressure is represented by the mean of 

two systolic blood pressure measurements. Blood pressure measures were taken by trained staff 

after 5 minutes quiet sitting with two minutes between measures. Smoking status was obtained by 

self-report. 
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CRP was measured at baseline and visits 1, 3-7, 9, 10, 12 and 15. Blood samples were 

obtained under fasting conditions (no food or drink except water in the previous 12 hours). CRP 

was analyzed in plasma. Samples obtained at the baseline visit through follow-up visit 7 were 

analyzed at the MRL by immunonephelometry using Behring reagents on the Behring 

Nephelometer II. Samples obtained at visits 9, 10, and 15 were analyzed at the University of 

Michigan Central Ligand Assay Satellite Services (CLASS) laboratory of Ann Arbor, MI on the 

Alfa-Wasserman ACE analyzer with the ACE hs-CRP assay. Visit 12 samples were analyzed at 

the CLASS laboratory using a latex-enhanced turbidimetric in vitro immunoassay on the Alfa-

Wasserman ACE analyzer via ACE CRP Ultra Wide Range Reagent Kit. A calibration equation 

was developed by the SWAN Coordinating Center using randomly sampled (n=200) calibration 

samples across the full range of values for each assay method for a total of 600 samples. The 

calibration was developed and applied to convert the MRL and CLASS assays to a high sensitivity 

assay (ELISA). The Human High Sensitivity CRP ELISA (R&D Systems, DCRP00) is a plate 

assay which employs the quantitative sandwich enzyme immunoassay technique using a 

monoclonal antibody specific for CRP. To obtain values from the original assays that were below 

the lower limit of detection (LLD), the ELISA assay was run on all samples where the values were 

below the original LLD. 

Primary Exposure: The primary exposure was a history of excessive gestational weight 

gain. Total gestational weight gain for each live birth was collected by retrospective self-report at 

visit 13, when women ranged in age from 56 to 68. Pre-pregnancy body mass index was calculated 

with retrospective pre-pregnancy weight collected at visit 13 and height measured in-clinic at the 

baseline visit. Each pregnancy was categorized as having inadequate, adequate, or excessive 

gestational weight gain per the Institute of Medicine’s 2009 guidelines.31 These guidelines provide 
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a range of gestational weight gain amount considered clinically “adequate” depending on maternal 

pre-pregnancy BMI (see Table 4-1). Women who reported any pregnancy with gestational weight 

gain above the adequacy range for their pre-pregnancy BMI and gestational age at birth were 

categorized as having a history of excessive gestational weight gain.  

In creating the categorical gestational weight gain adequacy variables, alternative BMI 

cutoffs were used for Japanese and Chinese participants, with overweight defined as ≥23 kg/m2 

and obese as ≥25 kg/m2. This is consistent with recommendations from the World Health 

Organization’s Western Pacific Regional Office213 and prior research in Japanese and Chinese 

populations living in North America.163,164  

Covariates: Covariates collected at the SWAN baseline visit when women ranged in age 

from 42 to 53 years were race/ethnicity (Non-Hispanic Black, Chinese, Japanese, Hispanic, Non-

Hispanic White), study site, education (high school or less, some college/college degree, or post-

college study), daily caloric intake (calculated from responses to a modified Block interviewer-

assisted food frequency questionnaire), age first pregnant (years), time since the last birth (years), 

parity, and smoking status (ever or never smoker). Abdominal obesity at the baseline visit was 

considered a potential mediator in this analysis and was based on waist circumference measured 

in clinic, defined as > 80 cm for Japanese and Chinese women and ≥ 88 for Black, Hispanic, and 

White women. 

Characteristics measured retrospectively at the follow-up 13 visit were: maternal BMI 

category prior to the first pregnancy defined using self-recalled weight (see Table 4-1), history of 

excessive gestational weight gain, inadequate gestational weight gain, preterm birth defined using 

gestational age for each birth, hypertensive disorder of pregnancy, and gestational diabetes.  
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Time varying covariates were age (years), menopause status, current hormone use, 

difficulty paying for basics (somewhat hard/very hard, or not very hard), stress score, physical 

activity score, and current statin use (yes/no). Menopause status was defined in SWAN by the 

follow 7 categories: premenopausal (no change in bleeding patterns), early perimenopause (change 

in length bleeding pattern), late perimenopause (no bleeding in 3-11 months),  natural 

postmenopause (no bleeding in 12 months not due to hysterectomy), surgical menopause (bilateral 

oophorectomy with or without hysterectomy), hysterectomy with one or two ovaries retained, and 

hormone use before final menstrual period. The stress score range is 4 (low stress) to 20 (high 

stress) and is calculated as the sum of the four component questions regarding frequency of feeling 

overwhelmed during the past two weeks, defined as 1=Never to 5=Very Often. The physical 

activity score range is 1 to 15 and is derived from an adaptation of the Kaiser Permanente Health 

Plan Activity Survey (used previously in SWAN).168 Some visits did not collect information on 

difficulty paying for basics or physical activity. Values in those visits are carried forward from the 

visit prior. 

4.3.3 Statistical Analysis 

Descriptive: Participant characteristics at baseline are presented overall and stratified by 

excessive gestational weight gain history. Categorical variables are shown as number with percent, 

and continuous variables by mean with standard deviation if normally distributed or median with 

first and third quartile values if skewed.   

Analysis Models: ASCVD score and CRP level were transformed by natural log due to 

skewed distributions. We modeled baseline log-transformed ASCVD score and CRP, separately, 

as functions of excessive gestational weight gain history using linear regression. Regression 
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coefficients and 95% confidence intervals are shown as percent change using the transformation 

100(eβ−1). We present unadjusted estimates, those adjusted for confounders (race/ethnicity, site, 

age, difficulty paying for basics, education level, caloric intake, physical activity, stress score, 

smoking history, BMI prior to first pregnancy, age first pregnant, years between last birth and 

baseline visit, parity, history of inadequate gestational weight gain, and menopause status), and 

estimates adjusted for confounders as well as characteristics we hypothesized to be potential 

mediators (preterm birth, pregnancy complications, and midlife obesity). Adjusted models of CRP 

also include statin use as a confounder.  

We then estimated level and change over time of ASCVD score and CRP using 

longitudinal mixed-effect regression models. Outcomes were modeled as a function of excessive 

gestational weight gain history, participant age at baseline, time since the baseline visit, and an 

interaction term for excessive gestational weight gain by time. The intercept and time were set as 

random effects. Covariate adjustment included the variables described above, with menopause 

status, hormone use, difficulty paying for basics, stress, physical activity, and statin use included 

as time-varying. We estimated least squares means of each outcome by excessive gestational 

weight gain status, back-transformed to the original scale for interpretation. To accommodate 

possible change in slope over time, least squares means were estimated with follow-up set to three 

separate time points: 0, 10, and 20 years after SWAN baseline.  

We chose not to exclude participants with high CRP levels even though this might reflect 

acute infection. Recent evidence indicates that high-risk individuals such as those with a high BMI 

may maintain CRP levels above 10 mg/L over multiple years, implying that commonly used cut-

off values are too conservative to capture the full range of chronic inflammation.214   
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Sensitivity Analysis: To evaluate the susceptibility of our estimates to bias due to missing 

data, we conducted a sensitivity analysis of baseline estimates with imputed data representing the 

full eligible sample. Missing reproductive history and covariate values were imputed using 

multiple imputation by chained equations with classification and regression trees as the internal 

prediction algorithm.136,188 We created 10 imputed datasets and pooled estimates of the 

confounder-adjusted effect of excessive gestational weight gain on each outcome.  

Software:  Imputation models were run using the R mice package195 in R version 3.6.1196. 

All other analyses were run in SAS v. 9.4 (SAS Institute, Cary, NC, USA). 

4.4 Results 

Descriptive: Of the 2283 eligible participants, 965 were excluded for missing reproductive 

history data or covariates. The women with missing data were systematically different from 

complete cases in a number of ways including race/ethnicity and educational attainment (see 

Appendix B, Table 8). Women with missing data also had higher median ASCVD scores (0.11% 

versus 0.08% 10-year risk) and higher median CRP (2.36 versus 1.48 mg/L) at baseline compared 

to women in the complete case sample.  

Table 4-2 shows participant characteristics at baseline. Among the 1318 women in 

complete case analysis, mean age at baseline was 46.6. Women reported an average of 2.3 births. 

Excessive gestational weight gain in at least one pregnancy was reported by 536 (40.1%) of 

women. Women with a history of excessive gestational weight gain were less likely to be of 

Japanese or Chinese background, more likely to be smokers, and more likely to report an 

overweight or obese BMI prior to their first pregnancy compared to women with no excessive 
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gestational weight gain. Women with excessive gestational weight gain were more likely to have 

abdominal obesity at midlife than those with no excessive gain (49.6% versus 27.7%).  

Mean follow-up time was 17.4 (standard deviation=3.8) years and the mean age of women 

when last observed was 64.0. Appendix B, Figures 4 and 5 show median ASCVD score and CRP 

by excessive gestational weight gain status across SWAN follow-up. 

Analysis Models: In analysis of baseline data, a history of excessive gestational weight gain 

was associated with a 19.7% (95% CI= 8.5, 32.1) increase in ASCVD score (Table 4-3). This 

association was attenuated to 8.8% (-0.8, 19.4) with adjustment for confounders, and to 0.1% (-

8.5, 9.6) in models including potential mediators. A history of excessive gestational weight gain 

was associated with an 85.8% (58.8, 117.4) increase in CRP in unadjusted models, which was 

attenuated to 41.3% (19.9, 66.5) with the addition of confounders. Mediating characteristics did 

not fully explain the association with CRP. Excessive gestational weight gain was associated with 

20.9% (3.6, 41.0) higher CRP in models including mediators.  

In longitudinal models, a history of excessive gestational weight gain was associated with 

a 29.6% (18.2, 42.1) increase in ASCVD score (Table 4-4). This association was attenuated to 

16.1% (6.8, 26.2) with adjustment for confounders, and 9.1% (0.7, 18.2) with the further addition 

of potential mediators. Mean ASCVD score increased by approximately 12% per year of follow-

up. There was evidence that the impact of excessive gestational weight gain on ASCVD lessened 

slightly over time. We observed a statistically significant interaction between the exposure and 

time of -0.6% change per year of follow-up consistent across models.  

A history of preterm birth and history of gestational hypertension showed similar effect 

sizes to excessive gestational weight gain on ASCVD score with estimates of 12.3% (3.6, 21.7) 

and 13.1% (3.8, 23.3), respectively, adjusted for confounders. A history of gestational diabetes 
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was associated with a 35.7% (20.7, 52.4) increase in ASCVD score. There was no evidence of an 

effect of parity on ASCVD score (beta= 0.0, 95% CI= -2.6, 2.7). 

Figure 4-2 shows confounder-adjusted least squares means of ASCVD score by excessive 

gestational weight gain status back-transformed to the original scale for interpretation. Scores are 

shown as percent 10-year risk. With the follow-up time set to 0 years (corresponding to SWAN 

baseline), the mean ASCVD score for those with no excessive gestational weight gain was 1.0% 

(0.9, 1.1) compared to 1.1% (1.1, 1.2) for those with a history of excessive gain in confounder-

adjusted models. When follow-up time was set to 20 years, the mean confounder-adjusted risk rose 

to 9.5% (8.9, 10.1) and 9.8% (9.2, 10.5), respectively.  

Excessive gestational weight gain was associated with an 89.2% (63.2, 119.4) increase in 

CRP in longitudinal models (Table 4-5). This was attenuated to 49.9% (29.9, 73.1) with the 

addition of confounders, and to 31.5% (15.0, 50.3) with the addition of potential mediators. There 

was little evidence that mean CRP changed substantively over time (beta= 0.6%, CI= 0.0, 1.2% 

change per year of follow-up). The impact of excessive gestational weight gain decreased over 

time, at an estimated rate of -1.2% (-1.9, -0.5) per year follow-up, adjusted for confounders. 

 Other reproductive health characteristics showed weak relationships with CRP. Parity, 

preterm birth, and gestational diabetes were each associated with less than 10% change in CRP. 

Gestational hypertension was associated with an 19.6% (-1.1, 44.5) increase in CRP, adjusted for 

confounders.  

Figure 4-3 presents confounder-adjusted least squares mean CRP by excessive gestational 

weight gain status back-transformed to the original scale (mg/L). The mean CRP level for those 

with no excessive gestational weight gain at 0 years follow-up was estimated at 1.64 mg/L (1.44, 

1.88), compared to 2.46 mg/L (2.13, 2.85) among those with excessive gestational weight gain 
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(Figure 4-3). At 20-years follow-up, the confounder-adjusted mean was 1.85 (1.61, 2.14) and 2.20 

(1.89, 2.57) for never- and ever-had excessive gestational weight gain, respectively.  

Sensitivity Analysis: Table 4-6 shows pooled estimates from confounder-adjusted 

longitudinal models using imputed data. In imputed data models, a history of excessive gestational 

weight gain was associated with a 12.7% (2.2, 24.4) higher ASCVD score and a 33.9% (18.3, 51.7) 

higher CRP value, adjusted for confounders. 

4.5 Discussion 

In this multi-ethnic cohort of parous women, a history of excessive gestational weight gain 

was associated with a small but statistically significant increase in ASCVD score, and a moderate, 

statistically significant increase in mean CRP across midlife. Women who reported one or more 

pregnancies with excessive gestational weight gain were estimated to have an absolute increase in 

10-year ASCVD risk of 0.3 %-points compared to those without (9.8% versus 9.5% mean risk), 

and a 0.35 mg/l higher mean CRP (2.20 versus 1.85 mg/l), at 20 years of midlife follow-up 

independent of demographic, behavioral, and reproductive confounders.  

Despite a large and consistent literature linking excessive gestational weight gain to later 

maternal obesity, there remains a lack of compelling evidence that this translates into substantive 

change in other traditional cardiovascular risk factors. The small impact of excessive gestational 

weight gain on ASCVD score that we observed may reflect differing effects of gestational weight 

gain on specific score components. Further research is necessary to better understand the influence 

of pregnancy characteristics on atherosclerotic development. 
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Our results are interesting in the context of recent research in the ARIC cohort, which found 

that having favorable inflammation and lipid profiles were commonly discordant.215 

Approximately half of those with a favorable lipid profile in the ARIC analysis had elevated CRP. 

The ARIC analysis also emphasized the importance of inflammation as a contributor to CVD. 

High CRP independently predicted atherosclerotic CVD in those with and without a favorable 

lipid profile over a similar follow-up period to our study.215  

As expected, ASCVD scores increased with age and time over follow-up in this analysis. 

However, there was little evidence of an increase in mean CRP with age or aging. Mean CRP 

increased by less than 1% per year in longitudinal models and there was no effect of age at baseline. 

Prior studies have found chronic inflammation to increase with age in older populations.216,217 The 

SWAN midlife cohort may have been too young to observe this effect.  

Hypertensive disorder in pregnancy and gestational diabetes contributed to ASCVD risk 

and inflammation in this analysis. This is consistent with well-established links between 

hypertensive disorders of pregnancy and CVD risk,54,62,67,218,219 and complications with type-2 

diabetes risk.62,220,221 Our analysis adds to this literature evidence that excessive gestational weight 

gain contributes to maternal cardiovascular risk at a similar magnitude as pregnancy 

complications. Further, our estimates suggest that excessive gestational weight gain does not 

primarily operate via a pathway including those complications.  

Notably, we did not observe a relationship between parity and ASCVD risk or 

inflammation in this cohort. Among parous women, higher number of births has often been linked 

to CVD risk.59 Studies on paternal CVD risk suggests the association may be due to residual 

confounding with socioeconomic status or factors related to child rearing as opposed to child 

bearing.62,222 In addition, most studies do not account for gestational weight gain adequacy when 
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evaluating the role of parity.59,223-225 Our results suggest that parity may be acting as a proxy for 

other reproductive health characteristics as opposed to representing a risk factor itself.  

We hypothesized that the effect of excessive gestational weight gain on long-term maternal 

cardiovascular risk would be mediated through abdominal obesity in midlife. Our estimates 

partially supported this hypothesis but suggest that some association remains after controlling for 

midlife obesity. The mechanistic pathways currently supported in the literature connecting 

excessive gestational weight gain and long-term maternal cardiovascular health are through a high-

risk phenotype of obesity114,115,119 or pregnancy complications.226,227 We reason, therefore, that the 

remaining association is due to residual confounding with sociodemographic health disparities or 

by our reliance on self-report of pregnancy complications.   

Our study has many strengths. Our analysis represented a mean prospective follow-up of 

17 years across midlife. This allowed us to estimate the level and change over time of the 

cardiovascular risk outcomes, and whether the impact of excessive gestational weight gain on each 

outcome changed over time. The SWAN data were also an asset in that they provide a rich source 

of information on participants. This allowed us to account for a wide variety of characteristics that 

are likely strong confounders but often difficult to measure such as physical activity and diet. 

Finally, we had high-quality outcome measures collected in a clinical setting by trained staff. 

The following limitations should be considered in interpreting these results. Our primary 

analytic sample excluded over 40% of eligible participants due to missing data. However, we were 

able to control for many characteristics related to participant attrition such as socioeconomic status, 

health behaviors, and stress. Sensitivity analyses that included multiply imputed data attenuated 

estimates but did not impact interpretation compared to results from the complete case sample. A 

second limitation to this research is the use of self-recalled measures of reproductive history. 
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Validation research has shown that self-recall of pregnancy weight characteristics often leads to 

over-estimating the prevalence of excessive gestational weight gain.128 This trend has generally 

not been found to bias associations between gestational weight gain adequacy and birth 

outcomes.128 Because participants were unlikely to be aware of their ASCVD risk or inflammation 

level when reporting pregnancy weight, the concern that misreporting would vary by outcome 

status is limited. 

4.6 Conclusion 

In summary, our study found that a history of excessive gestational weight gain was 

associated with a small increase in maternal ASCVD risk score and moderate increase in CRP over 

20 years of prospective midlife follow-up, independent of demographic characteristics and health 

behaviors. This adds evidence to the importance of clinical focus on healthy weight gain during 

pregnancy to promote long-term maternal health. Further research is necessary to understand the 

mechanistic pathway between pregnancy weight characteristics and maternal cardiovascular risk.  
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4.7 Tables and Figures 

 
Table 4-1 Institute of Medicine Recommendations for Total Weight Gain during Pregnancy 

 
Abbreviations: BMI, body mass index; GWG, gestational weight gain; lbs, pounds; NH: Non-Hispanic.  
1. Adequacy ranges: Institute of Medicine (US) and National Research Council (US) Committee to 
Reexamine IOM Pregnancy Weight Guidelines; Rasmussen KM, Yaktine AL, editors. Weight Gain During 
Pregnancy: Reexamining the Guidelines. Washington (DC): National Academies Press, 2009. 
2. Calculation assumes 4.4 lbs weight gained in first trimester.  

Pre-pregnancy 
BMI Category 

BMI Category Definition (kg/m2) Range for 
Adequate 

Total GWG 
(lbs)1 

Range for Adequate 
GWG Rate, 2nd and 

3rd Trimester 
(lbs/week)1, 2 

NH White, NH Black, 
and Hispanic 

Japanese and 
Chinese ethnicity 

Underweight < 18.5 < 18.5 28–40 1.0-1.3 

Normal weight 18.5-24.9 18.5-22.9 25–35 0.8-1.0 

Overweight 25.0-29.9 23.0-24.9 15–25 0.5-0.7 
Obese (all classes) ≥ 30.0 ≥ 25.0 11–20 0.4-0.6 
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Table 4-2 Aim 3 Participant Characteristics at SWAN Baseline (Complete Cases) 

    Total  Pregnancies with Excessive GWG 

    (n=1318) None (n=782) One or More (n=536) 

Age, mean (SD) 46.6 (2.64) 46.8 (2.67) 46.2 (2.56) 

Race/Ethnicity, n (%)        

  Black 358 (27.2) 194 (24.8) 164 (30.6) 

  White 615 (46.7) 347 (44.4) 268 (50.0) 

  Chinese 123 (9.3) 88 (11.3) 35 (6.5) 

  Hispanic 90 (6.8) 54 (6.9) 36 (6.7) 

  Japanese 132 (10.0) 99 (12.7) 33 (6.2) 

Education, n (%)        

  High school or less 298 (22.6) 170 (21.7) 128 (23.9) 

  Some college or degree 727 (55.2) 435 (55.6) 292 (54.5) 

  Post-college study 293 (22.2) 177 (22.6) 116 (21.6) 

Smoking Status, n (%)        

  Never smoker 817 (62.0) 521 (66.6) 296 (55.2) 

  Past smoker 324 (24.6) 166 (21.2) 158 (29.5) 

  Current smoker 177 (13.4) 95 (12.1) 82 (15.3) 

Difficulty Paying for Basics, n (%)        

  Not very hard 828 (62.8) 498 (63.7) 330 (61.6) 

  Somewhat or very hard 490 (37.2) 284 (36.3) 206 (38.4) 

Menopausal Status, n (%)        

  Pre-menopause 732 (55.5) 427 (54.6) 305 (56.9) 

  Early perimenopause 586 (44.5) 355 (45.4) 231 (43.1) 

Perceived Stress Score, mean (SD) 8.5 (2.92) 8.4 (2.86) 8.5 (3.01) 

Total Caloric Intake (kcal), mean (SD) 1834.9 (743.1) 1830.4 (756.2) 1841.5 (724.2) 

Physical Activity Score, mean (SD) 7.8 (1.76) 7.9 (1.78) 7.7 (1.72) 

Parity, mean (SD) 2.3 (1.07) 2.3 (1.09) 2.4 (1.04) 

Age Pregnant First Time, mean (SD) 24.0 (5.46) 24.3 (5.42) 23.5 (5.48) 

Years between last birth and baseline, 
mean (SD) 15.0 (6.76) 15.3 (6.89) 14.5 (6.54) 

BMI Category prior to first pregnancy, n (%)     

  Underweight 164 (12.4) 109 (13.9) 55 (10.3) 

  Normal 971 (73.7) 611 (78.1) 360 (67.2) 

  Overweight 127 (9.6) 43 (5.5) 84 (15.7) 

  Obese 56 (4.2) 19 (2.4) 37 (6.9) 

Number of Excessive GWG Pregnancies, n (%)       

  0 782 (59.3) 782 (100.0) 0 (0.0) 

  1 307 (23.3) 0 (0.0) 307 (57.3) 

  2 155 (11.8) 0 (0.0) 155 (28.9) 

  3 + 74 (5.6) 0 (0.0) 74 (13.8) 

History of preterm birth, n (%) 149 (11.3) 77 (9.8) 72 (13.4) 

History of inadequate GWG, n (%) 547 (41.5) 464 (59.3) 83 (15.5) 
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History of hypertensive pregnancy, n (%) 122 (9.3) 46 (5.9) 76 (14.2) 

History of gestational diabetes, n (%) 63 (4.8) 27 (3.5) 36 (6.7) 

Abdominal obesity at midlife, n (%) 483 (36.6) 217 (27.7) 266 (49.6) 
ASCVD score: % 10-year risk, median 
(25th, 75th pctl) 

0.08 (0.05, 0.15) 0.08 (0.05, 0.14) 0.10 (0.05, 0.18) 

CRP mg/L, median (25th, 75th pctl) 1.5 ( 0.53, 4.99) 1.2 ( 0.53, 3.52) 2.6 ( 0.76, 7.66) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4-2 Continued 
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Table 4-3 Estimated Percent Change in ASCVD Score and CRP for Ever- versus Never-Had Excessive 

Gestational Weight Gain (n=1318) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASCVD Score  Estimate (95% CI) 

Model 11  19.7 (8.5, 32.1) 

Model 2 8.8 (-0.8, 19.4) 

Model 3 5.9 (-3.5, 16.1) 

Model 4 0.1 (-8.5, 9.6) 
  

CRP Estimate (95% CI) 

Model 11  85.8 (58.8, 117.4) 

Model 2 41.3 (19.9, 66.5) 

Model 3 40.1 (18.7, 65.4) 

Model 4 20.9 (3.6, 41.0) 

1. Covariate structure: 
Model 1 is unadjusted. Model 2 adjusted for: race/ethnicity, site, age, difficulty paying for basics, 
education level, caloric intake, physical activity, stress score, smoking history, BMI prior to first 
pregnancy, age first pregnant, years between last birth and baseline visit, parity, history of inadequate 
gestational weight gain, and menopause status. CRP model also adjusts for current statin use. Model 3 
adjusted for: model 2 covariates as well as history of hypertensive disorder in pregnancy, history of 
gestational diabetes, and history of preterm birth. Model 4 adjusts for model 3 covariates and baseline 
abdominal obesity. 
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Table 4-4 Linear Mixed Model Estimates of Percent Change in ASCVD Score per Unit Increase in Exposure 

(n=1318) 

Model 1 Estimate (95% CI) 

Excessive GWG 29.6 (18.2, 42.1) 

Baseline age 11.9 (10.5, 13.3) 

Years of follow-up 12.2 (11.9, 12.5) 

GWG*Years follow-up -0.6 (-1.0, -0.1) 

  

Model 2  
Excessive GWG 16.1 (6.8, 26.2) 

Baseline age 12.1 (10.8, 13.4) 

Years of follow-up 12.0 (11.6, 12.3) 

GWG*Years follow-up -0.6 (-1.0, -0.2) 

Parity (per birth) 0.2 (-2.5, 3.0) 

  

Model 3  
Excessive GWG 13.5 (4.5, 23.3) 

Baseline age 12.4 (11.1, 13.7) 

Years of follow-up 12.0 (11.6, 12.3) 

GWG*Years follow-up -0.6 (-1.0, -0.2) 

Parity (per birth) 0.0 (-2.6, 2.7) 

Preterm birth history 12.3 (3.6, 21.7) 

Gest. hypertension 13.1 (3.8, 23.3) 

Gest. diabetes 35.7 (20.7, 52.4) 

  

Model 4  
Excessive GWG 9.1 (0.7, 18.2) 

Baseline age 12.0 (10.8, 13.2) 

Years of follow-up 12.0 (11.6, 12.3) 

GWG*Years follow-up -0.6 (-1.0, -0.1) 

Parity (per birth) -0.7 (-3.3, 1.9) 

Preterm birth history 12.1 (3.7, 21.1) 

Gest. hypertension 11.4 (2.5, 21.1) 

Gest. diabetes 33.6 (19.4, 49.5) 

Baseline obesity  32.2 (25.0, 39.8) 

Model 1 is adjusted for variables shown. Models 2 - 4 are adjusted for variables shown as well as 
race/ethnicity, site, education, baseline caloric intake, history of smoking at baseline, BMI category prior to 
the first pregnancy, age first pregnant, years between last birth and baseline, history of inadequate 
gestational weight gain, and the following time-varying characteristics: physical activity score, stress score, 
difficulty paying for basics, menopause status, and hormone use.  
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Table 4-5 Linear Mixed Model Estimates of Percent Change in CRP per Unit Increase in Exposure (n=1318) 

Model 1 Estimate (95% CI) 

Excessive GWG 89.2 (63.2, 119.4) 

Baseline age 1.4 (-0.9, 3.9) 

Years of follow-up 0.4 (-0.1, 0.8) 

GWG*Years follow-up -1.2 (-1.9, -0.5) 

  

Model 2  
Excessive GWG 49.9 (29.9, 73.1) 

Baseline age 2.1 (-0.5, 4.6) 

Years of follow-up 0.6 (0.0, 1.2) 

GWG*Years follow-up -1.2 (-1.9, -0.5) 

Parity (per birth) 1.2 (-4.6, 7.3) 

  

Model 3  
Excessive GWG 49.0 (28.9, 72.1) 

Baseline age 2.2 (-0.3, 4.8) 

Years of follow-up 0.6 (0.0, 1.2) 

GWG*Years follow-up -1.2 (-1.9, -0.5) 

Parity (per birth) 1.0 (-4.8, 7.2) 

Preterm birth history -7.4 (-22.3, 10.3) 

Gest. hypertension 19.6 (-1.1, 44.5) 

Gest. diabetes 9.2 (-15.5, 41.2) 

  

Model 4  

Excessive GWG 31.5 (15.0, 50.3) 

Baseline age 1.3 (-1.1, 3.7) 

Years of follow-up 0.7 (0.1, 1.2) 

GWG*Years follow-up -1.1 (-1.8, -0.4) 

Parity (per birth) -1.5 (-6.8, 4.1) 

Preterm birth history -6.5 (-20.6, 10.1) 

Gest. hypertension 12.9 (-5.4, 34.8) 

Gest. diabetes 6.3 (-16.4, 35.1) 

Baseline obesity  138.9 (112.3, 168.8) 
 

 

 

 

 

Model 1 is adjusted for variables shown. Models 2 - 4 are adjusted for variables shown as well as 
race/ethnicity, site, education, history of smoking at baseline, baseline caloric intake, BMI category 
prior to the first pregnancy, age first pregnant, years between last birth and baseline, history of 
inadequate gestational weight gain, and the following time-varying characteristics: statin use, 
physical activity score, stress score, difficulty paying for basics, menopause status, and hormone 
use.  
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Table 4-6 Longitudinal Pooled Estimates of Percent Change of ASCVD score and CRP per Unit Increase in 

Exposure, Confounder-Adjusted (n=2283) 

  Imputed Estimate Range 
ASCVD Score  Pooled Estimate (95% CI) Minimum Maximum 

Excessive GWG 12.7 (2.2, 24.4) 6.3 18.5 
Baseline age 11.3 (10.2, 12.5) 11.3 11.4 
Years of follow-up 11.4 (11.1, 11.7) 11.3 11.5 
GWG*Years follow-up -0.5 (-1, 0.0) -0.7 -0.2 

    
  Imputed Estimate Range 

CRP Pooled Estimate (95% CI) Minimum Maximum 

Excessive GWG 33.9 (18.3, 51.7) 30.0 39.4 
Baseline age 0.5 (-1.5, 2.5) 0.2 0.7 
Years of follow-up 0.2 (-0.3, 0.7) 0.1 0.3 
GWG*Years follow-up -0.8 (-1.4, -0.1) -1.0 -0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models are adjusted for variables shown as well as race/ethnicity, site, education, history of smoking at 
baseline, baseline caloric intake, BMI category prior to the first pregnancy, age first pregnant, years between 
last birth and baseline, parity, history of inadequate gestational weight gain, and the following time-varying 
characteristics: physical activity score, stress score, difficulty paying for basics, menopause status, and 
hormone use. CRP model is also adjusted for time-varying statin use. 
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Figure 4-1 Aim 3 Participant Flow Chart 

Figure details eligibility and exclusions for participants included in the complete case sample (primary 

analysis) and sample used in pooled imputation results (sensitivity analysis). 
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Figure 4-2 Confounder-adjusted Least Squares Mean ASCVD risk (%), n=1318 

Figure shows least squares means with 95% confidence intervals of percent 10-year atherosclerotic CVD 

risk for those without (light grey bars) and with (dark grey bars) a history of excessive gestational weight 

gain. Each set of least square means is estimated on the log scale in separate linear mixed models with 

follow-up time set to years of SWAN follow-up shown in the x-axis. Log-scale means are back-

transformed to the original scale and presented as %. 
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Figure 4-3 Confounder-adjusted Least Squares Mean CRP (mg/L), n=1318 

Figure shows least squares means with 95% confidence intervals of CRP level for those without (black 

circle) and with (grey triangle) a history of excessive gestational weight gain. Each set of least square 

means is estimated on the log scale in separate linear mixed models with follow-up time set to years of 

SWAN follow-up shown in the x-axis. Log-scale means are back-transformed to the original scale (mg/L). 
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5.0 Discussion  

5.1 Major Findings  

Our goal in this dissertation is to evaluate whether excessive gestational weight gain 

(GWG) increases maternal susceptibility to a high-risk phenotype of obesity. We aimed to identify 

key associations on the potential pathway between excessive GWG, maternal midlife obesity, and 

cardiovascular disease (CVD). Further, we evaluated whether systematic error accounted for 

observed associations between excessive GWG and midlife obesity by quantifying statistical bias 

around those estimates.  

First, we evaluated whether excessive GWG in multiple pregnancies has a cumulative, 

long-term impact on maternal BMI. In a cohort of parous participants in the Study of Women’s 

Health Across the Nation (SWAN), we found that each pregnancy with excessive GWG was 

associated with a 0.02 (se=0.01) log-BMI unit increase at a mean age of 46.6, independent of 

demographic characteristics, health behaviors, and parity. The estimated marginal mean BMI 

increased monotonically from 25.4 kg/m2 (95% CI=24.9, 25.9) for women with no excessive GWG 

pregnancies to of 28.8 kg/m2 for those reporting excessive GWG in three pregnancies (95% 

CI=27.3, 30.5), adjusted for confounders. Notably, the association between excessive GWG 

pregnancies and maternal midlife BMI was not found to vary by parity or by race/ethnicity. 

Our research also provides an applied example of methods to quantify statistical bias in life 

course research. The data used in our aim 1 paper were limited in ways that are common in 

secondary analysis studies of cohorts. Specifically, data were limited by missingness from loss to 
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follow-up and reliance on self-recall for some measures. To address missing data, we imputed 

values for gestational weight gain adequacy for the 42% of eligible participants with missing data. 

Pooled regression estimates were similar to those observed using only complete cases. In 

confounder-adjusted models a history of excessive GWG was associated with a relative risk of 

1.40 (1.13, 1.74) for midlife obesity in complete case analysis and 1.38 (1.16, 1.64) from pooled 

estimates using imputed data. We then quantified bias due to error in self-recalled pregnancy 

weight. By sourcing sensitivity and specificity values for self-recalled pregnancy weight from the 

validation literature to inform weighted regressions, we found that plausible misclassification rates 

moved estimates of association away from the null. Only misclassification-adjusted models 

assuming 10-point lower sensitivity and 20-point higher specificity among those without midlife 

obesity compared to those with obesity moved the confidence interval for the relative risk to 

include a null result.  

Finally, we asked if excessive GWG increased long-term CVD risk. To evaluate this 

question, we leveraged over twenty years of prospective SWAN follow-up across participants’ 

midlife. We found that a history of excessive GWG was associated with a 16.1% (6.8, 26.2) 

increase in log-transformed atherosclerotic CVD risk score, and 49.9% (29.9, 73.1) higher mean 

log-transformed C-reactive protein in confounder-adjusted longitudinal models. This translated 

into an estimated marginal mean of 10-year atherosclerotic CVD risk of 9.8% (9.2, 10.5) versus 

9.5% (8.9, 10.1) and mean C-reactive protein of 2.20 mg/l (1.89, 2.57) versus 1.85 mg/l (1.61, 

2,14) at 20 years of midlife follow-up for those with and without excessive GWG, respectively. 

We interpreted this result to illustrate a small, but not clinically meaningful, increase in 

atherosclerotic CVD risk and a moderate increase in C-reactive protein. Both associations were 

attenuated but remained statistically significant accounting for early midlife obesity.  
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5.2 Public Health Significance 

The burden of CVD in the United States persists despite improvements in many traditional 

risk factors over recent decades. The increasing prevalence of obesity contributes to CVD rates 

and is highest among midlife women. We investigated GWG as a potential modifiable CVD risk 

factor among parous women that manifests before midlife. Our findings contribute to the 

epidemiologic literature and have implications for clinical practice. 

Excessive GWG in multiple pregnancies had a cumulative impact on midlife maternal BMI 

in our data. Clinically, this finding supports prenatal care as an opportunity for obesity prevention 

at any point in a person’s birth history. Our results frame healthy pregnancy weight through a life 

course perspective. Intervention to support healthy weight gain in pregnancy can be meaningful 

throughout the reproductive period, with health impacts continuing across midlife.  

Our research highlights the need for nuance when considering obesity as a measure of 

cardiovascular risk. We found no clinically meaningful difference in atherosclerotic CVD risk 

score between participants with and without a history of excessive GWG, despite differences in 

obesity prevalence in the same population. From a clinical perspective it is important to remember 

that weight characteristics are more predictive of CVD on a population level than individual 

level.228 An estimated one-third of individuals with obesity do not have metabolic complications 

such as hypertension, high fasting blood glucose, or dyslipidemia.18,19,229 This metabolically 

healthy phenotype of obesity has been associated with intermediate CVD risk compared to 

metabolically-healthy individuals with a normal weight BMI and metabolically-unhealthy 

individuals with an obese BMI.21,24,25,230 The heterogeneous nature of obesity as a health 

characteristic is not well understood.18,20,22 The biological mechanism behind divergent risk levels 
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in obesity is unknown, with prominent theories highlighting differences in visceral versus 

subcutaneous adipose tissue or characteristics of adipose tissue growth.22,103 These theories are 

plausible but have not been shown to improve clinical prediction of metabolic risk.102,105 In 

addition, the stigma attached to obesity heightens the need for careful consideration in interpreting 

related research.  

Obesity stigma is endemic socially231-233 and in clinical practice.234-237 This stigma has been 

associated with worse care and health outcomes.235,238-240 The misconception of weight as a solely 

behaviorally-driven health status drives this stigma and obscures upstream factors including health 

disparities.241 The view that obesity is a monolithic marker of disease also contributes.235,240 In 

research, a more informative approach is to design studies to test specific pathways to disease, as 

opposed to treating obesity as a stand-in for overall poor health in conceptual models.  

We observed higher mean levels of the inflammatory marker C-reactive protein among 

those with a history of excessive GWG. This pathway is of interest as inflammation is a key 

component of the atherosclerotic process. Our results contribute the finding that chronic 

inflammation may continue for years after the last birth. We also observed that as women near 

early late life those with and without excessive GWG become more alike in their inflammatory 

profile. The biological process linking GWG and long-term maternal inflammation is unclear. 

Excessive GWG may contribute to a phenotype of obesity that favors the production of pro-

inflammatory adipokines. Alternatively, excessive GWG may trigger an imbalance in cytokine 

production in pregnancy that lasts into the postpartum period.  

We consistently observed null results when estimating the effect of parity on long-term 

maternal health. Among the parous women in the SWAN cohort, number of births was not 

associated with risk of obesity, CVD risk score, or inflammation independent of demographic, 
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behavioral, and other reproductive characteristics. The estimated effect of excessive GWG on early 

midlife BMI did not vary by parity. Previous literature on parity and maternal CVD risk is 

conflicting, despite decades of research on the topic.57,59 Our results suggest that parity is not an 

independent risk factor but instead acts as a proxy for exposure to other reproductive 

characteristics. Preterm birth, hypertensive disorder in pregnancy, gestational diabetes, and 

excessive GWG independently contributed to maternal CVD outcomes in our models.  

This research observes CVD risk during a critical period for women. In midlife, the 

accumulation of cardiovascular risk factors with age is augmented by the menopause transition. 

The menopause transition generally begins in the mid-40s and is characterized by irregularity in 

the menstrual cycle. This is driven by changes in reproductive hormones. In the years surrounding 

the final menstrual period (FMP), the level of estradiol declines while follicle-stimulating hormone 

increases. These trends vary in level and rate of change, with some women experiencing a 

temporary increase in estradiol prior to the FMP.242 It is unclear whether endogenous hormone 

levels themselves influence CVD risk.243 However, the menopause transition is a time of 

substantive changes in cardiovascular risk factors independent of chronological age244 

Previous literature has observed a number of changes in CVD risk during the menopause 

transition. Subclinical markers of atherosclerosis including carotid intima-media thickness may 

increase as women near the FMP,245 with some evidence of greater progression among women 

who transition from pre to post menopause more quickly.246 Changes in risk factors during midlife 

such as worsening lipid profile and increased fat mass compared to lean mass accelerate in the 

years surrounding the FMP independent of age.247-249   

Characteristics of the menopause transition are also associated with CVD development. 

Meta-analyses have indicated that early age at menopause increases risk of CVD.250 Specific 
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patterns of hormone change around the FMP may contribute to atherosclerotic progression.251 

Vasomotor symptoms, such as hot flashes and night sweats, are associated with higher lipid 

levels252 and insulin resistance.253 These symptoms may be a marker of endothelial dysfunction 

and vascular vulnerability.254 Finally, hormone therapy used to manage menopause symptoms may 

increase CVD risk, especially among older women or those further from the FMP.255  

It is essential to consider menopause stage and hormone use when evaluating other risk 

factors for CVD among women in midlife. We quantified the influence of earlier reproductive 

characteristics on midlife cardiovascular health, accounting for chronological age, menopause 

status, and hormone therapy use. By incorporating these measures, we contribute well-

characterized estimates of CVD risk profile across this dynamic stage of the life course.  

Methodologically, our work illustrates the importance of quantitative bias analysis in 

epidemiologic research. Because describing the relationship between an exposure and outcome is 

a fundamental component of epidemiology, understanding the extent to which our estimates 

represent a true association is paramount. Systematic error in data collection can bias estimates 

away from the true association and change inference. Quantifying bias around a result improves a 

study’s validity to inform public health policy.176,256 The potential for quantitative bias analysis to 

strengthen regulatory257 and peer-review processes has also been described.258 Despite the 

accessibility of methods to analyze bias, epidemiologic manuscripts rarely incorporate them, 

relying instead on qualitative descriptions of the potential for systematic error.144,259,260 

We quantified potential bias from two sources of systematic error common in observational 

studies:  missing data and misclassification. We provided a rare applied example in which both 

sources of error occurred in the primary exposure as opposed to the outcome. Our analysis 

presented a range of plausible values for the association between excessive GWG and maternal 
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midlife obesity, describing the degree to which our estimates were susceptible to bias. By 

incorporating quantitative bias analysis, observational data such as the SWAN cohort can inform 

robust epidemiologic research even in the presence of likely systematic error. 

In summary, we found evidence that excessive GWG increased the risk of maternal midlife 

obesity. Our results were robust to common sources of systematic error. We contribute the novel 

finding that excessive GWG contributes to chronic inflammation among parous women up to 3 

decades following the last birth. However, increased risk of obesity did not translate into a 

clinically meaningful difference in atherosclerotic CVD risk score in our longitudinal analysis.  

5.3 Strengths and Limitations 

The comprehensive nature of the SWAN study is a fundamental strength of this research. 

We were able to leverage data on physiologic, behavioral, and social characteristics in analytic 

models. The availability of important factors such as health insurance access and social support 

were critical to our ability to model the probability of participant attrition in imputation models 

126,183,186. This rich data further allowed us to estimate longitudinal associations with outcomes 

collected prospectively over two decades of participants’ lives. Our work highlights the continued 

importance of cohort studies and their ability to collect wholistic data on participants.  

Available measures for outcomes and confounding factors were rigorously collected. Waist 

circumference, blood pressure, lipids, and other cardiovascular measures were collected in-clinic 

by trained staff following a shared protocol. Biomarker values were independently calibrated to 

be appropriate for longitudinal analysis. We also benefitted from high-quality measures of 
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important confounding characteristics such as diet and physical activity. Importantly, the SWAN 

study was designed to characterize the menopause transition, collecting high-quality prospective 

measures of menopause status based on bleeding patterns and surgical history, as well as 

information on use of hormone replacement therapy. These attributes are critical to take into 

account when modeling CVD and inflammation in midlife. 

The definition of our main exposure, excessive GWG, is a valid, literature-based measure 

that represents the health effects of pregnancy weight change.31 The measure also allowed us to 

account for inadequate GWG. This is preferable to comparing low versus high gain, which 

conflates well-supported pregnancies with higher-risk inadequate GWG pregnancies.  

The collection method for GWG adequacy was a limitation to this research. We relied on 

retrospective self-report of pre-pregnancy weight and GWG amount for each pregnancy, collected 

many years after the last birth. Self-recall can be a valid measure, but the agreement between 

recalled and prospectively measured pregnancy weight varies widely.128 However, this provided 

an opportunity to assess biases common to life course research. We were able to evaluate reliability 

of the measure and quantify bias around estimates of association due to misclassification.  

We were limited in our ability to account for pregnancy complications and preterm birth. 

These factors likely play a major role in the life course pathway from pregnancy to midlife that we 

were not able to describe well with our retrospective measures in SWAN. In addition, we do not 

account for breastfeeding in this analysis. There is some evidence that breastfeeding may reduce 

the risk of maternal diabetes53,75,76 and CVD55,77. Anecdotally the effect is suggested to operate 

through increased postpartum weight loss, but there is little confirmatory evidence.78,79 We chose 

in our analysis to focus on weight change during pregnancy, but the mitigating potential of 

interventions on post-partum weight retention warrant further consideration.44,261 
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5.4 Future Directions  

Questions remain surrounding the role of reproductive history on cardiovascular and 

metabolic health. During reproductive years, the relationship between GWG adequacy, pregnancy 

complications, and preterm birth are not fully understood. Excessive GWG is associated with 

higher rates of gestational hypertension226,262 and gestational diabetes.226 These characteristics may 

be causally linked, due to underlying subclinical factors, or represent pre-existing risk. Similarly, 

it is unclear whether associations between pregnancy complications and maternal CVD risk4,54,63-

65 are causal or markers of underlying susceptibility.62 This pathway is further confounded by 

glaring racial disparities in prenatal and maternal health in the US.263-267 Future research including 

subclinical and upstream risk factors as well as prospective measures of complications are 

necessary to better disentangle the causal pathway between excessive GWG, complications, and 

maternal CVD risk.  

Secondly, more research is necessary to evaluate a possible direct effect of excessive GWG 

on chronic inflammation outside of the pathway including obesity. In our analysis, a positive 

association between history of excessive GWG and C-reactive protein persisted independent of 

midlife obesity. This could represent residual confounding or a causal effect. Some direct effect is 

biologically plausible. Inflammatory regulation and change are part of pregnancy61,268,269 and there 

is some evidence that pregnancy factors are associated with postpartum inflammation.62 High 

GWG has been associated with increased C-reactive protein during pregnancy270 and in breastmilk, 

independent of prepregnancy BMI.271 Whether this represents cytokine imbalance from regulatory 

functions of pregnancy or a consequence of excess adiposity has not been studied. 
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Our results point to a need for further research on the development of obesity phenotypes. 

Only recently has interest been expressed in the literature to distinguish risk factors for high and 

low-risk phenotypes.272,273 We found that excessive GWG may contribute to a phenotype of 

obesity with elevated inflammation. In addition to its role in atherosclerotic development, 

inflammation may drive the difference between metabolically healthy and unhealthy obesity 

phenotypes.274,275 However, our results do not fully support this interpretation. We found that the 

impact of excessive GWG on CVD risk score—a score comprised of factors that define 

metabolically unhealthy obesity—was minimal.  

In closing, prevention of excessive GWG is a practical target for intervention to support 

long-term cardiovascular health among people who give birth. Our research highlights key points 

on a hypothetical causal pathway between excessive GWG and CVD risk. More research is 

necessary to continue unraveling the dynamic relationships between reproductive history and 

cardiovascular health. 
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Appendix B Supplementary Tables and Figures 

 
Abbreviations: BMI, body mass index; GWG, gestational weight gain; lbs, pounds; NH: Non-Hispanic.  
1. Adequacy ranges: Institute of Medicine (US) and National Research Council (US) Committee to 
Reexamine IOM Pregnancy Weight Guidelines; Rasmussen KM, Yaktine AL, editors. Weight Gain During 
Pregnancy: Reexamining the Guidelines. Washington (DC): National Academies Press, 2009. 
2. Calculation assumes 4.4 lbs weight gained in first trimester. 
3. In creating the categorical GWG adequacy variables, alternative BMI cutoffs were used for Japanese 

and Chinese participants, with overweight defined as ≥23 kg/m
2 

and obese as ≥25 kg/m
2
. This is 

consistent with recommendations from the Western Pacific Region WHO (The Asia-Pacific perspective: 
redefining obesity and its treatment. Sydney: Health Communications Australia: World Health 
Organization, 2000.), and prior research in Japanese and Chinese populations living in North America (1. 
Razak F, Anand SS, Shannon H, et al. Defining obesity cut points in a multiethnic population. Circulation 
2007;115(16):2111-8; and: 2. Palaniappan LP, Wong EC, Shin JJ, et al. Asian Americans have greater 
prevalence of metabolic syndrome despite lower body mass index. International journal of obesity 
(2005) 2011;35(3):393-400.).  

 

 

 

 

 

 

 

 

Appendix Table 1. Institute of Medicine Recommendations for Total Weight Gain during Pregnancy 

Prepregnancy BMI 
Category 

BMI Category Definition (kg/m2) Range for 
Adequate 

Total GWG 
(lbs)1 

Range for Adequate 
GWG Rate, 2nd and 

3rd Trimester 
(lbs/week)1, 2 

NH White, NH Black, 
and Hispanic2 

Japanese and 
Chinese ethnicity3 

Underweight < 18.5 < 18.5 28–40 1.0-1.3 

Normal weight 18.5-24.9 18.5-22.9 25–35 0.8-1.0 

Overweight 25.0-29.9 23.0-24.9 15–25 0.5-0.7 
Obese (all classes) ≥ 30.0 ≥ 25.0 11–20 0.4-0.6 
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Appendix Table 2. Aim 1 Participant Characteristics by Missing Data Status 

     Excluded due to  
    Included Missing Data p 

Number of Women  1181 985   

Sociodemographic Characteristics 

Age, mean ± SD 46.6 ± 2.64 46.2 ± 2.73 0.001 

Race/Ethnicity, n (%)       <.001 

  Black 309 (26.2) 348 (35.3)   

  Caucasian 559 (47.3) 358 (36.4)   

  Chinese 116 (9.8) 59 (6.0)   

  Hispanic 72 (6.1) 149 (15.1)   

  Japanese 125 (10.6) 71 (7.2)   

Education, n (%)     <.001 

  High school or less 253 (21.4) 346 (36.0)   

  Some college/degree 652 (55.2) 485 (50.4)   

  Post-college study 276 (23.4) 131 (13.6)   

Smoking Status, n (%)       <.001 

  Never smoker 724 (61.3) 525 (54.1)   

  Past smoker 297 (25.1) 208 (21.4)   

  Current smoker 160 (13.5) 237 (24.4)   

BMI in High School, median (IQR) 20.5 (19.0, 22.2) 20.5 (18.9, 22.5) 0.422 

Difficulty Paying for Basics, n (%)       <.001 

  Very or somewhat hard 414 (35.1) 502 (51.8)   

  Not very hard 767 (64.9) 467 (48.2)   

Perceived Stress Score, mean ± SD 8.4 ± 2.90 8.8 ± 3.05 0.002 

Total Caloric Intake, mean ± SD 1826 ± 725.7 1914 ± 822.9 0.010 

Physical Activity Score, mean ± SD 7.9 ± 1.76 7.5 ± 1.78 <.001 

Reproductive History       

Parity, mean ± SD 2.3 ± 1.07 2.5 ± 1.3 <.001 

Age Pregnant First Time, mean ± SD 24.1 ± 5.48 22.6 ± 5.46 <.001 
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Appendix Table 3. Cross Tabulation of Number of Excessive GWG Pregnancies by Parity (n=1181) 

Number of Excessive GWG Pregnancies, n (%)    

  

Parity  

1 2 3 4 + 

0 171 (63.1) 323 (62.5) 131 (54.8) 90 (58.4) 
1 100 (36.9) 88 (17.0) 45 (18.8) 30 (19.5) 
2 ─ 106 (20.5) 24 (10.0) 8 (5.2) 

3 + ─ ─ 39 (16.3) 26 (16.9) 

Total  271 517 239 154 

 

 
Appendix Table 4. Mean Difference and Spearman Correlation Coefficients of GWG Amount Reported at 

SWAN Baseline Visit versus Follow-up 13 Visit, per Birth (n=1181 women, n=2620 births) 

Birth Number N (Women) Mean (SD)  Spearman Correlation  

  Difference* R2 P 

1 1154 1.80 (10.44) 0.73 <.001 

2 884 2.36 (10.27) 0.63 <.001 

3 381 2.67 (10.88) 0.65 <.001 

4 150 4.18 (12.68) 0.57 <.001 

5 39 7.51 (20.61) 0.16 0.341 

6 7 9.00 (17.03) 0.41 0.357 

7 4 -1.75 (8.30) 0.95 0.051 

8 1 2.00 (.) NA NA 

*Calculated as GWG amount self-reported at follow-up visit 13 subtracted from GWG amount self-
reported at baseline (pounds). 
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Appendix Table 5. Change in Log-Transformed BMI at Midlife per Number of Pregnancies with Excessive 

Gestational Weight Gain, Restricted to Women with 1 to 4 Births (n=1139 women, n=2470 births) 

Predictor Slope se p 

Model 1, Unadjusted     

Number Excessive GWG Pregnancies 0.079 0.007 <.001 

    
Model 2, Minimally Adjusted*    

Number Excessive GWG Pregnancies 0.025 0.011 0.019 

Number Inadequate GWG Pregnancies -0.016 0.006 0.008 

Any Excessive GWG Pregnancies (Yes/No) 0.040 0.019 0.039 

Parity 0.004 0.007 0.502 

    
Model 3, Fully Adjusted†    

Number Excessive GWG Pregnancies 0.025 0.011 0.017 

Number Inadequate GWG Pregnancies -0.015 0.006 0.014 

Any Excessive GWG Pregnancies (0/1) 0.036 0.019 0.062 

Parity 0.004 0.007 0.571 

Number Pregnancies with Hypertensive Disorder 0.049 0.014 0.001 

Number Pregnancies with Gestational Diabetes 0.025 0.019 0.196 

 
 
BMI, Body mass index; GWG, Gestational weight gain 
*Model 2 adjusted for variables shown as well as study site, age at outcome measure, race/ethnicity, 
education, smoking, adolescent BMI, difficulty paying for basics, menopausal status, stress score, caloric 
intake, physical activity score, years since last birth, and age first pregnant.  
†Model 3 adjusted for variables noted with Model 2 as well as number of pregnancies with hypertensive 
disorder and number pregnancies with gestational diabetes.
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Appendix Table 6. Adjusted Odd Ratios and 95% CI of Having Missing Data 

Characteristic OR1  (95% CI) 

Race/Ethnicity (reference: White)    

     Black 1.28 (0.99, 1.65) 

     Chinese 0.71 (0.36, 1.40) 

     Hispanic 0.64 (0.33, 1.25) 

     Japanese 1.12 (0.63, 2.00) 
Site (reference: Pittsburgh)    
     Michigan 0.96 (0.67, 1.36) 
     Boston 1.36 (0.94, 1.98) 
     Chicago 2.04 (1.44, 2.88) 
     Davis 0.89 (0.53, 1.49) 
     UCLA 0.87 (0.53, 1.43) 
     New Jersey 2.34 (1.40, 3.90) 
Low language acculturation 1.57 (1.00, 2.46) 

High school or less education 1.55 (1.22, 1.95) 
No health insurance 1.48 (1.02, 2.16) 

Ever-smoker 1.44 (1.17, 1.75) 
Peri-menopause (vs Pre-
menopause) 1.18 (0.97, 1.43) 

Parity (per birth) 1.13 (1.04, 1.24) 
Age (years) 0.91 (0.87, 0.95) 
Social support scale (0-16) 0.96 (0.94, 0.99) 

Years since last birth 1.02 (1.01, 1.04) 

Abbreviations: OR, odds ratio; CI, confidence interval  
1. Model is adjusted for all characteristics shown in Table. 
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Appendix Table 7. Distribution of Excessive GWG and Preterm Birth, Observed versus Imputed 

Dataset Ever-Had Excessive 
GWG, n (%) 

Ever-Had Preterm 
Birth, n (%)  

Observed (n=1340)    
544 (40.6) 151 (11.3) 

Datasets Imputed with Traditional MICE (n=999) 

1 427 (42.7) 133 (13.3) 

2 428 (42.8) 158 (15.8) 

3 423 (42.3) 146 (14.6) 

4 432 (43.2) 157 (15.7) 

5 415 (41.5) 155 (15.5) 

6 429 (42.9) 151 (15.1) 

7 424 (42.4) 164 (16.4) 

8 434 (43.4) 151 (15.1) 

9 406 (40.6) 145 (14.5) 

10 391 (39.1) 151 (15.1) 

Datasets Imputed with CART-based MICE (n=999) 

1 420 (42.0) 156 (15.6) 

2 426 (42.6) 162 (16.2) 

3 442 (44.2) 147 (14.7) 

4 427 (42.7) 146 (14.6) 

5 397 (39.7) 134 (13.4) 

6 433 (43.3) 165 (16.5) 

7 421 (42.1) 156 (15.6) 

8 426 (42.6) 155 (15.5) 

9 429 (42.9) 157 (15.7) 

10 419 (41.9) 155 (15.5) 
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Appendix Table 8. Aim 3 Participant characteristics at SWAN baseline stratified by missing data status 

 Missing Data Status 

 Complete Cases (n=1318) 
Missing Reproductive Data or 
Covariate(s) (n=965) 

Age, mean (SD) 46.6 (2.64) 46.2 (2.70) 

Race/Ethnicity, n (%)     
Black 358 (27.2) 330 (34.2) 

White 615 (46.7) 360 (37.3) 

Chinese 123 (9.3) 63 (6.5) 

Hispanic 90 (6.8) 143 (14.8) 

Japanese 132 (10.0) 69 (7.2) 

Education, n (%)     
High school or less 298 (22.6) 332 (35.3) 

Some college or degree 727 (55.2) 477 (50.7) 

Post-college study 293 (22.2) 132 (14.0) 

Smoking Status, n (%)     
Never smoker 817 (62.0) 513 (53.2) 

Past smoker 324 (24.6) 207 (21.5) 

Current smoker 177 (13.4) 245 (25.4) 

Difficulty Paying for Basics, n (%)     
Not very hard 828 (62.8) 471 (49.5) 

Somewhat or very hard 490 (37.2) 481 (50.5) 

Menopausal Status, n (%)     
Pre-menopause 828 (62.8) 471 (49.5) 

Early perimenopause 490 (37.2) 481 (50.5) 

Perceived Stress Score, mean (SD) 8.5 (2.92) 8.8 (3.04) 

Total Caloric Intake (kcal), mean (SD) 1834.9 (743.1) 1921.1 (826.4) 

Physical Activity Score, mean (SD) 7.8 (1.76) 7.5 (1.78) 

Parity, mean (SD) 2.3 (1.07) 2.5 (1.20) 

Age Pregnant First Time, mean (SD) 24.0 (5.46) 22.6 (5.41) 
Years between last birth and baseline, 
mean (SD) 15.0 (6.76) 15.2 (6.67) 

Abdominal obesity at midlife, n (%) 483 (36.6) 438 (45.4) 
ASCVD score: % 10-year risk, median 
(25th, 75th pctl) 0.08 (0.05, 0.15) 0.11 (0.06, 0.25) 

CRP mg/L, median (25th, 75th pctl) 1.48 (0.53, 4.99) 2.36 (0.87, 7.31) 
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Appendix Figure 1. Directed acyclic graph of effects hypothesized in this analysis. 
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Appendix Figure 2. Imputation Flow Chart 
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Appendix Figure 3. Scatter plot of predicted probability of being observed against number of excessive gestational 

weight gain pregnancies. 

    



 

122 

 

 

Appendix Figure 4. Median ASCVD score (%) with 25th and 75th percentiles, n=1318. 

Figure shows values by SWAN visit, stratified by excessive gestational weight gain history.  
Note that some components of ASCVD score were not measured at SWAN visits 2, 8, 10, and 11.  
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Appendix Figure 5. Median C-reactive protein (mg/l) with error bars to the 25th and 75th percentiles, 

n=1318. 

Figure shows observed values by SWAN visit, stratified by excessive gestational weight gain history. Note 
that C-reactive protein was not measured at SWAN visits 2, 8, 11, 13, and 14. 

 

 

 

 

 

 



 

124 

 

Bibliography 

1. Heron M. Deaths: Leading Causes for 2017. National Vital Statistics Reports. In. Vol 68, 

6. Hyattsville, MD: National Center for Health Statistics; 2019. 

2. Carroll MD, Lacher DA, Sorlie PD, et al. Trends in serum lipids and lipoproteins of adults, 

1960-2002. Jama. 2005;294(14):1773-1781. 

3. Garrett BE, Dube SR, Trosclair A, Caraballo RS, Pechacek TF. Cigarette smoking—united 

states, 1965–2008. MMWR Surveillance Summary. In. Vol 60. Atlanta, GA: Centers for 

Disease Control and Prevention; 2011:109-113. 

4. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary 

Prevention of Cardiovascular Disease: Executive Summary: A Report of the American 

College of Cardiology/American Heart Association Task Force on Clinical Practice 

Guidelines. Circulation. 2019;140(11):e563-e595. 

5. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the 

assessment of cardiovascular risk: a report of the American College of 

Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the 

American College of Cardiology. 2014;63(25 Pt B):2935-2959. 

6. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kruszon-Moran DJNdb. Hypertension 

Prevalence and Control Among Adults: United States, 2015-2016. 2017(289):1-8. 

7. Carroll MD, Fryar CD, Nguyen DT, Statistics NCfH. Total and high-density lipoprotein 

cholesterol in adults: United States, 2015-2016. US Department of Health and Human 

Services, Centers for Disease Control and …; 2017. 

8. Peters SAE, Muntner P, Woodward M. Sex Differences in the Prevalence of, and Trends 

in, Cardiovascular Risk Factors, Treatment, and Control in the United States, 2001 to 2016. 

Circulation. 2019;139(8):1025-1035. 

9. Yang Q, Cogswell ME, Flanders WD, et al. Trends in cardiovascular health metrics and 

associations with all-cause and CVD mortality among US adults. Jama. 

2012;307(12):1273-1283. 

10. Selected health conditions and risk factors, by age: United States, selected years 1988–

1994 through 2015–2016. In. Atlanta, GA: Centers for Disease Control and Prevention; 

2017. 

11. Mendola ND, Chen T, Gu Q, Eberhardt M, Saydah SJNdb. Prevalence of Total, Diagnosed, 

and Undiagnosed Diabetes Among Adults: United States, 2013-2016. 2018(319):1-8. 

12. Wang TW, Asman K, Gentzke AS, et al. Tobacco product use among adults—United 

States, 2017. 2018;67(44):1225. 

13. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and 

youth: United States, 2015-2016. US Department of Health and Human Services, Centers 

for Disease Control and Prevention, National Center for Health Statistics; 2017. 

14. Jensen MD, Ryan DH, Apovian CM, et al. Managing Overweight and Obesity in Adults: 

Systematic Evidence Review from the Obesity Expert Panel. National Institutes of Health: 

National Heart, Lung, and Blood Institute;2013. 



 

125 

 

15. Landsberg L, Aronne LJ, Beilin LJ, et al. Obesity‐related hypertension: pathogenesis, 

cardiovascular risk, and treatment: a position paper of the Obesity Society and the 

American Society of Hypertension. 2013;15(1):14-33. 

16. Collaboration ERF. Separate and combined associations of body-mass index and 

abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective 

studies. The Lancet. 2011;377(9771):1085-1095. 

17. Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Metabolic mediators 

of the effects of body-mass index, overweight, and obesity on coronary heart disease and 

stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 

(London, England). 2014;383(9921):970-983. 

18. Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, 

mechanisms, and clinical implications. The lancet Diabetes & endocrinology. 

2013;1(2):152-162. 

19. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor 

clustering and the normal weight with cardiometabolic risk factor clustering: prevalence 

and correlates of 2 phenotypes among the US population (NHANES 1999-2004). 

2008;168(15):1617-1624. 

20. Lavie CJ, De Schutter A, Milani RV. Healthy obese versus unhealthy lean: the obesity 

paradox. Nature reviews Endocrinology. 2015;11(1):55-62. 

21. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic 

healthy to unhealthy phenotypes and association with cardiovascular disease risk across 

BMI categories in 90 257 women (the Nurses' Health Study): 30 year follow-up from a 

prospective cohort study. The lancet Diabetes & endocrinology. 2018. 

22. Phillips CM. Metabolically healthy obesity across the life course: epidemiology, 

determinants, and implications. Annals of the New York Academy of Sciences. 

2017;1391(1):85-100. 

23. Eckel N, Meidtner K, Kalle-Uhlmann T, Stefan N, Schulze MB. Metabolically healthy 

obesity and cardiovascular events: A systematic review and meta-analysis. European 

journal of preventive cardiology. 2016;23(9):956-966. 

24. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 

diabetes: a meta-analysis of prospective cohort studies. Obesity reviews : an official journal 

of the International Association for the Study of Obesity. 2014;15(6):504-515. 

25. Fan J, Song Y, Chen Y, Hui R, Zhang WJIjoc. Combined effect of obesity and cardio-

metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective 

cohort studies. 2013;168(5):4761-4768. 

26. Karastergiou K, Fried SK. Multiple adipose depots increase cardiovascular risk via local 

and systemic effects. Current atherosclerosis reports. 2013;15(10):361. 

27. Barth RF, Buja LM, Cao L, Brodsky SVJChr. An obesity paradox: increased body mass 

index is associated with decreased aortic atherosclerosis. 2017;19(7):55. 

28. Lawlor DA, Hart CL, Hole DJ, Davey Smith G. Reverse causality and confounding and 

the associations of overweight and obesity with mortality. Obesity (Silver Spring, Md). 

2006;14(12):2294-2304. 

29. Hernandez-Diaz S, Schisterman EF, Hernan MA. The birth weight "paradox" uncovered? 

American journal of epidemiology. 2006;164(11):1115-1120. 



 

126 

 

30. Wu TD, Ejike C, Wise RA, McCormack MC, Brigham EP. The Obesity Paradox in COPD 

is Absent in US Never-Smokers. American journal of epidemiology. 2019. 

31. Rasmussen KM, Yaktine, A. L. Weight Gain During Pregnancy: Reexamining the 

Guidelines. Institute of Medicine, National Academies Press. 2009. 

32. Medicine Io. Nutrition During Pregnancy: Part I, Weight Gain. In. Washington, DC: 

National Academy Press; 1990. 

33. Deputy NP, Sharma AJ, Kim SY, Hinkle SN. Prevalence and characteristics associated 

with gestational weight gain adequacy. Obstetrics and gynecology. 2015;125(4):773-781. 

34. Denize KM, Acharya N, Prince SA, et al. Addressing cultural, racial and ethnic 

discrepancies in guideline discordant gestational weight gain: a systematic review and 

meta-analysis. PeerJ. 2018;6:e5407. 

35. Guo Y, Miao Q, Huang T, et al. Racial/ethnic variations in gestational weight gain: a 

population-based study in Ontario. Canadian journal of public health = Revue canadienne 

de sante publique. 2019. 

36. Krukowski RA, Bursac Z, McGehee MA, West D. Exploring potential health disparities in 

excessive gestational weight gain. Journal of women's health (2002). 2013;22(6):494-500. 

37. Jarman M, Yuan Y, Pakseresht M, Shi Q, Robson PJ, Bell RC. Patterns and trajectories of 

gestational weight gain: a prospective cohort study. CMAJ open. 2016;4(2):E338-345. 

38. Power ML, Lott ML, Mackeen AD, DiBari J, Schulkin J. A retrospective study of 

gestational weight gain in relation to the Institute of Medicine's recommendations by 

maternal body mass index in rural Pennsylvania from 2006 to 2015. BMC pregnancy and 

childbirth. 2018;18(1):239. 

39. McClure CK, Catov JM, Ness R, Bodnar LM. Associations between gestational weight 

gain and BMI, abdominal adiposity, and traditional measures of cardiometabolic risk in 

mothers 8 y postpartum. The American journal of clinical nutrition. 2013;98(5):1218-

1225. 

40. Davis EM, Babineau DC, Wang X, et al. Short inter-pregnancy intervals, parity, excessive 

pregnancy weight gain and risk of maternal obesity. Maternal and child health journal. 

2014;18(3):554-562. 

41. Rooney BL, Schauberger CW. Excess pregnancy weight gain and long-term obesity: one 

decade later. Obstetrics and gynecology. 2002;100(2):245-252. 

42. Walter JR, Perng W, Kleinman KP, Rifas-Shiman SL, Rich-Edwards JW, Oken E. 

Associations of trimester-specific gestational weight gain with maternal adiposity and 

systolic blood pressure at 3 and 7 years postpartum. American journal of obstetrics and 

gynecology. 2015;212(4):499.e491-412. 

43. Widen EM, Whyatt RM, Hoepner LA, et al. Excessive gestational weight gain is associated 

with long-term body fat and weight retention at 7 y postpartum in African American and 

Dominican mothers with underweight, normal, and overweight prepregnancy BMI. The 

American journal of clinical nutrition. 2015;102(6):1460-1467. 

44. Kirkegaard H, Stovring H, Rasmussen KM, Abrams B, Sorensen TI, Nohr EA. How do 

pregnancy-related weight changes and breastfeeding relate to maternal weight and BMI-

adjusted waist circumference 7 y after delivery? Results from a path analysis. The 

American journal of clinical nutrition. 2014;99(2):312-319. 

45. Mamun AA, Kinarivala M, O'Callaghan MJ, Williams GM, Najman JM, Callaway LK. 

Associations of excess weight gain during pregnancy with long-term maternal overweight 



 

127 

 

and obesity: evidence from 21 y postpartum follow-up. The American journal of clinical 

nutrition. 2010;91(5):1336-1341. 

46. Cohen AK, Chaffee BW, Rehkopf DH, Coyle JR, Abrams B. Excessive gestational weight 

gain over multiple pregnancies and the prevalence of obesity at age 40. International 

journal of obesity (2005). 2014;38(5):714-718. 

47. Abrams B, Coyle J, Cohen AK, et al. Excessive Gestational Weight Gain and Subsequent 

Maternal Obesity at Age 40: A Hypothetical Intervention. American journal of public 

health. 2017;107(9):1463-1469. 

48. Al Mamun A, Mannan M, O'Callaghan MJ, Williams GM, Najman JM, Callaway LK. 

Association between gestational weight gain and postpartum diabetes: evidence from a 

community based large cohort study. PloS one. 2013;8(12):e75679. 

49. Kim JH, Lee SJ. Parity and increased risk of insulin resistance in postmenopausal women: 

the 2010 Korean National Health and Nutrition Examination Survey. Menopause (New 

York, NY). 2017;24(7):832-837. 

50. Guo P, Zhou Q, Ren L, Chen Y, Hui Y. Higher parity is associated with increased risk of 

Type 2 diabetes mellitus in women: A linear dose-response meta-analysis of cohort studies. 

Journal of diabetes and its complications. 2017;31(1):58-66. 

51. Vladutiu CJ, Siega-Riz AM, Sotres-Alvarez D, et al. Parity and Components of the 

Metabolic Syndrome Among US Hispanic/Latina Women: Results From the Hispanic 

Community Health Study/Study of Latinos. Circulation Cardiovascular quality and 

outcomes. 2016;9(2 Suppl 1):S62-69. 

52. Tian Y, Shen L, Wu J, et al. Parity and the risk of diabetes mellitus among Chinese women: 

a cross-sectional evidence from the Tongji-Dongfeng cohort study. PloS one. 

2014;9(8):e104810. 

53. Liu B, Jorm L, Banks E. Parity, breastfeeding, and the subsequent risk of maternal type 2 

diabetes. Diabetes care. 2010;33(6):1239-1241. 

54. Bolijn R, Onland-Moret NC, Asselbergs FW, van der Schouw YT. Reproductive factors in 

relation to heart failure in women: A systematic review. Maturitas. 2017;106:57-72. 

55. Peters SA, van der Schouw YT, Wood AM, et al. Parity, breastfeeding and risk of coronary 

heart disease: A pan-European case-cohort study. European journal of preventive 

cardiology. 2016;23(16):1755-1765. 

56. Vaidya D, Bennett WL, Sibley CT, Polak JF, Herrington DM, Ouyang P. Association of 

parity with carotid diameter and distensibility: multi-ethnic study of atherosclerosis. 

Hypertension (Dallas, Tex : 1979). 2014;64(2):253-258. 

57. de Kleijn MJ, van der Schouw YT, van der Graaf Y. Reproductive history and 

cardiovascular disease risk in postmenopausal women: a review of the literature. Maturitas. 

1999;33(1):7-36. 

58. Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of 

cardiovascular disease. The New England journal of medicine. 1993;328(21):1528-1533. 

59. Lv H, Wu H, Yin J, Qian J, Ge J. Parity and Cardiovascular Disease Mortality: a Dose-

Response Meta-Analysis of Cohort Studies. Scientific reports. 2015;5:13411. 

60. Catov JM, Newman AB, Sutton-Tyrrell K, et al. Parity and cardiovascular disease risk 

among older women: how do pregnancy complications mediate the association? Annals of 

epidemiology. 2008;18(12):873-879. 



 

128 

 

61. Minissian MB, Kilpatrick S, Eastwood JA, et al. Association of Spontaneous Preterm 

Delivery and Future Maternal Cardiovascular Disease. Circulation. 2018;137(8):865-871. 

62. Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and 

women's future cardiovascular health: an underused opportunity to improve women's 

health? Epidemiologic reviews. 2014;36:57-70. 

63. Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and Future Cardiovascular Health: A 

Systematic Review and Meta-Analysis. Circulation Cardiovascular quality and outcomes. 

2017;10(2). 

64. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular 

disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905-

914. 

65. Li J, Song C, Li C, Liu P, Sun Z, Yang X. Increased risk of cardiovascular disease in 

women with prior gestational diabetes: A systematic review and meta-analysis. Diabetes 

research and clinical practice. 2018;140:324-338. 

66. Tanz LJ, Stuart JJ, Williams PL, et al. Preterm Delivery and Maternal Cardiovascular 

Disease Risk Factors: The Nurses' Health Study II. Journal of women's health (2002). 

2019;28(5):677-685. 

67. Wu P, Gulati M, Kwok CS, et al. Preterm Delivery and Future Risk of Maternal 

Cardiovascular Disease: A Systematic Review and Meta-Analysis. Journal of the 

American Heart Association. 2018;7(2). 

68. Tanz LJ, Stuart JJ, Williams PL, et al. Preterm Delivery and Maternal Cardiovascular 

Disease in Young and Middle-Aged Adult Women. Circulation. 2017;135(6):578-589. 

69. Catov JM, Bodnar LM, Kip KE, et al. Early pregnancy lipid concentrations and 

spontaneous preterm birth. American journal of obstetrics and gynecology. 

2007;197(6):610.e611-617. 

70. Dietz PM, Callaghan WM, Cogswell ME, Morrow B, Ferre C, Schieve LA. Combined 

effects of prepregnancy body mass index and weight gain during pregnancy on the risk of 

preterm delivery. Epidemiology (Cambridge, Mass). 2006;17(2):170-177. 

71. Schieve LA, Cogswell ME, Scanlon KS, et al. Prepregnancy body mass index and 

pregnancy weight gain: associations with preterm delivery. The NMIHS Collaborative 

Study Group. Obstetrics and gynecology. 2000;96(2):194-200. 

72. Goldstein RF, Abell SK, Ranasinha S, et al. Association of Gestational Weight Gain With 

Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. Jama. 

2017;317(21):2207-2225. 

73. Stotland NE, Caughey AB, Lahiff M, Abrams B. Weight gain and spontaneous preterm 

birth: the role of race or ethnicity and previous preterm birth. Obstetrics and gynecology. 

2006;108(6):1448-1455. 

74. Liu B, Xu G, Sun Y, et al. Association between maternal pre-pregnancy obesity and 

preterm birth according to maternal age and race or ethnicity: a population-based study. 

The lancet Diabetes & endocrinology. 2019;7(9):707-714. 

75. Chowdhury R, Sinha B, Sankar MJ, et al. Breastfeeding and maternal health outcomes: a 

systematic review and meta-analysis. Acta paediatrica (Oslo, Norway : 1992). 

2015;104(467):96-113. 



 

129 

 

76. Aune D, Norat T, Romundstad P, Vatten LJ. Breastfeeding and the maternal risk of type 2 

diabetes: a systematic review and dose-response meta-analysis of cohort studies. Nutrition, 

metabolism, and cardiovascular diseases : NMCD. 2014;24(2):107-115. 

77. Nguyen B, Jin K, Ding D. Breastfeeding and maternal cardiovascular risk factors and 

outcomes: A systematic review. PloS one. 2017;12(11):e0187923. 

78. Neville CE, McKinley MC, Holmes VA, Spence D, Woodside JV. The relationship 

between breastfeeding and postpartum weight change--a systematic review and critical 

evaluation. International journal of obesity (2005). 2014;38(4):577-590. 

79. Victora CG, Bahl R, Barros AJ, et al. Breastfeeding in the 21st century: epidemiology, 

mechanisms, and lifelong effect. Lancet (London, England). 2016;387(10017):475-490. 

80. Kostner KM, Kostner GM. Hyper- and Dyslipoproteinemias. In: Wakabayashi I, 

Groschner K, eds. Interdisciplinary Concepts in Cardiovascular Health: Volume II: 

Secondary Risk Factors. Cham: Springer International Publishing; 2013:63-85. 

81. Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. 

International journal of molecular sciences. 2015;16(5):9749-9769. 

82. Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting 

Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxidative medicine 

and cellular longevity. 2019;2019:8563845. 

83. Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating 

propagating inflammation: a review. Cardiovascular endocrinology & metabolism. 

2019;8(2):51-61. 

84. Steven S, Frenis K, Oelze M, et al. Vascular Inflammation and Oxidative Stress: Major 

Triggers for Cardiovascular Disease. Oxidative medicine and cellular longevity. 

2019;2019:7092151. 

85. Khalil RA. Hypertension and Vascular Dysfunction. In: Wakabayashi I, Groschner K, eds. 

Interdisciplinary Concepts in Cardiovascular Health: Volume II: Secondary Risk Factors. 

Cham: Springer International Publishing; 2013:1-37. 

86. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, 

inflammation, and fibrosis. Hypertension (Dallas, Tex : 1979). 2001;38(3 Pt 2):581-587. 

87. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management 

of high blood pressure in adults: report from the panel members appointed to the Eighth 

Joint National Committee (JNC 8). Jama. 2014;311(5):507-520. 

88. Szuszkiewicz-Garcia MM, Davidson JA. Cardiovascular disease in diabetes mellitus: risk 

factors and medical therapy. Endocrinology and metabolism clinics of North America. 

2014;43(1):25-40. 

89. McGuire DK, Marx N. Diabetes in Cardiovascular Disease: A Companion to Braunwald's 

Heart Disease E-Book. Elsevier Health Sciences; 2014. 

90. Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of Risk Assessment Tools 

to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular 

Disease: A Special Report From the American Heart Association and American College of 

Cardiology. Journal of the American College of Cardiology. 2019;73(24):3153-3167. 

91. Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences 

in adipose tissue for obesity complications. Molecular aspects of medicine. 2013;34(1):1-

11. 



 

130 

 

92. Halberg N, Wernstedt-Asterholm I, Scherer PEJE, America mcoN. The adipocyte as an 

endocrine cell. 2008;37(3):753-768. 

93. Cuthbertson DJ, Steele T, Wilding JP, et al. What have human experimental overfeeding 

studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic 

complications? International journal of obesity (2005). 2017;41(6):853-865. 

94. Knudsen SH, Hansen LS, Pedersen M, et al. Changes in insulin sensitivity precede changes 

in body composition during 14 days of step reduction combined with overfeeding in 

healthy young men. Journal of applied physiology (Bethesda, Md : 1985). 2012;113(1):7-

15. 

95. Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of 

short-term overfeeding and reduced physical activity independent of energy imbalance in 

healthy young men. The Journal of physiology. 2013;591(24):6231-6243. 

96. Levian C, Ruiz E, Yang XJTYjob, medicine. The pathogenesis of obesity from a genomic 

and systems biology perspective. 2014;87(2):113. 

97. Abrams B, Heggeseth B, Rehkopf D, Davis E. Parity and body mass index in US women: 

a prospective 25-year study. Obesity (Silver Spring, Md). 2013;21(8):1514-1518. 

98. Vecchie A, Dallegri F, Carbone F, et al. Obesity phenotypes and their paradoxical 

association with cardiovascular diseases. European journal of internal medicine. 

2018;48:6-17. 

99. Liberale L, Bonaventura A, Vecchie A, et al. The Role of Adipocytokines in Coronary 

Atherosclerosis. Current atherosclerosis reports. 2017;19(2):10. 

100. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in 

dysfunctional adipose tissue. Cardiovascular research. 2017;113(9):1009-1023. 

101. Mandviwala T, Khalid U, Deswal AJCar. Obesity and cardiovascular disease: a risk factor 

or a risk marker? 2016;18(5):21. 

102. Bosy-Westphal A, Braun W, Geisler C, Norman K, Muller MJ. Body composition and 

cardiometabolic health: the need for novel concepts. European journal of clinical nutrition. 

2018;72(5):638-644. 

103. Neeland IJ, Poirier P, Despres JP. Cardiovascular and Metabolic Heterogeneity of Obesity: 

Clinical Challenges and Implications for Management. Circulation. 2018;137(13):1391-

1406. 

104. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional 

differences. Obesity reviews : an official journal of the International Association for the 

Study of Obesity. 2010;11(1):11-18. 

105. Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation 

and promoter of atherosclerosis. Atherosclerosis. 2014;233(1):104-112. 

106. Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. 

Cardiovascular research. 2017;113(9):1074-1086. 

107. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiological 

reviews. 2013;93(1):1-21. 

108. Airhihenbuwa CO, Ford CL, Iwelunmor JI. Why culture matters in health interventions: 

lessons from HIV/AIDS stigma and NCDs. Health education & behavior : the official 

publication of the Society for Public Health Education. 2014;41(1):78-84. 



 

131 

 

109. Hinkle SN, Sharma AJ, Dietz PM. Gestational weight gain in obese mothers and 

associations with fetal growth. The American journal of clinical nutrition. 2010;92(3):644-

651. 

110. Bodnar LM, Siega-Riz AM, Simhan HN, Himes KP, Abrams B. Severe obesity, gestational 

weight gain, and adverse birth outcomes. The American journal of clinical nutrition. 

2010;91(6):1642-1648. 

111. Gilmore LA, Klempel-Donchenko M, Redman LM. Pregnancy as a window to future 

health: Excessive gestational weight gain and obesity. Seminars in perinatology. 

2015;39(4):296-303. 

112. Abeysekera MV, Morris JA, Davis GK, O'Sullivan AJ. Alterations in energy homeostasis 

to favour adipose tissue gain: A longitudinal study in healthy pregnant women. The 

Australian & New Zealand journal of obstetrics & gynaecology. 2016;56(1):42-48. 

113. Berggren EK, O'Tierney-Ginn P, Lewis S, Presley L, De-Mouzon SH, Catalano PM. 

Variations in resting energy expenditure: impact on gestational weight gain. American 

journal of obstetrics and gynecology. 2017;217(4):445.e441-445.e446. 

114. Berggren EK, Groh-Wargo S, Presley L, Hauguel-de Mouzon S, Catalano PM. Maternal 

fat, but not lean, mass is increased among overweight/obese women with excess gestational 

weight gain. American journal of obstetrics and gynecology. 2016;214(6):745.e741-745. 

115. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and gestational 

diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. American 

journal of obstetrics and gynecology. 2003;189(4):944-948. 

116. Ha AVV, Zhao Y, Pham NM, et al. Postpartum weight retention in relation to gestational 

weight gain and pre-pregnancy body mass index: A prospective cohort study in Vietnam. 

Obesity research & clinical practice. 2019;13(2):143-149. 

117. Butte NF, Ellis KJ, Wong WW, Hopkinson JM, Smith EO. Composition of gestational 

weight gain impacts maternal fat retention and infant birth weight. American journal of 

obstetrics and gynecology. 2003;189(5):1423-1432. 

118. Lederman SA, Paxton A, Heymsfield SB, Wang J, Thornton J, Pierson RN, Jr. Body fat 

and water changes during pregnancy in women with different body weight and weight gain. 

Obstetrics and gynecology. 1997;90(4 Pt 1):483-488. 

119. Gunderson EP, Sternfeld B, Wellons MF, et al. Childbearing may increase visceral adipose 

tissue independent of overall increase in body fat. Obesity (Silver Spring, Md). 

2008;16(5):1078-1084. 

120. Cho GJ, Yoon HJ, Kim EJ, Oh MJ, Seo HS, Kim HJ. Postpartum changes in body 

composition. Obesity (Silver Spring, Md). 2011;19(12):2425-2428. 

121. Schneider CR, Biggio JR, Chandler-Laney PC. Association of early pregnancy body mass 

index with post-partum weight change among African-American women. Clinical obesity. 

2018;8(3):170-175. 

122. Shinar S, Berger H, De Souza LR, Ray JG. Difference in Visceral Adipose Tissue in 

Pregnancy and Postpartum and Related Changes in Maternal Insulin Resistance. Journal 

of ultrasound in medicine : official journal of the American Institute of Ultrasound in 

Medicine. 2019;38(3):667-673. 

123. Corbin M, Haslett S, Pearce N, Maule M, Greenland S. A comparison of sensitivity-

specificity imputation, direct imputation and fully Bayesian analysis to adjust for exposure 



 

132 

 

misclassification when validation data are unavailable. International journal of 

epidemiology. 2017;46(3):1063-1072. 

124. Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. 

Springer Science & Business Media; 2011. 

125. Gustavson K, von Soest T, Karevold E, Roysamb E. Attrition and generalizability in 

longitudinal studies: findings from a 15-year population-based study and a Monte Carlo 

simulation study. BMC public health. 2012;12:918. 

126. Bambs CE, Kip KE, Mulukutla SR, et al. Sociodemographic, clinical, and psychological 

factors associated with attrition in a prospective study of cardiovascular prevention: the 

Heart Strategies Concentrating on Risk Evaluation study. Annals of epidemiology. 

2013;23(6):328-333. 

127. Mein G, Johal S, Grant RL, Seale C, Ashcroft R, Tinker A. Predictors of two forms of 

attrition in a longitudinal health study involving ageing participants: an analysis based on 

the Whitehall II study. BMC medical research methodology. 2012;12:164. 

128. Headen I, Cohen AK, Mujahid M, Abrams B. The accuracy of self-reported pregnancy-

related weight: a systematic review. Obesity reviews : an official journal of the 

International Association for the Study of Obesity. 2017;18(3):350-369. 

129. Bannon AL, Waring ME, Leung K, et al. Comparison of Self-reported and Measured Pre-

pregnancy Weight: Implications for Gestational Weight Gain Counseling. Maternal and 

child health journal. 2017;21(7):1469-1478. 

130. Hinkle SN, Sharma AJ, Schieve LA, Ramakrishnan U, Swan DW, Stein AD. Reliability of 

gestational weight gain reported postpartum: a comparison to the birth certificate. Maternal 

and child health journal. 2013;17(4):756-765. 

131. Perkins NJ, Cole SR, Harel O, et al. Principled Approaches to Missing Data in 

Epidemiologic Studies. American journal of epidemiology. 2018;187(3):568-575. 

132. Zhang Z, Liu W, Zhang B, Tang L, Zhang J. Causal inference with missing exposure 

information: Methods and applications to an obstetric study. Statistical methods in medical 

research. 2016;25(5):2053-2066. 

133. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and 

guidance for practice. Statistics in medicine. 2011;30(4):377-399. 

134. Kim S, Belin TR, Sugar CA. Multiple imputation with non-additively related variables: 

Joint-modeling and approximations. Statistical methods in medical research. 

2018;27(6):1683-1694. 

135. Kim S, Sugar CA, Belin TR. Evaluating model-based imputation methods for missing 

covariates in regression models with interactions. Statistics in medicine. 

2015;34(11):1876-1888. 

136. Doove LL, Van Buuren S, Dusseldorp EJCS, Analysis D. Recursive partitioning for 

missing data imputation in the presence of interaction effects. 2014;72:92-104. 

137. Tilling K, Williamson EJ, Spratt M, Sterne JA, Carpenter JR. Appropriate inclusion of 

interactions was needed to avoid bias in multiple imputation. Journal of clinical 

epidemiology. 2016;80:107-115. 

138. Seaman SR, Bartlett JW, White IR. Multiple imputation of missing covariates with non-

linear effects and interactions: an evaluation of statistical methods. BMC medical research 

methodology. 2012;12:46. 



 

133 

 

139. van Buuren S. Flexible Imputation of Missing Data, Second Edition. Milton, UNITED 

KINGDOM: Chapman and Hall/CRC; 2018. 

140. Stekhoven DJ, Buhlmann P. MissForest--non-parametric missing value imputation for 

mixed-type data. Bioinformatics (Oxford, England). 2012;28(1):112-118. 

141. Tang F, Ishwaran H. Random Forest Missing Data Algorithms. Statistical analysis and 

data mining. 2017;10(6):363-377. 

142. Waljee AK, Mukherjee A, Singal AG, et al. Comparison of imputation methods for missing 

laboratory data in medicine. BMJ open. 2013;3(8). 

143. Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of random 

forest and parametric imputation models for imputing missing data using MICE: a 

CALIBER study. American journal of epidemiology. 2014;179(6):764-774. 

144. Greenland S. Bias Analysis. In: Rothman KJ, Greenland S, Lash TL, eds. Modern 

epidemiology. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. 

145. Lyles RH, Lin J. Sensitivity analysis for misclassification in logistic regression via 

likelihood methods and predictive value weighting. Statistics in medicine. 

2010;29(22):2297-2309. 

146. Johnson CY, Howards PP, Strickland MJ, Waller DK, Flanders WD. Multiple bias analysis 

using logistic regression: an example from the National Birth Defects Prevention Study. 

Annals of epidemiology. 2018;28(8):510-514. 

147. Fox MP, Lash TL, Greenland S. A method to automate probabilistic sensitivity analyses 

of misclassified binary variables. International journal of epidemiology. 2005;34(6):1370-

1376. 

148. Avis NE, Crawford SL, Greendale G, et al. Duration of menopausal vasomotor symptoms 

over the menopause transition. JAMA internal medicine. 2015;175(4):531-539. 

149. Thurston RC, Sowers MR, Sternfeld B, et al. Gains in body fat and vasomotor symptom 

reporting over the menopausal transition: the study of women's health across the nation. 

American journal of epidemiology. 2009;170(6):766-774. 

150. Randolph JF, Jr., Sowers M, Gold EB, et al. Reproductive hormones in the early 

menopausal transition: relationship to ethnicity, body size, and menopausal status. The 

Journal of clinical endocrinology and metabolism. 2003;88(4):1516-1522. 

151. Prevalence of Obesity Among Adults and Youth, United State 2011-2014. In. National 

Center for Health Statistics Data Brief No. 219: Centers for Disease Control and 

Prevention; 2015. 

152. Ebbert JO, Elrashidi MY, Jensen MD. Managing Overweight and Obesity in Adults to 

Reduce Cardiovascular Disease Risk. Current Atherosclerosis Reports. 2014;16(10):445. 

153. Huang TT, Drewnosksi A, Kumanyika S, Glass TA. A systems-oriented multilevel 

framework for addressing obesity in the 21st century. Prev Chronic Dis. 2009;6(3):A82. 

154. Nehring I, Schmoll S, Beyerlein A, Hauner H, von Kries R. Gestational weight gain and 

long-term postpartum weight retention: a meta-analysis. The American journal of clinical 

nutrition. 2011;94(5):1225-1231. 

155. Sowers MFR, Crawford SL, Sternfeld B, et al. SWAN: a multicenter, multiethnic, 

community-based cohort study of women and the menopausal transition. In: Lobo RK, J.; 

Marcus, R., ed. Menopause: biology and pathobiology. San Diego: Academic Press; 

2000:175-188. 



 

134 

 

156. Bodnar LM, Hutcheon JA, Parisi SM, Pugh SJ, Abrams B. Comparison of gestational 

weight gain z-scores and traditional weight gain measures in relation to perinatal outcomes. 

Paediatric and perinatal epidemiology. 2015;29(1):11-21. 

157. Hutcheon JA, Platt RW, Abrams B, Himes KP, Simhan HN, Bodnar LM. Pregnancy weight 

gain charts for obese and overweight women. Obesity (Silver Spring, Md). 2015;23(3):532-

535. 

158. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health 

Communications Australia: World Health Organization;2000. 0957708211. 

159. Shiwaku K, Anuurad E, Enkhmaa B, et al. Predictive values of anthropometric 

measurements for multiple metabolic disorders in Asian populations. Diabetes research 

and clinical practice. 2005;69(1):52-62. 

160. Nguyen TT, Adair LS, He K, Popkin BM. Optimal cutoff values for overweight: using 

body mass index to predict incidence of hypertension in 18- to 65-year-old Chinese adults. 

The Journal of nutrition. 2008;138(7):1377-1382. 

161. Anuurad E, Shiwaku K, Nogi A, et al. The new BMI criteria for asians by the regional 

office for the western pacific region of WHO are suitable for screening of overweight to 

prevent metabolic syndrome in elder Japanese workers. Journal of occupational health. 

2003;45(6):335-343. 

162. Morisaki N, Nagata C, Jwa SC, et al. Pre-pregnancy BMI-specific optimal gestational 

weight gain for women in Japan. Journal of epidemiology. 2017;27(10):492-498. 

163. Razak F, Anand SS, Shannon H, et al. Defining obesity cut points in a multiethnic 

population. Circulation. 2007;115(16):2111-2118. 

164. Palaniappan LP, Wong EC, Shin JJ, Fortmann SP, Lauderdale DS. Asian Americans have 

greater prevalence of metabolic syndrome despite lower body mass index. International 

journal of obesity (2005). 2011;35(3):393-400. 

165. Wie JH, Park IY, Namkung J, Seo HW, Jeong MJ, Kwon JY. Is it appropriate for Korean 

women to adopt the 2009 Institute of Medicine recommendations for gestational weight 

gain? PloS one. 2017;12(7):e0181164. 

166. Khanolkar AR, Hanley GE, Koupil I, Janssen PA. 2009 IOM guidelines for gestational 

weight gain: how well do they predict outcomes across ethnic groups? Ethnicity & health. 

2017:1-16. 

167. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L. A data-based 

approach to diet questionnaire design and testing. American journal of epidemiology. 

1986;124(3):453-469. 

168. Sternfeld B, Ainsworth BE, Quesenberry CP. Physical activity patterns in a diverse 

population of women. Preventive medicine. 1999;28(3):313-323. 

169. Cleveland WS, Devlin SJ. Locally Weighted Regression: An Approach to Regression 

Analysis by Local Fitting. Journal of the American Statistical Association. 

1988;83(403):596-610. 

170. Mannan M, Doi SA, Mamun AA. Association between weight gain during pregnancy and 

postpartum weight retention and obesity: a bias-adjusted meta-analysis. Nutrition reviews. 

2013;71(6):343-352. 

171. Little RJ, Rubin DB. Statistical analysis with missing data. Vol 333: John Wiley & Sons; 

2014. 



 

135 

 

172. Voerman E, Santos S, Inskip H, et al. Association of Gestational Weight Gain With 

Adverse Maternal and Infant Outcomes. Jama. 2019;321(17):1702-1715. 

173. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 

2017. National vital statistics reports : from the Centers for Disease Control and 

Prevention, National Center for Health Statistics, National Vital Statistics System. 

2018;67(8):1-50. 

174. Greenland S. Multiple‐bias modelling for analysis of observational data. Journal of the 

Royal Statistical Society: Series A (Statistics in Society). 2005;168(2):267-306. 

175. Jurek AM, Greenland S, Maldonado G. How far from non-differential does exposure or 

disease misclassification have to be to bias measures of association away from the null? 

International journal of epidemiology. 2008;37(2):382-385. 

176. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good 

practices for quantitative bias analysis. International journal of epidemiology. 

2014;43(6):1969-1985. 

177. Lash TL, Abrams B, Bodnar LM. Comparison of bias analysis strategies applied to a large 

data set. Epidemiology (Cambridge, Mass). 2014;25(4):576-582. 

178. De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during 

pregnancy and postpartum: an Endocrine Society clinical practice guideline. The Journal 

of clinical endocrinology and metabolism. 2012;97(8):2543-2565. 

179. Tingi E, Syed AA, Kyriacou A, Mastorakos G, Kyriacou A. Benign thyroid disease in 

pregnancy: A state of the art review. Journal of clinical & translational endocrinology. 

2016;6:37-49. 

180. Cacioppo JT, Cacioppo S. The Population-Based Longitudinal Chicago Health, Aging, and 

Social Relations Study (CHASRS): Study Description and Predictors of Attrition in Older 

Adults. Archives of scientific psychology. 2018;6(1):21-31. 

181. Jiang L, Yang J, Huang H, et al. Derivation and Evaluation of a Risk-Scoring Tool to 

Predict Participant Attrition in a Lifestyle Intervention Project. Prevention science : the 

official journal of the Society for Prevention Research. 2016;17(4):461-471. 

182. Gardiner PA, Pachana NA, Mishra GD, Jones M, Byles JE, Dobson AJ. Do Factors That 

Predict Attrition Change Across Waves in a Longitudinal Study of Older Women? Journal 

of the American Geriatrics Society. 2015;63(12):2627-2629. 

183. Powers J, Tavener M, Graves A, Loxton D. Loss to follow-up was used to estimate bias in 

a longitudinal study: a new approach. Journal of clinical epidemiology. 2015;68(8):870-

876. 

184. Satherley N, Milojev P, Greaves LM, et al. Demographic and psychological predictors of 

panel attrition: evidence from the New Zealand attitudes and values study. PloS one. 

2015;10(3):e0121950. 

185. Oddy WH, Smith GJ, Jacoby P. A possible strategy for developing a model to account for 

attrition bias in a longitudinal cohort to investigate associations between exclusive 

breastfeeding and overweight and obesity at 20 years. Annals of nutrition & metabolism. 

2014;65(2-3):234-235. 

186. Salthouse TA. Selectivity of attrition in longitudinal studies of cognitive functioning. The 

journals of gerontology Series B, Psychological sciences and social sciences. 

2014;69(4):567-574. 



 

136 

 

187. Burgette LF, Reiter JP. Multiple imputation for missing data via sequential regression trees. 

American journal of epidemiology. 2010;172(9):1070-1076. 

188. Hayes T, Usami S, Jacobucci R, McArdle JJ. Using Classification and Regression Trees 

(CART) and random forests to analyze attrition: Results from two simulations. Psychology 

and aging. 2015;30(4):911-929. 

189. Bondarenko I, Raghunathan T. Graphical and numerical diagnostic tools to assess 

suitability of multiple imputations and imputation models. Statistics in medicine. 

2016;35(17):3007-3020. 

190. McClure CK, Bodnar LM, Ness R, Catov JM. Accuracy of maternal recall of gestational 

weight gain 4 to 12 years after delivery. Obesity (Silver Spring, Md). 2011;19(5):1047-

1053. 

191. Bodnar LM, Abrams B, Bertolet M, et al. Validity of birth certificate-derived maternal 

weight data. Paediatric and perinatal epidemiology. 2014;28(3):203-212. 

192. Dzakpasu S, Duggan J, Fahey J, Kirby RS. Estimating bias in derived body mass index in 

the Maternity Experiences Survey. Health promotion and chronic disease prevention in 

Canada : research, policy and practice. 2016;36(9):185-193. 

193. Natamba BK, Sanchez SE, Gelaye B, Williams MA. Concordance between self-reported 

pre-pregnancy body mass index (BMI) and BMI measured at the first prenatal study 

contact. BMC pregnancy and childbirth. 2016;16(1):187. 

194. Han E, Abrams B, Sridhar S, Xu F, Hedderson M. Validity of Self-Reported Pre-Pregnancy 

Weight and Body Mass Index Classification in an Integrated Health Care Delivery System. 

Paediatric and perinatal epidemiology. 2016;30(4):314-319. 

195. van Buuren S, and Karin Groothuis-Oudshoorn. MICE: Multivariate Imputation by 

Chained Equations in R. Journal of Statistical Software. 2011;45(3):1-67. 

196. R: A language and environment for statistical computing. In: Vienna, Austria: R 

Foundation for Statistical Computing; 2019: https://www.R-project.org/. 

197. Hill B, Bergmeier H, McPhie S, et al. Is parity a risk factor for excessive weight gain during 

pregnancy and postpartum weight retention? A systematic review and meta-analysis. 

Obesity reviews : an official journal of the International Association for the Study of 

Obesity. 2017;18(7):755-764. 

198. Fuller-Tyszkiewicz M, Skouteris H, Hill B, Teede H, McPhie S. Classification tree analysis 

of postal questionnaire data to identify risk of excessive gestational weight gain. Midwifery. 

2016;32:38-44. 

199. Restall A, Taylor RS, Thompson JM, et al. Risk factors for excessive gestational weight 

gain in a healthy, nulliparous cohort. Journal of obesity. 2014;2014:148391. 

200. Brawarsky P, Stotland NE, Jackson RA, et al. Pre-pregnancy and pregnancy-related factors 

and the risk of excessive or inadequate gestational weight gain. International journal of 

gynaecology and obstetrics: the official organ of the International Federation of 

Gynaecology and Obstetrics. 2005;91(2):125-131. 

201. Hutchins F, Abrams B, Brooks M, et al. The Effect of Gestational Weight Gain Across 

Reproductive History on Maternal Body Mass Index in Midlife: The Study of Women's 

Health Across the Nation. Journal of women's health (2002). 2019. 

202. Jurek AM, Greenland S, Maldonado G, Church TR. Proper interpretation of non-

differential misclassification effects: expectations vs observations. International journal of 

epidemiology. 2005;34(3):680-687. 

https://www.r-project.org/


 

137 

 

203. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary 

Prevention of Cardiovascular Disease: A Report of the American College of 

Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. 

Circulation. 2019;140(11):e596-e646. 

204. Banack HR, Bea JW, Stokes A, et al. It's Absolutely Relative: The Effect of Age on the 

BMI-Mortality Relationship in Postmenopausal Women. Obesity (Silver Spring, Md). 

2020;28(1):171-177. 

205. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci 

(Lond). 2018;132(12):1243-1252. 

206. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868-874. 

207. Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of 

atherosclerosis and therapeutic interventions. Atherosclerosis. 2018;276:98-108. 

208. Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic 

syndrome and cardiovascular disease. Interdisciplinary topics in gerontology. 2015;40:99-

106. 

209. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. 

The Journal of clinical investigation. 2017;127(1):1-4. 

210. Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic 

syndrome. Seminars in immunopathology. 2018;40(2):215-224. 

211. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the 

relationship between obesity, inflammation, insulin resistance, dyslipidemia and 

nonalcoholic fatty liver disease. International journal of molecular sciences. 

2014;15(4):6184-6223. 

212. Sowers MFR, Crawford SL, Sternfeld B, et al. SWAN: a multicenter, multiethnic, 

community-based cohort study of women and the menopausal transition. 2000. 

213. Organization WH. The Asia-Pacific perspective: redefining obesity and its treatment. In: 

Sydney: Health Communications Australia; 2000. 

214. Ishii S, Karlamangla AS, Bote M, et al. Gender, obesity and repeated elevation of C-

reactive protein: data from the CARDIA cohort. PloS one. 2012;7(4):e36062. 

215. Quispe R, Michos ED, Martin SS, et al. High-Sensitivity C-Reactive Protein Discordance 

With Atherogenic Lipid Measures and Incidence of Atherosclerotic Cardiovascular 

Disease in Primary Prevention: The ARIC Study. Journal of the American Heart 

Association. 2020;9(3):e013600. 

216. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res 

Rev. 2011;10(3):319-329. 

217. Wyczalkowska-Tomasik A, Czarkowska-Paczek B, Zielenkiewicz M, Paczek L. 

Inflammatory Markers Change with Age, but do not Fall Beyond Reported Normal Ranges. 

Arch Immunol Ther Exp (Warsz). 2016;64(3):249-254. 

218. Hauspurg A, Ying W, Hubel CA, Michos ED, Ouyang P. Adverse pregnancy outcomes 

and future maternal cardiovascular disease. Clinical cardiology. 2018;41(2):239-246. 

219. Ying W, Catov JM, Ouyang P. Hypertensive Disorders of Pregnancy and Future Maternal 

Cardiovascular Risk. Journal of the American Heart Association. 2018;7(17):e009382. 

220. Wang Z, Wang Z, Wang L, et al. Hypertensive disorders during pregnancy and risk of type 

2 diabetes in later life: a systematic review and meta-analysis. Endocrine. 2017;55(3):809-

821. 



 

138 

 

221. Kim C. Maternal outcomes and follow-up after gestational diabetes mellitus. Diabet Med. 

2014;31(3):292-301. 

222. Skilton MR, Sérusclat A, Begg LM, Moulin P, Bonnet F. Parity and carotid atherosclerosis 

in men and women: insights into the roles of childbearing and child-rearing. Stroke. 

2009;40(4):1152-1157. 

223. Parikh NI, Cnattingius S, Dickman PW, Mittleman MA, Ludvigsson JF, Ingelsson E. Parity 

and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159(2):215-

221.e216. 

224. Oliver-Williams C, Vladutiu CJ, Loehr LR, Rosamond WD, Stuebe AM. The Association 

Between Parity and Subsequent Cardiovascular Disease in Women: The Atherosclerosis 

Risk in Communities Study. Journal of women's health (2002). 2019;28(5):721-727. 

225. Klingberg S, Brekke HK, Winkvist A, Engstrom G, Hedblad B, Drake I. Parity, weight 

change, and maternal risk of cardiovascular events. American journal of obstetrics and 

gynecology. 2017;216(2):172.e171-172.e115. 

226. Santos S, Voerman E, Amiano P, et al. Impact of maternal body mass index and gestational 

weight gain on pregnancy complications: an individual participant data meta-analysis of 

European, North American and Australian cohorts. BJOG : an international journal of 

obstetrics and gynaecology. 2019;126(8):984-995. 

227. Bodnar LM, Himes KP, Abrams B, Parisi SM, Hutcheon JA. Early-pregnancy weight gain 

and the risk of preeclampsia: A case-cohort study. Pregnancy Hypertens. 2018;14:205-

212. 

228. Ghanemi A, Yoshioka M, St-Amand JJJocm. Broken Energy Homeostasis and Obesity 

Pathogenesis: The Surrounding Concepts. 2018;7(11):453. 

229. Lin H, Zhang L, Zheng R, Zheng Y. The prevalence, metabolic risk and effects of lifestyle 

intervention for metabolically healthy obesity: a systematic review and meta-analysis: A 

PRISMA-compliant article. Medicine (Baltimore). 2017;96(47):e8838. 

230. Lin L, Zhang J, Jiang L, et al. Transition of metabolic phenotypes and risk of subclinical 

atherosclerosis according to BMI: a prospective study. Diabetologia. 2020;63(7):1312-

1323. 

231. Spahlholz J, Baer N, Konig HH, Riedel-Heller SG, Luck-Sikorski C. Obesity and 

discrimination - a systematic review and meta-analysis of observational studies. Obesity 

reviews : an official journal of the International Association for the Study of Obesity. 

2016;17(1):43-55. 

232. Sikorski C, Luppa M, Kaiser M, et al. The stigma of obesity in the general public and its 

implications for public health - a systematic review. BMC public health. 2011;11:661. 

233. Puhl RM, Heuer CA. Obesity stigma: important considerations for public health. American 

journal of public health. 2010;100(6):1019-1028. 

234. Tomiyama AJ, Finch LE, Belsky AC, et al. Weight bias in 2001 versus 2013: contradictory 

attitudes among obesity researchers and health professionals. Obesity (Silver Spring, Md). 

2015;23(1):46-53. 

235. Phelan SM, Burgess DJ, Yeazel MW, Hellerstedt WL, Griffin JM, van Ryn M. Impact of 

weight bias and stigma on quality of care and outcomes for patients with obesity. Obesity 

reviews : an official journal of the International Association for the Study of Obesity. 

2015;16(4):319-326. 



 

139 

 

236. Malterud K, Ulriksen K. Obesity, stigma, and responsibility in health care: A synthesis of 

qualitative studies. International journal of qualitative studies on health and well-being. 

2011;6(4). 

237. Twarog JP, Sonneville KR. Reducing Weight Stigma in the Health Care Setting: Important 

Considerations for Medical Education. JAMA pediatrics. 2015;169(12):1178. 

238. Wu YK, Berry DC. Impact of weight stigma on physiological and psychological health 

outcomes for overweight and obese adults: A systematic review. Journal of advanced 

nursing. 2018;74(5):1030-1042. 

239. Teixeira ME, Budd GM. Obesity stigma: a newly recognized barrier to comprehensive and 

effective type 2 diabetes management. Journal of the American Academy of Nurse 

Practitioners. 2010;22(10):527-533. 

240. Ananthakumar T, Jones NR, Hinton L, Aveyard P. Clinical encounters about obesity: 

Systematic review of patients' perspectives. Clinical obesity. 2020;10(1):e12347. 

241. Arora M, Barquera S, Farpour Lambert NJ, et al. Stigma and obesity: the crux of the matter. 

Lancet Public Health. 2019;4(11):e549-e550. 

242. Tepper PG, Randolph JF, Jr., McConnell DS, et al. Trajectory clustering of estradiol and 

follicle-stimulating hormone during the menopausal transition among women in the Study 

of Women's Health across the Nation (SWAN). The Journal of clinical endocrinology and 

metabolism. 2012;97(8):2872-2880. 

243. El Khoudary SR. Gaps, limitations and new insights on endogenous estrogen and follicle 

stimulating hormone as related to risk of cardiovascular disease in women traversing the 

menopause: A narrative review. Maturitas. 2017;104:44-53. 

244. Chae CU, Derby CA. The menopausal transition and cardiovascular risk. Obstet Gynecol 

Clin North Am. 2011;38(3):477-488. 

245. El Khoudary SR, Wildman RP, Matthews K, Thurston RC, Bromberger JT, Sutton-Tyrrell 

K. Progression rates of carotid intima-media thickness and adventitial diameter during the 

menopausal transition. Menopause (New York, NY). 2013;20(1):8-14. 

246. Johnson BD, Dwyer KM, Stanczyk FZ, et al. The Relationship of Menopausal Status and 

Rapid Menopausal Transition with Carotid Intima-Media Thickness Progression in 

Women: A Report from the Los Angeles Atherosclerosis Study. The Journal of Clinical 

Endocrinology & Metabolism. 2010;95(9):4432-4440. 

247. El Khoudary SR, Thurston RC. Cardiovascular Implications of the Menopause Transition: 

Endogenous Sex Hormones and Vasomotor Symptoms. Obstet Gynecol Clin North Am. 

2018;45(4):641-661. 

248. Wang Q, Ferreira DLS, Nelson SM, Sattar N, Ala-Korpela M, Lawlor DA. Metabolic 

characterization of menopause: cross-sectional and longitudinal evidence. BMC medicine. 

2018;16(1):17. 

249. Greendale GA, Sternfeld B, Huang M, et al. Changes in body composition and weight 

during the menopause transition. JCI Insight. 2019;4(5). 

250. Appelman Y, van Rijn BB, Ten Haaf ME, Boersma E, Peters SA. Sex differences in 

cardiovascular risk factors and disease prevention. Atherosclerosis. 2015;241(1):211-218. 

251. El Khoudary SR, Santoro N, Chen HY, et al. Trajectories of estradiol and follicle-

stimulating hormone over the menopause transition and early markers of atherosclerosis 

after menopause. European journal of preventive cardiology. 2016;23(7):694-703. 



 

140 

 

252. Thurston RC, El Khoudary SR, Sutton-Tyrrell K, et al. Vasomotor symptoms and lipid 

profiles in women transitioning through menopause. Obstetrics and gynecology. 

2012;119(4):753-761. 

253. Thurston RC, El Khoudary SR, Sutton-Tyrrell K, et al. Vasomotor symptoms and insulin 

resistance in the study of women's health across the nation. The Journal of clinical 

endocrinology and metabolism. 2012;97(10):3487-3494. 

254. Biglia N, Cagnacci A, Gambacciani M, Lello S, Maffei S, Nappi RE. Vasomotor symptoms 

in menopause: a biomarker of cardiovascular disease risk and other chronic diseases? 

Climacteric. 2017;20(4):306-312. 

255. Mehta JM, Chester RC, Kling JM. The Timing Hypothesis: Hormone Therapy for Treating 

Symptomatic Women During Menopause and Its Relationship to Cardiovascular Disease. 

Journal of women's health (2002). 2019;28(5):705-711. 

256. Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology 

(Cambridge, Mass). 2003;14(4):459-466. 

257. Lash TL, Fox MP, Cooney D, Lu Y, Forshee RA. Quantitative Bias Analysis in Regulatory 

Settings. American journal of public health. 2016;106(7):1227-1230. 

258. Fox MP, Lash TL. On the Need for Quantitative Bias Analysis in the Peer-Review Process. 

American journal of epidemiology. 2017;185(10):865-868. 

259. Lash TL, Fink AK, Fox MP. Introduction, Objectives, and an Alternative. In: Applying 

Quantitative Bias Analysis to Epidemiologic Data. New York, NY: Springer New York; 

2009:1-12. 

260. Lash TL. Heuristic thinking and inference from observational epidemiology. Epidemiology 

(Cambridge, Mass). 2007;18(1):67-72. 

261. Rooney BL, Schauberger CW, Mathiason MA. Impact of perinatal weight change on long-

term obesity and obesity-related illnesses. Obstetrics and gynecology. 2005;106(6):1349-

1356. 

262. Ren M, Li H, Cai W, et al. Excessive gestational weight gain in accordance with the IOM 

criteria and the risk of hypertensive disorders of pregnancy: a meta-analysis. BMC 

pregnancy and childbirth. 2018;18(1):281. 

263. Petersen EE, Davis NL, Goodman D, et al. Racial/Ethnic Disparities in Pregnancy-Related 

Deaths - United States, 2007-2016. MMWR Morb Mortal Wkly Rep. 2019;68(35):762-765. 

264. Leonard SA, Main EK, Scott KA, Profit J, Carmichael SL. Racial and ethnic disparities in 

severe maternal morbidity prevalence and trends. Annals of epidemiology. 2019;33:30-36. 

265. Purisch SE, Gyamfi-Bannerman C. Epidemiology of preterm birth. Seminars in 

perinatology. 2017;41(7):387-391. 

266. Breathett K, Muhlestein D, Foraker R, Gulati M. Differences in preeclampsia rates between 

African American and Caucasian women: trends from the National Hospital Discharge 

Survey. Journal of women's health (2002). 2014;23(11):886-893. 

267. Jones EJ, Hernandez TL, Edmonds JK, Ferranti EP. Continued Disparities in Postpartum 

Follow-Up and Screening Among Women With Gestational Diabetes and Hypertensive 

Disorders of Pregnancy: A Systematic Review. J Perinat Neonatal Nurs. 2019;33(2):136-

148. 

268. Kalagiri RR, Carder T, Choudhury S, et al. Inflammation in Complicated Pregnancy and 

Its Outcome. American journal of perinatology. 2016;33(14):1337-1356. 



 

141 

 

269. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, 3rd, Petraglia F. Inflammation 

and pregnancy. Reprod Sci. 2009;16(2):206-215. 

270. Hrolfsdottir L, Schalkwijk CG, Birgisdottir BE, et al. Maternal diet, gestational weight 

gain, and inflammatory markers during pregnancy. Obesity (Silver Spring, Md). 

2016;24(10):2133-2139. 

271. Whitaker KM, Marino RC, Haapala JL, et al. Associations of Maternal Weight Status 

Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity 

(Silver Spring, Md). 2017;25(12):2092-2099. 

272. Robson EM, Costa S, Hamer M, Johnson W. Life course factors associated with 

metabolically healthy obesity: a protocol for the systematic review of longitudinal studies. 

Syst Rev. 2018;7(1):50. 

273. Loos RJF, Kilpeläinen TO. Genes that make you fat, but keep you healthy. Journal of 

internal medicine. 2018;284(5):450-463. 

274. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 

2011;29:415-445. 

275. Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and 

nonobese adults? The Journal of clinical endocrinology and metabolism. 

2013;98(10):E1610-1619. 

 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1.0 Introduction
	1.1 Epidemiology of Excessive Gestational Weight Gain and Cardiovascular Disease
	1.1.1 Prevalence of CVD and its primary risk factors in the US
	1.1.2 Obesity as a risk-enhancing factor for CVD
	1.1.3 Excessive gestational weight gain and maternal midlife obesity
	1.1.4 Excessive GWG and cardiovascular risk factors
	1.1.5 Other reproductive factors and CVD risk

	1.2 Identification of Biologic Pathways to Link Excessive GWG with CVD
	1.2.1 Primary processes of CVD development
	1.2.2 Measuring cardiovascular risk
	1.2.3 Biology of obesity development
	1.2.4 Contributions of obesity to CVD
	1.2.5 Obesity phenotypes
	1.2.6 The contributions of excessive GWG to obesity and obesity phenotypes

	1.3 Challenges in Studying the Long-Term Effects of Reproductive Health
	1.3.1 Potential sources of systematic error
	1.3.2 Multiple imputation to address bias due to missing data
	1.3.3 Quantification of recall bias
	1.3.4 Data Source: The Study of Women’s Health Across the Nation

	1.4 Specific Aims and Conceptual Model
	1.4.1 Specific Aims


	2.0 The Effect of Gestational Weight Gain across Reproductive History on Maternal Body Mass Index in Midlife: The Study of Women's Health Across the Nation
	2.1 Abstract
	2.2 Introduction
	2.3 Methods
	2.3.1 Participants
	2.3.2 Measures
	2.3.3 Statistical Analysis

	2.4 Results
	2.5 Discussion
	2.6 Conclusion
	2.7 Tables and Figures
	Table 2-1 Aim 1 Participant Characteristics
	Table 2-2 Change in Log-Transformed BMI at Midlife per Number of Pregnancies with Excessive Gestational Weight Gain
	Table 2-3 Adjusted marginal mean BMI in midlife by number of pregnancies with excessive gestational weight gain, among women with 1 to 3 births
	Figure 2-1 Aim 1 Participant and Data-Collection Flow-Chart
	Figure 2-2 Loess Plot of Midlife BMI by Number of Excessive GWG Pregnancies
	Figure 2-3 Adjusted Odds Ratios and 95% Confidence Intervals of Midlife Obesity
	Figure 2-4 Odds Ratios and 95% Confidence Intervals of Midlife Obesity by GWG Adequacy in the Last Pregnancy, Adjusted for GWG Adequacy of Prior Pregnancies, Among Women with 1 to 3 Births


	3.0 Gestational weight gain and long-term maternal obesity risk: A multiple bias analysis
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Participants
	3.3.2 Measures
	3.3.3 Statistical Analysis

	3.4 Results
	3.4.1 Participant Characteristics
	3.4.2 Complete Case Analysis
	3.4.3 Accounting for Missing Data
	3.4.4 Accounting for Misclassification

	3.5 Discussion
	3.6 Tables and Figures
	Table 3-1 Aim 2 Participant Characteristics at Time of Midlife Waist Circumference Assessment
	Table 3-2 Participant Characteristics Among Those with Observed Reproductive History
	Table 3-3 Complete Case and Pooled Regression Estimates: Relative Risk of Midlife Obesity
	Table 3-4 Misclassification-Adjusted RR (95% CI) of Midlife Abdominal Obesity for Ever-had Versus No Excessive Gestational Weight Gain
	Table 3-5 Misclassification-Adjusted RR (95% CI) of Midlife Obesity for Ever-had Versus No Excessive Gestational Weight Gain, Assuming Differential Misreporting by Outcome Status
	Figure 3-1 Aim 2 Participant Flow-Chart
	Figure 3-2 Relative Risk of Midlife Obesity for Ever- versus Never-Had Excessive Gestational Weight Gain, Confounder-Adjusted, by Sensitivity and Specificity of Self-Report


	4.0 Excessive Gestational Weight Gain and Long-Term Maternal Cardiovascular Risk: Two Decades of Follow-up in the Study of Women’s Health Across the Nation
	4.1 Abstract
	4.2 Introduction
	4.3 Methods
	4.3.1 Participants
	4.3.2 Measures
	4.3.3 Statistical Analysis

	4.4 Results
	4.5 Discussion
	4.6 Conclusion
	4.7 Tables and Figures
	Table 4-1 Institute of Medicine Recommendations for Total Weight Gain during Pregnancy
	Table 4-2 Aim 3 Participant Characteristics at SWAN Baseline (Complete Cases)
	Table 4-3 Estimated Percent Change in ASCVD Score and CRP for Ever- versus Never-Had Excessive Gestational Weight Gain (n=1318)
	Table 4-4 Linear Mixed Model Estimates of Percent Change in ASCVD Score per Unit Increase in Exposure (n=1318)
	Table 4-5 Linear Mixed Model Estimates of Percent Change in CRP per Unit Increase in Exposure (n=1318)
	Table 4-6 Longitudinal Pooled Estimates of Percent Change of ASCVD score and CRP per Unit Increase in Exposure, Confounder-Adjusted (n=2283)
	Figure 4-1 Aim 3 Participant Flow Chart
	Figure 4-2 Confounder-adjusted Least Squares Mean ASCVD risk (%), n=1318
	Figure 4-3 Confounder-adjusted Least Squares Mean CRP (mg/L), n=1318


	5.0 Discussion
	5.1 Major Findings
	5.2 Public Health Significance
	5.3 Strengths and Limitations
	5.4 Future Directions

	Appendix A SWAN Study Acknowledgments
	Appendix B Supplementary Tables and Figures
	Appendix Table 1. Institute of Medicine Recommendations for Total Weight Gain during Pregnancy
	Appendix Table 2. Aim 1 Participant Characteristics by Missing Data Status
	Appendix Table 3. Cross Tabulation of Number of Excessive GWG Pregnancies by Parity (n=1181)
	Appendix Table 4. Mean Difference and Spearman Correlation Coefficients of GWG Amount Reported at SWAN Baseline Visit versus Follow-up 13 Visit, per Birth (n=1181 women, n=2620 births)
	Appendix Table 5. Change in Log-Transformed BMI at Midlife per Number of Pregnancies with Excessive Gestational Weight Gain, Restricted to Women with 1 to 4 Births (n=1139 women, n=2470 births)
	Appendix Table 6. Adjusted Odd Ratios and 95% CI of Having Missing Data
	Appendix Table 7. Distribution of Excessive GWG and Preterm Birth, Observed versus Imputed
	Appendix Table 8. Aim 3 Participant characteristics at SWAN baseline stratified by missing data status
	Appendix Figure 4. Median ASCVD score (%) with 25th and 75th percentiles, n=1318.
	Appendix Figure 5. Median C-reactive protein (mg/l) with error bars to the 25th and 75th percentiles, n=1318.

	Bibliography

