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Abstract

Let aij , 1 ≤ i ≤ j ≤ n, be independent random variables and aji = aij , for

all i, j. Suppose that every aij is bounded, has zero mean, and its variance is

given by σiσj , for a given sequence of positive real numbers Ψ = {σi, i ∈ N}.
Hence, the matrix of variances Vn = (Var(aij))

n
i,j=1 has rank one for all n.

We show that the empirical spectral distribution of the symmetric random

matrix An(Ψ) = (aij/
√
n)

n

i,j=1 converges weakly (and with probability one)

to a deterministic limiting spectral distribution which we fully characterize by

providing closed-form expressions for its limiting spectral moments in terms of

the sequence Ψ. Furthermore, we propose a hierarchy of semidefinite programs

to compute upper and lower bound on the expected spectral norm of An, for

both finite n and the limit n→∞.
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1. Introduction

We begin by introducing some elementary notation: the set of real and natural

numbers are denoted by R and N, respectively; N0 = {0} ∪ N, n ∈ N is a parameter,

and [n] denotes {1, 2, . . . , n}. The n×n identity matrix is denoted by In. Throughout

the paper, we will use boldface to indicate random variables and capital letters to

denote matrices. Also, an almost sure event is one that occurs with probability one.

Consider an n × n real-valued, symmetric random matrix An = (aij/
√
n)ni,j=1 with
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diagonal and upper triangular entries being independent random variables. Consider

further a given sequence of positive real numbers Ψ = {σi : i ∈ N}. We impose the

following conditions on our random matrix model An and its characterizing sequence

Ψ:

Assumption 1 (Zero mean). All entries are zero mean: E {aij} = 0, for

all i, j.

Assumption 2 (Uniformly bounded). All entries are almost surely

bounded in absolute value by a common constant K > 0: P {|aij | < K} =

1, for all i, j.

Assumption 3 (Rank-one variance pattern). The variances of all

entries are specified as follows: Var {aij} = σiσj , for all i, j.

Assumption 4 (Logarithmic growth). Associated with Ψ, there are

two monotone sequences {σ̂n : n ∈ N} and {σ̌n : n ∈ N} given by σ̂n =

maxi∈[n] σi and σ̌n = mini∈[n] σi. We assume that σ̂n/σ̌n = O(log n).

Assumption 5 (Mean k-th power). We assume that the k-th power

means, defined as:

Λk = lim
n→∞

(1/n)

n∑

i=1

σki , (1)

exist for all k ∈ N. Note that Assumptions 2 and 3 together imply that

the sequence Ψ is uniformly bounded, so that Λk is finite (bounded by Kk)

whenever it exists.

1.1. Background and related work

In contrast with most results in the literature [10, 34, 48, 41, 19, 20, 39], the entries

of this random matrix ensemble have non-identical variances. With a few exceptions

(including the band matrix model described in Appendix C), random matrix ensembles

with non-identical variances have only been recently considered [29, 1, 14, 21, 25]. In

[21] generalized Wigner matrices with non-identical variances are considered, whose

variance matrix is assumed to be doubly stochastic (with unit row- and column-sums).

For this ensemble, Wigner’s semi-circle still applies and the authors prove universality

of the eigenvalue spacing statistics in the bulk. More recent results extend these
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arguments to random Winger-type matrices with non-identical variances, where the

doubly stochasticity condition on the variance matrix is relaxed; and therefore, the

semicircle law no longer applies [4]. In this case, the limiting spectral density is a

deformation of the semi-circle law that can be characterized through a system of non-

linear equations that asymptotically relate the variances to the diagonal entries of the

resolvent matrix. The solutions to these quadratic vector equations over the complex

upper-half plane are subsequently studied in [2, 3]. As we will show in this paper,

a rank-one pattern of variances allows us to apply Wigner’s trace method [49, 50] to

study the spectral properties of An using combinatorial arguments. Subsequently, we

are able to derive closed-form expressions for the limiting spectral moments in terms

of the power means {Λk}k≥1.

Our results are related to both the band matrix model by Anderson and Zeitouni

[8] (in Appendix C, we elaborate on this relationship), as well as the free multiplica-

tive convolution (as described in Appendix B). In particular, the limiting spectral

distribution of our matrix ensemble with the rank-one variance profile can be also

expressed as a free multiplicative convolution between the limiting spectral distribution

of a standard Wigner matrix, whose limiting spectral density is semicircular, and the

limiting distribution of the entries of the sequence Ψ = {σi, i ∈ N}. This leads to an

alternative derivation of the limiting spectral moments in terms of the limiting k-th

power means {Λk, k ∈ N} using free probability techniques. It is worth highlighting

that the free multiplicative convolution techniques are only valid in the limit as the

matrix size goes to infinity (for random matrices that are asymptotically free); in

contrast, our techniques can be used to bound moments for finite n and give explicit

expression for the asymptotic spectral moments as n → ∞. Furthermore, the free

probability approach provides only an implicit characterization of the limiting spectral

moments. As we discuss in Appendix B, finding expressions for the spectral moments

using free probability requires the inversion of a moment generating function that, in

general, requires tedious algebraic manipulations (see Appendix B for more details).

Finally, whenever the variance profile {σi}ni=1 is estimated from empirical data, the

methodology proposed in this paper allows to compute explicit closed-form expression

for the spectral moments as a function of the power averages Λk of the sequence {σi}ni=1,

which can be directly computed from the empirical data.
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1.2. Main result

Before we present the main result in this paper, we need to introduce some nomen-

clature. Let λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) be the n real eigenvalues of a symmetric

matrix A (ordered from smallest to largest). The spectral radius of A is defined

as ρ(A) = maxi{|λi(A)|}. The empirical spectral measure of a random symmetric

matrix An is defined as Ln{·} = 1
n

∑n
i=1 δλi(An){·}, where δx{·} is the Dirac delta

measure centered at x. The empirical spectral distribution (ESD) of An is defined

as Fn(x) = Ln{(−∞, x]} = 1
ncard({i ∈ [n] : λi(An) ≤ x}), where card(X ) denotes

the cardinality of a set X . The k-th empirical spectral moment of An is defined

as m
(n)
k =

∫ +∞
−∞ xkdFn(x) = 1

n

∑n
i=1 λ

k
i (An). The empirical spectral moments are

real-valued random variables and their expectations, m̄
(n)
k = E(m

(n)
k ), are called the

expected spectral moments of An. In this paper, we investigate the limiting behavior

of Fn(·) as n → ∞. Under Assumptions 1 to 5, the random distribution Fn(·)
converges weakly and almost surely (see Appendix A for more details about these

modes of convergence) to a deterministic distribution F (·), called the limiting spectral

distribution (LSD). The limiting spectral moments of An are defined as the moments

of the LSD, i.e. the k-th limiting spectral moment is defined as mk =
∫ +∞
−∞ xk dF (x).

Notice that, for the special case σi = σ for all i ∈ N, we recover the classical Wigner’s

random matrix ensemble [49, 50]. The LSD in this case is the well-known semi-circle

distribution with support [−2σ, 2σ]. The original proof of this classical result was

based on computing the limiting spectral moments using the so-called trace method

[49, 50]. Accordingly, the 2k-th spectral moment of the Wigner’s random matrix is

given by σ2k

k+1

(
2k
k

)
, which uniquely charactrize the semi-circular distribution supported

on [−2σ, 2σ]. The first proof of this result relied on the assumption that all entries are

identically distributed. This result was later extended by Füredi and Komlós [23] to

the case of independent (possibly non-identical) entries with identical variances. The

main goal of this paper is to characterize the LSD of random matrices with entries

having non-identical variances where the pattern of variances is characterized by a

given sequence Ψ satisfying Assumptions 1 to 5. In particular, we provide closed-

form expressions for the limiting spectral moments of An. We derive these expressions

based on a combinatorial argument that allows us to apply the trace method to random
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matrices with non-identical variances satisfying Assumptions 3 to 5.

It is worth remarking that given an arbitrary sequence Ψ, it may not be possible

to find an analytic expression for the LSD of the corresponding An. Such an analytic

expression can only be found for a handful of cases. Consequently, our work does

not aim towards finding an analytical expression for the LSD of An, but rather to

characterize the LSD in terms of the spectral moments. In particular, we provide

closed-form expressions for all the limiting spectral moments of the LSD in terms of

the power means of the sequence Ψ, defined as (1). Our main result is stated as follows.

Theorem 1. (Main result.) The empirical spectral distribution Fn(·) of the random

matrix ensemble An(Ψ) satisfying Assumptions 1 to 5 converges weakly, almost surely,

to F (·) as n → ∞, where F (·) is uniquely characterized by the following spectral

moments:

m2s =
∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Λr11 Λr22 . . .Λrss , and m2s+1 = 0, (2)

for all s ∈ N0, where Rs := {(r1, r2, . . . , rs) ∈ Ns0 :
∑s
j=1 rj = s + 1,

∑s
j=1 j rj = 2s}.

It is further true that with probability one, Fn(·) converges weakly to F (·) as n→∞.

This result can be used to efficiently compute a truncated sequence of spectral

moments of An. In practical applications, apart from the spectral moments, one

usually cares about other spectral properties of An. For example, the spectral radius

finds applications in many practical scenarios, including combinatorics, mathematical

physics, and theoretical computer science. In Section 3, we propose a hierarchy of

semidefinite programs (SDP) to compute upper and lower bounds on the spectral

radius of An given a finite sequence of spectral moments.

2. Proof of the main result

We prove our main result using an extension of Wigner’s trace method. In its

standard form, Wigner’s method is used to prove the semicircle law for random ma-

trices with i.i.d. entries presenting identical variances (and satisfying certain technical

conditions). Wigner’s proof is based on a combinatorial argument that relates the

spectral moments with the moments of the semicircular distribution. In the analysis
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of random matrices with non-identical variances, this combinatorial argument is not

directly applicable. In this paper, we refine Wigner’s combinatorial argument to derive

closed-form expressions for the spectral moments of random matrices whose entries

have non-identical variances following a rank-one pattern (Assumption 3).

2.1. Moments and convergence

Before we introduce the combinatorial elements of our proof, we describe the con-

vergence properties of our results. Choose an element i from the set [n] = {1, . . . , n}
uniformly at random. Let λ(An) = λi(An) be the random variable that corresponds

to the i-th real eigenvalue of An. Denote the law of the random variable λ(An) by

Ln{·}. Consider the expected spectral distribution that is associated with this law:

Fn(x) = Ln{(−∞, x]} = P{λ(An) ≤ x}, for all x ∈ R. The relation between Fn(·)
and the empirical spectral distribution Fn(·) is better understood upon noting that for

all x ∈ R, Fn(x) = P{λ(An) ≤ x}= E{Ln{(−∞, x]}}= E{Fn(x)}, where the second

equality follows from Fubini-Tonelli theorem. Similarly, for any k, n ∈ N, the k-th

expected spectral moment satisfies

m̄
(n)
k =

∫ +∞

−∞
xkdFn(x) = E

{∫ +∞

−∞
xkdFn(x)

}
.

Applying the definition of Fn(x) to the right-hand side, we get

m̄
(n)
k = E

{
1

n

n∑

i=1

λki (An)

}
= E

{
1

n
trace(Ak

n)

}
= E{m(n)

k }, (3)

where m
(n)
k is the k-th spectral moment of the random matrix An. In writing (3), we

have implicitly presumed almost sure finiteness of m
(n)
k , as well as integrability of xk

against dFn(x); these facts are verified in Appendix D for the random matrix ensemble

satisfying Assumptions 1-5.

Our proof of Theorem 1 is based on the method of moments, which characterizes

the limiting spectral distribution from the values of the expected spectral moments:

limn→∞ m̄
(n)
k = mk, for all k ∈ N. As stated below (and proved in Appendix D), for

our random matrix ensemble An(Ψ), pointwise convergence of the expected spectral

moments implies almost sure and weak convergence of the ESD Fn(·):

Theorem 2. (The method of moments.) If limn→∞ m̄
(n)
k = mk for all k ∈ N, then

the ESD Fn(·) of the random matrix An satisfying Assumptions 1-5 converges weakly,
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almost surely, to the LSD F (·) as n→∞, where F (·) is the unique distribution function

satisfying
∫ +∞
−∞ xk dF (x) = mk for all k ∈ N. It is further true that, with probability

one, Fn(·) converges weakly to F (·) as n→∞.

Our proof of the Theorem 1 proceeds by first showing that the expected spectral

distributions Fn(·) converge weakly to the distribution F (·) as n → ∞, where F (·)
is the unique distribution with the moments sequence {mk : k ∈ N}, which are given

by (2). For our proof, we follow the method of moments and the technicalities are

spelled out in Appendix D. The results of Appendix D, as summarized by Theorem

2, allow us to conclude the almost sure and weak convergence of the ESD Fn(·) to

the deterministic distribution F (·), from the pointwise convergence of the expected

spectral moments {m̄(n)
k : k ∈ N} to the sequence of moments {mk : k ∈ N}, as n→∞.

The convergence proof for the moments is executed in two steps. First, we identify

those terms that asymptotically dominate the behavior of each spectral moment (in

Subsection 2.3). Second, we derive the asymptotically exact expressions for each of the

dominant terms (in Subsection 2.4). Our main techniques are based on a refinement

of the combinatorial argument used to prove Wigner’s semicircle law. The required

combinatorial preliminaries are established next.

2.2. Combinatorial preliminaries

The Catalan numbers admit many combinatorial interpretations and play a central

role in the combinatorial proof of Wigner’s semicircle law [7]. An integer sequence

{bt}2st=0 such that b0 = b2s = 0, bt ≥ 0, and |bt+1 − bt| = 1 for all t = 0, 1, 2, · · · , 2s− 1

is called a Dyck path of length 2s. The s-th Catalan number, defined as Cs = 1
s+1

(
2s
s

)
,

counts the total number of Dyck paths of length 2s, cf. [7]. Catalan numbers can also

be used to count non-crossing partitions of an ordered set [7], as well as many other

combinatorial structures [35]. Specially relevant to our work is the relationship between

the Catalan numbers and rooted ordered trees. A rooted ordered tree T is a tree in

which one vertex is designated as the root and the children of each vertex are ordered

(see [35], page 221); i.e. there is a total order � on the vertex set of T , respecting

the partial order - defined as follows: for all {j, k} ⊂ V(T ), j - k iff j belongs to the

unique path on T that connects k to the root. It is possible to construct a bijection

between Dyck paths of length 2s and ordered trees with s edges (see [7, Lemma 2.1.6
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]); hence, the number of ordered trees with s edges is equal to Cs. Although these

combinatorial entities play an important role in the proof of the semicircle law, they

are not enough to study random matrices whose entries have non-identical variances.

Given a connected graph G with s edges and n vertices labeled {1, . . . , n}, we denote

by di(G) the degree of vertex i (i.e., the number of edges incident to i in G). The degree

distribution of G is defined as the sequence of integers r(G) = (r1, . . . , rs) ∈ Ns0, where

rd = rd(G) is the number of vertices with degree d in G. We drop the graph argument

(G) when there is no danger of confusion: using di for the degree of vertex i and rd

for number of vertices with degree d. Notice that the maximum degree is at most s;

hence, rd = 0 for all d > s. Given a connected graph G with s edges, G is a tree if and

only if it has s + 1 vertices [35]. Hence, we can easily characterize the set of degree

distributions corresponding to trees, as follows:

Proposition 1. (Degree distribution of trees.) Consider a connected graph G with

s edges and degree distribution (r1, . . . , rs) ∈ Ns0. Then, G is a tree if and only if
∑s
d=1 rd(G) = s+ 1 and

∑s
d=1 d rd = 2s.

Proof. The proof is based on the following simple observations. First, for any

graph G with s edges, its degree distribution (r1, . . . , rs) satisfies
∑s
d=1 d rd = 2s.

Furthermore, the summation
∑s
d=1 rd = s + 1 implies that G has s + 1 vertices. The

statement in the proposition is therefore true, since a connected graph with s edges

and s+ 1 vertices is always a tree. �

Remark 1. Based on Proposition 1, notice that the set Rs defined in Theorem 1

denotes the set of integer sequences that are valid degree distributions for trees with s

edges.

For s ∈ N, let Ts denote the set of all ordered trees on s vertices. Given a degree

distribution r ∈ Ns−1
0 , the set Ts(r) is defined as the subset of ordered trees in Ts with

degree distribution r. A classical result in enumerative combinatorics [35] states that

the total number of ordered trees on s+ 1 vertices is given by card(Ts+1) = Cs, where

Cs is the s-th Catalan number, defined by Cs = 1
s+1

(
2s
s

)
. Furthermore, the following

lemma follows almost directly from Theorem 5.3.10 in [35]:

Lemma 1. (Counting rooted ordered trees.) For s ∈ N, let r = (r1, ..., rs) ∈ Ns+1
0 ,
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with
∑s
j=1 rj = s + 1 and

∑s
j=1 j rj = 2s. Then, the number of rooted ordered trees

with s+ 1 nodes presenting a degree distribution equal to r is given by

card (Ts+1(r)) =
2

s+ 1

(
s+ 1

r1, r2, . . . , rs

)
.

Remark 2. An interesting Catalan identity can be directly obtained from this result.

Indeed, using the partition Ts+1 =
⋃
r∈Rs

Ts+1(r), we can express the total number of

ordered trees on s + 1 vertices as, Cs = card (Ts+1) =
∑
r∈Rs

card (Ts+1(r)). Hence,

from Lemma 1, we obtain

Cs =
2

s+ 1

∑

r∈Rs

(
s+ 1

r1, r2, . . . , rs

)
. (4)

Indeed, if we let σi = 1 for all i, then it follows that Λk = 1,∀k, and by (4) and after

replacing in (2), we recover the moment sequence for the classical Wigner semi-circle

law: m2s = C2s and m2s−1 = 0 for all s ∈ N (see [49, 50]).

Lemma 1 plays an important role in determining closed-form expressions of the

limiting spectral moments in (2). As we will show below, there is a correspondence

between rooted ordered trees and a particular class of closed walks on the complete

graph. We will prove that this class of closed walks asymptotically dominate the

expression of the moments. To show this, let us Consider the complete graph Kn
with vertices labeled by [n]. A closed walk w of length k on Kn is an ordered finite

sequence of integers w = (i1, i2, . . . , ik−1, ik, i1) such that ij ∈ [n] for all j. Define

the sets of vertices and edges visited by w as V(w) = {ij : j ∈ [k]} and E(w) =

{{ij , ij+1} : j ∈ [k − 1]}∪{{ik, i1}}. For any e ∈ E(w), we define N(e, w) as the number

of times that walk w transverses the edge e in any direction. We denote by Wk the set

of all closed walks of length k on Kn. It is useful to partition the set Wk into subsets

Wk,p defined as Wk,p = {w ∈ Wk : card(V(w)) = p}, i.e. the set of closed walks of

length k visiting p vertices. Furthermore, it is convenient to define the following subset

of Wk,p:

Ŵk,p = {w ∈ Wk,p : N(e, w) ≥ 2 for all e ∈ E(w)} , (5)

i.e., the set of walks in Wk,p for which each edge is traversed at least twice.

A key step in Wigner’s trace method is to count the number of walks in Ŵ2s,s+1,
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which is given by Lemma 2.3.15 in [37]:

card(Ŵ2s,s+1) = n(n− 1) . . . (n− s)Cs. (6)

The main idea behind the proof of this identity is to establish a bijection between the

set of walks in Ŵ2s,s+1 and the set of rooted ordered trees (or, alternatively, the set of

non-crossing cycles of length k; see Section 2.3.5 in [37] for more details). We begin by

observing that the subgraph induced by the set of edges visited by any walk in Ŵ2s,s+1

is always a tree with s+ 1 vertices. This is true because of the following facts: (i) on

s+ 1 vertices, we need at least s distinct edges for the induced graph to be connected,

and (ii) for any walk in Ŵk,p, each edge is visited at least twice, which implies that for

any walk in Ŵ2s,s+1 each edge must be visited exactly twice; hence, the total number

of edges in the induced graph is exactly s, which implies that this graph is a tree.

Furthermore, any walk w ∈ Ŵ2s,s+1 induces a total order on the vertices according

to the order of the first appearance of each vertex in the walk w. Therefore, a rooted

order tree uniquely encodes a walk w ∈ Ŵ2s,s+1, as follows: (i) the s edges of the tree

indicate the s edges visited by the walk w of length 2s, each edge being visited twice

(each time in a different direction); (ii) the root of the tree encodes the initial vertex

of the walk; and (iii) the total order of vertices in the tree encodes the order in which

the vertices are visited along the walk w (similar to a depth-first traversal of a tree, as

described in [17]).

2.3. Wigner’s trace method

In this subsection, we briefly review Wigner’s trace method. The ideas in this

subsection are well known and we simply adapt them to the case of random matrices

with a rank-one pattern of variances. Wigner’s trace method is based on the following

simple observation about the trace of the powers of An = (aij/
√
n)ni,j=1:

m̄
(n)
k = E

{
1

n
trace(Ak

n)

}
=

1

nk/2+1

∑

1≤i1,i2,...,ik≤n
E
{
ai1i2ai2i3 · · ·aik−1ikaiki1

}
. (7)

To each closed walk of length k in the complete graphKn, denoted by w = (i1, i2, . . . , ik−1,

ik, i1), we associate a weight ω(w) = E
{
ai1i2ai2i3 · · ·aik−1ikaiki1

}
; hence, (7) can be
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rewritten as

m̄
(n)
k =

1

nk/2+1

∑

w∈Wk

ω(w) =
1

nk/2+1

k∑

p=1

∑

w∈Wk,p

ω(w) =
k∑

p=1

µk,p, (8)

where we have used the partition Wk = ∪p∈[k]Wk,p in the second equality, and µk,p in

the last equality is defined by

µk,p =
1

nk/2+1

∑

w∈Wk,p

ω(w). (9)

The latter can be simplified upon noting that only a subset of walks inWk,p has a non-

zero contribution to the summation in (9). In particular, the set of walks presenting

a non-zero weight is Ŵk,p, defined in (5). This is true since for any w ∈ Wk,p \ Ŵk,p,

there exists an edge {i, j} ∈ E(w) such that N({i, j}, w) = 1. Hence, by independence,

ω(w) = E {aij}E





∏

{k,l}∈E(w)\{{i,j}}
a
N({k,l},w)
kl



 = 0,

since E {aij} = 0. Therefore, µk,p in (9) simplifies into

µk,p =
1

nk/2+1

∑

w∈Ŵk,p

ω(w). (10)

An important observation in the proof of Wigner’s semicircle law [49, 50] is that

for k even, the summation in (8) is asymptotically dominated by those closed walks

belonging to Ŵk,k/2+1; i.e. the term µk,k/2+1. In what follows, we find conditions

under which the same kind of dominance holds for the random matrix ensemble An

satisfying Assumptions 1-5. We proceed with two lemmas, the first of which follows by

a trite counting argument, while the second is at the heart of several existing results

[23, 15, 48].

Lemma 2. It holds true for all p > bk/2c+ 1 that µk,p = 0; wherefore, (8) simplifies

to m̄
(n)
k =

∑bk/2c+1
p=1 µk,p, for all k, n ∈ N.

Proof. It follows from the pigeonhole principle that every walk w ∈ Wk,p with

p > bk/2c+ 1 has at least one edge e ∈ E(w) such that N(e, w) = 1, whence Ŵk,p = ∅

for p > bk/2c+ 1, and from (10) we get that µk,p = 0, as claimed. �

Lemma 3. It holds true for all p ∈ [n] that

|µk,p| ≤
1

nk/2+1−p

(
k

2p− 2

)
p2(k−2p+2)4p−1Kk−2p+2σ̂2p−2

n .
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Proof. First, note that for all w ∈ Ŵk,p and all {i, j} ∈ E(w), N({i, j}, w) ≥
2, while |aij | < K, almost surely, so that

∣∣∣E
{

a
N({i,j},w)
ij

}∣∣∣ ≤ E
{∣∣∣aN({i,j},w)

ij

∣∣∣
}
≤

σ̂2
nK

N({i,j},w)−2. The latter together with the independence of the random entries aij

imply that for all w ∈ Ŵk,p, |ω(w)| ≤ Kk−2p+2σ̂2p−2
n , where we have used the fact that

with p distinct vertices in walk w, there is at least p−1 distinct edges. For each one of

these edges, we can use the bound σ̂2
n leading to the σ̂

2(p−1)
n term, which we multiply

by Kk−2p+2 to account for those edges whose multiplicities are greater than 2. Next,

we make use of the following bound (which is developed in Section 3.2 of [23] and is

subsequently used in Lemma 2 of [15] and Equation (5) of [48]): for all p ∈ [n]

card
(
Ŵk,p

)
≤ n(n− 1) . . . (n− p+ 1)

(
k

2p− 2

)
p2(k−2p+2)22p−2

≤ np
(

k

2p− 2

)
p2(k−2p+2)22p−2. (11)

The claim now follows from (10) and upon combining (11) with the bound, |ω(w)| ≤
Kk−2p+2σ̂2p−2

n , derived above for all w ∈ Ŵk,p. �

We now proceed to our main dominance result; in particular, we prove that for

k = 2s and under certain conditions the term µ2s,s+1 dominates the other terms of the

summation in (8).

Theorem 3. (Dominant walks for even moments.) If
s6

σ̂2
n

(
σ̂n
σ̌n

)2s

= o (n), then m̄
(n)
2s =

(1 + o(1))µ2s,s+1.

Proof. Note per Lemma 2 that m̄
(n)
2s =

∑s+1
p=1 µ2s,p. We show the desired domi-

nance by first lower bounding the term µ2s,s+1 and then upper bounding the terms

µ2s,p, p < s+ 1 as follows. We begin by noting from (6) that

card
(
Ŵ2s,s+1

)
= n(n− 1) . . . (n− s) 1

s+ 1

(
2s

s

)
≥ (n− s)s+1

s+ 1

(
2s

s

)
. (12)

We next lower-bound the contribution of each walk in Ŵ2s,s+1 as ω(w) ≥ σ̌2s
n , which

holds true because N(e, w) = 2,∀e ∈ E(w), and together with (12) implies that

µ2s,s+1 ≥
(
n− s
n

)s+1
1

s+ 1

(
2s

s

)
σ̌2s
n . (13)

Now, for the case p < s+ 1, we apply Lemma 3 with k = 2s to get

µ2s,p ≤
1

ns+1−p 4p−1

(
2s

2p− 2

)
p4(s−p+1)σ̂2p−2

n K2s−2p+2. (14)
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We next form the ratio between the two inequalities (13) and (14) to get

µ2s,s+1

µ2s,p
≥ 1

2

(
4

K2p4s2

)s+1−p
σ̌2s
n (n− s)s+1

σ̂2p−2
n np

≥ 2σ̂2
n

K2s6

(
σ̌n
σ̂n

)2s(
n− s
n

)s
(n− s), (15)

where in the first inequality we have used that
(

2s

2p− 2

)
≤
(

2s

2s− 2p+ 2

)2s−2p+2

≤ 2s2s−2p+2,

and in the second inequality we take into account that the greatest lower bound is

achieved for p = s, cf. [23]. The proof now follows upon noting that if
s6

σ̂2
n

(
σ̂n
σ̌n

)2s

=

o (n), then µ2s,p = o(1)µ2s,s+1; thence, m̄
(n)
2s = (1 + o(1)) µ2s,s+1, as claimed. �

Theorem 4. (Vanishing odd moments.) Under Assumptions 1 to 5, we have that

m̄
(n)
2s+1 = o(1).

Proof. First note, by Lemma 3, that each of the terms µ2s+1,p, p ≤ s+ 1 can be

upper bounded as follows

|µ2s+1,p| ≤
n(p−1)

ns+(1/2)

(
2s+ 1

2p− 2

)
p2(2s−2p+3)22p−2K2s−2p+3σ̂2p−2

n

≤ 1

ns+(1/2)

(
2s+ 1

s

)
(s+ 1)2(2s+3)22sK2s+1

(
nσ̂2

n

K2

)p−1

. (16)

Writing m̄
(n)
2s+1 =

∑s+1
p=1 µ2s+1,p by Lemma 2 and replacing from (16), the odd spectral

moments can now be upper bounded as

|m̄(n)
2s+1| ≤

1

ns+(1/2)

(
2s+ 1

s

)
(s+ 1)2(2s+3)22sK2s+1

s+1∑

p=1

(
nσ̂2

n

K2

)p−1

=
1

ns+(1/2)

(
2s+ 1

s

)
(s+ 1)2(2s+3)22sK2s+1

(
n
(
σ̂n

K

)2)s+1

− 1

n
(
σ̂n

K

)2 − 1
,

and it follows that, if σ̂2s
n = o(

√
n), then m̄

(n)
2s+1 = o(1). Given the bounded entries

and the specified variances, we get that under Assumptions 1 to 5, σ̂2s
n is bounded

uniformly in n and the claim follows. �

2.4. Counting dominant walks

In the following theorem, we use the tools from Section 2.2 to derive explicit

expressions for the dominant term µ2s,s+1, which will allow us to write closed-form
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expressions for the limiting spectral moments.

Theorem 5. (Asymptotically exact expressions for even-order moments.) For all s ∈
N, if σ̂2s

n = o(n), then

lim
n→∞

µ2s,s+1 =
∑

r∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

) s∏

j=1

Λ
rj
j = m2s,

where m2s is defined in (2).

Proof. Starting from the definition (10), we have that

µ2s,s+1 =
1

ns+1

∑

w∈Ŵ2s,s+1

ω(w)

=
1

ns+1

∑

T∈Ts+1

∏

{i,j}∈E(T )

σiσj ,

where in the last equality we take into account the fact that E
{
a2
ij

}
= σiσj and rewrite

the summation over the set of walks Ŵ2s,s+1 in terms of the set of underlying rooted

ordered trees; here, again, we are relying critically on the bijection between the set of

walks in Ŵ2s,s+1 and the set of rooted ordered trees on s vertices (please, refer to (6)

and the explanations therein for more details). For any tree T , it is always true that
∏

{i,j}∈E(T )

σiσj =
∏

i∈V(T )

σ
di(T )
i ; where we use di (T ) for the degree of node i in the tree

T ; hence, the above can be written as:

µ2s,s+1 =
1

ns+1

∑

T∈Ts+1





∑

1≤i1,...,is+1≤n
card({i1,...,is+1})=s+1

(
s+1∏

k=1

σ
dk(T )
ik

)



, (17)

where the second summation is over the choice of s + 1 distinct vertices out of the

set [n] for each tree T ∈ Ts+1. To simplify the preceding expression, consider any

rooted ordered tree T on the set of nodes [s + 1] with degrees given by the sequence

(d1(T ), . . . , ds+1(T )), whose degree distribution is r := (r1(T ), . . . , rs(T )). Define the

d-th power average of the sequence {σk : k ∈ [n]} as Sn,d =
∑n
k=1 σ

d
k. Using the

definition of degree distribution r and its relation to the degrees dj(T ) of different
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nodes j ∈ [s+ 1], we can write:

s∏

j=1

S
rj(T )
n,j =

s+1∏

j=1

Sn,dj(T ) =
s+1∏

j=1

(
n∑

k=1

σ
dj(T )
k

)

=
n∑

i1=1

n∑

i2=1

. . .
n∑

is+1=1

σ
d1(T )
i1

σ
d2(T )
i2

. . . σ
ds+1(T )
is+1

=

s+1∑

j=1





∑

1≤i1,...,is+1≤n
card({i1,...,is+1})=j

(
s+1∏

k=1

σ
dk(T )
ik

)



. (18)

Next, we have that for all j ∈ [s]

lim
n→∞

1

ns+1

s∑

j=1





∑

1≤i1,...,is+1≤n
card({i1,...,is+1})=j

(
s+1∏

k=1

σ
dk(T )
ik

)




= 0, (19)

which is true since the term in the curly brackets above can be bounded as

0 ≤ 1

ns+1

∑

1≤i1,...,is+1≤n
card({i1,...,is+1})=j

(
s+1∏

k=1

σ
dk(T )
ik

)
≤ 1

ns+1

(
n

j

)
σ̂2s
n ≤

nj−s−1

j!
σ̂2s
n . (20)

Next, note that Assumptions 2 and 3 imply that σ̂2s
n is bounded uniformly in n; hence,

the right-hand side of the inequalities in (20) is o(1). By taking the limits of both sides

in (17), and combining (18) and (19), we get

lim
n→∞

µ2s,s+1 =

∑

T∈Ts+1

lim
n→∞

1

ns+1

∑

1≤i1,...,is+1≤n
card({i1,...,is+1})=s+1

s+1∏

k=1

σ
dk(T )
ik

=
∑

T∈Ts+1

lim
n→∞

1

ns+1

s∏

j=1

S
rj(T )
n,j

=
∑

T∈Ts+1

s∏

j=1

Λ
rj(T )
j ,

where in the last equality we use that Λj = limn→∞(1/n)Sn,j . To finish the proof, use
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the partition Ts+1 =
⋃
r∈Rs

Ts+1(r) to get:

lim
n→∞

µ2s,s+1 =
∑

r∈Rs

∑

T∈Ts+1(r)

s∏

j=1

Λ
rj(T )
j

=
∑

r∈Rs

card (Ts+1(r))

s∏

j=1

Λ
rj
j

=
∑

r∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

) s∏

j=1

Λ
rj
j ,

where Lemma 1 is invoked in the last equality, concluding the proof. �

This brings us to end of the proof for Theorem 1 as Theorems 3, 4 and 5 together

imply that limn→∞ m̄
(n)
k = mk,∀k ∈ N. Hence, by the method of moments (Theo-

rem 2) we can claim the weak and almost sure convergence of the ESD Fn(·) as stated

in Theorem 1.

3. Bounds on the spectral radius using the spectral moments

In Theorem 1, we provide closed-form expressions for the spectral moments of

the limiting spectral distribution (LSD) of the random matrix ensemble An(Ψ). In

Subsection 3.1, we build on our previous combinatorial analysis to bound the ex-

pected spectral moments of finite matrices and compute upper and lower bounds on

the expected spectral radius of An, for any finite n. Next, in Subsection 3.2, we

propose a semidefinite program to compute optimal lower bounds on the almost-sure

deterministic limit of the spectral radius, lim
n→∞

ρ(An), given a truncated sequence of

spectral moments, {m2s, s = 1, . . . , ŝ}, which can be efficiently computed from from

(2).

3.1. Bounding the expected spectral radius for finite random matrices

In this subsection, we present methods to bound the expected spectral radius

E{ρ(An)} for any finite n ∈ N by using the following well-known inequalities (see

Equation (2.66) of [37]),
(
m̄

(n)
2s

)1/2s

≤ E{ρ(An)} ≤
(
nm̄

(n)
2s

)1/2s

. (21)

To this end, since the results of Theorem 1 are asymptotic in nature and applicable

only as n → ∞, we need to refine the combinatorial analysis of Subsection 2.4 to
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compute upper and lower bounds on the expected spectral moments m̄
(n)
2s for finite n.

Lemma 4. (Lower bounds on the expected spectral moments.) For any finite n ∈ N,

we have that

m̄
(n)
2s ≥ m̌

(n)
2s =

1

ns+1

∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Sr1n,1 . . . S

rs
n,s − ε̌(n)

2s ,

where ε̌
(n)
2s =

σ̂2s
n

ns+1

∑s
j=1

(
n
j

)
js+1−j.

Proof. From Lemma 2, we get that m̄
(n)
2s =

∑s+1
p=1 µ2s,p ≥ µ2s,s+1 and by (17) and

(18), we know that µ2s,s+1 is given by

1

ns+1

∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Sr1n,1 . . . S

rs
n,s −

1

ns+1

s∑

j=1

∑

1≤i1,...,is+1≤n
card({i1,...,is})=j

s+1∏

k=1

σ
dk(T )
ik

.

Furthermore, we can lower bound the above expression by substituting σ̂n for σik to

get

m̄
(n)
2s ≥

1

ns+1

∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Sr1n,1 . . . S

rs
n,s −

1

ns+1

s∑

j=1

∑

1≤i1,...,is+1≤n
card({i1,...,is})=j

σ̂2s
n

=
1

ns+1

∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Sr1n,1 . . . S

rs
n,s −

1

ns+1

s∑

j=1

js+1−j
(
n

j

)
σ̂2s
n ,

where we have used the fact that
∑s+1
k=1 dk (T ) = 2s in the first inequality, and the last

expression follows by a trite combinatorial argument, leading to the claimed result. �

The following lower bound on the expected spectral radius is then immediate upon

applying Lemma 4 to (21).

Corollary 1. (Lower bound on the expected spectral radius.) For any finite n, we

have that

E{ρ(An)} ≥ n− s+1
2s


 ∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, . . . , rs

)
Sr1n,1 . . . S

rs
n,s − ε̌(n)

2s


 1/2s.

We next compute an upper bound on the expected spectral moments and, consequently,

the expected spectral radius.
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Table 1: Even-order moments of A1000 with σi = e−4i/n, ∀i ∈ [1000]

2s m2s m̌
(1000)
2s m̂

(1000)
2s Mean (100x)

4 1.599e-2 1.394e-2 2.152e-2 1.591e-2

6 5.739e-3 4.733e-3 5.740e-3 5.700e-3

8 2.388e-3 1.958e-3 2.388e-3 2.368e-3

10 1.081e-3 0.897e-3 1.081e-3 1.071e-3

Lemma 5. (Upper bounds on the expected spectral moments.) For any finite n, we

have that m̄
(n)
2s ≤ m̂

(n)
2s = (1 + θ

(n)
2s s)m2s, where m2s is defined in (2) and

θ
(n)
2s = (K2s6/2nσ̂2

n)(σ̂n/σ̌n)2s(ns−1)/(n− s)s+1. (22)

Proof. Recall from the proof of Theorem 5 that µ2s,s+1 approaches its limit m2s from

below and, by Lemma 2, we get m̄
(n)
2s = µ2s,s+1 +

∑s
p=1 µ2s,p ≤ m2s+

∑s
p=1 µ2s,p. The

claim follows after invoking (15) to upper bound each of the terms µ2s,p,∀p ∈ [s] as

µ2s,p ≤ θ(n)
2s µ2s,s+1. �

We can now combine the result of Lemma 5 with the right-hand side inequality in

(21) to upper bound the expected spectral radius as follows.

Corollary 2. (Upper bound on the expected spectral radius.) For any finite n, we

have that E{ρ(An)} ≤
(
n(1 + θ

(n)
2s s)m2s

)1/2s

, where θ
(n)
2s is defined in (22).

The above bounds are next verified in numerical simulations. We consider a random

matrix with n = 1000 and a sequence σi = e−4i/n for i ∈ [1000]. Fig. 1 depicts the

histogram of the eigenvalues of one realization of A1000. Notice that, as the entries

have non-identical variances, the observed distribution departs significantly from the

classical Wigner’s semicircle law. In Table 1, we compare the value of the asymptotic

spectral moments in Theorem 1 with the lower bounds m̌
(1000)
2s and upper bound m̂

(1000)
2s

on the expected spectral moments for n = 1000, as derived in Lemmas 4 and 5,

respectively. We also include in this Table the empirical mean values for the spectral

moments obtained from averaging 100 realizations of A1000. Notice how the empirical

averages (last column in Table 1), as well as the upper bounds m̂
(1000)
2s are very close

to our theoretical predictions for the even-order spectral moments m2s.

We next compare the empirical mean of the spectral radius of A1000 for 100 re-
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Figure 1: The histogram of the eigenvalues of a random realization of A1000 with σi =

e−4i/n, ∀i ∈ [1000].

alizations with the upper and lower bounds in Corollaries 1 and 2, respectively. The

empirical mean is computed as 0.7679, while the lower and upper bounds in Corollaries

1 and 2 for s = 30 and n = 1000 are 0.6913 and 0.7757, respectively. Tighter lower

bounds can be computed in the asymptotic case using the methodology presented in

the next subsection.

3.2. Almost sure bounds on the asymptotic spectral radius

We now shift our focus to bounds on the asymptotic spectral radius of An that

hold almost surely. To begin, note by Fatou’s lemma that E {lim infn→∞ ρ(An)} ≤
lim infn→∞ E {ρ(An)}. Moreover, from Corollary 4 and the almost sure deterministic

limit set forth in Theorem 1, we get that limn→∞ ρ(An) = E{lim infn→∞ ρ(An)},
almost surely; in addition, as a consequence of Corollary 2, we have lim infn→∞ E

{ρ(An)} ≤ lim infn→∞
(
n(1 + θ

(n)
2s s)m2s

)1/2s

. The preceding facts yield an almost-

sure upper bound on the asymptotic spectral radius as

lim
n→∞

ρ(An) ≤ lim inf
n→∞

(
n(1 + θ

(n)
2s s)m2s

)1/2s

,

which holds true for any s ∈ N. Indeed, letting s→∞ and taking n = s yields

lim
n→∞

ρ(An) ≤ lim
s→∞

m
1/2s
2s ,
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almost surely. In what follows, we use the methodology introduced in [30] to find

almost sure lower bounds on limn→∞ ρ(An) that are optimal given the knowledge of

a truncated sequence of asymptotic spectral moments from (2), as {m2s, s = 1, . . . , ŝ}
for ŝ a fixed odd integer.

First, note that since m2s+1 = 0 for all s ≥ 0, the asymptotic spectral distribution

F (·) is symmetric. Associated with F (·), we define the auxiliary distribution G(·)
given by G(x) = F (

√
x) for x ≥ 0 and G(x) = 0 when x < 0. Denote the s-th moment

of G(·) by νs; hence, we have that νs =
∫ +∞
−∞ xs dG(x) =

∫ +∞
−∞ x2s dF (x) = m2s for

any s ∈ N. Given a truncated sequence of moments (ν0, ν1, . . . , ν2s̄+1) with ν0 = 1

and s̄ = (ŝ − 1)/2, we can use Proposition 1 in [30] to compute a lower bound on

supx>0{G(x) > 0} by solving the following semidefinite program [45]

Bs =minx>0 x

subject to




ν0 ν1 · · · νs̄

ν1 ν2 · · · νs̄+1

...
...

. . .
...

νs̄ νs̄+1 · · · ν2s̄



x−




ν1 ν2 · · · νs̄+1

ν2 ν3 · · · νs̄+2

...
...

. . .
...

νs̄+1 νs̄+2 · · · ν2s̄+1



� 0, (23)

where � 0 indicates the belonging relation to the convex cone of all real symmetric

positive semidefinite (s̄ + 1) × (s̄ + 1) matrices. Notice that the matrices involved in

(23) present a Hankel structure and Bs is the solution of a semidefinite program in one

variable x > 0, which can be solved efficiently using off-the-shelf software tools. From

Bs, we get that limn→∞ ρ(An) ≥ √Bs, almost surely. We verify this bound numerically

for s̄ = 14 to find that the optimal lower bound for the asymptotic spectral radius is

0.7578, which is comparable to the empirical mean 0.7679 computed in Subsection 3.1

for 100 realizations of A1000 with σi = e−4i/n,∀i ∈ [1000]. Notice how this latter

bound is substantially tighter than the value of 0.6913 obtained from Corollary 1.

4. Conclusions

In this paper, we have analyzed a random matrix ensemble characterized by inde-

pendent, zero-mean, and uniformly bounded entries presenting a rank-one pattern of

variances, i.e., Var{aij} = σiσj , for a given sequence {σi : i ∈ N}. Our main result,
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stated in Theorem 1, establishes that the spectral distribution of the random matrix

ensemble An(Ψ) satisfying Assumptions 1 to 5 converges almost surely and weakly to a

deterministic distribution that can be characterized via its spectral moments, for which

we provide closed-form expressions. We would like to remark that, even though the

spectral moments can be implicitly characterized using the band matrix model or free

probability, these alternative approaches require tedious algebraic manipulations to

obtain explicit expressions for the moments. In contrast, Theorem 1 directly provides

an explicit expression for the asymptotic spectral moments. Based on our analysis,

we have also provided upper and lower bounds on the expected spectral moments of

finite-dimensional random matrices with zero-mean entries and the specified pattern of

variances. These bounds can be used to, for example, compute bounds on the expected

spectral radius of An(Ψ), for a finite n. Finally, we have illustrated how the exact

asymptotic expressions for the moments of the LSD can be used to optimally bound

the almost sure limit of the spectral radius of An(Ψ) as n → ∞ using semidefinite

programming.

Appendix A. Weak convergence of the empirical spectral distributions

Let Fn(·) and F (·) be distribution functions, then by definition Fn(·) converges

weakly to F (·) if limn→∞ Fn(x) = F (x) for each x ∈ R at which F (·) is continuous

(see Section 14 of [13]). Alternatively, we can use the following as an equivalent

characterization.

Lemma 6. (Weak convergence, Theorem 4.4.2 of [16].) Given distribution functions

Fn(·) and F (·), Fn(·) converges weakly to F (·) if, and only if, for any bounded contin-

uous real-valued function f(·) we have that

lim
n→∞

∫ +∞

−∞
f(x) dFn(x) =

∫ +∞

−∞
f(x) dF (x).

In the case of empirical distributions, such as Fn(·), we can leverage Lemma 6 to

derive the following two variations of weak convergence in probabilistic settings.

Definition 1. (Almost sure weak convergence of the ESD.) The empirical distribution

Fn(·) is said to converge weakly to F (·), with probability one, if there is a measurable
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set S such that P{S} = 1 and for all sample points ω ∈ S, the realization Fn(·) |ω
converges weakly to F (·).

Definition 2. (Weak almost sure convergence of the ESD.) The empirical distribution

Fn(·) is said to converge weakly, almost surely, to F (·), if for any bounded continuous

real-valued function f(·) we have that
∫ +∞
−∞ f(x) dFn(x) converges to

∫ +∞
−∞ f(x) dF (x),

almost surely.

Appendix B. Relations to the free multiplicative convolution

The discipline of free probability was founded by Voiculescu from his study of non-

commutative random variables in the 1980s; it has subsequently found major applica-

tions in the study of high-dimensional random matrices which are non-commutative

objects. In particular, free probability identifies a certain sufficient condition of asymp-

totic freeness under which the asymptotic spectrum of the sums or products can be

analyzed using the individual asymptotic spectra of the summands or multiplicands,

based on the respective concepts of free additive and multiplicative convolutions. Given

a Hermitian random matrix ensemble A = {An, n ∈ N}, let φ(A) be its limiting ex-

pected spectral moment of the first-order, given by φ(A) = limn→∞(1/n)E{trace(A)}.
Two Hermitian random matrix ensembles A and B are asymptotically free (or freely

independent) if for all l and for all polynomials pi(·) and qi(·), 1 ≤ i ≤ l satisfying

φ(pi(A)) = φ(qi(B)) = 0 for all i, we have that φ(p1(A)q2(B) . . . pl(A)ql(B)) = 0

[7, Chapter 5]. Accordingly, if A and B are freely independent with the respective

limiting spectral distributions µ and ν, then the free multiplicative convolution of

µ and ν which is denoted by µ � ν and it is the limiting spectral distribution of

B1/2AB1/2 or equivalently A1/2BA1/2 [7, Definition 5.3.28]. In this Appendix we

will show how the the desired limiting spectral distribution F which is the focus of our

main result in Theorem 1 can be expressed as a free multiplicative convolution between

the semicircle law and the limiting distribution of the entries of the variance profile

sequence {σi, i ∈ N}. Next we use transform techniques, in particular S-transforms, to

express the S-transform of F (defined below) as the product of the S-transforms two

distributions involved in the free multiplicative convolution. Finally, by relating the

S-transforms to the moments of the underlying distributions, we are able to verify the
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explicit expressions of moments in Theorem 1, indeed satisfy the free multiplicative

convolution relation claimed here in the Appendix.

Consider an arbitrary distribution µ with moments
{
mµ
k =

∫
xkµ(dx)

}
k≥0

and let

ψµ(z) =
∑

k≥1

mµ
kz
k = Mµ(z)− 1.

where Mµ(z) is the complex-valued moment-generating function of µ. Let χµ(·) be the

functional inverse of ψµ(·) satisfying

ψµ (χµ(z)) = z, (25)

The S-transform of µ, denote by Sµ, is another complex-valued function which can be

computed to the moments and the inverse function χµ(·) via the following relationships

[7, Definition 5.3.28]:

Sµ(z) =
1 + z

z
χµ(z). (26)

This relation is more useful in the equivalent format ψµ(z)Sµ(ψµ(z)) = z(1 + ψµ(z))

[11, Section 10.2, Equation (17)], which can be used to relate the S-transform Sµ(z)

directly to the moments {mµ
k}k≥0

rather than through the inverse function χµ(z). Let

us expand the S-transform as:

Sµ(z) =
∑

k≥1

sµkz
k−1.

The sequence of real numbers {sµk}k≥0
(i.e., the coefficients of the S-transform) can

be deduced from the moment sequence {mµ
k}k≥0

(and vice versa) using the following

identities [11, Section 10.2, Equation (18)]:

mµ
1s
µ
1 = 1, (27)

mµ
K =

K+1∑

k=1

sµk

∑

l1,...,lk≥1
l1+...+lk=K+1

mµ
l1
· · ·mµ

lk
. (28)

We are now equipped with the necessary tools to study the limiting spectral dis-

tribution F as a free multiplicative convolution between the semicircle law and the

limiting distribution of the entries of Ψ = {σi, i ∈ N}. Consider an n-dimensional

real symmetric standard Wigner matrix Wn = WT
n , i.e. with i.i.d. zero-mean,
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unit-variance entries (in the upper triangular). Given the infinite sequence {σi}i≥1,

also consider the diagonal matrix Σn = diag (σ1, . . . , σn). Define the matrix Ân =

1√
n

Σ
1/2
n WnΣ1/2, whose i, j-th entry has zero mean and variance σiσj/n, which is the

same as the variance profile of the random matrix ensemble An(Ψ) studied in our

main result. Indeed, the random matrix ensemble Ân includes An(Ψ) as a special

case, and establishing the limiting spectral distribution of Ân provides an alternative

characterization of the desired eigenvalue distribution F , which is the subject of our

main result (Theorem 1). Indeed, our objective in this appendix is to characterize the

limiting spectral distribution of Ân, or equivalently Ãn = 1√
n

ΣnWn (both having the

same eigenvalue spectrum), as a function of the given sequence {σi}i≥1.

At the crux of our analysis is the fact that a standard Wigner matrix and a

deterministic diagonal matrix (in particular, the matrices Wn and Σn) are asymp-

totically free [44, Example 2.38]; Voiculescu [47] proved this fact for the special case

of Gaussian entries in 1991, and it was later extended by Dykema (1993) to include

all Wigner matrices and deterministic block diagonal matrices as well [18]. In what

follows, we build on these results to analyze the limiting spectral distribution of

Ãn using techniques from free probability theory, and in particular the method of

free multiplicative convolution. Let us denote by θ and νsc the limiting spectral

distributions of Σn and Wn, respectively. In particular, since Wn is a Wigner matrix,

νsc follows Wigner’s semicircle law [49, 50] with the following semicircular density:

fsc(x) =
1

2π

√
4− x2,

for x ∈ [−2, 2] and fsc(x) = 0, otherwise. Also, the limiting spectral distribution of

the diagonal matrix Σn is given by θ{·} = limn→∞ 1
n

∑n
i=1 δσi

{·}; here the limit is in

the topology of weak convergence and it is assumed existent for the free probability

techniques to apply. Using the free multiplicative convolution the limiting spectral

distribution of An, denoted by F , satisfies F = θ�νsc. Our next step is to characterize

F using its moment-generating function and S-transform, denoted byMF (·) = 1+ψF (·)
and SF respectively (as defined above). An important property of the S-transform is

the fact that given two (asymptotically) free matrices, such as Σn and Wn, the S-

transform of the (limiting) spectral distribution of the product (i.e., F = θ � νsc) is
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given by [7, Lemma 5.3.30]:

SF = SscSθ, (29)

where Ssc = 1/
√
z is the S-transform of the semi-circular [31, Section 3], which plays

a crucial role in our following derivations. The relation (29) was first developed by

Voiculescu for random variables with non-zero mean (or non-negative support) [46].

Rao and Speicher [31] extend the applicability of this relation to include the cases

where one of the variables has a vanishing mean as in the case of a semicircular density

which is symmetric around the origin with zero mean. The extension relies critically

on the fact that the inverse function χµ in (26) can written as a formal power series in
√
z. Using this result, we now derive expressions for the moments of F as a function of

the given sequence {σi, i ∈ N}. We first characterize Sθ from the sequence {σi, i ∈ N},
as follows. Notice that the moments of θ{·} are given by

mθ
k = lim

n→∞
1

n

n∑

i=1

σki = Λk (30)

for all k ∈ N, which are well-defined per Assumption 5. Hence, we can compute the

coefficients
{
sθk
}
k≥0

of Sθ using (27) and (28), as follows. For example, (27) gives the

first coefficient sθ1 as:

sθ1 =
1

mθ
1

=
1

Λ1
. (31)

The second coefficient sθ2 can be computed from (28) with K = 1, as follows:

Λ1 = sθ1Λ2 + sθ2Λ2
1 =

Λ2

Λ1
+ sθ2Λ2

1,

which implies

sθ2 =
Λ2

1 − Λ2

Λ3
1

. (32)

Similarly, using (28) with K = 2, we obtain

Λ2 = sθ1Λ3 + 2sθ2Λ1Λ2 + sθ3Λ3
1

=
Λ3

Λ1
+ 2

Λ2
1Λ2 − Λ2

2

Λ2
1

+ sθ3Λ3
1,

which implies

sθ3 =
Λ2

Λ3
1

− Λ3

Λ4
1

− 2
Λ2

1Λ2 − Λ2
2

Λ5
1

. (33)
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Following this methodology, it would be possible, in principle, to compute higher-order

coefficients sθk for each k ≥ 1 as a function of the sequence of power means {Λj}kj=1,

defined in (30). In the sequel, we shall use the sequence of coefficients
{
sθ1, . . . , s

θ
k

}
to

compute a truncated sequence of moments of F . To this end, we can apply (29) with

Ssc(z) = 1/
√
z and Sθ(z) =

∑
k≥1 s

θ
kz
k−1 to obtain:

SF (z) =
1√
z


∑

k≥1

sθkz
k−1


 =

sθ1√
z

+ sθ2
√
z + sθ3

√
z

3
+ . . .

From (25), we can compute the inverse function of the moment-generating function as:

χF (z) =
z

1 + z
SF (z) =

1

1 + z

(
sθ1
√
z + sθ2

√
z

3
+ sθ3
√
z

5
+ . . .

)
.

Since 1
1+z = 1− z + z2 − z3 + . . ., we have that

χF (z) =
(
1− z + z2 − z3 + . . .

) (
sθ1
√
z + sθ2

√
z

3
+ sθ3
√
z

5
+ . . .

)

= sθ1
√
z +

(
sθ2 − sθ1

)√
z

3
+
(
sθ3 − sθ2 + sθ1

)√
z

5 − . . .

Therefore, we can write

χF (z) =
∞∑

k=1

βk
√
z
k
, where βk =





∑ k−1
2

i=1 (−1)
k−1
2 −i sθi , for k odd,

0, for k even.

(34)

Next note that the expansion ψF (z) =
∑
k≥1mkz

k can be combined with the identity

ψF (χF (z)) = z from (25) to relate the moments sequence {mk}k≥1 with the coefficients

{βk}k≥1. This relationship is given in [31, Proof of Proposition 2.3] as follows:

1 = (β1)
2
m2, (35)

0 =

r∑

k=2

∑

1≤l1,...,lk≤r
l1+···+lk=r

mkβl1 · · ·βlk , for r > 2. (36)

Coup de grâce is to replace for the coefficients {βk}k≥1 in terms of {sθk}k≥1 using

(34), and then write the latter in terms of {Λk}k≥1 (as in (31), (32) and (33)) to

finally express the moments {mk}k≥1 in terms of the power means {Λk}k≥1. Starting

with (35), β1 = sθ1 in (34), and (31), we get 1 = m2

(
sθ1
)2

= m2/Λ
2
1; therefore,

m2 = Λ2
1, indeed verifying (2) for s = 1. Similarly, for r = 3, (36) implies that
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0 = 2m2β1β2 + m3 (β1)
3

= m3

Λ3
1

, where in the last equality we have used: β1 = 1/Λ1

and β2 = 0. Therefore, we have that m3 = 0 as expected from (2). For r = 4, (36)

with β1 = 1/Λ1, β2 = 0, β3 = sθ2− sθ1 =
Λ2

1−Λ2

Λ3
1
− 1

Λ1
= −Λ2

Λ3
1
, and m2 = Λ2

1 implies that

0 = 2m2β1β3 +m2 (β2)
2

+ 3m3 (β1)
2
β2 +m4 (β1)

4

= −2Λ2
1

Λ1

Λ2

Λ3
1

+
m4

Λ4
1

.

Therefore, we have that m4 = 2Λ2
1Λ2, again verifying (2) for s = 2. Proceeding in a

similar fashion, all odd-order asymptotic spectral moments can be shown to be zero;

while the closed form expressions of all even moments up to the tenth moment are as

follows:

m6 = 2Λ3
1Λ3 + 3Λ2

1Λ2
2, (37)

m8 = 2Λ4
1Λ4 + 8Λ3

1Λ2Λ3 + 4Λ2
1Λ3,

m10 = 2Λ5
1Λ5 + 10Λ4

1Λ2Λ4 + 5Λ4
1Λ2

3 + 20Λ3
1Λ2

2Λ3 + 5Λ2
1Λ4,

which coincide with the closed-form expression provided by our main result (Theorem

1). We would like to remark that the expressions obtained for higher-order values

of sθk and mk become forbiddingly complex as k increases. In fact, the algebraic

manipulations required to compute these values quickly become unmanageable as k

increases. In contrast, Theorem 1 provides explicit closed-form expressions for the

moments of F (i.e., the asymptotic spectral moments of An), which can be used

to efficiently compute a truncated sequence of (asymptotic) spectral moments of the

random matrix An.

Appendix C. Relations to the band matrix model

The rank one pattern of variances that we specify for the entries of the random

matrix ensemble in this work relates to the band matrix model as studied by Anderson

and Zeitouni [8]. The band matrix model refers to ensembles of symmetric or Hermi-

tian random matrices with independent entries where variance of each i, j-th entry is

specified as 1
nf( in ,

j
n ) for a sufficiently well-behaved positive-real symmetric function

f(·, ·) : [0, 1]2 → R+. Earlier results on this model consider special cases such as

Gaussian entries [33] or with specific requirements on function f ; for instance Reference
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[28] shows that with f(x, y) = ν(|x−y|) for some bounded ν(·) satisfying
∫ 1

0
ν(t)d t = 1,

the LSD of the band matrix model is the same as Wigner’s semi-circle law. This

result is recovered under the more general condition
∫ 1

0
f(x, y)d y = 1 in Theorem 3.5

of [8] and in the case of our rank-one variance model we recover exactly the Wigner

ensemble. This is because with f( in ,
j
n ) = σiσj ,∀i, j we can write the integral condition

as the limit of a Riemann sum to get that
∫ 1

0
f(x, y)d y = limn→∞ 1

n

∑n
j=1 f( in ,

j
n ) = 1

for some i fixed and now from f( in ,
j
n ) = σiσj we get that σi = 1

Λ1
,∀i, implying

σi = σj = 1,∀i, j which retrieves the classical Wigner ensemble described above. In

[24] the authors consider the limiting spectral distribution for the sample covariance

matrix of a band matrix model; they rely on the Stieltjes tranformation techniques

which are an alternative to the moments method that we use in this paper but come

short of an explicit characterization as was the case with the free probability and

S-transform techniques described in Appendix B.

The specification of variances in [8] are in terms of a Polish space of colors denoted by

C which acts as an auxiliary space: any two variables whose indexed locations have the

same colors will satisfy the same constraints on their moments. Accordingly, a coloring

function κ0(·) : N→ C maps any index (or letter in the nomenclature of Anderson and

Zeitouni [8]), i ∈ N, to a color κ0(i) ∈ C. Let θ{·} be the probability distribution on C
that measures the frequency of colors as induced by the mapping κ0(·). Formally θ{·}
can be defined as the weak limit as n→∞ of the measures θn{·} = 1

n

∑n
i=1 δκ0(i){·};

and indeed, once we specialize the band matrix model of Anderson and Zeitouni [8] to

the case of our random matrix ensemble with rank-one variance profile, we shall see θ{·}
plays the role of the limiting distribution for the entries of {σi, i ∈ N} sequence as was

the case in our formulation of the free multiplicative convolution technique in Appendix

B. In notation of [8] all moments of entries of the random matrix An are constrained

as follows: E
{
|aii|k

}
≤ d(k)(κ0(i)), and E

{
|aij |k

}
≤ s(k)(κ0(i), κ0(j)) for i 6= j, with

inequalities being strict when k = 2, 4. Here, d(k)(·) and s(k)(·, ·) are bounded positive

real functions defined on C and C × C respectively, and they are assumed measurable

and almost surely continuous with respect to θ{·}. If the preceding moments conditions

replace Assumptions 1 to 5 in Section 1, then the main result of [8] concerning the LSD

F (·) is stated as follows.



Random Matrices with a Rank-One Variance Pattern 29

Proposition 2. (Theorem 3.2 of [8].) As n → ∞ the ESD Fn(·) converge weakly in

probability to the distribution F (·) which uniquely satisfies

ms =

∫ +∞

−∞
xs dF (x) =

∫

c∈C
Φs+1,θ(c)dθ(c),∀s ∈ N0. (38a)

Here, for all c ∈ C, {Φs,θ(c), s ∈ N} is the unique real sequence satisfying

Φθ(c, t) =
∞∑

s=1

Φs,θ(c)t
s, (39a)

and the latter is the formal power series characterized by the generating function

identity

Φθ(c, t) = t

(
1− t

∫

c′∈C
s(2)(c, c′)Φθ(c

′, t)dθ(c′)

)−1

. (40a)

When the integral equation (40a) is expanded in terms of the formal series in (39a),

it leads to a sequence of recursive equations with the unknowns Φs,θ(c), s ∈ N whose

solutions upon replacement in (38a) yield the same asymptotic moments as claimed by

Theorem 1.

On the one hand, our rank one pattern includes some variance profiles that are

not covered by the specification of variances in the color space under the band matrix

model. To see how, consider the mapping of indexes to colors under the coloring

function κ0(·), and suppose without any loss in generality that the indexes i ∈ N
are ordered such that indexes with the same color are consecutive to each other.

Subsequently, the specification of second moments under s2(·, ·) are such that in any

block whose rows have the same color and so do its columns, all entries have the same

variance. However, such a configuration excludes many possibilities. In particular,

while for separable functions s2(·, ·) any specification of variances under the coloring

scheme of the band matrix model can be equivalently captured by a rank one pattern

of variances and through a particular sequence {σi, i ∈ N}; there are certain ways in

which the variances may be specified as a rank one pattern, but not by a symmetric

separable function s2(·, ·) over the Cartesian product of two copies of a Polish space

of colors. As an example, suppose that the sequence σi, i ∈ N is derived by uniform

sampling from an exponential function: ∆ne
−iδn , i ∈ [n] for some appropriate choice

of constants ∆n and δn. Next note that as n→∞, those entries aij whose sum of row

and column indexes are the same, will posses the same asymptotic variances; whereas
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such specification of variances along the level sets of i+j for i, j ∈ N cannot be realized

by any assignments of blocks in a Polish color space.

On the other hand, Theorem 1 considers a special case of the band matrix model

where the function s2(·, ·), representing the specification of the second order moments

on the color space, is separable with the following factorization: s2(c, c′) = ρ(c)ρ(c′),

∀(c, c′) ∈ C × C for some appropriately defined function ρ(·). In this particular case

which is captured by the rank-one pattern of variances, Theorem 1 provides explicit

solutions for the moments satisfying the system of integral equations described in (38a)

to (40a) of Proposition 2. In what follows we derive the asymptotic moments of the

band matrix model given a rank-one pattern variance and using Proposition 2, as a

verification and in agreement with Theorem 1.

First note that per Assumption 3, E
{
a2
ij

}
= s(2)(κ0(i), κ0(j)) = σiσj . Let function

ρ : C → R+ be such that for all i ∈ N, ρ(κ0(i)) = σi, and in particular we get that

s(2)(c, c′) = ρ(c)ρ(c′) for all (c, c′) ∈ C×C. Furthermore, given the probability measures

θn{·} = 1
n

∑n
i=1 δκ0(i){·} and their weak limit θ(·), we have that for any k ∈ N,

∫

c′∈C
ρ(c′)kdθ(c′) = lim

n→∞

∫

c′∈C
ρ(c′)kdθn(c′) (41a)

= lim
n→∞

1

n

n∑

i=1

ρ(κ0(i))k

= lim
n→∞

1

n

n∑

i=1

σki = Λk.

To derive asymptotic relations for the moments per (38a), we begin by replacing Φθ(c, t)

in (40a) with its formal power series expansion given by (39a), and then expanding

both sides of (40a) to get:

∞∑

s=1

Φs,θ(c)t
s = t

(
1− ρ(c)

∞∑

s=1

ts+1

∫

c′∈C
ρ(c′)Φs,θ(c

′)dθ(c′)

)−1

= t+ ρ(c)

∞∑

s=1

ts+2

∫

c′∈C
ρ(c′)Φs,θ(c

′)dθ(c′)

+ t
∞∑

k=2

(
ρ(c)

∞∑

s=1

ts+1

∫

c′∈C
ρ(c′)Φs,θ(c

′)dθ(c′)

)k
.

Equating the coefficients of ts for each s ∈ N yields the following series of equations that

are solved for Φs,θ(c), s ∈ N recursively. Beginning from Φ1,θ(c) = 1 and Φ2,θ(c) = 0,
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we can proceed in a recursive fashion, while using (41a) to substitute for the respective

integrals as they appear. Subsequently, we get

Φ3,θ(c) = ρ(c)

∫

c′∈C
ρ(c′)Φ1,θ(c

′)dθ(c′) = ρ(c)

∫

c′∈C
ρ(c′)dθ(c′) = ρ(c)Λ1,

Φ4,θ(c) = ρ(c)

∫

c′∈C
ρ(c′)Φ2,θ(c

′)dθ(c′) = 0, (43a)

Φ5,θ(c) = ρ(c)

∫

c′∈C
ρ(c′)Φ3,θ(c

′)dθ(c′) + ρ(c)2

(∫

c′∈C
ρ(c′)Φ1,θ(c

′)dθ(c′)

)2

= ρ(c)

(∫

c′∈C
ρ(c′)2dθ(c′)

)∫

c′∈C
ρ(c′)dθ(c′) + ρ(c)2

(∫

c′∈C
ρ(c′)dθ(c′)

)2

= ρ(c)Λ2Λ1 + ρ(c)2Λ2
1,

and so forth. By the same token, for general s ≥ 5 we get

Φs,θ(c) =
∑

k∈[bs/2c]
(r1,...,rk)∈R′k,s

ρ(c)k
∫

c′∈C

ρ(c′)Φr1,θdθ(c
′) . . .

∫

c′∈C

ρ(c′)Φrk,θdθ(c
′), (44a)

where for all integers s and 1 ≤ k ≤ bs/2c, we have defined

R′k,s = {(r1, . . . , rk) ∈ Nk : k +

k∑

j=1

rj = s− 1}.

In particular, note that whenever s is even then for any 1 ≤ k ≤ bs/2c and all

(r1, . . . , rk) ∈ R′k,s there is some rj , j ∈ [k] such that rj ∈ [s − 2] is an even number.

To see why consider two cases: if k is odd then s−1−k =
∑k
j=1 rj is an even number,

and sum of an odd number, k, of odd numbers rj , j ∈ [k] can never be an even number,

subsequently at least one of the numbers r1, . . ., rk has to be even or else their sum
∑k
j=1 rj cannot be an even number. Similarly, if k is even, then s− 1− k =

∑k
j=1 rj is

an odd number and the sum of an even number, k, of all odd numbers rj , j ∈ [k] can

never be an odd number; hence again, for any 1 ≤ k ≤ bs/2c and all (r1, . . . , rk) ∈ R′k,s
there is some rj , j ∈ [k] such that rj ∈ [s− 2] is an even number.

So far, we have shown that if s is an even number, then for every product term

appearing in the summation on the left hand side of (44a), there is some rj , j ∈ [k] such

that rj ∈ [s−2] is an even number. This together with the fact that Φ2,θ(c) = Φ4,θ(c) ≡
0, per above and (43a), imply that Φs,θ(c) ≡ 0 for all even integers s. Subsequently,

we can apply (38a) of Proposition 2 to get that ms =
∫
c∈C Φs+1,θ(c)dθ(c) for all odd
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integers s, verifying the asymptotic expressions in Theorem 1 for odd moments. For

even moments as well we can apply (38a) to the derived expressions in (43a) to get

that

m2 =

∫

c∈C
Φ3,θ(c)Φ3,θ(c) = Λ1

∫

c′∈C
ρ(c′)dθ(c′) = Λ2

1,

m4 =

∫

c∈C
Φ5,θ(c)Φ3,θ(c) = Λ2Λ1

∫

c′∈C
ρ(c′)dθ(c′) + Λ2

1

∫

c′∈C
ρ(c′)2dθ(c′) = 2Λ2

1Λ2.

Proceeding in a similar fashion, the closed form expressions of all even moments up to

the tenth moment would agree with (37) and correspond exactly to those claimed in

(2) by Theorem 1. In conclusion, the asymptotic expressions of the moments in in (2)

are giving explicit solutions that would follow if one were to solve the integral equation

in (40a), or equivalently, the infinite sequence of recursive equations in (44a).

Appendix D. Moments method for almost sure and weak convergence

This appendix includes a detailed execution of the analytical steps leading to the

conclusions spelled out in Theorem 2 as the method of moments. We begin by

establishing the existence and finiteness of the moments in (3). Note that Assumption

2 (boundedness), together with the Gershgorin disk theorem (see Section VIII.6 of

[12]), imply that with probability one, m
(n)
k < nkKk for all n, k ∈ N, i.e., all spectral

moments are finite. The following lemma is a specialization of Corollary 2.3.6 of [37]

to the case of our random matrix ensemble An(Ψ).

Lemma 7. (Upper tail estimate for the operator norm.) There exists absolute, not

depending on n, constants C, c > 0 such that P{ρ(An) > Kγ} ≤ Ce−cγn, for all γ ≥ C
and any n ∈ N.

Corollary 3. (All finite expected spectral moments.) The expected spectral moments

can be bounded as m̄
(n)
2k ≤ (KC)2k + (2k)!/(cn)2k ≤ (KC)2k + (2k)!/c2k, ∀k, n ∈ N,

where C, c > 0 are absolute constants, not depending on n. In particular, the expected

spectral distributions Fn(·), n ∈ N have all their moments finite.

Proof. It follows from Lemma 7 that

P {|λ(An)| > γ} ≤ P {ρ(An) > γ} ≤ C exp(−cγ),
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for all n ∈ N and any γ > C. The claimed bound now follows as

m̄
(n)
2k = E

{
|λ(An)|2k

}
=

∫ +∞

α=0

P
{
|λ(An)|2k > α

}
dα =

∫ KC

α=0

P
{
|λ(An)|2k > α

}
dα+

∫ +∞

α=KC

P
{
|λ(An)|2k > α

}
dα ≤

(KC)2k +

∫ +∞

γ=0

Ce−cγn 2kγ2k−1dγ = (KC)2k +
2k!

(cn)2k
,

where we invoked Lemma 7 with the change of variable α = γ2k in writing the

inequality. �

The preceding results are an instance of the miscellany of results on the concentration

of eigenvalues for random matrix ensembles [40]. On this topic, the classical result of

Füredi and Komlós [23] gives an almost sure upper bound of 2σ
√
n + O(n1/3 log(n)),

later improved to O(n1/4 log(n)) by Vu [48], for the operator norm of a random matrix

ensemble with independent entries and identical variances σ2. Subsequent results [6, 26]

employ the powerful machinery of isoperimetric inequalities for product spaces due to

Talagrand [36], and derive sub-exponential bounds for the concentration of the norms

and eigenvalues of random matrices around their mean values. In the same venue,

Lemma 7, together with the Borel-Cantelli lemma (see Theorem 4.3 of [13]), implies

that with probability one, the support of the ESD Fn(·) is asymptotically compact.

Corollary 4. (Asymptotically compact support.) Almost surely, it holds true that

lim supn→∞ ρ(An) < Z, for some absolute constant Z > 0, and in particular we take

Z > max{1, 4Λ1}.

In particular, we have that almost surely ρ(An) = O(1), which justifies the normal-

ization factor of 1√
n

used in the definition of the random matrix ensemble An ({σi : i ∈ [n]}).
Indeed, the local behavior of eigenvalues at the edge of the spectrum is of much interest

in applied areas such as quantum theory and statistical mechanics (see Chapter 1 of

[27] and [22]). It is the well-known result of Tracy and Widom, who establish the

joint distribution of the k-largest (or k-smallest) eigenvalues of a random matrix with

Gaussian entries [42, 43], and the distribution that they derive is later shown, by

Soshnikov [34], to apply equally well to the larger class of symmetric Wigner ensembles

with independent zero-mean entries and identical variances; a phenomenon known as

edge universality [38].
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In what follows we prove that the (random) ESD Fn(·) converges almost surely to

the same weak limit as that of the expected spectral distributions Fn(·) defined in

Subsection 2.1. This is a strong law of large numbers type result that concerns random

probability measures endowed with the topology of weak convergence. We thus pave the

way from the pointwise convergence of expected spectral moments, limn→∞ m̄
(n)
k = mk,

∀k ∈ N, to the almost sure and weak convergence of the ESD Fn(·) to the unique

distribution F (·) satisfying ∀k ∈ N,
∫ +∞
−∞ xk dF (x) = mk.

Almost sure weak convergence of the ESD

The first set of results in this subsection allows us to conclude weak convergence

of the expected spectral distributions Fn(·) to the distribution F (·) as n → ∞ from

the pointwise convergence of their moments sequence m̄
(n)
k , k ∈ N to the sequence of

moments mk, k ∈ N defined earlier in Section 1. To this end, we need the following four

lemmas, of which the first two are restatements of Theorems 4.5.2 and 4.5.5 in [16], the

third is the celebrated test due to Carleman [5] and is proved as Lemma B.3 in [9], and

the fourth is a well-known consequence of Helly’s selection theorem that establishes

the relative compactness of a tight family of probability measures with respect to the

topology of weak convergence, which can be found for instance as Theorem 25.10 of

[13]. Recall, apropos, that a sequence of distributions {F̂n(·) : n ∈ N} is said to be tight

if for each ε > 0 there exist real numbers x and y that F̂n(x) < ε and F̂n(y) > 1 − ε
for all n.

Lemma 8. (Uniform integrability.) Suppose that {F̂n(·) : n ∈ N} is a sequence of

distribution functions and F̂ (·) is a distribution function, such that F̂n(·) converges

weakly to F̂ (·) as n → ∞. Suppose further that for some s ∈ N and M > 0, the

even finite moments given by m̂
(n)
2s =

∫ +∞
−∞ x2sd F̂n(x) satisfy supn∈N m̂

(n)
2s < M . Then

∀k ∈ [2s− 1], limn→∞ m̂
(n)
k =

∫ +∞
−∞ xkd F̂ (x).

Lemma 9. (The method of moments.) Suppose that there is a unique distribution

function F̂ (·) associated with the sequence of moments {m̂k : k ∈ N}, all finite; such

that m̂k =
∫ +∞
−∞ xkd F̂ (x), ∀k ∈ N. Suppose further that for all n ∈ N, F̂n(·) is a distri-

bution function, which has all its moments finite and given by m̂
(n)
k =

∫ +∞
−∞ xkd F̂n(x),

∀k ∈ N. Finally, suppose that for every k ≥ 1, m̂
(n)
k → m̂k as n → ∞. Then F̂n(·)
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converges weakly to F̂ (·) as n→∞.

Lemma 10. (Carleman’s criterion.) Suppose that there is a distribution function F̂ (·)
associated with the sequence of moments {m̂k : k ∈ N}, all finite, such that m̂k =
∫ +∞
−∞ xkd F̂ (x),∀k ∈ N. Suppose further that

∑∞
k=0 m̂

−1/2k
2k = ∞. Then F̂ (·) is the

unique distribution satisfying m̂k =
∫ +∞
−∞ xkd F̂ (x), for all k ∈ N.

Lemma 11. (Helly’s selection principle.) Given a sequence of distributions

{F̂n(·) : n ∈ N}, its tightness is a necessary and sufficient condition that for every

subsequence F̂nk
(·), {nk : k ∈ N} ⊂ N, there exist a further subsequence F̂nkj

(·),
{nkj : j ∈ N} ⊂ {nk : k ∈ N}, and a distribution F̂ (·), such that F̂nkj

(·) converges

weakly to F̂ (·) as j →∞.

We now have all the necessary tools at our disposal to conclude the weak convergence

of expected spectral distributions from the pointwise convergence of their moments,

and as well as to conclude the almost sure weak convergence of the ESD from the

almost sure pointwise convergence of the spectral moments; the facts of which are

established by the proceeding theorem and the subsequent corollary.

Theorem 6. (Existence and uniqueness of LSD.) If ∀k ∈ N, limn→∞ m̄
(n)
k = mk,

then Fn(·) converges weakly to F (·) as n → ∞, where F (·) is the unique distribution

function satisfying ∀k ∈ N,
∫ +∞
−∞ xk dF (x) = mk.

Proof. The sequence of distribution functions {Fn(·) : n ∈ N} have all their moments

finite per Corollary 3. To invoke Lemma 9 for the method of moments then, the gist

of the proof is in establishing the tightness property for the sequence {Fn(·) : n ∈
N} and then verifying Carleman’s criterion for the moments sequence {mk : k ∈ N}.
Indeed, from Corollary 3 we get that supn∈N m̄

(n)
2 < (KC)4 + 24/c4 = M2 for some

absolute constant M2 > 0, and by the inequality of Chebyshev we get for all y > 0

and any n ∈ N that Ln{|λ(An)| > y} = Fn(−y) + 1 − Fn(y) < M2/y
2. Next, since

max{Fn(−y), 1−Fn(y)} ≤ Fn(−y)+1−Fn(y) < M2/y
2, for any ε > 0 and all n ∈ N,

we can set y = (M2/ε)
1/2 and x = −y to get that Fn(x) < ε and Fn(y) > 1−ε, whence

follows the tightness of
{
Fn : n ∈ N

}
. This tightness per Lemma 11 implies that for

some subsequence Fnj (·), {nj : j ∈ N} ⊂ N and a subsequential limit, call it F (·), we

have that Fnj (·) converges weakly to F (·) as j →∞. But then it has to be that ∀k ∈ N,
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∫ +∞
−∞ xk dF (x) = mk. Indeed, take any k ∈ N fixed, the finite limit limj→∞ m̄

(nj)
2k =

m2k implies that for some M2k > 0 large enough, supnj : j∈N m̄
(nj)
2k < M2k; thence by

Lemma 8 for s < 2k we get that ms = limj→∞ m̂
(nj)
s =

∫ +∞
−∞ xsdF (x). In particular,

we have shown the existence of a distribution F (·), satisfying
∫ +∞
−∞ xkdF (x) = mk

for any positive integer k. Now, that F (·) satisfies the preceding uniquely follows

per Lemma 10 as the sequence {mk : k ∈ N} given by (2) passes Carleman’s test.

Effectually, using the bound Λk ≤ Λk1 , true for all k ∈ N, we get that for all s ∈ N

m2s =
∑

(r1,...,rs)∈Rs

2

s+ 1

(
s+ 1

r1, ..., rs

)
Λr11 Λr22 ...Λ

rs
s ≤

∑

(r1,...,rs)∈Rs

2

(
s+ 1

r1, ..., rs

)
Λs+1

1

= CsΛ
s+1
1 ≤ (4Λ1)

s+1
, (47a)

where in the penultimate equality we have invoked Corollary 4 and the last inequality

is by the fact that Cs < 4s, ∀s ∈ N (see, for instance, the proof of Lemma 2.1.7 in [7]).

Verification of Carleman’s criterion is now immediate as

∞∑

k=0

m
−1/2k
2k ≥

∞∑

k=0

(4Λ1)
−(k+1)/2k ≥ min

{ ∞∑

k=0

1

2
√

Λ1

,
∞∑

k=0

1

4Λ1

}
=∞.

We have thus established the existence of a distribution F (·), uniquely satisfying
∫ +∞
−∞ xk dF (x) = mk, ∀k ∈ N so that per Lemma 9 limn→∞ m̄

(n)
k = mk, ∀k ∈ N

implies the weak converge of the corresponding distribution functions Fn(·) to the

distribution F (·); thence, completing the proof. �

Corollary 5. (Almost sure weak convergence of the ESD.) If limn→∞ m
(n)
k = mk,

almost surely for all k ∈ N, then with probability one Fn(·) converges weakly to

F (·) as n → ∞, where F (·) is the unique distribution function satisfying ∀k ∈ N,
∫ +∞
−∞ xk dF (x) = mk.

Proof. By the countable intersection of full probability measure sets, we get that

restricted to a measurable set S ⊂ Ω with P{S} = 1, the sequence Fn(·) have all finite

moments, satisfying m
(n)
2 < n2K2 and limn→∞m

(n)
2 = m2 so that restricted to S and

for some M not dependent on n, we have m
(n)
2 < M. Thence, the proof of Theorem 6

applies equally well to the sequence Fn(·) on this full probability measure set S and

the conclusion of the corollary follows, per Definition 1 of Appendix A. �
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Weak almost sure convergence of the ESD

The key in establishing the almost sure convergence of the ESD Fn(·) to the de-

terministic weak limit F (·) is in verifying that limn→∞m
(n)
k = mk, almost surely, for

each k ∈ N. This is achieved through an application of Talagrand’s concentration

inequality restated from Theorem 2.1.13 of [37] as Lemma 12 below, followed by the

Borel-Cantelli lemma leading to the claimed almost sure convergence.

Lemma 12. (Talagrand’s concentration inequality.) For each n ∈ N, let fn(·) :

Rn(n+1)/2 → R be a convex function acting on the diagonal and upper diagonal entries

of the random matrix An. Further let fn(·) be 1-Lipschitz with respect to the Euclidean

norm on Rn(n+1)/2. Then for any λ one has that P{|f(An)− E{f(An)}| ≥ λK} ≤
Ce−cλ

2

, for some absolute, not depending on n, constants C, c > 0.

Lemma 13. (k-Schatten norms.) For all n, k ∈ N, ‖An‖k =
(∑n

i=1 |λi(Ak
n)|k

) 1
k is

a convex function, mapping the diagonal and upper diagonal entries of the random

matrix An to positive reals. Furthermore, for k ≥ 2 it is
√

2-Lipschitz with respect to

the Euclidean distance on Rn(n+1)/2 and for k = 1 it is
√

2n-Lipschitz with respect to

that same metric on Rn(n+1)/2.

Proof. First note that ‖An‖k is the k-Schatten matrix norm for An and is therefore

convex (see Section IV.2 of [12]). The Lipschitz property is a consequence of the reverse

triangle inequality of the norms. Indeed, for all k and any two n × n matrices A and

B, it holds true that |‖A‖k−‖B‖k| ≤ ‖A−B‖k. The
√

2-Lipschitz for k ≥ 2 property

now follows as

‖An‖kk =
n∑

i=1

|λi(An)|k ≤
(

n∑

i=1

|λi(An)|2
)k/2

= ‖An‖k2 ≤
√

2


 ∑

1≤i≤j≤n
a2
ij



k/2

,

where in the last inequality we used the fact that the 2-Schatten norm ‖An‖2 coincides

with the Frobenius norm of An. Similarly for k = 1, the Cauchy-Schwartz inequality

implies that

‖An‖1 =
n∑

i=1

|λi(An)| ≤ √n
(

n∑

i=1

|λi(An)|2
)1/2

≤
√

2n


 ∑

1≤i≤j≤n
a2
ij




1/2

,

which, together with the reverse triangle inequality, implies the claimed
√

2n-Lipschitz

property for ‖An‖1. �
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Lemma 14. (Almost sure convergence of the spectral moments.) For any k ∈ N, if

limn→∞ m̄
(n)
k = mk, then limn→∞m

(n)
k = mk, almost surely.

Proof. We first prove the claim directly for all even k and then by induction for odd

k as well. For k any fixed even integer per Lemma 13, 1√
2
‖An‖k = 1√

2
trace(Ak

n)1/k is a

convex 1-Lipschitz function satisfying the presumptions of Lemma 12, which together

with (3), implies that for any k, n ∈ N,

C̄e−c̄λ
2 ≥ P

{∣∣∣∣
1√
2

trace(Ak
n)1/k − E

{
1√
2

trace(Ak
n)1/k

}∣∣∣∣ ≥ λK
}

= P
{∣∣∣(m(n)

k )1/k − (m̄
(n)
k )1/k

∣∣∣ ≥ λ
√

2K/n1/k
}
,

for some absolute, not depending on n, constants C̄, c̄ > 0. Using the change of

variables ε = λ
√

2K/n1/k and ĉ = c̄/(2K2), we then get that

C̄e−ĉε
2n2/k ≥ P

{∣∣∣(m(n)
k )1/k − (m̄

(n)
k )1/k

∣∣∣ ≥ ε
}
.

In particular, we have for any ε > 0 that

∞∑

n=1

P
{∣∣∣(m(n)

k )1/k − (m̄
(n)
k )1/k

∣∣∣ ≥ ε/2
}
<∞,

thence the Borel-Cantelli lemma (Theorem 4.3 of [13]) implies that with probability

one limn→∞(m
(n)
k )1/k = limn→∞(m̄

(n)
k )1/k, and the claim for even k now follows by

taking the k-th power and invoking continuity. Next consider the case of odd k, and

note that per Corollary 4 with probability one for n > N̂ large enough, An +ZIn has

all its eigenvalues positive so that ‖An + ZIn‖k is convex and
√

2-Lipschitz for k > 1

and
√

2n-Lipschitz for k = 1. Indeed, for k = 1 Lemma 12 implies that

C̄1e
−c̄1λ2 ≥ P

{∣∣∣∣
1√
2n

trace(An + ZIn)− E
{

1√
2n

trace(An + ZIn)

}∣∣∣∣ ≥ λK
}

= P
{

1

n

∣∣∣∣trace(An + ZIn)− 1

n
E {trace(An + ZIn)}

∣∣∣∣ ≥ λ
√

2K/
√
n

}
,

and the change of variable ε̂ = λ
√

2K/
√
n again yields

P
{∣∣∣∣

1

n
trace(An + ZIn)− 1

n
E {trace(An + ZIn)}

∣∣∣∣ ≥ ε̂
}
≤ C̄1e

−c̄1 ε̂2n/(2K2),

which is summable over n, implying per Borel-Cantelli lemma that 1
n trace(An +ZIn)

converges almost surely to 1
nE{trace(An + ZIn)} as n → ∞, or equivalently that
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limn→∞ 1
n m

(n)
1 = m1 almost surely, completing the proof for k = 1. The proof for

odd k > 1 proceeds by induction for which the base k = 1 is already established. Fix

k and suppose that for all odd integers less than k, limn→∞m
(n)
k = mk almost surely.

Repeating the above argument for k yields that
(

1
n trace(An + ZIn)k

)1/k
as n → ∞,

converges almost surely to

E

{(
1

n
trace(An + ZIn)k

)1/k
}
,

implying by continuity that

lim
n→∞

1

n

n∑

i=1

(λi(An) + Z)k = lim
n→∞

1

n
E

{
n∑

i=1

(λi(An) + Z)k

}
,

almost surely. Expanding the binomial terms and invoking the induction hypothesis,

together with the claim proved for the even case, then yields that limn→∞ 1
n

∑n
i=1

λki (An) = limn→∞ 1
n E{

∑n
i=1 λ

k
i (An)} almost surely, completing the proof by induc-

tion for all odd k. �

While Corollary 5 gives already the almost sure weak convergence of the ESD as

implied by the almost sure convergence of their moments sequence, the path from the

latter to the weak almost sure convergence of Fn(·) is paved by the next proposition,

which is the last result in this section, providing us with all that is needed for concluding

Theorem 1 from the pointwise convergence of the expected spectral moment sequence.

Proposition 3. (Weak almost sure convergence of the ESD.) If limn→∞ m
(n)
k = mk,

with probability one for all k ∈ N, then Fn(·) converges weakly, almost surely, to

F (·) as n → ∞, where F (·) is the unique distribution function satisfying ∀k ∈ N,
∫ +∞
−∞ xk dF (x) = mk.

Proof. For any fixed bounded continuous real function f(·) : R → R and some real

constant B > 0 such that f(x) < B,∀x ∈ R, it is required to show that

lim
n→∞

∫ +∞

−∞
f(x) dFn(x) =

∫ +∞

−∞
f(x) dF (x),

almost surely, cf. Definition 2 of Appendix A. Take Z as in Corollary 4; by the

Stone – Weierstrass theorem (Theorem 7.26 of [32]), for some fixed polynomial qε(x) =
∑L
i=0 bix

i and ε > 0 we have sup|x|≤Z |qε(x) − f(x)| < ε/2. Adding and subtracting
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the terms
∫ +∞
−∞ qε(x) dFn(x) and

∫ +∞
−∞ qε(x) dF (x), and then applying the triangle and

Jensen inequalities yields

∣∣∣∣
∫ +∞

−∞
f(x) dFn(x)−

∫ +∞

−∞
f(x) dF (x)

∣∣∣∣ ≤ ε+

∫

{|x|>Z}
(B + |qε(x)|) dFn(x)

+

∣∣∣∣
∫ +∞

−∞
qε(x) dFn(x)−

∫ +∞

−∞
qε(x) dF (x)

∣∣∣∣

+

∣∣∣∣∣

∫

{|x|>Z}
(B + |qε(x)|) dF (x)

∣∣∣∣∣ , (59a)

where we also used the facts that

∣∣∣∣
∫ +∞

−∞
(f(x)− qε(x))dFn(x)

∣∣∣∣ ≤
∫ +Z

−Z
|f(x)− qε(x)| dFn(x)

+

∫

{|x|>Z}
(B + |qε(x)|) dFn(x),

and similarly that

∣∣∣∣
∫ +∞

−∞
(f(x)− qε(x)) dF (x)

∣∣∣∣ ≤
∣∣∣∣∣

∫ +Z

−Z
(f(x)− qε(x)) dF (x)

∣∣∣∣∣

+

∫

{|x|>Z}
(B + |qε(x)|) dF (x),

together with

∣∣∣∣∣

∫ +Z

−Z
(f(x)− qε(x)) dFn(x)

∣∣∣∣∣ < ε/2

and
∣∣∣∣∣

∫ +Z

−Z
(f(x)− qε(x)) dF (x)

∣∣∣∣∣ < ε/2.

The almost sure convergence of the moments implies that

lim
n→∞

∣∣∣∣
∫ +∞

−∞
qε(x) dFn(x)−

∫ +∞

−∞
qε(x) dF (x)

∣∣∣∣ = 0,

almost surely. Moreover,

∫

{|x|>Z}
|x|k dF (x) ≤ m2k

Zk
≤ (4Λ1)k+1

Zk
,∀k ∈ N0, (65a)

having used 1 ≤ |x|k/Zk when |x| > Z for the penultimate inequality and (47a) for

the last inequality. Notice that by the choice of Z > 4Λ1 in Corollary 4 the right hand
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side of (65a) is monotonically decreasing in k and goes to zero as k →∞, whereas by

the choice of Z > 1 the left hand side of (65a) is increasing in k and it should therefore

be true that supk
∫ +∞
−∞ |x|k1{|x|>Z}(x) dF (x) ≤ limk→∞(4Λ1)k+1/Zk = 0, thence

∫ +∞

−∞
|x|k1{|x|>Z}(x) dF (x) = 0,∀k ∈ N0

and in particular
∫ +∞
−∞ (B+ |qε(x)|)1{|x|>Z}(x) dF (x) = 0. By the same token and after

invoking the almost sure limit of the spectral moments we get that limn→∞
∫
{|x|>Z}(B+

|qε(x)|) dFn(x)| = 0, almost surely. The desired conclusion now follows, after taking

the limit as n→∞ of both sides in (59a) to get that for any ε > 0 fixed above

lim
n→∞

∣∣∣∣
∫ +∞

−∞
f(x) dFn(x)−

∫ +∞

−∞
f(x) dF (x)

∣∣∣∣ ≤ ε,

almost surely, and choosing ε > 0 arbitrarily small. �

We have thus pieced together all the ingredients required of the conclusion of Theo-

rem 2. If limn→∞ m̄
(n)
k = mk,∀k ∈ N, then Lemma 14 implies that limn→∞m

(n)
k = mk,

almost surely for any k ∈ N. Corollary 5 and Proposition 3 would then imply the weak

and almost sure convergence of the ESD Fn(·) as claimed by Theorem 2.
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