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Christopher Lee Thomas, PhD

University of Pittsburgh, 2020

Recent advances in machine learning have enabled computer vision algorithms to model

complicated visual phenomena with accuracies unthinkable a mere decade ago. Their high-

performance on a plethora of vision-related tasks has enabled computer vision researchers to

begin to move beyond traditional visual recognition problems to tasks requiring higher-level

image understanding. However, most computer vision research still focuses on describing

what images, text, or other media literally portrays. In contrast, in this dissertation we

focus on learning how and why such content is portrayed. Rather than viewing media for its

content, we recast the problem as understanding visual communication and visual rhetoric.

For example, the same content may be portrayed in different ways in order to present the

story the author wishes to convey. We thus seek to model not only the content of the media,

but its authorial intent and latent messaging. Understanding how and why visual content

is portrayed a certain way requires understanding higher level abstract semantic concepts

which are themselves latent within visual media. By latent, we mean the concept is not

readily visually accessible within a single image (e.g. right vs left political bias), in contrast

to explicit visual semantic concepts such as objects.

Specifically, we study the problems of modeling photographic style (how professional

photographers portray their subjects), understanding visual persuasion in image advertise-

ments, modeling political bias in multimedia (image and text) news articles, and learning

cross-modal semantic representations. While most past research in vision and natural lan-

guage processing studies the case where visual content and paired text are highly aligned

(as in the case of image captions), we target the case where each modality conveys comple-

mentary information to tell a larger story. We particularly focus on the problem of learning

cross-modal representations from multimedia exhibiting weak alignment between the im-

age and text modalities. A variety of techniques are presented which improve modeling of

multimedia rhetoric in real-world data and enable more robust artificially intelligent systems.
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PREFACE

The poet Louise Bogan said, “The initial mystery that attends any journey is: How did

the traveler reach his starting point in the first place” [30]. Out of a perhaps whimsical

notion that future readers may wish to know about my personal journey to completing my

PhD, as well as my own personal need to retrospect on what has been achieved, I first provide

a (short) summary of how I got to this point. As a child, I had an innate fascination with

technology, always tearing things apart (and often not being able to reassemble them) in

order to understand their inner workings. While many were satisfied by a cursory “high-level”

explanation, I was not. I needed to understand precisely how things operated, particularly

when it came to technology. While I sit quite dumbstruck at having just completed a PhD

in Computer Science, in hindsight it perhaps is not so surprising at all that this is the path

my life has taken.

From an early age, I toyed extensively with computers, wantonly ignoring warnings not

to change operating system settings in order to learn their effects. I had an insatiable urge to

learn and go where the adults around me at the time did not or feared to. This curiosity led

me consistently to push the limits of my own knowledge. I taught myself to program before

entering high school during a summer vacation at the beach. I much preferred learning

new commands to the hot sun and water of the ocean. I flourished during high school

despite innumerable obstacles, the details of which I will spare the reader. The computing

courses at my high school at the time were extremely limited and I felt quite disappointed

and somewhat surprised how far ahead I was of the other students. After graduation, I

chose Pitt primarily because it was a great school and was also close to home. I wandered

somewhat desultorily through my first year of college without the slightest idea of what my

major would be. I began taking computer science courses primarily out of curiosity, never

thinking that it would ultimately become my major. Four years later, I completed my degree

in Computer Science.

Along the way, a number of faculty members strongly influenced my post-graduate di-

rections. Professor Diane Litman announced in class one day the availability of an under-
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graduate research position. I was intrigued (at the time knowing nothing about research).

To my surprise, I found it quite enjoyable and, more importantly, found it stimulated my

curiosity and enabled me to push the limits of my knowledge. I also began working with

Professor Janyce Wiebe at the time (during my undergraduate years). Finding that I truly

enjoyed research, I decided that graduate school would be the next step and was accepted to

Pitt’s doctoral program. During one of my courses, I expressed that I had no clue what my

research area would be. Jie Guo, a friend, suggested that I talk to Professor Steven Levitan

about working in his lab. I followed up and was introduced to computer vision which, prior

to this introduction, I had known essentially nothing about. However, I quickly found I

was enthralled by the field and truly enjoyed what I was doing. After Professor Adriana

Kovashka joined the department, I began working with her as my full-time advisor and the

rest is history.

I wish to first acknowledge the tremendous efforts of my advisor in assisting me during

my academic career. She provided exceptionally detailed line-by-line feedback on many of

my early manuscripts, helping me to become a better writer and researcher. Our countless

discussions greatly deepened my understanding and honed my critical thinking skills. She

tolerated my slightly nettlesome tendencies and ultimately helped me become more focused.

Perhaps most importantly, she taught me that doing hard work and great scholarship doesn’t

need to come at the expense of one’s humanity. She encouraged me to take much needed

breaks after deadlines and remained constantly accessible and grounded, despite her stature

within the computer vision community. In sum, the work in this dissertation, as well as my

growth as a researcher but also as a person, would not have been completed without my

advisor’s extensive mentorship. For this, I am grateful beyond words.

Pitt has been a truly supportive place and there are countless individuals that intersected

with my journey that I wish to acknowledge. Professors Diane Litman, Rebecca Hwa, and

Taieb Znati all provided extraordinary support along my journey and assisted me in many

ways. I also wish to acknowledge Professor Donald Chiarulli who, along with Professor Steven

Levitan, helped introduce me to computer vision. I wish to thank Yahoo Research! for

a research internship and Yale Song for his mentorship, collaboration, and the unforgettable

opportunity he provided for me in New York City during my residency there. I also wish to
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1.0 INTRODUCTION

Recently, the availability of large scale computer vision databases such as Imagenet [303],

Visual Genome [183], and MSCOCO [211] have enabled remarkable progress on a range of

computer vision tasks, from the more fundamental such as object recognition [292, 210,

143, 291, 297, 105] and image segmentation [49, 409, 105, 205, 301] to more challenging

tasks requiring multimodal learning, such as visual question answering [8, 230, 382, 366,

138, 378, 12] or visual dialogue [236, 311]. There is essentially “unanimous agreement”

that much of this improvement is due to the fact that such large data resources enable the

training of increasingly complex deep neural networks [330]. These more powerful models

have enabled researchers to begin to model ever more abstract phenomena, such as predicting

image virality [6, 67, 115], understanding the effect of physical forces or processes in images

[21, 249, 89], and predicting the motivations of actions in images [285].

Though specific tasks widely vary, the overwhelming majority of computer vision research

focuses on using the literal visual content of an image, either by classifying or describing such

content or leveraging the content for some downstream task. For example, image captioning

approaches focus on producing text which literally describe the content of an image (e.g. “a

dog sitting on a bed”), action recognition methods classify the actions occurring in images

or video (e.g. jumping, sitting), and object detectors localize and classify specific objects

appearing in an image. All of these methods directly map certain visual patterns to certain

classes or co-occurring words (in the case of image captioning). There has been some recent

effort to apply vision methods to tasks requiring higher-level reasoning. The visual com-

monsense reasoning task, for example, requires vision methods to answer questions about

images which require commonsense knowledge and inference (e.g. “Q: Why is the person

pointing? A: To tell the waiter where to put the food.” ). However, these problems still

focus on understanding the literal visual content of images, even though they aim to require

external reasoning about such content. These tasks continue to view visual media through

the lens of understanding the content of images for its literal value and then leveraging that

content, either in a descriptive manner (as in the case of image classification or captioning)
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or in a task-driven manner (as in visual question answering).

In contrast, in this dissertation we view images through the lens of visual communication,

that is, as communicative tools used by humans to tell visual stories and to convey messages.

We seek to understand and model not only what that message is, but how and why images

convey it. For examples, while many different images could be used to illustrate a news

event about a protest, the choice of image to illustrate a news article may depend on the

overall political leaning of the author. One author may attempt to portray the protest as

violent or dangerous, while another may wish to portray it as peaceful. While both images

capture and illustrate the same event, how and why the event is portrayed in varying ways

differ among the two authors. It is this authorial intent and latent messaging, which forms

a “subtext” around the image, which we seek to model in this dissertation. We term such

subtle messaging the visual rhetoric of the image; that is, the subtle ways in which visual

content is used to tell a story which ultimately lies outside the image itself.

The fundamental challenge we address in this dissertation is modeling high-level,

often visually incoherent or latent semantic concepts (e.g. political bias) within highly vi-

sually diverse, noisy (ground-truth labels may be incorrect), and/or small datasets. By

visual incoherence or latent visual concepts, we mean that while the concept of interest has a

common-sense semantic meaning occurring throughout the dataset, it is visually manifested

in different ways such that isolating particular visual features present in multiple images is

elusive for existing algorithms. For example, training a deep neural network to distinguish

between different classes of objects is straightforward. After seeing many examples of each

class via backpropagation, the network may learn that dogs have pointy noses and birds

have beaks and use those patterns to discriminate between the two classes. Such patterns

are fairly straightforward to extract from the data, since each object has a regular, consistent

visual manifestation across multiple images.

But what if the underlying phenomenon to be modeled is a more abstract or semantic

visual concept? For example, imagine a dataset of photographers where each photograph

is labeled with the photographer who took it. In this case, each “class” contains much

more visually diverse data than a single animal, i.e. many different objects, patterns, places,

and visual settings. The “class” is meaningful to humans, but visually incoherent from the
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perspective of a machine classifiers. A human might observe, for example, “I notice this

photographer tends to portray the poor in a more positive light.” From this, a human

may be able to extrapolate political messages which then seem to occur consistently across

the photographer’s body of work. Extracting such a signal requires viewing the image

more hollistically, not for its content, but as a form of visual communication. This requires

understanding how the specific content shown in an image interlaces with some broader,

overarching concept, such as the author’s views of the poor or child labor. What a particular

photographer’s “style” is only makes sense in retrospect, after viewing numerous examples

of his or her work. As we will see across several such problems, this type of visual signal is

much harder for a machine to extract from data on its own. Without careful design to force

a model to rely on semantically meaningful concepts, a network trained on this problem is

unlikely to capture the underlying concepts of interest and will instead likely fall into the

trap of using low-level cues (such as color) to make its decisions.

This dissertation’s primary focus of modeling visual communication and semantics as de-

scribed above can broadly be characterized as discriminative learning, wherein models learn

to map an image to some discrete representation: class labels, words, semantic embeddings,

etc. However, a collateral theme of our research is the use of generative techniques to gen-

erate new visual data exhibiting the semantic concepts we have modeled. The importance

of generative models for our purposes is their ability to automatically learn a natural fea-

ture representation for any given dataset, with or without labels on it. For example, in our

work on modeling political bias, we show an experimental result that externally introduced

information about facial semantics helps with predicting the political bias of a face. We

then use a generative model to visualize how political bias changes how politicians’ faces are

portrayed. Thus, a secondary, recurring theme of this dissertation is the use of generative

models to aid humans in understanding aspects of our datasets or the semantics we are

modeling (Chapters 3, 4, 5).
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Visually incoherent

semantics
Limited data Noisy data Multimodal data

Figurative / symbolic

visual rhetoric

Modeling...

Photographic style

Chapter 3
X X X

Visual persuasion

Chapter 4
X X X

Visual political bias

Chapter 5
X X X X

Abstract semantics

in multimedia

Chapters 6 and 7

X X X X

Table 1: We highlight the common challenges our methods address.

1.1 COMMON CHALLENGES, COMMON METHODS

At a high level, this dissertation explores the problem of modeling, both discriminatively

and generatively, visually incoherent phenomena within noisy and visually diverse datasets.

In particular, we propose five methods for modeling four distinct types of visual semantics.

While the concepts we study differ, the overarching challenges posed by each setting are

similar and the methods we develop to address them thus build upon shared themes. We

summarize these commonalities in Table 1. We observe that all problems we study involve

modeling visually incoherent semantics which are challenging for networks to capture. All

of our tasks also feature noisy data, which stems from the fact that the data was scraped

from the web en masse without human supervision. This noise introduces labeling errors,

whereby images labeled with a particular class may actually be of a different class (or even

no class at all in the case of irrelevant retrievals). For example: our photographic style work

features noisy data in the form of images incorrectly assigned to a particular photographer,

in addition to image modifications such as unnatural borders, edges, or other distortions;

our methods for modeling visual persuasion and visual political bias must contend with data

whose ground truth labels are potentially incorrect; and our work on learning multimodal
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Structured or

guided

training

Explicitly inject

external

semantics

Control for

noisy data

Multi-stage

learning

Generative models

for analysis

Modeling...

Photographic style

Chapter 3
X X X

Visual persuasion

Chapter 4
X X X X X

Visual political bias

Chapter 5
X X X X

Abstract semantics

in multimedia

Chapters 6 and 7

X X X X

Table 2: Commonalities between the different methods we develop in this dissertation.

semantic representations is faced with noisy image-text pairings (e.g. image and text don’t

actually go together) and incorrectly scraped webpage text. Additionally, limited data is a

challenge for our work on photographic style and visual persuasion. This stems from the fact

that there are only a relative limited number of photos taken by a particular photographer

and from the size of the pre-existing ads dataset we use in our work on visual persuasion. As

discussed before, the concepts we study manifest themselves when data is viewed across the

entire dataset (i.e. collectively), but may be extremely hard to localize from individual im-

ages. Thus, learning with limited data poses a significant obstacle to extracting meaningful

semantic signals and thus, special care must be taken in these cases. Our work on politi-

cal bias and learning semantic cross-modal representations both feature unique challenges

and opportunities in that they feature multimedia documents, i.e. i.e. images paired with

text. This is particularly challenging because we seek to model visually incoherent concepts,

which do not explicitly align with the text paired with the image. Similarly, these methods

must also cope with figurative and artistically modified images, as well as understand visual

symbolism.
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The shared challenges posed by these different problem settings result in similarities

across the methods used to solve them. As we show in Table 2, the methods we develop for

each of these settings share a number of common features and use cases. We see that all

of our methods involve explicitly controlling what our classifiers learn through structured or

guided training. This can be accomplished by designing custom loss functions to capture

only the phenomenon of interest, imposing limitations inherent within the architecture of

the model, or only finetuning higher-layers to prevent lower-layers from fitting to irrelevant

phenomenon. Several of our methods involve explicitly providing our methods with external

semantics believed to be relevant (by humans), either in the form of semantic attributes

(for visual persuasion or political bias), or through the use of a general-purpose semantic

representation (for multimedia semantics). Some methods control for noisy data in some

way, using both simple and elaborate techniques. Additionally, some of our methods employ

multi-stage learning techniques, typically in the form of a multi-stage training procedure in

which models are first trained on different tasks and then combined in some way. Finally,

a number of our methods use generative models to aid analysis by visualizing what the

models have learned. We believe the insights used in each of these settings form a toolbox of

techniques which can be applied to other domains where standard methods fail to adequately

model visually incoherent semantic concepts. For example, when encountering a new problem

which requires modeling non-literal semantics, one should first consider imposing structure

on the training process.

Despite being developed for and applied on particular tasks, the methods we propose

are generalizable to other tasks within this dissertation. We show the consonance of our

methods cross-dataset in Table 3. We observe first that our cross-modal methods (Chapters

5, 6, 7) are broadly applicable to settings where paired text is available with images. The

image ads dataset we use in Chapter 4 does contain a variety of types of paired text for a

number of ads and thus these methods are potentially applicable in that setting. Similarly,

our techniques of using explicit object (Chapter 3) or attribute (Chapter 4) representations

are applicable to all the datasets we study. We remark however, that constraining learning to

particular semantic representations (such as objects or attributes learned on other datasets),

does preclude models from learning dataset-specific features which ultimately may be better
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Method

Transferring

high-level

object

representations

(Chapter 3)

Leveraging

external

semantic

attributes

(Chapter 4)

Textual

semantics

guide visual

training

(Chapter 5)

Enforcing

cross-modal

semantic

proximity

(Chapter 6)

Identifying

semantically

informative

samples

(Chapter 7)

Dataset

Photographic style

(Chapter 3)
X ~

Image advertisements

(Chapter 4)
~ X ~ ~ ~

Communicative multimedia

(Chapter 5)
~ X X X X

Table 3: We show the generalizability of the methods we propose across different datasets.

Methods which were actually performed on the dataset are shown with a X, while methods

which are applicable (but which we do not actually apply) are shown with a ~.

suited to the particular problem and data. Thus, our goal throughout is to learn semantics

for the specific problem from the actual data itself to the maximum extent practicable, in

light of challenges such as dataset size, visual diversity of the concept to be learned, and

noise.

In the remainder of this chapter, we more thoroughly describe the broader themes of our

work, the shared challenges, and the individual methods we propose. The remainder of this

chapter is as follows. In section 1.2 we introduce the problem of modeling latent concepts

in visual data. In section 1.3, we more thoroughly discuss the problems encountered when

working with visually diverse, noisy, and/or small datasets and outline several strategies we

use to solve them. In section 1.4, we examine the unique challenges (as well as opportunities)

faced when modeling semantics in communicative multimedia, as opposed to traditional

vision and language used in vision. Section 1.5 introduces the scientific hypotheses which

we seek to address in this dissertation. Finally, in section 1.6, we more explicitly delineate

the contributions of our work.
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1.2 LATENT VISUAL CONCEPTS

Throughout this dissertation, we consider images’ content not as an end in itself (i.e. for

its literal content), but rather as a communicative medium used by authors to convey vi-

sual stories. It is these stories which we seek to understand and model, not the content

of images itself. Of course, understanding how an image fits into the “bigger picture” also

requires recognizing the contents of the image. However, computationally modeling visual

communication requires taking a step beyond the literal content of the image, and under-

standing broader semantic concepts and how a particular image’s contents interplays with

or reinforces them. For example, the Statue of Liberty can be used as a symbol represent-

ing justice, freedom, or immigration. However, the visual manifestation of these abstract

concepts is itself missing from the literal object of the statue in the image. Only by looking

at the broader dataset may one learn correspondences between the object and these various

semantic topics. These semantic concepts are thus latent within the data, despite having

various visual expressions. Similarly, understanding and modeling the overall themes defin-

ing a professional photographer’s work requires reasoning over multiple images taken by the

photographer and connecting and learning how specific objects and their portrayals cohere

into a larger semantic narrative or theme. We call these broader semantic themes latent

visual concepts because although they manifest themselves in individual images, they can

only be understood in the context of other images viewed collectively. Thus, though a latent

visual concept may be exhibited by a single image, it is simultaneously absent without the

context of the broader dataset to give it meaning. Only by considering Lewis Hine’s body of

photographic work as a whole, for example, does one understand why and how a particular

image portrays working children and what sets his photographs apart from others (Mr. Hine

was a vocal advocate against child labor).

We illustrate the four different “visual concepts” explored in this dissertation in Figure

1. In Figure 1(a), we illustrate the problem of photographer classification, where the system

must learn a model of a photographer’s photographic “style”; (b) models the concept of

visual persuasion by illustrating the different ways faces are portrayed in different types of

ads; (c) shows a latent multimedia visual concept (political bias) with groundings in both the
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Photographic Style(a) Visual Persuasion(b)

Multimodal Political Bias

Following the President’s 
declaration that he would be 
devoting the entire year to 

fighting against the hatred of 
non-Whites and their Semitic 
enablers, the Moslem army 
based inside of France has 
continued its ongoing war 

against the….                 .  

No group is more 
representative of the hatred, 
hostility and hypocrisy that 
the far-left represents than 
Antifa, a loosely organized 
group of thugs who attend 

conservative rallies and 
events to “counter-

protest.” In reality, their
goal  ……         …….

White House Press Secretary 
Sean Spicer greeted a crowd 

of press this afternoon by 
hailing them and shouting 

“SiegHeil!” Spicer described 
in little detail President 

Trump’s plan to put into 
action socioeconomic and 

political changes to effectively 
mirror the ………    .    …………..

The Drudge Report’s Matt 
Drudge has issued a warning 
that he is preparing to publish 
details of Hillary Clinton’s 
sexual preferences. 
Suggestions and rumors that 
Clinton is a lesbian are not 
new. As far back as 2007, the 
London Times ……

The problems related to 
immigration have 

increased under the 
Obama administration 
because of Obama’s 

unwillingness to secure 
the southern border and 
deport illegal immigrants, 
including criminals….     ….    

(c)

Abstract Semantics in Multimedia

Talk about change 
we can believe in! 

Sen. Jeff Sessions, R-
Ala. (C, 78%) as 

attorney general 
would be nothing 
short of a game 
changer…       .     .  

(d)

Ju
st

ic
e

Pa
tr

io
tis

m

Five times in the last 
five years, the U.S. 
Attorney's Office in 

Washington has 
admitted to 

mistakes that 
resulted …              .  .

If we're indicting 
people who fail to 
protect children, 

Republican 
lawmakers should 
be terrified. I would 

like to report a 
whole…               .

Government 
officials in Puerto 

Rico have 
announced that 

they will no longer 
fight to protect the 

U.S. territory’s 
marriage…          .      .

To Cuba’s leftist 
allies joined a 

sprawling multitude 
of Cubans chanting 
“I am Fidel” at a rally 

on Tuesday to 
commemorate 
Fidel…                  .

Donald Trump has 
finally figured out 
what he thinks 

about San Francisco 
49ers quarterback 
Colin Kaepernick's 
decision to remain 
seated...             ….

Figure 1: We showcase examples of the five latent visual concepts we model in this disser-

tation. (a) shows examples from our photographer style dataset, (b) shows examples of

visual persuasion in image advertisement faces for various categories of ads, (c) shows an

example of a latent concept (political bias) expressed in multimedia (images and text), and

(d) shows abstract semantic concepts (“justice” and “patriotism”) and their multimodal

manifestations in communicative media.

image and text domains; and (d) depicts abstract multimodal semantic concepts (“justice”,
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“patriotism”) manifested in both visual and text space, exhibiting how images are used as

communicative tools to illustrate abstract concepts in the text.

While the problems we study may seem different at first, the unifying theme reoccurring

across problem settings is that the semantic visual concepts we wish to model are challenging

for existing models to grasp without some form of human intervention. In all of the domains

we study, models trained without some custom supervision, either in the form of forcing a

classifier to rely on semantic knowledge transferred from other sources or designing custom

loss functions to capture concepts of interest, results in a failure of the model to capture

the concepts of interest. The CNN may simply fit itself to lower-level phenomena, such

as textures, colors, or particular objects which reoccur in some classes, without actually

modeling anything semantically meaningful. While the multimodal case of images and text

poses some unique challenges because the semantics are abstract and manifested in both the

image and text spaces and there is a lack of direct alignment between the text and the image

(i.e. the text doesn’t literally describe the contents of the image), ultimately we find that

general intuitions and techniques used for preventing models from latching onto irrelevant

image phenomena can be leveraged to facilitate multimodal learning of abstract semantic

concepts.

Generative modeling. Our discussion thus far has mainly assumed a discriminative con-

text. However, a secondary objective is generating visual data which exemplifies the visual

concepts we have modeled. In other words, we are not simply interested in training a gener-

ative model on our different datasets and achieving synthetic images of good visual quality.

Instead, we want our generations to emblematize the semantics that we are modeling in that

particular domain. For example, if we are generating synthetic faces appearing in ads, it is

not sufficient that the generator learns to generate a crisp face; we insist that the face must

also bear the visual concepts that we have learned are inherent in that particular type of

ad. This is a particularly challenging constraint to formulate because of the “hidden” nature

of the concepts we consider. While conditional generative models [151, 61, 386, 327, 53]

are now common, when the visual concepts in question defy vanilla discriminative classifiers

(as previously discussed), the usual techniques of simply conditioning such classifiers on the

class label does not work. As we will later discuss, state-of-the-art conditional GANs trained
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on such problems thus face two major obstacles: (1) the failure of auxiliary discriminative

components to capture the visual concepts of interest (for the same reason that training dis-

criminative models fail to capture the concepts without our techniques and (2) achieving a

good fit of the underlying distribution of the data when the visual patterns occurring within

a class (e.g. right-leaning political bias) are too varied. In Chapters 3 and 4 we present

increasingly complex strategies to account for these challenges.

Multimodal modeling. Our problems of modeling political bias and learning represen-

tations of abstract multimodal semantics continues the theme of modeling latent visual

concepts, but also extends it in interesting ways. For example, political ads with a pro-

immigration agenda may portray immigrants as happy, contributing members of society,

while anti-immigration ads may portray immigrants as hardened criminals. This problem is

more challenging than that of modeling the difference in faces found in beauty ads vs. soda

ads, for example, due to the fact that we seek to understand political bias broadly, rather

than just how it is exhibited on specific objects. Moreover, unlike our prior contributions,

we study the concept of bias in both the image and texts domains. We thus build a model

which synergistically accounts for both textual and visual bias, learns correspondences be-

tween them for predicting political bias, and also exhibits these learned correspondences in

generated data. We also show how a model of intramodal bias (on text alone) can serve as a

supervisory signal to help models trained on multimedia (images and text) actually capture

the phenomenon of interest. Our final two methods build upon our work in modeling multi-

modal semantics, but are also somewhat distinct from the rest of our work in this dissertation

in that rather than study a particular latent visual concept, they instead propose general

solutions for modeling abstract semantics in multimedia, in the absence of any specific se-

mantic task. Instead, these methods seek to learn a robust semantic representation which

captures such higher-level semantics automatically, without the need for human tuning of

the method. We thus desire the learned semantic representations to preserve such broader

abstract semantics automatically in a data-driven way. These representations can then be

used for downstream tasks requiring inference on the latent concept (e.g. to train a political

bias classifier or any other such task), without the need for task-dependent approaches for

each dataset and task one seeks to model. To do so, these methods work by incorporating
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complementary intermodal semantics from the paired image-text domains into the models’

learned semantic representations or by exploiting the pairwise nature of multimodal data to

automatically identify and then emphasize image-text pairs which contain abstract seman-

tics. We believe these two final methods serve as strong general purpose starting points for

modeling latent visual concepts in visual multimedia.

1.3 DIVERSE, NOISY, AND LIMITED DATA

Obtaining enough data to train modern machine learning models is a perennial problem

in computer vision. Fundamentally, this need for ever-more data stems from an increase in

the number of parameters to be learned in ever-more complicated architectures. Contem-

porary deep learning architectures have hundreds of layers, yielding models with millions of

parameters [127, 184, 321]. The recent InceptionResnetV2 network, for example, has nearly

56M parameters which must be optimized [335]. Applying such architectures to a sufficiently

complex problem yields an extremely non-convex error surface. Finding an acceptable saddle

point on such a surface thus requires a large amount of data [170]. Similarly, training data

which is too noisy to compute such smooth gradients inevitably results in the model falling

into unacceptable local minima or divergence.

Visually diverse datasets contain images and objects whose visual appearance signifi-

cantly differs across the dataset. This poses challenges for learning as models struggle to

find consistent visual patterns across images of the same class, e.g. right/left leaning im-

ages or images taken by a particular photographer. For the dataset of faces we consider

in Chapter 4, this visual diversity amounts to variations in pose, gender, color, facial at-

tributes, image backgrounds, etc. Our political bias dataset (Chapter 5) is also extremely

diverse. It contains, for example, the same politicians in highly varied scenes, spans many

different political topics, and features countless images of the same politically relevant events

taken from different perspectives or showcasing different aspects of the event. In general,

visually communicative media, which is intended for human viewers, features much richer

visual diversity than is traditionally found in curated object detection and image captioning
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datasets featuring repetitive objects such as MSCOCO [211] or Imagenet [184]. In contrast,

multimedia used in visual communication features an open vocabulary of topics, scenes, and

objects (i.e. essentially any topic or object may appear). Moreover, some images and objects

are often modified through image editing, or the image itself could be a graphic illustration.

The conventional wisdom is that diverse datasets are beneficial when there is sufficient data

to adequately train models on because they enable CNNs to become significantly more ro-

bust to noisy test cases. In fact, many techniques [77, 368, 93] have been proposed to add

diversity to datasets to improve the performance of discriminative models. However, these

approaches assume models are learning concrete, visually consistent object representations

(i.e. the class is an object, but the scene type or pose of the object is changing). In contrast,

we seek to model latent semantic concepts (such as political bias). In this case, having a

highly diverse “open world” dataset spanning many different subjects with vastly different

visual appearances makes extracting any meaningful signal of the visual rhetoric we seek to

model extremely difficult.

Compounding matters further, when datasets are small and diverse, achieving accept-

able results can be nearly impossible without providing some form of external structure or

guidance on the learning process, as models simply memorize low-level patterns within the

training data, which are not actually discriminative. The primary reason for limited data

often comes from the nature of the problem itself. For example, there are only so many

photos taken by a professional photographer. For our work on ads, finding a large number

of non-duplicate images with a particular label (i.e. soda ad, car ad) is challenging, thus the

dataset we use for this work is relatively small. In contrast, there are essentially limitless

numbers of potentially politically biased images and paired text available on news websites.

One solution to dealing with limited data is to simplify the model by reducing the number of

parameters by reducing depth in order to achieve a more general, but less powerful model.

However, in the case of generative models this simplification ultimately results in models

which either output images at unsatisfyingly small resolutions (which are often too small to

demonstrate the semantic concepts we wish to capture) [228]. In the case of discriminative

models, reducing model complexity results in models lacking sufficient representative power

to model the phenomena of interest.

13



One common solution to the problem of limited data is to leverage existing pre-trained

models, trained on external large datasets. Pre-trained models have found use in a wide

variety of applications and have proven to be a formidable baseline for many tasks [315].

Other techniques, such as domain adaptation and transfer learning aim to allow such pre-

trained models to generalize to other domains with less data. Domain adaptation techniques

enable models trained on one type of data to be re-applied on a separate type of data

from a different distribution [274]. Transfer learning enable models to generalize across

different tasks, dispensing with the need to relearn lower-layer texture filters, for example,

and thereby reduce data requirements [220, 264]. The standard practice is to first train a

powerful CNN model on a dataset for which labeled data is plentiful (e.g. Imagenet), even

though the problem of interest may be completely unrelated to Imagenet or even image

classification. Nevertheless, this training phase allows the model to learn powerful, general

purpose semantic features which can be applied readily to a number of tasks, either by

training a secondary classifier on top of them or by finetuning only some layers of the

model, which requires much less data [148]. This allows classifiers to conduct inference

over features with semantics “baked-in” from pre-training, without requiring the model to

learn them again from a visually diverse, limited, and possibly unlabeled dataset. Many

of the methods we devise in this dissertation make use of some form of transfer learning.

However, unlike many transfer learning methods, we seek to transfer representations to model

higher-level abstract semantic concepts where it is not immediately obvious the transferred

semantic representation is appropriate. For example, it is not obvious that transferring

object semantics is appropriate for photographer classification or that visual persuasion can

be captured through facial attributes.

Several of the datasets we utilize in this work are also noisy, in that the ground truth

labels of the dataset may be incorrect. For example, in the datasets we collect for our work

on image ads and political bias, we download a large number of images and (for political

bias) associated lengthy text from the internet. Though we endeavor to combat this, the

images retrieved from the page may actually be irrelevant ads, completely unrelated to the

article text. Moreover, the text parser may fail to correctly parse the article text and instead

include irrelevant text from ads or other links to unrelated content. The presence of such
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“confounding” ground truth data poses a significant challenge to training models on this data

without explicitly controlling for the fact that much of the data may not actually contain

any learnable signal. Many such “webly” or weakly supervised methods have been proposed

to combat this problem. Some works have shown that label noise has a deleterious effect on

recognition performance [381], while other works have actually shown the opposite [294, 349].

Interestingly, [182] show that highly fine-grained recognition models can be learned using

noisy data. We more thoroughly discuss related work related to learning from noisy data

in Chapter 2.3.3. We control for various types of noisy data throughout this dissertation.

However, the problem of label noise and irrelevant data is particularly pronounced in the

case of modeling abstract, latent semantics. In order to tease out the effects of noise in

our test data, we evaluate several of our methods on external, cleaner datasets as well

as on human annotated data. In Chapter 7, we present several methods for emphasizing

semantically informative samples within the dataset, while simultaneously de-emphasizing

outliers. This approach automatically downweights samples which are significantly different

from the overall dataset’s distribution and has the effect of mitigating the effects of dataset

noise, while simultaneously boosting the model’s attention to nuanced samples containing

the semantics of interest.

All of the problems studied in this dissertation feature highly diverse datasets and two of

them feature limited data (photographic style and visual persuasion) which requires particu-

larly careful consideration. Importantly, though our collected dataset on political bias is the

largest dataset we collect, it is by far the noisiest, consisting entirely of data scraped from the

web with automatically assigned labels (with no human supervision). Thus, the challenges

posed by each of the distinct problems we study interlock and are complementary. Exam-

ples of the high visual diversity exhibited by some of the datasets we analyze can be seen

in Figure 1(a)-(d). The classes within our photographer dataset (i.e. all photographs taken

by a single photographer) span photographers’ entire careers over many different projects

and time periods and thus exhibit extreme diversity. Our visual persuasion dataset is highly

diverse (and also somewhat noisy), so we restrict ourselves to working on faces, which we

found exhibited the most appearance variation of any object category in the dataset. The

number of faces per category is also extremely limited, with several categories having less
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than 500 faces in total. Our work on political bias relies on a dataset we collected which is

not only extremely diverse in visual space, but which is also noisy in both the image and

text domains. Finally, the two general methods we propose for learning abstract semantic

representations in multimedia are applied on our political bias dataset, but also on several

other large-scale, webly-supervised datasets such as Conceptual Captions [316] and Good-

News [27], which themselves feature a high-degree of visual diversity and some noise given

they are automatically harvested from the Internet, with no human supervision. We note

that we prefer learning on larger, noisier datasets than smaller, clean, and human annotated

ones. This is because a larger dataset allows us to learn models on the data directly rather

than relying on transferred semantic representations, which ultimately allows us to better

capture the semantics within the dataset better. Additionally, we seek to develop techniques

which allow learning abstract semantic concepts without the necessity of expensive human

annotations. Further, large-scale datasets contain more diverse expressions of the concept

we seek to model (e.g. political bias exhibited in many different ways) allowing us to draw

insights about the concept which may be impossible in a small dataset.

1.4 COMMUNICATIVE MULTIMEDIA

It is difficult to believe that a mere few decades ago the Internet was dominated by

primarily text-only webpages, perhaps sparingly interspersed with clipart and a few pixelated

images. Today’s Internet is dominated by pages imbued with embedded images, embedded

video, sounds, GIFs, and other media which accompanies text as a way of illustrating it. For

example, webpages containing recipes feature images demonstrating each step of the cooking

process, or even provide an video which shows the entire preparation process of the dish from

start to finish. Visual media adds entertainment interest, as well as informational value to

the text which it accompanies, by explaining concepts and conveying visual stories to the

reader which supplement the messages contained in the text. Similarly, images paired with

news articles allow the reader to actually observe the subjects or incidents being discussed in

the text. Likewise, the ability to discuss matters of interest and share visual media rapidly
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on social media have fundamentally changed the nature of human communication. Platforms

like Twitter, Facebook, and Reddit have become the dominant vehicle through which the

collective human experience is mediated, shared, and discussed. The ability for the average

user to instantly disseminate content to the world at large without the costly requirements

of a printing press or the need to convince an editorial board to disseminate it has facilitated

the democratization of human communication. Visual media has thus become an enormously

powerful tool for human communication and persuasion. It has been found, for example,

that tweets with images have been found to get 89% more likes and 150% more retweets than

purely text-based posts [401]. The public clearly crave such content as it is entertaining,

more emotionally impactful, and ultimately more persuasive. In this dissertation, we term

content composed of multiple modalities of data multimedia. For example, a news article

may contain images, text, embedded video, and other graphics, but still forms a cohesive

unit as a multimedia document. As a cohesive unit, the individual media components of

a multimedia document make sense when viewed collectively, rather than independently,

since they each contribute to the overall message conveyed by the document. While this

is a natural way of viewing such multimedia for humans, we will see that existing machine

learning approaches process the modalities quite differently.

Working with multimedia poses unique challenges for machine learning research because

multimedia documents are composed, by definition, of multiple modalities of data. To reason

about visual multimodal data, one must not only learn the visual concepts portrayed in

images (e.g. people, dogs, or other objects) and their semantic relationships, but also learn

how those concepts relate to specific words or tokens in the text. To do so the model must

learn that a specific set of visual patterns tends to correspond with the co-occurrence of a

particular word in the text, in order to establish a connection between the visual concept with

its symbolic representation in text. Compounding matters further, many different words can

apply to the same visual object, as a result of synonymy. For instance, the President of the

United States can be referred to as “The President”, “Donald Trump”, the “Commander

in Chief”, “POTUS”, etc. and the model must learn to associate these tokens with their

associated visual manifestation (i.e. the person Donald Trump in a photo). While this may be

straightforward for objects which have literal and recurrent visual groundings in image space
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Vaccines are 
safe, I promise.

A man eating a 
banana You smell great 

today!

Traditional image captioning Communicative multimedia

Figure 2: We illustrate the differences between our work in modeling multimedia semantics

compared to existing visual semantic embedding methods which target traditional image-

text datasets. On the left, we show examples of traditional image-caption pairs. In this case,

the text literally describes the content of the image. In contrast, in real-world communica-

tive multimedia, authors combine images and text to convey persuasive messages, without

necessarily making the message explicit in text. Images and text thus carry complementary

information, which contribute to the overall multimodal message.

(which objects such as people, structures, or places often do), the problem becomes much

more challenging for abstract concepts encountered in real-world communicative multimedia

such as “conservative” / “liberal” or “freedom”.

Existing methods for learning representations of visual and text semantics (known as

visual semantic embeddings) assume that the relationship between images and text is essen-

tially literal and straightforward. Moreover, most popular image-text datasets [211, 183, 2]

on which visual semantic embeddings are learned and evaluated, provide text in the form

of image captions, which literally describe the content of the image. For example, an image

caption might be “A man is eating a banana,” and would be paired with an image showing

the same content. As a consequence, existing methods for learning cross-modal representa-

tions rely on the fact that each modality provides essentially the same redundant information

in order to learn representations of each modality that are close within the space. For ex-

ample, continuing the above example of a man eating a banana, it is straightforward to

see how the representation of the image and text could be close within the space, as they

both express the same message. However, most visual multimedia encountered in daily life
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is not like this. Real-world media, such as news articles, social media posts, memes, etc.

leverage images and text as a form of multimodal messaging. In these cases, the image often

provides visual rhetoric undergirding arguments made in the text, but not necessarily liter-

ally mirroring them. As an example, the image described before could be paired with text

describing grocery store shortages of fruits and vegetables as a result of coronavirus. In this

case, the image content is more illustrative than redundant. More realistic cases have even

more complex relationships between the modalities, where the semantics of each modality

depend on understanding both modalities together. That is to say, that each modality’s

semantic meaning can only be understood when viewed holistically with the other paired

modality(ies). Consider the examples shown above in Figure 2. In the example with the

skunk, the text’s actual meaning is that the person does not smell good, given that the text

is paired with a skunk. However, this semantic message is lost in the absence of the image’s

context. Similarly, in the example on the right, the image undercuts the statement made in

the text by implying that the medical profession is only suggesting vaccines are safe for selfish

financial gains. In this case, the overall message conveyed by the multimedia about vaccines

is lost unless the pair are considered collectively. This is because each modality provides a

separate contribution to the overall message, rather than merely redundant information.

In this dissertation, we focus on understanding and modeling real-world multimedia used

for communication and persuasion. As the above examples illustrate, real-world multimedia

violates many assumptions commonly used by most visual semantic embedding methods.

Specifically, 1) that the image and text contain redundant information, and 2) that the

semantics of each modality can be understood and modeled independently. These assump-

tions guide the design of existing visual semantic embedding methods, and while they make

sense for traditional image captioning scenarios, they do not for communicative multimedia,

which creates obstacles to modeling semantics in real-world multimedia. This is because if

one attempts to learn embeddings of the text and image comprising a multimedia document

by constraining the two’s embeddings to be close in the learned space (as standard methods

do), the method may be forced to discard useful nuances and subtleties of the text or image

from the representation in order to ensure the image and text are close within the space.

The assumption that image and text carry redundant information thus results in discarding
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potentially useful information from the semantic representation. In actuality, each modal-

ity contributes complementary information which should be preserved in each modality’s

representation. Thus, leveraging standard approaches suitable for captioning datasets on

real-world multimedia documents runs the risk of losing useful subtleties and nuance from

the representation space.

Three of the methods that we propose in this dissertation specifically target commu-

nicative multimedia, that is, multimedia used for human communication. Specifically, in

Chapter 5, we study the problem of modeling multimodal political bias. That is, we seek to

computationally model how news articles from biased sources manifest political bias in both

the visual and textual domains. We explicitly leverage our observation that complementary

information is carried in the text domain, in order to guide our model towards learning visual

concepts that are politically biased. Because our dataset is so highly visually diverse and

the concept of political bias so semantically complex, models tend to fixate on lower-level

cues like logos which “give-away” the politics of the image, rather than learn more intuitive

notions of bias. However, by leveraging the complementarity of image and text as a form of

semantic guidance (i.e. guiding the visual model to learn purely visual features which com-

plement text features), the model can successfully be targeted to capture semantic concepts

of interest which are useful for purely visual models of bias.

Our final two methods in Chapter 6 and Chapter 7 also leverage the complementar-

ity of image and text in communicative multimedia. In Chapter 6, we propose a general

purpose method for learning visual semantic embeddings in non-traditional multimedia do-

mains (i.e. where images and text are not literally aligned as in the case of captions). Our

approach exploits the pairwise nature of multimedia data by leveraging the text domain to

find neighboring multimedia documents in text space which are semantic neighbors. These

neighbors multimedia documents contain images which are semantic, but not necessarily

visual neighbors of the image in the original multimedia document. We extend the common

ranking loss formulation to explicitly account for the fact that visually dissimilar images may

still be semantic neighbors. We show that our approach significantly outperforms standard

visual semantic embedding approaches and learns much more semantically coherent repre-

sentations of semantics on real-world data in our experiments. Finally, in Chapter 7, we
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propose another general purpose approach for learning nuanced semantic representations in

real-world data. Our approach automatically weights multimedia samples according to their

predicted semantic utility in preserving abstract semantic concepts within the data which

we seek to preserve and model within the space. For example, we show how visual samples

of abstract concepts like “justice” or “patriotism” have more visual dissimilarity in their

semantic neighbors. We enhance these images’ impact in learning the shared space thereby

better preserving their semantics, while simultaneously decreasing the space’s reliance on

straightforward / literal image-text pairs. We propose several methods for measuring the

semantic utility of samples and show that they all outperform numerous state-of-the-art

baselines on multiple datasets. Additionally, the semantic spaces learned by our methods

better preserve subtleties and abstract concepts in their representations relative to existing

methods.

Collectively, our approaches for modeling semantics in communicative multimedia exploit

unique aspects of how multimedia is used in visual communication, in contrast to typical

image-text datasets. By explicitly providing for these differences, our methods are able to

outperform existing work which assumes more literal image-text alignments. Our approaches

all leverage the fact that for purposes of communication and persuasion, images and text

actually convey complementary information. We leverage this complementarity explicitly

to guide the training of our cross-modal models, which enable our methods to learn more

powerful semantic representations of vision and language. Overall, our approaches advance

the state-of-the-art in computer vision and natural language processing by enabling more

robust, cross-modal representations of semantics in real-world multimedia.

1.5 HYPOTHESES

Apart from our methodological and technical contributions, this dissertation more broadly

seeks to answer the following hypotheses:

• H1: We hypothesize that communicative visual media differs from standard computer

vision datasets in the use of visual rhetoric and visual argumentation. We hypothesize
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computationally understanding such media is difficult for existing vision methods, due

to the lack of visual consistency across the semantic classes we study.

• H2: We hypothesize that the use of guided training, injection of semantics from external

sources, multi-stage learning, and controlling for dataset visual diversity noise (where

applicable) can empower models to capture high-level semantic concepts in visual media

which would otherwise be insuperable.

• H3: We hypothesize that communicative multimedia differs from standard computer

vision image-text datasets in an important additional way. Standard multimodal vision

datasets largely contain captions which literally describe image content. In contrast, we

hypothesize that images and text in real-world media convey complementary, rather than

redundant information. We hypothesize that modeling the complementarity of image and

text is important for understanding such media.

1.6 CONTRIBUTIONS

In recent years, computer vision has made enormous strides on a number of challenging

tasks, from autonomous driving to visual question answering. We are witnessing, and part

of, an artificial intelligence revolution. While traditional tasks such as object recognition

and classification remain an ongoing subject of research, many new abstract, subjective, and

higher-level research problems have become popular. Despite this progress, most existing

vision research constrains itself to viewing images for their literal content, that is, what the

images contain. Human beings, however, understand most images they encounter in daily

life within the context of the larger social and societal milieu. We believe focusing only on

images’ literal content limits the applicability and utility of vision methods on a wide number

of important social and societal problems. In this dissertation, we view images as tools of

human communication and focus on learning why and how visual content is portrayed in the

manner it is. Doing so requires going beyond a surface-level understanding of the contents

of visual media, but also modeling latent messaging and abstract semantic concepts. This

dissertation presents a number of techniques used to model a variety of abstract semantics
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within diverse, limited, and noisy datasets of real-world visual media.

We believe that computationally addressing increasingly higher-level tasks using machine

learning techniques is important for several reasons. First, from a scientific perspective,

recognizing emergent latent semantics inherent within visually incoherent, real-world data

represents a step towards building more AI-complete machine learning systems. The ability

to generalize semantic concepts from image collections, even when those visually represented

concepts are not consistently rendered with the same edges, patches, colors, objects, or other

representation that is amenable for convolutional neural networks to discover within the data,

represents a step towards building common-sense vision systems which move beyond purely

pixel-driven learning. To accurately model such semantics, systems must not merely focus

on what is in an image, but must also infer why such concepts are present and how the

concepts are presented. Doing this requires conceptual reasoning over not just single images,

but the ability to reason over collections of images. Understanding how and why certain

visual content is portrayed or relates to broader themes within the data is an important step

in building more human-like vision methods capable of high-level, commonsense reasoning.

We summarize the collective contributions of this dissertation below:

• We study the problem of modeling latent visual concepts in domains whose visual mani-

festations are highly varied or incoherent in image space. In some cases, our domains are

also noisy or limited in data. We present methods for modeling five types of latent visual

concepts: photographic style, visual persuasion, multimodal political bias, and abstract

multimodal semantics.

• We experimentally demonstrate the benefit of imposing constraints into the learning

process for all of our various problems. We show that without these learning guideposts,

models often fail to learn representations of the latent semantics of interest, and instead

resort to relying on simple cues such as learning color differences or high-frequency noise

within the dataset (e.g. edges, recurring patches, etc.). Discovering which guideposts

to use involves exploiting unique aspects of the problem or data, such as leveraging the

complementarity of images and text in multimedia.

• Though generative models are notoriously challenging to train even on traditional, vi-

sually coherent problems, we show how generative models can be trained to generate
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synthetic data containing latent visual concepts. We achieve this by training our gener-

ative models on constrained data settings or by forcing our generators to use semantics

features known to capture the concepts or phenomenon of interest. The synthetic data

produced by our models allows us to visualize exactly what aspects of the problem the

model’s features are capturing.

• We present two novel methods for modeling abstract semantics in multimedia consisting

of images and text. Our first method learns a feature space which captures groups of

related textual words and nearby visual content. Our embedding space allows us to

encapsulate within a unified joint space, complementary information which may only

exist within one domain. Non-visual textual concepts relevant to paired visual concepts

are embedded close in this space. We show our unified embedding has several advantages

over our existing methods, such as better preservation of cross-modal neighbors and

improved semantic consistency within the learned space. Our second method for learning

semantic representations in communicative multimedia learns to emphasize semantically

informative image-text pairs. To do so, we propose three novel metrics for measuring

a multimedia sample’s semantic utility and subtlety, which leverage the innate image-

text complementarity within real-world multimedia. Our method results in an improved

training procedure which naturally encourages abstract semantics to be captured by the

learned space and provides inherent robustness to noise. We demonstrate our technique

better captures abstract cross-modal semantic concepts, while outperforming multiple

image-text matching methods.

Broader impacts. As the public continues to interact with online platforms, the demand

for responsive platforms which tailor content to fit users’ interests is growing. Methods which

can automatically analyze the visual or textual content users share using the platform can

form an important part of building a positive and engaging user experience by learning a

profile of user interests, views, preferences, etc. There are also significant financial incentives

to building systems which can infer such latent semantics from visual media. Users are

more likely to remain on sites serving them content they are interested in than content they

disagree with. For example, social media sites can deploy such methods to build a customized

feed, where the images presented to users emblematize their bias, style, preferences, etc.
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Similarly, visual ads could be better targeted by automatically understanding the visual

rhetoric within the ad and then targeting ads towards users likely to engage or respond to

such rhetoric. Finally, we believe that these systems fulfill a growing social need. Facebook,

for example, has recently hired thousands of online moderators (at great financial expense)

to combat the spread of disinformation and hate speech on the platform [343]. Social media

platforms are replete with multimedia content being created and shared, to the tune of 350M

new photos uploaded to Facebook per day, along with associated text posts. The abundance

of such communicative multimedia poses unique challenges to existing vision algorithms due

to the high-level reasoning required to understand it and its differences from the typical

data encountered in vision datasets, but also provides fertile ground for research progress

and opportunities for innovation. Algorithms which automatically detect fraudulent, altered,

misleading, or biased multimedia being shared on online platforms could suppress the virality

of such deceptive content or inform users to be aware that the content they are seeing does

not represent a neutral or mainstream viewpoint. We believe that developing methods which

can perceive visual media for its extrinsic semantics is an important part to building more

human-like vision systems and our work is a step in that direction.

1.7 ORGANIZATION

The remainder of this dissertation is organized as follows. In Chapter 2 we present related

work relevant to our completed and proposed work. In Chapter 3, we present our method and

results for modeling photographic style. Chapter 4 explores the problem of modeling visual

persuasion in image advertisements. In Chapter 5, we present our method for modeling

visual political bias in multimedia. In Chapter 6, we discuss image-text complementarity in

multimedia and propose a general purpose method for learning visual semantic embeddings

by imposing novel constraints on the learned embedding space. Chapter 7 continues our

work on modeling multimedia semantics and proposes an another general purpose technique

for preserving abstract semantics in cross-modal embeddings by identifying and emphasizing

semantically informative samples using weights. Finally, Chapter 8 discusses limitations of
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our methods, ideas for future work, and concludes this dissertation.
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2.0 RELATED WORK

In this chapter, we present related work and differentiate our contributions in relation to

the relevant literature. As we develop the relevant research context to each of these themes

we compare and contrast our contributions to each of them.

The remainder of this chapter is as follows. Section 2.1 discusses visual recognition, i.e.

modeling high-level semantics in visual media, as well as research related to our work on

modeling visual style and visual persuasion. In Section 2.2, we examine visual concepts

expressed in multi-modal data and strategies enabling machine learning techniques to gen-

eralize their models across domains. Section 2.3 discusses research related to the challenges

we face across the problems we study in this dissertation, such as diverse, limited, and noisy

data.

2.1 VISUAL RECOGNITION

Developing machines which can fully understand the semantics of the visual world has

long been considered the “holy grail” of computer vision [183]. While complete understanding

of images remains out of reach, an enormous amount of work has been undertaken in the

direction of modeling many aspects of image semantics. The availability of large, annotated

datasets [209, 183, 303] coupled with advances in image classification algorithms [321, 184,

127, 303], object detection [292, 368, 210, 291, 297], image segmentation [49, 409, 50, 219, 105,

205, 301], saliency [405, 193, 186, 40, 146, 159] and in other fundamental vision problems, has

enabled researchers to bootstrap such approaches to model ever more complex phenomena.

While improving performance on backbone vision tasks remains an active area of research

[114], the performance of currently available methods is sufficient enough that perceptive

vision (i.e. what is in the image and where) research has begun to give way to those focusing

on cognitive visual understanding. The Visual Genome project, for example, was designed

to facilitate such research by providing a large scale dataset densely annotated with objects,
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their attributes and relations, region descriptions, and captions [183]. Many diverse higher-

level applied vision tasks have recently been proposed and include predicting image virality

[6, 67, 115], specificity [153], persuasion [406, 340, 145, 164], visual question answering [8,

338, 230, 382, 366, 423, 139, 112, 378, 379, 383, 225, 337, 389, 422, 317, 12], understanding

visual humor [393, 45], and predicting physical processes in images [81, 249, 89]. The visual

concepts we seek to model in this dissertation are best situated in this line of applied visual

recognition research. However, we more broadly present a series of techniques for studying

such phenomena, independent of the actual problems we study in this work. Several of the

problems we study make use of prior visual recognition methods retrofitted to our domains.

We first describe related research in semantic modeling and then discuss relevant applied

research for modeling visual persuasion and artistic style.

2.1.1 Modeling mid-level visual semantics

Attribute-based representations have long been considered a mid-level semantic represen-

tation [217, 191, 48]. Attributes are visual concepts shared across multiple objects or scenes.

Attributes are a particularly attractive image representation because they capture generaliz-

able intuitive semantics [94] and as such have found broad use in applications ranging from

object recognition [188, 87, 371, 3], action recognition [42, 419, 76, 106, 352, 370], image

captioning [37, 9, 8, 393, 354, 224, 277, 298, 161, 394, 356, 384], image search [181, 162],

and visual categorization [188, 54, 331]. Such a representation is particularly useful for the

types of high-level phenomena we propose to model; a representation capturing “attractive-

ness” may be particularly useful for distinguishing images advertising makeup products, for

example. By explicitly using a mid-level semantic representation, we enable our models to

learn associations of visual concepts with categories. Because of the diversity within our

datasets, finding an easily generalizable representation of semantics which our models can

reason about is crucial.

More specifically, our work on generating faces in advertisements (Chapter 4) and our

work of modeling bias in political ads (Chapter 5) rely on attribute representations. We

find that the faces we encounter in advertisements are so diverse that our models have
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difficulty learning discriminative properties of those faces which are class-indicative. In

order to model such semantic properties of faces within our dataset, we found it useful to

condition our generative model on facial attributes we predict on faces from ads. The facial

attributes we use include semantic visual concepts like “bald,” “rosy cheeks,” “smiling” or

“attractive” [217, 188, 87]. We also include facial expressions and emotions as part of our

facial attribute bank. Facial expression and emotion recognition is an established and popular

topic [84, 166, 314, 215, 247]. We include seven canonical expressions as part of our face

modeling pipeline of ads: happiness, sadness, surprise, fear, disgust, anger, and contempt.

For modeling political bias, we believe semantic attributes, as well as facial attributes, may

provide a useful signal. For example, modeling how immigrants are portrayed in politically

diametrically opposed media sources could be used to identify attributes which are strongly

correlated with one political position. Such attributes could then be integrated into a larger

pipeline for generating synthetic biased images.

2.1.2 Visual rhetoric and communication

Three of the visual concepts that we model in this dissertation are related to works

that study visual persuasion and visual argumentation [164, 145, 155, 178, 324]. Visual

persuasion is the use of visual media to persuasde viewers to make decisions [164]. [164]

propose to study the “persuasive intent” of images by predicting how media sources seek

to portray politicians. The approach relies on facial attributes and gestures to assess the

communicative intent of photos, predicting, for example, that an image shows a politician

as competent, energetic, trustworthy, etc. [145] extends the work of [164] by incorporating a

wider range of features, such as body pose and image setting. [165] train classifiers to predict

the outcomes of elections based on the candidates’ faces, but none of these works create

generative models. [149] propose a dataset of advertisements, and predict what message the

ad conveys (e.g. “buy this car because it is spacious”) but they do not model or generate

the visual appearance of the same object across ad topics. Also related is work in modeling

style in fashion and architecture [72, 198] but none of these build generative models as we

do. All of these works are based on careful and expensive human annotations, while we aim
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to discover facets of visual rhetoric in a weakly supervised or automatic way.

Our work in modeling visual rhetoric is much more subtle, challenging, and less “vi-

sual” than many existing methods. For example, our work on modeling photographic style

is different from past work in that professional photographers painstakingly construct their

photos to convey an emotion or tell a story about their subjects. The message told by such

photographs is often less overt and subjective. Thus, modeling how subjects are portrayed

in photographs is an important part of developing techniques which take seriously autho-

rial intent and move beyond merely perceptive vision, significantly differentiating our work

from past work. Similarly, our work on modeling bias requires understanding how and why

different media sources portray different subjects. For example, anti-immigration sources

may frequently show criminal immigrants in a disproportionate number compared to other

sources. Such a correspondence is likely not accidental: the biased nature of the portrayal

may be discovered, for example, by finding such disproportions in both the visual and textual

domains from that source compared to other sources. Our work on bias therefore extends

our techniques for modeling rhetoric and persuasion into a multimodal setting.

2.1.3 Visual style

In this section, we introduce the concept of visual style modeling. It has long been noted

in the media studies community that the concept of style suffers from an overabundance

of interpretations. One working definition, of particular relevance to the machine learning

community, is given by David Bordwell, a distinguished film theorist, who defines style as

the “patterned use of a medium’s techniques” [38]. We find this definition pleasing because

it is not restrictive of the type of medium and also suggests the recurrence of patterns which

a machine may be able to model. We note that other vision works have modeled other visual

styles beyond those discussed in this dissertation, including fashion style [5, 173], urban style

[78], and product styles in e-commerce images [116]. We consider two visual styles in this

work: photographic style, in which a professional photographer’s particular artistic traits are

reflected in his or her work, and persuasive or communicative style, which describes how a

visual artist uses visual rhetoric within the image to persuade or communicate with viewers.

30



Photographic style modeling is also of relevance to our work on modeling bias. For example,

photographic styles may belie the authorial intent of the photographer, which is of interest

when assessing bias in photographs. We contrast our work on modeling visual style with

work in modeling artistic style, which is commonly defined as the colors, textures, brush

strokes, or dominating geometric patterns comprising artistic works, such as paintings or

drawings [98, 97].

Modeling artistic and photographic style. The task of automatically determining the

author of a particular work of art has always been of interest to art historians whose job

it is to identify and authenticate newly discovered works of art. The problem has been

studied by vision researchers, who attempted to identify Vincent van Gogh forgeries, and to

identify distinguishing features of painters [287, 88, 163, 59]. While the early application of

art analysis was for detecting forgeries, more recent research has studied how to categorize

paintings by school (e.g., “Impressionism” vs “Secession”) [305, 171, 163, 313, 15, 20, 29].

[29] experimented with a simple dataset of 7 painters with very different styles and achieved

good results with low-level features due to the dataset’s simplicity. [305] explored a variety

of features and metric learning approaches for computing the similarity between paintings

and styles. Features based on visual appearance and image transformations have found some

success in distinguishing more conspicuous painter and style differences in [29, 313, 171], all of

which explored low level-image features on simple datasets. Recent research has suggested

that when coupled with object detection features, the inclusion of low-level features can

yield state-of-the-art performance [20]. [15] used the Classeme [344] descriptor as their

semantic feature representation. While it is not obvious that the object detections captured

by Classemes would distinguish painting styles, Classemes outperformed all of the low-level

features. This indicates that the objects appearing in a painting are also a useful predictor

of style.

This dissertation considers photographic authorship identification, but the change of

domain from painting to photography poses novel challenges that demand a different solu-

tion than that which was applied for painter identification. The distinguishing features of

painter styles (paint type, smooth or hard brush, etc.) are inapplicable to the photography

domain. Because the photographer lacks the imaginative canvas of the painter, variations
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in photographic style are much more subtle. Complicating matters further, many of the

photographers in the dataset we collect are from roughly the same time period, some even

working for the same government agencies with the same stated job purpose. Thus, pho-

tographs taken by the subjects tend to be very similar in appearance and content, making

distinguishing them particularly challenging, even for humans.

There has been related work in computer vision that studies aesthetics in photography

[234, 251, 68]. Some work also studies style in architecture [72, 197], vehicles [198], or year-

book photographs [102]. However, all of these differ from our goal of identifying authorship

in photography. Most related to our work on predicting photographic authorship is the study

of visual style in photographs, conducted by [168]. Karayev et al. [168] conducted a broad

study on both paintings and photographs. The 20 style classes and 25 art genres considered

in their study are coarse (HDR, Noir, Minimal, Long Exposure, etc.) and much easier to

distinguish than the photographs in our dataset, many of which are of the same types of

content and have very similar visual appearance.

While [168] studied style in the context of photographs and paintings, we explore the

novel problem of photographer identification. We find it unusual that this problem remained

unexplored for so long, given that photographs are more abundant than paintings, and

there has been work in computer vision to analyze paintings. Given the lower level of

authorial control that the photographer possesses compared to the painter, we believe that

the photographer classification task is more challenging, in that it often requires attention

to subtler cues than brush stroke, for example. Besides our experimental analysis of this

new problem, we also contribute the first large dataset of well-known photographers and

their work. We also propose a method for generating a new photograph in the style of an

author. Similarly, in our work on modeling visual persuasion and political bias we generate

new photographs containing persuasive or communicative styles which we model in our work.

We note that this problem is distinct from artistic style transfer (discussed below) [17, 39, 16]

which adjusts the tone or color of a photograph.

Transferring artistic style. In this dissertation, we focus on modeling meaningful seman-

tic concepts, such as photographic or persuasive style. We then use generative to generate

synthetic data in order visualize what our models have learned. In our work on visual
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persuasion and political bias, we show how an existing image can be modified to bear the

persuasive (or biased) styles we model. Our work is thus a type of semantic, rather than

artistic, style transfer. Artistic style transfer methods attempt to render the content of one

image in the artistic style of another. For example, we might modify a portrait to have the

same artistic style as “Starry Night” by Van Gogh. Importantly, these methods do not seek

to change the semantics of the image, but instead focus on changing low-level details, such

as textures or colors. Early methods primarily rely on low-level (and often handcrafted)

patch-based texture features [80, 131, 187, 318]. More recently, impressive results have been

achieved using features extracted from pre-trained convolutional neural networks (CNNs)

[97, 160, 83, 227, 367]. Gatys et al. [97] showed how style transfer can be formulated as iter-

ative optimization that seeks an image which produces the same CNN activation statistics

of both the “content” and “style” images. Follow-up works [160, 346] improve efficiency by

performing style transfer in a single feed-forward pass, but these can only transfer towards

those styles present during training [47]. Recent methods [47, 144, 204] combine the speed

of feed-forward networks with the flexibility of optimization-based approaches, enabling fast

style transfer on arbitrary styles. Unlike our work, all of these approaches focus on trans-

ferring low-level textures, while keeping the semantics of the produced image the same. In

our setting, we seek on transferring high-level semantics, which change the meaning of the

image itself.

2.1.4 Generative models of semantics

We described above how artistic style transfer methods seek to transfer only low-level

visual details, without changing the semantics of images. We now discuss related work

on generative models, which are capable of transferring or generating images with certain

semantics. Generative models are models which seek to learn the underlying data distribution

they are trained on such that they can generate synthetic data which appears to come from

that distribution [240]. Many such models learn from target data distributions without the

need for any labeled data, and thus share many features found in unsupervised learning.

In this dissertation, however, while we too are interested in producing qualitatively good
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generations that appear to come from the visual distribution of images on which they are

trained (i.e. are realistic), our primary focus is producing generations which capture the

underlying semantic distribution of the data. For example, in our work on modeling political

bias, while we wish to generate realistic looking images, we desire that the images we generate

manifest the underlying semantics of politically biased images which we have modeled (i.e. we

desire the images we generate to exhibit the specified type of political bias).

In computer vision, many generative architectures have been proposed, including Re-

stricted Boltzmann Machines [256, 334], Deep Belief Networks [194, 215, 246], PixelCNNs

[263, 306, 347], Plug & Play networks [254, 268, 293, 392], and real NVP [70, 62]. How-

ever, the two most prominent generative models by far are variational autoencoders (VAEs)

[137, 137, 288, 359, 176] and Generative Adversarial Networks (GANs) [240, 385, 26, 214,

77, 120, 110, 293, 151, 233, 387, 411, 402, 53, 420, 32, 14]. Each of the applied problems we

study in this dissertation (photographic style, visual persuasion, political bias) involve some

element of generative modeling and image generation, particularly using VAEs or GANs. In

this section, we discuss related research relating to autoencoders and generative adversarial

networks, variations of which are used in several of our methods.

Fundamentally, a variational autoencoder [176] is probabilistic graphical model [137]

comprised of two distinct components: the encoder network transforms the input into a low-

dimensional latent representation, while the decoder network is tasked with reconstructing

the input from the latent representation. Regularization is imposed on the latent distri-

bution, typically by imposing a constraint to enforce that the distribution approximates

a unit Gaussian [190]. The two components are trained end-to-end via a reconstruction

loss which penalizes deviations from the output of the decoder to the input. Autoencoders

[133, 359, 288, 229, 189, 386] are an older type of generative model compared to generative

adversarial networks, but perform reasonably well when trained with recent perceptual loss

functions [137]. Numerous variations of VAEs have been proposed. Similar to our task of

generating faces in ads and modeling political bias, [386] condition their model on facial

attributes in a conditional variational autoencoder (CVAE) framework. We rely on a cus-

tom conditional variational autoencoder conditioned on facial attributes and expressions in

Chapter 4 and Chapter 5. [75] uses the structural similarity score to improve visual quality
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of the reconstructions. Several works [190, 229, 240] for example, have worked to combine

the sharpness of generations typical of generative adversarial networks with the flexibility of

the VAE framework.

Generative adversarial networks (GANs) have enjoyed enormous popularity after their

introduction in 2014 by Goodfellow et al. [110]. GANs are generative models which learn

to transform vectors of random numbers into images [110]. GANs consist of two compo-

nents, the generator is trained to produce outputs which are indistinguishable from the real

distribution (in the vision case, this equates to generating realistic images), while the dis-

criminator is trained to detect if a given image is real or fake. In order to become better at

detecting fakes, the discriminator continuously learns aspects of the real and synthetic dis-

tributions. The generator, in order to fool the discriminator, attempts to cause the synthetic

image distribution to match the real distribution. In practice, this equates to the generator

producing increasingly realistic fakes. Many approaches [254, 386, 135, 373, 270] have also

introduced semantic conditioning into GAN models, where GANs are tasked with not only

producing realistic images, but also producing images bearing certain semantics. However,

essentially all of these study generating “surface-level” semantic phenomena which has clear

visual groundings, such as gender [369], attractiveness [69], or age [11]. In this dissertation,

we leverage a custom GAN based on [26] in our work on modeling visual persuasion in order

to generate synthetic objects which capture their appearance in different categories of ads.

2.2 MULTIMODAL LEARNING

The same semantic concept can be expressed in many different types of data. For ex-

ample, the concept of dog can be expressed in a photograph, spoken and recorded in audio

form, represented in natural language, drawn in a sketch, or illustrated in cartoons or cli-

part. Our overarching goal in this dissertation is to develop methods for modeling abstract

visual phenomena in diverse datasets. In addition to visual diversity within data of the same

type (e.g. photographs), however, there may be other modalities or domains of data which

complement one another. For example, in our work on modeling bias, images are accom-
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panied by their textual descriptions and the text of the article from which they came. In

such a scenario, with interacting text and image data, the entire problem can be described

as being multimodal, in that it features data from more than one modality. We believe that

by exploiting the complementarity of such parallel modalities, we can better model visual

bias than models which rely on single-modal data alone.

Our task of modeling multimodal bias with groundings in image and text relates to a

number of works which model inter-modal correspondences between natural language and

images. We believe that much, but possibly not all, of the bias expressed in text has examples

of corresponding visual groundings. Racist language, for example, may correspond to certain

portrayals of minorities. One of the features of this problem we propose to study is to learn

multimodal alignments of bias in image and text. In so doing, we intend to build models

which account for examples of bias which may have been missed without the complementarity

of the other domain.

Our work in Chapter 6 and Chapter 7 build on the idea of modeling complementarity

in multimedia in a more general way. Rather than target a specific task, such as political

bias, we instead learn general purpose representations of abstract semantics that can be

used for any such task. We then evaluate these representations in the context of cross-

modal retrieval. We thus include related work to learning multimodal alignments between

images and text and visual semantic embeddings. Unlike standard multimodal representation

learning approaches which assume that each modality carries redundant semantics as in

the case of image captions, we target the much more challenging domain of communicative

multimedia, where each modality is complementary to the other and plays a part in conveying

the overall semantic message of the image-text pair. We discuss in detail the relationship of

work in modeling abstract semantics in multimedia to traditional methods in metric learning

and for learning visual semantic embeddings in this section. We first begin with a discussion

of task-specific methods, such as for modeling multimodal political bias before moving into

task-agnostic semantic representation learning methods.
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2.2.1 Integrating text and vision

Our task of modeling visual bias in images is somewhat different from the other problems

we study because of the presence of the complementary text domain. Recently, there has

been a great amount of research into multimodal data fusion of images and text [226]. Image

captioning methods [177, 8, 298, 394, 355, 226] learn to output textual descriptions of images

by learning from human-written captions. Visual question answering (VQA) techniques

[12, 138, 112, 230, 8] seek to allow machines to answer natural language questions posed about

visual concepts in a given image. VQA models typically work by learning an embedding of

the question, combining it with a neural image representation, and then allowing a recurrent

model to generate the textual answer [378]. Other visual-textual grounding problems have

been proposed, such as visual dialogue [63, 46, 311, 237], in which the system discusses visual

concepts within an image with a human user, and text to image synthesis [385, 402, 411, 44],

which generate images from given textual descriptions. All of these techniques require cross-

modal grounding of visual concepts from images with natural language.

Other works [232, 286, 396, 141, 208, 179] more explicitly study grounding natural lan-

guage concepts with visual media. [141] ground natural language objects with images in

the context of retrieval. [396] learn the meaning of natural language phrases by watching

associated short video clips. Recent work [222, 140, 223, 123] propose to integrate text

and vision using end-to-end trained multimodal transformer-based architectures. [179, 286]

model coreference between images and text to determine what visual objects are being men-

tioned in associated text. Our work of modeling cross-modal bias between images and paired

text is similar to these works but differs in that many of the visual concepts we seek to model

are much more abstract. These works presuppose strong correspondences between objects

appearing in images and associated text. In our case, the concept is implicit within the text

and visual domains. Moreover, representations of bias are likely to be more diverse than vari-

ations in appearance of the same object, due to the many ways that bias can be expressed.

Collectively, these two aspects of our problem make modeling bias significantly more chal-

lenging than typical visual-text grounding tasks. We more thoroughly discuss works which

attempt to model bias below.
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2.2.2 Learning visual semantic embeddings

A fundamental problem in cross-modal inference is the creation of a shared semantic

manifold on which multiple modalities may be represented. The goal is to learn a space

where content about related semantics (e.g. images of “border wall” and text about “border

wall”) projects close by, regardless of which modality it comes from. We note that such

embeddings are generally task-agnostic, that is, they seek to learn a representation preserving

cross-modal semantics, in the absence of any particular applied task (e.g. bias detection).

However, such visual-semantic embeddings (VSE) have received tremendous interest due

to their broad down-stream applications such as retrieval [43, 328], captioning [169, 384],

tagging [92], and visual question answering [383]. Most VSE approaches learn a joint visual-

text space where some distance metric between embedded samples reflects their semantic

relationship [377]. Following the early deep VSE models [92, 241] research has focused

on improving the learning objectives [353, 364, 113, 360, 361], e.g. to preserve order [353]

rather than distance, to preserve structure within modalities [364], to ground embeddings via

generation [113], or to provide modality invariance [360, 361]. Others leveraged properties

of text to improve the visual representation, e.g. through cross-modal attention techniques

[195, 253] which consider all possible alignments between detected regions and words. [147]

extract visual concepts from images and organize them semantically using the paired text

(to determine their correct semantic order).

Unlike the above approaches which rely on additional tasks, losses, and may require ex-

tra annotated data, our approaches exploit the structure of each unimodal space (image and

text) by leveraging the semantic complemetarity found in communicative multimedia. We

propose two approaches for learning task-agnostic visual semantic embeddings, one relying

on a complementarity-based loss which imposes constraints to preserve intra and inter-modal

semantics, and another relying on a sample weighting strategy which leverages complemen-

tarity between the image and text modalities to assess whether samples are semantically

informative. Both our methods use traditional, well-understood two-stream visual semantic

embedding models trained via ranking losses, such as [92, 85, 328].

We first discuss work related to our novel loss contributions for learning visual semantic
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embeddings (Chapter 6). Most image-text embedding methods rely on a two-stream archi-

tecture, with one stream handling visual content (e.g. captured by a CNN) and the other

stream handling textual content (e.g. through an RNN). Both streams are trained with

paired data, e.g. an image and its captions, and a variety of loss functions are used to en-

courage both streams to produce similar embeddings for paired data. One common loss used

to train such retrieval models is triplet loss, which originates in the (single-modality) metric

learning literature, e.g. for learning face representations [309]. In cross-modal retrieval, the

triplet loss has been used broadly [252, 418, 245, 271, 390, 85]. Alternative choices include

angular loss [363], N-pairs loss [326], hierarchical loss [99], and clustering loss [259]. Triplet

loss [309, 134] takes into account the relative similarity of positives and negatives, such that

positive pairs are closer to each other than positives are to negatives.[408] generalize triplet

loss by fusing it with classification loss. [260] propose a lifted structure loss which integrates

all positive and negative pairs within a minibatch, such that all pair combinations are up-

dated jointly rather than independently. [364] propose a structural loss, which pulls multiple

pieces of text paired with the same image together, but requires more than one ground truth

caption per image (which most datasets lack). In contrast, our approach pulls semantically

similar images and text together and only requires a single caption per image.

While single-modality losses like triplet, angular and N-pairs have been used across and

within modalities, they are not sufficient for cross-modal retrieval. First, these losses do not

ensure that the general semantics of the text are preserved; thus, the cross-modal matching

task might distort them too much. This phenomenon resembles forgetting [207, 111] but in

the cross-modal retrieval domain. Second, these losses do not exploit the complementary

relationship between images and text found in communicative multimedia. In particular, two

images might depict substantially different visual content but nonetheless be semantically

related. For example, one image of a wedding might show a couple dancing, and another

show a large number of guests eating at several tables; these images are visually diverse but

still semantically related. However, there is no component in standard metric learning losses

that enforces this semantic coherence at the image level. This is less of a problem in the case

of traditional image captioning datasets featuring literal image-text descriptive relationships.

In contrast, in real-world communicative multimedia, the complementarity of image and text
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is much more pronounced. Note that we do not propose new models for image-text alignment,

but instead propose cross-modal embedding constraints or weighting metrics which can be

used to train any such model. For example, we compare to Song et al. [328]’s recent

polysemous visual semantic embedding (PVSE) model, which uses global and local features

to compute self-attention residuals. Our loss and weighting based approaches improve upon

[328]’s performance. Our work is also related to cross-modal knowledge distillation [92, 325,

119, 103], which transfers supervision across modalities. None of these approaches exploit

cross-modal complementarity, e.g. the semantic signal that text neighborhoods carry for the

image space, to constrain a learned metric space as we do. Finally, [406, 185] detect different

types of image-text relationships (e.g. parallel, complementary) but do not retrieve across

modalities.

We propose a second approach (Chapter 7) for learning semantically robust embed-

dings in communicative multimedia which relies on weighting samples judged to be abstract

(i.e. exhibiting latent visual concepts) and therefore important for learning. Our work again

exploits image-text complementarity in order to estimate the emphasis the model should pay

to a given sample. Our work is thus related to work on sample mining and weighting-based

methods. For example, it has long been known that triplet loss can be challenging to train

[129] due to the difficulty of choosing informative dissimilar samples. Many have exploited

hard negative mining [85, 130, 309, 320, 397, 142], while others have tackled issues stemming

from negative sample choice [362, 272, 60, 326, 395], e.g. by pushing multiple negatives away

[326]. For example, [326] push multiple negatives away at a time, lessening the need to pick a

single hard negative, while [395] correct the distribution shift on the chosen triplets relative

to the dataset. Other approaches [43, 360, 413, 65] rely on the use of classification labels

or metadata, e.g. to ensure negatives in the triplet belong to different classes than the pos-

itive. Unlike these, our approach works in self-supervised settings without the requirement

of additional labels. Rather than hard selection of negatives, others have used soft weights

over samples. In [243], positive samples which violate the margin but are still correctly

retrieved are weighted less, while others incur a larger penalty. [212] use sample weights to

address hubness (a phenomenon where a small number of embeddings remain undesirably

close to many others), such that samples which are hubs receive more attention. Our weights
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are designed to improve the semantic properties of the learned space by emphasizing sam-

ples where the relation between image and text is abstract, not necessarily “hard” samples.

This is an important distinction, because some “hard” samples may actually be noisy; we

found using hard negative mining prevented methods from training successfully on several

of our challenging datasets. Our method outperforms [243] and [212]. We show that our

method significantly better preserves challenging, abstract and latent semantic concepts such

as “justice” or “freedom” in real-world multimedia in a task-agnostic, data-driven manner.

2.2.3 Multimodal bias

There has been significant prior work [1, 64, 91, 90, 96] in modeling bias in text from the

natural language processing community. [96] trains word embeddings on 100 years of text

data and tracks how the embedding changes over time, showing correlations with changes

in attitudes towards minorities and other groups. [90] studies how stereotypes are expressed

in language, finding for example, that terrorism and political conflicts are often mentioned

in respect to Muslims. [345] trains models to detect racism in text. Other relevant work

[350] explore bias in image descriptions, finding for example, that the race of a person isn’t

mentioned unless the person is black or Asian. [412] models gender bias in semantic roles (e.g.

cooking is associated with females) and leverages text data to impose corpus-level constraints

to correct for bias in classifiers. [71] study stereotypes in media sources, finding for example,

that Latinos are disproportionately represented as illegal aliens, while Muslims are portrayed

as terrorists 81% of the time they appeared on television [90, 71]. [302] demonstrate gender-

based bias in a natural language corpus. [41] discover phrases that lead humans to incorrectly

guess social features of the author. [300] study bias in news sources, demonstrating that the

selection of topics and issues discussed originates from a male-centric perspective. [37] seek

to correct bias in image captioning, stemming from learned gender priors. For example, they

aim to correct captioning models which incorrectly assume the gender of actors in the image

based on the task being performed (e.g. snowboarding=male) without looking at the actual

person. Our work is related to, but distinct from, these works in that we seek to identify bias

in media photographs by leveraging cross-modal information from biased text. We show that
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the understanding of bias we obtain by multimodal fusion of the image and text domains

allows us to model types of bias single domain models would otherwise miss. Our work is also

different from these in that we generate photos containing particular types of bias, rather

than just identify or describe them. [290] and [22] use carefully designed dictionary, lexical,

grammatical and content features to detect biased language, using supervision over short

phrases. We leverage [290]’s technique to discover biased word usage in our dataset. Others

[281, 56, 57, 58, 376, 358] have studied predicting political affiliation from text, mainly in

the context of social media. In contrast, it is not clear what “lexicon” of biased content to

use for images.

We investigate the bias in how events, topics, and people are portrayed in the media.

This type of bias is directly related to bias in human relationships, i.e. human perceptions

that people of a particular group (demographic, political, etc.) have certain qualities or

beliefs. This bias over human qualities is evident in data that can be used to train machine

learning algorithms, and has thus been tackled in a few prior works [37, 412, 304, 24, 31].

For example, [37] ensure that the same classifier is equally likely to fire on images of men

and women when the relevant property (e.g. “snowboarding”) is present. In contrast, rather

than debiasing models, we aim to model and predict the type of political bias.

Other works [310, 262, 255, 82] have analyzed the bias inherent in human annotated data

introduced by crowdsourcing annotations. [267] show that sexist workers are less likely to

find image search results biased. [74] show that different ethinic groups tend to label the

same images differently. In contrast to these works, we show how media sources already

believed to be politically biased then exhibit that bias, both in terms of the visual content

they choose to accompany article text and in terms of the text of the article itself. We also

explicitly ask our workers to provide their rationale for their predictions and then leverage

the stereotypical and biased notions used by the workers to model bias in visual media.
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2.3 FACILITATING LEARNING IN CHALLENGING DATA SETTINGS

All of the problems we study in this dissertation involve modeling abstract semantic con-

cepts in communicative media. These datasets pose unique challenges for learning compared

to traditional computer vision datasets. For example, most computer vision datasets for su-

pervised learning feature images containing recurring types of visual content, such as objects

[211], faces [118], or scenes [415]. Though how the content is portrayed may vastly vary from

image-to-image, the content itself remains the same (i.e. images are known to contain or not

contain a particular type of content) and form a type of closed visual world. In contrast,

in the datasets we consider, all that is known is that the content contains a certain latent

semantic concept (e.g. a particular photographer took the photo, the image came from a

right-wing website, etc.). In this case, the images come from an open visual world, where

the image content could show any imaginable scene type, any imaginable object, contain

illustrations, etc. This results in an enormous amount of visual diversity to the data, which

can make it difficult for models to extract meaningful patterns corresponding with the se-

mantics we seek to model. Compounding matters further, some of our datasets are also

limited in size. These datasets exhibit high visual diversity, but also relatively few images

containing the semantic concepts we wish to model. This renders our models particularly

vulnerable to overfitting to low-level details in the data which models memorize (but which

do not generalize beyond the small dataset). Finally, all of the datasets we target in this

dissertation feature data harvested from the web, with minimal to no human supervision.

While we know that overall there is a semantic signal within the semantic labels (e.g. type

of political bias) assigned to our data, in many cases, the label itself may be incorrect or the

image paired with the label may be irrelevant and incorrectly scraped from the webpage.

Thus, several of our datasets contain a high amount of both label and image noise. We

discuss related work to each of these challenges below, as well as their impact on learning

generative models.
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2.3.1 Visual diversity

There has been a substantial amount of research exploring the impact of visual diversity

in computer vision datasets [19, 322, 18, 278]. Many approaches [329, 372, 121] seek to

increase visual diversity within training data. By showing the same object in multiple

poses, scenes, and visual settings, models become more capable of recognizing the object in

varied settings [19]. [278] study the relationship of visual diversity to semantic diversity and

show that visual variability of the data has a significant impact on models’ performance for

image classification. However, all of these works study traditional computer vision problems,

where visual diversity might be expected to help recognize the same object or scene type.

In contrast, in our setting we study latent semantic concepts, where images lack consistent

visual patterns, objects, and scenes. Visual diversity poses a substantial challenge in our

case, because it makes extracting a meaningful signal more difficult. For example, models

may be more likely to capture meaningful visual patterns of political bias if the dataset

consisted entirely of political protest images on both sides of the political spectrum, since

the content between images is the same. In contrast, our dataset contains images of all

types, including illustrations, making extracting a repetitive signal much more difficult. [109]

propose an approach for learning binary classifiers when the negative class is too visually

diverse. In contrast, our methods seeks to distinguish between multiple positive classes. Most

relatedly, [218] propose “open long-tailed recognition” for learning object representations

which capture known objects as well as unseen objects in an open-world, visually diverse

setting. In contrast, our datasets lack any object annotations and we primarily focus on

particular abstract tasks, such as photographic style, visual persuasion and political bias.

Additionally, our general-purpose representations capture abstract semantics in multimedia

(i.e. images and text), while [218] focus on capturing specific objects (both seen and unseen)

in images only.

2.3.2 Limited data

Most recent computer vision methods rely on deep learning methods trained on large-

scale datasets in order to learn discriminative patches and semantics [403]. While obtaining
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large amounts of data is possible for many traditional computer vision problems, such as

object recognition, by leveraging pre-existing datasets such as Imagenet [303] and Visual

Genome [183] or by crawling image search engines directly [182], it is not possible to obtain

large amounts of visual data containing the concept one seeks to model in all cases. For

example, if one seeks to model the photographic style of a particular photographer, there are

likely to be only a relatively small number of photographs by the photographer (hundreds to

at most thousands), much less than the millions required to train modern deep CNNs [330].

Training models to quickly grasp semantic concepts from limited data is known as few-

shot learning [333, 289]. Most few-shot learning methods themselves can be characterized as

a form of transfer learning, where models first learn semantics from large-scale, often labeled

datasets, and then leverage the pre-learned semantic representations on the target task by

fine-tuning [117, 180]. All of our methods in this dissertation make use of some form of

transfer learning, by either relying on semantic categories such as facial attributes [25, 217],

or by initializing models with features obtained by pre-training on Imagenet [125]. Other

approaches to few-shot learning include adding auxiliary tasks for which there is abundant

labeled data [332] and leveraging semi-supervised learning where models learn using both

labeled and unlabeled data [400]. While we too make use of knowledge transferred from

other datasets, our work conceptually differs from most work in few-shot learning because

the types of semantic concepts we seek to model are much more abstract. Most few-shot

learning approaches focus on recognizing objects [167] or scenes [154] with little to no target

data. In contrast, we seek to model highly abstract and latent concepts like photographic

style or visual persuasion.

2.3.3 Noisy data

Noisy or outlier data is a perennial problem in computer vision when relying on data

automatically harvested from the web. Even when crowdsourcing is used to obtain human

annotations on such webly-harvested data, they too often contain some noise and require

special handling [33] or acquiring multiple annotations per image, which increases expense.

All of the datasets studied in this dissertation contain some level of noise due to automatic
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harvesting. One way uncertain or noisy data can be mitigated is through the use of noise-

robust losses [235, 36, 351, 275, 410]. For example, [410] propose generalized cross entropy

which down-weighs the gradient on highly incorrect samples. Others [158, 296, 196] predict

weights for samples based on the estimated reliability of the data, but require some clean

data. [122, 203] leverage self-learning approaches where models first train on noisy labels,

then predictpseudo-labels on the data which are also used for training. However, self-learning

can suffer from error-amplification if the model incorrectly learns from the initial noisy labels.

Moreover, in our settings the problem of noisy labels is more pronounced due to the fact

that the semantics we seek to model are latent within the data and lack a consistent visual

appearance across the class. This makes it more difficult for models to learn the concept,

particularly in the presence of label noise, due to the visual incoherency within the class. We

indirectly handle noise in the case of our photographic style and visual persuasion projects

by restricting the types of features the model can learn (for photographs) or by restricting

the data by training only on faces detected within the images (for ads). We explicitly handle

noise for our task of modeling political bias by applying automated techniques to clean the

data.

In our work in modeling multimodal political bias (Chapter 5), we propose a two-stage

approach where the text is used to guide the visual model towards semantics of interest.

Then, in a second stage, we remove the requirement of text and learn to make purely visual

predictions. Our method thus leverages the text domain as a form of guidance to contend

with high noise and visual diversity. Simiarly, our work on learning general abstract seman-

tics in multimedia also address noise. Because of the challenge of cross-modal image-text

matching, approaches for contending with label noise have also been adopted in the retrieval

setting. [244] learn image-text embeddings on noisy web data by exploiting metadata (tags)

while [421] conditions a generative model on noisy texts. In contrast, both of our methods

for learning abstract semantics require no annotations or metadata beyond image-text co-

occurrence. Our first approach (Chapter 6) relies on the image-text complementarity found

in communicative multimedia and makes use of semantically neighboring images, which is

inherently robust to noise. Our second method (Chapter 7) also relies on complementarity

and explicitly handles noise by enhancing semantically informative samples, while down-
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weighting samples suspected to be outliers. Most similar to ours, [7] estimate density by

computing the correlation between samples from different modalities. We too aim to detect

outliers, but we model density in both the image and text spaces independently through

modality-specific variational Gaussian mixtures [28]. This has the benefit of taking global

statistics into account, e.g. a sample from a small tight cluster of outliers would be weighted

low by our approach, but high by [7]. We show our approach outperforms [7].

Weakly supervised learning. Recently, weakly supervised approaches have been proposed

for classic topics such as object detection [265, 55, 414, 375, 391], action localization [365,

299], etc. Researchers have also developed techniques for learning from potentially noisy

web data, e.g. [51]. Also related to our work is work in unsupervised discovery of patterns

and topic modeling. For example, [323, 416] use an iterative clustering-detection pipeline to

discover patterns that occur frequently but are discriminative. [199, 206] and [319] leverage

deep networks to mine discriminative patterns. [152] and [72] discover patterns informative

for the architectural style of a city or the evolving design of cars over the decades. Both of

these rely on finding clusters of image patches that are compact in terms of the top-level

weak label (e.g. “Paris” or “1950s car”), i.e. clusters that primarily contain samples from a

given label, and ignore clusters with near-uniform label distribution.

Our work is related to weakly supervised discovery methods in the sense that other than

often noisy labels, our method does not receive information about what makes an image

contain the latent visual concepts we seek to model. In contrast to these weakly supervised

discovery works though, the problems we study exhibit much larger within-class variance

(e.g. with the classes being photographer’s identities, types of ads, or whether an image

is politically biased). Unlike objects and styles, the differences between our classes live in

semantic space as much (if not moreso) than they do in visual space, thus these methods do

not guarantee success. Nevertheless, we borrow intuitions from these methods and help our

methods by focusing them on the higher-level semantics of the problem, such as by injecting

external semantics or leveraging guided training.

Curriculum learning. Several of our methods use multi-stage training as a strategy to

facilitate learning (Table 2). Thus, also relevant to our work are self-paced and curriculum

learning approaches [157, 282, 398, 409, 158]. These attempt to simplify learning by finding
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“easy” examples to learn with first or by leveraging multi-stage training procedures. Several

of our methods employ a type of curriculum learning. For example, we first train a multi-

modal classifier to predict bias, using the assumption that the relation between text and

bias is more direct. We then leverage this model as a feature extractor by adding an image-

only politics classifier on top of it. Thus, our method focuses the model on relevant visual

concepts using text. Related work by [164] and [108] both learn semantic concepts on a

separate, auxiliary training task, which aid the classifier in performing inference on the

target task. Because prior work [266, 128] has shown that using a larger-batch size improves

classification performance on noisy data by smoothing the gradient, we compare against a

baseline curriculum-learning approach designed to alleviate the problem of noisy minibatches

in our work on photographic style and predicting political bias. To do so, we freeze the lower-

layers of the model after training and then perform a second stage of training of just the

classifier using all features in the train set for optimization, which we show slightly improves

performance on both of these problems.

2.3.4 Impact on generative models

Though we primarily seek to model latent semantic concepts discriminatively in this

dissertation, a secondary focus of our work is generating synthetic data which visualizes the

semantics we have learned. However, the above challenges pose major obstacles to training

generative models on our datasets. Despite enormous progress having been made in genera-

tive modeling in recent years, many problems persist [13]. Even when advanced stabilization

techniques are used, GANs are notoriously challenging to train, particularly when the un-

derlying data distribution is highly noisy [120]. In such cases, the generative component of

the network, which must learn a complex distribution, is overpowered by the discriminative

component, which much merely tell apart the generator’s output from the real distribution.

This destabilization of the equilibrium between both the generative and discriminative com-

ponents of the framework results in training failures which are frustratingly complex if not

impossible to overcome. This difficulty is particularly relevant in the domains that we study

in this dissertation, in which the manifold in visual space of a higher-level semantic concept
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is highly cragged, making fitting the distribution all the more challenging [120, 172]. A sim-

pler problem, though no less fatal one, is that generative models require a large amount of

data to achieve a good fit of the target data distribution [120]. While discriminative models

are also vulnerable to over-fitting, they do not need to learn the contours of the underlying

distribution. Oftentimes, when limited data is available, discriminative models can obtain

surprising performance by training a linear classifier using features extracted from a net-

work trained on another domain [315]. This is not possible in the generative case, where

the underlying target distribution must be learned. Without adequate data, such models

simply memorize the target dataset and reproduce the samples without any diversity or

generalization [66, 213]. [312] present a highly interesting approach for learning a generative

model which can be learned from a single natural image, but can change the semantics of the

image by reshuffling objects and structures within the image. In contrast, we seek to learn

the semantic distribution of the visual concept across the dataset, not just within a single

image. For example, we wish to learn that particular photographers tend to shoot specific

objects at specific sizes and locations. In this dissertation, we utilize generative models in

multiple settings, in order to visualize semantics of our problems (Chapters 4, 5), either by

constraining our models on subsets of data or by imposing conditioning on the models to

force them to learn specified semantic concepts from our data.
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3.0 MODELING PHOTOGRAPHIC STYLE

Summary. In this chapter, we introduce the novel problem of identifying the photographer

behind a photograph.1 We thus seek to model the concept of photographic style. To explore

the feasibility of current computer vision techniques to address this problem, we created a new

dataset of over 180,000 images taken by 41 well-known photographers. Using this dataset,

we examined the effectiveness of a variety of features (low and high-level, including CNN

features) at identifying the photographer. We also trained a new deep convolutional neural

network for this task. Our results show that high-level features greatly outperform low-level

features. We provide qualitative results using these learned models that give insight into

our method’s ability to distinguish between photographers, and allow us to draw interesting

conclusions about what specific photographers shoot. We also demonstrate two applications

of our method.

3.1 INTRODUCTION

(a) (b) (c)

Figure 3: Three sample photographs from our dataset taken by Hine, Lange, and Wolcott,

respectively. Our top-performing feature is able to correctly determine the author of all three

photographs, despite the very similar content and appearance of the photos.

1The work presented in this chapter was published in our CVPR 2016 paper, “Seeing Behind the Camera:
Predicting the Authorship of a Photograph” [339].
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The ability to accurately extract stylistic and authorship information from artwork com-

putationally enables a wide array of useful applications in the age of massive online image

databases. For example, a user who wants to retrieve more work from a given photographer,

but does not know his/her name, can speed up the process by querying with a sample photo

and using “Search by artist” functionality that first recognizes the artist. Modern search

engines can currently only “recognize” the artist of a photograph if there is a page that in-

cludes both this particular photograph and the artist’s name, but many photographs are not

available on annotated websites. Automatic photographer identification can be used to de-

tect unlawful appropriation of others’ photographic work, e.g. in online portfolios, and could

be applied in resolution of intellectual property disputes. It can also be employed to analyze

relations between photographers and discover “schools of thought” among them. The latter

can be used in attributing historical photographs with missing author information. Finally,

understanding a photographer’s style might enable the creation of novel photographs in the

spirit of a known author.

While researchers have made progress towards matching the human ability to categorize

paintings by style and authorship [305, 20, 15], no attempts have been made to recognize

the authorship of photographs. This is surprising because the average person is exposed to

many more photographs daily than to paintings. We believe one possible reason for this is

because the stylistic cues (such as brush stroke) available for identifying a particular painter

are greatly reduced in the photographic domain due to the lessened authorial control in that

medium (we do not consider photomontaged or edited images in this study). This makes

the problem of modeling the visual concept of photographic authorship significantly more

challenging than that of identifying the author of a painting. Fig. 3 shows photographs taken

by Lewis Hine, Dorothea Lange, and Marion Wolcott, three iconic American photographers.

Both Lange and Wolcott worked for the Farm Security Administration (FSA) documenting

the hardship of the Great Depression, while Hine worked to address a number of labor rights

issues. All three images depict child poverty and there are no obvious differences in style,

yet our method is able to correctly predict the author of each.

This chapter makes several important contributions: 1) we propose the problem of mod-

eling the concept of photographic style, which no existing work has explored; 2) due to the
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Adams 245 Brumfield 1138 Capa 2389 Bresson 4693 Cunningham 406 Curtis 1069 Delano 14484

Duryea 152 Erwitt 5173 Fenton 262 Gall 656 Genthe 4140 Glinn 4529 Gottscho 4009

Grabill 189 Griffiths 2000 Halsman 1310 Hartmann 2784 Highsmith 28475 Hine 5116 Horydczak 14317

Hurley 126 Jackson 881 Johnston 6962 Kandell 311 Korab 764 Lange 3913 List 2278

McCurry 6705 Meiselas 3051 Mydans 2461 O’Sullivan 573 Parr 20635 Prokudin-Gorsky 2605 Rodger 1204

Rothstein 12517 Seymour 1543 Stock 3416 Sweet 909 Van Vechten 1385 Wolcott 12173

Table 4: Listing of all photographers and the number of photos by each in our dataset.

lack of a relevant dataset for this problem, we create a large and diverse dataset which tags

each image with its photographer (and possibly other metadata); 3) we investigate a large

number of pre-existing and novel visual features and their performance in a comparative

experiment in addition to human baselines obtained from a small study; 4) we provide nu-

merous qualitative examples and visualizations to illustrate: the features tested, successes

and failures of the method, and interesting inferences that can be drawn from the learned

models; 5) we apply our method to discover schools of thought between the authors in our

dataset; and 6) we show preliminary results on generating novel images that look like a given

photographer’s work.

3.2 APPROACH

3.2.1 Dataset

A significant contribution of our work is our photographer dataset.2 It consists of 41

well known photographers and contains 181,948 images of varying resolutions. We searched

Google for “famous photographers” and used the list while also choosing authors with large,

curated collections available online. Table 4 contains a listing of each photographer and their

associated number of images in our dataset. The timescale of the photos spans from the early

days of photography to the present day. As such, some photos have been developed from film

and some are digital. Many of the images were harvested using a web spider with permission

from the Library of Congress’s photo archives and the National Library of Australia’s digital

2It can be obtained from http://www.cs.pitt.edu/~chris/photographer.
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collection’s website. The rest were harvested from the Magnum Photography online catalog,

or from independent photographers’ online collections. Each photo in the dataset is anno-

tated with the ID of the author, the URL from which it was obtained, and possibly other

meta-data, including: the title of the photo, a summary of the photo, and the subject of

the photo (if known). The title, summary, and subject of the photograph were provided by

either the curators of the collection or by the photographer. Unlike other datasets obtained

through web image search which may contain some incorrectly labeled images, our dataset

has been painstakingly assembled, authenticated, and described by the works’ curators. This

rigorous process ensures that the dataset and its associated annotations are of the highest

quality.

3.2.2 Features tested

Modeling the visual concept of photographic style is a complex problem and relies on

multiple factors. Thus, we explore a broad space of features (both low and high-level). The

term “low-level” means that each dimension of the feature vector has no inherent “meaning.”

High-level features have articulatable semantic meaning (i.e. the presence of an object in the

image). We also train a deep convolutional neural network from scratch in order to learn

custom features specific to this problem domain.

Low-level features.

• L*a*b* Color Histogram: To capture color differences among the photographers, we

use a 30-dimensional binning of the L*a*b* color space. Color has been shown useful for

dating historical photographs [269].

• GIST: GIST [261] features have been shown to perform well at scene classification and

have been tested by many of the prior studies in style and artist identification [168, 305].

All images are resized to 256 by 256 pixels prior to having their GIST features extracted.

• SURF: Speeded-up Robust Features (SURF) [23] is a classic local feature used to find

patterns in images and has been used as a baseline for artist and style identification

[20, 29, 15]. We use k-means clustering to obtain a vocabulary of 500 visual words and

apply a standard bag-of-words approach using normalized histograms.
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High-level features.

• Object Bank: The Object Bank [200] descriptor captures the location of numerous

object detector responses. We believe that the spatial relationships between objects may

carry some semantic meaning useful for our task.

• Deep Convolutional Networks:

– CaffeNet: This pre-trained CNN [156] is a clone of the winner of the ILSVRC2012

challenge [184]. The network was trained on approximately 1.3M images to classify

images into 1000 different object categories.

– Hybrid-CNN: This network has recently achieved state-of-the-art performance on

scene recognition benchmarks [415]. It was trained to recognize 1183 scene and object

categories on roughly 3.6M images.

– PhotographerNET: We trained a CNN with the same architecture as the previous

networks to identify the author of photographs from our dataset. The network was

trained for 500,000 iterations on 4 Nvidia K80 GPUs on our training set and validated

on a set disjoint from our training and test sets.

To disambiguate layer names, we prefix them with a C, H, or P depending on whether

the feature came from CaffeNet, Hybrid-CNN, or PhotographerNET, respectively. For

all networks, we extract features from the Pool5, FC6, FC7 and FC8 layers, and show

the result of using those features during SVM training in Table 5. The score in the TOP

column for PhotographerNET is produced by classifying each test image as the author who

corresponds to the dimension with the maximum response value in PhotographerNET’s

output (FC8).

Low High

CaffeNet Hybrid-CNN PhotographerNET

Color GIST SURF-BOW Object Bank Pool5 FC6 FC7 FC8 Pool5 FC6 FC7 FC8 Pool5 FC6 FC7 FC8 TOP

0.31 0.33 0.37 0.59 0.73 0.7 0.69 0.6 0.74 0.73 0.71 0.61 0.25 0.25 0.63 0.47 0.14

Table 5: Our experimental results for photographic authorship prediction. The F-measure

of each feature is reported. The best feature overall is in bold, and the best one per CNN in

italics. Note that high-level features greatly outperform low-level ones. Chance performance

is 0.024.
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3.3 EXPERIMENTAL EVALUATION

To test the effectiveness of the aforementioned features at modeling the concept of pho-

tographic style, using our new photographer dataset, we randomly divided our dataset into

a training set (90%) and test set (10%). Because a validation set is useful when training

a CNN to determine when learning has peaked, we created a validation set by randomly

sampling 10% of the images from the training set and excluding them from the training set

for our CNN only. The training of our PhotographerNET was terminated when performance

started dropping on the validation set.

For every feature in Table 5 (except TOP which assigns the max output in FC8 as the

photographer label) we train a one-vs-all multiclass SVM using the framework provided by

[86]. All SVMs use linear kernels.

Table 5 presents the results of our experiments. We report the F-measure for each of

the features tested. We observe that the deep features significantly outperform all low-level

standard vision features, concordant with the findings of [168, 20, 305]. Additionally, we

observe that Hybrid-CNN features outperform CaffeNet by a small margin on all features

tested. This suggests that while objects are clearly useful for photographer identification

given the impressive performance of CaffeNet, the added scene information of Hybrid-CNN

provides useful cues beyond those available in the purely object-oriented model. We observe

that Pool5 is the best feature within both CaffeNet and Hybrid-CNN. Since Pool5 roughly

corresponds to parts of objects [399, 374, 146], we can conclude that seeing the parts of

objects, not the full objects, is most discriminative for identifying photographers. This is

intuitive because an artistic photograph contains many objects, so some of them may not be

fully visible.

The Object Bank feature achieves nearly the same performance as C-FC8 and H-FC8, the

network layers with explicit semantic meaning. All three of these features encapsulate object

information, though Object Bank detects significantly fewer classes (177) than Hybrid-CNN

(978) or CaffeNet (1000). Despite detecting fewer categories, Object Bank encodes more

fine-grained spatial information about where the objects detected were located in the image,

compared to H-FC8 and C-FC8. This finer-grained information could be giving it a slight
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advantage over these CNN object detectors, despite its fewer categories.

One surprising result from our experiment is that PhotographerNET does not surpass ei-

ther CaffeNet or Hybrid-CNN, which were trained for object and scene detection on different

datasets. We also tried fine-tuning the last three layers of CaffeNet and Hybrid-CNN with

our photographer data, but we did not obtain an increase in performance. Photographer-

NET’s top-performing feature (FC7) outperforms the deepest (FC8) layers in both CaffeNet

and Hybrid-CNN, which correspond to object and scene classification, respectively. How-

ever, P-FC7 performs worse than their shallower layers, especially H-Pool5. Layers of the

network shallower than P-FC7, such as P-FC6 and P-Pool5, demonstrate a sharp decrease

in performance (a trend opposite to what we see for CaffeNet and Hybrid-CNN), suggesting

that PhotographerNET has learned different and less predictive intermediate feature extrac-

tors for these layers than CaffeNet or Hybrid-CNN. Attributing a photograph to the author

with highest P-FC8 response (TOP) is even weaker because unlike the P-FC8 method, it

does not make use of an SVM.

This result provides a key insight that is of particular relevance to this dissertation’s focus

of modeling abstract visual concepts. It may be that the task PhotographerNET is trying

to learn is too high-level and challenging. Because PhotographerNET is learning a task even

more high-level than object classification and we observe that the full-object-representation

is not very useful for this task, one can conclude that for photographer identification, there

is a mismatch between the high-level nature of the task, and the level of representation that

is useful.

In Fig. 4, we provide a visualization that might explain the relative performance of our

top-performing PhotographerNET feature (P-FC7) and the best feature overall (H-Pool5).

We compute the t-distributed stochastic neighborhood embeddings [348] for P-FC7 and

H-Pool5. We use the embeddings to project each feature into 2-D space. We then plot the

embedded features by representing them with their corresponding photographs.

We observe that H-Pool5 divides the image space in semantically meaningful ways. For

example, we see that photos containing people are grouped mainly at the top right, while

buildings and outdoor scenes are at the bottom. We notice H-Pool5’s groupings are agnostic

to color or border differences. Rather, nearby photos are closer in semantic meaning. In con-
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(a) P-FC7 t-SNE embeddings. (b) H-Pool5 t-SNE embeddings.

Figure 4: t-SNE embeddings for two deep features. We observe that PhotographerNET

relies more heavily on lower-level cues (like color) than higher-level semantic details.

trast, PhotographerNET’s P-FC7 divides the image space along the diagonal into black and

white vs. color regions. It is hard to identify semantic groups based on the image’s content.

However, we can see that images that “look alike” by having similar borders or similar colors

are closer to each other in the projection. This indicates that PhotographerNET learned to

use lower-level features to perform photographer classification, whereas Hybrid-CNN learned

higher-level semantic features for object/scene recognition. One possible explanation for this

is that because the photos within each class (photographer) of our dataset are so visually

diverse, the network is unable to learn semantic features for objects which do not occur

frequently enough. In contrast, networks trained explicitly for object recognition only see

images of that object in each class, enabling them to more easily learn object representations.

Interestingly, these semantic features learned on a different problem outperform the features

learned on our photographer identification problem.

To establish a human baseline for the task of photographer identification, we performed

two small pilot experiments. We created a website where participants could view 50 randomly

chosen images training images for each photographer. The participants were asked to review
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these and were allowed to take notes. Next, they were asked to classify 30 photos chosen at

random from a special balanced test set. Participants were allowed to keep open the page

containing the images for each photographer during the test phase of the experiment. In

our first experiment, one participant studied and classified images for all 41 photographers

and obtained an F1-score of 0.47. In a second study, a different participant performed the

same task but was only asked to study and classify the ten photographers with the most

data, and obtained an F1-score of 0.67. Our top-performing feature’s performance in Table

5 (on all 41 photographers) surpasses both human F1-scores even on the smaller task of ten

photographers, demonstrating the difficulty of the photographer identification problem on

our challenging dataset.

Finally, to demonstrate the difficulty of the photographer classification problem and to

explore the types of errors different features tend to make, we present several examples of

misclassifications in Fig. 5. Test images are shown on the left. Using the SVM weights to

weigh image descriptors, we find the training image (1) from the incorrectly predicted class

(shown in the middle) and (2) from the correct class (shown on the right), with minimum

distance to the test image. The first row (Fig. 5a-5c) depicts confusion using SURF features.

All three rooms have visually similar decor and furniture, offering some explanation to Fig.

5a’s misclassification as a Gottscho image. The second row (Fig. 5d-5f) shows a misclassi-

fication by CaffeNet. Even though all three scenes contain people at work, CaffeNet lacks

the ability to differentiate between the scene types (indoor vs. outdoor and place of business

vs. house). In contrast, Hybrid-CNN was explicitly trained to differentiate these types of

scenes. The final row shows the type of misclassification made by our top-performing feature,

H-Pool5. Hybrid-CNN has confused the indoor scene in Fig. 5g as a Highsmith. However,

we can see that Highsmith took a similar indoor scene containing similar home furnishings

(Fig. 5h). These examples illustrate a few of the many confounding factors which make

photographer identification challenging.
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(a) Horydczak (b) Gottscho-SURF (c) Horydczak-SURF

(d) Delano (e) Roths.-C-Pool5 (f) Delano-C-Pool5

(g) Brumfield (h) High.-H-Pool5 (i) Brum.-H-Pool5

Figure 5: Confused images. The first column shows the test image, the second shows the

closest image in the predicted class, and the third shows the closest image from the correct

class. Can you tell which one doesn’t belong?
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3.3.1 Additional analysis

The experimental results presented in the previous section indicate that classifiers can

exploit semantic information in photographs to differentiate between photographers at a

much higher fidelity than low-level features. At this point, the question becomes not if

computer vision techniques can perform photographer classification relatively reliably but

how they are doing it. What did the classifiers learn? In this section, we present qualitative

results which attempt to answer this question and enable us to draw interesting insights

about the photographers and their subjects.

Photographers and objects. Our first set of qualitative experiments explores the rela-

tionship of each photographer to the objects which they photograph and which differentiate

them. Each dimension of the 1000-dimensional C-FC8 vector produced by CaffeNet repre-

sents a probability that its associated ImageNet synset is the class portrayed by the image.

While C-FC8 does not achieve the highest F-measure, it has a clear semantic mapping to

ImageNet synsets and thus can be more easily used to reason about what the classifiers have

learned. Because the C-FC8 vector is high-dimensional, we “collapse” the vector for pur-

poses of human consideration. To do this, we map each ImageNet synset to its associated

WordNet synset and then move up the WordNet hierarchy until the first of a number of

manually chosen synsets3 are encountered, which becomes the dimension’s new label. This

reduces C-FC8 to 54 coarse categories by averaging all dimensions with the same coarse

label. In Fig. 6, we show the average response values for these 54 coarse object categories

for each photographer. Green indicates positive values and red indicates negative values.

Darker shades of each color are more extreme.

We apply the same technique to collapse the learned SVM weights. During training, each

one-vs-all linear SVM learns a weight for each of the 1000 C-FC8 feature dimensions. Large

positive or negative values indicate a feature that is highly predictive. Unlike the previous

technique which simply shows the average object distribution per photographer, using the

learned weights allows us to see what categories specifically distinguish a photographer from

3These synsets were manually chosen to form a natural human-like grouping of the 1000 object categories.
Because the manually chosen synsets are on multiple levels of the WordNet hierarchy, synsets are assigned
to their deepest parent.
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Figure 6: Average C-FC8 collapsed by WordNet.

others. We show the result in Fig. 7.

Finally, while information about the 54 types of objects photographed by each author

is useful, finer-grained detail is also available. We list the top 10 individual categories with
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Figure 7: C-FC8 SVM weights collapsed by WordNet.
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Adams hospital room hospital office mil. uniform bow tie lab coat music studio art studio barbershop art gallery

Brumfield dome mosque bell cote castle picket fence stupa tile roof vault pedestal obelisk

Delano hospital construction site railroad track slum stretcher barbershop mil. uniform train station television crutch

Hine mil. uniform pickelhaube prison museum slum barbershop milk can rifle accordion crutch

Kandell flute marimba stretcher assault rifle oboe rifle panpipe cornet mil. uniform sax

Lange shed railroad track construction site slum yard cemetery hospital schoolhouse train railway train station

Van Vechten bow tie suit sweatshirt harmonica neck brace mil. uniform cloak trench coat oboe gasmask

Adams Brumfield Delano Hine Kandell Lange Van Vechten

Table 6: Top ten objects and scenes for select photographers, and sample images.

highest H-FC8 weights (which captures both objects and scenes). To do this, we extract

and average the H-FC8 vector for all images in the dataset for each photographer. We list

the top 10 most represented categories for a select group of photographers in Table 6, and

include example photographs by each photographer.

We make the following observations about the photographers’ style from Figs. 6 and 7 and

Table 6. From Fig. 6, we conclude that Brumfield shoots significantly fewer people than most

photographers. Instead, Brumfield shoots many “buildings” and “housing.” Peering deeper,

Brumfield’s top ten categories in Table 6 reveal that he frequently shot architecture (such

as mosques and stupas). In fact, Brumfield is an architectural photographer, particularly of

Russian architecture. In contrast, Van Vechten has high response values for categories such

as “clothing”, “covering”, “headdress” and “person”. Van Vechten’s photographs are almost

exclusively portraits of people, so we observe a positive SVM weight for “person” in Fig. 7.

Comparing Figs. 6 and 7, we see that there is not a clear correlation between object

frequency and the object’s SVM weight. For instance, the “weapon” category is frequently

represented given Fig. 6, yet is only predictive of a few photographers (Fig. 7). The “person”

category in Fig. 7 has high magnitude weights for many photographers, indicating its utility

as a class predictor. Note that the set of objects distinctive for a photographer does not fully

depend on the photographer’s environment. For example, Lange and Wolcott both worked
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for the FSA, yet there are notable differences between their SVM weights in Fig. 7.

Schools of thought. Taking the idea of photographic style one step further, we wanted

to see if meaningful genres or “schools of thought” of photographic style could be inferred

from our results. We know that twelve of the photographers in our dataset were members

of the Magnum Photos cooperative. We cluster the H-Pool5 features for all 41 photogra-

phers into a dendrogram, using agglomerative clustering, and discover that nine of those

twelve cluster together tightly, with only one non-Magnum photographer in their cluster.

We find that three of the four founders of Magnum form their own even tighter cluster.

Further, five photographers in our dataset that were employed by the FSA are grouped in

our dendrogram, and two portrait photographers (Van Vechten and Curtis) appear in their

own cluster. These results indicate that our techniques are not only useful for describing

individual photographers but can also be used to situate photographers in broader “schools

of thought.”

Generating new photographs. Our experimental results demonstrated that object and

(a) Delano (b) Erwitt (c) Highsmith (d) Hine (e) Horydczak (f) Rothstein

Figure 8: Generated images for six photographers (top row) and real photographs by these

authors (bottom row). Although results are preliminary, we observe interesting similarities

between the synthetic and real work.

scene information is useful for distinguishing between photographers. Based on these results,

we wanted to see whether we could take our photographer models yet another step further

by generating new photographs imitating photographers’ styles. Our goal was to create

“pastiches” assembled by cropping objects out of each photographer’s data and pasting them

in new scenes obtained from Flickr. We first learned a probability distribution over the 205-
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scene types detected by Hybrid-CNN for each photographer. We then learned a distribution

of objects and their most likely spatial location for each photographer, conditioned on the

scene type. To do this, we trained a Fast-RCNN [104] object detector on 25 object categories

which frequently occurred across all photographers in our dataset using data we obtained

from ImageNet. We then sampled from our joint probability distributions to choose which

scene to use and which objects should appear in it and where. We randomly selected a

detection (in that photographer’s data) for each object probabilistically selected to appear,

then cropped out the detection and segmented the cropped region using [205]. We inserted

the segment into the pastiche according to that photographer’s spatial model for that object.

We show six pastiches generated using this approach in Fig. 8. The top row shows gener-

ated images for six photographers, and the bottom shows real images from the corresponding

photographer that resemble the generated ones. For example, Delano takes portraits of in-

dividuals in uniforms and of “common people,” Erwitt photographs people in street scenes

without their knowledge or participation, and Rothstein photographs people congregating.

Highsmith captures large banner ads and Americana, Hine children working in poor condi-

tions, and Horydczak buildings and architecture. While these are preliminary results, we see

similarities between the synthetic and authentic photos.

3.4 DISCUSSION

In this chapter, we explored the problem of modeling photographic style and generating

synthetic photos with those styles. Our experiments reveal that high-level features perform

significantly better overall than low-level features or humans. While our trained CNN,

PhotographerNET, performs reasonably well, early proto-object and scene-detection features

perform significantly better. This result demonstrates that the concept of photographic

style is more semantically exhibited in terms of the subjects portrayed rather than visually

manifested through colors or textures The inclusion of scene information provides moderate

gains over the purely object-driven approach explored by [168, 305]. Our results confirm

H1 that models focus on low-leval details which preclude learning absent guidance (H2).
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Specifically, we show that training a CNN on the task of classifying which photographer took

a photographer causes the model to learn features which do not capture semantics. However,

by guiding our model’s training by transferring semantics from a pre-trained method our

method was able to perform significantly better. Our primary contribution here is a technique

for qualitative analysis by determining which objects respond strongly to each photographer

in the feature values and learned classifier weights. Using our techniques, we were able to

draw interesting conclusions about the photographers we studied as well as broader “schools

of thought” between those photographers. We also presented a probabilistic generative

approach that creates new photographs in the spirit of a given author.

The broader implications of our work in this chapter for this dissertation is a demonstra-

tion that even when higher-level semantics are unable to be extracted from a dataset using a

näıve training strategy, by forcing classifiers to rely on semantics which we have an a priori

belief are useful, we may still be able to model the phenomena (H2). Likewise, even though

the visual concept we wished to model was too high-level to train a generative network on,

we were still able to generate synthetic data by enforcing a simple probabilistic model which

we believed was justified from our analysis. Thus, in many cases where visual phenomena

is too challenging to model automatically, by enforcing external structure on the generative

process one can still achieve semantically sensible image synthesis.
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4.0 MODELING VISUAL PERSUASION

Summary. In this chapter, we examine the visual variability of objects across different ad

categories, i.e. what causes an advertisement to be visually persuasive.1 This work applies

and extends the techniques we develop for modeling implicit visual concepts in Chapter 3.

We focus on modeling and generating faces which appear to come from different types of ads.

For example, if faces in beauty ads tend to be women wearing lipstick, a generative model

should portray this distinct visual appearance. Training generative models which capture such

category-specific differences is challenging because of the highly diverse appearance of faces in

ads and the relatively limited amount of available training data. To address these problems,

we propose a conditional variational autoencoder which makes use of predicted semantic

attributes and facial expressions as a supervisory signal when training. We show how our

model can be used to produce visually distinct faces which appear to be from a fixed ad topic

category. Our human studies and quantitative and qualitative experiments confirm that our

method greatly outperforms a variety of baselines, including two variations of a state-of-the-

art generative adversarial network, for transforming faces to be more ad-category appropriate.

Finally, we show preliminary generation results for other types of objects, conditioned on an

ad topic.

4.1 INTRODUCTION

The task of modeling persuasive visual media is of particular relevance to our proposed

work of modeling bias in media photos. Advertisements are persuasive tools that affect

people’s habits and decisions. They often advertise products and establishments, such as

cosmetics and beauty, clothing, alcohol, automobiles, or restaurants. However, they can

also be public service announcements that aim to educate the public about important social

1The work presented in this chapter was published in our BMVC 2018 paper, “Persuasive Faces: Gener-
ating Faces in Advertisements” [340].
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Reconstruction Beauty Clothing Domestic Violence Safety SodaOriginal

Figure 9: We transform faces so they appear more persuasive and appropriate for particular

ad categories. We show an original face on the left, followed by our method’s reconstruction

without any transformation. We then show the face transformed according to five types of

ads. Notice how the beauty face contains heavy make-up, the domestic violence face is sad

and possibly bruised, the safety face is somewhat masculine, and the soda face is happy.

issues, such as domestic violence or environmental protection. Many topics advertised by ads

contain distinctive objects, e.g. the most common object in car ads might be cars, bottles for

alcohol ads, and faces for cosmetic ads. There is more to ads than what objects they contain,

however. It is how objects are portrayed that makes an ad persuasive. For example, faces

frequently appear in both beauty and domestic violence ads but their portrayal is vastly

different. Thus, our work on modeling visual persuasion in ads is similar to our work on

modeling photographic style (Chapter 3): photographers choose to portray the same scenes

in vastly different ways for interpretable reasons.

What is it that makes a face become a beauty ad or a domestic violence prevention ad?

This is what we set out to discover in this chapter. As the visual phenomenon we seek to

model is high-level, diverse, and only limited data is available, we begin by utilizing the same

analytical framework we used for modeling photographic style and that we presented as a

general technique for modeling other such problems. Thus, we first analyze the distribution

of objects in common ad topics (beauty, soda, domestic violence, safety, etc.) Based on

the object distributions, we select to model the appearance of faces, since faces are the

most frequent object across all ad categories and have the most distinctive appearance per

category. We then learn a generative model capable of transforming faces into each ad topic.

We note, however, that faces have significantly more regularity in structure and appearance
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that entire photographs. Thus, it is feasible to train a generative model on our ad faces,

while it was not on our photographer dataset in Chapter 3. Because ads are rarer than

general images, we must work with a sparser dataset than modern generative approaches

usually assume. Thus, we propose a method for transferring knowledge from faces in other

datasets, in order to mimic the variability of faces in the ads domain. We validate our

approach qualitatively, by morphing the same face according to different ad categories, and

quantitatively, using human judgments and classifier accuracy.

Our method works as follows. We first train facial expression and facial attribute clas-

sifiers using existing datasets. We detect faces in ads and predict their attributes and ex-

pressions. Next, we train a conditional variational autoencoder (CVAE) on our dataset of

ad faces. The model learns to reconstruct an ad face from a vector comprised of a learned

latent representation, facial attributes, and facial expressions. At test time, we embed all ad

faces into vector space using our encoder and then compute how faces differ in that space

across ad topics. Using these per-topic learned differences, we transform embeddings of other

ad faces into each ad topic. Finally, we use our decoder on the transformed embeddings to

generate distinct faces across ad topics. We show examples of our transformations in Fig. 9.

Note that prior work has modeled the conceptual rhetoric that ads use to convey a message

[149, 390], but no work models the visual variance in the portrayal of the same object across

different ad categories, nor attempts to generate such objects.

This method proposed in this chapter makes the following three contributions:

• We propose the problem of studying what makes an object visually persuasive and gen-

erating objects which convey appropriate visual rhetoric for a given ad topic.

• We analyze object frequency and appearance in ads, and discover objects with class-

dependent appearances, which we then generate with promising quality.

• We develop a novel generative approach for modifying the appearance of faces into dif-

ferent ad categories, by elevating visual variance to a semantic level without the need for

new semantic labels (H2). Rather than directly modeling how faces in different ad cate-

gories differ on the pixel level, we model how they differ in terms of predicted attributes

and facial expressions, then use these distinctions to create faces appropriate for a given

ad category. Our method outperforms relevant baselines at this task.
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Figure 10: We show examples of real faces from different categories of ads. We notice signif-

icant differences, many of which can be captured through facial attributes and expressions.

4.2 APPROACH

In this section, we begin by describing how we extract faces from ads. We then describe

how we predict attributes and facial expressions on the detected faces. Next, we present

our autoencoder architecture and then describe how we use it to transform faces across ad

categories.

4.2.1 Dataset

We focus on the Ads Dataset of [149]. It contains ads belonging to 38 topic categories:

beauty, soda, restaurants, etc. (called product ads) and domestic violence, safety, etc. (called

public service announcements, or PSAs). We chose to study the ten most frequent product

topics in the dataset, as well as all PSA topics, resulting in a set of 17 ad topics.

4.2.2 Face detection on ads

Our first step is to extract faces from ads. The remaining steps of our model work on

this dataset of ad faces, rather than operating on whole ads images. This allows our model

to concentrate on modeling and modifying facial appearance, without having to reconstruct

the entire ad. We train Faster-RCNN [297] on the Wider Face dataset [388]. We remove
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face detections whose confidence is less than 0.85 or whose width or height is less than 60

pixels. We show examples of detected faces in different ad categories in Fig. 10. In total,

we detected 20,532 faces. We observe, for example, that beauty ads often have brighter skin

tones and feature women wearing makeup. Domestic violence faces are often darker and not

smiling. Many soda faces appear vintage and smiling. Clothing ads are similar to beauty,

but don’t feature as bright of skin or makeup. Finally, safety ads feature more men and are

not as dark as domestic violence ads. Importantly, many of the differences we observe are

captured by facial attributes and expressions datasets.

4.2.3 Predicting facial attributes and expressions

We want our method to model the most relevant characteristics of faces in each ad topic

category. As we observed in Fig. 10, the differences between faces in different ad categories

can naturally be described in terms of facial attributes and expressions. Because our dataset

is small and diverse, our model may not have enough signal to reliably learn to model facial

attributes and expressions without explicitly being directed to do so. In other words, it may

devote its modeling power to matching the precise vintage or cartoon appearance of ad faces

(i.e. low-level details) without learning a high-level model of recognizable semantic differ-

ences. Thus, rather than formulating our task as modeling the unconstrained distribution of

pixels from the faces in each ad group, we manually inject high-level knowledge to facilitate

manipulation of specific semantic attributes and expressions across ad topics.

We use the CelebA dataset [217] of 40 facial attributes and the AffectNet dataset [247] of

eight facial expressions plus valence and arousal scores. We train Inception-v3 [336] on each

dataset. We train each classifier using a cross-entropy loss for classification. For the network

trained on expressions, we add an additional classifier for the regression task of predicting

the valence and arousal of the facial expression and also use a mean-squared error loss.

Formally, let It represent the dataset of ad faces extracted from each ad topic t (e.g.

beauty faces, domestic violence faces, etc.). We use our trained attributes and expressions

classifiers to predict these properties on our entire ad faces dataset. This results in an

automatically labeled ads face dataset It = {xit,yit}
Nt
i=1, where xit represents face i from ad
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topic t, yit represents the image’s associated 50-dimensional vector (composed of 40 facial

attributes and eight facial expressions with their accompanying valence and arousal scores),

and Nt represents the total number of faces per topic. We binarize our facial attribute

predictions and represent our facial expressions in a one-hot fashion. The valence and arousal

scores are real numbers from [−1, 1].

4.2.4 Conditional variational autoencoder

Given an image xit and conditional vector ŷit, which may differ from the image’s ground

truth signature, we seek a model θ parameterizing the following transformation function:

fθ

(
xit, ŷ

i
t

)
= x̂it (1)

where x̂it is a face retaining the overall appearance of xit, but now bearing the attributes

and expressions encoded in ŷit. If yit = ŷit, we seek an unmodified reconstruction of xit. To

modify the original appearance, we would like the reconstructed face to bear the provided

set of attributes. If we denote our attribute and expression classifiers from Sec. 4.2.3 jointly

as C, we wish to enforce the following constraint:

C
(
fθ

(
xit, ŷ

i
t

))
= ŷit (2)

Thus, any modifications done by our model should result in our classifiers producing the

same conditional vector that was provided to the transformation model.

We also seek the capability of transforming ad topic-wise facial appearance beyond what

is captured by our conditional vector. For example, if one topic features a predominant

ethnicity, we would like our model to be capable of transforming a face into that ethnicity,

even though it is not presented in our conditional vector. We thus seek a model capable

of learning latent facial appearance information from our dataset. Autoencoders, which

project an image into a low-dimensional space and then learn to reconstruct it from the

sparse representation, are a natural choice. However, because we wish to interpolate faces

across ad topics, enforcing that the learned space is smooth is important. We thus propose

a custom conditional variational autoencoder, which enforces a Gaussian prior on the latent

space [327].
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Figure 11: We show our model transforming a beauty ad face into a domestic violence face.

The conditional vector (orange bar) is appended to the sampled latent vector (see Eqs. 3,4).

We present our model’s architecture in Fig. 11. It contains two distinct components, an

encoder and decoder, which are trained end-to-end to reconstruct ad faces.

Encoder. Our encoder gφ encodes any image x into the latent space z as follows:

z = gφ(x, ε), ε ∼ N (3)

where ε represents a vector sampled at random from N , a standard normal distribution.

Specifically, gφ encodes an image by predicting µ and σ for each dimension of the latent

space. The latent embedding for an image is produced by combining ε with the predicted

latent distribution parameters as follows: z = µ + e
σ
2 ε. This mechanism of predicting the

latent variable (coupled with the smoothness constraint discussed later) represents an image

as a sample drawn from a Gaussian image space. Thus, the same image’s latent embedding

will differ each forward pass of the encoder due to random sampling of ε. This exposes our

decoder network to a degree of local variation because the decoder learns that a larger space

of embeddings map to the same face. This encourages smoothness in the latent space, which

is important for the interpolation on latent vectors performed later.

Decoder. We concatenate each image’s latent vector with its associated conditional vector

(attributes and expressions) to produce the final representation given to our decoder pψ:

qit =
[
ŷit, z

i
t

]
=
[
yit, gφ

(
xit, ε

)]
(4)
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During training, ŷit = yit. Our decoder network learns to reconstruct the original image from

the embedding:

x̂it = pψ
(
qit
)

= pψ
([

yit, gφ
(
xit, ε

)])
(5)

Learning. We train our model end-to-end to reconstruct the image provided to the encoder.

However, because L2 reconstruction losses have been shown to produce blurry predictions

[238], we instead use a perceptual loss similar to [137]. Rather than compute the distance

between the reconstruction and original image in pixel space, we compute the distance in

feature space of a pretrained VGG classification network following [407]. In our experiments,

using a perceptual loss substantially improved the quality of reconstructions. Formally, let

Φ (xit) and Φ
(
x̂it

)
represent the activations of layer relu2 2 of a pretrained VGG-19 [321]

network on the original and reconstructed images. The reconstruction loss Lr is given by:

Lr =
∥∥∥Φ
(
xit
)
− Φ

(
x̂it

)∥∥∥2

2
(6)

We provide our decoder with the predicted facial attributes and expressions yit so that

we know these aspects of faces will be represented and thus modifiable across ad categories.

However, the decoder might ignore less conspicuous attributes, so we force it to use the

conditional information. The model should produce samples that cause our classification

networks to output the same vectors provided to the decoder. If Ca and Ce represent attribute

and facial expression classifiers, our conditional classification loss Lc is given by:

Lc = lbce

(
Ca
(
xit
)
, Ca

(
x̂it

))
+ lnll

(
Ceexp

(
xit
)
, Ceexp

(
x̂it

))
+ l2

(
Ceva

(
xit
)
, Ceva

(
x̂it

))
(7)

where Ceexp and Ceva represent the facial expression and valence and arousal predictions

from Ce respectively, lbce represents the binary cross entropy loss, lnll represents the negative

log-likelihood loss after softmax is applied to the inputs (for multiclass classification), and

l2 represents the l2 loss (for regression). In practice, we found our classification constraint

improved reconstructions and made them more responsive to changes in the conditional

vector.

To encourage smoothness in the latent space, we use a standard KL divergence term

which measures the relative entropy between a spherical Gaussian distribution and the latent
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distribution [327]. The KL term LKL can be analytically integrated [176] into a closed form

equation as follows:

LKL =
1

2

∑
eσ + µ2 − 1− σ (8)

We found the KL constraint critical to producing smooth faces. Our final loss is:

L = αLr + βLc + γLKL (9)

where α, β, and γ are hyperparameters weighting the contribution of each loss component.

4.2.5 Cross-category facial transformation

We described how to reconstruct a face, using an encoder, decoder, and fixed attributes

and expressions. We now define what we input to our decoder, to translate a face to an ad

class.

Notice that our model never accesses the ad topic category each face comes from. This

is because the faces within topic categories are too varied for the model to make use of topic

information. However, in order to transform faces so they appear to come from different

topics, we first must learn how faces differ in each topic. We compute a vector for each

ad topic, which, when added to an image’s embedding, makes the reconstruction appear

more appropriate for that topic. Specifically, we compute the topic transformation vector

vt for each topic t as follows, where the horizontal bar indicates computing the mean per

dimension:

vt =
Nt∑
i

qit −
∑
t′ 6=t

Nt′∑
i

qit′ (10)

In order to make the transformations more visible, we increase the magnitude of the vector

by multiplying the conditional portion of vt by 10 and the latent portion by 2.5. We found

this visibly improved the distinctiveness across topic categories. To translate a face x into

ad category t′, we modify the embedding of x using vt′ and then reconstruct it as follows:

x̂it→t′ = pψ
(
qit + vt′

)
(11)
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4.2.6 Implementation details

We train our encoder and decoder end-to-end, but we do not train the VGG-19 network.

We train the two classification Inception networks offline, before training our autoencoder.

We train using the Adam optimizer [175] with learning rate 5.0e-4. We use minibatch size of

32 and train for 200 epochs. To ensure robustness to the highly varied ads faces dataset, we

perform aggressive data augmentation. We randomly horizontally flip the training data and

also randomly zoom into or out of the images. We then crop the zoomed images to 128x128.

This allows our models to be less sensitive to facial alignment. We empirically found using

100 dimensions for z to work well. We set α = 1 and β and γ to 0.0001; larger values caused

poor reconstructions. We use Xavier initialization [107] and leaky ReLU activation [126] for

inner layers with negative slope 0.01. We find using batch normalization [150] with eps 1e-4

helps stabilize training. We implement all components of our model in PyTorch [273].

4.3 EXPERIMENTAL EVALUATION

We conduct our experiments on the image advertisement dataset of [149]. We initially

sought to study general object appearance across ad topics, but our analysis below revealed

faces were by far the most distinct object per topic. We thus focus primarily on modeling

faces.

4.3.1 Objects in ads

We ran a 50 layer residual RetinaNet [210] trained on the COCO dataset [211] on all

ads in the 17 ad topics defined in Sec. 4.2.1. We first studied the distributions of objects

across ad topics. We found many object-topic correlations, e.g. cars are most frequent

in car ads, bottles occur frequently in alcohol and soda ads, animals are often found in

animal rights and environment ads, etc. Overall, we found that people tended to occur 13

times more frequently than the second most common object (car). We next studied how

objects’ appearance differed across ad topic categories. We extracted SIFT [221] features for

76



each object and computed BoW histograms with k = 100. We then analyzed the “visual

distinctiveness” of objects, by measuring how each object’s appearance changed within and

across ad topics. We found that cars are highly visually distinct in car ads. This makes

sense because cars in car ads are the focus of the ad, not just a background object. We also

found dogs were distinct in animal rights ads, cell phones in electronics ads, cake and bowl in

chocolate ads, and bottle in soda ads. Faces were the single object category which occurred

frequently enough across topics to train a model on, thus we primarily focus on modeling

faces in this work.

4.3.2 Qualitative results

We compare our method against two baselines inspired by attribute autoencoders [137,

189, 386], one of which has access to attributes and one which does not, as well as two

variations of a state-of-the-art adversarial network for transforming images and attributes

[53]:

• Conditional+Latent (Ours) - Our full model, described in Sec. 4.2.

• Conditional - Our model trained with latent and conditional information (attributes,

expressions, and valence/arousal), however only the 50 conditional dimensions are changed

when translating a face across topics, while the latent dimensions stay fixed.

• Latent - Our model without the conditioning on attributes and expressions.

• StarGAN [53] (Conditional) - We train StarGAN to modify faces to a given 50-

dimensional conditional vector (facial attributes, expressions, valence/arousal).

• StarGAN [53] (Topics) - We train StarGAN to modify faces into a given topic. At

training time, we train the model on the ground truth ad topic categories the faces are

from. The model thus explicitly learns how facial appearance changes across topics.

In Fig. 12, we observe that our method Conditional+Latent produces the most notice-

able and dramatic changes in visual appearance. We observe changes in gender, skin tone,

facial expression, and facial shape. Alcohol ads feature smiling men, beauty ads tend to have

light skin with lipstick, and clothing ads are similar, but with less skin brightness and less

smiling. Faces in domestic violence ads are often frowning and darker, while those in safety
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Figure 12: We show the result of transforming the same face using five different methods.

Our method (bottom row) most faithfully transfers the topic-specific facial appearance as

judged by our human study.

ads tend to appear more masculine. Finally, soda ads have a vintage appearance with a large

smile. For Conditional, we find that many aspects of the face change appropriately. How-

ever, the model is unable to transform other features not captured by the conditional vector:

for example, making the face appear darker for domestic violence ads. For Latent, we find

that while facial appearance overall changes, facial expressions and many facial attributes

remain fixed, leaving a smiling face in inappropriate categories such as domestic violence.

We observe that both versions of StarGAN maintain the original image’s appearance,

but do not change the image much per topic. We notice that StarGAN (Conditional)

tends to produce smoother skin and highlighted eyes for “beauty,” but its other categories
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are harder to discern. StarGAN (Topics) adds low-level details into the generated images

in order to achieve a lower topic prediction loss rather than changing the facial appearance

of the image.

4.3.3 Quantitative evaluation of generated faces

In addition to our qualitative results, we perform two quantitative experiments to assess

how well our method transforms faces into each ad topic. For our first experiment, we

perform a human study to assess how well humans perceive each method to do in terms of

data transformation. Eight non-author participants participated in our study. We first show

them examples of real faces from five ad categories: beauty, clothing, domestic violence,

safety, and soda. To ensure our judges pay attention to the visual distinctions, we ask them

to classify 10 rows of real faces into the correct ad topic. We then show participants the

same image translated by five randomly sorted methods into the five topics, and ask them

to select the method which best portrays the distinct visual appearance of faces across the

five topics.

For our second experiment, we transform the same faces into all 17 ad categories. Next,

we finetune a pretrained AlexNet [184] on the transformed faces to predict which topic the

face is supposed to portray. Finally, we evaluate our model on real faces. Thus, methods

which reliably transform faces in ways which capture the distinct traits of each topic will

achieve higher classification accuracy. This metric assesses how well discriminative features

are translated into generated ads but does not assess the visual quality of the results or the

task we are ultimately interested in, namely producing visually distinct faces across topics.

We present quantitative results in Table 7. Ours performs best at the objective we set

out to accomplish, and does competitively on the objective but less informative classifier

accuracy task. In our human study, human judges found that our method best generates

topic-specific faces nearly 4 times as often as the next best method, Conditional. Inter-

estingly, humans rarely prefer the Latent model, demonstrating the importance of including

attributes and facial expressions. For the classification task, the classifier trained on Star-

GAN (Topics)’s data performs best, followed by our method. This makes sense because
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Method
Human Judgments:

Best At Topic Transformation

Classifier Topic

Prediction Accuracy

StarGAN (Conditional) 0.100 0.069

StarGAN (Topics) 0.113 0.100

Latent 0.038 0.086

Conditional 0.144 0.080

Conditional + Latent (Ours) 0.606 0.092

Table 7: We present two quantitative results. The first shows in what fraction of examples

humans chose each method as the best, for generating visually distinct and appropriate faces

in each topic. The rightmost column shows the accuracy of a classifier when trained on each

row’s synthetic training data and tested on real images from 17 categories.

StarGAN (Topics) sees images labeled with topics at train time and learns what features

are useful for topic classification. However, we see that the method only changes low-level

details (e.g. color) without changing any semantics. Our method changes face semantics,

never sees topic information at train time, yet performs on par with StarGAN (Topics) on

this task, confirming our method does transfer topic-specific appearance. We observe that

the accuracy for all models is similar and fairly low. This is most likely because many faces

are impossible to classify since they are generic, non-persuasive background faces.

4.3.4 Generating other objects

We wanted to see whether we could generate other objects besides faces as they appear

in different ad categories. We conditioned BEGAN [26] on ad topics and trained on bottles

from alcohol, beauty, and soda ads. We used an image size of 64x64 due to the limited

amount of training data per class. We observe that the model does learn meaningful topic-

wise differences in object appearance. For example, alcohol bottles look like liquor bottles

with a long stem, beauty bottles are wider with a short stem (perfume), soda bottles have a
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Alcohol Beauty Soda

Figure 13: Alcohol, beauty, and soda bottles generated using our implementation of a con-

ditional BEGAN [26] trained on bottles. We observe interesting differences across ad topics.

soda bottle shape and label. These results show that intra-topic object appearance can be

modeled, but future work is needed to address problems such as mode-collapse.

4.4 DISCUSSION

In this chapter, we studied modeling cross-category object appearance in ads and how

ads use these objects for persuasion. Based on our object analysis, we focused on faces

and explored how faces could be generated across different types of ads. We proposed a

conditional variational autoencoder for this task, which we augment by providing high-level

facial attributes and expressions; experiments showed this auxiliary supervision was critical

to achieving good results. Our experiments confirm that our method greatly outperforms

a variety of baselines. We also show early results on how topic-specific objects beyond

faces may be generated. Our results confirm our hypothesis that both object and facial

appearance substantially differs in persuasive media relative to standard vision datasets

(H1), by reflecting the notions and desires of target audiences. We further demonstrate

that restricting training to more consistent objects like faces and using explicit semantic

representations can facilitate learning abstract concepts such as visual persuasion which

would otherwise be unlearnable in noisy, limited, and diverse settings (H2). In Chapter 5,

we propose to build upon on work here to model implicit persuasion and bias within media

sources, a signal which is less explicit than that found within ads.
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5.0 MODELING POLITICAL BIAS IN MULTIMEDIA

Summary. In this chapter, we extend our work on modeling latent visual concepts by

leveraging multimodal information in the form of lengthy news articles paired with images.

We model multimodal visual and textual political bias in contemporary media sources at scale

using webly supervised data.1 We collect a dataset of over one million unique images and

associated news articles from left- and right-leaning news sources, and develop a method to

predict the image’s political leaning. This problem is particularly challenging because of the

enormous intra-class visual and semantic diversity of our data. We propose two stages of

training to tackle this problem. In the first stage, the model is forced to learn relevant visual

concepts that, when joined with document embeddings computed from articles paired with the

images, enable the model to predict bias. In the second stage, we remove the requirement of

the text domain and train a visual classifier from the features of the former model. We show

this two-stage approach that relies on an auxiliary task leveraging text, facilitates learning

and outperforms several strong baselines. We present extensive quantitative and qualitative

results analyzing our dataset. Our results reveal disparities in how different sides of the

political spectrum portray individuals, groups, and topics. This problem is well-situated within

the theme developed in this dissertation of modeling abstract visual phenomena from noisy,

diverse datasets and extends our completed work by incorporating multimodal information.

Subsequent chapters focusing on modeling abstract semantics in multimedia build upon the

dataset gathered in this chapter.

5.1 INTRODUCTION

We have previously studied techniques for modeling latent visual phenomena: by using

images alone (Chapter 3) and by using images and explicitly engineered visual semantics

1The work presented in this chapter was published in our NeurIPS 2019 paper, “Predicting the Politics
of an Image Using Webly Supervised Data” [341] and a journal version is in submission to IJCV.
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Figure 14: Top: Can you guess whether each image appears in a far-left or far-right media

source? Use your bias: What are the left and right stereotypically associated with? See the

footnote2 for answers. Bottom: Our method relies on text paired with images to guide

the model towards learning relevant visual semantics. We then freeze our model and learn

a purely visual classifier using features extracted from our pre-trained model. At test time,

our method makes purely visual classifications, without requiring any text for inference.

(Chapter 4). In this chapter, we extend our work of modeling latent visual concepts by

proposing a method applicable to real-world multimedia (i.e. content consisting of both

images and text), rather than images alone. In particular, we consider the problem of

modeling multimodal visual political bias.

One of the goals of the media is to inform, but in practice, the media also shapes opinions

2 Top:Left,Right,Left;Bottom:Right,Left,Left
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[124, 284, 10, 101, 307, 250]. The same issue can be presented from multiple perspectives,

both in terms of the text written in an article, and the visual content chosen to illustrate the

article. For example, when speaking of immigration, left-leaning sources might showcase the

struggles of well-meaning immigrants, while right-leaning sources might portray the misdeeds

of law-breaking immigrants. The type of topics portrayed is a strong cue for the left or right

bias of the source media —for example, tradition is primarily seen as a value on the right,

while diversity is seen as a value on the left [79].

In this chapter, we present a method for recognizing the political bias of an image,

which we define as whether the image came from a left- or right-leaning media source. This

requires understanding: 1) what visual concepts to look for in images, and 2) how these

visual concepts are portrayed across the spectrum. Note that this is a very challenging task

because many of the concepts that we aim to learn show serious visual variability within the

left and right. For example, the concept of “immigration” can be illustrated with a photo of

a border wall, children crying behind bars while detained, immigration agents, protests and

demonstrations about the issue, politicians giving speeches, etc. Human viewers account for

such within-class variance by generalizing what they see into broader semantic concepts or

themes using prior knowledge, deduction, and reasoning.

On the other hand, modern CNN architectures learn by discovering recurring textures

or edges representing objects in the images through backpropagation. However, the same

objects might appear and be discussed across the political spectrum, meaning that the simple

presence or absence of objects is not a good indicator of the politics of an image. Thus, model

training may fall into poor local minima due to the lack of a recurring discriminative signal.

Further, it is not merely the presence or absence of objects that matters, but rather how

they are portrayed, often in subtle ways.

In order to capture the visual concepts necessary to predict the politics of an image,

we propose a method which uses an auxiliary channel at training time, namely the article

text that the image is paired with. Our method contains two stages. In the first one, we

learn a document embedding model on the articles, then train a model to predict the bias

of the image, given the image and the paired document embedding. To be successful on this

task, the model learns to recognize visual cues which complement the textual embedding
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and suggest the politics of the image-text pair. At test time, we want to recognize bias from

images alone, without any article text. Thus, in the second training stage of the model, we

use the first stage model as a feature extractor and train a linear bias classifier on top. The

article text serves as a type of privileged information to help guide learning.

Since recognizing the right semantic and visual concepts amidst intra-class variance re-

quires large amounts of data, we train our approach on webly supervised data: the only

labels are in the form of the political leaning of the source that the image came from. How-

ever, for testing purposes, we collect human annotations of bias (political leaning) and test

on images where annotators agreed on the label. We experimentally show that our method

outperforms numerous baselines on both a large held-out webly supervised test set, and the

set of human-annotated images.

We present many qualitative results, studying different types of bias inherent within

our dataset, including both visual and text bias. Our results show different political groups

present different subjects (incl. politicians, political groups, individuals, etc. ) in significantly

disparate ways. We also present generative results in which we explicitly model, and then

generate, faces exhibiting the disparities our method captures.

Ethical ramifications. We believe that recognizing the political bias of a photograph is

an important step towards building computer vision systems that are aware of matters of

social importance. Such awareness is necessary if we hope to use computer vision systems

to automatically tag or describe images (e.g. for the visually impaired) or to summarize

large collections of potentially biased visual content. Social media companies or search

engines may deploy such techniques to automatically identify the political bent of images

or even entire news sites being spread or linked to. Progress has already been made in

this space in domains other than images. For example, Facebook automatically determines

users’ political leanings from site activity and pages liked [239]. Other works have studied

predicting political affiliation from text [58, 376, 358] or even MRI scans [308]. However,

visual bias understanding has been greatly underexplored. While some work examines visual

persuasion [164, 149] or how political figures are portrayed in the media [280], none analyze

predicting the political leaning of general images as we do.

The goal of our work is not to enable or further discrimination or reinforce stereotypes
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about individuals or groups. Rather, our work seeks to use machine learning techniques

to reveal disparities in visual media which already exist. By raising awareness, we hope

individual consumers of media are better able to approach material they are presented with

(with a more skeptical eye) and question whether the portrayal of a subject they are seeing is

politically skewed. Our work can also be used to combat, rather than reinforce, bias. One of

many possibilities is a “balanced” image search engine, where our method is used to predict

the political bias for each image returned. Studies [258] show that search engine algorithms

may perpetuate bias. The bias score accompanying each image could be directly presented to

the user. Another possible option would be to explicitly present users with images from both

sides of the political spectrum, allowing the user to get a broader view of the subject. By

returning images from across the political spectrum and/or explicitly revealing the inherent

bias of images, we can help users be more informed consumers of visual media.

To summarize, our contributions in this chapter are as follows:

• We collect and make available3 a very large dataset of biased images with paired text,

and a large amount of diverse crowdsourced annotations regarding political bias.

• We propose a weakly supervised method for predicting the political leaning of an image

by using noisy auxiliary textual data at training time.

• We perform detailed experimental analysis of our method on both webly supervised

and human annotated data, and demonstrate the factors humans use to predict bias in

images.

5.2 APPROACH

5.2.1 Dataset

Because no dataset exists for this problem, we assemble and release4 large dataset of

images and text about contemporary politically charged topics. We got a list of “biased”

3Our dataset, code, and additional materials are available online for download here:
http://www.cs.pitt.edu/∼chris/politics

4http://www.cs.pitt.edu/∼chris/politics
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Figure 15: We asked workers to predict the political leaning of images. We show examples

here where all annotators agree, the majority agree, and where there was no consensus.

sources from mediabiasfactcheck.com which places news media on a spectrum from ex-

treme left to extreme right. We used a list of “hot topics” e.g. immigration, LGBT rights,

welfare, terrorism, the environment, etc from [276]. We crawled the media sources that were

labeled left/right or extreme left/right for images using each of these topics as queries. After

identifying images associated with each keyword and the pages they were on, we used [283]’s

method to extract articles. We obtained 1,861,336 images total and 1,559,004 articles total.

We manually removed some boilerplate text (headers, copyrights, etc.) which leaked into

some articles. However, because of the large diversity of HTML formats across the media

sources, boilerplate text could not be completely removed in all cases.

5.2.2 Data deduplication

Because sources cover the same events, some images are published multiple times. To

prevent models from “cheating” by memorization, all experiments are performed on a “dedu-

plicated” subset of our data. We extract features from a Resnet [127] model for all images.

Because computing distances between all pairs is intractable, we use [231] for approximate

kNN search (k = 200). We set a threshold on neighbors’ distances to find duplicates and

near-duplicates. We determine the threshold empirically by examining hundreds of kNN

matches to ensure all near-duplicates are detected. From each set of duplicates, we select

one image (and its associated article) to remain in our “deduplicated” dataset while exclud-

87



ing all others. If the same image appeared in both left and right media sources, we keep it on

the side where it was more common, e.g. one left source and three right sources would result

in preserving one of the image-text pairs from the right sources. After removing duplicates,

we are left with 1,079,588 unique images and paired text on which the remainder of this

chapter is based.

5.2.3 Crowdsourcing annotations

We treat the problem of predicting bias as a weakly supervised task. For training, we

assume all image-text pairs have the political leaning of the source they come from. In

Sec. 5.3.3 we show that this assumption is reasonable by leveraging human labels, though it

is certainly not correct for all images / text, e.g. a left-leaning source may publish a right-

leaning image to critique it, or a photo in a biased source may contain no bias at all (e.g. an

image of a cat). In order to better explore the viability of the weak labels, and understand

human conceptions of bias, we ran a large-scale crowdsourcing study on Amazon Mechanical

Turk (MTurk). We asked workers to guess the political leaning of images by indicating

whether the image favored the left, right, or was unclear. In total, we showed 3,237 images

to at least three workers each. We show examples of different levels of agreement in Fig. 15.

In total, 993 were labeled with a clear L/R label by at least a majority. The remaining

images were labeled as some combination of “Unclear” labels with “Left”/“Right” labels,

e.g. “UUL” or “ULR”.

We also asked our annotators what image features were used to make their guess. The

features workers could choose (and the count of each agreed upon) was: closeup-90 (closeup

of specific person’s face), known person-409 (portrays public figure in political way), multiple

people-237 (group or class of people portrayed in political way), no people-81 (scenes or ob-

jects associated with parties, e.g. windmill/left, gun/right), symbols-104 (e.g. swastika, pride

flag), non-photographic-130 (cartoons, charts, etc.), logos-77 (logo of e.g. CNN, FOX, etc.),

and text in image-267 (e.g. text on protest signs, captions, etc.). We also asked workers to

provide a free-form text explanation of their politics prediction for a small number of images.

We extracted semantic concepts from these explanations and later use them to train one of
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our baseline methods (Sec. 5.3.1). Humans often mentioned using the positive/negative por-

trayal of public figures and the gender, race and ethnicity of photo subjects. We provide

a demonstration of differences in portrayal across L/R in Sec. 5.3.4. Absent these cues,

workers used stereotypical notions of what issues the left/right discuss or their values. For

example, for images of protests or college women, annotators might guess “left”.

We next showed workers the image’s article and asked a series of questions about the

image-text pair, such as the political leaning of the pair (as opposed to image only), the

topic (e.g. terrorism, LGBT) the pair is related to, and which part of the article text is best

aligned with the image. We computed agreement scores and found that 2.45 out 3 annotators

agreed on the bias label of an image on average (including the “unclear” label), while 1.71

out of 3 agreed on topic, on average.

To ensure quality, we used validation images with obvious bias to disqualify careless

workers. We restricted our task to US workers who passed a qualification test verifying

familiarity with recent news and persons in the news, who had ≥ 98% approval rate, and

who had completed ≥1,000 HITs. In total, we collected 14,327 sets of annotations (each

containing image bias label, image-text pair bias label, topic, etc.) at a cost of $4,771. We

include a number of experimental results on this human annotated set of images in Sec. 5.3.3.

5.2.4 Relationship between weakly supervised and human annotations

In order to ensure that our weakly supervised labels are actually capturing a meaningful

signal which approximates human understandings of political bias, we perform the following

test of weak-to-human label correlation. We evaluated the impact of text on humans’ bias

predictions. To do so, we compared how humans changed their predictions (made originally

using the image only) after they saw the text paired with the image.

We found that when workers picked a L/R label, the label was strongly correlated with

the weakly supervised label. Moreover, after seeing the text, humans became even more

correct with respect to the noisy labels, switching many “unclear” predictions to the “correct”

label (i.e. the noisy label). Specifically, in Table 8, we show the number of images labeled

L/R before/after showing the worker the text paired with the image. Rows represent the
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Human Label After Seeing Image + Text

Weakly Supervised = Left Weakly Supervised = Right
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Left 67 2 13 82 28 20 6 54

Right 17 22 10 49 9 25 2 36

Unclear 95 8 207 310 37 47 121 205

SUM 179 32 230 441 74 92 129 295

Table 8: Counts of how many users labeled an image Left / Right / Unclear. Rows show the

label of the human on the image alone, while columns show the label after seeing the text.

We further divide the table into two larger columns, which represent images with a weak

label of Left / Right. Our results show the text helps annotators, and provides evidence that

our weakly supervised labels are meaningful. See text for further discussion. We shade rows

and columns corresponding to the “correct” label (with respect to the weakly supervised

label) both before and after seeing the text.

image-only label of humans, and the columns represent the label after seeing both the image

and the paired text. Any off-diagonal number represents a change in labeling between seeing

the image only and seeing the image and text. When the weakly supervised label is Left,

for example, we can see that of the 82 people who initially voted Left, 15 changed their

vote (incorrectly, i.e. diverging from the source-derived bias) after seeing the text. Of the

49 who voted Right initially, 22 kept their initial vote, 17 changed their vote to Left, while

10 changed it to Unclear. Finally, for the 310 who initially voted an image was Unclear,

95 changed their vote to Left after seeing the text, 8 changed it to Right, and a majority

kept it Unclear. When the weak label is Left, we see that while 82 initially voted left, after

seeing the text 179 voted left. When the weak label is Right, 36 agreed with the weak label

before, and 92 after seeing the text. In other words, we can conclude that after seeing the

(disambiguating) text, annotators do in fact align more with the weak label of the image,

which indicates that the weakly supervised label captures a meaningful notion of bias.
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Figure 16: We propose a two-stage approach. In stage 1, we learn visual features jointly with

paired text for bias classification. In stage 2, we remove the text dependency by training a

classifier on top of our prior model using purely visual features. We show that this approach

significantly outperforms directly training a model to predict bias. See Sec. 5.2.5 for details.

Overall, this analysis indicates that: 1) our noisy labels are a good approximation of the

true bias of the images (and thus can be used for training a method); and 2) the paired text

is useful for predicting bias (a result also later borne out by our experiments).

We hypothesize that the complementary textual domain provides a useful cue to guide the

training of our visual bias classifier. The text of the articles includes words that clearly cor-

relate with political bias, e.g. “unite”, “medicaid”, “donations”, “homosexuality”, “Putin”,

“Antifa” and “brutality” strongly correlate with left bias according to our model, while “de-

fend”, “retired”, “NRA”, “minister” and “cooperation” strongly correlate with right bias.

By factoring out these semantic concepts into the auxiliary text domain, we enable our model

to learn complementary visual cues. We use information flowing from the visual pipeline,

and fuse it with the document embedding as an auxiliary source of information. Because

we are primarily interested in visual political bias, we next remove our model’s reliance on

textual features, but keep all convolutional layers fixed. We train a linear bias classifier on

top of the first model, using it as a feature extractor. Thus, at test time, our model predicts

the bias of an image without using any text. We illustrate our method in Fig. 16.
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5.2.5 Method details

We wish to capture the implicit semantics of an image by leveraging the association

between images and text. More specifically, let

D = {xi, ai,yi}Ni=1 (12)

denote our datasetD, where xi represents image i, ai, represents the textual article associated

with the ith image, and yi represents the political leaning of the image. In the first stage of

our method, we seek the following function:

fθ (xi,Ω (ai)) = yi (13)

where Ω (.) represents transforming the article text into a latent feature space. We train

Doc2Vec [192] offline on our train set of articles to parameterize Ω. Specifically, Ω is trained

to maximize the average log probability

1

T

T∑
t=1

log p (wt|d,wt−k, . . . ,wt+k) (14)

where T is the number of words in article a (we omit the index i to simplify notation), p

represents the probability of the indicated word, wt is the learned embedding for word t of

article a, d is the learned document embedding of a (200D), and k is the window around the

word to look when training the model. We use hierarchical softmax [248] to compute p. We

train Doc2Vec on our corpus of news articles, and observe more intuitive embeddings than

from a pretrained model.

We show examples of the learned Doc2Vec space in Table 9. In the top row of the

table, we show several query words which we embed using our model. We then compute

the distance from each query word to all other learned words in our dataset’s vocabulary

and rank the words in order of increasing distance. Thus, retrieved words near the top

are more closely related to the query word in the learned space than words below. We

observe meaningful relationships within the space which are model can potentially exploit.

For example, we see for the topic “Stoneman” (a school shooting), the model has learned

that “Parkland” (another school shooting), “NRA” (the National Rifle Association which
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Charlottesville Clinton dreamers fascist FBI FOX Obama Stoneman supremacist terrorism Trump

parkland o’reilly daca fascism cia nbc trump parkland supremacists extremism obama

antifa maher immigrants racists comey cbs bush nra supremacy islamophobia bush

ferguson obama undocumented racist doj abc reagan gunman nationalist extremists duterte

dallas bush aliens nationalist irs breitbart erdogan shooter house racism erdogan

rally huckabee immigration extremist investigation cable bashar morning privilege extremist sterling

nfl merkel deportation supremacist mueller fake clinton separating dana fascism reagan

islamophobia trump illegally democrat intelligence buzzfeed duterte shootings fascist fbi corbyn

berkeley blasio deferred supremacy flynn cnn macron cbs extremist bigotry macron

spencer davis shutdown bigotry wikileaks hannity carter sheriff conspiracy immigration clinton

shootings treasury amnesty supremacists dhs outlet vice ripped racist shootings bashar

tweeted benghazi bipartisan islamophobia epa msnbc obamacare outrage evangelical russia cameron

Table 9: Word relationships learned by our trained document embedding. The top row are

query words and the words below are the nearest words in the learned space.

protested gun measures following the shooting), “gunman”, “shooter” and related words all

relate to the broader topic of school shootings and violence in general. By providing this

semantic supervision to our model, we wish to discover relevant visual cues which relate to

the broader subject matter, and which are predictive of the politics of the image.

After training, we compute Ω for a given article a by finding the embedding d that

maximizes Eq. 14. Ω thus projects each article into a space where the resulting vector

captures the overall latent context and topic of the article. We provide Ω (a) to our model’s

fusion layer for each train image. The fusion layer is a linear layer which receives concatenated

image and text features and learns to project them into a multimodal image-text embedding

space which is finally used by the classifier.

The formulation of fθ(.) described above requires that the ground-truth text be available

at test time and also does not ensure that our model is learning visual bias (i.e. the classifier

may be relying primarily on text features and ignoring the visual channel completely). To

address this problem, in the second stage of our method, we finetune fθ to directly predict

the politics of an image only, without the text, as follows:

f ′θ,θ′ (xi) = yi (15)

93



Specifically, we freeze the trained convolutional parameters of fθ and add a final linear

classifier layer to the network, whose parameters are denoted θ′. Because fθ’s convolutional

layers have already been trained jointly with text features, they have already learned to

extract visual features which complemented the text domain; we now learn to use those

features alone for bias prediction, as shown in Fig. 16.

5.2.6 Additional method for faces

We wish to explore whether the same people were shown in disparate ways across the

political spectrum. We thus began by detecting faces in our dataset using DLIB’s [174] CNN-

based face detector. Observationally, we found there is strong visual variability in the faces

that left/right-leaning sources choose for popular figures, such as Donald Trump, Barack

Obama and Hillary Clinton. We later provide quantitative and qualitative demonstrations

of this in Sec. 5.3.4.

We also seek to capture the semantics behind these differences in facial portrayals. To

do so, we leverage existing datasets containing labeled facial attributes and expressions. We

train two residual networks on the datasets of [217] and [247], and use them to predict

facial attributes and expressions for every image in our dataset. After detecting faces in our

dataset, we recognize faces of known political figures because we expect popular political

figures to recur throughout the dataset and be indicative of bias. In order to decide which

figures to recognize, we leverage the text paired with images. We ran [136]’s named entity

recognizer on our text articles and narrowed the list of detected “Person” entities to the 96

most frequent politicians (and other celebrities) to form a vocabulary of “known” faces. We

downloaded images for each face and used [309] to perform face recognition on our detected

faces.

Formally, let fe, fa, fr be our facial attribute, expression, and recognition networks,

respectively. For each image in our dataset, xi, we obtain automatically predicted attributes,

expression labels, and one-hot identity labels as follows:

{
xi, fe

(
xi
)
, fa
(
xi
)
, fr
(
xi
)}N

i=1
. (16)
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We later use these predicted facial attribute and expression features for analysis and as input

for our baseline networks for predicting the bias of faces.

In addition to “Person” entities detected by our named entity recognizer in the text, we

also examine the nationalities, religious, and political groups (NORP) entities detected by

our recognizer. As we did with person entities, we use the detected vocabulary of NORPs

and download data for each of the top 200 from Google Image Search. We train a separate

residual network [127] to perform image classification on this train set. We then use this

model to provide predictions of each concept on each image in our dataset: P (nj|xi) denotes

the probability that image xi exhibits NORP nj. We then use the probability of each

predicted concept, as a feature vector xi = [P (n1|xi), P (n2|xi), . . . , P (n|N ||xi)], where N is

our vocabulary of NORPs. We later use these predictions for analyzing how different sides

of the political spectrum portray different NORPs.

Note that we do not use demographic information to predict bias. Instead, we use it to

show that some demographic factors (e.g. certain ethnic groups) are portrayed in notably

different ways on the left and right in our crawled dataset. While we firmly believe this

result is problematic, our goal is to point out the problem so it may eventually be addressed.

5.2.7 Implementation details

All methods use the Resnet-50 [127] architecture and are initialized with a pretrained

Imagenet model. We train all models using Adam [175], with learning rate of 1.0e-4 and

minibatch size of 64 images. We use cross-entropy loss and apply class-weight balancing

to correct for slight data imbalance between L/R. We use an image size of 224x224 and

random horizontal flipping as data augmentation. We use Xavier initialization [107] for non-

pretrained layers. We use PyTorch [273] to train all image models. For our text embedding,

we use [295], with d ∈ R200×1 and train using distributed memory [192] for 20 epochs with

window size k = 20, ignoring words which appear less than 20 times.
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5.3 EXPERIMENTAL EVALUATION

In this section, we present experimental results on a number of tasks. We introduce

the baselines we compare against for politics prediction, in Section 5.3.1. In Section 5.3.2,

we present our results for predicting left/right bias on full images for a variety of methods,

and perform a detailed analysis of factors the model uses for prediction. We test on a large

held-out test set from our dataset, whose left/right labels come from the leaning of the

news source containing the image. We also perform ablations of our method using weakly

supervised labels to test the soundness of our method and experimental design for politics

prediction. After testing on weakly supervised labels, in Section 5.3.3 we test our methods

using the per-image labels provided by humans. We show results on test images for which a

majority of human annotators agreed on the bias. We also further discuss the relationship

between our weakly supervised and human labels and further analyze how humans reason

about visual bias.

Because we find humans strongly relied on identifying known public figures and how

people were portrayed in guessing the politics of an image, we then perform an analysis of

faces alone, without any context from the image, in Section 5.3.4. We first trained models

to predict the bias of faces. We show results for both well-known politicians and for faces

in general. We then analyze the differences in facial portrayals across the left/right for a

variety of facial features. We present results showing that faces are portrayed significantly

different for popular figures and ethnic groups on opposite ends of the political spectrum.

We also show the most important semantic facial features for predicting the politics of an

image.

In Section 5.3.5, we perform a similar analysis of the text paired with images, to discover

how the text itself manifests political bias. We note political figures and some ethnic groups

that appear disproportionately on one side vs. the other. Similarly, we leverage existing

techniques for discovering biased word usage in language to analyze our dataset, discovering

biased words used by each side of the political spectrum.

In Section 5.3.6, we present several results exploring the relationship between image and

text. We show the most “visually consistent” words in our dataset (i.e. the words where
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the paired image content is more consistent across images which the word was paired with).

We also show results for directly predicting the words that appeared in the article given an

image.

Finally, in Section 5.3.7, we examine the topic annotations (e.g. abortion, gun rights,

etc.) within our dataset. We also show visual consistency across topics, with some visually

grounded topics (e.g. gun rights) being more consistent in visual space than abstract topics,

illustrating the challenging semantic nature of the problem of modeling visual political bias.

5.3.1 Methods compared

For quantitative results, we show the accuracy of each method on predicting left/right

bias. Note that we apply some baselines to either full images or faces. For example, “facial

semantics” only applies to faces. Similarly, OCR is not applicable to faces detections. We

compare against the following baselines:

• Resnet [127] - A standard 50-layer classification Resnet, trained for left/right classifica-

tion.

• Curric - Our approach is a two-stage curriculum method, which first learns features

coupled with text features and then learns to predict bias without the text. We wanted

to see whether a Resnet trained in the same way would gain any benefit. We thus first

train a Resnet on our task. We then freeze the lower layers and train only the classifier

on all train features in the second stage. Optimizing over all train features at once

vs. minibatches can mitigate noisy gradients from our diverse and noisy data [266, 128].

• Joo [164] - Adaptation of Joo et al.’s method for our task. We use [164]’s dataset to train

predictors for 15 attributes and nine “intents” (qualities the photo subject is estimated to

have, e.g. trustworthiness, competence). We then use the predictions for these attributes

and intents on images from our dataset as additional features to a Resnet to predict a

left/right leaning.

• HumConc - We use the manually extracted vocabulary of bias-related concepts (e.g.

“confederate”, “African-American”) from the human-provided explanations (Sec. 5.2.3)

and download data for each from Google Image Search. We train a separate Resnet to
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predict concepts, and use it on each image in our dataset: p(cj|xi) denotes the probability

that image xi exhibits concept cj. We then use the confidence of each detected concept,

as a feature vector to predict bias.

• OCR - We use [242] to recognize free-form scene text in images. Because images contain

words not found in the default lexicon (e.g. “Manafort”), we create our own lexicon from

the 100k most common words in our articles. We use [95] for spelling correction. We

represent each recognized word as its learned word embedding, denoted w′i, weighed by

the confidence of the recognition p (w′i) as provided by the recognition model. The feature

is thus given by 1
n

∑n
i=1 p (w′i) w′i.

• Gomez [108] - Similar to our method, Gomez leverages text to guide the learning process,

without requiring text at test time. Gomez first trains a Resnet to predict the text

embedding of the article paired with the image, from the image alone. Note that in our

case, we do not predict the text embedding, but rather use it as a source of auxiliary

information. In the second stage, a classifier is trained to predict the left / right label

from features predicted by the model.

• Zhang [404] - We compute nearest neighbors for each image in visual space and formulate

the inference problem as a graph. We compute attention using the features of neighboring

images extracted from the last layer of Resnet. We leverage neighbors’ features to assist

in inferring the political label. The intuition behind using this approach as a baseline is

that images in our dataset are ambiguous, hence neighbors may make the learning task

easier.

• FacialSem - We predicted facial attributes, expressions, and identities for every face in

our dataset (see Sec. 5.2.6). We create a feature vector by appending the predicted identity

of the portrayed person to the facial attributes and expressions, resulting in the following

vector which is fused with Resnet image features: xi = [fa(a1|xi), . . . , fa(am|xi), fe(e1|xi), . . . ,

fe(en|xi), fr(p1|xi), . . . , fr(po|xi)], where fa(aj) and fe(ej) denote the confidence of at-

tribute/expression aj or ej being present in image xi. Further, fr(pk|xi) is a 1 or 0

depending on whether person identity marker pk is predicted in xi.

For reference, we also show three “upper-bound” methods which use the ground truth

text paired with the images at test time. Because these methods rely on text at test time,
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we thus consider them upper-bounds to the task of visual-only prediction.

• Text uses the document embeddings computed from the text paired with the image,

without using the image at test time.

• Words is a two stage method. We first train a model to predict words from an image

and its paired document embedding. We trained a Resnet to predict, for the 1000 most

visually consistent words (see Sec.5.3.6, which words appeared in the first two sentences

of the image’s paired article. To make the modeling task easier, we also conditioned

the model on the Doc2Vec vector of the image. Specifically, the model is trained to

predict whether each word is/is not present in the image’s article given the image and

text embedding. We then use train a second model using just the predicted words to

predict the left/right label for the image.

• Im+Text uses the text paired with the images (to compute a document embedding), in

addition to the image. It is the same as the first stage of our approach (see Fig. 16, left),

without the addition of the image classifier layer in step 2.

All methods use the same residual network architecture. For methods relying on addi-

tional features, we use the fusion architecture in Fig. 16.

5.3.2 Evaluating on weakly supervised labels

In this section, we present our experimental results for predicting the political leaning

of visual media. We first present results on full images using our weakly supervised labels.

We also show ablations of our method to test assumptions about our weakly supervised

labels and experimental design. Later, in Section 5.3.3, we will evaluate on human labels

and perform an analysis of the relationship between human labels and our weakly supervised

labels. In Section 5.3.4, we show results on face crops only.

In Table 10, we show the results of evaluating our methods on 75,148 held-out images

with weakly supervised labels. Our method performs best overall. The top two performing

methods rely on semantics discovered in the text domain (Ours and OCR). OCR is unique

in that it is able to explicitly use text information at test time, by discovering text within the

image and then using word embeddings. Ours improves over OCR by 2.6% (relative 3.8%,
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Method Resnet Curric Joo HumConc OCR Gomez Zhang Ours Text Words Im+Text

Accuracy 0.678 0.687 0.670 0.675 0.686 0.547 0.566 0.712 0.825 0.626 0.803

Table 10: Accuracy on weakly supervised labels with the best visual-only prediction method

in bold, and second-best in italics. These results are computed on full images, hence face-

specific methods are excluded.

reduction in error of 8%). The improvement of Ours over Resnet is 3.4% (relative 5%,

error reduction of 11%). This amounts to classifying an additional ∼2,555 images correctly.

We also observe that Curric performs nearly 1% better than Resnet. One reason for this

is because of the high visual diversity of our dataset. A classifier that is being trained while

the lower layers of the model continue to change (because the model keeps shifting features

because it is unable to settle on consistent patters) must continually readjust itself to the

changing features. However, by freezing the lower layers of the model, we allow the classifier

to optimize for a stationary set of visual features over the entire dataset. The classifier

is thus able to obtain a better and more stable classification, resulting in a slight gain in

performance.

We observe that Joo, which leverages features learned on an external dataset, performs

worse than Resnet (i.e. not using those features). This is likely because [164]’s data mainly

features closeups of politicians, while ours contains a much broader image range, thus the

predicted features are not useful in our setting. Further, relying on the concepts humans

identified actually slightly hurt performance compared to Resnet. This may be because of

a disconnect between humans’ preconceived notions about left/right and those required by

the dataset.

In addition, we note that Gomez performs much worse than our method, even though

both try to exploit information in the paired text domain as a source of privileged informa-

tion. We believe one reason for this is because of the many-to-many relationship of images

with topics (e.g. image of the White House can be paired with text about Trump’s children,

border control, LGBT rights, etc.). Thus, it is much harder to predict the document em-
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bedding paired with the image since the text could be about many different issues. It is

likely that the text embedding prediction model of Gomez is unable to accurately predict

an embedding, thus the model’s features are not discriminative of politics. We observe that

Zhang, which relies on nearest neighbors computed in image space, also performs poorly.

One reason for this is because our problem lies highly in semantic, rather than visual space.

Thus, visual nearest neighbors are not necessarily indicative of the politics of a particular

image. Furthermore, because of the high visual variability of our dataset, providing addi-

tional (potentially irrelevant) features for the classifier to consider at train time distracts it

from recognizing the weak signal from the query image features.

Quantitative ablations. In order to test the soundness of our method and our experi-

mental design, we performed several ablations. We first tested the importance of the second

stage of our method (right side of Fig. 16). To do so, we used Im+Text, the result of the

first stage of our method, and instead of performing stage 2, we removed the dependency

on text by zeroing out all text embedding weights in the fusion layer. We evaluated on

our weakly supervised test set and obtained 0.677, a result significantly worse than our full

method, underscoring the importance of stage 2. We next tested how the performance of

our method varied given the length of the article text. We thus trained our method with the

first k sentences of the article and obtained these results: k = 1 → 0.672, k = 2 → 0.669,

k = 5 → 0.668, k = 10 → 0.669. All choices of k tested performed worse than using the

full article (0.712). We finally examined how reliant our method was on images from a

particular media source being in our train set (i.e. to test if the model was learning non-

generalizable, source-specific features). We experimented with leaving out all training data

harvested from a few popular sources. The result was (before excluding → after exclud-

ing): Breitbart (0.607→0.566), CNN (0.873→0.866), CommonDreams (0.647→0.636), Dai-

lyCaller (0.703→0.667), DemocraticUnderground (0.713→ 0.700), NewsMax (0.685→0.628),

and TheBlaze (0.746→0.742). We observed only a slight decrease for all sources we tested,

suggesting our method is not dependent on seeing the source at train time.
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Feature/Method Resnet Curric Joo HumConc OCR Ours Text Im+Text # Ims

Closeup 0.567 0.589 0.544 0.622 0.578 0.656 0.667 0.578 90

Known Person 0.567 0.558 0.550 0.570 0.560 0.521 0.558 0.575 409

Multiple People 0.722 0.738 0.671 0.688 0.730 0.768 0.709 0.705 237

No People 0.556 0.531 0.605 0.494 0.580 0.593 0.642 0.667 81

Symbols 0.558 0.587 0.596 0.548 0.577 0.606 0.625 0.587 104

Non-Photographic 0.577 0.585 0.569 0.584 0.577 0.585 0.631 0.654 130

Logos 0.545 0.636 0.584 0.597 0.662 0.623 0.546 0.584 77

Text in Image 0.629 0.652 0.625 0.596 0.637 0.607 0.648 0.659 267

Average 0.590 0.610 0.593 0.587 0.613 0.620 0.628 0.626

Table 11: Accuracy on human consensus labels with the best visual-only prediction method

in bold, and second-best in italics. The results are computed on full images grouped into

eight categories by our human annotators.

5.3.3 Evaluating on human labels

We next tested our methods on test images which at least a majority of MTurkers labeled

as having the same bias, i.e. those that humans agreed had a particular label. We describe

this dataset in Sec. 5.2.3. Because workers also labeled images with what features of the

image they used to make their prediction, we break down each method’s performance by

feature. We show the result in Table 11. Note that in this table, we only include the

competitive methods from Table 10 for brevity; we include methods which achieve at least

65% accuracy.

Ours performs best on average across all categories and performs best (or ties) on

four out of eight categories. Categories where Ours is outperformed are reasonable: OCR

performs best or second-best when text can be relied on in the image, i.e. “logos” and “text

in image”. We note that while the overall result for OCR approaches Ours, Ours works

better on a broader set of images than OCR and is thus a more general method for predicting

visual bias. Ours is also outperformed by HumConc when humans relied on a known face

(politician, celebrity, etc.). This may be because HumConc relies on external training data
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(Sec. 5.3.1) which feature many known individuals, e.g. “rappers” and “founding fathers”.

Perhaps counterintuitively, Joo outperforms our method when the prediction depends on

scene context (“no people”), but note that some of the attributes that Joo uses do capture

the scene/background (e.g. indoor, background, national flag, etc.). Further, unlike Ours,

this method uses an external human-labeled dataset to learn features, including the scene

attributes. Curric improves upon Resnet (whose features it uses in its second stage

of training) in nearly every category and performs best or ties in two categories. This

result suggests that label noise and high visual diversity within minibatches may prevent

the classifier from converging on the best local minima for a given set of features. By fixing

the model’s layers and optimizing the classifier layer across the entire train set at once, the

classifier converges on a better solution. This technique can be applied to any method to

potentially improve their performance as well.

In terms of the “upper bound” methods, we note that Im+Text performs significantly

worse on human labels vs. weakly-supervised labels. This is likely because some words in text

point to a specific bias (e.g. abortion vs. pro-choice), which the model may be over-relying

on to predict the bias of the image. In contrast, the relationship between image features

and bias is often more ambiguous. Further, because of the noisy data collection, Im+Text

may have learned to exploit dataset-specific features (e.g. author names, header text, etc.)

for prediction, which does not actually translate into humans’ commonsense understanding

of political bias. This also explains why Im+Text does not improve upon Text alone on

average (but it does for five of eight categories).

We next test whether our assumption that all images harvested from a right- or left-

leaning source exhibit that type of bias is reasonable. Several results computed from our

ground-truth human study suggest that our web labels are a reasonable approximation of

bias. First, we observe that the relative performance of the methods across Table 10 and

11 is roughly maintained; Ours is best, followed by OCR and Curric essentially tied.

The results are also sound, e.g. when humans used text, OCR tends to do better, which

indicates the model’s concept of bias correlates with humans’. Earlier, in Table 8, we showed

that human labels agree with our weak labels more, when text information is presented to

disambiguate the image’s bias.
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Human label consensus’s effect on performance. In an additional experiment, we

explored the difference between the performance of our method on images on which the

majority of humans agreed vs. those on which humans unanimously agreed. We found that

our method worked better when humans unanimously labeled the images vs. simple majority

(gain of 4.8%). This suggests that as humans become more certain of bias, our model (trained

on noisy data) also performs better.

Detecting images with ambiguous bias. Our result in Table 8, showed that humans

become more correct with respect to our weakly supervised labels after seeing the text. Next,

we learn to predict whether a human will change their political label of the image after seeing

the text. Thus, we model whether the politics of the image is predictable without the text

(i.e. unambiguous). We use the F1 score rather than accuracy due to class imbalance. We

find that our model is fairly accurate at predicting whether images are unambiguous (0.731),

but less accurate at detecting ambiguous images (0.308), i.e. images that humans change

their label on. In other words, given an image and the text paired with the image, our model

is able to accurately able to predict when the human label of the image will not change after

humans see the text. These are likely simpler cases where the image has more apparent

political bias. However, the model performs worse at predicting when the human label of

the image will change, after seeing the text. For example, if the model suspects the image

has a right bias, but suspects the text has a left bias, it is difficult for the model to decide

whether humans will rely more on the image (unambiguous label) or the text (ambiguous

label) to make their final decision for the image. These cases are likely more semantically

complex (and therefore more difficult to model) and require one to reconsider what the image

is intended to portray in the context of the text.

Politically discriminative words. Given the strong performance of models relying on

text and the fact that workers became more confident after seeing the text, we wanted to

discover words in the text which are indicative that the image-text pair leans left or right.

We used the classifier from the Words model. In Table 12, we show words for both the

left and the right that had the highest predictive weight (i.e. the word’s appearance caused

the classifier to be more likely to predict that category). We note several interesting results:

“bob” (likely from Robert Mueller’s name) and “unite” (from the Unite The Right protest)
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Left

bob television unite views speakers irs medicaid putin

homosexuality outlets gary enforce donations doj opposition broadcast

speaks antifa adhere westminster lobby achievements networks pelosi

reactions labour venezuela supporter meeting memoir warrant outlet

brutality misleading hall sharon prominent illegal angela referring

raped absurd berkeley spoke donald qaeda karl rejected

brad quit roe intelligence candidate evan hosted comedian

Right

teresa defend hopeful survivor indicted immigration colleagues retired

theresa refuse political roger caucus nba bipartisan williams

rand nra withdraw trump minister racist ratings longtime

sexually fox joins cruz deputy unilaterally sentenced denial

dana pleaded declaring exposing victories planned ballot hannity

russians juan guests hashtag cooperation establishment chancellor network

sarah recording blaming deportation roy supporting don erdogan

Table 12: Words for both the left and the right that had the highest predictive weight (i.e. the

word’s appearance caused the classifier to be more likely to predict that category).

are among the strongest predictors of “left”, while “teresa” (likely from Teresa May) and

“immigration” strongly indicate right. Many of the words used by the model suggest topics

frequently mentioned by their respective sides, but which are not mentioned by the other

side, possibly because they are politically damaging / advantageous to one side. For example,

“irs”, “putin”, “doj”, and “antifa” are predictive of left, while “nra”, “trump”, “fox” predict

right. In sum, this result allows us to see disparities in the issues covered in left vs. right

articles, as well as the different words used by the articles which are politically discriminative.

5.3.4 Evaluating on faces

Many workers noted how politicians were portrayed in making their decision (Sec. 5.2.3).

We thus wished to analyze how well our methods could do at predicting the politics of faces
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Method Resnet Joo FacialSem Ours Im+Text

Accuracy 0.588 0.579 0.607 0.590 0.723

Table 13: For a subset of methods, we show the accuracy of predicting the politics of just

faces detected in our images and evaluate on weakly supervised labels. We show the best

visual-only prediction method in bold.

alone, in the absence of any context from the image. We thus trained models to predict the

political bias of the faces we detected in our images (see Sec. 5.2.6). We assume all detected

faces in an image have the same political bias as the image itself (e.g. a right leaning image

with 10 detected faces results in 10 individual samples all with the “right” weakly supervised

label).

Predicting the bias of all faces. We present our results in Table 13 for a subset of

the previously evaluated baselines as well as the face-specific method FacialSem which

relies on predicted facial attributes, expressions, and identity. Note that the OCR model is

inapplicable to cropped faces because those do not contain text. We observe that FacialSem

substantially improves over other baselines and achieves the strongest performance (0.607).

We also observe that Ours performs on par with (slightly better than) Resnet and Joo.

One possible reason for the lack of performance gain of our main method on faces is the

lack of context from which the model can learn. In the full image setting, our method has

a complete view of the image and the text (in stage 1) and is thus able to learn how the

concepts in the image complement the text. However, in the face setting, our model has no

visual context and is unable to learn relevant visual features to complement the shared text

embedding. We note that even though the model sees no context outside of the cropped

face, the FacialSem model is able to predict the political leaning of the face with 60.7%

accuracy, which suggests that faces are portrayed in a biased manner which the models are

capturing.

Predicting the bias of well-known vs. lesser-known faces. We next show the accuracy

106



Face Type Obama / Trump One of 96 Politicians Any NORP All Faces

Accuracy 0.830 0.820 0.670 0.590

Table 14: Accuracy of predicting the politics of different types of faces (from most well-known

to least well-known).

no beard blurry young social democrats neutral arousal happy narrow eyes

republican valence mouth slightly open smiling anger gray hair oval face chubby

jordanian haitian balkan qatari catalan pointy nose sandinista democrat

congolese arab latin serbian judeo-christian semitic iranian leftists

marine russian latin american canadian saudi arabian african american anarchists rwandan

wearing necktie high cheekbones eastern european nigerian veterans evangelical daesh syrian

israeli european armenian feminists north african ukrainian soviet protestant

Table 15: Most politically discriminative semantic features on faces in decreasing order (left

to right, top to bottom).

of predicting the bias of a media source, based on of different types of faces, in Table

14. We wanted to test whether well-known public figures are portrayed in a substantially

different way compared to lesser-known or unknown figures. We show our model’s accuracy

at predicting the politics of Obama / Trump faces (most well known), then on a much larger

set of 96 politicians we detected in text as described in Sec. 5.2.6 (less well-known), then

faces that were classified as being one of 196 nationalities, religions or groups (NORPs)

(unknown person other than a known category or nationality), and finally all faces (most

obscure / unknown). We observe our model is remarkably accurate for known political

figures and that performance decreases as the face in question becomes less well known. Our

results strongly suggest that public figures, and to a lesser extent, nationalities, religious, and

political groups, are portrayed in politically biased ways. This is sensible because content

creators may attempt to disparage or elevate political figures and groups of people who are

politically opposed or aligned to their position.
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Facial features most discriminative of politics. We next wanted to explore the relative

importance of various semantic features for predicting the politics of faces. We trained a

decision forest [100] to predict the bias indicated by a face, from concatenated predicted

facial attributes, expressions, and NORP confidence scores. We then calculated the Gini

importance [34] of each feature in the decision forest. The Gini importance, also known as

the mean decrease in impurity, is a measure of the total decrease in subtree class impurity

as a result of splitting on the feature (relative to the probability of reaching the node on

which the split occurs). Thus, features which are more discriminative of classes (in our case

left / right) have a higher mean decrease in impurity. The statistic is computed for all nodes

and features in each tree and then the average value for each feature is computed across

all decision trees in the forest. We show the most important (i.e. politically discriminative)

features according to the model below in order of decreasing Gini importance (left to right,

top to bottom) in Table 15.

We observe that two of the first three most important predicted features (the top row

of Table 15) suggest that the model may be attempting to capture the age and gender of

the faces: “no beard” is the most important feature (which may correlate to gender) and

“young” is the third most important. The fourth is “social democrats” and the ninth is

“republican” (both predicted NORP features), which suggests that the NORP model has

learned some discriminative concept of what democrats’ and republicans’ faces look like. We

also note that the “arousal” of the face (how intense the expression is) and whether the face

is portrayed as “happy” is also strongly indicative of political bias. We believe these results

are sensible in that media publishers may portray individuals or groups on their side of the

political spectrum as happier. Similarly, we note that there exist age and gender disparities

between the two major political parties, with the Democratic party (associated with the left)

featuring younger and more female members than the Republican party [73]. We believe our

models may be thus leveraging age, gender, ethnicity, etc. as cues for predicting the political

alignment of faces, much as humans indicated they did in our crowdsourcing study.

Modeling facial differences across politics. So far we have seen strong evidence that

faces are presented in substantially different ways across the political spectrum, particularly

political figures. We next seek to actually visualize the differences in how well-known individ-
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Original Reconst. Far left Far right Original Reconst. Far left Far right Original Reconst. Far left Far right

Figure 17: We modified photos to be more left/right-leaning, using a generative model

trained on our noisy data. We show the model’s “reconstruction” of each face next to the

original sample, followed by the sample transformed to the far left and right.

uals are portrayed within our dataset. To this end, we trained a generative model to modify

a given Trump/Clinton/Obama face, and make it appear as if it came from a left/right

leaning source. We use a variation of the autoencoder-based model from [340], which learns

a distribution of facial attributes and latent features on ads, not political images. We train

the model using the features from the original method on faces of Trump/Clinton/Obama

detected in our dataset. To modify an image, we condition the generator on the image’s em-

bedding and modify the distribution of attributes/expressions for the image to match that

person’s average portrayal on the left/right, following [340]’s technique. We show the results

in Fig. 17. Observe that Trump and Clinton appear angry on the far-left/right (respectively)

end of the spectrum. In contrast, all three appear happy/benevolent in sources supporting

their own party. We also observe Clinton appears younger in far-left sources. In far-right

sources, Obama appears confused or embarrassed. These results further underscore that our

weakly supervised labels are accurate enough to extract a meaningful signal.

Discovering biased features for public figures. Though our results in Table 15 have

indicated which semantic facial features are discriminative of political bias and Figure 17

visualized how those differences are expressed for several known politicians, we still have

not shown quantitatively which semantic facial attributes differ for which politicians. We

next show in Table 16 which features are different for which politicians, using a subset of all
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Facial Attributes

Barack Obama Chuck Schumer Donald Trump Hillary Clinton Mitch Mcconnell Nancy Pelosi Paul Ryan

5 o’Clock Shadow

Attractive

Bags Under Eyes

Bald

Big Lips

Big Nose

Chubby

Double Chin

Gray Hair

Heavy Makeup

High Cheekbones

Mouth Slightly Open

Mustache

Narrow Eyes

No Beard

Pointy Nose

Receding Hairline

Rosy Cheeks

Smiling

Young

Facial Expressions

Anger

Contempt

Disgust

Fear

Happy

Neutral

Sad

Surprise

Arousal

Valence

Table 16: Facial attributes and expressions which significantly differed (shown in blue) across

the left/right per politician.

features.

We predicted facial attributes and expressions for the most frequent politicians which

appeared in our dataset. We then performed a per-feature T-test to discover which attributes

and expressions are portrayed differently across the left and the right for each politician.

We highlight cells in blue whose feature differences in portrayal are significant (p ≤ 0.05)
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Facial Attributes and Expressions

African

American
Arab Asian Muslim Mexican Hispanic White

Median p-val. 0.000 0.003 0.018 0.071 0.099 0.185 0.370

Table 17: Frequently detected NORP’s facial semantic attributes and their differences in

portrayal across the left/right.

across the political spectrum. Empty cells indicate the difference across left/right was not

significant.

We observe that Obama, Trump, and Clinton have the most facial differences. We observe

a number of significant differences which were also reflected in our generation results (Figure

17). We see Hillary Clinton differs in “attractive”, “bags under eyes”, “chubby”, “double

chin”, “heavy makeup”, and numerous other attributes which suggest she is being portrayed

as older and less attractive on one side vs. the other. We observe similar attribute patterns

for Obama and Trump, with Obama and Trump likewise being portrayed differently in terms

of their age (“young”) and attractiveness (e.g. “5 o’clock Shadow”, “bags under eyes”). For

facial expressions, we see Obama, Trump, and Clinton all differ in the “anger” “happy”, and

“sad” facial attributes, as well as their facial expressions’ arousal and valence scores. As was

shown from our generation results, negative expressions (e.g. “anger”, “disgust”, etc.) are

used to portray figures from the opposite side of the spectrum, while positive expressions

(e.g. “happy”) are used for political figures on the same side. Interestingly, we also note

significant differences in both the arousal and valence scores for several politicians. Arousal

is a measure of the intensity of a given facial expression and measures whether a given face

is exciting / agitating vs. calm / soothing, while valence is a measure of the “pleasantness”

of the face [247]. Thus, our results suggest that not only are the expressions themselves

different, but the degree to which those expressions are shown is also different (i.e. through

their arousal) as well as the overall pleasantness of the face.
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Discovering biased features for NORPs. We next expand the analysis that we

performed in Table 16, to faces detected to be NORPs by our classifier described in Section

5.2.6. We predict facial attribute and expression values on each face and discover features

which significantly differ in their portrayal across left/right. We found many NORPs had

features which significantly differed. We thus show a condensed version of the table for a

subset of NORPs which were most commonly detected in our dataset. In Table 17, we show

the median p-values of the features (we found that the average p-value was too strongly

influenced by several features with large p-values). We highlight significant differences (p ≤

0.05) in bold. We see that “African American”, “Arab” and “Asian” all have median p-

values which are significant, indicating at least half of the features significantly differ across

the left and the right. We observe that the most significant differences occur with “African

American”. We note that the least significant p-value observed occurs for the “White”

category, which implies this category’s portrayal is most uniform across left/right. This

result shows that groups of people, primarily a number of minority groups, are portrayed in

significantly different ways in left vs. right media sources. While this result is to be expected

based on what we know about media bias, it does quantitatively demonstrate a problem that

needs to be tackled by media content creators, search engine designers and machine learning

researchers, and society more broadly.

5.3.5 Bias in text

In this section, we extend our analysis of political bias to the text paired with each

image, without considering the image. We observe in Table 10 that the Text model is

highly accurate at predicting bias, suggesting that the text contains a highly discriminative

signal. We thus wish to understand precisely how the text is biased, both in terms of

disparities in the frequency in which certain subject matter is discussed, as well as the choice

of words to discuss those subjects. We first consider what political figures are mentioned

disproportionately on each side of the political spectrum. We then consider the use of

language by each side known to be biased from prior research.

Public figures with disproportionate mentions in text. In Section 5.2.6, we described
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Left Right

Richard Spencer Brett Kavanaugh

Milo Yiannopoulos Justin Trudeau

Scott Pruitt Jesus Christ

Michael Flynn Nancy Pelosi

Alex Jones George Soros

Karl Marx Joe Biden

Richard Bertrand Spencer Rush Limbaugh

Moon Jae In Barack Obama

Colin Kaepernick Pope Francis

Steve Bannon Al Gore

Jared Kushner Jeremy Corbyn

Betsy Devos Bill Clinton

Adolf Hitler Ronald Reagan

Michael Cohen Chuck Schumer

Doug Jones Ron Paul

Table 18: Top-15 names across the left/right which were mentioned most on one side, relative

to the other side.

how we performed named entity recognition on our text dataset and discovered frequently

mentioned names which we then used to train a face recognition model. We also wanted to

discover what names were lopsided in their frequency of occurrence on each side of the spec-

trum. We counted the number of occurrences for each name on the left vs. the right. Because

of data imbalance between the left and the right, we normalized the number of occurrences

of a name on each side by the total number of names mentioned on that side. In Table

18, we show the names with the largest difference between sides. We observe extreme and

polarizing figures are mentioned significantly more disproportionately, e.g. Richard Spencer,
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Left

report people thing work king way very white right try revolution

say movement fascist lack fight struggle act content world system start

need march see happen comment rights know make write national society

film racist different country live support war win take regime justice

post human social pat article action violence call nationalist quality point

Right

tax end child year use law government conservative lie state liberal

migration left life illegal policy form increase abortion provide cost author

pass school free rate serve claim believe man business day terrorist

new vote aim old order prove heart individual formation church economic

come result marriage term former religious faith service far case fact

Table 19: Most disproportionately used known biased words from [290] by the left/right.

Alex Jones, Adolf Hitler are mentioned much more on the left vs. the right. In contrast

Brett Kavanaugh, Rush Limbaugh, Bill Clinton, etc. are mentioned more on the right rela-

tive to the left. We believe these results are sensible. For example, biased sources on the left

may attempt to smear the right with Richard Spencer (a neo-Nazi), Milo Yiannopoulos (an

alt-right figure), and Alex Jones (a conspiracy theorist). Discussing these figures dispropor-

tionately on one side suggests that relatively obscure public figures are being overemphasized

for potentially politically biased reasons. Similarly, the right more frequently mentions Brett

Kavanaugh (a Supreme Court justice accused of sexual misconduct) and George Soros (a

large donor to political causes on the left). In the case of Kavanaugh, the right sources were

likely trying to rally support behind his nomination to the Supreme Court. Right sources

have also frequently attacked Soros’s funding of leftist political causes with conspiracy theo-

ries [357]. Overall, Table 18 gives us a broad view of the political figures being discussed in

our dataset and reveals which figures either appeal to each party’s base or which galvanize

the readership against the other party.

Imbalanced biased word usage. [290] studies the problem of detecting bias in text. The

authors consider edits to Wikipedia made to remove biased language and develop a lexicon

of words which suggest a biased or non-neutral point of view (e.g. McMansion vs. large
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home, murder vs. kill, pro-life vs. anti-abortion, etc.). We counted the number of times

words appearing in the biased word lexicon were used by both the left and the right in our

dataset. We then show the “biased” words that are used most by one political side relative

to the other in Table 19. The most skewed words across the left/right were “report” (for

the left), most likely in connection to the Mueller Report, while “tax” is used most by the

right. On the left, we observe words which indicate potentially biased characterizations,

e.g. revolution, movement, struggle, fascist, racist, nationalist, etc. On the right, we observe

biased language about a different set of issues, e.g. lie, migration, illegal, abortion, terrorist,

etc. Collectively, our results presented in Table 18-19 reveal interesting dynamics across

biased sources from the left / right. It appears that each side of the political spectrum has

a set of “hot-button” issues which they use to either galvanize their audience for their cause

or which they use to attack the opposite side.

5.3.6 Exploring the relationship between image and text

Our method for predicting political bias leverages the text paired with articles to guide

the training of our purely visual model. We thus seek to better understand the relationship

between our images and text. We first discover and illustrate words whose visual repre-

sentation is most consistent throughout our dataset. We then further examine the Words

method (described above in Section 5.3.1), which directly predicts words from an image

and discover which words the model is able to predict best. Finally, we study whether we

can directly model the complex relationship between images and text within our dataset by

training a model to predict whether a given image-text pair is properly aligned.

Modeling word-level visual consistency. We have argued that one of the challenges of

modeling political bias in images is that the relationship between images and semantic topics

and text is highly complex. For example, an image of the White House could be paired with

an article about immigration or one about the US-Afghanistan war. Thus, unlike traditional

image captioning tasks where the text directly describes the literal content of the image, the

visual grounding of the text in the image is non-literal and consequently more challenging

for a model to grasp. However, because we are exploiting our text to guide training of our
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fox cnn gop host republican republicans donald candidate senate

clinton hillary democrats trump presidential secretary barack interview attorney

democratic president conservative obama immigration liberal committee speech campaign

election house twitter congress immigrants party leader vote bill

executive racist meeting abortion prime george paul asked white

conference debate minister press administration chief calling john washington

Table 20: Most visually consistent words in our data, in decreasing order (left to right, top

to bottom). See text for details.

models, we wished to discover the most “visually consistent” words in our dataset, that

is, words whose visual expression in the image is most consistent across different images.

Our goal is similar to [132], which seeks to model the visual concreteness of topics within

multimodal data, but our approach for quantifying visual consistency (described below) is

different given the unique nature of our dataset. To discover the most visually consistent

words in our dataset, we first performed tokenization using Spacy [136]. Then, for each word,

we created a list of images in which that word appeared in the first two sentences. Next,

again for each word, we performed k−means clustering, with k = 5, which we determined

worked well empirically. The intuition behind performing k−means in our case is that many

words may appear visually inconsistent if one simply takes the average distance between all

pairs of images for a given word, because their visual grounding could be multimodal. We

compute the visual consistency v for word w as:

vw =

∑k
j=1

∑nj
i=1‖x

j
i − cj‖2∑k

j=1 nj
(17)

where k is the number of clusters, nj is the number of images in cluster j, xji are image

features which have been assigned to cluster j by k-means and cj is the centroid of cluster j.

Equation 17 essentially measures how tightly the visual features for a given word fit the 5-

modal distribution induced by our clustering. We computed the above metric for the 10,000

most common words in our dataset.
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Republican

Figure 18: Most visually consistent words and image examples from the two tightest visual

clusters computed for each word.

We show the most visually consistent words in our dataset in Table 20. We observe that

news organizations, political groups, and candidates dominate: FOX, CNN, GOP, Repub-

lican, Donald, Clinton, Trump, Barack, etc. We observe that several political topics also

emerge as visually consistent, e.g. immigration, immigrants, abortion. We next wanted to

see what did our visually consistent images for each word actually look like. For six of our

most visually consistent words, we sampled images from the top-2 tightest visual clusters

computed for each word and present them in Figure 18. We observe that three of the top four

(FOX, CNN, host) most consistent words primarily feature images of people on newscasts.

The model has placed these images closest together in the learned space, most likely because

the images feature similar visual content. We note that the most visually similar images

are not necessarily semantically similar, as the news broadcasts are presenting a variety of

unrelated topics. The tightest clusters for the word “GOP” feature portrait shots of political

figures on the right (from top to bottom: Donald Trump, Mike Pompeo, Brett Kavanaugh,

and Ted Cruz). For the last two words (“Republican” and “Donald”), we observe that

the model has placed cartoons and illustrations closest together, in addition to clusters of

political figures.
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Word F1 score Word F1 score Word F1 score Word F1 score Word F1 score Word F1 score

trump 0.590 abortion 0.534 immigration 0.497 president 0.434 hillary 0.430 gay 0.429

donald 0.413 clinton 0.378 immigrants 0.357 supreme 0.341 obama 0.317 republican 0.309

news 0.302 fox 0.302 party 0.299 republicans 0.295 racist 0.274 presidential 0.273

democratic 0.272 media 0.263 candidate 0.259 bill 0.257 white 0.252 illegal 0.252

election 0.248 conservative 0.246 justice 0.244 democrats 0.240 campaign 0.238 senate 0.232

tuesday 0.225 speech 0.223 deal 0.222 administration 0.218 house 0.217 debate 0.216

paul 0.211 vote 0.204 foreign 0.203 political 0.200 minister 0.199 washington 0.191

thursday 0.189 conference 0.188 voters 0.187 meeting 0.186 twitter 0.183 night 0.181

cnn 0.171 prime 0.169 congress 0.168 barack 0.162 host 0.157 committee 0.157

Table 21: Per-word F1 scores of a model trained to predict whether each word is/is not

present in the image’s article given the image and text embedding. We consider a dictionary

of the top-1000 most visually consistent words and show the performance of the model on

the best-performing words below.

Predicting visually-consistent words from images. We have now discovered the

words in our dataset that have the most consistent visual expression across images. We next

wanted to see how well a model could exploit this word-level visual consistency. Note that

we previously used the predictions from this model to train a word-based politics predictor

in Table 10 (the Words model). We show the F1 score of predicting words from an image on

our test set in Table 21. We choose F1 score because multiple words can be paired with each

image. We observe that our model performs better at predicting visually consistent words

on average vs. non-consistent words. We observe numerous words which appeared in Table

20 have relatively higher F1 scores relative to other words, with all the highest scoring words

appearing in the table as being visually consistent. For example, we see “president” : 0.434,

“trump” : 0.590, “donald” : 0.413, “immigration” : 0.497, and “abortion” : 0.534. However,

we observe that the visual consistency of images associated with a single word does not

guarantee discriminativity. In other words, just because images associated with a word all

share similar visual content, does not imply that all images with that type of visual content

are exclusively associated with that particular word. For example, we observe relatively

poor performance at predicting the word “CNN” and “FOX”, even though these words
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LGBTImmigrantAntifa Brutality

Figure 19: We train a model to predict words from images. The model learns relevant

visual cues for each word, demonstrating the utility of exploiting text, even for purely visual

classification.

have visually consistent images. This is likely because the model has trouble differentiating

between many different news programs, given their similar visual content. That is, the model

may recognize a newsanchor at a desk, but then become confused as to whether the image

is from CNN, FOX, MSNBC, ABC, etc.

High-response images for visually consistent words. We next visualize what images

our model responded strongest to for various words as a way of understanding what it learned.

In Fig. 19, we show examples of images that were among the top-100 strongest predictions for

that word. We observe, for example, that the model strongly predicts “antifa” for black-clad

protesters and protesters holding banners. The model predicts “brutality” for images with

African American protesters and for police scenes. The model predicts the word “immigrant”

for images containing a border wall and Hispanic individuals, and “LGBT” for pride flags

and rainbow like banners.

5.3.7 Visual variability across political topics

Each image in our dataset is also labeled with the political topic (e.g. abortion) that the

media source was queried with when the image was scraped. We have seen initial results in

Tables 12 and 19 revealing that different subjects are mentioned disproportionately across the

left / right, suggesting that the topic of the image may be a useful cue for bias prediction.

We now seek to further explore the topic annotations on our dataset. We first present
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Topic F1 Topic F1

Abortion 0.688 ISIS 0.555

Animal Rights 0.540 LGBT 0.540

Black Lives Matter 0.426 Minimum Wage 0.504

Blue Lives Matter 0.053 Racism 0.526

Border Security 0.465 Religion 0.547

Climate Change 0.480 Terrorism 0.544

Fracking 0.455 Unemployment 0.511

Gun Control 0.627 Vaccines 0.596

Homelessness 0.527 War On Drugs 0.545

Immigration 0.578 Welfare 0.192

Average 0.534

Table 22: F1 score of predicting the political topics of an image-text pair on human annota-

tions. Note that the same image-text pair can be labeled with multiple issues.

results on predicting the political topic of an image. We then discover topics which are most

visually consistent in their portrayal across images. Finally, we present results illustrating

the difficulty of classifying images as left/right, by showing images which are closest in visual

space from each political side within each topic.

Predicting political topics from images. We trained a model to predict the weak

political topic label for each image in our training set (assuming each image exemplifies the

topic of the parent article), given the image and the document embedding of the text. To

ensure that the weakly supervised topic labels were actually capturing the real political issue

of the images (rather than dataset harvesting artifacts), we evaluated our model on our set

of human annotated data. Each image can be labeled as being related to multiple topics, so

we compute F1 score rather than accuracy. We present the results in Table 22. We find that

our model is able to predict most topics fairly accurately. For example, we observe that our

model is most accurate at predicting images of “abortion” and “gun control”. This makes

sense because images about these topics share common scenes and objects: images about
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Figure 20: Images where neighbors in visual space are most consistent in terms of their topic.

We show that some topics (e.g. gun control) have a consistent visual expression, while other

topics are less visually cohesive.

abortion often feature protest scenes or images of babies, while gun control images often

feature firearms. We find our model performs worst at predicting “blue lives matter”. This

is likely more an artifact of our annotations since few annotators picked “blue lives matter”

and instead picked the more well-known “black lives matter.”

Visually consistent topics. We next analyze which topics had the most consistent purely

visual expression i.e. without considering the text. We computed the 20 nearest neighbors

in visual space for several hundred randomly chosen images from our dataset. We then

computed the entropy of the topic distribution of the retrieved neighboring images and sorted

the results in order of increasing entropy. We show the result in Figure 20, with the first row

showing the query image and the next three rows showing the top-3 closest images to the

query in visual space. We see the left two columns all feature feature firearms. The retrieved

neighbors in the first two columns are extremely consistent in their topic annotations and are

almost all labeled “gun control”. The third column also features military / law enforcement

holding firearms, but are much more diffuse in terms of the neighbors’ topics (e.g. ISIS,

foreign policy, terrorism, etc.). The queries and their neighbors to the right are even more
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diffuse in terms of topics, e.g. the protest images (second to last column) all feature protests

(or political rallies), but are about a number of disparate topics from welfare to immigration,

even though they are close in visual space. Thus, predicting the political topic of an image

is complex in that it requires not only recognizing the objects and scene type of an image

(e.g. protest), but actually reasoning how the objects and individuals relate in more nuanced

ways.

5.4 DISCUSSION

In this chapter, we introduced the problem of modeling a multimodal latent visual con-

cept: political bias. We assembled a large dataset of biased images and paired articles

and presented a weakly supervised approach for inferring the political bias of images. Our

method leverages the image’s paired text to guide the model’s training process towards rele-

vant visual semantics in a way which ultimately improves bias classification. Specifically, our

method leverages a form of guided training, externally injected semantics, and multi-stage

training to facilitate learning a high-level latent visual concept. We demonstrate the contri-

bution of our method and dataset both quantitatively and qualitatively, including on a large

crowdsourced dataset. We provide numerous qualitative examples illustrating the types of

bias found in our dataset, including a generative result which transforms faces across the

political spectrum. We performed a detailed experimental analysis demonstrating how bias

in the media is expressed both visually and textually. Collectively, our results demonstrate

that political bias is exhibited not just in text, but visually as well. We show that by exploit-

ing unique aspects of the image-text relationship, the text domain can guide purely visual

classifiers in order to improve visual inference (H2). This method works by exploiting the

relationship between image and text in real-world media (H3). Our analysis reveals major

differences in terms of visual portrayals of objects in communicative multimedia compared

to conventional image datasets, further confirming our first hypothesis (H1).

Our work in this chapter has several important broader contributions to society. First,

we believe studying and recognizing visual bias in images is an important step in building
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socially-informed machine learning systems. By recognizing how data is biased, researchers

can actively work to combat biased portrayals learned by their models. Further, by automat-

ically recognizing biased depictions, we can actively combat bias within the media. Our work

can be used to expose and make users aware of discrimination and stereotypical portrayals of

individuals or groups. For example, one possible solution is to automatically flag content for

users so that they can become more informed that the perspective they are being presented

with is non-neutral. Similarly, our work can be used to quantify not only that media sources

(through the images they publish) are biased, but the types of bias that each media sources

tend to purvey. Our work thus has implications for social media companies which may seek

to prevent the spread of discriminatory content on their platforms. By revealing bias within

content presented to users, we ultimately hope to help both users and publishers become

more informed consumers of visual media.

The two subsequent chapters make further contributions in modeling abstract seman-

tic concepts in real-world multimedia. However, unlike our work in this chapter (and the

previous chapters), the methods presented therein are task-agnostic, in that they seek to

capture high-level semantics in feature representations irrespective of any particular appli-

cation (e.g. photographic style or political bias modeling). Thus, the following two chapters

build upon the problem-specific intuitions developed in this chapter in order to advance

general-purpose methods for modeling abstract semantics in real-world multimedia.
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6.0 LEARNING SEMANTICALLY ROBUST EMBEDDINGS IN

MULTIMEDIA THROUGH CROSS-MODAL COMPLEMENTARITY

PRESERVING CONSTRAINTS

Summary. In this chapter, we present a method for learning general-purpose representa-

tions of abstract semantics in communicative multimedia.1 The abundance of multimedia

(e.g. social media posts with text and images) have inspired interest in methods for learning

joint representations where semantic concepts and their relationships from each modality are

captured within a learned space. However, most prior methods have focused on the case where

image and text convey redundant information; in contrast, real-world image-text pairs con-

vey complementary information with little communicative overlap. Popular approaches to for

learning shared semantic spaces rely on a variety of metric learning losses, which prescribe

what the proximity of image and text should be, in the learned space. However, images in

communicative multimedia such as news articles portray topics in a visually diverse fashion;

thus, we need to take special care to ensure a meaningful image representation. We propose

novel within-modality losses which ensure that not only are paired images and texts close,

but the expected image-image and text-text relationships are also observed. Specifically, our

method encourages semantic coherency in both the text and image subspaces, and improves

the results of cross-modal retrieval in three challenging scenarios.

6.1 INTRODUCTION

All of our prior work in this dissertation has focused on modeling particular types of

abstract, latent visual concepts. Specifically, in Chapter 3, we studied the problem of mod-

eling photographic style. Then, in Chapter 4, we modeled visual persuasion in image ads

and learned facial differences across ad types. Next, in Chapter 5 we presented a method for

1The work presented in this chapter was published in our ECCV 2020 paper, “Preserving Semantic
Neighborhoods for Robust Cross-modal Retrieval” [342].
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almost everything they feared, 

but while they rally across the 

United States on May Day, 

their focus is less on huge 

turnout Tuesday…
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on without putting up 

a fight… 
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made over the last decade when it 
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and transgender rights.

Figure 21: Image-text pairs from COCO [211] and Politics [341]. Traditional image captions

(top) are descriptive of the image, while we focus on the more challenging problem of aligning

images and text with a non-literal complementary relationship (bottom).

modeling a multimodal semantic concept, political bias, in multimedia news articles. Our

work in this (and the following) chapter differs from all our previous work in that rather than

study a particular abstract task, we propose methods for learning task-agnostic multimodal

semantic representations. By task-agnostic we mean that rather than carefully tuning an

approach for a particular problem, we instead propose methods which attempt to learn rep-

resentations of images and text which capture nuanced semantic concepts in the absence of

any target application (e.g. predicting political bias). We desire our methods to learn which

semantics to preserve in a purely-data driven manner (i.e. automatically from the dataset

without human intervention or guidance). To do so, the method in this chapter as well as

in Chapter 7 exploit the idiosyncratic relationships between image and text uniquely found

in communicative multimedia in different ways.

Vision-language tasks such as image captioning [394, 8, 226] and cross-modal generation

and retrieval [293, 402, 411] have seen increased interest in recent years. At the core of

methods in this space are techniques to bring together images and their corresponding pieces

of text. However, most existing cross-modal retrieval methods only work on data where the

two modalities (images and text) are well aligned, and provide fairly redundant information.
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As shown in Fig. 21, captioning datasets such as COCO contain samples where the overlap

between images and text is significant (both image and text mention or show the same

objects). In contrast, real-world news articles contain image and text pairs that cover the

same topic, but show complementary information (protest signs vs information about the

specific event; guns vs discussion of rights; rainbow flag vs LGBT rights). While a human

viewer can still guess which images go with which text, the alignment between image and

text is abstract and symbolic. Thus, in captioning, cross-modal retrieval means finding the

manifestation of a single concept in two modalities (e.g. learning embeddings such that the

word “banana” and the pixels for “banana” project closeby in a learned space). In cross-

modal retrieval on news articles, images are ambiguous in isolation (see Fig. 22), so we must

first resolve any ambiguities in the image, and figure out “what it means”.

We propose a metric learning approach where we use the semantic relationships between

text segments, to guide the embedding learned for corresponding images. Our approach

grounds the representation of the image in the meaning of corresponding text. In other

words, to understand what an image shows, we have to look at what articles it appeared

with. Unlike prior approaches, we wish to capture this information not only across modalities,

but within the image modality itself, through new within-modality losses.

If texts yi and yj are semantically similar, we learn an embedding where we explicitly

encourage their paired images xi and xj to be similar, using an additional unimodal loss.

Note that in general xi and xj need not be similar in the original visual space. We show

this in Fig. 22 where an image might be chosen to illustrate multiple related texts (shown in

green), and each text in turn could be illustrated with multiple visually distant images (e.g.

the four images on the right-hand side could appear with the border wall text). In addition,

we encourage texts yi and yj, who were close in the unimodal space, to remain close.

Our novel loss formulation explicitly encourages within-modality semantic coherence.

Fig. 23 shows the effect. On the left, we show the proximity of samples before cross-modal

learning; specifically, while two texts are close in the document space, their paired articles

may be far from the texts. In the middle, we show the effect of using a standard triplet loss,

which pulls image-text pairs close, but does not necessarily preserve the similarity of related

articles; they are now further than they used to be in the original space. In contrast, on the
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Court on 

Friday ruled 
that same-sex 
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Figure 22: The image on the left symbolizes justice and may be paired with text about a

variety of subjects (e.g. abortion, same sex marriage). Similarly, the text regarding immigra-

tion may be paired with visually dissimilar images. Our approach enforces that semantically

similar content (e.g. images on right) is close in the learned space. To discover such content,

we use semantic neighbors of the text and their paired images.

right, we show how our method brings paired images and text closer, while also preserving

a semantically coherent region, i.e. the texts remained close.

In our approach, we use neighborhoods in the original text document space, to compute

semantic proximity. We also experiment with an alternative approach where we compute

neighborhoods using the visual space, then guide the corresponding texts to be close. This

approach is a variant of ours, and is novel in the sense that it uses proximity in one unimodal

space, to guide the other space/modality. While unimodal losses based on visual similarity

are helpful over a standard cross-modal loss (e.g. triplet loss), our main approach is superior.

Next, we compare to a method [364] which utilizes the set of text annotations available

for an image in COCO, to perform more robust captioning. We show that when these ground-

truth annotations are available, using them to compute neighborhoods in the textual space

is the most reliable. However, on many datasets, such sets of annotations (more than one

for the same image) are not available. We show that our approach offers a comparable

alternative.

Finally, we test our approach using PVSE [328], a state-of-the-art visual semantic em-

bedding model. We show that our proposed loss further improves the performance of this
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Figure 23: We show how our method enforces cross-modal semantic coherence. Circles

represent text and squares images. In (a), we show the untrained cross-modal space. Note

yi and yj are neighbors in Doc2Vec space and thus semantically similar. (b) shows the space

after triplet loss training. yi and xi, and yj and xj, are now close as desired, but yi and

yj have moved apart and xi and xj remain distant. (c) shows our loss’s effect. Now, all

semantic neighbors (both images and text) are pulled closer.

model.

To summarize, our contributions are as follows.

• We preserve relationships in the original semantic space. Because images do not clearly

capture semantics, we explicitly use the semantic space to guide the image representation

through a unimodal (within-modality) loss.

• We perform detailed experimental analysis of our proposed loss function, including ab-

lations, on four recent large-scale image-text datasets. One [27] contains multimodal

articles from New York Times, and another contains articles from far-left/right media

[341]. We also conduct experiments on [316, 211]. Our approach significantly improves

the state-of-the-art in most cases.

• We tackle a new cross-modal retrieval problem where the visual space is much less con-

crete. This scenario is quite practical, and has applications ranging from automatic

caption generation for news images, to detection of fake multimodal articles (i.e. detect-

ing whether an image supports the text).
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6.2 METHOD

Consider two image-text pairs, {xi, yi} and {xj, yj}. To ground the “meaning” of the

images, we use proximity in a generic, pre-trained textual space between the texts yi and yj. If

yi and yj are semantically close, we expect that they will also be relatively close in the learned

space, and further, that xi and xj will be close also. We observed that, while intuitive, this

expectation does not actually hold in the learned cross-modal space. No part of the common

cross-modal losses enforces such “pull” within modalities, so the embeddings for semantically

related images may be pulled in different directions. The problem becomes more severe when

image and paired text do not exhibit literal alignment, as shown in Fig. 21, because images

paired via text neighbors could be visually different, as is the case with news articles with

more lengthy text, social media posts, or in artistic media such as posters with slogans.

For example, an image of the U.S. border wall may be paired with text about immigration,

while another image also about immigration shows an immigrant child at the border. Thus,

even though the two images are fundamentally semantically related to immigration, their

embeddings will only be brought close if their paired texts are close in the learned space. Our

proposed method augments standard metric learning losses to preserve intra-modal semantic

similarity. A graphical illustration of how our approach differs from standard metric learning

losses is shown in Fig. 24. First, we provide the problem formulation, describe how several

common existing loss functions tackle the problem, and discuss their limitations. Second, to

address this issue, we propose two constraints which pull within-modality semantic neighbors

close to each other within the manifold.

6.2.1 Problem formulation and existing approaches

We assume a dataset D = {I,T} of n image-text pairs, where I = {x1, x2, . . . , xn} and

T = {y1, y2, . . . , yn} denote the set of paired images and text, respectively. By pairs, we mean

yi is text related to or co-occurs with image xi. Let fI denote a convolutional neural network

which projects images into the joint space and fT a recurrent network which projects text.

For brevity, in the remainder of this chapter, we use the notational shorthand fT (y) = y and
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Figure 24: (a): Ltext and Limg pull semantic neighbors of the same modality closer. Note

the images are visually distinct, but semantically similar. (b): Pull connections are shown

in green, and push in red. Ltrip and Lang operate cross-modally, but impose no within-

modality constraints. Lours exploits the paired nature of the data to enforce that the expected

inter/intra-modal relationships are observed.

fI (x) = x. The goal training both fI and fT is to learn a cross-modal manifold M where

semantically similar samples are close. At inference time, we wish to retrieve a ground-truth

paired text given an input image, or vice versa.

One common technique for training for this objective has been the triplet loss [309].

It posits that paired samples should be closer to one another than they are to non-paired

samples in the metric space. Let T =
(
xai , y

p
i , y

n
j

)
denote a triplet of samples consisting of an

anchor (a), positive (p), and negative (n). Specifically, the image xai ∈ I and text ypi ∈ T are

paired samples, while the negative ynj ∈ T is chosen randomly such that i 6= j. The triplet

loss Ltrip is:

Ltrip (T ) =
[
‖xai − y

p
i ‖2

2 − ‖xai − ynj ‖2
2 +m

]
+
. (18)

This loss is perhaps the most common one used in cross-modal retrieval tasks. However,

consider the gradient of the triplet wrt. the anchor in Eq. 18. It can be easily seen that

∂Ltrip
∂xai

= 2
(
ynj − y

p
i

)
. Thus, the gradient only depends on the other two components, but not

their overall relationship. This is true for all three components of the loss, and allows for

degenerate cases where the anchor and positive become further apart in order to increase

the distance between positive and negative. Thus, angular loss Lang [363] adds a third-order
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constraint which accounts for the angular relationship of all three points to the negative

point:

Lang (T ) =
[
‖xai − y

p
i ‖2

2 − 4 tan2 α‖ynj − Ci‖2
2

]
+
, (19)

where Ci = (xai + ypi ) /2 is the center of a circle around anchor and positive.

One challenging aspect of these losses is choosing a good negative term in the triplet.

If the negative is chosen to be too far from the anchor, the loss becomes 0 and no learning

occurs. In contrast, if negatives are chosen too close, the model may have difficulty converging

to a reasonable solution as it continuously tries to move samples to avoid overlap with the

negatives. How to best sample triplets to avoid these issues is an active area of research [77].

One recent technique, the N-pairs loss [326], proposes that instead of a single negative sample

being used, all negatives within the minibatch of triplets used to train the model should be

used. The N-pairs loss, denoted LNPang, thus pushes the anchor and positive embedding away

from multiple negatives simultaneously:

LNPang (T ) =
∑

∀yn∈minibatch

Lang
(
xai , y

p
i , y

n
j

)
. (20)

The symmetric constraint [417] can also be added to explicitly account for bidirectional

retrieval, i.e. text-to-image, by swapping the role of images and text to form symmetric

triplets Tsym = (yai , x
p
i , x

n
i ):

LNP+SYM
ang (T , Tsym) = LNPang (T ) + LNPang (Tsym) . (21)

Limitations. While these loss functions have been used for cross-modal retrieval, they do

not take advantage of several unique aspects of the multi-modal setting. Only the thick/solid

pull/push connections in the bottom of Fig. 24 (right) are part of a triplet/angular loss

application. The thinner, dashed connections are intuitive, but only enforced in our novel

formulation. We argue the lack of explicit within-modality constraints allows discontinuities

within the space for semantically related content from the same modality.
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6.2.2 Our proposed loss

The text domain provides a semantic fingerprint for the image-text pair, since vastly

dissimilar visual content may still be semantically related (e.g. image of White house, image

of protest), while similar visual content (e.g. crowd in church, crowd at mall) could be

semantically unrelated. We thus use the text domain to constrain within-modality semantic

locality for both images and text.

To measure ground-truth semantic similarity, we pretrain a Doc2Vec [192] model Ω on

the train set of text. Specifically, let T denote the number of words in article yi, p(·) be

the probability of the given word, wt represent the embedding learned for word t of article

yi, d be the document embedding of yi, and k denote the look-around window. Ω learns

word embeddings and document embeddings which maximize the average log probability:

1
T

∑T
t=1 log p (wt|d, wt−k, . . . , wt+k). After training Ω, we use iterative backpropagation to

compute the document embedding which maximizes the log probability for every article in

the dataset: Ω(T) = {Ω (y1) , . . . ,Ω (yn)}.

Because Doc2Vec has been shown to capture latent topics within text documents well

[257], we seek to enforce that locality originally captured in Ω(T)’s space also be preserved

in the cross-modal space M. Let

Ψ (Ω(yi)) = 〈xi′ , yi′〉 (22)

denote a nearest neighbor function over Ω(T), where 〈·, ·〉 is an image-text pair in the train

set randomly sampled from the k = 200 nearest neighbors to yi, and i 6= i′. Ψ (Ω(yi)) thus

returns an image-text pair semantically related to yi.

We formulate two loss functions to enforce within-modality semantic locality inM. The

first, Ltext, enforces locality of the text’s projections:

T ′text =
(
yai , y

p
i′ , y

n
j

)
,

Ltext (T ′text) = Lang (T ′text) ,

Lang (T ′text) =
[
‖yai − y

p
i′‖

2
2 − 4 tan2 α‖ynj − Ci‖2

2

]
+
,

(23)
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where ynj is the negative sample chosen randomly such that i 6= j and Ci = (yai + ypi ) /2.

Ltext is the most straightforward transfer of semantics from Ω(T)’s space to the joint space,

as it seeks to preserve nearest neighbors in Ω remain close in M.

Ltext also indirectly causes semantically related images to move closer in M as their

associated text embeddings move closer. See Fig. 24 (right). This serves as a weak constraint

on image semantic locality in M, i.e. there is now a weak connection between xi and x′i

through the now-connected yi and y′i. To directly ensure smoothness and semantic coherence

between xi and x′i, we propose a second constraint, Limg:

T ′img =
(
xai , x

p
i′ , x

n
j

)
,

Limg
(
T ′img

)
= Lang

(
T ′img

)
,

Lang
(
T ′img

)
=
[
‖xai − x

p
i′‖

2
2 − 4 tan2 α‖xnj − Ci‖2

2

]
+
,

(24)

where xnj is the randomly chosen negative sample such that i 6= j and Ci = (xai + xpi ) /2.

Note that xi and xi′ are often not going to be neighbors in the original visual space. We

use N-pairs over all terms to maximize discriminativity, and symmetric loss to ensure robust

bidirectional retrieval:

LOURSang

(
T , Tsym, T ′text, T ′img

)
= (25)

LNP+SYM
ang (T , Tsym) + αLNPtext (T ′text) + βLNPimg

(
T ′img

)
,

where α and β are hyperparameters controlling the relative importance of the text/image

semantic constraints.

Second variant. We also experiment with a variant of our method where the nearest

neighbor function in Eq. 22 (computed in Doc2Vec space) is replaced with one that computes

nearest neighbors in the space of visual (e.g. ResNet) features. Now xi, xi′ are neighbors

in the original visual space before cross-modal training, and yi, yi′ are their paired articles

(which may not be neighbors in the original Doc2Vec space). We denote this method as

Ours (Img NNs) in Table 23, and show that while it helps over a simple triplet- or angular-

based baseline, it is inferior to our main method variant described above.

Discussion. At a low level, our method combines three angular losses. However, note that

our losses in Eq. 23 and Eq. 24 do not exist in the prior literature. While [364] leverages
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ground-truth neighbors (sets of neighbors provided together for the same image sample in

a dataset), we are not aware of prior work that estimates neighbors. Importantly, we are

not aware of prior work that uses the text space to construct a loss over the image space, as

Eq. 24 does. We show that the choice of space in which semantic coherency is computed is

important; doing this in the original textual space is superior than using the original image

space. We show the contribution of both of these losses in our experiments.

6.2.3 Implementation details

All methods use a two-stream architecture, with the image stream using a Resnet-50 [127]

architecture initialized with ImageNet features, and the text stream using Gated Recurrent

Units [52] with hidden state size 512. We use an image size of 224x224 and random horizontal

flipping and initialize all non-pretrained learnable weights via Xavier initialization [107]. All

text models are initialized with word embeddings of size 200 learned on the dataset on which

they are applied. We apply a linear transformation to each model’s output features (R2048×256

for image and R512×256 for text) to get the final embedding. We perform L2 normalization on

embeddings produced by each model. We train all models using Adam [175] with minibatch

size of 64, learning rate 1.0e-4, and weight decay 1e-5. We decay the learning rate by a

factor of 0.1 after every 5 epochs of no decrease in validation loss. We use a train-val-test

split of 80-10-10 for all datasets. For Doc2Vec, we use [295], with d ∈ R200 and train using

distributed memory [192] for 20 epochs with window k = 20, ignoring words that appear

less than 20 times. We use hierarchical softmax [248] to compute p. To efficiently compute

approximate nearest neighbors for Ψ, we use [231]; our method adds negligible computational

overhead as neighbors are computed prior to training. We determined the values for α and

β empirically on a held-out val. set; we perform grid search in the range {0.1, 0.2, 0.3} for

each hyperparameter.
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6.3 EXPERIMENTAL EVALUATION

In this section, we evaluate our method as well as four baselines on four recent large-

scale public datasets. Our quantitative results consistently demonstrate the superiority of

our proposed approach at bidirectional retrieval. We also show that indeed our method better

preserves within-modality semantic locality by keeping neighboring images and text closer

within the joint space. We show example images and text for which our method preserves se-

mantic locality the most compared with the baseline. Finally, we present cross-view retrieval

results showing the images/text retrieved by several methods for given words/images.

6.3.1 Datasets

We evaluate our methods on four large-scale image-text datasets. Two feature especially

challenging and indirect relationships between image and text, compared to what is typically

seen in standard image captioning datasets:

• Politics [341] (Chapter 5) consists of images paired with news articles. In Chapter 5,

because we were primarily interested in purely visual predictions, we did not perform

deduplication of the text domain (we did deduplicate within the image domain). How-

ever, in this and the subsequent chapter, we are interested in both visual and textual

learning. We identified that in some cases, multiple images were paired with boilerplate

text (website headliner, privacy policy text) due to failed data scraping. We thus also

removed duplicates in text space using MinHash [35]. We were left with 246,131 unique

image-text pairs. Because the articles are lengthy, we only use the first two sentences of

each, which had the highest overlap with a set of sparse human annotations that indicate

which piece of the text is most relevant to the image.

• GoodNews [27] consists of ∼466k images paired with their captions. All data was

harvested from the New York Times. Captions often feature abstract or indirect text in

order to relate the image to the article it appeared with. The method in [27] takes image

and text as input, hence cannot serve as a baseline.

Both of the above datasets exhibit much longer text paired with images, compared to tra-
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ditional image captions. For example, the average length of text paired with an image on

COCO is 11 words, while the average in GoodNews is 18 words and the average in Politics

is 59 words.

We also test on two large-scale standard image captioning datasets, where the relationship

between image and text is typically more direct:

• COCO [211] is a large dataset containing numerous annotations, such as objects, seg-

mentations, and captions. The dataset contains ∼120k images with captions. Unlike

our other datasets, COCO contains more than one caption per image, with each image

paired with four to seven captions.

• Conceptual Captions [316] is composed of ∼3.3M image-text pairs. The text comes

from automatically cleaned alt-text descriptions paired with images harvested from the

internet and has been found to represent a much wider variety of style and content

compared to COCO [316].

6.3.2 Baselines

We compare our approach with N-Pairs Symmetric Angular Loss (Ang+NP+Sym, a

combination of [363, 326, 417], trained with LNP+SYM
ang ). For a subset of results, we also

replace the angular loss with a weaker but more common loss, namely triplet, resulting in N-

Pairs Symmetric Triplet Loss (Trip+NP+Sym). We show the result of choosing to enforce

coherency within the image and text modalities by using images rather than text; this is the

second variant of our method we described earlier. This method is denoted as Ours (Img

NNs).

We also compare our approach against the deep structure preserving loss [364] (Struc),

which enforces that captions paired with the same image are closer to each other than to

non-paired captions. Because this approach requires multiple captions per image, we only

show results for COCO.

Finally, we show how our approach can improve the performance of a state-of-the-art

cross-modal retrieval model. PVSE [328] uses both images and text to compute a self-

attention residual before producing embeddings. We include results for training this model
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Img-Text Non-Literal Img-Text Literal

Politics [341] GoodNews [27] ConcCap [316] COCO [211]

Method I→T T→I I→T T→I I→T T→I I→T T→I

Ang+NP+Sym 0.6270 0.6216 0.8704 0.8728 0.7687 0.7695 0.6976 0.6964

Ours (Img NNs) 0.6370 0.6378 0.8840 0.8852 0.7636 0.7666 0.6819 0.6876

Ours 0.6467 0.6492 0.8849 0.8865 0.7760 0.7835 0.6900 0.6885

PVSE 0.6246 0.6199 0.8724 0.8709 0.7746 0.7809 0.6878 0.6892

PVSE+Ours 0.6264 0.6314 0.8867 0.8864 0.7865 0.7924 0.6932 0.6925

Trip+NP+Sym 0.4742 0.4801 0.7203 0.7216 0.5413 0.5332 0.4957 0.4746

Ours (Trip) 0.4940 0.4877 0.7390 0.7378 0.5386 0.5394 0.4790 0.4611

Table 23: We show retrieval results for image to text (I→T) and text to image (T→I) on

all datasets. The best method per group is shown in bold.

both with and without our constraints.

6.3.3 Quantitative results

We first present results demonstrating our method’s performance at cross-modality re-

trieval. To do so, we compute the embeddings of every image and text in our test set. We

formulate a cross-modal retrieval task such that given a query image or text, the embedding

of the paired image/text from the target modality must be closer to the query embedding

than non-paired data (also of the target modality). We sample random (non-paired) samples

(of the target modality) from the test set, along with the ground-truth paired sample. We

then compute Recall@1 within each task: that is, whether the ground truth paired sample

is closer to its cross-modal embedding than the non-paired embeddings. For our most chal-

lenging datasets (GoodNews and Politics), we use a 5-way task. For COCO and Conceptual

Captions, we found this task to be too simple and that all methods easily achieved very

high performance due to the literal image-text relationship. Because we wish to distinguish
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meaningful performance differences between methods, we used a 20-way task for Conceptual

Captions and a 100-way task for COCO2. We report our result in Table 23.

The first and second group of results in Table 23 all use angular loss, while the third

set use triplet loss. We observe that our method significantly outperforms all baselines

tested for both directions of cross-modal retrieval for three of the four datasets. Our method

achieves a 2% boost in accuracy (on average across both retrieval tasks) vs. the strongest

baseline on GoodNews, and a 4% boost on Politics. We also observe that the recall is much

worse for all tasks on the Politics dataset when compared to the GoodNews dataset, likely

because the images and article text are much less well-aligned. Our method outperforms

all baselines on ConcCap also, but not on COCO, since COCO is certainly the easiest of

these datasets, with the most literal image-text alignment. Importantly, we also see that

while the variant of our method using neighborhoods computed in image space (Ours Img

NNs) does outperform Ang+NP+Sym, it is weaker than our main method variant (Ours).

Overall, we conclude that our approach of enforcing within-modality semantic neighborhoods

substantially improves cross-view retrieval performance, particularly when the relationship

between image and text is complementary, rather than redundant.

We also observe that when adding our loss on top of the PVSE model [328], accuracy of

retrieval improves. In other words, our loss is complementary to advancements accomplished

by network model-based techniques such as attention.

In Table 24, we show a result comparing our method to Deep Structure Preserving

Loss [364]. Since this method requires a set of annotations (captions) for an image, i.e. it

requires ground-truth neighbor relations for texts, we can only apply it on COCO. In the first

column, we show our method. In the second, we show [364] using ground-truth neighbors.

Next, we show using [364] but with estimated neighbors, as in our method. We see that

as expected, using estimated rather than GT text neighbors reduced performance (third

vs. second cols). When estimated neighbors are used in [364]’s structural constraint, our

method performs better. Interestingly, we observe using image neighbors in the structural

constraint outperforms text neighbors. This may be because the structural constraint, which

2Task complexities were chosen before our method’s results were computed based on the baseline’s per-
formance.
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Ours (Trip) Struc (GT) Struc (Text NN) Struc (Img. NNΩ)

COCO
I→T 0.4790 0.4817 0.4635 0.4752

T→I 0.4611 0.4867 0.4594 0.4604

Table 24: We show retrieval results for image to text (I→T) and text to image (T→I) on

COCO using [364]’s loss vs. ours. GT requires multiple Ground Truth captions per image,

while NN uses Nearest Neighbors. The best method per row is shown in bold, while the

best method which does not require a set of neighboring text is underlined.

requires the group of neighbors to be closer together than to others, is too strict for estimated

text neighbors. That is, the constraint may require the text embeddings to lose useful

discriminativity to be closer to neighboring text. In contrast, image neighbors are likely to

be much more visually similar in COCO than in GoodNews or Politics (as they will contain

the same objects). Note that in Table 23 image neighbors are computed in visual space,

whereas here they are in semantic space (i.e. through neighboring text via Ω).

We next test how well each method preserves the semantic neighborhood given by Ω,

i.e. Doc2Vec space. We begin by computing the embeddings in M (cross-modal space)

for all test samples. For each such sample si (either image or text), we compute ΨM (si),

that is, we retrieve the neighbors (of the same modality as si) in M. We next retrieve

the neighbors of si in Ω, ΨΩ (si), described in Sec. 6.2.2. For each sample, we compute

|ΨM (si) ∩ ΨΩ (si)| / |ΨΩ (si)|, i.e. the percentage of the nearest neighbors of the sample in

M which are also its neighbors in Ω. We consider the 200 nearest neighbors. That is, we

measure how well each method preserves within-modality semantic locality by measuring

the number of neighbors in Doc2Vec space which remain neighbors in the learned space.

We report the result for competitive baselines in Table 25. We find that our constraints

are, indeed, preserving within-modality semantic locality, as sample proximity in Ω is more

preserved in M with our approach than without it, i.e. we better reconstruct the semantic

neighborhood of Ω in M. We believe this allows our model to ultimately perform better at
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GoodNews [27] Politics [341]

Method I T I T

Trip+NP+Sym 0.1183 0.1294 0.1135 0.1311

Ours (Trip) 0.1327 0.1426 0.1319 0.1483

Ang+NP+Sym 0.1032 0.1131 0.1199 0.1544

Ours (Ang) 0.1270 0.1376 0.1386 0.1703

Table 25: We test how well each method preserves the semantic neighborhood (see text) of

Ω in M. Higher values are better. Best method is shown in bold.

cross-modal retrieval.

We finally test the contribution of each component of our proposed loss. We test two

variants of our method, where we remove either Ltext or Limg. We present our results in

Table 26. In every case, combining our losses for our full method performs even better,

suggesting that each loss plays a complementary role in enforcing semantic locality for its

target modality.

6.3.4 Qualitative results

In this section, we present qualitative results illustrating how our constraints both im-

prove semantic proximity and demonstrate superior retrieval results.

Semantic proximity. In Fig. 25, we perform an experiment to discover what sam-

ples our constraints affect the most. We randomly sampled 10k image-image and text-text

pairs and computed their distance in M using features from our method vs. the baseline

Ang+NP+Sym. Small ratios indicate the samples were closer in M using our method,

relative to the baseline, while larger indicate the opposite. We show the samples with the

top two smallest ratios for images and text. We observe that visually dissimilar, but seman-

tically similar images have the smallest ratio (e.g. E.U. flag-Merkel, Judge’s gavel-Supreme

Court), which suggests our Limg constraint has moved the samples closer. For text, we
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GoodNews [27] Politics [341]

Method I→T T→I I→T T→I

Ours (Ang) 0.8849 0.8865 0.6467 0.6492

Ours (Ang)-Ltext 0.8786 0.8813 0.6387 0.6467

Ours (Ang)-Limg 0.8782 0.8817 0.6390 0.6413

Table 26: We show an ablation of our method where we remove either component of our

loss. The best method is shown in bold and the best ablation is underlined.

observe articles about the same issue are brought closer even though specifics differ.

Cross-modal retrieval results. In Fig. 26 we show the top-3 results for a set of queries,

retrieved by our method vs. Ang+NP+Sym. We observe increased semantic homogeneity

in the returned samples compared with the baseline. For example, images retrieved for

“drugs” using our method consistently feature marijuana, while the baseline returns images

of pills, smoke, and incorrect retrievals; “wall” results in consistent images of the border

wall; “immigration” features arrests. For text retrieval, we find that our method consistently

performs better at recognizing public figures and returning related articles.

6.4 DISCUSSION

In this chapter, we focus on learning task-agnostic semantic representations in real-world

multimedia. We proposed a novel loss function which improves semantic coherence for cross-

modal retrieval. Our approach leverages a latent space learned on text alone, in order to

enforce proximity within cross-modal space. We constrain text and image embeddings to

be close in joint space if they or their partners were close in the unimodal text space. Our

technique explicitly controls for our observation that images and paired text in commu-

nicative multimedia may not be literally aligned and that concepts mentioned in text may
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Quebec is 
suffering from a 

declining fertility 
rate and is facing 

an ageing 
population...

Justin Trudeau 
has committed 

nearly $3 billion 
of taxpayers

money to foreign 
aid…

The HICR found 
that there’s sig. 
evidence that 

more guns means 
more murders…

Renee Ellmers' 
husband and son 
came home and 
left an AR-15 in 

their home's 
garage…

𝒔𝟏 𝒔𝟐 𝒔𝟏 𝒔𝟐𝒔𝟏 𝒔𝟐 𝒔𝟏 𝒔𝟐

Figure 25: Uncurated results showing image/text samples that our method keeps closest in

M compared to the baseline, i.e. pairs where dours(s1,s2)
dbaseline(s1,s2)

is smallest. Our method keeps

semantically related images and text closer in the space, relative to the baseline. While the

images are not visually similar, they are semantically similar (EU and Merkel; judge’s gavel

and Supreme Court).

not have explicit visual groundings. Our novel loss constraints force models to account for

such complementarity by learning representations which accomodate non-literal, symbolic,

and polysemous usages, rather than just capturing straightforward literal visual and tex-

tural content. We experimentally demonstrated that our approach significantly improves

upon several state-of-the-art loss functions on multiple challenging datasets, confirming our

hypothesis regarding complementarity in communicative multimedia (H3). Our approach

leverages the paired text domain as a sort of guidance for training and further proves our

hypothesis regarding directed training (H2). We also presented qualitative results demon-

strating increased semantic homogeneity of retrieval results. We observed many figurative

visual usages and examples of visual argumentation, confirming communicative images sub-

stantially differ from traditional content (H1). Applications of our method include improving

retrieval of non-literal text, visual question answering, and learning robust visual-semantic

embeddings. The subsequent chapter also seeks to learn task-agnostic semantic representa-

tions in multimedia by exploiting image-text complementarity, but proposes an orthogonal

approach which doesn’t require additional losses.
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the World Cup …
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'Fortress Europe’…
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Scots fans at the 
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door GOP ….

House Speaker Paul 
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the black liberation 
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1950s and 1960s…

Ralph Abernathy and 
Bishop Smith,flank
Dr. Martin Luther 
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civil rights march in 
Memphis, Tenn…

April 4th we 
remember the life and 
dreams of Dr. Martin 
Luther King, Jr. for 
on this day, in 1968, 
he was murdered …

President Donald 
Trump and first lady 
Melania Trump are 

welcoming the family 
members of victims 
killed by MS-13…

Vanessa Trump, the 
wife of Donald 

Trump, Jr., and two 
others were taken to a 

hospital and 
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President Donald 
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Supreme Court 
nominee tonight at 

9:00 pm...
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By the time a veteran 
police officer forced 
his way through an 
apartment door and 
drew his gun on 19-

year-old Tony…

This week, the 
Supreme Court held 

that the Fourth 
Amendment does not 

permit a police 
officer to …

Two former patrol 
officers from Florida 
pleaded guilty Friday 

to framing an 
innocent teenager 
under orders from 
their police chief…

GOP presidential 
candidate Ted Cruz 
delivered a solidly 

conservative speech 
to the crowd gathered 

at the AIPAC….

Sen. Ted Cruz said at 
Thursday's GOP 

presidential debate he 
was referring to 

"socially liberal or 
pro-abortion ….

Texas Sen. Ted Cruz 
should be used to 

winning the Values 
Voter Summit straw 
poll by now, but the 
guys who came in…

Figure 26: We show cross-modal retrieval results on Politics [341] using our method and

the strongest baseline. We bold text aligning with the image. For text retrieval, ours

returns more relevant (and semantically consistent) results. For image retrieval, our method

exhibits more consistency (e.g. drug images are marijuana, immigration are arrests), while

the baseline returns more inconsistent and irrelevant images.
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7.0 MODELING ABSTRACT SEMANTICS IN MULTIMEDIA BY

IDENTIFYING AND WEIGHTING SEMANTICALLY INFORMATIVE

SAMPLES

Summary. In this chapter, we continue our work in modeling task-agnostic semantics in

communicative multimedia.1 As we explain in Chapter 6, existing approaches for learning

cross-modal semantic representations assume a straightforward relationship between images

and text, with the text literally descriptive of the image. However, real-world multimedia

often feature abstract semantics and symbolic relationships where image and text are com-

plementary. In order to ensure the model learns a semantically robust space and nuanced

relationships are accounted for, care must be taken to ensure that challenging, informative

image-text pairs contribute to learning. In the previous chapter, we leveraged the mutually

supplementary relationship between image and text to enforce novel loss constraints which

we showed improved the semantic coherence in the learned space. In this chapter, we show

how standard loss functions can be updated to better capture abstract semantics, without the

addition of custom losses. We propose a novel approach which weighs image-text pairs in the

loss and prioritizes informative and representative samples. Our method takes into account

the diversity of the sample’s semantic neighbors, the discrepancies in the broader neighbor-

hood, and the relative density of the sample. All three measures take into account the unique

mutually supporting nature of image and text in communicative multimedia. Experiments on

three challenging datasets with image-text complementarity, as well as COCO, demonstrate

significant performance gains compared to recent state-of-the-art models and weight-based

approaches.

1The work presented in this chapter is in submission to NeurIPS 2020.
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7.1 INTRODUCTION

We live in a multimodal world; many people both see and hear their environment. Mod-

ern media use this multimodality to better convey stories: the same overall topic is expressed

in text, images, video, audio, etc. However, the modalities (e.g. images and text) tell differ-

ent parts of the story. For example, the text might describe the events in the Syrian War,

while the image illustrates one aspect, the suffering of a refugee child. Given the enormity

of multimodal data available on the web, intelligent systems must reason across modali-

ties. The basic step is constructing a shared semantic feature space such that images and

text corresponding to the same concept neighbor each other. However, to model complex

multimodal media, cross-modal methods must also understand not just the value of the re-

lationship (close/not) but also the nature of the relationship between the co-occurring image

and text, as well as how the pair relates to the broader data pool.

Most cross-modal retrieval approaches assume the relationship between image and text

is redundant and image and text align at a literal level: for example, the caption describes

an airplane in the sky and the image shows airplane in the sky. This makes sense when

the purpose of a caption is to provide the exact same content as the image, e.g. to serve

a visually impaired user. In the more general case however, in real-world data, the type of

relationship between image and text can vary.

Simple cases (airplane-airplane) provide strong training signal, but there are other sam-

ples, with a less direct (less overlapping, more complementary) relationship, that may be

more informative. For example, an image might show tomato plants in a garden, while a

caption reads “Plant the tomatoes at 5 inches from each other and water them.” In other

words, images may be used illustratively or even figuratively to underscore a point made in

the text, or they may add nuance or subjective arguments to the text. Figs. 27, 28, and

29 show some examples. For instance, in Fig. 27 (left-top), a group of children with Israeli

flags are paired with text about Netanyahu and “an unprecedented government decision”.

Without proper care, such examples will be drowned out by the easier cases (e.g. the laptop

in Fig. 27).

To address this problem, we propose to dynamically weigh each image-text pair within
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the detachable PC form 
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the Spectre x2 its…
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unprecedented govt. 
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NEIGHBOR CUES FOR IMPORTANCE

Links in text space Links in text space

Figure 27: (Left of dashed line) Image-text pairs weighted by importance. One weighting

uses the neighboring images, which are diverse for the “Israeli flag” image weighed high, and

consistent (not diverse) for the laptop image weighed low. (Right) At the top, our three

weighting cues; at the bottom, their inverses. Blue circles denote images in visual space.

Red links connect images whose corresponding texts are close. Diversity vs homogeneity

measures whether images whose corresponding texts are close (red links) are also close in

image space (no for diversity, yes for homogeneity). Discrepancy vs consistency measures

whether the neighbor of a sample’s neighbor returns the original sample (no/yes, respec-

tively); n() denotes first nearest neighbor in semantic space. Density vs sparsity measures

whether sample a is likely or not given the dataset (yes/no).

a training batch. We model the relationship between images and text, as well as their sur-

rounding samples, by measuring the extent to which (1) the image and text modalities come

from a diverse neighborhood, and (2) the image and text pair is representative of the overall

data space. Specifically, we first measure the diversity of the sample’s semantic neighbors,

which could suggest more abstract, complementary matches between image and text. Neigh-

bors with low textual, but high visual diversity could imply the same semantic concept shares

multiple visual expressions, i.e. these are samples that should be prioritized in cross-modal

learning. Second, we consider the relationship of the sample to its broader neighborhood.

We measure the sample’s neighborhood discrepancy by computing the distance of the sample
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to the neighbors of its neighbors. This measures the symmetry of the sample-to-neighbor

relationship, and whether the local neighborhood around a sample is compact or diffuse. If a

sample is far from the neighbors of the sample’s neighbors (i.e. has a diffuse neighbor space),

this could indicate the sample is more likely to have multiple senses, much like samples with

high diversity. Third, in order to gauge how representative or typical a sample is of the

overall dataset and isolate the impact of spurious image-text connections, we compute a

modified probability density function for each sample using a variational Gaussian mixture.

Higher scores indicate that the sample’s embedding lies in a denser region of the overall

space, while lower scores suggest the sample may be an outlier and should be discounted.

We illustrate our three weighting cues in Fig. 27.

Our main contribution in this chapter is a suite of three novel sample weighting meth-

ods for learning visual-semantic embeddings on challenging data consisting of complemen-

tary image-text pairs. Our approach can be easily integrated into standard ranking losses.

We perform detailed experimental analysis on three datasets that exhibit complementar-

ity, namely Conceptual Captions [316], GoodNews [27] and Politics [341]. We also evaluate

on a more standard retrieval dataset, COCO [211], to put our method in the context of

standard retrieval methods. We show strong results against four recent, state-of-the-art

weighting-based approaches and a recent model-based approach. We show that the spaces

learned by our methods better preserve abstract concepts and nuanced semantic notions

relative to existing methods. More broadly, we present approaches for automatically iden-

tifying and quantifying the degree to which samples convey abstract semantics and latent

visual concepts, in the absence of any particular task. We believe the method presented

in this chapter provides a strong starting point which can facilitate learning in challenging

real-world scenarios.

Our work in this chapter continues the theme from Chapter 6 of learning semantic rep-

resentations in multimedia, in the absence of a particular application. In the prior chapter,

we showed how the semantic relationships between concepts from a task-agnostic text space

could be preserved on the learned multimodal space to better preserve semantic coherency in

a noisy real-world multimedia dataset by imposing novel within-modal loss functions. While

this approach ensures that the semantics of the text space may be preserved, it doesn’t
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necessarily preserve the emergent semantics of the multimodal space, nor does it emphasize

abstract and challenging samples. In this chapter, we present an approach to automati-

cally discover and weight semantically informative multimedia samples according to their

predicted semantically utility. We show that our method emphasizes samples conveying ab-

stract concepts such as “justice” or “freedom”, which convey latent visual concepts. Thus,

our method in this chapter presents a multimodally data-driven approach for quantifying

the degree to which a sample carries abstract visual concepts, rather than enforcing external

semantic structures learned from text as in Chapter 6.

7.2 METHOD

Let D = {I,T} represent a dataset of n image-text pairs, where I = {x1, x2, . . . , xn}

and T = {y1, y2, . . . , yn} represent the set of images and text, respectively, and yi is text

co-occurring with image xi (the two are semantically related). We refer to (xi, yi) as positive

pairs and either (xi, yj 6=i) or (xj 6=i, yi) as negative pairs. In order to compare across modalities,

we seek a common manifold M. A convolutional network f : I → M is used to project

images into the joint space, while a recurrent network g : T→M projects text. We use the

notational shorthand f (x) = x ∈ RK×H and g (y) = y ∈ RK×H , where K is the number of

embeddings per sample and H is the dimension of the learned manifold. Most prior methods

assume K = 1 but this may be too stringent when image and text have multiple meanings.

Recently [328] propose a polysemous embedding model (PVSE), where every image and text

are represented by K embeddings encouraged to be diverse; we adopt this formulation for all

methods compared. When comparing two samples, we use the maximum cosine similarity

across all K2 pairs: s(xi, yi) = max
k∈K

〈
xik
‖xik‖2

,
yik
‖yik‖2

〉
: RK×H × RK×H → R. For notational

simplicity, we omit the reference to the k embeddings in the remaining text.
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7.2.1 Training objective

We assume the same pairwise ranking objective as other recent VSE methods [328, 7, 85,

212], but introduce a weighting constraint to emphasize semantically informative samples.

We optimize a sample-weighted bidirectional n-pairs [326] triplet loss Lrank given by:

Lrank =
1

2N2

( ∑
xi∈IB

∑
yj∈TB

αi [ m− s (xi, yi) + s (xi, yj 6=i) ]+ +

∑
yi∈TB

∑
xj∈IB

αi [ m− s(xi, yi) + s(xj 6=i, yi) ]+

) (26)

where m is a margin parameter, [·]+ = max(0, ·) and IB / TB are images and text, respec-

tively, within a minibatch of samples. We introduce a per-positive sample weight αi, given

by our method. All methods and baselines use this loss to train, but vary in how αi are

computed.

Limitations of hard negative mining. Traditional VSE methods give all samples equal

weight within a minibatch. To facilitate learning, most recent methods [328, 85, 364] also

perform hard negative mining, where only the most challenging negative sample is used

(e.g. max
j
s(xi, yj 6=i)). While this makes sense in common captioning datasets, we found it pre-

vented models from successfully training on our more challenging, complementary datasets.

When using hard negatives, the problem becomes too hard since many negative image-text

alignments are semantically plausible, even if technically incorrect. Moreover, relying only

on hard negatives makes the model more vulnerable to noise, which is present within the

webly-harvested datasets we consider. Mithun [243] proposes a soft (weighted) semi-hard

negative mining approach to enable learning, and we outperform it on three datasets.

7.2.2 Measuring semantic diversity

In order to emphasize informative, complementary image-text samples, we first must

detect them and determine how much weight to give each. We seek to quantify properties

that such samples may posses. We first observe that semantic concepts with nonliteral

portrayals are likely to be visually diverse. For example, a piece of text about justice could

be paired with an image of the Supreme Court, an American flag, Themis the Goddess of
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Justice, a judge’s gavel, etc. In contrast, images paired with the caption “a bowl of apples

on a table” would likely be much more visually similar. To measure the visual diversity of

the semantic concept a sample illustrates, we first discover each image-text pair’s semantic

neighbors in text (Doc2Vec [192]) space Ω(T). We choose to compute neighbors in text

space because the text domain provides the cleanest semantic representation of the image-

text pair. In contrast, similar visual content (e.g. images of people or faces) could be

semantically unrelated while visually dissimilar content may still be semantically related

(justice example above). Let Ψ (Ω(yi)) =
{〈
x′in , y

′
in

〉}N
n=1

represent the semantic nearest

neighbor function over Ω(T), where
{〈
x′in , y

′
in

〉}N
n=1

denotes the set of the N neighbors of

〈xi, yi〉 and yi /∈ Ψ (Ω(yi)). Note the semantic neighbor images
{
x′in
}N

are not necessarily

visual neighbors of xi.

We next measure the diversity of the semantic neighbors in both the image and text

domains. Because our formulation is equivalent for both image/text neighbors, we let si

represent a sample from either domain but require samples si and sj come from the same

domain. Let s′i =
[
s′i1 , s

′
i2
, . . . , s′iN

]ᵀ
denote the matrix of size N × H of the embeddings

of the neighbors of of si found via Ψ, and U = s′is
′ᵀ
i computes a cross-product between all

semantic neighbors to obtain their pairwise similarities. We compute the semantic diversity

score ΥDIV
i for si as follows:

ΥDIV
i = ΓDIV × 1

N2

N∑
r=1

N∑
c=1

U(r,c) (27)

where r, c index over the rows and columns of U = s′is
′ᵀ
i and ΓDIV ∈ {1,−1} is a switching

parameter, which controls whether more weight is given to more similar or less similar

samples. We finally enforce that all ΥDIV
i in a minibatch form a proper attention vector

αDIV as follows:

αDIV =
[
αDIV1 , αDIV2 , . . . , αDIVB

]
, where αDIVi = λ× eΥDIVi∑B

j=1 e
ΥDIVj

(28)

and where λ is a scaling constant and B is the minibatch size. The weights can now be

directly used in Eq.26 to weight samples by the semantic diversity measure. We compute

αDIV for the image and text domains separately (i.e. si = xi or si = yi), then combine
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the two vectors by addition: αDIV = softmax
(
αDIVX + αDIVY

)
or by taking their absolute

difference: αDIV = softmax
(∣∣αDIVX −αDIVY

∣∣). We show results for both combination

strategies in Tab. 28.

7.2.3 Measuring semantic neighborhood discrepancy

The previous measure quantifies the diversity within the semantic neighbors of a query

sample si. It does not, however, consider the relationship of the neighborhood to the

query sample itself. We next examine the following relationship: si ∈ Ψ (Ω(Ψ (Ω(si)))),

i.e. whether a sample is a neighbor of its neighbors. This criterion measures the relationship

of si to its local neighborhood and quantifies whether the surrounding space is compact (high

similarity) or diffuse (low similarity). Samples with diffuse neighborhood could suggest the

image/text have multiple meanings or are used figuratively.

Formally, let Ψ (Ω(Ψ (Ω(si)))) =
{
s′′in
}N2

n=1
represent the set of the semantic neighbors

of si’s semantic neighbors. Note that as in Sec. 7.2.2, we always compute Ψ in text space

(for images, this amounts to using the ground truth text paired with the image). Let

s′′i =
[
s′′i1 , s

′′
i2
, . . . , s′′iN2

]ᵀ
denote the matrix of size N2×H of the embeddings of the neighbors

of neighbors. Then, the semantic discrepancy score ΥDIS
i and corresponding scaled score

αDISi of si is given as follows:

αDISi = λ× eΥDISi∑B
j=1 e

ΥDISj

, where ΥDIS
i = ΓDIS × 1

N2

N2∑
r=1

V(r) , (29)

where V = s′′i s
′ᵀ
i is the matrix-vector product of the sample’s neighborhood and the sample

(size N2 × 1), r indices its entries, ΓDIS is a switching parameter (see Sec. 7.2.2), and

B is the minibatch size. The final attention vector is given by stacking sample weights:

αDIS =
[
αDIS1 , αDIS2 , . . . , αDISB

]
. We compute αDIS in both image and text space then

combine the two as in Sec. 7.2.2.
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7.2.4 Measuring sample density

The previous two metrics rely on the semantic neighbors of a sample, but do not tell us

the relationship of the sample to the dataset as a whole. Consider a small, tight cluster of

outlier samples which lie far from other samples in the dataset (Fig. 27 right). The above

metrics would capture that the sample resided in a compact region, but not that the region

is atypical. Knowing how representative a sample is of the dataset is important for detecting

and mitigating the impact of outliers. We train a Gaussian mixture model (GMM) on our

learned embedding space and use it to quantify a sample’s likelihood. Let ξ denote a GMM

and s the set of embeddings of the train set. We train ξ using a variational approach [28],

which allows the number of mixtures to be determined automatically. Given a sample si,

the standard GMM is given by ξ(si) = p(si|θ) =
∑M

m=1 πmN (si|µm,Σm), where θ is the set

of model parameters, µm and Σm are the mean and covariance of the mth Gaussian mixture,

and πm are the mixing coefficients such that
∑

m πm = 1. Let zi = [zi1 , . . . , zim ] be a latent

binary indicator indicating si’s membership in mixture m. ξ can then marginalized as:

ξ(si) =
∑

z p (si|zi, {µm,Σm}) p (zi| {πm}), where p (si|zi, {µm,Σm}) =
∏

mN (si|µm,Σm)zim

and p (zi| {πm}) =
∏

m (πm)zim . ξ can be trained in a fully Bayesian manner by imposing a

prior distribution over all parameters, using expectation maximization. We refer readers to

[28] for details. Because embeddings change during training of f and g, every 5 epochs we

train ξ on s. We use a warm-start, initializing the model with the previously found solution

to aid convergence.

After training ξ, we compute the probability density of each sample, p(si). Let ΥDEN
i =

ξ (si) denote the sample density score and ΥDEN =
[
ΥDEN

1 , . . . ,ΥDEN
n

]
. We compute αDENi

as:

ρ = log
(
ΥDEN +

∣∣min
(
ΥDEN

)∣∣+ 1
)

κi = ΓDEN ×med (µρ − 2σρ, ρi, µρ + 2σρ)

αDENi = λ× eκi∑B
j=1 e

κj

(30)

where κ and ρ are scaled and clipped copies of ΥDEN , ΓDEN is the switching parameter, B

is the minibatch size, and λ is a scalar. The median function, med, clips each value within

the range of ±2σ of the mean of scaled densities ρ. We found clipping necessary to stabilize
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the behavior of softmax. We compute densities in both image and text spaces and combine

the two as in Sec. 7.2.2.

7.2.5 Implementation details

All methods use ResNet-50 [127] initialized with ImageNet features for images, and

Gated Recurrent Units [52] for text, with hidden state size 512. All methods and baselines

are built on top of PVSE [328]; we learn k per dataset. Images are scaled to 224x224 and

augmented with random horizontal flipping. We use Xavier initialization [107] on all non-

pretrained learnable weights. GRUs are init. with 200D word embeddings learned on the

dataset on which they are applied. We perform L2 normalization on embeddings produced

by each model. We train all models using Adam [175] with minibatch size of 32, learning

rate 1.0e-4 (decayed by a factor of 10 after every 5 epochs of no decrease in val loss), and

weight decay 1e-5. We use a train-val-test split of 80-10-10 for all datasets. We use [295]’s

implementation of Doc2Vec, d ∈ R200 and train on each dataset using distributed memory

[192] for 20 epochs with window k = 20, ignoring words that appear less than 20 times.

We use [231] to efficiently compute approximate nearest neighbors for Ψ and use N = 200

nearest neighbors. We use a Wishart [28] prior for our GMM and constrain each component

to a diagonal covariance matrix. We probabilistically sample at most 1000 neighbors at a

time from s′′i in Eq. 29. We cache embeddings from the prior epoch for efficient computation

of Eqs. 27 and 29. All method use λ = 96, which was determined empirically. We show the

impact of Γ = ±1 for all methods in Tab. 28.

7.3 EXPERIMENTAL EVALUATION

We compare the three weighting strategies we propose, Ours-Diversity (Sec. 7.2.2),

Ours-Discrepancy (Sec. 7.2.3) and Ours-Density (Sec. 7.2.4), to four very recent tech-

niques:

• PVSE [328] which computes multiple embeddings to account for polysemy;

153



• HAL [212] which up-weighs samples likely to be the closest sample to multiple queries;

• Mithun [243] which weighs samples based on hardness (computed using ranks of match-

ing images/text, larger values denoting worse match hence more challenging sample);

and

• Amrani [7] weighs highly samples where both image/text in a sample belong to tight

clusters (an intuition opposite to ours) and do not use semantic neighborhoods for images.

Datasets. We demonstrate our approach on four datasets. The first three (Conceptual Cap-

tions, GoodNews and Politics) demonstrate the complementarity of image and text within

a pair that we describe in Sec. 7.1. To put our method in context, we also evaluate on

COCO. Conceptual Captions [316] contains of ∼3.3M image-text pairs. The text comes

from automatically cleaned alt-text descriptions paired with web images and exhibiting a

much wider variety of style and content compared to COCO. GoodNews [27] consists of

∼466k images and captions from the New York Times, and Politics [341] consists of ∼246k

pairs of images with sentences from news articles. COCO [211] contains ∼120k images

with captions. All of these datasets are large-scale and recent. While COCO and Flickr30K

are among the most popular retrieval datasets, both contain heavily overlapping with the

image, descriptive captions. We use ConcCap, GoodNews and Politics in place of Flickr30K,

to demonstrate the challenge of matching complementary images and text.

Metric. We evaluate top-1 accuracy on image to text, and text to image matching. Upon

examination, we find the image-text alignment in GoodNews and Politics the most chal-

lenging, hence for these datasets, we use a 5-way multiple-choice task (1 correct option,

4 incorrect ones). For COCO and ConcCap, we found this task to be too simple and all

methods easily achieved very high performance due to the literal image-text relationship. To

distinguish meaningful performance differences between methods, we used a 20-way task for

Conceptual Captions and a 100-way task for COCO.

7.3.1 Main result

We show our main result in Table 27. At the top are four state of the art methods.

At the bottom are our three weighting techniques. We observe that the best method per
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GoodNews [27] Politics [341] ConcCap [316] COCO [211]

Method I→T T→I I→T T→I I→T T→I I→T T→I

PVSE [328] 0.8516 0.8526 0.5919 0.6057 0.7138 0.7168 0.6541 0.6561

HAL [212] 0.8623 0.8579 0.5919 0.5903 0.7638 0.7685 0.6665 0.6845

Amrani [7] 0.8629 0.8678 0.6117 0.6117 0.7376 0.7356 0.6746 0.6756

Mithun [243] 0.8439 0.8463 0.5792 0.5839 0.7523 0.7497 0.6967 0.6950

Ours-Diversity 0.8499 0.8509 0.6268 0.6366 0.7720 0.7741 0.6891 0.6855

Ours-Discrepancy 0.8730 0.8764 0.6211 0.6228 0.7294 0.7298 0.6863 0.6845

Ours-Density 0.8716 0.8752 0.6209 0.6216 0.7393 0.7416 0.6838 0.6812

Table 27: We show retrieval results (top-1 accuracy) for image to text (I→T) and text to

image (T→I). The best method per task is shown in bold, and second-best underlined.

dataset/task is one of our methods on all complementary datasets (GoodNews, Politics,

ConcCap). On Politics and GoodNews, the second-best method is also one of ours.

On COCO, all of our methods essentially tie for second-best. Note that Mithun which

outperforms ours on COCO, performs much worse on the complementary datasets, often

worse than even PVSE. The biggest gain we achieve over PVSE is 8% (in relative terms,

or 6% absolute) on ConcCap. The relative gain on Politics is 5.5%, on COCO is 5%,

and on GoodNews is 2.5%. Our biggest gain over HAL is 7% on Politics, over Amrani

is 5% on ConcCap, and over Mithun is 8.5% on Politics. The difference between our

best performing method and the best performing baseline per-dataset are all statistically

significant (p < 0.05).

Among our methods, usually Ours-Diversity performs best, but on GoodNews,

the best method is Ours-Discrepancy. Overall, Ours-Diversity is best or second-

best on six of eight tasks, Ours-Discrepancy on four tasks, and Ours-Density on two.

Importantly, all of our methods show benefit, but the choice of weighting method is dataset-

dependent, suggesting each dataset exhibits complementarity in a different way which is best

captured by a particular method. Ours-Density only uses the structure of the within-
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Diversity (Sec. 7.2.2) Discrepancy (Sec. 7.2.3) Density (Sec. 7.2.4)

Method I→T T→I I→T T→I I→T T→I

Γ = +1 0.6206 0.6226 0.6158 0.6187 0.6209 0.6216

Γ = −1 0.6268 0.6366 0.6211 0.6228 0.6106 0.6170

Sum 0.6188 0.6251 0.6130 0.6184 0.6131 0.6181

Diff 0.6268 0.6366 0.6211 0.6228 0.6209 0.6216

Table 28: Ablation on Politics [341]. The first two rows show results for Γ = +1/− 1. The

last two show strategies for combining the image/text weight vectors (summing or taking

absolute difference).

modality space of the image and text domains, i.e. it does not exploit the paired nature of

the multimodal data. In contrast, Ours-Discrepancy and Ours-Diversity work cross-

modally by exploiting the text space to find semantic text and image neighbors. We also

attempted to combine all three methods, but found performance varied across datasets. On

GoodNews, the combination improved performance to 0.8785 and 0.8811, but on others,

combining the three methods was inferior to using any single method.

7.3.2 Ablation results

We first present a result motivating the choice of directionality for our proposed weighting

mechanisms. For each of our methods, the weighting could be implemented with the opposite

sign (via Γ), e.g. we could prioritize samples that are outliers (as a counterpart to samples

that are in dense regions), or we could up-weigh samples that come from homogeneous

rather than diverse regions. To test the importance of Γ, we use the Politics dataset. In

Table 28 (top block), we see that emphasizing samples with high density, low homogeneity

(which we term “diversity”), and diffuse, inconsistent semantic neighborhoods (which we

term “discrepancy”) perform better. We also trained a model which used all equal weights

(still scaled by λ) and found it performed even worse than the suboptimal Γ setting.
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At the bottom, we explore how to combine the αX and αY scores from the two modali-

ties. We observe taking a difference between the two modalities is better, so weights are larger

for samples whose measures differ more across modalities. This underscores the emphasis

on weighting complementarity: samples differing across modalities suggest a complementary,

rather than overlapping cross-modal alignment, while emphasizing uniformity or overlap (via

sum) performs worse.

We next measure how correlated the metrics we propose are. We computed Spearman’s

rank correlation between the sample weights, and found that our density measure was un-

correlated with discrepancy (ρ = −0.0032) and diversity (ρ = −0.0021). Discrepancy and

diversity were very slightly correlated (ρ = 0.0520) because they capture a similar phe-

nomenon (image-text complementarity of the sample), while density measures a different,

global property.

Finally, we test the contribution of using s′′i as opposed to just s′i in our discrepancy

measure, i.e. using neighbors of neighbors, as opposed to just neighbors. On Politics, using

s′i (similar to our approach in Chapter 6) dropped results to 0.6034 for I→T (vs 0.6214),

and 0.6108 for T→I (vs 0.6274). Computing neighborhoods in visual rather than semantic

space further dropped performance to 0.6005 and 0.6030. We also verified the importance of

using weighting on both modalities. If we just used weighting on images, results were 0.6171

and 0.6168; using text only, they were 0.6028 and 0.6043. These are both lower than the

0.6214 and 0.6274 obtained by combining weights from both modalities.

7.3.3 Qualitative results

Samples weighted by measure. In Fig. 28 we show samples receiving the highest or lowest

weights. For diversity, high scoring samples concern abstract subjects in which image and

text play a complementary role (sad woman-“Great Depression”, American flag-“collusion”),

while low-scoring ones are more concrete. For discrepancy, we observe cases where the image-

text pairing is more atypical (e.g. football players-“immigration”, pride flags -“Valentine’s

day” and “flowers”), while low-scoring ones are again more literal (iceberg-“iceberg”, fire-

“wildfires”). Finally, the most dense samples had a consistent visual appearance and were
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Figure 28: Example samples from Politics [341] receiving the highest or lowest weights by

our measures.
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Figure 29: Retrieval results for our method and the best performing baseline on Politics

[341].

mentioned consistently in the text in the same way (pride flag-“LGBT”), while the low

scoring samples mentioned uncommon issues (rabbit-“Peter Rabbit”).
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Qualitative retrievals. In Fig. 29 we show retrievals using our diversity method vs. Amrani

[7] on Politics [341]. We bold words in the text highly aligning with the image. For image

to text, we observe that our method, correctly retrieves texts mentioning “Laura Ingraham”

for the first image, while the baseline retrieves text mentioning women which aren’t shown in

the image. For the second image, both methods retrieve text about the Middle East, but the

text retrieved by ours mentions Christians (which aligns with the cross in the image). For

word to image, we observe that our method performs much better for abstract concepts like

“justice” (ours retrieves gavels, balances, and protests, while the baseline retrieves people

related to specific court cases). For “patriotism’, ours retrieves flags and protests, while the

baseline retrieved largely irrelevant images.

7.4 DISCUSSION

In this chapter, we proposed another method for learning visual semantic embeddings

which capture abstract semantic concepts. Unlike our prior work, we explicitly encourage our

model to learn abstract semantics by weighting abstract samples more in our loss (i.e. em-

phasizing the impact of semantically informative samples during training). However, like

Chapter 6, we again leverage the hypothesized complementarity of communicative multime-

dia (H3). We propose three new techniques for focusing a retrieval method’s priorities over

individual image-text samples. To ensure that the retrieval method can match images and

text that exhibit a complementary, rather than redundant or overlapping relationship, we

highly weight examples from diverse neighborhoods and ones where the nearest neighbors

of neighbors do not return the original query. We also ensure that samples are representa-

tive of the full dataset, through density estimation. We demonstrate our methods generally

outperform four very recent methods on four challenging and recent datasets. Collectively,

our quantitative and qualitative experimental results demonstrate our hypothesis (H3) that

communicative multimedia substantially differs from conventional image-text datasets due

to the complementary relationship of image and text. In fact, our results establish that

de-emphasizing straightforward, highly cross-modally aligned samples during learning works
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better. Our methods exploit complementarity in order to identify image-text pairs likely

containing abstract semantics and to reweight them accordingly. Our approach leverages

guided training by measuring visual and semantic diversity as well as controlling for noise,

which ultimately allows the model to perform substantially better, proving our hypothesis

regarding such training (H2).

Learning semantically robust cross-modal embeddings have a variety of applications,

including news curation and image captioning (beyond the literal, descriptive level) for visu-

ally impaired readers. More broadly, understanding the intricate relationship between images

and text has ramifications for understanding persuasion, as well as bias, in multimodal news

media sources. In particular, if a system can understand that the image included with a

particular text actually contradicts the surface meaning of the text, it may detect cases of

irony and mockery, and thus, detect hateful use of conventional or social media. How such

detections are used is a matter of policy and not the subject of this dissertation. Instead,

the goal of our work is to enable better, more nuanced, modeling of image-text relationships.

Eventually, we hope methods like ours will help build more socially aware systems. We

believe that in order to ensure AI systems do social good rather than harm, they need to

understand subtleties, and our methods are a step in this direction.
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8.0 CONCLUSION

In this dissertation, we proposed a new paradigm for studying visual media. We re-

cast the customary computer vision objective of recognizing the contents of visual media,

into the problem of computationally understanding visual communication, i.e. how visual is

used as a vehicle for communication. Doing so required not only recognition of the content

of images for its literal value, but also how such content is used as a type of visual argu-

mentation and rhetoric with respect to some broader concept. These higher-level, broader

abstract concepts are what we seek to model throughout this dissertation, rather than just

the contents of images themselves. In practice, this involved modeling semantic concepts

whose visual expression is inconsistent across different images and often where the overall

image collections are noisy, limited, and/or highly visually diverse. In Chapter 3, we studied

modeling photographic style in collections of photographs and demonstrated photographic

style lives more in semantic than visual space. Next, in Chapter 4, we studied the problem

of modeling the persuasive visual rhetoric in advertisement faces which were highly diverse

and noisy and demonstrated object appearance differs across ad types. The final problems

we studied extended our work by tackling more challenging types of latent semantics. In

Chapters 5-7, we tackle the problem of modeling latent semantics in multimedia domains,

where samples consist of images and paired text. This setting is particularly challenging

because the semantics we seek to capture are latent within both domains and we are pri-

marily interested with leveraging the cross-modal information for solely visual modeling. In

Chapter 5, we confront the problem of recognizing politically biased images in multimedia

news articles and demonstrate that political bias is exhibited visually as well as in text. In

Chapters 6-7, we extend our work and provide general, task-agnostic methods for modeling

high-level abstract semantic representations in multimedia in a purely data-driven manner.

We show that traditional computer vision techniques fail to model the various latent

semantics in the domains we study in this dissertation when applied näıevely (confirming

hypothesis H1), due to the nature of the problems we study and the datasets in which we

study them. The recurring theme of the methods proposed herein is the use of some form of
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guidance or human-intuition in the model’s learning procedure (H2). For example, we may

restrict the type of learning that can occur by online allowing certain portions of models to

learn, provide adjuvant information in the form of features to models to help focus them

on the semantics of interest, or impose structural constraints upon the model’s architecture

and learning procedure to prevent models from seizing upon irrelevant aspects of the data or

learning uninteresting representations. Throughout this dissertation, we repeatedly demon-

strate that given the highly abstract, latent, and visually incoherent nature of the concepts

we seek to model, guided models consistently outperform generic, off-the-shelf models sig-

nificantly, underscoring the importance of imposing structure on the learning problem as we

hypothesized (H2). In our later work in multimedia, we show that the paired text domain

can itself provide a form of self-supervised guidance, obviating the need for any custom or

external interventions (H3).

An ancillary theme of this dissertation is the use of generative techniques to visual-

ize what our models have learned. Because our generative models are trained to produce

synthetic data containing the latent semantics we seek to model, by viewing the synthetic

images produced by the model, we can visualize in a human-understandable way what our

feature representations are actually capturing in order to diagnose how well they represent

various aspects of the problem. We show that our techniques of guiding the model’s training

procedure towards relevant features works in the generative setting as well.

We believe a particularly consequential aspect of this dissertation is its contribution

towards multimodal latent semantic modeling. We not only study latent visual concepts em-

bedded in visual media, but also their expression in text (e.g. how political bias is exhibited

both visually and textually). Unlike traditional computer vision methods which assume that

image and paired text provide redundant information, we view each modality as complemen-

tary and as contributing to a larger communicative message. We present numerous results

showing that multimodal alignment of images and paired text significantly improves perfor-

mance at modeling latent visual semantics even in the purely visual setting (i.e. even when

text is not available). In particular, we show how the text paired with images can act as a

sort of semantic fingerprint for the overall message of the image-text pair to guide training.

We design methods which exploit the relationship of image and text in real world multi-
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media, and show that the text can be used to significantly improve purely visual inference

by inducing visual models to capture high-level concepts. We also present methods show-

ing how abstract semantics can be better preserved in learned cross-modal representations

by exploiting complementarity, by either enforcing semantic cross-over (from text to visual

space) or by weighting samples based on their semantic utility. We believe that contribu-

tions in this space are particularly apposite for better understanding online communicative

multimedia, where image and text relate in indirect and subtle ways.

There are a number of limitations of our work as well as fertile possibilities for future

work. Our general approach to handling very limited data was to restrict the learning of

the model to pre-defined or transferred feature representations. This had the benefit of

preventing overfitting, while allowing the model to reason over semantic feature represen-

tations, but this still requires leveraging external semantic resources rather than learning

features directly from the dataset. In this dissertation, we used semantic attributes or ob-

ject representations. However, these features may be inapposite for many problems which

require different semantics in order to understand. One idea in this direction is to leverage

self-supervision (such as autoencoder networks) to learn dataset-specific features, while si-

multaneously making use of external resources from which data is plentiful. Additionally,

few-shot learning techniques could be applied in these settings. For example, it is possible

that photographers of the same “school of thought” exhibit high similarity between their

works. Few-shot learning techniques may be able to exploit the representation learned for

a photographer with plentiful data and modify it for a similar photographer with limited

data. Similarly, in Chapter 3 we proposed a probabilistic generative technique to generate

novel photos in the style of particular photographers. We were unable to leverage GANs

due to the lack of training data and the high-visual diversity of each photographer’s work.

However, there have been a number of recent proposals for learning generative networks from

even single images [312], which enable one to shuffle the semantic contents of images. These

approaches could be extended in order to learn the semantic concept of photographic style

of a particular photographer from a collection of images (i.e. object location, position, size,

etc.). Then, the model could be trained once again on a single image in order to reshuffle

its contents. However, the generated images would be constrainted to be in the style of the
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photographer, rather than randomly shuffled. This would enable one to generate new pho-

torealistic photographs in the style of a particular photographer. Similarly, such a method

could be applied in the context of noisy ads to generate synthetic ads containing objects

which obeyed the “style” for the specific ad topic.

Our work in Chapters 5-7 leverages the paired text as a form of semi-supervised learning

to guide the model’s purely visual training. However, our work in these sections still have

a number of limitations. In particular, though text is used to guide the models towards

semantics of interest, it is still left up to our models to discover the precise relationship

between images and text. For example, in the image showing a doctor taking money along

with text about vaccines (Figure 2, right), the model is left to discover the relationship

between the money in the image and the word “promise” in text. We believe explicitly

capturing the relationship between image regions and text through structured methods [4,

202, 201] will result in more robust representations capable of capturing the type of abstract

arguments made in real-world multimedia. Moreover, these structures can then be directly

used to generate text explaining the visual argument made in the image, through language

generation techniques. However, existing multimedia knowledge graph extraction [202, 201]

methods assume correspondences between image regions and text can be discovered from

visual to text parses. This is not necessarily the case in communicative multimedia, where

image and text convey different information. One idea is to leverage external knowledge

bases (KBs) to complete the inferential steps necessary to connect seemingly disconnected

multimodal concepts. For example, we can use KBs to determine money→bribe→dishonesty.

The money in the image now can be connected to the word “promise” in text (suggesting

the promise will be broken and vaccines are not safe), along with a semantic embedding of

the inference path from the KB. This approach allows us to capture much richer multimodal

semantics in knowledge graphs than is currently possible.

Another limitation of our work in learning cross-modal semantic embeddings is that,

despite our addition of constraints and weights to handle complementarity, we still ultimately

leverage metric learning losses which assume a redundant image-text relationship. This

could be a severe limitation to learning such embeddings on datasets where image and text

convey even less redundant information, as the model may never be able to learn embeddings
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of one modality which can be projected close enough to the other while retaining their

semantic representation power. Chapters 6 and 7 both assumed a cross-modal retrieval

setting, where the embeddings were used to retrieve images or text from the other modality.

While this ensures the embeddings are somewhat discriminative of the other modality’s

contents, in this dissertation we are ultimately interested in learning embeddings which

preserve high-level semantics, rather than just embeddings which are useful for retrieval.

For example, in Figure 2, in both cases the text’s meaning is in fact the opposite when

considered with the image. However, our current losses would not encourage each modality

to preserve its specific meaning, but instead attempt to preserve their similarities. Thus,

another possible extension of our work is the design of custom loss functions to replace the

backbone metric learning losses which emphasize the complementarity of image and text

and strongly preserve each modality’s semantics, while being only secondarily concerned

with matching the other modality’s representation. To do so, one could impose a constraint

which enforces complementarity, i.e. the joint representation of the image AND text should

be semantically different than either images OR text. Other possibilities include leveraging

feature disentanglement methods [216, 380, 279] for learning visual semantic embeddings

which preserve the semantics of each modality, rather than focus on their overlap. Note that

this is the opposite of what traditional cross-modal approaches seek to do.

We believe that the work we have undertaken has significance at several different lev-

els. From a scientific point of view, building machines which can understand increasingly

abstract semantic phenomena latent within data represents a step towards robust machine

intelligence. Many of the problems we study in this dissertation, such as predicting how

an image is politically biased, could be thought of as approaching “AI-completeness,” i.e.

requiring human intelligence to solve. Progress on such problems depends on building robust

algorithms which move beyond mere image-level template matching and that are instead ca-

pable of semantic inference and generalization about what they see across the entire dataset.

Such higher-level reasoning is the “holy-grail” of machine learning and is a hallmark of gen-

eralized intelligence. However, despite the inherent complexity of these problems, we show

that machines can currently achieve impressive results on them, particularly when they are

tailored to exploit human intuitions about the nature of the problem and by rethinking as-
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sumptions commonly held in vision (such as literal image-text alignment) which may not

hold in real-world data. Our work also has numerous practical applications. For example,

technology companies can use the techniques presented in this dissertation in order to better

target ads or content to users based on user profiles which take into account semantics in-

ferred from the user’s interaction with the site. These could include models of user bias from

multimodal data or models that are more aware of what persuasive techniques work for a

particular user. Our work on multimodal political bias fulfills a particularly timely need for

building more socially-aware systems. Our contributions could be deployed to detect biased

content spreading online and to inform users that the content or sites they are viewing may

not contain a neutral point of view of the issues. Similarly, our work on learning semantically

robust cross-modal representations has numerous applications from detecting disinformation

and hate speech on social media to enabling models to produce more nuanced image captions

for the visually impaired.

We believe that as the public increasingly engages with machine learning algorithms

throughout their daily lives, the desire for personalized content, from search results to news

articles, will continue to grow. Machine learning researchers will thus be tasked with solving

ever more challenging problems in order to extrapolate latent semantic concepts from noisy

and diverse datasets. This may require revisiting standard assumptions in computer vision

and instead viewing images as tools of communication, rather than ends in themselves. More

broadly, we hope that the contributions and observations made by this dissertation will be

useful guideposts for future researchers tasked with modeling such seemingly insurmount-

able problems, irrespective of what the problem may be. We believe that understanding

visual media for its implicit communicative intents, rather than surface-level contents, is an

important step to building truly intelligent reasoning systems and that our collective work

presented in this dissertation is an important step in that direction.
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