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In Search of an Optimal Subset of Electrocardiogram Features to Augment the

Diagnosis of Acute Coronary Syndrome at the Emergency Department

Zeineb Bouzid, M.S.

University of Pittsburgh, 2020

The electrophysiology of acute myocardial ischemia is well understood; yet clinical prac-

tice primarily relies on classical ST amplitude measures. This translates into poor diagnostic

sensitivity for identifying acute coronary syndrome (ACS). Machine learning could help iden-

tify an optimal subset of features to augment clinicians’ decision during patient evaluation.

We sought to compare the accuracy of supervised classifiers using electrocardiogram (ECG)

feature subsets selected based on data-driven techniques or domain-specific knowledge.

This was an observational study of two prospective cohorts of consecutive patients evalu-

ated at the emergency department for suspected ACS (Cohort 1: n=745, age 59±17, 42% Fe-

male; Cohort 2: n=499, age 59±16, 49% Female). A total of 554 temporal-spatial waveform

features were extracted from baseline 12-lead ECGs using manufacturer-specific software.

We used multiple algorithms to identify a subset of 229 data-driven features. Additionally,

we selected a subset of 65 physiology-driven features that are mechanistically linked to my-

ocardial ischemia. Using these two subsets of features, we evaluated logistic regression (LR)

and artificial neural network (ANN) classifiers using 10-fold cross-validation on cohort 1 with

independent testing on cohort 2. Our results show that classifiers with data-driven features

were superior during model training (Area under the ROC curve: 0.81±0.06 vs 0.76±0.09

for LR, and 0.85±0.07 vs. 0.80±0.05 for ANN), but they generalized poorly to testing data

(Area under the ROC curve: 0.68 vs 0.76 for LR, and 0.72 vs. 0.77 for ANN). In addition

to classical ST and T wave amplitudes, the following features were found to be important

in ACS classification: T peak–Tend interval; QRS and T axes with corresponding angles; T

loop morphology, and principal component analysis ratio of ECG waveforms.

This abstract is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Fara-
mand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In
search of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome
at the emergency department,”Journal of American Heart Association, 2020, forthcoming.
(Available in reference [1] (submitted, under review)).
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In this study, we identified a subset of novel ECG features that would improve ACS

detection. These features guided by domain-specific knowledge yielded stable LR classifiers

highly adaptable to be implemented in clinical decision support tools.

Keywords: machine learning, dimensionality reduction, acute coronary syndrome, electro-

cardiogram, ischemia.

This abstract is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Fara-
mand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In
search of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome
at the emergency department,”Journal of American Heart Association, 2020, forthcoming.
(Available in reference [1] (submitted, under review)).
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1.0 Introduction

1.1 Acute Coronary Syndrome and Machine Learning1

The electrocardiogram (ECG) reflects mechanical phenomena electrically induced in the

heart and is, for instance, the only tool to timely diagnose ST-segment elevation myocardial

infarction for patients presented in the emergency department [2]. Clinicians are trained

to formulate a diagnosis on the basis of established expert definitions of cardiac concepts

and practice guidelines standardizing the usage of technologies deployed for diagnosis pur-

poses. However, criteria defining cardiac diseases are evolving as technological breakthroughs

are happening and research is advancing to improve the accuracy and sensitivity of previ-

ously existing tools, resulting in the detection of novel patterns of the human body. These

exploratory achievements are acknowledged, to cite an instance, by the Joint European So-

ciety of Cardiology/American College of Cardiology committee in its attempt to redefine

myocardial infarction [3]. With the benefit of hindsight, unprecedented evolutions of con-

cepts can help better identify pathological signs in an ECG leading to a better diagnosis

and a timely detection of patients suffering from a possible cardiac event and, hopefully,

preventing complications to occur.

An ischemic ECG is recognized using an exploratory procedure for assessing some temporal-

and spatial features of the ECG: St-elevation, left bundle branch block, Q-waves and T-waves

[4]. The clinical interpretations of the changes of these features need to be done account-

ing for the symptoms of the patient [5]. With appropriate software, novel temporal-spatial

features of the 12-lead ECG are harvested from the raw signal wave and can conceptually

optimize acute coronary syndrome (ACS) detection beyond that of classical ST amplitude

measurements. Machine learning techniques have proven capable of discriminating popula-

tions of ACS/non-ACS patients surpassing clinicians and approaching the performance of

1Portions of this part are taken from a forthcoming paper cited, in its current status, as: Z. Bouzid,
Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S.
Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. (Available in reference [1] (submitted, under review)).
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the HEART score [6]. It is then of great interest to investigate the features which had the

highest impact on this data-driven decision.

Several studies have shown that, in emergency settings, the immediate recognition of

ACS is a longstanding challenge [7, 8, 9]. The ECG is readily available during initial patient

evaluation, and ECG markers indicative of acute myocardial ischemia have the potential to

accelerate ACS diagnosis by replacing the current time-consuming biomarker-based approach

[10, 11, 12]. Over the past few decades, thorough studies have explored the electrophysi-

ological basis of acute myocardial ischemia [13], with many of them advocating the large

presence of hidden signs of acute myocardial ischemia in the ECG signal [14, 15]. However,

guidelines, currently effective, exclusively count on the amplitude of ST segment and T wave

for ACS detection [16], rendering a diagnostic sensitivity of approximately 40% for the stan-

dard 12-lead ECG [17]. Computational algorithms open great horizons to boost the study

of ECG waves by extracting numerous features from an individual 10-second 12-lead ECG.

Consequently, recent advances in pattern recognition and machine learning could establish

an optimal subset of features to expand clinical knowledge and enhance decision-making

ability, at initial evaluation, to promptly identify ACS patients [6].

In spite of its ample employment in various clinical applications, machine learning has

limitations ranging from the relatively small sample size of accessible clinical data to the re-

quirements of replication implying the use of comparable external data sets which is usually

a complicated task [18]. Accordingly, feature subset selection represents a powerful method

that would substantially advance the quality of a supervised classification, comprising a bet-

ter interpretability of the resulting classifier. In supplement to data-driven features selection

approaches, domain-specific expertise is advised to be necessary, by a number of studies, to

guide feature selection and contribute to model development during the training stage [18].

Although manual feature selection can be helpful in specifying electrophysiologically relevant

characteristics of myocardial ischemia taking into account the solid knowledge background

in cardiac physiology, the efficiency of this method when coupled with supervised machine

learning classifiers has no sufficient proof. Indeed, manual feature selection is rather counter-

intuitive to the mission of machine learning which is revealing new patterns invisible to and

not captured by a human observer.
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1.2 Acute Coronary Syndrome in the USA: Prevalence and Forms

Nearly 6% of the patients coming to the emergency department have a chief complaint

of chest pain. Differentiating patients who have ACS versus another disease process can

be challenging. The term acute coronary syndrome is an umbrella term which includes

myocardial infarction, myocardial ischemia/injury and unstable angina [19].

1.2.1 Myocardial Infarction

Myocardial infarction occurs in heart cells when the body experiences prolonged ischemia

(i.e., a lack of oxygen) which leads to cell death. This process of cellular death is fast because

of mitochondrial abnormalities occur within 10 minutes of decrease in oxygen consumption.

The reference biomarker used to detect this phenomenon is cardiac troponin I and T (ab-

breviated as cTnI and cTnT); a cTn level above the 99th percentile upper reference limit

reveals the presence of MI injury. However, according to the evolution pattern, the latter

can be classified as acute or chronic [20].

Myocardial infarction is the result of a failure in satisfying the oxygen demand. A pa-

tient going through a myocardial infarction may present with no symptoms, less frequent

symptoms or more frequent ones such as chest pain and diffuse unchanged discomfort [20].

We can clinically discriminate between two classes of myocardial infarction. First, the

patient’s electrocardiogram can present with ST-segment elevation in two contiguous leads

or ’bundle branch blocks with ischemic repolarization patterns’ leading to identify it as an

ST-elevation myocardial infarction [20]. Second, the absence of these signs in the ECG leads

results in diagnosing the patient with a non-ST- elevation myocardial infarction [20].

1.2.2 Myocardial Ischemia/Injury

Myocardial injury of the heart muscle will have clinical evidence of acute myocardial

ischemia with the detection of a rise and fall of a cardiac troponin value with at least

one value above the 99th percentile upper range limit and at least one of the following

characteristics: 1) symptoms of myocardial ischemia; 2) new ischemia or presumed to be

3



new ECG changes; 3) development of pathological Q waves; 4) imaging evidence of new loss

of viable myocardium or new regional wall motion abnormality; and 5) identification of a

coronary thrombus by cardiac angiogram or autopsy [16].

1.2.3 Unstable Angina

Unstable angina is a clinical diagnosis that represents when a patient has a chief com-

plaint or potential symptoms that may be suggestive of myocardial ischemia/infarction, but

lacks physiological evidence of acute myocardial death [21]. These symptoms can vary and

may be, but not limited to the following: chest pain, chest discomfort, upper extremity pain,

or epigastric pain lasting for greater than 20 minutes [21].

1.3 Research Objectives

In view of all the reasonings elaborated in Sections 1.1 and 1.2, we compared the effects of

two feature selection approaches, domain-specific expertise versus data driven techniques, on

the performance of machine learning classifiers in the specific clinical task of the electrocar-

diographic prediction of ACS. ECG diagnosis of ACS is a very complex task. As previously

mentioned, extensive studies were conducted on acute myocardial ischemia [22, 23, 24, 25].

Still, the sensitivity of experienced clinician for ECG diagnosis of ACS is astonishingly less

than 50% [6]. These findings imply that the existence of unknown signatures of myocardial

ischemia hidden in the ECG signal, which suggests an important opportunity to improve

diagnostics. Subsequently, we wanted to (1) compare the performance of machine learning

classifiers in diagnosing ACS utilizing ECG feature subsets produced by either data-driven

procedures or domain-specific know-how; and (2) whether data-driven feature selection can

pinpoint ECG features suggestive of ACS and overlooked by human experts. The research

to answer these questions was carried out on the available data of two prospective clinical

cohorts from the EMPIRE study.

4



1.4 Thesis Outline

We review in Chapter 2 of the present thesis the fundamentals of an electrocardiogram

and its role in predicting ACS, an outcome that will be further explained in the same chap-

ter. Afterwards, a concise overview of the basics of machine learning is presented as an

introduction to this domain.

Chapter 3 details the methodology we opted for throughout the research, putting the

emphasis on the EMPIRE data collection and preprocessing alongside with the feature re-

duction approaches and algorithms and their efficiency in classifying patients with ACS.

The results of this study are introduced in Chapter 4 ranging from the training and val-

idation operated on a first cohort to testing run on a separate second cohort. The outcomes

of this work are given for different feature reduction approaches.

Chapter 5 consists of a prolonged discussion of the finding of this study and their entail-

ments, investigating their potential impact on the detection of electrical biomarkers mecha-

nistically linked to ischemia by clinicians.

Finally, we summarize our conclusions and give future insights in Chapter 6.

Portions of this thesis are taken from two forthcoming papers cited, in their current

status, as: Z. Bouzid, Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba,

C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search of optimal subset of ECG fea-

tures to augment the diagnosis of acute coronary syndrome at the emergency

department,”Journal of American Heart Association, 2020, forthcoming. and

S. S. Al-Zaiti, L. Besomi, Z. Bouzid, Z. Faramand, S. O. Frisch, C. Martin-

Gill,R. Gregg, S. Saba, C. Callaway, and E. Sejdi c, “Machine learning-based

prediction of acute coronary syndrome using only the pre-hospital 12-lead elec-

trocardiogram,”Nature Communications, 2020, in press.. (Available in references

[1] (submitted, under review) and [6] (submitted, under review).).
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2.0 Background

2.1 Electrocardiogram

The electrocardiogram, through its leads’ signals, reflects the electrical activity in the

heart and has a diagnostic power that makes it very useful in the primary assessment of the

patient’s condition because it is non-invasive in nature and can easily be obtained. Most

commonly called ECG, this tool, which can record an electrical signal of the heart muscle,

was discovered by Köllicker and Müller in 1856 [26], a few decades after Galvani discovered

animal electricity which served as a ground for the concept of electrophysiology [27, 28]. The

evolution of the ECG on the human body was discovered by Muirhead in 1870 which has

been transformed into the current date ECG by Einthoven in the early 1900’s [28].

The ECG reflects the electrophysiological behavior of the cardiac cells at any given point

of time, when the ECG is analyzed. All cardiac cells are positively charged on their surface

due to the relative distribution of cations. The resting membrane potential of any given

cardiac cell will be reverse by the process of depolarization, when the cardiac cell is stimu-

lated. The repolarization process returns the cardiac membranes to their resting potential.

These two processes are the basis for understanding and interpreting an ECG signal and

collectively they are referred to as an action potential [29].

The regularity of the heart’s contraction and relaxation cycle, ensured by specialized

conductive cell, allows to capture the electrophysiological events at its origin using the ECG

or EKG, for a better verbal distinguishability from electroencephalogram [29].

The ECG tracing of a healthy heart activity is well determined, and specific dimensions

are set to define a healthy cycle, discriminating it from a misfunctioning heart. First, the

isoelectric line indicates that membrane potentials are at rest and forms the baseline of an

ECG [29]. The ECG intervals are indexed with letters in alphabet order announcing the

beginning of an event of the cardiac cycle [29]. However, the ECG reflects only three of the

sequential eight physiological events involved in the heart cycle (Figure 1) [29].

6



Figure 1: Cardiac cycle events. Adapted from [29].

Since the electrical activity of the heart occurs in different directions, a prior analysis

led to the standardizing electrode placement to record those signals. The previously defined

Einthoven’s triangle, having the heart at the center of the virtual segments formed by linking

the positively and negatively charged electrodes, represents nowadays the leads I, II, and III

[29]. The modern ECG consists of 12 leads, still lead II is more frequently used thanks to

the fact that its waves are larger than those of the other leads [29].

Leads’ vectors belong to the frontal plane (I, II, III, aVR, aVL, and aVF ) or horizontal

plane (V1, V2, V3, V4, V5 and V6) [30]. After fixing the electrodes on the patient’s extremities

at rest, Lead I, Lead II and Lead III record differences in potentials between, respectively, left

arm and right arm, right arm and left leg and finally left arm and left leg, each time one of

the two electrodes will be the positive pole as shown in Figure 2 [30]. The ”augmented leads”

aVR, aVL, and aVF though have a slightly less straightforward definition since they reflect

the difference in potential between one extremity’s electrode and a ”ground lead” which

is simply the summation of the remaining two extremities leads (Figure 2) [30]. Whereas

these leads are situated in the frontal plane and track the cardiac electrical activity over

7



its 360, V1 through V6 leads cover all 360 of the horizontal plane using each one distinctive

electrode and the previously mentioned limbs electrodes (Figure 3) [30]. The positive pole

is the particular lead electrode and the negative pole is obtained as the connection of the

extremities electrodes [30].

8



9

Figure 2: Details about the 12 leads of an ECG: placement and role. Adapted from [30].



Figure 3: Specific electrodes placement to record the 12 leads. Adapted from [31].

When printed on gridded paper, the recorded signals are traced on a basis of two axis.

The vertical axis indicates the voltage and direction of the electrical signals, with 1mm ele-

mentary unit length, while the horizontal axis shows the time basis as well as the sequence

of cardiac cycle phases, with a 0.04 second as finest division [29].

Figure 4 is an annotated example of a beat on an ECG tracing. Letters indicate names of

waves based on which intervals are defined and should respect specific dimensions in healthy

individuals, these waves represent depolarization and repolarization of the heart parts [30].

Depending on heart rate, a clinician has different methods in examining an ECG and their

reasoning is personal in identifying cardiac diseases such as arrythmia [29].

ECG instrumentation had to be improved to match the growth of telemedicine and

e-healthcare that would lead to the necessity of the implementation of wearable ECG moni-

toring device [28]. The omnipresence of ECG recordings in various settings rises the premise

of big data mining, and, for instance, the Web-based framework Cloudwave was developed to

overcome the challenge of real-time accessibility and management of tremendous amount of

10



Figure 4: ECG waves and intervals. Adapted from [30].

data [28, 32]. New predictive algorithms have enhanced the diagnosis of cardiac events based

on ECG, especially in the absence of a gold standard for that purpose [28]. One example is

the detection of myocardial ischemia [33].

11



2.2 Machine Learning

2.2.1 Overview

Machine Learning as a concept emerged, with Arthur Samuel, as a trial to convey to

machines the ability to learn without prior explicit programming (indicating the exact pro-

cedures to perform in specific situations) [34]. He simulates different approaches to machine

learning by the use of the game of checkers briefly distinguishing between a general-purpose

neural net approach, which is specifically ”a randomly connected switching net”, operat-

ing with a ”reward-and-punishment routine” for the purpose of learning, and a special-

purpose approach with an extremely organized network [34]. This potential of machines

to autonomously investigate underlying patterns and make their own deductions pushed

researchers to further explore this domain. In 1997, Tom Mitchell provided his rigorous

definition as: ”a computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E” [35].

The concept of machine learning relies on the duality of training and testing. Follow-

ing the above definition, for a process to have a learning ability, its constituent parts need

to be established: the experience E (observed features used to train the model), the task

T (classification, regression, clustering, etc) and the performance measure P (Area Under

Curve of the Receiver Operating Characteristic, sensitivity, specificity, etc). The objective

is to increase the machine’s knowledge by feeding its input with the training features or

observations, and then testing this learning process on a non-intersecting set of observations

to whose outcomes the algorithm is completely blinded. Performance metrics, precised later

in this thesis, allow the evaluation of the algorithms’ efficiency.

Machine learning has expanded tremendously since it was first introduced and is now es-

sential in advancing research in multiple fields ranging from medicine to defense and finance.

Examples of applications include diagnosis and prognosis of diseases, recommender systems

and autonomous vehicles.
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2.2.2 Problems Types

Problems treated with machine learning lay mainly under the scope of one of the follow-

ing three categories: supervised learning, unsupervised learning and reinforcement learning.

However, we will also briefly inspect four additional categories, namely: semi-supervised

learning, transductive inference, on-line learning and active learning.

Supervised learning occurs when the algorithm is provided with a data set with each

datum representing a group of features and its corresponding actual outcome and where the

program’s final goal is to optimize a set of initially unknown parameters corresponding to

the known features [36]. In the framework of the training stage, the goal of such algorithms

is to tune a group of parameters with respect to the provided outcomes. This process is

done using an optimization program that minimizes a cost function developed to reflect the

correctness of the estimations for the training set compared to the actual labels. Afterwards,

during the testing stage, the algorithms aim to provide the most accurate predictions for the

unseen data kept separately from the training set [37].

All algorithms rely on adjusting their parameters with reference to a training set, and

then testing the learnt behavior on an independent testing set. Problems defined as clas-

sification, regression or ranking problems belong to supervised learning [37]. For example,

hand-written digits’ recognition is a classification problem while price estimation of houses,

furniture or any good or service is a regression problem.

As opposed to this “passive learning” method, active learning is a more dynamic ap-

proach by which the learning machine can interact and adapt in the process of gathering

data points for training [37].

In unsupervised learning, called “learning without a teacher” by DeLiang Wang [36],

the algorithm is only provided a set of data points as in the previous case but without

their real labels. Consequently, the algorithm’s role is to identify a coherent structure laying

underneath observations that are not random since their provenance represents a physical

process [36]. Unsupervised learning relies on two techniques as mentioned by DeLiang Wang.

First, an optimization problem consisting of minimizing the entropy or maximizing the mu-

tual information [36]. The final goal is to decrease correlation (redundancy) of the input
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data [36]. Second, the Hebbian learning rule introduced by Hebb in 1949 [38] is very use-

ful at establishing correlation since it affirms that “the connection between two neurons is

strengthened if they fire at the same time (Hebb 1949)” [36].

Two major areas exploit this concept: clustering which groups data points in separate

agglomerations for classification purposes and dimensionality reduction which guarantees the

efficient recognition of important features to a certain application or simply helps visualize

the data on the basis of certain features.

Semi-supervised learning mixes supervised and unsupervised learning features in a way

that the algorithm is trained with data points that have their original real corresponding out-

puts as well as data points which outputs are unknown [37]. This technique is implemented in

the aim of an improved performance compared to the one obtained with supervised learning

alone, in cases presenting abundant observations’ features and where their labels are harder

to be available [37]. Similarly, transductive inference algorithms are fed with data presenting

the same characteristics of the one inputted to the semi-supervised algorithm but they only

test for the unlabeled data points of that same set, as an easy and realistic approach [37].

On-line learning comes with a minimization problem based on the concept of cumulating

the loss obtained throughout the repeated process where it alternates training on a data point

regardless of its outcome and testing on the real output of that data point [37]. Whereas

it presents a similar training-testing scenario, reinforcement learning is characterized by

the interaction the learner establishes with its environment which may lead to an action-

triggered reward [37]. In the absence of a “long-term reward feedback”, the exploration

versus exploitation trade-off remains critical for the agent to handle as it needs to decide

whether to discover the environment through new states and actions or to use the current

present information to maximize its reward [37]. Besides, we can distinguish between the

case of a planning problem where the environment details are familiar to the learner, and

the case of a learning problem where the environment is rather anonymous, benefiting from

the model of Markov decision processes [37].
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2.2.3 Cross-Validation

Cross-validation enables a better understanding of the generalization effectiveness of a

classifier to a separate unseen data set. The key point is eliminating the variability of the

results by averaging the testing performance metric values over all the folds, but unfortu-

nately presenting a “pessimistic bias” [39]. In principle, for a k-fold cross validation, the

data set is divided into k splits, disjoint and ideally equal in size, each would be used once as

the validation (testing) set and (k-1) times in the training set [39]. The split corresponding

to the fold number will be kept apart for validation, and the rest of the folds will blend to

form the training set [39].

Figure 5 shows the step-by-step process of the k-fold cross-validation mechanism.

Figure 5: Schematic description of the k-fold cross-validation process
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As the number of folds in a k-fold cross-validation is to be determined taking into ac-

count the total number of observations available, one way to apply this method is to consider

k as equal to the total data set size, this method is called leave-one-out cross-validation

[40, 41, 39]. It is recommended for a small sample size [42].

K-fold cross-validation is particularly useful for the assessment of the generalization per-

formance of a model as well as for the choice of the most adequate model for a particular

application [39]. Moreover, in this context, it seems reasonable to state that we need to opt

for methods that combine evaluating the learning algorithm and the model selection [39].

Removing bias and sensitivity of external factors requires intensive computational proce-

dures, for instance, nested cross-validation or “double cross” [43, 39].

Some concern arise when the proportions of classes in a data set are significantly differ-

ent i.e. the data set is skewed or unbalanced. In fact, it is possible that the randomness

of the construction of the splits makes them non representative of the distribution of the

corresponding populations in real-life settings. Consequently, the results obtained for each

fold will not reflect the true performance of the machine learning algorithm. To address

this problem, we operate a stratified k-fold cross validation that would guarantee a realistic

allocation of observations in each split to meet the same distribution characteristics of the

initial full data set. Other well-tried variations of this method can be further investigated,

such as distribution-balanced stratified cross-validation [44].

2.2.4 Machine Learning Classification Algorithms

2.2.4.1 Logistic Regression Logistic regression (LR) is a linear classifier which relies

on separating a data set into subgroups belonging each to a class. Indeed, the output is

categorical, more precisely binary or dichotomous [45]. The separation boundary being a

straight line in the two dimensional space or a hyper plane in higher dimensional spaces

conveys to this method the characteristic of being linear. As in statistics, logistic regression

aims to fit and provide an interpretable mapping from the independent variables (input) to

the dependent response (output) [45].
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Two main differences arise between linear and logistic regression. First, the conditional

mean of the outcome variable is defined as the outcome Y mean value given the independent

variables’ values x such that

E(Y |x) = β0 + β1 × x (2.1)

for β0 and β1 the unknown vectors to optimize, is a linear combination of independent vari-

ables that can take any real number [45]. Since we want the conditional mean curve to be

plotted as an S-shaped curve with variable on y-axis between 0 and 1, a cumulative distri-

bution can be used [45]. The logistic distribution is chosen for its mathematical flexibility

and clinical interpretability and has the equation

π(x) =
exp(β0 + β1 × x)

1 + exp(β0 + β1 × x)
(2.2)

[45]. The logit transformation comes then to get us back to the familiar form used in linear

regression

f(x) = ln(
π(x)

1− π(x)
) = β0 + β1 × x (2.3)

and thus allows taking advantage of the properties already established for the latter [45].

Second, while the conditional distribution is normal for linear regression, it is binomial with

probability of success equal to the conditional mean [45].

If we define the sigmoid function (Figure 6) previously established for the conditional

mean as follows:

hβ(x) =
1

1 + exp(−βTx)
(2.4)

mainly having the sigmoid function at its origin, applied to βTx, we can define a function

dependent on the unknown vector beta which will be optimized to fit the model. The

optimization problem lays on maximizing an expression, called the log likelihood function:

L(β) =
n∑
i=1

(yiln(π(xi)) + (1− yi)ln(1− π(xi))) (2.5)

for xi a single observation corresponding to the ith component of the input vector x and yi the

ith label of the outcomes vector Y [45]. The optimization algorithm used can be Liblinear,

LBFGS or SAGA, among others.
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Figure 6: Plot of the sigmoid function

Finally, since the output of the sigmoid function is bounded ranging from 0 to 1, a

threshold, equal to 0.5, is set to split this range into two intervals. The choice of this cutoff

value assumes equal probabilities of outcome classes i.e. if the conditional mean is higher

than 0.5 the output is set to be 1, it is considered zero otherwise. If the data is unbalanced

(or skewed), weights can be adjusted to account for this problem.

2.2.4.2 Artificial Neural Network [46] An artificial neural network (ANN) configu-

ration is inspired by the human network of neurons and synapses’ mechanism [47]. ANN

correspond to a sophisticated algorithm capable of catching underlying characteristics of a

non-linear relationship between input and output variables through its main two steps. The

architecture of an artificial neural network can be summarized in the following elements:

multiple layers each having a finite number of neurons. Also, a bias is added in each layer

and is linked only to the neurons of the next layer. Each neuron has at its input a linear

combination of the previous layer’s neurons’ output, and at its output an activation function
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g(.) evaluated for this input. Let’s call oki the output of the ith neuron in the kth hidden layer,

then its value is obtained according to this formula (see Figure 7 for a better understanding

of the significance of the variables):

oki = g(wk0i +

rk−1∑
m=1

wkmix
k−1
m ) (2.6)

where:

• xk−1
m is the mth output of the (k − 1)th hidden layer (k-1 = 0 corresponds to the input

layer);

• wkmi is the weight assigned to the connection going from the mth output of the (k − 1)th

hidden layer to the ith neuron of the kth hidden layer;

• wk0i is the weight assigned to the connection going from the unit bias of the (k − 1)th

hidden layer to the ith neuron of the kth hidden layer;

• rk−1 is the number of neurons of the (k − 1)th hidden layer.

The activation function’s goal is to map the output value in the [0,1] interval corresponding

to a probabilistic output range. Multiple examples of functions can be used: sigmoid func-

tion (Figure 6), hyperbolic tangent function (tanh), softmax function, softsign and rectified

linear unit function, among others [48].

Two main steps are mandatory in the process of learning of an ANN:

First, the forward propagation consists of computing all the outputs of the neurons. The

first layer represents always the input variables of the ANN model, plus the bias. A simple

model would include an input layer (leftmost layer), a hidden layer and an output layer.

However, multiple hidden layers can be included and this basic architecture can be further

enhanced in the context of deep learning to form recurrent or convolutional neural networks

among other structures [49]. At the end of this phase, the output layer’s neurons have each

calculated a value for the output.

Second, during the backpropagation phase, an error function is first determined to reflect

the difference between the desired and the predicted output, the mean squared error is used.

Since fitting the model is completely satisfied when finding the set of weights between the

neurons of two distinct layers, an optimization algorithm is at the center of this process to
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minimize the error function, which derivatives with respect to the weights are used to update

the weight values. Gradient descents examples used are Adam, Stochastic Gradient Descent

and LBFGS (a variation of quasi-Newton method).

The training observations are successively fed into the neural network, possibly multiple

times, defining the number of epochs. The stop condition, denoting the convergence of the

optimizer, can be defined by a maximum number of iterations or a minimum error improve-

ment.

Figure 7 details the structure of an artificial neural network with multiple outputs.

An artificial neural network presents the advantage of allowing structural stabilization

which consists of modifying the complexity of the model through varying the adaptive pa-

rameters’ number [50]. Several ways con achieve this goal ranging from comparing the per-

formances of distinct models (with unequal number of units), through starting with a wide

network and eliminating the least relevant weights or units, to, on the opposite, starting

with a limited network and supplementing it with units [50].
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Figure 7: Structure of an artificial neural network comprising an input layer, k hidden layers and multiple outputs



2.2.5 Dimensionality Reduction

The term curse of dimensionality is employed when the dataset features are so numer-

ous that they impact negatively the performance of the algorithm i.e. the complexity and

redundancy of certain elements result in the decrease of the accuracy and the occurrence of

overfitting [51]. Consequently, reducing the dimensions of a datasets to its relevant features

would not only address the previously mentioned challenges but would also improve the com-

putation time needed to run the algorithms [51]. In the absence of this pre-processing step,

the number of datapoints needed to obtain a good accuracy should be significantly high to

account for the sparsity of the data, the critical dimension is defined as the minimum number

of dimensions that would fulfill the objective of high accuracy [51]. Dimensionality reduction

algorithms are also essential to the case where one needs to visualize the data with a specific

number of dimensions and lay under one of the following categories [51].

Feature Evaluators and Feature Ranking Algorithms: Algorithms that perform these

tasks select significant features through a predetermined process, they are also called Filters

and Wrappers [51]. In the case of Filters, the predictive efficiency of the approaches is lower

than Wrappers since they perform the features assessment and scoring without taking into

account the classification model that will be used [51]. Some examples to measure feature

relevance include Pearson correlation coefficient, information gain and chi-squared score [51].

For Wrapper methods, error rates for subsets of features are determined using the prediction

model that is going to be used for the classification, thus it leads to a more suited feature

selection for the particular model [51]. A trade-off between accuracy and execution time is

to be made when choosing the most convenient approach because filters, whether they are

univariate (processing a variable at each iteration) or multivariate, are less computationally

expensive [51].

Whereas some algorithms reduce dimensionality by forming new features as linear com-

binations of the original ones, other non-linear methods preserve the non linear relationships

between the dimensions to be loyal to the real structure of the data, leading to a better clas-

sification performance [51]. Clustering algorithms prove efficient in the cases of supervised

and unsupervised learning but fail to generalize to non-linear complex data sets [51].
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Figure 8 displays some dimensionality reduction techniques.

Figure 8: Dimensionality reduction techniques. Adapted from [51].

2.2.5.1 Cohen’s d Effect Size Cohen’s d effect size measures how distinguishable are

two distributions with respect to a feature by reflecting the distance between the means.

The larger the effect size, the greater the ability of the corresponding feature to separate

between the curves. The dataset features should meet two assumptions relative to the classes’

distributions; normality of the distributions and the homogeneity of their variances.

The effect size d is calculated using this formula:

d =
|x1 − x2|
SDpooled

(2.7)

for x1 is the mean of the first group sample, x2 is the mean of the second group sample and

SDpooled is the pooled standard deviation such that:

SDpooled =
√

(
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2
) (2.8)
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for n1 and n2 are the sample sizes of the first and second group respectively, and SD1 and

SD2 are the standard deviations of the first and second groups respectively.

This Effect Size can be small, medium or large for values in the interval [0, 0.2], [0.2, 0.5]

and [0.5, +∞].

2.2.5.2 Recursive Feature Elimination Recursive feature elimination (RFE) is a

wrapper method also referred to as backwards selection [52]. The procedure is based on a

succession of predictive models fed with, consecutively, the full dataset features then smaller

versions of the original dataset after eliminating, at each step, a set of unimportant features

[52]. The stop criterion is fixed with a minimum number of features in a dataset. This whole

action is built on the ranking of the features made initially so that, at every step, variables

presenting the same most inferior ranking would be removed [52]. Every classifier using a

distinct reduced dataset has its performance evaluated with a measure of performance, such

as the accuracy or the f-1 score. RFE selects the subset that presents the highest value of

this metric and considers it as the optimal set of features. If the selected set is the original

dataset, then this approach fails to operate dimensionality reduction.

Two main issues are faced when using RFE: (1) The features ranking is not updated

and is statically fixed at the initialization step [52]; (2) The sequential nature of the scheme

applied for features elimination inherently does not tolerate to blend features of different

rankings in the same dataset [52].

2.2.5.3 Least Absolute Shrinkage and Selection Operator The least absolute shrink-

age and selection operator (LASSO) paradigm relies on the reduction of the sum of squared

errors between the outcome and an affine function of the input variables, while performing

an L1 penalty. An optimization method is used to minimize the following function:

SSEL1 =
n∑
i=1

(yi − ŷi)2 + λL

P∑
j=1

|βj| (2.9)

[52]. This approach effectively nullifies some coefficients thus omitting the corresponding

variables from the linear estimation [52]. This procedure ensures the selection of the most

significant features [52]. This is the advantage of LASSO over Ridge Regression which
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minimizes a similar equation but replacing the absolute value of the coefficients by their

square [52]. Since it is hard to obtain a zero value of the coefficients using the latter, it is

used mainly to address collinearity issues [52].

Although LASSO approach is straightforward, it requires the dataset to be standardized

so that its result is not influenced by the variables scales. The regularization parameter

alpha can be set by the means of a k-fold cross-validation over the provided data.

Friedman et al. (2010) [53] provided another variation of the LASSO model to tackle

classification problems [52].

2.2.6 Data Collection

Data collection is at the center of any machine learning model as the input data play

a deterministic role when it comes to defining the quality of the algorithm results. Indeed,

the features extracted should be expressive in the sense that they should contain enough

information to perform the task assigned [18]. However, it is not necessarily evident that,

at the moment of the data collection, the observers harvesting the features are aware of

the informative variables they need to evaluate. One way of knowing this information is

to assess whether or not an expert in the corresponding field can accurately perform the

machine learning task only by using the data set features [18]. Although this method is

efficient, human knowledge of numerous biomedical phenomena, for instance, is lacking and

we can then no longer refer to it for subsequent data gathering [18]. Consequently, it seems

reasonable to save data corresponding to as much features as possible to get a complete

set of observations and grasp every single detail related to the phenomena that we need to

detect or describe. However, real-life phenomena are very complex and the variables that

we usually choose to identify them are not necessarily independent. In fact, various features

in an ECG, for example, are correlated which constitutes a redundancy in information that

can be misleading to the model. In particular, a classical issue that the model can encounter

is over-fitting the training data because of the small number of data points compared to the

number of features [54].
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Figure 9: Illustrations of classifiers’ performances on a same data set to simulate the phenomenon of overfitting, where the

models in (a) and (b) are underfitting the data, the model in (c) is fitting them well and the models in (d) and (e) are

overfitting them. Adapted from [39].



Overfitting (Figure 9) occurs when the principle of parsimony, which requires the

model’s content to be restricted to the minimum necessary elements to accomplish the task,

is violated [55]. This phenomenon has two origins: either the model selected has more flexi-

bility than the application calls for (e.g. using an artificial neural network to tackle a linear

problem) or it involves irrelevant predictors alongside with the mandatory ones [55].

In practice, overfitting can be detected through a “poor generalization performance”

characterized by a model that fails to give accurate predictions on an independent testing

set while it provides good results on the training observations [54].

When a data set is high-dimensional, its usefulness in machine learning applications

would be limited due to the curse of dimensionality. This term is employed to qualify the

phenomenon by which a high number of variables describing each observation of a training

set would require the size of the latter to increase exponentially with the features number

[56]. Bishop (2006) explains this deduction by basing his reasoning on a naive approach

consisting of splitting the multidimensional data set space into identical cells in each at least

one training datum should be placed to confer to that cell its output label (which will be

the predicted label of any testing point that will occupy that cell) (Figure 10) [56]. The

curse of dimensionality causes the peaking phenomenon which is the observed decline in

classification performance due to a low training samples to features number ratio [57].

Thus, a burden, due to the ramification of physical phenomena, is the requirement to

accumulate as much data points as possible that account for the general distribution of the

outcome measure and recognize all the fundamental characteristics essential to the machine

learning task [54]. In spite of being an inescapable way to gain a broad knowledge during the

training of the model, this tedious assignment, which may require the collection of thousands

observations consisting each of the same features while respecting the above conditions on

the latter, resulted in a limited predictive contribution of algorithms in clinical settings [18].

Added to the fact that this process is time-consuming and may extend to several years, it is

also costly and access to certain information may be critical for certain applications due to

confidentiality and privacy policies.

In statistics, power analysis is the first step to make before engaging in the experiment.

This starting point fixes the minimum number of participants to recruit in order to obtain
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Figure 10: An illustration of an approach useful to classify data belonging to three classes

by dividing a two-dimensional space into equal squares each having the label corresponding

to the outcome of the majority of training points in it. Adapted from [56].

results at specific levels of Power and Type I and Type II errors. An analogous approach to

sample size estimation was presented by Hajian-Tilaki [58] for biomedical research involv-

ing diagnostic tests. The formula set to calculate the minimum total sample size asks for a

value of sensitivity or specificity obtainable through a thorough state-of-the-art, a confidence

level (typically 95%), precision or maximum marginal error of the estimates and, finally, the

prevalence of the cases (as opposed to controls) in the population in question [58]. This

last element has been underlined in a previous work by Buderer [59]. By proceeding accord-

ing to this method, a reliable minimum sample size value is computed allowing for a good

anticipation of the experiment resources.
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2.2.7 Dealing with Data Missingness

As per the definition provided by Little and Rubin (2019) in their book: “Missing data

are unobserved values that would be meaningful for analysis if observed; in other words, a

missing value hides a meaningful value.” [60]. In statistics, some cases of absence of data

correspond to this definition while others don’t [60]. Little and Rubin (2019) evoke the ex-

ample of non response in an opinion poll explaining how missing data corresponding to the

people willing to vote but do not want to reveal their choice, for instance, can be imputed

while the ones of people who are not going to vote do not fall under the above definition

[60].

On-field experiments may encounter several incidents resulting in loss of data, noise in

recordings (contamination) or lack of certain measurements due to apparatus failure [61].

Such partial data deficiency is called item nonresponse, as opposed to the concept of wave

nonresponse in the case of longitudinal research where an individual participates in multiple

phases of the experiment and may miss a wave or in the extreme case stop the experiment

(attrition) [61].

It is almost impossible to conduct the perfect data collection. Thus, it was inevitable

to search for techniques to address this issue without altering the quality of the data or

misleading the analysis results. Several methods are available to this end and include mean

substitution, adding a dummy variable for missingness and regression-based single imputa-

tion [62]. A challenge to data imputation is that the estimates of the population mean or

variance, and more broadly the population characteristics, can be biased i.e. significantly

different from the actual values [62]. More sophisticated methods were suggested by Graham

(2009) in [62] and may, for some, tackle this problem.

Finally, we can adapt the data collection procedures to take advantage of the effectiveness

of handling missing data by implementing creative study designs such as the 3−form design

(Figure 11) which grants 33% more questions to ask to the participants without increasing

the number of questions to ask for each of them [62].
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Figure 11: 3-form design principle. Illustrated as described in [62].

2.2.8 Performance Metrics

Numerous performance metrics can serve to clarify the tendency and behavior of the

machine learning algorithms, among which the accuracy is the most commonly used metric.

However, in certain cases, giving the percentage of correct predictions turns out to be unable

to reflect the efficiency of an algorithm and how well it fulfills the role its designer created

it for. For instance, if the data is imbalanced, with a large prevalence of healthy patients,

a machine learning model classifying all patients as healthy would present a relatively high

accuracy while being completely useless.

To avoid such misleading methods, a classical performance metric for machine learning

biomedical applications is the area under the receiver operating characteristics (ROC) curve

[63]. This tool is powerful because it reflects the ability of binary classifiers to distinguish

between two populations (e.g. sick individuals and healthy individuals) while providing

results that are not influenced by the distribution of the two classes [63]. The best performing

model has the area under curve (AUC) with a value closest to 1.0.
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Additionally, the confusion matrix can be used to draw pertinent conclusions. This

matrix displays four numbers: the quantity of true positives, false positives, false negatives

and true negatives obtained by our classification model by comparing the actual labels of

our data points and the predicted labels (Figure 12). By convention, specifying the studied

condition separates the sample into two populations: positive individuals who present the

condition (having the number ’1’ as label) and negative individuals who do not present the

condition (having the number ’0’ as label). However, some algorithms give a continuous

probability at their output and a cutoff value must be fixed to return to this binary scheme.

By definition, a true negative is a negative case classified as negative, while a false negative

is a positive case predicted negative. The same reasoning applies to true positives and false

positives.

Figure 12: Confusion matrix

Using the values of the confusion matrix cells, we can define the following metrics:

• Accuracy (ACC): reflects the proportion of correctly predicted cases among the total

number of available cases according to the equation:

ACC =
TP + TN

TP + FP + TN + FN
(2.10)
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• Positive Predictive Value (PPV): reflects the proportion of true positives among the

predicted positive cases according to the equation:

PPV =
TP

TP + FP
(2.11)

• Negative Predictive Value (NPV): reflects the proportion of true negatives among

the predicted negative cases according to the equation:

NPV =
TN

TN + FN
(2.12)

• Specificity (SP): reflects the proportion of true negatives among the actual negative

cases according to the equation:

SP =
TN

TN + FP
(2.13)

• Sensitivity (SE): reflects the proportion of true positives among the actual positive

cases according to the equation:

SE =
TP

TP + FN
(2.14)

• F1 score: reflects a compromise between Positive Predictive Value (precision) and sen-

sitivity (recall):

F1 =
2 ∗ precision ∗ recall
precision+ recall

(2.15)

The above mentioned ROC curve plots the sensitivity (True Positive Rate) versus the False

Positive Rate (1-specificity) for all cutoff values (Figure 13).

The ROC curve is useful in clinical medicine, beyond the only reading of its AUC [64].

For instance, it can be used to pick an optimal threshold for a sensitivity-specificity trade-off

with one of the following procedures: Youden Index J and closest top-left criterion [65].

Indeed, these methods can be summarized as follows:
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Figure 13: ROC curves with their corresponding area under curve

• Youden Index J: Youden Index [66] is bounded by 0 and 1, representing perfect dis-

crimination between the two populations studied and “complete overlap”, respectively

[67]. This deduction finds its root from the defining equation present in [67]:

J = max
c

[SE(c) + SP (c)− 1] (2.16)

where SE corresponds to the sensitivity, SP corresponds to specificity and c belongs to

the set of values of all possible thresholds [67].

• Closest top-left criterion: By this method, we choose the cut-off value corresponding

to the closest point to the top-left corner of the ROC curve’s two-dimensional space [68]

via solving a minimization problem stated in [68]:

qs = min
c

[(1− SE(c))2 + (1− SP (c))2] (2.17)

where the equation has been adapted from the above cited reference to conform with the

notation adopted for the Youden Index.

It is also relevant to consider other criteria like “a fixed level of specificity” [65].
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3.0 Methods

3.1 Design and Settings1

This work is accomplished in the framework of the EMPIRE study, which is a prospec-

tive observational cohort study recruiting consecutive non-traumatic chest pain patients

carried by emergency medical services to one of three UPMC-affiliated tertiary care hospi-

tals (UPMC Presbyterian, Mercy, and Shadyside). Standard 10-second 12-lead ECGs are

collected, at first medical contact, for patients suspected to have ACS in accordance with

prehospital medical protocols. In the case of a high suspicion of cardiac ischemia at this

initial paramedical assessment, the patient’s ECG was passed to UPMC medical command.

The raw digital ECG data are then constantly stored there. The participants in this study,

who are all patients with the above mentioned characteristics, were followed up until 30 days

after their discharge to account for their exact diagnosis while gathering the outcome data.

The full data set used for this analysis comprises 1251 available patients of the EMPIRE

study. We conducted a minimum sample size estimation using the methods described by

Hajian-Tilaki [58], this theoretic computational step is recommended before data collection,

or, at last, before starting an experiment to check whether the recruited number of patients

for the study allows for an appropriate diagnostic tests’ AUC analysis. Parameters are fixed

as follows: a maximum marginal error of estimates (precision) of 5%, a 95% confidence level

and desired sensitivity and specificity validation values of 90%. These specifications yielded

a minimum data set size to achieve ACS detection of 927 patients, considering a minimum

prevalence of 15%.

The primary outcome of the study was the presence of ACS (myocardial infarction or

unstable angina) during the primary indexed admission. According to the 4th Universal

Definition of Myocardial Infarction guidelines, the definition of ACS consists of the pres-

1Portions of this section are taken from a forthcoming paper cited, in its current status, as: S. S. Al-Zaiti,
L. Besomi, Z. Bouzid, Z. Faramand, S. O. Frisch, C. Martin-Gill,R. Gregg, S. Saba, C. Callaway,
and E. Sejdic, “Machine learning-based prediction of acute coronary syndrome using only the
pre-hospital 12-lead electrocardiogram,”Nature Communications, 2020, in press.. (Available in
reference [6] (submitted, under review).).
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ence of symptoms of ischemia (i.e. diffuse discomfort in the chest, upper extremity, jaw, or

epigastric area for more than 20 minutes) and at least one of the following criteria: (1) ele-

vation of cardiac troponin I (> 99th percentile) with or without subsequent development of

diagnostic ischemic ECG changes during hospitalization, (2) imaging evidence of new loss of

viable myocardium or new regional wall motion abnormalities, or (3) coronary angiography

or nuclear imaging demonstrating > 70% stenosis of a major coronary artery with or without

treatment [20]. Data annotation was accomplished by two independent reviewers, with the

intervention of a board-certified cardiologist in case of animosity, on the basis of not only

serial ECGs but also results obtained from further extensive cardiac diagnostic tests such us

echocardiography or biomarkers after running lab tests, alongside with relevant information

relative to past medical records and medications intake. The principle guiding this labeling

process is that a patient is declared as healthy (ACS negative) as long as adverse events are

absent up until 30 days of follow-up.

A summary of the different steps of the study design is provided on Figure 14.

3.2 Data Preprocessing2

The manual over-reading of the ECGs revealed the ones with excessive noise or artifact,

which were excluded (including ECGs of patients with ventricular tachycardia or fibrillation)

or replaced by the next serial ECG obtained from the emergency assessment. The patients

removed from the study represent almost 0.5% of the total number of patients in the data

set (Cohort 1: n=5/750; Cohort 2: n=2/501). We included the rest of the accessible ECGs

in our work, counting those with pacing, bundle branch blocks, atrial fibrillation, or left

ventricular hypertrophy.

2Portions of this section are taken from two forthcoming papers cited, in their current status, as: Z.
Bouzid, Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and
S. Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. and S. S. Al-Zaiti, L. Besomi, Z. Bouzid, Z. Faramand, S. O. Frisch, C.
Martin-Gill,R. Gregg, S. Saba, C. Callaway, and E. Sejdic, “Machine learning-based predic-
tion of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram,”Nature
Communications, 2020, in press.. (Available in references [1] (submitted, under review) and [6] (sub-
mitted, under review).).
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Figure 14: Study design

Afterwards, a manufacture-specific commercial software, designed at Philips Healthcare

Advanced Algorithm Research Center (Andover, MA), preprocessed the 10-second, 12-lead

ECG signals (500 s/s, HeartStart MRx, Philips Healthcare). Decompressing raw ECG sig-

nals resulted in the extraction of ECG leads. Next came the removal of noise, artifact, and

ectopic beats, and the computation of representative average beats for every ECG lead in

order to cancel remaining baseline noise and artifacts. We achieve, following these steps, a

high signal-to-noise ratio and a stable average waveform signal through all 12 leads.

After their de-identification (labeling with study ID) and secure storage, all 12-lead ECGs

were classified by physicians blinded to the actual diagnostic output, and using the afore-

mentioned supplemental evaluation tools. The labeling of the diagnostic ECG changes was

operated according to the fourth Universal Definition of Myocardial Infarction consensus

36



statement [20] as two contiguous leads with (1) ST elevation in V2–V3 > 2 mm in men >

40 years, > 2.5 mm in men < 40 years, or > 1.5 mm in women; or ST elevation > 1 mm

in other leads; (2) new horizontal or downsloping ST depression > 0.5 mm; or (3) T wave

inversion > 1 mm in leads with prominent R wave or R/S ratio > 1, and considering other

ECG findings indicative of possible ischemia, which are contiguous territorial involvement,

evidence of reciprocal changes, changes beyond those caused by secondary repolarization,

and lack of ECG evidence of non-ischemic chest pain etiologies.

A parallel process was started and consisted of features extraction. In fact, the ampli-

tude, duration, and/or area measures of the P wave, Q wave, R wave, S wave, qR wave, rS

wave, QRS complex, QRS peak, ST segment, T wave, STT wave, QT interval, PP interval,

RP interval, and SP interval were calculated from the representative beats (k=384). Fur-

thermore, the amplitude of ST onset, ST peak, ST offset, and J+80, along with ST slope

were derived from the leads (k=60). Thus, a total of 444 temporal ECG features was ob-

tained (Figure 15A). A group of global measures was then computed including QRS, JTend,

JTpeak, Tpeak-end, and QT interval measures (k=6); QRS and T axes from the frontal,

horizontal, and XYZ planes (k=16); spatial angle between QRS and T waveforms (k=6);

inflection, amplitude, and slope of global QT, QRS, and T wave in frontal and horizontal

planes (k=56); ratios between PCA eigenvalues of QRS, STT, J, and T subintervals (k=13);

T wave morphology and loop (k=7); signal noise values (k=6); regional myocardial infarction

scar using Selvester score (k=19); and injury vector gradient and amplitude (k=14). All of

these numbers summed up introduce 143 spatial ECG features to our data set.

Finally, 587 temporal-spatial features are acquired from a single ECG. A manual evalua-

tion was accomplished on every patient’s record to check the ECGs’ quality due to potential,

relatively frequent malfunctions in prehospital settings such as electrodes’ misplacement or

improper sticking on the patient’s chest. Presumably, the fact that the collected ECGs are

only the ones communicated to medical centers, a minor percentage of ECGs suffered from

an excess of noise (< 3%). An in-depth exploration of the data set revealed the presence of

features (n = 33) with a high prevalence of zeros across patients (< 5% of non-null values).

Clinicians concluded that, taking into account their electrophysiological significance, these
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features should be normally null because of, for example, the absence of S waves in leads II,

aVL, V5 and V6, and Q waves in the majority of the leads. Thus, it was relevant to get rid

of these variables, which yielded a final data set consisting of 554 features.

Figure 15 summarizes major techniques leading to this final data set. Figure 15A cor-

responds to calculations of durations, amplitudes and areas of various waveform deflections

(444 temporal ECG features). Figure 15B shows the superposition of 12 beats each rep-

resenting a lead with the calculation of global intervals and sub-intervals (6 supplemental

temporal ECG features). Figure 15C presents waves resulting from the application of prin-

cipal component analysis on time-voltage data of orthogonal leads I, II, V1–V6 in order to

generate ratios of the eigenvalues corresponding to different ECG waveforms (13 spatial ECG

features). In the end, Figure 15D clarifies the concept behind the estimation of axes, angles,

loops and gradients of QRS and T vectors from xy, xz, yz, and xyz planes (91 supplemental

spatial ECG features).

We performed a z-score normalization on the mined features and imputed missing data

(< 0.2% of the total data set values) using the mean value of the corresponding features as

the latter exclusively consisted of continuous variables.

3.3 Feature Selection Using Data-Driven Models3

We used three different data-driven algorithms to identify a list of features that were

most important for optimizing the performance of the classification algorithm. First, we

used Cohen’s d effect size, which compares how distinguishable ACS versus non-ACS distri-

butions of a given feature are in terms of the distance between the means. All distributions

were evaluated for normality of distributions and homogeneity of variances. Features corre-

sponding to an effect size lower than 0.35 are assumed to fail to differentiate between the two

populations and were excluded from our dataset. Using this cutoff value, only 34 features

3This section is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Faramand,
R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search
of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the
emergency department,”Journal of American Heart Association, 2020, forthcoming. (Available
in reference [1] (submitted, under review)).
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Figure 15: Illustration of the computation of 554 features from each 12-lead ECG
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out of 554 remained (6%). Second, we used recursive features elimination as part of logistic

regression. We evaluated 20 features per iteration and used F1 scores to evaluate model

performance. F1 scores provides the best tradeoff between precision and recall using imbal-

anced datasets like ours, which had a 6:1 ratio of non-ACS to ACS subgroups. The selection

of the optimal set of features went through a 10-fold cross-validation process. Using this

technique, 156 features out of 554 (28%) were selected. Finally, we used LASSO regression

to select the most important features with non-zero coefficients. We standardized all features

using z-scores then used the L1 norm method to penalize the least square error between the

outcome and an affine function of the input variables. The regularization parameter alpha

was set by the means of a 10-fold cross-validation. Using this technique, 96 features out of

554 (17%) were selected.

Next, given that the three feature selection techniques described above use complemen-

tary, non-competing approaches, we identified the features that received at least one vote

(i.e., appeared in at least one feature selection algorithm). This yielded a total of 229 fea-

tures. We used these data-driven features in subsequent training and testing of machine

learning classifiers in order to compare against the domain-specific manually selected fea-

tures.

Figure 16 summarizes the characteristics of the three data set versions resulting from the

EMPIRE data set.

3.4 ACS Prediction4

Logistic regression and artificial neural networks have been preferentially used in previous

studies focusing on ECG-based prediction of ACS [69, 70, 71]. Considering the size of our

dataset and the expected reduction of model complexity achieved through feature subset

selection, we started with LR as the machine-learning classifier of choice to address the aims

4This section is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Faramand,
R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search
of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the
emergency department,”Journal of American Heart Association, 2020, forthcoming. (Available
in reference [1] (submitted, under review)).
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Figure 16: Schematic of the characteristics of the used data sets (in blue) originated from

the EMPIRE data set
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of our study. We then used ANN to explore whether feature selection approaches would have

a similar effect on more sophisticated, non-linear machine learning classifiers.

Our LR and ANN classifiers were trained using a 10-fold cross-validation on Cohort 1 and,

afterwards, tested on an independent Cohort 2 being completely blinded to its outcomes.

We started with all 556 available features (554 ECG features with age and sex) without

any feature subset selection (i.e., LR554 and ANN554). Next, we used only the 65 manual

features selected by domain-specific human experts (i.e., LR65 and ANN65). Finally, we used

the 229 data-driven features to train and test our classifiers (i.e., LR229 and ANN229). The

algorithms were trained using 10-fold cross-validation and then evaluated on an independent

testing set that were blinded to the outputs.

3.4.1 Features Selection Using Domain-Specific Human Expertise5

Two research scientists trained in cardiac electrophysiology reviewed the 554 extracted

ECG features and agreed on a reduced set of 65 features that had strong physiological basis as

plausible markers of acute myocardial ischemia, including ST amplitude at J+80 and T wave

amplitude from each of the 12 leads (k=24); global QRS, JTend, JTpeak, Tpeak-end, and

QT interval measures (k=6); spatial axis and angles of QRS and T waves (k=8); inflection,

amplitude, and slope of T wave in frontal plane (k=5); ratios between principal component

analysis eigenvalues of QRS, STT, J, and T subintervals (k=13); T wave morphology and T

loop features (k=7); and high frequency signal noise values (k=2).

5This section is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Faramand,
R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search
of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the
emergency department,”Journal of American Heart Association, 2020, forthcoming. (Available
in reference [1] (submitted, under review)).

42



3.4.2 Comparison of Performance6

The classification performance of each classifier was evaluated using the area under the

receiver operating characteristic curve. This tool is powerful because it reflects the ability of

binary classifiers to distinguish between two populations. We used DeLong’s test to compare

the difference between the mean AUC of two correlated ROC curves of different classifiers

[72], and we opted for pairwise comparisons. We set alpha at p<0.05 for two tailed hypothesis

testing.

We also computed the accuracy, negative predictive value, positive predictive value,

sensitivity and specificity of LR and ANN classifiers applied to the three data sets at training

and testing. The cut-point was chosen to set the specificity at 50% and maximize the

sensitivity.

6Portions of this section are taken from a forthcoming paper cited, in its current status, as: Z. Bouzid,
Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S.
Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. (Available in reference [1] (submitted, under review)).
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4.0 Results

4.1 Baseline Characteristics1

Our sample consisted of 1,244 patients from two study cohorts: training cohort (n=745,

age 59± 17, 42% Female, 40% Black) and testing cohort (n=499, age 59± 16, 49% Female,

40% Black). The majority of patients were evaluated for chest pain (90%) or shortness of

breathing (39%); most patients presented in normal sinus rhythm (88%) or atrial fibrillation

(9%); and the rate of 30-day cardiovascular death was 4.6%. Table 1 summarizes the baseline

characteristics of each cohort. The two cohorts were comparable in terms of demographics,

past medical history, chief complaint, baseline ECG characteristics, and clinical outcomes.

4.2 Performance of Machine Learning Classifiers2

The primary study outcome, which is ACS, occurred in 114 out of 745 patients (15.3%)

in the training cohort and 92 out of 499 patients (18.4%) in the testing cohort. Figure 17

shows the preliminary classification results obtained for the individual data-driven feature

selection techniques, the physiology-driven technique and the full data set (no feature se-

lection). Although the feature selection algorithms failed to generalize to an unseen testing

set, they provided excellent training results. Thus, we conducted the combination proce-

dure described in Section 3.3. Figure 18 plots the AUC of the ROC curves for all different

versions of LR and ANN classifiers treated in this analysis. On training set (Figure 18A,

1This section is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Faramand,
R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search
of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the
emergency department,”Journal of American Heart Association, 2020, forthcoming. (Available
in reference [1] (submitted, under review)).

2Portions of this section are taken from a forthcoming paper cited, in its current status, as: Z. Bouzid,
Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S.
Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. (Available in reference [1] (submitted, under review)).
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Table 1: Baseline study characteristics: Demographics and health characteristics of

individuals included in this baseline study for analysis of ACS. The data comes from two

cohorts - cohort 1 (n=745), used as the training set and cohort 2 (n=499), which was used

as the testing set

Cohort 1 (n=745) Cohort 2 (n=499)

(Training Set) (Testing Set)

Demographics

Age in years 59± 17 59± 16

Sex (Female) 317 (42%) 243 (49%)

Race (Black) 301 (40%) 202 (40%)

Past Medical History

Hypertension 519 (69%) 329 (66%)

Diabetes mellitus 196 (26%) 132 (26%)

Old myocardial infarction 205 (27%) 122 (24%)

Known CAD 248 (33%) 179 (36%)

Known heart failure 130 (17%) 74 (15%)

Prior PCI / CABG 207 (28%) 124 (25%)

Clinical Presentation

Chest Pain 665 (89%) 454 (91%)

Shortness of Breathing 250 (34%) 234 (47%)

Normal Sinus Rhythm 648 (87%) 442 (88%)

Atrial Fibrillation 71 (9%) 46 (9%)

Course of Hospitalization

Length of Stay (median [IQR]) 2.3 [1.0–3.0] 1.2 [0.6-2.5]

Confirmed ACS 114 (15.3%) 92 (18.4%)

Treated by Primary PCI / CABG 74 (10%) 65 (13%)

30-Day CV Death 33 (4.4%) 24 (4.8%)

CAD: Coronary Artery Disease, PCI: Percutaneous Coronary Intervention,

CABG: Coronary Artery Bypass Graft, IQR: Interquartile Range,

ACS: Acute Coronary Syndrome, CV Death: Cardiovascular Death.
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Figure 17: Preliminary results of the classification performance using LR applied to the

data sets derived using Cohen’s d effect size (LR34), RFE (LR156), LASSO (LR96) and

manual selection (LR65) alongside the full data set (LR554) on training (A) and testing (B)

left panel), both manual feature selection and data-driven feature selection techniques had

better performance compared to no feature selection, with the best performance (lowest

bias) achieved using the data-driven approach. However, on independent testing (Figure

18A, right panel), data-driven feature selection approach generalized poorly (high variance).

Manual feature selection, on the other hand, generalized well to the testing set, suggesting

a better bias-variance tradeoff. Comparing the area under ROC curve of manual feature

selection and data-driven feature selection yielded a statistically significant difference for the

logistic regression model with a p-value equal to 0.0105. The same trend was observed using

ANN. The data-driven feature selection approach performed best on the training set (Figure

18B, left panel), but generalized poorly to the testing set (Figure 18B, right panel), again

suggesting more overfitting compared to manual feature selection approach, with a p-value

equal to 0.0411.

Table 2 comprises all relevant performance metrics’ values, the best performance for

each metric (column) is bolded for training and underlined for testing. We notice that the
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Figure 18: Classification performance using LR (A) and ANN (B) classifiers: These plots

show the performance of LR and ANN classifiers on training data (Cohort 1) and testing

data (Cohort 2) using all available ECG features (k=554), data-driven subset of ECG

features (k=229), or physiology-driven subset of ECG features (k=65). P values are based

on non-parametric method by Delong.
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preeminent values for training are all obtained using the data-driven data set while the top

values for testing are rather obtained with either the full data set or the physiology-driven

data set. These findings also confirm that the accuracy is not the metric the maximize in

our case (with 15.3% prevalence of ACS). We can reach a good predictive value (75% sensi-

tivity and 66.34% specificity for testing on physiology-driven LR) without exceeding 68% of

accuracy.

Table 2: Detailed results of the performance of the classifiers on training and testing for

three versions of the data sets

Data set Training or testing Classifier AUC TN FP FN TP ACC (%) PPV (%) NPV (%) SP (%) SE (%)

Full-features

Training
LR 0.72± 0.11 353 278 39 75 57.45 21.25 90.05 55.94 65.79

ANN 0.80 ± 0.05 354 277 30 84 58.79 23.27 92.19 56.10 73.68

Testing
LR 0.67 288 119 39 53 68.34 30.81 88.07 70.76 57.61

ANN 0.72 265 142 33 59 64.93 29.35 88.93 65.11 64.13

Physiology-driven

Training
LR 0.76± 0.09 338 293 30 84 56.64 22.28 91.85 53.57 73.68

ANN 0.80± 0.07 345 286 28 86 57.85 23.12 92.49 54.68 75.44

Testing
LR 0.76 270 137 23 69 67.94 33.50 92.15 66.34 75

ANN 0.77 269 138 26 66 67.13 32.35 91.19 66.09 71.74

Data-driven

Training
LR 0.81± 0.06 334 297 22 92 57.18 23.65 93.82 52.93 80.70

ANN 0.85 ± 0.07 363 268 24 90 60.81 25.14 93.80 57.53 78.95

Testing
LR 0.68 254 153 36 56 62.12 26.79 87.59 62.41 60.87

ANN 0.72 271 136 34 58 65.93 29.90 88.85 66.58 63.04

TN = True Negatives; FP = False Positives; FN = False Negatives; TP = True Positives;

ACC = Accuracy; PPV = Positive Predictive Value; NPV = Negative Predictive Value;

SP = Specificity; SE = Sensitivity.
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4.3 Overlap in Features between Feature Selection Approaches3

Among the 229 data-driven features, 31 features (14%) were among the ones manually

selected by human experts. These data-driven features with physiological plausibility for

ACS classification included (1) lead-specific ST and T wave amplitudes; (2) T peak–Tend

interval; (3) frontal and horizontal QRS and T axes; (4) spatial QRS-T angle and total-

cosine R-to-T angle; (5) T loop morphology dispersion; (6) PCA ratio of QRST waveform,

STT waveform, and T wave; and (7) the non-dipolar component of J wave. Among these

features, T peak–T end was specifically selected by all three data-driven feature selection

algorithms, and was also ranked by LR classifiers as the most important feature among the

ones selected by human experts. Finally, to discern which data-driven features contributed

to noise vs. contributed to true prognostic value in ACS prediction, we mapped the 229

data-driven features against the major components of the 12-lead ECG signal (Table 3).

This table highlights a potential subset of features that data-driven algorithms ranked as

important for the task of ACS detection but were not selected by domain-specific experts.

3This section is taken from a forthcoming paper cited, in its current status, as: Z. Bouzid, Z. Faramand,
R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S. Al-Zaiti, “In search
of optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the
emergency department,”Journal of American Heart Association, 2020, forthcoming. (Available
in reference [1] (submitted, under review)).
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Table 3: Overlap in features between data-driven and human-expert techniques

12-Lead ECG Component Number of Features Selected Comparison between techniques

Human Expert Data-Driven Overlap in Features Features Overlooked by Clinicians

ECG normalization (k=2) 2 2 Age and sex -

P duration, amplitude, or area (k=72) 0 25 - Lead-specific P duration & amplitude

PR interval metrics (k=26) 1 11 Global PR interval Lead-specific PR interval

Q duration or amplitude (k=24) 0 10 - Lead-specific Q wave presence

R duration or amplitude (k=48) 0 23 - Lead-specific R amplitude

S duration or amplitude (k=48) 0 16 - S amplitude in precordial leads

Other QRS complex metrics (k=74) 1 31 Global QRS duration QRS notch; ventricular activation time; lead-specific QRS duration or area

Selvester Score (k=19) 1 0 Total scar size -

ST amplitude, duration, or slope (k=72) 12 31 Lead-specific ST amplitude Lead-specific ST duration and slope

ST deviation morphology (k=14) 0 7 - Presence of concaved ST deviation

T duration, amplitude, or area (k=76) 14 33 Lead-specific T amplitude, T-to-R relative amplitude Lead-specific T duration or area; presence of notched T wave

QT interval and subintervals (k=23) 4 12 Global QTc, T peak-T end Lead-specific QT interval

QRS axis (k=12) 1 7 Frontal plane QRS axis Horizontal and spatial QRS axis

T axis (k=11) 4 6 T axis in frontal, horizontal, and spatial planes -

QRS and T vector angles (k=5) 2 3 QRS-T angle and TCRT -

T loop morphology (k=6) 4 4 T asymmetry & dispersion -

Principal Components Analysis (k=16) 16 6 PCA ration of J, T, and STT -

Noise signal (k=8) 3 2 Noise & baseline wander -



5.0 Discussion1

This study assessed the efficiency of two feature selection techniques when applied to su-

pervised machine learning classifiers, in improving ECG-based ACS diagnosis. The available

data from two prospective clinical cohorts was used and led to the following ascertainment:

the best bias-variance tradeoff corresponds to machine learning classifiers guided by clinical

experts in the feature selection phase. We drew this conclusion from the comparison of the

aforementioned classifier with no feature selection or data-driven feature selection. On a

separate testing set, our study confirms the tendency observed for training in terms of the

better performance of physiology-driven feature selection compared to data-driven feature

selection (AUC = 0.76 vs. 0.68 for LR, and 0.77 vs. 0.72 for ANN, respectively). Besides,

the manual selection based algorithms generalize better from training data (∆AUC = 0.00

vs –0.13 for LR, and –0.03 vs. 0.13 for ANN, respectively). Also, a compelling fact is that

our data analysis demonstrates the same observed effect of feature subset selection on LR

(simple classifier) or ANN (sophisticated classifier).

5.1 Effect of Feature Subset Selection Approach on Classifiers Performance

Our data analysis shows that, compared to no feature subset selection, physiology-driven

features optimized our LR classifier and yielded a generalizable model. This finding is ex-

pected given that using domain-specific knowledge not only tremendously reduced the di-

mensionality (65 out of 556 features), but also intuitively reduced the redundancy in the

data, both of which are compatible with linear classifiers. On the other hand, our data anal-

ysis shows that the initial gain observed by using data-selected features generalized poorly

to an independent unseen cohort. Our training set results are similar to the ones reported by

1Portions of this chapter are taken from a forthcoming paper cited, in its current status, as: Z. Bouzid,
Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S.
Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. (Available in reference [1] (submitted, under review)).
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Green et al. (2006) generated with 16 ECG features chosen using the principal component

analysis approach [70]. Their cohort consisted of a comparable sample size (634 patients) and

ACS prevalence (130 ACS patients i.e. ≈ 20.5%) [70]. However, Green et al. did not have an

independent testing set for validation [70]. In our data, we showed that data-driven feature

selection lacked generalizability on a new test example, indicating overfitting of training data

coupled with a substantial variability of classifier performance. Although this finding was

surprising, the small dataset size as well as the inclusion of patients with confounders in our

datasets could provide a simple rationale for this unexpected finding.

We observed similar trends in results when we applied ANN as a non-linear classifier.

These findings are a little bit counterintuitive given that ANN is expected to better capture

the underlying characteristics of the dataset when fed with more features. This divergence

can be attribute to the small sample size, especially for training data, which is incompatible

with learning a complex model without increasing the risk of overfitting [73]. This was ob-

served as a significant reduction in ANN classifiers performance using all available features

(k=554) or the data-selected ones (k=229). Again, we speculate the reduced dimensionality

and data redundancy when using physiology driven features reduced the complexity of the

ANN classifiers, yielding a more generalizable model.

Finally, it is worth noting that using ANN classifiers consistently yielded higher classifica-

tion accuracy when compared to LR classifiers, with or without any feature subset selection

(Figure 2). However, this gain in accuracy was negligible when using the physiology-driven

features (ANN65 = 0.77 vs. LR65 = 0.76 [for test set]). Given that LR classifiers are eas-

ily interpretable, our results suggest that using an LR65 classifier with physiology-driven

features can yield a fully understandable decision support tool for clinical use.

5.2 Overlap in Features between Feature Selection Approaches

The secondary aim of this study was to explore whether data-driven feature selection

techniques might identify ECG features indicative of ACS that were overlooked by domain-

specific human experts. Table 2 mapped the 229 data-driven features against the major
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components of the 12-lead ECG signal, identifying the overlap between the data-driven

features and the ones selected by domain-specific expertise. More interestingly, this table

summarizes the cluster of data-driven features that were overlooked by human-experts. Some

of these overlooked data-driven features are contextually understandable, like ST slope, ST

deviation morphology, and T wave attributes, but some other features were more challeng-

ing to classify. Upon careful annotation, we classified the overlooked data-driven features in

one of these three broad categories: (1) noise attributed to existing comorbidities or patient

medications (i.e., lead-specific P duration, P amplitude, and PR interval); (2) redundant

information quantified by simultaneous ECG features (i.e., lead-specific Q, R, and S wave

attributes that are redundant with scar size, and lead-specific QRS duration and QT inter-

val that are redundant with principal component analysis); and (3) features that could be

mechanistically linked to myocardial ischemia and can serve as plausible features of ACS

(i.e., presence of fragmented QRS and lead-specific ventricular activation time).
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6.0 Conclusions and Future Work1

6.1 Conclusions

The critical nature of clinical-decision taking results in more severe expectations from

machine learning algorithms in reducing the number of false positive cases and false neg-

ative cases. Therefore, clinicians are tempted to input as much expertise as possible to

”help” algorithms through the learning process by directing them towards exploring spe-

cific information-rich data. However, this approach seems to inhibit the algorithms from

extensively examining all the actual available data and to narrow the scope of possibilities

in terms of learnt behavior.

This prospective analysis allowed us to investigate a feature selection technique based

on Cohen’s d effect size, RFE and LASSO algorithms, which produced a reduced subset

of ECG features. The examination of algorithms’ performances using the obtained subset

was accompanied with a confrontation of the results to the ones of two other versions of

the data set (i.e. initial full-feature data set and physiology-driven reduced data set). Upon

this comparison, we concluded that the LR classifier led by domain-specific knowledge out-

performed the other classifiers and is, for this reason, the most adequate to be integrated

into a clinical-decision support tools. Nevertheless, a subgroup of novel features determined

thanks to data-driven approaches would give an insightful contribution in inventing new

cardiac electrical biomarkers for the prompt identification of ischemia.

1Portions of this chapter are taken from a forthcoming paper cited, in its current status, as: Z. Bouzid,
Z. Faramand, R. Gregg, S. Frisch, C. Martin-Gill, S. Saba, C. Callaway,E. Sejdic, and S.
Al-Zaiti, “In search of optimal subset of ECG features to augment the diagnosis of acute
coronary syndrome at the emergency department,”Journal of American Heart Association,
2020, forthcoming. (Available in reference [1] (submitted, under review)).
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6.2 Future Work

In this analysis, the patient to feature ratio was realtively low (≈ 1:1 for one of the

classifiers). Fortunately, the EMPIRE study is still ongoing, the second cohort is, by this

date, completed and comprise in total 1650 patients as well as a third cohort is available to

test this analysis on its 923 patients. Thus, although the ECG feature selection analysis is

concluded, we can apply the same algorithms on the new patients’ data sets to verify the

scalability of this approach and how well the features captured at this preliminary analysis

are generalizable on a higher number of patients. In this same context, while the three

first cohorts are ready, another cohort is in progress and would supplement our global data

base with 809 more patients. Since the number of patients available is expanding, it would

be interesting to try implementing deep learning techniques for acute coronary syndrome

diagnosis using raw ECG data.

Furthermore, the provenance of the data set raises some concern related to a potential

bias due to disparities proper to sex, race or other factors. In fact, the data collection was

limited to multiple healthcare centers of one same region. An upcoming measure would be to

try validating the algorithms’ performance using diverse data representative of populations

in remote healthcare centers.

Moreover, only ECGs collected from the paramedical staff are included in our cohorts,

it would be then interesting to explore the performance of our algorithms on the general

emergency department population i.e. patients presenting to the emergency department

with chest pain either transported by an ambulance or walking in without calling one.

Besides, the limitations cited above added to the severe data set skew (15.3% prevalence

of ACS), would have a substantial impact on the classifiers. To tackle the issue of data

unbalance, we implemented artificial ACS patients’ oversampling techniques which failed to

generalize to an unseen testing set. Thus, future research should focus on enrolling almost

equal or at least comparable proportions of negative and positive ACS patients. Once this

goal reached, we should repeat the study using the new data set in order to verify the

replicability of the results and get a step further towards the integration of a clinical decision

support tool in electrocardiographic apparatus in emergency departments.
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Finally, it would be interesting to explore other techniques for handling missing data

since data imputation with the mean is a basic method that is not recommended in favor of

more sophisticated procedures [62].
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