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Machine learning (ML) is increasingly being used in a wide variety of application domains. However,

deploying ML solutions poses a significant challenge because of increasing privacy concerns, and require-

ments imposed by privacy-related regulations. To tackle serious privacy concerns in ML-based applications,

significant recent research efforts have focused on developing privacy-preserving ML (PPML) approaches by

integrating into ML pipeline existing anonymization mechanisms or emerging privacy protection approaches

such as differential privacy, secure computation, and other architectural frameworks. While promising, ex-

isting secure computation based approaches, however, have significant computational efficiency issues and

hence, are not practical.

In this dissertation, we address several challenges related to PPML and propose practical secure com-

putation based approaches to solve them. We consider both two-tier cloud-based and three-tier hybrid

cloud-edge based PPML architectures and address both emerging deep learning models and federated learn-

ing approaches. The proposed approaches enable us to outsource data or update a locally trained model in

a privacy-preserving manner by employing computation over encrypted datasets or local models. Our pro-

posed secure computation solutions are based on functional encryption (FE) techniques. Evaluation of the

proposed approaches shows that they are efficient and more practical than existing approaches, and provide

strong privacy guarantees. We also address issues related to the trustworthiness of various entities within

the proposed PPML infrastructures. This includes a third-party authority (TPA) which plays a critical role

in the proposed FE-based PPML solutions, and cloud service providers. To ensure that such entities can

be trusted, we propose a transparency and accountability framework using blockchain. We show that the

proposed transparency framework is effective and guarantees security properties. Experimental evaluation

shows that the proposed framework is efficient.
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1.0 Introduction

Machine learning (ML) is increasingly being applied in a wide variety of application domains. Especially,

emerging deep neural networks (DNN) (a.k.a, deep learning (DL)) models have shown significant model

accuracy and performance improvement in many application areas such as computer vision, natural language

processing, speech, or audio recognition, etc., [105, 76, 147]. Federated learning (FL) (a.k.a collaborative

learning) is another emerging ML technique that enables training a high-quality centralized model while

training data remains distributed over multiple decentralized devices [120, 100]. FL has shown its promise

in various application domains including healthcare, vehicular networks, and smart manufacturing, [188,

155, 82]. Although these models have shown huge success in the AI-powered or ML-driven applications,

they still face several challenges such as (i) lack of powerful computational resources, and (ii) availability

of huge volumes of available data to be used for training ML models. For example, a well-performing deep

neural networks model relies on a huge volume of training data and high-powered computational resources

to support both the training and inference phases.

To address the need of powerful computing resources with higher performance CPUs and GPUs, larger

memory storage, etc., existing commercial ML-related infrastructure service providers such as Amazon,

Microsoft, Google, and IBM have devoted significant amounts of their efforts toward building infrastructure

as a service (IaaS) or machine learning as a service (MLaaS) platforms with appropriate rental fees for

clients that do not have such powerful computing resources. Clients can employ such an ML-related IaaS to

manage and train their ML models and provide data analytics and prediction services in their applications

or to their customers directly.

Another key challenge is the availability of data to train ML models. With larger training datasets, we

have a possibility of training ML models that have better accuracy. Hence, there is a need for collecting

large volumes of data potentially from multiple sources. However, the collection and use of datasets raise

serious privacy concerns because of privacy-sensitive information they may contain, as is evident from recent

data breaches [150, 176]. An adversary may also be able to infer private information from an ML model; for

instance, the adversary may infer that a patient’s data has been included in the training of an HIV-related

ML model (a.k.a, the membership inference attack [167, 19, 90, 110, 130]). Furthermore, existing regulations

such as the Health Insurance Portability and Accountability Act (HIPPA) and more recent ones such as the

European General Data Protection Regulation (GDPR), Cybersecurity Law of China, New York SHIELD

Act, California Consumer Privacy Act (CCPA), etc., place various restrictions on the availability and use

of privacy-sensitive data. Such privacy concerns and regulatory restrictions pose a significant challenge in

training a well-performing ML model and can hinder the use of ML models for real-world applications.

To tackle the increasing privacy concerns related to using ML in applications where users’ privacy-

sensitive data such as electronic health/medical records, location information, etc., are stored and processed,

1



Figure 1.1: Two typical architectures of PPML systems.

it is important to devise well-designed privacy-preserving machine learning (PPML) approaches. Towards

this, there are significant efforts focused on PPML research that aims at integrating existing anonymization

mechanisms or newly designed privacy-preserving approaches and ML. Further discussion on existing related

work is presented in Chapter 2. Existing privacy-preserving approaches have been proposed to address

some of these privacy issues, and integrated into ML approaches; however, these approaches still have their

own limitations. For instance, integration of differential privacy in ML models has been shown to lead to

potential loss of model [1]. Similarly, the use of general secure multi-party computation (garbled circuits-

based) approaches incurs high communication overhead because of large volumes of intermediate data such

as garbled tables of circuit-gates that need to be transmitted during the execution of the protocols [151].

In this dissertation, we explore secure computing approaches and show that they are promising for

generating PPML models with privacy guarantees. Towards this, we propose efficient and practical PPML

approaches based on functional encryption techniques. In these proposed approaches, data is protected using

encryption and computational ML tasks are carried out over such encrypted data. We also explore the issues

related to the trustworthiness of the proposed PPML infrastructure and propose our solutions.

In the rest of the chapter, we first discuss the motivation and challenges for the proposed research and

outline the key research tasks.

1.1 Motivation and Challenges

Early research related to PPML can be traced back to privacy-preserving data mining research several

years ago, as discussed and analyzed in [9, 114]. PPML is currently an active area of research because of

(i) rapid developments in ML research, including in DNN or federated learning (FL), and their increasing

adoption in applications; and (ii) significant privacy concerns users have with regards to the use of ML

models, and accompanying stricter privacy protection regulations and acts, which restrict the use of privacy-

2



sensitive data for training ML models. In addition, there also has been significant progress in privacy research

that has produced various privacy protection approaches that can be used to address PPML challenges.

To tackle increasing privacy concerns of deploying ML techniques, more recent research work on PPML

is being proposed from broader research communities of machine learning, distributed systems, security, and

privacy. In this dissertation, we mainly focus on secure computation techniques - a fundamental component

in PPML systems - to allow a third-party to acquire the result of a computation (e.g., the trained model)

over privacy-sensitive data without disclosing private information to the third-party. In particular, we use

functional encryption techniques as the underlying cryptographic framework to address PPML challenges

by considering various ML approaches (mainly DNN and FL) and architectures (i.e., two-tier and three-tier

PPML-enabled systems as depicted in Figure 1.1) as follows:

Two-Tier PPML Architecture . A two-tier PPML architecture includes a cloud layer containing IaaS,

MLaaS or coordinating servers, and a client layer including participants that are primarily data sources

and/or those who own data as well as partial computational resources. In general, the raw data or the

locally trained model is protected by a cryptography scheme and the subsequent processes like aggregate

computation and training computation are carried over the encrypted data or model parameters. Here we

focus on two areas of ML.

Privacy-Preserving Federated Learning : FL has been shown as a promising architectural ML approach

that enables collaborative training of models among multiple participants - under the orchestration of a

coordinator - without sharing any of their raw training data. FL can thus provide basic privacy protection

as data remains local to users’ own domains. To enhance privacy guarantee, additional privacy-preserving

approaches such as differential privacy (DP) and secure multi-party computation (SMC) are being integrated

within an FL framework to protect each participant’s model updates. However, integrating a DP mechanism

in ML can introduce some loss in utility (i.e., reduces the accuracy of a trained ML model), while integrating

SMC techniques in ML can introduce significant communication or computational overheads. The main

challenge here is how to enhance privacy guarantees for FL while taking into account model accuracy,

communication efficiency, training efficiency, and support of dynamic participants, etc.. In particular, we

propose to address the following key research questions in this dissertation:

• How to provide enhanced privacy protection in FL to protect each participant’s model updates while

providing acceptable model accuracy?

• How to ensure that privacy-preserving approaches support efficient aggregation with regards to compu-

tational and communication overheads?

• How to ensure that such an approach can support a group of participants that provide datasets, where

each participant is able to join or leave the group even during the learning phase?

• How to ensure that a privacy-preserving approach incorporates various data partitioning cases, where

each participant may only have a part of horizontally and/or a vertically partitioned dataset.
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Privacy-Preserving Deep Neural Networks: Training DNN models require high-performance computing re-

sources; however, such machines are not available for most enterprises, especially, the small-scale businesses.

Thus, existing ML-related IaaSs are employed to train ML models to enhance their businesses. However, such

services do not appropriately address privacy concerns associated with processing of the privacy-sensitive

data. Here, the main challenge is how to enhance privacy protection in an existing two-tier IaaS-based

architecture using appropriate privacy-preserving approaches; in particular, such an approach should pro-

vide protection of privacy-sensitive data through the use of a cryptosystem, and training of an ML model

is done over encrypted data. To be specific, the following key research questions will be addressed in this

dissertation:

• How can we train a DNN over encrypted privacy-sensitive data? We note that most of the existing similar

approaches only work in the inference phase of an ML model in a third-party IaaS;

• While training such a privacy-preserving DNN model, how can we ensure it is efficient with regards to

training time and communication overheads so as to make it practically deployable?

• How can we ensure that such a privacy-preserving technique is scalable with regards to including multiple

data sources, and multiple cloud services while considering various dataset partitioning cases?

Three-Tier PPML Architecture . A three-tier PPML includes a cloud layer and a client layer as in the

two-layer PPML architecture, but it additionally contains an edge layer including several edge nodes that can

preprocess data sent by the devices (e.g., sensors or mobile devices) in the client layer in a privacy-preserving

manner. Similar to the two-tier PPML system, the raw data or the local ML models are also protected by

some crypto schemes. The preprocessing at the edge and final processing at the cloud are both done over

the encrypted data. The three-tier PPML architecture tries to take advantage of the recently emerging

promising edge computing paradigm where edge nodes are placed closer to mobile devices or sensors so as

to deliver highly responsive and scalable cloud services, and to provide preprocessing services in the Internet

of Things (IoT) ecosystem. However, such a three-tier architecture brings new challenges. In particular, we

propose to address the following key issues in this dissertation:

• In contrast to cloud data centers where cloud servers are managed through strict and regularized policies,

edge nodes may not have the same degree of regulatory and monitoring oversight. Thus, edge nodes may

not be as trusted as the cloud data centers; so an appropriate privacy protection mechanism is needed

to ensure privacy leakage is prevented at the edge layer.

• Existing crypto-based secure computation techniques are not applicable in such a three-tier edge com-

puting architecture. In particular, existing homomorphic encryption (HE) based PPML approaches are

computationally inefficient to be deployed at the edge layer of IoT devices with limited capabilities. While

more efficient functional encryption (FE) based PPML has been proposed in the literature, they have not

been aimed at such three-tier edge computing-based architecture, so they cannot be directly employed.

In essence, compared to general-purpose garbled-circuits based secure computation approaches, emerging
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Figure 1.2: Overview of research tasks in this dissertation.

crypto-based secure computation techniques (i.e., computing over the encrypted data) have been shown to

be more promising in terms of achieving a strong privacy guarantee as the data is protected by an encryption

algorithm. Further, it is easier to integrate them with other types of approaches to form a customized hybrid

approach. Our proposed secure computation based approaches in this dissertation are essentially hybrid in

nature based FE techniques.

Another critical issue is the trustworthiness of various entities involved in PPML. For instance, an IaaS

server is a coordinating server discussed above, which is assumed to be honest-but-curious. In addition,

edge nodes in a three-tier ML architecture may also be semi-trusted. Besides, part of crypto-based secure

computation approaches rely on a critical component, namely, the third-party authority (TPA), that needs

to be fully trusted. However, for practical deployment of PPML such trust assumptions (e.g., fully trusted

TPA) can be a problem. Thus, mechanisms are needed to remove such trust assumptions and ensure that

all the entities are honest and can be trusted during the training or inference phases of a PPML approach.

1.2 Overview of Research Tasks

In this dissertation, as illustrated in Figure 1.2, we carry out the following four research tasks: (i)

development of an efficient and secure aggregation technique for privacy-preserving FL frameworks and an

efficient secure computation approach for privacy-preserving DNN models over an encrypted local model or

5



raw datasets in a two-tier PPML architecture; (ii) design of an efficient secure aggregation technique for

training FL models in three-tier PPML architecture to leverage the benefits of edge layer; (iii) construction

of mechanisms to make secure computation based PPML infrastructures as proposed in the tasks (i) and (ii)

more transparent to increase its trust. We present an overview of proposed research tasks below.

1.2.1 Practical Secure Computation in a Two-Tier PPML System

For two-tier PPML architecture, we focus on practical secure computation techniques for privacy pre-

serving FL (PPFL) and privacy-preserving DNN (PPDNN).

Efficient Secure Aggregation in PPFL. In FL, there are several participants each training its own ML

model locally based on its own local training dataset. A coordinator helps to coordinate and aggregate

the model update parameters from each participant to generate a more accurate global model. To prevent

inference attacks where an honest-but-curious coordinator may infer private information from a local model

uploaded by a participant, a secure aggregate computation approach is needed to protect the privacy of each

participant’s local model. However, existing secure aggregate computation approaches have limitations in

terms of computational efficiency or complex protocol interactions. To address these issues, in this research

task, we propose secure aggregation approaches that improve the efficiency of a PPFL framework while

providing a strong privacy guarantee. Based on the types of partitioning of datasets, we divide the research

task into two sub-tasks:

• Development of a secure aggregate computation approach for horizontal PPFL: A horizontal FL is one

where datasets are horizontally partitioned, i.e., each participant has a complete set of features of each

sample in its training dataset, and hence each participant is able to train a complete local model inde-

pendently. We propose a new secure aggregate computation approach for horizontal PPFL that improves

efficiency over existing approaches while protecting the privacy of each participant’s local model.

• Development of a secure aggregate computation approach for vertical PPFL: A vertical FL represents

federated learning over vertically partitioned datasets, where each participant has a partial set of features

of each sample in its training dataset. As a result, each participant is able to train only a “partial” local

model instead of a complete one independently and the aggregation operation is not as straightforward as

in a horizontal PPFL. In this sub-task, we propose a vertical PPFL approach that addresses the challenge

of computing over these “partial” models efficiently.

Efficient Secure Computation in PPDNN. We propose several secure computation approaches for

PPDNN to support computational tasks related to training a DNN model over an encrypted dataset using

a client-server or a client-cloud architecture. In such a case, a client that has privacy-sensitive data but

limited computational resources can train a DNN model by employing a third-party IaaS without leaking

its privacy-sensitive data. Existing secure computation approaches, such as ones based on homomorphic

encryption [129], that can be used to support training a DNN model over encrypted data have efficiency
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problems, making it difficult for practical deployment. In this task, we propose an innovative approach to

construct secure computation protocols based on a functional encryption family. The proposed privacy-

preserving approach supports both the training and the inference phases of a DNN model. In particular, our

proposed PPDNN supports training neural networks over encrypted datasets from multiple sources. In the

above-mentioned two-tier client-cloud or client-server architecture, the third-party ML-related IaaS platform

is responsible for training the DNNs, while the clients provide their encrypted privacy-sensitive training

datasets. As we know, the performance of a DNN model relies on the size of a training dataset. In general,

a single client or data source may not be able to provide an adequate amount of training data. In this task,

we develop an efficient secure computation approach that supports training DNNs over multiple encrypted

datasets from multiple data sources, where each dataset may be partitioned vertically or horizontally.

1.2.2 Practical Secure Computing for Three-Tier PPML System

In this dissertation, we also propose a secure aggregation approach applicable for a three-tier PPML

architecture that leverages the benefits of emerging edge computing paradigm to support a broader set of

applications. In particular, such a system includes the following entities:

• IoT devices that can easily encrypt raw data;

• untrusted or semi-trusted edge nodes that have the capability of processing encrypted data (i.e., partially

decrypt the encrypted raw data) without learning any privacy-sensitive information from the encrypted

data;

• a cloud data center that can construct the final aggregation results, but still cannot learn any privacy-

sensitive information.

We propose a three-tier PPML framework that includes a novel and efficient secure computation approach

to support practical secure aggregation over encrypted data at the edge. In general, the cloud center can

specify a random number of edge nodes to collaboratively preprocess the encrypted data where the processed

data is still in ciphertext form, without leaking any information to the edge nodes. Then the cloud can

decrypt the preprocessed ciphertexts to compose the final aggregation results in plaintext. The proposed

secure computation approach can dramatically reduce the overall decryption time and save computational

resources for the cloud, as the edge nodes are allowed to do some preprocessing over the encrypted data.

Our proposed three-tier PPML framework is based a novel threshold functional encryption (TFE) scheme.

1.2.3 Trustworthy Infrastructure for Secure Computation

In this dissertation, we also propose an approach to build a trustworthy infrastructure for the above-

mentioned proposed secure computation approaches. As introduced in research tasks 2 and 3, the proposed

secure computation solutions are based on a functional encryption family that relies on a third-party au-

thority (TPA) that is responsible for providing key services such as initializing and distributing public-key
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parameters, and generating functional private keys. The proposed approach assumes that TPA is fully

trusted, but for practical deployment of such approaches simply trusting the TPA is not adequate. Besides,

the IaaS platform and the coordinator are also assumed to be honest-but-curious, which is a common as-

sumption in most PPML frameworks. It is also critical that we have mechanisms in place to ensure that all

these entities indeed behave honestly or can be trusted. Towards this, we propose a transparency framework

to ensure that the TPA infrastructure is trustworthy. The proposed transparency approach ensures that

the operations of these entities are monitored and audited by participants based on the logged pieces of

information.

1.3 Summary and Dissertation Outline

In this chapter, we have presented the background, motivation, and challenges related to secure compu-

tation based PPML. We have also overviewed the research tasks carried out as part of this dissertation to

address the PPML challenges identified.

The outline of this dissertation is as follows: In Chapter 2, we present a literature review related to

the proposed tasks. We present the proposed secure computing approaches for PPML in Chapter 3, and

for training DNNs using encrypted multi-sourced datasets in Chapter 4. In Chapter 5, we present the pro-

posed solution for practical secure aggregation issues in edge-enabled architecture. We present the proposed

transparency framework using blockchain in Chapter 6. In Chapter 7 we present conclusions and future

work.
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2.0 Literature Review

In this chapter, we present a literature review of related work in privacy-preserving machine learning

(PPML) that are related to our proposed approaches. We discuss several representative PPML solutions

proposed in the literature, as summarized in Table 2.1, from three dimensions: affected phase of an ML

pipeline and design goals. In general, privacy-preserving techniques such as differential privacy and vari-

ous types of secure computation techniques have most commonly been employed for PPML. Furthermore,

recently proposed secure computation approaches for PPML that rely on emerging cryptosystems such as

homomorphic encryption and functional encryption have shown promise for achieving strong privacy guar-

antees. More detailed discussion is presented in the rest of the chapter.

2.1 Affected Phases of Privacy-Preserving Approaches

Typical phases of an ML system include production phase and consumption phase. The production phase

mainly focuses on how to train an ML model using the collected training data or local model update from the

data producer, while the consumption phase works on how to consume those trained models, such as making

use of inference service. So existing privacy-preserving machine learning solutions target privacy-preserving

training, privacy-preserving inference, or both.

From the perspective of computation, there is no strict boundary between a privacy-preserving training

and a privacy-preserving inference as computation in the inference procedure could be viewed as a simplified

version of training procedure without training labels [54]. For instance, the training phase of a neural network

model could be viewed as a process where a set of data is continuously fed into the designed network for

multiple training epochs, while the inference phase could be treated as one epoch of computation for one

data sample to generate a prediction label. Formally, given a set of training samples (xxx1, y1), ..., (xxxn, yn),

where xxxi ∈ Rm, yi ∈ R, the goal of a MM model (for simplicity, assume a linear model) is to learn a fit

function denoted as

fwww,b(xxx) = wwwᵀxxx+ b, (2.1)

where www ∈ Rm is a set of model parameters, and b is the intercept. To find proper model parameters, usually,

we need to minimize the regularized training error given by

E(www, b) =
1

n

n∑
i=1

L(yi, f(xxxi)) + αR(www), (2.2)

where L(·) is a loss function that measures model fit and R(·) is a regularization term (a.k.a. penalty) that

penalizes model complexity; α is a non-negative hyperparameter that controls the regularization strength.

Regardless of various choices of L(·) and R(·), stochastic gradient descent (SGG) is a common optimization
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Table 2.1: Representative proposal of privacy-preserving machine learning systems

Proposals Affected Phase Designing Goals

[38, 91] Training Differential privacy data release
[1, 72, 109] Training Differential private SGD
[166] Training Distributed selective SGD
[120, 100, 138, 154] Training Federated learning
[125] Both Secure computation delegation
[128, 151] Both GC-based secure computing
[73, 78, 75, 86, 31, 139, 92] Inference HE-based secure computing
[27] Inference customized SC by HE
[22] Training FL/secret sharing/encryption
[129] Both HE-based secure computing
[191] Both FE-based secure computing
[173] Training FL/DP/THE-based secure computing
[189] Training FL/DP/FE-based secure computing

method for unconstrained optimization problems as discussed above. A simple SGD method needs to iterate

over the training samples and for each sample it needs to update the model parameters according to the

following update rule

www ← www − η∇wwwE ← www − η[α∇wwwR+∇wwwL] (2.3)

b← b− η∇bE ← b− η[α∇bR+∇bL] (2.4)

where η is the learning rate which controls the step-size in the parameter space. Given a trained model

(wwwtrained, btrained), the goal of the inference phase is to predict a label ŷ with target sample xxx as follows:

ŷ ← fwwwtrained,btrained(xxx) (2.5)

In general, the task of privacy-preserving training is more challenging than the task of privacy-preserving in-

ference. Most of the existing privacy-preserving training solutions indicate the inclusion of privacy-preserving

inference even though they may not explicitly state that.

2.1.1 Privacy-Preserving Training

The goal of a privacy-preserving training is to prevent the leakage of privacy sensitive information in

training data. Essentially, the key factors related to training are data and computation, and consequently,

existing proposed approaches try to tackle the challenge of privacy-preserving training from the following two

aspects: (i) how to distill/filter the training data such that the processed data includes less or no privacy-

sensitive information; or (ii) how to process or compute over the training data in a privacy-preserving

manner.

From the perspective of data, existing privacy-preserving training approaches either (i) adopt traditional

anonymization mechanisms such as k-anonymity[171], l-diversity[118] and t-closeness [111] to remove iden-

tifier and quasi-identifier information in the training data before sending it out for training, or (ii) employ
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ε-differential privacy [59, 62, 61] mechanism to add privacy budget (noise) into the dataset to avoid leakage

of private information against a set statistical queries.

For instance, the approach proposed in [67] tries to provide k-anonymity for data mining algorithms,

while the approaches proposed in [107, 98] focus on the utility metric and provide a suite of anonymization

algorithms to produce an anonymous view based on ML workloads. On the other hand, recently, differential

privacy mechanism has shown its promise in emerging deep learning models that rely on training on a large

dataset. For example, the early work in [1] proposes a differentially private stochastic gradient descent

(often abbreviated SGD) approach to train a privacy-preserving DL model. The approach proposed in [121]

demonstrates that it is possible to train large recurrent language models with user-level differential privacy

guarantees with only a negligible cost in predictive accuracy. Parameter-transfer based meta-learning (i.e.,

applications including few-shot learning, federated learning, and reinforcement learning) often requires task-

owners to share model parameters, because of which privacy leakage becomes possible. Proposed approaches

for privacy-preserving meta-learning such as in [72, 189] try to tackle the problem of private information

leakage in FL by employing an algorithm to achieve client-sided differential privacy. The method proposed in

[109] formalizes the notion of task-global differential privacy and proposes a differentially private algorithm

for gradient-based parameter transfer that satisfies the privacy requirement while retaining provable transfer

learning guarantees in convex settings.

Emerging area of secure computation over encrypted data in the cryptography community is showing

another promising approach to protecting the privacy of training data. Unlike a traditional anonymization

technique or a differential privacy mechanism that aims at protecting against inference or de-anonymization

attacks, such as those demonstrated in [183, 146, 167, 144], wherein an adversary may have additional

background knowledge, the encryption based approaches can provide strong privacy guarantees, referred

to as confidential-level privacy in this chapter; these approaches have received more and more attention in

recent studies such as in [173, 191, 189, 69, 83, 39, 73, 31, 129]; in these approaches, the training data or the

shared model updates are protected by cryptosystems.

From the perspective of computation, existing privacy-preserving training approaches are also correspond-

ingly divided into two approaches: (i) cases where the training data is processed by traditional anonymiza-

tion mechanisms or differential privacy mechanism; in such cases, computation involved in training is as

normal as in non-PPML model training; (ii) cases where the training data is protected via cryptosystems to

achieve a confidential-level privacy; here, the privacy-preserving (i.e., referred to as crypto-based) training

computation is more complex compared to that in normal non-PPML model training. Crypto-based train-

ing approaches rely on recently proposed cryptographic schemes, mainly, homomorphic encryption schemes

[70, 175, 28, 119, 6] and functional encryption schemes [25, 74, 4, 14, 13, 2, 3]. Unlike in a normal training

process, it is worth noting that there is an extra step - data conversion - in crypto-based training approaches

because most of these cryptosystems are built on the integer group while most of the training data is in

floating-point number format, especially, after normalization. Note that normalization is a very common
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preprocessing method in most of ML approaches [189, 191, 83, 129]. The data conversion step includes a pair

of encoding and decoding operations. The encoding step is commonly adopted to convert the floating-point

numbers into integers so that the training data can be encrypted and then used in a crypto-based training.

On the contrary, the decoding step is applied to the trained model or the result of crypto-based training

to recover the floating-point numbers. Obviously, the data conversion procedure indicates that there is a

potential precision loss during a crypto-based training. We will discuss the details of the potential impact

of data conversion step in Section 2.2.

2.1.2 Privacy-Preserving Inference

Several existing PPML approaches that focus on privacy-preserving training indicate that the proposed

solution may also support privacy-preserving inference, as illustrated in [128, 151, 125, 191, 129]. We also

observe that most of the proposals that apply cryptographic approaches mainly use homomorphic encryption

and its related schemes, such as in [73, 78, 75, 86, 31, 139, 92, 27]. These approaches only target the inference

phase, as these cryptosystems are not efficient enough to be applied in the training phase as it involves

complex and massive computation.

Part of privacy-preserving inference approaches also focus on the privacy-preserving model query or

publication; in this case, a model user is separate from a model owner. And a key concern here is how to

prevent adversaries (i.e., a curious model user) from inferring private information of the model owner from

the model itself, in particular, when an adversary has been allowed to iteratively query the inference service.

To address these issues, a naive privacy-preserving solution is to limit the number of queries for a model

user.

In addition to these, existing prevention methods can be categorize into three approaches:

• a private aggregation of teacher ensembles (PATE) approach [136, 138], wherein the knowledge of an

ensemble of “teacher” models is transferred to a “student” model, with intuitive privacy provided by

training teachers on disjoint datasets and strong privacy guaranteed by noisy aggregation of teachers’

answers;

• model transformation approach such as MiniONN [115], where an existing model is transformed into an

oblivious neural network supporting privacy prediction with reasonable efficiency;

• model compression approach, especially, applied in emerging DL models with a large set of model param-

eters, where knowledge distillation methods [88, 143] are adopted to compress the trained DL models.

Even though the main goal of knowledge distillation is to reduce the size of a DL model, such a method

also brings additional privacy-preserving features [137, 178]. Intuitively, the distillation procedure not

only removes the redundant information in a model but also reduces the probability that an adversary

can infer potential private information in the model through iterative queries.
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2.2 Design Principle of Privacy-Preserving Approaches

In this section, we discuss privacy-preserving approaches in a more fine-grained manner, namely, the

design principles used in these approaches; here, we focus how these approaches tackle the following issues:

• How is privacy-sensitive data released?

• How is privacy-sensitive data processed?

• Does a PPML architecture prevent the disclosure of private information?

Correspondingly, we introduce the following four types of the privacy-preserving approaches: (i) data pub-

lishing based approaches; (ii) data processing based approaches; (iii) architecture-based approaches; and (iv)

hybrid approaches that may combine or integrate previous approaches.

2.2.1 Data Publishing Based Approaches

In general, a data publishing based privacy-preserving approach includes the following:

• De-identification-based Approaches that partially remove the identifiers in the raw data;

• Perturbation-based Approaches that partially perturb the statistical result of the raw data;

• Crypto-based Approaches that totally encrypt the raw data.

De-identification-based Approaches: De-identification based approaches essentially remove some in-

formation that can lead to identification. Here, techniques such as k-anonymity[171], l-diversity[118] and

t-closeness [111] are applied to the raw privacy-sensitive data to remove privacy-sensitive information so

as to protect from potential inference attacks. Specifically, a k-anonymity mechanism can ensure that the

information for each person contained in the released dataset cannot be distinguished from at least k-1 other

individuals whose information is also released in the dataset. To achieve that, k-anonymity approaches define

identifiers and quasi-identifiers for each data attribute, and then remove the identifiers and partially hide

the quasi-identifiers information. The l-diversity mechanism introduces the concept of equivalence classes,

where an equivalence class satisfies l-diversity if there are at least l “well-represented” values for a sensitive

attribute. A dataset satisfies l-diversity if every equivalence class of the dataset satisfies l-diversity [171, 118].

Essentially, as an extension of the k-anonymity mechanism, l-diversity mechanism reduces the granularity

of the data representation and additionally maintain the diversity of sensitive fields by adopting techniques

like generalization and suppression such that given any records it can be mapped to at least k − 1 other

records in the dataset. t-closeness is further refinement of l-diversity by introducing additional restriction

on the distribution value over an equivalence class. An equivalence class satisfies t-closeness if the distance

between the distribution of a sensitive attribute in this class and the distribution of all attributes in the

whole dataset is no more than a threshold t. Similarly, a dataset satisfies t-closeness if all equivalence classes

satisfy t-closeness.
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Perturbation-based Approaches: Perturbation based approaches mainly refer to using ε-differential pri-

vacy techniques [59, 62, 61]. As per [60, 62], differential privacy can be defined as follows: a randomized

mechanismM : D → R with domain D and rangeR satisfies (ε, δ)-differential privacy if for any two adjacent

input d, d
′ ∈ D and for any subset of outputs S ⊆ R, it holds that

Pr[M(d) ∈ S] ≤ eε · Pr[M(d
′
) ∈ S] + δ (2.6)

The additive term δ allows for the possibility that plain ε-differential privacy is broken with probability δ

(which is preferably smaller than 1/|d|). Usually, a paradigm of an approximating a deterministic function

f : D → R with a differentially private mechanism is via additive noise calibrated to function’s sensitivity

Sf , which is defined as the maximum of the absolute distance |f(d)−f(d
′
)|. The representative and common

additive noise mechanisms for real-valued functions are Laplace mechanism and Gaussian mechanism defined,

respectively, as follows:

MGauss(d; f, ε, δ) = f(d) +N (µ, σ2) = f(d) +N (0,
2 ln(1.25/δ)

ε2
· S2

f ) (2.7)

MLap(d; f, ε) = f(d) + Lap(µ, b) = f(d) + Lap(0,
S2
f

ε
) (2.8)

Typical uses of differential privacy enabled PPML i along two directions: (i) directly adopting above-

mentioned additive noise mechanism on the raw dataset in the case of publishing data, as illustrated in

[38, 91]; or (ii) transforming the original training method into differentially private training method so that

the trained model has ε-differential privacy guarantee in the case of publishing model, as illustrated in

[1, 72, 109].

Sketching is an approximate and simple approach for data stream summary, by building a probabilistic

data structure that serves as a frequency table of events, like counting Bloom filters. Recent theoretical

advances [7, 123] have shown that differential privacy is achievable on sketches with additional modifications.

For instance, the work in [16] focuses on the privacy-preserving collaborative filtering, a popular technique

for a recommendation system, by using sketching techniques to implicitly provide the differential privacy

guarantees by taking advantage of the inherent randomness of the data structure used. Most recent work as

reported in [113] proposes a novel sketch-based framework for distributed learning; this approach involves

compressing the transmitted messages via sketches to simultaneously achieve communication efficiency and

provable privacy benefits.

In summary, traditional anonymization mechanisms and differential privacy mechanisms are designed

to tackle general data publishing problems. More recently, differential privacy has been widely adopted

in privacy-preserving DL and privacy-preserving FL approaches, such as in [1, 121, 72, 109, 173, 189].

Furthermore, differential privacy shows its promise in helping generate synthetic data [59, 94, 172] and

emerging generative adversarial networks (GANs) [187, 65].

Cryptography-based Approaches: The third approach mainly refers to cryptography based techniques

that totally obfuscate the raw data to achieve a stronger privacy guarantee (i.e., confidential-level pri-
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vacy) compared to the traditional anonymization mechanisms and differential privacy mechanisms. Existing

cryptographic approaches for data publishing for the purpose of training an ML can be seen along the

following two directions: (i) applying traditional symmetric encryption schemes such as AES, which is as-

sociated with garbled-circuits based secure multi-party computation protocols [127, 180, 142]; (ii) applying

emerging cryptosystems such as homomorphic encryption schemes [70, 175, 28, 119, 6] or functional en-

cryption schemes [25, 74, 4, 14, 13, 2, 3]. These include necessary algorithms to carry out computation

over encrypted data; here, only a party with the issued key is able to acquire the computation results.

The typical PPML approaches such as thos proposed in [151, 149] could be classified to the first direc-

tion of the crypto-based data publishing approach, while more and more recent works such as proposed in

[173, 191, 189, 69, 83, 39, 73, 31, 129] focus on the direction (ii).

Essentially, crypto-based data publishing approaches cannot work independently and usually are associ-

ated with related secure computation approaches, as it is expected to let the data receiver only learn the

data processing result rather than the original data. These crypto-based approaches provide a promising

candidate for data publishing, but the emphasis of crypto-based approaches is on computation over the

encrypted data. More details related to that will be presented in the next section.

2.2.2 Data Processing Based Approaches

Based on different data/model publishing methods, data processing approaches can be as follows: normal

training and training using secure computation. As discussed in Section 2.2.1, if the data is published

using traditional anonymization or differential privacy mechanisms the training process is similar to that

in non-PPML. Here, by privacy-preserving data processing based approach we mainly refer to the secure

computation based approach that can be adopted in both training and inference phases.

Secure computation problems and the corresponding solutions were initially proposed by Andrew Yao in

1982 in a garbled-circuits protocol for two-party computation [192]. The primary goal of secure computation

is to enable two or more parties to evaluate an arbitrary function over both their inputs without revealing

anything to either party except for the output of the function. These secure computation approaches could

be basic secure two-party computation (2PC) or more general secure multi-party computation (MPC) for

multiple parties. These protocols include two types of security guarantees considering different adversarial

models: semi-honest (passive) security and malicious (active) security. We refer the reader to [49, 84] for

more details related to secure multi-party computation.

Here, we discuss existing secure computation techniques that have been used in PPML from the per-

spective of the underlying designed principle. In general, these secure computation techniques include the

following: (i) pairwise blinding using perturbation or dining cryptographer networks (DC-net) or (verifiable)

secret sharing; (ii) garbled-circuits with oblivious transfer; and (iii) emerging cryptographic schemes.

Pairwise Blinding based Approaches: One category of secure computation approach is the pairwise

blinding using perturbation techniques, where the private values are blinded/masked with randomized values.
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One type of perturbation is additive perturbation. For instance, in a generic additive perturbation based

privacy-preserving summation [156] - a function-specific (i.e., the aggregation function) secure multi-party

computation - the coordinator gives its input x0 by adding a randomized perturbation r, and then each

participant adds its input xi on x0 + r and passes the result to the next participant. Finally, the coordinator

acquires
∑
xi+r and removes its randomized perturbation r to acquire the aggregated result. Another type

of perturbation in pairwise blinding is multiplicative perturbation where the random projection or random

rotation techniques are used to perturb the values. Besides, anonymous communication could also be the

candidate method in the pairwise blinding based approaches. For example, DC-nets [34] or mix-nets [35] is

a class of anonymous communication network, where a single participant at a time can send an anonymous

message, which can be viewed as a restricted case of secure aggregation. Adopting DC-nets or mix-nets,

a trusted coordinator can collect input from each party in an anonymous manner and then compute the

function results, which provides some privacy-preserving feature because the coordinator cannot learn the

source of each function input. Furthermore, secret sharing techniques can also be adopted in pairwise blinding

based secure computation approaches. For instance, suppose that the coordinator is issued a randomized

secret s, and each participant is issued secret sharing si to integrate into its input xi as a perturbation.

Then, the coordinator can aggregate
∑
xi by removing the recovered secret s.

In short, most pairwise blinding based approaches can be viewed as a lightweight approach compared to

other secure computation related approaches. As illustrated in existing proposals [9, 96, 96, 29, 56, 22], these

classes of secure computing approaches are mostly adopted in traditional data mining area [9, 96] and have

not been used much in recently proposed PPML approaches. Specifically, approaches proposed in [29, 56]

focus on the k-means clustering machine learning algorithms. The solution in [29] proposes two types of

pairwise blinding methods, namely, a division protocol and a random value protocol to perform two-party

division and to sample uniformly at random from an unknown domain size. The approach proposed in [56]

utilizes additive secret sharing as a cryptographic primitive to implement a secure multiparty computation

protocol to do privacy-preserving clustering. The approach proposed in [22] employs a t-of-n secret sharing

scheme with additional decisional Diffie–Hellman(DDH) based key agreement and authenticated encryption

to construct a protocol for securely computing sums of vectors with low communication overhead, robustness

to failures, which requires only one server with limited trust.

Garbled Circuits based Approaches: Garbled-circuits and oblivious transfer techniques constitute an-

other type of foundation to build secure computation solutions. For simplicity, we use the garbled-circuits

based 2PC protocol as an example to illustrate that. The basic idea is that one party (a.k.a, the garbled-

circuit generator) prepares a circuit computing function that includes garbled gates that are encrypted via

traditional symmetric encryption scheme such as AES, and then the other party (a.k.a, the garbled-circuit

evaluator) obliviously computes the output of the circuit without learning any intermediate information.

Specifically, the function f is transferred to a Boolean circuit composed of huge amounts of different types

of garbled gates (e.g., AND-gate, OR-gate, and XOR-gate). Suppose that an AND-gate gAND is associated
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Table 2.2: Example of the AND-garbled gate table

bi bj gAND(bi, bj) garbled output permuted garbled output

0 0 0 Ew0
i ,w

0
j
(w0
k) ⇒ Ew0

i ,w
0
j
(w0
k)

1 0 0 Ew1
i ,w

0
j
(w0
k) ⇒ Ew1

i ,w
0
j
(w1
k)

0 1 0 Ew0
i ,w

1
j
(w0
k) ⇒ Ew0

i ,w
1
j
(w0
k)

1 1 1 Ew1
i ,w

1
j
(w1
k) ⇒ Ew1

i ,w
1
j
(w0
k)

with two input wires i and j, and one output wire k. The generator first generates two cryptographic keys

for each input wire, denoted as w0
i , w

1
i , w

0
j , w

1
j , where the superscript represents the the encoded input bits

(e.g., w0
i encodes 0-bit input of wire i, while w1

i encodes 1-bit input of wire i). For inputs data bi, bj ∈ {0, 1},

the generator computes the ciphertext as Esymmetric.E
(k)

w
bi
i ,w

bj
j

(w
gAND(bi,bj)
k ), and Table 2.2 presents the gate

table in detail. Then, the evaluator is able to acquire its input wire associated keys w0
j , w

1
j with its input

bj ∈ {0, 1} without revealing that input to the generator using the 1-of-2 oblivious transfer (OT) technique.

With the input associated key wbj and the received permuted garbled table, the evaluator is able to decrypt

the corresponding ciphertext to acquire the output w
gAND(bi,bj)
k without learning the input of the generator.

Finally, these different types of garbled gates can compose any function that can be used in the secure

computation protocols.

Even though garbled-circuits based 2PC and MPC problems have been there for several decades, the

security community is still working on improving its efficiency and practicality [127, 18, 179, 180, 97].

The garbled-circuits based 2PC or MPC have been recently adopted to address the challenge of secure

computation issues in popular machine learning algorithms, even complex DL models [69, 128, 115, 151, 32].

Chameleon [149] combines the best aspects of generic secure function evaluation protocols where linear

operations are achieved by additive secret sharing values and nonlinear operations are implemented by

garbled-circuit protocols. Based on the efficient mixed 2PC proposed in [55], similar to the Chameleon

framework, ABY 3 in [126] proposes a design and implementation of a general framework for PPML and use

it to obtain new solutions for different ML algorithms in a three-server model wherein data owners secretly

share their data among three servers that train and evaluate models on the joint data using three-party

computation. Based on Yao’s garbled-circuits, DeepSecure [151] presents a secure DL framework that is

built upon automated design, efficient logic synthesis, and optimization methodologies. Recently proposed

QUOTIENT [8] is a new method for discretized training of DNNs along with a customized 2PC protocol.

EzPC [32] is another type of 2PC framework that generates efficient 2PC protocols from high-level, easy-

to-write programs, where the proposed compiler can generate protocols that combine both arithmetic and

boolean circuits for better performance.

Even though these garbled-circuits based solutions can provide provably secure and show its promise in

training phase rather than just inference phase in deep neural networks without relying on the non-colluding
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two or three servers as illustrated in [151, 8], the obvious limitation of the garbled-circuits based solutions is

the size of the data transmission. As illustrated in Table 2.2, for a simple computation on two input bits such

as bi ∧ bj , it involves transferring four ciphertexts and additional oblivious transmission for the key, where

the size of each ciphertext and keys depends on the adopted symmetric encryption algorithm. Considering

the complex computation functions in ML, the size of transmitted data will explode significantly.

Emerging Cryptographic based Approaches: Emerging cryptogahic approaches such as homomorphic

encryption and functional encryption that support computation over the ciphertext provide other approaches

toward building secure multi-party computation approaches for PPML systems. Emerging cryptography

based secure computation also provides strong privacy guarantees like the garbled-circuits based approaches

providing confidentiality-level security. However, unlike the garbled-circuits based secure protocols that

involve huge amounts of transmitted data, these emerging cryptosystem based approaches only need to

transfer the encrypted data instead of the data-encoded garbled-circuits, and related keys via oblivious

transfer technique. Here, we briefly introduce homomorphic encryption schemes [70, 175, 28, 119, 6] and

functional encryption schemes [25, 74, 4, 14, 13, 2, 3] that are mainly employed in existing PPML proposals

[191, 80, 133, 47, 73, 31, 129, 117, 31].

Homomorphic Encryption is a form of cryptosystem with an additional evaluation capability for computing

over ciphertexts without access to the private secret key, in which the result of operations over the ciphertexts,

when decrypted, matches the result of operations as if they have been performed on the original plaintext.

Some typical types of HE are partially homomorphic, somewhat homomorphic, leveled fully homomorphic,

and fully homomorphic encryption according to the capability of performing different classes of computations.

Unlike a traditional encryption scheme that includes three main algorithms: key generation (Gen), encryption

(Enc), and decryption (Dec), an HE scheme also has an extra evaluation (Eval) algorithm. Formally, an

HE scheme EHE includes the above four algorithms such that

EHE.Decsk(EHE.Evalpk(f, EHE.Encpk(m1), ..., EHE.Encpk(mn))) = f(m1, ...,mn), (2.9)

where {m1, ...,mn} is a set of messages to be protected, pk and sk are the key pairs generated by the key

generation algorithm. Based on our observation, we present several commonly adopted HE implementations

used in PPML solutions. The Paillier cryptosystem [135] is an additive partially homomorphic encryption

system, where given the message mi and mj , the Paillier system EPaillier
HE satisfies the equation (2.9) such

that EPaillier
HE .Enc(mi) · EPaillier

HE .Enc(mj) = EPaillier
HE .Enc(mi + mj). HElib [79] implemented several typical

fully homomorphic encryption schemes such as in [28, 40, 170, 71] with applied optimization techniques like

bootstrapping, smart-vercauteren, and approximate number. SEAL [124] is another HE library that allows

additions and multiplications to be performed on encrypted integers or real numbers. Other operations,

such as encrypted comparison, sorting, or regular expressions, are in most cases not feasible to be done over

encrypted data using this technology.

The approach proposed in [80] makes use of homomorphic encryption in constructing a protocol for

regression analysis, while the approach proposed in [133] focuses on privacy-preserving ridge regression on
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millions of records by combining both homomorphic encryption and garbled-circuits. The approach proposed

in [47] provides a computationally secure two-party protocol based on additive homomorphic encryption

that substitutes the trusted initializer. Recent work in [41] tries to evaluate the possibility of homomorphic

encryption to fully implement its program in ML applications by addressing both the issue of comparison

and selection/jump operations.

CryptoNets proposed in [73] tries to apply neural networks to encrypted data by employing a leveled

homomorphic encryption scheme to the training data, which allows adding and multiplying encrypted mes-

sages; but it requires that one knows in advance the complexity of the arithmetic circuit. Unlike the potential

ineffectiveness issue for DNNs in CryptoNets, the proposed approach in [31] combines the original ideas of

Cryptonets’ solution with the batch normalization principle for a classification problem. Besides, the ap-

proach proposed in [129] uses the open-source FHE toolkit HElib for DNN training using a stochastic gradient

descent training method. Several recent proposals as in [50, 117, 87] focus on the same problem but with

different optimization approaches to increase efficiency as well as model accuracy.

Functional Encryption is another form of cryptosystem that also supports computation over a ciphertext.

Typically, an FE EFE includes four algorithms: setup, key generation, encryption and decryption algorithms,

such that

EFE.Decskf (EFE.Encpk(m1), ..., EFE.Encpk(mn)) = f(m1, ...,mn), (2.10)

where the setup algorithm creates a public key pk and a master secret key msk, and key generation algorithm

uses msk to generate a new functional private key skf associated with functionality f . Those two algorithms

usually are run by a trusted third-party authority. At this moment, there is a lack of well-known libraries for

FE like the HElib and SEAL libraries for the HE. Existing construction of functional encryption schemes for

general functionality, such as recently proposed constructions in [74, 24, 182, 68, 30, 108], only focus on the

theoretical feasibility or functionality existence. Only a few recently proposed works such as in [4, 5, 10, 20]

focus on the simple and applicable FE, but the functionality is limited to the inner-products.

As presented above, the main similarity between FE and HE is that both support computation over a

ciphertext. At a high-level, the main difference between functional encryption and the homomorphic encryp-

tion is that given an arbitrary function f(·), the homomorphic encryption allows computing an encrypted

result of f(x) from an encrypted x, whereas the functional encryption allows to compute a plaintext result

of f(x) from an encrypted x [12]. Intuitively, a function computation party in a HE scheme (i.e. the eval-

uation party) can only contribute its computational resources to obtain the encrypted function result, but

cannot learn the function result unless it has the secret key, while the function computation party in the FE

scheme (i.e., usually, the decryption party) can obtain the function result with the issued functional private

key. Besides, except for several most recently proposed decentralized FE schemes [43, 3, 42], the classic FE

schemes rely on a trusted third-party authority to provide a key service such as issuing a functional private

key associated with a specific functionality.

Unlike HE-based secure computation techniques that have been widely adopted as a candidate solution
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Figure 2.1: Several typical architectures adopted in existing PPML systems.

for secure computation for PPML, recently proposed FE-based PPML solutions such as in [189, 191, 153]

also show its promise in terms of its efficiency and practicality. The approach proposed in [153] provides

a practical framework for performing partially encrypted and privacy-preserving predictions that combines

adversarial training and functional encryption. Our earlier proposed approach such as in [191] presents a

CryptoNN framework that supports training a neural network model over encrypted data by using FE to

construct a secure computation mechanism. An approach we have proposed as part of this dissertation

(presented in Chapter 3.1), [189] focuses on PPFL by utilizing FE to construct a secure aggregation protocol

to protect each participant’s input in PPFL.

Remark - Impact of Encoding: Unlike in anonymized or differentially private PPML training, where the

training data or trained model is in the format of floating-point numbers, the secure computation approaches

using crypto-based PPML training data should be in integer format. As a result, there is typically a procedure

to convert the training data into integer format before secure computation operations and then recover the

computational result back into the floating-point numbers. Due to this procedure, an issue related to crypto-

based secure computation is how to decide the encoding degree and what would the impact of the encoding

precision be. As partially illustrated in [191, 189], the encoding issue is a trade-off problem; i.e., a higher

encoding precision indicates a higher model accuracy, whereas a higher encoding precision denotes more

computational time (i.e., more training time).

2.2.3 Architecture Based Approaches

Recently, architecture based approaches have also been shown to be promising for PPML, although there

is no generic paradigm for architecture-based approaches. As depicted in Figure 2.1, we present four typical

architectural approaches as examples to illustrate how privacy can be guaranteed for ML models.

Delegation based ML Architecture. It is a classic architecture that gives the parties with limited compu-

tational resources the capability to create and use ML models. With additional secure techniques or proper

trust assumptions, a delegation-based architecture can also provide a privacy-preserving feature for ML. For
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instance, CryptoML [125] proposes a practical framework that supports provably secure and efficient delega-

tion for contemporary matrix-based ML, where a delegating client with memory and computational resource

constraints is able to assign the storage and computational tasks to the cloud via an interactive delegation

protocol based on provably secure Shamir’s secret sharing technique. Similarly, the approach proposed in

[112] includes a framework for privacy-preserving outsourced classification in a cloud computing scenario,

where an evaluator can securely train a classification model over the encrypted multiple data sources with

different public keys. Unlike outsourcing the computation to one party, SecureML [128] presents efficient

2PC protocols that fall in two-server model where data owners distribute their private data among two

non-colluding servers that train various models on the joint data using 2PC to support PPML for linear

regression, logistic regression and neural network training using the SGD method.

Distributed Selective SGD based Architecture. As proposed in [166] distributed selective SGD enables

multiple parties to jointly learn an accurate neural network model without sharing their input datasets, where

the system includes several participants, each of which has a local private dataset available for training,

and one parameter server which is responsible for maintaining the latest values of parameters available

to all parties. In particular, the approach assumes two or more participants training independently and

concurrently. At each round of local training, the participants acquire the latest values of most-updated

parameters and integrate the selected partial parameters into local gradients. After local training, each

participant can fully control which gradients to share and how often.

Federated Learning Architecture. FL [120, 100] is also a decentralized ML approach with similar ar-

chitecture as a distributed selective SGD [166], where each participant maintains a private local dataset of

its facilities, and a shared global model is trained by the coordinator (i.e., a central server) using the local

model updates generated by those users. Since the training data does not leave each participant’s domain,

FL can provide the primary privacy guarantee. In particular, a FL architecture can be treated as a general

paradigm for a distributed selective SGD architecture. Usually, a FL framework requires that the participant

download all gradients in the global model, train the model with the local dataset, and then upload it to the

coordinator if the participant does not drop-out in current training epoch, whereas the distributed selective

SGD approach gives more control to a participant to select partial parameters in the gradients. Essentially,

the distributed selective SGD approach is a sketching version of a FL architecture.

Knowledge Distillation based Architecture. The basic knowledge distillation architecture is a teacher-

student model. As illustrated in PATE framework [136, 138], it mainly focuses on the inference phase

of an ML system. In PATE (private aggregation of teacher ensembles) approaches, the knowledge of an

ensemble of “teacher” models (i.e., initially trained models) is transferred to a “student” model (i.e., model

that will be used), with intuitive privacy provided by training teachers on disjoint data and strong privacy

guaranteed by noisy aggregation of teachers’ answers. Other typical approaches are model transformation

and model compression. For instance, in MiniONN [115], an existing model is transformed into an oblivious

neural network supporting privacy-preserving predictions. Existing DL models in NLP domain with a large

21



number of model parameters can be compressed to lightweight DL models via knowledge distillation methods

[88, 143]. Except for the primary goal of reducing the size of a DL model, it can also bring additional privacy-

preserving features [137, 178].

2.2.4 Hybrid Approaches

Due to the higher privacy protection requirements and recently illustrated privacy attacks such as mem-

bership inference attacks [167, 19, 90, 110, 130] and model inversion attacks [66, 186, 181, 85], existing single

type of privacy-preserving approaches discussed above are not enough. For instance, existing FL frameworks

only provide a basic privacy guarantee as each participant can locally hold the training data. However, the

global trained model cannot prevent membership inference attacks. To address this issue, one type of hybrid

approaches as proposed in [1, 72, 138] tries to integrate FL with a differential privacy mechanism. Similarly,

the approach proposed in [116] shows that sketching algorithms have a unique advantage in that they can

provide both privacy and performance benefits while maintaining accuracy, where the local model updates

do not need to be shared; only sketched updates need to be shared instead. Furthermore, to avoid a curi-

ous coordinator investigating the participants’ input in FL while increasing the global model performance,

another type of hybrid approach as proposed in [173, 189] integrates crypto-based secure computation and

differential privacy mechanism into a FL framework to provide stronger privacy guarantee. On the other

hand, approaches proposed in [83, 22, 39] also utilize secure multi-party computation and FL techniques to

collaboratively train an ML model over multiple vertically partitioned datasets. As we introduced in earlier

for delegation-based ML system [125, 112, 128], besides the designed delegation based architecture, such a

design also relies on secure computation techniques.

In short, traditional anonymization mechanisms and perturbation techniques (i.e., the differential privacy

mechanism) can provide privacy protection on final trained model to avoid attacks such as membership

inference attack, but cannot completely prevent a honest-but-curious central server that may infer private

information from the participants’ input in the FL framework or delegation based ML systems. Secure

computation techniques such as garbled-circuits-based or crypto-based 2PC and MPC are able to protect

each participant’s input but cannot prevent private information leakage in the final trained model. To

pursue a stronger privacy guarantee, well-designed PPML frameworks may need to rely on the integration

of de-identification approaches, perturbation techniques, and secure computation within a properly designed

architecture.

2.3 Transparent and Trustworthy Infrastructure

The provisioning of openness and accountability, also referred to as transparency in recent literature

[104, 152, 102, 122, 58, 33, 64], can additionally help increase users’ trust or confidence on service providers,
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e.g., cryptography infrastructure, cloud infrastructure, with respect to the protection of their sensitive data.

The concept of transparency in the digital world is used to avoid malicious activities or misbehavior in

the critical infrastructures. Certificate transparency proposed in [104, 102] aims to mitigate the certificate

based threats caused by fake or forged SSL certificates that are mistakenly or maliciously issued by insiders.

Certificate transparency model creates an open framework for monitoring the TLS/SSL certificate system

and auditing specific TLS/SSL certificates. Then, several works related to certificate transparency were

proposed in [64, 58, 46, 168, 103] to deal with revocation, security and privacy issues.

Most recent and related work is CONIKS and transparency overlay. CONIKS proposed in [122] deals

with key transparency in end-to-end encrypted communications systems where the public keys of end users

are a general version of the digital certificate. Transparency overlay propose a formal framework with a

specific security proof in [33]. However, such transparency model and framework cannot deal with the trust

and other issues we have addressed in this paper, e.g., how to ensure authorities’ fulfillment of obligations

in key services phases. To address that issue, we have proposed the notion of authority transparency in

[190] to address similar but more complex issues related to a TPA that is the critical component of many

emerging cryptosystems. To extend the notion of authority transparency for the entire secure computing

infrastructure including the TPA, the third-party IaaS server and coordinator server, we propose the trans-

parent and trustworthy secure computation infrastructure using emerging Ethereum blockchain techniques

in this dissertation.

2.4 Summary and Discussion

In this chapter, we have presented existing privacy-preserving approaches that have been adopted in ML

considering various factors, such as, various phases of ML systems and the underlying design principles; we

also presented corresponding PPML approaches that have been proposed in the literature. Furthermore, we

also discussed about transparent and trustworthy infrastructure for PPML approaches.
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3.0 Privacy-Preserving Federated Learning using Secure Computing

While traditional ML approaches depend on a centrally managed training data set, privacy considerations

have driven interest in decentralized learning frameworks in which multiple participants collaborate to train

an ML model without sharing their respective training data sets. Federated learning (FL) [120, 100] has

been proposed as a decentralized process that can scale to thousands of participants. Since the training

data does not leave a participant’s domain, FL is suitable for applications such as health care and financial

services, where data sharing raises significant privacy concerns. In primary FL design, as illustrated in

Figure 3.1, each participant trains a model locally and exchanges only model parameters with others, instead

of sharing privacy-sensitive training data. An entity called coordinator merges the model parameters of

different participants. Often, a coordinator is a central entity that also redistributes the merged model

parameters to all participants; but other topologies have been used as well, e.g., co-locating a coordinator

with each participant.

There are two types of FL, vertical FL and horizontal FL, that mainly differ on the information available

to each participant. In horizontal FL, all participants have access to the entire feature set and labels, and

thus, they can train their local models based on their own datasets and later share model updates with

a coordinator based on their local models. The coordinator then creates a global model by averaging the

model weights received from individual participants. In contrast, vertical FL refers to collaborative scenarios

where the complete set of features and labels are not known to a single participant.

The primary horizontal FL design aims at protecting data privacy by ensuring each participant would

keep its data locally and transmit model parameters [120]. Although at first glance it may provide some level

of privacy, attacks reported in literature have demonstrated that it is possible to infer private information

through various inference attacks: inference attacks in the learning phase have been proposed in [131]; and

deriving private information from a trained model has been demonstrated in [167]. To fully protect the

privacy of the training data from inference attacks, the concept of privacy-preserving federated learning

(PPFL) has been raised in the recent literature. Furthermore, vertical FL is particularly challenging as

each participant cannot train a model using its own dataset locally. Participants need to collaborate to find

the complete feature vector without exposing their training data, and after aligning their data in a private

way. A process to collaboratively train the model needs to take place in a privacy-preserving way without

exposing the raw data of each participant.

In this chapter, we propose two PPFL frameworks - HybridAlpha and FedV 1 - focusing on the horizontal

PPFL and vertical PPFL as presented in Section 3.1 and Section 3.2, respectively.

1Note that the HybridAlpha and most of work of FedV was accomplished while interning at the IBM Research - Almaden,
and here I would like to acknowledge the continued collaboration with the team - AI Security and Privacy Solutions and the
help from co-authors - Dr. Nathalie Baracaldo, Dr. Yi Zhou, Dr. Ali Anwar and Dr. Heiko Ludwig.
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Figure 3.1: General architecture of federated learning. Note that the training process is orchestrated by

a coordinator that acts as a third-party semi-trusted (a.k.a, honest-but-curious) entity and interacts with

participants (i.e., p1, p2, ..., pn). FL training is a process of repeatedly merging the local model updates,

where for each iteration the coordinator first sends the global model wwwg that could be randomly initialized or

a pre-trained to each participant. Once wwwg is received, each participant pi trains the local model wwwpi using

local data based on wwwg, and sends back the model updates. The coordinator aggregates all the received

model updates to for one round of model training.

3.1 HybridAlpha: An Efficient Secure Computing Approach for Horizontal PPFL

3.1.1 Background and Motivation

Participants in a FL process cooperatively train a model by exchanging model parameters instead of

the actual training data, which they might want to keep private. However, parameter interaction and the

resulting model still might disclose information about the training data used. For instance, this approach

still poses privacy risks such as inference attacks in the learning phase have been proposed by [131] and

deriving private information from a trained model has been demonstrated in [167].

To address such privacy leakage, differential privacy [60, 62] has been proposed for a learning framework

[1, 138], in which a trusted coordinator controls the privacy exposure to protect the privacy of the model’s

output. Similarly, [141] proposes to combine differential privacy techniques and secure multiparty compu-

tation (SMC) to support privacy-preserving analyses on private data from different data providers, whereas

[22] combines secret sharing and authenticated encryption in a failure-robust protocol for secure aggregation

of high-dimensional data.

Inspired from the hybrid methodology [141], a recent paper [173] also proposed a hybrid solution that

provides strong privacy guarantees while still enabling good model performance. This hybrid approach com-

bines a noise-reduction differential privacy approach with protection of SMC protocol, where the underlying

security cornerstone is additive homomorphic encryption, i.e., threshold Paillier system [51]. Even though the

hybrid approach has good model performance and privacy guarantees, it comes with long training time and

high data transmission cost and cannot deal with participants dropping out during the FL process. In Table
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Table 3.1: Comparison of privacy-preserving approaches in horizontal FL framework

Threat Model Privacy Guarantee SMC Features

Proposals participant coordinator computation output type ∗ communication dynamic

[166] honest honest 7 3 − 1 round 3

[138] honest honest 7 3 − 1 round −
[154] honest HbC� 3 3 HE 2 rounds† −
[22] dishonest HbC� 3 3 SS+AE 3 rounds† dropout

[173] dishonest HbC� 3 3 TP 3 rounds† 7

HybridAlpha dishonest HbC� 3 3 FE 1 round† dropout/join

∗ “SS+AE”represents secret sharing techniques with key agreement protocol and authenticated encryption scheme; “HE”
is homomorphic encryption scheme; “TP” is Threshold-Paillier system, a partially additive homomorphic encryption
scheme; “FE” indicates functional encryption scheme; symbol − indicates non-comparative option.
� HbC is the abbreviation of honest-but-curious.
† The count is based on one epoch at the training phase between the coordinator and the participant. The key distribution

communication is not covered here.

3.1, we summarize existing privacy-preserving approaches for horizontal FL from the perspectives of threat

model, privacy guarantees, and offered features. We believe a privacy-preserving FL framework should strive

for strong privacy guarantees, high communication efficiency, and resilience to changes. As shown by Table

3.1, approaches that offer privacy guarantees incur a large number of communication rounds, substantially

increasing the training time for FL systems.

To fully protect the privacy of the training data from inference attacks, it is necessary to provide the

privacy of the computation and the output.

Privacy of Computation. Malicious participants involved in FL training may have an incentive to infer private

information of others. Messages exchanged with the coordinator contain model updates that leak private

information. For instance, if a bag of words is used as embedding to train a text-based classifier, inspecting

gradients can help an adversary identify what words where used (e.g., non-zero gradients constitute words

used). SMC protocols can be used to protect inference attacks at training time. These protocols ensure that

individual results cannot be exposed while still allowing the computation of aggregated data.

Privacy of Output. ML models can also leak private information about the training data [66, 167, 131]. Here,

adversaries can repeatedly query the model to identify if a particular observation was part of the training

data. To prevent against these attacks, differential privacy has been proposed. In this case, noise is added

to the model to protect individual records in the training dataset.

Limitations in Existing Approaches. Although some of them provide privacy guarantees for the com-

putation and output, they lack relevant features for FL systems. In particular, approaches that increase the

number of communication rounds can hinder the applicability of FL, as they augment the training time and

amount of data exchanged. For large models such as neural networks, this is a major concern. Another

important feature should be provided by FL frameworks is the support for dynamic participation. In some

scenarios, participants may leave the training process at any time, we refer to these as dropouts. As shown in
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Figure 3.2: Overview of HybridAlpha framework. Note that we only present one epoch here. Each participant

does the local training based on their owned dataset, and then sends out the model parameters using our

proposed efficient privacy-preserving approach.

Table 3.1, existing approaches cannot gracefully deal with dropouts and require re-doing an overall training

round with new keys. New participants may also join the training process at any time. Existing approaches

do not provide support for this dynamic flow and require full-re-keying.

Our proposed HybridAlpha reduces significantly the training time by limiting the number of messages

exchanged to one by round - substantially less than existing approaches that offer privacy of computation.

In what follows, we present in detail some of the basic building blocks that allow us to achieve this result.

3.1.2 Hybrid-Alpha Framework

Figure 3.2 presents an overview of HybridAlpha. Participants want to collaboratively learn a machine

learning model without sharing their local data with any other entity in the system. They agree on sharing

only model updates with an coordinator. This entity is in charge of receiving model updates from multiple

participants to build a common machine learning model.

Participants want to protect their data against any inference attack during the FL process and from the

final model. For this purpose, they join a HybridAlpha, which has a Third Party Authority (TPA). This

entity provides a key management service that initiates the cryptosystem and provides functional encryption

keys to all participants. To prevent potential leakage of information, HybridAlpha also includes an Inference

Prevention Module that limits what type of functional encryption keys are provided. This module is designed

to ensure that decryption keys cannot be obtained by curious coordinators and to limit potential collusion

attacks. We detail this module in the rest of this section.

Threat Model. We consider the following threat model:

• Honest-but-curious coordinator : We assume that the coordinator correctly follows the algorithm and

protocols, but may try to learn private information inspecting the model updates sent by the participants

in the process. This is a common assumption [173, 22].
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• Curious and colluding participants: We assume that participants may collude to try to acquire private

information from other participants by inspecting the messages exchanged with the coordinator or the

final model.

• Trusted TPA: This entity is an independent agency which is widely trusted by the participants and the

coordinator. In real scenarios, different sectors of the economy already have entities that can take such

role. For instance, in the banking industry, central banks often play a fully trusted role, and in other

sectors, a third company such as a service or consultant firm can embody the TPA. We also note that

assuming such trusted and independent agency is a common assumption in existing cryptosystems that

have employed the TPA as the underlying infrastructure [25, 23, 77]. The TPA is in charge of holding the

master private and public key. The TPA is also trusted to perform public key distribution and function

derived secret key generation. Similarly, Inference Prevention Module is fully trusted.

We assume that secure channels are used in all communications, thus, man-in-the-middle and trivial

snooping attacks are prevented. We also assume a secure key-provisioning procedure such as Diffie-Hellman

is in place to protect key confidentiality. Finally, attacks that aim to create denial of service attacks or inject

malicious model updates are beyond the scope of this dissertation.

Based on the threat model above, our proposed privacy-preserving framework can ensure that (i) the semi-

honest coordinator cannot learn additional information except for the expected output by the differential

privacy mechanism, and (ii) the malicious colluding participants cannot learn the parameters of other honest

participants.

Detailed Operations. We now describe in detail the operations of HybridAlpha and begin by introducing

the notation used. Let C be the coordinator and SP be a set of n participants, where each participant Pi
holds its own dataset Di. We denote as LFL the learning algorithm to be trained. Here, we first introduce

the operations of the framework for non-adversarial settings, and then explain how additional features are

used to protect against the inference attacks defined in the threat model section.

Non-adversarial Setting : HybridAlpha’s operations under non-adversarial settings are indicated in Al-

gorithm 1. As input, HybridAlpha takes the set of participants, the algorithm used for training, and the

differential privacy parameter ε.

HybridAlpha initiates via the TPA setting up keys in the system. In particular, the TPA runs the Setup

and PKDistribute algorithms presented in Appendix A, so that each participant Pi has its own public key

pki (see TPA-initialization function). We note that HybridAlpha allows new participants to join the training

process even if it has already started. To achieve this, the TPA provisions a larger number of keys than the

initial set of participants (line 3). In this way, when new participants join the training process, they need

to acquire the individual public key from the TPA, and then participate in the learning protocol; all this

without requiring any changes for other participants.

To begin the learning process, the coordinator C asynchronously queries each participant Pi with a query

to train the specified learning algorithm LFL and the number of participant. Then, the coordinator collects
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Algorithm 1: HybridAlpha

1 .LFL := Machine learning algorithms to be trained; ε := privacy guarantee; SP := set of participants, where
Pi ∈ SP holds its own dataset Di; N := maximum number of expected participants; t := minimum number
of aggregated replies;

2 function TPA-initialization(1λ, N,SP)

3 mpk,msk← EFMCIP
FE .Setup(1λ,F1

N ) s.t. N � |SP |;
4 foreach Pi ∈ SP do pki ← EFMCIP

FE .PKDistribute(mpk,msk,Pi) ;

5 function aggregate(LFL,SP , t)
6 foreach Pi ∈ SP do asynchronously query Pi with msgq,i = (LFL, |SP |) ;

7 do Smsgrecv
← collect participant response msgr,i while |Smsgrecv

| ≥ t and still in max waiting time;

8 if |Smsgrecv
| ≥ t then

9 specify vP vector; request the skf,vP from TPA;

10 M← EFMCIP
FE .Decrypt(skf,vP , wP ,Smsgrecv

);

11 returnM
12 function participant-train(ε, t,msgq,i,Di,pki)
13 Mi ← LFL(Di);
14 MDP

i ← DP(ε,Mi, t);

15 msgr,i ← EFMCIP
FE .Encrypt(MDP

i ,pki);

16 sends msgr,i to coordinator;

the responses of each participant Pi (see aggregate function).

When all responses are received, assuming there is quorum, C needs to request a key from the TPA

corresponding to the weighted vector vp that will be used to compute the inner product. That is, the

coordinator requests private key skf,vp from the TPA based on vp. For computation of average cumulative

sum of each participant’s model, vp can be set as vp = ( 1
n ,

1
n , ...,

1
n ) s.t. |vp| = n, where n is the number of

received responses. Then, C updates the global modelM by applying the decryption algorithm of the MIFE

cryptosystem on collected ciphertext set Smsgrecv
and skf,vp . Note that here we assume the coordinator C

will get all responses from every participant. In the case of dropouts, n can be changed so that it reflects

the number of participants that are being aggregated. In the next subsection, we show how HybridAlpha

provides recommendations to set up t so that the number of allowed dropouts are limited for security reasons.

At the participant side, when a query for training is received by participant Pi, it trains a local model

Mi using its dataset Di. During the training process2, the participant adds differential privacy noise to the

model parameters according to the procedure presented in Appendix B. Finally, Pi encrypts the resulting

noisy model using the MIFE encryption algorithm and sends it to the coordinator (see participant-train

function).

Inference Prevention Module : In our threat model, we assume an honest-but-curious coordinator that

tries to infer private information during the training process. We consider multiple potential attacks where

the coordinator manipulates the weighted vector to perform inference.

In particular, suppose that C wants to infer the model of Pi. C can try to launch an inference attack to

2The differential privacy mechanism depends on the machine learning model being trained. For simplicity, in Algorithm 1
we show the noise added after the training process takes place. However, we note that some DP mechanisms add noise during
the training process e.g., to train a neural network with the DP mechanism in [1]
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obtain the model updates of participant k by setting the weighted vector as follow:

∀i ∈ {1, ..., n} : v
′
p =

 vpi = 1, if i = k

wpi = 0, if i 6= k

 (3.1)

If a malicious coordinator is allowed a key to perform the inner product of this vector with the model updates,

the model updates of target user k would become visible; this follows because v
′
p zeros-out the model updates

of all other participants except for the ones sent by target participant k. If this is not avoided, C would

acquire wi + 1
nN(0, S2σ2) as the decryption result of the MIFE cryptosystem. Here, the reduced noise

1
nN(0, S2σ2) does not provide the expected privacy guarantee to protect Mi of Pi because each honest

participant is injecting noise, assuming its model update is aggregated privately with other n participants.

An honest but curious coordinator may also try to create a smaller weighted vector to exclude a subset of

participants from the aggregation process. In the worst case, the malicious coordinator would try to shrink

the weighted vector to include one single participant to uniquely “aggregate” the model updates of that

participant.

Following this same attack vector, a malicious coordinator colluding with dishonest participants may try

to build a vp vector such that: (i) a target participant model update is included in the vectors; (ii) all other

honest participants model updates are not aggregated, and (iii) updates of dishonest participants are included

in the aggregation process. Since the coordinator is colluding with the dishonest participants included in

the aggregation process and only the target participant is included in the aggregation, the model update of

the target participant is easily reconstructed (its the single unknown variable in the average equation).

To prevent such inference attacks, we propose an additional component called Inference Prevention

Module collocated with the TPA. This module intercepts and inspects requests for private keys for given

weighted vectors to prevent a curious coordinator from obtaining a key that will allow for an inference-

enabling inner product.

To this end, the Inference Prevention Module takes as input a parameter t that defines a threshold on the

number of non-colluding participants, where t ≥ n
2 + 1, that is more than half of the participants should not

be colluding. By running Algorithm 2 and using parameter t, it is possible to prevent the attacks previously

described. In particular, the Inference Module enforces that keys are only provided to weighted vectors that

have at least t non-zero elements and that the weight for each included model update is the same.

Threshold t has an impact on the number of dropouts allowed by the system. Mainly, it helps set

up the minimum quorum of participants replying to the system. HybridAlpha allows a limited number of

participants to dropout without requiring any re-keying; only the weighted vector sent by the coordinator

needs to be updated by uniquely including the weights of model updates received.

We also note that t has an impact on how much differential privacy noise is added by each participant

to achieve a pre-defined ε. Concretely, the number of aggregated replies is always at least t, so as explain

in Appendix B, the noise can be adapted to always account for t non-colluding participants contributing to

the average, e.g., N(0, 1
tS

2σ2). For this purpose, t needs to be communicated among all participants and
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Algorithm 2: Inference Prevention Module

1 . vvvp:=A weighted vector to be inspected for inference attacks; t:= threshold of minimum number of
dropouts and expected number of non-colluding participants;

2 function inference-prevention-filter(vvvp, t)
3 cnz ← count the non-zero element in vvvp;
4 if cnz < t then return ”invalid vp” ;
5 foreach non-zero vpi ∈ vp do
6 if vpi 6= 1

cnz
then return ”invalid vp”;

7 forward vvvp to the TPA;

the coordinator.

Underlying ML Models of HybridAlpha : For simplicity we only use the neural networks as the under-

lying ML model in our FL framework for illustration and evaluation, however, the our HybridAlpha supports

various ML algorithms. As functional encryption enables the computation of any inner-product based oper-

ation, any model that can be trained through a stochastic gradient descent (SGD)-based algorithm can be

trained via our proposed HybridAlpha; models in this pool include SVMs, logistic regression, linear regres-

sion, Lasso, and neural networks, among others. Other models such as decision trees and random forests

which require aggregating counts from each participant can also be trained by considering the counts sent

to the coordinator as a vector.

3.1.3 Security and Privacy Analysis

We analyze the security and privacy of our proposed framework from three different perspectives: security

offered by MIFE scheme, privacy guarantees of the framework, and prevention for different types of inference

attacks.

Security of the Cryptographic Approach: The security of MIFE is critical to HybridAlpha, since it is the

underlying infrastructure of SMC protocol that supports secure aggregation in HybridAlpha. In our adoption

of MIFE, we add a public key distribution algorithm run by the TPA as a beneficial supplement of the original

MIFE scheme proposed in [5] to make it applicable to our FL framework.

Specifically, the additional algorithm is only responsible for distributing each participant’s respective

unique public key pki. Unlike the original design of encryption algorithms where each participant encrypts

the data using the master secret key msk, our encryption algorithm uses pki that is derived from the master

keys mpk and msk. However, the core method in the encryption algorithm remains intact, and our design has

no impact on other algorithms, e.g., SKGenerate, Decrypt. As a consequence, our adoption of MIFE does

not change the security construction in the original MIFE scheme in [5]. It is then as secure as proved in

[5]. To avoid redundancy, we do not present the correctness and security proofs to MIFE here, and readers

can refer to [5] for more details.

Privacy of the Output Model : We provide ε-differential privacy guarantee via existing methods presented

in previous works, e.g., [173, 1, 141]. These papers have shown via theoretical analysis and experimental
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results that such a mechanism can achieve target privacy along with acceptable performance for the final

trained model. As a consequence, our proposed framework can also achieve the same privacy guarantee for

the output model as demonstrated in [173, 141].

Privacy of Computation: We exploit multi-input functional encryption as the underlying infrastructure for

SMC protocol to compute the average of the weights of the participants’ local trained models. As stated in

Appendix A.3, the MIFE scheme is secure so that any plaintext under its protection cannot be compromised

by malicious attackers. The MIFE scheme also guarantees that the decryptor, the coordinator in our FL

framework, can only acquire the function results, i.e., the average weight, but not the original data, i.e.,

weights of the participants’ local models.

Inference Attack Prevention: Next, we consider inference attacks for two adversaries: (i) a curious coordina-

tor, and (ii) malicious or colluding participants. In Section 3.1.2, we have shown that a curious coordinator

can launch an inference attack targeting a specific participant by manipulating the weighted vector wp and

subsequently requesting the function private key. To prevent such inference attacks, we add an additional

module in TPA to filter requests for weighted vectors that are maliciously defined to isolate the reply of a

single participant. Algorithm 2 verifies that at least t replies are used for aggregation, because there are at

least t > (n/2) + 1 non-colluding participants; even if the coordinator colludes with dishonest participants

he cannot isolate the reply of a target participant.

Even if an adversary manages to collect other participants’ encrypted data for a possible brute-force

attack, this attack is not successful. In particular, suppose that there exits a malicious participant P ′i with

its own public key pkP′i
, collected encrypted data cj = EncpkPj,j 6=i

(mj) from Pj , and its own original data set

S ′ . Here mj is the corresponding plaintext of cj , and mj and any m
′ ∈ S ′ belong to a same integer group.

The semantic security of the underlying MIFE scheme in our SMC protocol ensures that the adversary

P ′j does not have a non-negligible advantage to infer the original data mj compared to the random guess.

Furthermore, as we assume the existence of at least t honest participants where each participant does not

share the same public key for encryption, the colluding participants cannot infer/identify private information

using the output of the coordinator with their local models.

Note that based on the threat model defined in Section 3.1.2, we do not consider the DDoS attack on

the coordinator where a malicious coordinator or a outside attacker will interrupt the network or replace a

valid update from an honest participant.

3.1.4 Experimental Evaluation

We perform a detailed evaluation of our proposed approach to answer the following questions:

• How does HybridAlpha perform theoretically when compared to existing techniques that have similar

threat models? More specifically, how many crypto-related operations can be reduced by using Hybri-

dAlpha?
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Figure 3.3: Illustration of aggregation via different crypto-based SMC solutions.

• How does our proposed SMC perform under benchmarking? How does precision setting impact com-

putation time compared with existing techniques? What impact do different numbers of participants

have?

• How does HybridAlpha compare to existing techniques in terms of performance efficiency?

Baselines and Theoretical Analysis. We compare the proposed HybridAlpha with two state of the

art private-federated learning approaches: [173] and [154], which use different SMC techniques. A graphical

overview and comparison of these baselines can be found in Figure 3.3, the steps performed by each approach

are defined in this figure. We will use this notation to report our results. Additionally, we provide a brief

description of our baselines:

• We refer to the first baseline as TP-SMC [173]. This FL approach uses a threshold-based homomorphic

cryptosystem that allows for a trusted parameter t that specifies the number of participants that are

trusted not to collude.

• We refer as P-SMC to our second baseline which is inspired by PySyft [154], an opensource system

that uses SPDZ protocol [52, 53]. This construct supports homomorphic addition and multiplication.

Because the SGD aggregation only requires addition, we opted for a additive homomorphic approach for

the comparison, thus, the results reported for this baseline are representative yet faster than PySyft.

We note that the contrasted approaches follows a similar threat model to [173] with a honest-but-curious

coordinator, and potentially colluding and malicious participants. However, they differ in the assumption

of a TPA. We therefore, show how making use of a TPA, HybridAlpha can significantly reduce the training

time of machine learning models.

Theoretical Comparison : We now theoretically compare the crypto-related communication steps asso-

ciated with the contrasted approaches. Suppose that there are n participants and m coordinators in the

FL framework, and the threshold for decryption of Threshold-Paillier cryptosystem is t. As shown in Table

3.2, in total, HybridAlpha reduces m(n − 1) and m(2t − 1) operations compared to P-SMC and TP-SMC

solutions, respectively. This is achieved because HybridAlpha doesn’t require sending back encrypted ag-
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Table 3.2: The number of crypto-related operations required for each solution.

Communication TP-SMC P-SMC HybridAlpha

Step (1) n n n+m
Step (3) n×m n×m n×m
Step (5) m× t n×m -
Step (7) t×m - -
TOTAL 2mt+mn+ n 2mn+ n mn+m+ n

gregated model updates to the participants for decryption. In the following, we also provide the details of

experimental results that are consistent with the theoretical analysis.

Experimental Setup. To benchmark the performance of HybridAlpha, we train a convolutional neural

network (CNN) with the same topology as the one used in [173] to classify the publicly available MNIST

dataset of handwritten digits [106]. The CNN has two internal layers of ReLU units, and a softmax layer of

ten classes with cross-entropy loss. The first layer contains 60 neurons and the second layer contains 1000

neurons. The total number of parameters of this CNN is 118110. We also use the same hyperparameters

reported in previous work: a learning rate of 0.1, a batch rate of 0.01. and for differential privacy we use

a norm clipping of 4.0, and an epsilon of 0.5. We used noise-reduction method as in [173] as differential

private mechanism. We run experiments for 10 participants, and each participant was randomly assigned

6,000 data points from the MNIST dataset. For model quality, we used the pre-defined MNIST test set. Our

implementation uses Keras with a Tensorflow backend.

Cryptosystems Implementation : We implement the contrasted cryptosystems in python based on the

opensource integer group of the Charm framework [11]. Charm uses a hybrid design, where the underlying

performance-intensive mathematical operations are implemented in native C modules, i.e., the GMP library

3, while cryptosystems themselves can be written in a readable, high-level language. Even though there exists

Paillier implementation including its threshold variant using other programming languages, we re-implement

them in a unified platform to allow for fair benchmarking and to enable easy integration with python-based

machine learning frameworks such as Keras and Tensorflow.

In our implementation, we incorporated the following accelerating techniques. In HybridAlpha, as pre-

sented in Appendix A, the final step of MIFE decryption is to compute the discrete logarithm of an integer,

which is a performance intensive computation. An example would be how to compute f in h = gf , where

h, g are big integers, while f is a small integer. To accelerate the decryption, we use a hybrid approach to

solve the discrete logarithm problem. Specifically, we setup a hash table Th,g,b to store (h, f) with a specified

g and a bound b, where −b ≤ f ≤ b, when the system initializes. When computing discrete logarithms, the

algorithm first looks up Th,g,b to find f , where the complexity is O(1). If there is no result in Th,g,b, the

algorithm employs the traditional baby-step giant-step algorithm [161] to compute f , where the complexity

3The GNU Multiple Precision Arithmetic Library (https://gmplib.org/).
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is O(n
1
2 ) .

The second acceleration method we implemented modifies the encryption and decryption algorithms

to allow for a one-shot encryption call of a tensor. Here, each generated random nonce is applied to the

whole tensor instead of a single element. We note that a further performance enhancement technique that

could be used is parallelizing the encryption/decryption implementation, however, we did not include this

enhancement.

Environment Setup: All the experiments are performed on a 2 socket, 44 core (2 hyperthreads/core) Intel

Xeon E5-2699 v4 platform with 384 GB of RAM. Note that the FL framework is simulated (not run on

the real distributed environment), hence the network latency issues are not considered in our experiment.

However, we report a comparison of data transfer by contrasted approaches.

Experimental Results. Here, we first present the benchmark result of three contrasted approaches, and

then show the experimental efficiency improvement.

Impact of Floating Point Precision : The parameters of a neural network (weights) are represented

as floating point numbers. However, cryptosystems take them as input integers. Hence, the floating point

parameters should be represented and encoded into integers. The precision number denotes the number

of bits used after the decimal point of a floating point number. In Table 3.3 we present the impact of

the precision on the computation time of each crypto-based SMC. Based on our experimental results, the

precision setting has no significant impact on operation time of each cryptosystem. To be specific, the time

cost of encryption, decryption, and other ciphertext computations in each cryptosystem is stable, respectively,

of length of the integer.

For encryption, the average time cost of 10 participants on 118110 gradients for HybridAlpha is around

4 seconds, while the time cost of P-SMC and TP-SMC under the same setting is about 35 seconds. For

decryption, under the same setting, the cost time of HybridAlpha is about 30 seconds, while the time cost

of P-SMC and TP-SMC are 31 and 88 seconds, respectively. Note that the decryption time of TP-SMC

includes the share decryption by part of participants and the final combination decryption by the coordinator,

without considering network latency of transmitting the partial decrypted ciphertext. We can conclude that

our proposed approach has significant advantages on both encryption/decryption time cost comparing to

P-SMC and TP-SMC solutions.

Finally, the number of decimal points used in the conversion impacts the overall accuracy of the trained

model. In the remaining of the experiments, we used 6-digits which allows for good model and training time

performance.

Impact of Number of Participants: We also measure the impact of the number of participants on

the time cost for each crypto operation. The experimental results are shown in Table 3.4. We see two

different trends on the participant and on the coordinator side. At the participant side, the encryption

and decryption runtime stays the same for all of the evaluated approaches as the number of participants

increases. In contrast, on the coordinator side, the time cost of ciphertext multiplication increases almost
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Table 3.3: The impact of precision on computation time of three SMC approaches.

TP-SMC .Time (s) P-SMC Time (s) HybridAlpha Time (s)

precision encavg ctfuse decshare,avg deccombine encavg ctfuse dec encavg dec

2 35.120 2.586 61.080 28.465 35.752 2.269 32.042 4.157 30.075
3 35.675 2.604 61.929 28.202 35.725 2.369 31.574 4.158 30.512
4 35.841 2.571 60.832 28.324 35.821 2.387 31.856 4.110 29.865
5 35.767 2.635 60.369 28.816 35.857 2.493 31.625 4.075 30.149
6 35.724 2.578 60.326 28.286 35.985 2.532 31.587 4.095 30.803

. The threshold parameter of Threshold-Paillier encryption system is set to half the number of participants.

Table 3.4: The impact of participant numbers on computation time of three SMC approaches.

TP-SMC Time (s) . P-SMC Time (s) HybridAlpha Time (s)

participants encavg ctfuse decshare,avg deccombine encavg ctfuse dec encavg dec

6 35.968 1.375 60.555 22.184 35.934 1.332 31.616 4.241 20.246
8 35.375 1.843 60.820 23.980 36.039 1.859 31.611 4.092 25.349
10 35.693 2.358 60.988 28.401 36.847 2.611 32.197 4.077 31.782
12 35.685 2.759 60.947 34.684 36.142 2.959 31.588 4.091 36.884
14 35.688 3.215 60.965 39.838 35.932 3.330 31.503 4.126 42.683
16 35.721 3.694 60.917 46.849 36.533 4.481 32.020 4.059 47.435
18 35.683 4.170 60.879 53.441 36.628 5.368 32.996 4.594 56.519
20 35.697 4.764 60.816 97.224 36.743 5.765 31.923 4.147 59.823

. The threshold parameter of TP-SMC is set to half the number of participants.

Table 3.5: Impact of threshold for TP-SMC on computation time.

threshold† encavg time (s) ctfuse time (s) decshare,avg time (s) deccombine time (s)

2 35.577 2.602 60.736 12.700
4 35.697 2.592 60.420 23.293
6 35.713 2.625 60.238 34.427
8 36.054 2.623 60.767 46.462
10 35.880 2.626 60.650 58.293

† The total participants number is set to 10 and the precision number is set to 6.

linearly with the increase in the number of participants (shown in italicized numbers in Table 3.4). However,

we note a significant difference between HybridAlpha and TP-SMC. For HybridAlpha the decryption time

increases approximately linearly with the increase of participants, while for TP-SMC, the decryption time

increases exponentially as the number of participants increases. Focusing on the TP-SMC, we also evaluate

the impact of threshold t, which indicates the minimum number of participants who are required to do partial

decryption. As shown in Table 3.5, only the final decryption has significant relationship with threshold t.

For the same number of participants, the cost time of decryption increases linearly as the threshold number
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Figure 3.4: Performance comparison in model accuracy, time efficiency and data transmission.

increase.

Model Quality, Training Time and Data Transmission : In this experiment, we evaluate the perfor-

mance of HybridAlpha with respect to multiple techniques to perform FL. In particular, we assess the quality

of models produced and the total training time. The contrasted approaches for this experiment include the

following additional baselines: (i) “FL-no-privacy”, where the neural network is trained without privacy

considerations. This method provides a baseline for maximum possible performance in terms of model qual-

ity; (ii) “Local DP”, where each participant applies differential privacy locally according to [95]; (iii) for

“TP-SMC”, “P-SMC” and “HybridAlpha”, we report the results for two cases: adding differential privacy to

protect privacy of the output and without adding differential privacy. When no differential privacy is added,

we use “TP-SMC no DP”, “P-SMC no DP” and “HybridAlpha no DP”. For privacy-preserving approaches

we use an ε = 0.5. Finally, our experiments used t = 5 for HybridAlpha and TP-SMC. This experiment was

run with 10 participants.

To measure quality of model performance, we report the F1-score (a measure that combines precision and

recall) of the resulting models. The results are presented in Figure 3.4a. We see different trends depending

on whether a particular approach protects privacy of the computation and of the output. As expected,

approaches that do not protect the privacy of the final model - those that don’t inject differential privacy

noise- result in a higher F1-score. In contrast, “Local DP” provides the lowest F1-score due to the high

amount of noise injected by each participant. For approaches that use SMC to uniquely protect the privacy

of the computation, “TP-SMC no DP”, “P-SMC no DP” and “HybridAlpha no DP”, we see higher F1-scores

than for those that protect the privacy of the output. This shows the price of protecting against the risk

of inference on the model. Finally, we see that approaches that combine differential privacy with SMC are

capable of achieving higher F1-scores while protecting the privacy of the input and output.

We now analyze these approaches from the perspective of total training time presented in Figure 3.4b.

As it can be seen, our proposed HybridAlpha has very similar training time to “FL-no-privacy”. In other

words, the training time added by ensuring privacy of the input and output is negligent. In contrast, we
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see that the slowest approach is TP-SMC even though we set up t to a conservative 50% of the entire

number of participants in the system. This result is due to the fact that TP-SMC requires more rounds

of communication per global step. The high training time makes TP-SMC suitable for models that require

limited number of interactions with the coordinator during training.

Beside the efficiency in training time, we also evaluate the efficiency of network transmission by mea-

suring the volume of encrypted parameters transmitted over the network. In Figure 3.4c, we present the

total transmitted ciphertext size under different crypto-based SMC approaches for one epoch. The blue

bar represents initial ciphertext size of model parameters, while the spotted purple bar indicates the size

of subsequent ciphertext, including multiplied cipher, and partially decrypted ciphers. We can see that

HybridAlpha provides the lowest transmission rate because it only performs one round of communication on

encrypted data without any subsequent ciphertext transmission. Also, our proposed approach has smaller

ciphertext size of initial parameters compared to contrasted approaches.

3.2 FedV: PPFL over Vertically Partitioned Data

3.2.1 Background and Motivation

Vertical FL is a powerful approach that can help create ML models for many real-world problems where a

single entity does not have access to all the training features or labels. For example, in healthcare, different

entities may collect different sets of data about patients that if combined can help achieve significantly

improved accuracy of prediction and diagnosis of health conditions of patients. In particular, a sensor

company may collect readings of body sensors, including heart rate and sleeping cycle data for a patient.

A second participant may be a hospital that records emergency room visits and medical history of the

patient. A third participant can be an insurance company that maintains the patient’s personal disease

history and approvals or denials of insurance requests (labels). As a second example, consider a set of banks

and a regulator. These banks may want to collaboratively create an ML model using their datasets to flag

individuals who commit money-laundering. Such a collaboration is important as criminals typically use

multiple banks to avoid detection. However, if several banks partner together to find a common vector for

each client and a regulator, such as the Federal Trade Commission (FTC) provides the labels that show

which clients have committed money laundering, such fraud can be identified and/or mitigated. However,

note that each bank may not typically want to share its clients’ account details and in some cases it is even

forbidden to do so. Further, the regulator may also want to maintain labels private.

One of the requirements for privacy-preserving VFL is thus to ensure that the dataset of each participant,

including the labels, are private. VFL requires two different processes: entity resolution and vertical training.

Both these processes are orchestrated by a Coordinator, which acts as a third semi-trusted participant that

interacts with each participant. Before we present the detailed description of each process, we introduce the
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notation used throughout the section.

Notation : Let P = {pi}i∈[n] be the set of n participants in VFL. Let D[X,Y ] be the training dataset, where

X ∈ Rd represents the feature set and Y ∈ R denotes the labels across the set of participants P. Except for

the identifier features, there is no overlapping training features between any two participants’ local datasets,

and these datasets can form the “global” dataset D. In VFL, we assume that only one participant has the

class labels, namely, the active participant, while other participants are passive participants. For simplicity,

in the rest of the section, let p1 be the active participant. The goal of VFL is to train a ML model M over

the dataset D from the participant set P without leaking each participant’s data.

Private Entity Resolution (PER): In VFL, unlike in a centralized ML scenario, D is distributed across

multiple participants. Before training takes place, it is necessary to ‘align’ the records of each participant

without revealing its data. This process is known as entity resolution [45]. After the entity resolution step,

records from all participants are linked to form the complete training samples.

Ensuring that the entity resolution process does not lead to inference of private data of each participant

is paramount in VFL. A curious participant should not be able to infer the presence or absence of a record.

Existing approaches, such as [134, 89], use a bloom filter and random oblivious transfer [57, 99] with a

shuffle process to perform private set intersection. This helps in finding the matching record set while

preserving privacy. We assume there exists shared record identifiers, such as names, dates of birth or

universal identification numbers, that can be used to perform entity matching. In FedV, we employ the

anonymous linking code technique called cryptographic long-term key (CLK) and matching method called

Dice coefficient [159] to perform PER, as has been done in [83]. As part of this process, each participant

generates a set of CLK based on the identifiers of the local dataset and shares it with a coordinator who

matches the CLKs received and generate a permutation vector for each participant to shuffle its local dataset.

The shuffled local datasets are now ready to be used in the private vertical training phase.

Private Vertical Training : After the private entity resolution process takes place, the coordinator dictates

which samples in a PER-processed training batch of each participant will be used to train a model. In the

following, we discuss the challenge of private gradient descent training process in detail.

As the subsets of the feature set are distributed among different participants, gradient descent(GD)-

based methods need to be adapted to such vertically partitioned settings. We now explain how and why this

process needs to be modified. GD method [132][Section 1.2.3] is a class of optimization algorithms to find

the minimum of a target loss function; for example, in machine learning domain, a typical loss function can

be defined as follows,

ED(www) =
1

n

n∑
i=1

L(y(i), f(xxx(i);www)) + λR(www), (3.2)

where L is the loss function, y(i) is the corresponding class label of data sample xxx(i), www denotes the model

parameters, and R is regularization term with coefficient λ. GD finds a solution of (3.2) by iteratively
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moving in the direction of the locally steepest descent as defined by the negative of the gradient, i.e.,

www ← www − α∇ED(www), (3.3)

where α is the learning rate, and ∇ED(www) is the gradient computed at the current iteration. Due to its

simple algorithmic scheme, GD and its variants, like SGD, have become the common approaches to find the

optimal parameters (a.k.a. the weights) of a ML model based on D. In a VFL setting, since D is vertically

partitioned among participants, the gradient computation ∇ED(www) is more computationally involved than

in a centralized machine learning setting.

Considering the simplest case where there are only two participants {pA, pB} in a vertical federated

learning system, and the target loss function is MSE (Mean Squared Loss), i.e., ED(www) = 1
n

∑n
i=1(y(i) −

f(xxx(i);www))2, we have

∇ED(www) = − 2

n

n∑
i=1

(y(i) − f(xxx(i);www))∇f(xxx(i);www). (3.4)

To compute the first term of (3.4), −y(i)∇f(xxx(i);www), we need feature information from both pA and

pB , and labels from pB . And clearly, ∇f(xxx(i);www) = [∂wwwA
f(xxx

(i)
A ;www); ∂wwwB

f(xxx
(i)
B ;www)] does not always hold for

any function f , since f may not be well-separable w.r.t. www. Even when it holds for linear functions like

f(xxx(i);www) = xxx(i)www = xxx
(i)
A wwwA + xxx

(i)
B wwwB , (3.4) will be reduced to

∇ED(www) = − 2

n

n∑
i=1

(y(i) − xxx(i)www)[xxx
(i)
A ;xxx

(i)
B ]

= − 2

n

n∑
i=1

(
[y(i)xxx

(i)
A ; y(i)xxx

(i)
B ] + (xxx

(i)
A wwwA + xxx

(i)
B wwwB)[xxx

(i)
A ;xxx

(i)
B ]
)

= − 2

n

n∑
i=1

(
[(y(i) − xxx(i)

A wwwA − xxx
(i)
B wwwB)xxx

(i)
A ; (y(i) − xxx(i)

A wwwA − xxx
(i)
B wwwB)xxx

(i)
B ]
)
, (3.5)

which may lead to training data exposure between two participants due to the computation of some terms

(colored in red) in (3.5). Under the VFL setting, the gradient computation at each training epoch relies on

(i) the participants’ collaboration to exchange their “partial model” with each other, or (ii) exposing their

data to the coordinator to compute the final gradient update. Therefore, any naive solutions will lead to a

huge risk of privacy leakage, which will be against the initial goal of the federated learning proposals that

primitively protects the data privacy.

In summary, existing approaches to train ML models in vertical FL, e.g., [69, 83, 39, 169], are model-

specific and rely on the hybrid general (garbled circuit based) secure multi-party computation (SMC) or

partially additive homomorphic encryption (HE) (i.e., Paillier cryptosystem [51]). These approaches have

several limitations. First, they require the use of Taylor series approximation to train non-linear ML models,

such as logistic regression, possibly reducing the model performance. Furthermore, the prediction and

inference phases of these vertical FL solutions also rely on the approximation-based secure computation, and

hence, they cannot predict as accurately as does a centralized ML model. Secondly, using such cryptosystems
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Figure 3.5: Comparison of secure aggregation communications via different approaches.

as part of the training process increases substantially the training time. Thirdly, these protocols require a

large number of peer-to-peer communication rounds among participants as illustrated in Figure 3.5 (a)

and (b) making it difficult to deploy them in systems that have unreliable connectivity or require limited

communication for security reasons; for instance, HIPAA limits the connectivity of data centers to a very

few specific entities. Note that figure (a) and (b) show the secure SGD and loss computation proposed in

[83] while figure (c) shows our proposed FedV approach which can be applied to both secure SGD and secure

loss computation. [83] only supports two participants with one coordinator, and the illustration here is our

theoretical extension for the multiple participant scenario based on their proposed algorithm. Our approach

requires a one-shot messaging and eliminates peer-to-peer communication. Finally, other approaches such as

[193] require sharing class distributions which may lead to potential leakage of private information of each

participant.

To address these limitations, in this section, we propose FedV, a framework that substantially reduces

the amount of communication required to train ML models in a vertical FL fashion. FedV does not require

any peer-to-peer communication among participants and can work with gradient-based training algorithms,

such as stochastic gradient descent and its variants, to train a variety of ML models, e.g., logistic regres-

sion, support vector machine (SVM), etc. To achieve these benefits, FedV cleverly orchestrates multiple

functional encryption techniques [4, 5], that are non-interactive in nature, speeding up the training process

with respect to the state-of-the-art approaches. Additionally, FedV supports more than two participants

and allows participants to dynamically join and leave without a need for re-keying. This feature is not pro-

vided by garbled-circuit or homomorphic encryption based encryption techniques utilized by state-of-the-art

approaches.

3.2.2 FedV Framework

FedV enables vertical federated learning without a need for any peer-to-peer communication resulting

in a drastic reduction in training time and total data transfer as shown in Figure 3.6. We first overview
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Figure 3.6: Overview of the FedV. Note that we assume participant p1 owns the labels, while all other

participants (i.e., p2, ..., pn) are passive participants.

the entities in the system and explain how they interact under our proposed two-phase secure aggregation

technique that makes these results possible.

FedV has three types of entities: a coordinator, a set of participants and a third-party authority.

• Each participant owns a training dataset which contains a subset of features and wants to collaboratively

train a global model. As in [39], we divide participants into two categories: (i) one active participant

who has training samples with partial features and the class labels, represented by p1 in Figure 3.6; (ii)

multiple passive participants who have training samples with only partial features.

• The coordinator orchestrates the private entity resolution procedure and coordinates the training process

among the participants.

• To enable functional encryption, FedV includes a TPA that is responsible for setting up the underlying

cryptosystem, delivering the public key to each participant and providing private key service to the

coordinator. The TPA is in charge of holding the master private and public key. It is also trusted to

perform public key distribution and to generate a functionally derived secret key. In real-world scenarios,

different sectors of the economy already have entities that can take the role of a TPA. For example,

central banks of the banking industry often play a fully trusted role, and some third companies in other

sectors such as a service or consultancy firm can embody the TPA. As it will become apparent in our

security evaluation, in FedV the TPA does not have access to neither the dataset nor the ML model.

To perform the private entity resolution, we make use of the approach proposed in [159] which was

described in Section 3.2.1. This approach is then expanded to include a set of random vectors one for each

participant to re-shuffle their dataset similarly to [83]. At the end of the entity resolution, the coordinator

generates permutation vector πi for each participant to shuffle its local records. This results in participants

having all records aligned before training. Finally, prior to the training process, all participants also agree

upon a random seed that will be used to generate a one-time-password sequence [81]. During the training
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Algorithm 3: FedV Framework

1 Initialize cryptosystems and deliver public keys and a random seed r for each participant;
2 Each participant shuffles samples according to the entity resolution vectors π1, .., πn ;
3 www ← random initialization;
4 repeat
5 foreach mini-batch B ∈ D do
6 ∇EB(www)← execute FedV-SecGrad with batch index si;
7 www ← www − α∇EB(www)

8 EB(www)← secure loss computation;
9 if EB(www) is stable for a while then break;

10 until reach maximum iteration;
11 return www

process, at a given round, each participant will use the one-time-password associated with the training

epoch as the seed to randomly select the samples that are going to be included in a batch for the given

round. The random seed could be generated by the TPA and is only shared among participants that do not

play the role of coordinator (this is done to prevent inference attacks).

After the private entity resolution, FedV starts the Federated Vertical Secure Gradient Descent (FedV-

SecGrad) operation which is the core novelty of this paper. FedV-SecGrad is a two-phased secure aggregation

operation that enables the computation of gradients by uniquely requiring a single message to be exchanged

between participants and the coordinator. For this purpose, participants perform a sample-dimension and

feature-dimension encryption. The resulting cyphertexts are then sent to the coordinator, which in turn

generates the aggregation vectors to compute the inner products. These aggregation vectors are subsequently

sent to the TPA that verifies their validity (we will expand on this later). If the aggregation vectors are

concluded to be adequate, the TPA provides the cryptographic key to the coordinator to perform the inner

products. As a result of these computations, the coordinator can obtain the gradients.

Threat Model and Assumptions. We consider the following threat model:

• Honest-but-curious coordinator : We assume that the coordinator correctly follows the algorithms and

protocols, but may try to learn private information from the aggregated model updates. This is a common

assumption as claimed in related work [22, 173]. The coordinator does not have to be a separate entity in

FedV. Any active participant following an honest-but-curious behavior can play the role of coordinator.

Just like the coordinator, active participants do not get access to random seed used to select data points

in each batch.

• Trusted TPA: As a critical component in the underlying cryptosystem infrastructure, the TPA is an

independent entity which is trusted by participants and the coordinator. Assuming such a trusted and

independent entity is common in existing cryptosystems such as [4, 5].

• Participants: We assume a limited number of dishonest participants who may try to infer the honest

participants’ private information. Dishonest participants may collude with each other.

Our proposed FedV can guarantee that an honest-but-curious coordinator cannot learn additional in-
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formation beyond the excepted gradient updates. The coordinator and TPA are assumed not to collude.

Additionally, the coordinator and participants do not collude. We note that the TPA does not have access

to the training data. A detailed security analysis is presented in Section 3.2.3.

We assume secure channels are in place and hence man-in-the-middle and snooping attacks are not

feasible. Similarly, secure key distribution is assumed to be in place. Finally, denial of service attacks and

backdoor attacks where participants try to cause the final model to create a targeted miss classification

[36, 15] are outside the scope of this paper.

Vertical Training Process - FedV-SecGrad . We now present in detail our federated vertical secure

gradient descent (FedV-SecGrad) approach for supported ML models. First we provide a high level overview

of the secure aggregation operations follow by FedV-SecGrad and describe in detail the operations performed

by FedV-SecGrad in Procedure 4 for linear models. Then, we extend FedV-SecGrad to other popular ML

models and discuss the Inference Prevention Module (IPM).

We describe FedV and its supported ML models in Lemma 1.

Lemma 1. FedV-SecGrad is a generic approach to perform private vertical federated learning which adopts

gradient-based algorithms to train a machine learning model with prediction function that can be written in the

form of f(xxx;www) := g(wwwᵀxxx), where xxx and www denote the feature vector and the model weight vector, respectively.

And the loss function is either mean-squared loss or cross-entropy loss depends on the problem context, i.e.,

L := 1
n

∑n
i=1(y(i) − f(xxx(i);www))2 or L := 1

n

∑n
i=1[−y(i) log(f(xxx(i);www))− (1− y(i)) log(1− f(xxx(i);www))].

Lemma 1 covers ML models besides linear models. Specifically, FedV-SecGrad supports non-linear ML

models such as logistic regression and SVMs. We demonstrate how this is achieved later. Note that in

Lemma 1, we deliberately omitted the regularizer R commonly used in ML, see equation (3.2), because

regularizers only depend on model weights www so that it can be computed by the coordinator independent of

the dataset of each participant.

For simplicity, we first use linear models, where g is the identity function and the loss is a mean-squared

loss, as an example to walk through FedV-SecGrad. The target loss function then becomes

ED(www) =
1

n

n∑
i=1

(y(i) −wwwTxxx(i))2. (3.6)

We observe that during an SGD training round the gradient computations over vertically partitioned data

∇ED(www) can be reduced to two types of operations: (i) feature-dimension aggregation and (ii) sample/batch-

dimension aggregation. To perform these two operations, FedV-SecGrad follows a two-phased secure aggre-

gation (2Phased-SA) process. Specifically, the feature dimension SA securely aggregates several batches of

training data that belong to different participants in feature-dimension to acquire the value of y(i)−xxx(i)www for

each data sample as illustrated in (3.5), while the sample dimension SA can securely aggregate one batch of

training data owned by one participant in sample-dimension with the weight of y(i)−xxx(i)www for each sample,

to obtain the batch gradient ∇EB(www). The communication between the participants and the coordinator is

a one-way interaction requiring a single message.
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Figure 3.7: Illustration of the FedV-SecGrad protocol.

The active participant and all other passive participants perform slightly different pre-processing steps

before invoking FedV. The active participant pi appends a vector with labels y to obtain xxx
(i)
pi wwwpi − y before

encryption. In the case where the active participant does not have any feature data of its own but only labels,

it needs to flip the sign of the labels which serves as input to the FedV-SecGrad for the feature dimension

SA. For each passive participant pj , they only encrypt their xxx
(i)
pjwwwpj .

Figure 3.7 illustrates the proposed protocol for a simple case where only two participants with active

participant being p1 and passive participant being p2. Assume that the training batch size is b and that the

current training batch samples for p1 and p2 are Bb×mp1 and Bb×np2 :

Bb×mp1 Bb×np2
y(i+1)

...

y(i+b)



x

(i+1)
1 . . . x

(i+1)
m

...
. . .

...

x
(i+b)
1 . . . x

(i+b)
m



x

(i+1)
m+1 . . . x

(i+1)
m+n

...
. . .

...

x
(i+b)
m+1 . . . x

(i+b)
m+n


Feature dimension SA. The goal of feature dimension SA is to securely aggregate the sum of a group of inputs

from multiple participants without disclosing the inputs to the coordinator. Taking the (i+b)-th data sample

as an example, the coordinator is able to securely aggregate
∑m
k=1 wkx

(i+b)
k − y(i+b) +

∑m+n
k=m+1 wkx

(i+b)
k .

To perform this operation, the coordinator prepares an aggregation functionality vector vvvP (e.g., (1, 1)) and

sends it to the TPA to request a function key skMIFE
vvvP .

Each participant pi encrypts each ‘partial model’ in the batch sample using the MIFE encryption algo-

rithm with its public key pki. Then, each pi sends the encrypted batch sample to the coordinator. With

the received key skMIFE
vvvP , the coordinator can decrypt the collected set of encrypted batch samples. The

resulting decryption is the aggregated sum of the elements of wwwm×1
p1 Db×m

p1 − yyy1×b and wwwn×1
p2 Db×n

p2 in the

feature dimension.

It is easy to extend the above protocol to a general case with k participants. In this case, the weight

vector vvvP can be set as an all-one vector (1, 1, ..., 1) with k elements indicating that the coordinator has
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received the replies from all participants and wants to weight all replies equally in the feature dimension

aggregation. In scenarios where only a subset of participants have replied, it is possible to securely aggregate

the results by adapting vvv, accordingly. We will discuss this case in more details later.

Sample dimension SA. The goal of the sample dimension SA is to securely aggregate the batch gradient. For

example, considering the first feature weight for data sample owned by p1, the coordinator is able to securely

aggregate ∇EB(w1) =
∑k=i+b
k=i+1 x

(k)
1 uk via sample dimension SA where uuu is the aggregation result of feature

dimension SA discussed above. This SA protocol requires the participant to encrypt its batch samples using

the SIFE cryptosystem with its public key pk, as shown in Figure 3.7. Then, the coordinator exploits the

results of the feature dimension SA, i.e., an element-related weight vector uuu to request a function key skSIFE
uuu

from the TPA. With the function key skSIFE
uuu , the coordinator is able to decrypt the ciphertext and acquire

the batch gradient EB(www).

Detailed execution of the FedV-SecGrad process: We now present in detail our federated vertical

secure gradient descent (FedV-SecGrad) approach. As shown in Algorithm 3 the general FedV which adopts

a mini-batch based SGD algorithm to train a ML model in VFL fashion. During the setup phase, the TPA

securely delivers the corresponding public keys to each participant pki and a common secret random seed

r for batch generation. Before the training phase starts, the coordinator sends each participant pi with

the permutation πpi generated by the private entity resolution approach described earlier. A permutation

vector allows the participant to shuffle its local dataset. At each training epoch, the FedV-SecGrad approach

specified in Procedure 4 is invoked in Line 6 of Algorithm 3. The coordinator queries the participants with a

current batch index si and the current model weights wwwpi with respect to the receiving participant pi. The

batch index allows the participants to subsample the local dataset using the pre-agreed batch generation

function ρ when encrypting the ‘partial model’. To reduce the data transfer and protect against inference

attacks4, the coordinator only sends each participant the weights that pertain to its features. We denote

these partial model weights as wwwpi .

For each mini-batch, each participant follows the feature-dimension and sample-dimension encryption

process shown in lines 13, 14, and 15 of Procedure 4, respectively. As a result, each participant local ‘partial

model’ is encrypted and the two ciphertexts, cccfd, cccsd, are sent back to the coordinator. The coordinator waits

for a pre-defined amount of time for participant replies, denoted as two sets of corresponding ciphertexts

Scccfd ,Scccsd . Once this time has elapsed, it continues the training process by performing the following secure

aggregation steps. First, the feature dimension SA is performed. For this purpose, in line 4 vector vvvP

is initialized. This vector provides the weights for the inputs of each of the received replies and its norm

corresponds to the number of received replies. vvvP is sent to the TPA which returns the private keep to

perform the decryption; before this key is returned, the TPA verifies the suitability of the vector, more

details described later. The feature dimension SA is completed in line 6, where the MIFE based decryption

takes place resulting in uuu = (u1, ..., ub) which contains the aggregated weighted feature values of b batch

4In this type of attack, a participant may try to find out if its features are more important than those of other participants.
This can be easily inferred in linear models.
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Procedure 4: FedV-SecGrad.

1 .The n participants group P are indexed as pi; each participant pi with rearranged dataset Dpi , model
weights wwwpi , current batch index si and pre-agreed batch generate function ρ, has assigned public key pki
and random secret seed r from TPA; current model weights www := (wwwp1 ,wwwp2 , ...,wwwpm);

2 coordinator:
3 foreach pi ∈ P do Scccfd ,Scccsd ← query-party(wwwpi , si) ;
4 specify vvvP according to Scccfd ;
5 skvvvP ← query-key-service(vvvP , EMIFE) ;

6 foreach cccfd ∈ Scccfd do uuu← EFMCIP
FE .DecskvvvP (cccfd) .feature dimension SA ;

7 skuuu ← query-key-service(uuu, ESIFE);

8 foreach cccsd ∈ Scccsd do ∇E′B(www)← EFSCIP
FE .Decskuuu(cccsd) .sample dimension SA ;

9 ∇EB(www)← ∇E′B(www) + α∇R(www)

10 participant:
11 function query-party(wwwpi , si)
12 Bpi ← ρ(r, si,Dpi) .generate the batch in current training epoch;

13 if active pi then cccfd ← EFMCIP
FE .Encpkpi (wwwpiBpi − yyy) ;

14 else cccfd ← EFMCIP
FE .Encpkpi (wwwpiBpi) ;

15 cccsd ← EFSCIP
FE .Encpk(Bpi) in sample dimension;

16 return (cccfd, cccsd) to the coordinator;

17 TPA:
18 function query-key-service(vvv, E)
19 return skvvv ← EFE.SKGen(vvv);

samples. After that, the sample dimension SA takes place. The coordinator uses uuu as an aggregation vector

that is sent to the TPA to obtain a functional key skf,uuu. The TPA verifies the validity of vector uuu and returns

the key if appropriate. Finally, the aggregated model update ∇EB(www) is found in line 8 by performing a

SIFE decryption using skf,uuu.

Extending FedV to other machine learning models: We now briefly analyze how to apply FedV-

SecGrad approach on three classic machine learning models, and defer detailed analysis in Appendix C.

Logistic Regression. The minor modification of directly applying FedV-SecGrad in logistic model is either

sharing the labels with the coordinator or making the active participant play the role of the coordinator.

Suppose that the prediction function f(xxx;www) = 1
1+e−wwwᵀxxx can be written as g(wwwᵀxxx), where g(·) is the sigmoid

function, i.e., g(z) = 1
1+e−z . The gradient computation over a mini-batch B of size n can be described

as ∇EB(www) = 1
n

∑
i∈B(g(www(i)ᵀxxx(i))) − y(i))xxx(i). In our proposed FedV-SecGrad, the coordinator is able to

acquire www(i)ᵀxxx(i) following the feature dimension SA process. With the provided labels, it can then compute

u(i) = g(www(i)ᵀxxx(i)) − y(i). Finally, sample dimension SA is applied to compute ∇EB(www) =
∑
i∈B u

(i)xxx(i).

FedV-SecGrad also provide an alternative approach for the case of restricting label sharing, where the logistic

computation is transferred to linear computation via Taylor approximation as used existing VFL solutions

[83].

SVMs with Kernels. The prediction function can be presented as f(xxx;www) =
∑n
i=1 wiyik(xxxi,xxx), where k(·) is

the corresponding kernel function. As kernel functions, such as, linear kernel xxxᵀi xxxj , polynomial kernel (xxxᵀi xxxj)
d,

sigmoid kernel tanh(βxxxᵀi xxxj + θ) (β and θ are kernel coefficients), are based on inner-product computation
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Procedure 5: Inference Prevention Module

1 function IPM(vvv)
2 if exploited-vector-filter(vvv) then forward vvv to the TPA ;
3 else return “exploited vector” message ;

4 function exploited-vector-filter
5 cnz ← count the non-zero element in vvv;
6 if cnz < t then true;
7 else false;

which is supported by our feature dimension SA and sample dimension SA protocols, these kernel matrices

can be computed before the training process. Therefore FedV-SecGrad can securely compute the kernel

matrix first and then use it in the training process. The gradient computation process for all SVMs equipped

with the aforementioned kernel functions will be reduced to a gradient computation of a standard linear SVM,

which can clearly be supported by FedV-SecGrad.

Inference Prevention Module : The original inner-product based functional encryption schemes proposed

in [4, 5] do not consider the case of a curious decryption party who manipulates a specially constructed

vector to request the functional private key from the TPA, and hence it is possible to reveal one element

in the encrypted vector. Our FedV-SecGrad approach in FedV is much more complex than the simple

adoption of functional encryption cryptosystems. For instance, an honest-but-curious coordinator can send

a manipulated vector such as vvvexploited = (0, ..., 1, 0) to request function key to infer the second last element

in the input vector xxx because the inner-product 〈xxx,vvvexploited〉 is known to the coordinator. Another potential

attack to infer the second last element in xxx is to utilize two manipulated vectors such as wwwe,1 = (1, 1, 1) and

wwwe,2 = (1, 0, 1) in two training epochs, respectively. We add a IPM in the TPA to prevent the potential

partial private information leakage caused by inference attacks.

As presented in Procedure 5, IPM includes one filter, namely exploited vector filter, that checks the

validity of the querying vector used for generating the function derived key. Throughout the training phase,

the exploited vector filter will ensure that the non-zero element in the request is less than a threshold t. We

present the detailed analysis in Section 3.2.3.

Enabling Dynamic Participation in FedV . An important feature in FL systems is the ability to allow

participants dynamically to join in and drop out during the training phase. In VFL, a participant or the

coordinator may be absent in several application scenarios. Here, we discuss these variations in our proposed

FedV framework.

Our FedV supports the absence of the coordinator. In such a case, the active participant is able to play

the role of the coordinator. As the active participant could be curious, but assumed to not collude with other

malicious participants in the threat model described above, the privacy requirement of the active participant

is the same as that of the coordinator. A detailed security and privacy analysis will be presented in Section

3.2.3. In addition, the proposed FedV framework is also applicable to the dynamic group of participants.

In particular, it allows limited number of participants to join in and drop out during the FL training phase.
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Existing VFL frameworks rely on the peer-to-peer communications among the participants, which prevents

the drop-out behaviors of participants. In FedV, communication only occurs between the coordinator and the

participants, which makes the join-in and drop-out behaviors easy to manage, without affecting the existing

participants.

Generally, FedV can employ the coordinate descent (CD) algorithms (and its variations, block coordinate

descent (BCD) algorithms) [185] instead of the SGD to train the ML model. In particular, BCD algorithms

allow optimization of the objective function only over one segment (i.e., group of features) at each sub-

iteration, while keeping all the other feature segments fixed. Specifically, to train a target ML model, suppose

that it requires features Fd = (f1, ..., fd) that are owned by different participants. For each sub-iteration, the

FedV only needs one participant’s data including one feature or partial features in the CD/BCD training.

That means the rest of the participants are allowed to drop-out during the training process, and can re-join

to continue training when they are available. Unlike the VFL proposal in [83], such CD/BCD are achievable

in our FedV as our design does not rely on the peer-to-peer communications among the participants.

3.2.3 Security and Privacy Analysis

Security Analysis. The SA protocols are the critical components to build the FedV-SecGrad approach

in the FedV framework that supports the basis for the security and privacy guarantees. As illustrated in

Appendix A, we employ two types of functional encryption schemes, namely, SIFE and MIFE to construct

the SA protocols. In our implementation of SIFE [4] and MIFE [5], we add a public key distribution method

run by fully trusted TPA as a supplement of existing functional encryption schemes. Such additional method

is only responsible for distributing the public key for each participant. This, however, does not affect the

ordinal encryption and decryption constructions as compared to the originally schemes. Thus, for the formal

proof of security of adopted FE schemes we refer the readers to [4, 5].

Our FedV allows a limited number of colluding participants, but still provides the privacy guarantee

for the rest most honest participants. Here, we analyze the possible security concern related to a brute-

force attack where a limited number of colluding participants monitor/inspect the encrypted partial model

from other participants. With regards to the public-key setting in FedV, each participant has its respective

public key pkMIFE and they all have a common public key pkSIFE. Intuitively, such settings could enable

the colluding participants to infer the target encrypted data by iteratively encrypting its candidate partial

model and then checking the ciphertext with target encrypted model as all participants share a common

public key pkSIFE. The SIFE [4] has proved to be IND-CPA secure that indicates the encrypted models are

indistinguishable. For instance, for input data x, with the same public key pkSIFE, the encrypted ciphertexts

c1 = EpkSIFE(x), c2 = EpkSIFE(x), ..., cn = EpkSIFE(x) are indistinguishable even for the same input. Thus,

there is still a non-negligible advantage for the attackers by increasing the number of colluding participants

to brute-force the encrypted data from the honest participants. In summary, our proposed FedV is resist to

the inference attacks from the colluding participants.
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Privacy Analysis. Beside the security guarantee, we analyze extra privacy guarantee in FedV under the

threat model presented in Section 3.2.2. Briefly, in our threat model, the TPA is fully trusted, while the

coordinator could be honest-but-curious.

Here, we analyze the possible inference attacks. As honest-but-curious coordinator can launch two types

of inference attacks in our designed FedV framework: (i) sending exploited weight-related vector such as

wwwexploited = (0, ..., 1, 0) to request function key to infer the second last element in the input vector xxx as the

inner-product 〈xxx,wwwexploited〉 is known to the coordinator; (ii) storing the intermediate inner-product results

of each iteration to construct degree-1 multivariate polynomial equations, namely, solving WWWxxxtarget = zzz to

infer target sample xxxtarget, where WWW = [www1, ...,wwwnepoch
] is constructed from the model weight of each epoch,

and zzz is collected from the inner-product of each epoch.

To prevent the inference attack (i), our proposed Inference Prevention Module is able to filter the

wwwexploited. Specifically, the filter module will check the vectorwwwexploited to ensure that the number of non-zero

elements is greater than a threshold τ , and hence the curious server cannot distinguish a specific element

of xxx among the weighted-sum of at least τ www. The inference attack (ii) is able to occur at both F-SA and

S-SA phase. To solve a system of linear multivariate equations, it requires the curious coordinator is able

to collect enough number of equations for a target training sample xxxtarget during the secure aggregation

phase. However, the coordinator has non-negligible advantage to distinguish the ciphertext of xxxtarget among

all encrypted training samples as illustrated as indistinguishability in [4, 5]. Different from existing solutions

where the coordinator is responsible for generating the permutations and encrypted mask in the phase of

privacy-preserving entity resolution, our proposed solution does not require the encrypted mask. In our

FedV, each training batch is generated by an agreed batch generation function ρ that relies on the input of a

secret random seed generated by a trusted independent entity such as TPA as illustrated in our framework.

Hence, the coordinator cannot learn the position of target xxxtarget in FedV for different training epochs due

to periodical shuffle operations. Furthermore, in the dynamic groups case, one training record only appears

in limited number of training epochs. As a result, the curious coordinator cannot collect enough number of

equations for a specific training record.

3.2.4 Experimental Evaluation

To evaluate the performance of our proposed FedV framework, we compare with the following baselines:

(i) Contrasted baseline: we refer the contrasted baseline as the proposed VFL in [83]. Here, the underlying

ML need to be trained is the logistic regression model and the secure protocols are built on the additive

homomorphic encryption (HE). In addition, like most additive HE based privacy-preserving ML solutions,

the SGD and loss computation in [83] also relies on the Taylor series expansion to approximately compute

logistic function. (ii) Centralized baselines: we refer the centralized baselines as the training of different

ML models in centralized manner. The contrasted ML algorithms include: the logistic regression model,

the logistic regression model with Taylor approximation, the basic linear regression model in ordinary least
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Table 3.6: The number of required crypto-related communication for each iteration in the VFL.

Types Communication Entities [83] FedV

Secure Stochastic Gradient Descent
coordinator ↔ participants 2n n
participants ↔ participants 2(n− 1) 0

TOTAL 2(2n− 1) n

Secure Loss Computation
coordinator ↔ participants 2n n
participants ↔ participants n(n− 1)/2 0

TOTAL (n2 + 3n)/2 n

squares (OLS), the Support Vector Machine (SVM). Note that as the supported lasso regression and ridge

regression models are based on the OLS-based linear regression by adding the L1 and L2 regularization in

the cost function respectively. Such regularization module has no affect on the collaboration of participants

in the VFL, and hence, we do not report such results in the centralized baselines.

Before the experimental evaluation, we first theoretically evaluate the proposed FedV with contrasted

baseline that use additive HE as the underlying cryptosystem to construct the secure aggregation approach

to support secure SGD over the vertically partitioned dataset. A graphical overview and comparison of our

proposed FedV-SecGrad approach and existing additive HE approach is presented in Figure 3.5. Here, we

theoretically compare the number of crypto-related communication in our proposed FedV framework to the

contrasted approaches. Suppose that there are n participants and one coordinator in the VFL framework.

Note that here we did not consider the dynamic groups case in the FedV as the existing VFL does not

support such dynamic drop-out and join-in cases. As shown in Table 3.6, in total, FedV has reduced the

number of interactions in SGD phase from 4n − 2 to n, while reducing the number of interactions in loss

computation by an order of magnitude, from (n2−3n)/2 to n. The number of interactions during the secure

aggregation at the SGD phase of loss computation phase is linear to the number of participants in our FedV.

Experimental Setup. To evaluate the performance of the FedV, we train several popular ML models such

as linear regression, logistic regression, Taylor approximation based logistic regression, and SVM to classify

several publicly available datasets from UCI Machine Learning Repository. As depicted in Table 3.7, the

evaluated datasets include website phishing, ionosphere, landsat satellite (statlog), and optical recognition of

handwritten digits (optdigits). The number of attributes of those dataset cover from 10 to 64, while the total

number of sample instances is from 351 to 6435. The division of training set and test set is also presented

in Table 3.7. Please note that if the original problem of the studied dataset is multi-class then we convert it

into binary classification problem.

Implementation. We implement the contrasted VFL, our proposed FedV and several centralized baseline

ML models in Python. To achieve the integer group computation that is required by both the additive

homomorphic encryption and the functional encryption, we employ the gmpy2 library that is a C-coded

Python extension module that supports multiple-precision arithmetic, where the underlying performance-
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Table 3.7: Dataset description in the experimental evaluation.

Dataset Attributes Total Samples Training Test

Phishing 10 1353 1120 233
Ionosphere 34 351 288 63

Statlog 36 6435 4432 2003
OptDigits 64 5620 3808 1812

intensive arithmetic operations are implemented in native C modules such as the GMP library. We implement

the Paillier cryptosystem as the construction of additive HE scheme that is same to the scheme used in [83],

and the constructions of MIFE and SIFE are from [4, 5], respectively.

As those constructions do not provide the solution to address the discrete logarithm problem in the

decryption phases, which is a performance intensive computation, we use the same approach as mentioned in

Section 3.1, where a hybrid approach is employed. Specifically, to compute the f in h = gf , we setup a hash

table Th,g,b to store (h, f) with a specified g and a bound b, where −b ≤ f ≤ b, when the system initializes.

When computing discrete logarithms, the algorithm first looks up Th,g,b to find f , where the complexity is

O(1). If there is no result in Th,g,b, the algorithm employs the traditional baby-step giant-step algorithm

[161] to compute f , where the complexity is O(n
1
2 ).

Experimental Environment. All the experiments are performed on a 2.3 GHz 8-Core Intel Core i9

platform with 32 GB of RAM. Note that both the contrasted VFL and our FedV frameworks are distributed

by multiple processes, where each process represents a participant. The participants and the coordinator

communicate over local socket (not run on the real distributed environment for real network), hence the

network latency is not measured in our experiment.

Experimental Results. As the contrasted baseline [83] only supports two participants to train a logistic

regression model, we first present the comparison results in the setting of two participants, and then we

explore the performance of FedV using different machine learning models. In last, we study the impact of

varying number of participants in FedV.

Comparison to Contrasted Approach. We first compare the performance of FedV to existing contrasted

baseline [83] and centralized baselines, i.e., the non-FL logistic regression model and logistic regression with

Taylor approximation over four selected datasets.

As the underlying logistic regression is a non-linear model, we implement two types of FedV : normal

FedV and approximation FedV according to our proposed approaches, where approximation FedV is the

implementation applying our FedV-SecGrad to address the approximated logistical regression that is same

to the contrasted baseline but use different secure aggregation approaches. The normal FedV is the im-

plementation applying our FedV-SecGrad to address the secure aggregation directly. Accordingly, we also

implement a non-FL centralized logistic regression in approximation setting.
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Figure 3.8: Comparison of model accuracy and training time in LR model in two-participant setting.
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Figure 3.9: Decomposition of training time in FedV and contrasted VFL baseline.

In Figure 3.8 we present the test accuracy and training time of each contrasted approach for different

datasets. Results show that both of our approximation FedV and normal FedV can achieve the comparable

test accuracy to the contrasted baseline [83] and the centralized non-FL baselines for all four datasets.

Regarding training time, our implemented approximation FedV and normal FedV efficiently reduce the

training time by 10% to 70% for the studied datasets when training for 360 iterations. For instance, as
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Figure 3.10: Comparison of the size of total data transmitted of training LR model over various datasets.

depicted in Figure 3.8, our FedV can reduce around 70% training time for ionosphere dataset while just

reducing around 10% training time for sat dataset. The variation in training time reduction among different

datasets is caused by the dataset distribution and model convergence speed.

Furthermore, we decompose the training time of LR model over ionosphere dataset in FedV and the

contrasted VFL baseline to show the exact reason of the training time reduction. As shown in Figure 3.9,

compared to the contrasted VFL baseline, FedV does not rely on two phase communications for secure

gradient computation. Note that in the legend, “C” represents the coordinator, while “P1” and “P2”

denotes the active participant and the passive participant, respectively. Besides, the process time of phase

1 of coordinator and phase 2 of each participant is significantly higher than our FedV.

We also compare and decompose the size of total data transmitted of LR model over various datasets

in FedV and the contrasted VFL baseline. As shown in Figure 3.10, compared to the contrasted VFL

baseline, FedV can reduce the size of total data transmitted by 80% to 90%, because FedV only relies on

designed non-interactive secure aggregation protocols and does not need the frequent communications used

in contrasted VFL baseline.

Performance of FedV over Different ML Models and Impact of Number of Participants. We explore the

performance of FedV using different popular machine learning models, i.e., the OLS-based linear regression,

support vector machine, logistic regression, and also compare with the contrasted centralized baselines -

non-FL machine learning models. The first row of Figure 3.11 reports the test accuracy while second row of

Figure 3.11 shows the training time for 360 training iterations. In general, our proposed FedV can achieve

the comparable test accuracy for all machine learning models for all the studied datasets, even though the

rates of convergence are different for different datasets. Our FedV-SecGrad is based on cryptosystems that

computes over integers instead of floating-point number, so FedV will lose portion of fractional part of a

floating-point number. As shown in Figure 3.11, our FedV is able to achieve comparable training time to

54



0 5 10 15
#iteration-batches(x20)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

test accuracy - ionosphere

0 5 10 15
#iteration-batches(x20)

0.0

0.2

0.4

0.6

0.8

1.0

test accuracy - phishing

0 5 10 15
#iteration-batches(x20)

0.0

0.2

0.4

0.6

0.8

1.0

test accuracy - sat

0 5 10 15
#iteration-batches(x20)

0.0

0.2

0.4

0.6

0.8

1.0

test accuracy - optdigits

0 5 10 15
#iteration-batches(x20)

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 
co
st
 (s

)

training time - ionosphere

0 5 10 15
#iteration-batches(x20)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
training time - phishing

0 5 10 15
#iteration-batches(x20)

0

10

20

30

40

training time - sat

0 5 10 15
#iteration-batches(x20)

0

5

10

15

20

25

30

35
training time - optdigits

cent-linear cent-svm fedv-linear fedv-svm

Figure 3.11: Performance of FedV over various ML models and the comparison.
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Figure 3.12: Impact of number of participants on the performance of the FedV framework.

the corresponding non-FL machine learning models. We also explore the impact of number of participants

in FedV. Figure 3.12 reports the experimental results of FedV under multiple participants setting (i.e., from

2 participants to 15 participants) over the OptDigits dataset. Note that the contrasted baseline [83] does
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not support more than two participants, and hence we cannot report its performance here. Each of the test

setting has a random initialization model weight. As reported in Figure 3.12, the number of participants does

not impact the model accuracy, finally, all test cases reach the 100% accuracy. Note that the result is based

on the evaluation on OptDigits dataset with FedV Logistic Regression model. Besides, the training time is

linear to the number of participants, and is still very efficient. As reported in Figure 3.8, the training time

of FedV in logistic reugression model is very close to the normal non-FL logistic regression. For instance,

for 100 iterations, the training time of FedV with 14 participants is around 10 seconds, while the normal

non-FL logistic regression training is about 9.5 seconds.

3.3 Summary and Discussion

FL promises to address privacy concerns and regulatory compliance. However, extant approaches ad-

dressing privacy concerns in FL provide strong privacy guarantees and good model performance at the cost

of higher training time and high network transmission. We propose HybridAlpha, a novel federated learning

framework to address these issues. Our theoretical and experimental analysis shows that, compared to ex-

isting techniques, on average, HybridAlpha can reduce the training time by 68% and data transfer volume

by 92% without sacrificing privacy guarantees or model performance. Using HybridAlpha, FL can be applied

to use cases sensitive to training time and communication overhead, in particular for models with a large

number of parameters. Most of existing PPFL frameworks only focus on the case of horizontally partitioned

data, while few vertical FL solutions just work on a specific machine learning model and suffer from inefficient

secure computation and training time. To address the challenges, we proposed FedV an efficient and vertical

PPFL framework built based on a two-phase secure aggregation approach that makes use of functional en-

cryption schemes. FedV can be used to train a variety of ML models without any approximation including

linear models, logistic regression, SVMs among others. Importantly, FedV removes the need of peer-to-peer

communications among participants reducing substantially the training time and making it applicable for

applications where participants cannot connect with each other. Our experiments show reduction of 10%-

70% of training time and 80%-90% transmitted data size with respect to the state-of-the art approaches.

FedV is first VFL framework to support dynamic participants that may be unable to sustain connection

throughout the training process, a challenge characteristic of FL. It allows a subset of participants to drop

off and rejoin the training process without requiring expensive re-keying operations or affecting the training

process.
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4.0 Privacy-Preserving Deep Neural Networks using Secure Computing

Deep neural networks (DNN), also known as deep learning (DL), have been increasingly used in many

fields such as computer vision, natural language processing, speech/audio recognition, etc. With increasing

availability of huge amounts of training data and devices with increased computing power, they are becoming

more practical for use in ML based applications. Such DNNs usually consist of two phases: the training

phase and the inference phase. In the training phase, a well-designed DNN is provided as input a training

dataset and an appropriate optimization algorithm to generate optimal parameters; then, in the inference

phase, the generated model (i.e., optimal parameters) is used for inference tasks, namely, predicting a label

for a specific input sample.

In DNN-enabled applications, one of the critically needed components is a powerful computing infras-

tructure with powerful CPU and GPU, larger memory storage, etc. Existing commercial AI service providers

such as Google, Microsoft, and IBM have devoted significant efforts toward building infrastructure as a ser-

vice (IaaS) platforms for clients that do not have such powerful computing devices. The clients can employ

these AI related IaaS to manage and train their models and provide prediction services to their customers.

The size of the available training dataset is another critical issue. In particular, the performance of a

DNN system heavily relies on the availability of a large volume of training data. However, in many scenarios,

training data used by a DNN may contain privacy-sensitive information. Recent data breach incidents have

increased the privacy concerns related to large-scale collection and use of personal data [150, 176]. Moreover,

recent regulations such as European General Data Protection Regulation (GDPR), California Consumer

Privacy Act, Cybersecurity Law of China, etc., restrict the availability and use of privacy sensitive data.

Such privacy concerns of users and requirements imposed by regulations pose a significant challenge for the

deployment of DNN solutions.

To balance the privacy concerns and regulatory issues mentioned above, with that of the need of large

volumes of training data, several approaches have been proposed in the literature for building privacy-

preserving ML (PPML) solutions. These approaches include: (i) applying privacy-preserving mechanisms

such as differential privacy to limit the disclosure of private information before outsourcing a dataset to a

third party to train a DNN model [1]; (ii) employing new DNN architectures such as federated learning (FL)

where each participant trains a model locally and exchanges only the model parameters with the coordinating

server [166]; and (iii) utilizing existing general secure multi-party computation (SMC) techniques or other

encryption schemes (e.g., homomorphic encryption) to build appropriate security protocols to protect the

input training data while training a DNN model [128, 151, 73, 129, 191].

In Table 4.1, we summarize existing representative privacy-preserving approaches used by DNN models.

Existing solutions such as a FL approach and those based on differential privacy cannot provide strong

privacy guarantees because of inference attacks, as demonstrated in the literature [66, 167, 131]. The general
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Table 4.1: Comparison of representative privacy-preserving approaches in deep learning

Proposal Training Prediction Privacy . Multi-Source † Technique

[166] 3 7 # - Federated Setting ∗

[1] 3 7 # - Differential Privacy

[128] - 3 H# 7 Customized SMC (GC)‡

[151] - 3 H# 7 General SMC (GC)
[73, 86, 31, 92] 7 3  7 Homomorphic Encryption
[129] 3 3  7 Homomorphic Encryption
CryptoNN (our work) [191] 3 3  - Functional Encryption
NN-EMD (our work) 3 3  3 Hybrid Functional Encryption

. The column denotes privacy guarantee degree such as mild approach # (e.g. differential privacy) and strong guarantee  
(e.g. confidentiality level privacy guarantee).
† The minus symbol indicates the approach supports multiple data sources to some extent.
‡ The data owner trains the model by itself and outsources partial computation in a privacy-preserving setting.
∗ The model is trained in a federated manner where each data owner trains a partial model on their private data.

SMC(garbled circuits based) approaches, such as those proposed in [128, 151], have a limitation with regards

to large volumes of encrypted data that need to be transferred during the execution of the associated secure

protocols. Except for the recently proposed solutions in [191, 129], most of these SMC approaches only

address privacy issues in the inference phase rather than in the training phase; this is mainly due to the

efficiency challenges related to both computation and communication.

Furthermore, none of the existing solutions for privacy-preserving training of a DNN consider the fact that

training data may be coming from multiple data sources partitioned horizontally or vertically. The training

dataset may have different composition cases; it may include data from multiple data sources, where:

(i) Each data source provides a dataset that includes all the features;

(ii) Each source provides a dataset that has only a subset of the required features; but, collectively these

datasets cover the complete set of features;

(iii) It is a hybrid of (i) and (ii).

Even though existing privacy-preserving solutions such as CryptoNN [191] support case (i), cases (ii) and

(iii) still pose a huge challenge.

In this chapter, we propose a framework to train a Neural Network over Encrypted Multi-sourced Datasets

(NN-EMD). That is, NN-EMD trains a DNN using a dataset that is composed of independently encrypted

datasets from many different sources. Each data source may provide its encrypted data that may include a

complete set of features or only a subset of features.

The goal here is to provide a strong privacy guarantee, while training a DNN model in a more efficient

way as compared to the most recently proposed solutions, namely, those in [191, 129]. To the best of

our knowledge, this is the first efficient and more practical approach for training a DNN over a set of

encrypted/private datasets.
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4.1 NN-EMD: Training Neural Networks using Encrypted Multi-Sourced Datasets

4.1.1 Background and Motivation

As mentioned earlier, training DNNs requires a large volume data that may have privacy sensitive data

and significant computational resources. An entity that aims to employ a DNN-based solution may not

have both. For instance, DNN for breast cancer screening can provide much more effective, efficient, and

patient-centric breast cancer screening support than ever before [44]. However, some small clinics may not

be able to train a breast cancer screening AI model based on their collected patients’ healthcare records

because of lack of adequate computing power and ML expertise. So, as an alternative, they can use a

commercial cloud service that can provide the required computational infrastructure or DNN models; but

such outsourced computation is not desirable without employing appropriate privacy-preserving techniques

that can guarantee users’ or regulatory privacy protection requirements.

In this section, we focus on a privacy-preserving DNN (PPDNN) approach that uses a client-server archi-

tecture with two parties: (i) the cloud service provider (server) with powerful computational infrastructure

that can be employed for training a DNN model; and (ii) a client pool (data sources) that have privacy-

sensitive datasets and need to build a DNN model based on these training datasets without leaking private

information.

Such a PPDNN approach needs novel secure computation protocols to support efficient computation

and interactions between a pool of clients and a server, while offering strong privacy guarantees. Existing

general SMC solutions (i.e., garbled circuits) have limitations because they need to perform several rounds

of communication involving transmission of large volumes of intermediate data. Using these techniques for

DNN is cost prohibitive because of huge volumes of training data needed. Cryptography-based solutions

(e.g., homomorphic encryption-based SMC) also have computational efficiency problems.

To the best of our knowledge, the approach proposed by Bost et al. in [27] is the initial work that sup-

ports both training and predictive analysis over encrypted data. Their approach achieves this by integrating

several crypto schemes (i.e., Quadratic Residuosity cryptosystem, Paillier cryptosystem, and homomorphic

encryption) with secure protocols designed for them. However, it only supports limited types of basic ML

models such as näıve bayes, decision trees and support vector machines, but not DNN. Most recently, ap-

proaches proposed by Nandakumar et al. in [129], and Xu et al. in [191] are the only ones that support

training DNN over encrypted data; their approaches use homomorphic and functional encryption, respec-

tively. Insight from these two approaches indicate that the crypto-based secure computing techniques are

promising for the training phase of a DNN model. However, there are two key challenges toward achieving

effective and efficient training of DNNs over encrypted datasets that we address in this paper:

• Efficiency of Training Process. The existing secure computing protocols are not efficient, as mentioned

above. For instance, with optimized approaches (e.g., multiple threads, training data distillation) in [129],
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Figure 4.1: Overview of the proposed NN-EMD framework.

training time for one mini-batch, with 60 samples, is around 40 minutes. This indicates that training

time in the case of a larger volume of training data will be significantly higher.

• Multiple Data Sources. There is a lack of consideration of real complex training data composed of

horizontally and vertically partitioned datasets coming from multiple data sources. Meanwhile, the

training techniques also provide strong confidentiality-level privacy guarantees.

4.1.2 Overview of NN-EMD

In NN-EMD, we have the following three roles/entities: a client pool, a server, and a trusted third-party

authority (TPA):

• A client pool of multiple data sources that collaboratively contribute to the final training dataset com-

posed of horizontally and vertically partitioned data, or a hybrid mix of the two. Each data source still

keeps its data confidential from the rest.

• A server responsible for training a DNN over a training dataset composed of multiple private datasets.

• A trusted TPA that initializes the underlying cryptosystems by setting secret credentials. Then, it

distributes the associated public keys to data sources in the client pool and the server, and provides

private key service to the server during the training phase. Note that it is not necessary for a TPA to

acquire/access any (encrypted) training data.

Figure 4.1 illustrates the NN-EMD framework. Before training a model , the server collects the meta

information about the training datasets from the client pool and then client pool coordinates the privacy-

preserving entity resolution task with each data source if the final training dataset is a vertical composition

of datasets from sources in the client pool. We assume that for each data sample, there exists at least one

data source having the label and only one data source’s labels are enrolled in the training phase. Meanwhile,

all the clients in the client pool and the server acquire associated cryptographic keys from the TPA. Then,
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Figure 4.2: Illustration of secure two-party computation approaches between the client pool and the server.

each data source in the client pool pre-processes its data as required by the framework and outsources

the encrypted data to the server. The server starts to train the model by setting up the proper training

hyperparameters, e.g., learning rate, number of iterations, and the total number of data sources, etc.

4.1.3 Threat Model and Assumptions

We assume that there exists a trusted TPA. This TPA is an independent third-party that is trusted by all

the data sources in a client pool and the server. Note that it is also a common assumption in cryptosystems

such as those proposed in [25, 23, 77]. The role of a trusted TPA is similar to the role of a trusted certificate

authority in existing public key infrastructures. In this paper, we consider the following threat model:

(i) Honest-but-curious Server ; which is a common assumption in most of the existing approaches ([22,

191, 129]). Here, the server follows the instructions of a protocol or algorithm, but may try to learn private

information by inspecting the collected encrypted dataset and decrypted functional results during the training

phase.

(ii) Curious and Colluding Data Sources: In a client pool, some of curious data sources may try to collude to

infer private information of other non-colluding data sources by inspecting their outsourced encrypted data.

4.1.4 Secure Computation Approaches

Here, we present our proposed privacy-preserving secure computation approach between a server and a

client pool (data sources). To be specific, we propose two secure computation protocols, namely, secure two-

party horizontally partitioned computation protocol (S2PHC, see Figure 4.3) and secure two-party vertically

partitioned computation protocol (S2PVC, see Figure 4.4).

Note that arrows indicate assignment operation, while the equal sign is a comparison operation. Both

the protocols are non-interactive secure two-party computation protocols, where there are no interactions

between the server and the client pool ; i.e., they have only one-way communication between them.
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Secure Two-party Horizontally Partitioned Computation Protocol

Initialization and Key Services
⇒ TPA initializes the system as follows:

- initializes the single-input FEIP cryptosystem by generating a common public key and master private key, pkSCIP,com,mskSCIP ←
EFSCIP
FE .Setup(1λ, 1η) by giving parameters λ and η, where λ is the security parameter indicating the bit length of security credentials,

while η denotes the maximum length of all possible input vectors of the inner-product function fSIIP during the execution phase of the
protocol.

- initializes a private authenticated channel with the server and the client pool, respectively.

- delivers the public key pkSCIP,com and the parameter η to both parties, namely, client pool and server.

⇒ TPA provides key services as follows:

- receives a functional private key request, and www from the server.

- checks the www to prevent potential inference attack by making sure |www| ≤ η and non-zero elements of www is less than the threshold τ using
the weights filter module .

- executes private key generation algorithm to generate private key skSCIP,www ← EFSCIP
FE .KeyGen(msk,www), and sends back the key via

the private authenticated channel.

Party: Client Pool ⇒ all data sources in the client pool agree on an encoding precision εclient. For each data source dk ∈ {d1, ..., dl} in the
client pool, each client in the pool executes the following steps:

- receives the public key pkcom and η from the TPA and verifies the validity of pkcom.

- encodes elements in data from floating-point format XXX fp into integer format XXX int with encoding precision εclient.

- counts the shape of the length of XXX int → (sdk .r, sdk .c), and checks sdk .c ≤ η.

- for each row xxxi of XXX int, calls SCIP encryption algorithm ctxxxi,dk ← EFSCIP
FE .Enc(pkcom,xxxi).

- if any above operations (assertion, verification, encoding, encryption) fails, abort.

- sends all ciphertexts {ctxxx1,dk , ..., ctxxxl,dk} and parameters εclient, (sdk .r, sdk .c) to the server.

Party: Server ⇒ the server executes the following steps:

- receives the public key pkSCIP,com and η from the TPA and verifies the validity of pkSCIP,com.

- collects ciphertexts ct← {ctxxx1,dk , ..., ctxxxl,dk} and parameters εclient, {(sdk .r, sdk .c)} from the client party.

- sets up the encoding precision εserver, and encodes each element in input weights from floating-point format WWW fp into integer format
WWW int.

- counts the shape of WWW int → (sserver.r, sserver.c), and checks ∀i, j, sclient.c← sdi .c = sdj .c and sserver.r = sclient.c ∧ sserver.r ≤ η.

- for each column wwwi of WWW int, sends a function private key request to the TPA, and collects the received private keys sksksk ←
{skfSIIP,www1 , ..., skfSIIP,wwwm} with verification.

- if all above operations (assertion, verification, encoding, encryption) fails, abort.

- initializes a matrix ZZZ with shape (|ctctct|, |sksksk|), and for each i ∈ {1, ..., |ctctct|} and j ∈ {1, ..., |sksksk|}, calls decryption algorithm wi,j ←
EFSCIP
FE .Dec(pkSCIP,com, ctctct[i], sksksk[j],wwwj).

- decodes each element in ZZZ from integer format into floating-point format using εserver and εclient.

1

Figure 4.3: Description of secure two-party horizontally partitioned computation protocol.

The difference between the two secure computation protocols is mainly with regards to how the input

datasets from client pool are composed. Suppose that there is a secure computation task such as a matrix

multiplication XXX l×mWWWm×l between the client pool and the server, where the client pool has the matrix

XXX l×m that is composed of data from different data sources {dk} and the server has WWWm×l. As shown in

Figure 4.2, XXX l×m represents horizontal or vertical composition of data from multiple sources.

Secure Two-party Horizontally Partitioned Computation Protocol. We present the detailed de-

scription of the S2PHC protocol in Figure 4.3. The protocol is built from the single-input functional encryp-

tion scheme. Here, we suppose that each data source in the client pool has the same column length related

to XXX as illustrated in Figure 4.2. Note that the S2PHC protocol can be considered as an improvement

of the secure matrix computation approach proposed in [191] where the possibility of multiple horizontal

data sources had been mentioned, but no theoretical analysis and practical implementation were presented.

Unlike in [191], we present specific practical construction in our protocol with the experimental evaluation
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Secure Two-party Vertically Partitioned Computation Protocol

Initialization and Key Services
⇒ TPA initializes the system as follows:

- initializes the multi-input FEIP crypto schemes by generating a common public key, master public key and private key
pkMCIP,com,mpkMCIP,mskMCIP ← EFMCIP

FE .Setup(1λ,~ηηη, n) by giving parameters λ and (~ηηη, n), where (~ηηη, n) indicates the allowed n max-
imum number of data sources where each data source has maximum input length represented as ~η, during the computation execution
of fMCIP.

- assigns a identity iddk for each registered data source dk in the client pool.

- initializes a private authenticated channel with the server and the data sources, respectively.

- delivers dk-associated pkMCIP,iddk
← EFMCIP

FE .PK(mpkMCIP,mskMCIP, iddk ), ηiddk ← ~η and the common public key pkMCIP,com to each
data source iddk , respectively.

- delivers the common public key pkMCIP,com,~ηηη, n to the server.

⇒ TPA provides key services:

- receives the request www from the server.

- checks www to prevent potential inference attack by checking that non-zero elements of www is less than the threshold τ using weights filter
module.

- generates private key skMCIP,www ← EFMCIP
FE .SK(mpkMCIP,mskMCIP,www), and sends back the key via the private authenticated channel.

Party: Client Pool ⇒ all data sources agree on an encoding precision εclient. For each data source dk ∈ {d1, ..., dm} in the client pool, each
client executes the following steps:

- receives the public key pkMCIP,com, pkMCIP,iduk
and ηiduk

from the TPA and verifies the validity of pkMCIP,com and pkMCIP,iduk
.

- encodes elements in data from floating-point format XXX fp into integer format XXX int with encoding precision εclient.

- counts the shape of the length of XXX int → (sdk .r, sdk .c), and checks sdk .c ≤ ηiduk
.

- for each row xxxi of XXX int, calls MCIP encryption ctxxxi,dk ← EFMCIP
FE .E(pkcom,xxxi).

- if any above operations (assertion, verification, encoding, encryption) fails, abort.

- sends all ciphertexts {ctxxx1,dk , ..., ctxxxl,dk} and parameters εclient, (sdk .r, sdk .c) to the server.

Party: Server ⇒ the server executes the following steps:

- receives the public key pkMCIP,com,~ηηη, n from the TPA and verifies the validity of pkMCIP,com.

- collects the ciphertexts ct← {{ctxxxi,d1}, ..., {ctxxxi,dm}} and parameters εclient, {(sdk .r, sdk .c)} from the client pool.

- sets up the encoding precision εserver and encodes each element in input weights from floating-point number WWW fp into integer number
WWW int.

- counts the shape of WWW int → (sserver.r, sserver.c), and checks ∀i, j, sdi .r = sdj .r and sserver.r =
∑
sdi .c ∧ sserver.r ≤

∑
~ηηη ∧ |ctctct| < n.

- for each column wwwi of WWW int, sends a function private key request to the TPA, and collects the received keys sksksk ←
{skfMCIP,www1 , ..., skfMCIP,wwwm} with verification.

- if all above operations (assertion, verification, encoding, encryption) fails, abort.

- re-organizes ctctct→ ctctct
′

by aggregating by ctctct index.

- initializes a matrix ZZZ with |ctctct′ | rows and |sksksk| columns, and for each i ∈ {1, ..., |ctctct′ |} and j ∈ {1, ..., |sksksk|}, and calls decryption algorithm
wi,j ← EFMCIP

FE .D(pkcom, ctctct[i], sksksk[j],wwwj).

- decodes each element in ZZZ from integer format into float point format using εserver and εclient.

1

Figure 4.4: Description of secure two-party vertically partitioned computation protocol.

in Section 4.3.

Secure Two-party Vertically Partitioned Computation Protocol. Figure 4.4 shows the details of

the S2PVC protocol. As for the S2PHC protocol, here, we assume that each data source from the client

pool has the same row length with regards to XXX. The S2PVC protocol is constructed using the multi-input

functional encryption scheme as the key underlying scheme.

4.1.5 NN-EMD Training

Here, we present the details of our proposed NN-EMD framework. As mentioned above, NN-EMD

mainly includes two parties: the server and the client pool, and they use S2PHC and S2PVC protocols.

63



Algorithm 6: NN-EMD Training Algorithm

Input: secure parameter 1λ, functionality parameters (η,~ηηη, n), data sources Sd = {dk}, each data source dk has
dataset XXXdk .

Output: trained model WWW
1 initialize S2PHC protocol by setting (1λ, η) and S2PVC protocol by setting (1λ,~ηηη, n);
2 pbatch, Tdk ←exchange meta-information of {XXXdk} ;
3 party client pre-process({XXXdk , pbatch, pTXXXdk

})
4 foreach dk ∈ Sdk do
5 if Tdk=Tf then
6 foreach mini batch XXXdk,batch ∈XXXdk do
7 Sctctctff ← S2PHC(dk,XXXdk,batch), Sctctctbp ← S2PHC(dk,XXX

ᵀ
dk,batch);

8 else
9 start entity resolution with shuffle;

10 foreach mini batch XXXdk,batch ∈XXXdk do
11 Sctctctff ← S2PVC(dk,XXXdk,batch) Sctctctbp ← S2PHC(dk,XXX

ᵀ
dk,batch);

12 sends Sctctctff , Sctctctbp
, Tdk and Y if dk has the label;

13 party server training({Sctctctff , Sctctctbp
, Tdk ,YYY })

14 WWW ← initialize model weights;
15 foreach iteration do
16 foreach mini batch ctctctff ∈ Sctctctff , ctctctbp ∈ Sctctctbp

do

17 if Tdk=Tp then AAA1 ← S2PVC(server, ctctctff);
18 else AAA1 ← S2PHC(server, ctctctff,WWW 1);
19 AAA← feed-forward(AAA1,WWW );
20 ∇∇∇2,...,l,σσσ ← gradient compute( YYY ,WWW,AAA);
21 ∇∇∇1 ← S2PHC(server, ctctctbp,σσσ);
22 WWW ←WWW − α∇;

23 return WWW

The NN-EMD training includes three types: (i) horizontal partitioning based training (HPT), (ii) vertical

partitioning based training (VPT), and (iii) hybrid partitioning based training (HybridPT).

Suppose that there exists data sources Sd={d1, ..., dm}, where each data source dk ∈ Sd has dataset XXXdk .

The goal of the NN-EMD framework is to train a DNN model based on the dataset XXX that is composed of

{XXXd1 , ...,XXXdm} without leakingXXX to the server, and without disclosingXXXdi to dj where di, dj ∈ Sd∧di 6= dj .

Such an assumption is common in existing vertical ML related literature, and also indicates there is no

overlapping features among those data sources except for the identity feature used for the privacy-preserving

entity resolution.

Algorithm 6 illustrates how our proposed S2PHC and S2PVC protocols are integrated in the training

process of a DNN model. First, we initialize S2PHC and S2PVC protocols with proper security parameter

1λ and function parameters (η,~ηηη, n) as defined in Section 4.1.4. Then, the server acquires the basic meta-

information of the training dataset from each source from the client pool, and decides several training

hyperparameters such as proper mini-batch size pbatch and dataset type Tdk shared with each data source

(lines 1-3). Here, we define dataset types: Tf and Tp to indicate a dataset with full or partial set of features,

respectively.

According to different compositions of final training data XXX, we propose three different training ap-

proaches: training over horizontally partitioned data, training over vertically partitioned data, and training

over hybrid partitioned data.

HPT. This approach deals with the case where each data source’s dataset has full set of features needed
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in the training. That is, XXX is horizontally composed of {XXXd1 , ...,XXXdm}. In this case, each data source first

divides its local dataset into several mini-batches according to the received batch parameter. Then, for each

mini-batch, the data source executes S2PHC protocol twice with input mini-batchXXXdk,batch and its transpose

XXXᵀ
dk,batch

, respectively. The generated ciphertexts Sctctctff and Sctctctbp are used in feed-forward computation and

back-propagation computation in the training phase, respectively.

On the server side, weights are randomly initialized for the model. For each mini-batch iteration, S2PHC

protocol is executed with Sctctctff to support secure computation that occurs between the input layer and the

first hidden layer (line 25). As the output is in plaintext, the normal feed-forward operations can be continued

as in a normal DNN training phase. In the back-propagation phase, the normal gradient computation can

be done first from the last layer. When it comes to the first layer, the server executes the S2PHC protocol

with different ciphertext, namely, Sctctctbp
. Finally, the weights are updated using the learning rate and current

gradients.

VPT. This approach is for the case where each data source’s dataset has a subset of features, however,

these partial features collected from all the sources form the complete set of features; i.e., XXX is vertically

composed of {XXXd1 , ...,XXXdm}. Note that we assume that eachXXXdk has an identity column so that the privacy-

preserving entity resolution mechanism can be executed; there is no overlapping features that will be used

in the training. In this case, each data source starts with a privacy-preserving entity resolution mechanism

with the server that plays the role of a coordinator, similar to those in other approaches such as in [159, 89].

Here, each data source sends the encoded identical features to the server for entity matching. Then, the

server generates a proper permutation for each data source to re-order its local data. As a result, a data

source does not know which entity in its dataset has been enrolled in the training; and the server still cannot

learn the training dataset. As entity resolution is not the core contribution in our framework, we refer the

reader to [89] for more details on that.

Here, each data source generates Sctctctff by executing the S2PVC with input XXXdk,batch, while generating

Sctctctbp
by executing S2PHC with input XXXᵀ

dk,batch
. The server acquires the output of the first hidden layer by

executing the S2PVC protocol with corresponding Sctctctff .

HybridPT. Our NN-EMD framework can also be applied to the hybrid case where XXX is composed of the

data from multiple data sources using a mix of horizontal and vertical compositions. Algorithm 6 is for

processing the hybrid training case by integrating a HPT approach with a VPT approach.

Comparison with Existing Solutions. Here we briefly compare our NN-EMD framework with CryptoNN

[191] and the one in [129]. CryptoNN is actually a special instance of our NN-EMD framework in the HPT

setting. Unlike those in [191] [129], NN-EMD does not protect the label information in the training dataset.

Actually, the encrypted label information in CryptoNN framework can be easily inferred, while the design

of encrypting label in [129] is required by the adoption of underlying homomorphic encryption. We argue

that NN-EMD satisfies the privacy requirements even though the label is exposed to the server ; we analyze

this in Section 4.2. In [129], all the outputs of each layer are still in ciphertext form. The output of the first
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hidden layer in NN-EMD is in plaintext; because of which the training time does not increase as in [129].

Note that we do not present the inference phase of the DNN model since the inference can be viewed as

one iteration of feed-forward computation in the training phase, as shown in Algorithm 6.

4.2 Security and Privacy Analysis

4.2.1 Security of Underlying Cryptosystems

S2PHC and S2PVC protocols are critical components of the NN-EMD framework that provides the

basis for privacy guarantees. As presented in Appendix A, we add protocols to deliver the public keys and

private keys generated by the TPA on the originally proposed constructions of single-input and multi-input

functional encryption schemes that we adopt for our proposed scheme.

For the formal proof of security of adopted functional encryption schemes we refer the readers to [4, 5].

In our adoption of these schemes, the added public key distribution and private key delivery methods are

managed by the TPA. This, however, does not affect the ordinal encryption and decryption constructions as

compared to the originally proposed schemes.

Colluding Data Sources. With regards to the public-key setting in our framework with multiple data

sources, each data source has its respective public key pkMI-FEIP and they all have a common public key

pkSI-FEIP. Here, we analyze the possible security concern related to a brute-force attack where a colluding

data source monitors or inspects the encrypted outsourced datasets from other data sources/clients. Intu-

itively, such settings could enable the colluding data source in the client pool to infer the target encrypted

data by iteratively encrypting its candidate data and then checking the ciphertext with target encrypted data

as all sources share a common public key pkSI-FEIP. However, the underlying SI-FEIP scheme can prevent

such an attack by introducing a random initialization factor in the encryption algorithm. The encryption

algorithm will generate different ciphertext even for the same input when invoked by the secure computation

protocols. For instance, for input data x, with the same public key pkSI-FEIP, the encrypted ciphertexts

c1 = EpkSI-FEIP(x), c2 = EpkSI-FEIP(x), ..., cn = EpkSI-FEIP(x) are indistinguishable. That ciphertext indistin-

guishability is guaranteed by the IND-CPA security of SI-FEIP [4]. Thus, there is still a non-negligible

advantage for the attackers by increasing the number of colluding data sources to brute-force the encrypted

data from the non-colluding data source [4]. As a result, our framework can resist such a brute-force attack

by the colluding data sources.

As mentioned earlier, the labels in our framework is not protected. We argue that such a design does

not disclose the private information of the training data. Essentially, in the binary classification task,

the label is encoded into meaningless value such as using {1,-1} to represent positive and negative labels

rather than using a meaningful/concrete label such as “this x-ray image represents cancer”. The server

can only learn group information of the encrypted data such as the information that EFE(XXXy=1) belongs
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to label y = 1, but the server cannot learn XXXy=1, as it is protected by the cryptosystems, and what

y = 1 means. The server is also not able to launch the enrollment inference attack where the curious

server tries to infer whether a target data is enrolled in the training or not, because the training data is

encrypted via functional encryption. In particular, the adopted FE schemes have the IND-CPA security

guarantee, where the ciphertexts ci = EpkSI-FEIP(x), cj = EpkSI-FEIP(x) of the same data x is indistinguishable

[4]. Let us suppose the target of enrollment inference attack is xtarget. The data source encrypt xtarget to

ctarget = EpkSI-FEIP
(xtarget). Even though the server has the original data xtarget, it is not able to infer whether

xtarget is in the training dataset nor not, because the generated ciphertext of cserver = EpkSI-FEIP
(xtarget) by

the server is indistinguishable from the ciphertext ctarget.

4.2.2 Privacy Analysis

NN-EMD also ensures the privacy of the output of the secure computation protocols. Here, we present

two types of inference attacks launched by an honest-but-curious server .

Inference Type I. Note that our proposed S2PHC and S2PVC protocols adopt functional encryption

as the underlying cryptosystems. For both functions, fSIIP(xxx,www) and fMIIP((xxx1, ...,xxxn),www) as described in

Appendix A, the server is able to acquire the decryption results (i.e., the output of the first layer in NN),

and the weights of the first layer (i.e., www). The security of functional encryption scheme can ensure that

the server cannot break/infer the input xxx or (xxx1, ...,xxxn). However, an inference attack may be possible by

iteratively employing FE on a specific xxx. Consider the iterative training such that the curious server may be

able to collect enough polynomial equations for a specific training sample. For instance, suppose we have one

training data sample xxx. For each iteration i in the training phase, the server is able to acquire fi = 〈xxx,wwwi〉,

where fi and wwwi are available or visible to the server. Obviously, with enough pairs of (wwwi, fi), the server is

able to solve the linear equation system {fi = 〈xxx,wwwi〉} and acquire xxx. Formally, suppose that the sample xxx

has nfeature features, i.e., xxx = (x1, x2, ..., nfeature), and each sample is used once in one training epoch. Let

the total number of training epoch be nepoch, and the number of periodical shuffle operations is nshuffle. We

have the following Lemma:

Lemma 2. NN-EMD is able to prevent Inference Type I, if
nepoch

nshuffle
< nfeature

Proof. Suppose that the curious server has advantage ε to infer xxx, which indicates it has ε advantage to

solve the system of linear equation problems {fi = 〈xxx,wwwi〉} with determined solution. According to theorem

of PSSLS in linear algebra, the curious server has the advantage ε to collect nε linear equations for the

specific sample xxx, where nε ≥ nfeature.

However, in NN-EMD, the server has non-negligible advantage to distinguish the ciphertext of xxx among

all encrypted training samples as proved in [4, 5]. After encrypted sample shuffle by the data source, the

server also has non-negligible advantage to learn the position of xxx in the training set. Thus, the server only

has the advantage to collect nε =
nepoch

nshuffle
linear equations. Here,

nepoch

nshuffle
< nfeature in NN-EMD is subject to
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the requirement of PSSLS theorem, namely, nε < nfeature. As a result, the curious server has no advantage

to infer xxx.

Inference Type II. The curious server could also launch another type of inference attack by specifying

“malicious” www to acquire the functional private key. For instance, by specifying www = (1, 0, ..., 0), the decryp-

tion result of 〈xxx,www〉 will disclose the first element x1 of xxx. To prevent such an attack, we have introduced

inference weights filter into the TPA. Specifically, the filter module will check the vector www = (1, 0, ..., 0) to

ensure that the number of non-zero elements is greater than a threshold τ , basically, τ ≥ 2. As a result, it

is not possible to launch above inference attack.

4.3 Experimental Evaluation

We evaluate the following aspects of NN-EMD : (i) To present the efficiency advantage of training time

of our NN-EMD framework, we compare its training time with that of only those closely related solutions

proposed in [129, 191]. We also explore the impact of network architecture and the number of network

layers on training time in our NN-EMD framework. (ii) With respect to the trained model accuracy, we

compare our NN-EMD framework in a HPT setting and a vertical partitining based training setting with

a baseline model, namely, a normal DNN without any privacy-preserving settings. (iii) As the underlying

cryptosystems only work on the integer field, while the training of DNNs model works on the floating-point

number field, we try to evaluate the impact of the precision on the model performance after the numeric

encoding/decoding.

4.3.1 Experimental Setup

To benchmark the performance of the NN-EMD framework, we train a model of a DNN with the same

topology as the one used in [129] on the publicly available MNIST dataset of handwritten digits [106] that

includes 60000 training samples and 10000 test samples. In our evaluation, each sample (28×28 image) in the

MNIST dataset is mapped to a vector with length 784. Besides, we also explore the framework performance

on different DNN architectures and different numbers of network layers. Essentially, we run the experiments

for 5 data sources forming the client pool. Each data source is randomly assigned 60000/5 = 12000 data

samples from the MNIST dataset for the HPT, while in the VPT, each data source is assigned 60000 data

samples but only around 784/5 ≈ 157 features for each sample. We use comparable settings when evaluating

the impact of the number of data sources on the model performance. Note that in all the experiments we

utilize the same model hyperparameters of a DNN model such as learning rate, l2 regularization parameter,

etc.
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Table 4.2: Comparison of time cost for training one mini-batch (60 samples)

Proposed Work Network Architecture CPU Threads Mem Time

[129] 784 7→ 128 7→ 32 7→ 10 2.3GHz Intel Xeon E5-2698v3 16-Core 1 250G ≈ 1.5d
[129] 64 7→ 32 7→ 16 7→ 10 2.3GHz Intel Xeon E5-2698v3 16-Core 1 250G 9h24m
[129] 64 7→ 32 7→ 16 7→ 10 2.3GHz Intel Xeon E5-2698v3 16-Core 30 250G 40m

CryptoNN [191] 784 7→ 128 7→ 32 7→ 10 2.3GHz Intel Core i7 8-Core 1 16G ≈ 2d
CryptoNN [191] 784 7→ 128 7→ 32 7→ 10 2.3GHz Intel Core i7 8-Core 8 16G ≈ 94m

NN-EMD (HPT) 784 7→ 128 7→ 32 7→ 10 2.3GHz Intel Core i9 8-Core 1 32G 49.83s
NN-EMD (VPT) 784 7→ 128 7→ 32 7→ 10 2.3GHz Intel Core i9 8-Core 1 32G 31.71s
NN-EMD (HPT) 784 7→ 128 7→ 32 7→ 10 2.5GHz Intel Xeon 8124M 32 vCPUs 1 128G 55.63s
NN-EMD (VPT) 784 7→ 128 7→ 32 7→ 10 2.5GHz Intel Xeon 8124M 32 vCPUs 1 128G 33.67s

Implementation Consideration. We have implemented the NN-EMD framework based on the NumPy

library to use the high-level mathematical functions in Python programming language. The underlying

cryptosystems, namely, the functional encryption schemes, are also implemented in Python based on the

gmpy2 library, which is a C-coded Python extension module that supports multiple-precision arithmetic and

relies on the GNU multiple precision arithmetic (GMP) library.

Different from the implementation of functional encryption in [191], we incorporate the following acceler-

ation techniques. By tracking the time cost of each decryption step in the functional encryption scheme, we

find that the most inefficient computing step is the final step that computes the discrete logarithm of a small

integer. To be specific, it involves computing f in h = gf , where h, and g are big integers while f is a small

integer. To accelerate such discrete logarithm computations, we employ a bounded-table-lookup method by

initially setting up a hash table to store pairs of (g, f) with a specified public key parameter g and a positive

bound fb where −fb ≤ f ≤ fb. Then, the final discrete logarithm computation is a table look-up operation

with complexity O(1) compared to traditional baby-step giant-step algorithm that has complexity O(n
1
2 ).

Environment Setup. All the experiments have been performed on two test platforms: Test Platform I

(TP I) that is a local Macbook Pro with 2.3GHz Intel Core i9 8-Core CPU and 32GB RAM, and Test

Platform II (TP II) that is a remote cloud service, i.e., AWS m5d.8xlarge instance with 2.5GHz Intel Xeon

8124M 32 vCPUs and 128GB RAM. For the evaluations of model performance, where the client pool and

the server are put in the same platform, we repeat the experiments in both the test platforms. To simulate

real scenarios, we use TP I as the client pool and TP II as the server.

4.3.2 Experimental Results

Comparison with Contracted Frameworks. As shown in Table 4.2, we compare the training time of our

NN-EMD framework with the approaches proposed in [129, 191]. Note that as the codes and experimental

platforms for work in [129] are not publicly available, we report the experimental results reported in [129]

directly. We also include the test environment reported in their papers. In our evaluation, we use comparable
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Table 4.3: Training time cost of one mini-batch of different network architectures

NN Framework Network architecture Local (TP I) Remote AWS (TP II)

NN-Normal (Baseline)
784 7→ 256 7→ 10 0.00718s 0.01169s
784 7→ 256 7→ 128 7→ 64 7→ 10 0.00708s 0.01088s
784 7→ 256 7→ 128 7→ 64 7→ 32 7→ 16 7→ 10 0.00741s 0.01083s

NN-EMD (HPT)
784 7→ 256 7→ 10 91.45s 111.50s
784 7→ 256 7→ 128 7→ 64 7→ 10 90.54s 111.28s
784 7→ 256 7→ 128 7→ 64 7→ 32 7→ 16 7→ 10 89.66s 111.13s

NN-EMD (VPT)
784 7→ 256 7→ 10 55.58s 67.48s
784 7→ 256 7→ 128 7→ 64 7→ 10 55.21s 67.26s
784 7→ 256 7→ 128 7→ 64 7→ 32 7→ 16 7→ 10 56.19s 67.05s

† HPT indicates horizontally partitioned based training (HPT) setting, while VPT represents vertically partitioned
based training setting. In both of HPT and VPT, there are 5 data sources. Each mini-batch includes 60 samples;

experimental platforms used in [129, 191], and train the model on the same MNIST dataset with the same

DNN architecture.

We evaluate the NN-EMD framework both in HPT and VPT settings. Our experimental results show

that the training time of one mini-batch including 60 samples in our NN-EMD only needs 49.83 seconds

and 55.63 seconds in TP I and TP II environments, respectively. Compared to the existing best result (i.e.,

40 minutes) as reported in [129] where each training sample is extracted from 28 × 28 to 8 × 8 to reduce

the input size and the multithreaded parallelism technique is employed in the training phase, our proposed

NN-EMD reduces the training time by approximately 90%.

Impact of NN Architectures and Number of Layers. As reported in Table 4.2, the training time of

existing solution such as the framework proposed in [129] increases significantly as the network architecture

changes. To evaluate the impact of network architectures on the training time in our NN-EMD framework,

we train DNN models with different architectures on the MNIST dataset with the same number of data

sources. As presented in Table 4.3, the training time for our proposed approach is only impacted by the

number of nodes in the first hidden layer. When the network architecture of the rest of the layers changes,

the training time does not change compared to the normal DNNs without privacy-preserving setting.

For further verification of such a claim, we conducted additional experiments with a large number of

hidden layers. As shown in Figure 4.5 (c), we measure the training time of one mini-batch in our NN-EMD

framework in bother settings (i.e., HPT and VPT) and vary the number of hidden layers from 1 to 30 where

each layer includes 64 neural nodes. As can be seen, the training time does not change drastically like in

existing solutions as the number of hidden layers increases.

Evaluation of Accuracy. Except for the performance with respect to the training time, we compare

our framework with a baseline DNN (Normal-NN) that has the same network architecture but without any

privacy-preserving settings. As shown in Figure 4.5 (a), our proposed NN-EMD framework can achieve

model accuracy comparable to a normal DNN both in HPT and VPT. Further, the results in Figure 4.5
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Figure 4.5: Model accuracy, impact of encoding precision and impact of hidden layers.

(b) shows that the precision setting does not have an effect on the model accuracy. Note that the network

architecture used for model accuracy comparison is 784 7→ 512 7→ 256 7→ 128 7→ 64 7→ 32 7→ 10. Each hidden

layer of network architecture in right figure includes 64 neural nodes and the results are generated on the

TP II platform.

Deployment in Client-Server Scenario. To evaluate the impact of the number of data sources on

the training time, we have deployed our end-to-end NN-EMD system in a client-server scenario. In this

experiment, our local machine (TP I ) plays the role of client pool with varying number of data sources to

pre-process the encrypted training datasets, while the remote AWS instance (TP II ) plays the role of the

server to train the DNN model based on these encrypted data samples.

As shown in Table 4.4, we present the training time for both the client pool and the server. All reported

times for the server side is based on one mini-batch, while the time reported for the client pool is for one

mini-batch per data source. In the case of the HPT, the training time of NN-EMD framework does not

change drastically like existing solutions as the number of data sources increases. In the case of the VPT,

each data source pre-processes a same number of data samples. As the total number of features is fixed, the

number of features from each data source decreases as the number of data sources increase, and hence the

pre-processing time decreases, while the training time still does not change drastically.

4.4 Summary and Discussion

Training DNN models over encrypted data show significant promise towards addressing strong privacy

requirements, while taking full advantage of an existing ML platform as a service infrastructure. However,

there is a lack of efficient and practical privacy-preserving solutions for training a DNN over privacy-sensitive

datasets. In this chapter, we have proposed NN-EMD, a novel DNN that supports training a DNN model
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Table 4.4: Time cost for different data source numbers in client-server setting

Training Data Sources Pre-process Time - Client (TP I) Training Time - Remote AWS (TP II)

HPT Setting

5 1.2769s 56.02s
7 1.0579s 55.95s
9 1.1195s 55.86s
11 1.1246s 55.87s
13 1.1463s 56.04s
15 1.1260s 56.13s

VPT Setting

5 0.3716s 33.75s
7 0.3363s 32.48s
9 0.2372s 31.93s
11 0.2214s 31.50s
13 0.1867s 31.24s
15 0.1711s 31.17s

† The DNNs architecture used in this experiment is 784 7→ 128 7→ 32 7→ 10. Note that the cost time reported here is
for only one mini-batch that includes 60 samples.

on a dataset where the data is composed, both horizontally and vertically, of encrypted datasets from

multiple data sources. Our evaluation shows that NN-EMD can reduce the training time by 90% while still

providing the same model accuracy and strong privacy guarantee as compared to the most of the recent

comparable approaches. Furthermore, the depth and complexity of DNNs do not affect the training time

despite introducing a privacy-preserving NN-EMD setting. Future work includes applying the NN-EMD

framework in a more complex distributed environments such as an edge computing environment.
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5.0 Practical Secure Aggregation in Edge Computing

Recently, edge computing has attracted significant industry investment and efforts from research com-

munities [165, 164]. For instance, the Open Edge Computing (OEC) initiative [48] was launched in June

2015 by Vodafone, Intel, and Huawei in partnership with Carnegie Mellon University (CMU), and then ex-

panded to include Verizon, T-Mobile, Nokia, etc. Emerging edge computing technologies promise to deliver

highly responsive and scalable cloud services, and enhance preprocessing services for the Internet of Things

(IoT) [157]. Such enhanced preprocessing services of edge computing primarily include operations such as

cleaning, formatting, filtering, and aggregation of the raw data generated by the IoT and mobile devices.

These benefits are achieved by appropriately placing edge nodes with computing and storage capabilities at

the edge of the Internet closer to mobile devices or sensors. Aggregation is a common and typical operation

in edge and cloud computing environments [163, 148, 112, 140, 195, 174, 177, 162, 196]. Usually, rather than

uploading an entire dataset, it may be sufficient to compute and upload its statistical results to the cloud;

this will reduce various processing, data transfer or storage costs. For instance, in a temperature sensor based

application, rather than collecting the temperature and transmitting it to the cloud every second, an average

temperature over one hour period for a target environment can be computed and uploaded. Computation

of such an average is a form of an aggregation.

Huge amounts of collected data in device rich environments is often subject to privacy or regulatory

requirements that restrict the way data can be shared, transmitted, and used. Furthermore, while cloud

servers in cloud data centers may follow strict policies and regulations, edge nodes may not have the same

degree of regulatory and monitoring oversight. Especially, these edge nodes deployed in the public area for

public edge computing services. A motivating example here could be a self-driving delivering system in a

smart city environment, where several self-driving trucks from different commercial companies serve their

customers. To acquire a more intelligent self-driving model, those self-driving trucks can collaboratively

train an ML model in a federated learning manner without leaking each company’s private commercial data

such as the destination of served customers and delivering paths. To accelerate the training phase (e.g., FL

training in real-time), these self-driving trucks can take advantage of these edge nodes deployed in the places

such as traffic intersections, which is a part of a public infrastructure in a smart city. However, these edge

nodes may not fully monitored and hence not fully trusted as are cloud servers by the commercial companies

to process their self-driving model.

To address privacy concerns discussed above, various aggregation approaches (i.e., privacy-preserving

aggregation and secure aggregation) have been proposed in the literature. These approaches focus on pro-

tecting the raw data by sanitizing or perturbing privacy sensitive information [163, 148, 174], or enhanc-

ing the data processing procedure to prevent a third-party from acquiring the privacy sensitive informa-

tion [195, 112, 196, 162]. These approaches include data anonymization mechanisms (e.g., k-anonymity,
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Figure 5.1: Illustration of the three-tier CryptoEdge platform.

l-diversity, differential privacy, etc.), secure multi-party computation (SMC) protocols, and cryptographic

schemes. Compared to differential privacy based privacy-preserving aggregation, crypto-based secure aggre-

gation approaches ensure that the original data is protected by the cryptosystem and the aggregation results

are accurate.

Newly emerging cryptographic schemes such as homomorphic encryption and functional encryption have

shown tremendous promise of achieving practical computation over encrypted data[129, 191]. However,

most of the existing homomorphic encryption (HE) schemes or functional encryption (FE) schemes are

not applicable in edge computing environments because of the following reasons: (i) the constructions of

homomorphic encryption are neither efficient enough for complex computation such as privacy-preserving FL

nor computationally-friendly with regards to capabilities of the IoT devices; (ii) existing FE solutions do not

support three-tier edge computing based architecture; in particular if we directly apply existing FE schemes,

untrusted edge nodes can either (a) acquire the functional results in plaintext resulting in privacy-disclosure

to the untrusted edge nodes, or (b) not process the encrypted data at all. Thus, achieving practical secure

aggregation the encrypted data in within a three-tier edge computing architecture is still a huge challenge.

In this chapter, we propose CryptoEdge to support practical secure aggregation over encrypted data at

the edge. The approach is illustrated in Figure 5.1. Here, IoT devices can easily encrypt the raw data; the

untrusted edge nodes have the capability to process the encrypted data (i.e., partially decrypt the encrypted

raw data) without learning any privacy sensitive information from the data; and the cloud data center then

can obtain the final aggregation results, but it still cannot learn any privacy sensitive information. In general,

the cloud center can randomly specify the number of edge nodes to collaboratively pre-process the encrypted

data and then combine the processed results to compose final aggregation results. As a result CryptoEdge

can dramatically reduce the overall decryption time and save computational resources for the cloud, as the

edge nodes are able to do preprocessing over the encrypted data.

The proposed CryptoEdge approach includes a novel threshold functional encryption (TFE) scheme, a

secure aggregation module that supports various types of aggregation demands; and a PPFL framework for

the edge environment. The goal of threshold setting in FE allows all participant edge nodes to enroll in the

aggregation of encrypted data or local model without knowing the final aggregated result, while the cloud
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server can acquire the final aggregated result by calling final decryption algorithm on a number of partially

aggregated encrypted data (still in confidentiality) from selected edge nodes.

5.1 Threshold Functional Encryption Scheme

5.1.1 Motivation for TFE

To achieve the goals of CryptoEdge, namely, practical secure computation over encrypted data in three-

tier edge computing architecture, we need crypto schemes that meet the following design requirements:

• The crypto scheme should support practical aggregation over the encrypted data; i.e., it should be efficient

enough for practical deployment in edge computing environments;

• The responsibilities related to encryption, computation, and decryption should be given to separate

parties; for instance, IoT devices are issued keys to encrypt the data; edge nodes are issued keys to

compute over encrypted data; and cloud servers are able to acquire the final computation result by

decrypting the encrypted data.

Existing HE and FE schemes are two promising candidates that support computation over the encrypted

data.

We do not pursue HE for the following reasons: (i) As shown in [189] and [129], existing constructions

of HE are not efficient enough to support complex applications over encrypted data; hence, they are not

computationally friendly for IoT devices; (ii) As encryption/decryption keys in a HE scheme are generated

in pairs, its adoption in edge computing environments will not fulfill the second design requirement, and

hence, it will introduce extra key management burden into the system.

FE is a promising approach for secure computation over encrypted data as the encryption and decryption

keys are independently issued to different parties. The recent construction of FE for the functionality of

the inner-product, such as the one proposed in [165, 5], shows the possibility of using the basic DDH

assumption that is more appropriate for IoT devices as compared to pairing-based and garbled circuits

based cryptosystems. Furthermore, these FE constructions have been proved to be promising approaches

for building practical privacy-preserving ML applications [191, 189] in two-tier cloud-based architecture. In

summary, there is a need for novel cryptosystems that satisfy the above-mentioned design requirements. We

propose novel threshold functional encryption schemes that address the challenges mentioned above.

5.1.2 Definition of TFE

Notations. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes as input a security

parameter 1λ, and outputs a triplet (G), where G is a group of order p that is generated by g ∈ G, and p is

a λ-bit prime number. Furthermore, let r ←$ Zp denote the assignment to r of an element chosen uniformly
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at random from integer group Zp. We use [n] to denote a set of n sequential natural numbers {1, 2, ..., n}.

The lowercase bold variable such as ααα1×η represents a vector with length, η. A capital bold variable such as

WWWn×η denotes a matrix with n rows and η columns.

We define threshold functional encryption (TFE) for functionality F scheme as follows.

Definition 1 (Threshold Functional Encryption Scheme (TFE)). A t-of-s threshold functional encryption

for functionality F is a tuple (Setup, PKDistribute, SKDistribute, Encrypt, ShareDecrypt, CombineDecrypt)

of six algorithms, written as

EFTFE = (S, PK, SK,E, SD,CD). (5.1)

Each algorithm is defined as follows:

- Setup(λ) outputs master public and master secret keys, (mpk,msk) based on security parameter, λ.

- PKDistribute(mpk,msk, idx) distributes public key, pkidx, for entity idx on input master public and secret

keys, (mpk, msk).

- SKDistribute(mpk,msk,K, idx) distributes secret key, skidx, for an entity, idx, on input master public

and secret keys, (mpk, msk), and vector or matrix from K.

- Encrypt(pk,X ) outputs ciphertext ct on input vector or matrix from X and public key, pk.

- ShareDecrypt(pk, ct,K, {skidx}, S) outputs a partially decrypted ciphertext, ct
′
, on inputs: a ciphertext,

ct, a public key, pk, a vector or matrix from K and functional private key, {skidx}, from a selected sub-set

of decryption parties.

- CombineDecrypt(pk, ct
′
) outputs functionality result on input public key, pk, and a collected partially

decrypted ciphertext ct
′
.

5.1.3 Threshold FE Scheme for Functionality of Multi-Client Inner-Product

Here, we present our proposed t-of-s threshold functional encryption scheme for functionality of multi-

client inner-product (MCIP) FMCIP, whose security is based on the plain Decisional Diffie-Hellman (DDH)

assumption; here, t of s decryption parties are allowed to collaboratively acquire an inner-product over

multiple encrypted vectors.

Functionality of FMCIP. In this chapter, we mainly focus on an inner-product functionality over integers.

Let FIP be a family of inner-product functionality with message space X and key space K both consisting

of vectors in Zηp of norm bounded by p of length η. Here, we focus on multiple inputs inner-product FMCIP,

defined as follows:

fMCIP({xxxi}, yyy) =
∑
i∈[n]

∑
j∈[ηi]

(xijy∑i−1
k=1 ηk+j) s.t. |xxxi| = ηi, |yyy| =

∑
i∈[n]

ηi, (5.2)

where fMCIP ∈ FMCIP, xxxi ∈ X , and yyy ∈ K. Also, the length of xxxi should be equal to the length of vector yyy.

Construction. The specific construction of TFE scheme for FMCIP is defined as follows:
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• Setup(λ, η, t, s, n): This algorithm first generates a triplet from the integer group, as (G, p, g), on given

security parameter λ as input. Then, it randomizes a matrix of 1 × η samples and two matrix samples

with size n× η, as follows:

ααα1×η,WWWn×η,UUUn×η ←$ Zp. (5.3)

The master public key and master private key are defined as follows:

msk = (WWWn×η,UUUn×η) (5.4)

mpk = (G, p, g, gααα, {gααα
ᵀWWW i}i∈[n]) (5.5)

Note that αααᵀWWW i denotes that the transpose of ααα multiplies i-th row of WWWn×η.

• PKDistribute(mpk,msk, idx): Given the master public and secret keys, for encryption entity idx, this

algorithm distributes the public keys as follows:

pkidx = (G, p, t, s, n, g, gααα, gααα
ᵀWWW idx ,UUU idx). (5.6)

The algorithm distributes the common public key pkcom = (G, p, g) to the decryption entities.

• SKDistribute(mpk,msk,yyy, idx): The algorithm takes master public and secret keys, yyy = (yyy1, yyy2, ..., yyyn),

and distributes the functional private key to the corresponding decryption entity idx. This algorithm

first defines a set of polynomial functions (f (0)(x), {f (i)(x)}i∈[1,...,n]) as follows:

f (0)(x) =

t−1∑
j=0

ajx
j , where a0 ←

n∑
i=1

〈yyyi,UUU i〉, aj∈[1,...,t−1] ←$ Zp (5.7)

f (i)(x) =

t−1∑
j=0

bi,jx
j , where bi,0 ← 〈yyyi,WWW i〉, bi,j∈[1,...,t−1] ←$ Zp. (5.8)

It then generates a set of functional secret keys as follows:

sksksk = {vk,0 ← f (0)(k), vk,1 ← {f (i)(k)}i∈[n]}k∈[s]. (5.9)

It provides the functional private key, skidx = (vidx,0, vidx,1) to the corresponding partial decryption

entity, idx,

• Encrypt(pkidx,xxxidx): For encryption entity idx ∈ [n], the algorithm takes as input corresponding pkidx

and xxxidx, and returns ciphertext ct. It first chooses a random element ridx ←$ Zp and computes ciphertext

ctidx = (ctidx,0, ctidx,1) as follows:

ctidx,0 = gxxxidx+UUUidx ◦ (gααα
ᵀWWW idx)ridx , (5.10)

ctidx,1 = (gααα)ridx =
∏
k∈[η]

gαkridx . (5.11)

Note that symbol ◦ denotes an element-wise multiplication. For instance, xxx1×η ◦ YYY η×η denotes the

element-multiply computation of xxx and each row of YYY .
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• ShareDecrypt(pkcom, ctctct,yyy, {skj}j∈S , S): This algorithm takes ciphertext ctctct = {cti,0, cti,1}i∈[n], the com-

mon public key pkcom and vector yyy = {yyyi}i∈[n] associated functional key ski from an authorized sub-set

S, where |S| ≥ t. To share with decryption entity i ∈ S, it outputs partially decrypted ciphertext

ct
′
j = (ct

′
j,0, ct

′
j,1, ct

′
j,2) as follows:

ct
′
j,0 =

∏
i∈[n]

ct◦y
yyi
i,0 , (5.12)

ct
′
j,1 = {(cti,1)vj,1Lj(j)}i∈[n], (5.13)

ct
′
j,2 = gvj,0Lj(j), (5.14)

where Lj(j) is the Lagrange basis polynomials defined as
∏
j′∈S,j′ 6=j

−j
′

j−j′ .

• CombineDecrypt(pkcom, ctctct
′
): This algorithm takes all received ciphertext ctctct

′
and returns the inner-

product 〈{xxxi}i∈[n], yyy〉. ∀ct
′
i,0 ∈ ctctct

′
; it tries verify that they are all equal. If the verification fails,

it returns the stop symbol; otherwise, let C = ct
′
j,0. Then, it returns the final combined decryption

results as follows:

D =
C∏

i∈[n]

∏
j∈|ctctct′ | ct

′
i,j,1 ·

∏
j∈|ctctct′ |(ct

′
j,2)2

(5.15)

Finally, fMCIP({xxxi}i∈[n], yyy) can be recovered by computing 1
2 log(D).

Correctness. Given the common public key pkcom and the collected partially decrypted ciphertext ctctct
′
, we

have that

D =

∏
i∈[n] ct

yyyi
i,0∏

i∈[n]

∏
j∈|ctctct′ | ct

′
i,j,1 ·

∏
j∈|ctctct′ |(ct

′
j,2)2

(5.16)

=

∏
i∈[n](g

xxxi+UUUi ◦ (gααα
ᵀWWW i)ri)yyyi∏

i∈[n](cti,1)
∑

j∈|ctctct′ | f
(i)(j)Lj(j) · (ct′j,2)

2
∑

j∈|ctctct′ | f
(0)(j)Lj(j)

(5.17)

=

∏
i∈[n](g

xxxi+UUUi ◦ (gααα
ᵀWWW iri)yyyi∏

i∈[n](g
riααα)f(i)(0) · g2f(0)(0)

(5.18)

=

∏
i∈[n] g

(xxxi+UUUi)◦yyyi

g2
∑n

i=1〈yyyiUUUi〉
(5.19)

=
g2

∑n
i=1〈xxxiyyyi〉 · g2

∑n
i=1〈yyyiUUUi〉

g2
∑n

i=1〈yyyiUUUi〉
(5.20)

= g2fMCFE({xxxi}i∈[n],yyy) (5.21)

Security. For the security of TFE scheme for FMCIP, we employ the security definition, namely, selective

simulation-based security (SEL-SIM security) as in [5]. Here, we propose Lemma 3 as follows. The specific

proof will be presented in Section 5.3.1.

Lemma 3. Assume a static adversary that corrupts maximum of t-1 players from the beginning; then, under

the DDH assumption, the TFE scheme for FMCIP achieves selective simulation-based security. Furthermore,

the non-authorized player is not able to acquire the functionality result.
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5.2 CryptoEdge Platform

5.2.1 Overview of CryptoEdge

Our proposed CryptoEdge platform supports various applications such as (i) infrastructure-level appli-

cations that need to compute various types of secure aggregates (CryptoEdge-SA); and (ii) high-level ap-

plications that employ a privacy-preserving edge-based federated learning (CryptoEdge-PPFL) framework.

In particular, CryptoEdge-SA applications are built on our proposed TFE scheme, while CryptoEdge-PPFL

framework is built on the CryptoEdge-SA applications.

Architecture and Entities. As illustrated in Figure 5.1, the proposed CryptoEdge platform includes three

tiers that include IoT devices layer, edge nodes layer, and cloud service layer, with following entities.

• Third-party Authority (TPA) is responsible for setting up the underlying cryptosystem, delivering the

public key to each IoT devices and providing private key service to the edge nodes for preprocessing.

The TPA is also in charge of holding the master private and public keys and is also trusted to perform

distribution of public-keys and generation of a function derived secret key .

• IoT Devices generate stream data such as healthcare data and location data. Such privacy-sensitive data

is encrypted using the key issued by the TPA before they are sent out. Furthermore, the IoT devices have

limited computational capabilities and hence cannot support the complex encryption algorithm involved.

• Edge Nodes primarily process the encrypted data from the IoT devices using the key issued by the TPA.

These edge nodes do not learn any information during the data processing step and the confidentiality of

the processed data is maintained.

• Cloud Service Provider does the final decryption on the partially decrypted data collected from these

edge nodes with the key issued by the TPA. Furthermore, the cloud center is only able to acquire the

result of a function over the encrypted data rather than the original encrypted stream data.

Remark. As it is part of the cryptosystem, the TPA is not illustrated in Figure 5.1. In real-world scenarios,

different application domains/environments already have entities that can take the role of a TPA. For

example, central banks of the banking industry often play a fully trusted role, and some other companies in

other sectors such as a service or consultancy firm can embody the TPA. Note that the TPA has NO access

to raw data generated by the IoT devices in the CryptoEdge platform.

Threat Model and Assumptions. In CryptoEdge platform, we consider the following threat model and

assumptions. A TPA is an independent entity widely trusted by all the entities in the CryptoEdge platform.

Note that assuming such a trusted and independent entity is common in existing cryptosystems that employ

a TPA as a key component [25, 4, 5]. A limited number of edge nodes can be considered unreliable or

untrustworthy by the IoT and the cloud layers. We assume that a limited number of edge nodes may be

controlled by an adversary with a goal of inferring private information while processing data. Note that the

denial-of-service attack is not considered in CryptoEdge; i.e, we assume that the enrolled edge node do not
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Figure 5.2: Illustration of various types of secure aggregation scenarios supported by the CryptoEdge

stop or exit during the execution of an algorithm or a protocol. A cloud center is assumed to be honest-

but-curious; i.e., the cloud center will follow the designed algorithm/protocol but will attempt to learn all

possible private information from the received encrypted data or final decrypted function result.

Platform Statement. Suppose that the CryptoEdge platform includes one cloud center, Pcloud, s edge

nodes, {Pedge
j }j∈[s], with at least t-of-s trustworthy edge nodes, and n IoT devices {P iot

i }i∈[n]. With the

issued public key pkPiot
i

, P iot
i protects its data, denoted as DPiot

i = {dP
iot
i

k }k∈S(t) . For edge node {Pedge
j }j∈[s],

with the functional private key skPedge
j

issued by the TPA, Pedge
j is able to process (i.e., partially decrypt) the

encrypted data received from the IoT devices. The cloud center Pcloud can randomly select t
′
> t edge nodes

to collaboratively compute the final functionality result over the IoT device’s encrypted data, where t is the

threshold in the TFE scheme. In particular, the edge nodes {Pedge
j }j∈[t′ ] selected process the encrypted

data as discussed above. Then, Pcloud combines these partially decrypted data and do the final decryption

to acquire the functionality result.

Note that we have omitted the key issuance phase in the description; in this phase, each entity is issued

a common public key, IoT-entity-specific public key, or functional private key as introduced in Section 5.1.

5.2.2 CryptoEdge-SA: Secure Aggregation at the Edge

Unlike privacy-preserving approaches proposed in [163, 148, 174], our proposed CryptoEdge platform

supports secure aggregation where the original data is protected by the cryptosystem and the aggregation

results are accurate. Figure 5.2 illustrates a set of various types of secure aggregation applications supported

by CryptoEdge. The single data source SA is a simplified version of multiple data sources SA, and the

element-weighted SA is also a simplified version of group-weighted SA, where the sliding window is reduced

to one element. Thus, we only present the detailed secure aggregation approaches of later ones in the

following subsections.

Secure Aggregation over Multiple Data Sources. The secure aggregation in the case of multiple data
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sources attempts to securely aggregate the stream data for a specific sliding window from multiple IoTs.

Each entity’s operations are presented as follows:

• Entity P iot. Each IoT device {P iot
i }i∈[n] in the group of data sources encrypts its dataset DPiot

i =

{dP
iot
i

k }k∈S with the issued public key pkP
iot
i , and generates the ciphertext as follows:

CP
iot
i = EFMCIP

TFE .E
pkP

iot
i

(DP
iot
i ). (5.22)

Then, each {CPiot
i }i∈[n] is emitted to nearby group of edge nodes {Pedge

j }j∈[s].

• Entity Pedge. Each edge node Pedge
j in the selected group {Pedge

j }j∈[t′ ] processes the encrypted data with

the issued functional private key skP
edge
j , and sends to the cloud with the processed ciphertext as follows:

CP
edge
j

partial = EFMCIP

TFE .SD
sk
Pedge
j

({CP
iot
i }i∈[n]). (5.23)

• Entity Pcloud. The cloud collects the processed {CP
edge
j

partial}j∈[t′ ] from the group of edge nodes. With the

final decryption, the aggregation is achieved as follows:∑
i∈[n]

∑
k∈S

d
Piot

i

k = EFMCIP

TFE .CD({CP
edge
j

partial}j∈[t′ ]). (5.24)

Remark. Here, we use our proposed TFE scheme as an illustration for secure aggregation over multiple data

sources. Note that the threshold Paillier cryptosystem is also able to address the same secure aggregation

task, and hence, we take the Paillier system as the baseline to compare with.

Group-Weighted Secure Aggregation. Unlike simple aggregation discussed in Section 5.2.2, our Cryp-

toEdge platform also supports the weighted-aggregation that is also a typical aggregation; for instance, a

healthcare application may need to apply a set of coefficients on the time-series heart rate data generated

by smartwatch monitors. Each entity’s operations are presented as follows:

• Entity P iot. Each P iot does encryption as in Section 5.2.2.

• Entity Pedge. Each edge node Pedge
i in the selected group {Pedge

j }j∈[t′ ] receives the coefficients www =

{wk}k∈[n] delivered by the Pcloud. Then, Pedge acquires the issued www related functional private key

sk
Pedge

j
www from the TPA using the coefficients www. Finally, each edge node does processing over encrypted

data as in Section 5.2.2

• Entity Pcloud. The cloud specifies the coefficients www for each element in DPiot

and delivers to the selected

edge nodes group {Pedge
j }j∈[t′ ]. And then, it does aggregate compuatation as in Section 5.2.2 to acquire

the element-weighted aggregation
∑
k∈S d

Piot

k wk.

Remark. Note that the element-weighted secure aggregation is omitted here, and it can also be applied here

by reducing the sliding window to 1, namely, DPiot
i = {dP

iot
i

k }k∈S , |S| = 1. Furthermore, note that element-

weighted secure aggregation is much more fine-grained than the group-weighted secure aggregation, which

is a coarse-grained, high-level aggregation. The element-weighted secure aggregation can be applied to both

the cases of single data source and multiple data sources, while the group-weighted secure aggregation only

works on the later one.
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5.2.3 CryptoEdge-PPFL: Privacy-Preserving FL at the Edge

Privacy-Preserving FL: from Two-Tier to Three-Tier Architecture. FL approaches have been

recently studied to address privacy concerns by allowing collaborative training of ML models among multiple

participants where each participant can keep its data private. However, this approach still poses privacy risks

such as inference attacks [131, 167]. To address such privacy leakage, several techniques have been adopted

in PPFL. For instance, hybrid approaches, such as those proposed in [141, 173, 189], combine differential

privacy techniques and secure multiparty aggregation techniques [189, 22].

In traditional two-tier FL architecture, each participant trains a model locally and exchanges only model

parameters with others, instead of the active privacy-sensitive training data, with the coordination of a

central entity called coordinator. In particular, the coordinator merges the model parameters collected by

each participant, and then distribute the aggregated model to each participant for the next round of training.

Existing secure aggregation solutions as proposed in [189, 22], however, do not support the three-tier edge

computing architecture, where the participants (i.e., the IoTs) encrypt its local model updates, the edge nodes

help process the encrypted model update (i.e., partial decryption), and only the coordinator (i.e., the cloud)

is able to acquire the final aggregated model update. To the best of our knowledge, the secure aggregation

approach adopted in [173] is based on the threshold Paillier system that is actually applicable in the three-tier

edge-based PPFL systems. However, the approach proposed in [173] relies on the IoTs (i.e., participants)

instead of the edge nodes to collaboratively decrypt the final aggregated model. Specifically, such a threshold

Paillier based secure aggregation includes two steps: the coordinator combines all encrypted local model

from all participants; and then the deliver the combined (encrypted) to each participant for collaborative

decryption. Our proposed CryptoEdge-PPFL does not rely on such combination related communications.

To take advantage of the edge facilities, here, we propose our efficient solution for the privacy-preserving

edge-based FL, wherein the multiple data sources based CryptoEdge-SA as proposed in Section 5.2.2 is

adopted. Similar to the privacy-preserving FL approaches as proposed in [173, 189], where each participant

adds its own local differential privacy noise independently and then uses secure multi-party aggregation

(SMA) to hide the participant’s input, our CryptoEdge-PPFL still adopts a similar hybrid approach, namely,

differential noise reduction through SMA [173], and the SMA approach is replaced by our proposed multiple

data sources based CryptoEdge-SA.

CryptoEdge-PPFL Framework. In CryptoEdge-PPFL, each P iot
i in {P iot

i }i∈[n] uses the same approach

as in [173] to independently add noise (denoted as NPiot
i ) to the local ML model update MPiot

i that is

trained based on local dataset DPiot
i . Considering n IoT participants, the total aggregated noise adds up

to n × NPiot
i . With the adoption of CryptoEdge-SA technique, each P iot

i can add a fraction of the noise

NP
iot
i

n , and then the total aggregated noise is still NPiot
i without leaking each IoT device’s private local model

update even though the local privacy budget is divided by n. The effect of such an approach is proved in

[173, 189].

Figure 5.3 illustrates the framework for privacy-preserving edge-based FL in our CryptoEdge platform.
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Figure 5.3: Illustration of privacy-preserving FL in CryptoEdge

Algorithm 7: Pseudocode of CryptoEdge-PPFL

Input: L := ML algorithm to be trained; m := minimum required aggregated replies; ε := privacy
guarantee;

Output: Trained global model M
1 function cloud-aggregate(L, {P iot

i }i∈[n], {Pedge
j }j∈[s],m)

2 foreach P iot
i ∈ {P iot

i }i∈[n] do asynchronously query P iot
i with msg

Piot
i

q = (L,m) ;

3 randomly select {Pedge
j }j∈[t

′
] from {Pedge

j }j∈[s];

4 foreach Pedge
j ∈ {Pedge

j }j∈[t
′
] do SP

edge

msgr
← collect response msg

Pedge
j

r ;

5
1
n

∑
i∈[n]MP

iot
i +NPiot ← EFMCFE

TFE .CD(SPedge

msgr
);

6 returnM← 1
n

∑
i∈[n]MP

iot
i +NPiot

7 function edge-process({P iot
i }i∈[n], sk

Pedge
j ,m)

8 do SPiot

msgr
← collect response msg

Piot
i

r while |SPiot

msgr
| ≥ m and still in max waiting time;

9 msg
Pedge

j
r ← EFMCFE

TFE .SD
sk
Pedge
j

(SPiot

msgr
);

10 sends msg
Pedge

j
r to the cloud;

11 function iot-train(msg
Piot

i
q ,DPiot

i , pkP
iot
i , ε)

12 MPiot
i ← L(DPiot

i );

13 NPiot ← NDP(ε,MPiot
i ,m);

14 msg
Piot

i
r ← EFMCFE

TFE .E
pk
Piot
i

(MPiot
i + NPiot

n
);

15 sends msg
Piot

i
r to the edge nodes {Pedge

j }j∈[s];

Unlike the traditional FL setting of two roles (i.e., participants and coordinator), we add an additional role

(i.e., edge nodes) to help preprocess the encrypted model update. Note that we assume that each IoT device

is able to train the local ML model independently as required in the FL setting. Those IoT devices could be

monitors/sensors with Nvidia Jetson TX2i that has the basic computation capability for machine learning

training.

Algorithm 7 presents the pseudocode of privacy-preserving FL at CryptoEdge. Here, each step for one-

round of stochastic gradient descent (SGD) training in FL is presented as follows:

FL Cloud Coordinator - aggregating a global model. The cloud starts by querying all IoT devices with

a specific ML algorithm that will be adopted and the minimum number of responses needed. Then, it
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randomly selects a subgroup of edge nodes to help pre-process the encrypted local model and waits to collect

the responses from the selected edge nodes. Finally, the cloud is able to recover the aggregated model by

calling the CombineDecrypt algorithm of EFMCFE

TFE .

FL Edge Node - preprocessing encrypted model. Each edge node starts to collect the response from the IoT

participants until the minimum number of responses is reached. Then, with the issued functional private

key, it calls the ShareDecrypt algorithm of EFMCFE

TFE to generate the partially decrypted data and send to the

cloud.

FL IoT Participant - encrypting the trained local model. Each edge node starts with training the local model

based on the local model with the specified ML algorithm (line 1). Then, it adds differential privacy noise

on the trained model with input of privacy guarantee, a minimum number of participants (line 2). Finally,

it does the encryption as same as in Section 5.2.2 and emits out the encrypted model to edge nodes.

Remark. Unlike the case of sum-aggregation in Section 5.2.2, it requires the average-aggregation of all

generated models in the above-mentioned privacy-preserving FL application. Here, we omit the process of

average that can be achieved by (i) either dividing each parameter in the aggregated model or (ii) issuing

each edge node with the functional private key that is associated with the vector ( 1
m )j∈[t′ ] instead of vector

(1)j∈[t′ ] used in Section 5.2.2. Furthermore, by adjusting the functional private key associated vector, it is

able to achieve privacy-preserving FL with trustworthiness on each IoT’s local model.

5.3 Security and Privacy Analysis

5.3.1 Security Evaluation

Here, we use security proof methodology similar to that in [5], namely, simulation-based proof, to prove

our claimed security guarantee. Then, we analyze other security aspects of the proposed TFE scheme.

To prove the security of TFE, we consider the following two cases: (i) A can break one player (i.e., a

sharing decryptor or a combining decryptor); (ii) A can corrupt up to t-1 players, including two sub-cases:

(ii.a) one combining decryptor with t-2 sharing decryptors; (ii.b) t-1 sharing decryptors. Note that the sharing

decryptor and the combining decryptor denote the entities that run the ShareDecrypt and CombineDecrypt

algorithms as illustrated in Definition 1. Then, we analyze the security from two aspects: encrypted data

and functional result.

Security Proof. For the security of the encrypted data, we have the security claim as presented in

Lemma 3 in Section 5.1.3. Specifically, under the DDH assumption, TFE scheme for FMCIP achieves selective

simulation-based security (SEL-SIM-security). Below is the formal proof in detail.

Proof. For the case (i), the security risk is the same as the case of an ordinary multiple input functional

encryption scheme. Hence, we adopt the same security definition and advantage of the adversary A as
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illustrated in Appendix A.3, in the following formal proof.

To prove the SEL-SIM-security of TFE scheme ETFE for FMCIP, we need to prove that for any adversary

A, AdvSEL-SIM
A,ETFE

= 0.

First, for the setup and encryption steps, we define the following simulator algorithms: SetupSIM =

Setupot, Encrypt(mskSIM ) = uuui, and for the generation of functional private key we have the following

simulator: KeyDeriveSIM (mskSIM , yyy, aux)→ skyyy = z, where z is set as
∑
i∈[n]〈uuuiyyyi〉 − aux mod L.

Then, we have the following fact for uuu and uuu−xxx: ∀xxxi ∈ {xxxi}i∈[n], the distributions {uuui mod L}i∈[n] and

{(uuui − xxxi) mod L}i∈[n] are identical, where xxxi ∈ ZL and uuui ←$ ZL. Note that symbol ←$ denotes that uuui

is randomly sampled from ZL, and the independence of the xxxi from uuui is only true in the selective security

game.

Hence, we have the simulator to rewrite the experiment REAL
EotFE

SEL(1λ,B) and oracle OH(·) as follows:

REAL
EotFE
SEL(1λ,B)

{xi}i∈[n] ← B(1λ,F)
∀i ∈ [n] :

uuui ←$ ZL
ctctcti ← uuui mod L

α← BOH(·)({cti}i∈[n])
Output : α

Oracle OH(·)

z ←∑
i∈[n]〈uuui, yyyi〉 − 〈xxxi, yyyi〉 mod L

return : z

Therefore, the constructed REAL
EotFE

SEL(1λ,B) is also identical to the experiment IDEAL
EotFE

SEL(1λ,B) when

executed with our simulator algorithms. We can observe that the constructed oracle OH(·) as corresponds to

the oracle O(·) (see Appendix A.3) that returns KeyGeriveSIM (mskSIM , yyy, {〈xxxi, yyyi〉}i∈[n] for every queried

yyy. Thus, we can obtain that AdvSEL-SIM
A,ETFE

= 0. Hence, the adversary A does not have advantage to break the

encrypted ciphertext.

For case (ii), the adversary A still has no advantage to breaking the encrypted ciphertext because A in

the above-illustrated simulation game has been able to do as many queries as expected, that is, the increment

on the corrupted players does not change the such a situation.

Other Security of Functionality Result. Next, we analyze the security of the functionality result. The

TFE scheme can ensure that the non-authorized player is not able to acquire the functionality result. Here,

we do not consider the case (ii.a) because A is not assumed to break the authorized combine-decryptor.

For case (ii.b), suppose that A who corrupts t-1 players has non-negligible advantage ε to break the

TFE to acquire the functionality result. In particular, the “master” functional private key is split into s

shares via Shamir’s secret share scheme [160] in the TFE scheme, so that we can construct a simulator to

transfer A’s advantage to solve the t-of -s Shamir’s secret share scheme with t-1 shares. As proved in [160],

there is no adversary who has a non-negligible advantage to solve that, and hence, A also does not have the

non-negligible advantage to acquire the functionality result.
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5.3.2 Privacy Analysis

The underlying cryptosystems is proved to be secure, indicating that the untrusted edge nodes and

honest-but-curious cloud center are not able to reveal private information from the inputs of each IoT by

breaking the TFE cryptosystem. As both the input and output of the edge layer are still in ciphertext forms

in the CryptoEdge platform, there is no chance for the untrusted edge nodes to launch potential inference

attacks. Thus, we only analyze a few inference attempts launched by an honest-but-curious adversary (i.e.,

cloud center) who is able to acquire the functionality results that are in plaintext.

Inference Attack against Secure Aggregation. There is one possible inference attempt in the single

data source secure aggregation approach, namely, the honest-but-curious adversary may subtract the adja-

cent aggregation results. For instance, suppose that the stream data in the sliding window S(T ) is denoted

as DPiot

ST = {dPiot

T−m, ..., d
Piot

T+m}. Then, for the sliding window ST+1 would be DPiot

ST+1 = {dPiot

T−m+1, ..., d
Piot

T+m+1}.

By subtracting the aggregation results of adjacent sliding window ST and ST+1, the adversary may acquire

dP
iot

T−m+dP
iot

T+m+1 =
∑
DPiot

ST+1
−
∑
DPiot

ST
. Obviously, in the case of non-weighted secure aggregation, the adver-

sary can only infer the average of dP
iot

T−m and dP
iot

T+m+1 instead of the individual data, and hence, it does not

violate our privacy guarantee. Furthermore, another inference attempt is that the adversary tries to narrow

the sliding window ST+1 by one so that it can infer the dP
iot

T−m. However, the adjustment of the size of the

sliding window needs the cooperation of the IoT, and hence, such an inference attack would be noticed by

the IoT. Note that such an inference attempt can only occur at the situation of single data source secure

aggregation.

Inference Attack against CyptoEdge-PPFL. As illustrated in [189], we consider another inference

attempt launched by a curious adversary who may use exploited weight wwwexploit = (1, 0, ..., 0) to assign to

the edge nodes so that each edge node can be issued with function private key from the TPA. Except for

the first element, the rest of the elements in wwwexploit are all zero, and hence the curious adversary is able to

acquire the first participant’s model update.

To prevent such an attack, similar to a solution presented in [189], we also add inference weights filter

(IWF) into the TPA. In general, the IWF module will check the vector www = (1, 0, ..., 0) to ensure that the

number of non-zero elements is greater than a threshold τ , basically, τ ≥ 2. As a result, it is impossible to

launch the above inference attack. For more details about the IWF module, we refer the reader to [189].

5.4 Experimental Evaluation

We evaluate CryptoEdge platform along the following lines. (i) To evaluate the performance of the basic

secure aggregation, we consider ifferent edge computing settings such as the number of enrolled edge nodes,

the number of IoTs, the size of the sliding window, etc. (ii) We compare the performance of our CryptoEdge-

SA to the existing threshold Paillier based secure aggregation. (iii) We also evaluate the performance of the
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proposed CryptoEdge-PPFL framework with different baselines: TP-PPFL, where the secure aggregation

adopts the threshold Paillier scheme; HybridAlpha(HA)-PPFL - the HybridAlpha framework [189] - a PPFL

framework in two-layer cloud scenario.

5.4.1 Experimental Setup

Implementation Consideration. We have implemented the CryptoEdge platform in Python programming

language. Specifically, the underlying cryptosystems, namely, the threshold functional encryption scheme

and the threshold Pailier system, are also implemented in Python based on the gmpy2 library, which is a C-

coded Python extension module that supports multiple-precision arithmetic and relies on the GNU multiple

precision arithmetic (GMP) library. We also employ similar decryption acceleration techniques as adopted

in [189].

The underlying ML model to be trained in the CryptoEdge-PPFL framework is a convolutional neural

network (CNN) as the one used in [189] that is implemented using Keras with a Tensorflow as the back-end.

Specifically, CNN has two internal layers of ReLU units and a softmax layer of ten classes with cross-entropy

loss. The first layer contains 60 neurons and the second layer contains 1000 neurons. The total number of

parameters of this CNN is 118,110. We use the same hyperparameters as reported in [189], i.e., a learning

rate of 0.1, a batch rate of 0.01. and for differential privacy we use a norm clipping of 4.0, and epsilon of 0.5.

Dataset . To evaluate the performance of the secure aggregation approach, we use the randomly generated

numbers for each IoT device to simulate the data in the sliding window. For the evaluation of the CryptoEdge-

PPFL framework, we use the CNN to classify the publicly available MNIST dataset of handwritten digits

[106]. We also equally split the MNIST training samples and assign them to each IoT device in the training

phase of CryptoEdge-PPFL.

Experimental Environment . All experiments have been performed on the following test platforms: Plat-

form I - a local Macbook Pro with 2.5GHz quad-core Intel Core i7 CPU and 16GB RAM - is used for the

evaluation of various secure aggregation approaches; Platform II that is a remote cloud service to simulate

the edge computing scenario including three parties: (i) one AWS c5.18xlarge instance with 72 vCPUs and

144GB RAM to play the role of the cloud center; (ii) one AWS m5d.8xlarge instance with 32 vCPUs and

128GB RAM to play the role of the edge nodes; (iii) one AWS r5a.4xlarge instance with 2 vCPUs and

64GB RAM to play the role of the IoT devices. Note that multiple edge nodes and multiple IoT devices are

simulated at each machine platform.

5.4.2 Experimental Results

Evaluation of Secure Aggregation. As shown in Figure 5.4, we report the performance (i.e., the elaspsed

time cost in millisecond) of our proposed CryptoEdge(CE)-SA and also compare its results with that of

Threshold Paillier(TP)-SA. Overall, we evaluate all SA mechanisms in different edge computing settings:
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Figure 5.4: Performance comparison between weighted CryptoEdge(CE)-SA and Threshold Paillier(TP)-SA

in different settings: various number of IoTs and various number of enrolled edge nodes.
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Figure 5.5: Performance comparison among our CryptoEdge(CE)-PPFL, Threshold Paillier(TP)-PPFL and

HybridAlpha(HA)-PPFL in different settings.
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(i) we fix the number of IoTs (i.e., 100 and 1000), and then we evaluate the performance by increasing the

number of enrolled edge nodes; (ii) we fix the number of enrolled edge nodes (i.e., 5 and 10), and then

increase the number of IoTs to evaluate performance. In the upper part of the figure, our CE-SA has lesser

setup time (i.e., from 0.5 ms to 5 ms in our experiment), especially, compared to the TP-SA approach that

costs more than 100ms. Regarding IoT performance, our CE-SA approach reduces 70% processing time

than the TP-SA approach. Besides, we observe that the processing time of the IoT device is linear to the

number of IoT devices and is not impacted by the number of enrolled edge nodes. Also, a similar conclusion

is also applied for the processing time of the edge nodes. Furthermore, the processing time of cloud is only

impacted by the number of edge nodes, and our CE-SA still has better performance than the TP-SA.

Evaluation of CryptoEdge-FL. As reported in Figure 5.5, we compare the performance of our framework

(CryptoEdge(CE)-PPFL) with that of two baselines - HybridAlpha(HA)-PPFL and Threshold Paillier(TP)-

PPFL - in the different settings such as encoding precision (p), number of edge nodes, number of IoT devices,

and differential privacy (dp) settings. With regards to model accuracy (i.e., F1 score), our CE-PPFL can

achieve accuracy that is comparable to HA-PPFL in traditional two-tier architecture and TP-PPFL in

three-tier architecture. However, compared to HA-PPFL, CE-PPFL can reduce a participating IoT device’s

local processing time by 53% on average, and the cloud (i.e., the coordinator) processing time by 95% on

average. Furthermore, compared to TP-PPFL, our CE-PPFL can reduce the IoT (i.e., the participant)

local processing time 28% on average, the edge processing time 93% in average, and the cloud (i.e., the

coordinator) processing time 57% in average. Besides, we also observe that the higher encoding precision

setting will result in higher model accuracy, and the edge process time is a positive correlation to the number

of participating IoT devices.

5.5 Summary and Discussion

To tackle the challenge of potential privacy leakage in the aggregation computation in three-tier edge

computing architecture, we propose CryptoEdge to support practical and efficient secure aggregation over

the encrypted data in edge computing environments. CryptoEdge includes our proposed threshold func-

tional encryption (TFE) scheme, our secure aggregation approaches, and a privacy-preserving edge-based

FL framework. Besides, we have presented formal security and privacy analysis, as well as an experimental

evaluation considering various settings. Our evaluation results show that CryptoEdge achieves the security

and privacy guarantee and provides significant performance improvements.
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6.0 Transparent and Trustworthy Secure Computation Infrastructure using Blockchain

The provisioning of openness and accountability, also referred to as transparency, in recently proposed

works such as in [104, 152, 102, 122, 58, 33, 64] is an approach to increase users’ trust or confidence on

infrastructure service providers, especially, the cryptographic infrastructure that supports security related

services and is commonly assumed to be fully trusted. For instance, the certificate authorities (CAs), as

the underlying public key infrastructure for SSL/TLS protocol, are responsible for issuing digital certificates

that certify the ownership of a public key by the named principal of the certificate and allows others to rely

upon signatures made by the private key corresponding to the certified public key. To address the various

attacks [17, 194, 26] and mis-issuance problems [101, 158, 37] in the certificate issuing procedure, notions of

certificate transparency [102, 104] and transparency overlay [33] have been proposed. Transparency overlay

is actually a formal study of several specific certificate transparency frameworks.

Similar to certificate authority, we have proposed the notion of authority transparency in [190] to address

similar but more complex issues related to a TPA that is critical component of many emerging cryptosystems

such as FE schemes adopted in this dissertation and our proposed TFE scheme. Unlike the CAs that only

need to issue a certificate that proves the identity-to-public-key binding, the TPA is responsible for more

complex authority tasks such as setting public parameters and providing private key service for authorized

entities according to various credentials such as attribute identities and functionality-related vectors. In

particular, compared to certificate transparency, authority transparency can further capture multiple rounds

of interactions between the TPA and other entities.

Our initial authority transparency [190] work presents a formal architecture to make the TPAs transpar-

ent and trustworthy. There are still limitations that hinder its deployment and application in the privacy-

preserving machine learning (PPML) domains: (i) the definitions and protocols designed in [190] only work

on, as well as relies on, the attribute-based encryption schemes; (ii) the implementation of authority trans-

parency is based on a secure logging system. As a result, existing authority transparency proposal may

not nicely support other emerging cryptosystems such as functional encryption (FE) family that has been

used for secure computation in our proposed PPML systems. Except for the identity-to-public-key-binding

stealthy targeted attack and the private-key-service censorship attack as illustrated in [190], FE-based PPML

systems have additional privacy leakage issues, for instance, the inference attack by manipulating a mali-

cious vector as illustrated in [189, 191]. Furthermore, the deployment of distributed secure logging system

based authority transparency may not be widely accepted by the Internet community because (i) it requires

several commercial companies or non-profit organization who have the computation and storage capability

to deploy a secure logging system such as that occurs in the certificate transparency community (e.g., those

secure logging system deployed by Google and Mozilla); (ii) there is also a lack of a concrete mechanism for

the entities to participate in a transparency framework, and monitor and audit unintentional or malicious
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Figure 6.1: Overview of the T 3AB transparency framework.

behaviors.

To address the above-mentioned limitations, in this chapter, building up on our initial notion of authority

transparency framework in [190], we propose T 3AB framework to provide Transparency and Trustworthiness

of Third-party Authority and related entities using the Blockchain techniques. These entities (e.g., honest-

but-curious cloud server, third-party IaaS, and coordinator) and TPAs form the foundation of the secure

infrastructure for our proposed PPML approaches presented in Chapter 3, Chapter 4 and Chapter 5. In

general, to achieve transparency and trustworthy goals, T 3AB employs the Ethereum blockchain as the

underlying public ledger infrastructure, and also uses a well-designed novel Ethereum smart contract to

support automatic accountability with additional incentive mechanisms that motivates participants’ auditing

behavior and punishes the misbehaviors or malicious behaviors.

6.1 Transparency Framework

6.1.1 Overview of the Framework

To tackle trust issues caused by a third-party authority and curious entities in FE-based applications,

here, we present our proposed T 3AB framework that increases the transparency and trustworthiness of the

entities using Ethereum blockchain.

Entities. Figure 6.1 illustrates the T 3AB framework. Note that the dashed lines represent the procedures of

FE-based applications, while the solid lines denote the procedures of the T 3AB framework. T 3AB consists

of the following entities:

• TPA. The TPA is the same role as in the ordinary functional encryption cryptosystem, but with addi-

tional responsibilities to fulfill in our T 3AB, including (a) submitting the public parameters obligations

(in particular, identity-to-public-key bindings), (b) reporting its fulfillment of obligations in the key
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service process, and (c) verifying that the submitted/reported obligations are permanently recorded in

blockchain.

• Actors. Actors include all users of an FE-based PPML system, namely, the entities (e.g., participants)

that employ the encryption algorithm and the entities (e.g., coordinator) that employ the decryption

algorithm. Besides, the actors may also need to fulfill the obligations of key service because it involves

interaction between the actors and the TPA.

• Monitors. Monitors are responsible for inspecting the contents of the recorded auditing obligations to

find suspicious obligations. In our T 3AB, the encryption entities or the additional independent entities

play the role of the monitors.

• Administrator. An administrator is responsible for the deployment, maintenance, administration of the

smart contract. The smart contract mainly includes three modules: (a) the obligation record module

that provides various interaction functions for the entities to achieve recording, auditing and inspection

requirements for the obligations, (b) the incentive mechanism that provides the payment and reward

functions to the participants, and (c) the inference prevention module (IPM), previously deployed in

a TPA as illustrated in [189]. Note that the Ethereum blockchain can ensure the trustworthiness of

smart contracts; it can also ensure that the recorded obligations are distributed, open, and against any

malicious tampering and normal revision. Furthermore, once deployed it does not need a centralized

administration.

Notations and Statement. To elaborate our T 3AB, we first present the notations, entities, and scenarios

of applying our T 3AB framework in an FE-based environment. Suppose that we have a group of data owners

{Cowner
i }i∈[n] that will share their private data xxx = {xi}i∈[n] encrypted by an FE scheme where for simplicity

we assume that Cowner
i owns data xi , a group of data users {Cuser

j }j∈[m], where each data user has a vector

yyyj and needs to acquire the inner-product 〈xxx,yyyj〉 over the ciphertext of xxx, and a TPA A that provides public

and private key services for these data owners and users. Furthermore, let {Cowner
k }k∈[l] be the monitors. We

use B representing the Ethereum blockchain, and let BT 3AB
SC denote our proposed smart contract deployed

in the blockchain.

6.1.2 Threat Model

Existing FE-based applications are usually based on the assumption that the TPA is assumed to be fully

trusted and the coordinator (a.k.a., the decryption party) is assumed to be honest-but-curious. Hence, the

threat models in such cases typically focus on an adversary who attempts to compromise the encrypted

data and acurious entity that launches potential privacy attacks (e.g., infer the private information), while

honestly following the protocol/algorithm.

Unlike such a threat model, our T 3AB focuses on increasing entities’ trust on the TPA and the coordinator

via the transparency approach. In particular, T 3AB tries to reduce the dependence of FE-based applications
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on the assumptions of a trusted TPA and an honest coordinator. As the identity-to-public-key-binding stealthy

targeted attack and the private-key-service censorship attack illustrated in [190], the TPA may not be trusted

because of its unintentional misbehaviors or malicious behaviors. Similarly, the coordinator may also behave

dishonestly. We assume that such a dishonest adversary may pretend to behave honestly without being

detected by other entities. Adversaries may not follow the specification in the protocols, and/or attempt to

conceal their activities. In general, the dishonest adversary includes the TPA and actors, where a dishonest

TPA may attempt to forge a key service proof-of-work without actually providing a valid key service; and,

a dishonest actor may try to incorrectly blame other entities for misbehavior. Note that misbehavior may

be related to non-malicious misuse by normal actors or the behavior of compromised actors controlled by an

attacker.

We note that unlike the secure logging system based authority transparency framework in [190], where

the logger is treated as a potential dishonest adversary, in our T 3AB the Ethereum smart contract is adopted

as the public ledger infrastructure that has been proved to be a trusted computation platform.

6.1.3 Framework Details

T 3AB Model. Unlike the authority transparency model in [190] that builds on the secure logging system

for attribute-based encryption (ABE) cryptosystem, T 3AB uses the Ethereum blockchain, and to keep

consistency, we adopt the similar concepts/notions of the authority transparency model but it considers

different scenarios including FE-based applications and blockchain-based public ledger infrastructure.

Unlike ABE-based applications, in FE-based applications, there is no need to define complex attribute

identities in the functional encryption scheme, and hence, we update the related concepts with consideration

of the simplified identities and smart contracts.

Suppose that each entity e in T 3AB is issued or self-generates an identity-based public and private key

pair 〈pke, ske〉. Besides, the key service occurs between entity Cactor and authority A, where each entity

has already owned its public and private key pair. For instance, let 〈pkactor, skactor〉 and 〈pkTPA, skTPA〉

represent the public/private key pairs of the actor and the TPA, respectively. Here, we first present the

notion of public parameter audit obligation and key service audit obligation, and then the formal definition

of T 3AB model.

Definition 2 (Public Parameter Audit Obligation (PPAO)). A PPAO Opp of e is a map structure as follows:

Oepp := H(eid) : 〈eid, pke,Sigske
(eid, pke)〉, (6.1)

where eid represents the descriptive identifier of e, H(·) is the hash function, pke denotes the public key

binding of entity e, and Sigske
is the signature using ske.

Definition 3 (Key Service Audit Obligation (KSAO)). A KSAO OC
actor,A
ks is a map structure consisting of
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a pair of key service snapshots

OC
actor,A
ks := H(Cactor

id ,Aid, r) : 〈Sreq,Sresp〉, (6.2)

where each snapshot is a 4-tuple as follows:

Sreq := H(Cactor
id ,Aid, r) : 〈r, f, tCactor ,Sigskactor

(r, f, tCactor)〉, (6.3)

Sresp := H(Cactor
id ,Aid, r) : 〈r,Sigma, tA,SigskTPA

(r,Sigma, tA)〉, (6.4)

such that

Sreq.H(Cactor
id ,Aid, r) = Sresp.H(Cactor

id ,Aid, r) (6.5)

Sresp.tA − Sreq.tCactor > 0 (6.6)

Sreq.tA − Sresp.tCactor < δt (6.7)

where r is the nonce selected by the key service requester, t is the timestamp of key service processed by each

entity, f denotes the request content such as function related vector, Sigma represents the proof-of-work that

TPA has issued the key, δt is the threshold of timestamp difference indicating the expected time of processing

of the key service request by the TPA.

Remark. In particular, the Opp is an identity-to-public-key binding with the issuer’s signature, while OC
actor,A
ks

is the proof-of-key-service. In the OC
actor,A
ks , for simplicity, to provide the proof-of-work of issuing the func-

tional private key skf for the function related materials f , let Sigma be H(skf ).

Based on the notion of public parameter audit obligation and key service audit obligation, we present the

formal T 3AB model as follows:

Definition 4 (T 3AB Model). Let A,B and C denote the third party authority, blockchain, and actor,

respectively, which are parties involved in the interactive protocols. Let C.actor and C.monitor represent the

roles of the actor and monitor that execute the functional and monitoring modules, respectively. We define

T 3AB model M as a set of five interactive protocols:

MA,B,CO = (GenO,LogOpp
,LogOks

, Inspect), (6.8)

and each protocol is defined as follows:

(SOpp
, SOks

)← Run(1λ,GenO, {A, C.actor}) (6.9)

(bA, ε)← Run(1λ,LogOpp
, {A,B}, (SOpp , ε)) (6.10)

(bA, bC , ε)← Run(1λ,LogOks
, {A, C.actor,B}, (Oks.SA,Oks.SC , ε)) (6.11)

(bB, ε)← Run(1λ, Inspect, {B, C.monitor}, (ε, ε)) (6.12)

Lemma 4 presents the security guarantee as follows, which is proved later.
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Lemma 4. If the hash function is collision-resistant and the signature scheme is unforgeable, then T 3AB

model comprises a secure transparency framework.

Remark. Note that the formal definition of our T 3AB model is inherited from the authority transparency

model [190] with needed changes considering the underlying Ethereum blockchain infrastructure. Specifically,

in the authority transparency model, the gossip protocol essentially ensures the consistency of distributed logs

without being tampered by an adversary, while the check protocol guarantees that the submitted obligations

are recorded by the logging system. As T 3AB adopts the Ethereum blockchain as the underlying public

ledger infrastructure, there is no need to run the gossip and check protocols because these logging-related

functions are the implicit feature in the Ethereum smart contract.

Design of BT 3AB
SC . The T 3AB smart contract is a critical component in our framework. To support the

goal of T 3AB framework, BT 3AB
SC includes various types of modules: administrative module, access control

module, obligation module, inspection module, and incentive module. Each module is presented as follows:

Administrative module allows the role of administrator to deploy the smart contract into the Ethereum

network. The module also includes functions such as opening and locking the enrollment, allowing the

participants to drop out.

Access control module supports a basic role based access control mechanism that allows the account (a.k.a,

the participating entities) have permission to call role-related functions. In BT 3AB
SC , we define four types of

roles: the TPA, the actors of data owner, the actors of data user, the monitors and the administrator (i.e.,

the smart contract owner). Obviously, the administrative entity who deploys the smart contract becomes

the smart contract owner. The ownership can be transferred to a new account if necessary. Besides, it is also

possible to relinquish this administrative privilege, which is a common pattern after an initial stage when

there is a decentralized administration requirement. After the deployment, each entity needs to register its

role by calling the corresponding function before they can use the ordinary features of the smart contract.

Obligation module works on recording the audit obligation into the public ledger. Regarding the entity

registration, it also publishes its identity-to-public-key binding to the Ethereum blockchain, as illustrated

above. Note that the identity of the entity is the unique public address (i.e., 42 hex string characters

without case-sensitivity) of the blockchain account, which is derived from the entity’s private key. With

regards to the key service audit obligation procedure, the key service requestor (i.e., data owner) can call

the corresponding function that includes role verification with a randomly generated request identifier, the

key-related request parameters, and the corresponding signature. The function then automatically analyzes

the key-related request parameters via executing the Inference Prevention Module (IPM). Note that BT 3AB
SC

has already integrated the IPM module that is previously integrated in the TPA entity as illustrated in

Chapter 3, Chapter 4, and Chapter 5.2. Upon receiving the key service request with the request identifier,

the TPA first checks the verification result of IPM. If the request passes the verification, the TPA will issue

the functional private key and then publish a response snapshot to fulfill the key service obligation.

Inspection module mainly inspects the completeness of a pair of the key service snapshot to check whether the
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TPA’s fulfill its key service obligation or not. Besides, it also allows to check the published identity-to-public-

key binding. Beside the inspection module that can prevent potential misbehaviors, we have introduced the

access control mechanism to prevent partial misbehaviors and malicious behaviors as each entity only will

be allowed to call corresponding functions with limited privilege.

Incentive module in the BT 3AB
SC includes several functions to achieve the incentive mechanism, as depicted

in Figure 6.3. The incentive mechanism is based on payment features of the Ethereum network, where the

token can be exchanged to real concurrency. As illustrated in Figure 6.3, we design several functions as

‘public payable’, which indicates that the smart contract is able to receive the transaction value (e.g., the

Ether) when the function is successfully called and executed.

In general, m data users need to equally pay for the cost of calling registration function for themselves as

well as n data owners and the TPA. Each data user also needs to pay for the cost of calling request obligation

record function and also the cost of calling response obligation record function by the TPA. Additionally,

there exists a mechanism to punish the misbehaviors and malicious activities by a dishonest TPA and data

users. To achieve that, the data users and the TPA first need to register and pay the cost by themselves.

The data owners equally make a deposit for all the entities’ registration cost after the enrollment phase.

Then, the data users and the TPA can call the disposable reward function to withdraw the registration

cost. Besides, we make the TPA and data owners make a guarantee deposit after the registration phase.

The monitors can register and pay the cost by themselves, and then calls the inspection function to check

the suspicious behaviors. If monitors find the malicious behaviors, they will acquire the reward from the

fine to the corresponding entity (i.e., the guarantee deposit of the entity). Without the guarantee deposit,

the corresponding entity is not allowed to operate in the system. Additionally, we discuss the quantitative

analysis of the cost of each entity in BT 3AB
SC in Section 6.3.

T 3AB Procedures. As depicted in Figure 6.2, we illustrate the four phases of the T 3AB framework with

specific procedures in a typical FE-based application scenario. Note that the dashed arrows represent the

functional procedures of a typical FE-based application, while the solid arrows denote procedures of the

T 3AB framework. In our design, each entity in the FE-based application can also play the role of the

auditor and monitor in the T 3AB framework, and we also allow additional monitors to help inspect the

misbehaviors and malicious behaviors.

Here, we present the specific procedures of each phase in the T 3AB framework as follows:

Phase I: entity initialization: For each entity e with role erole and identifier eid in the framework, it generates

a public and private key pair 〈pke, ske〉. Then, entity e registers its role erole to BT 3AB
SC , and publish its id-

to-public-key binding 〈eid,pke〉 with its signature Sigske
(eid,pke) to BT 3AB

SC .

Phase II: FE initialization. The TPA A setups the FE cryptosystem with the master public key and master

private key pair 〈mpkFE,mskFE〉. Using the master keys, the TPA generates and sends the common public

key pkFE
com for all entities (i.e., data owners and data users) in the FE-based application. Then, the TPA

publishes the binding 〈Aid,pkFE
com〉 with its signature SigskA(Aid,pkFE

com) to BT 3AB
SC .
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Figure 6.2: Illustration of the four phases of T 3AB framework in a FE-based application scenario

Phase III: secure data publishing. For each data owner Cowner
i , it first selects a nonce r as the key service

identifier. Then Cowner
i requests the entity-specific public key pkFE

Cowner
i

from the TPA with r. Meanwhile,

Cowner
i also sends a request key service snapshot SC

owner
i

req to BT 3AB
SC as follows:

SC
owner
i

req = 〈r, 0, tCowner
i

,SigskCowner
i

(r, 0, tCowner
i

)〉. (6.13)

Then, the TPA generates pkFE
Cowner
i

for Cowner
i using its master keys, and also publishes a corresponding

response key service snapshot SAresp to BT 3AB
SC to fulfill its key service audit obligation OC

owner
i ,A
ks with mapping

key H(Cowner
i,id ,Aid, r) as follows:

SAresp = 〈r,H(pkFE
Cowner
i

), tA,SigskA(r,H(pkFE
Cowner
i

), tA)〉. (6.14)

Each data owner then uses pkFE
eowner
i

to encrypt its data as {EncpkFE
eowner
i

(xi)}i∈[n]. Finally, the data owner

publishes a receipt for the received pkFE
eowner
i

.

Phase IV: secure data computation. Suppose that a data user Cuser
j who has a vector yyyj = (y1, ..., yn)j would

apply inner-product functionality over the encrypted data {Enc(x1), ...,Enc(xn)}. Cuser
j also select a key

service identifier r′ first, and then requests the functional private key skFE
yyyj to the TPA with the vector yyyj

and r′. At the same time, Cuser
j also sends the request key service snapshot SC

user
j

req to BT 3AB
SC as follows:

SC
user
j

req = 〈r′, yyyj , tCuserj
,SigskCuser

j

(r′, 0, tCuserj
)〉. (6.15)

Unlike the approaches proposed in [191, 189] that deploy the inference prevention module (IPM) into the

TPA, we propose to deploy IPM in the smart contract as the TPA is not fully trusted in the T 3AB framework.

Thus, the TPA needs to query BT 3AB
SC to check the validity result of yyyi. If yyyi is valid, the TPA generates
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skFE
yyyj for Cuser

j using its master keys, and then publishes a corresponding response key service snapshot SAresp

to BT 3AB
SC to fulfill its key service audit obligation OC

user
j ,A
ks with mapping key H(Cuser

j ,A, r′) as follows:

SAresp = 〈r′,H(skFE
yyyj ), tA,SigskA(r′,H(skFE

yyyj ), tA)〉. (6.16)

Otherwise, the TPA legally refuses the key service and also publishes key service snapshot indicating that it

has legally refuse the key service. SA,refuse
resp with refusing symbol ⊥ to BT 3AB

SC to fulfill its key service audit

obligation as follows:

SA,refuse
resp = 〈r′,H(⊥, yyyj), tA,SigskA(r′,H(skFE

yyyj ), tA)〉. (6.17)

With the received skFE
yyy , data user can compute the inner-product of 〈xxx,yyy〉 by decryting as follows:

〈xxx,yyyj〉 = DecskFE
yyyj

({EncpkFE
Cowner
i

(xi)}i∈[n]). (6.18)

Finally, the data owner publishes a receipt for the received skFE
yyy .

Remark. To avoid redundant description, we do not present the roles of auditor and monitor in the above-

discussed procedures. In particular, as illustrated in Figure 6.2, the data users, data owners and the TPA

also play the role of auditor that checks whether the audit obligations are recorded into the blochchain

permanently. In our design, the data owners also play the role of a monitor to check the suspicious obligations

caused by misbehaviors and malicious behaviors from the TPA and adversarial data users. For instance, as

illustrated in [191, 189], an adversarial data user may infer the private vector xxx by manipulating a vector

to request the functional private key. The monitor can inspect Oe
user,eTPA

ks to find adversary’s suspicious

behaviors.

6.2 Analysis of Security, Privacy and Trustworthiness

6.2.1 Security Guarantee

The security for the transparency framework is defined in terms of three properties [190, 33]: (i) log-

consistency - a dishonest public ledger cannot remain undetected if it tries to present inconsistent versions of

the record obligations; (ii) unforgeable-service - a dishonest TPA cannot forge a key service by sending valid

key service snapshots, but not provide the key service to the actors; (iii) non-fabrication - a dishonest TPA

or actors cannot blame the public ledger for misbehavior if it has behaved honestly, and dishonest actors

cannot prove the TPA for misbehavior if it has behaved honestly.

Briefly, log-consistency relies on the security properties of the Ethereum blockchain. The unforgeable-

service and non-fabrication properties depend on the designed smart contract functions and the adopted

signature scheme. Here, we use the game simulation-based reduction methodology to prove Lemma 4.

Proof. The T 3AB is built on three fundamental security components: the Ethereum blockchain as the

public ledger infrastructure, the Secure Hash Algorithm 3 (SHA3) as the collision-resistance hash function,
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the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign and validate the origin and integrity of

messages. The security of three components has been proved in corresponding related work [184, 63, 93].

We only prove the above-mentioned three security properties.

log-consistency. Unlike the existing transparency framework, [190, 33] that relies on the customized public

ledger, our T 3AB uses the public blockchain that has already been proved with secure consistency feature

[184], and hence we do not present it here to avoid redundancy.

unforgeable-service. In T 3AB, there are two possible forgeable-service issues:

• the dishonest TPA may publish SAresp to the blockchain, but does not send the key skf to the actors;

• the dishonest TPA may send an invalid key sk
′

f to the actors, but publishes correct SAresp generated from

the valid key skf .

For the first issue, the confirmation phase cannot be achieved in our designed smart contract, and then such

adversarial behavior is easily detected by the monitors. For the second issue, suppose that the dishonest

TPA has the non-negligible advantage ε to break the unforgeable-service security guarantee, and hence it

can forge the hashed key component HSHA3(sk
′

f ) for skf with advantage AdvA
HSHA3(sk

′
f )→skf

≥ ε.

To achieve that, the dishonest TPA hence needs the ability to find potential collision HSHA3(skf ) =

HSHA3(sk
′

f ). According to the security promise of SHA3, it is impossible to find that collision with non-

negligible advantage. Thus, dishonest TPA does not have a non-negligible advantage to provide an unforge-

able key service without being detected.

non-fabrication. In T 3AB, the possible fabrication case is that the dishonest actors attempt to blame

the TPA by publishing SCactorreq to the blockchain but does not actually send the key request to the TPA.

Suppose that the dishonest actor has the non-negligible advantage ε to break the non-fabrication security

promise. To launch the fabrication case, the dishonest actor needs to forge a fake SAresp so that it can

accomplish the confirmation phase. Thus, the dishonest actor is able to forge a fake signature of the TPA

with advantage AdvC
actor

skA ≥ ε. However, it is impossible to break the ECDSA that has been proved, namely,

the unforgeability of the signature scheme. Thus, the actors do not have a non-negligible advantage to frame

up the TPA.

6.2.2 Privacy Guarantee

Unlike the authority transparency framework that focuses on attribute-based encryption-based applica-

tions where partial attribute identities are privacy-sensitive, the T 3AB framework targets the functional

encryption-based application scenarios. There is no privacy concern regarding the identity in the FE-based

applications. Furthermore, the identity of each entity in T 3AB is the public account address of the Ethereum

network, which is a random 64 character hex string generated from the private key of the entity. Thus, such

account identities do not reveal any private information, even public identity information in the FE-based

applications.
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6.2.3 Trustworthiness Goal

The purpose of the T 3AB framework is dealing with the trust issue for potential dishonest entities by

providing transparency features for them. T 3AB is able to prevent the classic attacks such as stealthy tar-

geted attack and censorship attack as illustrated in [190]. Specifically, each dishonest entity needs to publish

the key service snapshot to prove that it has fulfilled its obligation of public parameter distribution and

private key service. The designed smart contract can ensure that each entity’s submitted audit obligations

can be automatically cross-validated based on our designed protocols before being honestly and permanently

recorded into the blockchain. Our security analysis has shown that the misbehaviors or malicious behaviors

of TPA and the actors are easily detected. Besides, the inference prevention module (IPM) that helps to

mitigate the inference attacks caused by the curious data users, which is also a critical component in FE-

based applications. In our T 3AB, the IPM, previously deployed in the TPA, now is moved to the smart

contract.

6.3 Experimental Evaluation

6.3.1 Implementation and Setup

The T 3AB model does not rely on the specific FE-based applications, and hence for generality, we only

present the evaluation on a pure T 3AB model with the simulated audit obligations where the key-related

components are generated by the FE-based application in an off-line manner.

Implemented Smart Contract. We implemented the smart contracts in Solidity programming lan-

guage using a Truffle 1 framework - a development environment, testing framework and asset pipeline for

blockchains using the Ethereum Virtual Machine (EVM). Figure 6.3 presents simplified T 3AB smart contract

interfaces. T 3AB mainly includes four types of functions as follows:

• Access Control Modifiers. The modifier can be used to change the behavior of functions in a declarative

way. In our implementation, we use the modifier to automatically check the privilege of each account that

is defined in the role-based access control (RBAC) module prior to executing the function. We employ

the Ownable and AccessControl smart contract 2 from OpenZeppelin as the base of our access control

mechanism. To be specific, we define various access control modifiers in which the basic RBAC functions

are integrated to satisfy our access control requirement. Except for the registration related functions,

other functions are restricted by these modifiers.

• Administrative and Incentive Functions. We define several administrative functions such as ‘enrollLock()’,

‘enrollOpen()’, ‘dropout()’ that allows the administrator to control the enrollment status. In T 3AB, each

1https://www.trufflesuite.com/
2https://openzeppelin.com/contracts/

100



1 pragma solidity ^0.6.0;

2 pragma experimental ABIEncoderV2;

3 import "./Ownable.sol";

4 import "./AccessControl.sol";

5 contract T3AB is Ownable, AccessControl {

6 // access control related modifiers

7 bytes32 public constant AUTHORITY_ROLE = keccak256("AUTHORITY_ROLE");

8 bytes32 public constant ACTOR_DATA_OWNER_ROLE = keccak256("ACTOR_DATA_OWNER_ROLE");

9 bytes32 public constant ACTOR_DATA_USER_ROLE = keccak256("ACTOR_DATA_USER_ROLE");

10 bytes32 public constant MONITOR_ROLE = keccak256("MONITOR_ROLE");

11 modifier onlyAuthority()

12 modifier onlyDataOwner()

13 modifier onlyDataUser()

14 modifier onlyActor()

15 modifier onlyMonitor()

16 modifier onlyDeposit()

17 modifier onlyWithdrawRegisterCost()

18 // administrative and intensive

19 function enrollLock() public onlyOwner

20 function enrollOpen() public onlyOwner

21 function depositeGuarantee() public payable onlyDeposit

22 function rewardRegisterCost() public onlyWithdrawRegisterCost

23 function rewardDeploymentCost() public onlyOwner

24 function _checkGuaranteeDeposit(address account) private returns(bool)

25 function _inferencePreventionModule(uint[l] memory y) private returns(bool)

26 function dropout() public

27 // Registration

28 function registerAuthority(bytes memory pk, signature memory sign) public payable

29 function registerActorDataOwner(bytes memory pk, signature memory sign) public

30 function registerActorDataUser(bytes memory pk, signature memory sign) public

31 function registerMonitor(bytes memory pk, signature memory sign) public

32 // Obligation

33 function recordKSPKReq(bytes32 id, uint pkReqSymbol, uint reqTime, signature memory sign) public onlyDataOwner

34 function recordKSPKResp(bytes32 id, bytes32 pkHash, uint respTime, signature memory sign) public onlyAuthority

35 function recordKSSKReq(bytes32 id, uint[l] memory y, uint reqTime, signature memory sign) public payable onlyDataUser returns(bool)

36 function recordKSSKResp(bytes32 id, bytes32 skHash, uint respTime, signature memory sign) public onlyAuthority

37 function recordKSConfirm(address tpa, bytes32 id, bytes32 keyHash, uint confirmTime,

38 signature memory signRecpt, signature memory sign) public onlyActor

39 // Inspection

40 function inspectObligationKS(bytes32 id) public onlyMonitor returns(bool)

41 function inspectObligationPP(address addr, bytes memory pk, signature memory sign) public onlyMonitor returns(bool)

42 }

1

Figure 6.3: Overview of the smart contract interfaces. Note that the parameter ‘signature’ is our defined

customized struct that are not presented here. Such a feature is provide in ABIEncoderV2.

entity can register if and only if the enrollment is set as open by the administrator. After the enrollment

is locked, the deposit operations are opened to the related entities. Besides, T 3AB also inherits the

administrative functions such as ‘transferOwnership(newOwner)’, ‘renounceOwnership()’ that are not

presented in Figure 6.3. These two functions allow transferring the ownership of the contract and leave

the contract without owner, respectively. Furthermore, we also defined several withdraw and deposit

functions that help to establish the base of the incentive and penalty mechanism.

• Registration Functions. The registration functions mainly focus on the initialization phases of the T 3AB

model (i.e., Phases I and II, as illustrated in Section 6.1.3), where each entity is allowed to register a role,

and publish its identity-to-public-key binding in the blockchain.
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Table 6.1: Gas cost and test time of selected functions in various test case scenarios

Test Cases Functions Gas Cost Test Time Description

Administrative

deployment 4125603 183ms deploy the smart contract
enrollOpen 44126 42ms open the enrollment
enrollLock 14531 46ms lock the enrollment
dropout 28293 178ms allow to drop out and withdraw the balance

Incentive
depositGuarantee 28083 48ms deposit the guarantee
rewardRegisterCost 52949 43ms reward the registration cost for non-payable entity
rewardDeploymentCost 51584 41ms reward the deployment for the administrator

Registeration

registerAuthority 38276 80ms register the role of third-party authority
registerActorDataOwner 38335 71ms register the role of data owner
registerActorDataUser 36555 70ms register the role of data user
registerMonitor 36521 72ms register the role of monitor

Obligation
recordKSSKReq 43173 96ms publish the key service request snapshot
recordKSSKResp 84211 55ms publish the key service response snapshot
recordKSConfirm 43402 49ms confirm the receipt of the key service obligation

Inspection
inspectObligationKS 24511 41ms inspect the key service audit obligation
inspectObligationPP 37482 46ms check the correct of the public parameter

• Obligation Functions. The obligation functions address the core features of the T 3AB model. As illus-

trated in Section 6.1.3 Phases III and IV, we use a three-phase commitment approach to achieve the

obligation features. To be specific, ‘recordKSPKReq’, ‘recordKSSKReq’ allows the actors to publish the

key service request snapshot, while ‘recordKSPKResp’, ‘recordKSSKResp’ allows the TPA to record cor-

responding key service response snapshot. Then, ‘recordKSPKResp’ function allows us to confirm the

receipt of the key service.

• Inspection Functions. The inspection functions address the monitoring task for the recorded audit obliga-

tion as discussed in Section 6.1.3. To be specific, ‘inspectObligationKS’ function allows to automatically

inspect the completeness of the key service obligations, while ‘inspectObligationPP’ function permits the

monitor to verify the published identity-to-public-key binding. Regarding the incentive design, if the

dishonest behavior is detected, the corresponding entity will be fined a fixed number of ether as the

incentive reward for the monitor.

Experimental Setup. Our experiments are performed on a Macbook Pro platform with 2.3GHz 8-Core

Intel Core i9 processors and 32GB DDR4 memory. Besides, we use the Ethereum official test network -

Rinkeby as the experimental environment to deploy our implemented smart contract. Furthermore, we write

several JavaScript test-cases using the automated testing framework of Truffle that is built on Mocha3 and

provides a cleanroom environment.

Specifically, for demonstration, we use five Ethereum accounts to simulate various entities in T 3AB,

namely, the role of the administrator, the TPA, the data owner, the data user and the monitor. With

regards to various scenarios, we write corresponding test-cases to evaluate the performance (i.e., the gas cost

and the time cost) such as the administrative scenario, registration scenario, obligation scenario, etc..

3https://mochajs.org/
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6.3.2 Experiment Results

We report the performance of T 3AB for selected typical functions in various test case scenarios in

Table 6.1. In particular, the performance includes two aspects: the gas cost and the test time. Gas is spent

in Ethereum for deploying smart contracts or calling functions. As reported in Table 6.1, most functions

cost very little. Specifically, except for the smart contract deployment, the cost of each function is at the

level of 105 gas in general. Regarding the highly called functions for obligation and inspection, to record

an audit obligation for one key service, the functions of three-phase commitment (i.e., recordKSSKReq,

recordKSSKResp, recordKSConfirm) cost 3.7 × 105 gas, 8.4 × 105 gas, 4.3 × 105 gas, respectively. Besides,

the cost of inspection for key service and public parameter audit obligations is 2.4 × 105 gas and 3.7 × 105

gas, respectively.

Furthermore, we also measure the time it takes to test the selected functions. Except for the administra-

tive functions, the calling time of rest of the functions is less than 100ms. Note that the time to test each

function is measured in the Ethereum test network. The testing time is related to execution time instead of

time taken to confirm transaction . Thus, the deployment time of the smart contract is only 183ms rather

than the general time taken to confirm a transaction, namely, about 6 minutes.

6.4 Summary and Discussion

In this chapter, we have proposed the T 3AB framework to provide transparency and trustworthiness of

the third-party authority (TPA) and honest-but-curious entities in the recently proposed FE-based privacy-

preserving machine learning (PPML) systems. T 3AB employs the Ethereum blockchain as the underlying

public ledger infrastructure and also includes a novel smart contract mechanism to support accountability.

In addition, it includes an incentive mechanism to motivate participants’ audit and punish the misbehaviors

or malicious behaviors. We presented the evaluation of the proposed framework which shows that the

framework is efficient in the Ethereum official test network, and achieves the security and privacy guarantee

and trustworthiness goal.
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7.0 Conclusion and Future Research

7.1 Conclusion

Privacy-preserving ML (PPML) is critical for ML-powered systems as they typically need to use users’

privacy-sensitive data for training and prediction phases. To tackle privacy challenges in ML, novel PPML

techniques are needed. Towards this, recent approaches proposed in the literature have aimed at integrating

existing privacy-preserving methods into ML models. While various types of privacy-preserving approaches

have been proposed, they have their own limitations. For instance, the use of a garbled circuits-based secure

computation approach incur high communication overhead because of a large volume of intermediate data

that needs to be transmitted during the execution of the protocol, while the adoption of emerging differential

privacy raises challenges related to trade-offs between model accuracy and privacy budget.

In this dissertation, we have discussed various PPML approaches that have been proposed in the literature

and their limitations. We have mainly focused on secure computation approaches, one of the key privacy-

preserving techniques in PPML, in which the released data is protected by a cryptosystem and the ML related

computations occur over encrypted data. Specifically, we have focused on secure computation approaches for

PPML in the context of two-tier and three-tier architectures, and emerging DL models and FL. The central

piece of the secure computation solutions we have proposed is functional encryption. In this dissertation, we

make the following key contributions:

• For two-tier PPML architecture, we have proposed secure computation solutions to achieve PPFL in

Chapter 3. We have proposed the HybridAlpha framework to support efficient training in horizontal

PPFL as well as providing a strong privacy guarantee. Only a few existing approaches address vertical

PPFL problems, where they only support a specific machine learning model and suffer from inefficiency

in terms of both secure computation and training time. To tackle those challenges, we have proposed the

FedV framework built on a well-designed secure SGD approach that makes use of functional encryption

schemes. The security and privacy analysis show that HybridAlpha and FedV achieves privacy and

security goals. We also implemented and experimentally evaluated HybridAlpha and FedV and the

results show that they can reduce the training time and total data transfer volume significantly without

sacrificing privacy guarantee and model performance.

• We have also proposed NN-EMD in Chapter 4, which is a novel privacy-preserving DNN model applicable

in a two-tier cloud-client PPML architecture, where the raw data is protected by functional encryption

schemes and the training task is done over encrypted data. NN-EMD also supports multiple data sources,

where the data may be composed of horizontally and vertically partitioned datasets. The evaluation shows

that NN-EMD can reduce the training time while still providing the same model accuracy and strong

privacy guarantee as compared to most of the recent comparable solutions. Unlike existing HE-based
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solutions, the depth and complexity of DNNs in our NN-EMD do not affect the training time despite

integrating a privacy-preserving component in NN-EMD.

• In edge-enabled three-tier PPML architecture, edge nodes can pre-process data from the client devices

such as sensors or mobile devices. Our proposed CryptoEdge solution in Chapter 5 enable pre-processing

at the edge and final processing at the cloud, both over the encrypted data or model; this approach helps

protect the privacy of data generated by the sensors or mobile devices, where the data and model are

protected by our proposed threshold functional encryption scheme. The proposed CryptoEdge supports

various types of secure aggregations at the edge and PPFL framework in a three-tier PPML architecture.

We evaluated CryptoEdge in a simulated cloud-edge environment, and our evaluation results show that

CryptoEdge provides significant performance improvement on system efficiency as well as achieves the

security and privacy guarantees.

• To address the issues related to trustworthiness of a third-party authority (TPA) and commercial in-

frastructures such as cloud service providers that are essential for the proposed secure computation

approaches, we have proposed a framework in Chapter 6 to address transparency and accountability

issues so as to increase the trust for entities such as a TPA and other honest-but-curious entities in the

proposed FE-based PPML solutions. We show that the proposed transparency framework is effective

and efficient in the Ethereum test network and guarantees the security properties of log-consistency,

unforgeable-service, and non-fabrication.

7.2 Future Research

Here, we present some possible future research directions:

• Our proposed solutions for three-tier PPML architecture only support various types of secure aggre-

gations, and hence the supported ML-enabled applications are limited to those that only need secure

aggregation operations such as privacy-preserving horizontal federated learning. There is still a lack of

secure computation approaches to address more complex computational tasks to support more complex

PPML such as privacy-preserving vertical federated learning and PPML in a three-tier architecture. To

tackle the challenge, it will be worth exploring various threshold functional encryption (TFE) schemes

beyond the multi-client TFE scheme proposed in this dissertation. Based on the newly proposed TFE

schemes in the literature and our proposed TFE scheme, one possible direction is to explore extensions

to these to solve more complex secure computation tasks rather than the aggregation tasks in PPML.

• Note that the solutions proposed in this dissertation are built using existing single-client or multi-client

functional encryption schemes and our proposed threshold functional encryption scheme. A common

and critical component in these schemes is a trusted third-party authority (TPA) that provides the key

service such as generating entity-specific public keys and functional private keys. Another direction
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worth exploring include more efficient and decentralized functional encryption based schemes that do not

depend on a TPA.

• We have explored primarily two-tier PPML architecture and three-tier PPML architecture in this dis-

sertation. We believe there is still a need to explore various other architectures under various security

assumptions. For instance, one research direction maybe addressing secure computation in multi-cloud

environment, where the third-party cloud providers are not fully trusted by an enterprise to process its

private business data.

In summary, ML represents a very critical technological innovation that has a huge potential for a

transformative societal impact. And we are already seeing that in many ML-enabled applications in many

domains. As we make widely available powerful and novel ML solutions, it is important to ensure that

their privacy-implications are properly understood and addressed. The goal of this dissertation has been to

identify some key research challenges related to ensuring privacy protection when various ML techniques are

employed in different kinds of architectural context. Accordingly, we have proposed various approaches based

on functional encryption schemes that provide practical solutions to deploying ML models while ensuring

privacy guarantees. We believe that more work needs to be done to address various related challenges as

discussed above and explore newer approaches that will further improve efficiency while ensuring security

and privacy guarantees. Such solutions will ensure that our society can reap the benefits of ML technologies

without having to worry much about individual privacy, a fundamental for our society.
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Appendix A

Functional Encryption

In this chapter, we introduce the notations and definitions of functional encryption (FE). Then, we

present the specific constructions of single-input functional encryption (SIFE) and multi-input functional

encryption (MIFE) for functionality of inner-product.

A.1 Definitions

Following the initial definition from [25] and [5], we present the notion of functionality, the functional

encryption scheme, security assumption and security definition.

A.1.1 Functionality

Definition 5 (Functionality [25]). A functionality F defined over (K,X) is a function F : K×X → Σ∪{⊥}

where K is the key space, X is the message space and Σ is the output space and ⊥ is a special string not

contained in Σ.

Note that the functionality is undefined when either the key is not in the keyspace or the message is not

in the message space.

A.1.2 Functional Encryption Scheme

Definition 6 (Functional Encryption Scheme [25]). A functional encryption (FE) scheme for functionality

F is a tuple EFFE = (Setup, KeyDerive, Encrypt, Decrypt) of four algorithms:

• Setup(1λ) outputs public and master secret keys (mpk, msk) for security parameter λ;

• KeyDerive(msk, k) outputs secret key skk on input a master secret key msk and key k ∈ K;

• Encrypt(mpk, x) outputs ciphertext ct on input public key mpk and message x ∈ X;

• Decrypt(mpk, ct, skx) outputs z ∈ Σ ∪ {⊥}.

Note that the correctness of EFFE is described as ∀(mpk,msk) ← Setup(1λ), ∀k ∈ K,x ∈ X, for skk ←

KeyDerive(msk, k) and ct ← Encrypt(mpk, x), we have that Decrypt(mpk, ct, skx) = F(x, k) whenever

F(x, k) 6=⊥, except with negligible probability.
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A.1.3 The Decisional Diffie-Hellman Assumption

Consider a (multiplicative) cyclic group G of order q, and with generator g. The Decisional Diffie-Hellman

(DDH) assumption states that the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguish-

able, where a, b, c ∈ Zp are chosen independently and uniformly at random.

A.1.4 Security of Functional Encryption

Definition 7 (Selective Simulation-based Secure FE [5]). A functional encryption EFE for functionality F

is selective simulation-based secure (SEL-SIM-secure) if there exist PPT simulator algorithms

ESIM
FE = (SetupSIM,KeyDeriveSIM, EncryptSIM, DecryptSIM), (A.1)

such that for every stateful PPT adversary A and λ ∈ N, the following two distributions are computationally

indistinguishable:

Experiment REALEFE
SEL (1λ,A)

{xi}i∈[n] ← A(1λ,F)

(mpk,msk)← Setup(1λ,F)
∀i ∈ [n], cti ← Encrypt(mpk, i, xi)

α← AKeyDerive(msk)(mpk, {cti}i∈[n])
Output : α

Experiment IDEALEFE
SEL (1λ,A)

{xi}i∈[n] ← A(1λ,F)

(mpkSIM,mskSIM)← SetupSIM(1λ,F)
∀i ∈ [n], cti ← EncryptSIM(mpkSIM, i)

α← AO(·)(mpkSIM , {cti}i∈[n])
Output : α

The oracle O(·) in the ideal experiment above is given access to another oracle that, given f ∈ F , returns

f(x1, ..., xn), and then O(·) returns KeyDeriveSIM (mskSIM, f, f(x1, ..., xn)).

Note that for every stateful adversary A, we define its advantage as follows:

AdvSEL-SIM
A,EFE

= |Pr[REALEFE

SEL(1λ,A) = 1]− Pr[IDEALEFE

SEL(1λ,A)]|. (A.2)

We also require that for every PPT A, there exists a negligible function negl(λ) such that

∀λ ∈ N,AdvSEL−SIMA,EFE
= negl(λ). (A.3)

A.2 Single-Client FE for Functionality of Inner-Product

The single-input FE scheme for the functionality of inner-product EFSCIP

FE is defined as

EFSCIP

FE = (EFSCIP

FE .S, EFIP

FE .K, EFSCIP

FE .E, EFSCIP

FE .D), (A.4)

where the functionality is defined as

FSCIP(xxx,yyy) = 〈xxx,yyy〉 =

η∑
i=1

(xiyi). (A.5)

Each of the algorithm is constructed as follows:
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• EFSCIP

FE .S → Setup(1λ, η): The algorithm first generates two samples as (G, p, g) ←$ GroupGen(1λ), and

sss = (s1, ..., sη)←$ Zηp on the inputs of security parameters λ and η, and then sets pk and msk as follows:

pk = (g, hi = gsi)i∈[1,...,η] (A.6)

msk = sss (A.7)

It returns the pair (pk,msk).

• EFSCIP

FE .K → SKGenerate(msk,yyy): The algorithm outputs the function secret key skf = 〈yyy,sss〉 on the

inputs of master secret key msk and vector yyy.

• EFSCIP

FE .E → Encrypt(pk,xxx): The algorithm first chooses a random r ←$ Zp and computes ct0 = gr.

For each i ∈ [1, ..., η], it computes cti = hri · gxi . Then the algorithm outputs the ciphertext ct =

(ct0, {cti}i∈[1,...,η]).

• EFSCIP

FE .D → Decrypt(pk, ct, skf , yyy): The algorithm takes the ciphertext ct, the public key mpk and

functional key skf for the vector yyy, and returns the discrete logarithm in basis g, as follows:

g〈xxx,yyy〉 =
∏

i∈[1,...,η]

ctyii /ct
skf

0 . (A.8)

A.3 Multi-Client FE for Functionality of Inner-Product

The multi-input functional encryption scheme for the inner-product EFMCIP

FE is defined as

EFMCIP

FE = (EFMCIP

FE .S, EFMCIP

FE .PK, EFMCIP

FE .SK, EFMCIP

FE .E, EFMCIP

FE .D). (A.9)

where the functionality is defined as

FMCIP = 〈{xxxi}i∈[n], yyy〉 =
∑
i∈[n]

∑
j∈[ηi]

(xijy∑i−1
k=1 ηk+j) s.t. |xxxi| = ηi, |yyy| =

∑
i∈[n]

ηi, (A.10)

The specific construction of each algorithm is defined follows:

• EFMCIP

FE .S → Setup(1λ,~ηηη, n): The algorithm first generates secure parameters as G = (G, p, g) ←$

GroupGen(1λ), and then generates several samples as a←$ Zp, aaa = (1, a)ᵀ, ∀i ∈ [1, ..., n] : WWW i ←$ Zηi×2
p ,

uuui ←$ Zηip . Then, it generates the master public key and master private key as

mpk = (G, gaaa, gWaWaWa), (A.11)

msk = (WWW, (uuui)i∈[1,...,n]). (A.12)

• EFMCIP

FE .PK → PKDistribute(mpk,msk, idi): It looks up the existing keys via idi and returns the public

key as

pki = (G, gaaa, (WaWaWa)i,uuui). (A.13)
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• EFMCIP

FE .SK → SKGenerate(mpk,msk,yyy): The algorithm first partitions yyy into (yyy1||yyy2||...||yyyn), where |yyyi|

is equal to ηi. Then it generates the function derived key as

skf,yyy = ({dddᵀi ← yyyᵀiWWW i}, z ←
∑

yyyᵀi uuui). (A.14)

• EFMCIP

FE .E → Encrypt(pki,xxxi): The algorithm first generates a random nonce ri ←R Zp, and then com-

putes the ciphertext as

ctctcti = (ttti ← gaaari , ccci ← gxxxiguuuig(WaWaWa)iri). (A.15)

• EFMCIP

FE .D → Decrypt(ctctct, skf,yyy): The algorithm first calculates as follows:

C =

∏
i∈[1,...,n]([yyy

ᵀ
i ccci]/[ddd

ᵀ
i ttti])

z
, (A.16)

and then recovers the function result as

f((xxx1,xxx2, ...,xxxn), yyy) = logg(C). (A.17)
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Appendix B

Differential Privacy

B.1 Differential Privacy

Differential privacy (DP) [60, 62] is a rigorous mathematical framework where an algorithm may be

described as differentially private if and only if the inclusion of a single instance in the training dataset

causes only statistically insignificant changes to the algorithm’s output. The formal definition for DP is as

follows:

Definition 8 (Differential Privacy [60]). A randomized function K gives (ε, δ)-differential privacy if for all

data sets D and D
′

differing on at most one element, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp (ε) · Pr[K(D
′
) ∈ S] + δ. (B.1)

The probability is taken over the coin tosses of K.

The additive term δ allows for the possibility that plain ε-differential privacy is broken with probability

δ (which is preferably smaller than 1/|d|). Usually, a paradigm of an approximating a deterministic function

f : D → R with a differentially private mechanism is via additive noise calibrated to function’s sensitivity

Sf that is defined as the maximum of the absolute distance |f(d)− f(d
′
)|. The representative and common

additive noise mechanisms for real-valued functions are Laplace mechanism and Gaussian mechanism, as

respectively defined as follows:

MGauss(d; f, ε, δ) = f(d) +N (µ, σ2) = f(d) +N (0,
2 ln(1.25/δ)

ε2
· S2

f ) (B.2)

MLap(d; f, ε) = f(d) + Lap(µ, b) = f(d) + Lap(0,
S2
f

ε
) (B.3)

Note that ε-differential privacy can be treated as a special case of (ε, δ)-differential privacy where δ = 0.

To achieve DP, multiple mechanisms designed to inject noise to the algorithm’s output have been proposed.

These mechanisms add noise proportional to the sensitivity of the output, a measure of the maximum change

of the output resulting by the inclusion of a single data point. Popular mechanisms include Laplacian and

Gaussian mechanisms, where the Gaussian mechanism for a dataset D is defined as M(D) = f(D) +

N(0, S2
fσ

2), where N(0, S2
fσ

2) is the normal distribution with mean 0 and standard deviation Sfσ. By

applying the Gaussian mechanism to function f with sensitivity Sf satisfies (ε, δ)-differential privacy [61].
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B.2 Noise Reduction through SMC

SMC allows multiple parties to compute a function over their inputs, without revealing their individual

inputs [21, 49]. SMC can be achieved using different techniques such as garbled circuit with oblivious transfer,

fully or partially homomorphic encryption, and functional encryption.

Prior work has shown that it is possible to maintain the same DP guarantee achieved by local differential

privacy [95, 145], i.e., each party adds its own noise independently, and uses SMC to hide individual inputs.

Concretely, using the Gaussian mechanism defined above, local differential privacy requires each participant

to independently add N(0, S2
fσ

2). Considering n parties, the total noise adds up to n. However, when

applying SMC each participant can add a fraction of the noise N(0, 1
nS

2σ2) and then use a SMC technique

to share the value for aggregation. As shown in [173], this ensures the same DP guarantee while reducing

the amount of total noise injected by a factor of n.
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Appendix C

Appendix of FedV

C.1 Specific Analysis of Lemma 1

Here, we present our detailed analysis of Lemma 1. Note that we skip the discussion on how to compute

∇R in the rest of the proof such as in ( C.3), since the coordinator can compute it independently.

C.1.1 Linear models in FedV

Here we formally analyze the details of how our proposed 2Phase-SA approach is applied in a vertical

federated learning framework with underlying linear machine learning model. Suppose the a generic linear

model is defined as:

f(xxx;www) = w0x0 + w1x1 + ...+ wjxj , (C.1)

where x
(i)
0 = 1 represents the bias term. For simplicity, we use the vector-format expression in the rest of

the proof, described as: f(xxx;www) = wwwᵀxxx, where where xxx ∈ Rd+1,www ∈ Rd+1, x0 = 1. Suppose that the loss

function here is least-squared function, defined as

L(f(xxx;www), y) = (f(xxx;www)− y)2 (C.2)

and here we use L2-norm as the regularization term, defined as: R(www) = 1
2

∑n
i=1 w

2
i . According to equations

(3.2), ( C.1) and ( C.2), the gradient of E(www) computed over a mini-batch S of nS data samples is as follows:

∇ES(www) = ∇LS(www) +∇RS(www) =
2

nS

nS∑
i

(wwwᵀxxx(i) − y(i))xxx(i)

The secure gradient computation is described as (suppose that p1 is the active party with labels y)

∇L =
2

n

n∑
i

(w0x
(i)
0 + w1x

(i)
1 − y(i)︸ ︷︷ ︸
u
(i)
p1

+...+ wjx
(i)
j︸ ︷︷ ︸

u
(i)
pl

)xxx(i) =
2

n

n∑
i

d∑
j

(u(i)
pj )︸ ︷︷ ︸

F-SA

xxx(i)

(C.3)

Next, let u(i) be the intermediate value to represent the difference-loss for current www over one sample xxx(i),

which is also the aggregation result of F-SA. Then, the updated gradient ∇E(www) is continually computed as

follows:

∇L =
2

n

n∑
i

u(i)(x
(i)
0 , x

(i)
1︸︷︷︸
p1

, ..., x
(i)
j−1︸︷︷︸
pl−1

, x
(i)
j︸︷︷︸
pl

) =
2

n
(

n∑
i

u(i)x
(i)
0 ,

n∑
i

u(i)x
(i)
1,p1︸ ︷︷ ︸

S-SA

, ...,

n∑
i

u(i)x
(i)
j,pl︸ ︷︷ ︸

S-SA

)
(C.4)
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To deal with the secure computation task of training loss as described in Algorithm 3, we only apply F-SA

approach. As the average loss function here is least-squares function, the secure computation is described

as

LD(www) =
1

n

n∑
i

(wwwᵀxxx(i) − y(i)︸ ︷︷ ︸
F-SA

)2

︸ ︷︷ ︸
Normal Computation

(C.5)

Obviously, the F-SA could satisfy the computation task in the above equation.

C.1.2 Generalized linear models in FedV

Here we formally analyze the details of applying our 2Phase-SA approach to train generalized linear

models in FedV.

We use logistic regression as an example, which has the following fitting (prediction) function:

f(xxx;www) =
1

1 + e−wwwᵀxxx
(C.6)

For binary label y ∈ {0, 1}, the loss function could be defined as:

LD(f(xxx;www), y) =

 − log(f(xxx;www)) if y = 1

− log(1− f(xxx;www)) if y = 0
(C.7)

The gradient computation over a mini-batch S of size n can be described as:

∇ES(www) =
1

n

n∑
i∈S

(
1

1 + e−wwwᵀxxx(i)
− y(i))xxx(i) (C.8)

Note that we also do not include the regularization term λR(www) here for the same aforementioned reason.

Here we show the above-mentioned two solutions in detail:

(i) Taylor approximation. In this approach, the Taylor series expansion of function log(1 + e−z)=log 2 −
1
2z + 1

8z
2 +O(z4) is applied to the equation ( C.7) to approximately generate gradient as follows:

∇ES(www) ≈ 1

n

n∑
i∈S

(
1

4
wwwᵀxxx(i) − y(i) +

1

2
)xxx(i) (C.9)

Similar to equation ( C.3), we are able to apply the 2Phase-SA approach in the secure computation of

equation ( C.9).

(ii) Decomposition-then-2Phase-SA. Different from above-discussed approximation approach, we present

our decomposition-then-2Phase-NS approach to compute the exact value of the gradient which is expressed

as a nonlinear formula. First, although the prediction function ( C.6) is a non-linear function, it can be

decomposed to f(xxx;www) = g(h(xxx;www)) as follows:

g(h(xxx;www)) =
1

1 + e−h(xxx;www)
→ h(xxx;www) = wwwᵀxxx (C.10)
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Algorithm 8: FedV-SLC

Input: current model weights w ; participants P, where each participant pi has assigned data pre-process
parameter πpi , dataset Dpi and public key pki

1 function coordinator-process(www,P, {πpi}, yyy)
2 foreach pi ∈ P do query pi with msgq,pi = (wwwpi , πpi) ;

3 do Smsgr
← collect participants’ response msgr,pi while enough Smsgr and still in max waiting time;

4 specify wwwP′ according to Smsgr
;

5 foreach msgr,pi ∈ Smsgr do uuu← add result of F-SA on msgr,pi .cccfd with wwwP′ ;

6 ED(www)← yyy log 1
1+e−uuu + (1− yyy) log(1− 1

1+e−uuu ) ;

We can see that the sigmoid function g(z) = 1
1+e−z is not a linear function, while h(xxx;www) is linear. We then

apply 2Phase-SA on linear h(xxx;www) instead. To be more specific, the formal description of secure gradient

computation is presented below:

∇L =
1

n

n∑
i∈S

(
1

1 + e−
∑d

j (u
(i)
pj

)}→F-SA
− y(i))︸ ︷︷ ︸

Normal Computation→u(i)

xxx(i) =
1

n
(

n∑
i

u(i)x
(i)
0 ,

n∑
i

u(i)x
(i)
1,p1︸ ︷︷ ︸

S-SA

, ...,

n∑
i

u(i)x
(i)
j,pl︸ ︷︷ ︸

S-SA

)

Note that the output of F-SA is in plaintext, and hence the coordinator is able to compute sigmoid function

g(·) and labels. The secure loss computation is described as

ED(www) = − 1

n

n∑
i∈D

y(i) log
1

1 + e−wwwᵀxxx(i)}→F-SA
+ (1− y(i)) log(1− 1

1 + e−wwwᵀxxx(i)}→F-SA
)︸ ︷︷ ︸

Normal Computation

(C.11)

Similar to secure gradient descent computation, however, we only have the F-SA with subsequent normal

computation.

Note that in this decomposition-then-2Phase-SA approach, it requires to expose labels to the coordinator.

Here we iterate two different cases: (i) if the VFL framework has the role of coordinator, our solution requires

the active participant expose its labels to the coordinator ; (ii) if the VFL framework does not have the role

of coordinator, usually, the active participant will play the role of the “coordinator”, and hence, there is no

need to expose labels.

Here, we also use another machine learning model, SVMs with Kernels as an example.

The model could be presented as

f(xxx;www) =

n∑
i=1

wiyik(xxxi,xxx), (C.12)

where k(·) is the kernel function. For kernel functions such as linear kernel xxxᵀi xxxj , polynomial kernel (xxxᵀi xxxj)
d,

sigmoid kernel tanh(βxxxᵀi xxxj + θ). In the SGD algorithm, to train a SVM with kernels model, we need to

iteratively update the initialize www(t) by comparing the result of
∑n
i=1 w

(t)
i yik(xxxi,xjxjxj) to the label. As such

supported kernel functions is based on inner-product computation, which is also supported by our F-SA and

S-SA protocols.
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C.2 Secure Loss Computation in FedV

Unlike the secure loss computation (SLC) protocol in the contrasted VFL framework [83], the SLC

approach in FedV is much simpler. Here we use the logistic regression model as an example. As illustrated

in Algorithm 8, unlike the SLC in [83] that is separate and different from the secure gradient computation,

the SLC in does not need additional operations for the participants. The loss result is computed by reusing

the result of the F-SA in the FedV-SecGrad.
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