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Our ability to learn accurate classification models from data is often limited by the number of

available labeled data instances. This limitation is of particular concern when data instances need to

be manually labeled by human annotators and when the labeling process carries a significant cost.

Recent years witnessed increased research interest in developing methods in different directions

capable of learning models from a smaller number of examples. One such direction is active

learning, which finds the most informative unlabeled instances to be labeled next. Another, more

recent direction showing a great promise utilizes enriched label-related feedback. In this case,

such feedback from the human annotator provides additional information reflecting the relations

among possible labels. The cost of such feedback is often negligible compared with the cost

of instance review. The enriched label-related feedback may come in different forms. In this

work, we propose, develop and study classification models for binary, multi-class and multi-label

classification problems that utilize the different forms of enriched label-related feedback. We show

that this new feedback can help us improve the quality of classification models compared with

the standard class-label feedback. For each of the studied feedback forms, we also develop new

active learning strategies for selecting the most informative unlabeled instances that are compatible

with the respective feedback form, effectively combining two approaches for reducing the number

of required labeled instances. We demonstrate the effectiveness of our new framework on both

simulated and real-world datasets.

Keywords: active learning, classification, multi-class, multi-label, enriched label-related

feedback, probabilistic score, Likert-scale feedback, ordered class set.
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1.0 Introduction

In recent years, the world has witnessed a remarkable increase in the number and quality of

classification models built from data. One important factor contributing to this improvement is

the number of labeled data instances available to train these models. However, this improvement

may not be possible when the original data are unlabeled or when the labels are obtained through

additional human annotation effort. Take for example a patient’s health record. While some of the

data (e.g., medications given, lab tests) are recorded, diagnoses of some conditions or adverse

events that occurred during the hospitalization are not. In order to analyze and predict these

conditions, individual patient instances must be first labeled by an expert. However, the process of

labeling instances using subjective human assessments faces the following problem:

Collecting labels from human annotators can be extremely time-consuming and costly,

especially in the domains where data assessments require a high level of expertise. In disease

diagnostics, an experienced physician needs to spend about five minutes (on average) to review

and evaluate one patient case [Nguyen et al., 2011a]; or in speech recognition, [Zhu, 2005] reports

that a trained linguist may take up to seven hours to annotate one minute of audio record (e.g., 400

times as long). The challenge is to find ways to reduce the number of instances that need to be

reviewed and labeled by an expert while improving the quality of the models learned from these

instances. In this thesis, we study two complementary approaches for achieving this goal and for

reducing the human annotation effort: enriched label-related feedback and active learning.

The text in the remainder of this chapter is organized as follows. We first review the different

types of human feedback one can use to build classification models and introduce the enriched

label-related feedback studied throughout the thesis. After that we discuss active learning strategies

tailored to optimize the benefits of enriched label feedback aimed to further reduce the instance

annotation cost. These two methods and their annotation benefits are the centerpieces of the main

hypothesis of the thesis and its application to three classification problems: binary, multi-class and

multi-label classification. Finally, we give a roadmap to the chapters of the thesis by introducing

the key problems they aim to solve.
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1.1 Building a classification model from human feedback

Our objective is to build a classification model. Let us assume we do not have labeled data

instances to accomplish this task. What is it we can do? It is clear we need some help/feedback

from a human to build a model. However, this feedback may come in different forms and with

different advantages and shortcomings, say, at different cost for feedback provision. We divide

the types of feedback the human experts may provide to build a classification model into three

categories: (1) Model-based, (2) Instance-based, (3) Structure-based feedback.

• Model-based feedback relies on a human expert to define and build a complete

classification model based on their knowledge. Typically the model is defined in

some knowledge-representation language that is easy to use for a human, such as rules

[Zhao et al., 2009] or decision trees [Tung, 2009]. The model-based approach expects the

expert to select both the input features to use in the model and thresholds on the features.

The advantage of model-based methods is their ability to handle high-dimensional data with

many irrelevant features, as these are explicitly filtered out by humans. The limitation is that

the burden of defining the model is squarely on the shoulders of the expert, the computational

methods or tools only try to facilitate the process. Most often the hardest part of the model

building process is parameter tuning. In real-world classification tasks, especially tasks with

continuously numerical features, where the thresholds are not clear-cut values, the tuning of

these by human experts typically requires search and iterative refinement of the model, which

may significantly increase the cost.

• Instance-based feedback relies on a human to annotate a collection of prototypes used to

describe the dataset. A prototype might be just one data instance, or some hypothetical instance

computed from one or more of them (such as the weighted average of a set of instances). A new

instance is classified by finding similar prototypes and using their classes in some way to form a

prediction. In other words, human experts just need to provide the classes of some prototypes,

where each prototype can be generated from one or more data instances, and the machine

learning researchers are responsible to infer the implicit generalization of the dataset based on

the classes of these prototypes. Enriched label-related feedback, the direction we explore in this

thesis, is a subset of instance-based methods. The main advantage of instance-based methods is
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ability of parameter tuning. It is easy to find the optimal parameters simply by maximizing the

accuracy or other desired evaluation metrics on the prototypes provided by the human experts.

The main disadvantage is the amount of prototypes needed for obtaining a classification model,

especially for a high-dimensional dataset. Model-based methods may eliminate the irrelevant

features simply from the knowledge of the human experts, while instance-based methods may

require many prototypes to infer such implicit irrelevancy.

• Structure-based feedback is an eclectic category in between pure model-based and

instance-based methods. We use this category to cover human feedback that is not sufficient

on its own to build a classification model but can still significantly aid the process. Briefly,

like model-based methods, the human experts are asked to provide the information on the

classification model. However, only some properties or structures of the model, typically the

correlations among relevant features and class labels, or rough values of some parameters are

provided based on the knowledge of the human experts. Hence the structure-based feedback

needs to be combined with other knowledge or data to complete the model building process.

An example of a structure based feedback is feature-based feedback [Druck et al., 2009]. It

helps the model building processes by defining and selecting the input features to use in the

model. It is one of the steps in the model-based approach, and by itself, it is not sufficient to

define the full classification model so it needs to be combined with other approaches and other

types of feedback to finalize the model building process. The benefit of the feature feedback

is that it helps to narrow down the input features to use in the model, and as a result, it is very

useful when data are high-dimensional and when they include many features irrelevant for the

classification task. Another example of the structure-based feedback is a methods proposed by

[Collins, 2003] for part-of-speech (POS) tagging in natural language processing, where each

word in a sentence is assigned a POS tag (class) indicating its grammatical role in this sentence.

This method asked the human experts to provide a collection of grammar trees representing the

possible structures of English sentences. The human experts are also required to provide some

labeled sentences, where each word is given its actual POS tag. Based on such information,

the machine learning researchers inferred the probabilistic distribution of each word belonging

to different POS tags, and found the POS tag sequence of a new sentence with highest joint

probability that conforms to one of the given grammar trees.
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1.1.1 Instance-based feedback

The work on enriched label-related feedback explored in this thesis falls under the umbrella

of instance-based methods. However, instance-based methods are still a broad category. A

sub-categorization will help to better locate enriched label-related feedback in instance-based

methods. Briefly, instance-based methods can be sub-categorized based on the unit where feedback

is provided:

• Group-based methods ask the human expert for the aggregated feedback of a group

of data instances. In other words, the feedback from the human expert is based

on a group of instances, indicating the aggregation of the feedback of all instances

in this group. Multiple aggregate functions have been proposed in existing works.

Multiple instance learning [Zhou and Zhang, 2002, Settles et al., 2008b] learns a binary

classifier from groups of instances that are labeled by human experts as positive,

if at least one instance in the group is positive, otherwise, the group is negative.

Learning from label proportions [Luo and Hauskrecht, 2018a, Luo and Hauskrecht, 2018b,

Luo and Hauskrecht, 2019, Luo and Hauskrecht, 2020] learns a binary classifier from groups

of instances that are labeled by humans with proportion estimates, that is probability

(or percentage) of positive instances in a group. The main disadvantage of group-based

methods is the difficulty in group definition. Clearly the number of possible groups is

exponential in the number of instances. Existing methods [Luo and Hauskrecht, 2018a,

Luo and Hauskrecht, 2018b] define groups as hyper-cubes aligned to the coordinate axes in

the feature space.

• Grouplet-based methods ask the human expert for the ordering or similarity information

of a fixed-size small group. Unlike group-based methods, the grouplets in grouplet-based

methods are always of a small fixed size (typically no more than four), the human expert

provide the ordering or similarity information among the instances in this grouplet rather

than aggregated feedback. [Joachims, 2002] for binary classification asked human experts to

provide the ordering between two instances, since the positive instances should rank superior

to the negative ones. There are also methods asking human experts for similarity information

on triplets or quadruplets. Similarity information on triplets includes two instances that

4



are similar and one instance that is dissimilar to the former two; similarity information on

quadruplets includes two instances that are similar and two instances that are dissimilar.

Similarity information on triplets or quadruplets was first proposed for the learning of

distance metrics [Heim et al., 2015, Heim et al., 2014, Heim and Hauskrecht, 2015], however,

[Zhai et al., 2019, Chen et al., 2017] applied such information into multi-class classification

since similarity information on triplets or quadruplets help aggregate intra-class instances and

dis-separate inter-class instances. The main disadvantage of grouplet-based methods is fallacy

hidden in the premise that the ordering or similarity information among instances is easy to

obtain. This premise is true in some classification tasks when the orderings or similarities

are explicit (e.g. images). However, when the ordering or similarity information is implicit

or the evaluation of instances requires professional backgrounds (e.g. diagnosis), obtaining

such information can be extraordinarily costly since the human annotator must evaluate all

the instances in the grouplet. Another disadvantage of grouplet-based methods is the grouplet

number. The maximal number of grouplets is K-polynomial to the instance number (K is the

grouplet size), which may limit the scalability of grouplet-based methods.

• Individual-instance-based methods directly ask human experts for feedback on individual

data instances. Traditional instance-based methods only ask for a class label, that is, the

class an individual instance belongs to. However, obtaining class labels can be very costly:

in real-world classification tasks, the average time consumption of obtaining one class

label ranges from minutes to hours. More sophisticated instance annotation methods ask

for additional information that enhances or elaborates traditional class label feedback with

information related to expert’s agreement with the label. We refer to such a feedback as

enriched label related feedback and it is the main focus of the study in this thesis.

1.1.2 Enriched-label related feedback

Enriched label-related feedback assumes the human expert is able to provide, in addition to the

class label, also information on his/her agreement with that label. The premise is simple: an expert

who reviews the instance and gives a subjective class label can often provide us with additional

information, reflecting the agreement or his/her uncertainty in the label decision. For example,
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in binary classification, the human can differentiate examples that clearly, weakly or marginally

represent a class. It is this type of information we seek to collect and incorporate into the model

building process. Please note, we expect the added cost of this feedback is small compared to the

cost of instance review and class-label decision.

There are multiple forms of enriched label-related feedback in different classification

scenarios. The first form of enriched label-related feedback, to our knowledge, is probabilistic

scores [Nguyen et al., 2011a, Nguyen et al., 2011b, Nguyen et al., 2013] in binary classification

scenarios. Basically, in addition to a subjective class label, the human expert is also asked to

provide a probabilistic score with additional information, reflecting his/her agreement in the label

decision. Another form of enriched label-related feedback in binary classification scenarios is

the Likert-scale feedback, where the human expert directly provides the agreement of class labels

as ordinal categories. For example, when obtaining a feedback from a physician on whether the

patient suffers from a particular disease or not, the physician can also provide his/her agreement

in the presence of the disease on a 5-point Likert-scale feedback if he/she agrees, weakly agrees,

is neutral, weakly disagrees, or disagrees with the disease. Probabilistic scores are also applicable

to multi-class classification scenarios. In multi-class classification tasks, each data instance is

associated with one of the multiple class labels. In addition to the class label associated with

this instance, the human expert is asked to provide a probabilistic score indicating the agreement

to the class label. There are also other forms of enriched label-related feedback reflecting the

orderings with other classes/labels. In multi-class classification scenarios, the human expert can

also be asked for the alternative classes: if the human expert does not highly agree with the class

label of the data instance, s/he may also provide some other classes as alternative choices. A

similar form of enriched label-related feedback also exists in multi-label classification scenarios.

In multi-label classification tasks, each data instance is associated with a label vector of multiple

binary values: if the binary value is positive, the instance is associated with this label, and vice

versa. In multi-label classification tasks, the human expert can also be asked for the total orderings

of the positive labels, since the human expert may have different agreement on different positive

labels of an instance even though they are all marked by the human annotator as positive.

In this thesis, we aim to explore the different forms of enriched label-related feedback above

to improve the model quality while not increase the number of labeled instances. A more detailed
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introduction of our completed works to handle these enriched label-related feedback can be found

in Section 1.4.

1.1.3 Limitations of enriched label-related feedback

Although enriched label-related feedback provides additional information for a data instance

obtained from the annotator, it still suffers from the following risks which push us to move forward

with it cautiously.

First, some forms of enriched label-related feedback may also contain noise along with

additional information. This typically happens when the agreement on the classes/labels

are presented as exact values. For example, when the annotator provides the confidence

using probabilistic scores, these probabilistic score can be inconsistent and inaccurate

[Nguyen et al., 2011a]. If the classification models are overly focused on these exact values, the

hidden noise may negatively limit the performance of the classification models.

Second, the cost or time consumption of obtaining enriched label-related feedback may

become non-trivial if the enriched label-related feedback is defined improperly. For example,

in multi-class classification scenarios, we can ask the annotator to provide the confidence of all

classes for each instance. If so, the annotation cost per instance will increase drastically when the

class number is large, which contradicts our assumption that enriched label-related feedback can

be obtained at a trivial cost and time consumption compared with obtaining the traditional class

label of this instance.

Third, the time complexity of the classification models may become intolerable if the enriched

label-related feedback is utilized improperly. For example, to eliminate the risk of the noise hidden

in probabilistic scores, [Nguyen et al., 2011a, Nguyen et al., 2011b] proposed a method extracting

pairwise orderings among instances from the probabilistic scores. However, the number of

pairwise orderings is quadratically proportional to the instance number, leading to poor scalability,

which limits the deployment of this method on larger datasets.

To eliminate the risks of enriched label-related feedback, we propose different techniques

in this thesis. For example, our methods incorporating probabilistic scores are focused on the

ordinal categories of confidence rather than the exact values, which eliminate the risks of the noise
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hidden in the probabilistic scores. These methods are also focused on the ordinal categories rather

than pairwise ordering among data instances, which reduce the time complexity. In the following

subsections, we give a general overview of the works related to enriched label-related feedback we

have completed, including the idea of utilizing different forms of enriched label-related feedback

and how to alleviate the potential risks in different classification scenarios.

1.2 Active learning

Active learning [Lewis and Gale, 1994] is one of the most popular research directions for the

problem of optimizing the time and cost of labeling. In active learning, model training and data

instance annotation process are interleaved. Briefly, active learning sequentially selects and labels

originally unlabeled instances that are most informative and believed to have the most significant

potential to improve the model. The main challenge is for this work is to propose an active

learning strategy is that it is highly related to the form of the enriched label-related feedback and

the classification scenario. To address the problem, we propose complementary active learning

strategies for different forms of enriched label-related feedback in different classification scenarios.

There are multiple ways to assess the informativeness of an unlabeled instance. Perhaps the

most popular strategy is uncertainty sampling [Lewis and Gale, 1994] which finds the unlabeled

instance closest to the decision boundary of the classification model. However, uncertainty

sampling is incompatible with enriched label-related feedback, since enriched label-related

feedback of an instance indirectly reflects the distance of this instance to the decision boundary.

Another popular strategy is query-by-committee [Seung et al., 1992, Tosh and Dasgupta, 2018]

that trains a committee of multiple classification models and selects the unlabeled instance on

which the committee disagrees the most. The models in the committee can be acquired from

different training sets via, for example, bootstrapping all data instances [Breiman, 1996]. The

limitation of query-by-committee is a potential bias introduced by the trained models. There

are also more sophisticated active learning strategies named expected model change (EMC)

which estimates the expected change that the unlabeled instance may bring to the classification

model. Briefly, the strategy calculates the change in the model by assuming an unlabeled
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instance being assigned to one of the possible labels and weights the change by an estimate of

its probabilistic distribution of possible labels. The first implementation of expected model change

[Tong and Koller, 2000, Settles et al., 2008b] for binary classification models with merely class

labels measures the model change as the change of the model parameters. However, a large change

of the parameters does not necessarily imply a large change in the predictions. Therefore, such

model change typically overestimates the informativeness of the unlabeled instances. Moreover,

the measurement of model change is also highly dependent on the feedback. In this thesis, we

propose different approaches to measure different forms of enriched label-related feedback. For

Likert-scale feedback, where the agreement of the class label is represented as one of the multiple

ordinal categories, the model change can be estimated via the change of all the unlabeled instances

on the predicted ordinal category. This is because such change on the ordinal category can reflect

the change on the output of the classification model: if the predicted ordinal category does not

change, the change on the output of the classification model is also negligible. For probabilistic

scores, the model change can be estimated via the change of all the unlabeled instances on the

output of the classification model. The model change can be also estimated via the change of

all the unlabeled instances on the predicted category if we discretize the range of the probabilistic

scores into multiple ordinal categories. For the alternative class choices in multi-class classification

scenarios, the model change can be estimated via the change of all the unlabeled instances on the

orderings of all the classes. We also emphasize the changes on the highly ranked classes since the

change on them may affect the predicted class label. Similarly, for the total orderings of positive

classes in multi-label classification scenarios, the model change can be estimated via the change

of all the unlabeled instances on the orderings of all the positive labels. Moreover, the change

of the binary prediction of each label should also be considered: if the one label changes from

positive to negative, or vice versa, this change is greater than the change on orderings and should

be emphasized.

In this thesis, we aim to explore the expected model change active learning strategy and tailor

such strategy to be compatible with different forms of enriched label-related feedback in different

classification scenarios to improve the model quality while not increase the number of labeled

instances. A more detailed introduction of our completed works on the expected model change

active learning strategy for different forms of enriched label-related feedback can be found in
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Section 1.4.

1.3 Main hypothesis

The main hypothesis of our work is that with enriched label-related feedback and

corresponding model learning strategies, the classification models can be built more efficiently,

that is, with the same number of annotated instances, our methods can build higher performing

models than methods that only utilize class-label information. Moreover, we hypothesize that

learning from this new type of feedback can be further improved using matching active learning

strategies. Please note that the new feedback and active learning are complementary approaches,

and hence, can reduce the annotation effort both individually and jointly. In this thesis, we aim to

explore the following hypotheses:

H1. Data with enriched label-related feedback and active learning can reduce the annotation

effort both individually and jointly in binary classification scenarios;

H2. Data with enriched label-related feedback and active learning can reduce the annotation

effort both individually and jointly in multi-class classification scenarios;

H3. Data with enriched label-related feedback and active learning can reduce the annotation

effort both individually and jointly in multi-label classification scenarios.

In the following section, we briefly introduce the problems and methods for enriched

label-related feedback and active learning methods we have developed in this thesis to study

the above hypotheses and provide pointers to the corresponding chapters in the remainder of the

document.
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1.4 Methods developed in the thesis

1.4.1 Learning of binary classification models from probabilistic scores and Likert-scale

feedback

Binary classification scenario is where each data instance belongs to one of the two classes

(typically class 0 and class 1). In binary classification scenario, the enriched label-related feedback

typically comes in two forms: (1) probabilistic scores, or (2) Likert-scale feedback [Likert, 1932].

Briefly, probabilistic scores are probabilities ranging in [0, 1] (both inclusive), while

Likert-scale feedback defines a set of ordinal categories. These two types of information can be

used to indicate the strength of agreement (or belief) in the respective class labels. For example,

when obtaining feedback from a physician on whether the patient suffers from a particular disease

or not, the binary true/false feedback can be refined by obtaining physician’s belief in the presence

of the disease on a probabilistic score (e.g., 70%), or a 5-point Likert-scale (e.g., strongly agree)

by asking if s/he agrees, weakly agrees, is neutral, weakly disagrees, or disagrees.

Existing works [Nguyen et al., 2011a, Nguyen et al., 2011b] convert the probabilistic scores

and Likert-scale feedback into pairwise orderings. Such methods show good performance

and robustness against the noise in probabilistic scores. However, the number of pairwise

orderings is quadratically proportional to the instance number, leading to the poor scalability of

these methods. [Nguyen et al., 2013] developed new a new method based on ordinal regression

[Chu and Keerthi, 2005] to learn the classification model from such two types of information and

demonstrate its benefits over methods based on only class-label information. This method, apart

from showing good performance and robustness against the noise in probabilistic scores, is also

more scalable since the number of ordering relations obtained from ordinal regression is only

linearly proportional to the instance number. However, [Nguyen et al., 2013] left a key quantity,

the number of ordinal categories, undetermined. In this thesis, we propose to find the optimal

number of ordinal categories via Freedman-Diaconis rule [Freedman and Diaconis, 1981].

To further improve the annotation efficiency of the above methods we enhance them with

active learning strategies specifically tailored to the feedback they work with. Briefly, we propose

an expected model change (EMC) [Tong and Koller, 2000, Settles et al., 2008b] active learning
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strategy for both probabilistic scores and Likert-scale feedback. Such a strategy estimates the

expected change of the predictions from all the add-one models of an unlabeled example. An

add-one model of the unlabeled example is the model where adding this unlabeled example and a

presumed probabilistic score or Likert-scale label into the labeled data. We use such an expected

change of the unlabeled examples to select data examples that may help the model the best. To

prevent the re-training of add-one models, which is typically inefficient and required for traditional

EMC strategy, we also train the add-one models incrementally from the current model, which

remarkably reduces the time consumption.

The details of methods for learning binary classification models from probabilistic scores will

be discussed in Chapter 3; the details of learning of binary classification models from Likert-scale

feedback will be discussed in Chapter 4.

1.4.2 Learning of multi-class classification models from probabilistic scores and ordered

class sets

Multi-class classification models are typically learned from annotated data in which every data

instance is associated with one class label indicating the top class choice assigned to it from among

multiple classes (more than two) by a human annotator. In the multi-class classification scenario,

the enriched label-related feedback can come in two forms (1) a probabilistic score, or (2) an

ordered class set (OCS).

The probabilistic scores are similar to those used in the binary classification scenario. However,

the ordered class sets are much different: human annotators can often express and provide

additional information about the top class and its relation to other class choices. For example,

when the annotation of a data instance is not a clearcut case, there are other likely class choices

the annotator may have in mind. Associating multiple competing classes with one instance is

common in various diagnostic tasks. For example, in the medical domain, a list of competing

diagnostic classes is referred to as a differential diagnosis. Briefly, given the features (symptoms,

observations, etc.) of a patient, the physician considers not only the leading diagnosis (class) but

also other alternative diagnoses (classes) that are possible and may fit the patient’s case. More

specifically, apart from the top class label for each data instance, we let the annotator also provide
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information about other alternative classes, and express their descending priorities (or confidence)

in the ordered set of classes.

Existing works [Nguyen et al., 2011a, Nguyen et al., 2011b, Nguyen et al., 2013] learning

from probabilistic scores are only applicable for binary classification tasks. In this thesis, for

the probabilistic scores, we use similar techniques in Section 1.4.1 based on ordinal regression

[Chu and Keerthi, 2005]. OCS is a new form of enriched label-related feedback in multi-class

classification tasks. To our knowledge, the work in this thesis is the first work utilizing

such feedback. We build our methods for utilizing OCS in the learning process by splitting

each OCS into two subsets: the subset with higher priority and the one with lower priority.

Then we extract ranking information [Joachims, 2002, Herbrich et al., 1999] between these two

subsets and incorporate them into approximate multi-class support vector machine (AMSVM)

[He et al., 2012]. Our methods, apart from showing a good performance and robustness against the

noise in probabilistic scores, is also more scalable since the number of ordering relations obtained

is only linearly proportional to the instance number and to the class number.

Similarly to the binary classification problem, we aim to enhance the multi-class classification

learning also with active learning methods. For the probabilistic scores, we propose an expected

approximate performance change (EAPC) whose inspiration is similar to EMC in Section

1.4.1. For the ordered class sets, we propose a new variant of expected model change (EMC)

[Tong and Koller, 2000, Settles et al., 2008b]. Briefly, when adding an unlabeled instance and

a possible OCS of this instance into the current model, it calculates the change in the ordering

induced by all one-vs-rest classifiers over all unlabeled instances. Since the OCS number of each

instance is extremely large (factorial of the class space size), we also propose an approximation

that subsamples the OCS’s of each unlabeled instance using t-test to find the optimal subsample

size. To prevent the re-training of add-one models, which is typically inefficient and required for

traditional EMC strategy, we also incorporate multiple techniques that remarkably reduce the time

consumption. For EAPC for probabilistic scores, we approximate the projection change of each

instance from the corresponding add-one models instead of training them. For EMC for OCS, we

train the add-one models incrementally and approximate the OCS distribution by subsampling.

The details of our multi-class classification learning methods with probabilistic scores will be

discussed in Chapter 5; the details of multi-class classification learning methods with OCS will be
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discussed in Chapter 6.

1.4.3 Learning of multi-label classification from permutation subsets as multi-label ranking

Multi-label classification models are typically learned from annotated data instances where

each data instance is associated with a binary label vector, and where each scalar in the binary label

vector has a 0/1 binary value indicating whether the data instance is relevant to this label or not.

Human annotators can often provide additional information about the total orderings of the relevant

labels (the labels annotated as 1 in the label vector) apart from the label vector itself. For example,

when the relevant labels of a data instance are of different certainties, the annotator may provide

such information via a permutation subset, which is useful for learning. Such permutation subset

of a data instance indicates the annotator’s certainties towards the relevant labels in descending

order. For example, in an image classification task, the annotator may be certain that there is a

house in the image, while s/he may not be so certain whether there is also a dog, because the dog

in the image is fuzzy and hard to recognize.

The learning of multi-label classification models from permutation subsets is identical to

the learning of multi-label ranking models: multi-label ranking is a learning problem where

the goal is to not only identify relevant labels from a set of predefined labels, but also to rank

them according to their relevance to a data instance. Consequently, multi-label ranking can be

considered as a generalization of multi-label classification and label ranking. Therefore, the key

to learning a successful multi-label ranking model is the capture of the dependencies among the

labels. However, existing works [Zhou et al., 2014, Jung and Tewari, 2018, Bucak et al., 2009]

of multi-label ranking ignore the dependencies among the labels and are focused on the

marginal probabilities of the labels. In this thesis, to capture the dependencies among the

labels, we propose a multi-label ranking method that combines an auxiliary multi-label ranking

support vector machine (MLRSVM) to effectively incorporate such permutation subsets into an

existing multi-label classification model to reduce the annotation effort. We also show such

auxiliary MLRSVM is a general multi-label ranking model than can be combined with any

existing multi-label classification models that support gradient-based learning algorithms. Such

a multi-label ranking method can also be applied to the learning of multi-label classification
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models from permutation subsets. By conducting experiments on multiple datasets, our method

shows it can successfully capture dependencies among labels, leading to better performance when

compared with existing methods.

We propose a new active learning strategy based on the expected model change (EMC)

[Tong and Koller, 2000, Settles et al., 2008b] also for the permutation subsets in the multi-label

classification scenarios. Briefly, when adding an unlabeled instance and a possible permutation

subset of this instance into the current model, it calculates the change in the rankings of

the relevant labels overall unlabeled instances. The relevant labels are given by the existing

multi-label classification model, while the rankings of the relevant labels are given by the auxiliary

multi-label ranking model. Since the permutation subset number of each instance is extremely

large (exponential of the label space size), we also propose an approximation that subsamples the

permutation subsets of each unlabeled instance using t-test to find the optimal subsample size. To

prevent the re-training of add-one models, which is typically inefficient and required for traditional

EMC strategy, we also train the add-one models incrementally and approximate the permutation

subset distribution by subsampling, which remarkably reduces the time consumption.

The details of our ranking-based multi-label classification learning methods with permutation

subsets will be discussed in Chapter 7.
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2.0 Background

In this chapter, we outline the background and related work for the methods we describe in

this thesis. We start with the basics and methods of binary classification learning, along with

extension to multi-class and multi-label classification, then discuss two techniques to reduce

annotation efforts: active learning and learning with enriched label-related feedback. We use

the following notation throughout this thesis: matrices are denoted by capital letters, vectors by

boldface lowercase letters and scalars by regular lowercase letters.

2.1 Binary classification learning

Binary learning is a sub-field of machine learning, where the task is to learn a mapping from

input examples to desired 0/1 outputs. In the standard binary classification setting, training data

consist of examples and corresponding labels (targets), which are given by a teacher (labeler). The

goal is to learn a model that can accurately predict labels of unseen future examples. Formally,

given training data D = {d1, d2, . . . , dN} where di is a pair of 〈xi, yi〉, xi is an input feature

vector, yi is a desired 0/1 output given by a teacher, the objective is to learn a mapping function

f : X → Y such that for a new future example x0 , f(x0) ≈ y0. Binary classification learning

has many applications in practice, for example, given data for past patients, predict whether a new

patient has disease or not.

The exact form of the model f : X → Y , and the algorithms used to learn

it, can take on different forms. For example, the model can be based on: logistic

regression [McCullagh and Nelder, 1989], a simple (perhaps the most simple) classifier

minimizing the generalization error; linear discriminant analysis (LDA) [Fisher, 1936], a

mixture-of-Gaussian model performing better on unbalanced data; support vector machine (SVM)

[Cortes and Vapnik, 1995, Vapnik, 1995], which formulates an optimization problem with a global

optimum, and can also be adapted then applied to high-dimensional data [Hastie et al., 2009,

Joachims, 1998]; naive Bayes models [Domingos and Pazzani, 1997], assuming the conditional
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independence among the input features; decision trees (classification trees) [Breiman et al., 1984],

creating rectangle decision boundaries among the instance; neural networks [Hastie et al., 2009,

Van Der Malsburg, 1986, Rumelhart et al., 1986, Cybenko, 1989], creating different layers of

neurons to achieve non-linearity, where each neuron is a simple model. In addition, there are

various ensemble methods, such as bagging [Breiman et al., 1984], random forests [Ho, 1995,

Ho, 1998], boosting [Schapire, 1990], and gradient boosting [Friedman, 2002, Mason et al., 2000],

where multiple weak learners are combined to create a strong one.

In this section, we will describe in more detail max-margin models [Cortes and Vapnik, 1995,

Vapnik, 1995, Hastie et al., 2009, Joachims, 1998] which is a widely used baseline in classification

learning research. Moreover, some of our methods in this thesis are based on max-margin models

so their review should help to understand them better.

2.1.1 Max-margin models

The main idea of the max-margin for classification is to find the decision hyperplane that

maximizes the margin between instances of the two classes. Here “margin” is defined as the

distance from the closest instances to the decision hyperplane. The intuition is that among all

possible decisions, the max-margin decision has the best generalization ability. In other words,

it has the best chance to classify a future instance correctly. This intuition is proved to be true.

In fact, the idea has a strong foundation in statistical learning theory: [Cortes and Vapnik, 1995,

Vapnik, 1995] proved that the bound on generalization error is minimized by maximizing the

margin.

Figure 1 illustrates this idea. In Figure 1-left positive and negative examples can be perfectly

separated by many linear decision boundaries. However, as argued by [Cortes and Vapnik, 1995,

Vapnik, 1995], the optimal solution is the decision boundary that maximizes the margin between

positive and negative examples (Figure 1-right). Note that the decision hyperplane is determined

only by the examples on the margin hyperplanes (circled points in Figure 1-right). Hence, these

examples are called “support vectors”. In machine learning literature, Max-margin models for

classification are often referred by the term “support vector machines (SVM)”.
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Figure 1: Max-margin (support vector machines) idea. Left: many possible decisions; Right:

maximum margin decision.

2.1.2 Linear SVM

Now we will start with a simple case when data are linearly separable. Figure 1 illustrates a 2D

example of this case. Linear SVM can be formulated by the following constrained optimization

problem:

min
w,w0

R(w)

yi(wTxi + w0) ≥ 1 ∀i = 1, 2, . . . , N

where N is the number of examples in the training data, w is the weight vector of the model to be 

learned. w defines the direction of the decision boundary. w0 is the bias term, which defines the 

shift of the boundary. xi and yi ∈ {−1, 1} are feature vector and label, respectively, of instance i. 

R(w) is a regularization function, which is typically written in L2 norm in machine learning 

literature, but in general can be in L1 norm. For classification, a new instance x is assigned 1 

(positive) if wT xi + w0 > 0, otherwise -1 (negative).

     The above SVM formulation is called hard-margin SVM, because it requires all instances of 

the two classes to be linearly separable. However, in practice, it is often impossible to separate
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Figure 2: Soft-margin SVM for the linearly non-separable case. Slack variables ξi represent

distances between x1 and margin hyperplanes.

data perfectly with a linear boundary, as shown in Figure 2. To handle this case, [Vapnik, 1995]

relaxes the above requirement by allowing SVM to make mistakes, but mistakes are penalized in

the objective function. We have the following formulation of soft-margin SVM, also called the

primal form of soft-margin SVM:

min
w,w0

R(w) + C
N∑
i=1

ξi

yi(wTxi + w0) ≥ 1− ξi ∀i = 1, 2, . . . , N

ξi ≥ 0 (2.1)

Slack variables ξi represent distances between xi and margin hyperplanes. Note that ξi = 0 if

xi is located on the correct side of the margins, otherwise ξi > 0. ξi = max[0, 1− yi(wTxi + w0)]

is called the hinge loss. Constant C is a trade-off parameter that defines how much misclassified

examples should be penalized. In fact, hard-margin SVM is a special case of soft-margin SVM

with C set to positive infinity. Therefore, further in this document, the term “Support Vector

Machines” refers to soft-margin SVM.

Both hard and soft-margin formulations are convex optimization problems

[Hastie et al., 2009], which means that any local optimum is also the global optimum. This
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property is essential because it indicates that if we can find the best local solution, we are

guaranteed to have the best global solution. This is not the case for many other classification

methods (logistic regression, neural networks, etc.) [Hastie et al., 2009], where we may be

“trapped” in local optima and never find the global optimum.

2.1.3 Kernel SVM

Figure 3: Kernel SVM idea. Left: original 2D input space, positive and negative instances are not

linearly separable; Right: function φ mapping original input space to a higher-dimensional (3D)

feature space, where positive and negatives can be linearly separable.

Linear SVM with soft margins is a powerful classifier when the non-separability is caused

by a small number of outliers. However, if data are highly non-linear and are not separable by

a linear boundary, e.g., data in Figure 3 (left), then Linear SVM may not perform well. This

is often the problem for text and image data [Joachims, 1998]. Kernel SVM [Boser et al., 1992,

Theodoridis and Koutroumbas, 2008, Joachims, 1998] was designed to solve this problem. The

idea is to map features from the original space to a new higher dimensional space, where linear

relations may exist. Figure 3 illustrates this idea: Figure 3-left shows positive and negative

examples that cannot be separable in the 2D space; Figure 3-right shows that mapping φ of input

data from the original 2D space to a 3D space may introduce a linear boundary that can separate

examples of two classes (in this case the linear boundary is a surface).

Solving the optimization Equation 2.1 in the feature space is equivalent to solving the

20



optimization of the following Lagrangian function:

min
w,w0,α

L(w, w0,α) =
1

2
||w||22 −

N∑
i=1

αi{yi[wTφ(xi) + w0]− 1}

where α = {α1, α2, . . . , αN } is the vector of Lagrangian multipliers. Note that for the 

demonstration purpose we use L2 norm regularization ||w||2, which is widely used in the machine 

learning literature.

Setting the derivatives of L(w, w0, α) with respect to w and w0 equal to 0, we obtain the 

following two conditions:

w =
N∑
i=1

αiyiφ(xi)

0 =
N∑
i=1

αiyi

Plugging these conditions into L(w, w0,α) gives the dual form of the max-margin model:

max
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj)

0 ≥ αi ≥ C ∀i = 1, 2, . . . , N

N∑
i=1

αiyi = 0

where K(xi, xj ) = φ(xi)T φ(xj ) is a kernel function. For Linear SVM, K(xi, xj ) is the dot product 

of xi and xj : K(xi, xj ) = xi · xj .

Solving constrained optimization problems in high dimensional spaces is difficult and 

computationally expensive [Boser et al., 1992]. Therefore, kernel functions K(·, ·) should be 

designed so that SVM: (1) has the representation power of high dimensional spaces and (2) still 

be computationally efficient. This can be done by choosing a mapping from the input space X  to 

a new feature space F : x → φ(x), such that K(xi, xj ) = φ(xi) · φ(xj ) where xi, xj ∈ X . Thus, 

we implicitly compute dot product in a high dimensional space F , in terms of operations in the 

original low dimensional space X . This is called the “kernel trick”.
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Many different types of kernels have been designed by the research community. For example,

the two most widely used kernels are: (1) polynomial kernel K(xi, xj) = (c + xi · xj)p where

p ∈ Z+ is the order and c ≥ 0 is a constant; (2) radial basis functions (RBF) kernel K(xi, xj) =

exp(
−||xi−xj ||2

2σ2 ) where σ > 0 is the standard deviation.

2.1.4 Summary

In this section, we gave a brief review of support vector machines (SVM). More details

about theory and analysis of SVM can be found in [Cortes and Vapnik, 1995, Vapnik, 1995,

Hastie et al., 2009, Joachims, 1998].

2.2 Multi-class classification learning

In multi-class classification models, “multi-class” indicates that the number of the classes

is always greater than 2. Typically, these classes are treated equally, in other words, there is

no relationship of orderings or similarities among these classes. For example, for a three-class

classification model, the class labels may be represented as class 0, class 1 and class 2. Such

representation of class labels may mistakenly indicate to some people that class 2 is closer to class

1 than to class 0. However, the fact is that these three classes are dissimilar with each other without

any orderings. In the standard setting of multi-class classification, training data consist of examples

and corresponding labels (targets), which are given by a teacher (labeler). The goal is to learn a

model that can accurately predict labels of unseen future examples. Formally, given training data

D = {d1, d2, . . . , dN} where di is a pair of 〈xi, yi〉, xi is an input feature vector, yi is a desired

categorical output given by a teacher, the objective is to learn a mapping function f : X → Y such

that for a new future example x0 , f(x0) ≈ y0. Multi-class classification learning is also useful in

practice, for example, given historical clinical data, predict which exact disease a (future) patient

may have.

The exact form of the model f : X → Y , and the algorithms used to learn it

can be extended from the binary classification models in Section 2.1. Some methods
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for binary classification can be easily extended. For example, naive Bayes models

[Domingos and Pazzani, 1997] and decision trees (classification trees) [Breiman et al., 1984]

supports multi-class classification without modification, neural networks [Hastie et al., 2009,

Van Der Malsburg, 1986, Rumelhart et al., 1986, Cybenko, 1989] only need to modify the output

layer. In this section, we will describe multi-class support vector machine (MCSVM)

[Vapnik, 1998, Weston et al., 1999] and approximate multi-class support vector machine

(AMSVM) [He et al., 2012], which are two popular multi-class extensions of SVM discussed

in Section 2.1.1, in more details. Briefly, these two multi-class extensions decompose the

multi-class classification task into multiple binary classification tasks, and apply a binary SVM

[Cortes and Vapnik, 1995, Vapnik, 1995] for each task. Also, the kernel trick for binary SVM

[Hastie et al., 2009, Joachims, 1998] is compatible with these two multi-class extensions. We note,

that some of our new methods presented later in the thesis are based on these methods, so a review

of them should help one to understand better the following chapters of the thesis.

2.2.1 Multi-class support vector machine (MCSVM)

Our goal is to learn a multi-class classifier f : X → Y , where X is the feature space and

Y ∈ {1, 2, . . . , k} represents class labels of a data instance. Hence each labeled data entry Di

consists of two components: Di = 〈xi, yi〉, an input and a class label.

In multi-class support vector machine (MCSVM), we learn k binary support vector machine

jointly, one for each class. Briefly, MCSVM works by trying to assure for every training data

instance the projection of its assigned class label to be higher than the projection of any other

class. Therefore, (k − 1) constraints are derived for each labeled data instance, one for each class,

except for the assigned class label. The total number of constraints in MCSVM is thus O(kN),

where N is the number of labeled data instances. For each data instance, the projection from the

binary classifier of the class label should be higher than the projection from other classes. Formally,

we would like to get k projection mappings f1(·), f2(·), . . . , fk(·), such that for each data instance

xi, the projection fyi(xi) is greater than fl(xi) for l ∈ {1, 2, . . . , k} \ yi. To permit some flexibility,

we allow violations of the constraints but penalize them through the loss function. Therefore, the

multi-class support vector machine is formulated as follows:
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min
W,ξ

1

2

k∑
l=1

||wl||22 + C
N∑
i=1

∑
j 6=yi

ξi,j

(wyi − wj)
Tφ(xi) ≥ 1− ξi,j ∀i = 1, 2, . . . , N ∀j 6= yi

ξi,j ≥ 0 ∀i = 1, 2, . . . , N ∀j 6= yi (2.2)

where yi is the class label of xi and φ(·) is the projection of kernel space. W = {w1, . . . , wk} are 

parameters of the k binary one-vs-rest classifiers. N is the number of labeled instances.

Ξ = {ξ1, ξ2, . . . , ξN} are the slack variables for each constraint. For prediction, the class with

the highest projection value is selected as the predicted class.

2.2.2 Approximate multi-class support vector machine (AMSVM)

The approximate multi-class SVM (AMSVM) is an approximation of the standard multi-class

SVM (MCSVM) method in Section 2.2.1. In AMSVM the set of the constraints is merged and

replaced with one constraint that assumes that for each data instance the projection of the class

label is higher than the average projection for all the other classes. Via such averaging, the

number of constraints is significantly reduced: only one constraint is derived for each labeled data

instance. Therefore, the total number of constraints in AMSVM is reduced to O(N). Formally,

in the AMSVM with k classes, k binary SVMs f1(·), f2(·), . . . , fk(·) are trained jointly. For every

labeled instance 〈xi, yi〉, we try to assure the projection fyi(xi) of the class label yi should be

greater than the average projection 1
k−1

∑
l 6=yi fl(xi) of all the other classes l ∈ {1, 2, . . . , k} \ yi.

The optimization of AMSVM can be formalized as:

min
W,Ξ

1

2

k∑
l=1

||wl||22 + C

N∑
i=1

ξi

(wyi −
1

k − 1

∑
j 6=yi

wj)
Tφ(xi) ≥ 1− ξi ∀i = 1, 2, . . . , N

ξi ≥ 0 ∀i = 1, 2, . . . , N (2.3)
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where yi is the class label of xi and φ(·) is the projection of kernel space. W = {w1, . . . , wk} are 

parameters of the k binary one-vs-rest classifiers. N is the number of labeled instances.

Ξ = {ξ1, ξ2, . . . , ξN} are the slack variables for each constraint. For prediction, the class with

the highest projection value is selected as the predicted class. As shown in [He et al., 2012] the

performance of AMSVM is often comparable to the standard multi-class SVM (MCSVM).

2.2.3 Summary

In this section, we gave a brief review of two popular multi-class extensions of support vector

machine: multi-class support vector machine (MCSVM) and approximate support vector machine

(AMSVM). More details about theory and analysis of these two multi-class extensions can be

found in [Vapnik, 1998, Weston et al., 1999] and [He et al., 2012] respectively.

2.3 Multi-label classification learning

In multi-label classification models, “multi-label” indicates that the number of the labels is

always greater than or equal to 2. In the standard setting of multi-label classification, training data

consist of data examples, and each example corresponds to a label vector of multiple binary labels

(targets), which are given by a teacher (labeler). The goal is to learn a model that can accurately

predict all the binary labels in the label vector of unseen future examples. Formally, given training

data D = {d(1), d(2), . . . , d(N)} where d(i) is a pair of 〈x(i), y(i)〉, x(i) is an input feature vector, y(i)

is a desired label (output) vector of binary values given by a teacher (annotator), the objective is to

learn a mapping function f : X → Y , where X is the feature space and Y = {0, 1}k represents

label vector space of a data instance, such that for a new future example x(0) , f(x(0)) ≈ y(0).

Multi-label classification learning is also useful in practice, for example, given historical clinical

data, predict all the diseases that a (future) patient may have.

Multi-label classification can be treated as an aggregation of multiple binary classification

tasks with the same input feature vector for each data example. Multi-label classification can also

be treated as an extension of multi-class classification: in multi-class classification, each instance
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is associated with one single category out of all the categorical values; in multi-label classification,

each instance can be associated with any number of all the categorical values.

Again, the key to learning a multi-label classification model is the successful capture of the

hidden dependencies among the labels. Such hidden dependencies include the fact that some

labels may typically coexist. For example, an image with beach is often with ocean as well. Such

hidden dependencies also include the fact that some labels may typically be mutually exclusive.

For example, an image with beach is rarely with electronics. A successful capture of the hidden

dependencies helps the learning of the coexistence and mutual exclusion of the labels and can

substantially improve the performance of the multi-label classification model.

The exact form of the model f : X → Y , and the algorithms used to learn

it, can be directly extended from the binary classification models in Section 2.1, or the

multi-class classification models in Section 2.2, or probabilistic graphical models based on

directed acyclic graphs (DAGs) or undirected graphs. In this section, we will describe binary

relevance (BR) [Boutell et al., 2004, Clare and King, 2001], which is directly extended from

the binary classification models; labeling powerset (LP) [Tsoumakas et al., 2010], which is

directly extended from the multi-class classification models; conditional random field (CRF)

[Lafferty et al., 2001, Bradley and Guestrin, 2010, Naeini et al., 2015], which is extended from

probabilistic graphical models based on undirected graphs (a.k.a. undirected graphical models,

or UGMs); classifier chains [Read et al., 2009] and conditional tree-structured Bayesian network

(CTBN) [Batal et al., 2013, Hong et al., 2014, Hong et al., 2015], which are extended from

probabilistic graphical models based on DAGs (a.k.a directed graphical models, or DGMs).

Although we are not deriving new methods based on these methods, some of our methods

mentioned in this thesis can be combined with these methods, therefore it would be useful to

have a brief introduction to them.

2.3.1 Binary relevance (BR)

Our goal is to learn a multi-label classifier f : X → Y , where X is the feature space and

Y = {0, 1}k represents label vector space of a data instance. Hence each labeled data entry D(i)

consists of two components: D(i) = 〈x(i), y(i)〉, an input vector and a label vector.
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Binary relevance (BR) [Boutell et al., 2004, Clare and King, 2001] is a simple (perhaps the

most simple) multi-label classification model that learns k binary classifiers independently. More

formally, we would like to get k binary classifiers f1(·), f2(·), . . . , fk(·) such that for new

future instance x(0), fj(x(0)) ≈ y
(0)
j for any j ∈ {1, 2, . . . , k}. Such k binary classifiers

f1(·), f2(·), . . . , fk(·) are trained independently, in other words, for any j ∈ {1, 2, . . . , k}, fj(·)

is trained only on x(i) and y(i)
j for i ∈ {1, 2, . . . , N}.

Clearly, the limitation of binary relevance is that it totally ignores the hidden dependencies

among the labels, which is the key to learning a well-performed multi-label classification model.

2.3.2 Labeling powerset (LP)

Labeling powerset (LP) [Tsoumakas et al., 2010] is another simple multi-label classification

model that learns the powerset of k labels. More formally, there are 2k different outcomes for a

label vector y in the label vector space Y = {0, 1}k with k labels. Labeling powerset multi-label

classification model first constructs a one-to-one mapping g : Y = {0, 1}k → Z = {1, 2, . . . , 2k}

to map each outcome of a label vector into a categorical value, then learns a multi-class classifier

f : X → Z such that for a new future instance x(0), f(x(0)) ≈ g(y(0)).

Labeling powerset successfully captures the hidden dependencies among the labels by learning

the full-joint of the labels. However, the limitation is also obvious: the number of the categorical

values is exponential to the number of labels, which limits the scalability of this method. Also, this

method cannot learn the outcomes that are absent in the label vectors of the training data.

2.3.3 Classifier chain (CC)

Classifier chain (CC) [Read et al., 2009] is a directed graphical model. Briefly, CC learns a

linear chain to model the conditional likelihood over all the labels, where each label is dependent

on all its former labels on the chain. More formally, we would like to obtain a decomposition of

the likelihood P (y|x) =
∏

j P (yj|x, π(yj)), where π(yj) includes all the former labels of label yj

in the linear chain, such that for new future instance x(0), P (y(0)|x(0)) > P (y|x(0)) for any y 6= y(0).
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2.3.4 Conditional random field (CRF)

Conditional random field (CRF) [Lafferty et al., 2001, Bradley and Guestrin, 2010,

Naeini et al., 2015] is an undirected graphical model. Briefly, CRF learns an undirected

graph to model the pairwise dependencies between each pair of labels. Such undirected graph

can be a tree [Lafferty et al., 2001, Bradley and Guestrin, 2010] where the prediction of each

instance can be calculated in linear time complexity, or an arbitrary undirected graph requiring

approximation to reduce the time complexity for prediction [Naeini et al., 2015]. More formally,

we would like to obtain a projection mapping f(x, y) =
∏

j,l ψ(x, yj, yl)φ(x, yj), where ψ(x, yj, yl)

is the pairwise potential function for label yj, yl, and φ(x, yj) is the individual potential function

for label yj , such that for new future instance x(0), f(x(0), y(0)) > f(x(0), y) for any y 6= y(0).

2.3.5 Conditional tree-structured Bayesian network (CTBN)

Conditional tree-structured Bayesian network (CTBN) [Batal et al., 2013, Hong et al., 2014,

Hong et al., 2015] is a directed graphical model. Briefly, CTBN learns a directed tree

[Batal et al., 2013] to model the conditional likelihood over all the labels. More formally, we

would like to obtain a decomposition of the likelihood P (y|x) =
∏

j P (yj|x, π(yj)), where

π(yj) is the parents of label yj in the directed tree, such that for new future instance x(0),

P (y(0)|x(0)) > P (y|x(0)) for any y 6= y(0). CTBN can also be combined with ensembling methods

[Hong et al., 2014, Hong et al., 2015] which provides better performance on predictions.

By modeling the conditional dependencies via undirected or directed networks, multi-label

classification models extended from probabilistic graphical models can efficiently capture the

hidden dependencies among labels and train the models in polynomial time. Because of that,

multi-label classification models extended from probabilistic graphical models are gaining more

and more popularity in recent years.

2.3.6 Summary

In this section, we gave a brief introduction of four multi-label classification

models: binary relevance (BR) [Boutell et al., 2004, Clare and King, 2001],
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labeling powerset (LP) [Tsoumakas et al., 2010], conditional random field (CRF)

[Lafferty et al., 2001, Bradley and Guestrin, 2010, Naeini et al., 2015], classifier chain

(CC) [Read et al., 2009], and conditional tree-structured Bayesian network (CTBN)

[Batal et al., 2013, Hong et al., 2014, Hong et al., 2015]. More details about theory and analysis

of these multi-label classification models can be found in the referred papers of each model.

2.4 Learning to rank

Learning to rank [Liu, 2009, Mohri et al., 2012] is a sub-field of machine learning focused on

the construction of ranking models for information retrieval or machine learning systems. The

training data of ranking models typically consist of instances with some partial or total ordering

information specified on the data instances or labels. Such ordering information is typically

induced by giving a numerical or ordinal score for each data instance or label. The ranking model

aims to rank the future data instances or labels in a similar way to the rankings in the training data.

Regarding the type of ordering information provided by the teacher (labeler), the ranking

models can be categorized into three sub-categories: instance ranking [Joachims, 2002,

Radlinski and Joachims, 2005], label ranking [Vembu and Gärtner, 2011, Zhou et al., 2014], and

multi-label ranking [Zhou et al., 2014, Jung and Tewari, 2018, Bucak et al., 2009]. In this section,

we will give a brief introduction to these three sub-categories.

2.4.1 Instance ranking

In the standard setting of instance ranking models [Joachims, 2002,

Radlinski and Joachims, 2005], training data consist of examples and some partial or total

ordering information specified on the data examples, which are given by a teacher (labeler).

The goal is to learn a model that can accurately order the unseen future examples. Formally,

given training data D = {Xt, St}, where Xt = {x1, x2, . . . , xN} is the set of instances and

St ⊂
⋃
Z∈P(Xt)

GA(Z) is the set of partial ordering information on Xt, where P(·) denotes the

powerset and GA(·) denotes the automorphism group. The objective is to learn a mapping function
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f : X → R such that for new future examples xa and xb, the comparison between f(xa) and f(xb)

follows the partial ordering information regarding these two future examples.

2.4.2 Label ranking

In the standard setting of label ranking models [Vembu and Gärtner, 2011, Zhou et al., 2014],

training data consist of examples and some partial or total ordering information specified on the

labels of each example, which are given by a teacher (labeler). The goal is to learn a model that

can accurately order all the labels of the unseen future examples. Formally, given training data

D = {d1, d2, . . . , dN}, where di = 〈xi, Si〉 is a pair. xi is feature vector of the instance and Si ⊂⋃
Z∈P(Y ) GA(Z) is the set of partial ordering information on the label space Y = {1, 2, . . . , K},

where P(·) denotes the powerset and GA(·) denotes the automorphism group. The objective is to

learn a mapping function f : X × Y → R such that for a new future example x0, the comparison

between f(x0, yj) and f(x0, yl) follows the partial ordering information regarding these label j and

label l of this example.

2.4.3 Multi-label ranking

Again, multi-label ranking [Zhou et al., 2014, Jung and Tewari, 2018, Bucak et al., 2009] is

a learning problem where the goal is to not only identify relevant labels from a set of

predefined labels, but also to rank them according to their relevance to a data instance

[Zhou et al., 2014]. Consequently, multi-label ranking can be considered as a generalization of

multi-label classification and label ranking. In the standard setting of multi-label ranking models,

training data consist of examples and the total ordering information specified on all the relevant

labels of each example, which are given by a teacher (labeler). The goal is to learn a model

that can accurately find the relevant labels and order all the relevant labels of the unseen future

examples. Formally, given training data D = {d1, d2, . . . , dN}, where di = 〈xi, Si〉 is a pair. xi

is feature vector of the instance and Si ∈
⋃
Z∈P(Y ) GA(Z) is the total ordering information on the

relevant labels Z over the label space Y = {1, 2, . . . , K}, where P(·) denotes the powerset and

GA(·) denotes the automorphism group. Typically, the objective is to learn a mapping function

f : X × Y → R such that, for a new future example x0: (1) the comparison between f(x0, yj)
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and f(x0, yl) follows the total ordering information regarding these label j and label l of this

example if label j and label l are relevant labels; (2) f(x0, yj) > 0 should hold regarding label j

of this example if label j is a relevant label; (3) f(x0, yl) < 0 should hold regarding label l of this

example if label l is an irrelevant label. Overall, compared with label ranking we reviewed in 2.4.2,

multi-label ranking only enforces the orderings among the relevant labels.

In this thesis, we propose new multi-label classification models with permutation subsets.

We start by first defining and formalizing the problem of learning from permutation subsets

in multi-label settings. Then, we point out that such multi-label classification models with

permutation subsets is identical to multi-label ranking models. After that, we present an two-state

algorithm for learning the multi-label ranking model. The details of multi-label classification with

permutation subsets as multi-label ranking will be discussed in Chapter 7.

2.4.4 Summary

In this section, we gave a brief introduction of the three sub-categories of ranking

models: instance ranking [Joachims, 2002, Radlinski and Joachims, 2005], label ranking

[Vembu and Gärtner, 2011, Zhou et al., 2014], and multi-label ranking [Zhou et al., 2014,

Jung and Tewari, 2018, Bucak et al., 2009]. More details about theory and analysis of these

multi-label ranking models can be found in the referred papers of each model.

2.5 Reducing labeling efforts

By definition, supervised learning models rely on labels given in the training data, and in

practice, they often must be trained on a large number of labeled examples in order to perform

well. However, as mentioned in the Introduction, the process of labeling examples using subjective

human assessments faces one severe problem: it can be extremely time-consuming and costly,

which results in a limited number of labeled examples. Since supervised learning methods rely

on labeled examples, we need to find approaches to obtain more useful information (labels) with

lower cost and utilize them efficiently. Again, in this thesis, we focus on classification learning,

31



where our goal is to build classification models that can learn with smaller training data and make

a more accurate prediction on future unseen instances.

In this section, we give an overview of research works that are relevant to our solutions for

the above problems. First, we review active learning, which is a sub-field of machine learning

that aims to reduce labeling cost by selecting the most informative examples. Then we give an

overview of learning with enriched label-related feedback and its relevant research.

2.5.1 Active learning

Active Learning [Lewis and Gale, 1994] is a sub-field of machine learning, where the primary

goal is to reduce the cost of labeling examples. Active learning has been explored extensively

by the data mining and machine learning communities in recent years. In traditional “passive”

learning, the learner randomly picks examples from the database and requests labels for them.

However, in active learning, model training and data instance annotation process are interleaved.

Active learning sequentially selects and labels originally unlabeled instances that are most

informative and believed to have the greatest potential to improve the model. Such potential is

also called as the “informativeness” of an unlabeled instance.

There are multiple ways to assess the “informativeness” of an unlabeled instance

[Settles et al., 2008b]. Now we will summarize the most popular ones in this section.

2.5.1.1 Uncertainty sampling One popular (perhaps the most popular) strategy is uncertainty

sampling [Lewis and Gale, 1994]. The core idea of uncertain sampling is the selection of unlabeled

instances with the highest uncertainties. Here, high uncertainty indicates that the prediction of an

unlabeled instance is prone to change because the learning model fails to provide the prediction of

this unlabeled data with high confidence.

Uncertainty sampling has been widely combined with many classification scenarios. For

example, in binary classification problems, there are only two classes: class 0 and class

1. If the probabilistic predictions of class 0 and class 1 for an unlabeled instance are

similar (both close to 0.5), this unlabeled sample should be considered as uncertain. In

multi-class classification scenarios, three different standards are applied to measure uncertainty:
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(1) lowest confidence [Lewis and Gale, 1994, Settles et al., 2008b, Culotta and McCallum, 2005],

that queries the unlabeled instance with lowest maximum in predictions over all classes, and

(2) marginal confidence [Scheffer et al., 2001], that queries the unlabeled instance with lowest

discrepancy in its top two class predictions, and (3) information entropy [Settles et al., 2008b,

Hwa, 2001], that queries the unlabeled instance with highest information entropy [Shannon, 1948]

over predictions of all classes.

The main limitation of uncertainty sampling is that it typically becomes futile when combined

with enriched label-related feedback since such enriched label-related feedback implicitly provides

the uncertainty of a data instance. Therefore, none of our works on enriched label-related feedback

is combined with uncertainty sampling.

2.5.1.2 Query-by-committee (QBC) Another popular strategy is query-by-committee (QBC)

[Seung et al., 1992] that trains a committee of models and selects the unlabeled instance on which

the models disagree the most. Query-by-committee is inspired by the thesis of version space

[Mitchell, 1979]. Version space indicates all the learning models that provide the best performance

of the training data. A previous active learning strategy using version space is proposed by

[Cohn et al., 1996]. When an unlabeled instance comes, the learning models in the version space

will provide different predictions. If the predictions vary a lot, that is, the disagreement among

the predictions is high, it is better to ask the human labeler to annotate this unlabeled sample to

provide a certain label to eliminate such disagreement.

The active learning strategy above suffers from a practical concern that it is usually unfeasible

to enumerate all the learning models in the version space. [Haussler, 1989] shows that as the

size of version space can be exponential to the size of the training data. To solve this problem,

[Seung et al., 1992] proposed query by committee strategy. In query by committee, the version

space is substituted by a committee with multiple learning models. These learning models are

all trained over the training data, but with different configurations. When an unlabeled instance

comes, the learning models in the committee will provide different predictions. If the predictions

vary a lot, that is, the disagreement among the predictions is high, it is better to ask the human

labeler to annotate this unlabeled sample to provide a certain label to eliminate such disagreement.

Apparently, query by committee is quite similar to the previous active learning strategy. In fact,
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the committee acts as an approximation of the version space with only limited numbers of learning

models [Burbidge et al., 2007].

The main limitation of QBC is a potential bias the trained models introduced by bootstrapping

the dataset. Therefore, none of our works on enriched label-related feedback is combined with

QBC.

2.5.1.3 Expectation-based strategies Another family of more sophisticated querying

strategies is expectation-based strategies. Briefly, the expectation-based strategy calculates the

change in the model due to an unlabeled instance being assigned to one of the possible labels, and

weights the change by an estimate of its probability. The first expectation-based querying strategy

is expected model change [Tong and Koller, 2000, Settles et al., 2008b]. The model change is

measured regarding the change of the model parameters. However, a big change of the parameters

does not necessarily imply a big change in the models predictions. Therefore, this strategy typically

overestimates the “informativeness” of each unlabeled instance. Other representative strategies are

expected error reduction [Roy and McCallum, 2001] and variance reduction [Geman et al., 1992].

The first one seeks an example that would let it reduce the generalization error of the model. The

second one seeks an example that would minimize the prediction variance of the current model the

most.

The main advantage of expectation-based strategies is “knowledgeability”: by considering an

unlabeled instance as labeled, expectation-based strategies can infer how the model may change

in the future. Neither uncertainty sampling nor QBC can achieve this. However, the main

disadvantage of expectation-based strategies is low efficiency: typically we have to consider each

unlabeled instance to be labeled and each possible label this unlabeled instance may have. What

makes things worse for models with enriched label-related feedback, the number of possible labels

for each unlabeled instance is typically large. Therefore, reasonable approximation techniques are

also preferred for expectation-based strategies.

In this thesis, we propose new expectation-based active learning strategies per form of enriched

label-related feedback. We also propose multiple techniques to reduce time consumption. The

details of these expectation-based strategies will be discussed in Chapter 3 to 7.
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2.5.1.4 Active group learning (AGL) Recent active learning work focuses on more

sophisticated querying strategies that go beyond standard instance-based label-oriented queries.

Active group learning (AGL) [Luo and Hauskrecht, 2018a, Luo and Hauskrecht, 2018b] is one

approach that is gaining popularity. Instead of the instance-based labels, AGL constructs queries

for subpopulations (groups of examples) the human annotator labels with class proportions.

Briefly, AGL is based on the following assumptions: (1) large groups should be split first as they

represent a broader input feature space. (2) impure groups (regarding class proportions) should

be prioritized as well. (3) the refinement of the above two types groups offers more labeling

information, and thus they give rise to faster model change rate and model convergence.

The advantage of the approach is that multiple instances are labeled jointly with just one query.

However, AGL is incompatible with enriched label-related feedback, since it can only construct

queries for instance groups, yet our classification models with enriched label-related feedback

provide feedback for individual instances. Therefore, none of our works on enriched label-related

feedback is combined with AGL.

2.5.2 Learning with enriched label-related feedback

Learning with enriched label-related feedback is a relatively new approach for improving

the classification learning process. In general, enriched label-related feedback covers additional

information provided by a human annotator related to the class/label choice. The idea of learning

with enriched label-related feedback is based on a simple premise: enriched label-related feedback

can often be provided by human annotators at an insignificant cost when compared to the cost of

instance review and label assessment.

In this section, we will give a brief review of different forms of enriched label-related feedback:

probabilistic scores, Likert-scale feedback and ordered class sets.

2.5.2.1 Probabilistic scores Perhaps the most intuitive form is a probabilistic score, which has

been explored in the context of binary classification problems. Generally speaking, probabilistic

scores reflect the different degrees of certainty in binary labels. If a surgeon determines the

probability of the emergence of some disease is 70%, the probabilistic score of this event is 0.7.
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Such probabilistic scores provide much more refined information regarding the confidence/belief

of the class label compared with merely class label. For example, in a raining prediction task, if

the output is just a binary label indicating there will be rain, people may still hesitate whether to

bring umbrellas or not. However, if the output indicates the precipitation rate is 90%, people may

feel more assured that there will certainly be a rain, and they may determine to bring umbrellas; if

the output indicates the precipitation rate is only 60%, some people may take the risk rather than

bring umbrellas.

It seems that probabilistic scores are easy to incorporate for learning: they look straightforward

and precise. On the contrary, probabilistic scores are often corrupted by noise. That is, evaluations

from human annotators are often mixed with their subjective prejudice which varies by time. For

instance, an annotator in a delighted mood may label with better scores. An annotator may turn

upset by previous labels, thus changing criteria of current annotation mission. Such issue has been

well documented in literature [Juslin et al., 1998, Griffin and Tversky, 1992].

To learn a robust binary classification model with probabilistic scores, [Nguyen et al., 2011a,

Nguyen et al., 2011b, Nguyen et al., 2013] developed a method that focuses on the pairwise

orderings among all data examples. Basically, this method learns a parametric discriminative

model by attempting to satisfy pairwise score orderings among all data examples while ignoring

their exact probabilistic scores. The limitation of the approach is that the number of constraints the

orderings induce is quadratic in the number of data examples. Another work by [Thiel, 2008]

explored a framework where probabilistic scores are derived from multiple annotators with

potential disagreements. This work, however, does not consider any noise. More recently,

[Peng and Wong, 2014, Peng et al., 2014] proposed a new non-parametric algorithm for predicting

the probability associated with binary classes based on the Gaussian process regression. The

method defines the mean function of the Gaussian process to be 0.5 and the covariance function

using the Radial basis kernel. The model lets one to predict the probability pi for any new

point xi by calculating the posterior distribution of the Gaussian process. The limitations of the

approach are the design of the covariance function (restricted to the radial basis functions), and the

non-parametric nature of the model when it is applied to prediction tasks.

In this thesis, we propose new binary and multi-class classification models with a probabilistic

score. Our new classification models can utilize probabilistic scores effectively: it significantly
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reduces the annotation effort. Our models are also robust against the noise in probabilistic

scores and efficient: by the number of constraints introduced by probabilistic scores is

only linear in the number of data instances, which is a significant improvement compared

with [Nguyen et al., 2011a, Nguyen et al., 2011b, Nguyen et al., 2013]. The details of binary

classification with probabilistic scores will be discussed in Chapter 3; the details of multi-class

classification with probabilistic scores will be discussed in Chapter 5

2.5.2.2 Likert-scale labels In binary classification scenarios, Likert-scale labels are attached to

traditional binary labels. Instead of either 0 or 1, the values of Likert-scale labels come as multiple

Likert-scale levels. Such Likert-scale feedback also provides additional refined information

regarding the class label compared with merely class label. For example, when diagnosing whether

a patient is suffering from a disease, if the review is just a binary label indicating an infection, the

patient may get lost whether to accept a therapy or to test further whether s/he is truly infected.

However, if the review is a Likert-scale feedback, say 4 out of 6 indicating “probably infected”,

the patient may prefer to test further since the physician is not so confident of the infection; if the

Likert-scale feedback is 6 out of 6 indicating “definitely infected”, the patient may prefer to accept

a therapy instantly. Therefore, we deeply expect higher performance from Likert-scale labels with

the same number of annotated data samples. Likert-scale labels from the human annotators reflect

the different degrees of certainty in binary labels. The notation of Likert-scale labels is based on

Likert-scale, a universal multi-level rating scale for psychologic research, denoting the degrees of

certainty in ordinal levels. For example, if a surgeon determines the probability of the emergence of

some disease is 70%, the Likert-scale label of this event at a five-level Likert-scale scale from 0 to 4

should be 3. Another foundation for the intuition of Likert-scale labels is the consideration of cost.

It is widely believed that a human annotator will usually assess a data sample comprehensively with

splitting a data sample into multiple aspects for further assessments and weighing them together

for a final evaluation. In other words, even when a human annotator is executing a mission of only

a binary annotation, a comprehensive evaluation, which is very similar to a Likert-scale label, has

already formed in mind. Thus, the cost of additional Likert-scale label annotation for traditional

binary labels is negligible.

In this thesis, we propose new binary classification models with Likert-scale labels. We use
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similar techniques with probabilistic scores: the Likert-scale labels naturally split the range of

probabilistic scores into multiple consequent and non-overlapping bins, and naturally provide

consistent orderings for learning an ordinal regression model. The details of binary classification

with Likert-scale labels will be discussed in Chapter 4.

2.5.2.3 Ordered class set (OCS) Ordered class set (OCS) makes sense in multi-class

classification scenario. Basically, an OCS defines an ordered subset of classes that represent

choices that are likely (considered) for labeling the instance and their priority. An OCS may

vary in size and includes classes that are considered to be viable class alternatives. Classes not

in the OCS are considered to be unimportant or negligible. For example, in a four-class scenario,

the OCS 〈3, 4〉 indicates that the annotator believes class 3 to be the most likely and class 4 to be

the second most likely choice, while other two classes 1 and 2, are unimportant. Such ordered

class sets provide more information indicating the weak connections between the instance and the

alternative classes. For example, in an animal recognition task where each instance is a silhouette

of an animal, if the output is just a class label indicating this animal is a cat, people may not get

any other information of this cat. However, if the output indicates this animal is a cat and still of

some probability a tiger, people get the information that, this cat may be larger or stronger than

common cats so the annotator set tiger as an alternative choice. Another example is differential

diagnosis, if the diagnosis is just a class label showing the patient is suffering from disease A, the

patient will obtain no information apart from disease A, and only test further or take a therapy

regarding disease A. However, if the diagnosis also comes with an alternative choice that s/he

might be suffering from disease B instead of disease A, the patient may also prefer to test further

regarding disease B. The problem of learning multi-class classification models from OCS is a new

open problem. In this thesis, we propose a multi-class classifier that learns from OCS in addition to

class labels. That is, each data instance is associated with an OCS of likely classes in an descending

order regarding their relevance to the data instance.

In this thesis, we propose new multi-class classification models with OCS. We start by first

defining and formalizing the problem of learning from OCS in multi-class settings upon AMSVM.

After that, we present an algorithm for learning the multi-class classification model from such OCS

feedback. The details of multi-class classification with OCS will be discussed in Chapter 6.
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2.5.2.4 Permutation subset Permutation subset makes sense in multi-class classification

scenario. Instead of a label vector, each data instance is associated with a permutation subset,

a totally ordered subset over all the labels indicating the total orderings of the relevant labels of

this instance according to their confidences. The labels not in the permutation subset are considered

irrelevant to the instance. More formally, the permutation subset S(i) reflects the rankings of the

relevant labels in terms of their importance to the instance among all theK labels. The permutation

subset S(i) is formed by a non-empty subset of K labels indicating the descending ordering of the

relevant labels. The labels not in the permutation subset are considered irrelevant to the instance by

the annotator. For example, in a 4-label setting, a permutation subset 〈3, 2〉 indicates the 3rd label

is the most relevant to the instance, the 2nd label is the second most relevant, and the other two

labels are irrelevant. Such permutation subsets provide more information indicating the strongness

of the connections between the instance and the labels. For example, when recognizing the genres

of a song, if the output is just a label vector indicating this song is both rock and jazz, people may

get confused how to credit its melody and pitches. However, if the output is a permutation subsets

indicating this song is obviously rock while may also be jazz, people may tend to credit its melody

and pitches as a rock music while only slightly credit its jazz element just as a spice. The problem

of learning multi-label classification models from permutation subsets is a new open problem.

In this thesis, we propose a two-stage multi-label ranking pipeline that learns from permutation

subsets with two stages: a multi-label classifier finding the relevant labels and the dependencies

among the labels, and an auxiliary multi-label ranker which ranks the relevant labels. The details

of our two-stage multi-label ranking pipeline incorporating permutation subsets will be discussed

in Chapter 7.
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3.0 Active Learning of Binary Classification Models

from Probabilistic Scores

3.1 Introduction

The work covered in this chapter was accepted and published in the 2017 conference of Florida 

Artificial Intelligence Research Society (FLAIRS) [Xue and Hauskrecht, 2017b]. In this chapter, 

our solution to reduce annotation effort on binary classification models seeks to advance a relatively 

new machine learning approach proposed to address the sample annotation problem: learning 

with probabilistic scores [Nguyen et al., 2011a, Nguyen et al., 2011b], in which each instance is 

associated with a probabilistic score reflecting the certainty or belief of human annotators in the 

specific c lass l abel, s uch a s, a  p robability t he p atient s uffers f rom a  s pecific di sease. A more 

ubiquitous example is the assessment of students, where such assessment in percentage can be 

treated as a probabilistic score. The benefit of probabilistic scores is that they let us distinguish 

data instances that are strong, weak or marginal representatives of a class, and when properly used 

in the classification training phase they can help us learn better classification models with a smaller 

number of labeled samples.

However, the caveat of learning from such probabilistic scores is that humans are unable to 

give consistent probabilistic assessments; a phenomenon well documented in psychology and 

decision making literature [Juslin et al., 1998, Griffin and Tversky, 1992]. In such a case, learning 

methods that are robust to “noisy” probabilistic scores are necessary. [Nguyen et al., 2011a, 

Nguyen et al., 2011b, Nguyen et al., 2013] address the problem by using probabilistic scores 

to first d etermine t he r elative o rder o f e xamples i n t he t raining d ata a nd t hen b uild the 

final c lassification mo del by  co nsidering al l pa irwise or derings am ong th em [Joachims, 2002, 

Herbrich et al., 1999]. They showed this approach is more robust to the noise in probabilistic 

scores than regression methods trying to directly fit probabilities. However, the limitations of their 

approach is that (1) the number of pairwise orderings one aims to satisfy is quadratic in the number 

of data points in the training data, and (2) all orderings are treated equally, that is, orderings induced 

by data points with smaller differences in probabilistic scores are treated equally to orderings with
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larger differences.

The annotation effort can be further reduced via active learning [Lewis and Gale, 1994,

Settles, 2010, Roy and McCallum, 2001] in which data instances are annotated sequentially

one-by-one. Briefly, by smartly choosing the examples to be annotated next we expect to reduce the

number of examples necessary to train a high quality classification model. In general, we seek to

annotate the most informative data instance that helps to improve the quality of the classification

model. While there are many different strategies for scoring and selecting unlabeled instances

in the common binary classification models these either do not apply or are not optimized for

probabilistic scores. We propose expected model change (EMC) strategy for binary classification

models from probabilistic scores, which estimates the expected change on the prediction of the

model for each unlabeled instance and possible probabilistic scores, then use it to select data

instances that may help the model the best. To prevent the re-training of “add-one” models when

adding an unlabeled instance and a possible probabilistic score into the labeled data, which is

typically inefficient and required for traditional EMC strategy, we also train the add-one models

incrementally from the current model rather than from scratch, which remarkably reduces the time

consumption.

In this chapter, we first show how one can modify the all-pair problem formulation through

binning where constraints within each bin are ignored and only constraints among data points in

the different bins are enforced. This leads to a smaller number of pairwise constraints to satisfy

and exclusion of constraints that are more likely corrupted by the noise. Second, we reformulate

the problem of satisfying constraints among data points in different bins as an ordinal regression

problem and solve it using ranking-SVM [Joachims, 2002, Herbrich et al., 1999] defined on these

bins [Chu and Keerthi, 2005]. This reformulation further reduces the number of constraints one

has to satisfy leading to a more efficient solutions where the number constraints to satisfy is linear

in the number of samples.
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3.2 Methodology

We start by first defining and formalizing our learning problem. After that we review

an algorithm proposed by [Nguyen et al., 2011a, Nguyen et al., 2011b] for learning the binary

classification model from data enriched with probabilistic scores, and gradually modify it to make

it (1) more robust to noise and (2) more efficient to solve. Finally, we propose an expected model

change active learning strategy and combine it with our binary classification model.

3.2.1 Problem description

Our objective is to learn a binary classifier f : X → Y , where X is an input (feature) space

and Y = {0, 1} represents class labels one can assign to individual input instances. We want to

learn the classifier, starting from an unlabeled dataset DU that consists of input instances only. The

labels to examples are assigned by a human annotator. In this chapter, we assume that in addition

to binary {0, 1} labels defining Y we also obtain probabilistic score: a probability pi reflecting

annotator’s belief the example xi belongs to class 1. Hence each labeled data entry di we can learn

from consists of three components: di = (xi, yi, pi), an input, a class label and an estimate of

the probability of class 1. For example, if x is a patient and y denotes the presence or absence

of a disease or some adverse condition that is based on physician’s evaluation of the patient, the

probability pi captures the physician’s belief the patient indeed suffers from the condition. The

human-label assessment, especially the probabilistic score part, may not be perfect. This problem

is well documented and was discussed in Section 2.5.2.1.

3.2.2 Method for learning with probabilistic scores

The approach in this chapter is motivated by the model proposed by [Nguyen et al., 2011a,

Nguyen et al., 2011b] that is more robust to the noise in probabilistic scores. Briefly, instead of

fitting the precise probabilities, it models the relation between probabilistic assessments in terms

of pairwise order constraints of any two data entries in the labeled data, and uses them to drive the

construction of a binary classifier.

To explain the approach in more depth, let us consider a function f(xi) = wTxi allowing us
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to discriminate between data entries of class 0 and class 1 after picking an appropriate threshold

value. Using the probabilistic scores one way we can learn the function is by fitting the examples

and probabilistic labels directly via regression. However, because regression is sensitive to the

noise in probabilistic scores, [Nguyen et al., 2011a, Nguyen et al., 2011b] propose to learn this

function from pairwise constraints induced by the probabilities. Briefly, if any two data entries xj

and xk in the training data satisfy pj > pk, we expect the ordering function will preserve the order,

that is f(xj) > f(xk) or f(xj)−f(xk) = wT (xj−xk) > 0. The approach in [Nguyen et al., 2011a]

aims to satisfy (pairwise) constraints for all pairs of examples in the training data. Since in practice

some constraints may be violated, the authors’ limit the number of pairwise constraint violations

by using the pairwise-constraint loss function that is incorporated in the following optimization

problem for finding the discriminative model [Nguyen et al., 2011a]:

min
w,w0,η,ξ

1

2
||w||22 +B

N∑
i=1

ηi + C
N−1∑
j=1

N∑
k=j+1

ξj,k

yi(wTxi + w0) ≥ 1− ηi ∀i

wT (xj − xk) ≥ 1− ξj,k ∀j, k(pj > pk)

ηi, ξj,k ≥ 0 ∀i, j, k

where i = 1, 2, . . . , N , j = 1, 2, . . . , N−1 and k = j+1, j+2, . . . , N index entries in the training

data. w0 defines the bias term and together with w it defines the binary decision boundary for the

model. The first term in the objective function: wT w
2

defines a regularization penalty, the second

term (single sum) defines the hinge loss for all examples and their binary labels, and the third

term (double sum) defines the pairwise-constraint loss function for pairs of probabilistic scores. ηi

are slack variables defining the hinge loss, and ξj,k slack variables reflecting individual constraint

violation penalties for probabilistic score pairs pj > pk. Finally B and C are constants weighting

the different loss and regularization terms in the objective function. The optimization will find

the weights w and w0 and the corresponding discriminant function that violates the minimum

constraints.
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3.2.3 Reducing the number of constraints via binning

The number of probabilistic score constrains in the above problem formulation isO(N2), more

precisely N(N−1)
2

. This negatively affects the efficiency of its solution. In this work we study

binning to alleviate the problem.

The gist of the binning approach is that we divide the instances into several consequent,

non-overlapping bins according to their probabilistic scores. The constraints for pairs of instances

that fall into the same bin are then ignored; the constraints among instances in different bins are

kept. One reason for applying this approach is that by binning we are more likely to remove

constraints for instances with smaller probabilistic score differences, while preserving constrains

for instances with larger probabilistic score differences. This is important since the noise in

probabilistic scores (due to human variation in probabilistic score assessment) is more likely to

flip the order of instances with small probabilistic score difference than the order of instances with

larger probabilistic score difference. Hence the net effect of the binning is (1) the reduction in

the number of constraints, as well as, (2) the selection of constraints that are more likely to be

correct in terms of instance ordering. However, we would like to note that even with binning, the

number of pairwise constraints in the formulation remains quadratic or O(N2). In the following,

we develop a more efficient solution based on the ordinal regression that significantly improves the

number of constraints one has to satisfy while learning the model.

The idea of binning is to satisfy constraints only among entries placed in the different bins.

Optimally we would like to have data entries that are in the same bin according to its probability

label fall into the same bin also after the projection. We can use this intuition to reformulate the

optimization problem as an ordinal regression problem [Chu and Keerthi, 2005]. Briefly we want

to find the function f(x) = wTx that puts the data points into bins according to their probabilistic

scores. We can achieve this by having every example x project on the correct side of each bin

boundary. For example, if the example x is located in ith bin, then after the projection, f(x) should

be smaller than the lower margin (boundary) of bin j in the projected space, whenever i < j. In

general, assuming m bins labeled from 1 to m, bin boundaries b1, b2, . . . bm−1 separating them in

the projected space, and bin function bin(pi) that maps the probability to the bin number (lowest

probability maps to lowest number), then, after the projection, the example xi with probabilistic
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score pi should project to value smaller than bj whenever bin(pi) ≤ j, otherwise its value should

be larger than bj . Overall, for N data entries and m boundaries there are (m − 1)N constraints,

one for each data entry/boundary pair. To guarantee the robustness of our model against noise

in probabilistic scores, we allow violations of constraints by penalizing the loss function of

sample/boundary pairs. By adding the constraints for binary class labels, we can formulate the

following optimization problem:

min
w,w0,b,η,Ξ

1

2
||w||22 +B

N∑
i=1

ηi + C

m−1∑
j=1

N∑
i=1

ξj,i

yi(wTxi + w0) ≥ 1− ηi ∀i

wTxi − bj ≤ ξj,i − 1 ∀i, j(bin(pi) ≤ j)

wTxi − bj ≥ 1− ξj,i ∀i, j(bin(pi) > j)

ηi, ξj,i ≥ 0 ∀i, j

where j = 1, 2, ..., m − 1 indexes bin boundaries in b, and i = 1, 2, ..., N indexes data entries. The 

first term in the objective function is the regularization term, the second term (single sum) defines 

the hinge loss with respect to binary labels, and the third term (double sum) defines the bin-

constraint loss function. ηi and ξj,i are slack variables permitting violations of binary class and 

probabilistic score bins respectively. B and C are constants weighting the objective function terms. 

Again, this optimization yields a discriminant function f(xi) = wT xi + w0 that tries to minimize 

the number of violated constraints, but the number of constrains is reduced to O(mN) as 

compared to O(N2) for the pairwise-ordering methods (with or without the binning).

3.2.4 Choosing the best bin number

One question that remains open is how to define bins and how to choose 

their number. To answer this question, let us first revisit our ordinal-regression-based 

method and pairwise-ordering-based classifier.

In our pairwise-ordering-based method, for a probabilistic score, we enforce the pairwise 

ordering between it and each probabilistic score. In our ordinal-regression-based method, for a
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probabilistic score, we enforce the pairwise ordering between it and each bin boundary. Therefore,

ordinal-regression-based method can be treated as an approximation of pairwise-ordering-based

method: the pairwise-ordering-based method still considers each probabilistic score in the

same bin, while the ordinal-regression-based method considers all the probabilistic scores in

the same bin as an entity. In other words, pairwise-ordering-based method still considers

the probabilistic-score distribution of each bin, while the ordinal-regression-based method

approximates the probabilistic-score distribution of each bin as a uniform distribution. That

is, the ordinal-regression-based method approximate the probabilistic-score distribution in the

same way as histogram. The relations among pairwise orderings, ordinal regression, actual and

histogrammed probabilistic-score distribution are illustrated in Figure 4.

Figure 4: Relations among pairwise orderings, ordinal regression, actual and histogrammed

distribution on probabilistic scores (soft labels).

One possible solution to define the bins is to use an equal-distance binning that splits the range

of values (in our case probabilistic-score values) equally. Another possibility choose bins of equal

size. Since the ordinal-regression-based method approximates the probabilistic-score distribution

of each bin as a uniform distribution, equal-distance binning may not be a good choice: if there

are too few examples in one bin, the probabilistic-score distribution of this bin may not be well

estimated. Therefore, in this work, we use equal-size binning, that is, the bin boundaries are built

such that each bin covers approximately the same number of examples.

Another challenge is to choose the number of bins. The caveat here is that the number of

bins may affect the quality of the result. If we use N − 1 bins where each bin only contains

one data sample, the optimization problem is similar to our pairwise-ordering-based method with

O(N2) constraints. On the other hand, if we only use two bins, the bin/sample pairwise ordering
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is equivalent to binary classification. The optimal bin choice is somewhere in between these

two extremes. One approach to select the number of bins is to use the internal cross-validation

approach. Another is to use a heuristic function. Since the ordinal-regression-based method

approximate the probabilistic-score distribution in the same way as histogram, it is desired that

the approximate distribution after binning is close to the actual probabilistic-score distribution.

This can be achieved by Freedman-Diaconis rule [Freedman and Diaconis, 1981] for histogram,

which minimizes the mean squared difference between the histogram distribution and true data

distribution. Briefly, [Freedman and Diaconis, 1981] determines that the number of bins for N

examples should follow floor( 3
√
N) trend. In this subsection, we analyze this heuristic function

and compare it to the internal cross-validation approach.

Figure 5: Average AUROC difference for two versions of the ordinal-regression-based method on

six datasets.

To show how close these two approaches are, Figure 5 plots average differences in AUROC

scores for the cross-validation and heuristic approaches on the housing data (with three levels of

noise) and three HIT datasets. Clearly the differences in performance across all these experiments

are very small, suggesting the our heuristic function based on [Freedman and Diaconis, 1981]

a good choice for determining the number of bins. In the remaining parts of this paper, we

always apply this heuristic function to find the optimal bin number for our ordinal-regression-based

method.
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3.2.5 Active learning

The next challenge is to embed the above learning algorithm in a practical active learning

framework. The heart of any active learning method is a strategy that is used to select examples

to be queried next. In this work, we propose and experiment with a strategy called expected

model change (EMC) [Tong and Koller, 2000, Settles et al., 2008b] that evaluates and measures

the potential of an unlabeled data instance to change the model by estimating its impact on instance

predictions. Our expected model change (EMC) also uses a Bayesian posterior to calculate the

expectation.

We can let the unlabeled instance to be added into the current model as 〈x+, y+, p+〉 triplet,

where p+ is one possible probabilistic score the example can be assigned to and y+ is the

corresponding class label. However, in this subsection, since the classification model are trained

on m bins rather than exact values, the N different probabilistic scores from the training data

actually split the range of the probabilistic scores [0, 1] into m ordinal categories; the discriminant

hyperplane of binary classes also splits the probabilistic score range into two ordinal categories.

Therefore, the probabilistic score range can be split into m + 1 ordinal categories, where any

probabilistic score p+ in the same category have the same class label y+ and the same pairwise

ordering relationship with the existingm−1 bin boundaries in the training data, eventually leading

to the same add-one model. In this section, instead of focusing on the exact value of p+ and y+,

we only need to focus on the corresponding ordinal category c+ of p+ and y+.

To select the unlabeled instance with the highest expected model change, we need to propose

efficient calculation of two quantities: (1) the model change when given an ordinal category; (2)

the expectation of model change over the joint distribution of the class label and probabilistic

score. To prevent the re-training of “add-one” models when adding an unlabeled instance and an

ordinal category into the labeled data, which is typically inefficient and required for traditional

EMC strategy, we also train the add-one models incrementally from the current model rather than

from scratch, which remarkably reduces the time consumption.

3.2.5.1 Expected model change Briefly, the expected model change (EMC)

[Tong and Koller, 2000, Settles et al., 2008b] of an unlabeled sample x can be measured as

48



follows: Suppose that, for the labeled data L, we have already trained a model fL. For an

unlabeled instance x+, there are m + 1 possible ordinal categories. For each possible ordinal

category c+, if we add 〈x+, c+〉 into L, we will obtain an add-one model fL∪〈x+,c+〉. The model

change of fL∪〈x+,c+〉 compared with fL is denoted as δ(x+, c+). Since there are m + 1 possible

ordinal categories, we will havem+1 performance changes δ(x+, c+) where c+ = 1, 2, . . . ,m+1,

each corresponding to one add-one model. The expected model change ∆(x+) is then calculated

as:

∆(x+) =
m+1∑
c+=1

P (c+|x+)δ(x+, c+)

3.2.5.2 Model change To measure the model change δ(L, 〈x+, c+〉) for an unlabeled example

x+ and one possible ordinal category c+, we measure the model change as the discrepancy of

the categorical predictions ||cat[g(xj)] − cat[g+(xj)]||, where cat(·) returns the ordinal category

ranging in {1, 2, . . . ,m + 1} of the model output; g(·) and g+(·) are the models before and after

〈x+, c+〉 are added, respectively. By considering every unlabeled example, the model change

δ(L, 〈x+, c+〉) can be calculated by summing its impact over the unlabeled data as:

δ(L, 〈x+, c+〉) =
∑
j∈U

||cat[g(xj)]− cat[g+(xj)]||

where j indexes all examples in the unlabeled data U .

3.2.5.3 Distribution of ordinal categories After calculating performance changes

δ(L, 〈x+, c+〉) for all possible ordinal categories c+, we also adopt a Bayesian method to

estimate the distribution of m + 1 ordinal categories. More formally, let x+ be an unlabeled

instance we are considering to query and k = cat[g(x)+] be the predicted ordinal category

the instance falls into based on g. Our objective is to estimate the probability distribution

(P k
1 , P

k
2 , . . . , P

k
m+1) for category k, which represents the probability of an example predicted

in category k to be actually labeled to one of the m + 1 categories. One way to estimate this

probability would be to use the maximum likelihood approach and calculate the probabilities from
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counts of labeled categories qk1 , q
k
2 , . . . , q

k
m+1 in L that are predicted to fall into category k, and

by assuming they follow a multinomiall distribution with parameters (P k
1 , P

k
2 , . . . , P

k
m+1). We

estimate the posterior distribution of (P k
1 , P

k
2 , . . . , P

k
m+1) to prevent the bias. we use a Dirichlet

prior which is the conjugate choice for the multinomial distribution. Since we do not have any

prior information about the distribution of labeled categories in the predicted category, we choose

Dirichlet(1, 1, . . . , 1) where all labeled categories are assigned the same prior probability. Given

the conjugate prior, the posterior of (P k
1 , P

k
2 , . . . , P

k
N+2) follows a Dirichlet distribution:

(P k
1 , P

k
2 , . . . , P

k
m+1) ∼ Dirichlet(1 + qk1 , 1 + qk2 , . . . , 1 + qkm+1)

Given the posterior distribution, we can approximate the probability P (c+|x+), that is, the

probability that x+ is assigned label c+, by the expected value of E(P k
c+) from the posterior

distribution:

P (c+|x+) = E(P k
c+) =

1 + qkc+

m+ 1 +
∑m+1

l=1 qkl

3.2.5.4 Incremental training of add-one models Another critical question is the running time

complexity to obtain an add-one model g+ after adding an unlabeled sample x+s and possible

ordinal category c+ into labeled data. In this section, we adopt the sequential minimal optimization

algorithm by [Platt, 1999] for our SVM-based classification models. If we train the add-one model

from scratch, the time complexity is O(K2) where K = mN is the number of constraints, which

is linearly proportional to the bin number and labeled instance number. Since, in order to select

the unlabeled example to be labeled next, we need to obtain an add-one model for each unlabeled

example and each possible ordinal category label, the total time complexity is O(K2m|U |) =

O(m3N2|U |) (|U | is the size of the unlabeled data), which is extravagant and does not scale well

as the size ofN grows. To solve this problem, instead of starting from scratch, we always start from

the current model g to train the add-one model g+, which remarkably reduces the time complexity

of training one add-on model into O(K) = O(mN). Therefore, the total time complexity of

training all the add-one models for the current model g is reduced to O(Km|U |) = O(m2N |U |).
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3.3 Experiments and results

We test our approach on both synthetic and real-world data. The first set of experiments uses

data from several UCI regression data sets which we transform to probabilistic score problems.

We use these data to show the performance of the methods when probabilistic scores are corrupted

with the different level of noise. The second experiment works with real-world clinical data with

true (human assessed) probabilistic labels. Finally, we test our active learning strategy on synthetic

data.

3.3.1 Experiments of probabilistic scores on synthetic UCI data

In this part we adapted one UCI regression data set (Housing) and three UCI ordinal

classification data sets (Cancer, Wine Red, Wine White) as follows. For the UCI housing regression

data set we normalized the outputs ranging in R and reinterpreted them as probabilistic scores.

We also defined a binary class threshold over the probabilistic scores to distinguish class 0 from

class 1. For example, the outputs in Housing data set represents the attractiveness of houses to the

consumers. In this case, we define two classes: houses with high attractiveness (class 1) and houses

with low attractiveness (class 0). We use 30% of data entries with top score to define class 1, the

rest are assigned to class 0. The UCI ordinal classification data sets come with multiple classes

and full-order relations among classes. We generate probabilistic labels by evenly normalizing the

class labels according to the total number of classes. The binary thresholds can be set according

to the meaning of ordinal classes. For example, Breast Cancer data set contains six ordinal

classes {1, 2, 3, 4, 5, 6}, where {1, 2} are healthy and {3, 4, 5, 6} represent the different stages of

malignancy. We use this information to re-map the class labels into {0, 0.2, 0.4, 0.6, 0.8, 1} with a

threshold of 0.3 for the binary label.

SoftSvmOrd: the SVM-based ordinal regression method derived from the orderings between

probabilistic scores and bin boundaries. The probabilistic scores are split into m bins from our

optimal binning scheme. The next unlabeled instances to be labeled are selected randomly;

SoftSvmOrdAct: the SVM-based ordinal regression method derived from the orderings

between soft labels and bin boundaries. The soft labels are split into m bins from our optimal
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Figure 6: Performance with random sampling on four synthetic datasets regarding different labeled

instance numbers with no (top), weak (middle) and strong (bottom) noise.

binning scheme. The next unlabeled instances to be labeled are selected from our expected model

change strategy for binary classification with probabilistic scores;

SoftSvmPair: the SVM-based ranking method derived from the pairwise orderings of

probabilistic scores. The next unlabeled instances to be labeled are selected randomly;

SoftSvmPairAct: the SVM-based ranking method derived from the pairwise orderings of

probabilistic scores. The next unlabeled instances to be labeled are selected from our expected

model change strategy for binary classification with probabilistic scores;

SoftSvmMN: the SVM-based ranking method derived from the pairwise orderings of

probabilistic scores, where only mN random pairwise orderings are enforced. Therefore the

number of constraints is the same as SoftSvmOrd. The next unlabeled instances to be labeled

are selected randomly;
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Figure 7: Performance with active learning on four synthetic datasets regarding different labeled

instance numbers with no (top), weak (middle) and strong (bottom) noise.

SoftLogReg: the regression-based model derived from the exact values of probabilistic scores.

The next unlabeled instances to be labeled are selected randomly;

SoftLogRegAct: the regression-based model derived from the exact values of probabilistic

scores. The next unlabeled instances to be labeled are selected from our expected model change

strategy for binary classification with probabilistic scores;

BinarySvm: the SVM model trained on binary labels only. The next unlabeled instances to be

labeled are selected randomly;

We evaluated the performance of the different methods by calculating the Area under the ROC

(AUC) the learned classification model would achieve on the test data. Hence, each data set prior

to the learning was split into the training and test set (using 2
3

and 1
3

of all data entries respectively).

The learning considered training data only, the AUC was always calculated on the test set. The test
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Figure 8: Performance on real-world HIT dataset annotated by three experts regarding different

labeled instance numbers.

set performance reflects how well the model generalizes to future data. To avoid potential train/test

split biases, we repeated the training process (splitting) and learning steps 24 times. We report

the average AUC obtained on these test sets. To test the benefits of our active learning strategy

and the impact of probabilistic scores on the number of data entries, we trace the performance of

all models for the different sizes N of labeled data. Figure 6 shows the performance (AUC) of

the models on all four UCI data sets for increasing sizes of N and the different levels of noise in

probabilistic scores.

3.3.1.1 Benefit of probabilistic scores and active learning Figure 6 (top) and 7 (top) show

the performance of methods when simulated probabilistic scores are not corrupted by additional

noise. Among the methods without active learning, all the four probabilistic-score-based

methods, SoftSvmOrd, SoftSvmPair, SoftSvmMN and SoftLogReg, outperforms BinarySvm which

only utilizes binary labels. This demonstrates the sample-size benefit of probabilistic scores
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for learning classification models when the probabilistic scores provided are accurate without

noise. Also, SoftSvmOrdAct outperforms SoftSvmOrd; SoftSvmPairAct outperforms SoftSvmPair;

SoftLogRegAct outperforms SoftLogReg. These three comparisons validate the effectiveness of

our expected model change active learning strategy for binary classification with probabilistic

scores. Overall, SoftSvmOrdAct, SoftSvmPairAct and SoftLogRegAct are the top three of all the

methods, showing the benefit of combining probabilistic scores and active learning. These three

methods combining probabilistic scores and active learning perform comparably well. Similarly,

out of all probabilistic-score-based methods without active learning, there does not seem to be

a clear winner and all methods perform comparably well. Please notice that SoftLogRegAct and

SoftLogReg methods which fit the exact probabilities to the model via regression is comparable to

other methods.

3.3.1.2 Effect of noise on probabilistic scores Figure 6 (top) and 7 (top) results assumed

the probabilistic scores directly reflect the probabilistic information. However, in practice,

probabilistic information (when collected from humans) may be imprecise and subject to noise.

This in turn may affect the quality of our models. Our synthetic noise experiments aim to show the

robustness of the methods to noise in probabilistic scores. In order to generate noise in probabilistic

scores, each probabilistic score p derived from the UCI data, was modified into p′ by injecting a

Gaussian noise of different strength:

          Weak noise: p′i = pi × (1 + 0.1 × αi)

        Strong noise: p′i = pi × (1 + 0.3 × αi)

where αi is a random variable that follows standard normal distribution N (0, 1). Briefly, the

noise injection levels above indicate the average proportion of noise to signal at weak (10%)

and strong (30%) levels respectively. Also, we truncated the illegal probabilistic scores (e.g.

probabilistic score that are less than 0 or greater than 1) to the interval of [0, 1]. The results of

the different methods for the weak and strong noise are summarized in the middle and bottom

rows of Figure 6 and 7 respectively.

When noise is added into the probabilistic labels, in Figure 6 (middle, bottom) and 7 (middle,

bottom), the performance of a model may drop. Two methods, SoftLogReg and SoftLogRegAct,

that directly fit the exact probabilities are particularly sensitive to the noise and their performance
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drops significantly for both noise levels and across all datasets. Other models that use pairwise

orderings or instance/bin orderings derived from probabilistic scores are more robust and do not

suffer from such a performance drop. Our new methods, SoftSvmOrd and SoftSvmOrdAct, are the

most consistent and tends to outperform other SVM-based probabilistic-score models in both noise

injection levels. Also, SoftSvmOrdAct outperforms SoftSvmOrd; SoftSvmPairAct outperforms

SoftSvmPair; SoftLogRegAct outperforms SoftLogReg. These three comparisons validate the

effectiveness of our complementary expected model change active learning strategy when noise

is injected to probabilistic scores. Overall, our new model SoftSvmOrdAct combined with our

expected model change strategy is the best on all datasets, showing the benefit of combining

probabilistic scores and active learning when noise is injected. These experiments demonstrate

the robustness of our methods on the learning tasks with probabilistic scores.

3.3.2 Experiments and results on time complexity

One of the reasons for introducing the new binning method was to improve the pairwise

constraint solution (SoftSvmPair method) proposed by Nguyen [Nguyen et al., 2011a]. Figure

9 shows the time consumption of three probabilistic score methods used earlier (SoftSvmPair,

SoftSvmOrd and SoftSvmMN) on UCI data sets for increasing sizes ofN weak noise in probabilistic

scores.

We evaluated the time consumption of the different learning methods by the total minutes

elapsed on the training data. For SoftSvmOrd and SoftSvmMN we always keep the same number

of probabilistic score constraints: KN . As expected, SoftSvmOrd and SoftSvmMN running times

are very close across all experiments. In contrast to these, the performance of SoftSvmPair that

uses all N(N−1)
2

pairwise constraints deteriorates very quickly as N increases, and at N = 180 the

running time increases about four fold when compared to our SoftSvmOrd approach. This confirms

the running-time benefit of SoftSvmMN and SoftSvmOrd with the reduced number of probabilistic

score constraints. Please notice that the results in Figure 6 and in Figure 9 combined demonstrate

the benefit of our new method SoftSvmOrd. It tends to outperform the baseline SoftSvmPair in

terms of the solution quality across many sizesN and this with a remarkably lower running time. It

also outperforms SoftSvmMN in terms of the solution quality at comparable running times. Overall,
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Figure 9: Time consumption (minutes) regarding different labeled instance numbers on four

synthetic datasets with weak noise.

our learning methods for binary classification from probabilistic scores not only improves the

predictive performance, but also reduce the time complexity.

3.3.3 Experiments of probabilistic scores on clinical data

While the experiments on synthetic data sets support the benefits of our

probabilistic-score-based approach, it is unclear whether these results also extend and

generalize to “true” probabilistic scores assessed by humans. In this set of experiments we

test the performance of the methods on the real-world clinical data that were independently

reviewed and assessed in terms of probabilistic scores by three different experts. The target

label concerned Heparin induced thrombocytopenia (HIT), an adverse clinical condition that

affects patient who are treated with heparin for prolonged periods of time. The clinical data

consists of 50 patient state features important for detection of HIT derived from the PCP

database [Hauskrecht et al., 2010, Valko and Hauskrecht, 2010, Hauskrecht et al., 2013]. The

datasets consists of 579, 571, and 573 labeled patient state instances for Expert 1, 2 and 3,
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respectively (see [Valizadegan et al., 2013]). The labels include both binary and probabilistic

scores [Nguyen et al., 2011a, Nguyen et al., 2013].

Figure 8 shows the AUROC performance of the same methods and models as used in the

previous section on three expert-annotated HIT datasets. On all three datasets the performance

of our SoftSvmOrdAct method is the best and it outperforms all other methods. This experiment

confirms good performance of our method and the benefit of combining probabilistic scores and

active learning for more efficient training of binary classification models.

3.4 Summary

To obtain labels for classification purposes, we often rely on human annotators. However, the

human annotation process may be costly. In such a case, different methods of reducing the labeling

cost need to be applied. In this chapter we have developed and tested a new robust method that

uses probabilistic scores that is able to enrich the feedback one receives from human and hence

improve the number of examples one has to label to get a good classification model. Our results on

synthetic and real-world clinical data show that our method (1) can benefit greatly from additional

probabilistic scores (2) is robust to the different levels of noise in probabilistic scores.

58



4.0 Active Learning of Binary Classification Models

from Likert-scale Feedback

4.1 Introduction

The work covered in this chapter was accepted and published in the 2017 conference of SIAM 

Data Mining (SDM) [Xue and Hauskrecht, 2017a]. In Chapter 3 we proposed and tested a new 

method based on binning of probabilistic scores to ordinal categories and enforced the constraints 

on these categories. In this Chapter we directly seek a feedback in terms of ordinal Likert-scale 

categories instead of probabilities.

Briefly, Likert-scale categories define a se t of  ordinal ca tegories humans can use to  provide 

information about the strength of agreement (or belief) in the respective class labels. For example, 

when obtaining a feedback from a physician on whether the patient suffers from a particular disease 

or not, the binary true/false feedback can be refined by obtaining physician’s belief in the presence 

of the disease on a 5-point Likert scale by asking if he/she agrees, weakly agrees, is neutral, 

weakly disagrees, or disagrees with the disease. Another more ubiquitous example is the user 

reviews in online stores, where each review is associated with five-star a ssessment. I n terms 

of Chapter 3 solutions we can see Likert-scale categories to be equal to be qualitative bins and 

the annotator is asked to assign examples to these bins directly. We also develop a new variant 

of expected model change (EMC) active learning strategy that attempts to optimize the example 

selection by considering the Likert-scale feedback. To prevent the re-training of “add-one” models 

when adding an unlabeled instance and a possible Likert-scale label into the labeled data, which 

is typically inefficient and required for traditional EMC strategy, we also train the add-one models 

incrementally from the current model rather than from scratch, which remarkably reduces the time 

consumption.

We test our new framework on multiple classification problems based on UCI and real-world 

clinical decision problem data. We demonstrate the ability of our solutions to reduce the data 

labeling cost both individually and in combination.
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4.2 Methodology

In this part, we develop an active learning framework that builds a classification model by

actively querying an annotator who provides feedback to the framework for assessing the instances

using Likert-scale categories. We start by first defining and formalizing the problem of learning

from ordinal Likert-scale category labels. After that, we present an algorithm for learning the

classification model from such feedback. Second, we show how this algorithm can be included in

the active learning framework that aims to improve the model by wisely selecting the examples

to be assessed next. The criterion used to choose from among unlabeled candidate instances is

based on the highest expected classifier prediction change. We also briefly describe solutions to

modeling the distribution which is used to calculate the expected change. To prevent the re-training

of “add-one” models when adding an unlabeled instance and a Likert-scale label into the labeled

data, which is typically inefficient and required for traditional EMC strategy, we also train the

add-one models incrementally from the current model rather than from scratch, which remarkably

reduces the time consumption.

4.2.1 Problem settings

Our objective is to learn from data a binary classifier: C : X → Y , where X is a feature space

and Y ∈ {0, 1} is one of the two class labels. At the very beginning, all the examples in dataset

D are unlabeled. However, we can sequentially query a human annotator to provide information

for individual examples and use this feedback to build a classification model. We assume that

in addition to traditional binary labels Y = {0, 1}, each data example is also assessed in terms

of ordinal Likert-scale categories characterizing the degree of agreement of the annotator in its

assignment to one of the classes. Therefore, a labeled data sample di is a vector consisting of

three parts (xi, yi, ui), that is, a vector of features, a traditional binary label and a Likert-scale label

indicating the level of agreement that the data example falls into one of the two classes. Both yi

and ui are based on human annotator feedback. For example, if a human expert is asked to assess

a patient whether he or she suffers from a particular disease, x represent the labs, symptoms and

observations describing the patient state, y is expert’s disease/no-disease decision, and u represents
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the degree of which the expert believes in (and agree) with the disease diagnosis.

4.2.2 Learning a classifier from Likert-scale labels

Let us focus first on the task of learning a classification model from the data represented by the

triplets (xi, yi, ui), that is, we assume the data with this information are available and can be used.

One way to learn the classification model would be to adapt and build upon approach proposed

by [Nguyen et al., 2011a, Nguyen et al., 2011b] for probabilistic scores with noise. Briefly, their

approach seeks to find a ranking function f(x) = wTxi that aims to satisfy all pairwise constraints

among data points ordered according to their ’noisy’ probability estimate reflecting the confidence

of the annotator in the binary class label. They formulate and solve the problem using an SVM-like

optimization task that seeks to satisfy as many constraints as possible. The key trick in their

approach is that the same ranking function can also be used to define a discriminative projection

that lets us discriminate between class 0 and class 1 data instances. We can quickly adapt their

approach and apply it to Likert-scale assessments by creating pairwise ordering constraints only

among data points that fall into the different Likert-scale categories. Briefly if two data entries

xi and xj in the dataset are assigned ordinal category labels such that ui > uj , we expect that

the same order will be preserved also by the the ranking function: f(xi) > f(xj). Similarly to

[Nguyen et al., 2011a, Nguyen et al., 2011b], a classifier, and its discriminative projection can be

then defined using the same ranking function.

Unfortunately, the above solution suffers from a drawback: the number of pairwise constraints

one wants to satisfy grows quadratically with the number of data instances which negatively affects

the time-complexity and scalability of the solution. To alleviate the scalability problem, we try to

abridge the number of constraints imposed on the ordinal Likert-scale labels. In this chapter, we

propose an improvement based on ‘binning’ of values of the ranking function f . The idea of

the solution is that after the projection (via ranking function), all examples with the same ordinal

category label should, in the ideal case, fall into the same value region or bin.

Let us assume that for each ordinal label u we have a bin defined by a lower bound value

bu−1 and an upper bound value bu. Our objective is to find a projection f from the feature space

to the space of real numbers, for which instances that are in the same ordinal category fall after
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the projection into the same bin. More formally, for any data instance xi and its ordinal label ui,

we expect to obtain a function f(·) so that bin(f(xi)) = ui, where bin(·) is a function where the

argument is a prediction value and the return value is the bin where this prediction value belongs.

Then each data example with ordinal label u should be projected such that its value is greater than

all bin bounds bj such that j < u and less than all bk such that k ≥ u. Since the ordinal label and the

projection of its feature vector to the bin are always expected to match, the projection should have

the same greater-or-less relationship with all bin boundaries for other ordinal categories. Formally,

for a data instance x and Likert-scale label u, we expect to learn a function so that f(·) so that

bj < f(x) for any j < u and bk > f(x) for any k ≥ u.

However, in reality, we cannot expect that all the constraints will always be satisfied with

a linear projection function. Hence, we permit violations of constraints but penalize them via

bin-sample loss function. By adding the constraints for standard binary class labels, we can

formulate the following optimization problem:

min
w,w0,b,η,Ξ

1

2
||w||22 +B

N∑
i=1

ηi + C
m−1∑
j=1

N∑
i=1

ξj,i

yi(wTxi + w0) ≥ 1− ηi ∀i

zj,i(wTxi − bj) ≥ 1− ξj,i ∀i, j

ηi, ξj,i ≥ 0 ∀i, j

where j = 1, 2, . . . , m − 1 indexes bin bounds in b, and i = 1, 2, . . . , N indexes data entries. The 

first term in the objective function is the regularization term, the second term (single sum) defines 

the hinge loss on binary labels, and the third term (double sum) defines the loss function between 

each pair of bin bound and each Likert-scale label. ηi and ξj,i are slack variables permitting 

violations of binary class and Likert-scale bins respectively. B and C are constants weighing the 

objective function terms. zj,i is an indicator whether the projection of feature vector xi is supposed 

to be greater or less than the bin bound bj . If j < ui, indicating the projection of xi is supposed to 

be greater than bj , zj,i = 1, otherwise zj,i = −1. In this model, the number of constraints is reduced 

to roughly M = mN. Since Likert-scales typically comes as from 2 to 10 ordering categories with
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5 or 7 being the most common, we have m << N . Considering the O(M3) complexity of convex

quadratic optimization problems, the time complexity is reduced to O(m3N3).

4.2.2.1 Removing empty bins One practical concern related to the above optimization

problem occurs when the size |L| of the labeled data is small, and some Likert-scale categories

are absent in L. Fortunately, this problem has an easy fix. If a Likert-scale category is missing in

L, it is not necessary to consider it, and we should only try to enforce ordering constraints among

non-empty ordinal categories. Effectively this translates to a smaller number of bins and their

boundaries in the optimization problem.

4.2.3 Active learning

The next challenge is to embed the above learning algorithm in a practical active learning

framework. The heart of any active learning method is a strategy that is used to select examples

to be queried next. In this work, we propose and experiment with a strategy called expected

model change (EMC) [Tong and Koller, 2000, Settles et al., 2008b] that evaluates and measures

the potential of an unlabeled data instance to change the model by estimating its impact on

instance predictions when it is assumed labeled. Our expected model change (EMC) also uses

a Bayesian posterior to calculate the expectation. To prevent the re-training of “add-one” models

when adding an unlabeled instance and a possible Likert-scale label into the labeled data, which

is typically inefficient and required for traditional EMC strategy, we also train the add-one models

incrementally from the current model rather than from scratch, which remarkably reduces the time

consumption.

4.2.3.1 Expected model change Briefly, the expected model change (EMC)

[Tong and Koller, 2000, Settles et al., 2008b] of an unlabeled sample x can be measured as

follows: Suppose that, for the labeled data L, we have already trained a model fL. For x, there

are m possible Likert-scale labels (m is the number of Likert-scale ordinal categories). For each

possible Likert-scale label u, if we add 〈x, u〉 into L, we will obtain an add-one model fL∪〈x,u〉.

The model change of fL∪〈x,u〉 compared with fL is denoted as δ(x, u). Since there are m possible
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Likert-scale labels, we will have m performance changes δ(x, u) where u = 1, 2, . . . ,m, each

corresponding to one add-one model. The expected model change ∆(x) of x is then calculated as:

∆(x) =
m∑
u=1

p(u|x)δ(x, u)

4.2.3.2 Measuring model change One critical question of the expected model change

framework is, how to measure the model change δ(x, u) for an unlabeled example x and one

possible label u the example can be assigned to. In this work, we adopt the measurement based

on the discrepancy of the predictions over unlabeled data for cases before and after x and u are

added into L and used to learn a new model. More formally, this measurement is calculated as

follows: Let the model for L be fL, and the model after 〈x, u〉 is added to L be fL∪〈x,u〉. For

any unlabeled sample xi, we measure the model change as the discrepancy of the bin predictions

||bin(fL(xi))− bin(fL∪〈x,u〉(xi))||. By considering every unlabeled example, the net model change

δ(x, u) can be calculated by averaging its impact on all unlabeled data as:

δ(x, u) =
∑
i∈U

||bin(fL(xi))− bin(fL∪〈x,u〉(xi))||

where i indexes all examples in the unlabeled dataset U .

4.2.3.3 Approximating the expectation After calculating performance changes δ(x, u) for all

possible ordinal labels u, one important question is how to calculate the expectation needed for

the expected model change score. In this work, we adopt a Bayesian method to estimate the

expectation.

Our calculation is based on the model fL learned from the labeled set L of data instances.

Briefly, a model fL together with its bin boundaries defines a model for all ordinal categories. We

can use this model and its bins to estimate the empirical distribution of labeled examples in these

bins. More specifically, each bin that is associated with the projection fL may receive (labeled)

examples from all categories (that is, even categories that do not match the category corresponding

to the bin). Assuming there are m categories, in general, each bin may see examples from m

different categories. We can use the observed counts of the examples with these categories that fall
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into the same bin to calculate the necessary expectations for an unlabeled data point x. Briefly, we

take an unlabeled data point and use the projection fL to identify the bin it falls into. The count

of category labels for this bin is then used to approximate their probability distribution and hence

calculate the expected value.

More formally, let x be an unlabeled instance we are considering to query and j = bin(fL(x))

be the bin category the instance falls into based on fL. Our objective is to estimate the probability

distribution (pj1, p
j
2, . . . , p

j
m) for bin j, which represents the probability of an example in bin j to be

assigned to one of the m Likert-scale categories. One way to estimate this probability would be to

use the maximum likelihood approach and calculate the probabilities from counts of Likert-scale

labels qj1, q
j
2, . . . , q

j
m inL that fall into bin j, and by assuming they follow a multinomial distribution

with parameters (pj1, p
j
2, . . . , p

j
m). However, this estimate may not work well if the number of

labeled examples is small which would lead to a biased estimate. Hence, instead of the maximum

likelihood based estimate, we base our estimate on the posterior distribution.

To estimate the posterior distribution of (pj1, p
j
2, . . . , p

j
m) we use a Dirichlet prior which is

the conjugate choice for the multinomial sampling distribution. Since we do not have any prior

information about the distribution of categories in the bin; we chooseDirichlet(1, 1, . . . , 1) where

all Likert-scale categories are assigned the same prior probability. Given the conjugate prior, the

posterior of (pj1, p
j
2, . . . , p

j
m) for L follows a Dirichlet distribution:

(pj1, p
j
2, . . . , p

j
m)L ∼ Dirichlet(1 + qj1, 1 + qj2, . . . , 1 + qjm).

Given the posterior distribution, we can approximate the probability p(u|x), that is, the

probability that x is assigned label u, by the expected value ofE(pju) from the posterior distribution:

E(pju) =
(1 + qju)

(m+
∑m

i=1 q
j
i )
.

Substituting the result, we can finally calculate the expected model change for an unlabeled

sample x as:

∆(x) =
m∑
u=1

p(u|x)δ(x, u) =
m∑
u=1

(1 + qju)

(m+
∑m

i=1 q
j
i )
δ(x, u)
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4.2.3.4 Counting to preserve ordering information One concern of adopting a multinomial

distribution to model the data is that all categories in the multinomial model are assumed to be

independent. However, our approach uses Likert-scale categories, which are ordinal categories.

One way to modify the multinomial model to reflect such dependencies is to use partial counts and

let categories close to the category assigned for example xi take partial credit for it. To implement

this idea we modify the counts qj1, q
j
2, . . . , q

j
m associated bin j as follows: if an observed example xi

that falls into bin j is assigned a Likert-scale label ui then it contributes 1 to the count qjui and 0.5

to the counts qjui−1 and qjui+1 (that is, two Likert-scale categories next to the observed category).

4.2.4 Training of add-one models

Another critical question is the running time complexity to obtain an add-one model fL∪〈x,u〉

after adding an unlabeled sample x and possible Likert-scale label u into labeled data L. If we

train the add-one model from scratch, the time complexity is O(m3|L|3) where m is the number

of Likert-scale labels. Since, in order to select the sample to be labeled next, we need to obtain

an add-one model for each unlabeled sample and each possible Likert-scale label, the total time

complexity is O(m4|L|3|U |) (U is the unlabeled data), which is extravagant and does not scale

well as the size of L grows. To solve this problem, we develop an incremental solver learning

classifiers from ordinal category feedback. This solution extends the incremental SVM solver

proposed in [Poggio and Cauwenberghs, 2001]. By using the incremental solver when training

fL∪〈x,u〉, instead of starting from scratch, we always start from fL, which remarkably reduces the

total time complexity to O(m4|L|2|U |).

4.3 Experiments and results

We test our approach on both synthetic and real-world data. The first set of experiments

uses data from several UCI regression and ordinal classification datasets which we transform to

problems with Likert-scale categories. The second experiment works with real-world clinical data

with true (human assessed) ordinal categorical labels.
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Figure 10: Performance regarding different labeled instance numbers on six synthetic datasets.

4.3.1 Experiments on synthetic UCI-based data

In this part, we adapted three UCI regression datasets (Housing, Concrete, and Crime) and 

three UCI ordinal classification datasets (Cancer, Wine Red, and Wine White) that are summarized 

in Table 1 as follows.

For the regression datasets, we discretized the real-valued outputs into 7 Likert-scale levels 

by dividing the range of output values into equal length bins. We defined a  binary class label by 

considering the examples that fell into three higher-value bins as representatives of class 1 and 

examples in four lower-value bins as examples from class 0. For example, in Housing dataset 

this discretization would represent houses with high attractiveness (class 1), and houses with low 

attractiveness (class 0) and Likert scales represent different degrees of attractiveness. The UCI 

ordinal classification d atasets c ome w ith m ultiple ( ordinal) c lasses s o t hat t hey c an b e u sed as 

Likert-scale levels directly. The binary thresholds can be set according to the meaning of these 

ordinal classes. For example, Breast Cancer dataset contains six ordinal classes {1, 2, 3, 4, 5, 6},
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Dataset # Samples # Features # Categories

Housing 506 13 Regression

Concrete 1030 9 Regression

Crime 1994 122 Regression

Breast Cancer 699 10 6

Wine Red 1599 12 11

Wine White 4898 12 11

Table 1: Properties of all synthetic datasets in experiments.

where {1, 2} are healthy, and {3, 4, 5, 6} represent the different stages of malignancy, so we map

Likert-scale levels 3,4,5,6 to Class 1 and the rest to Class 0.

The objective of our experiments is to demonstrate the benefits of our active learning strategy

for models of Likert-scale labels by comparing it to different classification models trained on

Likert-scale versus binary labels, and labeling strategies based on the random versus active

sampling. Our experiments compare the following models:

BinarySvm: The standard linear SVM with the hinge loss and quadratic regularization factor

trained on examples with binary labels only that were sampled randomly.

BinarySvmUnc: The standard linear SVM with the hinge loss and quadratic regularization

factor trained on examples with binary labels only, but sampled actively based on the uncertainty

sampling selection criterion.

BinarySvmAct: The standard linear SVM with the hinge loss and quadratic regularization

factor trained on examples with binary labels only, but sampled actively based on the expected

model change (EMC) selection criterion. To apply the criterion to binary classification settings,

we treat class 0 and class 1 as two bins.

LikertSvm: Our SVM-based for Likert-scale labels that enforces both binary and bin-label

constraints. Examples to be labeled next, are selected randomly.

LikertSvmAct: A combination of our SVM-based for Likert-scale labels and our expected

model change for selecting examples to be labeled next.
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Figure 11: Performance on real-world HIT dataset annotated by three experts.

We evaluated the performance of the different methods by calculating the Area under the ROC 

(AUC) the learned classification model would achieve on the test data. Hence, each dataset before 

the learning was split into the training and test set (using 2 of all data entries respectively).

The active learning considered training data only; the AUC was always calculated on the test set.

The test set performance reflects how well the model generalizes to future data. To avoid potential

train/test split biases, we repeated the training process (splitting) and learning steps 24 times. We

report the average AUC obtained on these test sets. To test the benefits of our active learning

strategy and the impact of Likert-scale label information on the number of data entries, we trace

the performance of all models for the different sizes M of labeled data. Figure 10 shows the

performance (AUC) of the models on all six UCI datasets for increasing sizes of M .

Figure 10 shows the benefit of LikertSvmAct with a combination of our active learning strategy

and Likert-scale feedback. Both LikertSvmAct and LikertSvm outperform BinarySvmAct,

BinarySvmUnc, and BinarySvm, indicating that Likert-scale feedback models will achieve better

performance than original binary label models with the same training sizes. LikertSvmAct

also outperforms LikertSvm, validating the effectiveness of our querying strategy. Meanwhile,

LikertSvmAct greatly outperforms BinarySvm, indicating the combination of active learning and

Likert-scale labels clearly raises the performance on the same sizes of training data.
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4.3.2 Experiments on clinical data

While the experiments on synthetic datasets appear to support the benefits of our active

learning approach based on ordinal Likert-scale labels, it is unclear whether synthetic labels

generated for the UCI datasets do not make any unreasonable assumptions and whether good

performance also generalizes to “true” feedback provided by humans. In this set of experiments,

we test the performance of the methods on a real-world clinical data that were independently

reviewed and assessed in terms of Likert-scale feedback by three different experts. The target

label concerns clinician’s agreement with raising an alert on Heparin-induced thrombocytopenia

(HIT), an adverse clinical condition that affects the patient who is treated with heparin for

prolonged periods of time. The data and features for the experiment were derived from the

PCP database of Electronic records of post-cardiac surgical patients [Hauskrecht et al., 2010,

Hauskrecht et al., 2013, Valko and Hauskrecht, 2010]. The clinical data consists of 50 patient

state features essential for detection of HIT. The datasets consist of 579, 571, and 573 labeled

patient state instances for Expert 1, 2 and 3 (see [Valizadegan et al., 2013]), respectively. The

labels include Likert-scale labels on 4 levels indicating the agreement, weak agreement, weak

disagreement, and disagreement of the expert with the HIT alert [Nguyen et al., 2013].

Figure 11 shows the AUC performance of the same methods and models as used in the previous

section on three expert-annotated HIT datasets. The performance of LikertSvmAct outperforms

LikertSvm, BinarySvmAct, BinarySvm on all three datasets, confirming good performance of our

method on synthetic data and the benefit of both the Likert-scale labels and active learning for a

more efficient training of binary classification models.

4.4 Summary

In this work, we proposed a new framework for learning binary classification models from

human feedback that utilizes a refined human feedback expressed in terms of ordinal Likert-scale

categories and novel active learning strategy. Our results on synthetic and real-world clinical data

show that our learning framework (1) can learn more efficiently and from a smaller number of
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examples than existing methods (2) is better than models that rely on Likert-scale labels or active

learning individually.
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5.0 Active Learning of Multi-class Classification Models

from Probabilistic Scores

5.1 Introduction

The work covered in this chapter was accepted and published in the 2018 conference of Florida 

Artificial Intelligence Research Society (FLAIRS) [Xue and Hauskrecht, 2018]. In this chapter, we 

explore two strategies for multi-class classification models to alleviate the annotation effort and 

their combination: probabilistic scores and active learning.

Multi-class classification models are typically learned from annotated data in which every data 

instance is associated with one class label indicating the class choice assigned to it by a human 

annotator. In addition to class labels, we may also ask the annotator to provide probabilistic scores 

in a similar way to Chapter 3, where each data instance is associated with a probabilistic score 

indicating the certainty of human annotators in the given class label, such as, a probability of the 

patient having a disease. A more ubiquitous example is the comprehensive evaluation of papers, 

where the reviewer is asked to provide the strongest advantage of one paper and how strong such 

advantage is. Here we can treat the strongest advantage as class label and the extent of strongness 

as probabilistic score. In this chapter, we show how to improve and extend our approach based on 

ordinal regression and ranking-SVM for binary classification from probabilistic scores in Chapter 

3 to multi-class classification settings. The new method is one of the contributions of this chapter. 

We also develop a new active learning strategy, expected approximate projection change (EAPC), 

assuming the feedback also includes the probabilistic score in addition to class label. Our active 

learning strategy implements a variant of the expected model change (EMC) approach. The EMC 

approach requires costly recalculation of models every time an instance is considered during the 

example selection process. We address it by developing its efficient gradient-based approximation 

instead, which remarkably reduces the time consumption.

Through experiments, we show that our new multi-class classification framework achieves 

improved classification performance and, at the same time, it is able to speed up the selection of 

instances to be queried next by its active learning component. These results are obtained on both
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simulated data derived from data in UCI repository and real-world image data. We demonstrate

the ability of our active learning and probabilistic score solutions to reduce the data labeling cost

both individually and in combination.

5.2 Methodology

5.2.1 Multi-class support vector machine with probabilistic scores

5.2.1.1 Problem settings Our goal is to learn a multi-class classifier f : X → Y , where X is

the feature space and Y ∈ {1, 2, . . . , k} represents class labels of a data instance. We assume that

in addition to class labels {1, 2, . . . , k} defining yi we also obtain probabilistic scores: a probability

pi reflecting annotator’s confidence the example xi belongs to class yi. Hence each labeled data

entry Di consists of three components: Di = (xi, yi, pi), an input, a class label and an estimate of

the probability of the class label.

5.2.1.2 Learning a multi-class classifier with probabilistic scores To elaborate our

multi-class classifier with probabilistic scores, we need to incorporate the probabilistic scores

into the multi-class support vector machine (Section 2.2.1). Perhaps the most straightforward

intuition is to incorporate the exact probabilistic scores. For example, we may reformulate

the k binary classifiers into k regression models based on the probabilistic scores. However,

it is well known that humans are often unable to give consistent probabilistic assessments

[Juslin et al., 1998, Griffin and Tversky, 1992]. In other words, probabilistic scores from human

annotators are usually noisy which may backfire if we dwell too strongly on their exact values. To

handle this, we incorporate the probabilistic scores via constraints derived from ordinal regression

[Chu and Keerthi, 2005], which was first proposed by [Xue and Hauskrecht, 2017b] for binary

classifiers. Briefly, we first split the probabilistic score space into multiple consequent and

non-overlapping bins for each one-vs-all classifier. Then we try to enforce the pairwise orderings

between each bin boundary and each probabilistic score in this class. Formally, for each one-vs-all

classifier fj(·) and each data instance 〈xi, yi, pi〉 such that yi = j, we try to enforce its projection
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fj(xi) will fall into the bin consistent with its probabilistic score pi. Meanwhile, we still try

to enforce that fj(xi) is the highest among all one-vs-all classifiers. For example, if a data

instance x belongs to class 3 and probabilistic score 0.4, we want to enforce that the projection

f3 distinguishing class 3 will not only put x into the bin consistent with its soft label 0.4, but also

is greater than any other projection fl(x) where l ∈ {1, 2, . . . , k} \ 3 to guarantee that x will still

be predicted as class 3. Also, we allow violations of both kinds of constraints by penalizing the

loss function. By combining two kinds of constraints, we can formulate the following optimization

problem:

min
W,w0,H,Ξ,b

G =
1

2

k∑
l=1

||wl||22 +B

N∑
i=1

∑
l 6=yi

ηi,l + C
N∑
i=1

m−1∑
j=1

ξi,j

(wyi − wl)
Txi + (w0,yi − w0,l) ≥ 1− ηi,l ∀i, l

zi,j(wT
yi

xi + w0,yi − bj) ≥ 1− ξi,j ∀i, j

ηi,l ≥ 0 ∀i, l

ξi,j ≥ 0 ∀i, j

(5.1)

where yi is the class label of xi, zi,j is an indicator whether the projection of wT
yi

xi is supposed to

be greater or less than the jth bin boundary bj (-1 for less and 1 for greater); w1,w2, . . . ,wk and

w0,1, w0,2, . . . , w0,k are the parameters and biases for the k binary classifiers.

5.2.2 Active learning

In this part, we develop an active learning framework that builds a multi-class classifier by

actively querying a human annotator for assessing the instances using both the class and associated

probabilistic scores. We show how this algorithm can be included in the active learning framework

that aims to improve the model by wisely selecting the examples to be assessed next. The

criterion used to choose from among unlabeled candidate instances is based on the highest expected

approximate projection change.
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5.2.2.1 Expected approximate projection change In this chapter, the expected approximate

projection change (EAPC) is inspired by the expected model change [Tong and Koller, 2000].

Briefly, expected approximate projection change selects the unlabeled instance that brings the

greatest expected projection change when it is assumed labeled. Such strategy consists of two

key quantities: projection change and expectation. When an unlabeled instance is assigned an

assumed label, all the k one-vs-all classifiers will change, leading to changes in projections of all

unlabeled instances. The projection change measures the absolute change of all unlabeled instances

on all the k one-vs-all classifiers. Since in multi-class classification scenario with probabilistic

scores, an assumed label contains a discrete class label and a continuous probabilistic score, given

the probability of each class label and conditional distribution of the probabilistic score, we can

calculate the expectation of projection change over the space of assumed label for the unlabeled

instance. Formally, when an unlabeled instance x+ is assigned an assumed label 〈y+, p+〉, the

current models fi,L(·) built on labeled data L will change to fi,L∪〈x+,y+,p+〉(·) for all i. Given

the probability P (y+|x+) and conditional density p(p+|x+, y+), we can calculate the expected

projection change ∆(x+) as:

∆(x+) =
∑
y+

(y+|x+)

∫ 1

0

p(p+|x+, y+)
k∑
i=1

∑
j∈U

|fi,L∪〈x+,y+,p+〉(xj)− fi,L(xj)|dp+

We select the unlabeled instance with highest expected projection change to be labeled next. To

prevent the re-training of “add-one” models when adding an unlabeled instance, a class label and a

possible probabilistic into the labeled data, which is typically inefficient and required for traditional

EMC strategy, we also propose an approximation based on the gradient of the add-one models

instead of training them, which remarkably reduces the time consumption.

5.2.2.2 Approximating expectation One critical problem is the expectation. Unfortunately,

since the probabilistic score space is continuous, it is typically unfeasible to obtain the

probabilistic score distribution of an unlabeled instance directly. To solve this problem, we

propose an approximation which splits the probabilistic score range into multiple consequent and

non-overlapping segments, then calculate the conditional probability that the unlabeled instance

falls into each segment. Since such approximation is similar to the binning strategy in Equation

5.1 we can directly adopt the bins for the conditional probabilities. Formally, instead of conditional
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density, we split the probabilistic score range into m bins {q1, q2, . . . , qm} and calculate the

conditional probability P (p+ ∈ q+|x+, y+) for all i and q+. Therefore, the expectation ∆(x+)

can now be estimated as:

∆(x+) =
∑
y+

(y+|x+)
∑
q+

P (p+ ∈ q+|x+, y+)
k∑
i=1

∑
j∈U

|fi,L∪〈x+,y+,p+∈q+〉(xj)− fi,L(xj)|

Another problem is measurement of P (y+|x+) and P (p+ ∈ q+|x+, y+). In this work, we adopt

the idea of density weight [Settles et al., 2008a]. Briefly, if an unlabeled instance is closed to a

labeled instance, they are of high probability with the identical label. Formally, for an unlabeled

instance x+ and each labeled instance 〈xi, yi, pi〉, the probability they are with identical label is

proportional to the inverse of their Euclidean distance ||xi − x+||2. Therefore, the joint probability

P (y+|x+)P (p+ ∈ q+|x+, y+) = P (y+, p+ ∈ q+|x+) can be estimated as:

P (y+|x+)P (p+ ∈ q+|x+, y+) =
1

Z

yi=y
+,pi=p

+∑
i∈L

1

||xi − x+||2

where Z =
∑

i∈L
1

||xi−x+||2 is the normalization factor.

5.2.2.3 Approximating projection change Another concern is the projection change over the

unlabeled data. When adding an unlabeled instance with an assumed label, the new “add-one”

model should be retrained. Given U unlabeled instances, k classes, m bins (in Equation 5.1,

probabilistic scores in the same bin give the identical optimization), we need to retrain kmU

“add-one” models. To avoid retraining, we propose an approximation via gradient inspired

by stochastic gradient descent [Bottou and Bousquet, 2008]. Briefly, when adding an unlabeled

instance with an assumed label, we can treat the other (labeled) instances as constants, calculate

the difference compared with the current model and take the gradient to approximate the projection

change over the unlabeled data. Formally, when adding 〈x+, y+, p+ ∈ qj〉 into Equation 5.1, the

new “add-one” model G+ can be written via rectified function [·]+ (we omit the bias w0,l for

convenience) as:

min
W,w0,H,Ξ,b

G+ =
wTw

2
+B

∑
l 6=y+

[1− (wy+ − wl)
Tx+]+ +B

N∑
i=1

∑
l 6=yi

[1− (wyi − wl)
Txi]++

C
m−1∑
j=1

[1− z+
j (wT

y+x+ − bj)]+ + C

m−1∑
j=1

N∑
i=1

[1− zi,j(wT
yi

xi − bj)]+
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where z+
j is determined from p+ for all j. Comparing with Equation 5.1, we get:

∆G+ = B
∑
l 6=y+

[1− (wy+ − wl)
Tx+]+ + C

m−1∑
j=1

[1− z+
j (wT

y+x+ − bj)]+

Therefore, the gradient for each one-vs-all classifier can be calculated as:

∂∆G+

∂wl

= Bx+
1(wy+−wl)T x+<1 (l 6= y+)

∂∆G+

∂wy+
= −Bx+

∑
l 6=y+

1(wy+−wl)T x+<1 − Cx+

m−1∑
j=1

z+
j 1z+j (wT

y+
x+−bj)<1

In the stochastic gradient descent, the negative gradient determines the step length for learning.

Therefore, we claim the gradient is approximately proportional to the change of the parameter of

each one-vs-all classifier:

∆w+
l
∝∼
∂∆G+

∂wl

l = 1, 2, . . . , k

Given an arbitrary unlabeled instance xj , we can approximate the absolute projection change on

wi before and after 〈x+, y+, p+ ∈ q+〉 as:

|fi,L∪〈x+,y+,p+∈q+〉(xj)− fi,L(xj)| = |
∂∆G+

∂wi

T

xj|

5.3 Experiments and results

We test our framework on both synthetic and real-world data. The first experiment adapts

data from two UCI multi-class data sets which we transform to multi-class classification tasks

with probabilistic scores. The second experiment works with a real-world image data with human

assessed labels from multiple annotators.
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5.3.1 Experiments on simulated data

5.3.1.1 Data simulation We adapted two UCI multi-class datasets (see Table 2 for details)

as follows: We take half of the data to train a multi-class support vector machine and obtain

probabilistic scores on the other half via soft-max function on their predictions. In the experiments

we use only the second half of the data, retain the class labels and keep the corresponding

probabilistic scores.

Figure 12: Performance (EMR) on two synthetic datasets regarding different labeled instance

numbers with no (top), weak (middle) and strong (bottom) noise.

5.3.1.2 Experimental settings To demonstrate the benefits of our model with probabilistic

scores and expected approximate projection change strategy, we compare it with multi-class

classifiers trained only on class labels, multi-class logistic regression with probabilistic scores

and active learning that retrains to calculate the exact projection change when adding an unlabeled

instance. Our experiments compare the following classifiers (we use random sampling by default):

78



MSVM: multi-class support vector machine [Vapnik, 1998, Weston et al., 1999] where K

one-vs-all classifiers are trained jointly;

MSVMUnc: multi-class support vector machine [Vapnik, 1998, Weston et al., 1999] where K

one-vs-all classifiers are trained jointly with uncertainty sampling;

MSVMAct: multi-class support vector machine [Vapnik, 1998, Weston et al., 1999] where K

one-vs-all classifiers are trained jointly with expected approximate projection change strategy;

SMLogReg: multi-class logistic regression with probabilistic scores where K one-vs-all

classifiers are trained independently on exact probabilistic scores;

SMSVM: multi-class support vector machine with probabilistic scores where K one-vs-all

classifiers are trained jointly with probabilistic score constraints;

SMSVMRe: multi-class support vector machine with probabilistic scores where K one-vs-all

classifiers are trained jointly with probabilistic score constraints and retraining the model to

calculate the exact projection change when an unlabeled instance is added;

SMSVMAct: multi-class support vector machine with probabilistic scores whereK one-vs-all

classifiers are trained jointly with probabilistic score constraints and expected approximate

projection change strategy.

We evaluate the performance of the different methods in the exact match rates (EMR) on the

test data. All data sets before learning are split into the training and test set (using 2
3

and 1
3

of all

data instances). The learning considered training data only; the EMR is always measured in the test

set. We also repeat the splitting and learning 24 times. The average EMRs of different classifiers

on UCI data regarding increasing sizes of N are reported in Figure 12.

5.3.1.3 Experimental results Figure 12 (top) shows the benefit of our framework SMSVMAct

with a combination of probabilistic scores and expected approximate projection change strategy.

Both SMSVMAct and SMSVMRe outperform MSVMAct and MSVMUnc; both SMSVM and

SMLogReg outperform MSVM. These two comparisons show probabilistic scores will achieve

better performance than original class label models with the same training sizes. Meanwhile, both

SMSVMAct and SMSVMRe outperform SMSVM; MSVMAct outperforms MSVMUnc and MSVM.

These two comparisons show the effectiveness of our expected approximate projection change

strategy. Overall, both SMSVMAct and SMSVMRe are always of highest performance, showing
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k
or greater than 1) to the interval of [ 1

k

that our framework remarkably raises the performance on the same sizes of training data.

5.3.1.4 Noise simulation In order to generate noise in probabilistic scores, each probabilistic 

score p derived from the UCI data was modified into p′ by injecting a Gaussian noise of different 

strength:

         Weak noise: p′ = p × (1 + 0.1 × N(0, 1)); 

       Strong noise: p′ = p × (1 + 0.3 × N(0, 1)).

Briefly, the noise injection levels above indicate the average proportion of noise to no, weak 

(10%) and strong (30%) levels respectively. Also, we truncated the illegal probabilistic scores 

(e.g., probabilistic scores that are less than 1 , 1].

Dataset # Instances # Features # Classes

Steel Plates Faults 1941 27 7

Vehicle Silhouettes 946 18 4

Table 2: Properties of two synthetic datasets in experiments.

5.3.1.5 Experimental results with noise When noise is added into probabilistic scores, the

performance of probabilistic score models may deteriorate. Figure 12 (middle) and (bottom) shows

the robustness of our framework SMSVMAct. The regression based model SMLogReg, which is

trained on exact probabilistic scores, is vulnerable to noise and deteriorates remarkably. While

other probabilistic score models are more robust and do not suffer from much performance drop.

Our framework SMSVMAct are still of top two performance comparable with SMSVMRe, showing

the robustness of our framework.

5.3.1.6 Experiments on time consumption The reason we use gradient to approximate

projection change is to reduce time consumption. Figure 13 shows the time consumption of three

multi-class classifiers with probabilistic scores in experiments on UCI data sets for increasing sizes

of training data.
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Figure 13: Time consumption (minutes) on synthetic datasets regarding different labeled instance

numbers with no noise.

We evaluated the time consumption of the different learning methods by the total minutes

elapsed on the training data. Because of the calculation of projection change, both SMSVMAct

and SMSVMRe spend more time than SMSVM. However, the time consumption of SMSVMAct is

tolerable, while the time consumption of SMSVMRe is seven times as SMSVMAct and ten times

as SMSVM. Overall, our framework SMSVMAct, which combines probabilistic scores and active

learning, is of both higher performance than other models that utilize at most one of the two

methods, and far more satisfactory time consumption since it prevents retraining.

5.3.2 Experiments on real-world data

We also run experiments on Face Sentiment data, a real-world crowd-sourced dataset from

Tsinghua University.

5.3.2.1 Experimental settings Face Sentiment data contains 584 data instances, where each

instance is a 128× 120 gray-scale photo of the facial expression. The class label is one of the four

moods indicating the mood in the photo. Each data instance is annotated by nine annotators. The

true label of each data instance is also given. We use a convolutional neural network to extract

256 features for each data instance. For models with probabilistic scores, we take the vote ratio of

the true class among nine annotators as the probabilistic score. We split all data instances into 2
3
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training and 1
3

testing data, and measure average exact match rate over 24 trials.

Figure 14: Performance (EMR) of real-world Fact Sentiment data regarding different labeled

instance numbers.

5.3.2.2 Experimental results Figure 14 shows the benefit of our framework SMSVMAct with

a combination of probabilistic scores and expected approximate projection change strategy on

real-world face sentiment data. Both SMSVMAct and SMSVMRe outperform MSVMAct and

MSVMUnc; both SMSVM and SMLogReg outperform MSVM. These two comparisons show

probabilistic scores will achieve better performance than original class label models with the

same training sizes. Meanwhile, both SMSVMAct and SMSVMRe outperform SMSVM; MSVMAct

outperforms MSVMUnc and MSVM. These two comparisons show the effectiveness of our

expected approximate projection change strategy. Overall, both SMSVMAct and SMSVMRe are

always of highest performance, showing that our framework remarkably raises the performance on

both simulated and real-world data.

5.4 Summary

In this work, we proposed a new framework for multi-class classification models incorporating

probabilistic scores and a novel active learning strategy with efficient approximation that: (1)

can learn more efficiently and from a smaller number of examples than existing methods, (2)
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is of higher performance than models that rely on only probabilistic scores or active learning

individually, and (3) can highly reduce time consumption than active learning strategy that requires

retraining when adding new data instances.
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6.0 Active Learning of Multi-class Classification Models

from Ordered Class Sets

6.1 Introduction

The work covered in this chapter was accepted and published in the 2019 AAAI Conference 

on Artificial I ntelligence ( AAAI) [Xue and Hauskrecht, 2019]. I n t his c hapter, w e explore 

two strategies for multi-class classification m odels t o a lleviate t he a nnotation e ffort a nd their 

combination: ordered class sets and active learning.

Multi-class classification m odels a re t ypically l earned f rom a nnotated d ata i n w hich every 

data instance is associated with one class label indicating the top class choice assigned to it 

by a human annotator. However, human annotators can often express and provide additional 

information about the top class and its relation to other class choices. For example, when the 

instance is not a clearcut case, there are other likely class choices the annotator may have in 

mind. Associating multiple competing classes with one instance is common in various diagnostic 

tasks. For example, in medical domain, a list of competing diagnostic classes is referred to as 

a differential diagnosis. Briefly, g iven t he f eatures ( symptoms, o bservations, e tc.) of a  patient, 

the physician considers not only the leading diagnosis (class), but also other alternative diagnoses 

(classes) that are possible and may fit t he p atient’s c ase. A nother m ore u biquitous e xample is 

part-of-speech tagging, where one word is associated with a grammatical tag. Here the annotator 

can also provide some alternative grammatical tags which, although not as possible as the first 

grammatical tag, but are also possible choices of this word. The gist of our approach is to utilize 

such information to learn multi-class classifiers. More specifically, apart from the top class label 

for each data instance, we let the annotator provide also information about other alternative classes, 

and express these in terms of the ordered set of classes representing the descending priorities (or 

confidence) in these classes.

To translate this idea into a working framework we first develop and present a new max-margin 

multi-class classifier l earning m ethod t hat l ets u s i ncorporate t he o rdered c lass s et (OCS) 

information into the model learning process. We also explore active learning strategies to further
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reduce the annotation effort. We develop a new variant of expected model change (EMC) active

learning strategy that considers ordered class set feedback. Specifically, our active learning strategy

calculates the expected prediction change for an unlabeled instance by calculating and combining

the estimate of the prediction change for the different class-order sets one can assign to the instance.

Since, in traditional EMC strategy, the estimate of the expected change requires one to repeat the

retraining by considering each unlabeled instance, we propose new approximation strategies that

subsamples from the exponential number of possible OCS’s for each unlabeled instance and can

reduce the running time of the estimate instead. To prevent the re-training of “add-one” models

when adding an unlabeled instance and a possible Likert-scale label into the labeled data, which is

typically inefficient and required for traditional EMC strategy, we also train the “add-one” models

(models with an unlabeled instance and a possible OCS added into the labeled data) incrementally

from the current model rather than from scratch, which further reduces the time consumption.

We experiment with our new framework on both synthetic and real-world datasets with

class-order feedback. We show the effectiveness of the ordered class set feedback and

active learning for reducing the annotation effort both individually and jointly. We also

show that our solution outperforms existing multi-class classification methods that consider

one-class-per-example labels.

6.2 Methodology

In this part, we develop an active learning framework that builds a multi-class classification

model by actively querying an annotator who provides feedback to the framework by assessing

instances with OCS. We start by first defining and formalizing the problem of learning from OCS in

a multi-class settings. After that, we present an algorithm for learning the multi-class classification

model from such feedback. Second, we show how this algorithm can be included in the active

learning framework that aims to improve the model by wisely selecting the examples to be assessed

next. The criterion used to choose from among unlabeled candidate instances is based on the

highest expected change in OCS. Since the calculation of the expected change in OCS is nontrivial,

we present our solutions to the following problems: (1) how to model the distribution of OCS for
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calculating the expected change, and (2) how to speed up training via incremental solver when

adding one unlabeled instance and an OCS.

6.2.1 Multi-class classifier with ordered class sets (OCS)

6.2.1.1 Problem Our objective is to learn a multi-class classifier f : X → Y , where X ∈ Rd

is the input space and Y = {1, 2, . . . , K} represents possible (mutually exclusive) classes one can

assign to an example. Standard way to learn such a model is to use input-output pairs 〈xi, yi〉.

In this work we learn from the input-OCS pairs 〈xi, Si〉, where the input xi is associated with the

ordered class set (or OCS) Si reflecting the annotator’s class preferences. The ordered class set

Si is formed by a non-empty subset of classes defining Y . Please note that the information in the

input-OCS pair subsumes the information provided in the standard input-output data form. Briefly,

we assume yi = Si1, that is, the class label yi is identical to the first class in ordered class set Si.

In general Si may contain any number of classes: an ordered set of only one class only indicates

the annotator’s top class choice; an ordered set of all K classes indicates the annotator provides

the complete ordering of all alternative classes. For example, in a 4-class setting, an OCS 〈3, 2〉

indicates this data instance most probably belongs to class 3, then class 2 and is not likely to belong

to any other class. Since the class label is identical to the first class in the OCS, the output (class

label) of this instance should be 3.

6.2.1.2 AMSVM with ordered class sets (OCS) Now we show how we can combine

approximate support vector machine (AMSVM, Section 2.2.2) with ordered class set (OCS).

To achieve this, we incorporate the OCS via constraints derived from the ordinal regression

[Chu and Keerthi, 2005]. The gist of the approach is that, for every data instance, we split the

classes in the its OCS into two subsets: a “higher” subset and a “lower” subset. Each class in

the “lower” subset must satisfy one of the two conditions: (1) it is not included in the OCS, or

(2) in the OCS, it comes after all the classes from the higher subset. In other words, each class

in the “higher” subset should have higher priority than all the classes from the “lower” subset

in their projections. If such condition is guaranteed, we may enforce that the average projection

of the “higher” subset is higher than the average projection of the “lower” subset. Formally, for
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every labeled instance 〈xi, Si〉 and j ∈ {1, 2, . . . , |Si|}, the “higher” subset can be constructed as

{Si1, Si2, . . . , Sij}, where Sij indicates the jth class in Si, and the “lower” subset consists of all

other classes. Then the goal is to try to enforce the average projection 1
j

∑
a∈{Si1,Si2,...,Sij} fa(xi)

of the “higher” subset should be greater than the average projection 1
k−j

∑
b/∈{Si1,Si2,...,Sij} fb(xi) of

the “lower” subset. Therefore, the optimization of AMSVM with OCS can be formulated as:

min
W,Ξ

1

2

k∑
l=1

||wl||22 + C
N∑
i=1

|Si|∑
j=1

ξij

(
1

j

∑
a∈{Si1,...,Sij}

wa −
1

k − j
∑

b/∈{Si1,...,Sij}

wb)
Tφ(xi) ≥ 1− ξij ∀i, j

ξij ≥ 0 ∀i, j; (6.1)

where Si is the OCS of xi and φ(·) is the projection of kernel space. W = {w1,w2, . . . ,wk} are

parameters of the k binary one-vs-rest classifiers. N is the number of labeled instances. Ξ = {ξij}

for all i = 1, 2, . . . , N and j = 1, 2, . . . , |Si| index the slack variables for each constraint. For

prediction, the class with the highest projection value is selected as the predicted class. Please

notice the prediction from our AMSVM with OCS is still a class label.

6.2.2 Active learning with OCS

The next challenge is to embed the above multi-class classifier with OCS in a compatible

active learning strategy. The core of any active learning strategy is a schema to select examples to

be queried next. In this work, we propose and experiment with a strategy called expected model

change [Tong and Koller, 2000, Settles et al., 2008b] that measures the potential of an unlabeled

data instance to change the model by estimating its impact on predictions. In this section, we first

show how the expected model change of an unlabeled instance can be calculated by considering all

OCS of this instance. After that we tackle two related problems: (1) how to obtain the probability

of a specific OCS, and (2) how to measure the change of the model given an unlabeled instance

and one of its OCS.
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6.2.2.1 Expected model change (EMC) Let fL denotes a multi-class classifier trained on all

currently labeled data. Our objective is to assess how much impact the annotation of a currently

unlabeled example x0 with an OCS can make. Let ∆(fL, x0) be a measure of this impact. In this

work, we assess the impact in terms of the expected model change and an unlabeled instance with

the highest expected model change is selected for the labeling first. We define the expected model

change for the OCS feedback as:

∆(fL, x0) =
∑
S0∈S

P (S0|x0)δ(fL, fL∪〈x0,S0〉) (6.2)

where δ(fL, fL∪〈x0,S0〉) denotes a model change induced by assigning an ordered class set (OCS)

S0 to example x0. Intuitively, the expected change is a weighted average of model changes for all

possible ordered class sets S where the weight is a probability of the instance x0 being assigned

an OCS S0. To simplify the model of P (S0|x0) and its construction we express it in terms of

two probabilities: P (S0|x0) = P (S0|A0, x0)P (A0|x0), where P (A0|x0) is the probability of an

unordered class-set A0 defining S0, and P (S0|A0, x0) is the probability of the specific class-order

for a fixed A0. In order to calculate the expected model change three quantities defining it need

to be estimated: (1) the probability P (A0|x0) of each unordered class set A0, (2) the conditional

probability P (S0|A0, x0) for each OCS S0 given its corresponding unordered class set A0, and

(3) the model change δ(fL, fL∪〈x0,S0〉). To prevent enumerating all the OCS’s when calculating

the OCS distribution, we propose an approximation subsampling over all the OCS’s. To prevent

the re-training of “add-one” models when adding an unlabeled instance and a possible OCS into

the labeled data, which is typically inefficient and required for traditional EMC strategy, we train

the add-one models incrementally from the current model instead of from scratch. These two

techniques remarkably reduce the time consumption. We present details of our solutions to these

next.

6.2.2.2 Estimating the probability of an unordered class set The first quantity to be

estimated is the probability P (A0|x0) for each unordered class set A0. We approximate this

quantity with the help of an auxiliary multi-label logistic regression model gL we train on the

data annotated with OCS. The model gL maps instances to a class vector of size k indicating

whether a class should be included in the unordered class set or not. We define the output of a
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multi-label classifier as zi = gL(xi) = MTφ(xi). The input xi of this model is a d-dimensional

feature vector of a data instance, and the output zi is a class vector of size k indicating whether

a class should be included in the unordered class set or not. M is a d × k matrix of parameters

of this model, and φ(·) is the projection of the kernel space. The training of gL is also intuitive:

an OCS can be converted into a class vector naturally. If a class is included in the OCS, then

the corresponding scalar of this class in the class vector is 1, otherwise the scalar is −1. After

converting the OCS of each labeled instance, we will take the feature vector and class vector of each

labeled instance for training. In this chapter, we use an improved multi-label logistic regression

model by [Xu et al., 2018]. Basically, this multi-label logistic regression considers the topological

information of the feature space: the data instances close to each other are more likely to share

the same class vector. Formally, the optimization of the model parameter M can be formalized as

follows:

min
M

N∑
i=1

||MTφ(xi)− zi||2 + λ
∑
ij

tij||MT [φ(xi)− φ(xj)]||2 (6.3)

where xi and zi are the feature vector and class vector. tij is the topological information between

xi and xj . tij = exp(− ||xi−xj ||2
2

) if xj is among the nearest neighbors of xi, and ti,j = 0 otherwise.

λ is the parameter trading off the two terms. The number of nearest neighbors is also tunable.

After obtaining the optimal parameter M̂ from the optimization, the estimate of Â0 of A0 can be

obtained from the predicted class vector ẑ0 = M̂Tφ(x0).

6.2.2.3 Estimating the conditional probability of an OCS The second quantity to be

estimated when calculating the expected model change is the conditional probability P (S0|A0, x0)

of each OCS S0 given the corresponding unordered class set A0 and an unlabeled instance x0.

Although it is hard for us to directly estimate P (S0|A0, x0), the class-wise conditional probability

P (c|A0, x0) of a single class c ∈ A0 can be estimated directly by applying a soft-max function:

P (c|A0, x0) = exp(wT
c φ(x0))∑

i∈A0
exp(wT

i φ(x0))
. Since each OCS S0 ∼ A0 is a permutation of the unordered class

setA0, the conditional probability P (S0|A0, x0) can be constructed from the class-wise conditional

probability P (c|A0, x0) for all c ∈ A0 the same way we construct the probability of a permutation.
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Formally, the probability P (S0|A0, x0) can be constructed as:

P (S0|A0, x0) =

|S0|∏
i=1

P (S0i|A0, x0)

1−
∑i−1

j=1 P (S0j|A0, x0)
(6.4)

where S0i indicates the ith probable class in S0.

It seems the conditional probability P (S0|A0, x0) is perfectly calculated. However, there is

an inevitable fact: each S0 is a permutation of its corresponding unordered class set A0. This

indicates that, given an unordered class setA0, the number of OCS S0 such that S0 ∼ A0 is actually

|A0|!. Clearly, it is intractable to calculate the conditional probability P (S0|A0, x0) for all the OCS

S0 ∼ A0. To reduce the number of OCS to enumerate, a straightforward method is to do random

sub-sampling over all the OCS S0 ∼ A0. However, such a method introduces another problem: is

such sub-sample a “good” approximation over all the OCS S0 ∼ A0? That is, is the EMC obtained

using this sub-sample similar the EMC obtained by considering all OCS S0 ∼ A0? To solve this

problem, we propose the following sub-sampling scheme: first, we create two random sub-samples

T ′0 and T ′′0 over all the OCS S0 ∼ A0 such that: (1) S0 ∈ T ′0 ⇒ S0 ∼ A0 and S0 ∈ T ′′0 ⇒ S0 ∼ A0.

In other words, both T ′0 and T ′′0 only contains the OCS whose corresponding unordered class set is

A0. (2) T ′0 ∩ T ′′0 = ∅, and (3) |T ′0| = |T ′′0 | = m where m is a small number. Then, we define an

instance-wise EMC κ(fL, x0, xu, T ′0) of the unlabeled instance x0 on an arbitrary unlabeled instance

xu and a sub-sample set T ′0 where S0 ∈ T ′0 ⇒ S0 ∼ A0 as follows:

κ(fL, x0, xu, T ′0) =
1

Z

∑
S0∈T ′

0

P (S0|A0, x0)δ′(fL, fL∪〈x0,S0〉, xu) (6.5)

where u /∈ L and T ′0 only contains the OCS whose corresponding unordered class set is A0.

Z =
∑

S0∈T ′
0
P (S0|A0, x0) is the partition function. δ′ reflects the OCS change observed on a

specific unlabeled example xu and its output OCS. The relation between δ and δ′ is explained in

Equation 6.7.

Clearly, the instance-wise EMC is similar to the EMC in Formula (3) while only considers

one unlabeled instance xu and a certain unorder class set A0. If both T ′0 and T ′′0 are “good”

approximations over all the OCS S0 ∼ A0, then the instance-wise EMC κ(fL, x0, xu, T ′0) and

κ(fL, x0, xu, T ′′0 ) on both sub-samples should be approximately equal on each unlabeled instance

xu. In other words, the quantity κ(fL, x0, xu, T ′0) − κ(fL, x0, xu, T ′′0 ) ≈ 0 for all u /∈ L, which can
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be validated using a t-test with a hypothesis that the mean of this quantity is 0. If the t-test does

not reject the hypothesis, we may consider both T ′0 and T ′′0 as “good” approximations over all the

OCS S0 ∼ A0, and take A′0 ∪ A′′0 as the sub-sample over all the OCS S0 ∼ A0 and only considers

the OCS S0 ∈ T ′0 ∪ T ′′0 . The conditional probability P (S0|A0, x0) of the OCS S0 ∈ T ′0 ∪ T ′′0 should

also be normalized to exclude the OCS not in the sub-sample T ′0 ∪ T ′′0 ; otherwise, we increase m

and repeat the scheme until the t-test does not reject the hypothesis.

6.2.2.4 Approximating the OCS change of an instance The third important quantity to be

estimated is the OCS related model change δ(fL, fL∪〈x0,S0〉. We calculate the model change by

observing and assessing changes in the ordered class sets (OCSs) assigned for each unlabeled

example xu, i by models fL and fL∪〈x0,S0〉. More formally, we express the model change as:

δ(fL, fL∪〈x0,S0〉) =
∑

xu

δ′(fL, fL∪〈x0,S0〉,xu) (6.6)

where δ′ reflects the OCS change observed on a specific unlabeled example xu and its output OCS.

The OCS change can be easily measured as the absolute ranking change on all k classes of

xu. Formally, we define a function rank(f, x, c) which returns the ranking of class c in the output

f(x) = {f1(x), f2(x), . . . , fk(x)}. Therefore, the OCS change δ′(fL, fL∪〈x0,S0〉, xu) can be calculated

as
∑k

i=1 ||rank(fL, xu, i)− rank(fL∪〈x0,S0〉, xu, i)||. However, such estimation is not perfect: it takes

all the k classes equally. This is inconsistent with the fact: the changes of classes on higher

rankings should be emphasized. For example, if the class on the first ranking changes, the predicted

class label will also change. To address this problem, we introduce Discounted Cumulative Gain

(DCG) [Järvelin and Kekäläinen, 2002]. Briefly, DCG discounts the change of a class over a log

expression of its ranking, which understates the changes of classes on lower rankings. Formally,

the OCS change δ′(fL, fL∪〈x0,S0〉, xu) with DCG can be calculated as:

δ′(fL, fL∪〈x0,S0〉, xu) =
k∑
i=1

||rank(fL, xu, i)− rank(fL∪〈x0,S0〉, xu, i)||
log2[1 + rank(fL, xu, i)]

(6.7)
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Figure 15: Performance (EMR) regarding different labeled instance numbers on two synthetic

datasets.

Figure 16: Performance (EMR) regarding different labeled instance numbers on three real-world

datasets.

6.3 Experiments and results

We test our approach on synthetic and real-world data. The two synthetic datasets are adapted

from two UCI multi-class classification datasets where the OCS are simulated; the three real-world
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Dataset Name # of Instances # of Features # of Classes Size of OCS

Vehicle Silhouettes 946 18 4 Simulated

Optical Digits 5620 64 10 Simulated

Million Song CD1 35409 90 13 1∼2

Million Song CD2 89073 90 15 1∼2

Face Sentiment 584 256 4 1∼4

Table 3: Properties of all datasets (three synthetic and three real-world) in experiments.

datasets contain OCS that are assessed by human annotators and are extracted directly.

6.3.1 Experimental settings

For two synthetic datasets adapted from UCI Vehicle Silhouettes and Optical Digits datasets,

we take 1
3

of data instances to train an AMSVM with class labels only. For each instance on the

remaining 2
3

of the dataset, we can obtain the projections of all classes from the AMSVM. Then

we can obtain the probabilities of all classes by applying a soft-max function to the projections.

All the classes whose probability is greater than 0.05 are included in the OCS of this instance. In

the following experiments we use only the remaining 2
3

of instances, and retain the feature vector

and OCS of each instance for training and testing.

For three real-world datasets, we use two Million Song datasets (CD1 and CD2)

[Bertin-Mahieux et al., 2011] and one Face Sentiment data [Mozafari et al., 2012]. Each Million

Song dataset is a collection of songs. In each dataset, the feature vector of each instance contains

the timbre information of this song, the OCS of each instance contains one or two classes indicating

the genre that this song likely belongs to. Please notice that each song can only belong to one genre,

and the OCS of this song just indicates the competing choices of genres. In Face Sentiment data,

the feature of each instance is a 128×120 gray-scale image of a facial expression, where we extract

256 features using a convolutional neural network. The class label of each instance indicates the

sentiment of facial expression. However, such class labeled is annotated by 9 human annotators.
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Therefore, we may sort the classes according to their vote numbers in the descending order, and

take such ordered set of classes as the OCS for each instance. The basic properties of two synthetic

datasets and three real-world datasets are summarized in Table 3.

To demonstrate the benefits of our multi-class classifier incorporated with ordered class set

(OCS) and our expected model change (EMC) active learning strategy, we compare it with some

existing multi-classifiers with and without an active learning strategy, including: (1) one-vs-rest

classifier trained only on class labels, (2) one-vs-rest classifier trained only on class labels with

uncertainty sampling active learning strategy, (3) approximate multi-class SVM (AMSVM) trained

only on class labels, (4) AMSVM trained only on class labels with EMC active learning strategy

(EMC can also be applied to multi-class classifier with class labels only by taking the class label

as an OCS of size 1), and (5) our multi-class classifier incorporated with ordered class set (OCS),

yet without active learning. The details of all methods in the experiments are as follows:

OVR: k one-vs-rest binary classifiers trained independently, one for each class; The instances

to be labeled next are selected randomly; (k is the number of classes in the dataset, sic passim.)

OVRU: k one-vs-rest binary classifiers trained independently, one for each class; The instances

to be labeled next are selected using least confident uncertainty sampling [Settles et al., 2008a]

active learning strategy;

MSVM: Approximate multi-class SVM (AMSVM) where k one-vs-rest binary classifiers are

trained jointly, one for each class; The instances to be labeled next are selected randomly;

MSVMA: Approximate multi-class SVM (AMSVM) where k one-vs-rest binary classifiers

are trained jointly, one for each class; The instances to be labeled next are selected using our EMC

active learning strategy;

CMSVM: Our multi-class classifier incorporated with OCS where k one-vs-rest binary

classifiers are trained jointly, one for each class; The instances to be labeled next are selected

randomly;

CMSVMA: Our multi-class classifier incorporated with OCS where k one-vs-rest binary

classifiers are trained jointly, one for each class; The instances to be labeled next are selected

using our EMC active learning strategy.

All data sets before the learning are split into the training and test set (using 2
3

and 1
3

of all data

instances). We evaluate the performance of the different methods by calculating the exact match
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rates (EMR) of all the classifiers achieve on the test data. Exact match rate calculates the ratio of

data instances, whose prediction is identical to its class label, over all data instances. The learning

considers the training data only, and the EMR is always calculated on the test set. We also repeat

the splitting and learning steps 24 times. The average EMR (Y -axis) of different classifiers on two

synthetic datasets and three real-world datasets regarding increasing sizes (X-axis) of the training

sets is reported in Figure 15 and Figure 16 respectively.

6.3.2 Experimental results

Figure 15 and Figure 16 shows the benefit of our multi-class classifier incorporated with OCS

and our EMC active learning strategy on two synthetic datasets and three real-world datasets both

individually and jointly:

On all the five datasets, CMSVM outperforms MSVM and OVR; CMSVMA outperforms

MSVMA and OVRU. These two groups of comparisons show that our multi-class classifier

incorporated with OCS can improve the performance compared with models using only class label

information at the same training size.

Also, on all the five datasets, CMSVMA outperforms CMSVM; MSVMA outperforms MSVM.

These two groups of comparisons show that our EMC active learning strategy can improve the

performance compared with models using only random sampling at the same training size.

Overall, on all the five datasets, the model CMSVMA, which is the combination of our

multi-class classifier incorporated with OCS and our EMC active learning strategy, achived the

highest performance. This validate the effectiveness of our multi-class classifier incorporated with

OCS and our EMC active learning strategy jointly.

6.4 Summary

Ordered class set (OCS) is a special enriched label-related feedback arising in multi-class

classification settings that can be easily obtained from human annotators at an insignificant cost

and can help to reduce the annotation efforts. In this chapter, we proposed a new framework
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for learning multi-class classification models from human feedback that utilizes OCS and a novel

compatible active learning strategy: expected model change (EMC). Our results show that our

learning framework (1) is able to learn more efficiently and from a smaller number of labeled

instances than existing methods (2) is better than models that rely on OCS or active learning

individually.
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7.0 Active Learning of Multi-label Ranking, and Multi-label Classification Models with 

Permutation Subsets

7.1 Introduction

The work covered in this chapter is currently under review. Multi-label classification models 

are typically learned from annotated data in which every data instance is associated with one label 

vector, where each scalar is a binary value indicating whether the label is relevant to the instance. In 

this chapter, we explore a new form of enriched label-related feedback for multi-label classification 

problems: permutation subsets. Instead of a label vector, each data instance is associated with a 

totally ordered subset over all the labels, indicating the total orderings of the relevant labels of this 

instance according to their confidences. The labels not in the permutation subset are considered 

irrelevant to the instance. For example, in an animal image labeling task, where each image depicts 

an animal. The annotator can certain that this animal is orange and not dotted, while s/he just 

suspects the animal striped since the image is fuzzy. Since the learning of multi-label classification 

models with permutation subsets is identical to the learning of multi-label ranking models, we 

propose in this chapter a two-stage active learning framework for multi-label ranking the can be 

combined with existing multi-label classification models.

Multi-label ranking models, where the model assigns an ordered set of labels to data instances 

can be designed and learned in many different ways. A typical multi-label ranking model projects 

all possible labels one may assign to an instance into a real-valued space that reflects their rankings. 

However, such a model often assumes individual label projections are independent, hence, it 

ignores the dependencies that may exist among labels. In this work, we explore an alternative 

multi-label ranking model that relies on (1) a multi-label classification model that first selects an 

unordered set of labels for a data instance, and, (2) a label ranking model that orders the selected 

labels post-hoc. One advantage of such model is that it can use a variety of existing multi-label 

classification models in its first st ep. Another advantage, is that the label ranking model (used in 

the second stage), orders only labels chosen by the first model, hence it can properly reflect various 

label dependencies incorporated into the first model.
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To translate the above idea into a working framework, we develop a new max-margin

multi-label ranker to order post-hoc the output of an existing multi-label classifier. As data

instances may not be initially labeled, we also explore active learning strategies to reduce the effort

to annotate such data. In this chapter, we develop a new active learning strategy that considers the

relevance and ordering (ranking) of the labels by calculating the expected model change (EMC)

for an unlabeled instance. The EMC estimates of the model change for the different rankings of the

relevant labels one can assign to the instance. Since the calculation of the expected change requires

one to enumerate all possible rankings for subsets of labels, we propose a new approximation

techiniques that reduces the number of the rankings to consider, making the process more efficient.

To prevent the re-training of “add-one” models when adding an unlabeled instance and a possible

ranking of all labels into the labeled data, which is typically inefficient and required for traditional

EMC strategy, we also train the add-one models incrementally from the current model instead of

from scratch. These two techniques remarkably reduce the time consumption.

We experiment with our new active learning framework for multi-label ranking combined with

existing multi-label classifiers on both synthetic and real-world datasets. We evaluate two aspects

of our solution: (1) its ability to find the correct labels and (2) its ability to properly rank these

labels. We show the effectiveness of such an active learning framework in reducing the annotation

effort in both tasks by comparing them with (1) our auxiliary max-margin multi-label ranker

combined with existing multi-label classifiers without active learning and (2) existing multi-label

rankers.

7.2 Methodology

In this section, we start by first defining the problem of learning of multi-label ranking model

and propose a simple two-stage model for the problem. The model consists of a multi-label

classifier and label ranker models and their composition. Since there are many different multi-label

classification we focus on and present an multi-label ranker model responsible for ordering the

labels selected by the existing multi-label classifier. After that we develop an active learning

framework that builds a multi-label ranker by actively querying an annotator who provides
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feedback to the framework by assessing instances with a permutation subset (rankings of relevant

labels). We show how the two-step model that consists of a mutli-label classifier and ranker can be

embedded in the active learning framework to improve the model by wisely selecting the examples

to be assessed next. The criterion used to choose from among unlabeled candidate instances is

based on the highest expected change in relevant labels and their rankings. Since the calculation

of the expected change in the labels and rankings is nontrivial, we present our solutions to the

following problems: (1) how to model the distribution over all the possible permutation subsets

for calculating the expected change, and (2) how to speed up training via sub-sampling technique

when adding one unlabeled instance and a possible permutation subset.

7.2.1 Problem

Our objective is to learn a multi-label ranking model f : X → S, where X ∈ Rd is the input

space and S represents the space of the permutation label subsets. The permutation subset S(i)

reflects the rankings of the relevant labels in terms of their importance to the instance among all the

K labels. The permutation subset S(i) is formed by a non-empty subset of K labels indicating the

descending ordering of the relevant labels. The labels not in the permutation subset are considered

irrelevant to the instance by the annotator. For example, in a 4-label setting, a permutation subset

〈3, 2〉 indicates the 3rd label is the most relevant to the instance, the 2nd label is the second most

relevant, and the other two labels are irrelevant.

7.2.2 The model

The model of f that assigns a set of ordered labels to instances can be built in many different

ways. In this work we adopt a two-step process covered with two different models to define it:

f = 〈g,h〉. The first model is a multi-label classifier g : X → Y where Y = {0, 1}K is the space

of the label vector. Such a classifier determines whether a specific label y(i)
j in the label vector

y(i) is relevant to the instance x(i) or not (y(i)
j = 1 indicates relevant). The second model is an

multi-label ranker h : Y → S that determines the ordering of the relevant labels in y(i) and outputs

it as S(i). A brief illustration of this multi-label ranking model f is in Figure 17.

We note that a large body of research work in recent years has focused on the multi-label
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classification problem, and many different multi-label classification models have been proposed

and developed. Hence our goal in this work is not to invent a new multi-label classification model,

but to utilize the existing models in our two-step multi-label ranking model.

Figure 17: A two-stage multi-label ranking model f consisting of a multi-label classifier g and an

auxiliary multi-label ranker h.

7.2.3 An auxiliary max-margin multi-label ranker

Suppose we already have access to a multi-label classifier g that outputs a label vector y(i)

which determines whether a label is relevant to the instance (in the permutation subset) or not.

Then we can train an auxiliary max-margin multi-label ranker h on the label vectors such that, for

each instance, the projection of a label in the permutation subset should be higher than all other

labels that rank lower in the permutation subset. More formally, suppose that we have already

obtained a label vector y(i) where y(i)
j = 1 indicates label j is included in the permutation subset.

Now, we aim to obtain K different projection mappings h1, h2, . . . , hK , one for each label, that

reflect their order in the permutation subset S(i). We can encode this aim by trying to enforce the

following constraints: hj(y(i)) > hl(y(i)) ⇔ r(S(i), j) < r(S(i), l), that is, the projection hj of

label j should be higher than the projection hl of any label l such that the ranking r(S(i), j) of label

j in S(i) is beyond the ranking r(S(i), l) of label l. Particularly, if j /∈ S(i), r(S(i), j) = |S(i)| +
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1. Therefore, our auxiliary max-margin multi-label ranker can be formulated as the following

optimization problem:

min
W,Ξ

K∑
j=1

R(wj) + C

N∑
i=1

K−1∑
j=1

K∑
l=j+1

ξ
(i)
jl

z
(i)
jl (wj − wl)

>φ(y(i)) ≥ 1− ξ(i)
jl

ξ
(i)
jl ≥ 0

j,l

where wj ⊂ W is the model parameter of hj ; R(wj ) is the regularization term of hj ; y(i) is the label 

vector of instance i obtained from the given multi-label classifier g; φ(·) is the projection of kernel 

space; z(i)  is the ternary value indicating the comparison of the rankings between label j

and l: 1 if r(S(i), j) < r(S(i), l), and -1 if r(S(i), j) > r(S(i), l), and 0 otherwise; ξ(i)
j,l ∈ Ξ is the

slack variable penalizing when the comparison between hj(y(i)) and hl(y(i)) violates their rankings

in S(i).

7.2.4 Active learning for multi-label ranking framework

The challenge we want to address next is how to actively learn our multi-label ranking

model f. The core of any active learning strategy is a schema to select examples to be queried

next. In this work, we propose and experiment with a strategy called expected model change

[Tong and Koller, 2000, Settles et al., 2008b] that measures the potential of an unlabeled data

instance to change the model by estimating its impact on predictions. In this section, we first

show how the expected model change of an unlabeled instance can be calculated by considering

all the possible permutation subsets of a label vector and all the possible label vectors of this

instance. After that, we tackle three related problems: (1) how to obtain the probability of a label

vector given an unlabeled instance (2) how to obtain the probability of a specific permutation

subset given ; (3) how to measure the change of the model given an unlabeled instance and one of

its permutation subset.

101



7.2.4.1 Expected model change (EMC) Our objective is to assess how much impact the

annotation of a currently unlabeled example x(0) can make if with a permutation subset. Let

∆(L, x(0)) be a measure of this impact. In this work, we assess the impact in terms of the expected

model change, and an unlabeled instance with the highest expected model change is selected for

the labeling first. Formally, we define the expected model change of an unlabeled instance x(0) as:

∆(L, x(0)) =
∑
y(0)

P (y(0)|x(0))δg(L,L ∪ 〈x(0), y(0)〉)+

t
∑
y(0)

P (y(0)|x(0))[
∑
S(0)∈S

P (S(0)|y(0))δh(L,L ∪ 〈y(0), S(0)〉)] (7.1)

where δg(L,L ∪ 〈x(0), y(0)〉) denotes the classification change induced by assigning a label vector

y(0) ∈ {0, 1}K to the unlabeled example x(0) on the multi-label classifier g; δh(L,L ∪ 〈y(0), S(0)〉)

denotes the ranking change induced by adding a permutation subset S(0) and its corresponding

label vector y(0) into the multi-label ranker h; t is the coefficient that balances two kinds of model

changes. In order to calculate the expected model change the following quantities defining it need

to be estimated: (1) the conditional probabilistic distribution P (y(0)|x(0)) of the label vector y(0)

given an unlabeled instance x(0), (2) the conditional probabilistic distribution P (S(0)|y(0)) of the

permutation subset S(0) given a label vector y(0), (3) the classification change δg(L,L∪〈x(0) and (4)

the ranking change δh(L,L∪〈y(0), S(0)〉). To prevent enumerating all the permutation subsets when

calculating the permutation subset distribution, we propose an approximation subsampling over all

the permutation subsets. To prevent the re-training of “add-one” models when adding an unlabeled

instance, a possible label vector and a possible permutation subset into the labeled data, which

is typically inefficient and required for traditional EMC strategy, we train the add-one models

incrementally from the current model instead of from scratch. These two techniques remarkably

reduce the time consumption. We present the details of our solutions to these next.

7.2.4.2 Finding the MLE of the label vector The first quantity to be estimated is the

conditional probabilistic distribution P (y(0)|x(0)) over the label vector y(0) given an unlabeled

instance x(0). To simplify the calculation, we may consider only the maximum likelihood estimate

(MLE) ŷ(0) and ignores all the other label vectors instead of finding the conditional distribution
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over y(0). The MLE ŷ(0) = g(x(0)) can be directly obtained from the existing multi-label classifier

g. After that, we let P (y(0) = ŷ(0)|x(0)) = 1 and P (y(0) 6= ŷ(0)|x(0)) = 0.

7.2.4.3 Estimating the conditional probability of a permutation subset The second quantity

to be estimated is the conditional probability P (S(0)|y(0)) of each permutation subset S(0)

conforming to the label vector y(0). Since it is hard for us to directly estimate P (S(0)|y(0)) due to

the correlations among labels, we propose an approximation using y(0) of the multi-label classifier

and the projections h(y(0)) of the auxiliary multi-label ranker via Discounted Cumulative Gain

(DCG) [Järvelin and Kekäläinen, 2002]. Briefly, DCG discounts the weight of a label over a log

expression of its ranking, which understates the weight of labels on lower rankings. The weight of

each label is determined by the projections h(y(0)) of the multi-label ranker. Since we only need

to consider the labels in S(0), the labels whose corresponding scalar in y(0) is 0 are not in S(0) and

will not be considered. Formally, the probability P (S(0)|x(0)) can be approximated as:

P (S(0)|y(0)) ∝ exp(
K∑
j=1

y
(0)
j fj(y(0))

log2(1 + r(S(0), j))
)

Again, r(S(0), j) returns the ranking of label j in S(0). If j /∈ S(0), r(S(0), j) = |S(0)|+ 1.

It appears the conditional probability P (S(0)|y(0)) is well approximated. However, there is an

inevitable fact: each S(0) is a permutation of all the labels j such that y(0)
j = 1. This indicates that,

given a label vector y(0), the number of permutation subsets S(0) such that S(0) ∼ y(0), in other

words S(0) conforms to y(0), is actually ||y(0)||1 =
∑K

j=1 y
(0)
j . When calculating the classification

change δg(L,L ∪ 〈x(0), y(0)〉) and the ranking change δh(L,L ∪ 〈y(0), S(0)〉), we also need to

calculate all the instance-wise classification changes δg(L,L ∪ 〈x(0), y(0)〉) and instance-wise

ranking changes δh(L,L ∪ 〈y(0), S(0)〉) by enumerating all the unlabeled instances u as follows:

δg(L,L ∪ 〈x(0), y(0)〉) =
∑
u/∈L

δ′g(L,L ∪ 〈x(0), y(0)〉, u)

δh(L,L ∪ 〈y(0), S(0)〉) =
∑
u/∈L

δ′h(L,L ∪ 〈y(0), S(0)〉, u) (7.2)

where δ′g and δ′h reflects the classification and ranking change observed on a specific unlabeled

example u respectively. Therefore, the complexity of our EMC strategy for a given unlabeled

instance x(0) is O(U ||y(0)||1!) ≤ O(UK!), where U is the number of unlabeled instances. Clearly,
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it is intractable to calculate the conditional probability P (S(0)|y(0)) for all the S(0). To reduce

the number of permutation subsets to enumerate, a straightforward method is to do random

sub-sampling over all the S(0) conforming to y(0). However, such method introduces another

problem: is such a sub-sample a “good” approximation over all the S(0)? That is, is the EMC

obtained using this sub-sample similar to the EMC obtained by considering all the S(0) such that

S(0) ∼ y(0)? To solve this problem, we propose the following sub-sampling scheme:

(I) We create two random sub-samples T (0)
1 and T (0)

2 over all the S(0) such that: (1) S(0) ∈

T
(0)
1 ⇒ S(0) ∼ y(0) and S(0) ∈ T

(0)
2 ⇒ S(0) ∼ y(0). In other words, both T (0)

1 and T (0)
2 only

contains the permutation subset whose corresponding label vector is y(0); (2) T (0)
1 ∩ T (0)

2 = ∅, and

(3) |T (0)
1 | = |T

(0)
2 | = m where m is a small number.

(II) We define an instance-wise EMC κ(L, x(0), x(u), T
(0)
1 ) of the unlabeled instance x(0) on an

arbitrary unlabeled instance x(u) and a sub-sample T (0)
1 as follows:

κ(L, x(0), u, T
(0)
1 ) =

∑
y(0)

P (y(0)|x(0))δ′g(L,L ∪ 〈x(0), y(0)〉, x(u))+

t
∑
y(0)

P (y(0)|x(0))[
1

Z

∑
S(0)∈T (0)

1

P (S(0)|y(0))δ′(L,L ∪ 〈y(0), S(0)〉, x(u))]

where u /∈ L; T (0)
1 is a sub-sample only contains the permutation subsets S(0) ∼ y(0). Z =∑

S(0)∈T (0)
1
P (S(0)|y(0)) is the partition function. δ′g and δ′h reflects the classification and ranking

change observed on a specific unlabeled example u respectively. Similar to Section 7.2.4.2.2, we

only consider the maximum likelihood estimate (MLE) ŷ(0) and ignores all the other label vectors

instead of finding the conditional distribution over y(0) to simplify the calculation.

Clearly, the instance-wise EMC is similar to the EMC in Formula 7.1 while considering only

one unlabeled instance u and a certain sub-sample T (0)
1 over all the S(0).

(III) If both T (0)
1 and T (0)

2 are “good” approximations for all the S(0), then the instance-wise

EMC κ(L, x(0), u, T
(0)
1 ) and κ(L, x(0), u, T

(0)
2 ) on both sub-samples should be approximately equal

for any unlabeled instance u. In other words, the assertion κ(L, x(0), u, T
(0)
1 )−κ(L, x(0), u, T

(0)
2 ) ≈

0 should hold for all u /∈ L, which can be validated using a t-test with a hypothesis that the mean

of such quantity is 0. If the t-test does not reject the hypothesis, we may consider both T (0)
1 and

T
(0)
2 as “good” approximations over all the S(0), and take T (0)

1 ∪ T (0)
2 as the sub-sample over all
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the S(0), and only consider the permutation subsets S(0) ∈ T (0)
1 ∪T

(0)
2 . The conditional probability

P (S(0)|y(0)) of all the permutation subset S(0) ∈ T
(0)
1 ∪ T (0)

2 should also be re-normalized to

exclude the permutation subsets not in the sub-sample T (0)
1 ∪ T (0)

2 ; otherwise, we increase m and

repeat from step (I) of this scheme until the t-test does not reject the hypothesis. By applying the

sub-sampling technique above, the complexity of EMC for a given unlabeled data instance x(0) is

reduced to O(Um).

7.2.4.4 Approximating the change on the permutation subset of an instance The third and

fourth important quantities to be estimated are the classification change δg(L,L ∪ 〈x(0), y(0)〉) and

the ranking change δh(L,L∪〈y(0), S(0)〉). We calculate these quantities by observing and assessing

changes for each unlabeled example u. More formally, we express the classification change and

the ranking change the same as in Formula 7.2:

δg(L,L ∪ 〈x(0), y(0)〉) =
∑
u/∈L

δ′g(L,L ∪ 〈x(0), y(0)〉, u)

δh(L,L ∪ 〈y(0), S(0)〉) =
∑
u/∈L

δ′h(L,L ∪ 〈y(0), S(0)〉, u)

where δ′g and δ′h reflects the classification and ranking change observed on a specific unlabeled

example u, respectively.

The first concern related to the calculation of model change is the time complexity of training

the ranking model fL∪〈x(0),y(0),S(0)〉 = 〈gL∪〈x(0),y(0)〉,hL∪〈y(0),S(0)〉〉. This is a non-trivial concern

since, for a given current model fL = 〈gL,hL〉, we need to train O(Um) different add-one models.

However, this will not be a problem if the given multi-label classifier g and our auxiliary multi-label

ranker h can be trained via gradient-based algorithms: by setting the model parameter of the current

model fL as the initial value, the training of the add-one model can be finished incrementally,

much faster than training from scratch. Clearly, our auxiliary multi-label ranker is a max-margin

model supporting gradient-based algorithms. Since the total number of constraints of our auxiliary

max-margin multi-label ranker isO(NS2), whereN is the number of labeled instances and S is the

average size of the permutation subset of each instance, the incremental training just adds O(S2)

constraints of the newly added instance into the current model.
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The label change δ′g induced by the existing multi-label classifier g can be easily measured as

the Hamming distance between the predicted label vector on the current classifier and the add-one

classifier. Briefly, let y(u) denotes the predicted label vector of an unlabeled example u on the

current classifier gL, and y′(u) denotes the predicted label vector of u on the add-one classifier gL,

then the Hamming distance between y(u) and y′(u) is defined as:

δ′g(L,L ∪ 〈x(0), y(0)〉, u) =
K∑
j=1

||y(u)
j − y

′(u)
j ||

The ranking change δ′h induced by the auxiliary multi-label ranker h can be also easily measured

as the absolute ranking change on all the relevant labels. Briefly, let S(u) denotes the predicted

permutation subset of an unlabeled example u on the current ranker hL, and S ′(u) denotes the

predicted permutation subset of u on the add-on ranker hL∪〈y(0),S(0) , then such change δ′h in

the permutation subset can be calculated as δ′h(L,L ∪ 〈y(0), S(0)〉, u) =
∑

j∈S(u) ||r(S(u), j) −

r(S ′(u), j)||. Particularly, any label j /∈ S ′(u) will be ignored, since the change on such label

should be treated as the label change induced by the existing multi-label classifier g. However,

such estimation is not perfect: it assumes all the relevant labels contribute equally to the change.

This is however, inconsistent with the fact in multi-label ranking tasks: the ranking changes of

labels on higher rankings should be emphasized. To address this problem, we use Discounted

Cumulative Gain (DCG) [Järvelin and Kekäläinen, 2002] to discount the change of a label over a

log expression of its ranking, which understates the changes of labels on lower rankings. Formally,

the ranking change δ′g with DCG can be calculated as:

δ′h(L,L ∪ 〈y(0), S(0)〉, u) =
∑
j∈S(u)

||r(S(u), j)− r(S ′(u), j)||
log2[1 + r(S(u), j)]

Again, any label j /∈ S ′(u) will be ignored.

The last quantity is the coefficient t balancing two kinds of expected changes. Intuitively, the

label change on one label should be greater than the ranking change on one label if any, since the

label change indicates the change in both the classifier g and the ranker h. Therefore, we may set

t = 1
K

so that we always have δ′g(L,L ∪ 〈x(0), y(0)〉, u) ≥ tδ′h(L,L ∪ 〈y(0), S(0)〉, u).
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Dataset Instances Features Labels (Sets) Cardinality

Emotions 593 72 6 (27) 1.9

Yeast 2417 103 14 (198) 4.2

Scene 2407 294 6 (15) 1.1

MS1 35409 90 13 (156) 1.3

MS2 89073 90 15 (210) 1.3

Faces 584 256 4 (23) 1.4

Table 4: Properties of all datasets (three synthetic and three real-world) in experiments.

7.3 Experiments and results

We test our model and active learning approach on multiple synthetic and real-world datasets.

The three synthetic datasets are built from UCI multi-label classification datasets where the

permutation subsets are simulated; the three real-world datasets contain permutation subsets

provided by human annotators.

7.3.1 Datasets

The synthetic datasets are generated from UCI multi-label classification datasets. We generate

them by taking 1
3

of data instances to train a multi-label ranking model with 0/1 label vectors

only. This is possible since we can still enforce that the projections of relevant labels should be

higher than the projections of irrelevant labels. After training, we apply the trained multi-label

ranking model to every instance in the remaining 2
3

of the dataset and calculate the rankings of

all its labels. By combining the label vector and the predicted rankings, we generate permutation

subsets for every instance in the remaining 2
3

of the dataset. In the experiments, we use only the 2
3

of data that consists of the original feature vectors and the generated permutation subsets.

The real-world datasets consists of two Million Song datasets (MS1 and MS2)

[Bertin-Mahieux et al., 2011] and one Face Sentiment dataset [Mozafari et al., 2012]. Each
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Million Song dataset consists of a collection of songs. In each dataset, the feature vector of an

instance (song) contains the timbre information of the song, and the permutation subset of each

instance contains one or two labels indicating the priorities of the genres. In Face Sentiment data,

the feature of each instance is a 128 × 120 gray-scale image of a facial expression, where we

extract 256 features using a convolutional neural network. The output of each instance indicates

one sentiment of facial expression out of four provided by nine human annotators. Therefore, we

may sort the output sentiment according to their vote numbers in the descending order, and take

such an ordered set as the permutation assigned to each instance. The basic properties of two

synthetic datasets and the three real-world datasets are summarized in Table 4.

7.3.2 Settings

To demonstrate the benefits of our model and the active learning strategy based on the expected

model change for multi-label ranking models, we compare the performance of the following two

models:

CTBN, a combination of the conditional tree-structured Bayesian network (CTBN)

[Batal et al., 2013, Hong et al., 2014, Hong et al., 2015] multi-label classifier and our multi-label

ranker. The next unlabeled instance to be labeled is selected randomly;

CTBNAct, a combination of the conditional tree-structured Bayesian network (CTBN)

[Batal et al., 2013, Hong et al., 2014, Hong et al., 2015] multi-label classifier and our multi-label

ranker. The next unlabeled instance to be labeled is selected using our active learning strategy

based on the expected model change;

CRF, a combination of the conditional random field (CRF) [Lafferty et al., 2001,

Bradley and Guestrin, 2010, Naeini et al., 2015] multi-label classifier and our multi-label ranker.

The next unlabeled instance to be labeled is selected randomly;

CRFAct, a combination of the conditional random field (CRF) [Lafferty et al., 2001,

Bradley and Guestrin, 2010, Naeini et al., 2015] multi-label classifier and our multi-label ranker.

The next unlabeled instance to be labeled is selected using our active learning strategy based on

the expected model change;

MMR, the max-margin multi-label ranker [Bucak et al., 2009] that combines the constraints
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Figure 18: Performance (Micro-F1, Instance-F1, Normalized DCG) with random sampling

regarding different labeled instance numbers on all synthetic datasets.

from pairwise ordering extracted from the label rankings in the permutation subset of each instance.

The next unlabeled instance to be labeled is selected randomly;

MMRAct, the max-margin multi-label ranker [Bucak et al., 2009] that combines the

constraints from pairwise ordering extracted from the label rankings in the permutation subset

of each instance. The next unlabeled instance to be labeled is selected from our expected model

change for multi-label rankers.

OBR, the online boosting multi-label ranking model [Jung and Tewari, 2018] that aggregates
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Figure 19: Performance (Micro-F1, Instance-F1, Normalized DCG) with active learning regarding

different labeled instance numbers on all synthetic datasets.

the predictions of multiple weak multi-label rankers via majority votes. The next unlabeled

instance to be labeled is selected based on the aggregated loss of all the weak rankers.

All data sets are split into the training and test set (2
3

and 1
3

of all data instances). We

evaluate the Macro-F1 (does not consider rankings), Instance-F1 (does not consider rankings),

and Normalized DCG (considers rankings) on the test data regarding different numbers of labeled

instances. The learning considers the training data only, and the three metrics are always calculated

on the test set. We also repeat the splitting and learning steps 30 times. The average performance

110



Figure 20: Performance (Micro-F1, Instance-F1, Normalized DCG) with random sampling

regarding different labeled instance numbers on all real-world datasets.

(Y -axis) of different models on the datasets regarding increasing sizes (X-axis) of the training sets

is reported in Figure 18 and Figure 20.

7.3.3 Experimental results

Figure 18, 19, 20, and 21 show the performance of different multi-label ranking frameworks.

In most experiments, CTBN and CRF outperform MMR and OBR: this shows the effectiveness
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Figure 21: Performance (Micro-F1, Instance-F1, Normalized DCG) with active learning regarding

different labeled instance numbers on all real-world datasets.

of the combination of the existing multi-label classifiers that model dependencies among labels

and our auxiliary multi-label ranker. In all experiments, CTBNAct outperform CTBN; CRFAct

outperform CRF; MMRAct outperform MMR: this shows the effectiveness of our expected model

change strategy that actively selects the unlabeled instance with the highest potential to improve

the classification performance. Overall, CTBNAct, the multi-label ranking framework combining

CTBN [Batal et al., 2013, Hong et al., 2014, Hong et al., 2015], our max-margin multi-label

ranker, and the expected model change strategy performs the best. This demonstrates the improved
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effectiveness of the multi-label ranking model, and corresponding active learning framework.

7.4 Summary

In this chapter, we have proposed a new model for multi-label ranking that let us combine

existing multi-label classifiers and our auxiliary multi-label ranker. Our multi-label ranker learns

the rankings from the labels provided by a multi-label classifier. We have also proposed a new

variant of expected model change (EMC) active learning strategy that actively selects the unlabeled

instance with highest expected change induced by the multi-label ranking model. Our results show

that our multi-label ranking model is able to utilize existing multi-label classifiers, which lets us

better capture the dependencies among the labels, and learn the rankings of the selected labels more

efficiently from a smaller number of labeled instances than existing multi-label rankers. Since the

learning of multi-label classification models with permutation subsets is identical to the learning of

multi-label ranking models, this new model can also be applied to multi-label classification tasks

with permutation subsets.
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8.0 Conclusions

8.1 Our contributions

In many classification tasks, training examples need to be labeled by human annotators before

they can be used for learning models. The labeling process may be very costly and tedious,

especially in domains where data are complex and require strong background knowledge for

annotators. An example of such domains is medical diagnosis. In this thesis, we studied and

proposed solutions to address the cost-sensitive learning problem, where the objective is to learn

better classification models while reducing and efficiently distributing the cost of labeling. The

main contributions of this work are summarized as follows:

• Overall, we proposed multiple learning methods incorporating different forms of enriched

label-related feedback and complementary active learning strategy to reduce the annotation

effort in binary, multi-class, and multi-label classification scenarios. In this thesis, we are

mainly focused on two families of popular (maybe the most popular) enriched label-related

feedback: (1) confidence of the class labels, including probabilistic scores and Likert-scale

feedback, which are available in online stores, forecast of precipitation, and other tasks in our

daily life; (2) orderings among the class labels, including ordered class sets and permutation

subsets, which are available in differential diagnosis, object recognition, and other tasks in

biomedical informatics, computer vision, and natural language processing tasks. We are also

mainly focused on the variants of expected model change active learning strategy since it better

estimates how an unlabeled instance will change the model if labeled. We also proposed

multiple techniques to reduce the time complexity of our expected model change strategies.

Our methods are general and can be applied in multiple domains, so we had experiments on

simulated data and real-world data in different domains, showing the superior performance of

our methods compared with existing methods.

• We presented a learning framework for binary classification problems from a form of enriched

label-related feedback named probabilistic scores (or soft labels), where we ask the human

annotator to provide us with, in addition to binary class label, also a probability reflecting
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his/her belief in the positive class label (class 1), and incorporate this information into the

learning process. Our framework was based on the following assumptions: (1) the cost of

labeling is mostly in the example review. Once an example is reviewed and binary class

label is given, the human annotator can give us the probabilistic score at an insignificant

cost; (2) the probabilistic scores given by human may be noisy and negatively influence

the learning process, therefore the methods that utilize probabilistic scores should be robust

against such noise. We proposed a method derived from ordinal regression that distributes

training examples to multiple discrete bins based on their values of probabilistic scores, then

enforces optimization constraints on examples and bin boundaries. The main advantage of

this method is the low time complexity: the number of constraints is linear to the number of

training examples.

• Our method for binary classification problems from probabilistic scores requires the

discretization of examples into multiple bins based on the values of probabilistic scores.

Therefore, we need to determine the optimal number. Since the ordinal-regression-based

method considers all the probabilistic scores in the same bin as an entity. In other words,

the ordinal-regression-based method approximates the probabilistic-score distribution of each

bin as a uniform distribution. That is, the ordinal-regression-based method approximate the

probabilistic-score distribution in the same way as histogram. Therefore, in this thesis, we

proposed utilizing the Freedman-Diaconis rule [Freedman and Diaconis, 1981] for histogram

to select the optimal bin number. We showed the bin number selection can provide closely

comparable performance when combined with our method for binary classification problems

from probabilistic scores compared with internal cross validation.

• Our learning framework for binary classification problems from probabilistic scores can also

be combined with active learning, where we select the unlabeled instance to be labeled next

with the highest potential to improve the model performance, which can further reduce the

annotation effort. However, we pointed out that existing active learning strategies, such as

uncertainty sampling, are incompatible with probabilistic scores since probabilistic scores

already contain uncertainty information. To solve this problem, we proposed an active learning

strategy based on expected model change, where the unlabeled instance with the highest

expected change to the predictions over the unlabeled data is selected. We also proposed
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multiple approximation approaches to reduce the time complexity of our active learning

strategy.

• We extended our learning framework to more complex classification scenarios: multi-class and

multi-label classification. We also extended our learning framework to other forms of enriched

label-related feedback: Likert-scale feedback in binary classification, probabilistic scores

in multi-class classification, ordered class sets in multi-class classification, and permutation

subsets in multi-label classification. For Likert-scale feedback in binary classification, we also

assume that such feedback can also be obtained in negligible time compared with the review

of binary labels. For probabilistic scores in multi-class classification, we assume that only

the probabilistic score of the true-label class can be obtained, since obtaining the probabilistic

scores of all class will take non-trivial time. For ordered class sets in multi-class classification,

we assume that only the total orderings of the top few classes can be obtained. For permutation

subsets in multi-label classification, we assume that only the total orderings of the relevant

labels can be obtained. This is mainly because the low-ranked class or the irrelevant labels are

typically of negligible probabilities, which cannot be distinguished in a short time. We also

proposed the efficient and robust learning methods for all these forms of enriched label-related

feedback along with compatible active learning strategies to reduce the annotation effort.

• Our method for multi-label classification problems from permutation subsets can also be

applied to multi-label ranking problems. Such two-stage method can be trained efficiently

and can be combined with most existing multi-label classification methods which support

gradient-based training methods. We also proposed a complementary active learning strategy

for multi-label ranking models inspired from expected model change, which estimates the

expected change on the predicted total orderings of the relevant labels over the unlabeled data

when an unlabeled instance is assumed given the total orderings of its relevant labels. This

method is, to our knowledge, the first active learning strategy for multi-label ranking models.
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8.2 Open questions

We have proposed approaches to learn better classification models while reducing the cost of

labeling. Our approaches show superior performance compared to existing approaches. However,

there are still multiple challenges and open problems that require further investigation. In the

following, we briefly summarize some of these interesting new directions.

• One important problem studied in this thesis has focused on the development of active learning

methods utilizing enriched label-related feedback where the agreement of the human expert

with the class label has been represented by a probability of the instances belonging to

that class. In parallel to our effort [Luo and Hauskrecht, 2018a, Luo and Hauskrecht, 2018b,

Luo and Hauskrecht, 2019, Luo and Hauskrecht, 2020] have studied group-based active

learning methods where the human expert provides feedback in terms of a proportion of

positive instances for a region of the input space. An interesting open direction to investigate

is a combination of the two approaches. More specifically, we can view an instance to be

an infinitesimal region around that instance and soft-label probability assigned by a human

to that instance to be equal to the proportion of instance replicas the human believes fall into

the positive class. This view gives us the flexibility to query both the regions and individual

instances the same way possibly combining the strengths of both methods. For example,

one solution could be a two-stage active learning framework in which the human expert first

provides the group-based feedback indicating the proportion of positive instances over larger

regions of the input space. This feedback can help to find rough values of the model parameters.

After that, the framework switches to specific instances rather than regions that can help to

better fine-tune the values of the model parameters.

• All work in this thesis for utilizing enriched label-related feedback assumed the class and

enriched label assessments were provided by one human expert. However, because of the

time it may take the human to review and annotate an example, it is hard to expect one

human expert to label all the instances in the dataset. To address this, instead of asking one

human expert, we can ask multiple human experts for the labels. The main challenge is that

different experts may have different opinions, knowledge, or biases, leading to disagreements

in labels. To solve this problem, [Valizadegan et al., 2012, Valizadegan et al., 2013] proposed
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a multi-expert learning framework for binary classification tasks with class labels, which

modeled the model-consistency among the experts with a set of expert-specific parameters.

Therefore, an interesting open research direction is to incorporate enriched label-related

feedback as probabilistic scores into the multi-expert learning framework. In other words,

we hope to utilize enriched label-related as probabilistic scores provided by multiple human

experts, where different expert labels different part of the dataset. In this new setting, the main

challenge is still model-consistency. In binary classification tasks with merely class labels,

different human experts may have different biases when providing binary labels: some tend

to provide more positive labels, while others tend to provide more negative labels. In binary

classification tasks with probabilistic scores, the model-consistency problem becomes more

complicated, since human experts may have different biases on the distribution of probabilistic

scores: some may tend to provide higher scores, some may tend to provide lower scores, some

may tend to provide medium values, and some may tend to provide extreme values. Another

challenge of this learning framework is the noise hidden in the probabilistic scores arisen

from subjective human reviews since it is well documented that humans are unable to provide

consistent and precise probabilistic assessments. In other words, the multi-expert learning

framework with probabilistic scores must (1) eliminate the inconsistency on the distribution

of probabilistic scores among the human experts, and (2) be robust against the noise in the

inaccurate probabilistic scores arisen while still utilizes the useful information in such refined

feedback. Also, since probabilistic scores provide more refined information than merely class

labels, the optimization of this learning framework will be more time consuming, and we have

to be careful with the time complexity of the learning framework.

• Throughout the thesis, when analyzing the benefits of various human feedback strategies,

we assumed the cost of labeling all instances is fixed and constant. However, we note that

this assumption may not hold in practice. Briefly, data objects may be presented to the

human annotator in many different formats, and some of these may be more or less human

friendly. For example, if images were presented to the user as numerical matrices, these would

be very hard, if not impossible, for humans to analyze and assess. Another aspect of this

problem is that high dimensional objects may be harder and more time consuming to review

for humans. For example, if we describe a data object (instance) using a set of attributes and
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their values, it clearly takes more time to review objects with 100 attributes than objects with

ten attributes. Hence an interesting open question in this context is how to properly account

for the complexity of the instance and its query and how to properly model its review cost. A

closely related issue to the review cost model is how to re-represent or transform data instances

to minimize their review cost. Assuming a low dimensional data instance is easier (less

costly) to review and annotate than a high dimensional data instance, one possible approach

to reduce the annotation cost could use feature selection methods [Guyon and Elisseeff, 2003,

Hauskrecht et al., 2005, Hauskrecht et al., 2007] that would automatically restrict the features

to present to the user to the most important ones.

• As noted above, the representation of data objects for review purposes can make a big

difference in their review cost. However, the same (human-friendly) representation

may not be optimal for building machine learning models. Take for example, complex

time-series data from Electronic Health Records (EHRs) with thousands of clinical

variables and related event prediction tasks [Hauskrecht et al., 2013, Hauskrecht et al., 2016,

Liu and Hauskrecht, 2019]. In general, one can apply many different ways to

process and featurize the time series to support prediction tasks, such as, temporal

templates [Hauskrecht et al., 2010, Valko and Hauskrecht, 2010], predictive temporal

patterns[Batal et al., 2011, Batal et al., 2012b, Batal et al., 2012a, Batal et al., 2016],

probabilistic state-space models [Liu and Hauskrecht, 2015b, Liu et al., 2013,

Liu and Hauskrecht, 2015a, Liu and Hauskrecht, 2016a, Liu and Hauskrecht, 2016b,

Liu and Hauskrecht, 2017], or modern deep learning methods based on RNNs

[Lee and Hauskrecht, 2019, Lee and Hauskrecht, 2020], but none of these is human friendly

and can be immediately used either for human instance review or for explaining the model

to the human expert. An interesting open research question is how to utilize or transform

these efficient machine learning representations and their ability to summarize complex data

instances, also to support the human review and case assessment.
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