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Abstract 

Theoretical and Experimental Improvements for Fast Microdialysis 

 

Khanh Thieu Ngo, PhD 

 

University of Pittsburgh, 2020 

 

Microdialysis is the most widely used technique for intracranial sampling. Its versatility 

prompts important applications, from bedside traumatic brain injury monitoring to psychological 

disorder treatment. However, historically microdialysis methods have a time resolution of 5-30 

mins, and thus are not well suited to obtain physiological information, such as rates of extracellular 

processes or the relationship between neurochemical levels and behavior. Building from recent 

work in our laboratory, we developed instrumentation for making dopamine measurements in 

awake and freely moving rats over extended periods at one-minute time resolution using 

microdialysis sampling analyzed with online HPLC (Fast Microdialysis). 

Fast Microdialysis was used to investigate the beneficial effects of the anti-inflammatory 

drug dexamethasone (DEX) to penetration injury caused by dialysis probe implantation. 

Retrodialysis of DEX was found to potentiate both basal levels and stimulated release of striatal 

DA. Applying Fast Microdialysis to behavioral studies necessitated creation of a rotating operant 

chamber. Using this device, both trained- and untrained- animal’s behavior correlated with DA 

release, however with different characteristics. Robust and fast determination of DA allowed for 

creation of new microdialysis techniques in the non-steady state regime to investigate morphology 

and neurotransmitter regulation. Thus, a comprehensive mathematical model was created to 

analyze transient responses measured by Fast Microdialysis. A robust, adaptive random sampling 

simplex approach was used to fit the model to transient data. Striatal tissue tortuosity, porosity and 

the reuptake rate constant of DA were determined from a single transient response on awake and 

freely moving rats.   
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1.0 Introduction 

1.1 Fundamentals of Brain Microdialysis 

The study of neurochemistry is vital to our continual quest for a better understanding of 

the nervous system. Within this vast field, in vivo measurements of neurotransmitters has shed 

light to the neurochemical processes behind learning and memory (dopamine, glutamate1,2), 

neurodegenerative disorders (dopamine3, glutamate4,5, serotonin6), and immune response 

(histamine7, acetylcholine8), to name a very select few. These in vivo measurements are typically 

made with sensors that measure solutes directly in the brain tissue9,10, probes that obtain a sample 

from the brain11,12, or imaging techniques that measure a neurotransmitter’s activities via a 

radioactive ligand13,14. Particularly, microdialysis has become the most extensively used 

technique15,16 in the last two decades. The research described in this dissertation focuses on 

improving in vivo microdialysis measurements of dopamine (DA) in the rat striatum or nucleus 

accumbens, both of which have been the subject of numerous investigations to behavior17-21, 

diseases22-26 and related pharmacology27-29.  

Microdialysis is a solute sampling and delivery technique. The principle element of the 

microdialysis technique12,15,30-35 is the microdialysis probe, the object that when inserted into a 

medium (e.g., brain tissue or agar gel) and perfused, enables sampling of and/or delivery to a small 

region of medium around the probe. The microdialysis probe consists of an inlet, an outlet, a 

cannula which houses the inlet and outlet, and a porous, semi-permeable dialysis membrane at end 

of the cannula (Figure 4.2-1). The probe is perfused typically with a solution that is isosmotic to 

and mimics the electrolyte balance of the external medium (e.g., artificial cerebral spinal fluid 
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when sampling from brain). The porous membrane allows solutes of molecular weight defined by 

the membrane’s characteristic molecular weight cut-off (MWCO) to diffuse from the external 

medium through the membrane into the probe lumen (i.e. microdialysis sampling) or vice versa 

(i.e. retrodialysis). The solution, now called dialysate, passes out of the probe to an outlet, where 

is it collected for analysis. 

1.2 Microdialysis’ Time Resolution and Quantitative Analysis Problems  

Microdialysis is typically coupled with analytical techniques for separation (e.g. liquid 

chromatography36-38, electrophoresis39-41) and detection of analytes (e.g. amperometry36,37,42, mass 

spectrometry43-45). The experiment can be online, where the probe outlet is connected directly to 

the analytical instrument for immediate analysis, or offline, where dialysate is collected and stored 

frozen prior to analysis. Naturally, microdialysis’ distinguishing feature is its superior versatility 

in both sampling and detection, which has helped microdialysis to become the most popular in 

vivo analysis technique. To date, there are nearly 35,000 articles within the microdialysis topic on 

SciFinder compared to about 2,500 for the second most popular technique, Fast-Scan Cyclic 

Voltammetry (FSCV).  

However, microdialysis suffers from two problems. One is speed. It is a relatively slow 

technique, where the typical sampling interval is on the order of 5-30 min 12,46,47 which contrasts 

with FSCV where sub-second measurements are routine48. Better time resolution for microdialysis 

is therefore highly desirable. The other problem is inferring solute concentrations in the brain 

extracellular space from the concentrations measured in the dialysate. Classical FSCV lacks the 

capability to directly determine basal level concentrations of neurotransmitters, but recently 
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developed related techniques49-53 are potentially capable of estimating basal concentrations in the 

minute or less time regime. Microdialysis employs an experimental protocol12,54,55 to obtain 

quantitative estimates of the solute concentrations in the brain. The experimental protocol is based 

on a mathematical model56-66 with a set of assumptions and accuracy limitations stemming from 

these assumptions. Therefore, there are opportunities to create quantitative methods based on 

microdialysis that can improve the accuracy of estimates of solute concentrations in the brain and 

do so with a faster timescale than currently possible. This will lead to insights into biological 

processes that govern such concentrations. 

1.3 Evolution of Fast Microdialysis 

1.3.1 Pioneering Period of High Time Resolution Analysis for Fast Microdialysis 

Efforts were made early on (1980s) in the development of the microdialysis technique to 

improve not only the dialysate analysis time but also sample dispersion during fluidic transport67. 

Justice and colleagues leveraged the then recent advancements in smallbore packed 

chromatographic columns and high-performance liquid chromatography to create a method for 

online in vivo microdialysis determination of DA at 5-min time resolution68. The importance of a 

faster time resolution needed to infer biological information was recognized, and offline 

measurements with 1-min sampling followed shortly69-71. Justice and colleagues established the 

technical feasibility and possibility to observe rapid fluctuations in neurotransmitter concentrations 

using microdialysis. However, technological challenges in separation and detection of low level 

neurotransmitters hindered adoption of high time-resolution microdialysis well into the 2000s. 
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Andrews et al.72 found that 82% of microdialysis publications in 2012 were at 20-min time 

resolution and none was faster than 5-min. The opportunity to infer biological information from 

rapid fluctuations was unfortunately overlooked in favor of pharmacological and toxicological 

applications73 where time resolution is generally not a pressing need72.  

1.3.2 Renewed Interest to High Time Resolution 

With the maturity of high-performance liquid chromatography instrumentation, 

particularly the availability of sub 2 m porous stationary phase particles, efforts74,75 were renewed 

late in the 2000s to develop an online, in vivo microdialysis technique that is capable of continuous, 

hours long determination of low level (nM) neurotransmitters (Fast Microdialysis). Andrews and 

colleagues optimized their separation on commercially available HPLC instrument and analytical 

scale columns to achieve a 2-3 min time resolution online detection of serotonin (5-HT)47,72. 

Within the Weber group, prior the research described in this dissertation, capillary liquid 

chromatography systems were designed and optimized to demonstrate technical feasibility of a 1-

min time resolution online detection of 5-HT74,76,77 and dopamine78 (DA), separately. Significant 

progress was also made with offline analysis. Kennedy and colleagues developed a segmented 

flow microdialysis technique that when coupled with mass spectrometry was capable of 2 s 

determination of neurotransmitters and metabolites79-81. These works presented experimental 

evidence validating the hypothesis that Justice had made three decades prior: there is biological 

information in the fluctuation of neurotransmitter concentrations in the brain observed by Fast 

Microdialysis.  
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Figure 1.3-1. Seconds regime determination of (A) glutamate (B) aspartate (C) GABA (D) taurine (E) glycine 

using microdialysis sampling with segmented flow.  

Reprinted with permission with permission from Wang, M.; Hershey, N. D.; Mabrouk, O. S.; Kennedy, R. T. 

Anal Bioanal Chem 2011, 400, 2013-2023.  

1.4 Development of Microdialysis Theories 

Microdialysis theories describe the mass transport of solute across the tissue to the probe, 

driven by diffusive flux resulting from solute concentration gradients between the tissue and the 

probe. Early work in microdialysis theory only considered this mass transport process31,56,57, and 

did not considered other processes in the brain. The microdialysis probe is cylindrical, thus mass 

transport solutions in the cylindrical coordinates is most appropriate. Nevertheless, there are also 
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approximations62,82,83 in the Cartesian coordinates to simplify the calculations. Bungay, Chen and 

Morrison have provided the most comprehensive discussion of mass transport in microdialysis in 

the cylindrical coordinates. Bungay et al. (1990)84 used the concept of resistance/permeability to 

account for individual contribution of each transport layer (probe, probe membrane, and tissue) to 

the overall mass transport. He also considered biological processes that remove solute from the 

extracellular space and created a simple steady-state formulation for quantitative microdialysis 

that has been widely adopted. Bungay (2003)65 later revised his steady-state model to include the 

trauma layer resulting from penetration injury during probe implantation85-87. Another solution for 

steady-state mass transport that incorporates a trauma layer was obtained by Chen (2006)88. 

Morrison et al. (1991)60 developed the model with the fewest assumptions, as far as we are aware. 

It includes two source and uptake terms, for ‘metabolism’ and for exchange between brain tissue 

and capillary blood. The solution describes mass transport in the transient state. The mathematical 

expressions from Morrison’s solution are very complex. Over the years, Bungay and colleagues 

simplified the mathematics of mass transport, and published (2011)61 the most up-to-date model 

for transient microdialysis mass transport. He adapted an earlier solution by Chen (2002)58,59 to 

create one-dimensional (1D) and two-dimensional (2D) mass transport models. The many models 

developed over the years, however, create confusion as to which model is most appropriate for 

experimental use. Furthermore, we note that none of these models involves the analytical system 

that follows microdialysis sampling. They only describe mass transport across the probe. The few 

models77,89 that describe solute concentration in the dialysate as observed by the analytical system, 

on the other hand, do not involve microdialysis sampling. The research described in this 

dissertation, introduced below, sought to rectify both these issues.  
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1.5 Theoretical and Experimental Improvements for Fast Microdialysis 

Prior the research described in this dissertation, the Weber group had developed one-

minute in vivo measurements of neurotransmitters by microdialysis with online capillary HPLC, 

first for serotonin74,76,77 and later for dopamine78 (DA). This work was primarily a technical 

demonstration for online in vivo measurements with Fast Microdialysis to establish its feasibility. 

The instrumentation and data analysis were not capable of long-term studies, of correlating 

measurements of DA with learned behavior, or of using the improved time resolution to understand 

physiological processes in the brain. Furthermore, there were technical hurdles to significantly 

improving the time resolution of these measurements. The subsequent research, summarized 

below, addressed these issues, and established novel applications for brain microdialysis. 

1.5.1 Investigating the Effects of a Drug Treatment 

Michael and colleagues through a series of elegant works have found that microdialysis 

probe implantation causes trauma in the brain tissue surrounding the probe. This triggers an 

immune response adverse to good microdialysis measurements62,63,65,88,90,91. Their histology and 

FSCV studies found that this immune response can be mitigated with an anti-inflammatory 

drug86,87,92,93 (e.g. Dexamethasone, DEX). The DEX treatment restored evoked DA response in 

injured tissue, however, tissue viability could not be conclusively determined86,87. Thus, we used 

Fast Microdialysis to investigate the effects of DEX treatment to basal concentrations and evoked 

DA responses in the rat striatum. A simultaneous Fast Microdialysis and local field potential 

measurement was used to elucidate tissue viability. We also made improvements in Fast 

Microdialysis instrumentation and data analysis to accommodate these experiments.   
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1.5.2 Rotating Operant Chamber for Fast Microdialysis 

The improved Fast Microdialysis has a limit of quantitation of 1 nM, which is sufficient 

for DA determination in the nucleus accumbens94, the brain region that is responsible for reward 

and reinforcement95. At the time resolution of one minute, the rapid fluctuation of DA 

concentrations could encode information related to the animal’s behavior69-71. Existing behavioral 

instrumentation was not suitable for Fast Microdialysis. Thus, a rotating operant chamber was 

created to implement Fast Microdialysis to behavioral studies. The rotating operant chamber 

eliminates the need for use of a liquid swivel that adds band broadening and reduces time resolution 

of the analysis; while it also allows the animal to move freely and respond to stimuli without 

twisting of the capillaries supporting the dialysate flow. This was accomplished by modifying a 

BASi raturn with an on-board controller and adding operant behavior components that rotate with 

the raturn. Using the rotating operant chamber, rats were trained to perform learned tasks, while 

DA concentrations were determined with Fast Microdialysis. Correlation between the animal’s 

behavior and rapid releases of DA were interpreted using Short Time Fourier Transform96. 

1.5.3 Theoretical and Experimental Framework for Analysis of Transient Response 

From the two prior works97,98, it was established definitively that there is biologically 

relevant information encoded in DA changes measured at one-minute time resolution. Together 

with the much-needed experimental work to increase the time resolution of the microdialysis 

measurements, theorical improvement is also necessary to describe the relationship between 

measured solute concentration at the detector and the neurochemical environment outside the 

probe. Theories exist32,56-64,83,84,89,99-102 to describe the effects of tissue morphology and solute 
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uptake rate on the relationship between the concentration of a solute added to the perfusate going 

into the probe and the measured solute concentration coming out of the probe. However, there is 

no coherent and comprehensive mathematical description of how solute concentration, tissue 

morphology, and uptake rate govern the solute concentration profile at the detector measured by 

Fast Microdialysis in the non-steady state regime (“transient response”) that is not in differential 

equations form. Thus, a new microdialysis technique (Comprehensive Quantitative Microdialysis, 

CQM) was developed to analyze transient responses measured with Fast Microdialysis and 

elucidate the relevant biological and systemic factors that affect the transient response.   
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2.0 Monitoring Dopamine Responses to Potassium Ion and Nomifensine by in vivo 

Microdialysis with Online Liquid Chromatography at One-Minute Resolution 

The following chapter is reprinted (adapted) with permission from Ngo, K. T.; Varner, E. 

L.; Michael, A. C.; Weber, S. G. ACS Chem Neurosci 2017, 8, 329-338. Copyright© 2020 

American Chemical Society.  

2.1 Chapter Summary 

Recently, our laboratory has demonstrated the technical feasibility of monitoring dopamine 

at one-min temporal resolution with microdialysis and online liquid chromatography.  Here, we 

monitor dopamine in the rat striatum during local delivery of high potassium/low sodium or 

nomifensine in awake-behaving rats.  Microdialysis probes were implanted and perfused 

continuously with or without dexamethasone in the perfusion fluid for four days. Dexamethasone 

is an anti-inflammatory agent that exhibits several positive effects on the apparent health of the 

brain tissue surrounding microdialysis probes.  Dopamine was monitored one or four days after 

implantation under basal conditions, during 10-min applications of 60 mM or 100 mM K+, and 

during 15-min applications of 10 µM nomifensine. High K+ or nomifensine were delivered locally 

by adding them to the microdialysis perfusion fluid using a computer-controlled, low-dead-volume 

six-port valve. Each day/K+/dexamethasone combination elicited specific dopamine responses. 

Dexamethasone treatment increased dopamine levels in basal dialysates (i.e., in the absence of K+ 

or nomifensine). Applications of 60 mM K+ evoked distinct responses on days one and four after 
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probe implantation, depending upon the presence or absence of dexamethasone, consistent with 

dexamethasone’s ability to mitigate the traumatic effect of probe implantation.  Applications of 

100 mM K+ evoked dramatic oscillations in dopamine levels that correlated with changes in the 

field potential at a metal electrode implanted adjacent to the microdialysis probe.  This 

combination of results indicates the role of spreading depolarization in response to 100 mM K+.  

With one-min temporal resolution we find that it is possible to characterize the pharmacokinetics 

of the response to the local delivery of nomifensine.  Overall, the findings reported here confirm 

the benefits arising from the ability to monitor dopamine via microdialysis at high sensitivity and 

at high temporal resolution.     

2.2 Introduction 

Microdialysis has been widely employed for intracranial chemical monitoring.30,33,45,103,104 

Microdialysis probes are robust and can be used in both anesthetized and awake animals ranging 

from rodents to primates, including human patients.  They collect a broad array of small molecules 

below the molecular weight cutoff of the dialysis membrane, several varieties of which are 

available in the required hollow-fiber format.  The dialysis process produces samples that are free 

of tissue fragments, proteins, blood, and other forms of contamination.  The dialysate samples can 

either be collected, stored, and analyzed later,105-107 or analyzed in near-real time by online 

methods.67,108  Online analysis decreases the chance of sample degradation during storage and 

eliminates delays in obtaining the results.  Online analysis is often performed with liquid 

chromatography (LC)35,71,109 or capillary electrophoresis110,111 coupled to detectors employing 

laser-induced fluorescence,112,113 mass spectrometry,114,115 or electrochemistry.116-119 
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Recent progress in improving the time resolution of microdialysis sampling of 

neurotransmitters builds on earlier work.109 Developments in LC separation speed have enabled 

online collection and analysis of serotonin (5-HT) at three-72 and later two-min intervals47 on 

commercial instruments. We have used capillary LC with electrochemical detection to determine 

both dialysate DA and 5-HT (separately) in near real time at one minute intervals.76-78 Electrical 

stimulation to induce DA transients demonstrated that our approach yields an overall time 

resolution of at least one-minute.78 

While there are many studies of DA release induced by retrodialysis of high K+/low Na+ at 

modest time resolution, we are not aware of any at one-minute time resolution. It would be of 

interest to learn what information is gained by measuring at this time resolution. Thus, in this 

study, we describe the remarkable variety of dialysate dopamine transients elicited by a ten-minute 

high K+/low Na+ stimulation120 (60 mM or 100 mM K+; we denote these as “high K+” below). 

Having seen oscillations in 5-HT concentrations resulting from high K+ stimulation, we anticipated 

that DA may respond similarly. Thus, we used a 10-min stimulation to accommodate the 2-3 min 

period of the oscillations.77 Responses in awake rats were measured one- and four days after probe 

implantation. One group of animals had microdialysis probes perfused with artificial cerebrospinal 

fluid only (aCSF). A second group had microdialysis probes perfused continuously with aCSF 

containing dexamethasone87,90,121,122 via retrodialysis. We refer to the latter set of probes as “local 

dexamethasone by retrodialysis” probes (LDR probes), and the former as “control” probes. 
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2.3 Methods 

2.3.1 Chemical and Materials 

Chemicals (disodium EDTA, sodium acetate, sodium 1-octanesulfonate (SOS), 

acetonitrile, glacial acetic acid, NaCl, KCl, CaCl2, MgCl2, and NaH2PO4) were purchased from 

either Fisher Scientific (Fair Lawn, NJ) or Sigma (St. Louis, MO) and used as received. 

Dexamethasone sodium phosphate was from APP Fresenius Kabi USA, LLC, Lake Zurich IL. 

Ultra-pure water used was filtered using a Millipore Mili-Q Synthesis A10 system (Belford, MA).  

Artificial cerebrospinal fluid (aCSF: 142 mM NaCl, 1.2 mM CaCl2, 2.7 mM KCl, 1.0 mM 

MgCl2, and 2.0 mM NaH2PO4, pH 7.4) was used as the perfusion fluid for the microdialysis probes. 

The high K+ aCSF solutions were kept isotonic by lowering the Na+ concentration (60 mM K+ 

aCSF: 84.7 mM NaCl, 1.2 mM CaCl2, 60 mM KCl, 1.0 mM MgCl2, and 2.0 mM NaH2PO4. 100 

mM K+ aCSF: 44.7 mM NaCl, 1.2 mM CaCl2, 100 mM KCl, 1.0 mM MgCl2, and 2.0 mM 

NaH2PO4). Dexamethasone sodium phosphate (APP Pharmaceuticals LLC, Schaumburg, IL) and 

nomifensine maleate (Sigma-Aldrich, St. Louis, MO) were diluted in aCSF. The microdialysis 

perfusion fluids were filtered with Nalgene sterile filter units (Fisher, Pittsburgh, PA; PES 0.2 μm 

pores).  

2.3.2 Probe Construction 

Concentric-style microdialysis probes (4 mm membrane length) were built in-house (200 

μm I.D, 280 μm O.D, 13 kDa MWCO Spectra/Por hollow fiber, Spectrum Laboratories Inc. 

Rancho, Dominquez, CA) see78 for details. The probe inlet consists of 100 cm of fused silica 
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capillary (75 μm I.D., 150 μm O.D. Polymicro Technologies, Phoenix, AZ). The outlet capillary 

is of the same type but 115 cm in length. Each capillary is connected to 10 cm of 75 μm I.D., 360 

m O.D. fused silica to facilitate the connection of inlet and outlet lines to nanobore injection 

valves (described below). We estimate based on system volumes and perfusion flow rate that 

transport of a stimulant slug to the probe membrane takes 9.84 minutes, and a sample slug takes 

9.05 minutes from the probe to the injection valve. The difference is mainly due to the internal 

volume of the probe which counts towards the inlet flow path. Prior to use, the probes were soaked 

in 70% ethanol and then immersed in and flushed with filtered perfusion fluid (aCSF or aCSF with 

dexamethasone) for several hours before implantation into the rat.   

2.3.3 Surgical Procedure and Implantation 

All use of animals was approved by the University of Pittsburgh Institutional Animal Care 

and Use Committee. Prior to surgery, rats (male Sprague−Dawley, 250−350g, Charles River, 

Raleigh, NC) were acclimated overnight to a Raturn Microdialysis Bowl (MD-1404, BASI, West 

Lafayette, IN). The next day, rats were anesthetized with isoflurane (5% v/v induction, 2.5% v/v 

maintenance) and implanted with microdialysis probes using aseptic stereotaxic surgical 

techniques. Using flat skull coordinates, each probe was slowly lowered into the striatum (1.6 mm 

anterior, 2.5 mm lateral from bregma, and 7.0 mm below the dura) at 5 μm/s using a 

micropositioner (David Kopf Instruments Model 2660, Tujunga, CA). The histology of the probe 

track in the striatum using these same coordinates has been documented numerous times by our 

group.86,122 The probe was secured with bone screws and acrylic cement and the incision was 

closed with sutures. Anesthesia was removed and the animals were returned to the Raturn system 

and given free access to food and water for the duration of the experiment. Continuous perfusion 
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was maintained for the entire duration of the experiment. During procedures involving 

dexamethasone, the probe was perfused with 10 μM dexamethasone for the first 24 hours and then 

with 2 μM dexamethasone for the remainder of the experiment. 

2.3.4 Online Microdialysis-LC-EC 

The microdialysis/liquid chromatography system was similar to the one previously 

described.76 A schematic  diagram is shown in Figure 2.7-28. Perfusate was introduced using a 

syringe pump (Harvard Apparatus, Holliston, MA), running at 0.610 μL/min. The perfusate 

syringe contained 1.0 mL of perfusate and was refilled every 24 hours, at least 3 hours prior to any 

online measurement. To facilitate the introduction of a stimulant-containing solution, we used a 6-

port nanobore injection valve (electrically actuated, Valco Instruments, Houston, TX) to introduce 

solution from a 9.5 L fused silica loop (280 μm I.D., 360 m O.D, Polymicro Technologies, 

Phoenix, AZ). The valve was configured so that the loop could be loaded with stimulant-containing 

solution while perfusate flow is maintained. To introduce the stimulating solution, the valve 

position was switched from load to inject position by computer control at predetermined times for 

durations equal to the stimulus duration. So-called timed injections suffer less spreading of the 

concentration profile at the trailing edge than injections that permit the entire loop to be pushed 

into the inlet capillary. During valve position switching, flow is interrupted for 105 milliseconds. 

The stimulus reaches the probe 9.8 minutes after switching. Therefore, any DA response due to 

switching the position of the valve would be seen approximately ten minutes prior to the response 

to the stimulus. We do not see any such response to the valve position switching itself in the data. 

The outlet of the microdialysis probe carrying dialysate was connected directly to the inlet 

of the injection valve of the LC system (8-port nanobore, electrically actuated, Valco Instruments, 
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Houston, TX) so that the dialysate is loaded into one of the two 600 nL, fused-silica sample loops 

(75 μm I.D., 360 m O.D, Polymicro Technologies, Phoenix, AZ). While one sample loop is being 

loaded, the contents of other sample loop are injected into the column, separated, then detected at 

the end of the column using amperometric electrochemical detection. The dialysate flow from the 

brain to the detector is uninterrupted, except for during injection valve switching (230 

milliseconds), thus achieving in vivo, online detection of dopamine. 

For the chromatography, 4.5 cm long, 150 m ID fused silica capillary columns were 

packed in-house at 20,000 psi with 1.7 m BEH C18 reverse-phase particles (Waters, Milford, 

MA). Mobile phase was delivered using a Shimadzu LC-30DA pump with a maximum pressure 

of 18,900 psi (130 MPa) to achieve a flow rate of 7.5 L/min during experiments. Column and 

injector were heated to 40 oC.  

Separation of dopamine was achieved using ion-pairing reversed phased liquid 

chromatography with mobile phase containing 100 mM sodium acetate, 1.75 mM SOS, 0.150 mM 

EDTA, 3% v/v acetonitrile and 2% v/v acetic acid. The mobile phase was filtered and degassed 

with three passes of vacuum filtration using 0.22 m nylon filter (Osminics, Minnetonka, MN). 

Analytes were detected at 400 mV (vs. Ag/AgCl 3M NaCl) using BASi radial-style flowcell, 3-

mm glassy carbon electrode with 25 m thick gaskets, and BASi Epsilon potentiostat (West 

Lafayette, IN).  

2.3.5 Experimental Design 

Microdialysis probes were implanted and dialysate dopamine was measured in awake, 

freely moving male Sprague-Dawley rats. Each probe was either perfused continuously for four 
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days with aCSF containing dexamethasone (via retrodialysis) or aCSF alone (control). On day 1 

and day 4 after surgery (approximately 24 h and 96 h, respectively), once per hour, each rat was 

stimulated with 10-min retrodialysis of 60 mM K+ and 100 mM K+ (twice each), and 15-min 

retrodialysis of 10 M nomifensine (at the end of the experiment, when possible). Stimulant/drug 

retrodialysis times were achieved by controlling the valve position (see Figure 2.7-28).  

Dopamine transients as well as basal level dopamine in the dialysate were measured 

continuously at one-minute time resolution for the entire duration of the experiment, 

approximately six hours. Data were processed using an automated MATLAB script. For the 

purpose of principal component analysis, the 11 contiguous peaks that deviate the most from basal 

level during the K+ stimulation window were identified as the transient by the script. All 

MATLAB-identified peaks were confirmed by a human. 

2.3.6 LC-EC and Field Potential Simultaneous Measurement 

In a second set of experiments dopamine and the field potential were measured 

simultaneously during potassium stimulations. For the field potential measurements, a tungsten 

wire (50 μm diameter, 4 mm length) was glued next to the microdialysis probe so that the wire 

was parallel to the probe membrane, with approximately 0.5mm between the wire and the 

membrane (see Figure S29). A second tungsten wire was used as a reference and placed in the 

contralateral hemisphere of the brain. Both wires were attached to a larger nickel/chromium wire 

for electrical connection and protected with a plastic covering. Measurement were made using a 

Powerlab/4sp running LabChart Pro (AD Instruments). A 0.1 Hz low pass filter was used.  
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2.4 Results and Discussion 

2.4.1 One-minute Resolution Online Measurement of Dopamine 

Separation of dialysate using the online system under conditions described in the 

experimental section result in completely resolved DA peaks, with DA retention times of 

approximately 44 s (Figure 2.4-1). Chromatograms were obtained continuously, with injections 

occurring once every minute for the entire six- to eight-hour duration of the experiment. For all 

conditions, there are no other peaks in the chromatogram near the DA peak.  The DA retention 

time when measured during an online experiment is within 3% of the retention time measured 

from aqueous DA standards, as well as DA-spiked dialysate. Dialysate DA concentrations are 

calculated from average slopes and intercepts from a pair of linear calibration curves obtained prior 

to and after each day-long experiment (Figure 2.7-1). The slopes and intercepts from the two 

calibration curves were typically within 5% of each other. Figure 2.4-2 shows a DA dialysate 

concentration obtained one day after implantation of an LDR probe. The five transients are (from 

left to right) the dialysate dopamine responses to 10-min stimulations with 60 mM K+ (twice), 100 

mM K+ (twice), and a 15-min stimulation with 10 M nomifensine. Both K+ and nomifensine 

were, like the dexamethasone, delivered through the probe.  

Previous studies with K+ stimulated 5-HT47 and DA,123 using a range of K+ concentrations 

and stimulation times (25 – 120 mM K+ for 1-10 min) found that a 50-60 min recovery interval 

between stimulations is sufficient to avoid the influence of a prior stimulation on the effect of a 

following stimulation. The range of potassium concentrations and stimulation times encompasses 

our experimental conditions. Thus, during this work, we allowed a 50-min recovery time between 

each stimulus. Each of these data sets contains three measurable quantities: basal levels, transients 
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caused by 10 min K+ stimulations, and the transient caused by the 15-min nomifensine stimulation. 

These will be assessed in that order below. 

 

Figure 2.4-1. Four chromatograms of striatal dialysate by online LC-EC from a longer sequence of injections. 

Consecutive 500 nL samples of dialysate were collected under basal conditions and analyzed online at one-

min intervals. The dopamine peaks appear 44 s after each sample is injected onto the capillary column. 
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Figure 2.4-2. DA dialysate concentration measured during an experimental run (day 1, [K+] = 60 or 100 mM, 

with an LDR probe). 

The five transients seen are dopamine responses to 10-min retrodialysis of 60 mM K+ (twice), 100 mM K+ 

(twice) and 15-min retrodialysis of 10 M nomifensine. 

2.4.2 Basal 

We define basal levels as DA levels in dialysate measured at least 10 minutes and at most 

40 minutes from a transient. Figure 2.4-3 shows the frequency distributions of the one-minute 

measurements for each of the four conditions day = 1 and 4; with LDR or control probes. Consider 

first the data for control probes. These data have a skewed distribution indicating that there are 

more observations with basal levels below the mean than above the mean. The mean basal DA 

with control probes is comparable to published results from other groups as well as by our 
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group.78,86,124 The distributions obtained with LDR probes show multiple maxima with a clearly 

separate distribution on day 4. This separate distribution is a single animal’s basal data. The basal 

levels also appear to be on average higher with LDR probes, thus we did a two-way (“day” and 

“dexamethasone”) analysis of variance on the mean basal DA with and without the aforementioned 

single animal’s high basal DA data (Full ANOVA and regression output are in Table 2.7-1-Table 

2.7-3). “Day” is not significant, but “dexamethasone” is significant (p = 0.013, n = 22) when the 

aforementioned high basal DA data are included. The pattern is similar from ANOVA without the 

aforementioned high basal DA data, but the significance is higher (p = 0.0017, n = 21). A linear 

regression using the variable “dexamethasone” with values of 0 for control and 1 for LDR probes 

leads to the simple relationship: basal dialysate [DA]/nM = 10.4 + dexamethasone*4.4 (p = 0.0013, 

n = 21) without the single animal’s high basal DA data, and [DA]/nM = 10.4 + dexamethasone*6.7 

(p = 0.0097, n = 22) with those data. We conclude that the basal dialysate DA level increases in 

the presence of dexamethasone retrodialysis. 
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Figure 2.4-3. Frequency distributions of the basal concentrations measured each minute for the four 

conditions day = 1 and 4, probe = control and LDR.  

Note there are seven animals represented in day 1 control. There are five animals contributing data for the 

other three cases. The “frequency axis” represents single, one-minute measurements. 

2.4.3 Potassium Stimulations 

As mentioned above, we anticipate oscillations in DA dialysate concentrations during a 

high K+ stimulation. It is therefore important to consider what the time resolution of the entire 

microdialysis/liquid chromatography system is. Previously,77 we determined the effect of the 

transport tubing and the microdialysis probe itself on the shape of a nominally instant change in 

5-HT concentration in vitro. Importantly, we validated the use of a calculated Taylor dispersion 
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standard deviation for the spreading induced by the inlet and outlet capillaries. The individual 

contributions in the current set up are approximately 8.2, 8.7, and 8.8 s in the inlet, probe, and 

outlet, respectively. The variances add, so the overall time resolution is eroded with a standard 

deviation of 14.8 s based on spreading of the stimulus pulse on passing through the inlet/probe and 

the DA response passing through the outlet/probe. The practical result is that a perfectly sharp 

concentration step of a stimulant would be “smoothed” slightly on its way to the probe. The 

resulting DA transient would also be smoothed slightly within the probe and on the way to the 

liquid chromatograph’s injection valve. As a result, we expect to see the results of a 10-min 

stimulation as an approximately 11-min response. We can categorize the DA responses to the 88 

K+ stimulations that we observed as follows. Dialysate DA transients in response to K+ 

stimulations can be positive or negative, they can be small (less than 100 nM) with no spiking (n 

= 37), have one spike (n = 16) or have multiple spikes (n = 35).   We can also compare the average 

of the DA transients over the entire 11 minutes from a single 100 mM K+ stimulation to the basal 

level. In doing so, we see results in accord with analogous experiments using 20-min resolution 

offline microdialysis,125,126 namely dialysate DA transients of up to 50 – 60 times basal level.  

Figure 2.4-4 shows some of the dialysate DA transients we recorded from the experimental 

runs (all of them are in Figure 2.7-2 to Figure 2.7-21). While there is variability from stimulus to 

stimulus and from rat to rat, there are qualitative trends. The 100 mM K+ stimulations on day 1, 

control or LDR probe, yielded multiple (three or more) large spikes (200 nM or more, e.g., Figure 

2.4-4e).  Using similar equipment, we recently reported high-amplitude oscillations of serotonin.77 

The same group on day 4 yields mostly transients with one or two spikes on top of a 50 – 100 nM 

base, e.g., Figure 2.4-4f but similar responses may be seen on day 1 (Figure 2.4-4a). The 60 mM 

K+ transients measured with control probes on day 1 exhibit either transients similar to those in 



 24 

Figure 2.4-4a or small spikes, with a larger spike (but small compared to those produced by 100 

mM K+) at the leading edge (Figure 2.4-4c). On day 1, responses obtained with LDR probes are 

highly variable encompassing nearly all of the transients described above. Transients induced by 

60-mM K+ on day 4 were typically small, although probes perfused with aCSF alone produced 

decreases in DA levels (Figure 2.4-4d) while LDR probes produced negligible to slightly positive 

responses with a negative transient after the cessation of the stimulations such as in Figure 2.4-4b. 

A reduction in dialysate DA in response to a 20 – 30 mM K+ stimulation 24 h post-striatal 

implantation has previously been reported in one study.127 It must be noted that, however, the 

measurements were done after 80 minutes of high K+ perfusion. Such prolonged perfusion of high 

K+ reduces DA extraction fraction128 which will alter dialysate DA concentration.  
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Figure 2.4-4. Qualitatively distinct dialysate DA responses observed during the experiments. 

Left: day 1. Right: day 4. Top: (a-d) 60 mM K+. Bottom: (e-f) 100 mM K+. The example in blue is from an 

LDR probe. The group is selected to be representative to transient characteristics, not conditions.  K+ 

stimulations are denoted by the black bar. Note the differing vertical scales. A complete set of images of all 

transients observed can be found in the Supplementary Information, Figure 2.7-2 to Figure 2.7-21. 
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2.4.3.1 Principal Component Analysis of Dopamine Transients 

There are clear qualitative differences between responses to 60 mM K+ and 100 mM K+ 

stimulations on both day 1 and day 4. However, there is also significant variability in the responses 

to each type of stimulation. Thus, we turned to principal component analysis (PCA) to help to 

classify the observed responses. All of the scatter plots of scores are in the Supplementary 

Information. Figure 2.4-5 shows such a plot for the day 4, 60 mM K+ responses from both control 

and LDR probes. The first two principal components represent more than 95% of the variance in 

the data. Importantly, the PCA scores reveal a clear separation of the responses obtained with 

control from those of LDR probes. The solid symbols in the score plots represent the mean of each 

cluster of points. Converting those mean scores to hypothetical laboratory observations leads to 

Figure 2.4-6. The result is striking – responses with LDR probes tend to show positive amplitudes 

while responses with control probes show negative amplitudes. To confirm the PCA result, we 

also show the mean responses for each of the five animals in the two categories (ten transients in 

each). The correspondence of the average and the result from the first two principal components 

gives confidence in the observation.  The PCA analysis of the analogous day 1 data shows that 

there is a greater variety of responses. There is a cluster of very similar responses (see score plot 

in Figure 2.7-22) with the same characteristics as Figure 2.4-4c, a small dialysate DA increase 

from basal level. Others are represented by Figure 2.4-4a and f, mostly small increases from basal 

levels with one or two high amplitude spikes. This level of response has been observed extensively 

in many of the microdialysis studies noted earlier (in the introduction). The short, one-min spike, 

on the other hand, would not have been observable without one-min time resolution. 

Figure 2.7-25 is the scatter plot of scores from all transients from 100 mM K+ 

stimulations. Here, it is noteworthy that the score plot shows a clustering based on “day”, but 



 27 

not based on “dexamethasone”. We conclude from this classification that the more extreme 

perturbation of 100 mM K+ (compared to 60 mM) elicits a response mostly based on the time 

from implantation. The transients are for the most part oscillations of high magnitude.  

 

Figure 2.4-5. Scatterplot of scores of the first two principal components of all transients from day 4, 60 mM 

K+ stimulations.  

Blue circles represent data from animals with control probes, and red squares represent animals with LDR 

probes. The filled circle and square represent the centroid of respective types computed from the first two 

principal components. 
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Figure 2.4-6. Comparison of transients from LDR (top) and control (bottom) probes on day 4 with a 60 mM 

K+ stimulation.  

Open symbols: Synthesized dopamine transients from the first two principal components. Solid symbols: 

experimental transients from averaging the responses at each minute. 

2.4.3.2 Simultaneous Measurement of Dialysate DA and Field Potential 

In two separate animals, we implanted a microdialysis probe with an attached tungsten wire 

for field potential measurements (Figure 2.7-27). Figure 2.4-7 compares the simultaneously 

measured dialysate dopamine and field potential transients recorded on day 1 with LDR probes 

and 100 mM K+ (left) and 60 mM K+ (right) stimulations. High amplitude oscillations of dialysate 

dopamine levels during 100 mM K+ stimulations correlate to the oscillations in field potential with 

the same oscillation period of roughly 3-min, while the lack of dialysate dopamine oscillations 

during 60 mM K+ stimulations correlates to similarly insignificant change in field potential.   
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Such slow oscillations in field potential are an indication of spreading depolarization.129 

which is a pathological event. Spreading depolarization and spreading depression comprise a set 

of complex processes that can originate from many irregular brain conditions and these manifest 

in several ways.129,130 The role of microglia in spreading depression is, likewise, complicated. They 

were found to promote spreading depression in one polarization (M1 microglia), and increase the 

threshold for spreading depression in another polarization (M2a microglia).131 Their presence is 

strictly required for ischemia-induced, but not for high K+-induced, spreading depression.132  

Although the effect of glia on spreading depolarization and depression is complicated, and not 

completely understood, it is nonetheless noteworthy that we see effects of dexamethasone both on 

gliosis122 and on the response in vivo to K+ stimulations. 

With day 4 60 mM K+ experiments, we observed a small increase in dialysate DA level 

from LDR probes and a small decrease in dialysate DA level for control probes. While the small 

increase, again, is expected. The small decrease is unexpected and striking as it has been seen once 

but not reproduced.123,127 We hypothesize that the decrease in dialysate DA level is a depression 

of neural electrical activity without accompanying spreading depolarization. The condition in these 

experiments, namely the proliferation of activated microglia and ischemia, is conducive129,131,132 

to spreading depression, which can lead to reduced cerebral blood flow129 and silenced synaptic 

activity,130 possibly reducing spontaneous DA release to below basal levels. 
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Figure 2.4-7. Simultaneous measurement of dialysate DA and field potential in an awake animal. 

Left: 100 mM K+ stimulation. Right: 60 mM K+ stimulation. Measurements made on day 1 with LDR probes. 

2.4.3.3 Comparison to Observations by Fast-Scan Cyclic Voltammetry 

Fast-scan cyclic voltammetry (FSCV) in combination with carbon fiber microelectrodes is 

an alternative method for monitoring extracellular DA in the brain.  A well-known application of 

FSCV is the monitoring of DA transients evoked by electrical stimulation of DA axons in the 

medial forebrain bundle (MFB).  Previously, we monitored electrically evoked DA transients with 

carbon fiber microelectrodes placed in striatal tissues in close proximity to microdialysis probes 
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and with carbon fiber electrodes positioned in the outlet of the probe.122 While a ten-minute, 

elevated K+ stimulation would not be expected to elicit the same response as a 25 s MFB 

stimulation, there are noteworthy contrasts between the responses observed during this work with 

K+ stimulation and that done previously with electrical MFB stimulation. 

First, regardless of the time point after probe implantation (4 hr, 1 day, 5 days), electrically 

evoked DA responses were not observed by FSCV in the tissue adjacent to, or at the outlet of, 

probes perfused with aCSF without dexamethasone.  These findings are difficult to interpret in 

isolation as they might either indicate an absence of DA terminals near the probe or the presence 

of DA terminals in some abnormal condition that suppresses electrically evoked DA release. 

Histology using two well-established markers for DA terminals, tyrosine hydroxylase and the 

dopamine transporter, identified DA terminals of a near-normal appearance in the tissues adjacent 

to the probes at time points beyond 4 hrs, suggesting the presence of DA terminals, albeit in some 

abnormal condition. The present results appear to support this conclusion, as 100 mM K+ 

stimulation evokes DA responses from animals with control probes on days 1 and 4.  This result 

implies the presence of terminals near the probe capable of releasing DA upon direct K+-induced 

depolarization, even though electrically evoked DA release is suppressed in the absence of 

dexamethasone.  This supports our prior conclusion that DA terminals survive the traumatic 

consequences of probe implantation, which we have called the traumatic penetration injury (TPI). 

Second, during our work using FSCV to determine the effect of dexamethasone 

retrodialysis on dopamine measurements by microdialysis, we noticed dramatic differences 

between electrically evoked DA transients on Day 5 with control probes vs LDR probes.122 As just 

mentioned, with control probes, electrically evoked responses were not observed on day 5 either 

next to or at the outlet of probes.  However, responses were normal next to LDR probes and were 
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well-above detection limits at the probe outlet.  In the current work, there is a similar dramatic 

difference in the responses from control vs. LDR probes with 60 mM K+ stimulation on day 4, 

namely there are decreases from basal with control probes,  (Figure 2.4-4d, Figure 2.4-6) and 

increases with LDR probes (Figure 2.4-4d, Figure 2.4-6).  Again, these contrasting stimulation 

responses between control and LDR probes do not correlate with the histological appearance of 

DA terminals near the probes:  The DA terminals appear normal on day 5 after probe implantation 

both with and without local dexamethasone via retrodialysis.  However, these contrasting 

stimulation responses do correlate with the histological appearance of astrocytes and microglia on 

day 5, when glial activation is robust near control probes but nearly absent near LDR probes.  Thus, 

our measurements of both electrically evoked and K+-evoked DA transients support the conclusion 

that dexamethasone facilitates the re-establishment of normal DA activity in the tissues affected 

by the TPI during probe implantation. 

In contrast to the case for 60 mM-induced transients and as deduced from the principal 

component analysis, dialysate DA responses to stimulation with 100 mM K+ on days 1 and 4 did 

not depend on the presence of dexamethasone in the perfusion fluid.  This is likely due to this high 

concentration of K+ being able to “force” the depolarization of DA terminals, possibly due to the 

induction of spreading depolarization, regardless of the presence or absence of activated glia.  

Thus, the responses to stimulation with 100-mM K+ are unique in that they appear to be the only 

ones we have recorded to date that are unaffected by activated glia. 

2.4.3.4 Comments on the Nature of the Transients 

Altering perfusate compositions can lead to changes in measured dialysate dopamine by at 

least three mechanisms. One mechanism is reverse transport via the dopamine transporter, DAT.133 

Low Na+ perfusate, 50 mM, with choline replacement and normal K+, induces dopamine efflux 
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into the extracellular space by this mechanism.134 Using low Na+ perfusate, but replacing Na+ with 

K+ rather than choline also evokes dopamine release135 even in the presence of nomifensine to 

block the first mechanism, reverse transport.134 Thus, high K+ elicits DA release by a second 

mechanism, depolarization. Finally, changes in the perfusate composition, including high K+ 128 

can lead to changes in relative recovery/extraction fraction, e.g. by altering DA uptake rates.136-138 

It is also possible for physical changes in the tissue to alter the effective diffusion coefficient, 

altering dialysis recovery.139 We have not attempted to unravel the contributions of each of these 

mechanisms to our observations. However, we have associated high amplitude oscillations during 

100 mM K+ stimulation to spreading depolarization via simultaneous field potential 

measurements.  It is interesting to speculate that some of the features that we see at high temporal 

resolution may be related to differences in the foregoing effects of high K+/low Na+ stimulation. 

Another intriguing possibility for future investigations is whether any of the variability that we see 

under the same stimulation conditions is related to the striatum’s physiological heterogeneity.140 

2.4.4 Pharmacokinetics of Nomifensine 

The DA responses to nomifensine stimulation can be modeled using a first-order model for 

rising and falling rates fitted with different time constants. Two-way ANOVA analysis of the time 

constants (Figure 2.7-26) show that neither the day of the experiment or dexamethasone treatment 

affects the nomifensine rising and falling characteristics. The maximum amplitude, however, is 

day-dependent, being lower on day 4 after implantation compared to day 1. Nomifensine is 

introduced by retrodialysis, so a significant contribution to the dynamics is the diffusion of 

nomifensine within the tissue. The results obtained indicate that the diffusion rates are not 
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significantly different among the various conditions. The rising rate constant is found to be about 

two times higher than the falling rate.  

 

Figure 2.4-8. Fitting of nomifensine response to exponential decay model. 

Time constants (min-1) Rising = 0.52 Falling = 0.20 Avg. Amplitude = 121. 

2.5 Conclusions 

In the present study, we have shown that in vivo monitoring of dopamine at one-minute 

time resolution using online microdialysis-LC-EC reveals patterns of responses to chemical 

stimulation or local drug treament by retrodialysis with considerably more information than can 

be obtained with lower resolution measurements. We find that using LDR probes increases basal 

dialysate DA levels. A high concentration of 100 mM K+ induces spreading depolarizations in the 
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striatum with control or LDR probes. This is consistent with the presence of functional DA 

terminals near the probe in both cases. Remarkably, the 60 mM K+ transients are positive after 

four days with the LDR probe while they are negative (and of a similar magnitude) with control 

probes.  

Given that spreading depolarization is a pathological condition, we are led to wonder 

whether the practice of stimulating release of neurotransmitters with K+ concentrations on the 

order of 100 mM in order to assess the experimental set up is wise. There are certainly legitimate 

reasons to use this method, but the lowest concentration of potassium ion that elicits a response is 

most likely preferred. 

We note that the dexamethasone treatment had no significant effect on an essentially 

pathological response to 100 mM K+, while it had a significant and qualitatively obvious effect on 

exposure to a lower K+ concentration. This is interesting in that it implies that the effect of 

dexamethasone is more easily discerned with less extreme perturbations of the tissue. This is 

consistent with evidence from FSCV and immunohistochemistry experiments. We infer that 

dexamethasone-induced reduction of gliosis, in combination with the higher time resolution 

microdialysis, improves the ability to observe dopamine system function when microdialysis 

probes have been chronically implanted.  
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2.7 Supplementary Information 

Additional information as noted in text. Figure 2.7-1-Figure 2.7-21 contain all dialysate 

DA concentration plots measured during experimental runs, with Figure 2.7-1 also includes pre- 

and post-calibration measurements. Figure 2.7-22-Figure 2.7-24 show scatter plots of scores of 

relevant PCA analyses. Figure 2.7-25 is a PCA comparison of 100 mM transients, including 

averaged and synthesized average from PCA analysis, of day 1 vs day 4. Figure 2.7-26 has the plot 

and ANOVA result for nomifensine fitting. Figure 2.7-27 shows the construction of microdialysis 

and field potential probes. Figure 2.7-28 contains a schematic diagram of the experimental setup. 

Table 2.7-1-Table 2.7-3 contain ANOVA analysis and regression of basal dialysate dopamine 

concentration. 
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Figure 2.7-1. DA concentration measured during an experimental run including pre-calibration (64, 16 and 

640 nM DA respectively) and post-calibration (640 nM DA). 

 

Figure 2.7-2. DA concentration measured during an experimental run. Rat 1, Control, day 1.  

Stimulation sequence: (10 min each) 60 - 60 - 100 -100 mM K+. 



 38 

 

Figure 2.7-3. DA concentration measured during an experimental run. Rat 4, Control, day 1.  

K+ stimulation sequence: (10 min each) 60 – 100 - 60 - 100 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-4. DA concentration measured during an experimental run. Rat 6, Control, day 1.  

K+ stimulation sequence: (10 min each) 60 – 100 - 100 - 60 mM.  
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Figure 2.7-5. DA concentration measured during an experimental run. Rat 7, Control, day 1.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-6. DA concentration measured during an experimental run. Rat 9, Control, day 1.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM nomifensine stimulation: 15 min 10 M. 
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Figure 2.7-7. DA concentration measured during an experimental run. Rat 11, Control, day 1.  

K+ stimulation sequence: (10 min each) 100 - 100 - 60 - 60 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-8. DA concentration measured during an experimental run. Rat 2, Control, day 4.  

K+ stimulation sequence: (10 min each) 60 - 60 - 100 - 100 mM nomifensine stimulation: 15 min 10 M.  
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Figure 2.7-9. DA concentration measured during an experimental run. Rat 4, Control, day 4.  

K+ stimulation sequence: (10 min each) 60 – 100 - 60 - 100 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-10. DA concentration measured during an experimental run. Rat 7, Control, day 4.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM.  
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Figure 2.7-11. DA concentration measured during an experimental run. Rat 9, Control, day 4.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM. 

 

Figure 2.7-12. DA concentration measured during an experimental run. Rat 11, Control, day 4.  

K+ stimulation sequence: (10 min each) 100 - 100 - 60 - 60 mM nomifensine stimulation: 15 min 10 M.  
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Figure 2.7-13. DA concentration measured during an experimental run. Rat 3, LDR probe, day 1.  

K+ stimulation sequence: (10 min each) 60 - 60 - 100 - 100 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-14. DA concentration measured during an experimental run. Rat 5, LDR probe, day 1.  

K+ stimulation sequence: (10 min each) 60 – 100 - 60 - 100 mM nomifensine stimulation: 15 min 10 M.  
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Figure 2.7-15. DA concentration measured during an experimental run. Rat 8, LDR probe, day 1.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-16. DA concentration measured during an experimental run. Rat 12, LDR probe, day 1.  

K+ stimulation sequence: (10 min each) 100 - 100 - 60 - 60 mM.  
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Figure 2.7-17. DA concentration measured during an experimental run. Rat 3, LDR probe, day 4.  

K+ stimulation sequence: (10 min each) 60 - 60 - 100 - 100 mM nomifensine stimulation: 15 min 10 M. 

 

Figure 2.7-18. DA concentration measured during an experimental run. Rat 5, LDR probe, day 4.  

K+ stimulation sequence: (10 min each) 60 – 100 - 60 - 100 mM.  
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Figure 2.7-19. DA concentration measured during an experimental run. Rat 8, LDR probe, day 4.  

K+ stimulation sequence: (10 min each) 60 - 100 - 100 - 60 mM. 

 

Figure 2.7-20. DA concentration measured during an experimental run. Rat 10, LDR probe, day 4.  

K+ stimulation sequence: (10 min each) 60 - 60 - 100 - 100 mM nomifensine stimulation: 15 min 10 M.  
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Figure 2.7-21. DA concentration measured during an experimental run. Rat 12, LDR probe, day 4.  

K+ stimulation sequence: (10 min each) 100 - 100 - 60 - 60 mM nomifensine stimulation: 15 min 10 M.  
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Figure 2.7-22. PCA scatter plot of scores of all transients from day 1 60 mM K+.  

Blue circles represent controls, and red squares represent LDR probe. 
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Figure 2.7-23. PCA scatter plot of scores of all transients from day 1 100 mM K+.  

Blue circles represent controls, and red squares represent LDR probe. 
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Figure 2.7-24. PCA scatter plot of scores of all transients from day 4 100 mM K+. 

 Blue circles represent controls, and red squares represent LDR probe. 
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Figure 2.7-25. PCA comparison of transients 100 mM K+, both days, both probes. 

Left side: Red circle: day 4, 100 mM K+, control probe. Red triangle: day 4, 100 mM K+, LDR  probe. Blue 

circle: day 1, 100 mM K+, control probe. Blue triangle: day 1, 100 mM K+, control probe. Right side: Blue: 

day 1 Red: day 4. Dashed line: Synthesized dopamine transients from the first two principal components. 

Solid line: averaged transients. 
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Figure 2.7-26. Average nomifensine maximum amplitude, raising and falling constant (AVG ± SEM).  

Unfilled: control probe, filled: LDR probe. In each of the three panels the day 1 data have n = 6 (control) and 

n = 4 (LDR probe) and the day 4 data have n = 3 for each bar. Amplitude, rising time constant, and falling 

time constant values were analyzed with individual 2-way ANOVA’s with day (1 and 4) and probe (control 

and LDR) as the factors. For both the rising and falling time constants neither probe, day, nor the 

interactions were significant (p > 0.05). For the overall amplitude day was a significant factor (F (1,12) = 

5.376; p < 0.05) while probe and the interaction were not significant.  
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Figure 2.7-27. A tungsten wire was glued next to the microdialysis probe.  

The scale bar in the inset is 1mm. A second tungsten wire was used as the reference and placed in the 

contralateral hemisphere. 
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Figure 2.7-28. Schematic for the flow paths of the online microdialysis system.  

Perfusate/microdialysate flow path is shown in blue, bold.  The flow path starts from the perfusate reservoir, 

a 1.0-mL syringe, through switching valve A, then through the 75 m I.D. capillary into the microdialysis 

probe, through injection valve B, and finally to waste. The perfusate reservoir/syringe can last for 27 hours at 

610 nL/min flow rate. The high speed HPLC valves A and B have switching times of 105 ms and 230 ms, 

respectively. The valves are computer-controlled. Valve B switches once per minute. Valve A’s switch times 

are synchronized with valve B’s so that when A is switched, A and B switch simultaneously. 
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Table 2.7-1. ANOVA analysis of basal dopamine concentration with day and drug considered as factors. 

Outlier set excluded. 

Source Partial SS df MS F Prob > F Number of obs  = 21 

Model 101.43638         2 50.718192       6.80   0.0063 Root MSE = 2.73137     

Day .35640134           1 .35640134       0.05 0.8294 R-squared = 0.4303 

Drug 

(dex) 101.33559           1 101.33559     

13.58   0.0017 

Adj R-squared =  0.3670 

Residual 134.28685         18 7.4603806      

Total 235.72324          20 11.786162      

 

Table 2.7-2. Regression of basal dopamine concentration with drug considered as factor. 

Source SS df MS Number of obs  = 22  

Model 245.6836 1 245.6836 F(1, 20) =  8.17  

Residual 601.6788 20 30.08394 Prob > F = 0.0097  

Total 847.3624 21 40.35059 R-squared = 0.2899  

    
Adj R-squared = 0.2544 

    Root MSE = 5.4849  

mean Coef. Std. Err. t P>|t| [95% Conf. Interval] 

Drug (dex) 6.711333 2.348486 2.86 0.010 1.812476 11.61019 

_cons 10.40667 1.583349 6.57    0.000 7.103858 13.70948 

 

Table 2.7-3. Regression of basal dopamine concentration with drug considered as factor. Outlier set excluded. 

Source SS df MS Number of obs  = 21  

Model 101.079984          1 101.079984    F(1, 19) =  14.26  

Residual 134.643252         19 7.08648694    Prob > F = 0.0013  

Total 235.723235         20 11.7861618    R-squared = 0.4288  

    
Adj R-squared = 0.3987 

    Root MSE = 2.662  

mean Coef. Std. Err. t P>|t| [95% Conf. Interval] 

drug 4.433333    1.173852      3.78    0.001 1.976433     6.890233 

_cons 10.40667    .7684664     13.54    0.000 0.798248     12.01509 
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3.0 A Rotating Operant Chamber for Use with Microdialysis 

The following chapter is reprinted (adapted) with permission from Degreef, B.; Ngo, K. 

T.; Jaquins-Gerstl, A.; Weber, S. G. J Neurosci Methods 2019, 326, 108387. Copyright© 2020 

Elsevier. 

3.1 Chapter Summary 

3.1.1 Background 

Recently, the time resolution of microdialysis followed by a chemical separation for 

quantitative analysis has improved. The advent of faster microdialysis measurements promises to 

aid in behavioral research on awake animals. However, microdialysis with awake animals 

generally employs a fluidic commutator (swivel). The swivel's volume is inimical to the time 

resolution of the measurements. 

3.1.2 New Method 

Animals can be housed in rotating cages so that the swivel is not required, but rotating 

operant chambers are not available. Here we describe the design and construction of a rotating 

operant chamber with microdialysis capability. We modified a rotating cage by adding operant 

behavior testing components to the side of the bowl-shaped cage. A modular on-board controller 

facilitates operant component/computer communication. A battery provides power to the 
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controller and the operant components. The battery and controller rotate with the cage, and the 

controller communicates with the computer wirelessly. 

3.1.3 Results 

The rotating operant chamber can be used to train a rat to retrieve a sucrose pellet following 

a cue. Microdialysis and online liquid chromatography can be used to measure dopamine at one-

minute intervals while the rat moves freely and interacts with operant behavior testing components. 

3.1.4 Comparison with Existing Method(s) 

We are not aware of one-minute dopamine measurements in awake animals in an operant 

chamber. 

3.1.5 Conclusions 

Rotating cage modifications are straightforward. One-minute observations of striatal 

dopamine can be accomplished while an animal is awake, moving, and interacting with its 

surroundings. 
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3.2 Introduction 

Microdialysis, since its inception30 in the 1980s, has become a standard sampling method 

for animal-based biological, pharmacological, and neurochemical research. An animal with a 

microdialysis probe placed in the brain can be awake and move freely while perfusate is 

continuously pumped and dialysate collected or analyzed on-line, enabling neurochemical 

determinations during behavior141. Microdialysis is also valued for its ability to sample a broad 

array of small molecules. The recent literature shows that many different types of behavior have 

been examined while sampling the brain’s extracellular space with microdialysis: fear 

conditioning142-144, wakefulness activity145, and operant conditioning146-148. On the other hand, the 

microdialysis sampling times were relatively long - ranging from 5-30 minutes.  

Recently we and others have developed the technology to improve the time-per-

measurement in online measurements of microdialysate based on high-performance liquid 

chromatography (LC) on awake, behaving animals. We have demonstrated one-minute continuous 

measurements of striatal dopamine97 for many hours and, separately, serotonin77,78 by 

microdialysis/LC. The Andrews group made extensive two-minute striatal serotonin 

observations47. The Boutelle group has measured energy-related analytes by microdialysis with 

online continuous monitoring using sensors at 30 s per data point149. On anesthetized animals, the 

Bowser group has developed a variety of microdialysis-electrophoresis assays capable of 

simultaneous detection of as many as 16 amino acids at 12.5 – 60 s per measurement150-152. Fraction 

collection and offline analysis of segmented microdialysis flow demonstrated measurements taken 

every several seconds81,153,154. The time scale of microdialysis will never reach that of 

electrophysiology or fast-scan cyclic voltammetry, however improving the time-scale of 

microdialysis will make measurements related to behavior more meaningful.  



 59 

It is important to understand that the overall time resolution of a microdialysis 

measurement depends on many factors, only one of which is the rate at which measurements are 

made. The other main contributor is the spreading of solute zones in the fluidic components of the 

microdialysis system: connecting tubing, the probe itself, and a swivel (if one is used). The 

spreading, or dispersion, of solutes in the fluid stream of dialysate degrades time resolution. These 

limitations define the ability of microdialysis to detect meaningful transients such as the time-

dependent response to the leading edge of a retrodialyzed plug of solution containing, e.g., a 

neurotransmitter61,155. The use of long connecting tubing and/or tubing with a large inner diameter, 

probes with large void volumes, and swivels all act to degrade time resolution or the system’s 

response time. Tubing dimensions can be optimized to provide the minimum dispersion given a 

particular dialysate flow rate and acceptable pressure156, but the use of a swivel will still cause 

significant dispersion making one-minute time resolution for the overall microdialysis system 

impossible.  

The foregoing observations present a challenge to those interested in the use of 

microdialysis in behavioral studies. The use of a swivel allows researchers to do experiments in 

operant chambers, but it also results in a time resolution that is insufficient to capture rapid 

changes. Using a rotating bowl cage permits the elimination of the swivel, but as far as we are 

aware, rotating operant chambers do not exist. Here, we describe a system for doing microdialysis 

in a rotating operant chamber (MD-ROOC) that facilitates rapid microdialysis sampling while 

making observations of animal behavior. 
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3.3 Methods 

3.3.1 Microdialysis Probes 

Chemicals for artificial cerebrospinal fluid (aCSF: 142 mM NaCl, 1.2 mM CaCl2, 2.7 mM 

KCl, 1.0 mM MgCl2, and 2.0 mM NaH2PO4, pH 7.4) were purchased from either Fisher Scientific 

(Fair Lawn, NJ) or Sigma (St. Louis, MO). Concentric microdialysis probes (200 m I.D, 280 m 

O.D, 4 mm length) were constructed with hollow fiber membranes (13 kDa MWCO, part # 132294, 

Specta/Por RC, Spectrum Laboratories Inc., Ranco Dominguez, CA). The inlet tubing was 

connected to a 1.0 mL gastight syringe (Hamilton 81320, Hamilton Company, Reno, NV) using 

PEEK reducer and adapter (part # P-659, F-120, P-720, IDEX Corporation, Lake Forest, IL). The 

syringe was driven by a microliter syringe pump (PHD 4400, Harvard Apparatus, Holliston, MA) 

at a rate of 0.60 μL/min. The inlet and outlet tubing were fused silica capillaries (75 μM I.D., 150 

μM O.D., 100 cm long; Polymicro Technologies, Phoenix, AZ). The aCSF used in these 

experiments contained the sodium salt of dexamethasone phosphate (APP Pharmaceuticals, 

Schaumburg, IL) to minimize tissue damage and mitigate immune response following probe 

implantation86,87. This formulation of aCSF will be referred to as “DEX”. For the first 24 h in use, 

the aCSF contained 10 μM of dexamethasone phosphate. Thereafter it contained 2 μM of 

dexamethasone phosphate. Perfusion of the probe was maintained continuously for the entire 

duration of the experiment.  
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3.3.2 Rotating Operant Chamber 

The operant behavior testing (OBT) components were obtained from Med Associates, Inc. 

(Fairfax, VT): nose poke (ENV-114AM), cue light (ENV-221M), tone generator (ENV-223AM), 

pellet dispenser (ENV-203) and pellet receptacle (ENV-200R2M). Lithium-Ion batteries (12 V, 

10 Ah Model: CR12V10Ah with BMS protection circuit) were purchased from Dakota Lithium 

Battery (Seattle, WA). An MD-ROOC uses one battery at a time. A bidirectional digital I/O 

interface (NI 9401), wireless data acquisition unit (cDAQ 9191) and interface software (LabVIEW 

2016) originated from National Instruments (Austin, TX). The wireless-LAN router (E1200 N300 

Wi-Fi Router) was from Linksys (Irvine, CA). The battery delivers the power for all OBT and 

National Instruments components. A locally constructed digital interface contains an in-house built 

printed circuit board that accepts digital inputs to control MedAssociates components as well as 

receiving signals from the nose poke. Figure 3.7-1-Figure 3.7-3.  

Ordinarily, OBT components use 28 V for both power and control signals. However, they 

can be configured, or modified, to use 12 V signals instead. Table 3.3-1 lists the modifications 

necessary to allow the OBT components to be operated at 12 V. 

Table 3.3-1. Modifications to Med-Associates devices to allow use of 12 VDC battery. 

Name Modification 

Food hopper U1 and U2 jumpered 

U9 voltage regulator replaced with a 12 VDC to 5 VDC regulator SPR01M-05 

Nose poke U3 jumpered 

Cue light Light bulb replaced with a 12 VDC LED, Dialight 586-2406-220F 
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3.3.3 Microdialysis Probe Implantation Procedure 

All procedures involving animals were approved by the Institutional Animal Care and Use 

of Committee of the University of Pittsburgh. Male Sprague-Dawley rats (250-350 g, Hilltop, 

Scottsdale, PA) were anesthetized with isoflurane (5% v/v induction, 2.5% v/v maintenance, 

Henry Schein Animal Health, Elizabethtown, PA), and 2:1 N2O:O2 (Matheson Tri-Gas, Bernards, 

NJ). Rats were wrapped in a heating blanket (37°C) and placed in a stereotaxic frame. The incisor 

bar was adjusted so the dorsal-ventral measurements at lambda and bregma were no more than 

0.01 mm apart (flat skull). A small craniotomy (3x5 mm) was made over the dorsal striatum. 

Microdialysis probes, continuously perfused, were lowered slowly into the dorsal striatum (1.6 

mm anterior and 2.5 mm lateral from bregma) or the ventral striatum (1.6 mm anterior and 1.4 mm 

lateral from bregma) over the course of approximately 30 min to final position of 7 mm or 8mm 

(respectively) below dura (Figure 3.3-1A). Probes were secured with bone screws and acrylic 

cement. Anesthesia was removed and animals were placed in a BASi Raturn chamber (MD-1404, 

Bioanalytical Systems Inc., West Lafayette, IN) for housing.  

As the goal of these animal studies was to demonstrate the MD-ROOC’s capabilities, we 

used three animals with the probe in the dorsal striatum and one animal with the probe in the 

ventral striatum. Data from one of each are shown.  

3.3.4 Online Microdialysis-LC-EC 

The microdialysis/liquid chromatography system was similar to one we previously 

described97. Perfusate was introduced using a syringe pump (Harvard Apparatus PHD 4400). The 

syringe contained 1.0 mL of perfusate and was refilled every 24 hrs at least three hours prior to 
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any online measurement. The outlet of the microdialysis probe, carrying dialysate, was connected 

directly to the inlet of the injection valve of the LC system (8-port nanobore, electrically actuated, 

C72NX-4678D, Valco Instruments, Houston, TX) so that the dialysate is loaded into one of two 

600 nL, fused-silica sample loops (75 μm I.D., 360 μm O.D, Polymicro Technologies, Phoenix, 

AZ). While one sample loop is being loaded, the contents of the other sample loop is injected onto 

the column, separated, and then detected at the end of the column using amperometric 

electrochemical detection.  

As for chromatography, 4.5 cm long, 150 μm ID fused silica capillary columns were 

packed in-house with 1.7 μm BEH C18 reversed-phase particles (Waters, Milford, MA) at 

approximately 1400 bar. Mobile phase was delivered using a Shimadzu LC-30DA pump with a 

maximum pressure of 1300 bar to achieve a flow rate of 7.5 μL/min during experiments. The 

column was heated to 40°C with a thermostatted column heater. Separation of dopamine was 

achieved with a mobile phase containing 100 mM sodium acetate, 1.75 mM SOS, 0.150 mM 

EDTA, 3.0 % v/v acetonitrile, and 2.0 % v/v acetic acid. The mobile phase was filtered and 

degassed with three passes of vacuum filtration using a 0.22 μm nylon filter (Osminics, 

Minnetonka, MN). Analytes were detected at 400 mV (vs Ag/AgCl 3 M NaCl) using a radial-style 

flowcell, 3 mm glassy carbon electrode with a 25 μm thick gasket and amperometry potentiostat 

(flowcell: MF-1091, MW-5051; potentiostat: EC Epsilon, Bioanalytical Systems Inc., West 

Lafayette, IN). Dopamine peaks from chromatograms were integrated using MATLAB and 

compared against pre- and post-run calibration curves to calculate dopamine concentration97. The 

sensitivity of the assay for DA was 0.10 ± 0.02 nA·s/nM and the limit of quantitation was 1.0 nM.  
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3.3.5 Animal Training and Observations 

3.3.5.1 Naïve Animal 

One animal was observed in an unmodified Raturn without training, from now on called a 

naive rat. This animal was placed on food restriction for 1 week (roughly 12g of Purina home chow 

per rat per day). A microdialysis probe was implanted into the ventral striatum using the surgical 

procedures described above. He was allowed to recover for 24 hours in his home cage, an 

unmodified Raturn chamber. On the day of the observation, his Raturn chamber was moved to the 

online microdialysis-LC-EC setup. After a three hour period for perfusate flowrate stabilization97, 

dialysate DA chromatograms were recorded at one-minute intervals continuously for three hours 

while the animal’s movements were recorded on video. Basal DA was established during the first 

hour. At the one-hour mark, we placed into the bowl roughly 16g of food (Purina home chow). 

The rat had free access to this food until the end of the three-hour observation.  A schematic 

representation of naive rat observations is shown in Figure 3.3-1B. 

3.3.5.2 Trained Animals 

Prior to microdialysis probe implantation, two rats were placed on a food restriction 

regimen (roughly 12g of Purina home chow per rat per day) to maintain them at approximately 

85% of their free-feeding bodyweight throughout training and testing. Reduced food intake 

ensured motivation during conditioning. Behavioral training sessions over 14 contiguous days 

lasted one hour and took place between 10:00 am and 5:00 pm in the rotating operant chamber. 

The goal was for the animals to learn to use the nose poke in order to receive a reward. During 

behavioral sessions, a cue light, mounted on the wall of the rotating operant chamber next to the 

nose poke, was turned on when the nose poke became active. If the rat triggered the nose poke 
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while it was active, a tone was generated for two seconds, at which time the pellet dispenser 

delivered a sucrose pellet (chocolate sucrose pellets, 45 mg-TestDiet, St.Louis, MO)  to the food 

receptacle as a reward. Then, the cue light was turned off and the nose poke was deactivated for 

10 s (Figure 3.3-2). The cue light is a 120 mW, 12 V LED white light. The tone generator emitted 

sound at 2900 Hz and 65 dB. 

After 14 days of training, microdialysis probes were implanted into the dorsal striatum and 

observations began 24 hours later. Initially, microdialysis-LC-EC was used to record basal 

dialysate DA concentration for two hours while the rat was in his home cage. Next, the rat was 

placed into the rotating operant chamber for one hour during which time the animal’s behavior 

was recorded (video) while one-minute DA chromatograms were obtained. Rats were then placed 

back into their home cage for another hour while the DA measurements continued (Figure 3.3-1C). 

For both training and observation, no limit was placed on the number of rewards that could be 

earned. Rats were tethered during testing but were not during training. 

3.3.6 Video Recording 

Photo/video capturing of the animals and subsequent handling of the data are approved by 

the Institutional Animal Care and Use of Committee of the University of Pittsburgh. 

We used a security video system (4 Channel Security System, SWDVK-445954, Swann 

Communications U.S.A. Inc., Santa Fe Springs, CA) to capture the behavioral experiments. There 

are two cameras which were set up orthogonally, top down from the top of the bowl and side view, 

to attempt to capture rat activity with minimal blind spots. The cameras are equipped with IR LEDs 

to enable video recording in a dark environment.  
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The cameras run on their own digital video recorder (DVR) system. The videos are time 

stamped and the DVR’s internal clock is checked daily before each experiment to ensure that the 

video’s time stamp and experimental data can be properly coordinated. Correlating microdialysis 

measurements with video data requires correcting for the time delay required for flow to take the 

sample to the loop injector. The time delay is 10.0 min for the naive observation and 12 min for 

the trained observation. 

 

Figure 3.3-1. Schematic representation of (A) microdialysis probe placements for rats in the dorsal striatum 

(gray) the ventral striatum (black). Numbers represent distance (mm) of coronal section from bregma. (B) 

Schematic representation of naive observation and (C) training and housing schedule for observation on 

trained animals. 
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Figure 3.3-2. Instrument training control logic demonstrating instrument responses to animal’s behavior.  

Here the animal is being trained to poke nose once every 12 s to retrieve a sucrose pellet. 

3.4 Results and Discussion 

3.4.1 Construction of the MD-ROOC 

3.4.1.1 Cage Modifications 

The system is based on the stand-alone Raturn System from BASi (MD-1404, 

Bioanalytical Systems Inc., West Lafayette, IN). See Figure 3.7-6 or a side-by-side comparison 

between our MD-ROOC and an unmodified Raturn. Figure 3.4-1 shows the modifications to the 

Raturn system. We did not modify the Raturn’s harness/controller or motor. We first determined 

experimentally that an unmodified Raturn can function normally without any observable slippage 

or slowdown with up to 18 kg of weight on the platform that supports the bowl. Thus, we set an 

upper limit for the total weight of the required components at 18 kg. To preserve motor drive life 
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and minimize chances for unexpected weight impact to the MD-ROOC’s performance we strove 

to add as little weight as possible to the Raturn. 

All inessential metal housing and original mounting hardware was removed from each 

operant component to save on weight as well as to make it easier to mount them on the curved 

surface of the bowl. The OBT components (Figure 3.4-1B) were added to or inserted into the side 

wall of the rat bowl 15 cm above the cage floor. The components were positioned appropriately 

for trained feeding observations (Figure 3.4-2). All wires connected to the OBT components were 

routed along the outside of the bowl and then through small openings in the base support which 

holds the on-board controller modules (Figure 3.4-1C). Details regarding the on-board controller 

modules are in a separate section below. 

To accommodate the on-board controller modules, the entire Raturn platform was raised 

18 cm. We made a circular cradle (Figure 3.4-1A.4) from polyacrylate plastic and aluminum just 

large enough to hold the desired devices. The cradle was suspended from an upper ring which rests 

on the inner edge of the rotating mechanism underneath the bottom of the bowl. This allowed the 

electronic components to rotate together with the bowl while minimizing the moment of inertia. 

The collective weight of the OBT components is an estimated 1 kg, not including food pellets. A 

counterweight of 2 kg added to the bowl opposite to the food hopper maintains balance (Figure 

3.4-1A.1). The total weight of the additions, including the cradle and on-board controller, is 

approximately 6 kg. We observed during all training sessions and experiments that the Raturn 

retains its ability to spin, stop, and change spin direction without slippage.   

The presence of the food hopper/chute outside the bowl required moving the support for 

the motion sensor/harness laterally. The motion sensor/harness arm is attached to a new support 
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(Figure 3.4-1A.2, see Figure 3.7-4 for detailed blueprint) with the same mounting points and 

mounting screws as used with the original support. 

 

Figure 3.4-1. Photographs of the ROOC.  

A. Exterior modifications: Counterweight (1), motion sensor/harness support structure (2), pellet dispenser 

(3), cradle (4). B. OBT components: Cue light (5), tone generator (6), nose poke (7), pellet receptacle (8). C. 

On-board controller: Wireless interface (9), battery (10), digital interface (11). 

 

Figure 3.4-2. Pictures depicting an operant conditioning training sequence. 

 Once a nose poke is registered, the cue light red circles) is deactivated. 

 



 70 

3.4.1.2 On-board Controller 

The OBT components were powered and controlled by an on-board controller. The on-

board controller was made to be small and light and use the minimum possible power so that it can 

be attached to and spin with the Raturn without interruption for many hours. It uses Wi-Fi to 

communicate with a router attached to a computer running a LabVIEW script that can be tailored 

easily to experimental needs. Specifically, the on-board controller has three modules (Figure 

3.4-3): Module 1 (Figure 3.4-1C.10) is a 12 V, 10 Ah lithium ion rechargeable battery, module 2 

(Figure 3.4-1C.11) is a digital interface, a printed circuit board that controls the operant 

components based on instructions from the computer and also sends signals from the operant 

component back to the computer and module 3 (Figure 3.4-1C.9) is a wireless interface that 

communicates with the computer. Module 2 was designed and built in-house (see Figure 3.7-1-

Figure 3.7-3 for circuit diagrams) for instrument control functionality and to regulate the voltage 

and current from the battery to appropriate specifications with a secondary purpose of limiting 

current use as much as possible.  

Module 2, the digital interface, plays the central role in controlling and powering the OBT 

components and sending/receiving TTL signals from the wireless interface (Figure 3.4-3). The 

wireless interface handles all communications with the computer. For example, the nose poke 

powered by the 12 V battery via the digital interface. When a nose poke is registered, it sends an 

inverted 12 V signal back to the digital interface, which then generates a 5V TTL signal which is 

sent to the wireless interface and ultimately is acquired by the computer. The digital interface also 

uses the 12 V battery to create power at 5 V for the wireless interface. 

The modules are connected to operant conditioning components via ¼” TRS plugs with 

female terminals located in the cradle. The battery is also connected to the digital controller 
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(module 2) using ¼” TRS connections.  This style of connection was chosen for ease of connection 

and disconnection, so that that the battery can be swapped out with a second, fully charged one in 

a matter of seconds. We aimed for a minimum MD-ROOC usage time of 24 hrs when we selected 

the 10 Ah battery. Higher capacity lithium-Ion or lead-acid batteries are available, however the 

cost in weight and space outweighs the benefit of increased use time. Experimentally, we found 

that the entire setup can be battery-powered continuously for approximately 37 hours when the 

cue light is on continuously, tone generator is activated for 2 seconds every minute, and the food 

hopper is activated once per minute, simulating a 60 s trained feeding schedule. 

The wireless router is connected to the computer via an Ethernet cable. While it is possible 

to set up direct wireless communication between the computer and the wireless DAQ, or between 

computer and wireless router, we found that wired connection between computer and wireless 

router, then wireless router to wireless DAQ provided the most consistent connection. We 

observed no dropped connections during animal experiments with this arrangement. In contrast, 

the “all-wireless” arrangement was prone to dropping connections. It should be noted that the 

environment around the MD-ROOC has several analytical instruments and components for online 

analysis of the dialysate thus a high-powered wireless router is very important for a stable 

connection. 
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Figure 3.4-3. Schematic overviewing OBT Components controlling scheme.  

The computer and wireless router is stationay and is powered by ordinary power sources. OBT components 

and the controller is mobile and is entirely battery powered. 

3.4.2 Observations on Animals 

3.4.2.1 Naive Animal 

We carried out measurements and observations on a naive animal in order to assure 

ourselves that the recording and microdialysis systems were functioning as expected. It turns out 

that the observations are interesting, so we present them here. Dialysate DA concentrations were 

determined with online microdialysis-LC-EC at one minute per measurement from an awake, 

freely moving rat in a Raturn. During the session, the rat was also video recorded, and the recording 

was analyzed frame-by-frame to categorize the animal’s locomotive status to six classes: sleep, 

awake but not moving, grooming, small twitch during sleep, limb movement during sleep, and 

eating. The time stamp on the video and transport time of the dialysate from the dialysis probe to 

the LC were used to correlate DA measurements with the animal’s locomotive status. Shown 

below (Figure 3.4-4) are DA concentrations in dialysate from the ventral striatum during the three-

hour naive feeding observation, where 0 minutes marks when we placed food into the bowl.  



 73 

We measured a statistically significant difference between DA concentrations when the rat 

was actively feeding versus when it was sleeping after feeding (25.2 ± 1.0 nM, time from 1 to 14 

min vs 12.0 ± 0.3 nM, time from 15 to 120 min). We also recorded spontaneous DA release when 

the rat was sleeping and making no observable movements at -55 min, as well as when the rat was 

sleeping and there was clear limb movement at -25 min.  

 

Figure 3.4-4. Dialysate DA concentrations (nM) in the ventral striatum during observations of a naive rat 

presented with food in a Raturn. 

 The size of behavior data points represents relative amplitude of locomotor activity. Overlapping data points 

are plotted on separate y-axis positions to improve visibility. Food was presented at time zero. Trained 

animals. 
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3.4.2.2 Trained Animal 

We assessed the utility of the MD-ROOC with trained animals. During these observations, 

dorsal striatal DA was monitored with online microdialysis-LC-EC at one minute per measurement 

and the rat’s movement was video recorded while the rat was in the home cage, moved to the MD-

ROOC (see Supplementary Information Video MD-ROOC Bowl Change98,157), then moved back 

to the home cage, as described above. The rat was able to move freely and use the OBT components 

without tangling microdialysis probe tubing (see Supplementary Information Video MD-ROOC 

Operation98,158_ENREF_158), Figure 3.4-4 shows DA concentration as a function of time before, 

during (marked with a black line) and after feeding sessions. In this particular observation, two 

hours of DA concentrations were acquired prior to feeding; this is indicated from time -120 

minutes to 0. We observed a large DA release lasting 11 minutes at half height centered at -31 

minutes. Video recording showed that the rat was sleeping and was still during this time. Note that 

two spontaneous releases also occurred in the naive rat when the rat was sleeping at -50 and -25 

minutes. DA transients occurred throughout the feeding and resting phases of the experiment.  

From the data collected from the nose poke and frame-by-frame analysis of the video 

recording, we were also able to analyze the food retrieval behavior of the rat (Figure 3.4-5-Figure 

3.4-7). During the time in the MD-ROOC, feeding phase, the rat continuously used the nose poke 

to obtain sucrose pellets until it was sated and came to rest. Peak food acquisition was during the 

first 15 minutes. Also present during this time was a DA transient. After 15 minutes, food 

acquisition rate decreased with a small spike at 35 minutes and the rat remained inactive for the 

last 15 minutes of the hour. 
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Figure 3.4-5. DA concentrations (nM) in the dorsal striatum and number of pellets eaten during a trained 

feeding session.  

Rat was moved from Raturn to ROOC at time zero, and was moved back to Raturn at 60 min.  

3.4.2.3 High Frequency DA Fluctuations Glimpsed from High Time Resolution DA 

Measurements 

We used short-time Fourier transformation (STFT) 96 to perform a spectral analysis of the 

DA concentration data shown in Figure 3.4-4 and Figure 3.4-5. The resulting spectra are shown in 

Figure 3.7-4 and Figure 3.4-6, , respectively. The STFT spectral analysis allows us to compute the 

relative power in each frequency bin plus the time dependence of the power in each frequency bin. 

A discrete Fourier transform (DFT) of an 11-minute wide section was computed and assigned to 

the central time point in the window. Frequency components are organized into bins, or frequency 
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range, according to DFT formulation 159, which are then assigned to the lowest frequency in the 

bin. The 0.091 min-1 bin or 1/11 min-1, for example, represents frequencies from 1/11 min-1 to 2/11 

min-1. And for our experiment, a signal in in this frequency bin measures a DA concentration 

change that occurs over a time interval of 5.5 to 11 minutes. We used Nuttall’s minimum 4-term 

Blackman-Harris filter 160 (“Nuttall’s window”) to reduce artificial oscillations in the spectra while 

still keeping good frequency resolution (see Supplementary Information Appendix D for 

MATLAB code). The window was moved by one minute, and the process was repeated to build 

up a picture of the relative power 161 of each frequency component at each minute. In our case, this 

relative “power” is actually a ratio of dialysate concentrations raised to the second power. Thus, 

the “power” spectral density (PSD) is plotted on a decibel scale relative to 1 nM2. Except near the 

beginning and end of the time series, individual time data points contribute to 11 spectra. The y-

axis shows a range of 0.091 to 0.45 min-1, as this is the limit of frequencies that the Fourier 

transformation can resolve with a data length of 11 data points at one-minute time resolution.  

The spectrograms share some features with the DA concentration time series. Most 

notably, there are peaks (e.g. time at -32, 73 and 100 min) in the spectrogram (Figure 3.4-6) at the 

same position as transients in the DA concentration time series (Figure 3.4-5). This is because the 

rising and falling portions of the transients represent high frequency information. However, 

spectral analysis also reveals a correlation with feeding behavior that is not apparent in the 

correlation of DA concentrations with feeding behavior. Table 3.4-1 shows Pearson correlation 

coefficients, r, between the rat’s feeding activity (quantitated as the 11-min moving average of the 

number of pellets eaten per minute) and PSD in each frequency bins as well as the 11-min moving 

average of dialysate DA concentration. It is apparent that the rat’s feeding activity does not 

correlate to dialysate DA concentration, but it does correlate to dialysate DA variation specifically 
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at the 0.45 min-1 frequency bin (Figure 3.4-7), which coincidentally is the highest frequency bin 

that our system can measure. This implies that there is measurable neurochemical information in 

the frequency domain based on a 1-min microdialysis sampling rate. 

 

Figure 3.4-6. Spectrogram using short-time Fourier transform (Nuttall’s window width of 11 minutes).  

Each narrow rectangular “point” is the PSD from the time corresponding to the point and the five point to its 

right and left (except at the time limits). The result shows the PSD at each frequency during the trained 

feeding experiment. The reference “power” is 1nM2. 
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Figure 3.4-7. Correlation between feeding activity and high frequency DA variation.  

In blue is PSD at 0.45 min-1 and in red is 11 point moving mean of number of pellets eaten. The two time 

series have a Pearson correlation coefficient, r, of 0.31, during time 1 to 46 minutes that the animal was 

actively feeding. 

Table 3.4-1. Correlation of feeding activity with DA concentration and power spectral densities. 

Signal r 

11-point average [DA] 0.061 

PSD < 0.091 min-1 0.095 

PSD 0.091 min-1 0.084 

PSD 0.18 min-1 0.043 

PSD 0.27 min-1 0.057 

PSD 0.36 min-1 0.040 

PSD 0.45 min-1 0.31 
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3.5 Conclusions 

We have demonstrated that a rotating cage suitable for fast microdialysis measurements 

can be modified easily to make a simple operant chamber. Trained rats readily use the nose poke 

to obtain food in line with their training. The fast dialysis measurements reveal transient changes 

in dialysate DA that can be correlated with behavior. Like the online microdialysis-LC-EC system, 

the MD-ROOC is built from commercially available parts with a flexible design that can be 

expanded to operant chamber components not included in this work. While we tested no biological 

hypotheses here, we have shown that one-minute DA measurements can be made simultaneously 

with either a naive rat or a trained rat using its training to acquire food according to a learned task. 

We found that there is behavioral information encoded in the 1-min time resolution DA 

measurements that is not available from traditional 10 min microdialysis.  
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3.7.1 Electronic Circuit and LabVIEW VI Diagram 

 

Figure 3.7-1. Electrical block diagram of the on-board controller: wiring between digital I/O and operant 

behavior component. 
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Figure 3.7-2. Electrical diagram of the power supply and digital controller. 
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Figure 3.7-3. Front and back panel of the LabVIEW VI that controls the raturn. 
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3.7.2 Raturn Component Blueprint 

 

Figure 3.7-4. Raturn replacement support arm blueprint. 
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3.7.3 Additional Figures 

 

Figure 3.7-5. Spectrogram using short-time Fourier transform (Nuttall’s window length of 11, with 10 

overlapping data point) showing spectral power density of each frequency during the naive feeding 

experiment.  

The power amplitude is in decibel, with reference power is 1 nM2. 
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Figure 3.7-6. A side-by-side comparison between a modified Raturn (left) and an unmodified Raturn (right). 

3.7.4 MATLAB Code 

load('spectrogram_data.mat'); %load data, contains vector X for DA 

concentration 
                              %and t for time 
window_width = 11; %set window width 
num_overlap = 10; %number of data point overlapped 
sample_rate = 1/60; %1 min sampling, which is 1/60 Hz  
tX = min(t)+(window_width-1)/2:1:max(t)-(window_width-1)/2; %truncate time 

axis 
%calculate spetrogram using Nuttall-defined minimum 4-term Blackman-Harris 

window  
[s,f,t,p,fc,tc] = spectrogram(X, nuttallwin(window_width), num_overlap, 

window_width, sample_rate, 'onesided', 'yaxis','psd'); 
%plot spectrogram 
figure;imagesc(f*1000,tX,10*log10(abs(p')));  
axis tight;  
colormap(jet); 
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view(-90,90); 
title(['Spectrogram [DA](t) Nuttalls Blackman-Harris Width' 

num2str(window_width)],'FontSize',20) 
c = colorbar; 
c.FontSize = 20; 
c.Label.String = 'Power Spectral Density (dB/Hz)'; 
xa = get(gca,'XAxis'); 
set(xa,'FontSize',20); 
xlabel('Frequency (mHz)','FontSize',20) 
xlim([1 8]) 
ya = get(gca,'YAxis'); 
set(ya,'FontSize',20); 
yticks('auto') 
ylabel('Time (min)','FontSize',20) 
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4.0 Comprehensive Quantitative Microdialysis: Mathematical Method and Reconciliation 

of Preceding Theories 

4.1 Chapter Summary 

The development of one-minute or less determination of bioactive solutes in vivo (Fast 

Microdialysis) has shown that there is biologically relevant information encoded in the fluctuations 

of measured solute concentration over time. As experiments progress toward faster time resolution, 

it is appropriate to construct a framework to methodically elucidate biological (e.g. uptake rate, 

tissue morphology) and system (e.g. transport time, dispersion) information from observable 

experimental quantities. Thus, we created the Comprehensive Quantitative Microdialysis (CQM) 

which includes an approximate mathematical model for microdialysis based on earlier work, an 

experimental method, and a curve fitting method to determine sought-for parameters that affect 

time-dependent solute concentration at the detector (Cdet(t)). In this chapter, we present the 

mathematical portion of CQM which is adapted, in part, from earlier work by Chen et al. (2002) 

and Bungay et al. (2011).  The mathematical model is based on tissue and microdialysis probe 

permeabilities. An analytical expression describes Cdet(t) as a function of time resulting from a 

step concentration change of the solute at the probe inlet Cin. Notably, the model also includes 

hydrodynamic dispersion of solute during transport in the inlet/outlet capillaries of the 

microdialysis probe and the transfer function of the detector in the overall model. We also created 

a MATLAB simulation tool to demonstrate the effects of these factors to Cdet(t) to aid experimental 

design.  We showed that the MATLAB simulation tool accurately predicts an in vitro well-stirred 

experiment.  
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4.2 Introduction 

Microdialysis is a sampling and delivery technique12,30,31,56 in which solutes are sampled 

or delivered via mass transport through a semipermeable membrane separating the lumen of the 

microdialysis probe and the external medium (Figure 4.2-1). Quantitative microdialysis techniques 

determine the relationship between the concentration of a solute in the dialysate sample (Cout) and 

that of in the perfusate solution (Cin) and in the external medium55. Since the primary mechanism 

of mass flow of solutes to and across the membrane is diffusion which is driven by concentration 

gradients, the processes that affect diffusion and concentration gradients also determine Cout. These 

processes include, but are not limited to, convective flow inside (dialysate flowrate) or outside (in 

vitro stirring) the probe, chemical reactions (in the context of brain microdialysis, uptake162 and 

release163,164 of neuroactive species), and diffusion through the external medium (which, in brain 

microdialysis, is affected by tissue porosity and tortuosity165-167). Cout is therefore dependent upon 

diffusion in the extracellular space as affected by tissue morphology, and release and uptake in the 

extracellular space both at the basal conditions and as affected by exogenous agents. We note that 

quantitative microdialysis experiments54 typically operate in the steady-state domain so that Cout 

is constant during an experiment at a constant Cin. In principle, a change in Cin will result in a time-

dependent, or transient response in Cout (Cout(t)) that could be measured and would provide 

information about the parameters that affect mass transport listed just above. In fact, there are 

several theory papers, to which we return below, that describe Cout(t) resulting from a such a 

perturbation57-61,64,84. Existing experimental efforts61,168-170 to obtain mass transport information 

related to the aforementioned theories involved hours-long transients due to the poor time 

resolution of microdialysis as practiced until recently. 
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Figure 4.2-1. An illustration of the concentric microdialysis probe. 

The red circle species demonstrates a sampling process, and the blue diamond species demonstrates a 

retrodialysis (delivery) process. 

Measuring transient responses in Cout(t) will require an understanding of how the 

microdialysis/analytical instrument affects the response time of the measurement. Any attempt to 

measure microdialysis transients requires better time resolution than the typical 5 – 30 minutes per 

measurement47,171. In addition, the probe inlet and outlet are connected to long capillaries, and 

swivels may be used in awake animal work. The capillaries add hydrodynamic dispersion and the 

probe itself and swivels similarly add longitudinal dispersion, both of which degrade time 

resolution. Furthermore, in systems where periodic, discrete measurements are made, e.g., sample 

collection or liquid chromatography, a concentration averaging occurs because a single sample 

comes from an extended time period77. In systems where the outlet directs dialysate flow past a 

continuously monitoring sensor, there is a conceptually similar (but mathematically distinct) 

averaging dictated by the response time of the sensor. Pragmatic experimental needs make 

measurement of transients difficult.   

On the other hand, there has been significant progress recently on many of these issues. 

For solutes that can be determined over the long term with a sensor or selective detector, the outlet 

tubing can be connected directly to the sensor/detector for online analysis92,172. The outlet tubing 

can also be connected directly to an instrument, capillary liquid chromatography or capillary/chip 
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electrophoresis, to provide online measurements at three minutes or less per 

sample47,72,77,78,97,152,154,173-175. Offline analysis techniques are capable of measurements as fast as 

two seconds per sample80,81. This analysis time was achieved by using segmented flow to minimize 

hydrodynamic dispersion. On the inlet side, Cin can be changed rapidly by using an automated 

syringe/valve system77,97. The dispersion of solute zones in an open capillary under laminar flow, 

hydrodynamic dispersion176, is well-understood, and theory has successfully predicts 

experiments77,177. Thus, despite the difficulties involved, it is becoming possible to envision using 

microdialysis to obtain information from transient responses in Cout(t) from a perturbation in Cin 

at the minute timescale. 

The observable experimental result from a microdialysis experiment in which Cin is 

changed is not Cout(t), rather it is the time-dependent signal obtained from a quantitative analytical 

measurement from a detector, Cdet(t). Processes in the analytical system contribute to the overall 

time response of the system. Thus, a mathematical model that that seeks to describes how Cdet(t) 

is related to processes occurring in the brain must account for both the brain the analytical system. 

We have developed a technique (named Comprehensive Quantitative Microdialysis, CQM) for 

obtaining quantitative estimates related to microdialysis sampling (e.g. solute uptake and diffusion 

in tissue) and the analytical system (e.g. solute dispersion) based on the transient response in solute 

concentration experimentally measured at the detector Cdet(t) following a step change in solute 

concentration in the inlet Cin. CQM has three components: a mathematical model, an experimental 

method, and a curve-fitting method. Here, we describe the mathematical model. 
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Figure 4.2-2. Graphical illustrations of the mass transport model and key mass transport quantities.  

Top: the three regions where mass transport occurs (A1) Probe lumen, (A2) Membrane, and (A3) Tissue. The 

blue arrows indicate the direction of mass transport in a sampling experiment. Bottom: Concentrations in 

(B1) ECS volume basis (red) and (B2) Tissue volume basis pink. Rates of diffusive mass transport is affected 

by tortuosity (C1). Diffusive flux is also affected by porosity (C2). 

Microdialysis sampling relies on mass transport. It is important to acknowledge that the 

insertion of the microdialysis probe into brain tissue injures the tissue near the probe forming a so-

called trauma layer62,82,85,90,178,179 which can alter mass transport. We previously found differences 

in the steady-state dialysate DA measured in rats treated with a locally delivered anti-inflammatory 

drug compared to untreated rats97. Mathematical models65,88 in cylindrical coordinates 

incorporating a trauma layer exists for the steady-state concentration of a sought-for species (e.g. 

dopamine, DA) in microdialysis. In this model there are four volumes through which DA diffuses, 

namely, the normal tissue, the trauma layer, the membrane, and the lumen of the microdialysis 

probe. As the thickness of the trauma layer is decreased, the steady-state model’s prediction 

becomes equivalent to the prediction of steady-state models that do not incorporate a trauma layer. 
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However, as far as we are aware there is no transient theory or model that incorporates a trauma 

layer in cylindrical coordinates. Therefore, the core of the model used here is an established 

microdialysis mass transport model in which there are three physically separate media (Figure 

4.2-1) through which solutes diffuse, namely the tissue, the membrane, and the lumen of the 

microdialysis probe. Expressions for time-dependent microdialysis based on this model exist56-66, 

including closed-form analytical expressions (e.g. Amberg and Lindefors (1989) 57, Morrison et 

al. (1991) 60, Peters and Michael (1998) 62) which are the most suitable for curve-fitting. The 

existing theoretical approaches vary in both their geometries and the biological processes that 

influence mass transport. Of course, the more accurate the model is the more complex the 

mathematics are. For example, Amberg and Lindefors (1989) 57 derived an equation in cylindrical 

coordinates, but considered only diffusion, not uptake kinetics; while Peters and Michael (1998) 

62 derived an equation that includes both diffusion and uptake, but in one Cartesian spatial 

dimension. As far as we are aware, the model with the fewest assumptions is Morrison et al. (1991) 

60. It contains two source and uptake terms, one for ‘metabolism’ and one for exchange between 

brain tissue and capillary blood, but the resulting equations are very complex. Bungay and 

coworkers over the years have used the concept of the permeability61,65,84 to simplify the 

mathematics while including uptake kinetics and the cylindrical coordinate system. Based on the 

normal microdialysis probe dimensions, and for known parameters related to solute diffusion and 

uptake, we have identified the Bungay (2011) one-dimensional (radial) model61, which is adapted 

from a pair of papers58,59 from Chen and colleagues (2002), as being optimal – a balance of 

accuracy and computational burden, especially as it allow us to create a comprehensive model 

consisting solely of short, closed-form analytical expressions. Note that we will frequently refer to 
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these three identified papers as Bungay (2011) 61, Chen (2002a) 59 and Chen (2002b) 58  without a 

citation. 

In the work we describe here we describe similarities and differences in mathematical 

derivations and numerical evaluations in Bungay (2011) and Chen (2002a, b). We clarify the use 

of an “effective” or “apparent” diffusion coefficient when diffusion occurs in a porous matrix. We 

incorporate hydrodynamic dispersion in open capillaries (Taylor-Aris) and the probe, the transit 

time of solute from the probe to the detection system (which is needed to establish the time at 

which an observed change occurred in the brain), and the influence of the detection system’s 

response time. We created a MATLAB tool to aid experimental design by simulating experimental 

results from known tissue, probe, and analytical system parameters. The overarching goal of this 

two-part study is to improve quantitative microdialysis and explore future directions for 

microdialysis studies. In a second paper180, we describe an experimental and data analysis method 

to obtain quantitative estimates of parameters relating to microdialysis sampling and the detection 

system used. We also investigate the robustness of the CQM method, and microdialysis as a whole, 

over a range of possible experimental condition including anticipated improvement in time 

resolution.  

4.3 Experimental 

4.3.1 Materials 

Analytical-grade chemicals for dopamine standards in artificial cerebrospinal fluid 

(dopamine, L-ascorbic acid, aCSF: 142 mM NaCl, 1.2 mM CaCl2, 2.7 mM KCl, 1.0 mM MgCl2, 
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and 2.0 mM NaH2PO4, pH 7.4) and liquid chromatography mobile phases (sodium acetate, sodium 

octyl sulfonate, EDTA, acetonitrile, and acetic acid) were acquired from either Fisher Scientific 

(Fair Lawn, NJ) or Sigma (St. Louis, MO). Ascorbic acid (50 M) was added to dopamine 

standards to prevent oxidation of dopamine67.  

4.3.2 Microdialysis Probe 

Concentric microdialysis probes (280 μm diameter, 4 mm length membrane) were 

constructed with hollow fiber membranes (13 kDa MWCO, Specta/Por RC, Spectrum Laboratories 

Inc., Ranco Dominguez, CA). The inlet and outlet were fused silica capillaries (75 μM I.D., 150 

μM O.D., 110 cm long, Polymicro Technologies, Phoenix, AZ). The inlet capillary was connected 

to a 1 mL gastight syringe (Hamilton 81320, Hamilton Company, Reno, NV) with a 100-psi 

backpressure regulator and a bubble-induced dampener181. Perfusate flow was driven by a 

microliter syringe pump (PHD 4400, Harvard Apparatus, Holliston, MA) at a flowrate of 0.80 

μL/min. The outlet capillary of the microdialysis probe was connected directly to the LC system. 

4.3.3 In Vitro Online Microdialysis-HPLC 

The liquid chromatography system was similar to our previous work97,98, where the outlet 

capillary of the microdialysis probe was connected directly to the LC injector (8-port nanobore, 

electrically actuated, C72NX-4678D, Valco Instruments, Houston, TX) and dialysate was 

continuously sampled for analysis. The probe was suspended in a heated (37°C), well-stirred 

cuvette for the duration of the experiment. The LC injector had two sample loops of 0.80 μL each. 
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For every 45 s analysis cycle, one loop was is filled with dialysate from the probe and dialysate in 

the other loop was injected for separation. 

Capillary columns (7.5 cm long, 150 μm ID fused silica) were packed with 1.7 μm BEH 

C18 reversed-phase particles (Waters, Milford, MA) at approximately 1400 bar. Mobile phase was 

delivered using a Shimadzu LC-30DA pump with a maximum pressure of 1300 bar to achieve a 

flow rate of 8.5 μL/min during experiments. The column was heated to 47.5°C with a thermostatted 

column heater. Separation of dopamine was achieved with a mobile phase containing 100 mM 

sodium acetate, 1.75 mM SOS, 0.150 mM EDTA, 3.0 % v/v acetonitrile, and 2.0 % v/v acetic acid. 

The mobile phase was filtered and degassed with three passes of vacuum filtration using a 0.22 

μm nylon filter (Osminics, Minnetonka, MN).   

4.3.4 Amperometric Detection 

Dopamine was detected at 400 mV (vs Ag/AgCl 3 M NaCl) using a BASi radial-style 

flowcell, 3 mm glassy carbon electrode with a 25 μm thick gasket and BASi Epsilon potentiostat 

(West Lafayette, IN). Dopamine concentration was determined from chromatographic peak area, 

integrated using MATLAB then compared against pre- and post-run calibration curves. The 

detector sensitivity for DA was 0.106 ± 0.002 nA·s/nM (AVG±SEM) with a limit of quantitation 

of 1.0 nM (defined as RSD ≤ 10%).  

4.3.5 Time Interleaved Sampling Microdialysis 

Time interleaved sampling is a technique where multiple analog-to-digital converters are 

used to acquire discreet digital data from a single continuous analog signal, but each converter’s 



 96 

acquisition times are offset from one another in order to increase the time resolution of the 

signal182. An array of N converters with each having its acquisition times offset from the others by 

a time that is a multiple of a fraction 1/N of the sampling interval can improve the sampling 

frequency by N times. Time interleaved sampling microdialysis is an analogous technique which 

utilizes the same principle, where instead of N detectors simultaneously measuring a single 

transient response, a single detector is used to measure N repeats of the transient response, all of 

which are assumed to be identical.   

4.3.6 MATLAB Simulation 

We wrote MATLAB scripts (MATLAB R2019a Update 2, MathWorks, Natick, MS) that 

reproduce transient calculations in published work. All MATLAB routines cited here can be found 

with embedded annotation in Supplementary Information 4.6.1. Specifically, 

Ngo2020_BungayFig2.m calculates dimensionless external medium transient permeability, as 

defined in Bungay (2011), following a step input in a no-net-flux type experiment183. This script 

replicates Bungay (2011) Fig. 2 exactly61. Ngo2020_ChenFig4.m calculates membrane resistance, 

external medium resistance and total resistance given known probe and tissue properties. This 

script replicates Chen (2002a) Fig. 4 exactly59.  

The major script, Ngo2020_simulation.m calculates the experimentally observed solute 

concentration detected at electrochemical detector given known probe construction, tissue and 

analytical system properties (Table 4.4-2). The script simulates a discrete detection system using 

chromatographic separation with a 45 s sampling time. This script also permits calculation of other 

important experimental results, such as extraction fraction or transient relaxation time. Using this 

script, one can quickly explore the effects of different experimental parameters as well as tissue 
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conditions on solute concentration profiles measured at the probe outlet, LC injector or LC detector 

and use this knowledge expeditiously to design new experiments. 

4.4 Results and Discussion 

Table 4.4-1. Experimental conditions and parameters used for simulating in vitro microdialysis sampling of a 

well-stirred solution. 

Symbol Description Value Unit Source 

L Membrane length 4.00×10-3 m Experimental 

ri Membrane inner radius 1.00×10-4 m Experimental 

ro Membrane outer radius 1.40×10-4 m Experimental 

Li Inlet capillary length 1.10 m Experimental 

Lo Oulet capillary length 1.10 m Experimental 

Q Perfusate volumetric flowrate, in vitro 1.33×10-11 m3/s Experimental 

ts LC sampling time 45 s Experimental 

ti Characteristic time of the concentration profile -24 s Calculated 

tot Hydrodynamic dispersion standard deviation 12.8 s Calculated97 

Cin Perfusate analyte concentration 1.50×10-7 M Experimental 

CECS∞ Solute concentration “ECS” (cuvette) 0 M Experimental 

D Analyte diffusion coefficient in free solution 6.0×10-10 m2/s Literature184 

λ “ECS” (cuvette) tortuosity 1 - Experimental 

ϕ “ECS” (cuvette) porosity 1 - Experimental 

k Solute uptake rate constant, first order 5×103 s-1 Nominal value 

Ews well-stirred extraction fraction, in vitro, 37°C 0.510 - Experimental 

Dm Solute diffusion coefficient in membrane 1.366×10-10 m2/s Experimental 
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Table 4.4-2. Nomenclature. 

Symbol Unit Name Instrument System 

C M Concentration non-specific 

D m2/s Diffusion coefficient non-specific 

λ unitless Tortuosity non-specific 

ϕ unitless Porosity non-specific 

ts s Sampling time Chromatography 

𝜎tot s Hydrodynamic dispersion 

standard deviation 

Prone and capillary 

tubing 

ti s Characteristic time of the concentration 

profile 

Microdialysis 

Q m3/s Volumetric flowrate Microdialysis 

r m Radius of probe membrane Microdialysis 

L m Membrane length Microdialysis 

S m2 Membrane surface area Microdialysis 

k s-1 Uptake rate constant External medium 

u unitless Dummy integration variable Mathematical 

variables Ed unitless Extraction fraction 

P m/s 1-D diffusive permeability 

R s/m3 1-D mass transport resistance 

Subscript Notation 

in Probe inlet 

out Probe outlet 

i Membrane inner radius 

o Membrane outer radius 

inj LC injector 

det LC detector 

∞ Far away 

m Membrane 

Hat Notation 

^ Overall 

4.4.1 Mathematical Model 

In this section we briefly outline a comprehensive theoretical description for quantitative 

microdialysis that accounts for the processes that contribute to an observed transient microdialysis 

response following a step-change in retrodialyzed concentration of a solute, e.g., dopamine, 

created by switching the solution being pumped through the inlet capillary to the probe. Table 

4.4-2 defines parameters and super/subscripts.  
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4.4.1.1 Diffusive Flux and Mass Balances 

In the radial dimension of a cylindrical coordinate system, the partial derivative of 

concentration with time can be written (Equation 4.4-1): 

* *

*

2

C D C
r kC

t r r r

   
= − 

     

Equation 4.4-1. Diffusive mass balance, universal volume basis. 

where C* is a concentration calculated in one of two ways, namely as moles in the ECS per total 

tissue volume, Ctissue, or moles in the ECS per total ECS volume, CECS. The two are related by 

tissue ECS
C C= where  is the tissue porosity. It can be demonstrated (see Supplementary 

Information 4.6.2.3), that as long as Equation 4.4-1 is written in a consistent volume basis, i.e. 

when all C* terms are defined as either 
*

tissue
C C= or 

*

ECS
C C= , Equation 4.4-1 is consistent with 

the literature58,61,66. Other terms are defined in Table 4.4-2. When the ECS volume basis is chosen, 

Equation 4.4-2 describes mass transport in the tissue. Note that no other ‘corrections’ to the 

effective diffusion coefficient, D/2, or rate constant, k, are necessary. 
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Equation 4.4-2. Diffusive mass balance, ECS volume basis. 

The following boundary conditions lead to a solution. The concentrations at the boundary between 

the membrane and the external medium are the same: 

( , ) ( , )
m o ECS o

C r r t C r r t= = =
 

Equation 4.4-3. Boundary condition, membrane-ECS mass balance. 

The mass flux by diffusion at the boundary between the membrane and the external medium are 

the same: 

2

o o

m ECS
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r r r r
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D D

r r




= =

 
=

 
 

Equation 4.4-4. Boundary condition, membrane-ECS mass gradient balance. 

where 
2

m

m

m

D D



=  and D is the diffusion coefficient of the solute in aqueous solution and Dm, is 

the “effective” diffusion coefficient of the solute in the membrane. The diffusion coefficients in 

the tissue and membrane are handled differently because this reflects the most well-established 

experimental results for dopamine. That is, we have not found values for m or 2
m in the membrane 

materials used in the literature. However, the concentration in the membrane, Cm, is defined 

analogously to CECS. At t = 0, the concentration outside the probe is uniform, a step concentration 

change of the analyte occurs at the probe lumen: 

( , 0)
ECS ECS

C r C


=
 

Equation 4.4-5. Boundary condition, initial concentration. 

The model assumes a constant concentration far from the probe: 
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( , )
ECS ECS

C r t C


→  =
 

Equation 4.4-6. Boundary condition, distant concentration. 

4.4.1.2 Permeability Solutions 

Chen (2002a, b) and Bungay (2011) described a solution in one radial dimension which we 

have adopted here. There is no analytical solution for cylindrical models that include the axial 

dimension. However, for the typical microdialysis probe’s radius (100-140 nm), probe length (2-

4 mm) and uptake rate constants (10-3 to 103 s-1), the axial mass transport contribution is negligible 

(less than 5% contribution) at the time regime relevant to fast microdialysis (less than 600 s)61. 

Thus, the transient component of the response in one radial dimension can be used to obtain 

accurate mass transport information given the constraints above. The overall permeability is 

calculated from individual lumen, membrane, and external medium permeabilities. The 

permeability of the lumen of the microdialysis probe is assumed (with justification)55,58,59,61,185 to 

be so high that it does not contribute to the overall permeability. The transient membrane 

permeability reaches steady state almost instantaneously61 (Supplementary Information Figure 

4.6-2), thus the membrane permeability, Equation 4.4-7, is assumed to be in steady state. 

,
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m

m t

o

o

i

D
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r
r

r

→ 
=

 
 
 

 

Equation 4.4-7. Analytical solution for Pm,t. 

Dm is defined above and ro and ri are outer and inner membrane radii, respectively. The external 

medium permeability is shown as Equation 4.4-8 (Bungay 2011 Eq. 20, derived from Chen 2002b 

Eq. 7. The derivation is shown in Supplementary Information 4.6.2.1 and 4.6.2.2. Terms are 

defined in Table 4.4-2). 
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Equation 4.4-8. Analytical solution for PECS(t). 

In Equation 4.4-8, Jn Yn and Kn are, respectively, Bessel functions of the first kind, the second kind, 

and a modified Bessel function of the second kind of order n. Overall permeability is then 

calculated from membrane and external medium permeabilities61 as shown in Equation 4.4-9. 

,

1 1 1

( )( ) ECS m t
P t PP t → 

= +  

Equation 4.4-9. Overall permeability from individual component. 

4.4.1.3 Transient Extraction Fraction 

Extraction fraction is calculated from overall permeability61: 

(t)
( ) 1 exp o

d

S P
E t

Q

 
= − − 
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Equation 4.4-10. Transient extraction fraction from permeability 

where So is the membrane’s outer surface area through which diffusion occurs and Q is the 

microdialysate volumetric flow rate. The transient solute concentration measured at the 

microdialysis probe outlet Cout(t) resulting from a retrodialyzed step concentration change in Cin 

is61: 

( )( ) ( )
out in d in ECS

C t C E t C C


= −  −  

Equation 4.4-11. Solute concentration at probe outlet. 

Note that the extraction fraction is time dependent. 
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This is Cout(t) the solute concentration at the probe outlet as typically described in the 

literature. However, in a practical experiment, the probe inlet and outlet are connected to inlet and 

outlet capillaries, which in turn are connected to perfusate pump and sample collector, 

respectively. The sample is then analyzed by a detector. The experimentally observable is always 

the concentration of the solute at the detector Cdet(t). The following subsections describe the 

analytical instrument’s contribution to the measured Cdet(t). 

4.4.1.4 Hydrodynamic Dispersion 

A zone of solute in laminar flow passing through each of the capillaries and the 

microdialysis probe itself is broadened by hydrodynamic dispersion. The shape of a concentration 

profile leaving the exit of a capillary, Ccap out(t),  is the convolution of the solute concentration 

profile at the entry into the capillary, Ccap in(t), with a Gaussian function whose variance is dictated 

by dispersion in the flow system176,186 as shown in Equation 4.4-12: 

( )
2

  2

1
( ) ( ) exp

22

i

cap out cap in

capcap

t t
C t C t

 

  −
 =  − 

  
  

 

Equation 4.4-12. Solute concentration at capiliary outlet. 

Here, ti is a characteristic time of the concentration profile at the outlet, the difference between this 

and the time at which a step-change in concentration occurs is the time required to transport the 

sample through the capillary. Dispersion in the capillary spreads the initial step function into an 

error function with a standard deviation cap.  

There is no simple theory for the probe itself. But, is important to point out that: (1) the 

order in which the processes altering the signal’s shape occur does not matter as long as all 

processes are linear and (2) the variances resulting from serial, linear processes add. Thus, here we 
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combined the variances from hydrodynamic dispersion into one term (“total variance”,
2

tot
 ) and 

imagine that the input to the probe is a perfect step function in concentration. The two parameters 

tot
  and ti are used with Equation 4.4-12 to model dispersion of a zone of solute caused by transport 

through the microdialysis probe, inlet and outlet capillaries, and the analytical system. For a 

chromatographic system, for example, tot
  includes dispersion in the sample loop, and ti is the 

characteristic time at the end of the sample loop. In reality, the inlet capillary and some portion of 

the probe proper alter the shape of the concentration profile in the lumen of the probe. The solution 

affected by the brain suffers further spreading in the latter portion of the probe proper and the 

outlet capillary. But this difference does not affect the outcome. 

4.4.1.5 Detector Response 

There are two general types of detector, continuous and discrete. A continuous detector’s 

response to a step change is often an exponential relaxation from one steady value to another, so 

the transfer function, (t), is exponential. A discrete detector, for example using an injection loop 

as in a chromatographic determination of solute concentration, is characterized by a rectangular 

transfer function. The concentration profile of a solute at the detector is given as Equation 4.4-13 

where Cout(t) is the concentration at the outlet of the probe proper (the entrance to the outlet 

capillary), tot
  is the standard deviation from dispersion in the inlet and outlet capillaries, the 

probe itself, and any fluidic connection between the outlet capillary and the detector. Cdet(t) is the 

concentration inferred from a detector’s signal. 
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Equation 4.4-13. Solute concentration at detector 
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If the detector has an exponential decay response with a time constant of 𝜏 then: 

1 /

( 0) 0

( 0)
t

t

t e

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− −

  =

  =
 

Equation 4.4-14. Exponential decay detector 

If the detector is a discrete detector with a sampling period of ts then: 
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Equation 4.4-15. Discrete detector 

4.4.2 Reconciliation and Clarifications to Preceding Literature 

4.4.2.1 The Relationships Among Preceding Theories Related to Bungay 20112  

The time-dependent normalized radial concentration, U(r,t), (Chen (2002a) Eq. 6) is 

obtained by solving the partial differential equation describing mass transport in the tissue, 

Equation 4.4-2, using the boundary conditions Equation 4.4-3-Equation 4.4-6. The analytical 

solution for overall permeability (t)P  is derived from U(r,t) (Supplementary Information 4.6.2.2). 

From this analytical solution for (t)P , Chen (2002 a, b) devised two methods to evaluate overall 

permeability. The Chen analytical method calculates the (t)P  directly from its analytic expression. 

The Chen numerical method first takes the numerical limit of (t)P  as the ECS permeability 

becomes infinitely large to obtain Pm(t), then takes the numerical limit of (t)P  as the membrane 

permeability becomes infinitely large to obtain PECS(t). The overall permeability is obtained from 

the numerical solution of Equation 4.4-9 but with a time-dependent Pm(t). The Bungay analytical 

method, adapted from Chen (2002 a, b), derived an analytical solution for PECS(t) and the steady-
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state membrane permeability Pm,t→∞ from U(r,t) by making the assumptions of infinitely 

permeable membrane and infinitely permeable ECS at steady state, respectively. Intuitively, Chen 

analytical is the appropriate method and the other two are unnecessary. However, we will show 

below that it is not the case. Derivations to obtain (t)P  and PECS(t) can be found in Supplementary 

Information 4.6.2.1 and 4.6.2.2, and a step-by-step derivation summary for all three methods can 

be found in Supplementary Information 4.6.2.4. 

 
Figure 4.4-1. Comparison between (A) Chen numerical (diamond) and Bungay analytical (line) (B) Chen 

numerical (diamond) and Chen analytical (line).  

Diffusive mass transport is calculated in term of resistance (R=1/PSo). 

4.4.2.2 Chen’s Analytical and Numerical Approaches 

For clarity, in this section diffusive mass transport is compared in term of resistance 

(R=1/PSo) where P is a permeability and So is the membrane’s outer surface area through which 

the molecular flux occurs. In their 2002 papers, Chen and colleagues postulated that Chen 

analytical and Chen numerical yield identical results (Supplementary Information Figure 4.6-3A, 

which is a reproduction of Chen 2002b Fig. 4 with our MALAB code). We found that the two 

approaches are reasonably comparable (relative difference less than 0.05) at long times (longer 

than 100 s) but do not agree at short times (shorter than 100 s, Supplementary Information Figure 
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4.6-3B). The former is the time regime where traditional microdialysis operates, but the latter is 

where transient microdialysis will operate. The disagreement between the two approaches 

decreases as the solute uptake rate increases (Supplementary Information Figure 4.6-3B). 

While we do not expect microdialysis experiments to be possible, or practical, at the sub-

second time regime, we note that computation of Chen analytical completely breaks down at this 

time regime. A closer look at the data reveals that at very short time (faster than 0.01 s), the Chen 

analytical total resistance term R(t) rapidly increases (Figure 4.4-1B, dashed line), which does not 

accurately describe cylindrical transient diffusion at short time. In such a system, at very short time 

(order of milliseconds) after a concentration transient occurs, since the concentration gradient 

between tissue and probe lumen is at its highest, the flux of solute between tissue and probe lumen 

is also at its highest, thus the resistance is at its lowest. At long time, the concentration gradient 

relaxes, and the flux of solute reaches steady state. In other words, resistance is small at short time, 

and it approaches a larger, steady-state value at long time. Chen numerical exhibits this expected 

behavior (Figure 4.4-1A-B, diamond). Upon careful analysis of Chen’s work, we believe that, 

mathematically, the Chen analytical was accurately derived. From our numerical investigation, 

however, we concluded that since the Chen analytical solution does not behave correctly during 

transient conditions (100 s or faster), it should not be used for transient analysis.  

4.4.2.3 Bungay’s Analytical Approach 

Bungay’s analytical yields almost identical results to Chen’s numerical approach. In fact, 

numerical evaluation of Bungay’s analytical PECS(t) yields identical result to Chen’s numerical 

PECS(t), and Bungay’s analytical Pm, t→∞ yields identical results to Chen’s numerical Pm(t) in the 

practical experimental time regime (10 ms or longer, Supplementary Information Figure 4.6-2). 

As a result, R(t) from Bungay’s analytical and Chen’s numerical are identical in the time regime 
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of 10 ms or longer (Figure 4.4-1A). We have also carefully analyzed Bungay’s work, and we agree 

with the mathematical derivation. Thus, as Bungay’s analytical approach provides relative ease in 

computer code implementation and calculation speed (Supplementary Information 4.6.1.1), our 

method uses this approach to evaluate mass transport in transient microdialysis. Chen’s numerical 

would provide identical results at times greater than milliseconds but at a steep cost of 

mathematical complexity and computational time (Supplementary Information 4.6.1.2, therefore 

we do not recommend its use. 

 
Figure 4.4-2. MATLAB Simulation of an in vitro experiment compared to experimental results.  

(A) Transient extraction fraction Ed(t) (B) Solute concentration at probe outlet Cout(t) and (C) Solute 

concentration at injector Cinj(t) (blue), solute concentration at detector Cdet(t) (red) and in vitro experimental 

(black). 

4.4.3 MATLAB Simulation 

To demonstrate the contribution of mass transport in the tissue and in the analytical system 

thereafter to time-dependent solute concentration at the probe outlet Cout(t), injector Cinj(t) and 

detector Cdet(t), and the importance of understanding these results, we simulated an in vitro well-

stirred retrodialysis experiment. In such an experiment, the stirring creates a thin diffusion layer 
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having the effect of a high uptake rate, thus uptake rate constant k was chosen to be 5×103 s-1 with 

a tissue porosity ϕ of 1 and tortuosity λ of 1. Other simulation parameters are shown in Table 4.4-1. 

Characteristic time of the concentration profile ti was calculated from experimental time when the 

step concentration change occurs and transport time, accounting for all transport volume in the 

system, namely probe inlet capillary, probe lumen, probe outlet capillary, and the LC sample loop. 

Hydrodynamic dispersion, particularly Taylor dispersion coefficient at our flowrate (0.6-0.8 

μL/min) and capillary diameter (75 μm), was calculated from Ngo et al. 2017 97, where we 

experimentally measured an identical probe at 0.6 L/min flow rate. The dispersion coefficient is 

proportional to the square of linear velocity. From the dispersion coefficient, the dispersion 

standard deviation tot was calculated for simulation. 

Shown in Figure 4.4-2A, B are the simulation results in term of Ed(t) (Figure 4.4-2A, 

resulting from evaluation of Equation 4.4-8 to Equation 4.4-10) and Cout(t) (Figure 4.4-2B, 

resulting from evaluation of Ed(t) and Equation 4.4-11). When the uptake rate is large, diffusive 

flux rapidly establishes steady state. Therefore, Ed(t) displays a rapid transient near time = 0 but 

otherwise is constant, Cout(t) is a near perfect step with no curvature. Shown in Figure 4.4-2C are 

the simulation results for Cinj(t) (blue) from evaluation of Cout(t) and Equation 4.4-12 and Cdet(t) 

(orange) from evaluation of Cinj and Equation 4.4-13. Measurements from an in vitro well-stirred 

experiment are plotted as points in Figure 4.4-2C. The in vitro extraction fraction was measured 

at 37°C with an 18 kDa MWCO membrane, using steady-state measured concentrations from six 

replicates of 150 nM DA step concentration retrodialysis experiments. The diffusion coefficient 

of dopamine in the probe membrane was determined from the experimental in vitro well-stirred 

extraction fraction using Equation 4.4-9 and Equation 4.4-10, with the assumption of fully 

permeable ECS (PECS → ∞). There is good agreement between simulated and experimental results. 
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Simulated well-stirred steady-state extraction fraction is 0.506 and steady-state concentration is 

74.2 nM, in comparison with experimental steady-state extraction fraction and concentration of 

(AVG±SEM) 0.510±0.001 and 73.4±0.2 nM, respectively. The disagreement is due to MATLAB’s 

numerical limit in evaluating Bessel functions. Simulating with large PECS instead of large k 

produces steady-state extraction fraction and steady-state concentration equals to experimental 

results. We note that the extraction fraction was derived from eight minutes of data. 

The result above demonstrates that the model can simulate an experiment and deriving 

quantitative results from data. But this simulation is useful for experimental design as well. Here, 

it demonstrates the influence of dispersion and the detector response on the transient response, and 

thus the importance of understanding and minimizing these influences. The difference between 

Cout(t) and Cinj(t) highlights the contribution of dispersion to the transient response. Even if the 

diffusive flux establishes steady state instantaneously, and if the detector is a continuous detector 

with perfect response time (here, represented by Cinj(t)), dispersion softens the response and limits 

the time resolution of the analytical system. Minimizing dispersion (e.g. using segmented flow79) 

improves the time resolution of the analytical system. In a practical microdialysis system, the 

detector is not perfect, and the differences between Cinj(t) and Cdet(t) highlight the contribution of 

the detector to the transient response. The detector not only further softens (transform in shape) 

the response curve, lowering the time resolution, but also shifts the response curve in time. In 

principle, Cinj(t) can be calculated from Cdet(t) using deconvolution because the detector’s transfer 

function is known. However, this operation requires higher data density than microdialysis can 

realistically achieve. As shown in Figure 4.4-2C, the time shift of the curve is not straightforward. 

The top, middle, and bottom portion of the curve are time shifted by different amounts, for 

example. Thus, transport time is not obvious from a plot of the data alone. Establishing the 
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transport time is critically important in behavior studies98 for example. Fortunately, the CQM curve 

fit180 provides a quantitative estimate for transport time from a transient response in Cdet(t). 

4.4.4 Limitations of the Method 

The CQM method relies on a set of assumptions in addition to the assumptions inherent in 

the mass transport model we used. These assumptions are necessary to obtain an analytical solution 

for the mass transport model, however, they impose limitations to the method. Additionally, there 

are limitations inherent to the microdialysis technique and to the MATLAB software. The 

following section discusses these limitations.  

4.4.4.1 Trauma Layer 

Probe implantation creates a complex tissue environment surrounding the probe85, 

including a trauma layer between healthy tissue and the probe86. The trauma layer leads to the 

extraction fraction being overestimated, thus solute ECS concentration being 

underestimated55,65,88,90. At this time, there is no experimental method using microdialysis to assess 

the trauma layer, and there is no analytical solution for mathematical models describing transient 

response that incorporates the trauma layer. Thus, the CQM model does not account for the trauma 

layer. However, there are active experimental efforts to reduce implantation injury and improve 

microdialysis measurements86,87,92,97,122. 

4.4.4.2 First-order Uptake Rate 

Uptake of neurotransmitters in the extracellular space is more appropriately modeled using 

Michaelis-Menten kinetics162,187,188 than a simple first-order process: 
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maxECS ECS

M ECS

dC V C

dt K C
=

+
 

Equation 4.4-16. Michaelis-Menten kinetics 

where Vmax is the maximum velocity and KM is the concentration at which the velocity is 50% of 

Vmax. Michaelis-Menten kinetics can be approximated by a first order rate constant k = Vmax/KM if 

KM is much larger than CECS. For DA in the nucleus accumbens, for example, Km was found to be 

about 200 nM (measured with FSCV189) while the basal CECS is about 10 nM (measured with No-

Net-Flux microdialysis169) to 90 nM (measured with FSCAV52).  

4.4.4.3 One-dimensional Radial Mass Transport   

The microdialysis probe is a finite-length cylinder, thus would be more appropriately 

modeled with two-dimensional cylindrical mass transport. However, in typical experimental 

conditions, 1D and 2D calculations61 differ by less than 5%. These typical conditions include 

membrane length aspect ratio at least 12 (1.7 mm length for the typical 140 nM radius), uptake 

rate at least 10-2 s-1 (for solute in ECS with the 140 nM radius probe), and time at most 600 s. 

Uptake rate is the dominant factor, with DA uptake in the nucleus accumbens (order of 10 s-1) 

189,190, for example, the 1D solution is accurate in all practical experimental conditions.  

4.4.4.4 Numerical Precision 

Due to inherent numerical precision of MATLAB in evaluating Bessel functions, the 

simulation program is unable to simulate uptake rate outside the range of approximately 10-6 to 

104 s-1 for practical experiments (D in the order of 10-10 m2/s, ECS tortuosity 1-4, probe length 2-

4 mm). 
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4.5 Conclusion 

In this work, we have presented the first component of the comprehensive quantitative 

microdialysis technique: a mathematical model (CQM model) based on one-dimensional radial 

mass transport for microdialysis sampling that describes the solute concentration observed at the 

detector Cdet(t) as affected by the neurochemical environment outside the probe as well as the 

analytical system that follows the probe. The mass transport model is adapted from Chen (2002) 

58,59 and Bungay (2011) 61 with appropriate corrections and clarifications to unify their analytical 

solutions, particularly at the minute timescale that is most relevant to Fast Microdialysis. Most 

notably, first-order uptake, tissue porosity, tissue tortuosity, sample transport, and detector 

response are all considered in this comprehensive model. This is the first mathematical model for 

microdialysis that illustrates an experimentally observable quantity (Cdet(t)) as affected by both 

biological and analytical system factors. Our use of only closed-form analytic expressions that are 

fully consistent with preceding literature allows data analysis, simulation, and fitting methods180 

to be accessibly built upon. 
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4.6 Supplementary Information 

4.6.1 Computer Codes 

4.6.1.1 Bungay 2011 Fig. 2 Script 

The script below reproduces Bungay (2011) Figure 2 exactly, using parameters and 

quantities defined in Bungay (2011). Notably, dimensionless ECS permeability is calculated as a 

function of a dimensionless clearance Θ and a dimensionless time τ.  

%This script simulates dimensionless ECS permeability 

%with parameters from Bungay 2011 10.1016/j.jpba.2011.01.005 

%Fig 2 in Bungay 2011 can be reproduced using this script 

%Units used in this script is S.I, conversion needed to match Bungay 2011 

tic 

close all 

clear 

warning('off','MATLAB:integral:NonFiniteValue') 

%% 

%Simulation parameters 

Theta_array = [4 1 0.5 0.1 1e-6]; %dimensionless ECS permeability 

                        %program runs extremely slow at Theta ~ 0 

tau = logspace(-4,4,1e3); %dimensionless time axis 

%% 

P_dimensionless = zeros([length(Theta_array) length(tau)]); %preallotcate 

array 

for i = 1:length(Theta_array) 

    Theta = Theta_array(i);  

    %Define the transient part dimensionless ECS permeability 

    f_int = @(u)(((4/pi^2)*u*exp(-(u^2+Theta^2)*(tau)))/... 

        ((u^2+Theta^2)*((besselj(0,u))^2+(bessely(0,u))^2))); 

    %Evaluate the transient part of Pext(t) 

    Pext_transient = integral(f_int,0,inf,'ArrayValued',true); 

    %Evaluate the steady state part Pext(t) 

    Pext_ss = Theta*besselk(1,Theta)/besselk(0,Theta); 

    %Evaluate dimensionless Pext(t) 

    P_dimensionless(i,:) = Pext_transient+Pext_ss; 

end 

plot(tau,P_dimensionless) 

title('Bungay 2011 Fig. 2') 

legend('\Theta = 1', '\Theta = 0.5', '\Theta = 0.1', '\Theta = 10^{-6}
191

') 

xlabel('Dimensionless Time') 

ylabel('Dimensionless Permeability') 
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set(gca, 'XScale', 'log','ylim', [0 2],'FontSize',13) 

hold off 

toc 

  

plot(tau,P_dimensionless(1,:)) 

title('Strital DA Response to Retrodialysis') 

xlabel('Dimensionless Time') 

ylabel('Dimensionless Permeability') 

set(gca, 'XScale', 'log','xlim', [1e-3 1],'ylim', [0 10],'FontSize',13) 

hold off 

4.6.1.2 Chen 2002b Fig. 4 Script 

%This script simulates membrane, external medium, and total resistance 
%with parameters from Chen 2002b 10.1046/j.1471-4159.2002.00793.x 
%Fig 4 in Chen 2002b can be reproduced using this script 
%Units used in this script is S.I, conversion needed to match Chen 2002b 
tic 
close all 
clear 
warning('off','MATLAB:integral:NonFiniteValue') 
warning('off','MATLAB:integral:MaxIntervalCountReached') 
%% 
%Simulation parameters 
n = 1;  %1 negligible external medium resistance 
        %  which, calculate membrane resistance 
        %2 negligible membrane resistance 
        %  which, calculate external medium resistance 
        %3 calculate total resistance 
%kext = [1e-3 1e-4 1e-5]; %Effective uptake rate     
kext = [1e2 1e1 1e0 1e-1 1e-2 1e-3 1e-4 1e-5]; %Effective uptake rate             
L = 4e-3; %m, membrane length 
ro = 120e-6; %m, membrane outer radius 
ri = 110e-6; %m, membrane inner radius 
phi_m = 0.13; %membrane porosity  
              %Chen 2002 10.1046/j.1471-4159.2002.00793.x 
Dm = 1.5e-10; %Analyte diffusion coefficient in membrane, m^2/s 
              %Chen 2002 10.1046/j.1471-4159.2002.00793.x 
phi = 0.2; %external medium porosity 
           %Chen 2002 10.1046/j.1471-4159.2002.00793.x 
D = 2.2e-10; %m^2/s external medium  diffusion coefficient 
lambda = 1; %external medium tortuosity 
           %nominal 
switch n 
    case 1 
        D = 1; %large external medium diffusion coefficient 
        phi = 0.2; %large external medium porosity 
        kext = 1e-3; 
    case 2 
        Dm = 1; %large membrane resistance 
        phi_m = 1; %large membrane porosity 
    case 3 
end 
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De = D/lambda^2; 
Dext = De*phi; 
%% 
%Create time axis 
t = logspace(-3,5,1e4); %s, time axis 
%Dependent variables calculation 
So = 2*pi*ro*L; %m^2, membrane surface area 
Text = ro^2/De; %s, dimensionless time scaling factor 
%% 
P_dimensionless = zeros([length(kext) length(t)]); %preallotcate array 
for i = 1:length(kext(:)) 
    Theta = ro*sqrt(kext(i)/De); %dimensionless clearance 
    %Compute external medium permeability Pext(t) 
    %Define dimensionless components 
    omega = @(u)(sqrt(u.^2+Theta^2)); 
    xi = @(u)(omega(u).*sqrt(De/Dm)); 
    nu_1 = @(u)(besselj(0,xi(u)).*bessely(0,xi(u).*ri/ro)-... 
        besselj(0,xi(u).*ri/ro).*bessely(0,xi(u))); 
    nu_2 = @(u)(besselj(1,xi(u)).*bessely(0,xi(u).*ri/ro)-... 
        besselj(0,xi(u).*ri/ro).*bessely(1,xi(u))); 
    eta_1 = @(u)((phi/phi_m).*sqrt(De/Dm).*nu_1(u).*u.*besselj(1,u)-... 
        nu_2(u).*omega(u).*besselj(0,u)); 
    eta_2 = @(u)((phi/phi_m).*sqrt(De/Dm).*nu_1(u).*u.*bessely(1,u)-... 
        nu_2(u).*omega(u).*bessely(0,u)); 
    %Define the transient part of Pext(t) 
    f_int = @(u)((4/pi^2).*u.^2.*exp(-

omega(u).^2.*t/Text).*(eta_1(u).*bessely(1,u)-eta_2(u).*besselj(1,u))/... 
        (omega(u).^2.*sqrt(De/Dm).*(eta_1(u).^2+eta_2(u).^2)));     
    %Evaluate the transient part 
    P_transient = integral(f_int,0,inf,'ArrayValued',true); 
    %Evaluate the steady state part 
    P_ss = 

Theta*besselk(1,Theta)/(log(ro/ri)*(phi/phi_m)*(De/Dm)*Theta*besselk(1,Theta)

+besselk(0,Theta)); 
    %Evaluate dimensionless permeability 
    P_dimensionless(i,:) = P_transient+P_ss; 
end 
%% 
%Compute outputs 
P = P_dimensionless*Dext/ro; %Calculate permeability P(t) 
R = 1./(P*So); %Calculate resistance R(t) 
plot(t,R); 
if n == 1 
    title('Chen 2002b Fig. 4 R_{m}(t)') 
elseif n == 2 
    title('Chen 2002b Fig. 4 R_{e}(t)') 
    legend('k = 1\times10^{-3','k = 1\times10^{-4}','k = 1\times10^{-

5}','Location','SouthEast')      
elseif n == 3     
    title('Chen 2002b Fig. 4 R(t)') 
    legend('k = 1\times10^{-3}','k = 1\times10^{-4}','k = 1\times10^{-

5}','Location','SouthEast')    
end 
xlabel('Time (s)') 
ylabel('Resistance 1/sm^(-2)’) 
set(gca,'xlim',[0 12000],'ylim',[0 3e12],'FontSize',13) 
toc 
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4.6.1.3 Simulation Script Ngo2020_simulation.m 

%We strongly recommend ti at time ~ 0 to reduce computational time. 
%The time axis must be symmetrical for convolution to work properly 
format longG 
close all 
clear 
warning('off','MATLAB:integral:NonFiniteValue') 
tic 
%% 
%Simulation parameters 
time_resolution = 0.01; %s, higher time accuracy produces more accurate 

integration 
Q = 0.8; %uL/min, volumetric flow rate 
Q = Q*1e-9/60; %m^3/s, volumetric flowrate  
ts = 45; %s, LC sampling time 
ti = -24; %s, time that step concentration arrives at injector 
sigma = 12.8;%s, Taylor-Aris dispersion standard deviation 
kext = 5e3; %1/s, reuptake rate 
Cin = 150; %retrodialyzed concentration 
Cinf = 0; %ECS concentration 
D = 6.0e-10; %m^2/s, free solution diffusion coefficient 
phi = 0.2; %ECS porosity 
lambda = 1.6; %ECS tortuosity  
Ews = 0.510; %well-stirred, 37 C extraction fraction 
L = 4e-3; %m, membrane length 
ro = 140e-6; %membrane outer radius, m 
ri = 100e-6; %membrane outer radius, m 
max_s = 5; %maximum simulation time, min 
max_t = max_s*1.5*60; 
t = linspace(-max_t,max_t,(2*max_t/time_resolution)+1);%s, create time axis 
%Create a step function 
step = zeros([1 length(t)]); 
for i = 1:length(t) 
    if t(i) <=0 
        step(i) = 0; 
    else 
        step(i) = 1; 
    end 
end 
%Dependent variables calculation 
So = 2*pi*ro*L; %membrane surface area 

%if Ews was measured, use the below 
Pmo = -(Q/So)*log(1-Ews); %log here is ln 

%if Dm was measured or looked up, use the below 
%Pmo = Dm/(ro*log(ro/ri)); %m/s, this log is natural log, membrane 

permeability 
De = D/lambda^2; %m^2/s, membrane diffusion coefficient 
Dext = De*phi; 
So = 2*pi*ro*L; %m^2, membrane surface area 
Text = ro^2/De; %s, dimensionless time scaling factor 
Theta = ro*sqrt(kext/De); %dimensionless clearance 
box_func = zeros([1 length(t)]); 
for i = 1:length(t) 
    if 0 <= t(i) && t(i) < ts 
        box_func(i) = time_resolution/ts; 
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    end 
end 
gauss = time_resolution*(1/(sigma*sqrt(2*pi)))*exp(-(t - ti).^2/(2*sigma^2)); 

%normalized Gaussian  
Cws = ones([1 length(t)]); 
Cws = (1-Ews)*Cws.*Cin; %well-stirred concentration 
Cin = Cin.*step; %create step function for Cin 
s_gauss = convnfft(box_func,gauss,'same'); %conv of Gaussian and box_func 
%% 
%Compute external medium permeability Pext(t) 
%Define the transient part of Pext(t) 
f_int = @(u)(((4/pi^2)*u*exp(-(u^2+Theta^2)*(t/Text)))/... 
    ((u^2+Theta^2)*((besselj(0,u))^2+(bessely(0,u))^2))); 
%Evaluate the transient part of external medium permeability Pext(t) 
Pext_transient = integral(f_int,0,inf,'ArrayValued',true); 
%Evaluate the steady state part of external medium permeability Pext(t) 
Pext_ss = Theta*besselk(1,Theta)/(besselk(0,Theta)); 
Pext_transient(isnan(Pext_transient)) = 0; %replace NaN with 0 
Pext_transient(isinf(Pext_transient)) = 0; %replace inf with 0   
%Evaluate dimensionless external medium permeability 
Pext_dimensionless = Pext_transient+Pext_ss;  
Pext_dimensionless(isnan(Pext_dimensionless)) = Pext_ss; %replace NaN with 

P_ss 
Pext_dimensionless(isinf(Pext_dimensionless)) = Pext_ss; %replace inf with 

P_ss 
                                                      %at t < 0, Pext = 

Pext_ss        
%% 
%Compute concentration at probe outlet Cout(t) 
Pext = Pext_dimensionless*Dext/ro; %Calculate external medium permeability 

Pext(t) 
P = 1./(1./Pext + 1/Pmo); %Calculate total permeability P(t) 
E = 1-exp(-So*P/Q); %Calculate extraction fraction Ed 
Cout = Cin-E.*(Cin-Cinf); %Calculate Cout(t) 
%% 
%Compute concentration arrived at injector Cinj(t) 
Cinj = (1/trapz(gauss))*convnfft(Cout,gauss,'same'); %Calculate Cinj(t) 
%% 
%Compute concentration at detector Cdet(t) 
Cdet = convnfft(Cout,s_gauss,'same'); 
%% 
figure 
hold on 
yyaxis left 
plot(t/60,Cout) 
ylabel('[DA] (nM)') 
title('Probe extraction fraction and Outlet concentration','FontSize',13) 
xlabel('Time (min)') 
yyaxis right 
plot(t/60,E) 
ylabel('Extraction fraction E_{d}') 
set(gca,'xlim',[-max_s max_s],'FontSize',10) 
box on 
hold off 
%% 
figure 
hold on 
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%title('Concentration at injector and detector','FontSize',13) 
plot(t/60,Cinj,'b'); 
plot(t/60,Cdet,'r'); 
legend('Concentration at injector',... 
    'Concentration at detector','Location','SouthEast','FontSize',10) 
ylabel('[DA] (nM)') 
xlabel('Time (min)') 
set(gca,'xlim',[-max_s max_s],'FontSize',10) 
box on 
hold off 
%% 
function A = convnfft(A, B, shape, dims, options) 
%   KHANH T NGO KTN@PITT.EDU  
%   Adapted from: 
%https://www.mathworks.com/matlabcentral/fileexchange/24504-fft-based-

convolution 
%   Author: Bruno Luong <brunoluong@yahoo.com> 
% Copyright (c) 2009, Bruno Luong 
% All rights reserved. 
%  
% Redistribution and use in source and binary forms, with or without 
% modification, are permitted provided that the following conditions are met: 
% * Redistributions of source code must retain the above copyright notice, 

this 
%   list of conditions and the following disclaimer. 
% * Redistributions in binary form must reproduce the above copyright notice, 
%   this list of conditions and the following disclaimer in the documentation 
%   and/or other materials provided with the distribution 
% * Neither the name of FOGALE nanotech nor the names of its 
%   contributors may be used to endorse or promote products derived from this 
%   software without specific prior written permission. 
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

ARE 
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 
% FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY, 
% OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE 
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
if nargin<3 || isempty(shape) 
    shape = 'full'; 
end 
if nargin<5 || isempty(options) 
    options = struct(); 
elseif ~isstruct(options) % GPU options 
    options = struct('GPU', options); 
end 
nd = max(ndims(A),ndims(B)); 
% work on all dimensions by default 
if nargin<4 || isempty(dims) 
    dims = 1:nd; 
end 
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dims = reshape(dims, 1, []); % row (needed for for-loop index) 
% GPU enable flag 
GPU = getoption(options, 'GPU', false); 
% Check if Jacket is installed 
GPU = GPU && ~isempty(which('ginfo')); 
% IFUN function will be used later to truncate the result 
% M and N are respectively the length of A and B in some dimension 
switch lower(shape) 
    case 'full' 
        ifun = @(m,n) 1:m+n-1; 
    case 'same' 
        ifun = @(m,n) ceil((n-1)/2)+(1:m); 
    case 'valid' 
        ifun = @(m,n) n:m; 
    otherwise 
        error('convnfft: unknown shape %s', shape); 
end 
classA = class(A); 
classB = class(B); 
ABreal = isreal(A) && isreal(B); 
% Special case, empty convolution, try to follow MATLAB CONVN convention 
if any(size(A)==0) || any(size(B)==0) 
    szA = zeros(1,nd); szA(1:ndims(A))=size(A); 
    szB = zeros(1,nd); szB(1:ndims(B))=size(B); 
    % Matlab wants these: 
    szA = max(szA,1); szB = max(szB,1); 
    szC = szA; 
    for dim=dims 
        szC(dim) = length(ifun(szA(dim),szB(dim))); 
    end 
    A = zeros(szC,classA); % empty -> return zeros 
    return 
end 
power2flag = getoption(options, 'Power2Flag', true); 
if power2flag 
    % faster FFT if the dimension is power of 2 
    lfftfun = @(l) 2^nextpow2(l); 
else 
    % slower, but smaller temporary arrays 
    lfftfun = @(l) l; 
end 
if GPU % GPU/Jacket FFT 
    if isa(classA,'single') 
        A = gsingle(A); 
    else 
        A = gdouble(A); 
    end 
    if isa(classB,'single') 
        B = gsingle(B); 
    else 
        B = gdouble(B); 
    end 
    % Do the FFT 
    subs(1:ndims(A)) = {':'}; 
    for dim=dims 
        m = size(A,dim); 
        n = size(B,dim); 
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        % compute the FFT length 
        l = lfftfun(m+n-1); 
        % We need to swap dimensions because GPU FFT works along the 
        % first dimension 
        if dim~=1 % do the work when only required 
            swap = 1:nd; 
            swap([1 dim]) = swap([dim 1]); 
            A = permute(A, swap); 
            B = permute(B, swap); 
        end 
        A = fft(A,l); 
        B = fft(B,l); 
        subs{dim} = ifun(m,n); 
    end 
else % Matlab FFT 
    % Do the FFT 
    subs(1:ndims(A)) = {':'}; 
    for dim=dims 
        m = size(A,dim); 
        n = size(B,dim); 
        % compute the FFT length 
        l = lfftfun(m+n-1); 
        A = fft(A,l,dim); 
        B = fft(B,l,dim); 
        subs{dim} = ifun(m,n); 
    end 
end  
if GPU 
    A = A.*B; 
    clear B 
else 
    %inplace product to save 1/3 of the memory 
    %inplaceprod(A,B); 
    %change made by KHANH T NGO KTN6@PITT.EDU 
    %for compatibility with MATLAB 2019a WINDOWS 10 
    A = A.*B; 
end 
% Back to the non-Fourier space 
if GPU % GPU/Jacket FFT 
    for dim=dims(end:-1:1) % reverse loop 
        A = ifft(A,[]); 
        % Swap back the dimensions 
        if dim~=1 % do the work when only required 
            swap = 1:nd; 
            swap([1 dim]) = swap([dim 1]); 
            A = permute(A, swap); 
        end         
    end    
else % Matlab IFFT   
    for dim=dims 
        A = ifft(A,[],dim); 
    end 
end 
% Truncate the results 
if ABreal 
    % Make sure the result is real 
    A = real(A(subs{:})); 
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else 
    A = A(subs{:}); 
end 
% GPU/Jacket 
if GPU 
    % Cast the type back 
    if isa(class(A),'gsingle') 
        A = single(A); 
    else 
        A = double(A); 
    end 
end 
end % convnfft 
%% Get default option 
function value = getoption(options, name, defaultvalue) 
% function value = getoption(options, name, defaultvalue) 
    value = defaultvalue; 
    fields = fieldnames(options); 
    found = strcmpi(name,fields); 
    if any(found) 
        i = find(found,1,'first'); 
        if ~isempty(options.(fields{i})) 
            value = options.(fields{i}); 
        end 
    end 
end 

4.6.2 Mathematical Derivation 

4.6.2.1 From Chen 2002 Eq. 7 to Bungay 2011 Eq. 20 

Chen 2002: Chen, K. C.; Hoistad, M.; Kehr, J.; Fuxe, K.; Nicholson, C. J Neurochem 2002, 

81, 108-121. Bungay 2011: Bungay, P. M.; Sumbria, R. K.; Bickel, U. J Pharm Biomed Anal 2011, 

55, 54-63. 
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Step 1: take partial derivative with respect to 
o

r

r
of Ue(t) 
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Step 2: Using Leibniz’s integral rule, move the partial derivative inside the integration. This works 

because the derivative is with respect to 
o

r

r
while the integration is with respect to u 
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Step 3: Apply the partial derivative to terms that contains the variable r 
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Step 4: Change of variables 
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Step 5: Apply the following relationships d/dx K0(x) = -K1(x)    d/dx J0(x) = -J1(x)     d/dx Y0(x) = 

-Y1(x)    
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Step 6: Evaluate the partial derivative at 
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Step 7: Apply the relationship  𝐽1(𝑢)𝑌0(𝑢) − 𝑌1(𝑢)𝐽0(𝑢) = 2/(πu) 
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Step 8: Simplifies 

( ) ( )

2
2

2 2 2
1

22 2 2

2 0 00
0 2

1

4 1
, t

o

o

o

r D
o o u t

r

ECS

o oo

ro

r

r r
K

r e
U udu

r r rr J u Y u
K u

r





 
− + 

   

=

 
     

= − − 
+   + 

  

  

Step 9: Apply the relationship 
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This is Eq. 20 in Bungay 2011 but with: 
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4.6.2.2 From Chen 2002a Eq. 6 to Chen 2002b Eq. A6 

Chen 2002a: Chen, K. C.; Hoistad, M.; Kehr, J.; Fuxe, K.; Nicholson, C. J Neurochem 

2002, 81, 94-107. Chen 20002b: Chen, K. C.; Hoistad, M.; Kehr, J.; Fuxe, K.; Nicholson, C. J 

Neurochem 2002, 81, 108-121. Some steps are similar to the derivation above, thus they are not 

repeated.  
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Step 1: Apply Leibniz’s integral rule and apply the partial derivative to terms that contains the 

variable r 
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Step 2: Change derivative variable appropriately and apply the following relationships d/dx K0(x) 

= -K1(x)    d/dx J0(x) = -J1(x)     d/dx Y0(x) = -Y1(x)    
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Step 3: Evaluate the partial derivative at 
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4.6.2.3 Equivalency of Volume Bases 

Mass balance can be described in either ECS volume basis or tissue volume basis 
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Starting from the same ECS volume basis, one can derive Nicholson 2001, Chen 2002 and 

Bungay 2011’s expressions. Nicholson 2001: Nicholson, C. Rep. Prog. Phys. 2001, 64, 815-884. 

Chen 2002: Chen, K. C.; Hoistad, M.; Kehr, J.; Fuxe, K.; Nicholson, C. J Neurochem 2002, 81, 

94-107 and Chen, K. C.; Hoistad, M.; Kehr, J.; Fuxe, K.; Nicholson, C. J Neurochem 2002, 81, 
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108-121. Bungay 2011: Bungay, P. M.; Sumbria, R. K.; Bickel, U. J Pharm Biomed Anal 2011, 

55, 54-63. 

Derivation to Nicholson (2001): 
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All variables are defined in the same manner, the equation can simply be rewritten: 
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Derivation to Bungay (2011): 
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4.6.2.4 Equivalency of Permeability Methods 

 
Figure 4.6-1. Relationship between methods to evaluate overall permeability. 

(A) The partial derivative with respective to membrane radius, evaluated at the outer radius, of 

U(r,t) is the solution for the time-dependent overall permeability ( )P t . 

(B) From U’(r,t), at large time t, the integral term drops out, and the time-dependent permeability 

expressions become steady-state permeability expressions: 
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The membrane steady-state permeability is obtained by dropping clearance-related terms58,59: 
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(C) Assuming a fully permeable membrane ( m
 → 1, and Dm >> DECS), U(r,t) simplifies to the 

time-dependent normalized radial concentration distribution function in the ECS: 
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(D) 𝑃̂(𝑡) is numerically evaluated with a fully permeable membrane assumption ( m
 = 1, and Dm 

= 1 m2/s) to obtain PECS(t). 

(E) 𝑃̂(𝑡) is numerically evaluated with a fully permeable ECS assumption ( ECS
 = 1, and DECS = 

1 m2/s) to obtain Pm(t). 

(F) 𝑃̂(𝑡) is numerically evaluated to obtain overall permeability. 

(G) At t >> 0.001 s, Pm, t→∞ approximates Pm(t). 

(H) The partial derivative with respective to membrane radius, evaluated at the outer radius is the 

solution for PECS(t).  

(I) PECS(t) is numerically evaluated. 
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4.6.3 Additional Figures 

 
Figure 4.6-2. Membrane permeability as a function of time across a range of uptake rate constant with 

conditions similar to Chen (2002). 

 
Figure 4.6-3. Comparison between Chen's analytical (diamond) and numerical (dashed line) method at long 

time (left) and short time (right). 
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5.0 Comprehensive Quantitative Microdialysis: Experimental Method and Data Fitting 

5.1 Chapter Summary 

The term “quantitative microdialysis” has been used to describe experimental protocols 

and associated assumptions that provide an estimate of the extracellular concentration of an 

endogenous neuroactive species like dopamine (DA) in a brain region. Most prominently, the no 

net flux method uses step-changes in concentration of the sought-for species in the microdialysis 

inlet and steady-state measurements of the concentrations in the microdialysis outlet. Here, we 

describe the use of measurements made during the transition of the concentration in the 

microdialysis outlet from initial to final steady state concentrations to infer information including 

the concentration of DA far from the microdialysis probe, CECS∞. This procedure, comprehensive 

quantitative microdialysis (CQM), includes a set of assumptions, a mathematical model, an 

experimental method, and a curve fit method that can be used to determine physiological 

parameters that affect a transient response. The model based on earlier work by Bungay et al. is in 

the previous chapter. To improve time resolution and thus the quality of the resulting parameters 

derived from the curve fit, the experiment uses time-interleaved sampling. The curve fit uses an 

adaptive simplex optimization to adjust fitting parameters to find a minimum residual sum of 

squared differences between experiment and the model. Measuring transient responses to 

retrodialysis of 50, 100, and 150 nM DA using 45 s Fast Microdialysis in the rat nucleus 

accumbens, the CQM curve fit for each of three transients yielded CECS∞ and extraction fraction 

comparable to a standard no-net-flux measurement, and an uptake rate constant comparable to 

literature values. With 15 s measurements, tissue porosity could also be determined. CQM 
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dramatically reduced the experimental time while obtaining more biologically relevant 

information compared to traditional quantitative microdialysis. 

5.2 Introduction 

Microdialysis30,192 is not only the most widely used method for brain sampling9,12,31,32,193, 

but the number of new applications and studies for it has steadily risen35,45,194. It provides a sample 

for determination of the concentrations of target analytes in the dialysate. It is a robust technique 

that can be used in both anesthetized and awake animals of sizes ranging from small rodents195,196 

to primates197, including human198,199. In recent years, breakthroughs in brain microdialysis 

techniques have improved probe response time200,201, sampling in injured tissue86,122, the time 

resolution of online analysis74,76-78, and other aspect of the technique45. This has proved to be 

immensely useful despite the difficulties inherent in inferring concentration of the analytes in the 

brain from measured concentrations in dialysate103. So called “quantitative microdialysis 

techniques”54 can provide estimates of concentrations of substances in the brain with the 

assumption that the microdialysis recovery and extraction fractions are the same55,90.  However, 

these techniques require a significant experimental time which in part is due to the low time 

resolution of typical microdialysis measurements46,47 and the fact that the analyses are based on 

steady-state measurements. 

Recent improvements in microdialysis sampling and detection speed has allowed for 

determination of neurotransmitters and metabolites at the time resolution of 1-3 minutes47,72,76-

78,152,175 with online analysis , and at the time resolution of 2 seconds80,81 with offline analysis. At 

these data acquisition rates, transient responses to chemical97 and behavioral98 stimulations have 
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been observed and analyzed, providing a brief glimpse into what could be achieved with faster 

time resolution and better theoretical and data analysis tools. Research into microdialysis theory, 

on the other hand, has entered a period of inactivity with the most recent mass transport model61 

developed by Bungay et at. in 2011. This model was based on Bungay’s previous work60,84 as well 

as on analytical solutions obtained by Chen et at.58,59. It provided an analytical solution for mass 

transport in the cylindrical coordinate system that incorporates solute uptake and diffusion in the 

extracellular space (ECS). However, there are discrepancies202 between Chen’s and Bungay’s 

mathematical descriptions (which are based on the same underlying differential equation for mass 

transport) which were clarified in the previous chapter.   

Building from Bungay’s work and previous literature for time-dependent microdialysis56-

66,84, we have developed a technique called Comprehensive Quantitative Microdialysis (CQM) that 

can be used to obtain quantitative estimates related to diffusion of solutes and solute reuptake in 

the extracellular space by analysis of a transient response in solute concentration experimentally 

measured at the detector following a step change in the solute concentration at the probe inlet. 

Note that the overall system time response includes physiological parameters as well as 

experimental parameters. Thus, to deduce the physiological parameters, the method must 

adequately account for the experimental parameters. The technique has three components: 

mathematical model and associated assumptions, experimental method, and a curve-fitting 

method. In the previous chapter, I described the mathematical model and associated assumptions, 

and demonstrated it with a simulation tool and in vitro experiments. Here, I describe the in vivo 

experiment and the curve-fitting method.  

The fitting algorithm is based on Nelder-Mead Simplex Optimization203,204 (NMS), a 

commonly used numerical method for finding a minimum of an objective function (in this case, 
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the residual sum of square differences between experiment and the model, “RSS”) in a 

multidimensional space (in this case, the fitting parameters). The general principle of our NMS 

variant is similar to the Stochastic Nelder-Mead Simplex proposed by Chang (2012)205, where 

global and local random searches are added to NMS to enhance the probability of the fit to find 

global minimum. We named our NMS variant “Adaptive Random Sampling Simplex” (ARS) for 

its main feature of performing random new searches around the current minimum, adaptively using 

said minimum as input for the search.  

Using the comprehensive quantitative microdialysis mathematical model previously 

described202, the curve fit method was able to determine microdialysis transport time, probe 

dispersion, tissue morphology and solute uptake in the extracellular space. We demonstrated this 

approach with two examples. In one, we used the curve fit to determine transport time, dispersion, 

and solute concentration and uptake rate in the rat nucleus accumbens from transient response to 

retrodialysis of DA. Quantitative estimates of solute concentration and uptake rate were compared 

with a no-net-flux experiment. In the second example, we designed the experimental method to 

improve the effective time resolution of Fast Microdialysis from 60 s to 15 s by utilizing time-

interleaved sampling182, measuring the response to identical step-changes in retrodialyzed 

concentrations of DA once every 60 s four times with each of the four offset by 15s. The CQM 

curve fit was then used to determined tissue porosity and the four physiological and system 

parameters above from the transient response.   
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5.3 Methods 

5.3.1 Materials 

Chemicals, analytical-grade, to make artificial cerebrospinal fluid (aCSF: 142 mM NaCl, 

1.2 mM CaCl2, 2.7 mM KCl, 1.0 mM MgCl2, and 2.0 mM NaH2PO4, pH 7.4) and liquid 

chromatography mobile phase (sodium acetate, sodium octyl sulfonate, EDTA, acetonitrile, and 

acetic acid) were acquired from either Fisher Scientific (Fair Lawn, NJ) or Sigma (St. Louis, MO). 

Retrodialysis solution contains dopamine, aCSF and 50 M of L-ascorbic acid to prevent oxidation 

of dopamine67. Dopamine hydrochloride and L-ascorbic acid, analytical-grade or better, were 

purchased from Sigma (St. Louis, MO). 

5.3.2 Microdialysis Probe 

Concentric probes (280 μm diameter, 4 mm length membrane) were constructed from 

hollow fiber membranes (13 kDa MWCO, Spectra/Por RC, Spectrum Laboratories Inc., Rancho 

Dominguez, CA). The probe inlet and outlet were fused silica capillaries (75 μM I.D., 150 μM 

O.D., 110 cm long, Polymicro Technologies, Phoenix, AZ). The inlet capillary was connected to 

a gastight syringe (1 mL, Hamilton 81320, Hamilton Company, Reno, NV). Perfusate flow (0.60 

μL/min for 60 s sampling or 0.80 μL/min for 45 s sampling) was driven by a microliter syringe 

pump (PHD 4400, Harvard Apparatus, Holliston, MA). The outlet capillary of the probe was 

connected to the inlet port of the LC injector. A 100-psi backpressure regulator and a bubble-

induced dampener181 was added to the syringe for the time-interleaved experiment to improve flow 

accuracy and thus the quality for DA determination and of the curve fit.  
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5.3.3 Microdialysis Probe Implantation Procedure 

All procedures involving animals were approved by the Institutional Animal Care and Use 

of Committee of the University of Pittsburgh. Male Sprague-Dawley rats (250-350 g, Hilltop, 

Scottsdale, PA) were anesthetized with isoflurane (5% volume for induction, 2.5% volume for 

maintenance, Henry Schein Animal Health, Elizabethtown, PA) then wrapped in a heating blanket 

(37°C) and placed in a stereotaxic frame. Using flat skull coordinates, probes were lowered slowly 

(5 µm/sec) using a micropositioner (Model 2660, David Kopf Instruments, Tujunga, CA) into the 

nucleus accumbens (1.6 mm anterior, 1.4 mm lateral from bregma, and 8.0 mm below dura). 

Probes were secured with bone screws and acrylic cement, and the incision was closed with 

sutures. Anesthesia was removed and rats were placed in a BASi Raturn chamber (West Lafayette, 

IN) for housing with free access to food and water. Rats were allowed a recovery period of 24 hrs 

priors to any dopamine measurements.  

5.3.4 Online Microdialysis-LC-EC 

The microdialysis/liquid chromatography system was similar that used in our previous 

work97,98. The perfusate syringe was refilled every 24 hr, at least three hours prior to any dopamine 

measurement. For online experiments, the outlet capillary of the probe was connected to the LC 

injection valve (8-port nanobore, electrically actuated, C72NX-4678D, Valco Instruments, 

Houston, TX) so that the dialysate is loaded into one of two fused-silica sample loops (600 nL, 75 

μm I.D., 360 μm O.D, Polymicro Technologies, Phoenix, AZ). While one sample loop is being 

loaded from the probe, dialysate from the other loop is injected into the LC column for separation.  
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Capillary columns (7.5 cm long, 150 μm ID, Polymicro Technologies, Phoenix, AZ) were 

packed with 1.7 μm BEH C18 reversed-phase particles (Waters, Milford, MA) at a minimum 

pressure of 1400 bar. Mobile phase was delivered at a flow rate of 8.5 μL/min. (LC-30AD, 

maximum pressure of 1300 bar, Shimadzu, Columbia, MD). The column was heated to 47.5°C 

with a thermostatted heater. The mobile phase (100 mM sodium acetate, 1.75 mM SOS, 0.150 mM 

EDTA, 3.0 % v/v acetonitrile, and 2.0 % v/v acetic acid) was filtered and degassed with three 

passes of vacuum filtration using a 0.22 μm nylon filter (Osminics, Minnetonka, MN).  

5.3.5 Amperometric Detection 

Dopamine was detected at 400 mV (vs Ag/AgCl 3 M NaCl) using a BASi radial-style 

flowcell, 3 mm glassy carbon electrode with a 25 μm thick gasket and BASi Epsilon potentiostat 

(West Lafayette, IN). Dopamine peaks were integrated using MATLAB, then peak areas were 

compared against pre- and post-run calibration curves to determine dopamine concentration. The 

detector sensitivity was 0.106 ± 0.002 nA·s/nM with a limit of quantitation98,202 of 1.0 nM. 

5.4 Results and Discussion 

5.4.1 Adaptive Random Sampling Simplex Fitting 

All the processes that contribute to the shape of the resulting transient are included in the 

model202. Thus, our objective was to fit the model202 to raw experimental results (nM DA vs. time) 

from a step-change in concentration of DA in the microdialysis system. The processes/parameters 
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in the model aside from physiological parameters are the transport time from the beginning of the 

probe inlet to the end of injector loop, hydrodynamic dispersion in the microdialysis system, and 

averaging of the concentration over time due to the discrete nature of the LC analysis method (See 

Supplementary Information 5.6.1.1). The non-linear fitting algorithm, written in MATLAB 

(complete, annotated computer code is shown in Supplementary Information 5.6.2.1), fits the 

model to experimental data by adjusting parameters of the model to minimize residual sum of 

squared differences (RSS) between data and the model. The model contains the following 

parameters: characteristic time ti (characteristic time of the concentration profile at the end of 

injector loop, the difference between this and the time at which a step-change in concentration 

occurs in the microdialysis probe is the time required to transport the sample through the probe, 

inlet and outlet capillaries and injector loop), hydrodynamic dispersion standard deviation σ, ECS 

concentration CECS∞, uptake rate constant k, ECS porosity ϕ, and ECS tortuosity λ. We will refer 

to the curve fit of the four parameters ti, σ, CECS∞, and k to experimental data as a “four-dimensional 

ARS”, or 4DARS. The five-dimensional 5DARS method additionally includes the parameter 𝜙, 

and the six-dimensional 6DARS method additionally includes the parameter λ. When discussing 

the Nelder-Mead algorithm we will use analogous abbreviations:  4DNMS, 5DNMS and 6DNMS. 

The ARS fitting algorithm is based in part on Nelder-Mead Simplex Optimization203,204,206. 

In mathematics, a simplex is a generalization of a group of n + 1 points in an n-dimensional space. 

These points form a “surface” in the space where they reside and each n-dimensional point may 

be considered a “vertex”. In curve fitting applications, a simplex optimization that fits for n 

parameters uses calculations based on the n + 1 vertices. The simplex optimization calculates 

values of an “objective function” at each vertex to find the minimum (or maximum) value of the 

objective function. Typically, the objective function is the RSS and the algorithm seeks to 
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minimize it. NMS, noted for its simplicity in implementation and its speed, often provides a 

significant reduction (or improvement in a maximization problem) in the objective function with 

a relatively small number of function evaluations. However, NMS has a strong tendency to 

converge to a local minimum. Due to the presence of noises in practical experimental data, local 

minima exist which hinder the algorithm’s ability to find best-fit parameters. This a problem well-

documented59,189,207 with many proposed solutions208-211. The ARS algorithm, described below, 

was devised to improve the simplex optimization’s likelihood to find the global minimum. It is an 

improvement over NMS based on the Stochastic Nelder-Mead Simplex205, that increased the 

likelihood of finding best fit parameters.  

5.4.1.1 Minimum-Searching Algorithm 

An initialization protocol was created to generate favorable staring conditions. In the 

initialization protocol, the user must give a set of fitting parameters to use as a start point for the 

process. Another start point is created by obtaining estimation for CECS∞ from a linear regression 

of the steady-state concentrations to Bungay’s steady state microdialysis model84, for ti and  from 

a curve fit to Taylor-Aris dispersion77,97, and for k ϕ and λ from user’s input. The best of these 

starting points is augmented with small number of points (e.g. 6 for 5DARS) in the local space and 

a very large number of points (e.g. 32,000) over the entire parameter space. The n + 1 points with 

the lowest RSS are taken as the initial simplex.  

In the ARS process, in every iteration, the probability of the current simplex being in a 

local minimum is inferred through the relative standard deviation (RSD) of the objective function’s 

values at the n + 1 vertices of the simplex. The lower the RSD is, the higher the probability that 

the simplex is in a global minimum. Then, a random search is performed to find a better minimum. 

The scope of this random search is a function of the RSD (see Supplementary Information 5.6.2.3). 
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The ARS procedure is “adaptive” as it continually uses new information (RSD of RSS of the 

current simplex) as input for its next action. Complete, annotated computer code is shown in 

Supplementary Information 5.6.2.1, the minimum-searching algorithm is outlined in 

Supplementary Information 5.6.2.2, and ARS formulation is explained in Supplementary 

Information 5.6.2.3.  

5.4.1.2 Second Fitting Pass with Curvature Weight 

To further enhance sensitivity for k and 𝜙, the two most biologically relevant fitting 

parameters, a two-pass fitting strategy was developed from 5DARS, which is aptly named 

5DARS2P (complete, annotated computer code is shown in Supplementary Information 5.6.2.1). 

In 5DARS2P, the minimum found from a normal 5DARS algorithm is kept as starting point for 

the second pass. The second pass relies on the same fitting algorithm as the first past, however, 

only experimental data around the transient portion of the measurements are used for RSS 

calculation. The transient portion is defined as -4σ to +6σ (acquired from first fitting pass) from 

the midpoint defined as the DA concentration that is midway between the lowest and highest 

concentrations. The transient portion is not symmetrical because the uptake rate only affects the 

curvature after midpoint and not before.  

5.4.1.3 Sensitivity of the Curve Fit 

The curve fit optimizes a large number of parameters (4-6) to a single response, thus careful 

consideration of the effect of correlated parameters is needed. It is important to determine that the 

transient response curve has a selective and sensitive response to each of the curve fit parameters. 

Simulating a transient microdialysis response to a retrodialysis of 150 nM DA solution, using 

probe parameters from Ngo 2020a at the volumetric flowrate of 0.600 μL/min, and ti = -60 s, σ = 
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30 s, CECS∞ = 10 nM, k = 0.2 s-1, 𝜙 = 0.2, and λ = 1.6, we investigated changes in the transient 

response curve from to changes in each of those parameters across a reasonable experimental range 

(ti = -100 to 100 s, σ = 0 to 100 s, CECS∞ = 0 to 100 nM, k = 10-4 to 103 s-1, 𝜙 = 0.01 to 1, and λ = 

1 to 3). Figure 5.4-1 shows the curve’s responses to ti, σ, CECS∞, and k. The curve’s horizontal 

displacement is governed by ti (Figure 5.4-1A), its horizontal spread is governed by σ (Figure 

5.4-1B), its vertical displacement is governed by CECS∞ (Figure 5.4-1C), and its vertical spread by 

k (Figure 5.4-1D). While the curve’s responses to ti, σ, and CECS∞ are approximately linear, the 

curve’s response to k is roughly linear to log k. We concluded that the curve fit is sensitive to ti, σ, 

CECS∞, and k and that correlation among the parameters is low. As described below, 4DARS fitting 

of these parameters to simulated noisy data produces consistent and accurate results with narrow 

confidence intervals (C.I.) (Figure 5.4-4A). 

The curve’s response to 𝜙 and λ (Supplementary Information Figure 5.6-2) is similar to 

that of k thus these three fitting parameters are correlated. However, while they are correlated, 

useful information about k, 𝜙, and λ, thus useful biological information, can be obtained from the 

curve fit. Shown in Figure 5.4-2 is the RSS surface of an in vivo experimental data set, obtained 

by varying two (k and 𝜙, Figure 5.4-2A) or three (k, 𝜙 and λ, Figure 5.4-2B) parameters across the 

same range as above, while keeping the others constant. The RSS response to k and 𝜙 (Figure 

5.4-2A) has a very narrow and well-defined “valley” that contain RSS optima, which is centered 

around k ≈ 0.18 and 𝜙 ≈ 0.20.  A robust fitting of both k and 𝜙 to experimental or simulated data 

(5DARS or 5DARS), produces accurate quantitative estimates with a small confidence interval 

(Table 5.4-1). An uptake rate constant and tissue porosity estimation with 10-20% RSD is on par 

with contemporary measurements using established methods167,212.  
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The RSS response to k, 𝜙 and λ (Figure 5.4-2B) is a 3D sheet with a noisy RSS surface, 

however, it still has a well-defined segment that contain RSS optima, which is centered around k 

≈ 0.2, 𝜙 ≈ 0.2 and λ = 1.6.  While the RSS surface is still relatively sensitive to k and 𝜙, the RSS 

surface is not sensitive to λ, resulting a large confidence interval when 6DARS is attempted. 

Fortunately, it has been demonstrated by many research groups, using different techniques, that 

tortuosity for a certain species, measured for a certain brain region, with respective to a certain 

molecule is consistent165,167,184,213-216. Therefore, while it is possible to estimate ECS tortuosity λ 

using transient microdialysis, we do not recommend it if such a measurement already exists in the 

literature.  
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Figure 5.4-1. Simulated microdialysis transient response to a 150 nM DA retrodialysis.  

Shown are the responses when each of the four parameter (A) ti (B) σ (C) CECS∞ and (D) k is varied while the 

others stay constant. A 60 s LC sampling time was simulated, using a theoretical 1 s time-interleaved time 

resolution.  
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Figure 5.4-2. Residual Sum of Square Surfaces (RSS), calculating by varying the two (A) two, inset: RSS 

centered about minimum, or three (B) correlated parameters to in vivo experimental data.  

The global minimum (blue) consists of a small, defined region with a narrow range of k and 𝜙 centered at k ≈ 

0.18 s-1 and 𝜙 ≈ 0.20, and a larger range of λ centered at λ ≈ 1.6. The white space regions consist of RSS above 

the maximum plotted.  

 

Figure 5.4-3. Comparison between distribution of k (A) and 𝜙 (B) from 1000 repeats of 5DNMS (blue), 

5DARS (red), 5DARS2P (orange) and 4DARS (purple). 

The probability density curve is calculated using Kernel Density Estimator with a bandwidth of 0.01 (s-1 for k, 

unitless for 𝜙). Out of 1000 repeats, the 5DNMS, 5DARS, 5DARS2P, 4DARS methods find the best fit 

parameters 61.6%, 45.8%, 80.9% and 100% of the time, respectively. 
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5.4.1.4  Confidence Interval 

The ARS fitting method is non-deterministic. Repeating the same fit to the same set of data 

multiple times using completely identical conditions (i.e. running an identical MATLAB script 

repeatedly) does not yield identical results. The NMS fitting method is deterministic; however, it 

is chaotic. Repeating the same fit to the same set of data using identical conditions yields identical 

results, however, if the starting conditions are changed then the results change in an unpredictable 

(but repeatable) manner. As demonstrated above, however, the global optimum is in a valley that 

is well defined (Figure 5.4-2). For a robust fit, even if the fit is non-deterministic, results from 

repeated fitting should be representative of the optimum on average. Figure 5.4-3 shows the 

distribution of k and 𝜙 from 1000 repeats of 5DNMS (blue), 5DARS (red), 5DARS2P (orange) 

and 4DARS (purple) to a set of in vivo experimental data. Distribution of the other fitting 

parameters is shown in Supplementary Information Figure 5.6-3. The probability density 

distribution curve is calculated using an alternative method to a histogram, the Kernel Density 

Estimator217,  to obtain a smooth and continuous probability density distribution, using a 

bandwidth of 0.01 (s-1 for k, unitless for 𝜙). Out of 1000 repeats, the 5DNMS converged 

(successfully found best-fit parameters) 65.2% of the time, while 5DARS converged 45.8% of the 

time, 5DARS2P converged 80.9% of the time, and 4DARS always converged. In term of 

distribution quality, the curve fit improves in the order 5DNMS, 5DARS, 5DARS2P, and 4DARS. 

Particularly for the distribution of k and 𝜙 as shown in Figure 5.4-3, the two methods 5DNMS and 

5DARS produce a broad distribution, while 5DARS2P and 4DARS (fixed 𝜙) yield narrow 

distributions with a bell curve resembling a Gaussian distribution. Therefore, 5DARS2P and 

4DARS are the best curve fit methods for 5D and 4D fits, respectively. The 5DNMS and 5DARS 

methods should not be used because of their poorly distributed fitting parameters. 5DARS2P 
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results in the range k of 0.02 to 0.75 (s-1) and 𝜙 of 0.11 to 0.48 (unitless), while 4DARS gives a 

narrow range of k of 0.015 to 0.22 (s-1) with a fixed 𝜙 value of 0.20 (unitless). The 4DARS 

produces a very sharp and narrow distribution for k, while the 5DARS2P produces a broader 

distribution peak for both k and 𝜙. This is because the transient response curve is sensitive to k 

when 𝜙 is fixed, and k and 𝜙 are correlated, as discussed in the previous section. Both methods 

produce good parameter distribution for ti, σ, and CECS∞ (Figure 5.6-3). Repeating the fit 1000 

times therefore provides a population of each fitted parameter representative of the global minima, 

from which a confidence interval can be calculated.  

As shown in Figure 5.4-3 and Supplementary Information Figure 5.6-3, the probability 

density distribution curves of the fitted parameters resemble Gaussian distribution. The width of 

this distribution of 1000 repeats (or any large number of repeats) can be used to estimate the error 

of the curve fit218,219. Here, we use the 95% confidence intervals (95% C.I.) of the fitted parameter 

from the repeats to estimate the 95% C.I. of the curve fit from the repeats. We compared this 

estimation with the commonly used bootstrap confidence interval220-222 (Supplementary 

Information 5.6.1.2 to 5.6.1.4). We found that both methods produce statistically identical 95% 

C.I. (F-test) for all five fitted parameters on all four curve fit methods (Table 5.6-1).  

5.4.1.5 Fit Robustness 

We simulated 16 data sets to test the robustness of the four fitting methods against changes 

in uptake rate constant, microdialysis time resolution, noise in the data, and membrane molecular 

weight cutoff (MWCO). The testing data are simulated with either a low (k = 10-2 s-1) or high (k = 

10 s-1) uptake rate constant, low (15 s) or high (1 s) sampling frequency (time-interleaved182,202 

from 60 s and 4 s microdialysis sampling interval, respectively), low (normally distributed, relative 

RSD = 1%) or high (normally distributed, relative RSD = 10%) noise in dialysate DA , and low 
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(13 kDA) or high (18 kDA) MWCO. The condition in uptake rate constant approximates the 

range for DA in rat nucleus accumbens that we and others102,189 measured. The two MWCO 

chosen are often used in microdialysis experiments, higher MWCO results in better solute 

recovery223 (higher extraction fraction for the same solute but at the same time more solutes). 

The sampling frequencies are based on work presented here and in the literature80,81, and noise 

represents a wide range of uncertainties  for such an experiment. The curve fits were repeated 

100 times. Shown in Figure 5.4-4A is a comparison of relative errors in the fitting parameter k 

for the two selected curve fit methods (4DARS and 5DARS2P). Figure 5.4-4B has relative error 

in the fitting parameter 𝜙 from 5DARS (𝜙 is fixed for 4DARS). Results for the three fitting 

parameters ti, σ, and CECS∞ are shown in Figure 5.6-4. 

Across all simulated conditions, there is no qualitative advantage between 5DARS2P and 

4DARS with respect to fitting of ti, σ, and CECS∞ (Figure 5.6-4). For fitting of k, 4DARS is the clear 

best method for k (relative error less than 36% for all data sets, 95% C.I. smaller than 6% for all 

data set) because 𝜙, which is correlated with k, is not included in the fit.  Fitting results for ti, σ, 

and CECS∞ are usually consistent and accurate (typically less than ±5% error) and have narrow 

confidence intervals (typically smaller than ±1%). Fitting results for k and 𝜙 are less accurate when 

fitting conditions are not favorable (e.g. high uptake rate of 10 s-1 or noise with relative standard 

deviation of 10%), typically underestimating k by 50-60% (with one edge case, set 10 is 

overestimated 3.5 times the actual value), and overestimate 𝜙 by 40-50%. As shown in 

Supplementary Information Figure 5.6-5 and Figure 5.6-6, even with a very high uptake rate 

constant k of 103 s-1, k can be estimated with less than 70% relative error, and 𝜙 can be estimated 

with less than 90% relative error. When k is overestimated, 𝜙 is underestimated, and vice versa. 

At ideal conditions (low uptake rate and low noise, e.g. sets 9 and 11), all four curve fit methods 
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produce accurate and precise results. There are edge cases (e.g. set 10), where k estimation from 

5DARS is inaccurate. We have not been able to identify the source of inaccuracy.  

 

 

Figure 5.4-4. Comparison between relative error of (A) k and (B) 𝜙 from 100 repeats of 5DARS2P (orange) 

and 4DARS (purple, fixed 𝜙 = 0.2) to 16 simulated data sets.  

The tables denote experimental conditions tested: Uptake rate constant k (s-1) Low = 10-2 High = 1; 

Microdialysis sampling frequency (s)  Low = 15; High = 1; Noise σ (Normally distributed) Low = 1%; High = 

10%; MWCO (kDa) Low = 13; High = 18. 5DARS2P produces no successful fit for set 16. 

5.4.2 Curve Fit of In Vivo Experimental Results 

5.4.2.1 Comparison between Quantitative Transient Microdialysis and No Net Flux 

We used 4DARS fitting of the CQM model202 to obtain quantitative estimates of ti, σ, 

CECS∞, and k from transient responses measured experimentally, in vivo online, on an awake and 

freely moving animal using 45 s microdialysis determinations of dopamine in rat nucleus 

accumbens. Tissue porosity 𝜙 (0.2) and tortuosity λ (1.6) were fixed, using literature values61 for 

the same animal and brain region. These results are compared to quantitative estimates from the 
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no net flux method, which primarily estimates steady-state extraction fraction Ed, CECS∞ 
12 and is 

seldomly used to estimate k 185. From the CQM model202, steady state extraction fractions Ed,t→∞ 

can be estimated by calculating the time-dependent extraction fraction at large time: 
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Equation 5.4-1. Time-dependent extraction fraction Ed(t) 

where Q (m3/s) is the flow rate of the dialysate, So (m
2) is the outer surface area of the membrane, 

and (t)P (m/s) is the time-dependent overall permeability defined in the CQM model202. These 

quantities (Ed(t) and (t)P ) are intermediate steps in the CQM model in predicting Cdet(t) from 

known and fitted parameters.  

The transient responses were induced by 30-min long retrodialysis of 50, 100, or 150 nM 

DA. The entire response curve was used for data fitting, which also includes approximately 30-

min of basal measurement before DA retrodialysis. To improve MATLAB convolution calculation 

speed, the time axis of each response was offset so that the midpoint as defined above is near zero. 

The results were then compared with the traditional quantitative technique, no net flux54,183, in 

which linear regression is performed on 45 min of basal data before the first transient and the 

steady-state values from each transient response. Identifying the steady state is non-trivial, as 

Taylor-Aris dispersion and solute uptake in the brain broadens the curve, and the in vivo 

measurements are inherently noisy. The steady state of a transient response was approximated to 

begin when the transient responses reached 95% of the average of the 30 highest measured 

concentrations. Notably, there is a periodic oscillation in DA concentration at this steady state. The 

periods of this fluctuation are different between the three retrodialysis runs. Additionally, this 

fluctuation is not present in in vitro calibration nor in in vivo measurements in this or our prior 
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work97,98. There is also no literature precedent of Fast Microdialysis measurement of steady-state 

retrodialyzed responses. We hypothesize that this oscillation could have a biological origin69 that 

we have been not able to identify.   

Shown in Figure 5.4-5A is the No-Net-Flux linear regression from basal concentrations (n 

= 55) and retrodialysis of (nM DA) 50 (n = 38), 100 (n = 36), and 150 nM (n = 32), where the 

slope of the regression is the extraction fraction Ed (0.245 ± 0.007), and the X-intercept of the 

regression is the quantitative estimate for CECS∞ (17±3 nM). This experiment was performed in 3 

hours using 45 s microdialysis. For a traditional 10-min microdialysis experiment, a full day of 

experimental work per extraction fraction determination is common102,185. In contrast, each of the 

hour-long transients at 45 s time resolution can be used for 4DARS fitting of the CQM model to 

the data. Each transient fitting gives ti, σ, CECS∞, and k, as well as Ed,t→∞. Values of CECS∞ obtained 

from the curve fits are 18.48±0.03, 15.8±0.3, 14.26±0.08 nM for the 50, 100, and 150 nM 

retrodialysis, respectively. They, as well as CECS∞ averaged from all three fits (AVG±SEM) 

(16.2±1.2 nM), are statistically identical (t-test) to ones obtained from the No-Net-Flux regression 

(17±3 nM). The extraction fractions, Ed, determined from the three transients were 0.227±0.004, 

0.256±0.005, 0.256±0.005 for 50, 100, and 150 nM retrodialysis, respectively, 0.246±0.01 

averaged from all three). These are comparable with the No-Net-Flux regression (0.245 ± 0.007). 

Finally, the uptake rate constant k (0.52±0.00, 1.15±0.00 and 1.15±0.00 s-1 for 50, 100, and 150 

nM retrodialysis, respectively, 0.94±0.21 averaged from all three) is comparable with previous 

measurements (1.9-2.9 s-1) made in the same brain region (nucleus accumbens) of rat using 

microdialysis185, but at a significant experimental time cost (2 days per k determination). The 

analytical instrument parameters ti and σ cannot be obtained from a No-Net-Flux experiment and 

are not traditionally determined in a microdialysis experiment. However, they are of immense 
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usefulness to behavior studies. The value of ti can be used to relate changes in the measured DA 

concentration to specific behavior recorded as a video98. The value of σ dictates the response time 

of a probe and the time resolution of the method.  It is important to note that microdialysis in 

operant chambers is carried out with a swivel in the microdialysis flow stream. This is inimical to 

time resolution. We earlier reported on a rotating operant chamber which allows for video 

observation of behavior and fast microdialysis98. In short, quantitative analysis using CQM 

provides more information than the traditional quantitative technique, but at a fraction of the 

experimental time cost. 

 

Figure 5.4-5. Comparison between two quantitative microdialysis techniques:  

(A) no net flux linear regression from basal concentrations (n = 55) and 50 (n = 38), 100 (n = 36), and 150 nM 

(n = 32) 30-min retrodialysis of DA, line of best fit (black) is generated from slope and intercept from the 

regression; and (B) 4DARS curve fit of 150 nM 30-min retrodialysis of DA, Blue: curve fit prediction, 

Orange: experimental measurements. 

5.4.2.2 In Vivo Quantitative Transient Microdialysis at 15 S Effective Time Resolution  

We obtained quantitative estimates of ti, σ, CECS∞, k and 𝜙 using 5DARS fitting of the CQM 

model to transient responses measured experimentally, in vivo online, on an awake and freely 

moving animal using microdialysis at 15 s effective resolution. Tissue tortuosity λ (1.6) was fixed, 
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using a literature value61. Additionally, the tissue porosity 𝜙 (0.2) was fixed for a 4DARS fitting. 

Eight transient responses to 5-min retrodialysis of 150 nM DA were measured using 60 s 

microdialysis in conjunction with time interleaved sampling (Supplementary Information 5.6.1.1) 

to determine duplicate responses with 15 s time resolution. As previously done, the time axis of 

the combined response was offset so that the middle Cdet data point of the response near zero. 

Shown in Figure 5.4-6 is a comparison between the predicted curve calculated with 5DARS and 

the in vivo experimental data.    

The fitted parameters from both the 4DARS and 5DARS2P curve fits are shown in Table 

5.6-1. The curve fits estimated comparable even if statistically different mean (t-test) and 95% C.I. 

(F-test) for the fitting parameters ti, , CECS∞ and k. We noted that both CECS∞ and k measured on 

this single animal were lower than results typically measured by our own method and published 

results, but they are in the same order of magnitude. These results are not out of the ordinary, as 

CECS∞ and k estimates in the literature have differed by one (k)102,189 to two (CECS∞)49,52,90 orders 

of magnitudes. Lastly, tissue porosity 𝜙 determined by the curve fit (0.20±0.03) is comparable to 

literature166,184,224. All of these parameters had very narrow 95% C.I.  (±1% or less for ti, , CECS∞ 

and k; ±15% for 𝜙) because the fits were repeated 1000 times and therefore the uncertainty of the 

mean is small. These initial results in this work showed that transient microdialysis analyzed with 

CQM can greatly expand the quantitative capability of microdialysis techniques toward 

measurement regimes (e.g. tissue morphology) that are previously not accessible while 

significantly reduces experimental time cost at the same time.  
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Figure 5.4-6. 5DARS curve fit of transient response to retrodialysis of 150 nM DA at 15 s effective time 

resolution.  

Orange: in vivo experimental, Blue: curve fit. 

Table 5.4-1. Comparison between 4DARS and 5DARS curve fits (1000 repeats) of in vivo experimental data 

at 15 s effective time resolution. 

 4DARS 5DARS2P 

Transport time ti (s) -57.93±0.01 -57.95±0.01 

Dispersion standard deviations (s) 32.97±0.01 32.97±0.00 

 Tissue concentration CECS∞ (nM) 3.95±0.04 3.92±0.01 

Uptake rate constant, k (s-1) 0.18±0.00 0.19±0.00 

Tissue porosity ϕ 0.2 (fixed) 0.20±0.03 

5.4.3 Limitations of the Method 

The CQM model relies on a set of assumptions and thus poses limitations that we discussed 

in the accompanying paper202 and summarized here. The trauma layer is not considered thus 

extraction fraction is overestimated and solute concentration in the ECS is underestimated because 

extraction fraction and relative recovery are assumed to be equal. First-order uptake rate constant 

is assumed instead of Michaelis-Menten kinetics, thus is only valid for solute with high Km -
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compared to solute concentration. The model assumed one-dimensional radial mass transport and 

as a result, calculations are inaccurate202 for short probe (1.7 mm or less), and for species with very 

low uptake rate (10-2 s or less) at long time (600 s or more). Lastly, MATLAB numerical precision 

limits the range of uptake rate calculation to 10-6 to 104 s-1 for typical rates of diffusion (order of 

10-10 m2/s). In this work, the CQM experiment and curve fit methods made additional assumptions 

and therefore have additional limitations that we must recognize. 

5.4.3.1 Method Validation 

The present work was performed on a limited number of animals (n = 2), measuring a 

single neurotransmitter (DA), in a brain region specially chosen to be favorable to first-order 

uptake rate constant assumption (rat nucleus accumbens). Further experimental work, including 

validation of quantitative estimates by a separate technique (i.e. sensor), is needed to validate our 

findings. However, we note that these findings are consistent with existing literature; and the 

nature of this work focuses on developing and demonstrating the technical feasibility of a 

comprehensive mathematical, experimental and data analysis framework, rather than answering a 

biological question.  

5.4.3.2 Parameter Correlation 

We inferred from simulations that the curve fit is sensitive to ti, σ, CECS∞ and k, and k is 

correlated to 𝜙 and λ. We inferred from curve fits of synthesized data over a range of experimental 

conditions that the curve fit is robust. However, these are qualitative assessments and the curve fit 

can benefit from a quantitative analysis of parameter orthogonality, correlation, and 

insensitivity225-227. 
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5.4.3.3 Time-Interleaved Sampling  

We used a time-interleaving process to increase the time resolution of our transient 

response measurement. The success of this process depends on numerous (eight) transient 

responses from a retrodialysis of a neuroactive solute (dopamine) on an animal being identical. 

While we successfully reconstructed a single transient and elucidated useful biological 

information, the assumption may not always hold. Microdialysis measurements in the seconds 

timescale80 is feasible and will significantly improve transient response measurements.  

5.4.3.4 Parameter Space of the Curve Fit  

Even though the curve fit is robust and can determine k and 𝜙 with respectable accuracy 

and precision with k as high as 103 s-1 as discussed and shown in Supplementary Information Figure 

5.6-5 and Figure 5.6-6, the same figures also show that even with a “perfect” theoretical probe (1 

s dispersion standard deviation) and detector (0.1 s response time) with no noise, our method 

cannot determine with complete accuracy k and 𝜙 simultaneously when k is higher than 1 s-1.   

5.5 Conclusion 

In this work, we have presented the last two out of the three components of Comprehensive 

Quantitative Microdialysis (CQM): (1) a mathematical model and associate assumptions to 

describe the transient response of the solute measured at detector as affected by phycological and 

analytical system factors, (2) an experimental method to determine a transient response in solute 

concentration at the detector resulting from a step change in solute concentration at the probe inlet 

at an effective time resolution of 15 s, online, in vivo, on an awake and freely moving animal; and 
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(3) a simplex optimization method for curve fitting a model to the transient response to determine 

biological (tissue porosity, solute ECS concentration and uptake rate) and instrument (transport 

time, dispersion) factors that affect the transient response. At the time resolution of 45 s, CQM can 

determine transport time, dispersion, solute concentration, uptake rate, and extraction fraction from 

a single transient response. Extraction fraction can also be calculated. At the time resolution of 15 

s, CQM can additionally determine tissue porosity.  The solute ECS concentration and calculated 

extraction fraction from the curve fit are comparable to results from a No-Net-Flux experiment 

performed at the same time on the same rat. The measured uptake rate constant is comparable to 

literature values measured with microdialysis in the same brain region. Transient response fitting 

with CQM not only provides more information than traditional, steady-state microdialysis, but in 

addition the experimental time is also significantly reduced. These results represent a step forward 

for the microdialysis technique as a whole. This present work also shows a much-needed 

improvement in microdialysis time resolution of dopamine, which is an on-going goal in our 

laboratory and many others74,80,81,174,200,228,229. 

5.6 Supplementary Information 

5.6.1 Methods 

5.6.1.1 The Influence of Time Interleaved Sampling and Loop Averaging 

Time interleaved sampling is a technique used in signal processing182, where multiple 

analog-to-digital converters are used in parallel to digitize signal from a single continuous analog 

source at the same data acquisition rate but the timing of each converter is offset from the others 
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by a fraction of the time corresponding to the data acquisition rate, thus increasing the time 

resolution. Time interleaved sampling microdialysis is an analogous technique that uses a single 

detector is to measure N repeats of the transient response. The repeats assumed to be identical. 

Olson and Justice (1993) 168 showed that hour-long transient repeats made across multiple rats on 

multiple days are repeatable and can be used create a single response.  

It is important to account for the fact that the LC injector loop provides an average 

concentration for the volume captured by the loop when contemplating time interleaved sampling. 

Figure 5.6-1 shows a graphical representation of time interleaved sampling microdialysis where 

the effective time resolution is tripled for a chromatographic detector. For a chromatographic 

detector, the concentration determined for a sampling interval is the average of the concentrations 

sampled in the loop (Figure 5.6-1, top).  As demonstrated, even though the time interleaved 

sampling process increased the effective time resolution and the discrete measurements now better 

represent the curvature of the transient response, the response measured by a discrete detector is 

different than that measured by a continuous detector. This is because the concentration gradient 

in a loop is averaged to a single data point. The smaller the sampling loop (thus, the sampling 

time), the closer to the continuous measurement the discreet measurement is.  
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Figure 5.6-1. A graphical illustration of time interleaved sampling microdialysis which a chromatographic 

detector where the effective time resolution was tripled from 45 s (bottom, left) to 15 s (bottom, right).  

The boxes on top represent the continuous concentration gradient in the sampling loops. The solid line 

represents a transient response measured by a continuous detector, and the dots by a chromatographic 

detector. The average concentration measured from a loop is assigned to the experimental time at the 

injection time (end of loop). 

5.6.1.2 Bootstrap Confidence Interval 

The bootstrap approach220,222,230 can be used to estimate the uncertainty of the fitted 

parameters. We present this uncertainty as the 95% confidence interval (95% C.I) of the fitted 

parameters. To sample a distribution of a fitting parameter, the fitting routine is repeated N times 

to acquire N samples of the fitting parameter. The fitting routine uses completely identical 

conditions, however because it is non-deterministic, each repeat produces a different result for 

each fitting parameter. The N samples are resampled with replacement M times. The bootstrap 

principle postulates that the distribution of the M resamples approximates the distribution of the N 

samples, and for a chosen statistic (e.g. mean), the statistic computed from M resamples 
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approximates statistic computed from N samples. While repeating the fitting algorithm to obtain a 

large number of N for a well-sampled distribution is hard, resampling to create a well-sampled 

distribution is trivial, and M can be many times larger than N. The procedure is then repeated for 

the remaining fitting parameters. In practice, the fitting routine is repeated 100 to 1000 times for 

obtain fitted parameter samples, then the results are resampled 10,000 times for bootstrap 

confidence interval.  

5.6.1.3 Empirical Bootstrap 

For each parameter, the error  between a sampled mean x and true mean  is: 

 x = −  

Equation 5.6-1. Error of the sampled mean 

and the error *
  between the sampled mean x  and a resampled mean 

*
x  is: 

 
* *

x x = −  

Equation 5.6-2. Error of the resampled mean 

The bootstrap principle offers that the distribution of *
 approximates the distribution of 

 . Since the resample count M is a very large number, the distribution of *
 can be found by 

numerical ranking, then the 95% C.I. of 
*

x is 
0.025

* * * *

0.975
,x x  − −

 
, which approximates the 95% 

C.I. of x : 

 
0.025

* * * *

0.975 0.025 0.975
, ,x x x x      − −  − −

  
 

Equation 5.6-3. Empirical 95% C.I. 
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5.6.1.4 Studentized Bootstrap 

The symmetric t-statistic is calculated for each resample: 

*

*

*

n X X
T



−
=  

Equation 5.6-4. Bootstrapped symmetric t-statistic 

Where *
T  is the bootstrapped t-statistic of a resample, *

X is the mean of the resample, X

is the mean of the sample, 
*

 is the standard deviation of the resample, and n is the size of the 

resample and of the sample. The 1- confidence interval for true mean  is 
( )

*

c
X T

n

 
 

 
. Where 

 is the standard deviation of the sample, 
( )

*

c
T 1- quantile of the distribution of T*, which 

approximates the 1- quantile of the distribution of T.  

5.6.2 Computer Codes 

5.6.2.1 Ngo2020_ARS2P Curve Fit 

tic 
close all 
clear 
format shortG 
warning('off','MATLAB:integral:NonFiniteValue') 
load('invivo_6D_data'); %load data 
                        %x contains time in min 
                        %y contains nM [DA] 
%System parameters 
time_resolution = 1; %s, simulation time resolution 
Q = 0.6; %uL/min, volumetric flow rate 
Q = Q*1e-9/60; %m^3/s, volumetric flowrate 
ts = 60; %s, LC sampling time 
Cin = 150; %retrodialyzed concentration 
D = 6.0e-10; %m^2/s free solution diffusion coefficient 
lambda = 1.6; %ECS tortuosity 
Dm = 1.2734e-10; %m^2/s, membrane diffusion coefficient 
phi_m = 1; %nominal membrane porosity 
L = 4e-3; %m, membrane length 
ro = 140e-6; %m, membrane outer radius 
ri = 100e-6; %m, membrane inner radius 
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%Fitting parameters 
start_ti = -60; %s, starting value for ti, offset raw data to as close to 0 

as possible 
start_sigma = 30; %s, starting value for Taylor Aris sigma 
start_kext = 0.2; %1/s, starting value for reuptake rate constant 
start_Cinf = 5; %nM Da, starting value for Cinf 
start_phi = 0.2; %starting value for phi 
no_sample = 1000; %number of fittings, to calculate fitting statistic 
                %must be greater than or equal to 20 for bootstrap confident 

interval 
bound_ti = 200*[-1 1]; %bounds for ti 
bound_sigma = 200*[1e-6 1]; %bounds for Taylor Aris sigma 
bound_kext = [1e-4 5e3]; %bounds for uptake rate constant 
bound_Cinf = [0 25]; %bounds for Cinf 
bound_phi = [0.1 0.5]; %bounds for phi 
termination_condition = 1e-8; %test criterium, std/avg last n tests, where n 

is number of fit variables 
second_termination_condition = 1e-6; %test criterium, std/avg last n tests, 

where n is number of fit variables 
max_iter = 5000; %maximum number of iterations 
ARS_autostart = 0; %# of run before starting ARS 
alpha = 2; %ARS variable for size, cap no_extend to alpha*200 
beta = 0.2; %ARS variable for extent, must be < 1, cap size_extend to 

beta*parameter value 
RSS_threshold = 0.05; %threshold from global minimum to count as a result, 

relative 
weight_type = 1; %1. full data weight 2. curvature-centric 
%Dependent variables calculation 
start_point = [start_ti start_sigma start_kext start_Cinf start_phi]; %create 

array of starting points 
lower_bounds = [bound_ti(1) bound_sigma(1) bound_kext(1) bound_Cinf(1) 

bound_phi(1)]; 
upper_bounds = [bound_ti(2) bound_sigma(2) bound_kext(2) bound_Cinf(2) 

bound_phi(2)]; 
start_kext_log = log10(start_kext); 
bound_kext_log = log10(bound_kext); 
start_point_log = [start_ti start_sigma start_kext_log start_Cinf start_phi]; 
lower_bounds_log = [bound_ti(1) bound_sigma(1) bound_kext_log(1) 

bound_Cinf(1) bound_phi(1)]; 
upper_bounds_log = [bound_ti(2) bound_sigma(2) bound_kext_log(2) 

bound_Cinf(2) bound_phi(2)]; 
no_var = length(lower_bounds); %number of fitting variables 
no_global_random = 2^15; % number of global random starting points 
%!!!The time axis must be symmetrical for convolution to work properly 
%!!!The time axis must be centered at zero, otherwise code runs very slow 
max_t = 1.5*60*max([abs(min(x)) max(x)]); %maximum boundary to time axis, 

extended by 1.5 
                                                  %longer than time x to 

accomodate calculations  
max_t = round(max_t); %prevent a bug where t is not a whole number   
t = linspace(-max_t,max_t,(2*max_t/time_resolution)+1); %time vector 
%Create a step function 
step = zeros([1,length(t)]); %preallotcate step function 
for i = 1:length(t) 
    if t(i) <=0 
        step(i) = 0; %step is 0 at t <=0 
    else 
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        step(i) = 1;%step is 1 at t > 0 
    end 
end 
So = 2*pi*ro*L; %m^2, membrane surface area 
Pmo = phi_m*Dm/(ro*log(ro/ri)); %m/s, membrane permeability, this log is 

natural log 
Cin = Cin.*step; %create step function for Cin 
%Package the system parameters for local functions 
system_par.t = t; 
system_par.ts = ts; 
system_par.Q = Q; 
system_par.D = D; 
system_par.lambda = lambda; 
system_par.ro = ro; 
system_par.So = So; 
system_par.Pmo = Pmo; 
system_par.Cin = Cin; 
system_par.time_resolution = time_resolution; 
system_par.x = x; 
system_par.y = y; 
%% 
%Estimate starting value for ti, sigma and Cinf 
%Calculate average and standard deviation of the mean of y 
avgy = zeros([length(y(:,1)),1]); 
semy = zeros([length(y(:,1)),1]); 
for i = 1:length(y(:,1)) 
    if length(y(1,:)) > 1 
        avgy(i) = mean(y(i,:)); 
        semy(i) = std(y(i,:))/sqrt(length(y(i,:))); 
    else 
        avgy(i) = mean(y(i)); 
        semy(i) = 0; 
    end 
end 
%Approximate point of 50% rise 
midy = 0.5*(max(avgy)-min(avgy)); 
%Bottom-50% weight array 
weight_TA = zeros([length(y(:,1)),1]); 
for i = 1:length(avgy) 
    if avgy(i) < midy 
        weight_TA(i) = 1; 
        mid_index = i; 
    end 
end 
%Approximate basal concentration 
for i = 1:floor(length(avgy)/2) 
    if avgy(mid_index - i) > 0.10*(max(avgy)-min(avgy)) 
        pct_10_index = mid_index - i; 
    else 
        pct_10_index = mid_index - i; 
        break 
    end 
end 
basaly = mean(avgy(1:pct_10_index )); 
%Approximate plateau concentration 
for i = 1:floor(length(avgy)/2) 
    if avgy(mid_index + i) < 0.90*(max(avgy)-min(avgy)) 
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        pct_90_index = mid_index + i; 
    else 
        pct_90_index = mid_index + i; 
        break 
    end 
end 
plateauy = mean(avgy(pct_90_index:length(avgy))); 
%Estimate Ed and Cinf 
p = polyfit([0;max(Cin)],[min(Cin)-basaly;max(Cin)-plateauy],1); 
Cinf_NNF = -p(2)/p(1); 
start_point(4) = Cinf_NNF; 
%Reformart xs, ys and weights to one column 
y_temp = zeros([length(x)*length(y(1,:)),1]); 
x_temp = zeros([length(x)*length(y(1,:)),1]); 
weighty_temp = zeros([length(x)*length(y(1,:)),1]); 
for i = 1:length(x) 
    for j = 1:length(y(1,:)) 
        y_temp(i+(j-1)*length(x)) = y(i,j); 
        x_temp(i+(j-1)*length(x)) = x(i,1); 
        weighty_temp(i+(j-1)*length(x)) = weight_TA(i,1); 
    end 
end 
y_col = y_temp; 
x_col = x_temp; 
weighty_col = weighty_temp; 
%Fitting for ti and sigma 
syms y_fit x_fit a d ti s int_ta; %define symbolic variables 
ts_TA = ts/60; %sampling interval, min 
y_fit = d+(a/2)*(1+erf((x_fit-ti/60)/(sqrt(2)*(s/60)))); %Taylor-Aris 

function 
int_ta = (int(y_fit,x_fit-ts_TA,x_fit))/ts_TA; %integrated T-A 
int_ta = char(int_ta); %convert sym to char vector 
%curve fitting core 
fo = fitoptions('Method','NonlinearLeastSquares',... %fit options 
        'DiffMinChange', 1e-15,... % Minimum change in coefficients for 

finite difference gradients 
        'MaxIter', 1e6,... % Maximum number of iterations allowed for fit  
        'MaxFunEvals', 1e6, ....%Maximum number of evaluations of model 

allowed 
        'TolFun', 1e-15,... %Termination tolerance on model value 
        'TolX', 1e-15,... %Termination tolerance on coefficient values 
        'Lower',[-inf,bound_ti(1),bound_sigma(1),-inf],... 
        'Upper',[inf,bound_ti(2),bound_sigma(2),inf],... 
        'StartPoint',[max(avgy) start_point(1) start_point(2) min(avgy)]);    
ft = fittype(int_ta,'coefficients',{'a','ti','s','d'},... 
    'independent',{'x_fit'},'dependent',{'y_fit'},'options',fo);  %execute 

fit 
[f,~,~] = fit(x_col,y_col,ft,'Weight',weighty_col); %extract fit data 
fit_coeff = coeffvalues(f).'; %extract fit coeff 
fit_confint = confint(f).'; %extract 95% confident interval 
ti_TA_fit = fit_coeff(2); %second 
sigma_TA_fit = fit_coeff(3); %second 
start_point(1) = ti_TA_fit; %set new start point 
start_point(2) = sigma_TA_fit; %set new start point 
%Calculate curvature-centric weight 
if weight_type == 1 
    weight_curve = ones([length(y(:,1)),1]); 
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elseif weight_type == 2 
    weight_curve = zeros([length(y(:,1)),1]); 
    lower_4_sigma = ti_TA_fit - 4*sigma_TA_fit; 
    upper_6_sigma = ti_TA_fit + 6*sigma_TA_fit; 
    for i = 1:length(x) 
        if x(i)*60 >= lower_4_sigma 
            lower_4_sigma_index = i; 
            break 
        end 
    end 
    for i = 1:length(x) 
        if x(i)*60 >= upper_6_sigma 
            upper_6_sigma_index = i; 
            break 
        end 
    end 
    for i = 1:length(x) 
        if lower_4_sigma_index  <= i && i <= upper_6_sigma_index 
            weight_curve(i) = 1; 
        end 
    end 
end 
%% 
%% 
%Main loop 
fit_result = zeros([no_sample,no_var+2]); %preallocate fit result array 
test_matrix = zeros([no_sample,3]); %preallocate test result array 
parfor k = 1:no_sample %cycle through each fitting 
    warning('off','MATLAB:integral:NonFiniteValue') 
    BPe = zeros([1,no_var]); %Preallocate array 
    BPr = zeros([1,no_var]); %same as above ^ 
    BPcr = zeros([1,no_var]) ;%same as above ^ 
    BPcw = zeros([1,no_var]); %same as above ^ 
    %Call variables for parfor loop optimization 
    lower_bounds_log; upper_bounds_log; lower_bounds; upper_bounds; 

start_point_log; 
    w = ones([1,length(x)]); %create weight array, unity 
    %Simplex 1: Calculated Start Points 
    RS1 = start_point; 
    [~, ~, ~, ~, ~, ~, RS1(no_var+1)] = fNgo2019_RSS(RS1(1),RS1(2),RS1(3),... 
                            RS1(4),RS1(5),w,system_par); 
    %Simplex 2: Ramdon Start Points 
    %Generate global random start points in log k 
    RP = zeros([no_global_random,no_var]); 
    SP = zeros([no_global_random,no_var+1]); 
    for i = 1:no_global_random 
        for j = 1:no_var 
            RP(i,j) = lower_bounds_log(j)+rand*(upper_bounds_log(j)-

lower_bounds_log(j)); 
        end 
    end 
    %Return to linear scale 
    RP(:,3) = 10.^RP(:,3); 
    for i = 1:no_global_random 
        warning('off','MATLAB:integral:NonFiniteValue') 
        RP; %call vars to reduce parfor overhead 
        [~, ~, ~, ~, ~, ~, RSS] = fNgo2019_RSS(RP(i,1),RP(i,2),RP(i,3),... 
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                                    RP(i,4),RP(i,5),w,system_par); 
        SP(i,:) = [RP(i,1) RP(i,2) RP(i,3) RP(i,4) RP(i,5) RSS]; 
    end 
    %Set random points where RSS couldn't be computed to high RSS 
    for i = 1:no_global_random 
        if SP(i,no_var+1) == 0 
            SP(i,no_var+1) = 9e5; 
        end 
    end 
    %Sort random points, select best random points, with lowest RSS 
    SP = sortrows(SP,no_var+1); 
    RS2 = SP(1,:); 
    %Compare Simplex 1 and Simplex 2 
    if RS1(no_var+1) < RS2(no_var+1) 
        RS = RS1; 
    else 
        RS = RS2; 
    end 
    %Generate Starting Simplex 
    BP = zeros([no_var+1,no_var+1]); 
    for i = 1:no_var+1 
        for j = 1:no_var 
            BP(i,j) = RS(j)*(0.95 +0.1*rand); 
        end 
        [~, ~, ~, ~, ~, ~, BP(i,no_var+1)] = 

fNgo2019_RSS(BP(i,1),BP(i,2),BP(i,3),... 
                                    BP(i,4),BP(i,5),w,system_par); 
    end 
    test = 1; %initial convergent creteria 
    run = 0; %initial interation count 
    no_extend = 0; %initial Adaptive Random Sampling count 
    disp(['Running fit for Fitting Sample ' num2str(k)])  
    %First pass 
    

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~    
    %Simplex loop 
    while test > termination_condition %checking convergent creterium 
    run = run+1; %run count 
    %Set points where RSS couldn't be computed to high RSS 
    for i = 1:length(BP(:,1)) 
        if BP(i,no_var+1) == 0 
            BP(i,no_var+1) = 9e5; 
        end 
    end 
    %sort points 
    BP = sortrows(BP,no_var+1); 
    %Remove worst points, leave (no of dimension+1) for Simplex  
    BP = BP(1:no_var+1,:); 
    remainder = rem(run,100); 
    %Generate Simplex optimization points 
    %Calculate coordinates of extended_reflect point 
    for i = 1:no_var 
        BPe(i) = 3*mean(BP(1:no_var,i))-2*BP(no_var+1,i);  
        if BPe(i) < lower_bounds(i) %check out of bound 
            BPe(i) = lower_bounds(i) + abs(BPe(i)-lower_bounds(i)); 
        end 
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        if BPe(i) > upper_bounds(i) %check out of bound 
            BPe(i) = upper_bounds(i) - abs(BPe(i)-upper_bounds(i)); 
        end         
    end 
    %Calculate coordiates of reflect point 
    for i = 1:no_var 
        BPr(i) = 2*mean(BP(1:no_var,i))-1*BP(no_var+1,i);  
        if BPr(i) < lower_bounds(i) %check out of bound 
            BPr(i) = lower_bounds(i)+ abs(BPr(i)-lower_bounds(i)); 
        end 
        if BPr(i) > upper_bounds(i) %check out of bound 
            BPr(i) = upper_bounds(i) - abs(BPr(i)-upper_bounds(i)); 
        end     
    end 
    %Calculate coordiates of contracted_reflect point   
    for i = 1:no_var 
        BPcr(i) = 1.5*mean(BP(1:no_var,i))-0.5*BP(no_var+1,i);  
        if BPcr(i) < lower_bounds(i) %check out of bound 
            BPcr(i) = lower_bounds(i) + abs(BPcr(i)-lower_bounds(i)); 
        end 
        if BPcr(i) > upper_bounds(i) %check out of bound 
            BPcr(i) = upper_bounds(i) - abs(BPcr(i)-upper_bounds(i)); 
        end             
    end 
    %Calculate coordiates of contracted_worst point 
    for i = 1:no_var 
        BPcw(i) = .5*mean(BP(1:no_var,i))+0.5*BP(no_var+1,i); 
        if BPcw(i) < lower_bounds(i) %check out of bound 
            BPcw(i) = lower_bounds(i) + abs(BPcw(i)-lower_bounds(i)); 
        end 
        if BPcw(i) > upper_bounds(i) %check out of bound 
            BPcw(i) = upper_bounds(i) - abs(BPcw(i)-upper_bounds(i)); 
        end             
    end 
    %Evaluate optimization points, then select new point based on evaluation 
    [~, ~, ~, ~, ~, ~, BPe(no_var+1)] = fNgo2019_RSS(BPe(1),BPe(2),BPe(3),... 
                                        BPe(4),BPe(5),w,system_par); 
    [~, ~, ~, ~, ~, ~, BPr(no_var+1)] = fNgo2019_RSS(BPr(1),BPr(2),BPr(3),... 
                                        BPr(4),BPr(5),w,system_par);                                     
    if  BPe(no_var+1) < BP(1,no_var+1) && BPr(no_var+1) < BP(1,no_var+1) 
        NP = BPe; 
    elseif  BPr(no_var+1) <= BP(floor((no_var+1)/2),no_var+1) 
        NP = BPr; 
    elseif  BPr(no_var+1) <= BP(no_var,no_var+1) %compare new RRS to RSS of 

worst point 
        NP = BPcr; 
    else 
        NP = BPcw; 
    end 
    [~, ~, ~, ~, ~, ~, NP(no_var+1)] = 

fNgo2019_RSS(NP(1),NP(2),NP(3),NP(4),... 
                                       NP(5),w,system_par); 
    if  run > ARS_autostart 
        %KTN's Adaptive Random Sampling 
        %Calculate a set of random points based on new point and weighted 

randomization     
        %no_extend increases with run and with decreasing simplex group size 
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        no_extend = 

round(alpha*(log10(test)*(100/log10(termination_condition)) + 

100*run/max_iter)); 
        %size_extend increases with number of no_extend 
        size_extend = beta*no_extend/(alpha*200);  
        NP_extend = zeros([no_extend,no_var+1]); %preallocate array 
        NP_extend_temp = zeros([no_extend,no_var+1]); %preallocate array 
        for i = 1:no_extend 
            for j = 1:no_var 
                NP_extend(i,j) = NP(j)*(1-size_extend+2*size_extend*rand); 
                if NP_extend(i,j) < lower_bounds(j) %check out of bound 
                    NP_extend(i,j) = lower_bounds(j) + abs(NP_extend(i,j)-

lower_bounds(j));                     
                elseif NP_extend(i,j) > upper_bounds(j) %check out of bound 
                    NP_extend(i,j) = upper_bounds(j) - abs(NP_extend(i,j)-

upper_bounds(j)); 
                end                  
            end 
        end 
        for i = 1:no_extend 
            warning('off','MATLAB:integral:NonFiniteValue') 
            NP_extend; 
            [~, ~, ~, ~, ~, ~, RSS] = ... 
                fNgo2019_RSS(NP_extend(i,1),NP_extend(i,2),NP_extend(i,3),... 
                NP_extend(i,4),NP_extend(i,5),w,system_par); 
            NP_extend_temp(i,:) = [NP_extend(i,1) NP_extend(i,2) 

NP_extend(i,3),... 
                NP_extend(i,4) NP_extend(i,5) RSS] 
        end 
        NP_extend = NP_extend_temp; 
        %Generate global random extend points in log k 
        RP = zeros([no_extend,no_var]); 
        for i = 1:no_extend 
            for j = 1:no_var     
                if i < no_var+2 
                    RP(i,j) = start_point_log(j)*(0.999+0.002*rand); 
                else 
                RP(i,j) = lower_bounds_log(j)+rand*(upper_bounds_log(j)-

lower_bounds_log(j)); 
                end 
            end 
        end 
        %Return to linear scale 
        RP(:,3) = 10.^RP(:,3); 
        %Evaluate RSS of random points 
        SP = zeros([no_extend,no_var+1]); 
        for i = 1:no_extend 
            warning('off','MATLAB:integral:NonFiniteValue') 
            RP; %call var to reduce parfor overhead 
            [~, ~, ~, ~, ~, ~, RSS] = 

fNgo2019_RSS(RP(i,1),RP(i,2),RP(i,3),... 
                                    RP(i,4),RP(i,5),w,system_par); 
            SP(i,:) = [RP(i,1) RP(i,2) RP(i,3) RP(i,4) RP(i,5) RSS]; 
        end 
        NP_extend_full = [NP_extend;SP]; 
        BP = [BP(1:no_var,:);NP;NP_extend_full]; %add new point(s) to Simplex 
    else 



 168 

        BP = [BP(1:no_var,:);NP]; %add new point(s) to Simplex 
    end 
    %calculate test condition without new random points 
    if run < max_iter 
        test = std(BP(1:no_var,no_var+1))/mean(BP(1:no_var,no_var+1)); 
        test_matrix(k,:) = [k,run,test]; %store #run and convergence test 
    else 
        test = 0; 
    end  
    %replace worse point with new point, append random new points to best 

points array   
    end %end current Simplex loop     
    ti_simplex = BP(1,1); 
    sigma_simplex = BP(1,2); 
    Cinf_simplex = BP(1,4); 
    %Generate Starting Simplex 
    BP = zeros([no_var+1,no_var+1]); 
    for i = 1:no_var+1 
        BP(i,1) = ti_simplex; BP(i,2) = sigma_simplex; BP(i,4) = 

Cinf_simplex; 
        BP(i,3) = RS(3)*(0.95 +0.1*rand); BP(i,5) = RS(5)*(0.95 +0.1*rand); 
        [~, ~, ~, ~, ~, ~, BP(i,no_var+1)] = 

fNgo2019_RSS(ti_simplex,sigma_simplex,BP(i,3),... 
                                    

Cinf_simplex,BP(i,5),weight_curve,system_par); 
    end 
    %End first pass 
    

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ 
    %Second pass 
    test = 1; 
    run = 0; 
    while test > second_termination_condition %checking convergent criterium 
    run = run+1; %run count 
    %Set points where RSS couldn't be computed to high RSS 
    for i = 1:length(BP(:,1)) 
        if BP(i,no_var+1) == 0 
            BP(i,no_var+1) = 9e5; 
        end 
    end 
    %sort points 
    BP = sortrows(BP,no_var+1); 
    %Remove worst points, leave (no of dimension+1) for Simplex  
    BP = BP(1:no_var+1,:); 
    %Generate Simplex optimization points 
    %Calculate coordinates of extended_reflect point 
    for i = 1:no_var 
        BPe(i) = 3*mean(BP(1:2,i))-2*BP(3,i);  
        if BPe(i) < lower_bounds(i) %check out of bound 
            BPe(i) = lower_bounds(i) + abs(BPe(i)-lower_bounds(i)); 
        end 
        if BPe(i) > upper_bounds(i) %check out of bound 
            BPe(i) = upper_bounds(i) - abs(BPe(i)-upper_bounds(i)); 
        end         
    end 
    %Calculate coordiates of reflect point 
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    for i = 1:no_var 
        BPr(i) = 2*mean(BP(1:2,i))-1*BP(3,i);  
        if BPr(i) < lower_bounds(i) %check out of bound 
            BPr(i) = lower_bounds(i)+ abs(BPr(i)-lower_bounds(i)); 
        end 
        if BPr(i) > upper_bounds(i) %check out of bound 
            BPr(i) = upper_bounds(i) - abs(BPr(i)-upper_bounds(i)); 
        end     
    end 
    %Calculate coordiates of contracted_reflect point   
    for i = 1:no_var 
        BPcr(i) = 1.5*mean(BP(1:3,i))-0.5*BP(3,i);  
        if BPcr(i) < lower_bounds(i) %check out of bound 
            BPcr(i) = lower_bounds(i) + abs(BPcr(i)-lower_bounds(i)); 
        end 
        if BPcr(i) > upper_bounds(i) %check out of bound 
            BPcr(i) = upper_bounds(i) - abs(BPcr(i)-upper_bounds(i)); 
        end             
    end 
    %Calculate coordiates of contracted_worst point 
    for i = 1:no_var 
        BPcw(i) = .5*mean(BP(2,i))+0.5*BP(3,i); 
        if BPcw(i) < lower_bounds(i) %check out of bound 
            BPcw(i) = lower_bounds(i) + abs(BPcw(i)-lower_bounds(i)); 
        end 
        if BPcw(i) > upper_bounds(i) %check out of bound 
            BPcw(i) = upper_bounds(i) - abs(BPcw(i)-upper_bounds(i)); 
        end             
    end 
    %Evaluate optimization points, then select new point based on evaluation 
    [~, ~, ~, ~, ~, ~, BPe(no_var+1)] = fNgo2019_RSS(BPe(1),BPe(2),BPe(3),... 
                                        

BPe(4),BPe(5),weight_curve,system_par); 
    [~, ~, ~, ~, ~, ~, BPr(no_var+1)] = fNgo2019_RSS(BPr(1),BPr(2),BPr(3),... 
                                        

BPr(4),BPr(5),weight_curve,system_par);                                     
    if  BPe(no_var+1) <= BP(1,no_var+1) && BPr(no_var+1) <= BP(1,no_var+1) 
        NP = BPe; 
    elseif  BPr(no_var+1) <= BP(1,no_var+1) 
        NP = BPr; 
    elseif  BPr(no_var+1) <= BP(2,no_var+1) 
        NP = BPcr; 
    else 
        NP = BPcw; 
    end 
    [~, ~, ~, ~, ~, ~, NP(no_var+1)] = 

fNgo2019_RSS(NP(1),NP(2),NP(3),NP(4),... 
                                       NP(5),weight_curve,system_par); 
    if  run > ARS_autostart 
        %KTN's Adaptive Random Sampling 
        %Calculate a set of random points based on new point and weighted 

randomization     
        %no_extend increases with run and with decreasing simplex group size 
        no_extend = 

round(alpha*(log10(test)*(100/log10(termination_condition)) + 

100*run/max_iter)); 
        %size_extend increases with number of no_extend 
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        size_extend = beta*no_extend/(alpha*200);  
        NP_extend = zeros([no_extend,no_var+1]); %preallocate array 
        NP_extend_temp = zeros([no_extend,no_var+1]); %preallocate array 
        for i = 1:no_extend 
            for j = 1:no_var 
                NP_extend(i,j) = NP(j)*(1-size_extend+2*size_extend*rand); 
                if NP_extend(i,j) < lower_bounds(j) %check out of bound 
                    NP_extend(i,j) = lower_bounds(j) + abs(NP_extend(i,j)-

lower_bounds(j));                     
                elseif NP_extend(i,j) > upper_bounds(j) %check out of bound 
                    NP_extend(i,j) = upper_bounds(j) - abs(NP_extend(i,j)-

upper_bounds(j)); 
                end                  
            end 
        end 
        for i = 1:no_extend 
            warning('off','MATLAB:integral:NonFiniteValue') 
            NP_extend; 
            [~, ~, ~, ~, ~, ~, RSS] = ... 
                fNgo2019_RSS(ti_simplex,sigma_simplex,NP_extend(i,3),... 
                Cinf_simplex,NP_extend(i,5),weight_curve,system_par); 
            NP_extend_temp(i,:) = [ti_simplex sigma_simplex 

NP_extend(i,3),... 
                Cinf_simplex NP_extend(i,5) RSS] 
        end 
        NP_extend = NP_extend_temp; 
        %Generate global random extend points in log k 
        RP = zeros([no_extend,no_var]); 
        for i = 1:no_extend 
            for j = 1:no_var     
                if i < no_var+2 
                    RP(i,j) = start_point_log(j)*(0.999+0.002*rand); 
                else 
                RP(i,j) = lower_bounds_log(j)+rand*(upper_bounds_log(j)-

lower_bounds_log(j)); 
                end 
            end 
        end 
        %Return to linear scale 
        RP(:,3) = 10.^RP(:,3); 
        %Evaluate RSS of random points 
        SP = zeros([no_extend,no_var+1]); 
        for i = 1:no_extend 
            warning('off','MATLAB:integral:NonFiniteValue') 
            RP; %call var to reduce parfor overhead 
            [~, ~, ~, ~, ~, ~, RSS] = 

fNgo2019_RSS(ti_simplex,sigma_simplex,RP(i,3),... 
                                    

Cinf_simplex,RP(i,5),weight_curve,system_par); 
            SP(i,:) = [ti_simplex sigma_simplex RP(i,3) Cinf_simplex  RP(i,5) 

RSS]; 
        end 
        NP_extend_full = [NP_extend;SP]; 
        BP = [BP(1:no_var,:);NP;NP_extend_full]; %add new point(s) to Simplex 
    else 
        BP = [BP(1:no_var,:);NP]; %add new point(s) to Simplex 
    end 
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    %calculate test condition without new random points 
    if run < max_iter 
        test = std(BP(1:no_var,no_var+1))/mean(BP(1:no_var,no_var+1)); 
        test_matrix(k,:) = [k,run,test]; %store #run and convergence test 
    else 
        test = 0; 
    end 
    end 
    %End Second pass 
    

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~        
    [~, ~, E, ~, ~, ~, ~] = fNgo2019_RSS(BP(1,1),BP(1,2),BP(1,3),BP(1,4),... 
                                       BP(1,5),weight_curve,system_par); 
    E_ss = E(length(t)); 
    disp_point = BP(1,:); 
    disp_point(no_var+2) = E_ss; 
    fit_result(k,:) = disp_point; %store best point 
    disp(['Fit for Fitting Sample ' num2str(k) ' finished. The parameters 

are']) 
    disp(disp_point) 
end %end fitting 
%% 
%Sort fit result, remove fit that did not converge 
fit_result(:,3) = log10(fit_result(:,3)); 
unsorted_fit_result = fit_result; %store a copy of fit_result 
unsorted_test_matrix = test_matrix; %store a copy of test_matrix 
minRSS = min(fit_result(:,no_var+1)); %calculate lowest RSS 
threshold = minRSS*(1+RSS_threshold); %calculate rejection threshold 
no_conv = no_sample; %number of convergent accepted 
for i = 1:no_sample 
    for j = 1:no_var 
        if fit_result(i,j) >= (1-RSS_threshold)*upper_bounds_log(j)... 
                || fit_result(i,j) <= (1+RSS_threshold)*lower_bounds_log(j) 
            fit_result(i,no_var+1) = 9e5; 
        end 
    end 
end 
[fit_result,I_RSSsort] = sortrows(fit_result,no_var+1); 
for i = 1:no_sample 
    test_matrix(i,:) = unsorted_test_matrix(I_RSSsort(i),:); 
end 
for i = 1:no_sample 
    if fit_result(i,no_var+1) > threshold 
        no_conv = no_conv - 1; 
    end   
end 
sorted_fit_result = zeros([no_conv,no_var+2]); 
sorted_test_matrix = zeros([no_conv,3]); 
for i = 1:no_conv 
    sorted_fit_result(i,:) = fit_result(i,:); 
    sorted_test_matrix(i,:) = test_matrix(i,:); 
end 
%Bootstrap confident interval 
no_resample = 10000; 
drs = zeros(no_resample, length(sorted_fit_result(1,:))); %preallocate delta 

resample matrix 
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student_t = zeros(no_resample, length(sorted_fit_result(1,:))); 
rs = zeros(length(sorted_fit_result(:,1))); %preallocate resample matrix 
for i = 1:length(sorted_fit_result(1,:)) %cycle through each parameter 
    for j = 1:no_resample %cycle through each resampling interation 
        for k = 1:length(sorted_fit_result(:,1)) %calculate a single resample 
            index = ceil(rand*length(sorted_fit_result(:,1))); %get random 

index 
            rs(j,k) = sorted_fit_result(index,i); %get random sample 
        end 
        student_t(j,i) = 

sqrt(length(sorted_fit_result(:,1)))*abs(mean(rs(j,:)) -... 
            mean(sorted_fit_result(:,i)))/std(rs(j,:)); 
        drs(j,i) = abs(mean(rs(j,:)) - mean(sorted_fit_result(:,i))); 
    end 
end 
%Sort delta resample for all parameters 
for i = 1:length(sorted_fit_result(1,:)) 
    student_t(:,i) = sort(student_t(:,i),'ascend'); 
    drs(:,i) = sort(drs(:,i),'ascend'); 
end 
mean_par = zeros([length(sorted_fit_result(1,:)),1]);  
CI_t = zeros([length(sorted_fit_result(1,:)),1]);  
CI_d = zeros([length(sorted_fit_result(1,:)),1]);  
CI_n = zeros([length(sorted_fit_result(1,:)),1]);  
for i = 1:length(sorted_fit_result(1,:))  
    mean_par(i) = mean(sorted_fit_result(:,i)); %calculate parameter means 
    %calculate 95% confident interval bounds, two tail symmetrical 
    CI_t(i) = 

student_t(round(0.95*no_resample),i)*std(sorted_fit_result(:,i)); 
    CI_d(i) = 

drs(round(0.95*no_resample),i)*sqrt(length(sorted_fit_result(:,1))); 
    CI_n(i) = 

tinv(0.975,length(sorted_fit_result(:,i)))*std(sorted_fit_result(:,i),'omitna

n');  
end 
result_matrix_t = [mean_par,CI_t]; 
result_matrix_d = [mean_par,CI_d]; 
result_matrix_n = [mean_par,CI_n]; 
fit_result = unsorted_fit_result; %restore fit_result 
test_matrix = unsorted_test_matrix; %restore test_matrix 
result_matrix = result_matrix_t; 
%% 
%% 
disp('Result saved, fitting parameters and 95% CI are') 
disp(result_matrix) 
disp('Done. Fitting took') 
toc 
%% 
%RSS function is defined separately from the Cdet version for compatibility 
%with legacy code 
function [Pext, P, E, Cout, Cdet, Csample, RSS] = 

fNgo2019_RSS(ti,sigma,kext,Cinf,phi,w,system_par) 
%System variables transfer 
t = system_par.t; ts = system_par.ts; Q = system_par.Q; D = system_par.D; 

lambda = system_par.lambda; 
ro = system_par.ro; So = system_par.So; Pmo = system_par.Pmo; Cin = 

system_par.Cin; 
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time_resolution = system_par.time_resolution; x = system_par.x; y = 

system_par.y; 
%Dependent variables calculation 
De = D/lambda^2; 
Dext = De*phi; 
box_func = zeros([1 length(t)]); 
for i = 1:length(t) 
    if 0 <= t(i) && t(i) < ts 
        box_func(i) = time_resolution/ts; 
    end 
end 
gauss = time_resolution*(1/(sigma*sqrt(2*pi)))*exp(-(t - ti).^2/(2*sigma^2)); 
s_gauss = convnfft(box_func,gauss,'same'); %Sternberg Gaussian 
Theta = ro*sqrt(kext/De); %dimentionless clearance 
Text = ro^2/De; %s, dimentionless time scaling factor 
%Define the transient part of Pext(t) 
%!!! WARNING this evaluation requires symmetricat t array!!!! 
%!!! assymetrical t array will slow down evaluation significantly!!! 
f_int = @(u)(((4/pi^2)*u*exp(-(u^2+Theta^2)*(t/Text)))/... 
    ((u^2+Theta^2)*((besselj(0,u))^2+(bessely(0,u))^2))); 
%Evaluate the transient part of external medium permeability Pext(t) 
Pext_transient = integral(f_int,0,inf,'ArrayValued',true); 
%Evaluate the steady state part of external medium permeability Pext(t) 
Pext_ss = Theta*besselk(1,Theta)/(besselk(0,Theta)); 
Pext_transient(isnan(Pext_transient)) = 0; %replace NaN with 0 
Pext_transient(isinf(Pext_transient)) = 0; %replace inf with 0   
%Evaluate dimensionless external medium permeability 
Pext_dimensionless = Pext_transient+Pext_ss; %at t < 0, Pext = Pext_ss   
Pext_dimensionless(isnan(Pext_dimensionless)) = Pext_ss; %replace NaN with 

P_ss 
Pext_dimensionless(isinf(Pext_dimensionless)) = Pext_ss; %replace inf with 

P_ss                                                          
Pext = Pext_dimensionless*Dext/ro; %Calculate P1D(t) 
P = 1./(1./Pext + 1/Pmo); %Calculate P(t) 
E = 1-exp(-So*P/Q); %Calculate E(t) 
Cout = Cin-E.*(Cin-Cinf); %Calculate Cout(t) at outlet of dialysis probe 
Cdet = convnfft(Cout,s_gauss,'same'); %Compute concentration at detector 

Cdet(t) 
%Compute an array of time index where CSample will be sampled from Cdet 
t_index = zeros([1,length(x)]); 
index_offset = 1+abs(min(t)-60*min(x))/time_resolution; 
t_index(1) = index_offset; 
for i = 2:length(x) 
    t_index(i) = round(t_index(i-1)+(x(i)-x(i-1))*60/time_resolution); 
end 
%Calculate Cdet at each sampling time 
Csample = zeros([1,length(x)]); 
for i=1:length(x) 
    Csample(i) = Cdet(t_index(i)); 
end 
%Calculate RSS 
RSS = 0; 
for i = 1:length(x) 
    for j = 1:length(y(1,:)) 
        RSS = RSS+w(i)*(Csample(i) - y(i,j))^2; 
    end 
end 
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end 
function A = convnfft(A, B, shape, dims, options) 
%   KHANH T NGO KTN@PITT.EDU  
%   Adapted from: 
%https://www.mathworks.com/matlabcentral/fileexchange/24504-fft-based-

convolution 
%   Author: Bruno Luong <brunoluong@yahoo.com> 
% Copyright (c) 2009, Bruno Luong 
% All rights reserved. 
%  
% Redistribution and use in source and binary forms, with or without 
% modification, are permitted provided that the following conditions are met: 
% * Redistributions of source code must retain the above copyright notice, 

this 
%   list of conditions and the following disclaimer. 
% * Redistributions in binary form must reproduce the above copyright notice, 
%   this list of conditions and the following disclaimer in the documentation 
%   and/or other materials provided with the distribution 
% * Neither the name of FOGALE nanotech nor the names of its 
%   contributors may be used to endorse or promote products derived from this 
%   software without specific prior written permission. 
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

ARE 
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 
% FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY, 
% OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE 
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
if nargin<3 || isempty(shape) 
    shape = 'full'; 
end 
if nargin<5 || isempty(options) 
    options = struct(); 
elseif ~isstruct(options) % GPU options 
    options = struct('GPU', options); 
end 
nd = max(ndims(A),ndims(B)); 
% work on all dimensions by default 
if nargin<4 || isempty(dims) 
    dims = 1:nd; 
end 
dims = reshape(dims, 1, []); % row (needed for for-loop index) 
% GPU enable flag 
GPU = getoption(options, 'GPU', false); 
% Check if Jacket is installed 
GPU = GPU && ~isempty(which('ginfo')); 
% IFUN function will be used later to truncate the result 
% M and N are respectively the length of A and B in some dimension 
switch lower(shape) 
    case 'full' 
        ifun = @(m,n) 1:m+n-1; 
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    case 'same' 
        ifun = @(m,n) ceil((n-1)/2)+(1:m); 
    case 'valid' 
        ifun = @(m,n) n:m; 
    otherwise 
        error('convnfft: unknown shape %s', shape); 
end 
classA = class(A); 
classB = class(B); 
ABreal = isreal(A) && isreal(B); 
% Special case, empty convolution, try to follow MATLAB CONVN convention 
if any(size(A)==0) || any(size(B)==0) 
    szA = zeros(1,nd); szA(1:ndims(A))=size(A); 
    szB = zeros(1,nd); szB(1:ndims(B))=size(B); 
    % Matlab wants these: 
    szA = max(szA,1); szB = max(szB,1); 
    szC = szA; 
    for dim=dims 
        szC(dim) = length(ifun(szA(dim),szB(dim))); 
    end 
    A = zeros(szC,classA); % empty -> return zeros 
    return 
end 
power2flag = getoption(options, 'Power2Flag', true); 
if power2flag 
    % faster FFT if the dimension is power of 2 
    lfftfun = @(l) 2^nextpow2(l); 
else 
    % slower, but smaller temporary arrays 
    lfftfun = @(l) l; 
end 
if GPU % GPU/Jacket FFT 
    if isa(classA,'single') 
        A = gsingle(A); 
    else 
        A = gdouble(A); 
    end 
    if isa(classB,'single') 
        B = gsingle(B); 
    else 
        B = gdouble(B); 
    end 
    % Do the FFT 
    subs(1:ndims(A)) = {':'}; 
    for dim=dims 
        m = size(A,dim); 
        n = size(B,dim); 
        % compute the FFT length 
        l = lfftfun(m+n-1); 
        % We need to swap dimensions because GPU FFT works along the 
        % first dimension 
        if dim~=1 % do the work when only required 
            swap = 1:nd; 
            swap([1 dim]) = swap([dim 1]); 
            A = permute(A, swap); 
            B = permute(B, swap); 
        end 
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        A = fft(A,l); 
        B = fft(B,l); 
        subs{dim} = ifun(m,n); 
    end 
else % Matlab FFT 
    % Do the FFT 
    subs(1:ndims(A)) = {':'}; 
    for dim=dims 
        m = size(A,dim); 
        n = size(B,dim); 
        % compute the FFT length 
        l = lfftfun(m+n-1); 
        A = fft(A,l,dim); 
        B = fft(B,l,dim); 
        subs{dim} = ifun(m,n); 
    end 
end 
if GPU 
    A = A.*B; 
    clear B 
else 
    % inplace product to save 1/3 of the memory 
    %inplaceprod(A,B); 
    %change made by KHANH T NGO KTN6@PITT.EDU 
    %for compatibility with MATLAB 2019a WINDOWS 10 
    A = A.*B; 
end 
% Back to the non-Fourier space 
if GPU % GPU/Jacket FFT 
    for dim=dims(end:-1:1) % reverse loop 
        A = ifft(A,[]); 
        % Swap back the dimensions 
        if dim~=1 % do the work when only required 
            swap = 1:nd; 
            swap([1 dim]) = swap([dim 1]); 
            A = permute(A, swap); 
        end         
    end    
else % Matlab IFFT   
    for dim=dims 
        A = ifft(A,[],dim); 
    end 
end 
% Truncate the results 
if ABreal 
    % Make sure the result is real 
    A = real(A(subs{:})); 
else 
    A = A(subs{:}); 
end 
% GPU/Jacket 
if GPU 
    % Cast the type back 
    if isa(class(A),'gsingle') 
        A = single(A); 
    else 
        A = double(A); 
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    end 
end 
end % convnfft 
%% Get default option 
function value = getoption(options, name, defaultvalue) 
% function value = getoption(options, name, defaultvalue) 
    value = defaultvalue; 
    fields = fieldnames(options); 
    found = strcmpi(name,fields); 
    if any(found) 
        i = find(found,1,'first'); 
        if ~isempty(options.(fields{i})) 
            value = options.(fields{i}); 
        end 
    end 
end 

 

5.6.2.2 Minimum-Searching Algorithm 

Our minimum-searching algorithm proceeds as follows, where n is the number of fitting 

parameters, and a point is a set of coordinates consisting of fitting parameters, and a simplex is a 

set of n+1 points: 

Step 1. Initialization: 

• Choose a starting point. 

o A guess is given (user input). 

o A routine performs a linear regression and a logistic regression to guess ti, σ and 

CECS∞. The remaining parameters are copied from the above.  

o RSS of the two above are evaluated and compared.  

o The point with lower RSS is chosen to be start point. 

• Generate a simplex around the starting point (range is ±0.5% about each coordinate). 

• Generate a large number (e.g. 2^15) of random points over the entire parameter space.  

• Evaluate RSS of the two sets above.  

• Keep n+1 points with lowest RSS (“the current simplex”). 
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Step 2.  Simplex loop 

• NMS algorithm203,204 using the current simplex to calculate direction toward local 

minimum. 

• Adaptive Random Sampling (ARS, described below). 

• Concatenate ARS result and NMS result. 

• Check termination condition. 

The simplex loop terminates when the spread of the current simplex’s RSS is very small 

(i.e. relative standard deviation of the simplex’s n+1 RSS is less than e.g. 10-8) or when a large 

number of iterations is reached (e.g. 5000). Fits that are terminated at the latter conditions are 

rejected and their results are discarded.  

Step 3. Termination 

• Keep one point with the lowest RSS.   

5.6.2.3 Adaptive Random Sampling 

The ARS step generates random points local to the simplex, as well as in the global space. 

The number of ARS random point m is calculated using the following formula, where  is an 

adjustable parameter: 
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Equation 5.6-5. Number of ARS random point 

Where A is the current convergence criteria (defined as RSD of the simplex’s RSS), B is 

the termination convergence criteria, C is the current iteration count, and D is the termination 

iteration count.  
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The random points have a spread of p around the NMS result. The spread p is calculated 

using the following formula, where  is an adjustable parameter: 
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Equation 5.6-6. ARS random point spread 

The number of ARS random points and the spread of those points is determined by the 

spread of the simplex and the extend of the run. The smaller the spread of the simplex, indicating 

that a local optimum is near, the more ARS random points are generated to find a better minimum. 

The longer the loop has been run, the more ARS random points are generated to find a minimum. 

The spread of the ARS random points is scaled to the number of ARS random points. The more 

random points there are, the more they spread out to find a better minimum.  

5.6.3 Additional Figures 
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Figure 5.6-2. Simulated microdialysis transient response to a 150 nM retrodialysis.  

Shown are the responses when each of the six parameters ti, σ, CECS∞, k, 𝜙 and λ is varied while the others stay 

constant. The original curve is simulated with: ti = -60 (s), σ = 30 (s), CECS∞ = 10 nM, k = 0.2 s-1, ϕ = 0.2, λ = 1.6. 
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Figure 5.6-3. Comparison between distribution of ti, σ, CECS∞, k, and 𝜙 from 1000 repeats of 5DNMS (blue),  

5DARS (red), 5DARS2P  (orange) and 4DARS (purple) to in vivo experimental data.  

The probability density curve is calculated using Kernel Density Estimator with a bandwidth of 0.01. 

Coverage rates are 61.6%, 45.8%, 80.9% and 100%, respectively. 
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Figure 5.6-4. Comparison between relative error in ti, σ, CECS∞, k, and 𝜙 from 100 repeats of 5DARS2P 

(orange) and 4DARS (purple) to 16 simulated data sets.  

Simulation parameter: Uptake rate constant k (s-1) Low = 10-2; High = 1; Microdialysis time resolution (s) 

Low = 15; High = 1; Normally Distributed Noise (σ) Low = 1%; High = 10%; Probe MWCO (kDA) Low = 

13; High = 18. 5DARS2P produces no successful fit for set 16. 

 

 

Figure 5.6-5. Comparison between error in k and relative error in 𝜙 from 100 repeats of 5DARS2P  to 18 

simulated data sets with varied chromatographic sampling time (ts) and no noise, perfect probe dispersion (σ 

= 0.1 s or 1 s, σ≤ ts). 
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Figure 5.6-6. Comparison between error in k and relative error in 𝜙 from 100 repeats of 5DARS2P  to 18 

simulated data sets with varied probe dispersion (σ) and no noise, perfect chromatographic sampling time (ts 

= 1 s). 

Table 5.6-1. Comparison between mean and 95% C.I. of ti, σ, CECS∞, k, and 𝜙 from 1000 repeats of 5DNMS,  

5DARS, 5DARS2P and 4DARS to in vivo experimental data.  

Mean and 95% C.I. were calculated using both a normal distribution assumption and bootstrap-t. 

  4DARS 5DNMS 

  norm. distr. bootstrap norm. distr. bootstrap 

  mean 95% C.I. mean 95% C.I. mean 95% C.I. mean 95% C.I. 

ti -57.9342 0.006623 -57.9342 0.006665 -57.7936 0.040642 -58.2724 0.03823 

σ 32.96693 0.009483 32.96693 0.009613 32.90799 0.017089 32.90749 0.016863 

k 0.181656 0.000208 0.181656 0.000211 0.118359 0.008897 0.11831 0.008237 

CECS∞ 3.945633 0.036622 3.945633 0.036538 3.81466 0.053159 3.828314 0.054846 

𝜙         0.258807 0.008036 0.256958 0.007422 

  5DARS 5DARS2P 

  norm. distr. bootstrap norm. distr. bootstrap 

  mean 95% C.I. mean 95% C.I. mean 95% C.I. mean 95% C.I. 

ti -58.0282 0.026272 -57.9546 0.009933 -57.9546 0.009981 -57.4625 0.012624 

σ 33.13182 0.010678 32.9696 0.003392 32.9696 0.003396 32.96966 0.003159 

k 0.183122 0.012442 0.19139 0.006516 0.19139 0.006505 0.191832 0.007514 

CECS∞ 3.865465 0.036877 3.915635 0.009792 3.915635 0.010187 3.92209 0.004577 

𝜙 0.208689 0.006381 0.199428 0.003136 0.199428 0.003102 0.200296 0.003652 
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6.0 Conclusions 

The work in this dissertation improved many experimental and theoretical aspects of Fast 

Microdialysis to establish new applications that answer biologically relevant questions, many of 

which are infeasible with steady-state microdialysis. The experimental improvements 

comprehensively entail the entire microdialysis analytical system. They include better perfusate 

delivery to generate concentration changes for retrodialysis experiments without interrupting flow, 

rotating operant chamber to perform behavioral studies without degrading Fast Microdialysis time 

resolution, chromatographic optimization to enable hours to days long experiment, and a sampling 

technique to increase effective time resolution, to name a few. The theoretical improvements 

created a mathematical framework to describe effects of experimental conditions to experimentally 

observable quantities and applied advance data analysis techniques to elucidate biological and 

system information from experimental measurements.  

In the investigation of DEX treatment to traumatic penetration injury caused by probe 

implantation, Fast Microdialysis allowed for an unprecedented number of basal DA measurements 

in the striatum (approx. 2500 in 22 rats). Linear regression showed that DEX treatment potentiates 

(by 64%) and changes the distribution (from normal to log normal) of basal DA measurements. 

Most significantly, with the one-minute time resolution provided by Fast Microdialysis, 

retrodialysis of 100 mM K+ was found to evoke rapid, large, oscillations in DA concentration 

adjacent to the probe site. Simultaneous local field potential and DA measurements validated that 

these oscillations were spreading depolarization events, a common pathological response to 

traumatic brain injury. Principle component analysis showed that the evoked response correlated 

to both the DEX treatment and number of recovery days.  This work thus conclusively established 
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that tissue adjacent to probe site is capable of pathological response, and therefore is viable and 

has functional dopamine terminals.  

The rotating operant chamber was created to conduct behavioral study with Fast 

Microdialysis. With the rotating operant chamber, operant behavior components and their 

associated controllers, power delivery, data acquisition and wireless data transmitter all rotate with 

a raturn so that the rat can move freely during the experiment, eliminating the need for liquid 

swivel which degrades time resolution. Using the rotating operant chamber, rats were trained and 

performed learned tasks, while DA concentrations were determined with Fast Microdialysis. Rats 

were also video-recorded for behavior analysis. An animal’s untrained locomotive behaviors (e.g. 

grooming, limb movement) were found to correlate with large DA releases while the animal’s 

trained feeding behavior correlated with smaller but rapidly oscillating DA releases. This 

correlation of oscillations and behavior has not been observed by other means, demonstrating the 

unique capabilities of Fast Microdialysis. 

Comprehensive Quantitative Microdialysis (CQM) was created both as a new quantitative 

microdialysis technique that enables determination of solute concentration in the ECS; and a new 

theoretical and experimental framework that allows for determination of biological and systemic 

factors that influences the solute concentration observed at the detector, including sample transport 

time, hydrodynamic dispersion, uptake rate constant, and tissue porosity. We created a simulation 

tool and curve fit tool in MATLAB for these purposes. Analysis of transient responses on an awake 

rat using CQM found striatal tissue porosity, and striatal DA uptake rate constant comparable with 

established literature values. Extraction fraction and DA ECS concentration found were 

comparable to measurements made with traditional steady-state method (No-Net-Flux). The 

analysis also determined with high precision the time delay between a DA concentration change 
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at the probe (e.g. behavior-related DA release) and measurements at the detector. It is remarkable 

that all of this information can be obtained from transient responses on an awake rat using 

microdialysis in under an hour of experimental time. Exploration of curve fit to simulated data 

showed that CQM is robust to drastic changes in experimental conditions, including high noise 

and high uptake rate constant.  
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7.0 Future Work 

From the work shown in this dissertation, particularly quantitative analysis of transient 

response using the Comprehensive Quantitative Microdialysis technique180,202, it is apparent that 

there is still a pressing need for a higher time resolution, in the order of 15 s or less, for Fast 

Microdialysis. This will eliminate the need for time-interleaved sampling to measure transient 

responses, therefore improves the quality of the measurements obtained and reduces experiment 

time. It will also bring Fast Microdialysis to parity with Fast Scan Controlled Absorption 

Voltammetry49,51 or PEDOT/functionalized carbon nanotube-coated carbon fiber microelectrodes 

with square wave voltammetry52 in term of time resolution for basal level measurements of low 

concentration (nM) neurotransmitters. We have preliminary theoretical and experimental work 

making significant progress toward higher time resolution for Fast Microdialysis of Dopamine 

(see below).  

7.1 Sub-minute Fast Microdialysis Determination of Dopamine with Online Dilution and 

Low Flow Microdialysis 

The limit to our Fast Microdialysis DA determination is the poor peak shape and low 

number of theoretical plates for DA. The separation was optimized for continuous 60 s in vivo 

online separation for up to 96 hours. Chromatographically, the separation conditions are also near 

optimal. Well-established theories231,232 predict a reduced plate height h of about 6. However, 

experimental in vivo separation of DA only achieves h of about 22 (Figure 7.1-1). Exploring 



 188 

separation conditions, we found that the separation is better in aqueous (D.I. water) than in saline 

(aCSF or dialysate) conditions (Figure 7.1-2). The same conclusion holds true across different 

mobile phases that we tested (Figure 7.1-3). 

We hypothesized that the high ionic strength of the biological saline solutions hinders ion-

pairing, which is the retention mechanism of DA in our ion-pairing reversed-phase HPLC. Based 

on this hypothesis, we tested a number of solutions: 

• Adding ion-pairing agent during injections. Theoretically, this should aid ion-paring during 

the injection, without significantly increase the retention time. We found that this improved 

the peak shape, but it causes DA to split to two peaks.  

• Adding chelating agent during injections. Theoretically, we could chelate ions (e.g. Mg2+ 

and Ca2+) thus reduce their impact to the separation. However, as the separation is at low 

pH, chelating agents are ineffective. Theoretical calculation and experiments showed that 

added EDTA during injection did not improve the separation.  

• Working electrode surface modification. PEDOT-based coatings has been shown to 

improve selectivity to Dopamine52,233,234. By increasing DA selectivity, the separation 

could have fewer interferences from other biological solutes, thus providing an opportunity 

for better chromatographic separation. We found that the surface modification does not 

appreciably improve our chromatograms. 

• Reducing the ionic strength of the injected solution. We tested this by diluting the saline 

DA standards with DI water prior to injection, and by making saline standards with lower 

salt concentrations. This solution proved to be effective, and peak width was reduced (i.e. 

better separation) as the ionic strength of the DA standard decreased (Figure 7.1-4). 
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Dilution of samples is typically not desirable, as it reduces the concentration of solutes in 

the sample, thus worsen limit of quantitation. The limit of quantitation of our Fast Microdialysis 

method is not significantly higher than the lowest concentration of Dopamine that we have 

measured in dialysate97,98, thus a higher limit of quantitation is not acceptable. However, for a 

microdialysis experiment, dilution can be combined with lowering the flow rate of the dialysate. 

The concentration of the solute on in the dialysate is dependent to the flow rate, the lower the flow 

rate, the higher concentration of the solute recovered12,60,84,235 (Figure 7.1-5). This increased 

recovery at lower flow rate compensates for the decreases in solute concentration as the sample is 

diluted. The dilution can be done online, prior to injection  using a zero dead volume mixer236,237.  

Theoretical calculations and in vitro experiment shows that when dialysate flow rate is 

reduced and the dialysate is diluted with D.I. water prior to injection (total flowrate and injection 

volume are constant, and are identical to typical Fast Microdialysis) the peak width of the 

separation decreases (better separation) while peak height increases at the same time (Figure 

7.1-6). Leveraging this improvement in DA separation, we have obtained preliminary results 

showing improved in vivo separation (Figure 7.1-7) and feasibility of 30 s online in vivo DA 

determination using online dilution of low flow microdialysis (Figure 7.1-8).   
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Figure 7.1-1. Typical Dopamine Separation with Fast Microdialysis. Shown are four continuous 60 s 

chromatograms.  

The DA peak is indicated with an arrow. Column: 60 mm × 0.15 mm I.D, 1.7 μm BEH C18, 32.5°C. Mobile 

phase: 9 μL/min 100 mM NaOAc, 1.75 mM SOS, 0.15 mM EDTA, 3% v/v ACN, 2% v/v HOAc, pH 4.5. 

Detector: 400 mV vs Ag/AgCl (3M NaCl). 
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Figure 7.1-2. Comparison between separation of Dopamine in aqueous (red) and in saline (black) conditions. 

 Shown are four continuous 60 s chromatograms. The DA peak is indicated with an arrow. . Column: 90 mm 

× 0.15 mm I.D, 1.7 μm BEH C18, 75°C. Mobile phase: 8 μL/min 100 mM NaOAc, 1.75 mM SOS, 0.15 mM 

EDTA, 3% v/v ACN, 2% v/v HOAc, pH 4.5. Detector: 400 mV vs Ag/AgCl (3M NaCl). 
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Figure 7.1-3. Comparison between separation of Dopamine in aqueous and in saline (black) conditions across 

different mobile phases.  

Shown are number of theoretical plate for the same column and flowrate of separations in pH 4 acetate 

(black), pH 4 citrate-phosphate (red), pH 4 citrate (blue) and pH 3 citrate (green). 
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Figure 7.1-4. The effect of reducing the ionic strength of the solution to separation of DA.  

The ionic strength is reduced by dilution. Dilution ratio is the ratio of final volume to starting volume. 

Separation quality is measured in peak width. 
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Figure 7.1-5. Relationship between dialysate flow rate and recovery in term of concentration (blue) and moles 

per min (orange).  

 

 

Figure 7.1-6. Comparison between in vitro experiment (left) and theoretical prediction (right) of low flow 

microdialysis with online dilution.  

Peak width (open diamond) and peak height (solid squares) are shown. 
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Figure 7.1-7. Comparison between typical Fast Microdialysis separation (blue) and separation using online 

dilution of low flow microdialysis (orange) of DA.  

The DA peak is marked with an arrow. The standard separation injected 15 fmol of DA at 10.4±0.5 nM, 

resulting a peak width (FWHM) of 3.92±0.08 s and height of 0.54±0.01 nM, giving a plate count of 800. The 

diluted separation injected 5 fmol of DA at 18.90±0.00 nM, resulting a peak width (FWHM) of 1.73±0.02 s 

and height of 0.45±0.00 nM, giving a plate count of 4300. 
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Figure 7.1-8. Online in vivo determination of DA at 30 s time resolution using Fast Microdialysis with online 

dilution and low flow microdialysis.  

The DA peak is marked with an arrow.  
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