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STEREOCONTROLLED RHENIUM(VII) OXIDE-MEDIATED N-CONTAINING 

HETEROCYCLE FORMATION 

Ian Kaigh, M.S. 

University of Pittsburgh, 2020 

 

 Piperidines are worthy synthetic targets because they are widely represented amongst 

pharmaceuticals and biologically active molecules in general.  Rhenium(VII) oxide has been previously 

used by the Floreancig group for the ionization of allylic alcohols, followed by oxygen nucleophile attack 

to form tetrahydropyrans.  This work further expands that methodology by utilizing protected nitrogen 

nucleophiles to form piperidines.  Solvent studies determined that 1,1,1,3,3,3-hexafluoroisopropanol was 

the most suitable solvent for these reactions.  An array of protecting groups were tested to determine 

viable protecting group conditions and in an attempt to develop orthogonal strategies for multiple 

functional group tolerance.  Time course studies elucidated the mechanism of the reaction, and the role of 

product equilibration.  Stereochemical assignments were complicated by the NMR peak distortion 

associated with the barrier to rotation in amides, which was a consequence of using protected nitrogen 

nucleophiles as starting materials.  This problem was overcome by using an easily cleavable protecting 

group, assigning the stereochemistry of the deprotected piperidine, then reprotecting the molecule with a 

protecting group of interest to obtain reference spectra for comparison with piperidine products obtained 

by cyclization of starting materials with various protecting groups of interest installed.  Several substrates 

were prepared, including an oxazinone which produced a bicyclic product. 
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1 

1.0 PIPERIDINES 

Nitrogen-containing heterocycles are prominent motifs in biologically active and medicinally-

relevant molecules.(1)  59% of unique small molecule drugs contain a nitrogen heterocycle.  Moreover, 

among all FDA approved drugs, piperidines occur more frequently than any other nitrogen-containing 

heterocycle, often with substitutions variously at the 1, 2, and 4 positions of the ring.  Piperidine 

structures are represented among antihistamines, antimuscarinic agents, antidepressants, local anesthetics, 

and analgesics.(2)  Several examples are presented in Figure 1.  Given the predominance of this motif in 

drug molecules, it is of great importance to develop new methods for their synthesis, especially methods 

that proceed in high yield with a great degree of stereocontrol. 

Figure 1 Examples of Piperidine-Containing Pharmaceuticals 
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1.1 SYNTHESIS OF PIPERIDINES 

 1.1.1 Existing Methods for Piperidine Synthesis 

 

Scheme 1 Gold-Catalyzed Piperidine Formation From Homopropargyllic Ether 

 Diverse methods exist for the synthesis of piperidines.(3)  Pyridine molecules can be reduced by 

catalytic hydrogenation(4) or sodium metal and ethanol(5) to yield the piperidine derivatives.  Nucleophilic 

substitution is another common method for the construction of these heterocycles.  Nitrogen nucleophiles 

have been used to intramolecularly displace halides(6) or activated alcohols such as triflates(7) and 

tosylates.(8,9)  The Floreancig group previously reported a method whereby a gold catalyst in water-

saturated toluene in the presence of silver promoted the conversion of homopropargylic ethers with 

pendent nitrogen nucleophiles into piperidines(10) (Scheme 1).  This method tolerated sulfonamides and 

many carbamates. 

  

 1.1.2 Dehydrative Cyclization   

 Catalytic dehydrative cyclization reactions are an important method for the creation of 

heterocycles.  These reactions proceed mainly through two possible mechanisms.  Catalysis using soft 

electrophilic transition metals such as palladium(11,12), gold(13), and ruthenium(14) proceeds by a mechanism 

of the metal coordinating to the alkene in an allylic alcohol.  This promotes the cyclization, and 

elimination of the elements of water.  Hard Lewis acids such as BF3•OEt2
(15), aryl boronic acids(16), 

Bi(OTf)3
(17), and hot water(18) react with an alcohol to form a stabilized carbocation.  That carbocation can 

then be attacked by a nucleophile on the same molecule, forming a heterocycle.  The soft electrophilic 
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transition metal catalysts enable kinetic control of the reaction through substrate control or ligand 

selection.  The hard Lewis acid catalysts permit the products to equilibrate, thereby establishing 

thermodynamic control for the reaction. 

 

Scheme 2 Dehydrative Cyclization With Catalytic FeCl3•6H2O 

 The Cossy group reported the use of catalytic FeCl3•6H2O, a hard Lewis acid, to synthesize 

nitrogen and oxygen heterocycles from allylic alcohols quickly and at room temperature, with a high 

degree of diastereoselectivity (Scheme 2).(19)  Regarding piperidine formation, the group found that their 

methodology worked best when the nitrogen was protected with a tosyl protecting group.   

 

 1.1.3 Rhenium Oxide-Mediated Dehydrative Cyclization 

 [1,3]-Transposition of allylic alcohols by transition metals is well-documented, and synthetically 

quite useful.  This transformation was first reported by Chabardes in the late 1960's(20), and was initially 

developed and used by the fragrance industry.  Efforts towards using [1,3]-allylic alcohol transposition as 

a synthetic method were traditionally hampered by a lack of control of regio- and stereoselectivity in the 

reaction.  Our group has conducted several previous studies where Re2O7 was used to transpose an allylic 

alcohol, beginning with using this method to complete the ring-closing step in the synthesis of the 

leucascandrolide A macrolactone.(21)  Regioselectivity issues were addressed by the use of substrates with 

appended electrophiles, which direct the reaction.  Stereoselectivity was achieved by taking advantage of 

the tendency of these systems to equilibrate under thermodynamic control, thus leading to an excess of 
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the more stable product.  While pursuing this research, it was observed that allylic alcohols could also act 

as precursors to allylic cations in the presence of Re catalyst.(22)  This observation led to the use of Re2O7 

for dehydrative cyclization reactions.(23)  

 

  

 

Scheme 3 Re2O7-Mediated Dehydrative Cyclizations, Previous Examples All Oxygen Nucleophiles 

 Previous studies from the Floreancig group explored the use of Re2O7 to promote oxygen-

containing heterocycle formation in several ways.(22,24,25)  In one reported method, Re2O7 immobilized on 

silica gel promotes the formation of allylic cations, which are then attacked by pendent oxygen 

nucleophiles to form tetrahydropyrans (Scheme 3).(23)  These dehydrative cyclizations, in which an 

equivalent of water is eliminated during the cyclization step, are the focus of this work and are attractive 

for several reasons.  They proceed under mild conditions, and water is the sole waste product.  Deposition 

of the catalyst on silica gel is simple and allows for easy handling of even very small quantities of 

catalyst.  Furthermore, the Re2O7 catalyst is easily removed by filtration at the reaction's completion.  

Finally, these reactions proceed in good yield and with good to excellent levels of stereocontrol.  Whereas 

previous examples of this method utilized oxygen nucleophiles to form tetrahydropyrans and 

tetrahydrofurans, the object of the studies reported in this thesis was to use protected amines as 

nucleophiles for the development of analogous high yielding and stereocontrolled methods for the 

synthesis of piperidines.  Nitrogen nucleophiles present unique challenges because although they are 

suitably nucleophilic, the amine functionality is quite basic, and therefore unprotected amines are 
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incompatible with rhenium oxide chemistry.  The protecting group chemistry of amines is well-developed 

and numerous choices are available to modulate the reactivity of nitrogen-containing functional groups in 

organic synthesis.(26)  We found that several N-carbamate and N-sulfonyl protected amino allylic alcohols 

readily cyclize to cis-2,6-substitued piperidines in the presence of a catalytic amount of Re2O7, as 

generalized in Scheme 4.  Moreover these cyclization reactions proceed rapidly at room temperature with 

good to excellent levels of stereocontrol. 

 

Scheme 4 Dehydrative Cyclization With Protected Amine Nucleophiles 
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2.0 PIPERIDINE CONSTRUCTION THROUGH DEHYDRATIVE CYCLIZATION 

 

 The Floreancig group has previously reported the use of Re2O7•SiO2 to transpose allylic 

alcohols.(21,22,24,25)  Recently, they reported the use of this methodology to ionize an allylic alcohol and 

then attack the resulting allylic cation with a pendant oxygen nucleophile, forming a tetrahydropyran 

(Scheme 5).(23)  These reactions proceed in good yield and with a high degree of diastereoselectivity.  

Several examples were presented, and the methodology was used to construct the tetrahydropyran subunit 

of the natural product herboxidiene.  It was a natural progression to proceed to using nitrogen 

nucleophiles with this methodology to produce piperidines. 

 

Scheme 5 Previous Work By Floreancig Group Using Oxygen Nucleophiles 

 

2.1 INITIAL WORK 

 2.1.1 Ellman's Chiral Auxiliary 

 In order to install an ethyl group with absolute stereocontrol at what would become the 6- 

position of the piperidine product, a diastereoselective Grignard reaction with a chiral sulfinyl imide 

auxiliary was utilized.  The Ellman group has amply explored this chemistry, which uses a tert-

butylsulfinylimine as a single enantiomer to direct the Grignard reagent to add from only one side of the 

aldimine.  Initially, we hoped that the resulting sulfonamide could serve as a protecting group for the 

nitrogen, permitting the Re2O7-mediated cyclization to proceed.  Unfortunately, after several experiments 

with varying solvent and temperature, it became apparent that the sulfonamide-protected amine was 
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unsuitable for the cyclization reaction.  We attributed this to a strong electron withdrawing effect from the 

sulfonamide, which dampened the nucleophilicity of the nitrogen, or possibly interference from the lone 

pair on the sulfur.  The auxiliary was, however, easily cleaved with HCl in dioxane, allowing for 

reprotection with various suitable protecting groups. 

 

 2.1.2 Solvent Screen 

 Nitrogen nucleophiles present several distinct challenges compared to their oxygen counterparts.  

Amines are much more basic than alcohols, which we presumed would be a problem, as rhenium oxide is 

a Lewis acid.  This problem could easily be overcome by using protecting group chemistry to modify the 

amine basicity, but in turn this lowered the nucleophilicity of the group.  The lowered nucleophilicity 

meant that dichloromethane was no longer a viable solvent choice.  Dichloromethane was not polar 

enough to sufficiently stabilize the allylic cation and provide opportunity for attack from the weaker 

nucleophile.  Therefore, the first challenge was to find a suitable solvent for this reaction.  Table 1 

presents a collection of solvent that was screened to improve reactivity.   
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 Table 1  Exploration Of Solvent Conditions 

 

 

 Dichloromethane was the first solvent tested, because it worked well during previous work by our 

group making tetrahydropyrans in this manner.  However, for reactions with a nitrogen nucleophile, 

dichloromethane did not give satisfactory yields.  While some desired product was formed, a significant 

amount of material instead simply dehydrated to the undesired diene product (Scheme 6).  This result is 

consistent with the formation of an allylic cation, which can cyclize if attacked by a suitable nucleophile, 

but could also undergo competitive elimination to form the diene.  These poorer nucleophiles are unable 

to attack the allylic carbocation strongly enough to outcompete the elimination reaction when 

dichloromethane is the solvent.  This was observed even more markedly as temperature increased, with 

higher temperature resulting in less desired piperidine product and more diene.  Additionally, the 
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cyclization product did not form with a high degree of stereoselectivity, with a diastereomeric ratio 

typically of 1:2.  Changing the solvent to dichloroethane and further heating the reaction resulted in no 

desired product being formed.  Acetonitrile failed to show any improvement as well.  Happily, using 

1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as the solvent improved yield.  The last 2 entries in Table 1 

demonstrate that while HFIP is a suitable solvent for this methodology, using isopropanol did not 

promote the desired transformation.  This observation is consistent with the idea that a more stable allylic 

cation should enhance the ability of the nucleophile to attack, delaying the alternative collapse to the 

undesirable diene product.  Isopropanol fails as a solvent for this system because the non-fluorinated 

alcohol is nucleophilic enough to attack the cation as it forms, and does so faster than the cyclization 

reaction can occur, forming the isopropyl ether. 

 

 

Scheme 6 Competing Pathways From Allylic Cation 

 

 2.1.3 HFIP as an Ideal Solvent 

 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is the perfluorinated analog of isopropanol.  Whereas 

isopropanol is a typical alcohol solvent, HFIP exhibits some strong solvent characteristics which are 

absent in the parent alcohol and unique to fluorinated alcohols.  The trifluoromethyl groups create a 
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strong electron withdrawing effect, which is chiefly responsible for the unique properties of HFIP(27) 

(Figure 2).  This withdrawal of electrons increases the acidity of the hydroxy functionality, with a pKa of 

9.3(28), a substantial increase in acidity from isopropanol's pka of 17.1.  A further consequence of the 

strong electron withdrawal is that HFIP is extremely polar.  Out of 360 solvents tested, HFIP was the 

most polar.(29,30)  HFIP is also a very strong hydrogen bond donor, and a very weak hydrogen bond 

acceptor.(31)  Importantly, HFIP is not nucleophilic, which is vital in a system where a cation is formed.  

For example, isopropanol fails as a solvent for the dehydrative cyclization reaction (Table 1) because it 

simply adds to the cation, forming the allylic isopropyl ether.  These properties allow HFIP to stabilize 

the allylic cation formed by Re2O7, giving the weakly nucleophilic protected nitrogen more opportunity to 

attack and form the desired piperidine product.   

 

Figure 2 Unique Properties of HFIP Are Due To Strong Inductive Effect 

 

   

2.2 SYNTHESIS OF SUBSTRATES  

 2.2.1 Synthesis of Molecule 6 

 The first substrate, molecule 6, was synthesized starting from hex-5-yn-1-ol.  The alcohol was 

protected with the TBS-group by reaction with TBSCl in the presence of imidazole and DMAP.  The 

Schwartz reagent was used to complete a hydrozirconation, then transmetallation to zinc using dimethyl 

zinc, followed by addition to hydrocinnamaldehyde(32) and treatment with HCL in methanol to yield 

molecule 2.  A TEMPO oxidation with N-chlorosuccinimide as the stochiometric oxidant (33) selectively 

oxidized only the primary alcohol to yield molecule 3.  Reaction with Ellman's chiral auxiliary followed 
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by Grignard addition into the imine and removal of the auxiliary(34) finally yielded molecule 6.  Molecule 

6 was protected with various protecting groups and used for initial studies on solvent and the suitability of 

different protecting groups in this system.  

 

Scheme 7 Synthesis of Molecule 6 From Hex-5-yn-1-ol 

 

 2.2.2 Synthesis of Molecule 10 

 The same synthetic route was followed for molecule 10, starting from hex-5-yn-1-ol and 

proceeding as above until the point of the Grignard addition into the chiral tert-butanesulfinyl amide.  

Addition of vinyl magnesium bromide provided a handle for further functionalization.  9-BBN 

hydroboration/oxidation of the newly installed alkene(35) led to molecule 8, and the chiral auxiliary was 

removed as above.  The deprotected amino-monoallylic diol 9 was then treated with N,N,-

carbonyldiimidazole in order to form a cyclic carbamate.(36)  This nitrogen of the cyclic carbamate was 

expected to act as the nucleophile for this substrate in the Re2O7-catalyzed allylic alcohol transposition-

cyclization sequence. 
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Scheme 8 Synthesis Of Molecule 10 

 

2.3 CYCLIZATION OF MOLECULE 10 TO MOLECULE 11 

 Exposure of molecule 10 to the typical cyclization conditions produced an interesting result.  

While in all other cases with HFIP as the solvent these conditions preferentially produced the 2,6-cis 

piperidine, the piperidine ring in molecule 11 exhibited 2,6-trans stereochemistry.  We theorized that this 

result was due to the necessary geometry of the molecule during the transition state of the cyclization 

reaction (Figure 3).  In order for the lone pair of electrons on the nitrogen to attack the allylic cation, the 

cyclic carbamate must assume the axial position.  This geometry permits the nitrogen to be in position to 

form the new bond which makes the piperidine.  If the side chain on carbon 2 were to assume equatorial 

geometry, as one might expect, the lone pair of electrons on the nitrogen is unable to successfully interact 

with the allylic cation and form this bond. The alkene side chain on carbon 6 maintains the equatorial 

position because that minimizes steric interactions between the side chain and the protons of the ring, as 
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would be expected in a typical six-membered ring.  Therefore, the resulting piperidine product molecule 

11 has 2,6-trans stereochemistry.   

 

Figure 3 Basis of the Observed Stereochemistry of Molecule 11 

 

2.4 SCOPE OF PROTECTING GROUPS   

 A variety of protecting groups were explored (Table 2).  As mentioned above, the sulfonamide 

derived from Ellman's chiral auxiliary was ineffective.  TLC showed that the allylic alcohol transposed 

under these conditions, but there was no cyclization.  Heating the reaction still produced no cyclization, 

but did induce dehydration to the diene.  The next protecting group to be explored was Cbz.  We were 

pleased to find that when the amine was protected with a Cbz group, the desired cyclization proceeded in 

63% yield.  The Tosyl protecting group worked, although at reduced yield.  Substrates bearing the 2-, and 

4-nosyl protecting groups both did not work, presumably because the electron withdrawing effect of the 

nitro group further reduced the nucleophilicity of the nitrogen compared to the N-tosyl derivative, 

rendering the nitrogen unable to trap the cation.  Alloc and acetamide protection still allowed the reaction 

to proceed, but at greatly reduced yields.  Methyl carbamate protection of the nitrogen gave results 

comparable to Cbz protection.  Fmoc proved to be the best choice for this system, with a yield of 83%.  

Importantly, entry 7 is in line with our initial hypothesis that unprotected nitrogen atoms are incompatible 

with the rhenium catalyst due to the formation of a Lewis acid-Lewis base complex. 
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Table 2 Exploration of Protecting Groups 

 

 

  

2.5 STEREOCHEMICAL OUTCOMES 

 2.5.1 Consequences Of Amide Barrier To Rotation In 1H NMR 

 Assigning stereochemistry to the protected piperidine was complicated by the amide barrier to 

rotation, which causes signal broadening on 1H NMR.  The lone pair of electrons on the nitrogen of the 

amide delocalizes into the C-N bond, which means that there is a partial double bond between the two 

atoms.  These delocalized electrons are responsible for the high barrier to internal rotation in a carbamate, 

generally ca. 21 kcal/mol. (37)  Since this stronger bond hinders rotation, the two substituents on the amide 

nitrogen are fixed into either of two conformations whose interconversion is a slow process.  In the case 
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of piperidine rings, where the substituents on the nitrogen are in fixed positions because of incorporation 

in the ring, it is the carbamate group which can potentially rotate (Figure 4).  With regard to the protected 

piperidine products described in this work, the carbonyl group is on one side of the ring or the other, with 

rotation about the carbamate C-N bond hindered by the partial double bond character of the bond.  The 

carbonyl oxygen therefore has a defined stereochemical relationship to the protons on carbons 2 and 6 of 

the piperidine ring, but this relationship is fluid, as there is still limited rotation about the C-N bond.  A 

consequence of this high barrier to rotation is that on a 1H NMR spectrum of an N-protected piperidine, 

the protons on carbons 2 and 6 of the piperidine do not split as normally expected, making splitting 

pattern analysis and coupling constant determination impossible.  The averaging of the signals generated 

by the protons on carbons 2 and 6 instead produce broad singlets with chemical shifts in the expected 

ranges, but no observable splitting.  Since coupling constant analysis would typically be used to 

determine stereochemistry, this presents a challenge.   

 

 

Figure 4 Amide Barrier to Rotation and Consequences in Carbamate-Protected Piperidines 
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 Furthermore, this signal distortion prevents the use of 2-D NOESY spectroscopy to determine the 

stereochemical relationship between the substituents at the 2 and 6 positions.  Typically, the presence of a 

through-space correlation is easily determined by 2-D NOESY.  If the protons at carbons 2 and 6 of a 2,6-

substituted piperidine have a cis relationship, there should be a strong interaction between them on the 2-

D NOESY spectrograph. If these protons have a trans relationship, that should be identifiable by an 

interaction between the proton on carbon 2 and the protons on the side chain of carbon 6, as well as an 

interaction between the proton on carbon 6 and the protons of the substituent on carbon 2.  In the case of 

piperidines made from protected molecule 6, this would mean the proton on carbon 2 would show a 

through-space correlation with the alkenyl protons from the substituent on carbon 6, and the proton on 

carbon 6 would show a through-space interaction with the ethyl group on carbon 2 (Figure 5, below).  

None of these interactions, whether to confirm cis or trans stereochemistry, was observed. An alternative 

strategy had to be developed. 

   

 2.5.2 Strategy For Assigning Stereochemistry  

 In order to determine the stereochemistry of the products of these Re2O7-mediated cyclizations, 

the protecting groups had to be removed from the nitrogen.  The first attempt was made with a Cbz-

protected piperidine.  After cyclization, the N-protected piperidine product was subjected to 

hydrogenolysis by palladium on carbon in an atmosphere of hydrogen gas.  While this did remove the 

Cbz group, it also reduced the double bond in the side chain branching from piperidine carbon 6 (Scheme 

9).  The loss of this alkene made distinguishing between the protons at carbons 2 and 6 impossible, even 

by Correlation Spectroscopy (COSY).  Since the two sidechains could not be differentiated in the 1H 

NMR spectrum, it was still impossible to determine their stereochemical relationship. 
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Scheme 9 Removal Of Cbz Protecting Group By Hydrogenolysis And Resulting Loss Of Alkene 

 The solution to this problem was to use the 9-fluorenylmethyloxy (Fmoc) protecting group.  

Fmoc protection is achieved easily in minutes under Schotten-Baumann(38) conditions.  The Fmoc 

protecting group proved to be amenable to the Re2O7 cyclization, and was then easily removed by 

treatment with 4-methylpiperidine in DMF (Scheme 10).  The resulting product could then be analyzed by 

1H NMR, COSY, and NOESY, and the stereochemistry of the protons on the carbons at positions 2 and 6 

assigned.  Reprotection of this piperidine product with various protecting groups allowed for comparison 

to the products of cyclizations performed with Cbz and Tosyl N-protections.  In all cases where HFIP was 

the solvent, the 2,6-cis piperidine was the major product. 

 

Scheme 10 Fmoc Protection, Cyclization, Deprotection 

 

 Stereochemical assignment of the protons on carbons 2 and 6 in the deprotected piperidine 

product was made by 2-D NOESY (Figure 5).  The key interactions which we hoped the 2-D NOESY 

would provide were either a correlation between the protons on carbons 2 and 6, or a correlation between 

each of those protons and the protons of the substituent on the opposite carbon (Figure 6).  For example, 
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if the proton on carbon 2 showed an interaction through space with the alkenyl protons from the 

substituent on carbon 6, that would indicate a trans relationship between the protons of carbons 2 and 6.  

There was a strong correlation between the signal at 2.58 ppm, and the signal at 3.19 ppm.  The signal at 

2.58 ppm represents the proton on carbon 2, and the one at 3.19 ppm represents the proton on carbon 6.  

Since they have a through-space correlation by 2-D NOESY, they are near one another in space, and thus 

they must have a cis relationship.  Additionally, no interaction was observed between either of the protons 

on carbons 2 and 6 and the alkyl substituent on the opposite carbon, as would be expected in the case of a 

trans relationship between those alkyl substituents.  While the absence of these crosspeaks can not be 

taken as absolute proof of the cis stereochemistry on its own, it does serve to further corroborate other 

evidence that the stereochemistry is cis, as described above.  

 

Figure 5 2-D NOESY of Deprotected Piperidine 
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Figure 6 Anticipated NOESY Interactions to Establish Stereochemistry 

 

 The Floreancig group previously demonstrated Re2O7-mediated cyclization reactions to form 

tetrahydropyrans, and noted that these molecules equilibrated to yield the more thermodynamically stable 

product over time.(23)  The formation of the piperidines described in this work was expected to proceed 

similarly, and indeed did so.  Since the 2,6-cis piperidine was the major product, as determined above by 

2-D NOESY spectroscopy, we assumed this to be the thermodynamically more stable of the two 

diastereomers.  Resubjection studies, solvent studies, and kinetic experiments provide proof of this 

equilibration. 

 As mentioned previously, HFIP is an extremely polar solvent.  Since the key transition state in 

this method involves an allylic cation, it is reasonable to propose that the highly polar nature of HFIP 

stabilizes this transition state.  With the cation thus stabilized, the piperidine product can more readily 

reopen and then close to the ring again.  Over time, this opening and closing will lead to an excess of the 

more thermodynamically stable product, as the more stable product is less likely to reopen once formed.  



 

20 

 

 

Scheme 11 Equilibration 

 2.5.3 Resubjection Study 

 Resubjection studies confirm that the 2,6-cis product is the thermodynamic product, and that the 

system equilibrates under thermodynamic control.  Essentially, these studies consisted of performing the 

Re2O7-mediated cyclization reaction in methylene chloride and recording the diastereomeric ratio in the 

product by 1H NMR.  The product was then treated with Re2O7 again, this time in HFIP, and the change 

in diastereomeric ratio calculated (Scheme 12).  The cyclization reaction performed in methylene chloride 

yielded a mixture of diastereomers in which the cis isomer predominated, but only by a factor of 1.8:1.  

When this mixture of diastereomers was exposed to Re2O7 on silica gel a second time, using HFIP as the 

solvent, the ratio of cis to trans diastereomers increased to 13.5:1.  Since the proportion of the product 

with 2,6-cis configuration increased substantially, this is the thermodynamic product, and the system 

clearly equilibrates. 

 

Scheme 12 Resubjection Study 
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 2.5.4 Time Course Experiments 

 To further validate these assertions, a study on the time course of this reaction was also 

performed.  Molecule 6 was N-protected by forming the methyl carbamate, using methyl chloroformate, 

triethylamine, and DMAP(39) to yield molecule 19.  Molecule 19 was then used to assess the reaction's 

time course.  The initial experiment was to perform the Re2O7-mediated cyclization under typical 

conditions, removing samples every 2.5 minutes, filtering through silica to stop the reaction, and 

monitoring the reaction's progress by 1H NMR.  To our surprise, the reaction was complete after only the 

initial 2.5 minutes.  However, the diastereomeric ratio at 2.5 minutes was 2.1:1, in favor of the 

thermodynamic 2,6-cis product.  In order to further confirm that the 2,6-cis product was the 

thermodynamic product, and to prove equilibration, the Re2O7-mediated cyclization was performed again 

on molecule 19, but at 0 °C in an ice bath.  Gratifyingly, the diastereomeric ratio after 2.5 minutes at 0 °C 

was 1.4:1 in favor of the 2,6-trans product.  As a further proof of thermodynamic control, and a further 

exploration of the role of HFIP, molecule 19 was also subjected to Re2O7•SiO2 at room temperature in 

acetonitrile.  The diastereomeric ratio after 4 hours was 2.1:1 in favor of the 2,6-trans product (Scheme 

13).  Taken together, these results strongly indicate that the products of Re2O7-mediated cyclization of 

protected amines to piperidines equilibrate under thermodynamic control, and that the 2,6-cis product is 

the more thermodynamically stable product.  These conclusions agree with expectations based on 

previous work with Re2O7 to form tetrahydropyrans. 
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Scheme 13 Time Course Experiments 

 

 2.5.5 Effects of Solvent on Stereochemistry 

 To further explore the role that HFIP plays in stabilizing the allylic carbocation, a series of 

experiments were performed using less optimal solvents that we had explored earlier.  These solvents 

were less polar than HFIP to varying degrees.  The effects of solvent polarity on the diastereomeric ratio 

of the reaction products could thus be determined.  Additionally, we hoped to find solvent conditions 

which would permit the selective formation of the trans-2,6-piperidine, as a complementary method to 

cis-2,6-piperidine formation in HFIP.  Ultimately, this proved impossible, as non-HFIP solvents resulted 

in very poor yields for the cyclization reaction, with dehydration to the diene outcompeting the 
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cyclization.  A comparison of the solvent effects did, however, further elucidate the need for polar solvent 

in this system.  A more polar solvent should enable the intermediate allylic cation to survive for longer, 

thus promoting formation of an excess of the thermodynamic 2,6-cis product.  As Figure 5 demonstrates, 

that was the observed solvent effect.  With HFIP as the solvent, the 2,6-cis piperidine predominated by a 

ratio of 21:1, but this ratio decreased to 1:1 in acetonitrile.  When the solvent was dichloromethane, the 

2,6-trans product was the predominant diastereomer by a ratio of 2:1.  This solvent effect conformed to 

our expectations.  Unfortunately, use of even less polar solvents caused the reaction to fail completely, 

making it impossible to develop a complimentary methodology with which to produce the 2,6-trans 

product in a synthetically useful excess. 

 

Figure 7 Comparison of Stereochemical Outcomes in Different Solvents 
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2.6 CONCLUSIONS 

 Herein, we have reported a method of using Re2O7 supported on silica gel to ionize an allylic 

alcohol, forming an allylic cation.  This allylic cation is then attacked by a pendant protected nitrogen 

nucleophile, forming a piperidine.  This method allows for the construction of N-heterocycles from open 

chain molecules quickly and with ease.  Furthermore, use of the Fmoc protecting group results in high 

yields, and a high degree of diastereocontrol in the product.  Studies on solvent suitability, protecting 

group suitability, and a limited substrate scope were described.  A method of determining the 

diastereomeric ratios of the products was described, and an explanation given for why 1H NMR of the 

protected piperidines was so difficult.  We also discussed the results of studies that led to the conclusion 

that the system equilibrates under thermodynamic control.  This method has the potential to be 

synthetically useful in the construction of complex molecules. 

 A good direction to proceed with this research would be to further explore the scope of potential 

substrates.  Substitutions at various positions around the ring other than the 2 and 6 carbons of the 

piperidines could be explored.  It might also be worthwhile to determine whether HFIP must be the sole 

solvent, or whether the system could still function well with HFIP as an additive in a more traditional 

organic solvent.  Ultimately, this methodology could be showcased as the key step to form the piperidine 

subunit of a natural product. 
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APPENDIX A SUPPORTING INFORMATION 

 

 

 General Experimental: Proton (1HNMR) and carbon (13CNMR) nuclear magnetic resonance 

spectra were recorded on Bruker Avance 300 spectrometer at 300 MHz and 75 MHz, Bruker Avance 400 

spectrometer at 400 MHz and 100 MHz, and Bruker Avance 500 spectrometer at 500 MHz and 125 MHz.  

The chemical shifts are given in parts per million (ppm) on the delta (δ) scale.  The solvent peak was used 

as a reference value, for 1H NMR: CDCl3 = 7.26 ppm, for 13C NMR: CDCl3 = 77.2 ppm.  Data are 

reported as follows: (m = multiplet; s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of 

doublets; ddd = doublet of doublet of doublets; dt = doublet of triplets; br = broad; app = apparently).  

High resolution mass spectra were recorded on either a Q-Exactive, Thermo Scientific or Q-Tof Ultima 

API, Micromass UK limited spectrometer.  Infrared (IR) spectra were collected on a Perkin Elmer 

Spectrum Two FT-IR spectrometer.  Analytical TLC was performed on E. Merck pre-coated (25 mm) 

silica gel 60 F254 plates.  Visualization was done under UV (254 nm) or by staining (135 mL absolute 

ethanol, 5 mL concentrated sulfuric acid, 1.5 mL glacial acetic acid, 3.7 mL p-anisaldehyde or 1.5 g 

ninhydrin, 100 mL absolute ethanol, 3.0 mL glacial acetic acid).  Flash chromatography was done using 

SiliCycle SiliaFlash P60 40-63 µm 60 Å silica gel.  Hexafluoroisopropanol was purchased from Oakwood 

Chemicals and used directly.  Reagent grade ethyl acetate, diethyl ether, acetone, dichloromethane, 

methanol, pentane, and hexanes (commercial mixture) were purchased from Fisher Scientific and were 

used as-is for chromatography.  Dichloromethane was distilled under N2 from CaH2.  Diethyl ether and 

tetrahydrofuran were distilled under N2 from sodium/benzophenone ketyl.  All reactions were performed 

in oven or flame-dried glassware under positive pressure of inert gas (Ar or N2) with magnetic stirring 

unless otherwise noted. 
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Tert-butyl(hex-5-yn-1-yloxy)dimethylsilane (Molecule 1) 

 To a flame-dried flask with a stir bar was added 5-hexyn-1-ol (2.50 mL, 22.7 mmol), tert-

butyldimethylsilyl chloride (1.2 eq, 4.100 g, 27.2 mmol), imidazole (2 eq, 3.087 g, 45.3 mmol), 

dimethylamino pyridine (0.05 eq, 0.139 mg, 1.1 mmol), and anhydrous dichloromethane (75.0 mL, 0.3 

M).  At 2 hours, TLC indicated reaction completion.  The reaction was quenched with 30 mL H2O, the 

aqueous and organic layers were separated, and the aqueous was extracted with 3 30 mL portions of 

EtOAc.  The combined organic portions were washed with brine, dried over Na2SO4, and concentrated 

under vacuum.  The crude residue was purified by column chromatography on silica gel (10% EtOAc in 

hexanes) to afford a golden oil.  4.703 g, 97.6%. 

 1H NMR (500 MHz CDCl3): δ 3.63 (t, J = 6 Hz, 2H), 2.21 (td, J = 6.8, 2.6 Hz, 2H), 1.94 (t, J = 

2.7 Hz, 1H), 1.55-1.65 (m, 4H), 0.89 (s, 9H), 0.05 (s, 6H);  13C NMR (125 MHz CDCl3): δ 84.7, 68.4, 

62.7, 32.0, 26.1, 25.1, 18.5, 18.4, -5.2; HRMS (ESI+) m/z calcd for C12H25OSi [M+H]+ 213.1669, found 

213.1668. 
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(E)-9-phenylnon-5-ene-1,7-diol (Molecule 2) 

 To a flame-dried flask with a stir bar was added zirconocene chloride hydride (1.1 eq, 18.6 

mmol).  The flask was sealed with a septum, purged of atmosphere and backfilled with argon.   Tert-

butyl(hex-5-yn-1-yloxy)dimethylsilane (16.9 mmol), then anhydrous methylene chloride (52.0 mL) were 

added via syringe.  The reaction was stirred at room temperature until the solution became homogenous.  

Once homogenous, the flask was cooled to -78 °C (dry ice/acetone bath), and dimethyl zinc (1 eq, 16.9 

mmol) was added dropwise with stirring.  The dry ice/acetone bath was replaced with an ice bath, and the 

reaction was allowed to warm to 0 °C.  3-Phenylpropanal (1.2 eq, 20.3 mmol, distilled under vacuum 

prior to use) was added dropwise with stirring, the reaction was allowed to warm to room temperature and 

stirred.  After 2 hours TLC indicated reaction completion.  20 mL saturated aqueous ammonium chloride 

was added, and stirred until gas evolution ceased, then the mixture was filtered through a pad of Celite.  

The layers were separated, and the aqueous was extracted 3 times with 20 mL portions of diethyl ether.  

Combined organic portions were concentrated under vacuum, and the residue redissolved in methanol, 

cooled to 0 °C, and acidified to pH ~ 3.  After stirring 10 min, TLC indicated reaction completion.  30 mL 

methylene chloride and 30 mL H2O were added, the layers were separated, and the aqueous layer was 

extracted with 3 15 mL portions of methylene chloride.  The combined organic portions were washed 

with brine, dried over sodium sulfate, and concentrated under vacuum.  Purification by column 

chromatography on silica gel (1:1 EtOAc:hexanes then 100% EtOAc) yielded the product as a yellow oil.  

65.5%.    
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 1H NMR (500 MHz CDCl3): δ 7.26-7.29 (m, 2H), 7.17-7.20 (m, 3H), 5.63-5.69 (m, 1H), 5.51 (dd, 

7, J = 15.4, 7 Hz, 1H), 4.08 (dd, J = 6.64 Hz, 1H), 3.65 (t, J = 6.5 Hz, 2H), 2.63-2.74 (m, 2H), 2.08 (dd, J 

= 7.1 Hz, 2), 1.77-1.91 (m, 2H), 1.43-1.61 (m, 4H);  13C NMR (125 MHz CDCl3): δ 142.1, 133.3, 132.1, 

128.6, 128.5, 125.9, 72.5, 62.9, 39.0, 32.3, 32.0, 31.9, 25.4; IR (neat) 3309, 2930, 2859, 1496, 1454, 

1057, 1031, 970, 747, 699; HRMS (ESI+) m/z calcd for C15H22O2Na [M+Na]+ 257.1512, found 257.1530. 
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(E)-7-hydroxy-9-phenylnon-5-enal (Molecule 3) 

 To a round-bottom flask with a stir bar was added 86 mL methylene chloride, 86 mL aqueous 

solution (0.5 M NaHCO3, 0.05 M K2CO3), (E)-9-phenylnon-5-ene-1,7-diol (11.0 mmol), (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (0.1 eq, 1.1 mmol), and tetra-n-butylammonium chloride (0.1 eq, 1.1 

mmol).  N-chlorosuccinimide (recrystallized from toluene, 1.8 eq, 19.9 mmol) was added as a single 

portion.  The mixture was stirred at room temperature for 3 hours, at which point TLC indicated 

completion.  The aqueous and organic layers were separated, and the aqueous was extracted with 3 25 mL 

portions of methylene chloride.  The combined organic layers were washed with brine, dried over sodium 

sulfate, and concentrated under reduced pressure.  Purification by silica gel column chromatography (1:1 

EtOAc:hexanes) yielded a dark yellow oil.  79.6%.    

 1H NMR (500 MHz CDCl3): δ 9.77 (t, J = 1.6 Hz, 1H), 7.26-7.30 (m, 2H), 7.17-7.20 (m, 3H), 

5.60-5.65 (m, 1H), 5.53 (dd, J = 15.4, 6.7 Hz, 1H), 4.09 (dd, J = 6.5 Hz, 1H), 2.63-2.75 (m, 2H), 2.45 (td, 

J = 1.6, 7.3 Hz, 2H), 2.09 (dd, J = 7 Hz, 2H), 1.78-1.91 (m, 2H), 1.73 (p, J = 7.4 Hz, 2H);  13C NMR (125 

MHz CDCl3): δ 202.5, 142.0, 134.2, 130.9, 128.6, 128.5, 126.0, 72.3, 43.3, 38.9, 31.9, 31.6, 21.6; IR 

(neat) 3422, 2925, 2859, 1715, 1496, 1454, 1391, 1360, 1179, 972, 748, 700; HRMS (ESI+) m/z calcd for 

C15H21O2 [M+H]+ 233.1536, found 233.1540. 
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(R)-N-((1E,5E)-7-hydroxy-9-phenylnon-5-en-1-ylidene)-2-methylpropane-2-sulfinamide (Molecule 

4) 

 To a flame-dried flask with a stir bar was added 2-methyl-2-propanesulfinamide (11.6 mmol), 

copper (II) sulfate (2.2 eq, 25.5 mmol), and 20 mL anhydrous methylene chloride.  Separately, (E)-7-

hydroxy-9-phenylnon-5-enal (1.05 eq, 12.2 mmol) was dissolved into 5 ml anhydrous methylene 

chloride, and this solution was added to the reaction mixture dropwise with stirring.  After stirring 

overnight at room temperature, TLC indicated reaction completion.  The reaction was filtered through a 

pad of Celite, and the filtrate concentrated under vacuum.  The residue was purified by column 

chromatography on silica gel (1:1 EtOAc:hexanes) to yield a yellow oil.  64.4%. 

 1H NMR (400 MHz CDCl3): δ 8.09 (t, J = 4.7 Hz, 1H), 7.26-7.30 (m, 2H), 7.16-7.20 (m, 3H), 

5.59-5.67 (m, 1H), 5.50-5.56 (m, 1H), 4.07-4.09 (m, 1H), 2.62-2.76 (m, 2H), 2.54 (dt, J = 7.1, 14.4 Hz, 

2H), 2.14 (dd, J = 6.9 Hz, 2H), 1.63-1.92 (m, 6H), 1.19 (s, 9H);  13C NMR (100 MHz CDCl3): δ 169.7, 

142.1, 134.2, 131.2, 131.1, 128.6, 128.5, 125.9, 72.3, 56.7, 38.9, 35.7, 31.8, 25.3, 22.5; IR (neat) 3412, 

2926, 2862, 1622, 1496, 1475, 1454, 1363, 1182, 1062, 970, 748, 700, 584; HRMS (ESI+) m/z calcd for 

C19H30NO2S [M+H]+ 336.1992, found 336.2010. 
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(R)-N-((1E,5E)-7-hydroxy-9-phenylnon-5-en-1-ylidene)-2-methylpropane-2-sulfinamide (Molecule 

5) 

 To a flame-dried flask with a stir bar was added (R)-N-((1E,5E)-7-hydroxy-9-phenylnon-5-en-1-

ylidene)-2-methylpropane-2-sulfinamide (5.4 mmol).  The flask was sealed with a septum and flushed 

with argon.  32.5 mL anhydrous methylene chloride was added and the flask was cooled to -48 °C (dry 

ice and 1:1 ethylene glycol:ethanol bath).  3.0 M solution of ethyl magnesium bromide in THF (2.5 eq, 

13.4 mmol, 4.48 mL) was added dropwise with stirring.  The mixture was stirred 6 hours at -48 °C, then 

warmed to rt and stirred overnight, after which TLC indicated reaction completion.  The reaction was 

quenched by dropwise addition of saturated aqueous ammonium chloride.  The aqueous and organic 

layers were separated, and the aqueous extracted with 3 15 mL portions of EtOAc.  The combined organic 

layers were washed with brine, dried over sodium sulfate, and concentrated under vacuum.  Purification 

by silica gel column chromatography yielded a dark yellow oil.  75.7%.  

 1H NMR (400 MHz CDCl3): δ 7.26-7.30 (m, 2H), 7.16-7.20 (m, 3H), 5.57-5.66 (m, 1H), 5.47-

5.55 (m, 1H), 4.07 (q, J = 6.6 Hz, 1H), 3.15 (p, J = 11.2 Hz, 1H), 3.00 (d, J = 6.4 Hz, 1H), 2.62-2.75 (m, 

2H), 1.98-2.11 (m, 2H), 1.75-1.92 (m, 3H), 1.55-1.64 (m, 2H), 1.34-1.54 (m, 4H), 1.20 (s, 9H), 0.94 (t, J 

= 7.4 Hz, 3H); 13C NMR (75 MHz CDCl3): δ 142.2, 133.6, 131.9, 128.6, 128.5, 125.9, 72.4, 57.8, 57.6, 

55.8, 39.0, 34.5, 32.0, 29.1, 25.1, 22.8, 10.1; IR (neat) 3244, 2928, 2860, 1603, 1496, 1455, 1363, 1043, 

969, 745, 699, 600, 493; HRMS (ESI+) m/z calcd for C21H36NO2S [M+H]+ 366.2461, found 366.2471. 
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(9R,E)-9-amino-1-phenylundec-4-en-3-ol (Molecule 6) 

 To a flame-dried flask with a stir bar was added (R)-N-((1E,5E)-7-hydroxy-9-phenylnon-5-en-1-

ylidene)-2-methylpropane-2-sulfinamide (4.1 mmol), and 4.1 mL methanol.  The flask was cooled to 0 °C 

(ice bath).  4 M HCl solution in 1,4-dioxane (2 eq, 8.1 mmol, 2.0 mL) was added to reaction dropwise 

with stirring.  The mixture was stirred at 0 °C for 10 min, at which time TLC indicated reaction 

completion.  The reaction was diluted with 4.1 ml H2O, and then made basic (pH 12) to pH paper by 

dropwise addition of 5 M NaOH with stirring.  The reaction was then extracted 4 times with 8 mL 

portions of methylene chloride.  The combined organic layers were washed with brine, dried over sodium 

sulfate, and concentrated under vacuum to yield a dark yellow oil.  This crude was used without further 

purification. 

 1H NMR (500 MHz CDCl3): δ 7.26-7.29 (m, 2H), 7.16-7.20 (m, 3H), 5.58-5.71 (m, 1H), 5.24-

5.53 (m, 1H), 2.58-2.75 (m, 3H), 2.34-2.41 (m, 1H), 2.01-2.11 (m, 1H), 1.71-1.95 (m, 1H), 1.17-1.58 (m, 

7H), 0.91 (t, J = 7.4 Hz, 3H); HRMS (ESI+) m/z calcd for C17H28ON [M+H]+ 262.2165, found 262.2169. 



37 

A.1 GENERAL EXPERIMENTAL FOR RE2O7

To a flame-dried flask with a stir bar was added 0.1 M solution of substrate (1 eq) in 

1,1,1,3,3,3-hexafluoroisopropanol.  Re2O7·SiO2 (0.05 eq) was added as a single portion with stirring.  

The flask was sealed with a septum, and the reaction stirred for the indicated time.  Once complete by 

TLC, reactions were filtered through a plug of silica gel, eluted with EtOAc and methylene chloride, 

and the filtrate was concentrated under vacuum.  Crude products were purified by silica gel column 

chromatography (20% EtOAc in hexanes), and characterized by NMR and HRMS. 

Benzyl (2R,6R)-2-ethyl-6-((E)-4-phenylbut-1-en-1-yl)piperidine-1-carboxylate (Molecule 13) 
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 1H NMR (500 MHz CDCl3): δ 7.25-7.36 (m, 6H), 7.13-7.19 (m, 4H), 5.50-5.68 (m, 2H), 5.10-

5.16 (m, 2H), 4.76 (s, 1H), 4.06-4.14 (m, 1H), 2.65 (t, J = 7.2 Hz, 2H), 2.28-2.36 (m, 2H), 1.18-1.79 (m, 

8H), 0.81 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz CDCl3): δ 156.2, 141.9, 137.3, 131.9, 130.4, 128.6, 

128.5, 128.4, 128.3, 127.9, 125.9, 67.0, 52.7, 51.4, 35.7, 34.3, 28.8, 27.3, 27.2, 14.7, 11.7; HRMS (ESI+) 

m/z calcd for C25H32O2N [M+H]+ 378.2428, found 378.2444. 
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 Procedure For Supporting Re2O7 On Silica Gel: To a flame-dried 500 mL round-bottom flask 

with a stir bar was added 9.0011 g silica gel.  The flask was sealed with a septum and flushed with argon.  

200 mL anhydrous diethyl ether was added via syringe, and the mixture was stirred 5 min at room 

temperature.  1.00 g Re2O7 was added as a single portion under positive pressure of argon.  The flask was 

resealed and wrapped in aluminum foil, and the mixture was stirred at room temperature for 3 hours.  The 

diethyl ether was then removed by rotary evaporation, and the foil-wrapped flask was dried under high 

vacuum overnight to yield the catalyst.  Catalytic activity was determined by comparison between two 

identical reactions, with one catalyzed by previously prepared catalyst of known activity and the other by 

the silica gel-supported catalyst.  
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A.2 SYNTHESIS OF MOLECULES 10 AND 11 

 

 

(R)-N-((E)-9-hydroxy-11-phenylundeca-1,7-dien-3-yl)-2-methylpropane-2-sulfinamide (Molecule 7) 

 To a flame-dried flask with a stir bar was added (R)-N-((1E,5E)-7-hydroxy-9-phenylnon-5-en-1-

ylidene)-2-methylpropane-2-sulfinamide (4.48 mmol).  The flask was sealed with a septum and flushed 

with argon.  27.0 mL anhydrous methylene chloride was added via syringe, and the flask was then cooled 

to     -48 °C (dry ice and 1:1 ethylene glycol:ethanol bath).  0.7 M solution of vinyl magnesium bromide 

in THF (2.5 eq, 11.19 mmol, 16.0 mL) was added dropwise with stirring.  The mixture was stirred at -48 

°C for 6 hours, then warmed to room temperature and stirred overnight, after which time TLC indicated 

reaction completion.  The reaction was cooled to 0 °C and quenched by dropwise addition of saturated 

aqueous ammonium chloride, warmed to room temperature, and stirred for 10 min.  The aqueous and 

organic layers were separated, and the aqueous was extracted with 3 10 mL portions of EtOAc.  The 

combined organic layers were washed with brine, dried over sodium sulfate, and concentrated under 

vacuum.  Purification by silica gel column chromatography (1:1 EtOAc:hexanes, then 100% EtOAc) 

yielded a pale yellow oil.  80.8% 

 1H NMR (400 MHz CDCl3): δ 7.25-7.29 (m, 2H), 7.16-7.20 (m, 3H), 5.48-5.84 (m, 3H), 5.15-

5.27 (m, 2H), 4.07 (d, J = 6.2Hz, 1H), 3.70-3.83 (m, 1H), 3.11 (s, 1H), 2.62-2.75 (m, 2H), 1.40-2.15 (m, 

9H), 1.20 (s, 9H);  13C NMR (75 MHz CDCl3): δ 142.2, 139.7, 134.1, 133.9, 131.4, 128.6, 125.9, 117.2, 

117.0, 72.4, 58.3, 55.6, 38.9, 34.2, 32.0, 25.1, 22.7; IR (neat) 3352, 2924, 2859, 1454, 1363, 1176, 1046, 
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969, 918, 747, 699, 598, 490; HRMS (ESI+) m/z calcd for C21H34O2NS [M+H]+ 364.2305, found 

364.2318. 

 

 

 



 

42 

 

 

(R)-N-((E)-1,9-dihydroxy-11-phenylundec-7-en-3-yl)-2-methylpropane-2-sulfinamide (Molecule 8) 

 To a flame-dried flask with a stir bar was added (R)-N-((E)-9-hydroxy-11-phenylundeca-1,7-

dien-3-yl)-2-methylpropane-2-sulfinamide (2.06 mmol).  The flask was sealed with a septum and flushed 

with argon.  Anhydrous THF (5.67 mL) was added via syringe, then 0.5 M 9-borabicyclo[3.3.1]nonane 

solution in THF (4 eq, 8.24 mmol, 16.49 mL) was added via syringe dropwise with stirring.  The mixture 

was stirred at room temperature 2 hours, at which time TLC indicated complete consumption of starting 

material.  The flask was cooled to 0 °C (ice bath), and 3 M aqueous sodium hydroxide (1.5 eq, 3.09 

mmol, 1.03 mL), then 30% aqueous hydrogen peroxide (5 eq, 10.30 mmol, 1.04 mL) was added dropwise 

with stirring.  The reaction was allowed to warm to room temperature and stirred overnight, after which 

time TLC indicated reaction completion.  The reaction was quenched by dropwise addition of saturated 

aqueous sodium chloride and extracted with 3 10 mL portions of EtOAc.  The combined organic layers 

were washed with brine, dried over sodium sulfate, and concentrated under vacuum.  The crude residue 

was purified by short (~4 inch) silica gel column chromatography (1:1 EtOAc:hexanes, then 100% 

EtOAc, then 10% MeOH in EtOAc) to yield a pale golden oil.  94.9 % 

 1H NMR (400 MHz CDCl3): δ 7.24-7.30 (m, 2H), 7.15-7.22 (m, 3H), 5.40-5.68 (m, 2H), 4.08 (q, 

J = 6.5 Hz, 1H), 3.82 (t, J = 5.04 Hz, 1H), 3.58-3.75 (m, 1H), 3.29-3.47 (m, 1H), 2.57-2.75 (m, 2H), 1.73-

1.93 (m, 4H), 1.55-1.72 (m, 4H), 1.34-1.53 (m, 4H), 1.22 (s, 9H); 13C NMR (75 MHz CDCl3): δ 142.1, 

133.6, 131.6, 128.5, 125.9, 72.3, 60.2, 56.1, 54.9, 54.6, 39.0, 38.3, 36.5, 35.5, 31.9, 25.3, 22.9; IR (neat) 

3325, 2924, 2856, 1706, 1447, 1366, 1217, 1055, 1004, 735, 700, 598; HRMS (ESI+) m/z calcd for 

C21H36O3NS [M+H]+ 382.2410, found 382.2416. 
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(E)-3-amino-11-phenylundec-7-ene-1,9-diol (Molecule 9) 

 To a flame-dried flask with a stir bar was added (R)-N-((E)-1,9-dihydroxy-11-phenylundec-7-en-

3-yl)-2-methylpropane-2-sulfinamide (0.96 mmol), 1.0 mL MeOH.  The flask was cooled to 0 °C (ice 

bath), and 4 M HCl in 1,4-dioxane (2 eq, 1.91 mmol, 0.48 mL) was added dropwise with stirring.  The 

mixture was stirred at 0 °C for 10 min, at which time TLC indicated reaction completion.  The reaction 

was diluted with 1.0 mL H2O and made basic (pH 12) to pH paper by dropwise addition of 5 M aqueous 

sodium hydroxide with stirring, then extracted with 4 3 mL portions of methylene chloride.  The 

combined organic layers were washed with brine, dried over sodium sulfate, and concentrated under 

vacuum to yield a yellow oil.  This crude product was used without further purification.   

 1H NMR (400 MHz CDCl3): δ 7.26-7.31 (m, 2H), 7.15-7.21 (m, 3H), 5.59-5.68 (m, 1H), 5.50 (dd, 

J = 6.8, 7.4 Hz, 1H), 4.07 (q, J = 6.6 Hz, 1H), 3.75-3.85 (m, 2H), 2.90 (s, 1H), 2.61-2.76 (m, 2H), 2.00-

2.11 (m, 2H), 1.75-1.92 (m, 3H), 1.18-1.68 (m, 9H); 13C NMR (100 MHz CDCl3): δ 142.1, 133.5, 131.7, 

128.5, 125.9, 77.4, 72.3, 62.7, 52.6, 39.2, 39.0, 37.7, 32.2, 31.9, 25.6; IR (neat) 3284, 2923, 2855, 1602, 

1495, 1454, 1060, 969, 748, 700; HRMS (ESI+) m/z calcd for C17H28NO2 [M+H]+ 278.2115, found 

278.2123. 
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(E)-4-(6-hydroxy-8-phenyloct-4-en-1-yl)-1,3-oxazinan-2-one (Molecule 10) 

 To a flame-dried flask with a stir bar was added (E)-3-amino-11-phenylundec-7-ene-1,9-diol 

(0.96 mmol), 9.6 mL anhydrous THF.  The flask was cooled to 0 °C (ice bath) and 1,1'-

carbonyldiimidazole (1 eq, 0.96 mmol) was added as a single portion with stirring.  Separately, 

triethylamine (1 eq, 0.96 mmol, 0.13 mL) was dissolved into 2.0 mL anhydrous THF and this was added 

to the reaction dropwise with stirring.  The mixture was stirred at 0 °C for 15 min, at which point TLC 

indicated reaction completion.  The reaction was diluted with 10.0 mL H2O, and 10.0 mL methylene 

chloride, the layers were separated, and the aqueous was extracted with 3 10.0 mL portions of methylene 

chloride.  Purification by silica gel column chromatography yielded a pale yellow oil.  78.5%. 

 1H NMR (400 MHz CDCl3): δ 7.26-7.30 (m, 2H), 7.16-7.20 (m, 3H), 5.78 (d, J = 23.1 Hz, 1H), 

5.58-5.66 (m, 1H), 5.49-5.55 (dddd, J = 5.6, 7.4, 1.0 Hz, 1H), 4.31 (dt, J = 4.2 Hz, 1H), 4.20 (td, J = 2.8, 

10.7 Hz, 1H), 4.08 (dd, J = 6.5 Hz, 1H), 3.42-3.49 (m, 1H), 2.62-2.76 (m, 2H), 2.08 (q, J = 6.7 Hz, 2H), 

1.38-2.03 (m, 13H); 13C NMR (100 MHz CDCl3): δ 154.5, 142.1, 134.3, 131.0, 128.5, 126.0, 77.4, 72.3, 

65.8, 51.0, 39.0, 35.8, 35.6, 32.0, 27.4, 24.7; IR (neat) 3260, 2925, 2858, 1694, 1481, 1428, 1367, 1291, 

1097, 970, 767, 749, 700; HRMS (ESI+) m/z calcd for C18H26NO3 [M+H]+ 304.1907, found 304.1916. 
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(E)-8-(4-phenylbut-1-en-1-yl)hexahydro-1H,3H-pyrido[1,2-c][1,3]oxazin-1-one (Molecule 11) 

 1H NMR (400 MHz CDCl3): δ 7.24-7.29 (m, 2H), 7.14-7.19 (m, 3H), 5.50-5.59 (m, 1H), 5.36 (dd, 

J = 6.7 Hz, 1H), 5.07 (s, 1H), 4.14-4.20 (m, 1H), 4.00-4.08 (m, 1H), 3.20-3.29 (m, 1H), 2.71 (t, J = 7.5Hz, 

2H), 2.39 (q, J = 7.2 Hz, 2H), 1.96-2.04 (m, 1H), 1.42-1.78 (m, 10H), 1.19-1.31 (m, 3H); 13C NMR (100 

MHz CDCl3): δ 153.8, 141.7, 131.6, 128.6, 128.3, 125.8, 63.9, 52.0, 49.4, 35.6, 34.0, 33.2, 29.7, 28.6, 

19.0; HRMS (ESI+) m/z calcd for C18H24NO2 [M+H]+ 286.1802, found 286.1811. 
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A.3 EXPERIMENTAL FOR PROTECTIONS 

 

 

(9H-fluoren-9-yl)methyl ((3R, E)-9-hydroxy-11-phenylundec-7-en-3-yl) carbamate (Molecule 14) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (3.869 

mmol), 15.0 mL THF.  The flask was cooled to 0 °C (ice bath).  9-Fluorenylmethoxycarbonyl chloride (1 

eq, 3.869 mmol) was dissolved separately into 5.0 mL THF.  NaHCO3 (1.3 eq, 5.030 mmol) was 

dissolved separately into 20.0 mL H2O.  The 9-fluorenylmethoxycarbonyl chloride solution was added to 

the reaction vessel dropwise with stirring at 0 °C, followed by the NaHCO3 solution dropwise with 
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stirring at 0 °C.  The reaction was stirred at 0 °C for 10 min, at which time TLC indicated the reaction 

was complete.  40.0 mL dichloromethane and 20.0 mL H2O were added to the reaction, and the layers 

were separated.  The aqueous layer was extracted with 5 30 mL portions of dichloromethane.  The 

organic portions were combined, washed with brine, dried over sodium sulfate, and concentrated under 

vacuum.  The residue was purified by column chromatography on silica gel (10% then 20% then 35% 

EtOAc in hexanes).  80.3%. 

 1H NMR (500 MHz CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 

Hz, 2H), 7.31 (t, J = 7.4 Hz, 3H), 7.25-7.28 (m, 2H), 7.15-7.21 (m, 3H), 5.57-5.66 (m, 1H), 5.50 (dd, J = 

6.8 Hz, 1H), 4.38-4.48 (m, 3H), 4.21 (t, J = 6.7 Hz, 1H), 4.06 (s, 1H), 3.51-3.62 (m, 1H), 3.49 (s, 4H), 

2.61-2.74 (m, 2H), 2.0-2.1 (m, 2H), 1.75-1.90 (m, 2H), 1.01 (s, 1H), 0.89 (t, J = 7.4, 3H); 13C NMR (126 

MHz CDCl3): δ 156.4, 144.2, 142.2, 141.5, 133.5, 131.9, 128.5, 127.8, 127.2, 125.9, 125.1, 120.1, 72.4, 

66.4, 52.7, 51.0, 47.6, 38.9, 34.6, 32.1, 31.9, 28.3, 25.4, 10.3. 
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Benzyl ((3R, E)-9-hydroxy-11-phenylundec-7-en-3-yl) carbamate (Molecule 12) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.765 

mmol), 3.1 mL dry THF, and Na2CO3 (1.5 eq, 1.148 mmol).  Benzyl chloroformate (0.95 eq, 0.727 mmol, 

0.10 mL) was added dropwise with stirring over 5 min at room temperature.  The reaction was stirred 

overnight at room temperature, until TLC indicated reaction completion.  The reaction mixture was 

filtered through a pad of Celite and concentrated under vacuum.  The residue was purified by column 

chromatography on silica gel (20% EtOAc in hexanes then 1:1 EtOAc:hexanes).  63.8%.  
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 1H NMR (500 MHz CDCl3): δ 7.25-7.38 (m, 7H), 7.15-7.22 (m, 3H), 5.56-5.70 (m, 1H), 5.40-

5.54 (m, 1H), 5.05-5.16 (m, 2H), 4.45 (d, J = 8.5 Hz, 1H), 3.99-4.09 (m, 1H), 3.51-3.64 (m, 1H), 2.62-

2.75 (m, 2H), 1.75-1.92 (m, 2H), 1.28-1.59 (m, 8H), 0.90 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz 

CDCl3): δ 156.3, 142.2, 136.9, 133.5, 131.9, 128.7, 128.6, 128.5, 128.2, 125.9, 72.4, 66.7, 52.6, 38.9, 

34.5, 32.2, 32.1, 32.0, 28.3, 25.5, 10.3. 
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Benzyl ((3R, E)-9-hydroxy-11-phenylundec-7-en-3-yl) carbamate (Molecule 15) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.574 

mmol), triethylamine (1.1 eq, 0.631 mmol, 0.088 mL), and 2.0 mL dry methylene chloride.  The flask was 

cooled to 0 °C (ice bath).  Tosyl chloride (1 eq, 0.574 mmol) was dissolved separately into 0.8 mL dry 

methylene chloride.  The tosyl chloride solution was added dropwise with stirring to reaction flask at 0 

°C.  The ice bath was removed and the reaction was allowed to warm to room temperature with stirring.  

After 15 minutes, TLC indicated completion.  The reaction was quenched by addition of 3.0 mL of 

saturated aqueous ammonium chloride, the layers were separated, and the aqueous layer was extracted 

with 3 3.0 mL portions of methylene chloride.  The combined organic layers were washed with brine, 

dried over sodium sulfate, and concentrated under vacuum.  Purified by silica gel column chromatography 

(10% to 35% EtOAc in hexanes gradient).  54.5% 

 1H NMR (500 MHz CDCl3): δ 7.75 (d, J = 8.2 Hz, 2H), 7.26-7.30 (m, 4H), 7.17-7.21 (m, 3H), 

5.51-5.57 (m, 1H), 5.44 (dd J = 6.8 Hz, 1H), 4.24 (d, J = 8.4 Hz, 1H), 4.02-4.08 (m, 1H), 3.13-3.21 (m, 

1H), 2.63-2.74 (m, 2H), 2.41 (s, 3H), 1.93 (q, J = 6.8 Hz, 2H), 1.75-1.88 (m, 2H), 1.50 (d, J = 3.7 Hz, 

1H), 1.16-1.46 (m, 7H), 0.73 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz CDCl3): δ 143.3, 142.1, 138.6, 

133.5, 131.6, 129.7, 128.6, 127.2, 126.0, 72.4, 55.4, 39.0, 34.2, 32.0, 31.9, 27.9, 24.9, 24.8, 21.6, 9.7; 

HRMS (ESI+) m/z calcd for C24H32NO2S [M+H]+ 398.2148, found 398.2155. 
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N-((3R,E)-9-Hydroxy-11-phenylundec-7-en-3-yl) acetamide (Molecule 16) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.383 

mmol) and 3.83 mL dry methylene chloride.  The flask was cooled to 0 °C (ice bath).  Acetic anhydride 

(1 eq, 0.383 mmol, 0.036 mL) was added dropwise with stirring at 0 °C, and the reaction was stirred at 0 

°C.  After 30 min, TLC indicated reaction completion.  The reaction was quenched with 2.0 mL H2O and 

the layers were separated.  The aqueous layer was extracted with 3 3.0 mL portions of methylene chloride 

and the combined organics were washed with saturated aqueous NaHCO3, then brine, dried over sodium 

sulfate, and concentrated under vacuum.  Purified by silica gel column chromatography (100% EtOAc).  

48.7%. 

 1H NMR (500 MHz CDCl3): δ 7.26-7.30 (m, 2H), 7.16-7.20 (m, 3H), 5.59-5.66 (m, 1H), 5.48-

5.53 (m, 1H), 5.10 (d, J = 8.2 Hz, 1H), 4.05-4.10 (m, 1H), 3.80-3.91 (m, 1H), 2.63-2.75 (m, 2H), 2.01-

2.10 (m, 2H), 1.97 (s, 3H), 1.69-1.91 (m, 3H), 1.26-1.66 (m, 9H), 0.89 (t, J = 7.4 Hz, 3H); 13C NMR (126 

MHz CDCl3): δ 169.7, 142.2, 133.6, 131.9, 128.6, 125.9, 72.4, 50.7, 50.5, 39.0, 34.3, 32.2, 32.0, 28.0, 

25.4, 23.7, 10.3; HRMS (ESI+) m/z calcd for C19H30NO2 [M+H]+ 304.2271, found 304.2267. 
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N-((3R, E)-9-Hydroxy-11-phenylundec-7-en-3-yl)-2-nitrobenzenesulfonamide (Molecule 17) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.459 

mmol), triethylamine (1 eq, 0.459 mmol, 0.064 mL), and 0.93 mL dry methylene chloride.  The flask was 

cooled to 0 °C (ice bath).  2-Nitrobenzenesulfonyl chloride (0.91 eq, 0.417 mmol) was added in equal 

portions at 1 min intervals over 5 min with stirring at 0 °C.  Allowed to warm to room temperature and 

stirred for 15 min, at which time TLC indicated reaction completion.  The reaction was quenched by 

addition of 0.93 mL of 1M aqueous HCL, and the aqueous and organic layers were separated.  The 

aqueous was extracted with 3 1 mL portions of methylene chloride, and the combined organic layers were 

washed with brine, dried over magnesium sulfate, and concentrated under vacuum.  Purified by silica gel 

column chromatography (100% hexanes then 1:1 hexanes:EtOAc).  27.8%. 

 1H NMR (500 MHz CDCl3): δ 8.13 (d, J = 7.6, 1H), 7.81-7.85 (m, 1 H), 7.65-7.74 (m, 2H), 7.27-

7.31 (m, 2H), 7.16-7.22 (m, 3H), 5.50-5.65 (m, 1H), 5.36-5.46 (m, 1H), 5.12 (t, J = 7.7 Hz, 1H), 4.04 (q, J 

= 6.4 Hz, 1H), 3.35-3.43 (m, 1H), 2.62-2.73 (m, 2H), 2.34 (q, J = 7.3 Hz, 1H), 1.95 (q, J = 6.9 Hz, 1H), 

1.73-1.89 (m, 1H), 1.14-1.56 (m, 9H), 0.78 (t, J = 7.3 Hz, 3H). 
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N-((3R, E)-9-Hydroxy-11-phenylundec-7-en-3-yl)-4-nitrobenzenesulfonamide (Molecule 18) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.287 

mmol), 0.7 mL dry methylene chloride, and triethylamine (1.1 eq, 0.316 mmol, 0.044 mL).  The flask was 

cooled to 0 °C (ice bath).  4-Nitrobenzenesulfonyl chloride (1 eq, 0.287 mmol) was dissolved separately 

into 0.7 mL dry methylene chloride, and added dropwise with stirring over 5 min to the reaction flask at 0 

°C.  Immediately after addition ceased, TLC indicated reaction completion.  The reaction was quenched 

with 1.0 mL saturated aqueous ammonium chloride and the layers were separated.  The aqueous layer was 

extracted with 3 1 mL portions of methylene chloride.  The combined organic layers were washed with 
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brine, dried over sodium sulfate, and concentrated under vacuum.  Purified by silica gel column 

chromatography (10% then 35% EtOAc in hexanes).  44.9%. 

 1H NMR (400 MHz CDCl3): δ 8.35 (d, J = 8.8 Hz, 2H), 8.05 (d, J = 8.7 Hz, 2H), 7.27-7.31 (m, 

2H), 7.16-7.22 (m, 3H), 5.51-5.66 (m, 1H), 5.36-5.48 (m, 1H), 4.37 (d, J = 9.0 Hz, 1H), 4.05 (p, J = 5.6 

Hz, 1H), 3.20-3.31 (m, 1H), 2.61-2.75 (m, 2H), 2.35 (q, J = 7.2 Hz, 1H), 1.96 (q, J = 6.8 Hz, 1H), 1.74-

1.90 (m, 2H), 1.10-152 (m, 9H),  0.74 (t, J = 7.4 Hz, 3H);  13C NMR (100 MHz CDCl3): δ 150.0, 147.5, 

142.0, 133.6, 131.2, 128.5, 126.0, 124.5, 72.3, 56.2, 39.0, 36.7, 35.6, 34.4, 34.0, 31.9, 28.1, 25.0, 9.9; 

HRMS (ESI-) m/z calcd for C23H29N2O5S [M]- 445.1792, found 445.1770.
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Methyl ((3R, E)-9-hydroxy-11-phenylundec-7-en-3-yl) carbamate (Molecule 19) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.383 

mmol) and 7.66 mL dry methylene chloride.  The flask was cooled to 0 °C (ice bath).  Triethylamine (1.1 

eq, 0.421 mmol, 0.059 mL) was added dropwise with stirring at 0 °C.  4-Dimethylaminopyridine (0.1 eq, 

0.0383 mmol) was added as a single portion with stirring at 0 °C.  Methyl chloroformate (0.95 eq, 0.363 

mmol, 0.028 mL) was added dropwise with stirring at 0 °C.  The reaction was stirred at 0 °C for 15 min, 

at which time TLC indicated reaction completion.  The reaction was quenched by addition of 5 mL of 

saturated aqueous ammonium chloride, the layers were separated, and the aqueous layer was extracted 

with 3 5 mL portions of methylene chloride.  The combined organic layers were washed with brine, dried 

over sodium sulfate, and concentrated under vacuum.  Purified by silica gel column chromatography 

(10% to 35% EtOAc in hexanes, gradient).  57.1%. 
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 1H NMR (400 MHz CDCl3): δ 7.26-7.30 (m, 2H), 7.15-7.22 (m, 3H), 5.58-5.67 (m, 1H), 5.47-

5.54 (m, 1H), 4.39 (d, J = 8.6 Hz, 1H), 4.07 (m, 1H), 3.65 (s, 3H), 3.50-3.59 (m, 1H), 2.626-2.75 (m, 2H), 

1.99-2.10 (m, 2H), 1.74-1.92 (m, 2H), 1.68 (s, 1H), 1.25-1.56 (m, 7H), 0.90 (t, J = 7.4 Hz, 3H); 13C NMR 

(100 MHz CDCl3): δ 157.0, 142.1, 133.4, 132.0, 128.6, 125.9, 77.4, 72.4, 52.6, 52.1, 38.9, 34.6, 32.2, 

31.9, 28.3, 25.4, 10.3; HRMS (ESI+) m/z calcd for C19H30NO3 [M+H]+ 320.2220, found 320.2235. 
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Allyl ((3R, E)-9-hydroxy-11-phenylundec-7-en-3-yl) carbamate (Molecule 20) 

 To a flame-dried flask with a stir bar was added (9R,E)-9-amino-1-phenylundec-4-en-3-ol (0.765 

mmol) and 2.8 mL dry THF.  The flask was cooled to 0 °C.  Pyridine (0.95 eq, 0.727 mmol, 0.059 mL), 

then alloc chloride (0.95 eq, 0.727 mmol, 0.077 mL) were added dropwise with stirring at 0 °C.  The 

reaction was stirred at 0 °C for 90 min, at which time TLC indicated completion.  The reaction mixture 

was filtered through a pad of Celite, the filtrate was concentrated under vacuum, resuspended in diethyl 

ether, and filtered through a pad of Celite a second time.  The filtrate was washed with deionized water, 

then brine, dried over magnesium sulfate, and concentrated under vacuum.  The residue was purified by 

silica gel column chromatography (10% to 35% EtOAc in hexanes, gradient).  15.1%. 

 1H NMR (400 MHz CDCl3): δ 7.26-7.30 (m, 2H), 7.15-7.22 (m, 3H), 5.86-5.98 (m, 1H), 5.57-

5.71 (m, 1H), 5.43-5.54 (m, 1H), 5.29 (dd, J = 17.2, 1.3 Hz, 1H), 5.20 (d, J = 10.4 Hz, 1H), 4.45-4.63 (m, 

3H), 3.98-4.10 (m, 1H), 3.55 (s, 1H), 2.61-2.76 (m, 2H), 1.99-2.10 (m, 2H), 1.72-1.93 (m, 3H), 1.28-1.58 

(m, 7H), 0.90 (t, J = 7.4 Hz, 3H). 
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