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Abstract—We consider several estimation and learning prob-
lems that networked agents face when making decisions given
their uncertainty about an unknown variable. Our methods
are designed to efficiently deal with heterogeneity in both size
and quality of the observed data, as well as heterogeneity
over time (intermittence). The goal of the studied aggregation
schemes is to efficiently combine the observed data that is spread
over time and across several network nodes, accounting for all
the network heterogeneities. Moreover, we require no form of
coordination beyond the local neighborhood of every network
agent or sensor node. The three problems that we consider
are (i) maximum likelihood estimation of the unknown given
initial data sets, (ii) learning the true model parameter from
streams of data that the agents receive intermittently over time,
and (iii) minimum variance estimation of a complete sufficient
statistic from several data points that the networked agents
collect over time. In each case, we rely on an aggregation
scheme to combine the observations of all agents; moreover,
when the agents receive streams of data over time, we modify
the update rules to accommodate the most recent observations.
In every case, we demonstrate the efficiency of our algorithms
by proving convergence to the globally efficient estimators given
the observations of all agents. We supplement these results by
investigating the rate of convergence and providing finite-time
performance guarantees.

Index Terms—Statistical Learning, Distributed Learning, Dis-
tributed Hypothesis Testing, Distributed Detection, Distributed
Estimation, Online Learning.

I. INTRODUCTION

There is a large body of literature on decentralized detec-
tion with the notable examples of [1], [2], [3]; and recently
there is a renewed interest in this topic due to its applications
to sensor and robotic networks [4], [5], [6], [7], [8] and
the emergence of new literature considering network of
sensor and computational units [9], [10], [11]. Other relevant
results investigate the formation and evolution of beliefs in
social networks and subsequent shaping of the individual and
mass behavior through social learning [12], [13], [14]. The
archetype of such models is the one due to DeGroot [15],
where agents update their beliefs to a convex combination
of their neighbor’s beliefs and the coefficients correspond to
the level of confidence that each agent puts in each of her
neighbors. A variation of this model, where in addition to the
neighboring beliefs the agents also receive private signals is
considered in [16].
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ARO MURI W911NF-12-1-0509.

Obtaining a global consensus by combining noisy and un-
reliable locally sensed data is a key step in many wireless sen-
sor network applications; subsequently, many sensor fusion
schemes offer reasonable recipes to address this requirement
[17], [18]. In many such applications, each sensor forms an
estimate of the field using its local measurements and then
the sensors initiate distributed optimization to fuse their local
estimates. If all the data from every sensor in the network
can be collected in a fusion center, then a jointly optimal
decision is readily available by solving the global optimiza-
tion problem given all the data. However, many practical
considerations limit the applicability of such a centralized
solution. This gives rise to the distributed sensing problems
that include distributed network consensus or agreement [19],
[20], [1], and distributed averaging [21]; with close relations
to the consensus and coordination problems that are studied
in the distributed control theory [22], [23], [24]. Due to the
diverse sensing capabilities and other unpredictable physical
factors, usually the quality and availability of local observa-
tions varries amongst the different sensors and over time. A
main focus of this paper is to demonstrate how aggregation
schemes can be modified to accommodate the heterogeneity
of the sensed data both across time and amongst different
sensors.

A. The Model, Problem Statements and Organization

Consider a set of n agents that are labeled by [n] and
interact according to an (undirected) graph G = ([n], E).1

The neighborhood of agent i is the set of all agents that
it observes and is denoted by Ni = {j ∈ [n]; (j, i) ∈ E};
excluding the self-loops: i 6∈ Ni for all i. We refer to the
cardinality of Ni as the degree of node i and denote it by di.
There is a state θ ∈ Θ that is unknown to the agents and it is
chosen arbitrarily by nature from an underlying state space
Θ. In the sequel, we pose several estimation and learning
problems that the agents face when making decisions given
their uncertainty about the true state θ.

In Section II, we consider the case where nodes have
an initial data set and they communicate their beliefs in

1Throughout the paper, R is the set of real numbers, N denotes the set of
all natural numbers, and N0 := N∪{0}. For n ∈ N a fixed integer the set of
integers {1, 2, . . . , n} is denoted by [n], while any other set is represented
by a capital Greek or calligraphic letter. Random variables are printed in
boldface letters, vectors are represented by lower case Greek or Latin letters
with a bar over them and matrices are denoted by upper case Latin letter.
We use 1 for a column vector of all ones with the proper dimensions and
we use I to denote the identity matrix.
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order to combine their local data and come up with the
model parameter that best describes all their data collectively;
i.e. the global maximum likelihood estimator. In section III,
we consider a similar framework where agents instead of
starting with an initial data set receive new observations at
every round. The data received at every point can provide
differing and possibly complementary information about the
unknown parameter and the number of data points that is
observed at every round varies randomly. In section III, we
consider the case where agents observe i.i.d. samples from
a distribution and their objective is to estimate the expected
value of a complete sufficient statics of the common sampling
distribution with as little variance as possible. We consider
both the case where they start with initial data state as well as
the case where they make new observations at every round.
Concluding remarks comparing the nature of update rules
and mechanisms of convergence in each case are provided
in section V. Proofs and mathematical details can be found
in the appendix at the end.

In all cases that we consider the mechanisms for conver-
gence rely principally on the fact that increasing powers of
a row stochastic matrix behaves in the limit as a rank-one
matrix (and (1/n)11T if the matrix is doubly stochastic).
The same principle governs the mixing times of Markov
chains and their rate of convergence to the equilibrium distri-
bution, which is determined by the second largest magnitude
of the eigenvalues (or the spectral gap) of the coefficients
(transition) matrix. These weights can be designed optimally
using fastest mixing chains [25], and there are also popular
heuristics for assigning the weights, such as the Metropolis-
Hastings algorithm. Our choice of weights in this paper
is motivated by requirement that the agents construct their
update rules based only on their local neighborhood and
their sizes (degrees). In the sequel, let the symmetric network
graph structure be encoded by its modified adjacency matrix
A = [aij ]

n
i,j=1, defined according to the Metropolis-Hastings

weights [25]: aij = 1/max{di, dj} if (j, i) ∈ E , and [A]ij =
0 otherwise for i 6= j; furthermore, aii = 1−∑j 6=i aij .

II. DISTRIBUTED MAXIMUM LIKELIHOOD ESTIMATION

Suppose that the set of n agents aim to collectively dis-
tinguish the true state θ from a set finitely many possibilities
Θ. Each agent i ∈ [n] has access to a set of ni initial data
points s1

i , . . . , s
ni
i , each of which is identically distributed

according to a common distribution `i(·|θ). In this section
we give a procedure so that by forming a belief over the
set Θ and iteratively updating these beliefs, the agents can
determine the maximum likelihood estimator of θ given all
the initial data sets: {s1

i , . . . , s
ni
i }, i ∈ [n].

The agents begin by forming: γi(θ̃) =
∏ni

j=1 `i(s
j
i |θ̃),

and initializing their beliefs to µi,0(θ̂) =
γi(θ̂)/

∑
θ̃∈Θ γi(θ̃). In any future time period

the agents update their belief after communication
with their neighboring agents, and according to the
following update rule for any θ̂:

µi,t(θ̂) =

µ1+aii
i,t−1 (θ̂)

∏
j∈Ni

µ
aij
j,t−1(θ̂)

∑
θ̃∈Θ

µ1+aii
i,t−1 (θ̃)

∏
j∈Ni

µ
aij
j,t−1(θ̃)

. (I)

For any θ̂ ∈ Θ we can define Λ(θ̂) =∑n
i=1

∑ni

j=1 log(`i(s
j
i |θ̂)), then the global maximum

likelihood estimate of θ given all the initial data points is
any member of the set Θ? := arg maxθ̂∈Θ Λ(θ̂).

Theorem 1 (Maximum Likelihood Estimation). Under (I),
limt→∞ µi,t(θ̃) = 1/|Θ?|,∀θ̃ ∈ Θ? and limt→∞ µi,t(θ̃) =
0,∀θ̃ 6∈ Θ? almost surely, for all i ∈ [n]. In particular,
if Θ? = {θ?} is a singleton, then limt→∞ µi,t(θ

?) = 1,
almost surely for all i. Hence, after a large enough number
of iterations any agent i ∈ [n] can recover θ? as θ? =
arg maxθ̃∈Θ µi,t(θ̃).

In Appendix A, where Theorem 1 is proved we also
give a more detailed description of the belief convergence
result claimed here; in particular, we characterize a finite
time T, such that any agent i ∈ [n] can recover θ? by
θ? = arg maxθ̃∈Θ µi,t(θ̃) at all t > T, cf. (13) of the
appendix and the explanations therein.

It is instructive to consider the following unweighted
version of (I):

µi,t(θ̂) =
µi,t−1(θ̂)

(∏
j∈Ni

µj,t−1(θ̂)

νj(θ̂)

)

∑
θ̃∈Θ µi,t−1(θ̃)

(∏
j∈Ni

µj,t−1(θ̃)

νj(θ̃)

) . (1)

This update can be derived as a Bayesian heuristic that
a group member uses to update her belief after listening
to the beliefs of her neighbors [26], [27]. Following the
Bayesian heuristic belief updates in (1), the asymptotic
beliefs will be uniformly supported over θ̃ ∈ Θ?, where
Θ♦ := arg maxθ̃∈Θ

∑n
i=1 αi log(`i(si|θ̃)). In particular, if

the sum of signal log-likelihoods weighted by node central-
ities is uniquely maximized by θ♦, i.e. {θ♦} = Θ♦, then
limt→∞ µi,t(θ

♦) = 1 almost surely for all i ∈ [n]. The
fact that log-likelihoods in Θ♦ are weighted by the node
centralities is a source of inefficiency for the asymptotic
outcome of the group decision process. This inefficiency is
warded off in especially symmetric typologies, where in and
out degrees of all nodes in the network are the same. In these
so-called balanced regular digraphs, there is a fixed integer
d such that all agents receive reports from exactly d agents,
and also send their reports to some other d agents; d-regular
graphs are a special case, since all links are bidirectional



and each agent sends her reports to and receive reports from
the same d agents. In such structures α = (1/n)1 so that
Θ? = Θ♦ and the support of the consensus belief identifies
the global maximum likelihood estimator (MLE); i.e. the
maximum likelihood estimator of the unknown θ, given the
entire set of observations from all agents in the network.
In fact, the heuristic group decision outcome demonstrates
also a second form of departure from optimality in that he
agents effectively become certain about the truth state of θ♦,
in spite of their essentially bounded aggregate information
and in contrast with the rational (optimal) belief µ? that is
given by the Bayes rule:

µ?(θ̂) =

∏
j∈Ni

`j(sj |θ̂)∑
θ̃∈Θ

∏
j∈Ni

`j(sj |θ̃)
,

and do not discredit or reject any of the less probable states.

III. LEARNING FROM INTERMITTENT STREAMS OF DATA

In this section, we consider a network of agents that make
streams of observations intermittently and communicate their
beliefs at every time period. At any time t, agent i makes ni,t
i.i.d. observations s1

i,t, . . . , s
ni,t

i,t that are distributed according
to `(·|θ); and the numbers of observations at each time
period: {ni,t, t ∈ N} constitute a sequence of i.i.d. signals
with mean E{ni,t} = νi. The agents aim to determine the
true state θ from their stream of observations.

Every time t ∈ N0, each agent forms the likelihood
product of the signals that it has received at that time-
period: γi,t(θ̃) =

∏ni,t

j=1 `i(s
j
i,t|θ̃), if ni,t ≥ 1, and

γi,t(θ̃) = 1 if ni,t = 0. It then updates its belief
according to:

µi,t(θ̂) =
γi,t(θ̂)µ

aii
i,t−1(θ̂)

∏
j∈Ni

µ
aij
j,t−1(θ̂)

∑
θ̃∈Θ

γi,t(θ̃)µ
aii
i,t−1(θ̃)

∏
j∈Ni

µ
aij
j,t−1(θ̃)

, (II)

initialized by: µi,0(θ̂) = γi,0(θ̂)/
∑
θ̃∈Θ γi,0(θ̃).

Theorem 2 (Learning from Intermittent Streams). Let
Λi(θ̂, θ̌) = Eθ{log(`i(si,0|θ̂)/`i(si,0|θ̌))} for all i ∈ [n], and
any pair of states θ̂, θ̌ ∈ Θ. If

∑n
i=1 νiΛi(θ̂, θ) < 0 for

all θ̂ 6= θ, then under (II), limt→∞ µi,t(θ) = 1, for all i.
Moreover, the learning is asymptotically exponentially fast
with the rate equal to minθ̂ 6=θ{(−1/n)

∑n
i=1 νiΛi(θ̂, θ)}.

To understand the nature of the convergence result and
learning rate in Theorem 2, consider the special case
where each agent at every time t may or may not
have access to a sample point si,t and the accessibility
of the new measurement si,t is determined by the out-
come of an idependent coin flip with success probabil-
ity pi, i.e. {ni,t, t ∈ N} are i.i.d Bernoulli(pi) vari-
ables. Then the convergence rate in Theorem 2 becomes
minθ̂ 6=θ{(−1/n)

∑n
i=1 piΛi(θ̂, θ)}, which decreases linearly

with the decreasing probability of making new obsrevations.
Also note that Λi(θ̂, θ) = Eθ{log(`i(si,0|θ̂)/`i(si,0|θ))} :=

−DKL

(
`i(·|θ̂)||`i(·|θ)

)
6 0, where DKL (·||·) ≥ 0 is the

Kullback-Leibler divergence. It measures a psudo-distance
between the two distributions and it is strictly positive
whenever `i(·|θ̂) 6≡ `i(·|θ), i.e. the two distributions disagree
over a non-trivial (nonzero measure) set [28, Theorem 2.6.3];
hence, the closer the alternative distributions are to the true
distributions the slower is the rate.

IV. MINIMUM VARIANCE UNBIASED ESTIMATION AND
ONLINE LEARNING OF THE EXPECTED VALUES

In this section, we allow the parameter space Θ to be
any measurable set, and in particular not necessarily finite.
Consider again the network of n agents and suppose that each
agent i ∈ [n] observes an i.i.d. samples si from a common
distribution `(·|θ) over a measurable sample space S. We
assume that `(·|θ) belongs to a one-parameter exponential
family so that it admits a probability density or mass function
that can be expressed as

`(s|θ) = τ(s)eα(θ)T ξ(s)−β(α(θ)), (2)

where ξ(s) ∈ R is a measurable function acting as a complete
sufficient statistic for the i.i.d. random samples si, and α :
Θ→ R is a mapping from the parameter space Θ to the real
line R, τ(s) > 0 is a positive weighting function, and

β(α) := ln

∫

s∈S

τ(s)eαξ(s)ds, (3)

is a normalization factor known as the log-partition function.
In (2), ξ(·) is a complete sufficient statistic for θ. It is
further true that

∑n
i=1 ξ(si) is a complete sufficient statistic

for the n i.i.d. signals that the agents have received [29,
Section 1.6.1]. The agents aim to estimate the expected
value of ξ(·): mθ = E{ξ(si)}, with as little variance as
possible. The Lehmann-Scheffé theory (cf. [30, Theorem
7.5.1]) implies that any function of the complete sufficient
statistic that is unbiased for mθ is the almost surely unique
minimum variance unbiased estimator of mθ. In particular,
the minimum variance unbiased estimator of mθ given the
initial data sets of all nodes in the network is given by:
mn = (1/n)

∑n
i=1 ξ(si). The agents can compute this value

using any average consensus algorithm [31]; guaranteeing
convergence to average of the initial values asymptotically.

The agents initialize with: µi,0 = ξ(si), and in
any future time period the agents communicate their
values and update them according to the following
rule:

µi,t = aii µi,t−1 +
∑

j∈Ni

aijµj,t−1. (III)



The mechanisms for convergence in this case rely on the
product of stochastic matrices, similar to mixing of Markov
chains (cf. [32], [9]); hence, many available results on mixing
rates of Markov chains can be employed to provide finite time
grantees after T iteration of the average consensus algorithm
for fixed T . Such results often rely on the eigenstructure
(eigenvalues/eigenvectors) of the communication matrix A,
and the facts that it is a primitive matrix and its ordered
eigenvalues satisfy −1 < λn(A) ≤ λn−1(A) ≤ . . . ≤
λ1(A) = 1, as a consequence of the Perron-Frobenius theory
[33, Theorems 1.5 and 1.7].

Theorem 3 (Minimum Variance Unbiased Estimation). Un-
der (III), limt→∞ µi,t = mn almost surely, for all i.
Furthermore, |µi,t −mn| ≤ ε, whenever

t >
(
log(ε)− log(Mn

√
n− 1)

) /
log β?,

where Mn = max
i∈[n]
|ξ(si)| and β? = max{λ2(A), |λn(A)|}.

We now take a brief look at the case where the initial data
sets are of different sizes ni, so that each agent has access
to a set of ni initial data points s1

i , . . . , s
ni
i , each of which is

identically distributed according to the common exponential
family distribution `(·|θ). We explain how (III) should be
modified to accommodate the varying sample sizes. In this
case, the globally efficient (minimum variance) estimator of
the mean sufficient statistic mθ given all the initial data
sets is as follows: m?

n =
(

1
/∑n

p=1 np

)∑n
i=1

∑ni

j=1 ξ(s
j
i ).

The agents can initialize with: µi,0 = (1/ni)
∑ni

j=1 ξ(s
j
i )

for all i; however, to ensure convergence to the right limit
the coefficients of the linear update rule in (III) should be
modified in accordance with the initial sample sizes. Let δi =
ni
/∑n

p=1 np; the following modification of the Metropolis
- Hastings weights explained in [25], [34], incorporates the
sample sizes and ensures convergence of the linear iterations
in (III) to the right limit m?

n:

aij =





1
di

min{1, δjdidjδi
} if (j, i) ∈ E ,

1−∑j 6=i aij if i = j,

0 otherwise.
(4)

Next, suppose that every time t ∈ N, each agent i ∈ [n]
receives an i.i.d. sample si,t, in addition to communicating
their current estimates µi,t. All signals {si,t : i ∈ [n], t ∈ N}
are distributed according to the same distribution `(·|θ), and
as before the agents aim to estimate the expected value of
the complete sufficient sufficient statistic ξ(·) with as little
variance as possible. Here we propose a 1/t discounting
of new samples with increasing time t. This would enable
the agents to learn the true value mθ asymptotically almost
surely; and in such a way that the variance of their estimates
decreases as 1/t: linearly in time. The exact upper bound for

Var{µi,t} is derived in in Appendix D as follows:

Var{µi,t} ≤
n(n− 1)E{ξ(sj,τ )2}

t (1− β?2)
+

Var{ξ(s1,1)}
n t

. (5)

We can further use the properties of the exponential family
to express the expectation and variance of the complete
sufficient statistic ξ(·) in terms of the first and second
derivatives of the log-partition function given in (3), cf. [29,
Theorem 1.6.2]: E{ξ(sj,τ )} = β′(α(θ)) and Var{ξ(s1,1)} =
β′′(α(θ)). Hence, (5) becomes:

Var{µi,t} ≤n(n− 1)(β′(α(θ))2 + β′′(α(θ))

t (1− β?2)
+
β′′(α(θ))

n t
, (6)

The preceding upper-bound can be used to provide finite-
time guarantees for the quality of the estimate µi,T at any
node i and after a finite termination time T . These bounds are
comprised of two additive terms: the first terms on right-hand
sides of (5) and (6) capture the rate at which the powers of
Metropolis-Hastings weight matrix A approach their limit:
At → 1

n11
T as t → ∞; the second term captures the

diminishing variance of the estimates with the increasing
number of samples, as gathered by all the agents in the
network. The latter is a simple consequence of the Chebyshev
inequality applied to the entire set of nt samples that are
gathered by all the n agents up to time t. On the other hand,
the first term on the right-hand side of the bounds is governed
by the mixing rate of the Metropolis-Hastings weights; in
particular, it is influenced by the structure of the network
through β?: the second largest magnitude of the eigenvalues
of matrix A. The same structural effect appears through β?

in the bound claimed in Theorem 3. A similar effect can be
observed through α? from the expression of the finite-time
T in the proof of Theorem 1, (Appendix A).

Initializing µi,0 arbitrarily, in any future time period
t ≥ 1 the agents observe a signal si,t, communicate
their current values µi,t−1, and update their beliefs to
µi,t, according to the following rule:

µi,t =
t− 1

t


aii µi,t−1 +

∑

j∈Ni

aijµj,t−1




+
1

t
ξ(si,t). (IV)

Theorem 4 (Online Learning of Expected Values). Under
(IV), limt→∞ µi,t = mθ almost surely, for all i. Further-
more, Var{µi,t} = O(1/t) and E{µi,t} = mθ for all t.

Unlike the log-linear update rules which could be easily
modified to accommodate intermittent data streams with
varying sizes (compare (I) and (II)), the linear update rules
are not amenable to heterogenities in the network. It is
due the requirement to discount the new observations with
increasing time and the need to adapt the linearity coefficients
to the varying sample sizes (see (4)). These factors make the



linear update rules unnameable to the case of intermittent
observations (compare (III) and (IV)).

V. CONCLUDING REMARKS

The log-linear structure of the proposed belief update
rules in (I) and (II) is motivated by our earlier results on
the Bayesian without Recall (BWR) model of learning and
inference over networks [35]. Accordingly, a Bayesian agent
that naively assumes the beliefs of each of her neighbors were
formed by a private observation (and not through repeated
interaction with others) updates her beliefs proportionally
to the product of her neighboring beliefs and likelihoods
of her private signal [36]. In principle, the BWR updates
replicate the rule that maps the initial priors, neighboring
beliefs, and the private signal to the Bayesian belief at
one time step for all future time steps [37]. Naivety of
agents in these cases impedes their ability to learn; except in
simple social structures such as cycles or rooted trees [38].
In [39] the authors show that learning in social networks
with complex neighborhood structures can be achieved if
agents choose a neighbor randomly at every round and
restrict their belief update to the selected neighbor each time
(essentially replicating the case of a directed circle where
every neighborhood is a singlton). Geometric averaging and
logarithmic opinion pools have a long history in Bayesian
analysis and behavioral decision models [40], [41] and they
can be also justified under specific behavioral assumptions
[42]. The are also quite popular as a non-Bayesian update
rule in distributed detection and estimation litrature [43],
[44], [10], [14], [45]. In [45] the authors use a logarithmic
opinion pool to combine the estimated posterior probability
distributions in a Bayesian consensus filter; and show that
as a result: the sum of KullbackLeibler divergences between
the consensual probability distribution and the local posterior
probability distributions is minimized. Minimizing the sum of
KullbackLeibler divergences as a way to globally aggregate
locally measured probability distributions is proposed in
[46], [47] where the corresponding minimizer is dubbed
the KullbackLeibler average. Similar interpretations of the
log-linear update are offered in [48] as a gradient step for
minimizing either the KullbackLeibler distance to the true
distribution, or in [11] as a posterior incorporation of the most
recent observations, such that the sum of KullbackLeibler
distance to the local priors is minimized; indeed, the Bayes’
rule itself has a product form and the Bayesian posterior
can be characterized as the solution of an optimization
problem involving the KullbackLeibler divergence to the
prior distribution and subjected to the observed data [49].

In this paper, we highlight some key differences between
the linear and log-linear update rules in the way they accom-
modate new observations. The requirement of averaging over
time for linear updates necessitates that new observations
be discounted as 1/t with increasing time, which avoids
fluctuations with new observations in the limit. The same
principle governs the discounting or diminishing step sizes

in the case of consensus+innovation algorithm [50], as well
as other online learning methods [51]. However, in case
of log-linear update rules no such discounting is necessary.
Because the product-nature of such rules imply that as beliefs
approach a point mass their multiplication with the product
of likelihoods of new observations will have less and less
effect. This in turn allows us to effectively accommodate the
varying sizes of data sets at every time-period using log-
linear update rules with fixed coefficients.

Another key difference between the linear and log-linear
updates is that the weights in the former need to be adjusted
for the initial sample sizes, whereas the latter require no
such adjustment of weights. Accordingly, in the linear case
an agent weighs each neighbor’s report differently and in
accordance with the sample qualities or qualities (see (4)).
On the other hand, when communicating their beliefs for
log-linear updating the quality of each neighbor’s signal is
already internalized in their reported beliefs; hence, when
incorporating its neighboring beliefs, an agent regards the
reported beliefs of all its neighbors equally, and irrespective
of the quality of their sample points. These observations lead
to the conclusion that: log-linear aggregation schemes (as
opposed to linear ones) are very effective design tools for
dealing with various types of heterogenities that arise in
networked systems.

APPENDIX
PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1, Maximum Likelihood Estimation

We begin by forming the vectorized log-belief ratio up-
dates as follows. Define

φi,t(θ̂, θ̌) := log
(
µi,t(θ̂)/µi,t(θ̌)

)
,

λi(θ̂, θ̌) := log
(
γi(θ̂)/γi(θ̌)

)
, (8)

and their vectorization

φt(θ̂, θ̌) := (φ1,t(θ̂, θ̌), . . . ,φn,t(θ̂, θ̌)),

λ(θ̂, θ̌) := (λ1(θ̂, θ̌), . . . ,λn(θ̂, θ̌)). (9)

By forming the belief ratio µi,t(θ̂)/µi,t(θ̌), taking the
logarithms of both sides, and using the vectorization in (9),
we can rewrite the belief updates in (I) as a linear updated
in terms of log ratios:

φt+1(θ̂, θ̌) = (I +A)φt(θ̂, θ̌)

= (I +A)t+1φ0(θ̂, θ̌) = (I +A)t+1λ(θ̂, θ̌). (10)

When the network graph G is connected, the matrix I + A
is primitive. The Perron-Frobenius theory [33, Theorems
1.5 and 1.7] implies that I + A has a simple positive
real eigenvalue equal to its spectral radius ρ(I + A) = 2.
Moreover, the left and right eigenspaces associated with this
eigenvalue are both one-dimensional and the corresponding
eigenvectors can be taken to be both equal to (1/

√
n)1.

The magnitude of any other eigenvalue of I + A is strictly



less than 2. Hence, the eigenvalues of I + A denoted by
αi := λi(I + A), i ∈ [n], which are all real, can be
ordered as follows: −2 < λn(I + A) ≤ λn−1(I + A) ≤
. . . ≤ λ1(I + A) = 2. Susequently, we can employ the
eigendecomposition of (I + A) to analyze the behavior of
(I + A)t+1 in (10). Specifically, we can take a set of bi-
orthonormal vectors li, ri as the left and right eigenvectors
corresponding to the ith eigenvalue of I+A, satisfying: ‖li‖2
= ‖ri‖2 = 1, l

T

i ri = 1 for all i and l
T

i rj = 0, i 6= j; in
particular, l1 = r1 = (1/

√
n)1. Moreover, we have that [52]:

(I +A)t = 2t

(
1

n
11

T

+
n∑

i=2

(αi/2)tril
T

i

)
. (11)

To proceed denote Λ(θ̂, θ̌) := Λ(θ̂) − Λ(θ̌) and note that
Λ(θ̂, θ̌) = 1Tλ(θ̂, θ̌). We can use (11) and (10), together
with the fact that |αi| < 2 for all i > 1, established
above using the Perron-Frobenius theory, to conclude that
φt(θ̂, θ̌) → (2t/n)1Λ(θ̂, θ̌) almost surely. Moreover, since
Θ? consists of the set of all maximizers of Λ(θ̃), we
have that Λ(θ̂, θ̃) < 0 whenever θ̃ ∈ Θ? and θ̂ 6∈ Θ?.
Hence, for all θ̃ ∈ Θ? and any θ̂, φi,t(θ̂, θ̃) → −∞
if θ̂ 6∈ Θ? and φi,t(θ̂, θ̃) = 0 whenever θ̂ ∈ Θ?; or
equivalently, µi,t(θ̂)/µi,t(θ̃) → 0 for all θ̂ 6∈ Θ?, while
µi,t(θ̂) = µi,t(θ̃) for any θ̂ ∈ Θ?. The latter together with
the fact that

∑
˜θ∈Θ µi,t(θ̃) = 1 for all t implies that with

probability one: limt→∞ µi,t(θ̃) = 1/|Θ?|,∀θ̃ ∈ Θ? and
limt→∞ µi,t(θ̃) = 0,∀θ̃ 6∈ Θ? as claimed.

Furthermore, we can use (11) and (10) to bound the
distance between φi,t(θ̂, θ̌) and (2t/n)Λ(θ̂, θ̌) for any i, as
follows:∣∣∣∣φi,t(θ̂, θ̌)−

2t

n
Λ(θ̂, θ̌)

∣∣∣∣ ≤
∥∥∥∥φt(θ̂, θ̌)−

2t

n
Λ(θ̂, θ̌)1

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=2

(αi
2

)t
lir

T

i λ(θ̂, θ̌)

∥∥∥∥∥
2

≤
n∑

i=2

∣∣∣αi
2

∣∣∣
t ∣∣∣rTi λ(θ̂, θ̌)

∣∣∣
∥∥li
∥∥

2

≤
n∑

i=2

∣∣∣αi
2

∣∣∣
t ∥∥∥λ(θ̂, θ̌)

∥∥∥
2
‖ri‖2

∥∥li
∥∥

2
. (12)

Orthonormality of the eigenvectors yields that ‖ri‖2 =
∥∥li
∥∥

2
= 1; also by monotonicity of the `p norm we get that

∥∥∥λ(θ̂, θ̌)
∥∥∥

2
≤
∥∥∥λ(θ̂, θ̌)

∥∥∥
1

=
n∑

i=1

|λi(θ̂, θ̌)| ≤ 2nLn,

where Ln = maxi∈[n] maxθ̃∈Θ | log(γi(θ̃)| is the largest ab-
solute log of product likelihoods that is achieved in the initial
data sets, so that |λi(θ̂, θ̌)| = | log(γi(θ̂)) − log(γi(θ̌))| <
2Ln for all i. Subsequently, (12) becomes

∣∣∣∣φi,t(θ̂, θ̌)−
2t

n
Λ(θ̂, θ̌)

∣∣∣∣ ≤ 2Lnn(n− 1)(α?)t,

where α? = (1/2) max{α2, |αn|} Hence,

log(µi,t(θ̂)) ≤ log

(
µi,t(θ̂)

µi,t(θ̃)

)
= φi,t(θ̂, θ̃)

≤ 2t

n
Λ(θ̂, θ̃) + 2Lnn(n− 1)(α?)t,

for all i and any θ̃ ∈ Θ?. Next suppose that the maximum
likelihood estimator is unique so that Θ? = {θ?} and let
lΘ = minθ̂ 6=θ?

∣∣∣Λ(θ̂, θ?)
∣∣∣. Then for any θ̂ 6= θ? and all agents

i we can bound the belief on θ̂ as follows:

log(µi,t(θ̂)) ≤ −
2t

n
ln + 2Lnn(n− 1)(α?)t.

Therefore, if we take

T = max



1 +

log
(
n log(n−1)

ln

)

log 2
,

log
(

log(n−1)
2Lnn(n−1)

)

log(α?)



 , (13)

then for all t > T, log(µi,t(θ̂)) ≤ − log(n − 1) so
that µi,t(θ̂) < 1

n−1 < µi,t(θ
?) for all θ̂ 6= θ? and any

i ∈ [n]; whence, any agent i ∈ [n] can recover θ? as
θ? = arg maxθ̃∈Θ µi,t(θ̃) at all t > T. �

B. Proof of Theorem 2, Learning from Intermittent Streams

The belief update rule proposed in (II) is the same
as the time-invariant log-linear update with weighted self-
beliefs considered in [35, Equation (13)]; except that here
at every round each agent is receiving a random num-
ber of signals. Hence, the proof of convergence in [35,
Equation (13)] can be applied here and with minor mod-
ifications. Specifically, we let φt(θ̂, θ̌) be the vectorized
log belief ratio statistics as defined in (8) and (9), and
define the log ratio of the likelihood products of the
received signals: λi,t(θ̂, θ̌) = log(γi,t(θ̂)/γi,t(θ̌)), and
its vectorization λt(θ̂, θ̌) = (λ1,t(θ̂, θ̌), . . . ,λn,t(θ̂, θ̌)).
Then after forming the log belief ratios, (II) in vec-
torized form yields that: φt(θ̂, θ̌) = Aφt−1(θ̂, θ̌) +

λt(θ̂, θ̌) =
∑t
τ=0A

τλt−τ (θ̂, θ̌) and the latter converges
almost surely to

(
(t/n)1TE{λ0(θ̂, θ̌)}

)
1, as t → ∞;

this is a simple consequecen of the Cesàro mean together
with the strong law of large numbers. The proof follows
since E{λ0(θ̂, θ̌)} = (Λ1(θ̂, θ̌), . . . ,Λn(θ̂, θ̌))T ; in particular,
limt→∞ 1

tφt(θ̂, θ̌) =
(

(1/n)
∑n
i=1 Λi(θ̂, θ̌)

)
1, with prob-

ability one and whenever
∑n
i=1 Λi(θ̂, θ̌) < 0, the agents

learn the truth asymptotically exponentially fast, at the rate
minθ̂ 6=θ

{
(−1/n)

∑n
i=1 Λi(θ̂, θ)

}
. �

C. Proof of Theorem 3, Minimum Variance Unbiased Esti-
mation

Define the concatenated variables µt = (µ1,t, . . . ,µn,t)
T ,

λ = (ξ(s1), . . . , ξ(sn))T and note that mn =
(1/n)

∑n
i=1 ξ(si) = (1/n)1Tλ. Initialized by µ0 = λ,

the evolution of beliefs under (III) can be written in the



following vectorized form: µt = Aµt−1 = Atλ, and as
in Appendix A for a connected network G, we have that
limt→∞At = (1/n)11T ; and subsequently, limt→∞ µt =
(1/n)11Tλ = 1mn. Hence, the claim about the almost
sure limits of every agents’ beliefs is verified. To investi-
gate the rate of convergence of µt to 1mn we can write:
µt−1mn = (At− (1/n)11T )λ. Hence for each node i we
have:

|µi,t −mn| =

∣∣∣∣∣∣

n∑

j=1

(
[At]ij −

1

n

)
ξ(sj)

∣∣∣∣∣∣

≤
n∑

j=1

∣∣∣∣[At]ij −
1

n

∣∣∣∣ |ξ(sj)| ≤Mn

n∑

j=1

∣∣∣∣[At]ij −
1

n

∣∣∣∣ .(14)

We next use the fact that A can specify the transition
probabilities of an aperiodic irreducible Markov chain with
uniform stationary distribution. In particular, it is a time-
reversible Markov chain and [53, Proposition 3] implies that

n∑

j=1

∣∣∣∣[At]ij −
1

n

∣∣∣∣ ≤
√

(n− 1) (β?)
t
, (15)

where β? = max{λ2(A), |λn(A)|} and 0 ≤ β? < 1
as a consequence of Perron-Frobenius theory [33, The-
orems 1.5 and 1.7] applied to the primitive matrix A.
Replacing (15) in (14) yields that for all i the distance
to the limiting values mn decrease at least exponential
fast and can be bounded as follows: |µi,t − mn| ≤
Mn

√
(n− 1) (β?)

t. The claimed finite time guarantee now
follows upon setting Mn

√
(n− 1) (β?)

t
< ε or equivalently:

t >
(
log(ε)− log(Mn

√
n− 1)

) /
log β?. �

D. Proof of Theorem 4, Online Learning of Expected Values

Let µt be as in the proof of Theorem 3 (Appendix C),
λt = (ξ(s1,t), . . . , ξ(sn,t))

T , and At = t−1
t A. Under (IV)

the beliefs evolve as follows:

µt = Atµt−1 +
1

t
λt =

1

t
λt +

t−1∑

τ=1

(
t∏

u=τ+1

Au

)
1

τ
λτ

=
1

t
λt +

t−1∑

τ=1

(
t− 1

t
× t− 2

t− 1
× . . .× τ

τ + 1
At−τ

)
1

τ
λτ

=
1

t

t∑

τ=1

At−τλτ . (16)

As in Appendices B and C, we have that limτ→∞Aτ =
(1/n)11T , and we can invoke the Cesàro mean together with
the strong law to conclude that

lim
t→∞

µt = 1

(
lim
t→∞

1

nt

t∑

τ=1

n∑

i=1

ξ(si,τ )

)
= 1E{ξ(si,1)},

so that µi,t → mθ with probability one for all agents i ∈ [n];
in particular, µi,t for each i is a strongly consistent estimator
of θ. We can further bound the rate of decrease in Var(µi,t)

as t increases. Taking expectation of both sides in (16) yields
that E{µt} = (1/t)

∑t
τ=1A

t−τ1mθ = 1mθ. Hence, we can
subtract 1mθ from both sides of (16) and bound the variance
of µt in terms of the variance of i.i.d. random variable λt and
rate of convergence (mixing) for At → (1/n)11T . Indeed,
using (16) we can write

|µi,t −mθ| =

∣∣∣∣∣∣
1

t

t∑

τ=1

n∑

j=1

[At−τ ]ijξ(sj,τ )−mθ

∣∣∣∣∣∣
.

Next by adding and subtracting 1
nt

∑t
τ=1

∑n
j=1 ξ(sj,τ ),

which is the average of all signals across all times and agents;
and then applying the triangle inequality we obtain:

|µi,t −mθ| ≤
1

t

∣∣∣∣∣∣

t∑

τ=1

n∑

j=1

(
[At−τ ]ij −

1

n

)
ξ(sj,τ )

∣∣∣∣∣∣

+
1

nt

∣∣∣∣∣∣

t∑

τ=1

n∑

j=1

(ξ(sj,τ )−mθ)

∣∣∣∣∣∣
.

Taking squares of both sides and using the Cauchy-Schwartz
inequality yields that

(µi,t −mθ)
2 ≤ (17)

1

t2





t∑

τ=1

n∑

j=1

(
[At−τ ]ij −

1

n

)2








t∑

τ=1

n∑

j=1

ξ(sj,τ )2





+
1

n2t2




t∑

τ=1

n∑

j=1

(ξ(sj,τ )−mθ)




2

.

We next apply the Markov chain mixing time inequality (15)
from the proof of Theorem 3 (Appendix C) to bound

t∑

τ=1

n∑

j=1

(
[At−τ ]ij −

1

n

)2

≤
t∑

τ=1




n∑

j=1

∣∣∣∣[At−τ ]ij −
1

n

∣∣∣∣




2

≤
t∑

τ=1

(n− 1) (β?)
2(t−τ) ≤ n− 1

1− β?2 , (18)

where β? = max{λ2(A), |λn(A)|} and 0 ≤ β? < 1.
Furthermore, since {ξ(sj,τ ), j ∈ [n], t ∈ N} form a sequence
of i.i.d. random variables with mean mθ, we have:

E








t∑

τ=1

n∑

j=1

(ξ(sj,τ )−mθ)




2




= ntVar{ξ(sj,τ )}.

We can now bound Var{µi,t} by taking expectations of
both sides in (17) and using (18) to get (5) and subsequently
(6) in Section IV; whence, Var{µi,t} = O(1/t) as claimed.
�
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