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Abstract 

Radosveta Koldamova, MD, PhD 

Trem2 Deficiency Differentially Affects the Phenotype and Transcriptome of Human 

APOE3 and APOE4 mice: The Role of APOE and TREM2 in Alzheimer’s Disease 

Cody Matthew Wolfe, PhD 

University of Pittsburgh, 2020 

Abstract 

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and a significant 

public health concern impacting not only patients, but their families and caregivers as well. 

Extracellular deposits of amyloid beta(Aβ)in the brain called amyloid plaques and intracellular 

tau aggregates called neurofibrillary tangles are morphological hallmarks of the disease. The risk 

for AD is a complicated interplay between aging, genetic risk factors, and environmental 

influences. The inheritance of Apolipoprotein E ε4 (APOEε4) and variants of Triggering Receptor 

Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Emerging evidence 

from protein binding assays suggest that APOE and APOE-containing lipoproteins bind to TREM2 

in the brain as well as periphery. This raises the possibility of an APOE-TREM2 interaction 

modulating aspects of AD pathology, potentially in an isoform-specific manner. This dissertation 

aimed to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and 

APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoform, evaluating cognition, steady-

state and dynamic amyloid pathology, glial response, and whole-brain transcriptomics. We found 

that Trem2 deletion had the following effects on the phenotype: a) reduced plaque compaction but 

no effect on steady-state plaque load; b) decreased microglia recruitment to plaques; c) increased 

plaque growth in correlation with reduced microglia barrier, an effect that is dependent on the 
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stage of amyloid deposition; d) isoform dependent effect on plaque-associated APOE; e) worsened 

memory in APP but not in WT littermates. Gene expression analysis identified the Trem2 signature 

as a cluster of highly interconnected immune response genes commonly downregulated as a result 

of Trem2 deletion in all experimental groups, including Clec7a, Itgax, Cts7, Mpeg1, Csf1r, Cx3cr1 

and Spi1/PU.1. Several of the Trem2 signature genes had higher expression in APP/E4 versus 

APP/E3 mice, a result validated for Clec7a and Csf1r by FISH, and for APOE by 

immunohistochemistry. In contrast, Tyrobp and several genes involved in the C1q complement 

cascade had higher expression levels in APP/E3 versus their APP/E4 counterparts. Collectively, 

this dissertation provides evidence as to the phenotypic and transcriptomic effects regarding the 

interplay between human APOE isoform and Trem2 deletion in association with AD pathology. 
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1.0 Introduction 

1.1 Alzheimer’s Disease  

1.1.1 History 

In the 19th century, individuals with dementia began to be regarded as medical patients, 

and senile dementia was first recognized as a disease (Knopman et al., 2019). The concurrent rise 

in medical awareness has led to the division of the term dementia into multiple differing 

neuropathological conditions. The term Alzheimer’s Disease (AD) was first introduced in 1910 in 

a clinical psychiatry textbook based on the seminal case published in 1906 by Alois Alzheimer. 

AD is now characterized by the extracellular accumulation of amyloid β (Aβ) plaques and 

intracellular hyperphosphorylated tau tangles that ultimately lead to impaired cognitive abilities and 

irreversible memory loss (Crous-Bou et al., 2017). The term AD became synonymous with 

dementia around the late 1960s until the late 1980s, an attitude which partially persists to this day. 

This vernacular arose from the clinical model in which AD comprised all forms of dementia that 

could not be tied to another clinically observable cause, even though a definitive diagnosis of AD 

can only occur postmortem. 

AD is associated with the onset of progressive memory deterioration, and functional 

deficits with death as the unavoidable outcome. The disease lifespan includes an estimated 10-year 

preclinical stage, 4-year prodromal stage, and 6-year dementia stage (Vermunt et al., 2019). 

Evidence points to pathological changes including the buildup of oligomeric Aβ and Tau 

accumulation occurring in the years before the manifestation of clinical symptoms, making the use 
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and validation of biomarkers that measure pathology and brain atrophy a growing necessity. Until 

around 2010, the diagnosis of AD relied heavily on reporting symptoms that fit within the known 

cognitive domains, but the reclassification system put into place in 2011 by the National Institute 

of Aging and the Alzheimer’s Association (NIA-AA) now includes the preclinical mild cognitive 

impairment (MCI) stage as a part of the AD diagnosis. The most recent diagnostic criteria must 

now include the preclinical phase in which biomarker evidence of AD-related pathology exists 

without any AD-related symptoms (Dubois et al., 2014; Dubois et al., 2016; Sperling et al., 2011). 

Recent studies have shown the ability to use cerebrospinal spinal fluid (CSF) and positron emission 

tomography (PET) imaging as reliable biomarkers for cerebral Aβ and tau deposition in 

cognitively normal older adults and those with mild AD (Brier et al., 2016). Evidence suggests 

that AD-related cognitive changes may result from the complex interplay between tau and amyloid 

proteins; the earlier and more accurate in vivo imaging of these proteins will have a dramatic 

impact on AD research and treatment. 

1.1.2 APP Processing 

Classically, the Aβ hypothesis has been driven by the observation that genetic mutations 

in the APP gene or the presenilin genes PSEN1 and PSEN2 result in the deposition of Aβ faster 

than it can be cleared (Selkoe and Hardy, 2016). The human APP gene is located on chromosome 

21q21.3 and contains 18 exons comprised of approximately 240 kilobases and is a member of the 

APP protein family along with two other homologous proteins called APP-like protein 1 and 2 

(APLP1, APLP2) (Tanzi et al., 1987). APP undergoes both amyloidogenic and non-amyloidogenic 

processing. Under non-amyloidogenic processing, APP on the cell surface is cleaved by α-secretase 

in the AV domain, producing sAPP, which gets released into the extracellular environment and 
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prevents the generation of Aβ (Sisodia, 1992). The cleavage by α-secretase leaves behind a 

membrane-bound C-terminal fragment called C83. Subsequent cleavage of C83 by γ-secretase 

produces a 3kDa p3 fragment that is released through the secretory pathway or via exocytosis. 

Furthermore, γ-secretase cleavage also creates an APP intracellular domain (AICD) fragment that 

is short and very unstable (Passer et al., 2000). Only 16 amino acids differ between the fragments 

generated by non-amyloidogenic α-secretase cleavage and amyloidogenic β-cleavage; however, 

only amyloidogenic processing ultimately leads to Aβ related AD pathology (Yuksel and Tacal, 

2019). 

During amylogenic processing, APP is first cleaved by β-secretase, generating sAPP and 

leaving a portion of the protein bound to the membrane to be further cleaved by γ-secretase. Due 

to the imprecise nature of γ-secretase cleavage, multiple species of Aβ exist; peptides terminating 

at position 40 (Aβ1-40) are the most common, and the second most common terminus is at position 

42 (Aβ1-42) (Schmidt et al., 2009). Aβ1-42 and longer Aβ peptides are more hydrophobic, 

fibrillogenic, and highly self-aggregating- they go on to form amyloid deposits more readily than 

Aβ1-40 (Caughey and Lansbury, 2003). Familial AD studies suggested that the ratio between the 

two most prevalent peptides, Aβ1-42 and Aβ1-40, can be used as a marker for AD progression 

(Borchelt et al., 1996). Preliminary evidence suggests that measuring the Aβ1-42/Aβ1-40 ratio 

along with other AD biomarkers in the CSF can improve diagnostic performance, but a sufficiently 

strong body of evidence does not yet exist for Aβ1-42/Aβ1-40 ratio to be used as a single source 

biomarker (Hansson et al., 2019). Misfolded Aβ monomers are rich in β-sheet conformations, 

leading to both soluble and insoluble forms of oligomeric deposits. If Aβ monomers are not 

cleared, they develop into oligomers, which continue to aggregate into protofibrils, then into fibrils 

that ultimately collect to form amyloid plaques (Ni et al., 2011). Cognitive deficits have been 

identified preceding the appearance amyloid deposition or insoluble amyloid fibrils, implicating 
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Aβ oligomers in AD pathology before the existence of amyloid plaques (Hsia et al., 1999; Mucke 

et al., 2000). Additionally, amyloid can build up in the cerebrovasculature causing cerebral 

amyloid angiopathy (CAA) which increases the risk for intracerebral hemorrhage and cognitive 

impairments (Tanaka et al., 2020). Amyloid pathology is also implicated in the loss of synaptic 

integrity and. Is suggested to precede neuronal loss which is a hallmark of AD (Jellinger, 2020). 

Cognitive deficits have been shown to reflect decreases in synaptic density in the hippocampus of 

human AD patients (Masliah et al., 2001). 

1.1.3 Functional Genomics and AD 

The majority of AD cases develop without an identifiable single source genetic variant as 

a causative agent. This does not, however, discount the possibility that a multitude of gene variants 

as well as environmental factors modulate AD risk. With the rise in high throughput sequencing, 

the genotyping and sequencing of hundreds of thousands of human samples to screen for genetic 

variants has become possible. The availability of these samples gave rise to genome-wide 

association studies (GWAS), which report the loci which are enriched in a disease population 

above expected based on control samples. Many initial AD GWAS were undertaken (Harold et 

al., 2009; Jun et al., 2010; Naj et al., 2011) and ultimately aggregated into a meta-analysis study, 

resulting in the identification of many AD-related risk genes (Lambert et al., 2013). As the 

availability and technology of sequencing improved, the widespread use of whole-exome 

sequencing (WES) and whole-genome sequencing (WGS) has allowed for the identification of 

rare variants associated with AD. Analysis of GWAS and other gene expression data has led to the 

identification of three major groups of genes enriched in AD cases: those involved in endocytosis, 

lipid metabolism, and immune response.  
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Endocytosis is a process by which matter is brought into a cell; the failure to efficiently 

accomplish this can lead to the buildup of proteins, as observed in AD. The most notable 

endocytosis-related AD risk genes that have been identified are sortilin-related receptor 1 

(SORL1), bridging integrator 1 (BIN1), CD2-associated protein (CD2AP), and 

phosphatidylinositol-binding clathrin assembly (PICALM). The brain contains thousands of lipid 

species that play a vital role in cell signaling, making the regulation of lipid metabolism and 

homeostasis vital to a healthy system. The gene with the highest risk factor for AD, Apolipoprotein 

E (APOE), falls into this category, further emphasizing the importance of lipid metabolism. 

Additionally, ATP-binding cassette transporter A7 (ABCA7) and Clusterin (CLU) are AD risk 

genes associated with lipid metabolism. Furthermore, increasing evidence suggests that alterations 

in immune response play a role in AD progression: genes such as Complement receptor 1 (CR1), 

Membrane Spanning 4-Domains A (MS4A family), Sialic Acid-Binding Ig-Like Lectin 3 (CD33), 

and Triggering receptor 2 on myeloid cells (TREM2) are all implicated as AD risk factors. This 

dissertation focuses on the interplay between the AD risk-modifying variants of two of these genes: 

APOE and TREM2. 

1.1.4 APOE and TREM2 

In humans, the inheritance of one APOEε4 allele increases the risk of late-onset AD 

(LOAD) by 3–4-fold, while two copies of the allele increase the risk 9–15-fold (Neu et al., 2017). 

Aβ pathology is distinctly associated with APOE variants, as carriers of the APOEε4 allele exhibit 

earlier disease onset and increased levels of amyloid plaques (Corder et al., 1993; Cosentino et al., 

2008; Schmechel et al., 1993). Levels of insoluble Aβ1-40 and Aβ-42 levels are increased if 

APOE4 is expressed in the brain during the early stages of amyloid deposition (Liu et al., 2017). 
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However, this effect is not observed in mice expressing APOE3, nor is it seen when the expression 

of APOE4 is increased after the initial seeding stage, indicating that APOE4 has the greatest impact 

during the earliest phases of amyloid accumulation. APOE and APOE receptors likely modulate 

aspects of Aβ efflux, with APOE being shown to promote clearance of Aβ across the blood brain 

barrier and by activating microglial phagocytosis and migration in an isoform-dependent manner 

(APOE3 > APOE4), implicating microglial dysfunction as a player in APOE-associated AD risk 

(Jiang et al., 2008a; Lee et al., 2012).  

TREM2 is a cell surface receptor on myeloid cells that interacts with the protein tyrosine 

kinase binding protein (TYROBP). TREM2 binds Lipopolysaccharides (LPS) (Daws et al., 2003), 

phospholipids (Wang et al., 2015), HDL (Yeh et al., 2016), LDL, APOE (Atagi et al., 2015; Bailey 

et al., 2015; Yeh et al., 2016), CLU (Yeh et al., 2016), apoptotic neurons (Hsieh et al., 2009), and 

Aβ (Zhao et al., 2018b) all of which activate signaling pathways. TREM2 activation initiates a 

multitude of signaling pathways that promote microglial chemotaxis, phagocytosis, cell survival, 

and proliferation, making it critical for normal immune function (Kleinberger et al., 2014; 

Mazaheri et al., 2017; Poliani et al., 2015; Ulland et al., 2017; Wang et al., 2015). In humans, the 

rare TREM2 variant R47H (arginine to histidine at position 47) is associated with AD; the 

inheritance of this allele increases the risk of developing AD by approximately 4-fold, likely due 

to the universal reduction in binding (Guerreiro et al., 2013a; Jonsson et al., 2013; Lessard et al., 

2018; Sudom et al., 2018). Trem2 haploinsufficiency and complete deficiency in mouse models of 

AD are consistently associated with a reduced microglial barrier around amyloid deposits, reduced 

plaque compaction, and increased dystrophic neurites surrounding plaques (Jay et al., 2017; Jay et 

al., 2015; Wang et al., 2015; Wang et al., 2016; Yuan et al., 2016). APOE binds to TREM2 (Atagi 

et al., 2015; Bailey et al., 2015; Yeh et al., 2016), providing a molecular pathway for an APOE-

TREM2 interaction to modulate AD pathogenesis. 
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1.1.5 Microglia and AD 

The identification of many genes associated with the immune response has piqued interest 

in the role of microglia in the pathogenies of AD. In AD, microglia are important in the 

phagocytosis of debris, clearance of Aβ, the release of pro-inflammatory cytokines, and the 

development of a plaque-associated barrier (Hansen et al., 2018). Microglia are the resident 

macrophages in the brain and account for approximately 10% of all cells present in the central 

nervous system (CNS) (Colonna and Butovsky, 2017). Microglia are highly dynamic cells that 

interact with most other cell types in the brain and are constantly surveilling their surroundings. 

Quiescent microglia have small cellular bodies surrounded by extensive processes that survey their 

environment (Li et al., 2013). The morphological alterations in microglia upon activation are one 

of the first observable changes. Upon activation, microglia develop larger, amoeboid cell bodies 

with shorter, thicker processes directed towards the target area (Boche et al., 2013). Reactive 

microglia phagocytize debris and secrete inflammatory factors. Changes in morphology occur in 

conjunction with transcriptional changes; upon activation, microglia significantly reduce 

expression of TMEM119, and P2RY12 and increase their expression of CLEC7A, IBA1, F4/80, 

and other phagocytic markers (Gyoneva and Ransohoff, 2015).  

Previous studies that focused on microglia polarization utilized either the M1 or M2 

phenotype as a key determinant of inflammation (Boche et al., 2013). The M1 phenotype is 

considered pro-inflammatory, as it is characterized by the production and release of cytokines that 

can contribute to neuronal injury (Hu et al., 2015). Alternatively, the M2 phenotype is associated 

with protection and anti-inflammatory signaling due to the release of neurotrophic factors that 

promote repair. This classification was determined in vitro by stimulating the cells with a single 

cytokine and then measuring the response of a small number of genes (Martinez et al., 2006). 
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However, in vivo, microglia encounter a complex array of signals including cytokines, 

chemokines, and other molecules. Additionally, the polarization states in vivo are not particularly 

distinct and have a high degree of functional overlap. Thus, the original classification is 

oversimplified to reliably reflect microglial activation states; the classification criteria have shifted 

following the advent of single-cell sequencing.  

Advances in next-generation sequencing technologies and single-cell gene expression 

profiling have allowed for the identification of subsets of cells, such as microglia, that have 

different activation profiles (Keren-Shaul et al., 2017; Krasemann et al., 2017). Recently, Keren-

Shaul et al. identified a subset of microglia named “disease-associated microglia” (DAM) that 

accumulate during AD and other neurodegenerative diseases (Keren-Shaul et al., 2017). DAM are 

characterized by the upregulation of genes such as Clec7a, Itgax, Trem2, and Apoe, which are 

involved in lysosomal, phagocytic, and lipid metabolism pathways (Deczkowska et al., 2018). 

Importantly, a significant downregulation of the so-called “homeostatic microglial” genes was 

detected contemporaneously with the upregulation of DAM genes (Keren-Shaul et al., 2017). 

Furthermore, genetic ablation of Trem2 suppressed mouse Apoe expression and restored 

homeostatic microglial function in AD mouse models (Krasemann et al., 2017). 

1.2 Public Health Significance  

AD is the most common cause of dementia, and the intracellular buildup of 

hyperphosphorylated tau and extracellular buildup of Aβ ultimately leads to impaired cognitive 

abilities and irreversible memory loss (Crous-Bou et al., 2017). Currently, AD is the fourth-leading 

cause of death in adults worldwide after heart disease, cancer, and stroke (Larson et al., 2013). The 
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current number of people worldwide who are suffering from AD is estimated to be 24.3 million 

and has been predicted to rise to 42 million in 2020 and 81 million by 2040 (Larson et al., 2013). 

In the United States, over 80% of all AD cases are in patients > 75 years old (Fig. 1A), a number 

which is only likely to increase as the average lifespan increases and the population ages. 

Additionally, females also have a disproportionately higher estimated lifetime risk compared to 

males (Fig. 1B); this cannot be accounted for solely by the longer average life expectancy seen in 

women but is most likely also related to differences in hormones and lifestyle. The annual death 

rate per 100,000 people has more than doubled in the last 20 years and unfortunately, AD is one 

of the only major causes of death in which the percentage change in the last 20 years has increased 

instead of decreased, ultimately costing the United States hundreds of billions of dollars (Fig. 1C-

E). 

 

Figure 1. AD statistics in the United Stated in 2019. 
Statistics generated for the 2019 Alzheimer’s facts and figures report (Association, 2019). (A) Ages of People with 

Alzheimer’s Dementia, 2019. (B) Estimated Lifetime Risk for Alzheimer’s Dementia, by Sex, at Ages 45 and 65. (C) 

Distribution of Aggregate Costs of Care by Payment Source for Americans Age 65 and Older with Alzheimer’s or 

Other Dementias, 2019. “Other” payment sources include private insurance, health maintenance organizations, other 

managed care organizations, and uncompensated care. (D) U.S. Annual Alzheimer’s Death Rate (per 100,000 People) 

by Year. (E) Percentage Changes in Selected Causes of Death (All Ages) Between 2000 and 2017. 
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Over 100 drugs have been tested since the late 1990s, but only four have been authorized for use 

in humans, and they only help manage the symptoms of the disease while doing nothing alter the 

disease progression (Alzheimer’s, 2018). There are currently two types of drugs available: 

cholinesterase inhibitors, which prevent acetylcholinesterase from breaking down acetylcholine, 

which is crucial for cellular communication and memory maintenance. The other drug class used 

is NMDA receptors which block the effects of glutamate, which is released in excessive amounts 

in AD patients and damages neuronal cells (Alzheimer’s, 2018). Interestingly, data generated from 

studies of twins estimate the hereditability of AD to be around 58%, which suggests that both 

genetic and non-genetic factors modulate disease progression (Gatz et al., 2006). Efforts to identify 

more of these factors and how they work to modulate AD pathology will ultimately lead to changes 

in clinical identification and treatment opportunities for patients suffering from AD. The APOEε4 

variant and TREM2 deficiency via the R47H mutation are two major genetic risk factors for 

LOAD, and yet surprisingly little is known about how either of these genes modulates plaque 

growth. Even less about the interplay between APOE4 and TREM2 regarding the effects on the 

phenotype and transcriptional regulation. The data presented here works to address this problem 

by developing a better understanding of the pathological implications of TREM2 deficiency and 

the expression of human APOE3 and APOE4. 
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2.0 Materials and Methods 

2.1 Key Resources Table 

Table 1 Key Resources Table. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-OC Millipore Cat No. AB2286, RRID: 

AB_1977024 

Horse anti-rabbit Dylight 594 Vector Labs Cat No. Di-1094, 

RRID:AB_2336414 

Normal goat serum Vector Labs Cat No. S-1000-20 

6E10 biotinylated antibody Biolegend Cat No. 803009, 

RRID:AB_2564656 

Anti-IBA1 antibody Wako Cat No. 019-19741, 

RRID:AB_839504 

Anti-GFAP antibody Agilent Cat No. Z033429-2 

Normal Donkey Serum Jackson Lab Cat No.017-000-121, 

RRID:AB_2337258 

Donkey anti-rabbit Alexa 594 Invitrogen Cat No. R37119, 

RRID:AB_2556547 

Donkey anti-rabbit Alexa 488 Invitrogen Cat No. A-21206, 

RRID:AB_141708 

Anti-APOE antibody Invitrogen Cat No. PA527088, 

RRID:AB_2544564 

Goat anti-rabbit Dylight 488 Vector Labs Cat No. Di-1488, 

RRID:AB_2336402 

Chemicals, Peptides, and Recombinant Proteins 

Methoxy-X34 (X34) 1,4-bis (3-

carboxy-4-hydroxyphenylethenyl)-benzene 

W. Klunk N/A 

Methoxy-X04 (X04) 1,4-bis(4′-

hydroxystyryl)-2-methoxybenzene 

W. Klunk N/A 

Thioflavin S (ThioS) Sigma Aldrich Cat No. 1326-12-1 

Thiazine Red (TR) Sigma Aldrich Cat No. 1121-911 

Critical Commercial Assays 

Vector ABC kit Vector Labs Cat No. PK-7200 

DAB substrate kit Vector Labs Cat No. SK-4100 

http://antibodyregistry.org/AB_1977024
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Multiplex Fluorescent Reagent kit v2 Advanced Cell 

Diagnostics 

Cat No: 323100 

Deposited Data 

Raw and analyzed data This paper GEO: GSE144125 

Experimental Models: Organisms/Strains 

Mouse APP/PS1dE9: APP(B6.Cg-Tg 

(APPswe, PSEN1dE9)85Dbo/J) 

The Jackson 

Laboratory 

RRID:MMRRC_042050-

JAX 

Mouse Trem2ko: (Trem2em2ADiuj/J) The Jackson 

Laboratory 

027197-JAX 

Mouse APOE3+/+: (B6.129P2-

Apoetm3(APOE*3)Mae N8) 

Taconic Bioscience 1548 

Mouse APOE4+/+: (B6.129P2-

Apoetm3(APOE*4)Mae N8) 

Taconic Bioscience 1549 

Software and Algorithms 

ANY-maze Stoelting Co., USA http://www.anymaze.co.u

k/ 

Subread/featureCounts (v1.5.3) (Liao et al., 2013) https://sourceforge.net/pr

ojects/subread/files/subread-1.5.3/ 

Rsubread (v1.34.2) (Liao et al., 2019) https://bioconductor.org/

packages/release/bioc/html/Rsubre

ad.html 

DEseq2 (1.24.0) (Love et al., 2014) https://bioconductor.org/

packages/release/bioc/html/DESeq

2.html 

EdgeR (v3.26.5) (Robinson et al., 

2009) 

https://bioconductor.org/

packages/release/bioc/html/edgeR.

html 

WGCNA (v1.68) (Langfelder and 

Horvath, 2008) 

https://cran.r-

project.org/web/packages/WGCN

A/index.html 

R (v3.6.0) The R Foundation https://www.r-

project.org/ 

Database for Annotation, 

Visualization and Integrated Discovery 

(DAVID v6.8) 

(Huang et al., 2009) https://david.ncifcrf.gov 

Cytoscape (v3.7.1) National Resource 

for Network Biology 

https://cytoscape.org/ 

Table 1 Continued 

http://www.anymaze.co.uk/
http://www.anymaze.co.uk/
https://sourceforge.net/projects/subread/files/subread-1.5.3/
https://sourceforge.net/projects/subread/files/subread-1.5.3/
https://bioconductor.org/packages/release/bioc/html/Rsubread.html
https://bioconductor.org/packages/release/bioc/html/Rsubread.html
https://bioconductor.org/packages/release/bioc/html/Rsubread.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://www.r-project.org/
https://www.r-project.org/
https://david-d.ncifcrf.gov/
https://cytoscape.org/
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Prism (v8.2.0) GraphPad https://www.graphpad.co

m/scientific-software/prism/ 

NIS Elements software AR Nikon Instruments 

Inc 

https://www.microscope.

healthcare.nikon.com/products/sof

tware/nis-elements 

Imaris (v9.3.1) Bitplane https://imaris.oxinst.com/

packages 

Adobe Photoshop CC (v20.0.5) Adobe https://www.adobe.com/p

roducts/photoshop.html 

Other 

FISHprobe: Mm-Clec7a Advanced Cell 

Diagnostics 

Cat No. 532061 

FISHprobe: Mm-Csf1r Advanced Cell 

Diagnostics 

Cat No. 428191 

FISHprobe: Mm-Tmem119 Advanced Cell 

Diagnostics 

Cat No. 472901 

FISHprobe: Mm-Apoe Advanced Cell 

Diagnostics 

Cat No. 313271 

2.2 Experimental Model and Subject Details 

2.2.1 Animals 

Mouse strains. This study adhered to the guidelines outlined in the Guide for the Care and 

Use of Laboratory Animals from the United States Department of Health and Human Services and 

was approved by the University of Pittsburgh Institutional Animal Care and Use Committee. 

APP/PS1dE9 (B6.Cg-Tg (APPswe, PSEN1dE9)85Dbo/J) and Trem2em2ADiuj/J mice were 

purchased from The Jackson Laboratory (USA) and human APOE3 (B6.129P2-Apoe
tm3(APOE*3)Mae 

N8) 

and APOE4 (B6.129P2-Apoe
tm3(APOE*4)Mae 

N8) targeted replacement mice from Taconic (USA) 

(Sullivan et al., 1997). APP/PS1dE9 mice express mutant familial variants of human amyloid 

precursor protein (APP) with Swedish mutation, and human presenilin 1 carrying the exon-9-

Table 1 Continued 

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://www.microscope.healthcare.nikon.com/products/software/nis-elements
https://www.microscope.healthcare.nikon.com/products/software/nis-elements
https://www.microscope.healthcare.nikon.com/products/software/nis-elements
https://imaris.oxinst.com/packages
https://imaris.oxinst.com/packages
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
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deleted variant (PSEN1dE9). All purchased mice were on a C57BL/6 genetic background and 

crossbred for at least 10 generations in our laboratory. 

Breeding. APP/PS1dE9 mice were bred to human APOE3+/+ or APOE4+/+ targeted 

replacement mice (Fitz et al., 2012; Nam et al., 2018) to generate APP/PS1dE9/APOE3+/+ (referred 

to as APP/E3, APP/PS1dE9/APOE4+/+ (APP/E4), APOE3+/+ (E3), APOE4+/+ (E4) mice expressing 

human APOE isoforms and wild-type Trem2. Trem2−/− mice were bred to human 

APP/PS1dE9/APOE3+/+ or APP/PS1dE9/APOE4+/+ targeted replacement mice to generate 

APP/PS1dE9/APOE3+/+/Trem2-/- (referred to as APP/E3/Trem2ko), 

APP/PS1dE9/APOE4+/+/Trem2-/- (APP/E4/Trem2ko), APOE3+/+/Trem2-/- (E3/Trem2ko); and 

APOE4+/+/Trem2-/- (E4/Trem2ko) mice. All APOE3 or APOE4 mice were littermates and fed 

normal mouse chow diet ad libitum. Mice had water accessible at all times and were kept on a 12-

hour light-dark cycle. Male and female mice from each genotype were used for this study at an 

average age of 6.5 months. 

2.3 Method Details 

2.3.1 Behavioral Testing 

Novel Object Recognition. Novel object recognition (NOR) was performed as previously 

described (Carter et al., 2017) with minor modifications. The NOR task assesses recognition 

memory and is based on the spontaneous tendency of mice to explore a novel object over a familiar 

one. Mice were placed in individual containers before any testing then returned to their housing 

cages after the daily testing was completed. Each mouse was handled for 3 min. for three 
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successive days before testing to reduce anxiety. The NOR task was performed over three 

consecutive days, each pertaining to a unique phase. On Day 1, habituation phase, each animal 

was allowed to freely explore an open arena (40 cm X 40 cm X 30 cm tall white plastic box) for 

two 5 min. trials with a 5 min. inter-trial interval. On Day 2, familiarization phase, each animal 

was returned to the same arena for two 5 min. trials separated by a 5 min. intertrial interval with 

two identical objects (tower of LEGO® bricks 8 cm X 3.2 cm, built using white, blue, yellow, red, 

and green bricks) located in opposite diagonal corners of the arena. After a 24-hour retention 

period, the testing phase was initiated on Day 3. The animal was returned into the arena with two 

objects in the same positions as the previous day, but one object was replaced with a novel object 

(metal bolt and nut of similar size). Mice were allowed to explore for one 10 min. interval. The 

exploration of both objects was recorded and scored with ANY-maze software (Stoelting Co., 

USA). The exploration by the software was defined as the mouse sniffing, climbing on, or 

interacting while facing an object within 3 cm. Mice were consistently placed into the middle of 

the arena facing the posterior wall to prevent any object preference. The arena and objects were 

cleaned with 70% ethanol between animals to prevent any olfactory cues. Animals that failed to 

have a total exploration time of 10 sec for the objects during the novel phase were excluded from 

the analysis. The total distance traveled by each mouse was recorded during the habituation phase 

to assess locomotor activity. The percent exploration was determined by dividing the time 

exploring the novel object by the total time exploring both objects. This calculated value provides 

an indicator of recognition memory, with less time spent exploring the novel object signifying 

memory deficits.  

Contextual and Cued Fear Conditioning. Contextual and Cued Fear Conditioning (CCFC) 

was performed as previously described (Carter et al., 2017). CCFC provides a measure of memory 
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in relation to receiving a mild foot shock to a particular environment (context) or stimulus (cue). 

CCFC testing was initiated 24 hours following completion of NOR and was performed for three 

consecutive days. On Day 1, training phase, mice were placed in a conditioning chamber (Stoelting 

Co., USA) for 5.5 min. The first 2 min. was silent, allowing the mouse to acclimate to the chamber. 

This was followed by a 30 sec tone (2,800 Hz; Intensity 85 dB, conditioned stimulus (CS)) ending 

in a 2 sec foot shock (0.7 mA, unconditioned stimulus (US)) through the floor of the conditioning 

chamber. The process was repeated one more time (learning phase) and ended by 30 sec of 

reacclimation. On Day 2, contextual phase, mice were placed in the same conditioning chamber 

for 5 min. with no tone or shock administered, to measure contextual fear conditioning. For the 

final day, the gray walls of the chamber were covered with black and white striped walls to 

introduce a novel environment for assessing cued fear conditioning. Mice were placed in the 

conditioning chamber for 5 min. After the first 2 min. of silence (novel phase), the tone was 

administered for 3 min. (cued phase). Testing was performed at the same time of the day to ensure 

24-hours between phases. The chamber was cleaned with 70% ethanol between each animal. 

Freezing time was defined as the absence of movement except for respiration and recorded using 

ANY-maze software. Animals that had below 30 sec total freezing time during the contextual 

phase were excluded from the analysis. Freezing time was calculated as percent freezing of the 

total time in the chamber during each phase of testing. Since freezing behavior is a fear 

characteristic in rodents, memory deficits were defined as diminished freezing when reintroduced 

to the context or cue from the training phase.  
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2.3.2 Animal Tissue Processing  

Two days post behavior, mice were anesthetized by intraperitoneal injection using Avertin 

(250mg/kg of body weight). Blood was collected from the right ventricle through a cardiac 

puncture, followed by transcardial perfusion through the left ventricle with 20 mL of cold 0.1 M 

phosphate buffered saline (PBS), pH 7.4. The brain was removed and divided into hemispheres. 

One hemisphere was dissected into the cerebellum, subcortical, hippocampus and cortex regions 

and flash frozen on dry ice. A separate section of the anterior cortex was removed for whole-brain 

RNA-seq. The other hemisphere was drop fixed in 4% phosphate-buffered paraformaldehyde at 

4°C for 48 hours and stored in 30% sucrose until sectioning (Nam et al., 2018). Hemibrains were 

mounted in O.C.T. and cut in the coronal plane at 30 µm sections using a frozen cryotome (Thermo 

Scientific, USA). Six serial sections were collected with each section 450 µm apart, starting 

approximately 150 µm caudal to the first appearance of the dentate gyrus; covering an area in the 

brain from bregma −1.25 mm and ending at bregma −3.95 mm. Sections were stored in glycol-

based cryoprotectant at -20°C until histological staining (Nam et al., 2018). 

2.3.3 Chemicals  

Methoxy-X34 (X34) 1,4-bis (3-carboxy-4-hydroxyphenylethenyl)-benzene, was provided 

by William E Klunk, MD, Ph.D., (University of Pittsburgh). For in vivo labeling of dense plaques, 

we used Methoxy-X04 (X04) 1,4-bis(4′-hydroxystyryl)-2-methoxybenzene, synthesized in W. 

Klunk’s lab (University of Pittsburgh). X04 readily crosses the blood-brain barrier (Klunk et al., 

2002) and remains bound to plaques for at least 90 days (Condello et al., 2011b). One mg/mL X04 
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stock solution was made by dissolving X04 in a vehicle consisting of 4% DMSO and 7.7% 

Cremophore EL in PBS.  

2.3.4 Histological Staining 

For the OC-X34 dual stain, free-floating sections were washed followed by 30 min 

incubation in 50mM sodium citrate buffer at 80°C for antigen retrieval. Sections were then washed, 

blocked with 5% normal horse serum made in 0.1% triton-X 100 PBS for 1 hour and finally 

incubated in anti-OC (1:1000, Millipore) primary antibody overnight at 4°C. The following 

morning, the sections were washed, incubated in horse anti-rabbit Dylight 594 (Di-1094 Vector 

Labs) for 2 hours, and washed before mounting on positively charged glass slides. The slides were 

treated with 100 µM X34 followed by two 5 min destaining steps in 50% ethanol and coverslipped. 

Fluorescent images were taken using a Nikon Eclipse 90i microscope at 10X magnification. OC-

X34 images were analyzed using Nikon NIS elements software and thresholding for the detection 

of plaques. The ratio between X34 positive (compact plaque) and OC positive areas (protofibular 

Aβ) was used to determine plaque compaction. Plaques with increased OC / X34 ratio are less 

compact than plaques with a ratio closer to one. We also assessed the area of OC not associated 

with X34 positive plaques (non-core bound OC) as a percentage of total detectable OC area (total 

OC).  

A second series of brain tissue was used for 6E10 immunostaining as previously described 

(Nam et al., 2018) with some modifications. Antigen retrieval was performed on free-floating 

sections using 70% formic acid, followed by quenching of endogenous peroxidases with 0.3% 

hydrogen peroxide. The tissue was incubated in 3% normal goat serum (Vector, USA) then 

blocked for endogenous avidin and biotin. Sections were incubated in 6E10 biotinylated antibody 
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(1:1000 Biolegend, USA) for 2 hours and subsequently developed using the Vector ABC kit and 

DAB substrate kit (Vector, USA). Sections were mounted onto superfrost plus slides (Fisher 

Scientific, USA) and coverslipped. Bright-field images were taken using a Nikon Eclipse 90i 

microscope at 4X magnification. Thioflavin S (ThioS) staining was performed on an third series 

of brain sections. Sections were mounted onto slides, washed in PBS, and stained with 0.02% 

ThioS (Sigma, USA) in PBS for 10 min. Next, sections were differentiated in 50% ethanol for 2 

min. After a final wash in PBS, slides were coverslipped. Fluorescent images were taken using a 

Nikon Eclipse 90i microscope at 4X magnification.  

To quantify plaque pathology, two separate regions of interest (ROI) were drawn around 

the cortex and hippocampus for each section and an image intensity threshold was established to 

detect the stained plaques compared to the background using NIS Elements software (Nikon 

Instruments Inc., USA). OC, X34, 6E10, and ThioS staining values were represented as the area 

of staining normalized to ROI area or percentage of area covered by 6E10 or ThioS stain. 

A fourth series of brain sections were immunostained with anti-IBA1 antibody (WAKO, 

USA) and anti-GFAP antibody (Agilent, USA). Free-floating sections were washed, then antigen 

retrieval performed in sodium citrate buffer at 80°C for 60 min, blocked in Normal Donkey Serum 

(Jackson Lab, USA) for 1 hour, and finally incubated in IBA1 antibody (1:1000) overnight at 4°C. 

Sections were washed and transferred into secondary donkey anti-rabbit Alexa 594 (Invitrogen, 

USA) for 1 hour, before being washed and transferred to GFAP antibody (1:1000) overnight at 

4°C. Again, sections were washed and transferred into secondary donkey anti-rabbit Alexa 488 

(Invitrogen, USA) for 1 hour, before being washed and mounted onto slides. Slides were stained 

with X34 as documented for ThioS, followed by DAPI staining, and coverslipped. Fluorescent 

images of individual plaques were taken using a Nikon Eclipse 90i microscope at 20X 
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magnification. Plaques were chosen with an average area of 300 µm2. The number of IBA1 

positive microglia and GFAP positive astrocytes were counted in circular radiating regions of 

interest with a diameter of 10, 20, 40, and 60 µm from the edge of the X34 positive plaque. 

A fifth series of brain sections were immunostained with anti-APOE antibody (Invitrogen, 

USA) and Thiazine Red (TR, Sigma Aldrich). Free-floating sections were washed, blocked in 

Normal Donkey Serum (Jackson Lab, USA) for 1 hour, and incubated in APOE antibody (1:100) 

overnight at 4°C. Sections were transferred into secondary donkey anti-rabbit Alexa 488 

(Invitrogen, USA) for 1 hour, before being washed and mounted onto slides. Mounted slides were 

stained with 2µM TR in PBS for 15 min. After a final wash, slides were dried and coverslipped. 

Fluorescent images of plaques were taken using a Nikon Eclipse 90i microscope at 10X 

magnification. Staining was defined by threshold analysis using NIS Elements software, and the 

area of APOE staining associated with TR positive plaque area was assessed. 

A sixth series of brain sections were immunostained with anti-LAMP1 antibody (Abcam, 

USA) and X34. Free-floating sections were washed, blocked in Normal Goat Serum (Jackson Lab, 

USA) for 1 hour, and incubated in LAMP1 antibody (1:500) overnight at 4°C. Sections were 

transferred into secondary goat anti-rat Cy5 (Vector, USA) for 2 hours, before being washed and 

mounted onto slides. Mounted slides were stained with X34 as above. Fluorescent images of 

plaques were taken using a Nikon Eclipse 90i microscope at 10X magnification. Staining was 

defined by threshold analysis using NIS Elements software, and the area of LAMP1 staining 

associated with X34 positive plaques was assessed. For all plaque specific imaging, plaques were 

selected so they were at least 50 μm from the edge of the tissue, and at least 50 μm away from 

other plaques, with an even representation of all plaque sizes and composition across all groups to 

account for any bias introduced by differences in plaque stage, composition, or size. 
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2.3.5 In vivo Plaque Labeling 

X04 was administered intraperitoneally (i.p.) at a concentration of 10 mg/kg to mice at 

either 3.5 or 5.5 months of age and sacrificed after 30 days for the collection of brain tissue for in 

vivo labeling of dense core amyloid plaques. Tissues used for the X04-TR-IBA1 triple stain 

allowed for the assessment of plaque growth dynamics and microglia plaque barrier. Free-floating 

sections were washed, incubated in 0.5 uM TR in PBS for 20 min followed by a final PBS wash. 

Sections were then incubated in 50mM sodium citrate buffer for 30 min at 80°C to perform antigen 

retrieval, washed, incubated in 5% normal goat serum made in 0.1% triton-X 100 PBS for 1 hour, 

and finally incubated in anti-IBA1 (1:1000, Wako) primary overnight at 4°C. The following 

morning the sections were washed, incubated in goat anti-rabbit Dylight 488 (Di-1488 Vector 

Labs) for 2 hours, and washed before mounting on positively charged glass slides. X04-TR-IBA1 

triple stained tissues were imaged on all three channels using an Olympus FV1000 confocal 

microscope at 60x, with 1.5 μm step size. For confocal imaging, plaques were selected if they were 

at least 50 μm from the edge of the tissue, and at least 50 μm away from other plaques, with an 

even representation of all plaque sizes and composition across all groups.  

To assess the size of β-amyloid plaques at each age group (4.5 and 6.5 months), we 

analyzed plaque volume using Imaris on an independent set of APP/E3, APP/E3/Trem2ko, APP/E4 

and APP/E4/Trem2ko mice that were injected at 5.5 months of age and sacrificed 48 hours later to 

extract quantitative data from the high-resolution three-dimensional confocal images. In the 48 

hour controls, plaques of all sizes and compositions were intentionally imaged in order to account 

variance when thresholding near detection limits. Greater than 94% of all the plaques imaged in 

the experimental groups fall within the minimum and maximum range of TR plaque volume 

analyzed in the 48hr control group. Additionally, when comparing the TR volume to X04 volume 
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in the 48 hour control plaques we saw a very high correlation (R2 = 0.9579) and no departure from 

the linear regression line in either the extremely small, or extremely large plaques (see Fig. 8). 

Briefly, images were loaded into the Imaris (v9.3.1) environment and voxels less than 500 intensity 

were removed from all channels to reduce background noise. Surfaces were then generated for the 

X04 and TR channels and the volume of each surface created was analyzed. Surfaces were created 

to assess IBA1 coverage and, using the “surface-surface contact area” XTension, the percent of 

IBA1 / TR surface contact was calculated. A 1 voxel shell is generated surrounding the TR labeled 

amyloid plaque and any time IBA1 signal is colocalized with the TR shell it is counted as surface 

contact. The sum of the colocalized voxels divided by the total surface area of TR generated the 

percent surface contact. The surface area contacted by microglia is subtracted from the total surface 

area giving the exposed surface area of each plaque (surface area not covered by microglia). The 

change in plaque volume was calculated by subtracting the volume of the plaque at the time of 

sacrifice (TR) from the volume of the plaque at the time of in vivo labeling (X04). In the 48-hour 

control mice, we found no significant difference in the volume of X04 and TR labeling, an average 

growth volume (TR-X04) near 0 and an average fold change near 1 (TR/X04).  

2.3.6 Tissue Homogenization for ELISA 

The frozen cortices were homogenized according to previously published work (Fitz et al., 

2010). Individual cortices were weighed and transferred into a glass Dounce containing the 

appropriate amount of tissue homogenization buffer (1M TRIS base, 0.5M EDTA, and 0.2M 

EGTA) and protease inhibitor (Sigma-Aldrich, USA). Cortices were homogenized in 1 mL of 

tissue homogenization buffer and protease inhibitor per each 100 mg of tissue. Once homogenized, 

the tissue was spun in a centrifuge at 16,000 rcf for 1 hour. The supernatant was kept for future 
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use for the determination of soluble Aβ. 70% formic acid was then added to the pellet and sonicated 

for two fifteen sec intervals before being spun again at 16,000 rcf for 1 hour. The resulting 

supernatant was kept and used for the determination of insoluble Aβ. 

2.3.7 Aβ ELISA 

Aβ ELISA was performed according to previously published work (Fitz et al., 2010) with 

modifications. The wells of MaxiSorp plates (Nunc) were coated by adding 100 µl/well of 6E10 

antibody (Biolegend, USA) diluted to 5 µg/ml in Coating buffer (0.1M NaHCO3, 0.1M Na2 CO3, 

pH 9.6) and incubated overnight at 4°C while rocking. The next day, wells were washed with PBS 

and 200 µL/well of Block Ace Solution (1% Block Ace (Bio Rad, USA) in PBS, 0.05% NaN3) 

was added. Plates were incubated for 4 hours at room temperature with rocking to block non-

specific binding. Once the Block Ace Solution was removed 50 µl/well of Buffer EC (20mM 

sodium phosphate, 2mM EDTA, 400mM NaCl, 0.2% BSA, 0.05% CHAPS, 0.4% Block Ace, 

0.05% NaN3, pH 7.0) was added to the wells to prevent drying while adding samples. 100 µL of 

standards and samples were added to each well, and high-range samples were diluted with Buffer 

EC where necessary. For the insoluble Aβ fraction, samples were also neutralized with FA 

neutralization solution (1M TRIS base, 0.5M Na2HPO4, 0.05% NaN3) before dilution. For 

standards, ranging from 0-0.8pM, equal parts of 8 pM stocks of Aβ40 and Aβ42 were used. Once 

standards and samples were loaded, the plates were incubated overnight at 4˚C with rocking. Plates 

were washed and 100 µL detection antibody HJ5.1 (1:3300, a gift from John Cirito) diluted in 

0.05%-PBSTween was added to each well and incubated for 90 min. at room temperature with 

rocking. After washing, 100 µL HRP40 secondary (1:16000, Fisher Scientific, USA) diluted in 

1% BSA-PBSTween, was added to each well and incubated for 90 min. at room temperature with 
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rocking. Wells were washed and 100 µL of prepared TMB Substrate/H2O2 Solution (Thermo Sci-

1854050) was added. Absorbance was read at 650 nm on a plate reader (Molecular Devices, USA). 

All samples were run on the same day in duplicates. The concentration of total Aβ in pM was 

interpolated using linear regression on GraphPad Prism 7.0 and multiplied by the dilution factor 

for each sample.  

Bradford Assay. Protein concentrations were determined according to previously published 

work (Fitz et al., 2014). The Bradford assay was used to determine the protein concentration of all 

samples. Bovine Serum Albumin (BSA, Fisher Scientific, USA) standards ranging from 0-100 

µg/ml were used. A 40% Bio-Rad Protein Assay Dye Reagent (Bio-Rad, USA) was prepared with 

a 1:1 volume of diluted samples and absorbance was read at 595 nm. Total Protein (μg/ml) was 

interpolated using linear regression on GraphPad Prism 7.0 and multiplied by the dilution factor 

for each sample. To normalize the data, total protein concentration from the Bradford assay (μg/ml) 

was divided by the pM concentration of total Aβ for each sample from ELISA. 

2.3.8 Fluorescence in situ Hybridization (FISH) 

In a separate cohort, mice were perfused, and tissue fixed and sectioned as documented 

above. RNAscope experiments were performed using the Multiplex Fluorescent Reagent kit v2 

(Advanced Cell Diagnostics, USA) following the manufacturer’s recommendations with minor 

adjustments. Six freshly sectioned tissues per animal were mounted onto superfrost plus slides 

(Fisher Scientific, USA) within a 0.75” x 0.75” square, and baked at 60°C for 60 min. Slides were 

incubated in X-34 for 10 min. before being dehydrated using a series of ethanol dilution steps, then 

submerged in target retrieval reagent at 100°C for 10 min. Protease digestion was performed at 

40°C for 30 min. using Protease III, and probe hybridization was carried out at 40°C for 2 hours. 
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We used probe sets available from ACD for Mm-Clec7a, Mm-Csf1r, and Mm-Tmem119. 

Following the amplification steps, the sections were counterstained with DAPI and coverslipped. 

Imaging was carried out using a Nikon Eclipse 90i microscope at 20X magnification with imaging 

of individual plaques and analyzed using NIS Elements software (Nikon Instruments Inc., USA). 

One circular ROI that extends 50 µm from the center of the X-34 positive plaque was drawn, and 

a threshold established for each probe to determine the area of puncta coverage. Four ROI’s of the 

same area were randomly selected from areas away from the plaque on the same image and 

averaged to determine the area of puncta coverage greater than 50 µm from plaque center. Apoe 

FISH analysis was performed on Tmem119-positive microglia within the same 50 µm ROI. The 

nuclei and surrounding area of cells with positive Tmem119 signal were outlined and identified as 

microglia. The intensity of Apoe FISH signal was normalized to the number of Tmem119 positive 

cells. 

2.3.9 mRNA-seq Data  

RNA was isolated from the frontal cortex and purified using RNeasy mini kit (Qiagen, 

Germany). RNA quality was assessed using 2100 Bioanalyzer (Agilent Technologies, USA) and 

only samples with RIN > 8 were used for library construction. Library generation was performed 

by Novogene Co. Ltd. and sequenced using an Illumina HiSeq 2500 instrument. Following initial 

processing and quality control, the sequencing data was aligned to the mouse genome mm10 using 

Subread/featureCounts (v1.5.3; https://sourceforge.net/projects/subread/files/subread-1.5.3/) with 

an average read depth of 50 million successfully aligned reads. Statistical analysis was carried out 

using Rsubread (v1.34.2; https://bioconductor.org/packages/release/bioc/html/Rsubread.html), 

DEseq2 (1.24.0; https://bioconductor.org/packages/release/bioc/html/DESeq2.html), EdgeR 

https://sourceforge.net/projects/subread/files/subread-1.5.3/
https://bioconductor.org/packages/release/bioc/html/Rsubread.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html


 26 

(v3.26.5; https://bioconductor.org/packages/release/bioc/html/edgeR.html), and WGCNA (v1.68; 

https://cran.r-project.org/web/packages/WGCNA/index.html) all in the R environment (v3.6.0; 

https://www.r-project.org/). For network analysis using WGCNA, samples were clustered by gene 

expression profile which enabled the detection of outliers that were removed from the downstream 

analysis. Modules were generated automatically using a soft thresholding power, β = 10, a 

minimum module size of 44 genes and a minimum module merge cut height of 0.25. To account 

for bias introduced by sequencing batch, we implemented empirical Bayes-moderated linear 

regression which removes variation in the data due to unwanted covariates while preserving 

variation due to retained covariates. Networks were built using the top 5 genes identified as hub 

genes from any given module (gene significance > 0.2, and module membership > 0.8). Following 

hub gene selection, all other connections generated from the top 5 genes were visualized using 

Cytoscape (v3.7.1). Functional annotation clustering was performed using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID v6.8, https://david.ncifcrf.gov). All 

GO terms are considered significant if p<0.05 following multiplicity correction using the 

Benjamini-Hochberg method to control the FDR.  

2.4 Quantification and Statistical Analysis 

Sample sizes (n) indicated in the figure legends. No outliers were removed from the 

analysis. All researchers were blinded to experimental groups during the analysis. All results are 

reported as means ± SEM. Data was analyzed by two-way ANOVA with APOE isoform and 

Trem2 status as main factors followed by Sidak multiple comparison test. Histology and FISHwas 

analyzed by one-way ANOVA followed by Tukey’s multiple comparison test. Unless otherwise 

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://www.r-project.org/
https://david-d.ncifcrf.gov/
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indicated, all statistical analyses were performed in GraphPad Prism (v 8.2.0), or in R (v 3.6.0) 

and significance was determined as p<0.05. Number of experiments and statistical information are 

stated in the corresponding figure legends. In figures, asterisks denote statistical significance 

marked by * p<0.05; ** p<0.01; *** p<0.001.  

2.5 Data and Code Availability 

The RNA-seq expression data has been deposited in the GEO database under the accession 

number: GSE144125. 
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3.0 The Role of APOE and TREM2 in Alzheimer’s Disease – Current Understanding and 

Perspectives 

The data presented in this chapter is open access published in Int. J. Mol. Sci. 2019, 20, 81 
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3.1 Abstract 

Alzheimer’s disease (AD) is the leading cause of dementia worldwide. The extracellular 

deposits of Amyloid beta (A) in brain – called amyloid plaques, and neurofibrillary tangles – 

intracellular tau aggregates, are morphological hallmarks of the disease. The risk for AD is a 

complicated interplay between aging, genetic risk factors, and environmental influences. One of 

Apolipoprotein E (APOE) alleles – APOEε4, is the major genetic risk factor for Late Onset AD 

(LOAD). APOE is the primary cholesterol carrier in brain, and plays an essential role in lipid 

trafficking, cholesterol homeostasis, and synaptic stability. Recent GWAS studies have identified 

other candidate LOAD risk loci, as well. One of those is the triggering receptor expressed on 

myeloid cells 2 (TREM2), in brain expressed primarily by microglia. While the function of TREM2 

is not fully understood, it promotes microglia survival, proliferation, and phagocytosis, making it 

important for cell viability and normal immune functions in brain. Emerging evidence from protein 

binding assays suggests that APOE binds to TREM2 and APOE-containing lipoproteins in brain 

as well as periphery and are putative ligands for TREM2, thus raising the possibility of an APOE-
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TREM2 interaction modulating different aspects of AD pathology, potentially in an isoform 

specific manner. This review is focusing on the interplay between APOE isoforms and TREM2 in 

association with AD pathology. 

3.2 Introduction 

AD is the leading cause of dementia worldwide and accounts for 60-80% of all cases 

(Crous-Bou et al., 2017). AD is characterized by senile plaques made of β-amyloid peptide (Aβ) 

and neurofibrillary tangles of hyperphosphorylated tau protein. There are two types of AD: 

familial, early-onset AD, and LOAD, with LOAD accounting for approximately 95% of all AD 

cases (Guerreiro et al., 2012; Tanzi, 2012). Familial AD accounts for a small percentage of all 

cases and occurs exclusively through gene mutations in amyloid precursor protein (APP), or 

presenilins (PSEN1, PSEN2) that increase the production of Aβ (Guerreiro et al., 2012; Tanzi, 

2012), or the ratio between longer (Aβ42) and shorter Aβ peptides. These mutations follow a 

pattern of Mendelian inheritance and result in symptom manifestation before the age of 65 

(Campion et al., 1999). In contrast, LOAD has no known causative gene mutations, however, 

genome-wide association studies (GWAS), and whole exome sequencing have identified over 30 

AD risk loci (Pimenova et al., 2018). Over half of those have been implicated in innate immune 

response including APOE and TREM2 (Guerreiro et al., 2013a; Jonsson et al., 2013; Karch et al., 

2014; Shi and Holtzman, 2018). 

In humans, the APOE gene resides on chromosome 19 and has three alleles with different 

allele frequencies: APOEε2, 5–10 %; APOEε3, 65–70 %; and APOEε4, 15–20 % (Bu, 2009). 

APOE is a 299 amino acid protein, is a major cholesterol carrier in the circulation and the only 
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cholesterol transporter in brain (Liu et al., 2013). In mouse models for AD, the human isoforms 

APOE2 and APOE3 have the ability to bind and clear Aβ more efficiently compared to APOE4 

(Castellano et al., 2011). The physiological role of APOE in lipid trafficking is crucial as lipids 

play an essential role in immune regulation through cell signaling, membrane fluidity, and serve 

as ligands for a number of immune receptors (Mahoney-Sanchez et al., 2016). TREM2 is a cell 

surface receptor on myeloid cells and through its interaction with protein tyrosine kinase binding 

protein (TYROBP), TREM2 activation initiates a multitude of pathways that promote cell survival 

(Ulland et al., 2017; Wang et al., 2015), proliferation (Poliani et al., 2015), chemotaxis, and 

phagocytosis (Hsieh et al., 2009; Kleinberger et al., 2014; Mazaheri et al., 2017; Poliani et al., 

2015; Takahashi et al., 2005; Wang et al., 2015; Zheng et al., 2017), making it vital for normal 

immune function. The most common TREM2 variant, R47H (arginine to histidine at position 47), 

impairs ligand binding and increases the risk of developing AD by approximately 4-fold (Guerreiro 

et al., 2013a; Jonsson et al., 2013). TREM2 has the ability to recognize a variety of ligands many 

of them on the surface of apoptotic cells, phospholipids, glycolipids, and lipoproteins including 

low-density lipoprotein (LDL) and high-density lipoproteins (HDL), Clusterin (APOJ) and APOE 

(Atagi et al., 2015; Bailey et al., 2015; Yeh et al., 2016). Emerging evidence suggests that TREM2 

can bind to and is a putative receptor for APOE (Atagi et al., 2015; Bailey et al., 2015; Yeh et al., 

2016), thus raising the possibility of an APOE-TREM2 interaction modulating AD pathogenesis. 

This review focuses on the interplay between APOE isoform and TREM2 and their association 

with AD. 
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3.3 APOE 

3.3.1 APOE Structure and Isoforms 

Figure 2. Role of APOE in AD. 
In humans, there are three APOE isoforms: APOEε2, APOEε3, and APOEε4. In the brain, APOE is secreted mainly 

by astrocytes and its lipidation is mediated by ABCA1. ABCA1 transports cholesterol and phospholipids to naïve 

APOE forming discoidal HDL particles. Lipid-rich APOE particles can interact with Aβ monomers and oligomers 

and bind to the LDL receptor family including LRP1, LDLR, VLDLR, and ApoER2 on both neurons and microglia, 

while also interacting with TREM2 only in microglia. 

 

In brain, APOE is secreted by glia, mainly astrocytes, and is lipidated by adenosine 

triphosphate-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) (Fig. 2). ABCA1 

transports cholesterol and phospholipids to lipid-free APOE, thus forming discoidal HDL particles 

(reviewed in (Koldamova et al., 2010, 2014)). The discoidal HDL particles are composed of 100 

to 200 lipid molecules that are surrounded by two apolipoprotein molecules (Nagata et al., 2013). 

Once sufficient cholesterol and phospholipids are available to ABCA1 it undergoes a conformation 
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change and forms a dimer. The lipidated dimers interact with actin filaments on the plasma 

membrane, thereby immobilizing them until lipid-free apolipoprotein directly binds to the ABCA1 

dimer. Upon binding, the apolipoprotein accepts the lipids presented by ABCA1 and forms a 

discoidal HDL particle leaving the ABCA1 dimer to dissociate back to a monomer and begin the 

process again (Nagata et al., 2013). In brain, APOE is primarily synthesized de novo and there is 

a limited exchange between APOE circulating in the blood and brain (Lane-Donovan et al., 2016; 

Zhang and Liu, 2015). In humans, APOE isoforms differ at either position 112 or 158 (Fig. 2). 

APOE2 has cysteine (Cys) residues at both positions 112 and 158, APOE3 has a Cys residue at 

112 and an arginine (Arg) residue at 158, and APOE4 has Arg residues at both positions 

(Weisgraber et al., 1981). All other mammals investigated so far have a single APOE isoform with 

Arg at the residue equivalent to human APOE 112 (Mahley et al., 2009). 

APOE has two functional domains: an N-terminal domain, residues 136-150, and a C-

terminal lipid binding domain, residues 244-272 (Bu, 2009; Liu et al., 2013)). The N-terminal 

domain forms a four-helix bundle (Wilson et al., 1991) and the amino acid differences between 

isoforms alter the protein structure, thus leading to differential lipid and receptor binding. With a 

Cys residue at position 112, both APOE2 and APOE3 have the ability to form disulfide-linked 

hetero- and homodimers, while Arg at position 112 of APOE4 significantly impedes the binding 

(Weisgraber and Shinto, 1991). The structural variation between isoforms due to amino acid 

Cys/Arg at position 158 impacts the receptor-binding domain of APOE and thus, the binding 

affinity to APOE receptors. The variation at position 112 plays a role in domain-domain interaction 

and affects lipid binding properties of APOE (Weisgraber, 1990), thus explaining the binding 

preference of APOE4 for very low-density lipoproteins (VLDL) and APOE3 to HDL (Dong and 
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Weisgraber, 1996). Therefore, the stability and functional role of APOE is largely dependent on 

its ability to interact with lipids and its receptor binding properties. 

3.3.2 APOE Receptors 

APOE predominantly binds to receptors of LDL receptor family, which includes low-

density lipoprotein receptor (LDLR), LDLR-related receptor 1 (LRP1), very-low-density 

lipoprotein receptor (VLDLR), and APOE receptor 2 (APOER2) (Kanekiyo and Bu, 2014; Lane-

Donovan et al., 2014; Shinohara et al., 2017) (Fig. 2). The members of the LDL receptor family 

share structural properties consisting of a short intracellular domain, a transmembrane domain, 

and a large extracellular domain with a varying number of complement-type repeats which allow 

them to interact with APOE (Lane-Donovan et al., 2014). The first identified key member of this 

family of receptors was LDLR, which is the main receptor for LDL and VLDL. LDLR 

preferentially binds to lipidated APOE particles, and its deficiency leads to severe 

hypercholesterolemia and premature atherosclerosis (Jeon and Blacklow, 2005). LRP1 binds to 

APOE aggregates and is essential for early development, as the deletion of the Lrp1 gene in mice 

results in embryonic lethality (Herz et al., 1992), while brain-specific knockdown of Lrp1 inhibits 

synaptic transmission and motor function (May et al., 2004). LDLR and LRP1 are the main APOE 

receptors in brain and deletion of Ldlr increases APOE levels (Fryer et al., 2005; Liu et al., 2007). 

Both APOER2 and VLDLR are almost exclusively expressed in the brain, are structurally very 

similar to each other, bind to lipid-free APOE, and are dependent on the extracellular ligand Reelin 

(Trommsdorff et al., 1999). In mice deletion of both Apoer2 and Vldlr leads to defective lamination 

of the cerebellum, cortex, and hippocampus, as well as a reduction in cerebellum volume and 

impaired motor function (Trommsdorff et al., 1999). 
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Activation of APOE receptors by Reelin initiates a signaling cascade through the initiation 

of Src family kinases (SFKs). The activation includes PI3 kinase and Protein kinase B (Akt), which 

result in reduced phosphorylation of the microtubule stabilizing protein tau, and regulation of 

microtubule dynamics (Hiesberger et al., 1999; Zhang et al., 2007). As noted above, due to the 

amino acid substitution of Arg with Cys at 158 leading to conformational differences, APOE2 

exhibits a severely decreased binding affinity to LDLR (1-2% of APOE3) (Kowal et al., 1990), a 

significantly decreased affinity to bind LRP1 (40% of APOE3) (Kowal et al., 1990), but similar 

affinity to VLDLR (Ruiz et al., 2005). The receptors from the LDL receptor family have distinct 

physiological roles due in part to their affinity to ligands, signaling potency, cellular localization, 

expression pattern, and endocytosis rate (Shinohara et al., 2017). 

3.3.3 APOE Function in the CNS 

The human brain accounts for approximately 2% of the weight of the body but contains 

over 20% of its total cholesterol (Bjorkhem and Meaney, 2004). In brain, cholesterol is necessary 

for the formation and maintenance of synapses, and APOE plays a major role in cholesterol 

homeostasis. The blood brain barrier (BBB) prevents the exchange between brain and plasma 

cholesterol and lipids transported by HDL, LDL and VLDL (Zhang and Liu, 2015). APOE as the 

major lipid carrier in the brain and has an important role in the transport of cholesterol and other 

lipids from astrocytes to neurons, where they are needed to maintain synaptic plasticity (Mauch et 

al., 2001). The important role of APOE in synaptic integrity and plasticity, as well as dendritic 

complexity, has been demonstrated by experiments in APOE knockout mice (Fitz et al., 2015; 

Lane-Donovan et al., 2016). 
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Disruptions in synaptic function, decreased synaptic density and alterations in autophagy 

are a pathological feature of neurological disorders, including AD (Azarnia Tehran et al., 2018; 

Koffie et al., 2011; Nixon, 2017; Sheng et al., 2012). There is increasing evidence that APOE 

isoforms differentially impact synaptic integrity and plasticity (Ji et al., 2003; Love et al., 2006; 

Yong et al., 2014; Zhu et al., 2012). In mice and humans, APOE4 correlates inversely with 

dendritic spine density (Ji et al., 2003; Mounier et al., 2015), and synaptic proteins PSD-95, 

synaptophysin, and syntaxin 1 are altered in an APOE isoform-specific manner (APOE4 < APOE3 

< APOE2) (Love et al., 2006). It has been shown that in targeted replacement mice expressing 

human APOE, APOE4 isoform has a differential effect on neuronal signaling in young and aged 

mice indicated by the expression level of proteins in NMDAR-dependent ERK/CREB pathway, 

reduced expression of APOE receptor LRP1 and lower NR2A phosphorylation (Yong et al., 2014). 

Other studies demonstrated that in APOE4 expressing mice dendritic spine density and 

complexity, as well as glutamate receptor function, and synaptic plasticity are impaired (Chen et 

al., 2010; Dumanis et al., 2009). Meta-analyses addressing the differential effect of APOE 

isoforms in cognitively healthy adults over the age of 60 suggest that APOEε4 carriers exhibit 

impaired episodic memory, executive function, and global cognition, with no impact on primary 

memory, verbal ability, or attention (Small et al., 2004; Wisdom et al., 2011). Studies utilizing the 

same cognitive tests and similar in size patient cohorts are rare thus making the findings 

inconsistent between groups (O'Donoghue et al., 2018). Whether or not memory and cognitive 

impairments in humans, carriers of APOEε4 allele, are associated with a disturbed neuronal 

signaling and the level of NR2A phosphorylation, as in APOE4 expressing mice, is not known. 
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3.4 TREM2 

3.4.1 TREM2 Structure and Expression 

Figure 3. TREM2 activation and downstream signaling. 

sTREM2 is generated by ADAM 10 or ADAM17 mediated proteolytic cleavage. Ligand activated TREM2 interacts 

with immune receptor tyrosine-based activation motifs (ITAMs) on TYROBP which leads to TYROBP 

phosphorylation and recruitment of spleen tyrosine kinase (SYK). TYROBP/SYK mediated activation of 

phosphoinositide 3-kinase (PI3K) – AKT pathway and phosphorylation of LAT (linker for activation of T-cells family 

member 1), recruits other signaling adaptors including phospholipase Cγ (PLCγ). PLCγ degrades 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) into inositol trisphosphate (IP3), inducing an efflux of Ca2+. The 

ability of TREM2 to bind ligands is influenced by genetic variations, some of which are associated with AD and 

located adjacent to or within an electrostatically basic patch (light blue). 

 

TREM2 is a transmembrane receptor of the immunoglobulin superfamily expressed on the 

plasma membrane of myeloid cells and microglia and is active in the innate immune response 

(Colonna and Wang, 2016). TREM2 protein consists of an extracellular Ig-like domain, a 
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transmembrane domain, and a small cytoplasmic tail. In the CNS, TREM2 expression is strongest 

in the basal ganglia, corpus callosum, spinal cord, and medulla oblongata (Paloneva et al., 2002). 

Human TREM2 is located on chromosome 6p21.1 in the TREM gene cluster near other TREM 

and TREM-like genes: TREML1, TREM2, TREML2, TREML3, TREML4, and TREM1 

(Guerreiro et al., 2013b; Klesney-Tait et al., 2006). Many of these genes are conserved in mice 

and humans with only Trem3 and Trem6 unique to mice and TREML3 to humans. Both TREM2 

and TREM1 interact with TYROBP to initiate pathways involved in cell activation and 

phagocytosis (Klesney-Tait et al., 2006; Poliani et al., 2015). TREMs proteins are implicated in 

the clearance of extracellular debris (Painter et al., 2015). 

The proteolytic cleavage of TREM2 ectodomain generates soluble TREM2 (sTREM2) 

(Wunderlich et al., 2013) (Fig. 3). sTREM2 has the ability to passes the Brain - cerebral spinal 

fluid (CSF) barrier and can be detected in CSF (Liu et al., 2018). 

3.4.2 TREM2 Function 

TREM2 binds Lipopolysaccharides (LPS) (Daws et al., 2003), phospholipids (Wang et al., 

2015), HDL (Yeh et al., 2016), LDL, APOE (Atagi et al., 2015; Bailey et al., 2015; Yeh et al., 

2016), CLU (Yeh et al., 2016), apoptotic neurons (Hsieh et al., 2009), and Aβ (Zhao et al., 2018b) 

all of which activate signaling pathways (Fig. 3). TREM2 conveys intracellular signals through 

TYROBP, an adaptor protein that contains functional docking sites known as ITAMs. Upon 

TREM2 activation through ligand binding, the ITAMs on TYROBP are phosphorylated and recruit 

SYK. SYK activates the PI3K–AKT pathway and also phosphorylates the adaptor LAT (linker for 

activation of T-cells family member 1), which recruits other signaling adaptors including PLCγ. 
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PLCγ degrades PIP3 into IP3, which creates an efflux of Ca2+ (Colonna and Wang, 2016; Peng et 

al., 2010; Wang et al., 2015) (Fig. 3).  

Unlike the signaling cascade triggered by ligand activated TREM2 (Fig. 3), the biological 

role of sTREM2 is not well understood. It has been proposed, however, that it either acts as a decoy 

receptor opposing full-length TREM2 (Zhong et al., 2017) or has another still unidentified 

function. In cell culture, at least, sTREM2 promoted survival of bone marrow-derived 

macrophages (BMDM) (Wu et al., 2015), yet failed to rescue phagocytosis in TREM2-deficient 

BMDM cells (Xiang et al., 2016). 

A well-established function of TREM2 is the regulation of cell proliferation. Knockdown 

of TREM2 in primary microglia leads to a reduction in cell number (Zheng et al., 2016) and 

TREM2 deficiency inhibits myeloid cell population growth in response to traumatic brain injury 

(Saber et al., 2017) and aging (Poliani et al., 2015). Expression of TREM2, even at a normal level, 

may also impact the proliferation of endothelial cells. Recently, Carbajosa et al. investigated the 

impact of TREM2 deficiency, in brain of young and aged mice using RNA-seq, and found a 

disruption of gene networks related to endothelial cells that is more apparent in younger than in 

older mice. They suggested that the absence of TREM2 in microglia influences endothelial gene 

expression, which may link immune response and brain vascular disease as an underlying factor 

in AD pathogenesis (Carbajosa et al., 2018). Microglia survival in the context of TREM2 

expression has been also linked to CSF-1-CSF-1R pathway, which is primarily active in conditions 

of reactive microgliosis (Chitu and Stanley, 2006) and affects Aβ clearance (Mitrasinovic et al., 

2003). Since it has been demonstrated that, that TREM2 signaling, via TYROBOP, synergizes 

with CSF-1R signaling to promote survival of macrophages (Otero et al., 2009), a similar 

mechanism can be involved in microglial survival as well. A recent study by Wang et al. 
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demonstrating that TREM2-deficient microglia exhibited reduced survival at low CSF-1 

concentrations support the role of CSF-1R signaling in microglia survival (Wang et al., 2015). In 

conjunction with decreased survival, TREM2-deficient microglia demonstrate a reduced 

chemotactic capacity. Migration of microglia towards injected apoptotic neurons as well as 

towards sites of laser-induced damage was also reduced in Trem2-/- mice (Mazaheri et al., 2017). 

3.4.3 TREM2 Variants and Neurodegeneration 

Rare biallelic mutations that result in loss of function of TREM2 cause Nasu–Hakola 

disease (Paloneva et al., 2002) (NHD) and in some cases Fronto temporal dementia (FTD)(Cuyvers 

et al., 2014; Guerreiro et al., 2013b). NHD is manifested with bone cysts and early onset of 

neurodegeneration. Brain pathology is comprised of axonal degeneration, white matter loss, 

cortical atrophy, increased microglia density, and astrogliosis (Klunemann et al., 2005; Sasaki et 

al., 2015; Satoh et al., 2011). The variants associated with NHD and FTD can be a result of coding 

mutations in the transmembrane domain (D134G, K186N) (Paloneva et al., 2002), ectodomain 

(Y38C, T66M) (Giraldo et al., 2013; Guerreiro et al., 2013b; Le Ber et al., 2014), early stop codons 

(Paloneva et al., 2003; Soragna et al., 2003), or mutations in a splice site (Chouery et al., 2008; 

Numasawa et al., 2011). Considering the role of TREM2 in microglial function, variants in TREM2 

can be part of functional networks involved in multiple neurodegenerative disorders. Numerous 

studies have evaluated the effect of TREM2 on risk for AD (discussed in section 4.2), 

frontotemporal dementia (FTD) (Thelen et al., 2014), amyotrophic lateral sclerosis (ALS) (Cady 

et al., 2014; Chen et al., 2015a; Rayaprolu et al., 2013), Lewy body dementia (Walton et al., 2016), 

posterior cortical atrophy (Carrasquillo et al., 2016), Creutzfeldt-Jakob disease (Slattery et al., 

2014), progressive supranuclear palsy (Rayaprolu et al., 2013), Parkinson's disease (Rayaprolu et 
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al., 2013), ischemic stroke (Rayaprolu et al., 2013), and multiple system atrophy (Chen et al., 

2015b). 

TREM2 R47H variant was identified as a risk factor for AD independently by 2 groups 

that Analyzed European and North American (Guerreiro et al., 2013a) and Icelandic cohorts 

(Jonsson et al., 2013). Later in the same year, Cruchaga et al. demonstrated that TREM2-R47H 

variant is associated with a higher level of tau and phospho-tau in CSF (Cruchaga et al., 2013). 

The initial findings for TREM2- R47H variant were confirmed by other groups (Hooli et al., 2015; 

Lill et al., 2015). Sims et al reported, in addition, a significant association of TREM2-R47H and - 

R62H variants with LOAD and showed that even after removing these variants from the analysis 

the association remained significant suggesting the presence of other TREM2 risk variants (Sims 

et al., 2017). TREM2 pW191X and pL211P variants were recently identified associated with 

LOAD in African American cohort but the variants shown to confer AD risk in Caucasians were 

extremely rare (Jin et al., 2015). Similarly, Yu et al. reported several new TREM2 variants in Han 

Chinese population, however, none of them was significantly associated with AD risk and TREM2 

R47H variant was not detected in this population (Yu et al., 2014). 

In addition to TREM2, another gene in the same cluster - TREML2 was also examined for 

association with LOAD. In a meta-analysis study of 36,306 human CSF samples, the missense 

variant rs3747742 of TREML2 seemed to confer a protective effect against AD (Benitez et al., 

2014). A complete list of so far identified TREM2 variants - can be found on the ALZ forum 

website https://www.alzforum.org/. 

Recently, Kober et al. demonstrated that NHD variants impact protein stability and 

decrease TREM2 cell surface expression, while AD variants impact TREM2 ligand binding 

(Kober et al., 2016) (Fig. 3). When mapping the electrostatic surface of TREM2, Kober et al. 
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identified a large basic patch that was not present in other members of the TREM family (Kelker 

et al., 2004) indicating a unique role for this domain in TREM2 function. Many of the AD-related 

mutations can be found near or within this basic region of TREM2. Both R47H and R62H decrease 

the size of the basic patch and reduce binding properties resulting in a loss of function, while T96K 

increases the size corresponding to a gain of function (Kober et al., 2016).  

3.5 APOE, TREM2, and AD 

3.5.1 APOE and AD 

Studies in mice have suggested that a relationship between APOE isoform and Aβ 

metabolism was involved in AD pathogenesis. Considering APOE as an Aβ binding protein 

(Strittmatter et al., 1993), many of the early in vitro studies tested Aβ binding to APOE and other 

apolipoproteins (Ghiso et al., 1993; Koldamova et al., 2001; LaDu et al., 1994; Manelli et al., 

2004; Wisniewski et al., 1993). While the binding was repeatedly confirmed, none of those studies 

provided any indication that the risk for AD was dependent on differences in APOE-Aβ binding. 

APOEε4 is the major genetic risk factor for LOAD (Corder et al., 1993; Schmechel et al., 

1993). Inheritance of a single copy of APOEε4 increased AD risk by ~3 fold, and the inheritance 

of two copies increases risk by ~12 fold (Holtzman et al., 2011). Compared to AD patients who 

are not APOEε4 carriers, AD patients who carry at least one APOEε4 allele exhibit an earlier 

disease onset, faster disease progression, and increased brain atrophy (Agosta et al., 2009; Corder 

et al., 1993; Cosentino et al., 2008). Importantly, however, homozygous APOEε3 AD patients still 

account for the majority of LOAD cases, suggesting that additional genetic or environmental 
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factors are relevant to disease progression. The question, however, if APOE4 isoform is deleterious 

or less protective, remains unanswered, with evidence supporting both claims (Kanekiyo et al., 

2014). While the global deletion of APOE is associated with a drastic reduction of compact 

amyloid plaques in brain of APP expressing mice (Bales et al., 1997; Fitz et al., 2015; Holtzman 

et al., 2000; Holtzman et al., 1999) the phenotypes of those mice have not been extensively 

examined to improve our understanding of the role of APOE in the development of AD. Recent 

studies provided new insight on the role of microglia in the phenotype of APP expressing mice 

with global deletion of mouse Apoe – their reduced microglia recruitment and altered plaque 

morphology indicated a role beyond APP processing and deposition (Ulrich et al., 2018). 

Using mouse models for AD, it has been established that human APOE differentially 

impacts Aβ deposition in a dose-dependent, as well as isoform-specific manner with APOE4 > 

APOE3 > APOE2 (Bales et al., 2009; Castellano et al., 2011; Fitz et al., 2012; Kim et al., 2011). 

Interestingly, recent publications implicated APOE as essential for plaque formation during early 

seeding stages of Aβ deposition (Huynh et al., 2017; Liu et al., 2017). Utilizing APOE3 or APOE4 

inducible mice Liu et al. have shown that APOE4 but not APOE3 increases amyloid pathology 

when expressed during the early seeding stages of amyloid deposition (Liu et al., 2017). This 

impact was not seen in APOE3 mice and was lost when APOE4 was expressed only in later stages 

of plaque development, indicating APOE4 has the greatest impact on amyloid deposition during 

the initial seeding stages (Liu et al., 2017). By dosing with anti-sense oligonucleotides from birth, 

Huynh et al. showed a reduction in Aβ deposition in APOE4 mice, whereas there was no effect 

when the treatment began after the onset of Aβ plaque formation (Huynh et al., 2017).  

Data from animal models suggest that APOE affects also Aβ clearance in an isoform-

dependent manner (Castellano et al., 2011; Fitz et al., 2012), and the lipidation of the protein seems 



 43 

to be of importance (Liao et al., 2018). There are two major Aβ clearance pathways in the brain: 

receptor-mediated clearance via microglia (Clayton et al., 2017), and astrocytes (Acosta et al., 

2017), BBB (Chakraborty et al., 2016) or through interstitial fluid drainage pathways (Bakker et 

al., 2016). Cell facilitated clearance mechanisms are likely to be, in part, mediated by APOE and 

APOE receptors. APOE receptor-mediated internalization of Aβ seems to be most functional in 

microglia (El Khoury and Luster, 2008) and astrocytes (Koistinaho et al., 2004). ABCA1 functions 

to alter the lipidation state of APOE in the brain which consequently impacts Aβ fibrillization 

(reviewed in (Koldamova et al., 2010, 2014)). In APP transgenic mice, targeted disruption of 

Abca1 decreases APOE lipidation and increases amyloid deposition (Hirsch-Reinshagen et al., 

2005; Koldamova et al., 2005a; Wahrle et al., 2005). Conversely, overexpression of Abca1 

increases APOE lipidation and decreases amyloid deposition (Wahrle et al., 2008).  

A second hallmark of AD, aside from Aβ deposition, is the formation of tau tangles. Early 

studies demonstrated isoform-specific binding of APOE to human tau in vitro, suggesting an 

isoform-specific impact on tau pathology (Fleming et al., 1996; Strittmatter et al., 1994). Recently, 

APOE4 has been shown to exacerbate tau-mediated neurodegeneration, while the absence of 

APOE altogether is protective (Shi et al., 2017). Using a P301S tauopathy mouse model on human 

APOE KI or APOE KO background Shi et al. found no changes at 3 months, but by 9 months the 

P301S/E4 mice had significantly more brain atrophy than P301S/E2, or P301S/E3, and that APOE 

KO mice were largely protected from this effect (Shi et al., 2017). 

As a result of the relationship between APOE and AD, it has been suggested that targeting 

APOE may have a therapeutic potential for AD (reviewed in (Yamazaki et al., 2016)). There are 

two potential therapeutic interventions: regulation of APOE quantity and modification of APOE 

properties. The former entails the upregulation of APOE levels via LXR and PPARγ agonists 
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(Jiang et al., 2008b; Koldamova et al., 2005b; Mandrekar-Colucci et al., 2012; Skerrett et al., 2014; 

Vanmierlo et al., 2011). The administrations of RXR agonist, bexarotene, was shown to increase 

APOE level and its lipidation resulting in a reversal of cognitive deficits observed in APP mouse 

models (Boehm-Cagan and Michaelson, 2014; Cramer et al., 2012; Fitz et al., 2013; Mounier et 

al., 2015). However, bexarotene effect on Aβ deposition in AD mouse models is controversial 

(Price et al., 2013; Tesseur et al., 2013; Veeraraghavalu et al., 2013). Another therapeutic approach 

is the use of specific antibodies to alter the protein levels of APOE (Kim et al., 2012). A recent 

study demonstrated that using an anti-APOE antibody that recognizes human APOE isoforms, 

targets and specifically binds to non-lipidated forms making it effective in reducing amyloid 

burden in APP transgenic mice (Liao et al., 2018). The modulation of APOE properties by 

structural modification through small molecule correctors (Brodbeck et al., 2011; Chen et al., 

2011), or by inhibiting APOE-Aβ interactions with small molecule inhibitors (Kuszczyk et al., 

2013; Pankiewicz et al., 2014) have also been proposed for therapeutic interventions in AD. 

3.5.2 TREM2 and Alzheimer’s Disease 

As the resident immune cells of the brain, microglia continuously monitor the brain and 

respond to damage-related signals that perturb the environment, (reviewed in (Butovsky and 

Weiner, 2018)). The proposed function of microglial recruitment is to form a physical barrier that 

encapsulates neurotoxic Aβ, thereby restricting plaque growth and containing any neurotoxic 

effects (Wang et al., 2016; Yuan et al., 2016). Deficiency in TREM2 or its adaptor protein 

TYROBP prevents myeloid cell accumulation around Aβ plaques in a dose-dependent manner (Jay 

et al., 2015; Ulrich et al., 2017; Wang et al., 2015; Wang et al., 2016; Yuan et al., 2016). In AD 

patients, heterozygous for the R47H or R62H variants, there are fewer plaque-associated microglia 
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than in those with nonmutant TREM2 (Krasemann et al., 2017). This lack of microglial response 

in R47H carrying patients has also been shown to increase plaque-associated neuronal dystrophy 

and reduced microglial coverage (Yuan et al., 2016). 

Multiple groups have examined the effects of Trem2 deficiency on amyloid pathology with 

different results based on the mouse model used, as well as the stage of amyloid pathology. Wang 

et al. examined the effect of TREM2 deficiency in 5XFAD and found that at 8.5 months there is a 

significant increase of amyloid load in the hippocampus but not in the cortex (Wang et al., 2015). 

Using 5xFAD mice at an earlier age (4 months) the same group found that Aβ accumulation was 

similar in TREM2 deficient and TREM2-WT 5XFAD mice (Wang et al., 2016). Likewise, Jay et 

al. utilizing APPPS1-21 mice found no change in the amyloid pathology in the cortex and a 

significant decrease in the hippocampus in Trem2-/- mice at 4 months (Jay et al., 2015). 

Interestingly, the same AD mouse model, when examined at 8 months, showed an increased Aβ 

staining in the cortex and no changes in the hippocampus of Trem2-/- mice (Jay et al., 2017). Jay 

et al. concluded that in the early stages of amyloid deposition (2-month cortex, 4-month 

hippocampus) Trem2 deficiency reduces both plaque number and size and at later stages (8-month 

cortex) it increases plaque size and area. Yuan et al. showed that Trem2 deficiency resulted in an 

increase of diffuse amyloid plaques with longer and more branched amyloid fibrils thus, covering 

a larger surface area (Yuan et al., 2016). They conclude that lack of TREM2 may disrupt the 

microglia barrier around the plaques that regulates amyloid compaction and has a protective role 

(Fig. 4).  

Recently transgenic mouse models expressing TREM2 R47H variant have been generated 

that demonstrate a diminished response to amyloid deposition exemplified by the reduced cell 
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number and activation of microglia surrounding the plaques (Cheng-Hathaway et al., 2018; Song 

et al., 2018). These data suggest that TREM2 R47H is loss a of function variant. 

In regard to sTREM2, an early study demonstrated that sTREM2 levels were reduced in 

the CSF of AD patients (Kleinberger et al., 2014). However, emerging evidence suggests the 

opposite: sTREM2 is increased in AD and is positively correlated with tau but not Aβ42 levels 

(Heslegrave et al., 2016; Piccio et al., 2016; Rauchmann et al., 2018; Suarez-Calvet et al., 2016). 

sTREM2 has also been shown to be impacted by TREM2 variants, in which R47H carriers had 

significantly higher, and T96K, L211P, as well as W199X had significantly lower sTREM2 levels 

than TREM2 WT controls (Piccio et al., 2016). A recent meta-analysis study comprising of 17 

reports and 1,593 patients found sTREM2 levels increased in the early course of AD progression, 

indicating its potential use as a biomarker for AD progression (Liu et al., 2018). 

 

Figure 4. Schematic illustration of the relationship between APOE and TREM2. 
Microglia in black cluster around amyloid deposits which impacts plaque morphology and the microenvironment 

surrounding the plaques. Boxes 1 and 2 illustrate TREM2 in an active state and shown an increase in plaque size, 

compaction, and microglia reactivity in APOE4 compared to APOE3. Microglia which are TREM2 deficient (boxes 

3 and 4) fail to contain the plaques allowing them to become more diffuse and increase the surrounding dystrophic 

area. Arrows are relative to APOE3, TREM2 active (box 1). 
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3.5.3 APOE, TREM2, and AD 

APOEε4 and TREM2-R47H variant were identified as independent risk factors for LOAD 

(Corder et al., 1993; Guerreiro et al., 2018; Jonsson et al., 2013; Schmechel et al., 1993). 

Interestingly both APOE and TREM2 are part of a large group of genes associated with LOAD 

risk that are expressed in glia cells and related immune response (Villegas-Llerena et al., 2016). 

Several groups have shown that TREM2 binds to APOE using TREM2-Fc fusion pulldown (Bailey 

et al., 2015), dot blot assays (Atagi et al., 2015), and high throughput protein microarrays (Yeh et 

al., 2016) (Fig. 4). Atagi et al. showed that APOE increases the phagocytosis of apoptotic neurons 

via TREM2 pathway and that TREM2 R47H variant was shown to reduces TREM2 affinity to 

bind APOE (Atagi et al., 2015). Interestingly APOE lipidation appears to enhance its binding to 

TREM2 and microglia are more efficient at Aβ uptake when Aβ forms a complex with LDL, 

APOE, or CLU (Yeh et al., 2016). In contrast, the same study showed that TREM2-deficient 

microglia have a reduced uptake of Aβ-APOE or Aβ-LDL complexes (Yeh et al., 2016). A recent 

study by Jendresen et al. suggests that amino acids 130-149 of human APOE contain the binding 

site for TREM2, and that there is an APOE-isoform-dependent binding to TREM2 (Jendresen et 

al., 2017). Although other groups have shown no APOE isoform differences in binding (Atagi et 

al., 2015; Bailey et al., 2015), possibly due to the sensitivity of binding assays and the lipidation 

state of APOE.  

Microglia as resident macrophages in CNS account for the immune response in the brain, 

therefore impaired microglia function through either TREM2 deficiency or APOE isoform-specific 

differences have significant implications. Consistently TREM2 haplodeficient, knockout, or the 

TREM2 R47H variant, have shown a dose-dependent reduction in microglial activation 

surrounding amyloid plaques resulting in more diffuse and less compact amyloid plaques. In 
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agreement with these results, overexpression of TREM2 and increasing TREM2 protein level 

cause a significant reduction in plaque area, plaque-associated neuronal dystrophy, and 

amelioration of cognitive deficit in 5xFAD mice (Lee et al., 2018). Recent reports identified novel 

microglia type associated with neurodegenerative diseases (also called disease associated 

microglia or DAM) characterized by a specific transcriptional profile with both Apoe and Trem2 

part of this program (Keren-Shaul et al., 2017; Krasemann et al., 2017). Accordingly, during the 

progression of neurodegeneration in APP transgenic mice and possible AD brain microglia 

transcriptome convert from homeostatic to disease associated profile. Interestingly, in APP mice 

that are either TREM2 or APOE deficient microglia fail to convert from a homeostatic into a fully 

activated state (Keren-Shaul et al., 2017; Krasemann et al., 2017). One explanation for these 

findings may be the significantly decreased plaque load observed in APP transgenic and APOE or 

TREM2 knockout mice reported by Krasemann et al. (Krasemann et al., 2017). Another 

explanation is that TREM2 and possibly APOE deficiency prevent microglia conversion from 

homeostatic to disease oriented state thus impairing essential defense functions such as 

chemotaxis, proliferation, phagocytosis, and survival (Keren-Shaul et al., 2017; Krasemann et al., 

2017; Mazaheri et al., 2017; Ulrich et al., 2018; Wang et al., 2015). 

In the end, we can conclude that during the last decade significant progress has been made 

towards understanding the biology of APOE and TREM2, as well as the biochemical aspects of 

their interactions and their impact on AD pathogenesis. And although there are still many 

unanswered questions our knowledge of the most significant risk factors of AD will be soon 

implemented in successful diagnostic and therapeutic strategies against a devastating disease. 
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4.0 Trem2 Deficiency Differentially Affects Phenotype and Transcriptome of Human 

APOE3 and APOE4 Mice 
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4.1 Abstract 

Background: Alzheimer’s Disease (AD) is a neurodegenerative disorder influenced by 

aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor 

Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies 

showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction 

that can modulate AD pathology. 

Methods: The aim of this study was to investigate this interaction using complex AD 

model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or 

APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and 
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evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial 

response, and brain transcriptome.  

Results: In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction 

but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased 

plaque growth that negatively correlated to the diminished microglia barrier, an effect most 

pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency 

significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in 

agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA 

expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of 

TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates.  

Gene expression analysis identified Trem2 signature - a cluster of highly connected 

immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes 

including APP and WT littermates. Furthermore, we identified sets of genes that were affected in 

TREM2- and APOE isoform-dependent manner. Among them were Clec7 and Csf1r upregulated 

in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, 

Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level 

in APP/E3 versus their APP/E4 counterparts. 

Conclusions: Our data demonstrate that lack of Trem2 differentially impacts the phenotype 

and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably 

reflect the different effect of APOE isoforms on amyloid deposition. 
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4.3 Background 

The inheritance of ε4 allele of apolipoprotein E (APOE) is the major genetic risk factor for 

late-onset Alzheimer’s disease (AD) (Corder et al., 1993; Saunders et al., 1993). APOE is an 

apolipoprotein which, in the central nervous system, is secreted by glia; it facilitates the transport 

of cholesterol and phospholipids between cells (Kanekiyo et al., 2014; Wolfe et al., 2018). GWAS 

have identified TREM2 missense variants that are related to AD risk, with the largest risk conferred 

by the loss of function R47H variant (Cruchaga et al., 2013; Guerreiro et al., 2013a; Jansen et al., 

2019; Jonsson et al., 2013). TREM2 is a receptor of the innate immune system, expressed in 

mononuclear phagocytes, including microglia in brain (Colonna and Wang, 2016). The proteolytic 

cleavage of TREM2 generates soluble TREM2, which can be detected in CSF and has been 

proposed as a biomarker and shown to be increased in AD (Piccio et al., 2016; Suarez-Calvet et 

al., 2016). Recent data showed that APOE can bind to TREM2, thus raising the possibility of an 

APOE-TREM2 interaction affecting TREM2 signaling (Atagi et al., 2015; Bailey et al., 2015; Yeh 

et al., 2016). Interestingly, Jendersen et al. showed that while all three human isoforms of APOE 

bind TREM2, APOE4 exhibits diminished interaction when compared to APOE2 and APOE3 

(Jendresen et al., 2017). 
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In AD, microglia are important for the phagocytosis of debris, clearance of Aβ, release of 

pro-inflammatory cytokines, and development of a plaque-associated barrier (Hansen et al., 2018). 

Recently, Keren-Shaul et al. identified a subset of microglia named “disease-associated microglia” 

(DAM) that accumulate in AD and other neurodegenerative diseases (Keren-Shaul et al., 2017). 

DAM are characterized by the upregulation of genes involved in lysosomal, phagocytic, and lipid 

metabolism pathways, including genes known as AD risk factors, such as APOE and TREM2 

(Deczkowska et al., 2018). Simultaneously with the upregulation of DAM, Keren-Shaul et al. 

detected a significant downregulation of the so-called “homeostatic microglial” genes (Keren-

Shaul et al., 2017). Furthermore, genetic ablation of Trem2 suppressed mouse Apoe expression 

and restored homeostatic microglial function in AD-model mice (Krasemann et al., 2017). This 

implicates TREM2 in the maintenance of the microglial response to amyloid pathology, further 

connecting APOE, TREM2, microglia function, and amyloid pathology. Loss of functional 

TREM2 in mice has been shown to increase plaque seeding, reduce plaque-associated microglia 

barrier, reduced plaque compaction, reduce the level of APOE in APP mice, and increased 

dystrophic neurites surrounding plaques (Jay et al., 2017; Jay et al., 2015; Parhizkar et al., 2019; 

Ulrich et al., 2014; Wang et al., 2016). The effect of TREM2 on amyloid deposition in AD mice 

is controversial, however, with some studies showing the lack of TREM2 increasing (Griciuc et 

al., 2019; Wang et al., 2015) and others decreasing the amyloid load (Jay et al., 2015; Krasemann 

et al., 2017). Interestingly though, increased soluble TREM2 has been shown to increase microglia 

survival, reduce amyloid plaque load, increase microglia clustering and phagocytic activity in AD 

model mice (Zhong et al., 2017). 

While APOE and TREM2 are two major genetic risk factors for LOAD, surprisingly little 

is known about the interplay between these two, regarding amyloid deposition, microglial 
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phenotype or transcriptomic profile. In this study, we hypothesized that Trem2 deletion would 

have a differential effect on the phenotype and transcriptome of APP and WT mice expressing 

human APOE3 or APOE4. 

4.4 Results 

4.4.1 Trem2 Deficiency Worsens Cognitive Performance, Affects Plaque Compaction, and 

Impacts Microglia Recruitment in APP/E3 and APP/E4 Mice 

To determine the impact of Trem2 deficiency on AD-like phenotype we used 

APP/PSEN1dE9 mice expressing human APOE3 or APOE4 genes (referred to as APP/E3, 

APP/E3/Trem2ko, APP/E4, and APP/E4/Trem2ko). For all behavioral and histological analysis we 

tested the mice at an average age of 6.5 months when amyloid pathology is readily detectable in 

mice expressing either APOE isoform and we previously have shown significant cognitive 

differences between APP/E3 and APP/E4 mice (Fitz et al., 2013; Fitz et al., 2012). The controls 

were age and gender-matched non-APP transgenic littermates expressing human APOE3 or 

APOE4 (referred to as E3, E3/Trem2ko, E4, and E4/Trem2ko) (Fig. 5A). To reveal differences in 

cognitive behavior, we used novel object recognition and contextual fear conditioning paradigms 

that demonstrated both factors - Trem2 deficiency and APOE isoform, significantly affected 

cognition in APP mice, but not in their non-APP transgenic littermates (Fig. 5B). While Trem2 

deficiency was a significant factor in the behavioral performance, APP/E4 mice performed at the 

lower limits of both tasks and thus we were unable to observe a significant reduction in their 

Trem2ko counterparts. The deterioration of memory was hippocampal-based as there was no 
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significant difference during the amygdala-dependent cued phase (Fig. 6A-B). There were no 

changes during the learning phase or novel phase of fear conditioning as well as no significant 

change in locomotor activity between genotypes (Fig. 6C-H). 

 

Figure 5. Trem2 deficiency impacts cognition, plaque compaction, and microglia recruitment in APP/E3 

and APP/E4 mice. 
(A) Schematic timeline showing groups and experimental procedures of 6.5-month-old mice used for behavioral, 

histological, and transcriptional analysis. (B) Novel object recognition (NOR), and Contextual fear conditioning. 

Analysis by two-way ANOVA showed no interaction between APOE isoform and Trem2 status and a significant main 

effect of APOE isoform (F(1, 49) = 13.28, p<0.01) and Trem2 status (F(1, 49) = 11.06, p<0.01) for NOR (a, b), and 

Contextual fear conditioning (c, d) APOE isoform effect (F(1, 50) = 11.39, p <0.01) and Trem2 status (F(1,50) = 

10.86, p<0.01). ** p<0.01; * p<0.05, Sidak multiple comparisons test. n = 6 -14 mice per group. For APP mice n = 6-

7 mice/genotype/sex (12-14 mice/genotype). For non-APP mice, n = 4-7 mice/genotype/sex (8-14 mice/genotype). 
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On the graphs, red symbols indicate female and black symbols indicate male mice. (C) Representative images of X34 

and OC labeled amyloid deposits showing core-bound and non-core bound OC. (D) Bar plot depicting the ratio of 

non-core bound OC to total OC. n = 15-26 mice per group. (E) Representative images of glial cells (Iba1+ microglia 

and GFAP+ astrocytes) recruited to amyloid plaques. (F) Bar plots depicting the number of microglia nuclei within 

60 µm of plaque border. (G) Bar plots depicting the number of astrocyte nuclei within 60 µm of plaque border. n = 

80-120 plaques from 6 mice per group. (H) Representative images of X34 and LAMP1 label showing neuronal 

dystrophy surrounding amyloid deposits. X34 is shown as a blue region of interest defined by NIS elements 

thresholding. (I) Bar plot depicting the area of plaque-associated LAMP1 staining. Analysis by two-way ANOVA 

showed no interaction between APOE isoform and Trem2 status and a significant main effect of APOE isoform (F(1, 

476) = 25.41, p<0.0001) and Trem2 status (F(1, 476) = 4.99, p<0.05) for LAMP1 area. Sidak multiple comparison 

test found no difference in plaque-associated LAMP1 staining area between APP/E3 vs APP/E3/Trem2ko or APP/E4 

vs APP/E4/Trem2ko. n = 120 plaques from 4 mice per group. (J) Representative images of plaque-associated APOE 

(green) and TR (red) staining to visualize compact amyloid plaques. (K) Bar plots showing the area of APOE staining 

that surrounds TR positive amyloid plaques. n = 874-2719 plaques from 4-6 mice per group. (L) Bar plots depicting 

Apoe gene expression as identified by RNA-seq, which closely follows the genotypic pattern of plaque-associated 

APOE protein levels. For histological analyses, one-way ANOVA was used followed by Tukey’s multiple comparison 

test. (M) Representative images of FISHanalyses of gene expression near amyloid plaques (Tmem119 – green, Apoe 

– Pink, Nuclei – Blue). (N) Bar plot depicting the Apoe gene expression within Tmem119-positive microglia cells. 

The intensity of Apoe FISH signal was normalized to the number of Tmem119-positive microglial cells. n = 279-313 

microglia per group. Bars represent mean ± SEM, with all red bars = APP/E3, orange = APP/E3/Trem2ko, purple = 

APP/E4, and blue = APP/E4/Trem2ko. *** p<0.001; ** p<0.01; * p<0.05. 

 

The examination of total amyloid (6E10, ThioS, X34, and OC staining) in cortex and 

hippocampus of the same 6.5 month mice assessed for cognitive changes revealed an effect of 

APOE isoform but no TREM2 effect (Fig. 7A-G) - a result that was confirmed by ELISA (Fig. 6I-

J). To assess the proportion of compact to diffuse plaques we used X34 staining for compact 

amyloid and OC antibody that binds protofibrilar deposits (Kayed et al., 2007). As visible from 

Fig. 7I-J, OC/X34 ratio was increased in Trem2ko mice indicating reduced plaque compaction in 

both APOE isoforms caused by Trem2 deletion. The assessment OC outside dense amyloid core 

(X34), determined that Trem2 deletion significantly increased the percent of non-core bound OC 

(Fig. 5C-D, Fig. 7H). Therefore, lack of Trem2 did not affect total amyloid coverage but reduced 

plaque compaction and increased the presence of diffuse deposits which have not been sequestered 

into a dense core amyloid plaque. 
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Figure 6. No significant differences in locomotor activity, learning during novel object recognition and 

fear conditioning, and Aβ ELISA, as a result of Trem2 deletion. 
Cued fear conditioning in APP mice (A & B) and all behavioral analysis for wild-type controls showed no significant 

effect of APOE or Trem2. There was no significant difference in percent freezing during the novel phase (C & D) or 

learning phase (E & F) of the contextual-cued fear conditioning (CCFC) for all experimental groups assessed. There 

was also no significant difference in total distance (m) traveled during the Open Field phase of NOR in APP/E3, 

APP/E4, APP/E3/Trem2ko, and APP/E4/Trem2ko mice (G) or wild-type controls (H). n = 6-14 mice per group. For 

APP mice n = 6-7 mice/genotype/sex (12-14 mice/genotype). For non-APP mice, n = 4-7 mice/genotype/sex (8-14 

mice/genotype). Analysis of cortical soluble Aβ (I) and cortical insoluble Aβ (J) ELISA levels by two-way ANOVA 

did not show an interaction between main factors: APOE and Trem2. There was a main effect of APOE isoform but 

not Trem2 status. Sidak multiple comparisons test showed statistical significance between APP/E3 and APP/E4 mice. 

n = 4-22 mice per group (equal males and females). On the graphs, colored symbols indicate female and black symbols 

male mice. 

 

To investigate if Trem2 deficiency affects the number of glial cells recruited to amyloid 

plaques, brain sections were stained with IBA1 to label activated microglia and GFAP to label 

astrocytes (Fig. 5E-G). The lack of Trem2 significantly reduced the number of microglia around 
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the plaques in both APP/E3 and APP/E4 mice (Fig. 5F). Importantly, there was significantly more 

activated microglia in APP/E4 mice when compared to APP/E3, possibly reflecting the more 

advanced brain pathology of those mice. However, we did not find any difference between 

microglia numbers of APP/E3/Trem2ko vs APP/E4/Trem2ko mice suggesting that Trem2 deletion 

blocks the conventional microglia response. Interestingly, there were very few astrocytes when 

compared to the number of microglia and their quantity was not significantly affected by Trem2 

deficiency (Fig. 5G). To investigate if Trem2 deficiency affects plaque-associated neuronal 

dystrophy we used immunostaining for LAMP1, a lysosomal protein enriched in dystrophic 

neurites (Condello et al., 2011b; Condello et al., 2015). Analysis by two-way ANOVA 

demonstrated main effects of APOE and Trem2 deficiency but no significant post hoc effect 

between Trem2ko mice and their WT counterparts (Fig. 5H-I).  

Next, we determined the impact of Trem2 deficiency on the level of APOE protein within 

the vicinity of amyloid plaques. We found that there was significantly more plaque-associated 

APOE in APP/E4 vs APP/E4/Trem2ko mice, but Trem2 deficiency did not impact APOE level in 

APP/E3 mice (Fig. 5J-K). This result correlated to the Apoe mRNA expression, as identified by 

RNA-seq. As shown on Fig. 5L, the lack of Trem2 significantly affected Apoe expression level 

only in APP/E4 and not in APP/E3 mice or in their WT littermates (Fig. 14B).  

To determine the effect of Trem2 deletion on Apoe expression in microglia, we used in situ 

hybridization (FISH) to compare APP/E4 and APP/E4/Trem2ko mice. Microglia were identified 

using the microglia-specific marker Tmem119. Our data demonstrated that Apoe mRNA 

expression is significantly higher in microglia surrounding amyloid plaques in APP/E4 compared 

to APP/E4/Trem2ko thus, validating the RNA-seq data (Fig. 5M-N). We conclude that the absence 

of Trem2 similarly impairs microglia recruitment to plaques  
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Figure 7. The absence of Trem2 similarly impacts plaque diffusivity but has no effect on steady-state 

amyloid load.  
(A) Representative images of 6E10 anti-Aβ immunostaining showing both diffuse and compact plaques (4X 

magnification). (B) Representative images of ThioS staining showing compact plaques (4X magnification). (C) 6E10-

positive plaques were analyzed by two-way ANOVA showing no interaction between Trem2 and APOE as factors. 

There was a significant main effect of APOE isoform (p<0.0001), but no effect of Trem2 deficiency. Sidak multiple 

comparisons test shows no significant differences between APP/E3 and APP/E3/Trem2ko or between APP/E4 and 

APP/E4/Trem2ko mice. n = 22–30 mice per group (equal males and females). (D) ThioS staining confirmed 6E10 

staining results with no significant main effect of Trem2 status or interaction. (E) Representative images of X34 and 

OC staining showing both diffuse and compact plaques (4X magnification). (F-G) X34 and OC staining confirmed 

6E10 and ThioS staining results with no significant main effect of Trem2 status or interaction for either X34 or OC. 

Sidak multiple comparisons test showed a statistical significance between APP/E3 and APP/E4 mice (p<0.05). n = 

14-16 mice per group (equal males and females). Colored dots represent female mice. (H) A visual depiction of what 

is counted as core-bound OC, total OC, and non-core bound OC used to generate data in Fig. 5D. (I) Representative 

images of individual X34 and OC labeled amyloid deposits. (J) Analysis of the OC/X34 ratio. n = 896-1569 plaques 

from 8 mice per group (equal male and female). For all histological analyses, one-way ANOVA was used followed 

by Tukey’s multiple comparison test. Bars represent mean ± SEM. *** p<0.001; ** p<0.01; * p<0.05; NS, not 

significantTrem2 deletion affects plaque growth depending on the stage of amyloid deposition 

 

and increases neuronal dystrophy but has a differential effect on plaque-associated APOE protein 

and mRNA levels in APP/E3 and APP/E4 mice. 

4.4.2 Trem2 Deletion Affects Plaque Growth Depending on the Stage of Amyloid Deposition 

We showed that Trem2 deficiency did not affect steady-state amyloid load (Fig. 7). Here 

we evaluated whether the lack of Trem2 affects the growth rate of individual amyloid plaques and 

if this correlates to the surrounding microglia barrier. To reveal this, we employed an in vivo 

labeling technique using the amyloid binding dye X04 followed by postmortem staining with TR 

(Condello et al., 2011b). Intraperitoneally injected X04 readily crosses the blood-brain barrier 

(Klunk et al., 2002) and remains bound to plaques for at least 90 days post injection (Condello et 

al., 2011b). We injected the mice with X04 at 5.5 months of age and they were sacrificed 30 days 

later, followed by TR staining of sectioned tissues (Fig. 8). Plaque growth was assessed using 

high-resolution confocal images in Imaris to generate 3D volumetric renderings of amyloid 

plaques by subtracting the volume of the plaque at the time of injection (X04 staining) from the 

volume of the plaque at the time of sacrifice (TR staining). For each individual plaque, IBA1 
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staining for activated microglia was used to determine the plaque surface area that is not covered 

by microglia i.e. “exposed” (see Fig. 8H for details). As shown on Fig. 9A-B, Trem2 deficiency 

significantly increased the growth of amyloid plaques in APP/E3 but not in APP/E4 mice. The 

examination of exposed plaque surface area follows the same pattern as plaque growth rate and is 

significantly affected only in APP/E3 mice (Fig. 9C&E). Subsequently, in all genotypes, we 

identified a very strong correlation between plaque growth rate and the exposed surface area 

suggesting that with the decrease of microglia barrier plaques grow faster (Fig. 9D). Our data also 

imply that Trem2 deficiency may have a higher impact on plaque growth rate at earlier stages of 

amyloid deposition. Considering that amyloid deposition advances faster in APP/E4 mice and that 

there is a significant difference between the steady-state load of APP/E4 vs APP/E3 mice (Fig. 7), 

it is possible that TREM2 affects APP/E4 plaque growth rate at an earlier age. To test this, we 

performed the same experiment in younger mice injected with X04 at 3.5 and sacrificed at 4.5 

months (Fig. 10). Interestingly, we found that in the younger group, Trem2 deficiency significantly 

increased amyloid plaque growth only in APP/E4 mice in agreement with significantly reduced 

microglia barrier around the plaques (Fig. 10). At this age, we observed that in contrast to APP/E4, 

age-matched APP/E3 had very little compact amyloid with almost no detectable X04 deposits in 

APP/E3/Trem2ko mice that complicated the assessment of amyloid plaque growth in this genotype. 

Our data indicate that the absence of Trem2 affects plaque growth depending on the stage of 

amyloid deposition and at different ages for APP/E3 and APP/E4 mice. 
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Figure 8. In vivo plaque labeling using X04. 
(A) Schematic timeline of in vivo plaque labeling using an injection of X04 30 days prior to tissue harvesting. (B) 

Analysis of the plaques imaged from mice injected at 5.5 months and sacrificed 48 hours later shows no difference in 
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the volume of X04 and TR (n =110 plaques). (C) Plotting TR against X04 shows minimal deviation from the expected 

1:1 ratio (R2 = 0.9579), a growth volume near 0, and FC near 1. (D) Scatterplot wherein red dots denote the plaque 

growth rate in the 48-hour control plaques (right axis), and the TR volume on the X axis. Black dots represent the 

entire experimental dataset binned by plaque size, with 94% of the plaques falling within the grey shaded box of the 

min and max values analyzed in the 48-hour control plaques. (E) Representative confocal imaging of an amyloid 

plaque 48 hours following X04 injection with IBA1 in green, X04 in blue, TR in red and the X04-TR merge in pink. 

Quantification of the volume of X04, TR and growth rate (TR-X04) in 4.5-month-old mice (F) and 6.5-month-old 

mice (G). (H) Representative images depicting how analysis metrics were derived. Confocal images were loaded into 

Imaris and 3D renderings generated for X04 and TR to calculate the volume. Plaque growth rate was calculated by 

subtracting the volume of the plaque at the time of in vivo labeling (X04, blue) from the volume of the plaque at the 

time of sacrifice (TR, red). 3D renderings were created to assess IBA1 (green) colocalization with the surface of the 

TR plaque. The plaque surface area contacted by microglia (yellow) is subtracted from the total surface area (grey) to 

quantify the exposed surface area of each plaque (purple, the surface area not covered by microglia). Analysis by one-

way ANOVA followed by Tukey’s multiple comparison test. Bars represent mean ± SEM. * p<0.05; ** p<0.01; *** 

p<0.001. 

 

 

 

Figure 9. Trem2 deletion affects plaque growth in correlation with microglia barrier at 6.5 months of age. 
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(A) Representative confocal imaging of an amyloid plaque from the 6.5-month-old groups with IBA1 in green, X04 

in blue, TR in red and the merge of X04-TR in pink. n = 6 mice/group (3 male and 3 female). APP/E3 n = 148, 

APP/E3/Trem2ko n = 219, APP/E4 n = 219, APP/E4/Trem2ko n = 180 individual plaques. (B) Quantification of the 

growth volume in 30 days for individual plaques. (C) The exposed area for each plaque is determined by the area in 

which microglia processes are not contacting the surface of TR (purple color in panel E). (D) Correlation between 

plaque growth and exposed surface area for each plaque and genotype. (E) Imaris generated 3D volumetric 

representations of an amyloid plaque from the 6.5-month-old group with IBA1 in green, exposed area in purple, TR 

in red, and surface contact in yellow. Analysis by one-way ANOVA followed by Tukey’s multiple comparison test. 

Bars represent mean ± SEM. *** p<0.001; ** p<0.01; * p<0.05. 

 

 

Figure 10. Trem2 deletion affects microglia barrier and plaque growth at 4.5 months of age. 
(A) Representative confocal imaging of an amyloid plaque from the 4.5-month-old groups with IBA1 in green, X04 

in blue, TR in red and the merge of X04/TR in pink. n = 6 mice per group (3 male and 3 female). APP/E3 n = 57, 

APP/E3/Trem2ko n = 54, APP/E4 n = 130, APP/E4/Trem2ko n = 94 individual plaques. (B) Quantification of the 

growth volume in 30 days for individual plaques. (C) The exposed area for each plaque is determined by the area in 

which microglia processes are not contacting the surface of TR (purple color in panel E). (D) Correlation between 

plaque growth and exposed surface area for each plaque and genotype. (E) Imaris generated 3D volumetric 
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representations of an amyloid plaque from the 4.5-month-old group with IBA1 in green, exposed area in purple, TR 

in red, and surface contact in yellow. Analysis by one-way ANOVA followed by Tukey’s multiple comparison test. 

Bars represent mean ± SEM. * p<0.05; ** p<0.01; *** p<0.001. 

4.4.3 Lack of Trem2 Significantly Affects Brain Transcriptome in APOE3 or APOE4 Mice 

The effect of Trem2 deficiency on brain transcriptome was examined by mRNA-seq on 

cortical tissue from all 8 genotypes shown on Fig.5A. First, we used weighted gene co-expression 

network analysis (WGCNA) to correlate gene expression to four traits - Trem2 deficiency, APOE 

isoform, APP transgene/amyloid deposition and sex (Fig. 11A). The top three most significant 

modules correlated either to Trem2 deficiency (lightcyan) or APOE isoform (turquoise and 

lightyellow). The turquoise module negatively correlates with APOE4 isoform and is associated 

with biological processes such as transport, translation, and mRNA processing and oxidation-

reduction (Fig. 12). The lightyellow module positively correlates with APOE4 isoform and 

biological processes associated with it are related to intermediate filament organization, immune 

system process, and innate immune response (Fig. 12). In addition to lightyellow, another APOE 

isoform-specific module (darkturquoise) was positively associated with APOE4 isoform and 

represented GO terms such as acute-phase response, cholesterol efflux, and response to cytokines. 

Interestingly, this module contained Apoe and several members of Serpina family that were 

previously reported by us (Castranio et al., 2017) and others (Zhao et al., 2020) to be increased in 

an APOE4 dependent manner. 
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Figure 11. Lack of Trem2 significantly affects brain transcriptome of mice expressing human APOE3 or 

APOE4. 
Gene expression profiling was performed by RNA-seq on cortical tissue from the same 6-7 months old mice shown 

on Fig. 5A. (A) WGCNA was used to identify correlations between gene expression and four traits: APOE isoform, 
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sex, Trem2 genotype, and human APP transgene. The relationship table shows the correlation between the module 

eigengene (row) traits (column). Red denotes a positive correlation and blue a negative correlation, with * denoting a 

significant correlation (* p<0.05). Trem2 signature module is marked with a red circle. (B) Bar plots show the 

aggregated module eigengene for each genotype in the modules of interest. (C) GO term bar plots indicate the -log10P 

value for each term. The associated point in the center of each bar represents the percent of submitted genes found in 

each GO term. (D) Scatterplot depicts the MM vs GS plot for genes in the lightcyan module relating to the Trem2 

genotype, with hub genes defined as MM>0.8 and GS>0.2. (E) The network generated from all connections within 

the module from the top 5 hub genes (indicated by darker blue color). Characterization of the lightcyan module with 

fold change bar plots and heatmaps for disease associated microglial genes (DAM) (F), homeostatic (G) microglia 

genes and genes outside these two categories (others) (H). Heatmaps depict the Z-score for genes downregulated in 

Trem2ko mice from the lightcyan module. N: E3/Trem2ko = 8; E4/Trem2ko = 8; E3 = 8; E4 = 6; APP/E3/Trem2ko = 14; 

APP/E4/Trem2ko = 16; APP/E3 = 14; APP/E4 = 14; (equal number males and females). (I-J) Integration of co-

expressed gene network of interest to amyloid deposition. The expression profile of lightcyan was used to identify 

correlations between gene expression patterns in each of the four APP groups to the percent coverage of 6E10 (I), and 

percent coverage of X34 (J). Correlation between histological data and RNA-seq data is done with Pearson r 

correlation.  

 

The lightcyan module was highly and negatively correlated to Trem2 status in all genotypes 

regardless of amyloid deposition or APOE isoform, indicating a decreased expression of these 

genes in all Trem2ko mice (Fig. 11B). This module represented processes such as immune 

response, innate immune response, inflammatory response, integrin-mediated signaling pathway, 

phagocytosis, and chemotaxis (Fig. 11C). The top hub genes (i.e. the most interconnected genes) 

in lightcyan module were Csf1r, Mpeg1, Cx3cr1, Hexb, and Vsir and were used to generate a 

representative network (Fig. 11D-E). This module is highly enriched in microglial-specific genes 

(48 out of 99 genes are microglia specific genes), indicating a strong impact of Trem2 deficiency 

on microglial gene expression. As shown on the heat maps in Fig. 11F-H, the gene list of the 

lightcyan module is comprised of 26 DAM genes (such as Clec7a, Cst7, Cd68, Itgax/CD11c, 

Mpeg1), 36 homeostatic genes (P2ry12, P2ry13, Cx3cr1, Itgam/CD11b, Tgfb1), and a group of 37 

genes (Spi1/PU.1, Runx1, Treml2, Vsir) not associated with DAM or homeostatic microglia. These 

genes are downregulated in Trem2ko mice in all of the four respective genotypes and represent the 

common signature of Trem2 deficiency. Interestingly, two important DAM genes, Apoe (Keren-

Shaul et al., 2017; Krasemann et al., 2017) and Tyrobp (Keren-Shaul et al., 2017), were not present 

in this module. The reason Apoe was missing from the Trem2 signature list of genes is that as  
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Figure 12. WGCNA identifies patterns of gene expression characteristic to each of the eight experimental 

groups. 
(A) WGCNA was used to identify correlations between gene expression and each of the 8 genotypes: APP/E3, 

APP/E3/Trem2ko, APP/E4, APP/E4/Trem2ko and their corresponding non-APP counterparts (E3, E3/Trem2ko, E4, 

E4/Trem2ko). Numbers on the heatmap represent Pearson correlation and p-value in parenthesis. Modules of interest 
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are marked with red circles. (B) The dendrogram visualizes the relative similarity between identified modules, with 

modules that appear close to each other having a more similar expression profile. Heatmap of the Pearson correlation 

coefficient between each module. (C) Gene expression heatmap and bar plots for each animal from turquoise – 

correlates positively to all APOE3 mice, as well as a network generated from top 3 hub genes (D) and GO term bar 

plots indicate the -log10P value for each term. The associated point in the center of each bar represents the percent of 

submitted genes found in each GO term (E). (F-H) Heatmap, bar plots, network, and GO terms for the lightyellow 

module – correlates positively to all APOE4 mice. 

 

shown on Fig. 5L, it was upregulated only in APP/E4 mice vs APP/E3 in response to the higher 

level of amyloid pathology in these mice (also see Fig. 14B). Tyrobp was uniquely downregulated 

only in APP/E3/Trem2ko vs APPE3 mice as well as in E3/Trem2ko vs E3 mice. Furthermore, 

Tyrobp (a member of turquoise module) had a higher expression level in APP/E3 and E3 mice vs 

their APOE4 counterparts (see Fig. 13G). 

To associate the Trem2 signature to the phenotype of the APP mice, we correlated the gene 

expression levels of the lightcyan module to amyloid deposition. As shown in Fig. 11I-J, percent 

coverage of 6E10 and X34 in the mice expressing wild-type Trem2 correlated significantly and 

positively to the lightcyan module indicating that this module, enriched in microglial-specific 

genes, represents the transcriptional response of microglia to increasing amyloid deposition. In 

contrast, there was no significant correlation in APP/E3/Trem2ko or APP/E4/Trem2ko mice 

between amyloid deposition and lightcyan module eigengene expression, demonstrating that as 

deposition increases in Trem2 deficient APP mice, there is no corresponding increase of microglial 

gene expression suggesting that Trem2 deletion blocks the normal response of microglia to the 

increased pathology. 

4.4.4 APOE Isoform-specific Effect on Gene Expression 

Since we found a significant APOE isoform-specific effect (Fig. 11A, Fig.12), we 

determined differentially expressed genes that are characteristic for each genotype by comparing 
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brain transcriptome of APP/E4 vs APP/E3 mice, E4 vs E3 mice as well as their respective Trem2ko 

counterparts (Fig. 13A-D). We observed more than twice as many differentially expressed genes 

when comparing APP/E4 vs APP/E3 mice (Fig. 13A) than in APP/E4/Trem2ko vs APP/E3/Trem2ko 

mice (Fig. 13B). Finding a high number of differentially expressed genes in brain transcriptomes 

of APP/E4 vs APP/E3 mice is expected because it reflects the difference in amyloid pathology that 

elicits a stronger response in APP/E4 than in APP/E3 mice. However, a reduced number of 

differentially expressed genes in APP/E4/Trem2ko vs APP/E3/Trem2ko mice, at approximately the 

same level of neurodegeneration as in the wild-type Trem2 mice, suggests that Trem2 deficiency 

impairs the normal response to the disease progression and “blunts” the differences between the 

transcriptomes. 

We next searched for DAM and homeostatic genes that are significantly affected in Trem2 

and APOE isoform-dependent manner in APP mice. Fig. 13E-F shows heatmaps of DAM and 

homeostatic genes that have a higher expression level in APP/E4 vs APP/E3 mice and are affected 

by Trem2 deficiency. As shown on the line patterning graphs (Fig. 13E-F) some of these, such as 

DAM genes Clec7a, Itgax, and Mpeg1 or homeostatic Pik3cg gene, are part of the Trem2 signature 

and are downregulated in all Trem2ko mice. However, they still retain a higher level of expression 

in APP/E4/Trem2ko vs APP/E3/Trem2ko as in APP/E4 vs APP/E3 mice, suggesting that these 

genes respond, at least to a degree, to the more advanced level of neurodegeneration in APP/E4 

mice even as Trem2 is absent. Another group of DAM genes (Slc15a3) and homeostatic genes 

(Csf1r, Itgam/Cd11b, Laptm5, and Nckap1l) had a significantly higher expression in APP/E4 vs 

APP/E3 mice but this difference disappeared between their Trem2ko counterparts, suggesting an 

increased dependence on the presence of Trem2. Similarly, we identified Trem2-dependent genes 

with significantly higher expression in APP/E3 vs APP/E4 mice that failed to elicit the same  
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Figure 13. APOE isoform-specific effect on gene expression. 
RNA-seq data shown in Fig. 11 were analyzed using edgeR to identify differentially expressed genes between APOE 

isoforms. Scatterplots depict differentially expressed genes between APP/E3 vs APP/E4 (A), APP/E3/Trem2ko vs 

APP/E4/Trem2ko (B) E3 vs E4 (C), and E3/Trem2ko vs E4/Trem2ko mice (D). Shown are genes at p<0.05 cutoff. 

Heatmaps and line patterning graphs of DAM and homeostatic microglia genes that are upregulated in either APOE4 

(E-F) or in APOE3 mice (G-H) mice in a Trem2 and APOE-isoform dependent manner. Genes of interest are marked 

with colored circles and shown as line patterning. 
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response when Trem2 was deleted. A few examples are shown on Fig. 13G-H: DAM associated 

(Tyrobp, Cd37, Cyba, and Ctss) and homeostatic genes (C1qa, C1qb, and C1qc).  

In addition, we also identified APOE isoform-specific genes that were not associated with 

Trem2 deficiency or amyloid pathology (Fig. 14A). Among the genes upregulated in APOE4 mice 

were several members of Serpina3 family (Serpina3h, Serpina3k, Serpina3m, Serpina3n), as well 

as Ptprh, Abcg1, and Picalm which have all previously been reported by us (Castranio et al., 2017) 

and others (Zhao et al., 2020). All of Serpina3 genes and Ptprh were upregulated and statistically 

significant in every E4 vs E3 comparison (APP/E3 vs APP/E4, APP/E3/Trem2ko vs 

APP/E4/Trem2ko, E3 vs E4, and E3/Trem2ko vs E4/Trem2ko) confirming that they were neither 

TREM2 nor amyloid dependent but strictly APOE isoform dependent. 

 

 

Figure 14. The expression of Serpina3 family is higher in APOE4 than in APOE3 mice and cell type 

specific differentially expressed genes. 
(A) Bar plots of Serpina3h, Serpina3k, Serpina3m, and Serpina3n from the same 6.5-month-old WT and APP mice 

as shown on Fig.11 and 13. (B) Bar plots depicting the average Apoe gene expression in APOE3 and APOE4 mice as 

identified by RNA-seq and statistics generated using edgeR. 
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4.4.5 FISH Identifies Alterations in Microglial Gene Expression Within the Plaque 

Microenvironment as a Result of Trem2 Deficiency and APOE Isoform 

Our next goal was to validate RNA-seq data and characterized the spatial distribution of 

expressed mRNAs of three genes in relation to compact amyloid plaques at 6.5 months of age. We 

chose three genes that are part of Trem2 signature– two significantly affected homeostatic genes 

(Tmem119 and Csf1r), and one significantly affected DAM gene (Clec7a) (Fig. 15). We selected 

these genes because Tmem119 is a microglia-specific gene and Csf1r was the most connected hub 

gene in the network (Fig. 11E) and Clec7a was the top down-regulated gene in all Trem2 deficient 

mice. We performed FISH using RNAscope probes, coupled with histological detection of X34 

positive Aβ plaques. We found that in the microenvironment surrounding plaques (<50 μm), 

mRNA expression of all three genes was significantly decreased in both APP/E3/Trem2ko and 

APP/E4/Trem2ko mice when compared to their wild-type Trem2 counterparts (Fig. 15B-D). In 

confirmation to RNA-seq results, Csf1r and Clec7a expression was also significantly higher in 

APP/E4 vs APP/E3 mice and the expression of Tmem119 was not affected in APOE isoform-

specific manner. This suggests that in addition to being Trem2 dependent, Csf1r and Clec7a are 

also affected by APOE isoform as shown above on Fig. 13E-F. In contrast, there was no difference 

in gene expression of any of the analyzed genes away from the plaques (> than 50 μm away). The 

most probable explanation for the spatial difference in gene expression between Trem2ko and 

Trem2 wild-type mice is the significant reduction in microglia recruitment around plaques in 

Trem2 deficient mice (Fig. 5F). We then compared the magnitude of the effect seen in the RNA-

seq and FISH data using Z-scores to normalize each dataset to comparable levels. The FISH data 

collected within 50 μm of plaque center parallels the expression profile seen by RNA-seq (Fig. 
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15E-G). Thus, this experiment validated RNA-seq result confirming TREM2 and APOE isoform-

specific effects on gene expression.  

 

Figure 15. FISH identifies alterations in gene expression within plaque microenvironment as a result of 

Trem2 deficiency. 
(A) Representative images of FISH analyses of microglia gene expression near amyloid plaques at 6.5 months of age 

(Tmem119 – red, Csf1r – Pink, Clec7a – Green, Nuclei – Blue, Amyloid plaque - White). The area occupied by the 

puncta was quantified adjacent to plaques (<50 μm) as well as away from plaques (>50 μm) for APP/E3, 

APP/E3/Trem2ko, APP/E4, and APP/E4/Trem2ko mice. Bar plots showing the area of puncta coverage adjacent to and 

away from plaques, and line patterning depicting the Z-score of RNA-seq data and FISHdata together for Clec7a 

DAM marker (B & E), Csf1r homeostatic microglia marker (C & F), and Tmem119 homeostatic microglia marker (D 

& G). FISHanalysis by one-way ANOVA followed by Tukey’s multiple comparison test. n = 4 mice per group (equal 

males and females), an average of 86 plaques analyzed per genotype, bars represent mean ± SEM, and *** p<0.001; 

* p<0.05 using Tukey’s multiple comparison testing. 
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4.5 Discussion 

In the present study, we investigated the effect of Trem2 deletion on the phenotype of APP 

transgenic mice expressing human APOE3 or APOE4 isoforms. We show that the absence of 

Trem2 exacerbated cognitive impairments in APP transgenic mice but not in their non-APP 

littermates. Examination of the behavioral data showed that APP/E4 mice performed at the lower 

limit in these tasks and we were unable to observe a significant reduction in their Trem2ko 

counterparts. The behavioral data demonstrate that APOE isoform impacts memory significantly 

more than Trem2 status, which is not surprising considering the higher impact of APOE isoform 

compared to TREM2 variants on the risk of late-onset AD (Corder et al., 1993; Cruchaga et al., 

2013; Guerreiro et al., 2013a; Jansen et al., 2019; Jonsson et al., 2013; Saunders et al., 1993). 

These data are consistent with previous studies showing that increased human TREM2 gene dosage 

in 5XFAD mice improved contextual fear conditioning memory (Friedman et al., 2018). In 

contrast, another study using the same AD model (5XFAD mice) has shown no impact of Trem2 

deficiency on spatial learning (Griciuc et al., 2019). The observed diminished cognitive 

performance could be associated with the lack of microglial barrier around plaques and increased 

neuronal dystrophy observed in the TREM2 deficient mice. This is in agreement with previous 

data that showed Trem2 haplodeficiency diminished the plaque-associated microglial barrier 

resulting in severe neuronal dystrophy (Yuan et al., 2016).  

The examination of amyloid plaque load revealed that while APOE isoform was a 

significant factor, Trem2 deletion resulted in no change in steady-state plaque level in either APOE 

genotype at 6.5 months of age. This is an age where APP/E3 mice are characteristic of early Aβ 

pathology and APP/E4 mice exhibit a more advanced stage. Many of the studies aimed at better 

understanding the link between TREM2 function and AD have focused on amyloid plaque 
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pathology however, with conflicting results. Using different AD models (5xFAD), Trem2 deletion 

was shown to increase Aβ pathology during the very advanced stages of plaque pathology in a 

region-specific manner (Colonna and Wang, 2016; Griciuc et al., 2019). Other studies 

demonstrated that Trem2 deletion reduced plaque load early but increased it later with the disease 

progression (Friedman et al., 2018; Jay et al., 2015). Conversely, amyloid PET imaging of the 

same AD model (APPPS-21) revealed that Trem2 knockout resulted in accelerated fibrillar 

amyloid early, which equalized during the later stages of pathogenesis (Parhizkar et al., 2019). Our 

study is unique in that we utilized AD model mice expressing human APOE isoforms. We 

identified significant differences in the ratio of compact plaques to the protofibular halo amyloid 

staining, indicating a Trem2 mediated effect on plaque compaction in agreement with previous 

reports (Colonna and Wang, 2016; Wang et al., 2016). 

There are several aspects of TREM2 function that could explain a decreased ability of 

Trem2ko to perform their function. The loss of TREM2 cell-surface signaling may lead to a 

diminished capacity of microglia to recognize A followed by a decreased uptake. Furthermore, 

the reduced numbers of microglia around amyloid plaques suggest that microglial chemotaxis was 

inhibited in APP expressing / Trem2ko mice, thus restricting microglia movement towards A, or 

any other damage in surrounding areas. As a consequence, the rate of plaque growth strongly 

correlated to the significant reduction of microglia barrier around the plaques (Fig. 9-10). Our 

transcriptomic data support this hypothesis, demonstrating a downregulation of genes associated 

with both phagocytosis and chemotaxis in Trem2ko versus wild-type Trem2 mice (Fig. 11).  

The novelty of our study is that we tested the effect of APOE isoform as an additional 

factor that could interact with TREM2 to contribute to neurodegeneration. Previously, it was 

shown that, following microglial depletion, microglia derived APOE protein is reduced in Trem2ko 



 76 

mice (Parhizkar et al., 2019). Here we have examined Trem2 effect in an APOE isoform-dependent 

and amyloid-dependent manner by directly comparing age-matched APP/E3 and APP/E4 mice 

that are at different stages of amyloid pathology. We observed a difference in the number of 

microglia but not astrocytes (Fig. 5E-G), as well as APOE protein surrounding plaques between 

APP/E3 and APP/E4 mice that was not recapitulated in their Trem2ko counterparts (Fig. 5J-K). 

Similar pattern of Apoe mRNA expression was detected by RNA-seq in APP and their WT 

littermates, confirming that Apoe, as a DAM gene (Keren-Shaul et al., 2017), responds to the 

differences in the amyloid pathology in APP/E4 vs APP/E3 mice (Fig. 5L and Fig. 14B). 

Furthermore, our results suggest the effect of Trem2 deletion on Apoe expression is apparent only 

in APP mice and depends on the amyloid deposition. APOE is secreted mainly by astrocytes and 

less by microglia, but since Trem2 is microglia-specific gene, it is reasonable to expect that Trem2 

deletion will directly affect Apoe expression in microglia. In order to identify microglia, we used 

the microglia-specific gene Tmem119 (Bonham et al., 2019; Unger et al., 2018). It should be noted 

that Tmem119 is a homeostatic gene and in our study its expression was decreased by Trem2 

deficiency. However, as in previous studies (Bonham et al., 2019; Unger et al., 2018) we used it 

only as a marker to label microglia without assessing its expression. Our results using in situ 

hybridization confirmed that microglial Apoe depends on Trem2 presence and is decreased in 

APP/E4/Trem2ko microglia vs APP/E4 counterparts (Fig. 5M-N). 

Our data also indicate that the effect of Trem2 deficiency on plaque growth is stronger at 

earlier stages of amyloid deposition when plaques are smaller. Considering that APP/E4 mice 

show earlier onset of amyloid pathology, the TREM2 effect on plaque growth in mice expressing 

this isoform is observed in mice younger than their APOE3 counterparts. A possible explanation 

for the observed APOE isoform effects is the difference in their abilities to transport lipids and 
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cholesterol (Mahley, 2016) that can impact APOE receptor-binding properties. Recently, we 

reported a significant difference in brain phospholipid content of APOE2, E3, and E4 in AD 

patients (Lefterov et al., 2019) and APOE4-containing lipoproteins were shown to be less lipidated 

than APOE3 (DeMattos et al., 2001). Thus, APOE4 may impede Aβ phagocytosis via reduced 

affinity for receptor binding (including TREM2 receptor), or changes in proteolytic degradation 

of Aβ (reviewed in (Wolfe et al., 2018; Zhao et al., 2018a)).  

There is an apparent inconsistency between the role of TREM2 in plaque growth, albeit at 

different ages for APP/E3 and APP/E4, and its lack of effect on steady-state amyloid load in 

APP/Trem2ko mice. This could be explained by the balance between A clearance mechanisms at 

different phases of amyloid pathology, i.e. microglia phagocytosis vs efflux via the BBB. At the 

earlier stages of amyloid deposition, the prevailing A species in brain interstitial fluid are 

monomers and low molecular weight oligomers that are easily cleared out of the brain by efflux 

via BBB with half-life 1.5 hours (Cirrito et al., 2003; Fitz et al., 2012). In contrast, with the 

progression of the pathology, there is an increase of high molecular weight A oligomers (Takeda 

et al., 2013) leading to the increase of Aβ half-life in interstitial fluid (Cirrito et al., 2003; Fitz et 

al., 2015). Thus, in mice with significant amyloid pathology, the faster BBB clearance mechanism 

is impeded and defects in microglia-mediated clearance mechanisms result in an increase of its 

deposition into plaques (Fig. 16). 
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Figure 16. Suggested model, illustrating the impact of Trem2 deletion on the phenotype and transcriptome in 

APP/E3 and APP/E4 mice. 

(A) Lack of Trem2 does not impact steady state amyloid deposition, impacts plaque growth, reduces microglia 

reactivity and worsens behavior in APP/E3/Trem2ko and APP/E4/Trem2ko mice as compared to their Trem2-

expressing counterparts. Arrows are relative to their Trem2-expressing counterparts. (B) Differential effects of Trem2 

deficiency on microglia transcriptome in the same mice. a) Topmost affected Trem2 signature genes; b-c) Examples 

of Trem2-APOE dependent genes with expression higher in APP/E4 mice (b) or APP/E3 mice (c). (C) A graphical 

hypothesis regarding the importance of microglia barrier on the accumulation of Aβ and plaque dynamics. (a) and (c), 

In the early stage of amyloid deposition low molecular weight Aβ species are prevailing in interstitial fluid and are 

cleared mainly via efflux through the blood-brain barrier. (b) and (d), In the later stages of amyloid deposition, high 

molecular weight Aβ oligomers accumulate in interstitial fluid that impedes Aβ efflux via blood-brain barrier and 

microglia phagocytosis becomes a major component of Aβ removal. We hypothesize that there is increased reliance 

on functional Trem2 on Aβ clearance in the late stages of amyloid pathology. 

 

The lightcyan module represents the Trem2 signature which is enriched for microglial-

specific genes indicating that Trem2 deficiency has a robust effect on microglial gene expression. 

Because of the limitations of bulk RNA-seq data, this conclusion needs to be confirmed by single 

cell RNA-seq data. The main hubs of lightcyan module network are Csf1r, Mpeg1, Cx3cr1, Hexb 

and Visr. Previously, few of these genes such as Cx3cr1, Hexb, P2ry12, P2ry13, and Siglech were 

classified as Trem2 dependent (Keren-Shaul et al., 2017). However, as part of the Trem2 signature, 

we also identified a group of genes which had never before been linked to Trem2 deficiency, 

including Spi1/PU.1 (Gosselin et al., 2014), Adgre1 (Gordon et al., 2011), Ctsc (Zhang et al., 
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2013), Fcgr1 (Minett et al., 2016), Cd68 (Hopperton et al., 2018), and the hub gene Visr (Li et al., 

2017). These genes are enriched in immune cells (Lein et al., 2007) and follow similar expression 

patterns in microglia expressing either APOE isoform. Our topmost downregulated genes in 

Trem2ko mice in all four sets of comparisons were Clec7a and Itgax. Both, Clec7a and Itgax have 

been previously identified as drivers of a “primed” microglia phenotype associated with 

neurodegeneration and aging (Holtman et al., 2015). We found no change in a few genes, 

previously found downregulated in Trem2ko mice, namely Axl, Csf1, and Spp1 (Friedman et al., 

2018; Griciuc et al., 2019; Krasemann et al., 2017; Mazaheri et al., 2017). It should be noted that 

the Trem2 signature as identified in this study, incorporates only the genes that are commonly 

affected by Trem2 deficiency in APP as well in their WT littermates. DAM genes that respond 

mainly to the increased neurodegeneration such as Apoe and Lpl were not identified as part of the 

common Trem2 signature. Both Apoe and Lpl were upregulated only in APP/E4 mice vs APP/E3 

in response to the higher level of amyloid pathology seen in these mice. 

Interestingly, Tyrobp implicated in the TREM2 checkpoint (Keren-Shaul et al., 2017) was 

downregulated in Trem2ko mice in an APOE isoform-specific manner in both APP/E3 mice and in 

their WT non-APP littermates (see Fig. 5G). The most probable reason is that we are exploring an 

effect of Trem2 deletion in mice expressing human APOE instead of mouse Apoe and as mentioned 

above the differences in APOE3 and APOE4 lipidation could affect receptor binding and signal 

transduction pathways reflecting on brain transcriptome. In addition to Tyrobp, we identified as 

uniquely upregulated in APP/E3 vs APP/E3/Trem2ko mice, i.e. in an APOE3-Trem2 dependent 

manner, several genes involved in the C1q complement cascade. Tyrobp has been previously 

regarded as a regulator of genes involved in the complement pathway (Haure-Mirande et al., 2017; 
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Haure-Mirande et al., 2019), and is part of a predicted protein-protein interaction network along 

with C1qa, C1qb, C1qc, and Ctss (Szklarczyk et al., 2019). 

We have previously shown an APOE4 isoform-specific increase of several Serpina3 genes 

and Ptprh in human APOE targeted replacement mice (Castranio et al., 2017). In the current study, 

we confirmed that four members of Serpina3 family (Serpina3h, Serpina3k, Serpina3m, 

Serpina3n), as well as Ptprh, are increased in both APP/E4 vs APP/E3 mice and their non-

transgenic littermates (E4 vs E3) suggesting that their expression was not affected by amyloid 

deposition. We also established that the expression of the Serpina3 genes was not affected by 

Trem2 deficiency. Recently, Zhao et al. (Zhao et al., 2020) demonstrated a transcriptional 

upregulation of several genes from Serpina3 family in the same APOE4 vs APOE3 mice. They 

also reported that the expression level of SERPINA3 (human ortholog of Serpina3n) is higher in 

APOE4 carriers vs non-carriers, but is not significantly different when adjusted by AD status (Zhao 

et al., 2020). Interestingly, in a recent study examining the effect of APOE isoform on the 

transcriptome in human AD cortex (right inferior parietal lobule), we found that the expression of 

SERPINA3, as well as PTPRH, was significantly higher in APOE2 carriers vs APOE4 carriers 

(Lefterov et al., 2019). The APOE isoform-dependent effect on the expression of members of this 

gene family in human and mouse data warrants further research. 

4.6 Conclusion 

In conclusion, the results of this study provide insight into the complex effect of TREM2 

on phenotype, and brain transcriptomes in mice expressing human APOE isoforms. We show that 

the absence of Trem2 exacerbated cognitive impairments in APP transgenic mice but not in their 
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WT littermates. Trem2 deletion significantly reduced microglia barrier around the plaques in 

correlation with the increased plaque growth rate. The differences in expression levels identified 

a Trem2 signature - a cluster of highly connected immune response genes, commonly 

downregulated as a result of Trem2 deletion and regardless of the APOE isoform. Surprisingly, 

the lack of TREM2 significantly decreased Apoe mRNA expression in APP/E4 but not in APP/E3 

mice a result that was confirmed by APOE protein analysis. Future studies are needed to better 

understand the role of TREM2 through the normal aging and in microglial response to neuronal 

injury and amyloid deposition. 
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5.0 Final Conclusions 

AD is the most common form of dementia worldwide and is characterized by extracellular 

β-amyloid plaques and intracellular neurofibrillary tau tangles. APOEε4 and TREM2 deficiency 

caused by the R47H mutation are two major genetic risk factors for LOAD. However, surprisingly 

little is known about the interplay between these two genes regarding amyloid deposition, 

microglial phenotype, or transcriptomic profile. We hypothesized that APOE isoform would 

differentially impact transcriptional gene expression and aspects of amyloid pathology, potentially 

in a Trem2-dependent manner, with APOE4 exhibiting worse outcomes than APOE3. We 

addressed this hypothesis through three aims: First, we undertook a comprehensive literature 

review encompassing all published data about the proposed hypothesis (Chapter 3). Second, an 

analysis of the phenotypic changes observed in WT and APP-expressing APOE3, APOE4, 

APOE3/Trem2ko, and APOE4/Trem2ko mice (Chapter 4) was completed. Third, transcriptional 

profiling of both WT and APP mice expressing human APOE3, APOE4, APOE3/Trem2ko, or 

APOE4/Trem2ko was accomplished (Chapter 4). Logistically, Chapter 3 established the conceptual 

bases for investigating the impact of APOE isoform and Trem2 deficiency and pointed to gaps in 

the knowledge base revolving around these two eminent AD risk factors that Chapter 4 set about 

addressing. 

Our second aim was to elucidate the phenotypic characteristics of APOE3, APOE4, 

APOE3/Trem2ko, and APOE4/Trem2ko AD-like mice at a time in which we have previously 

established a noticeable difference in amyloid pathology between APOE isoforms. This aim 

provided evidence that Trem2 deletion worsened cognitive performance, restricted microglia 

recruitment to amyloid plaques, increased neuronal dystrophy, and impacted growth kinetics of 
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plaques, but showed no impact on steady-state amyloid load in either APOE genotype. 

Additionally, Trem2 deletion resulted in reduced microglia surface contact and a subsequent 

increase in the plaque growth rate, exhibiting the strongest effects on smaller plaques. This 

ultimately leads to the conclusion that early plaque development is a critical window for 

modulating aspects of the microglia – amyloid relationship, which has lasting impacts as 

deposition progresses.  

Recently, Parhizkar et al. used in vivo μPET imaging at multiple ages in APPPS1/Trem2ko 

mice to detect an increase in cortical amyloid load early that diminishes in later stages of amyloid 

deposition of Trem2 deletion mice. We found no change in overall amyloid load as a result of 

Trem2 deletion at 6.5 months but did elucidate alterations in plaque compaction. Hence, we 

addressed the changes in the growth rate of individual plaques. Our data showed that Trem2ko 

increased the growth rate of plaques at the earlier, but not later stages of plaque development. 

Reduced microglial recruitment to amyloid deposits has been consistently observed in the Trem2ko 

genotype (Jay et al., 2017; Jay et al., 2015; Parhizkar et al., 2019; Wang et al., 2015; Wang et al., 

2016; Yuan et al., 2016). The data presented here confirm this observation by examining reduced 

microglia – plaque surface contact in Trem2ko established plaques (APP/E4: 4.5-month; both 6.5-

month groups), although no change in surface contact from the early plaque growth group (APP/E3 

4.5 month) was detected. The microglial barrier provides a physical reduction in the surface area 

exposed to the microenvironment surrounding the plaque, while at the same time providing more 

surface area for microglia phagocytosis to occur. This is noteworthy because TREM2-dependent 

Aβ phagocytosis is more efficient when the Aβ forms complexes with APOE (Yeh et al., 2016).  

Previously, it has been shown that newly formed, and specifically fast-growing plaques are 

surrounded by a disproportionately large area of neuronal dystrophy (Condello et al., 2011a). 
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Interestingly, Trem2 haploinsufficiency and full deletion have both been shown to increase 

dystrophic neurites surrounding filamentous and small compact plaques (Yuan et al., 2016). The 

increase in plaque growth seen early in Trem2ko mice may not be enough to influence overall 

amyloid deposition, as we observed at 6.5 months, but the early, rapid expansion of amyloid 

plaques can have lasting effects on the tissue surrounding the plaques. To this end, elevated Trem2 

gene dosage in microglia has been shown to significantly reduce plaque-associated neuronal 

dystrophy and rescue cognitive deficits in AD mice (Lee et al., 2018). However, the protective 

effect of a well-established microglia barrier does seem to have limitations. Our data show that in 

the 6.5-month APP/E4 group, the plaques have significantly increased surface coverage compared 

to either of the Trem2ko groups, although they still retain a similar growth volume. This emphasizes 

the importance of surface contact in very small plaques and how a better microglial acquisition 

and coverage of small plaques can delay the exponential growth phase.  

In the third aim, we assessed transcriptional changes in each group and identified a 

common Trem2 signature in all groups analyzed. The APP/E4 genotype is associated with an 

increased number of differentially expressed genes, specifically DAM and homeostatic genes, 

compared to E4. This is presumably influenced by the presence of amyloid pathology and is a 

driving force behind the genetic response in these mice. Within that context, Trem2 deletion leads 

to a down-regulation of immune response genes (Csf1r, Mpeg1, Cx3cr1, Hexb, and Vsir), and 

drives APP/E3 and APP/E4 mice to have a more similar gene expression profile than expected 

based on differences in amyloid pathology. The reduction of gene expression for both DAM and 

homeostatic genes implies that Trem2 deficiency not only impedes the adoption of an increased 

activation state by microglia but also constrains the maintenance of proper homeostasis. In some 



 85 

instances, APP/E4 mice still demonstrate elevated expression of DAM and homeostatic markers 

in APP/E4 compared to APP/E3 mice, likely driven by baseline differences in the amyloid load. 

Without access to transcriptional data from mice with relatively similar levels of amyloid 

deposition but different APOE genotypes, it is hard to disentangle the transcriptional effects seen 

as a result of APOE4 isoform from that of increased pathology. That being said, two of the 

strongest drivers of the APOE4-Trem2 dependent expression pattern are Clec7a and Itgax. Both 

have been previously identified as part of the DAM signature (Keren-Shaul et al., 2017) and even 

implicated in the APOE-TREM2 pathway (Krasemann et al., 2017), but never in an APOE 

isoform-specific manner. Furthermore, both of these genes have been identified as characteristic 

drivers of a “primed” microglia phenotype derived from neurodegeneration and aging (Holtman 

et al., 2015). This indicates that these genes are involved in the natural aging process, but their 

upregulation can result in the adoption of an accelerated, more aggravated phenotype. These genes 

along with Mpeg1 are severely reduced in the absence of functional Trem2, but they still remain 

elevated in the APP/E4/Trem2ko compared to the APP/E3/Trem2ko, indicating that they are still 

being at least partially activated by a pathway other than Trem2, specifically in response to the 

presence of APOE4. 

We noted that several genes involved in the C1q complement cascade (C1qa, C1qb, and 

C1qc) within the group of Trem2 dependent genes were increased in APOE3 compared to APOE4 

mice. The activation of the complement system has been previously identified in human AD brain 

tissue, specifically in the microenvironment of amyloid deposits (Hong et al., 2016; Zanjani et al., 

2005). C1q protein accumulates in the brain with aging, especially in the hippocampus, in an 

APOE isoform-specific manner; the APOE4 genotype shows the most accumulation, whereas 

APOE2 displays the least (Chung et al., 2016). Given the higher binding affinity of APOE3 to 
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C1q, the uniquely elevated expression of these genes in APOE3 mice may indicate that they have 

a more heavily relied upon and robust C1q complement system than the APOE4 genotype. It 

should be noted that a similar expression pattern is seen in the WT mice, indicating that APOE3 

mice are activating and utilizing the Trem2 dependent C1q complement system as a defense 

response to normal aging, whereas APOE4 mice are not. Thus, at a baseline level as well as in the 

early stages of amyloid deposition, C1q activation could play a protective role in 

neurodegeneration by restricting the adoption of an inflammatory phenotype in APOE3 mice in a 

Trem2 dependent manner. 

The activation of TREM2 leads to intracellular signal transduction through the adaptor 

protein TYROBP, making its function intimately connected to TREM2. In AD, Tyrobp has been 

previously identified as a potential driver for microglial activation and the immune response 

through the regulation of genes involved in the complement pathway (Zhang et al., 2013). Our 

data delineated that Tyrobp expression displays an isoform-specific response to Trem2 deletion 

and is downregulated only in APOE3 comparisons. This is driven by the fact that Tyrobp, along 

with the complement cascade genes, have a higher expression in APP/E3 and E3 mice compared 

to their APOE4 counterparts, and the deletion of Trem2 drives expression down to the levels seen 

in APOE4-expressing mice. Tyrobp deficiency has been shown to modulate plaque morphology 

and alter gene expression of many AD-related genes including C1qa, C1qbp, and C1qc (Haure-

Mirande et al., 2017; Haure-Mirande et al., 2019). We also found that Cd37, a downstream 

component of the Tyrobp causal network (Zhang et al., 2013), expressed the same signature as 

Tyrobp. All of this points to the conclusion that APOE3 mice rely more heavily on the use of the 

C1q complement system to regulate microglia activation and regulate inflammation. Thus, when 
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Trem2 is knocked out, a larger transcriptional response is observed in these genes in APOE3 than 

APOE4 mice.  

When examining the totality of the evidence presented here, the decreased cognitive 

performance in Trem2ko mice at 6.5 months of age combined with the lack of difference in overall 

amyloid load between the WT Trem2 and Trem2ko mice is interesting, given the fact that we also 

established that plaques from Trem2ko mice have an increased growth rate early in amyloid 

deposition. It has been established that faster-growing plaques are more damaging to the 

surrounding microenvironment (Condello et al., 2011b). The plaque growth rate, aside from 

overall amyloid deposition, may be a factor that contributes to reduced cognitive performance even 

if the steady-state amyloid load is not significantly different. It also should be noted that increased 

activation of APOE4 microglia could ultimately cause long term problems for the surrounding 

cells. In this instance, the homeostatic lock imposed as a result of Trem2 deletion may reduce some 

of the negative effects caused by chronic activation, since microglia can never reach full activation. 

This brings into question the dual role of TREM2 and provides insight into why the phenotypic 

characteristics derived as a result of deficiencies in this gene have been hard to define. 

The use of transgenic mouse models constitutes an inherent limitation of these studies. The 

addition of the human APOE3 or APOE4 transgene into the mouse genome may influence aspects 

of the model outside of what was intended. Additionally, interactions between human APOE and 

murine TREM2 are known to be biologically possible (Jendresen et al., 2017) but clearly do not 

function as the systems were intended. Furthermore, the distinction between Trem2ko and TREM2 

deficiency must be made clear: the rare biallelic mutations in TREM2 that result in a true loss of 

function in humans manifests as Nasu–Hakola disease, which is clinically different than the AD 

risk modifying aspects of TREM2 deficiency via the R47H mutation (Paloneva et al., 2002). There 



 88 

are known differences in the transcriptomic regulation between human and mouse microglia which 

invariably play a part in the interpretation of mouse derived data (Zhou et al., 2020). Microglia in 

particular have been shown to have divergent activation profiles between human and mouse, 

although in both species, the deletion or mutation of TREM2 similarly blunted the response to 

amyloid accumulation (Zhou et al., 2020). 

Accepting the necessity of the use of transgenic models to further our understanding of a 

complex disease such as AD is requisite, as they provide the means to examine systems that 

replicate the human disease in a time and cost-efficient manner. It would be very interesting to 

examine the transcriptomic profile of mice at a younger (3.5 months) as well as an older age (13.5 

months) using this model. The younger age would provide a glimpse into the early transcriptional 

changes behind the onset of amyloid deposition as well as uncover potential first responders that 

work in a Trem2 dependent manner. It would also be interesting to investigate the transcriptomic 

profiles of these groups at a later time point as the deposition differences between APOE isoforms 

become more similar. This would allow for the determination of whether or not the more chronic 

nature of the APOE4 deposition has exhibited a lasting impact on the gene expression, or if the 

transcriptional profiles between APOE isoforms will become more similar once the deposition 

levels begin to converge. 

One practical application of the data presented here would be the use of TREM2 as a 

therapeutic in AD. There are some inherent challenges in this with the first being the relative 

infrequency in TREM2 mutations in humans with risk variants occurring in less than one percent 

of the population. This contrasts with the other gene investigated here APOE, which has the risk 

variant of APOE4 occurring in around 20% of the global population. Secondarily, there is the 

potential that targeting of TREM2 in non-risk carrying individuals (which represent the vast 

majority of all people) would have consequences outside the intended therapy. The most 
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commonly reported effect of TREM2 deficiency is the loss of ability to acquire an activated 

microglia signature state. The stimulation of TREM2 signaling before, or at the onset of amyloid 

accumulation could boost the microglia reactivity to the amyloid thereby slowing the initial onset 

of accumulation and delaying symptoms. It remains to be solved as to is the adoption of an 

activated microglia state is detrimental long-term thought as chronic microglial activation is 

potentially detrimental as well. 

Collectively, this dissertation has elucidated unique phenotypic and transcriptional 

differences in the response to Aβ deposition when in the presence of either human APOE3 or 

APOE4 in conjunction with Trem2 deficiency. We have identified a unique transcriptomic 

signature which mostly impacts microglia gene expression, behavioral deficits, increases in plaque 

growth at early stages of amyloid deposition, and no impact on steady state amyloid deposition in 

both APOE genotypes following Trem2 deletion. Additionally, we found and a reduction of APOE 

protein and gene expression surrounding amyloid plaques which was unique to APOE4 expressing 

mice following Trem2 deletion. The assessment and characterization of these two genetic risk 

factors and how they impact Alzheimer’s disease progression provides a critical knowledge base 

that can be implemented in the creation of successful early diagnostic and therapeutic strategies 

against such a devastating disease.  
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