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Abstract 

Distributed Fiber Ultrasonic Sensor and Pattern Recognition Analytics 

 

Zhaoqiang Peng, Ph.D. 

 

University of Pittsburgh, 2020 

 

 

 

 

Ultrasound interrogation and structural health monitoring technologies have found a wide 

array of applications in the health care, aerospace, automobile, and energy sectors. To achieve high 

spatial resolution, large array electrical transducers have been used in these applications to harness 

sufficient data for both monitoring and diagnoses. Electronic-based sensors have been the standard 

technology for ultrasonic detection, which are often expensive and cumbersome for use in large 

scale deployments.  

Fiber optical sensors have advantageous characteristics of smaller cross-sectional area, 

humidity-resistance, immunity to electromagnetic interference, as well as compatibility with 

telemetry and telecommunications applications, which make them attractive alternatives for use as 

ultrasonic sensors. A unique trait of fiber sensors is its ability to perform distributed acoustic 

measurements to achieve high spatial resolution detection using a single fiber. Using ultrafast laser 

direct-writing techniques, nano-reflectors can be induced inside fiber cores to drastically improve 

the signal-to-noise ratio of distributed fiber sensors. This dissertation explores the applications of 

laser-fabricated nano-reflectors in optical fiber cores for both multi-point intrinsic Fabry–Perot 

(FP) interferometer sensors and a distributed phase-sensitive optical time-domain reflectometry 

(φ-OTDR) to be used in ultrasound detection.  

Multi-point intrinsic FP interferometer was based on swept-frequency interferometry with 

optoelectronic phase-locked loop that interrogated cascaded FP cavities to obtain ultrasound 

patterns. The ultrasound was demodulated through reassigned short time Fourier transform 
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incorporating with maximum-energy ridges tracking. With tens of centimeters cavity length, this 

approach achieved 20kHz ultrasound detection that was finesse-insensitive, noise-free, high-

sensitivity and multiplex-scalability. 

The use of φ-OTDR with enhanced Rayleigh backscattering compensated the deficiencies 

of low inherent signal-to-noise ratio (SNR). The dynamic strain between two adjacent nano-

reflectors was extracted by using 3×3 coupler demodulation within Michelson interferometer. 

With an improvement of over 35 dB SNR, this was adequate for the recognition of the subtle 

differences in signals, such as footstep of human locomotion and abnormal acoustic echoes from 

pipeline corrosion. With the help of artificial intelligence in pattern recognition, high accuracy of 

events’ identification can be achieved in perimeter security and structural health monitoring, with 

further potential that can be harnessed using unsurprised learning. 
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1.0 Introduction 

In the last 60 years, the commercialization of ultrasound sensors has opened up a large 

market of physical, chemical and biochemical sensing. As a result, numerous technologies have 

been proposed to assess ultrasonic waves based on various acoustical effects. Till date, nothing 

can substitute for their versatility and wide-spread use in industrial and medical applications.  

1.1 Background and Motivation 

Acoustic waves arise from an initial pressure perturbation that impacts atoms in a state of 

equilibrium and forces them to movements of compression and rarefaction. The longitudinal 

movement of atoms as they pass kinetic energy outward from the source was described as a type 

of mechanical wave. In 1969, Feynman derived the sound equation for this mechanical wave from 

the velocity of particles and acoustic pressure over time [1]. This was the first time the properties 

of travelling acoustic waves were fully studied, which showed a detailed wave solution as intensity 

and phase. The time-dependent variation of intensity and phase are determined by initial releasing 

status of the acoustic source and characteristics of the propagation path. Lots of acoustic sensors 

were developed to measure the physical, chemical, or biological quantities that resulted in changes 

of the propagation path or location of initial release. Most of these sensors were laid in the 

ultrasonic region, for example, the flexural plate-wave sensor, thickness shear-mode sensor, 

medical ultrasound and surface acoustic-wave sensor [2].  
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The frequency of ultrasound that exceeds the upper limit of human hearing is over 20 kHz. 

Deploying high-frequency acoustic waves in an interrogation system has prime importance in three 

perspectives: diffraction, sensitivity, and scattering.  Diffraction describes the divergent pattern of 

beam spread which corresponds to the configuration of source and acoustic wavelength. High-

frequency acoustic wave as submillimeter wavelength generates parallel-sided beam resulting a 

sharp focus at focal plane. Small focal point reveals fine image detail in medical ultrasonic imaging 

[3]. Sensitivity is used to depicted the accuracy in characterization of thin-film materials, liquid 

properties or polymers in chemical and biochemical acoustic sensing. The intrinsic resonance 

frequency of a transducer determines the sensitivity and detection of the measurement. Superb 

sensitivity requires adequate resonance frequency which usually is in tantamount to high 

operational frequency of sensor [4]. Higher operational frequency such as ultrasound detection 

improves the sensitivity in certain interrogation systems. The last beneficial trait of ultrasound is 

enhanced intensity of scattering. Scattering of acoustic wave occurs only when the irregularities 

in the propagation path are much smaller than the acoustic wavelength. The omnidirectional 

scatterings from small scatters include backward portions known as acoustic echoes. An equation 

was derived to describe the strength of backscattering as a spherical wave without considering the 

boundaries of the medium [5].   

 

 𝐴𝑏𝑠 = −𝐴𝑖

10𝜋2𝑓2𝑎2

3𝑐2𝑅
, (1-1) 

 

𝐴𝑖 is the amplitude of incident ultrasound pressure; 𝑓 is the central frequency of acoustic wave; 𝑎 

is the diameter of scatter and 𝑅 is the distance between scatter and transducer. The amplitude of 

the backscattered echo is proportional to the acoustic frequency squared. High-frequency acoustic 

interrogation reinforces the strength of backscattering in echography.  
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Passive reception of the ultrasound attracts a lot of attention other than implementing 

ultrasound in the interrogation system. Light-induced thermoelastic expansion of biological tissues 

elicits the sudden release of large energy within a solid as acoustic emissions that generates an 

ultrasonic wave at broad frequency range. A reliable ultrasound receiver is desired to perform 

accurate detection of especially weak and subtle signals. As such, the high-sensitivity of ultrasound 

detection is crucial in the demand of converting the weak broadband ultrasound into analog signals.  

There have not been significant strides made on ultrasonic receivers in the last decade. The 

generic structures of ultrasonic sensors are classified into two distinct families: bulk piezoelectrical 

transducer and diaphragm-based micro-machined transducer. Figure 1 illustrates the simplified 

schematic of a piezoelectric transducer and a capacitive micro-machined ultrasound transducer 

(CMUT) [6]. 

 

 

Figure 1 The typical structures of ultrasonic sensors: (a) piezoelectric ultrasound transducer; (b) capacitive 

micro-machined ultrasound transducer. 

 

As an ultrasonic receiver, a piezoelectrical transducer converts mechanical force into 

electricity based on the destruction of the hexagonal symmetry in piezoelectric material crystals. 

The local deformation caused by mechanical pressure polarizes the molecules and aligns them into 

a dipolar state. Lead zirconate titanate (PZT) is the most common material used in single element 
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piezoelectrical transducers. Large efforts have been taken to improve the electromechanical 

coupling coefficients by optimizing the piezocomposite chemistry [7]. The recent progress of 

research studies on piezoelectric element shows low acoustic impedance and inherently wideband 

in high-frequency acoustic wave detection [8]. However, the tradeoff between operational 

frequency and signal-to-noise ratio (SNR) deteriorate the effectiveness of ultrasound detection. 

Adequate operational frequency in ultrasonic application requires high fundamental resonance 

frequency of transducer. An equation presenting the resonance frequency of PZT circular plate can 

be described as, 

 

 𝑓𝑅 =
1

2

𝑡

𝑎2
√

𝐸𝑃𝑍𝑇

𝜌𝑃𝑍𝑇
, (1-2) 

 

where 𝑡, 𝑎, 𝐸𝑃𝑍𝑇 and 𝜌𝑃𝑍𝑇 are thickness, radius, Young's modulus and material density of 

piezoelectrical layer respectively [9]. An increase in fundamental resonance frequency is followed 

by shrinking the diameter of active area in transducer. Usually, the dimension of PZT need to be 

comparable to the wavelength of ultrasound (~mm diameter for ~MHz ultrasound), whereas 

introducing the issue of low SNR.  Less dipolar molecules in piezoelectric elements from small 

dimensions of the transducer degrades the signal strength at output. It is the most concerned 

drawback of piezoelectrical transducer in ultrasound detection. 

CMUT is a relatively new concept that has also drawn lots of attention in recent research 

studies. It takes advantage of nanoscale lithography in nanofabrication and builds the transducer 

on microscale diaphragm [10]. The vibratory membrane affected by external mechanical forces 

induces capacitance change between electrodes. With high compatibility to nanofabrication in 

silicon wafer, CMUTs can be placed as large arrays that attach separated signal processing units 
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that construct large microscale electro-mechanical systems [11]. The performance of CMUT has 

been proven to be comparable to bulk piezoelectrical transducers in the manner of coupling 

coefficients and bandwidths [12].  However, the strict temperature control and complex fabrication 

of suspended membranes further curbs its potential in practical applications. Furthermore, high 

electrical impedance of capacitive structures corresponding to high operational voltages affect the 

reliability of devices [13].  

As typical metal electrical sensors, both piezoelectrical transducer and CMUT suffer from 

the salient susceptibility to moisture penetration and wear-and-tear from weather [14]. The 

reliability of electrical component in harsh environment is persistently unreliable. Moreover, 

emerging research studies of photoacoustic tomography (PAT), nondestructive testing (NDT) and 

seismic physical surveys which examine the original releasing status of ultrasounds achieve large-

scale field monitoring using ultrasound transducers as large array. Microscale CMUTs bear 

significant crosstalk in the transducer arrays as electromagnetic interference (EMI), while PZTs 

have burdensome and complex data acquisition [15]. The challenge of reliable ultrasound sensing 

with robustness on multiplex scalability remain to be solved. 

1.2 Multiplex Ultrasound Fiber Sensor 

In the 1960’s, the latent demand of optical fiber for telecommunications heralded the 

invention of lasers. Researchers sought an ideal medium that had low attenuation and could be 

used for the transmission of data over long distances. Kao and Hockham first demonstrated a low 

loss optical fiber in 1965 making which made a far-reaching influence on fiber optics [16]. At 

about the same time as the advent of optical fiber-based data communications, the merits of optical 
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fiber sensors were discovered after the first Fotonic sensor [17]. Because of features such as 

immunity to electromagnetic interference, dielectric material, small cross-section, lightweight, 

multiplex scalability, telemetry and telecommunication compatibility, optical fiber sensors are an 

excellent candidate of the measurement of various environmental parameters. Up to now, it has 

been successfully used to detect temperature, strain, vibration, position, current, pressure and so 

on [18-23]. 

The incomparable merits of optical fibers have great appeal to the research of novel 

ultrasonic receivers, rather than conventional metal electrical sensors. The small cross-sectional 

area of optical fiber possesses the high sensitivity to the ultrasound detection. And dielectric 

properties of silica make optical fiber become suitable for the dynamic strain measurement in harsh 

environment. In addition to the advantageous dimension and material, the easy fabrication process 

conduces to the promise of mass production. Some of the ultrasound fiber sensors have shown the 

potential to address limitations of piezoelectric and capacitive technologies [24].  

1.2.1 Single-point Ultrasound Sensors 

Till date, most of available ultrasound fiber sensors could only perform single-point 

detection which made significant scalability of optical fiber less feasible. The very first loss-based 

dynamic strain fiber sensor was demonstrated in 1977, and was used to measure vibration-

dependent bending loss [25]. The assessment of coupling loss were also observed in fused tapered 

fibers [26] and lateral misalignments [27]. Those sensors implement a simple structure for single-

point detection that is dependent on loss-based interrogation, which simply detects optical intensity 

changes within optical fiber. But they suffered from the inherent noise including laser instability 

and environmental perturbation. 
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In the same year, 1977, the first interferometric acoustic sensor was proposed based on the 

Mach–Zehnder interferometer (MZI) [28]. After that, a succession of various interferometric 

methods were introduced for ultrasonic detection including Michelson, Sagnac and Fabry–Perot 

interferometer (FPI) [29-31]. The strain-induced change in the mean free path or the optical phase 

within the interferometer triggered the shift of interference pattern. The resulting frequency or 

intensity changes at interference pattern expose the information of dynamic strain. Another 

approach that implements a similar strategy made use of optical resonators such as fiber Bragg 

gratings (FBGs) [32]. Perturbations occurring at a resonator caused frequency or intensity changes 

in the reflectance curve. Figure 2 shows the schematics of various interferometers and resonators. 

A PZT piezoelectric transducer was hypothesized to be a vibration source that generates 

ultrasound. 
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Figure 2 Schematic of interferometers and resonators: (a) Sagnac, (b) Michelson, (c) Mach–Zehnder, (d) 

intrinsic Fabry–Perot, (e) extrinsic Fabry–Perot and (f) fiber Bragg grating. (LD: laser diode; PD: 

photodetector; PZT: lead zirconate titanate piezoelectric transducer.) 

 

 Nearly all interferometers were based on quadrature point demodulation which maintains 

the wavelength of interrogating lasers in the slope of single interference fringe. Optical resonators 

employed similar demodulation that tuned interrogating wavelengths to the monotonic region of 

reflectance curve. It brought a similar linear intensity response for high-speed strain measurement. 

Figure 3 shows the quadrature point in the interference pattern as well as the curve center of optical 

resonator’s reflectance slope. Although they still based on intensity-based demodulation, the 
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interferometers and optical resonators granted insight into sensing refractive index change instead 

of focusing on loss from light decoupling.  

 

 

Figure 3 Generic illustration of quadrature point demodulation for (a) interferometers and (b) optical 

resonators in like manner. 

 

1.2.2 Multi-points Ultrasound Sensors 

In refractometry, strain-induced refractive index change affects the resonance frequency of 

resonators or the mean free path and phase of interrogating light in one arm of interferometer. It 

becomes much more sensitive to external mechanical force with superb SNR rather than 

decoupling loss. Some researchers have applied this simple intensity-based refractometry to multi-

points dynamic strain measurement to enable multiplexing, such as MZIs [33] and FBGs [34-36]. 

Figure 4 shows the typical schematic of multi-points strain sensing including MZIs and FBGs. A 

PZT piezoelectric transducer was still used to mimic ultrasound generation. 
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Figure 4 Schematics of multi-points strain sensing (a) MZIs and (b) FBGs. (AWG: arrayed waveguide 

grating) 

 

Nevertheless, the use of massive couplers, splitters, and photodetectors in MZIs introduces 

additional losses and disproportionate burdens on data acquisition. And in some research studies, 

the use of optical switches in FBGs sacrifices the speed of interrogation. Besides, the control of 

inherent noise remains to be investigated. 

Interferometers and resonators bear the inherent noise from lasers and optical fibers 

respectively. Several methods have been proposed to mitigate laser noise such as Pound-Drever-

Hall, and used in frequency locking and phase-based quadrature demodulation as multiple-

wavelength interrogation [37, 38]. The accuracies of strain measurement were greatly improved 

but in absence of considering the effects of relative intensity noise (RIN) for interrogating laser 

and polarization state drift of standard telecom fibers. RIN arises from relaxation oscillations in 

solid-state lasers or intrinsic phase and frequency fluctuations in distributed feedback lasers (DFB). 

It is a type of high-frequency noise that may affect the SNR in the ultrasound detection [39]. 

Another factor should be paid close attention is optical fiber selection in intensity-based 

refractometric methods. Even the minor mechanical perturbations along the fiber cable can cause 

certain intensity fluctuations of interrogating light with the consequence of polarization state drift. 
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It becomes much severer in some optical fibers with high numerical aperture such as introducing 

additional bending loss.  

On the other hand, white light interferometry (WLI) offers an intensity-independent 

solution for reliable dynamic sensing. Estimating the accurate oscillation frequency of interference 

pattern can be used to extract the detailed optical path difference (OPD) within the interferometer. 

The assessment of OPD is directly oriented from spectrum analysis instead of intensity acquisition 

which avoids RIN and other intensity-based noise. Recently, multi-point strain measurements with 

WLI were investigated and reported in the use of several intrinsic FPIs with different cavity lengths 

[40, 41]. The miniaturized intrinsic FPIs are extremely suitable for extensive deployment 

compared to other interferometers. The amount of sensing points can be numerous because of the 

infinite choices present on cavity length design of separated intrinsic FPIs. However, due to the 

requirement of full spectrum acquisition, the limited speed of the spectrometer restricted the 

performance of WLI for ultrasound detection. The frame rate of charge-coupled device (CCD) in 

spectrometer is capped to several kHz which is far from enough for high-frequency strain 

measurements.  

1.2.3 Distributed Ultrasound Sensors 

The employment of interferometers and resonators in constructing a large sensing array for 

ultrasound detection often involves either the burden of data acquisition or the restriction of speed 

during the whole-spectrum scan. These are not the only solutions to decoding the dynamic strain 

from frequency and intensity of interrogating light. Optical reflectometry is another method 

broadly recognized to perform large-scale distributed strain sensing while revealing information 

on spatial location [23]. By exploiting the intrinsic scattering property of optical fibers, it scans 
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the strain-induced refractive index changes along the entire fiber with spatial continuity. These 

various mechanisms result in the forms of Rayleigh, Brillouin or Raman scattering. Figure 5 shows 

the spectral features of intrinsic scattering mechanisms from interrogating light 𝑓0 within optical 

fiber. Those fundamental scatterings determine the differences in various systems on measurands, 

spatial resolutions, sensitivities, and sensing ranges. furthermore, they have been successfully 

applied in several well-known sensing systems including: Raman distributed temperature sensing, 

Brillouin distributed temperature and strain sensing and Rayleigh distributed acoustic sensing 

(DAS). These sensing systems also cover a wide range of applications on safety, security and 

structural health monitoring. 

 

 

 

 

Figure 5 The spectrum of three fundamental scatterings [42]. 

 

Distributed dynamic strain measurement has drawn a lot of attention and has become a 

great challenge due to the requirement of fast response and high SNR. Several investigations of 



 13 

Brillouin optical time domain reflectometry (B-OTDR) has been examined since it has superb 

SNR from nonlinear amplification [43]. But taking minutes to scan the Brillouin spectrum limits 

the maximum detectable frequency. Instead, Rayleigh scattering keeps the same frequency as 

interrogating light which avoids gain in the spectrum scan. This greatly expedites the speed of 

interrogation and features a fast response in dynamic strain measurement.  

Previously, time-domain and frequency-domain Rayleigh reflectometry were introduced 

for distributed strain measurement [44, 45]. However, optical frequency-domain reflectometry 

(OFDR) was blocked from ultrasound detection due to the limitation of the interrogating source 

[46]. In each repetitive scan, it is hard to meet all the criteria such as high-speed sweeping velocity, 

broadband scan range and identical frequency. Conventional direct-detection in OTDR is also 

inapplicable for dynamic strain measurement since the dependence of Rayleigh scattering intensity 

on strain is too weak [47]. 

Phase-sensitive Rayleigh optical time domain reflectometry (φ-OTDR) offers interesting 

an solution for distributed ultrasound detection. It has become a core technology dependent on 

real-time dynamic event monitoring. φ-OTDR was first proposed as distributed intrusion sensor 

in 1993 following the concern of low SNR [48]. The performance of φ-OTDR system, such as 

sensing dynamic range, spatial resolution, and sensitivity, are strongly restricted by the SNR of 

system. Moreover, when the sensing length extends to hundreds of kilometers with high spatial 

resolution, the SNR becomes one of most crucial problems.  

1.2.4 SNR Improvement and Pattern Recognition  

In φ-OTDR system, continuous-wave (CW) light from the narrow linewidth laser is 

modulated to optical pulses and sent into the sensing fiber. Due to the inherently weak Rayleigh 
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backscattering signal from telecom-grade fibers, the φ-OTDR based on unmodified optical fibers 

often incurs poor SNR. The SNR of backscattered signals are proportional to the extinction ratio 

(ER) of both the laser pulse and intrinsic Rayleigh scattering coefficient of optical fiber. Either 

increasing the ER or enhancing Rayleigh coefficient helps to ameliorate SNR. The simplest 

method to improve ER is via a modulator cascade. The pulsed interrogating light is effectively 

further suppressed in cascaded modulators stemming from nonlinear Kerr effect [49]. On the other 

hand, several methods have been proposed to enhance Rayleigh scattering in fiber, such as 

ultraviolet (UV) exposure of the hydrogen-loaded single mode fiber [50, 51] and UV inscription 

of ultra-weak FBGs [52, 53]. However, the complexity of the fabrication procedure hampers its 

practical application. And they are not stable at elevated temperatures [54]. 

Various signal processing algorithms like moving average and wavelet transform have 

been demonstrated to improve SNR as well [55, 56]. Some novel two-dimensional edge detection 

[57] and bilateral filtering [58] methods have also reported. Relying on signal processing to 

improve SNR can be robust and cost-effective but still has the challenge of long processing time 

especially for huge amount of data. 

Even if SNR of φ-OTDR system is enhanced to an adequate level, another well-known 

issue that limits the system in DAS applications is false alarms from ambient environmental 

disturbances. Perimeter security and structural health monitoring require systems to perform 

accurate judgments on threat identification apart from benign perturbations. Multi-scale wavelet 

decomposition [59], Gaussian mixture models (GMMs) [60, 61], and Morphologic feature 

extraction methods [62] have been used to classify specific events including pattern recognition 

(PR). Most of prior works focused on single-hidden-layer machine learnings approaches which are 

incapable of processing huge amount of data in real-time while distinguishing false alarms from 
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similar phase shift [60]. And since all of them are based on amplitude-measuring schemes, a low 

SNR system cannot be neglected that inordinately degrades the effectiveness of PR. The φ-OTDR 

in DAS system has only been applied to distinguish events with significantly different acoustic 

patterns such as human walking and motor vehicle movement, or classification of safe excavator 

operation, local traffic, and accidental excavator contact with a gas pipeline [63]. 

1.3 Thesis Contribution 

Multi-points ultrasound fiber sensors or distributed ultrasound sensors appear to be a tool 

with great potential in PAT, NDT, perimeter security and seismic physical surveys. Current 

constraints in refractometry and reflectometry push the large-scale dynamic strain measurement 

into a bottleneck. WLI as an intensity-independent interrogation tool features multiplex scalability 

and wonderful reliability but stops at low-speed sampling. φ-OTDR owning fantastic interrogation 

range and broad detectable frequency was impeded by low SNR from intrinsic Rayleigh coefficient 

and unreliable PR. The goal of this thesis, is to circumvent the current barriers of refractometry 

and reflectometry and develop reliable and effective multi-point ultrasound fiber sensors and 

distributed ultrasound sensors. Furthermore, rather than depend on single-hidden-layer PR that 

requires filtration of demand information, the event recognition can be kept at a high-level of 

promising accuracy by using efficient artificial intelligence for PR. 

The foundation of innovative system design was based on artificial Rayleigh scatters in 

telecom fibers inscribed by femtosecond laser direct writing. The nanostructures used as nano-

reflectors inside fiber cores can drastically improve the intensity of Rayleigh backscattering to 

over 35 dB. They can be used to construct intrinsic FPI as reflectors or enhance the SNR of φ-
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OTDR. Applications of laser-fabricated nanostructures were explored for ultrasound detection in 

both multi-points intrinsic FPI and distributed φ-OTDR. 

Scanning white light interferometry with optoelectronic phase-locked loop (OPLL) was 

used in multi-point intrinsic FPI that interrogated cascaded FP cavities with the goal of obtaining 

temporal fringe patterns. The vibration-induced frequency shift can be extracted by tracking the 

maximum-energy ridges in time-frequency spectrogram after using reassigned short-time Fourier 

transform (STFT). It has potential to become the standard for real-time spectral analysis since field 

programmable gate arrays (FPGA) with embedding STFT has been reported [64]. 20 cm long 

intrinsic FP cavity within the polarization-maintaining (PM) fiber core was demonstrated for 20 

kHz detection. And two intrinsic FPIs with different cavity length was cascaded into a single PM 

fiber that proved to be feasible on multi-points ultrasound sensing. This approach has shown the 

traits of finesse-insensitive, noise-free, high-sensitivity and multiplex scalability. 

Another application of artificial scatters was to enhance Rayleigh backscattering profiles 

in the φ-OTDR system. The vibration-induced phase shift between adjacent scatters was tactfully 

designed to be extracted by using 3×3 coupler demodulation within unbalanced Michelson 

interferometers (MI). The enhanced SNR provided detailed delineation of distributed ultrasound 

signals that could be applied to recognize the subtle information in acoustic events. Distinguishing 

the locomotion difference between individuals and abnormal acoustic echoes from pipeline 

corrosions were assessed by using machine learning data analytics. Deep neural networks that use 

multiple hidden layers was implemented to address complex nonlinearity. Supervised neural 

networks provides a high degree of accuracy on event identification in both cases. Furthermore, 

unsupervised neural networks were investigated for the label-free potential. 



 17 

2.0 Fiber Principle 

Fiber sensors employ the unique properties of optical fiber to perceive the ambient 

environmental perturbation. External stress elicits strain inside fiber cores which results in 

geometric deformation and refractive index change of optical fiber. Shape deformation was 

utilized in loss-based interrogation for the measurement of decoupling ratio. The limited SNR 

limited its applicability for the detection of weak strains like micro-bending. Instead, monitoring 

the refractive index change was reliable and dependable for measurement of subtle strains that 

occurred at the fiber core. 

2.1 Photo-elastic Response of Optical Fiber 

Optical fibers as fused silica in the form of quartz is optical isotropic when there is an 

absence of stress. When mechanical deformation imposes on an optical fiber, the strain-dependent 

dielectric constant is governed by the photo-elastic effect. It highlights the 

occurrence of optical anisotropy as the presence of double refraction, birefringence, or dichroism. 

The relationship between the mechanical stress and refractive index was described by the photo-

elastic effect that determined the phase shift of transmitting light at different polarization states.  

For a linear elastic material, the refractive index is linearly proportional to the loads, which 

was first demonstrated by Maxwell. The principle stress 𝜎 in the direction of x, y and z induce the 

variation of refractive index that can be expressed as: 
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 𝑛𝑥 = 𝑛0 + [𝐶1𝜎𝑥 + 𝐶2(𝜎𝑦 + 𝜎𝑧)],  

 𝑛𝑦 = 𝑛0 + [𝐶1𝜎𝑦 + 𝐶2(𝜎𝑥 + 𝜎𝑧)], (2-1) 

 𝑛𝑧 = 𝑛0 + [𝐶1𝜎𝑧 + 𝐶2(𝜎𝑥 + 𝜎𝑦)],  

 

where 𝑛0 is unstressed refractive index, 𝐶1and 𝐶2 are direct and transverse opto-elastic constant 

respectively [65]. The linear relation between the refractive index and stress manifests a feasible 

way to measure the complete state of external stress on optical fibers. Refractometry and 

reflectometry are totally dependent on phase detection which corresponds to reliable strain 

measurements. Figure 6 shows the schematic of an external stress impacting optical fiber. Optical 

fiber as a homogeneous dielectric rod has an almost identical value to Young’s modulus and 

Poisson’s ratio in its core and cladding. Hence, the external stress can be approximated as two-

dimensional plane-stress, where 𝜎𝑧 = 0. The two-dimensional plane-stress matching two 

orthogonal polarization modes of optical fiber brings the accumulation of relative phase retardation 

along each direction.  

 

 

Figure 6 Schematic of an optical fiber applied with external stress. 
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Considering a section of optical fiber with effective length 𝑙𝑒𝑓𝑓, the relative phase 

retardation at two orthogonal polarization modes of single mode fiber can be written as: 

 

 

∆𝜑𝑥 = 𝑘0∆𝑛𝑥𝑙𝑒𝑓𝑓 = 𝑘0𝑙𝑒𝑓𝑓 (𝐶1 −
𝐶2

3
)𝜎𝑥 , 

∆𝜑𝑦 = 𝑘0∆𝑛𝑦𝑙𝑒𝑓𝑓 = 𝑘0𝑙𝑒𝑓𝑓 (𝐶2 −
𝐶1

3
)𝜎𝑦 , 

(2-2) 

 

where 𝑘0 is the unstressed wavenumber and ∆𝑛 is stress-induced refractive index change [66]. 

Relative phase retardation at two orthogonal polarization modes have separated the response into 

the transverse principle stress.  

In practical applications, optical fibers were embedded into host material performing strain 

measurements. Several types of host materials have been reported including plastic, graphite 

composite materials, concrete and alloy metal [67-69]. Due to a great diversity of host material 

with different mechanical properties and complex shapes of mold, the theoretical analysis of stress 

transfer was curbed by a lack of an appropriate model. For example, the frequency response of 

acoustic wave propagating in steel elbow and epoxy strip is hard to reconcile with a unified theory. 

Various validated models were reported corresponding to simple structures in a wide range of host 

materials. However, some of them ignored the impact of a soft coating on the outside an optical 

fiber, like silicone or polypropylene. The effect of a soft coating on stress transfer can be simulated 

by building a unified model. Figure 7 shows an optical fiber with soft coating that was embedded 

into a host material. The response of optical fiber to external stress depends on the mechanical 

interactions between optical fiber, soft coating and host material. 



 20 

 

Figure 7 Schematic of an optical fiber applied with external stress. 

 

Soft coating was expected to dampen the external stress response in an optical fiber as a 

consequence of small Young’s modulus. The displacement 𝜉 in the x-axis of optical fiber follows 

the motion equation consisting of Young’s modulus 𝐸𝑐 and damping coefficient 𝐷𝑐 of fiber coating  

[66], 

 

 𝜌
𝜕2𝜉

𝜕𝑡2
+ 2𝐷𝑐

𝜕𝜉

𝜕𝑡
+ 2𝐸𝑐𝜉 = 2𝐴√𝐸𝑐

2 + (𝜔𝑎𝐷𝑐)2 cos (𝜔𝑎𝑡 − 𝑘𝑥 − 𝑡𝑎𝑛−1 (
𝜔𝑎𝐷𝑐

𝐸𝑐
)), (2-3) 

 

where 𝜌 is mass density, 𝐴 and 𝜔𝑎 are amplitude and angular frequency of external stress, 

respectively. After considering the initial set of conditions, the solution of the displacement 

equation depicts the frequency response of strain at the optical fiber. The inertial effect prevents 

the optical fiber from directly sensing the external vibrations.  
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2.2 Intrinsic Fabry–Perot Interferometer 

Interferometry is the one of most common methods used to detect dynamic strain affecting 

optical fibers. IFPIs, which exhibit excellent multiplex scalability, are well-known for multi-point 

sensing. With two partial reflectors embedded in the fiber core, the interrogating light never 

escapes from the optical fiber. The typical structure of IFPI was shown in Figure 8. Two partial 

reflectors with reflectance 𝑅1 and 𝑅2, and transmittance 𝑇1 and 𝑇2, delineate the light propagation 

inside IFPI. 

 

 

  Figure 8 Schematic of an optical fiber consisiting of IFPI at fiber core. 

 

The interrogating light with intensity 𝐼0 was launched into the optical fiber and produced 

reflection and transmission repeatedly within cavity of IFPI. The 𝑛𝑡ℎ reflected and transmitted 

light can be expressed as, 

 

 

𝑅(𝑛) = 𝑇1
2𝑅2(𝑅1𝑅2)

𝑛−1 exp(−𝑗𝑛𝜑), 

𝑇(𝑛) = 𝑇1𝑇2(𝑅1𝑅2)
𝑛−1 exp [−𝑗 (𝑛 −

1

2
)𝜑], 

(2-4) 

 

where 𝜑 stands for the phase delay occurred at single round trip of interrogating light within FP 

cavity. The phase delay caused by OPD can be written as, 
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 𝜑 = 𝑘 ∙ 𝑛𝑒𝑓𝑓 ∙ 2𝑙 + 𝜙, (2-5) 

 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of FP cavity at length 𝑙; 𝑘 is the wavenumber of 

interrogating light in vacuum, and 𝜙 is the phase variation induced by external forces. When the 

reflectance of two partial reflectors are approximately the same 𝑅, the simplified reflectivity and 

transmittivity of IFPI can be demonstrated as, 

 

 

𝑅𝐹𝑃 =
𝐹𝑠𝑖𝑛2 𝜑

2

1 + 𝐹𝑠𝑖𝑛2 𝜑
2

, 

𝑇𝐹𝑃 =
1

1 + 𝐹𝑠𝑖𝑛2 𝜑
2

, 

(2-6) 

 

where 𝐹 is the finesse coefficient. The finesse depends upon the reflectance of FP reflector which 

is insensitive to cavity length, 

 

 𝐹 =
4𝑅

(1 − 𝑅)2
, (2-7) 

 

The finesse coefficient was also determined by free spectral range (FSR) over the 

bandwidth of FP resonances. The spacing between two adjacent fringes from the interference 

pattern is defined as FSR. By ignoring the wavelength-dependent effective refractive index, FSR 

can be approximated as [70], 

 

 𝐹𝑆𝑅 = ∆𝜆 = −
2𝜋

𝑙
(
𝜕𝛽

𝜕𝜆
)
−1

≈
𝜆2

𝑛𝑒𝑓𝑓𝑙
, (2-8) 
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where 𝛽 is the propagation constant within the FP cavity. FSR manifests the dependency between 

interference pattern and wavelength of interrogating light at constructive interference. If the phase 

difference in a round trip of FP cavity is the integer number of 2π, partially reflected in 

interrogating lights, then a constructive interference can be generated, 

 

 𝜑 = 𝑘𝑚 ∙ 𝑛𝑒𝑓𝑓 ∙ 2𝑙 + 𝜙 = 𝑚 ∙ 2𝜋, (2-9) 

 𝑘𝑚 =
2𝜋

𝜆𝑚
=

𝑚 ∙ 2𝜋 − 𝜙

𝑛𝑒𝑓𝑓 ∙ 2𝑙
, (2-10) 

 

where 𝑚 is a positive integer number called the peak order. Due to constructive interference, the 

peaks of fringes depend upon OPD within FP cavity and phase noise from external stress. By 

detecting the interference pattern using white-light or scanning-white-light interrogation methods, 

the stress-induced phase delay can be accurately extracted. The intensity of interference pattern 

can be expressed as [71], 

 

 𝐼(𝑘) = 𝐼(𝑘) = 2𝐼0(𝑘)[1 + 𝛾 cos(𝜑)] = 2𝐼0(𝑘)[1 + 𝛾 cos(2𝑘𝑛𝑒𝑓𝑓𝑙 + 𝜙)], (2-11) 

 

where 𝛾 is the fringe visibility which quantifies the contrast of interference. The phase variation 𝜙 

caused by external stress can be demodulated using the measured intensity. 

2.3 Intrinsic Scattering of Optical Fiber 

During transmission, material absorption loss is predominant. Light interacts with the 

constituent molecules resulting in photon-induced molecular vibration, which absorbs the light 
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energy and turns it into heat. Fused silica has two notable absorption bands located at ultraviolet 

(UV) and infrared (IR) regions. The doping impurities and residuals from fabrication creates 

additional absorption commonly referring to as OH ions. Apart from extra ions, the fabrication 

process also introduces irregularities such as micro-bending during fiber drawing. It also incurs 

mode coupling between the fundamental mode to higher order modes which generates the loss.  

Another factor of fiber loss is spontaneous scattering. Part of light is redirected to the 

cladding or back to the source due to intrinsic scattering mechanisms. There are mainly three types 

of spontaneous scattering caused by elastic and non-elastic effects: Rayleigh, Brillouin and Raman. 

They involve interactions between external incident light and microscopic molecule movements 

[47]. 

Two non-elastic scatterings are Brillouin and Raman. Photons may lose or gain energy 

during the scattering process.  In addition to being scattered by local irregularities, molecule 

vibration and electron excitation is also involved in the scattering process.  When the wavelength 

of transmitting light is large enough to compare the distance between each molecule, 

intermolecular oscillation can be induced by electrical field of light. The collective oscillations 

generate large scale phonons which give rise to the frequency shift of scattered light. The scattering 

that involves phonons generation is named Brillouin. Besides, a small number of photons join 

vibrational and rotational transitions in the bonds between atoms. They are absorbed or emitted by 

electrons which precisely match the difference of their energy levels. The scattered light with 

frequency shift by effect of electron excitation is called Raman scattering. 

Spontaneous scattering only takes place when the intensity of light is inadequate to change 

the property of the material. If optical property of the material is modified by a high-power incident 

light, a transition of the medium’s behavior from a linear to a non-linear regime happens which is 
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called stimulated scattering. Brillouin and Raman can be stimulated and become more evident by 

pumping a high-intensity continuous light. Photons from the pump are annihilated to create more 

photons at the probe. By improving the efficiency of a nonlinear process, a wide variety of 

nonlinear effects can be observed in an optical fiber [72]. However, their application in ultrasound 

detection were severely limited due to the time-consuming gain spectrum scan. 

Rayleigh is the only elastic scattering that occurs when light propagates in an optical fiber. 

It has been widely used to detect vibrations due to the ease of amplitude measurement at single 

frequencies. Unlike nonelastic scattering that requires scanning gain spectrum, Rayleigh scattering 

utilizes no energy transformation and/or frequency shifts which provides a fast response of 

dynamic measurement. 

In a small spatial scale, molecules and molecule clouds are small enough to compare with 

a wavelength of transmitting light. A small portion of mutually incoherent electromagnetic (EM) 

fields between adjacent molecular clouds collectively respond to external light incidence and are 

orientated to perform macroscopic polarizations. The collective EM polarization induces a 

secondary light emission in all directions with the same energy which is Rayleigh scattering.   

For an unpolarized input light, the ratio between the intensities of secondary light emission 

and incident light at distance 𝑟 and angle 𝜙𝑧 apart from the scatter can be described as: 

 

 
𝐼

𝐼0
=

8𝜋4𝜈4𝑎2

𝑐4𝑟2
(1 + 𝑐𝑜𝑠2𝜙𝑧), (2-12) 

 

where 𝜈 is light frequency, 𝑎 is polarizability and 𝑐 is speed of light in vacuum. Therefore, the 

intensity of Rayleigh scattering is proportional to the incident power and inverse fourth power of 

the wavelength.  
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The quantity of the secondary light emission is largely determined by the dielectric 

parameter fluctuation of the material. Fused silica has molecule level irregularities such as 

microscopic defects and inhomogeneities. Those random orders of non-propagating density 

fluctuation in the material can be treated as the source of Rayleigh scattering [73]. The fluctuation 

of the dielectric constant ∆𝜖 can be used to represent these irregularities. Additional polarization 

induced by ∆𝜖 can be written as [74]: 

 

 𝑷 = ∆𝜒𝑬𝟎 = ∆𝜖𝑬𝟎, (2-13) 

 

where ∆𝜒 is the fluctuation in the susceptibility from the relation 𝜖 = 1 + 𝜒. Hence, the Rayleigh-

scattering coefficient of a random medium can be characterized by the variance 〈∆𝜖2〉 and 

correlation length 𝑙𝑐. By calculating the total scattered power over the solid angle 4𝜋, the Rayleigh-

scattering coefficient can be obtained as [75]: 

 

 𝛼𝑅 =
16

3
𝑘4〈∆𝜖2〉𝑙𝑐

3                         𝐵𝑜𝑜𝑘𝑒𝑟 − 𝐺𝑜𝑟𝑑𝑜𝑛 𝑀𝑜𝑑𝑒, (2-14) 

 𝛼𝑅 =
2√𝜋

3
𝑘4〈∆𝜖2〉𝑙𝑐

3                         𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑀𝑜𝑑𝑒𝑙, (2-15) 

 

where 𝑘 is the wave number. The difference between the two models arises from the ratio of the 

integrals during calculations. If correlation length is much shorter than wavelength, then results 

are model independent.  
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Figure 9 Schematic of spontaneous Rayleigh scattering. 

 

The propagating light in optical fiber is elastically scattered to all directions which is 

simply illustrated by the schematic diagram in Figure 9. Some of scattered lights are redirected 

into cladding while some of them are recaptured by the fiber and generates a backward 

transmission. Supposed the incident light has a temporal width, 𝑇, and the intrinsic absorption of 

optical fiber, 𝛼, then it is possible to write the power of Rayleigh backscattering after a single 

completely round trip as: 

 

 𝑃(𝑧) = 𝑃𝑖𝑛 (
𝑣𝑔𝑇

2
) ∙ 𝛼𝑅 ∙ 𝑆 ∙ 𝑒𝑥𝑝(−2𝛼𝑧), (2-16) 

 

Here 𝑣𝑔 is the group velocity of light in the optical fiber,  𝑆 is the recapture factor in single mode 

fibers and  𝛼𝑅 is Rayleigh-scattering coefficient. 𝑆 is a constant related to the core diameter and is 

the refractive index of the optical fiber. For a single mode fiber, 𝑆 = 9.6 × 104, if ∆= 0.2%. 

Therefore, the power of backscattered light at the input end as compared to the input power 

can be described as:  

 

 10 log (
𝑃(𝑧 = 0)

𝑃𝑖𝑛
) = 10 log (

𝑣𝑔𝑇 ∙ 𝛼𝑅 ∙ 𝑆

2
) = −55 𝑑𝐵, (2-17) 

 

where 𝑣𝑔 = 2 × 108 𝑚/𝑠, 𝑇 = 200𝑛𝑠 and 𝛼𝑅 = 1 𝑑𝐵/𝑘𝑚 for normal single mode fiber. 
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A simple discrete model to describe the principle of Rayleigh backscattering has been 

reported previously [76]. It simulated the interference of Rayleigh backscattering as s summary of 

reflected light from finite scatters. Figure 10 illustrates the interference of the various reflections 

that occurred at location 𝑧 when using pulsed light during interrogation. The backward lights 

passing the location 𝑧 contained all Rayleigh backscattering in the range of 𝑧 to 𝑧 +
∆𝑧

2
, where ∆𝑧 

is the distance of light propagation during the time of a single pulse period. 

 

 

Figure 10 Schematic of Rayleigh backscattering from a pulsed light. 

 

A more useful form of the equation with integral operation can be derived to describe the 

interference field, 
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 𝐸𝑏(𝑧) = 𝐸0 ∫ 𝛾𝑧𝑒
−𝛼𝑧𝑒𝑗𝜙𝑧𝑑𝑡

𝑧+
∆𝑧
2

𝑧

, (2-18) 

 

where 𝛼 is attenuation coefficient of optical fiber;  𝛾𝑧 and 𝜙𝑧 are amplitude and phase of 

backscattering occurring at location 𝑧. The traveling distance 
∆𝑧

2
 of light in half pulse duration is 

well-known in Rayleigh OTDR design as the spatial resolution of the system. Within the length of 

∆𝑧

2
, the complex sum of backscattering from enormous scatters can be described using the 

attenuation coefficient of an optical fiber, as well as the amplitude and phase of backscattering at 

a specific location. This corresponds to different interrogation strategies to detect strain-induced 

decoupling or phase changes like loss-based OTDR and phase-sensitive OTDR. 

2.4 Rayleigh Enhancement 

The entire sensing system of an optical fiber sensor is composed of three parts: sensor 

fabrication, interrogation system design and signal processing. Together, these all work effectively 

together to achieve reliable strain measurement. In addition to basic sensing functions, pattern 

recognition grants the system the ability to identify abnormal events that occur outside the optical 

fiber. The false alarm within the identification system is strongly affected by SNR. The term that 

significantly determined the performance of the system is the SNR which stems from fringe 

visibility in interferometry or from the Rayleigh backscattering intensity in Rayleigh OTDR. 

Fringe visibility depends on the reflectance of the embedded reflector while the backscattering 

intensity is determined by the intrinsic Rayleigh coefficient. Both quantities should be kept in a 

moderate range to avert from multi-reflection and evident attenuation.  
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An intrinsically weak Rayleigh scattering profile of telecom grade in the optical fibers 

severely limits SNR in OTDR. To address the challenge of low SNR, several methods have been 

employed to increase Rayleigh scattering but with a complicated fabricating procedure and time-

consuming photo-sensitization. Recent advances in ultrafast laser direct-writing has led to 

successfully enhanced Rayleigh scattering at a single point [77] or segment of optical fiber [78]. 

As compared to weak FBGs and deep ultra-violet Rayleigh enhancement, it can withstand high 

temperatures of up to 800℃ and is often stable in harsh environments, like highly reactive fuel 

gas. 

 

 

Figure 11 Schematic of ultrafast laser direct-writing setup.  (a) Laser pulse was radiated at optical fiber. (b) 

Scanning electron microscope (SEM) image of nano-reflectors morphology.  

 

Strongly pulsed laser light induced enhancement of Rayleigh scattering is a consequence 

of defects, reflected as discontinuities within the fiber core. It increases the fluctuation of the 

dielectric constant ∆𝜖 greatly. Figure 11 shows a schematic of ultrafast laser direct-writing setup 

and the SEM image of a typical microstructure written using a femtosecond-laser. This defect is 

similar to a permanent physical damage and works as a nano-reflector to scatter the interrogating 
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light at all wavelengths. The ultrafast laser enhancement of Rayleigh profiles in optical fibers is a 

general approach, which has been successfully applied to different types of optical fibers resulting 

in similar Rayleigh enhancement effects and temperature stabilities including those fibers with a 

high-temperature stable protective coating such as polyimide (up to 350℃) or fibers with dielectric 

coating (TiO2) for higher temperature applications [79, 80]. 

The defects within the fiber core produce intensive Rayleigh backscattering which work as 

inline nano-reflectors. The dependency between pulse energy and the visibility profile of 1-

millimeter IFPI was demonstrated in Ref. [71]. The insertion loss of each nano-reflector went up 

following an increase in pulse energy when inscribing severe nano-defects. The optimal pulse 

energy at the top of U-shape profile was 160nJ with 0.0012-dB loss.  



 32 

3.0 Multi-point Ultrasound Sensing 

Fiber FPIs become mature on ultrasound detection especially at single-point locations. 

Diaphragm-based FP cavity mounted at the fiber-end provided promising measurements by using 

quadrature point demodulation [81]. However, the drawback of fiber-end structure and intensity-

based demodulation is the vacancy of multiplexing and susceptibility to environmental 

perturbations. 

IFPI attracts a lot of attention due to its merits of multiplex scalability and ease of 

fabrication. Artificial Rayleigh scatters written by ultrafast laser direct writing is appropriate for 

being the reflectors of IFPI. Adequate enhancement of Rayleigh backscattering of two nano-

reflectors constructs the interferogram by forming the FP cavity. Ambient stresses are detected 

through shifts of interference pattern. Serval researches on multiplexing weak reflectors as multi-

points sensors were reported over the last decade. Most of them emphasized low-frequency stress 

measurements corresponding to temperature changes and static strain [77, 82, 83]. The bottleneck 

of low-speed spectrum-based demodulation has not been breached either with broadband CW light 

or scanning singe-wavelength laser [84]. The problems arise from the limited readout time of 

spectrometer in WLI and the linearity of sweeping frequency in a fast scanning source. The 

response speed of spectrometer is capped by a frame readout time of integrated charge-coupled 

device (CCD). The essential integration delay prevents the spectrometer from measuring the 

interferogram for ultrasound detection. Instead of employing full-spectrum acquisition, the use of 

a fast-swept laser improved the speed to obtain interference pattern without using spectrometers, 

however, this method lacks nonlinear frequency tuning. 
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3.1 Swept-frequency Interferometry 

Swept-frequency interferometry makes use of vast and versatile measurements across 

several applications. With fixed-sweeping velocity, free-space ranging was achieved by using 

frequency-modulated continuous-wave radar [85]. Tunable-diode-laser absorption spectroscopy 

has been applied in the measurement of gas parameters over the last 40 years [86]. OFDR found 

the application of distributed temperatures and strain sensing in optical fibers [87]. Optical 

coherence tomography built a raster-scanning system for three-dimensional biological imaging 

[88]. 

3.1.1 Swept-frequency Laser 

In fast swept-frequency interferometry, the sweeping rate, frequency linewidth and 

frequency range are vital characteristics to determine the performance of system. External-cavity 

lasers possess a large frequency range and narrow linewidth however, they also display discrete 

mode-hoping. Vertical-cavity surface-emitting lasers can be tuned by current injections or 

mechanical cavity change but these are limited within tens of MHz linewidth [89]. DFB was widely 

used in swept-frequency interferometry featuring high power output, stable single modes lasing 

and mode-hop-free tunability. High-speed modulation uses sweeping current injection which 

affects both bandgap and refractive index of the active layer on account of Joule heating. The heat 

generation and conduction along with thermal expansion causes the non-linearity of tuning 

wavelength [90]. Figure 12 shows the typical optical frequency deviation of DFB laser under fast 

current sweeping. 
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Figure 12 The optical frequency deviation of DFB laser under fast current sweeping [90]. 

 

Fast current modulation causes a dip caused due to detrimental competition between 

electrical tuning and thermal effect. The decrease of frequency deviation before the dip arises from 

a decline of the heat conduction response. The plasma effect that is dominant after the dip is known 

as the FM-response or chirping in the telecommunication [91]. Based on a lowpass-filter model of 

DFB laser frequency modulation, electrical tuning and thermal effects have opposite contributions 

to the refractive index of active layers [92]. The high-frequency modulation can break the weak 

response but again, there is a drawback of real-time nonlinearity control. 

3.1.2 Laser Nonlinearity Control 

The nonlinearity of instantaneous optical frequency in DFB laser sweeping invalidates 

spectrum analysis due to the distorted fringe pattern from the interferometer. Three aspects were 

investigated to ameliorate the nonlinear chirp rate, which focused on sweeping laser design [93], 

instantaneous phase locking or post-compensation [94], and resampled data acquisition[95]. Not 

all of these aspects were viable in ultrafast frequency sweeping especially for use in ultrasound 
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detection. The intrinsic speed limitation of mechanical modulation and thermal control pushed the 

current injection to become the only feasible driving source at high speeds. It is inevitable to have 

frequency nonlinearity from thermal effects such as heat generation and conduction following 

current modulation. Using interference pattern from an auxiliary interferometer to trigger 

acquisition for resampled data acquisition, can achieve equidistant frequency sampling. But the 

variation of the interference amplitude constrains its reliability due to the occurrence of sampling 

errors within the interferometric clock. And OPD between two arms of auxiliary interferometer 

pushes the sampling rate to the limitation of Nyquist Law [96]. Instead of employing various 

interference patterns to directly trigger data acquisition, concatenative reference methods were 

tried to emulate the use of multiple interferometers to increase the sampling rate [97]. However, 

the phase jitter and multiplication hardware remain challenging.   

The use of an auxiliary interferometer provides transient monitoring of instantaneous 

optical frequency. The full interference pattern can be collected after a single scanning period. By 

obtaining the optical frequency or phase information within an interference pattern, the 

nonlinearity from laser tuning is proposed to be compensated based on two classes of algorithms: 

interpolation and phase unwrapping. Interpolation algorithms include linear or cubic spline 

interpolations [98] and non-uniform FFT [99] which do not have the restriction of OPD-dependent 

acquisition triggering, but suffer from phase noise. Phase unwrapping through Hilbert 

transformation eliminates the phase noise and effectively compensates nonlinearity, however this 

raises the problem of post-processing which is time-consuming [100].  

The real-time locking of the chirp rate has been achieved by using an optoelectronic phase-

locked loop (OPLL) [94, 101, 102]. Similar to implementing a fixed-delay auxiliary MZI to 

monitor the sweeping velocity of laser diode, the nonlinear chirp rate can be extracted by mixing 
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the beating interreference with external single-frequency reference. Figure 13 shows the typical 

frequency response of OPLL in small signal approximations using lock-in amplifier (LIA) as a 

phase extractor. External single-frequency reference was provided using a built-in direct digital 

synthesis of LIA. The phase difference from the LIA output renders the intuitionistic illustration 

of real-time laser sweeping velocity. It was fed back to a laser diode driver to lock the sweeping 

velocity to steady state. 

 

 

Figure 13 The scheme of OPLL in frequency response analysis. DFB: distributed feedback laser; MZI: 

Mach–Zehnder Interferometer; LPF: Low-pass Filter;  LIA: Lock-in Amplifier.  

 

The current injection to DFB laser induces a nonlinear sweeping that contains both linear 

and non-linear frequency components as an equation with quadratic form: 

 

 𝑖𝑖(𝑡) ∝ 𝜔𝑙(𝑡) + 𝜔𝑛𝑙(𝑡) = 𝜔0 + 𝜉𝑡 + 𝛾𝑡2, (3-1) 

 

where 𝜉 and 𝛾 are the linear and non-linear coefficient of frequency sweeping, respectively. The 

laser output was fed into the auxiliary MZI with fixed time delay 𝜏 in its one arm. The beating 
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interference corresponding to the chirp rate of laser was connected to LIA for phase extraction. 

The fixed time delay 𝜏 was sufficiently small such that it could be neglected in cubic and quadratic 

varieties. Hence, the phase output of MZI is then: 

 

 
𝜙𝑀𝑍𝐼(𝑡) = 𝜙𝑖(𝑡) − 𝜙𝑖(𝑡 − 𝜏) = 𝛾𝜏𝑡2 − 𝛾𝜏2𝑡 + 𝜏3 + 𝜔0𝜏 −

1

2
𝜉𝜏2 + 𝜉𝜏𝑡

≈ 𝛾𝜏𝑡2 + 𝜔0𝜏 + 𝜉𝜏𝑡, 

(3-2) 

 

Due to the mixing of the single-frequency reference and being filtered by a built-in lowpass 

filter in the LIA, the nonlinear chirp rate was embodied in the output of the phase difference. If 

setting the frequency of the reference signal to 𝜉𝜏, the linear phase components were eliminated 

and left with only the nonlinear variables:   

 

 𝜙𝐿𝐼𝐴(𝑡) = 𝜙𝑀𝑍𝐼(𝑡) − 𝜙𝑟𝑒𝑓(𝑡) ≈ 𝜏(𝜔𝑙(𝑡) + 𝜔𝑛𝑙(𝑡)) − ∫𝜉𝜏𝑑𝑡 = 𝜔𝑛𝑙(𝑡)𝜏, (3-3) 

 

Given the inherent gain 𝐺 and electrical delay 𝜏𝑑 in the circuits, and supposing the system 

is a linear time-invariant system, the frequency response of LIA phase output becomes: 

 

 𝜙𝐿𝐼𝐴(𝑗𝜔) ≈ 𝐺𝑗𝜔𝜏𝜙𝑛𝑙(𝑗𝜔)𝑒𝑗𝜔𝜏𝑑 , (3-4) 

 

The integral part of LIA generated a phase-dependent voltage output working as a phase 

detector. Through the electrical feedback loop, the voltage signal was launched back to a LD driver 

as external modulation. It was proportional to additional current injections as a correction to the 

original sweeping current. The relationship between the feedback current and phase output of LIA 

could be simplified as, 
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 𝐼𝐿𝐼𝐴(𝑗𝜔) ∝ 𝜙𝐿𝐼𝐴(𝑗𝜔) = 𝐺𝑗𝜔𝜏𝜙𝑛𝑙(𝑗𝜔)𝑒𝑗𝜔𝜏𝑑 , (3-5) 

 

By subtracting the feedback current from DFB current injection, the phase output of OPLL 

turns into: 

 

 𝜙𝑜(𝑗𝜔) = 𝜙𝑙(𝑗𝜔) + 𝜙𝑛𝑙(𝑗𝜔) − 𝐺𝑗𝜔𝜏𝜙𝑛𝑙(𝑗𝜔)𝑒𝑗𝜔𝜏𝑑 , (3-6) 

 

In the steady state and small period of 𝜏, the non-linear component within the output phase 

could be cancelled. Only the linear frequency component that was left to serve as a locking to 

reference signal with single frequency. 

3.2 Ultrasound Demodulation 

Swept-frequency DFB interrogating IFPI generates a temporal fringe pattern by sweeping 

the frequency for laser output. The instantaneous resonance frequency of FP cavity can be 

demodulated through analysis of time-frequency representation (TFR). The effectiveness of TFR 

in audio signal processing and ultrasonic inspection have been studied previously [103, 104]. 

Popular decomposition strategies including short time Fourier transform (STFT), wavelets 

transform (WT) and Wigner-Ville distributions (WVD) have also been previously investigated. 

Furthermore, enormous linear and nonlinear denoising techniques have been developed following 

these common TFRs. The two-dimensional spectrogram becomes effective to depict joint time-

frequency energy content precisely.  
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All TFRs share the same intrinsic limitation as denoted by the Heisenberg uncertainty 

principle that perfect resolution in both time and frequency cannot exist simultaneously [105]. Like 

in STFT, the narrow window brings an excellent time resolution but terrible frequency resolution, 

and vice versa. Keeping high resolution in both domains is unattainable. This is similar to a 

frequency-dependent time-frequency resolution in WT which has a superb frequency resolution at 

low-frequency and carries an awful time resolution. WVD automatically finds the balance point 

within the uncertainty principle, however, suffers from interference terms occurring in signals of 

various multicomponent. Although smoothing the WVD with a Gaussian filter eliminates the 

interference terms, the resolution uncertainty is changed to be determined by a Gaussian filter 

design. It also induces additional tradeoffs between interference attenuation and time-frequency 

concentrations [106].  

 

 

Figure 14 TFRs for time- frequency decomposition. (a) Initial four frequency components; (b) STFT and its 

reassignment; (c) WT and its reassignment; (d) WVD, smoothed pseudo WVD and reassigned smoothed 

pseudo WVD [107]. Copyright © 1995, IEEE 
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As a complement to improve the time-frequency resolution, reassignment was commonly 

used in all TFRs through mapping the signal to the reassigned coordinates that concentrates its 

energy at the center of gravity [107]. Figure 14 shows the summary of these popularly applied 

TFRs to a spectral input with four frequency components. Among all TFRs, STFT is undoubtably 

the most popular decomposition algorithm with a well-developed analysis tool in speech 

recognition [108]. Moreover, previous studies have proven the high-fidelity measurements in 

ultrasonic frequency range with the help of a reassigned STFT [109]. 

STFT has segmented the temporal signal into multiple pieces by defining a window 

hopping through the entire signal. A series of small overlapping pieces represented as segments 

are processed by the Fourier transform individually. The STFT of temporal signal 𝑠(𝑡) with 

window function ℎ(𝑡) can be expressed as: 

 

 𝑆(𝜔, 𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝜔𝜏𝑠(𝜏)ℎ(𝜏 − 𝑡)𝑑𝜏

∞

−∞

, (3-7) 

 

Its energy density spectrum is named as a spectrogram. In the spectrogram of STFT, the 

Heisenberg uncertainty principle restricts the time and frequency resolutions. The standard 

deviations of time 𝜎𝑡 and frequency 𝜎𝑓 in the window function are closely interrelated and meet 

the inequality [110]: 

 

 𝜎𝑡
2𝜎𝑓

2 ≥ 0.25, (3-8) 

 

Selection of an appropriate window and hop length is very important to determine the time-

frequency spread of a spectrogram. The Hanning window with 𝜎𝑡
2𝜎𝑓

2 at around 0.2635 is preferred 
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since it involves a compromise between maintaining the shape of the temporal signal and 

continuing across the boundaries of the windowed signal. 

Using reassignment to improve the time and frequency resolution moves the energy center 

of the spectrogram to the new coordinates. The reassigned coordinates can be demonstrated as: 

 

 

�̂� = 𝑡 − 𝑅𝑒 (
𝑆𝑇ℎ(𝜔, 𝑡)𝑆ℎ

∗(𝜔, 𝑡)

|𝑆ℎ(𝜔, 𝑡)|2
), 

�̂� = 𝜔 − 𝐼𝑚 (
𝑆𝐷ℎ(𝜔, 𝑡)𝑆ℎ

∗(𝜔, 𝑡)

|𝑆ℎ(𝜔, 𝑡)|2
), 

(3-9) 

 

where 𝑆ℎ, 𝑆𝑇ℎ and 𝑆𝐷ℎ are STFTs of 𝑠(𝑡) with window functions ℎ(𝑡), 𝑡ℎ(𝑡) and 𝑑ℎ(𝑡)/𝑑𝑡, 

respectively. With the help of reassignment, the spectrogram sharpened the ridges of the spectral 

estimation and allowed it to be extracted by tracking the ridges at the true center of the spectral 

energy. Through mapping the maximum-energy time-frequency ridge to a continuous line, the 

dynamic signal was obtained from reassigned STFT. 

3.3 System Design 

The temporal fringes from swept-frequency interferometry generate time-frequency 

spectrogram by using TFRs. The spectral energy center represents the estimate of OPD within the 

interferometer’s reaction to external stress. The number of fringes per second serves as the 

sampling rate of the interrogation system. Furthermore, the time interval between adjacent fringes 

implies a linearity of laser sweeping. Increasing the number of temporal fringes and equalizing the 



 42 

time interval between them improves the demodulation accuracy, as well as the upper limit of the 

detectable frequency range. 

3.3.1 Sensor Fabrication 

The long-length FP cavity compensates the poor response of low-frequency modulation 

while maintaining control of nonlinearity to remain viable. The small FSR of fringe pattern from 

the long FP cavity gives rise to more temporal fringes within each scan. In turn, this expedites the 

sampling rate of interrogation that provides an accessible solution for ultrasound detection.  

For a long FP cavity, maintaining polarization is extremely important to avoid polarization 

mode shift that destroy the fringe pattern. PM fiber can be used to fix the problem with strong 

built-in birefringence. The polarization status of transmitting light that matches one of the 

birefringent axes is preserved throughout entire fiber. The high birefringence brings a large 

difference in propagation constant between two polarization modes. Due to the principle of 

coherent mode coupling, varying ambient perturbations have significant impact on the polarization 

status of the transmitting light but only when its spatial wavenumber exactly matches the 

propagation constant difference. Usually, the PM fiber owning several millimeters polarization 

beating length which is in tantamount to a frequency difference of tens of GHz propagation 

constants. It is far from enough for ultrasound detection. Overall, fabricating IFPI in PM fiber has 

been a challenge with conventional micromachining or splicing. Any deformation of the 

birefringent axes in PM fiber brings about inferior influence on polarization maintaining. 

Nano-reflectors written by ultrafast laser are right for inline IFPI within a PM fiber. 

Precisely targeting the femtosecond pulse inside the fiber core averts from damaging the 

birefringent axes of PM fiber while inscribing the Rayleigh enhanced points. The strength, 
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location, and section length of nano-reflectors are all controllable and can be be flexibly achieved 

during the fabrication process.  

The detailed manufacturing process was described in a previous report [78]. Femtosecond-

laser consisting of a Coherent MIRA 900 Ti: sapphire mode-locked oscillator and a Coherent 

RegA 9000 regenerative amplifier operated at 800 nm with 250 kHz repetition rate and 270-fs 

pulse duration. A cylindrical telescope was used to shape the laser beam and control the shape of 

the focal volume inside the core of a PM fiber (Thorlabs, PM1550-XP). In total, four nano-

reflectors were inscribed within the core area at an on-target pulse energy of ~160nJ. The size of 

each nano-reflector was estimated to be 2×2-μm (Cross-section) by 7-µm (Length). The insertion 

loss showed a 0.0012 dB per nano-reflector [71]. Figure 15 illustrates the schematic of nano-

reflectors inside the PM fiber, and their backscattering profile interrogated by an optical 

backscatter reflectometry (Luna OBR4600). The inline cavity length of two IFPIs was designed to 

be 10cm and 20cm respectively. 

 

 

Figure 15 Fabrication of nano-reflectors within PM.  (a) The schematic of nano-reflectors inside PM fiber. (b) 

Backscattering profile of two inline IFPIs interrogated by Luna OBR4600. 
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3.3.2 Interrogation System Design 

High-speed ultrasound detection has great appeal to many applications but has a high 

system design requirement. Conventional WLI provides a reliable method for dynamic strain 

measurement but was capped by a low speed spectrometer. With the help of a DFB laser, swept-

frequency interferometry can break the speed limit however, this is in the absence of proper chirp 

control. The frequency deviation in each scan depends on detrimental competition between 

electrical tuning and thermal effect. It brings about nonlinearity of frequency tuning and a decline 

in sweeping range at low-speed current modulation. The accuracy of spectral analysis with TFRs 

and fringe numbers as sampling rate are doomed to be restricted. Figure 16 shows the experimental 

setup that was used to construct an effective ultrasound sensor. OPLL and long-length IFPIs were 

adopted to solve those concerns. 

This system implemented a DFB laser (QPHOTONICS, QDFBLD-1550-50N) with 45-

mW output and less than a 1-MHz linewidth as a sweeping source. The laser was driven by an 

internal ramp current from the LD controller (Thorlabs, ITC4001) to provide sweeping optical 

frequency. Most of the light passing through a fiber splitter was launched into inline IFPIs for 

ultrasound detection. The backscattering interference from long-length IFPIs was captured by an 

avalanche photodetector (Thorlabs, APD 410C). The other 1% was launched into an auxiliary MZI 

for the purpose of OPLL. The instantaneous sweeping velocity of DFB laser was monitored by a 

LIA (Stanford Research, SR830) in real-time. LIA generated a single-frequency reference from a 

built-in direct digital synthesis. Through mixing the beating interference of auxiliary MZI with 

single-frequency reference signal, the spectral variation of beating interference was embodied in 

the phase difference between them. The voltage output of LIA was proportional to the phase 
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difference through mixing and filtering. It was sent back to the LD driver as an instantaneous 

correction to sweeping velocity. 

 

 

Figure 16 The schematic of multi-points ultrasound fiber sensor. (APD: avalanche photodetector) 

 

Long-length IFPIs were created for the large number of temporal fringes from swept-

frequency interferometry under low-speed current modulation. The number of temporal fringes 

per second was increased due to the small number of FSR on account of the long-length cavity. 

Adequate fringe numbers corresponding to high-speed samplings subsequently become capable 

on ultrasound detection. Largely different FSR values from various cavity length features 

separated and isolated the energy center in TFRs. Multi-points IFPIs can be achieved by tracking 
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energy centers located at the parted spectral range. The reassigned STFT with a simple algorithm 

and reliable performance for ultrasound demodulation was chosen to validate this multi-point 

interrogation system. 

3.4 Ultrasound Detection 

Swept-frequency DFB laser was used to interrogate inline IFPIs and return the temporal 

fringe pattern to a photodetector. The chirp rate of DFB laser was locked to steady state by using 

an OPLL consisting of auxiliary MZI and LIA. The DFB laser was driven by a 400Hz symmetrical 

ramp current considering the capability of electrical components in LIA and inferior frequency 

response of laser source. A 30-cm long single mode fiber was used to construct a fixed-delay in 

one arm of MZI.  

 

 

Figure 17 The interference pattern of auxiliary MZI and its spectrum (a) without OPLL or (b) with OPLL .  
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The sweeping velocity was calculated to be 25.13 THz/s, which brings a 37.7 kHz beating 

frequency of interference pattern in MZI. The single-frequency reference generated from LIA was 

also set to the same value to monitor the phase difference between them. Figure 17 shows the 

spectrum of interference pattern in auxiliary MZI with either OPLL or not.  

The auxiliary MZI and LIA provided real-time feedback to lock the chirp rate of the DFB 

laser. After successful locking, the energy center of spectral interference was evidenced to be 

focused at 37.7 kHz. Better linearity of laser sweeping was confirmed to be achieved.  

 

 

Figure 18 The interference pattern of 20 cm IFPI and its spectrum (a) without OPLL or (b) with OPLL. 

 

With the help of phase-locked laser, two IFPIs with 10 cm and 20cm cavity length were 

interrogated to generate temporal fringe pattern. Similar to the fringe pattern from auxiliary MZI, 

ramp current injection to a DFB laser brought a fluctuation of intensity in interference. It 

deteriorated the time-frequency analysis of reassigned STFT which involved additional intensity 
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noise. Lowpass filtering and root mean square average were taken as pre-processing to normalize 

the fringes. Figure 18 shows the spectrum of interference pattern from the 20 cm IFPI, which 

compared the use of OPLL. The energy center of spectrum changed and was located at 48 kHz 

after phase-locking. It is equivalent to 48 kHz sampling rate in dynamic measurement. 

The ambient ultrasonic perturbation was mimicked by wrapping the IFPIs on the surface 

of a piezoelectrical ceramic cylinder. The high-frequency sinusoidal voltage from the function 

generator was amplified by voltage amplifier (MATSUSADA HEOPS-0.6B50) then used to drive 

a piezo-cylinder. Ultrasonic dynamic strain which occurred at the optical fiber was calculated to 

be 2.4 με and stemmed from the calculation of dimension, voltage, and piezoelectric constant of 

PZT. 

The temporal fringes pattern from IFPIs were launched into reassigned STFT to decompose 

the time-frequency spectrogram. The stress-induced interference changes can be revealed as shifts 

of spectral energy center. Figure 19 shows the spectrogram of interference pattern from 20 cm 

IFPI which showed evidence of a spectral energy center shift. The dynamic vibration can be 

extracted by tracking the ridges with maximum energy. 

 

 

Figure 19 The spectrogram of interference pattern from 20 cm IFPI and automatic ridges extraction. The 

vibration frequency of piezo-cylinder was set to be (a) 0-Hz; (b)10-kHz; (c)20-kHz. 
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The finesse of temporal fringes from IFPIs was determined using the reflectance of nano-

reflectors within the PM fiber core. Maximum finesse was achieved when the reflectance of two 

reflectors are equal. Manually writing nano-reflectors into the fiber core by using ultrafast laser is 

impossible to keep the same reflectance. Reassigned STFT offer finesse-insensitive solutions for 

dynamic strain demodulation, as well as multiplex scalability. 

Multi-points detection was achieved by cascading another 10 cm IFPI following the 

previous 20 cm IFPI within same PM fiber. It was wrapped and glued around another identical 

piezoelectrical ceramic cylinder. The same voltage amplifier was used to drive the second piezo 

cylinder but changed to opposite bias. Figure 20 shows the spectrogram of interference pattern 

from the two IFPIs affected by 1.6 kHz piezo vibration at different bias directions.  

 

 

Figure 20 The spectrogram of interference pattern from two IFPIs and automatic ridges extraction. The 

vibration frequency of piezo-cylinder was set to be 1.6 kHz at (a) opposite bias or (b) identical bias. 

 

The separated spectral region related to two different cavity lengths was illustrated through 

the spectrogram. However, the current 48 kHz sampling rate curbed ultrasound recognition at a 
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higher detectable frequency. The crosstalk between two separated spectral regions limited the 

performance of the reassigned STFT, especially when considering the Heisenberg uncertainty 

principle. Fringe numbers in each segmented window determined the time resolution of 

spectrogram, as well as the upper limit of detectable frequency range. The experimental piezo 

vibration was enforced and kept at a low frequency to achieve adequate visualization of the spectral 

shift while averting from crosstalk. Higher sampling rate was desirable for a wide detectable 

frequency range.  
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4.0 Distributed Ultrasound Sensing 

Distributed fiber sensors utilize the intrinsic attenuation of optical fiber to measure the 

ambient environmental change. The reduction in intensity of the light over long-distance 

transmission is the result of absorption, bending and scattering. They form the basic concept of 

distributed sensing. 

4.1 Conventional Optical Time-domain Reflectometry 

In Rayleigh-based OTDR, the impurities in optical fiber absorb part of the incident light 

due to certain ions while increase the quantity of scattering based on secondary light emission. The 

bending caused decoupling as lateral dielectric constant change affects those secondary lights in 

terms of intensity, phase and polarization. In order to capture those secondary lights solely, the 

only feasible way is to detect the backscattered light at input end since part of them are recaptured 

into fiber and propagate backward. And the location of bending can be extracted by utilizing the 

travelling time of a light pulse because of constant light speed in optical fiber. Hence the ambient 

physical perturbation can be profiled along the fiber length which is called Rayleigh OTDR.  

Figure 21 shows a typical structure of Rayleigh OTDR. A narrow pulse is generated by 

optical modulator and amplified by Erbium-doped fiber amplifier (EDFA). It then launches into 

sensing fiber to probe the fiber under test.  The Rayleigh backscattering signals are collected in 

photodetector and digitized into data processing. Since the signals are in time-domain, it is 

equivalent to the distance of pulse travelling. In a round trip of light in optical fiber as incidence 
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and backscattering, the location accuracy can be described by pulse width 𝜏 and speed of light 

𝑐/𝑛𝑒𝑓𝑓, 

 

 ∆𝑧 =
 𝜏𝑐

2𝑛𝑒𝑓𝑓
, (4-1) 

 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of optical fiber. The location accuracy is commonly 

named as spatial resolution in OTDR.  

 

 

Figure 21 Schematic of typical Rayleigh OTDR.  (EDFA: Erbium-doped fiber amplifier; DAQ: data 

acquisition) 

 

In 1976, the first OTDR was reported to measure the loss of optical fiber along with 

estimation of scattering and mode mixing. [44] The system implemented a short pulse with broad 

linewidth to probe a single mode fiber following backscattering detection. The intensity of 

backscattered light conveys the information of absorption and physical discontinuities. Figure 22 

shows the result of conventional intensity sensitive OTDR. 

The slop of Rayleigh trace implies the decaying intensity which presents attenuation 

coefficient of optical fiber. And the isolated peaks are the location of high reflection caused by 
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discontinuities of optical fiber such as cracks and connectors. There are also some mild disorders 

of material like bends and fusion splices performing as slight drop on Rayleigh trace.  

 

 

Figure 22 The result of Rayleigh trace in intensity sensitive OTDR [111] 

 

However, for normal silica fiber, the dependence of Rayleigh backscattering intensity on 

micro-bending is too weak to construct an effective sensor. The performance of temperature and 

dynamic vibration measurements are significantly limited. The only practical application of 

conventional OTDR is to find high loss section of optical fiber in telecommunication industry. 

4.2 Phase-sensitive Optical Time-domain Reflectometry 

Several properties of backscattered light are affected by local perturbations, which includes 

the phase of light. For fiber as a perfectly symmetric waveguide, light in the core region is 
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considered as a plane wave with Gaussian radial distribution. The phase of light can be regarded 

as location of wavefront. To measure the phase change, the system alternates to use temporal 

coherent light. With well temporal coherence, the wavefront of transmitting light is evenly 

distributed along optical fiber. Any phase change induced by perturbations disorganizes the order 

of wavefronts and carries the information of those perturbances. Figure 23 shows the illustration 

of wavefront variations induced by perturbations. 

 

 

Figure 23 The schematic of phase change induced by external perturbations 

 

Within the spectral width of light, the phase of backscattered light at location of scatter can 

be treated as consistent with incident light since Rayleigh scattering is elastic phenomenon. Hence 

the backscattering light conveys the information of instantaneous perturbations as well.  

Although the narrow linewidth laser provides the feasibility of phase detection, it imposes 

restriction on sensing length due to short coherent time. The coherent time is in the same order of 

light linewidth inverse. For example, a common several kHz narrow linewidth laser brings about 

10−4𝑠 coherent time which is 20 𝑘𝑚 sensing length. 

Researchers have put lots of efforts on improvement of accuracy and reliability in φ-

OTDR. Since the optical frequency of light is too high to be locked, homodyne and heterodyne 
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interference provides feasible solutions to extract the phase. Because of square law of 

photodetector, the intensity of beating signal from interferometer can be expressed as 

 

 𝐼0 = 𝐸1
2 + 𝐸2

2 + 2√𝐸1𝐸2cos [(𝜔1 − 𝜔2)𝑡 + ∆𝜑)]. (4-2) 

 

Here ∆𝜑 is the phase difference of two arms in interferometer. If the lights with optical frequency 

𝜔1and 𝜔2 from two arms are same, the intensity of beating interference is proportional to phase 

difference. Or keeping their optical frequency difference within the capability of electrical 

oscillator, the phase difference can also be extracted by using LIA or other indirect methods. Figure 

24 shows the light propagation in typical heterodyne and homodyne interference. They rely on 

certain optical frequency shift or fixed-time delay in one arm of interferometer, respectively. 

 

 

Figure 24 The schematic of typical interferometry. (a) Heterodyne and (b) homodyne interference of pulsed 

interrogating light inside the two arms of interferometer. 

 

In brief, the interference from two lights with same frequency is homodyne while closed 

frequency is heterodyne. The heterodyne method such as digital coherent input-quadrature [112] 
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shifts the light frequency in one arm of interferometer to generate low-frequency beating 

interference. The beating frequency is much lower than light frequency which is in the working 

range of LIA. Then the phase components at beating frequency can be simply extracted. Figure 25 

gives a clear illustration on typical structure of heterodyne method using digital coherent input-

quadrature.  

 

Figure 25 The schematic of φ-OTDR using demodulation method of digital coherent input-quadrature. 

 

 

Figure 26 The schematic of φ-OTDR using demodulation method of phase generated carrier. (FRM: Faraday 

rotation mirror; PZT: lead zirconate titanate transducer) 
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The homodyne method is also applicable that can be achieved by extending the length of 

one arm in interferometer to create a time delay. Two identical lights within interferometer 

eliminates the oscillation of optical frequency. And certain time delay only leaves fixed phase 

difference in addition to perturbation-induced phase variation. However, the phase difference is 

hard to be extracted since it is in the same order of intensity offset. Phase generated carrier (PGC) 

[113] is one of the most widely used method as phase extraction shown in Figure 26. 

PGC exerts additional piezoelectric transducer in one arm of Michelson interferometer 

along with extended fiber length [114]. It brings about a sinusoidal amplitude modulation as an 

external carrier inducing to interferometer. The intensity of interference including fixed time delay 

and large carrier can be expressed as, 

 

 𝐼(𝑡) = 𝐴 + 𝐵𝑐𝑜𝑠[𝐶𝑐𝑜𝑠(𝜔𝑐𝑡) + 𝜑𝑠(𝑡) + 𝜑0(𝑡)], (4-3) 

 

where 𝐶𝑐𝑜𝑠(𝜔𝑐𝑡) contributes to external carrier, 𝜑𝑠(𝑡) is phase difference between two arms and 

𝜑0(𝑡) is initial phase difference of system and drift noise. The large carrier brings a low frequency 

component into interference signal which can be decomposed to several harmonics all carrying the 

same 𝜑𝑠(𝑡). Through some algorithms like differentiate cross multiply or arctangent, the phase 

difference 𝜑𝑠(𝑡) between two arms can be extracted.  

The use of Faraday rotation mirrors (FRMs) within Michelson interferometer is a common 

technique to eliminate the polarization-induced fading owning simple and effective configuration 

[115]. A polarization-insensitive interferometer is very important in PGC scheme to resist 

polarization shift at carrier generation. It also has positive effects in 3×3 coupler scheme for 

polarization control. Figure 27 show the schematic of an unbalanced Michelson interferometer 

consisting of a 3×3 optical fiber coupler and two Faraday rotator mirrors. It bears much similarity 
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to PGC on extracting phase difference of two arms of interferometer with certain time delay. But 

it depends on the intrinsic property of 3×3 coupler instead of utilizing large carrier to analyze its 

harmonic components.  

 

 

Figure 27 The schematic of φ-OTDR using demodulation method of 3×3 coupler.  

 

4.3 Phase Extraction in 3×3 Coupler Demodulation 

The effectiveness of using 3×3 fused optical fiber coupler for phase demodulation has been 

studied in various applications [116, 117]. The basis of demodulation stems from hypothesis of 

ideal symmetric 3×3 coupler that has 120° fixed phase difference between each two arms. As 

symmetric coupler, three waveguides arranged as equilateral triangle share the same coupling 

coefficient 𝑘. The conservation of optical energy principle leads to a simplified description of 

Jones matrix for 3×3 coupler [118, 119]. 
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In the unbalanced Michelson interferometer, fixed-time delay in one arm imposes 

additional phase shift to transmitting light. Two FRMs reflect the lights back to coupler resulting 

additional phase shift doubling. The polarization tuning of FRMs are neglected in the simplified 

model of matrix analysis. By serving as simple mirrors, FRMs keep the properties of transmitting 

lights within interferometer and only reverse their directions. Two reflected lights are launched 

into 3×3 coupler that generates the beating interference at three output ports.  
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The measured intensities from three output ports of 3×3 coupler can be calculated as, 

 

 [
𝐼𝑜𝑢𝑡1

𝐼𝑜𝑢𝑡2
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Two different demodulation schemes were reported to extract the phase 𝜙 from measured 

intensities. They were known as Naval Research Laboratory (NRL) method and Naval 

Postgraduate School (NPS) method [120]. NRL randomly picked two measured intensities as input 

into the integrated operation of differential cross-multiplying demodulator [121]. By eliminating 

the direct current (DC) offset, the voltage output of demodulator was purely proportional to the 

phase 𝜙. The DC bias was preset with predicted value might not to be properly accurate. It brought 

about an additional oscillation as 𝑠𝑖𝑛𝜙 giving rise to signal distortion. 

NPS improved the reliability by utilizing all three output symmetrically [122]. The basis 

of demodulator design to eliminate the DC bias and extract the phase information arose from two 

trigonometric identities, 
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(4-7) 

 

Instead of presetting DC bias, the two trigonometric identities provide a viable way to 

cancel the offset automatically. The phase can be extracted through an integrated operation 

including differential and integral as an analog processing algorithm. Hence, the output of NPS 

demodulator can be expressed as, 

 

 𝑉(𝑡) =
√3𝐴𝐷𝐴3𝐴𝑅

𝐴2
𝜙(𝑡), (4-8) 
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where𝐴2, 𝐴3, 𝐴𝑅 and 𝐴𝐷 are gain of second adder, third adder, differentiator and divider in the 

algorithm respectively. The quantity of the transient phase is directly proportional to the output of 

the deterministic demodulator.  

In high-speed dynamic strain measurement, the maximum detectable frequency was 

determined by repetition rate of interrogating pulsed light. Sending the next pulse into fiber under 

test should wait for receiving all of backscattered lights from the last one, which depends upon the 

interrogating length. That puts a restriction on upper limit of detectable frequency range. 

 

 𝑓 <
𝑣𝑔

2𝐿
, (4-9) 

 

where 𝑣𝑔 is the group velocity of light transmitting in optical fiber, and 𝐿 is the length of fiber 

under test. Typically, the upper limit of detectable frequency range was set to 1 MHz when 

interrogating at most 100 meters optical fiber.  

4.4 System Design 

Using symmetric 3×3 coupler of unbalanced Michelson interferometer along with NPS 

demodulation is viable to detect dynamic strain throughout entire fiber. Phase changes induced by 

external stress can be captured and demodulated. However, telecom grade optical fibers have an 

intrinsically weak Rayleigh scattering profile that severely limits SNR in strain sensing. The 

deficiency of SNR decreases the accuracy of phase demodulation. Nano-reflectors written by 

ultrafast laser provides an accessible solution to enhance SNR of φ-OTDR. The Rayleigh enhanced 

region can be a single point or a segment of fiber. All of parameters of nano-reflectors regarding 
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strength, location, and section length are controllable in fabrication process. Figure 28 shows 

different Rayleigh profiles of 9 nano-reflectors along 30 meters long optical fiber, interrogated by 

commercial OBR. Each nano-reflector was estimated to be 2×2-μm (Cross-section) by 7-µm 

(Length) while kept 3 meters interval.  
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Figure 28 Rayleigh profiles of 9 nano-reflectors with 3 meters interval. 

 

Focusing femtosecond laser into small point at optical fiber induced over 35 dB 

enhancement of Rayleigh backscattering. Through roll-to-roll setup, the fabrication of nano-

reflectors has great potential into mass production. When infinite number of nano-reflectors were 

written throughout entire optical fiber, they can be utilized to construct successive homodyne 

interferences with superb SNR to reveal the phase information. The system tactfully designed to 

extract phase within homodyne interferences from enormous nano-reflectors was described in 

Figure 29. 



 63 

 

Figure 29 Schematic diagram of the homodyne φ-OTDR inscribed with nano-reflectors. 

 

A single wavelength 1550.12 nm light from a 6 kHz narrow linewidth laser (NKT Basik 

C15) was modulated to generate 10 ns pulses with a 66 kHz repetition rate by using a 

semiconductor optical amplifier (SOA, Thorlabs, SOA1013SXS). The pulsed lights were 

amplified by an Erbium-doped fiber amplifier to reach 150-nJ/pulse (10 mW output power) and 

launched into the single mode fiber inscribed with nano-reflectors. The backscattered lights from 

the sensing fiber returned to an unbalanced Michelson interferometer (MI) consisting of 3×3 

coupler and two FRMs. A section of extended optical fiber was used to produce fixed-time delay 

in one arm of MI. Two parted backscattered lights from 3×3 coupler reencountered each other after 

FRM reflection that generated homodyne interference.  

The entire fiber under test kept generating Rayleigh backscattering when interrogating 

pulses travelled through it. Relatively strong reflectance of nano-reflectors rendered sudden 

increase of intensity to form successive short pulses within backscattering. These short pulses 
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presented transient status of interrogating light when passing specific nano-reflectors. Figure 30 

shows the illustration of short pulses within Rayleigh backscattering from nano-reflectors. 

 

Figure 30  The illustration of pulsed light propagation in optical fiber to produce Rayleigh backscattering. (a) 

Normal Rayleigh backscattering interrogated by pulsed light. (b) Short pulses within Rayleigh backscattering 

from nano-reflectors. 

 

If the length of extended fiber in MI exactly matched the spatial interval of nano-reflectors, 

short pulses from adjacent nano-reflectors were overlapped to become prominent throbbing. 

Figure 31 shows the diagram of homodyne interference generated in MI. Proper time delay caused 

the interference of short pulses from adjacent nano-reflectors. 

 

Figure 31  The interference of short pulses from adjacent nano-reflectors with higher intensity. 

 



 65 

The interference of short pulses from adjacent nano-reflectors implied the transient phase 

shift occurring between them. Unlike the typical unbalanced MI, 3×3 coupler has three outputs 

with 120° fixed phase difference which can be used for phase demodulation by using NPS method. 

Hence, those short pulses from nano-reflectors were able to be monitored and processed to extract 

the quantitative phase shift in real-time.  
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5.0 Pattern Recognition in Distributed Ultrasound Sensing 

Ultrasound interrogation and structural health monitoring technology has found a wide 

array of applications in heath cares, aerospace industry, autonomous driving, and energy 

infrastructure monitoring. The acoustic signals within broad frequency range can be used to 

recognize detailed perturbations occurring around transducer. These perturbations may come from 

external threats such as malicious intrusion, tempering attempts, illegal tapping, construction 

accidents, and natural disasters, as well as from internal structural degradation, like 

corrosion/erosions, due to aging and wear from weather.  

A unique trait of fiber optical sensors is their capability to perform distributed strain 

measurement across very long distance by using telecom fiber [123]. Large-scale facilities and 

critical infrastructures are required to be monitored and inspected for the purpose of perimeter 

security and structural health diagnosis. Fiber-based distributed acoustic sensing become a far 

more appealing technical approach that can perform dual functions, both defending against 

external threats and performing active measurements to monitor the structural degradation.  

However, the performance of system is limited on the aspects of low SNR, slow 

interrogation and complex pattern recognition. So far, the proposed event recognition can only 

distinguish significant difference within low-frequency acoustic patterns, such as comparing safe 

excavator operations and accidental contact to a pipeline [63]. In order to detect the subtle 

structural defects or minor hidden threat, a reliable distributed ultrasound sensor is desired with 

enhanced SNR and efficient PR.  
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5.1 Pipeline Protection 

Oil, gas, petro-chemical, and energy industries employ pipelines to deliver flammable or 

explosive material from source to ultimate consumers. Millions of miles pipelines around whole 

nation demand enormous expenditures in maintenance of structural deficiency. Various corrosions 

happen across long-distance pipeline either on the internal/ external surface or at the joint of two 

metal components. And a great diversity of intentional intrusion, construction accident and natural 

disaster threaten the safety of pipeline all the time. As key infrastructures, these pipelines are 

important to national security and economic vitality. It is important to develop a comprehensive 

monitoring scheme to protect the integrity of the pipeline networks. 

For perimeter security, conventional surveillance system based on imaging sensors has 

large installation cost especially in extensive deployment at desolate and harsh environment. The 

limited information within the line-of-sight is also incapable of accessing pipes buried 

underground and prewarning the potential threats. The long-distance underground pipes certainly 

cause protection dilemma that are difficult to be reached. For a very long time, visual or ultrasonic 

assessment after excavation of pipes has been desirable for damage detection and identification. 

However, it becomes more and more unaffordable and impractical along with a substantial growth 

of pipeline networks. A fully in-line non-destructive tool is needed which allows pipes to be 

inspected and repaired at early stage of cracks.  

Permanently installed guided acoustic wave sensors currently have been reported and 

tested in industry that can reliably detect and size local defects. [124] With over 50-meter detection 

range of each sensor, the whole pipeline can be covered and remotely screened. [125] Although 

they have promising results on monitoring simple structures such as straight pipes and pulled 

bends, their abilities are limited due to overlapping of echoes and discontinuity of acoustic wave 
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when the complexities of structure extend to tees, welding elbow and diameter changes. [126] It’s 

unsuccessful to delineate or distinguish tangled echoes reflected by corrosions or benign welds. 

Some unwanted modes and imperfect direction control also strongly affect the reliability of 

detection as background noise. [127] And a large number of sensors to be deployed in long-

distance pipeline surely increase the complication of system and difficulty of signal processing. 

Distributed optical fiber sensors are considered promising candidates for pipeline 

monitoring. Fiber Bragg gratings array [128], OTDR [129], and φ-OTDR [130, 131] have been 

reported in either leakage detection or pipeline security. They achieved nonintrusive 

characterization of intrusions or defects by listening to intrinsic acoustic echoes or extrinsic 

acoustic perturbations. φ-OTDR based on Rayleigh scattering is known as a fully distributed 

sensor for long-distance and high-sensitivity detection without the drawback of interrogation speed 

limit [60]. For various applications, strain-dependent Rayleigh backscattering along optical fibers 

has been a leading approach to perform DAS. Using φ-OTDR, distributed vibration measurement 

with bandwidth up to 80 kHz across a 5-km long optical fiber was reported [132]. Fast dynamic 

measurement promises wide detectable frequency range that can harness transient ultrasonic 

waveforms [47]. Adequate frequency features aided the improvement of recognition accuracy. 

5.1.1 Experimental Setup 

The Rayleigh enhanced φ-OTDR can be a good fit for perimeter security and structural 

inspection of pipeline networks. φ-OTDR with over 35 dB enhancement of Rayleigh 

backscattering has showed a great potential on dynamic strain measurement. Since the presence of 

sharp bending is the top concern in guided acoustic pipeline inspection, two iron pipes connected 
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by a 90-degree iron elbow was designed to be interrogated with Rayleigh enhanced φ-OTDR. 

Figure 32 shows the schematic of Rayleigh enhanced φ-OTDR for pipeline protection.  

 

 

Figure 32 Schematic diagram of Rayleigh enhanced φ-OTDR for pipeline protection. 
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The pipes were 3 inches inner diameter with 0.5 inches wall thickness. Two straight 

sections of total 5-feet long tightly screwed by a 90-degree iron elbow. Nine nano-reflectors were 

inscribed along 30-meter standard telecom fiber with interval of 3 meters. They formed 7 

ultrasound sensors which were wrapped around two iron pipes. Three photodetectors 

simultaneously kept monitoring the Rayleigh backscattering from the optical fiber by using high-

speed data acquisition. Nano-reflectors within fiber core contributed on enhancement of SNR 

illustrated in the Figure 33. The intensity peaks of backscattering arise from the relative strong 

reflectance of nano-reflectors. 

 

 

Figure 33  Rayleigh backscattering detected by three photodetectors by interrogating a section of optical fiber 

(a) without Rayleigh enhancement, or (b) owning nine nano-reflectors. 

 

The interrogating pulse was set to be 10 nanoseconds with 66 kHz repetition rate, which 

brought 33 kHz frequency bandwidth for the ultrasound detection. The ultrasonic signals were 

recorded continuedly into 0.3 seconds segments. Large volume of acoustic signals was 

simultaneously harnessed by 7 sensors and launched into signal processing. Vast datasets with 

distinct features were waiting to be identified by a versatile analytics tool.  
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5.1.2 Perimeter Security 

Important infrastructure had a great risk facing structure damage when encountered 

intentional or accidental contacts from external threats. Evaluating risk levels of forthcoming threat 

is the basis to enact the proper treatment. A specialized hammer had several heads made of four 

different materials, including soft rubber, hard plastic, aluminum, and steel.  

These various hammer heads were used to generate acoustic waves with different 

frequency characteristics that mimic different external impacts to pipelines. Soft rubber and hard 

plastic hammer heads were used to simulated low frequency acoustic signals similar to striking on 

insulation and protective layers. And aluminum and steel hammer heads were tried to take the 

direct contact between pipes and metal tools into account. Figure 34 show the transient wave form 

produced by four hammer heads and captured by seven sensors when tapping the hammer at one 

end of pipe. Both time-domain and frequency-domain were illustrated for comparison. 

Seven sensors simultaneously monitored the transient acoustic wave from hammer single-

tapping. Due to the presence of 90-degree iron elbow, overlapping echoes and disturbance of 

acoustic waves occurred as the forms of forward propagation and backward scattering. They 

become frequency-dependent attenuation or reflection shown in the spectral analysis. Most 

acoustic energy from aluminum and steel hammer heads located at relatively high frequencies 

between 1.5 kHz and 2 kHz. The high-frequency components faded away quickly when passing 

through the elbow. Soft rubber offers the lowest frequency and weakest intensity among the four 

kinds of materials. But its low-frequency components propagated well through whole structure. 

This frequency-dependent attenuation was well-depicted in the acoustic signals from hard-plastic 

hammer head. The high-frequency components dissipated in forward propagation and did not have 

enough amplitude to cross the elbow. Low-frequency components of acoustic signals below 500 
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Hz can pass the elbow without significant attenuation. Based on this low-pass filtering effects of 

iron elbow, four types of acoustic events from various hammer heads showed relatively distinct 

features that contributed to the classification. 

 

 

Figure 34  The time-domain and frequency-domain acoustic waveforms from 7 sensors (S1-S7)  by single 

tapping with steel, aluminum, hard plastic and soft rubber hammer heads. 
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5.1.3 Structural Health 

Instead of prewarning the potential threats striking to the surface of pipeline, discovering 

existing structural defects caused by aging and weathering was the top concern in pipeline 

inspection. Corrosion or erosion occurring at inner surface was hard to be reached and inspected. 

Especially when facing the sharp bending to impede the travelling acoustic wave, abnormal echoes 

mislead the guided acoustic wave interrogation to generate erroneous judgement.  

Wrapping the fiber covering the whole pipeline promised to receive both forward 

propagation and backward scattering of acoustic wave. It has overwhelming advantage for pipe 

inspection especially near sharp bending. Electrical transducers might face the problem of 

insufficient magnitude or tangled acoustic echoes for inspection of complex structure. The high 

spatial resolution data harnessed by distributed fiber sensors can detect both forward propagation 

and back-scattered acoustic signal as it passes through the elbow. Given the weak intensity of 

backscattered acoustic wave, forward propagating guided acoustic wave can offer additional 

information for defect detection and classification. 

Since sharp bending was inevitable problem for conventional ultrasonic interrogation, 

seven installation scenarios have been designed to mimic various corrosions at 90-degree iron 

elbow, like flow-accelerated corrosions and galvanic corrosions. Figure 35/36 show the time-

domain and frequency-domain acoustic signal acquired in seven installation scenarios. 

Sharp bending was susceptible to flow-accelerated corrosion induced by turbulent flows. 

And loose connection between two components leaded to galvanic corrosion at the joint of sharp 

bending. Seven installation scenarios have been designed to mimic these corrosions, including four 

types of simulated pitting defects on inner surface (Case 1–4), pipe insulation failure causing 
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external corrosion (Case 5) and galvanic corrosion at the joint of two metal components (Case 6), 

comparing with pipe structure without defect (Case 7). 

 

 

Figure 35  Four installation scenarios and their waveforms at time-domain and frequency-domain by single 

taping with a hard-plastic hammer. Case 1: One cutting groove; Case 2: One cutting groove with three 

drilling holes; Case 3: Two cutting grooves; Case 4: Two cutting grooves, six drilling holes. 
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Figure 36  Another three installation scenarios: Case 5: One trench at external surface; Case 6: loose 

connection; Case 7: normal connection. 

 

The trench and grooves were set to be 1.5 in. (length) × 0.25 in. (width) × 0.08 in. (depth). 

And holes were 0.125 in. (diameter) 0.2 in. (depth). Acoustic excitation was chosen to be hard 

plastic hammer due to aforementioned study. The spectral characteristics of acoustic excitation 

with hard plastic hammer showed multiple frequency components covering broad bandwidth. It 

also provided sufficient signal intensity to pass through the iron elbow owning significant 

attenuation.  With the help of 66 kHz sampling rate, adequate frequency features were captured 

and recorded on all scenarios. 
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5.2 Pattern Recognition 

Sound generated by excavators at nearby construction sites are different from those 

produced by intentional sabotage of pipeline, which produce high pitch noise due to metal contacts. 

On the contrary, various corrosions inside pipeline owned subtle difference due to their small 

dimension and minor damage at early stage. The distinct or similar features hiding in enormous 

volume of acoustic dataset demanded versatile data analytics tool for event identification and 

feature classifications. Filtering out the pertinent information was inapplicable to cover a great 

diversity of events from external intrusion to internal inspection.  

Machine learning approach could potentially handle the large amount of data and unveil 

various patterns associated with both external threats and pipeline corrosions.  As a revolutionary 

solution for pattern recognition, machine learning has undergone substantial development over the 

past few decades. It has been extensively studied due to the increased availability of big data and 

abundance of processing power.  

As most common subbranch of machine learning, supervised learning algorithm infers a 

function from labeled training data. It is well-known in pattern recognition to predict the correct 

label for newly presented input data. Shallow non-convolutional neural networks owning only one 

hidden layer of neurons has simplest structure among all supervised learning algorithm. It is easy 

to implement with low computation burdens and has theoretical capacity of approximating any 

continuous function on a compact domain. 

The distinct extrinsic acoustic events from four different hammer heads subjected to simple 

correlation between them. The shallow non-convolutional neural networks had a desired trait to 

handle the acoustic signals featuring great diversity. The architectures of the shallow neural 

network used in this work are shown in Figure 37. 
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Figure 37  Architectures of shallow non-convolutional neural network.   

 

In the data of each trial harnessed from seven sensors, the first 1200 frequency components 

(DC to 4 kHz) were used as input to the shallow neural network. After integrating the acoustic 

signals from seven sensors into an input vector consisting of 8400 elements (1200×7), they were 

labeled and sent into shallow neural network for training. The hidden layer within shallow neural 

network contained 10 neurons and was attached by a softmax output layer for classification among 

4 possible events. 

The nonlinear complexity within the acoustic data degraded the effectiveness of single 

hidden layer shallow neural networks. Deep neural networks often outperform it on the account of 

multiple hidden layers. Each layer extracts features of different levels from the input data. These 

levels can take an example as an image that subject to edges, corners, and intensity gradients as 

basic features; shapes and objects as intermediate level; object combination or arrangement 

specific to the application as high-class. Abundant features of various levels provide lots of 

accessible parameters to fully describe the function for classification.  

Convolutional neural networks (CNNs) are a popular deep neural network structure in the 

analysis of image pattern. By using series of convolution and pooling operations to reduce the 

number of parameters, CNNs are especially successful in processing large-size inputs with spatial 

invariance.  
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CNNs were also applied on classification of extrinsic acoustic events to explore the 

nonlinearity of acoustic data. Figure 38 shows architectures of CNNs that processed 1200 

(frequency)×7(sensors) as input matrix. Three convolution layers are applied including 2×3 or 3×3 

convolutional filters and 2×2 max pooling. Rectified Linear Unit gradually decreased the size of 

image and increased the number of extracted features. A fully connected softmax layer was 

attached at the end resulting 4 types of output.  

 

 

Figure 38  Architectures of convolutional neural network.   

 

The acoustic data from single-tapping with four kinds of hammer heads were labelled into 

four difference classes. Using each type of hammer performed seventeen sets of trial that were 

randomly divided to 12 and 5 for training and testing respectively. Each classification was run 10 

times to determine uncertainty of data selection and obtain the range of accuracy. Instead of using 

average and standard deviation, the range of accuracy clearly showed the capability of machine 

learnings for event recognition, since the lower limit is equivalent to false rate of system. The 

accuracy to classify those four classes was show in Table 1 including the use of shallow non-

convolutional neural network and CNN. Slightly better performance of CNN comparing with 
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shallow non-convolutional neural network presents certain nonlinearity existed in acoustic signals. 

CNN have better competence to make more accurate estimate based on its multiple hidden layers. 

 

Table 1 Classification result of four types of extrinsic acoustic sources by using shallow non-convolutional 

neural network and CNN. 

Material Dataset Shallow Neural Network CNN 

Rubber 17 

80%−100% 85%−100% 
Plastic 17 

Aluminum 17 

Steel 17 

 

 

Machine learning provides a revolutionary solution for events recognition not only relied 

on supervised learning algorithm. Unsupervised learning aims at finding relations inside the data 

themselves without burdensome and tedious labelling. Given large diversity in shape and size of 

defects, it is inapplicable to find an all-round function covering all scenarios. The algorithm better 

to have adaptive potential to train itself without manually labelling. The latent features within the 

data should be characterized and clustered leading to accurate classification.  

Self-organizing map (SOM) and autoencoder are two famous unsupervised neural 

networks to decompose the latent features into a rich class of resulting clusters. Their performance 

on analyzing acoustic signals from distributed fiber sensors were investigated for comparison. It 

provided an intuitive insight of different models affecting classification of corrosion with subtle 

difference. 

SOM employs neuromorphic principles to sensitize neighboring neurons to similar inputs 

with much faster training speed. The neurons in a SOM are generally placed on a grid with well-

defined distance between any two of them. During the training phase, their weights are randomly 
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initialized. For each input sample, the SOM picks the neuron owning whose closest weight to the 

input data as the best matching unit (BMU). The weight of each neuron is updated following the 

distance approaching to input data. The closer to the BMU a neuron is in tantamount to more 

significant the update on its weight. Simply put, the update of neuron 𝑖’s weight is given by:  

 

 𝑤𝑖
′ = 𝑤𝑖 + 𝛼(𝑑(𝑖, BMU))(𝑥 − 𝑤𝑖), (5-1) 

 

where 𝑥 is the input data, 𝑑 is the distance between neuron 𝑖 and the BMU, and 𝛼 is a decreasing 

function of 𝑑, which can be a Gaussian function.  

SOM was trained by unlabeled data to form the neurons as BMU. A trained SOM can be 

naturally used as a classification network to categorize the input data to various clusters. Figure 

39(a) show the architectures of SOM used in corrosion classification. Similar to shallow neural 

network, first 1200 spectral components from seven acoustic sensors were stacked together to form 

vector inputs consisting of 8400 elements. Seven types of known condition made the SOM 

topology as a 3D grid of size 2×2×2. It brought 8 closely located neurons within SOM algorithm. 

 

 

Figure 39  The schematic of self-organizing map to be explored in event recognition. (a) Architectures of self-

organizing map.  (b) Self-organizing map attached with softmax layer at output stage. 

 

Instead of labeling the input data into several categories, all of unlabeled dataset were sent 

into SOM for training purpose. But a trained SOM outputted unlabeled clusters that was hard to 
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be interpreted and identified in association with actual defects. Manually link the unidentifiable 

output to actual scenario was required for evaluation.  

Another convenient approach was to investigate the relation between unlabeled results and 

defect types through training a softmax layer attached at the output stage. This small-scale 

supervised layer can easily learn the association between the actual defect and the features which 

determine the cluster assignment. Figure 39(b) show the architectures of SOM attached with a 

softmax layer. 

Autoencoder implemented a different strategy on unsupervised learning. Similar to 

common data compression processes, the autoencoder aims at minimizing the distortion when 

compressing the data into the feature space. Figure 40 show the architectures of autoencoder 

consisting of two neural networks.  

 

 

Figure 40  The schematic of autoencoder to be explored in event recognition. (a) Architectures of 

autoencoder.  (b) Autoencoder with softmax layer at output stage. 
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The input signals at data space is firstly matched to feature space (𝐹:ℝ𝑛 → ℝ𝑚) by using 

encoder network. The transformed data within feature space is projected back to data space 

(𝐺:ℝ𝑚 → ℝ𝑛) with decoder network. The difference between the original data and the 

decompressed data is minimized through gradient-based back propagation. The algorithm of 

autoencoder can be expressed as solving an equation (𝑋 ∈ ℝ𝑘×𝑛) of 

 

 min
𝐹,𝐺

‖𝐺(𝐹(𝑥)) − 𝑥‖, (5-2) 

 

where 𝑘 is the number of given input samples. The encoder output 𝐹(𝑥) directly indicates the 

classification of sample 𝑥 which is known as sparse autoencoder. A regularization term is added 

in the loss function to make sure the features are uniquely presented in each sample. As usually 

𝑚 ≪ 𝑛, the large size data can be represented by a few crucial features. Doubling the autoencoders 

as two cascades can accelerate the learning giving rise to improvement of the classification 

accuracy. 

 

Table 2 Classification result of seven installation scenarios by single tapping with hard plastic hammer. 

Scenario Data Shallow CNN SOM 
SOM 

+Softmax 

Auto-

encoder 

Autoencoder

+Softmax 

SOM 

+Softmax 

Normal 17 

97.1%− 

100% 

94.3%−

100% 

71.4%−

83.3% 

74.3%− 

85.7% 

73.8%−

84.5% 

94.3%− 

100% 

74.3%− 

85.7% 

Loose 17 

1 inner groove 17 

1 inner groove 

and 3 holes 

17 

2 inner grooves 17 

2 inner groove 

and 6 holes 

17 

1 external 

trench 

17 
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A total of 119 trials of unlabeled data associated with various installation scenarios were 

investigated thoroughly.  Within autoencoder, the stacked encoder reduced the data size to 10 

features. Table 2 shows the classification result by either manually associating unlabeled clusters 

or deploying a softmax layer at output.  

Most of error stemmed from either underfitting (the program fails to distinguish between 

two defects) or overfitting (the program splits a defect into both of two classes). They were the 

intrinsic problems of unsupervised learning which were hard to be corrected without feedback 

from the actual labels. The softmax layer at output stage abate overfitting and underfitting errors 

resulting a better accuracy. Autoencoder with softmax provided over 94% superb accuracy 

comparing with mediocre performance of SOM. It is a rather satisfactory result to distinguish 

seven scenarios as various pipeline corrosion types. 

5.3 Analytics of Pattern Recognition 

The effectiveness of machine learning on analysis of acoustic signal has been validated in 

the previous section. The subtle difference within internal corrosion of 90-degree iron elbow could 

be successfully recognized through machine learning algorithm. In the previous intrusion 

prewarning, four extrinsic acoustic events with distinct spectral features were tested to mimic the 

intentional sabotage to pipe surface. It is ponderable to broaden the investigation into security 

problem with more nuanced features and exam the performance of various machine learning tools. 

Many distributed or multi-points fiber sensors were explored for intrusion detection in the 

last two decades, such as FBG array [133] [134], Michelson interferometer [135], Mach-Zehnder 

interferometer [136], Sagnac interferometer [137], Rayleigh OTDR [138], φ-OTDR [139], and 
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Brillouin OTDR [140]. But the proposed event recognitions have only been able to distinguish 

events with significantly different acoustic patterns such as classifying human walking and motor 

vehicle movement [63]. 

With Rayleigh enhancement, the over 35 dB SNR improvement of φ-OTDR should induce 

more sensitive dynamic strain detection. It was evaluated to recognize the subtle locomotion 

difference between individuals. Multiple machine learnings were discussed to promptly handle 

complicated dataset and extract the salient features, which include both supervised and 

unsupervised algorithms. It has great importance to manifest the potential of machine learning on 

identification of nuanced features. 

 

 
Figure 41  Identification of human locomotion by using Rayleigh enhanced φ-OTDR. (a) 15-meter hallway 

marked for two tracks and sensing fiber. (b) An acoustic event of one person running and another walking. 

 

By using exactly same interrogation system as Rayleigh enhanced φ-OTDR, the 

experiments were carried out in a 15-meter long hallway as shown in Figure 41. Sensing optical 

fiber inscribed with nano-reflectors were tapped to lay straight on the concrete floor. In total 6 
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nano-reflectors were written within standard telecom fiber at 3-meter interval, which brings about 

5 active sensors along entire fiber.  

Two tracks were marked in green with 80 cm and 140 cm distance to sensing fiber. Five 

sensing regions across optical fiber monitored the footsteps of participants moving at either tracks 

simultaneously. In total 8 people joined the experiment to form different groups of movements. 

Each person repeated a given event (e.g. running, walking) on both tracks 26 times. Some 

additional variation such as alternative shoes and pushing cart were recorded as well. Table 3 

concluded the detailed dataset of human locomotion detection. Eight events brought about 1196 

set of trials for further analysis. 

 

Table 3 Description of dataset from human movements. 

Event Participant Track Repetition Samples 

One-person walk 8 2 26 416 

One-person walk with different shoe 1 1 26 26 

One-person walk with cart 1 1 26 26 

One-person run 8 2 26 416 

One-person run with different shoe 1 1 26 26 

Two-person walk 4 1 26 104 

Two-person run 3 1 26 78 

One-person walk and one-person run 4 1 26 104 

Total Samples 1196 

 

The acoustic signals from each sensor were recorded into 1-second segment for ten 

sequential frames. There was idle time existing between adjacent frames on the account of limited 

operational capability in the computer-based data acquisition and processing. In order to abate the 

computational burden of signal processing, the spectral acoustic data were filtered to leave the 

low-frequency components supported by previous studies [141], that vibration signatures below 

500 Hz were sufficient to recognize walking styles in terms of energy and variability. All data 
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were analyzed in frequency-domains in order to offer machine learnings direct access to the global 

properties of the signals.  

In the spectral analysis, the low-pass filtering was equivalent to retain the amplitudes of 

first 32 frequency components. A sinc filter was used to highlight the latent spectral features and 

facilitate the algorithms by smoothly interpolating 32 amplitudes to 256 points. Figure 42 shows 

the filtered data after pre-processing. It included overlay curve plots of both time-domain and 

frequency-domain, and stacked intensity maps for visualization as well.   

 

 

Figure 42  Plots of acoustic signals in the event of one-person running including (a) unfiltered and (b) filtered 

dataset: overlaid raw data, intensity map for visualization, and spectral components (from left to right). 

 

The time-domain plot showed three footsteps subjecting to running motion of a single 

person. It was obvious to deduce the occurrence of running was between the 0 and 9-meter section 

of the hallway from the location of the first nano-reflector, which was exactly consistent with the 



 87 

actual event. The data pre-processing using sinc and low-pass filter was evidenced to keep the 

predominant features of signals, which was qualified to be used in event identification. 

 

 

Figure 43  Eight acoustic events participated by eight people in overlaid curve plots of time-domain and 

frequency-domain, and intensity maps for visualization. 

 

Temporal acoustic signals from five cascaded sensors revealed direction of movements and 

imbalance in a person’s stride as well. Integrating all the variants as latent features within acoustic 

signals could be used to investigate the effectiveness of machine learning algorithms. Normally, 

the identification through data analysis using the qualitative “eye-ball” approach in the time 

domain, or quantitative analysis in the frequency domain, become extremely difficult if a large 

number of participants or a wide range of events are involved. Machine learnings offered an 

accessible method to simplify the feature extraction and output reliable classification. The detailed 
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temporal and spectral acoustic signals were shown in Figure 43. They included walking or running 

with different footwear, walking while pushing a cart, and locomotion involving multiple 

participants. 

The nuanced features between different events was hid withing enormous volume of data. 

The frequency/rhythm of human locomotion, imbalances in a person’s stride, and the temporal 

characteristics of foot impact were hard to be delineated by predictive data analysis. Machine 

learnings could potentially handle them and assess the right features relative to characteristics of 

participants.  

Considering the similar temporal acoustic signals from each event, the nonlinearity within 

dataset should be a great importance on pattern recognition. CNN implemented multiple layers of 

convolution filters to exact the feature and map them onto various categories of classification. Due 

to the help of non-linear activation and pooling processes, the covert traits of acoustic events could 

be found and interpreted at the end of a fully connected layer. The acoustic signals from ten time-

frames and five sensors were compiled into three-dimensional data structures in order to 

accommodate CNN. By transforming into a three-dimensional tensor within the frequency domain, 

the global properties of various intrusions can be efficiently accessed. Figure 44 shows the 

architecture of CNN used to explore the nonlinear feature of eight acoustic events. 

 

 

Figure 44  Architecture of the CNN for identification of human locomotion. 
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Table 4 Classification results using CNN for different scenarios. 

Training Testing Recognition Accuracy 

One-person Walking 

One-person walking Person 78.75%-86.25% 

One-person walking 

with different tracks 
Track 85.00%-100.00% 

One-person walking 

with different shoes 
Shoes 80.00%-100.00% 

One-person walking 

and pushing cart 
Cart 93.75%-100.00% 

One-person Running 

One-person running Person 76.25%-86.25% 

One-person running 

with different tracks 
Track 95.00%-100.00% 

One-person running 

with different shoes 
Shoes 75.00%-90.00% 

One-person Walking 
Two-person both 

walking 
Person 

63.85%-78.46% (Either) 

28.46%-44.62% (Both) 

One-person Running 
Two-person both 

running 
Person 

60.26%-76.92% (Either) 

34.62%-50.00% (Both) 

One-person Walking + 

One-person Running 

Two-person walking 

and running separately 

Person & 

Movement 

54.62%-69.23% (Either) 

46.92%-61.54% (Both) 

 

At the input stage, the acoustic signals from five sensor and ten time-frames were 

constructed to be a matrix of 256 (frequency dimension) × 10 (seconds) × 5 (sensors). Three layers 

of convolutional filters were applied in the CNN structure. Rectified Linear Unit and max-pooling 

were used between each layer to reduce the data size in each channel. However, the growth of 

channel number implied more features were arranged and extracted. At output stage, a fully 

connected softmax predicted the probability of fitting into different categories based on existing 

features. Overall, 2/3 of data were used for training, while the remaining data was used for testing. 

Table 4 shows the Performance of CNN on gauging various acoustic data generated by eight 

different events. By separately arrange the training and testing data, recognizing individual, tracks 

or shoes were performed in a like manner. With much confidence on CNN, identifying both 

individual and movement at same time was advanced to explore its limit.  
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Over 76.25% accuracy has been achieved to identify the person presenting in individual 

movement while over 80% on cart, tracks and shoes classification. Walking and running showed 

minor difference from identification results. The accuracy decreased a lot to recognize the person 

or movement presenting in grouped events. A plausible cause of the failure is that the signal of 

one subject may be overwhelmed by the other. An advanced mathematical model needs to be 

developed to address this problem. 

Due to the great diversity of machine learning algorithm, it is hard to claim a conclusive 

method specifying to handle pattern recognition of acoustic signals. Another attempt has been 

made to reveal the potential of machine learning on event recognition in time-domain. Beside 

CNN, long short-term memory (LSTM) is a popular architecture of Recurrent Neural Network 

especially being adept at dynamical systems and real-time temporal signal processing. Speech 

recognition and intrusion detection supported its effectiveness with convinced result.  

By letting the output serve as its own input, the recurrent layer generates a feedback loop 

as memory units to track intrinsic dependencies during dataflow. The memory units are controlled 

at the location of being received (input gate), retained (forget gate), or used in the output (output 

gate). Nonlinear functions regulated the gates and controlled the dataflow.  

The comparison between CNN and LSTM was shown in Table 5 by identifying the person 

within one-person walking events. Low accuracy of LSTM reveals its weakness in segmented 

signal recognition. It was inevitable to face the idle time between adjacent time-frames in the 

consequence of limited computational capability. The inferior result proved the unsuccessful 

attempt on ignoring the gap between time-frames to from the continuous temporal inputs of LSTM.  

Back to spectral analysis, three more methods were discussed to investigate their 

effectiveness, Error-Correcting Output Codes (ECOC), K-Nearest Neighbor (KNN), and Naïve 
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Bayes (NB) classifiers. They are well-developed owning strong outcomes in a variety of 

applications.  

ECOC works as a multiclass extension of the Support Vector Machine (SVM) algorithm 

that trains multiple SVM binary classifiers for each bit of the coded classes. Distance-dependent 

KNN classifies the input data based on a plurality of its K nearest neighbors from the training set 

belong. NB classifier learns the probability model from training data to categorize multiple classes 

corresponding to the maximum a posteriori estimate of the model parameters. The comparison 

between those methods shows the spectral analysis of machine learnings based on the models of 

SVM, distance and probability. The result shown in Table 5 provided a direction for improving 

the accuracy of event recognition with machine learning. The CNN clearly outperforms all other 

methods, with LSTM being the most inefficient. 

 

Table 5 Classification results using different machine learning algorithms or neural networks. 

Method Accuracy 

CNN 78.75%-86.25% 

LSTM 12.50%-20.62% 

ECOC 63.44%-76.92% 

KNN 44.69%-62.50% 

NB 42.50%-64.42% 

 

On the contrary to supervised learning, adaptively partitioning the data into different 

clusters based on certain criteria is attractive without tedious work of labeling. K-means clustering 

with Euclidean distance is a basic clustering method commonly used for feature extraction. By 

minimizing the sum of total variances within the clusters, it is viable to distinguish the latent 

features. Although the exact solution of K-means clustering is NP-hard (non-deterministic 
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polynomial-time), Lloyd's algorithm provides an effective method of relaxation by iteratively 

updating the centroids of the clusters. Let (𝑥𝑖)1≤𝑖≤𝑁 be the datapoints and denote the centroids of 

cluster 𝑘 at iteration 𝑗 by 𝑐𝑘𝑗. Lloyd's algorithm  includes two steps in each iteration, classifying 

each datapoint 𝑥𝑖 into the cluster whose centroid is closest to 𝑥𝑖 (i.e., argmin
𝑘

‖𝑥𝑖 − 𝑐𝑘𝑗‖), and 

calculating the centroids for the next iteration based on the current clustering. 

 

 𝑐𝑘(𝑗+1) =
1

|𝐶𝑘𝑗|
∑ 𝑥𝑖

𝑖∈𝐶𝑘𝑗

, (5-3) 

 

where 𝐶𝑘𝑗 is set of the indices of all datapoints in cluster 𝑘 at iteration 𝑗. Lloyd's algorithm is 

reluctant to guarantee the optimality of the solution while showing a fast convergency. However, 

it provides intuitive illustration on evaluation of well-behaved datasets. The classification results 

rank the cluster from distinct features to nuanced features. 

The unlabeled output of K-means algorithm was hard to be interpreted. By using a 

hierarchical two-class clustering, potential features were compared with output at each step. The 

accuracy shown in Table 6 is not an objective evaluation of the unsupervised learning method, but 

simply an indication of the type of features the algorithm prioritizes and finds.   

Unsupervised learning is inapplicable to find the range of uncertainty due to absence of 

training and validation groups. The accuracy was described as rate to form the top cluster. Feeding 

the data individually was opposite to feeding them together. This can be explained by the fact that 

more subjects in the input data equal more secondary features in the dataset—a potential source of 

confusion for the algorithm. 

Unsupervised learning can characterize the acoustic signals based on priority of prominent 

features. Some covert but important features may be lost during classification. Precise and 
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successful identification must result from sifting through a multitude of possibilities and 

determining a specific combination of features, such as the strength, duration, and location of steps, 

as well as the speed and rhythm of movement. Characterizing the acoustic wave based on onefold 

criteria severely limited its performance on event identification. However, it is still a valuable tool 

to reveal apparent features within the dataset.  

 

Table 6 Tendency of classification in K-means clustering for various training dataset. 

Training Top Clusters Accuracy 

One-person Running Direction1 

Direction2 

53.85% (All) 

92.31% (Individual) 

Unidirectional One-

person Running  

Person 77.65% (All) 

100% (Individual) 

One-person Walking  Direction1 

Direction2 

65.38% (All) 

96.15% (Individual) 

Unidirectional One-

person Walking  

Person 88.46% (All) 

94.23% (Individual) 

One-person Walking + 

One-person Running 

Movement1 (running) 

Movement2 (walking) 

94.71% 
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6.0 Conclusion and Further Improvement 

Distributed ultrasound sensing has a great appeal to many applications for prominently 

detailed information in characterizing the propagation path of acoustic wave or specifying its 

initial releasing status. Electronic-based sensors were standard technologies for ultrasonic 

detection but subjected to complex and cumbersome for large scale deployments. Optical fiber 

provided a promising alternative with merits of multiplex scalability and adequate sensitivity.   

6.1 Conclusion 

In the high-speed distributed strain measurement within optical fiber, conventional 

methods were limited by slow response of spectrometer in spectral interferometry and low intrinsic 

Rayleigh scattering in temporal reflectometry. The nano-reflectors inscribed by ultrafast laser 

direct-writing provided possible solutions to break the bottleneck. With over 35 dB enhancement 

of Rayleigh backscattering and 0.0012 dB insertion loss, nano-reflectors were able to construct 

effective inline FP cavities along entire fiber. Long-length IFPIs incorporating with reassigned 

STFT and OPLL achieved multi-points ultrasound detection on 20 kHz PZT vibration as low as 

2.4 με. Homodyne Rayleigh-enhanced φ-OTDR was setting to 66 kHz sampling rate to receive the 

acoustic wave propagating along iron pipes generated by specific hammer. Four types of external 

intrusion events and seven installation sceneries were delicately designed to investigate the 

performance of Rayleigh-enhanced φ-OTDR. Based on high-quality acoustic signals of dynamic 

strain measurement, machine learnings were used to promptly handle the large volume of dataset 
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and make a reliable classification. Both supervised and unsupervised algorithms were explored to 

exam their effectiveness in PR and find the cluster of latent features. And they have been extended 

to distinguish the nuanced features within human locomotion that provided intuitive depiction on 

their capability. CNN has been proved to be impressive and effective in all cases with input of 

three-dimensional spectral data matrix.  On the contrary, unsupervised learnings were reluctant to 

grasp a useful combination of features to make a valid classification. It was fit for revealing the 

interrelation among latent features within the dataset.  

6.2 Further Improvement 

Ultrasound detection always craves for wide detectable frequency range and high SNR. 

Although fiber-based distributed strain sensors have proved their robustness on high-frequency 

dynamic strain measurement, undoubted drawbacks urge more endeavors should be paid for 

improvement.  

Ultrafast laser direct-writing owns incomparable merits on fabrication of nano-reflectors. 

The wavelength-independent Rayleigh enhancement is right for constructing FP cavity. And roll-

to-roll setup promise its prospect in mass production. The further improvement should focus on 

extensively making nano-reflectors with same reflectance. Keeping the same reflectance is the 

premise to achieve high visibility of FPI. 

Based on nano-reflectors within inline IFPIs, the long-length FP cavity speeds up the 

sampling rate of spectral interferometry. A noise-free dynamic strain measurement was achieved 

by using OPLL to linearize the frequency output and using reassigned STFT to demodulate 

ultrasound through tracking the energy center. However, the current experimental setup was far 



 96 

from optimal from a couple of unconsidered aspects. Reassigned STFT still suffered from 

Heisenberg uncertainty principle and was hard to fine-tune the window size for better resolution. 

Reassigned smoothed pseudo WVD found the balance point within uncertainty principle should 

be investigated for its potential on prompt time-frequency decomposition. FPGA was also reported 

to support various TFRs including WVD. Besides, commercial LIA and LD driver composed 

OPLL leading to limited capability on phase-locking. An analog feedback circuit consisting of 

function generator, automatic gain control, double balanced mixer and low pass filter can alternate 

to better the performance. It might need a customized design of integrated circuits.  

The long-distance interrogation of dynamic strain by using φ-OTDR was curbed by 

polarization fading, low SNR and accurate phase demodulation. These improvement has been 

discussed and undergone substantial development over the past few decades. Polarization fading 

can be fixed by the use of PM fiber, polarization diversity detection or measuring impulse response 

with polarization switch. Low intrinsic SNR has the solution of Rayleigh enhancement, cascaded 

modulators, hybrid gain from Raman and EDFA, and pulsed coding as Golay or Simplex. For 

accurate phase demodulation, homodyne and heterodyne interferometry were the basis owning 

different strategy for noise reduction. Like in NPS method, commercially 3×3 optical fiber coupler 

is usually asymmetric. The phase difference between three output ports have to be calibrated before 

applying the demodulation algorithm. And the compensation of phase offset introducing additional 

processing like ellipse fitting definitely increases the complexity of system.  

To achieve a perfect distributed ultrasound system is painstaking which need dedicated 

design on sensors fabrication, interrogation strategy and hardware of fast processing. For now, the 

cost-effective solution is impractical due to the intrinsic limit of light manipulation in optical fiber. 
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But considering the extraordinary scalability of optical fiber, it is still valuable in the market of 

large-scale monitoring. 
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