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Whether, and under what conditions, groups exhibit “crowd wisdom” has been
a major focus of research across the social and computational sciences. Much
of this work has focused on the role of social influence in promoting the wisdom
of the crowd versus leading the crowd astray, resulting in conflicting conclu-
sions about how the social network structure determines the impact of social
influence. Here, we demonstrate that it is not enough to consider the network
structure in isolation. Using theoretical analysis, numerical simulation, and re-
analysis of four experimental datasets (totaling 4, 002 human subjects), we find
that the wisdom of crowds critically depends on the interaction between (i) the
centralization of the social influence network and (ii) the distribution of the ini-
tial, individual estimates, i.e., the estimation context. Specifically, we propose
a feature of the estimation context that measures the suitability of the crowd to
benefit from influence centralization and show its significant predictive pow-
ers empirically. By adopting a framework that integrates both the structure
of the social influence and the estimation context, we bring previously conflict-
ing results under one theoretical framework and clarify the effects of social
influence on the wisdom of crowds.
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In its classical definition, the concept of “the wisdom of crowds” refers to the idea that the
aggregate estimate of a group of individuals can be superior to that of individual, credentialed
experts [1, 2]. Recent applications of this concept include technological, political, and eco-
nomic forecasting [3], crowdsourcing [4], and public policy design [5]. Conventional statistical
accounts of the wisdom of crowds rely on the following two assumptions: (i) the individual
errors are uncorrelated or negatively correlated [6], and (ii) the individuals are unbiased, i.e.,
correct, in mean expectations [2].

However, social influence processes, in which people exchange information about their es-
timates, can cause them to revise their judgment in estimation tasks [7, 8, 9, 10]. Therefore,
aggregating the revised (post-influence) estimates is not the same as aggregating the initial
(pre-influence) estimates. Prior research yields conflicting findings on the effects of social in-
fluence on the wisdom of crowds. For instance, despite the evidence that social influence can
significantly benefit group and individual estimates [9, 11, 12, 13, 14], social influence has also
been found to induce systematic bias, herding, and groupthink [7, 8].

In response to these inconsistencies, notable reconciliation efforts have focused on inves-
tigating how social network theories interact with the process of collective belief formation.
The results of these efforts, including seminal theoretical works [10, 15] and laboratory exper-
iments [9], have established that the wisdom of crowds is preserved only if the influence of
the most influential individual vanishes, i.e., becomes negligible, as the group size grows [10].
This condition is satisfied in decentralized influence structures, i.e., structures where everyone
has an equal voice, as opposed to centralized structures where one or more individuals have
disproportionate influence. Intuitively, the wisdom of crowds benefits from larger group sizes,
but centralized influence diminishes this benefit by reducing the collective estimate into the
“wisdom of the few”.

While these results appear to broadly suggest the superiority of decentralized influence,
their conclusions rest on the premise that the distribution of the initial estimates is centered
around the truth. In such situations, there are no opportunities for the crowd to improve with
social influence [10]. However, empirical distributions of numerical estimates tend to be right-
skewed with excess kurtosis, where most estimates are low, with a minority falling on a fat
right tail [8, 16, 17]. The skewness of the distribution could emerge due to systematic bias (a
tendency to over- or underestimate the actual value [16, 18, 19]) or dispersion (the spread of
estimates) in the population. Therefore, it is when the crowd is not initially centered around
the truth, as observed in many empirical settings, that centralized influence could present an
opportunity to promote crowd wisdom.
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Figure 1: This schematic illustrates our framework for analyzing the role of estimation
context in determining how social influence shapes the wisdom of crowds. Panel A il-
lustrates four types of estimation contexts by varying the distribution of the initial estimates.
Panel B provides examples of different influence structures arranged in the order of increasing
centralization—from a fully decentralized structure, where everyone has an equal voice, to a
highly centralized structure, where there is one highly influential individual. In our model, we
represent centralized structures by weighted averages that give higher weights to more influen-
tial individuals. We point out that when the distribution of the initial estimates is heavy-tailed or
right-skewed, then a weighted average with more centralized influence has a high likelihood of
falling closer to the truth than the simple, unweighted, decentralized average. Subsequently, we
propose a feature of the estimation context that predicts whether the collective estimation per-
formance improves as a result of group interactions, based only on the empirically measurable
distribution of the individual estimates.

In this study, we ask when centralized influence structures improve or hinder the wisdom of

crowds in estimation tasks. Our results demonstrate that the effect of social influence varies sys-
tematically with the distribution of the initial estimates, and, therefore, it is more heterogeneous
than previously suggested. Specifically, we propose and analyze — theoretically, numerically,
and empirically — a feature of the distribution of the initial estimates that measures the suit-
ability of a crowd to benefit from influence centralization.

To illustrate this, we consider a group of n agents tasked to estimate or forecast, with max-
imal accuracy, some unknown positive quantity such as the unemployment rate in the next
quarter, life expectancy of an ill patient, amount of calories in a meal, prevalence of global
influenza infections in two weeks, or the number of jellybeans in a jar. To model the popula-
tion of the agents performing a particular estimation task, we endow each agent with a biased
and noisy signal about the truth that constitutes her initial estimate. The initial estimates are
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independent and identically distributed with the location parameter µ, indicating the center of
the distribution that biases the estimates with respect to the truth, and the shape parameter σ,
determining the variation and tail shape.

The extent of the systematic bias, µ, and dispersion, σ, of the initial estimates can be viewed
as intrinsic properties of the estimation context: a population of agents performing a particular
estimation task. Different populations of agents, e.g., experts vs. novices, might have different
biases and dispersions for similar tasks. Conversely, the same population can vary in terms of
their bias and dispersion across different types of tasks. For brevity and to abstract the agents
and the estimation task, we refer to the distribution of the initial estimates as the estimation

context. Figure 1.A shows four estimation contexts with varying levels of bias and dispersion.
Agents frequently have access to the opinions or estimates of other agents. In many common

models of social influence [10, 15, 20], as well as in other aggregation mechanisms [6, 21, 22],
the collective estimate of the group of agents can be expressed as a linear combination (weighted
average) of the initial estimates. This definition of collective estimation contains the simple
average of the initial estimates as a special case, i.e., the typical “wisdom of crowds”.

We introduce an influence centralization parameter, ω, to interpolate between a collective
estimate produced by a fully decentralized influence setup where every agent has an equal voice,
ω = 0, and a dictatorial setup with a single influential agent, ω = 1. Our definition of ω
coincides with Freeman’s centralization [23] for a class of network typologies that encompass
cases of practical and empirical interest, such as fully connected networks, star networks, empty
graphs (isolated individuals), and circular lattices, among others (see Materials and Methods
and SI section S1.1). Figure 1.B shows four influence network structures in this class (see SI
section S1.1 for the calculation of ω for different networks).

We measure the collective performance of the agents in terms of the proximity of the col-
lective estimate to the truth. Given the estimation context (distribution of the initial estimates),
we compute the probability that the collective estimate produced by a centralized influence
structure outperforms a decentralized baseline. We denote this probability by Ωn. Notably, Ωn

captures a critical feature of the estimation context, namely, its suitability to benefit from cen-

tralization. For instance, when Ωn < 1/2, the initial estimates are better suited for decentralized
influence structures; conversely, when Ωn > 1/2, they are better suited for centralized influence
structures.

Our theoretical analysis of Ωn verifies that for heavy-tailed or right-skewed distributions,
the performance of the collective estimate in a centralized structure where a single agent has a
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Figure 2: Our simulations illustrate the link between the distribution of the initial esti-
mates and the proposed estimation context feature, Ωn. Our proposed feature of the esti-
mation context, Ωn, measures the likelihood that a weighted average falls closer to the truth
than an unweighted average. Hence, when Ωn < 1/2, the estimation context is better suited
for decentralized (unweighted) influence structures; conversely, when Ωn > 1/2, it is better
suited for centralized (weighted) influence structures. In our theoretical model, we give a lower
bound on Ωn as a function of the estimation context and the network structure (see Materials
and Methods). For heavy-tailed distributions (e.g., Pareto, log-normal, and log-Laplace), we
identify phase transition behaviors, whereby the lower bound’s limiting value transitions from
0 to 1 or 1/2, as the distribution parameter, σ, crosses a critical value (see SI section S2.1). In
this figure, the initial estimates are sampled from a log-normal distribution for a fixed number
of agents (n = 50) and influence-centralization level (ω = 1/3). See SI Figures S1 and S3 for
other distributions and parameter choices.

non-vanishing influence (her contribution to the collective estimate does not become negligible
as n → ∞) is superior to that of the decentralized baseline. Intuitively, this is due to the
fact that the sample mean of a heavy-tailed distribution is dominated by its excess tail risk
(the egregious errors of a few individuals). On the other hand, using weighted averages in
centralized structures, we can guarantee that some random individuals exert enough influence
to prevent the group aggregate from being swayed too far by the egregious errors of the few (see
SI section S2.1). Notably, in this model, centralized structures violates the vanishing influence
condition for the wisdom of crowds, cf. [10] and SI section S2.1.5. This underscores the
importance of the distributional assumptions, which are context dependent, when studying the
effect of social influence on the wisdom of crowds.
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In Figure 2, we illustrate the behavior of our proposed feature, Ωn, for a log-normal es-
timation context, as reported in several empirical studies [8, 9, 17]. In this case, Ωn predicts
that centralized influence structures improve collective estimates over decentralized influence
structures if the distribution of the initial estimates is characterized by a log-normal distribution
with an overestimation bias or large dispersion (see SI section S2.2.1 and Figure S2 for the
effect of the systematic bias). However, this relationship is reversed when the distribution is
characterized by low dispersion and underestimation bias (see SI section S2.2 and Figure S1 for
simulation details and other distributional classes).

In order to empirically illustrate the explanatory power of our proposed estimation context
feature, Ωn, we use the data from four published experiments [8, 9, 12, 13]. In these experi-
ments, a total of 4,002 participants, organized into 131 independent groups, completed a total
of 57 estimation tasks, generating a total of 20,030 individual estimations and 815 collective
estimations (see Figure 3.A).

All experiments followed a similar procedure that involved the following three steps: (1) the
participants simultaneously and independently completed numeric estimation tasks on a range
of topics, e.g., visual estimation, trivia questions, political facts, and economic forecasts; (2)
within groups of varying sizes, the participants in the social interaction condition communicated
information about their estimates with each other; and (3) the participants had one or more
opportunities to revise their estimates. One trial consisted of a single group of participants
answering a single task.

Each task induces a different distribution on the initial estimates that are measured empir-
ically. Therefore, each task constitutes an estimation context, giving a total of 57 estimation
contexts. For each estimation context, we compute our proposed feature, Ω, directly from the
data based on the empirical initial estimates, without the need for making any distributional
assumptions. To this end, we sample initial estimates with replacement from the data, and nu-
merically estimate the probability that a weighted average (centralized structure) is closer to
the true value than an unweighted average (decentralized structure), under the empirically mea-
sured distribution of the initial estimates; see SI section S3. Figure 3.B shows the distribution
of Ω in these studies. We use the numerically measured Ω for each estimation context, as an
independent variable in our regression analysis.

We refer to the average of the individuals in each group, before and after their interactions,
as their collective initial and revised estimates, respectively. For each trial, we compare the
absolute errors of the collective initial and revised estimates. In our regressions, we use the
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following two outcome metrics: (1) the standardized (z-score) absolute error of the revised
collective estimate for all groups (with or without social interaction), and (2) whether the col-
lective revised estimate is more accurate than the collective initial estimate in groups with social
interaction. We use a linear regression for the former, and a logistic regression for the latter.

Our empirical analysis relies on the following premise: the collective initial estimate corre-
sponds to the most decentralized influence structure (ω = 0), and social interactions can only
increase the influence centralization (ω > 0). For example, even in social interactions where
everybody is equally connected in terms of the communication structure, some group members
may become more influential than others, by virtue of being more talkative, more persuasive,
or more resistant to social influence [9, 14].

We begin by testing the main hypothesis predicted by our theory; namely, that the effect
of social influence centralization on the performance of groups is moderated by our proposed
feature of the estimation context, Ω. As shown in Figure 3.C, we find that the interaction
between the centralization of the influence and the estimation context feature, Ω, significantly
affects the wisdom of crowds (β = −3.88; t-statistic = −7.20; p < 0.001). Critically, the
results of this analysis show that variation in the estimation context feature, Ω, can completely
reverse the effects of social influence centralization: specifically, when Ω < 1/2, the error
of the revised collective estimate is lower in decentralized influence structures; whereas when
Ω > 1/2, the error of the revised collective estimate is lower in centralized structures.

To find further support for this finding, we limit our attention to the groups in the centralized
influence conditions. As shown in Figure 3.D, we find that whether or not a group improved
after social interaction is substantially explained by Ω, our proposed feature of the estimation
context (odds ratio = 15.00; z-statistic = 5.66; p < 0.001).

The critical implication of the above results is that our proposed feature of the estimation
context moderates the effect of influence centralization. Therefore, we find no support to the
hypothesis that decentralized influence structures would be preferred over centralized ones in-
dependently of the estimation context.

Therefore, the effect of network structure on the collective estimation performance should
be reconceptualized under a context-dependent framework, i.e., with respect to the population
of individuals performing the particular task. There is no single influence structure that is
better than others in all contexts. Such a context-dependent framework can unify previously
conflicting findings on crowd wisdom under a single theoretical framework and explain the
effects of the influence network structure on the quality of the collective estimates.
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Participants Groups Tasks Trials
Lorenz et al. 2011 144 12 6 71
Gurcay et al. 2015 278 21 16 336
Becker et al. 2017 1,360 34 28 152
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Figure 3: Reanalysis of previously published experiments indicates that our proposed fea-
ture, Ω, has significant predictive powers for determining when the group performance
improves as a result of social interactions. Panel A shows the number of participants, groups,
tasks, and trials in the reanalyzed experiments. Panel B displays the distribution of the estima-
tion context feature, Ω, across these studies. Panel C shows the marginal effect of the interaction
term between influence centralization and the estimation context feature, Ω: as Ω increases, the
group performance improves in the centralized influence conditions, and degrades in the de-
centralized influence conditions. Panel D shows that the probability of groups improving their
performance after social interaction is substantially explained by our proposed feature of the
estimation context, Ω. The bands are the 95% confidence intervals.
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Admittedly, the estimation context is only one of several potential sources of inconsistency
in previous studies. For instance, vagueness or ambiguity of some theoretical constructs, e.g.,
influence, can result in different studies of, seemingly, the same phenomenon, to measure differ-
ent things. Furthermore, we acknowledge that our proposed feature of the estimation context,
Ω, is concerned only with the probability of the following event: the collective estimate gener-
ated by the agents interacting in a centralized influence structure is closer to the truth than the
collective estimate generated by the agents in a decentralized structure. This is not the same
as comparing mean squared error or other expected loss functions for these collective estimates
(see Figure S4 for examples of other loss functions). Finally, we note that we only studied
one class of tasks: numerical estimation with a non-negative, objective truth. Relevant research
on other classes of tasks has similarly demonstrated that variation in context features, such as
complexity [24, 25, 26, 27], fundamentally alter collective problem solving outcomes.

Our theoretical and empirical analysis has demonstrated that conclusions about the role of
the social influence can be inconsistent unless the estimation context is explicitly accounted
for. Many research extensions are warranted from this framework. For example, unlike what is
assumed in most available work, including ours, the social networks we live in are not random,
nor are they imposed by external forces. Rather, these social networks emerge under the influ-
ence of endogenous social processes and gradually evolve within a potentially non-stationary
context. A truly context-dependent view on crowd wisdom should open connections with di-
verse research fields and help advance an interdisciplinary understanding of the design of social
systems and their information outcomes.

Materials and Methods

Collective estimation and influence centralization, ω. We consider a group of n agents
indexed by i = 1, . . . , n, and assume that each agent is endowed with an independent and
identically distributed initial estimate ai,0. The distribution of the initial estimates, F θµ,σ, is
parametrized by the unknown truth, θ, the systematic bias, µ, and the dispersion, σ. In many
common models of social influence, the collective estimate, an, can be expressed as a convex
combination of the initial estimates: an(w̄) =

∑n
i=1wiai,0, where w1, . . . , wn are positive real

weights summing to one. These weights represent the influence of individual agents on shaping
the collective estimate. Without loss of generality, we assume that the agents are ordered in the
decreasing order of their influence, i.e., w1 ≥ w2 ≥ . . . ≥ wn. In order to investigate the role
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of network centralization, 0 ≤ ω ≤ 1, we consider a class of influence structures indexed by ω
such that (see SI section S1.1 for more details),

an(ω) = ωa1,0 + (1− ω)
1

n

n∑

i=1

ai,0.

Using ω, we interpolate between a dictatorial setup with a single influential voice (i.e., w1 =

ω = 1 and w2 = . . . = wn = 0) and a fully decentralized setup where everyone has an equal
voice (i.e., ω = 0 and w1 = w2 = . . . = wn = 1/n).

Proposed feature for the estimation context, Ω. We measure the probability that the col-
lective estimate produced by a centralized influence structure, an(ω), ω > 0, outperforms the
decentralized baseline, an(0). We denote this probability by Ωn(ω,F θµ,σ) := Pθµ,σ[|an(ω)−θ| <
|an(0) − θ|]. To compute Ωn in Figure 2, we have fixed n = 50, θ = 2, and ω = 1/3. There-
fore, Ω is entirely determined by the distribution of the initial estimates (µ and σ). Similarly,
in Figure 3, we have fixed n = 50 (sampled randomly and repeatedly from the study’s dataset),
θ = 2, and ω = 1/3, so that Ω is entirely determined by the empirical distribution of the ini-
tial estimates. Figure S3 and Tables S2-S3 replicate our simulation and empirical results for a
range of n and ω values. For distributions F θµ,σ, supported over positive reals, with cumulative
function F θ

µ,σ, we propose the following lower bound (proved in SI section S2.1):

Ωn(ω,F θµ,σ) ≥ sup
β>θ/(1−ω)

{
F θ
µ,σ(β)(1− F θ

µ,σ(nβ)n−1)
}
.

In SI section S2.1, we show how to limit the rate of tail decay for different classes of distri-
butions, to produce a non-trivial (non-zero) lower bound as n → ∞. For heavy-tailed distri-
butions, such as Pareto, log-Laplace, and log-normal (see SI subsections S2.1.1 to S2.1.3), we
identify phase transition behaviors, whereby the proposed lower bound’s limiting value transi-
tions from 0 to 1 or 1/2, as σ crosses a critical value.

Statistical tests. All statistics were two-tailed and based on mixed-effects models that included
random effects to account for the nested structure of the data. In particular, the regression
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equation for Figure 3.C is:

yij = β0 + β1Ω(j) + β2Ii + β3IiΩ(j) + vi + εij,

where yij is the standardized (z-score) absolute error of the revised collective estimate for the
i-th group in the j-th estimation context, Ω(j); β0 is the fixed intercept for the regression model;
β1 is the fixed coefficient for the estimation context feature, Ω; Ii ∈ {0, 1} is an indicator vari-
able of whether or not social interaction has occurred; β2 is the fixed coefficient for the social
influence centralization; β3 is the fixed coefficient for the interaction term between the estima-
tion context feature, Ω, and influence centralization (shown in Figure 3.C); vi is the random
coefficient for the i-th group; and εij is a Gaussian error term. The absolute error of the re-
vised collective estimate has been standardized, i.e., z-scored, in order to compare errors across
different tasks (the correct answer for different tasks can differ by orders of magnitude). The
analysis was conducted on 815 observations; 678 groups with social influence (centralized),
and 137 groups without social influence (decentralized).

The logistic regression equation for Figure 3.D is:

yij =
1

1 + exp(β0 + β1Ω(j) + vi + εij)
,

where yij is a binary indicator for whether or not the i-th group in the j-th estimation context
improved the accuracy of its collective estimate after social interaction; β0 is the fixed intercept
for the regression model; β1 is the fixed coefficient for the estimation context feature, Ω; vi is
the random coefficient for the i-th group; and εij is a Gaussian error term. The analysis was
conducted on 678 observations (groups with social influence).

Further details of the regression analysis are provided in SI section S3.1, Table S1. Robust-
ness checks for the regression results are presented in Tables S2-S3.

Data and code availability. Replication data and code are available at https://github.com/amaatouq/task-
dependence.
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Supplementary Information
This Supplementary Information is organized in five sections. In section S1, we present network
models of collective estimation that facilitate our study of the collective estimate, an(ω), as a
function of the centralization, ω, and in relation to its network structure. In section S2, we give
the proof of our main proposition (lower bound on Ωn) and relate it to the rate of tail decay for
many common distributions. We study these relationships theoretically and through numerical
analysis as well. In section S3, we develop empirical measures to analyze prior experiments in
terms of the features of their estimation context. In section S4, we provide robustness checks.
Supplementary references are listed in section S5.
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Preliminary notation. For the convenience of the reader, we collect here some notation that will be used through-
out. We study collective estimation by a group of agents and use n to denote the group size. For sequences
of real numbers fn and gn, indexed by integers n, we use the asymptotic notations fn � gn to signify that
limn→∞ fn/gn = 1. We consider agents that are indexed by i = 1, . . . , n. We use bold fonts to represent random
variables. We use a1,0, . . ., an,0 to denote the individual estimates in the absence of any social interactions. The
collective estimate is denoted by an; it is determined in terms of the individual estimates, in a manner that involves
a centralization parameter ω: an(ω) = ωa1,0 + (1 − ω) 1

n

�n
i=1 ai,0. Vectors are denoted by a bar on top of their

letters and we use superscript T to denote matrix transpose.
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S1 Network models of collective estimation

Let θ be an unknown state of the world. Consider n agents indexed by i = 1, . . . , n, each
endowed with a biased and noisy signal about θ. The signals are independent and identically
distributed across the agents and constitute their initial estimates of the unknown θ:

ai,0 ∼ Fθ
µ,σ. (S.1)

The the distribution of the initial estimates in (S.1), Fθ
µ,σ, is parametrized by θ, µ, and σ. We

think of µ as a location parameter (the center of the distribution) that biases the individual
estimates against θ. This captures the level of systematic bias in the population. We think of
σ as a variance-proxy/shape parameter that determines the variation and tail-fatness of Fθ

µ,σ.
In other words, σ can be interpreted as the amount of prior information a group has about the
quantity and represents the level of demonstrability of the estimation task.

The agents interact in a group. Their group interactions can be modeled in a variety of ways
leading to a group aggregate an(w̄) that is a convex combination of the initial estimates:

an(w̄) := w̄T ā0 =
n�

i=1

wiai,0, (S.2)

where w̄ is an entry-wise non-negative vector satisfying w̄T1 = 1.
In general, different agents’ initial estimates will receive different weights in the collective

estimate. A common method of modeling group interactions is through DeGroot-style iterated
averaging, which has a long history in mathematical sociology and social psychology [1]. The
origins of iterated averaging models can be traced to French’s seminal work on “A Formal The-
ory of Social Power” [2], followed up by Harary’s investigation of the mathematical properties
of the averaging model, including the consensus criteria, and its relations to Markov chain the-
ory [3]. This model was further popularized by DeGroot’s seminal work [4] on linear opinion
pools and belief exchange dynamics. In a typical iterated averaging setup, an agent’s estimate
at time t is given by a weighted average of her neighboring estimates at time t − 1:

ai,t =
n�

j=1

Wijaj,t−1,
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In matrix notation, we have:

āt = W āt−1 = W tā0, (S.3)

where āt = (a1,t, a2,t, . . . , an,t)
T and W = [Wij] is the matrix of weights. We refer to matrix

W as the social influence matrix. For a strongly connected social network with Wii > 0 for all
i, the Perron-Frobenius theory [5, Theorems 1.5 and 1.7] implies that W has a simple positive
real eigenvalue equal to 1. Moreover, the left and right eigenspaces associated with the unit
eigenvalue are both one-dimensional with the corresponding eigenvectors w = (w1, . . . , wn)T

and 1 = (1, . . . , 1)T . The magnitude of any other eigenvalue of W is strictly less than 1;
therefore, we have:

lim
t→∞

āt = lim
t→∞

W tā0 = 1w̄T ā0 = 1an(w̄), (S.4)

which implies a consensus on the collective estimate (S.2).
In several experimental settings [6, 7, 8, 9], human participants get to revise their numerical

estimates a few times only, and the collective estimate is then calculated by averaging the revised
estimates. Let us denote the number of communication rounds in such a scenario by τ . Using
(S.3) to model the revision of the numerical estimates, we again arrive at a model that gives the
collective estimate as a convex combination of the initial estimates, an(w̄τ ) = w̄T

τ ā0, where the
transposed vector of weights, w̄T

τ , is given by:

w̄T
τ =

1

n
1T W τ .

S1.1 ω: Parameterizing a class of networks by their centralization

Motivated by our interest in comparing the collective estimation performance of centralized and
decentralized networks, we focus our attention on a class of social influence network structures
for which the collective estimate can be written as follows:

an(ω) = ωa1,0 + (1 − ω)
1

n

n�

i=1

ai,0, (S.5)
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where ω is a measure of influence centralization, with ω = 1 representing a fully centralized
social influence structure (w1 = 1, and w2 = . . . = wn = 0) and ω = 0 corresponding to a
fully decentralized social influence structure (w1 = . . . = wn = 1/n). Indeed, with w̄ as the
centrality vector, the parameter ω corresponds to the Freeman centralization of the underlying
network with social influence matrix W . By varying ω ∈ [0, 1], we can interpolate between
the two extremes: full centralization, ω = 1, and complete decentralization, ω = 0. This class,
although not encompassing, is ideal for addressing the central question of interest in this work.
The networks in this class are such that one agent, i = 1, is distinguished with a higher influence
and all others, i > 1, have an equal but lower influence. Networks in this class include cases
of practical and empirical interest, such as star networks and circular lattices. All networks in
Figure 1.B, in the main text, belong to this class.

Here, we consider the special cases of star and cycle networks with bidirectional edges, and
equal weights on all edges that are incoming to the same node. Their respective social influence
matrices and associated left eigenvectors are given by:

W� =




1/n 1/n 1/n · · · 1/n

1/2 1/2 0 · · · 0

1/2 0 1/2 0 · · · 0

...
...

. . .
...

...

0

1/2 0 · · · 0 1/2




, Wo =




1/3 1/3 0 · · · 0 1/3

1/3 1/3 1/3 0 . . . 0

0
. . .

. . . 0
...

0
. . . 0 1/3 1/3 1/3

1/3 . . . 0 1/3 1/3




,

w̄� = (n/(3n − 2), 2/(3n − 2), . . . , 2/(3n − 2))T , w̄o = (1/n, 1/n, . . . , 1/n)T .

Subsequently, the network centralization parameter ω in (S.5) for the star and cycle networks
are given by ω� = (n−2)/(3n−2) and ωo = 0. Note that as n → ∞, ω� → 1/3. This, together
with the fact that experimental studies have used the star topology to test collective estimation
in centralized structures [7], motivates our choice of ω = 1/3 in numerical simulations and
empirical analysis. In section S4, we show that our results are robust to this choice of ω.

Although our main proposition in section S2.1 gives a lower bound that is valid for any
n, most of the subsequent analysis concerns the limiting behavior of the collective estimates
as n → ∞. Our results extend to networks with a finite (non-increasing) collection of influ-
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ential agents. To accommodate such cases, one would replace a1,0 in (S.5) with the (possibly
weighted) average of the initial estimates of the k influential agents, for some fixed constant
k. One can similarly consider generalizations where the remaining, non-influential agents have
unequal — but all vanishing — weights (going to zero as n → ∞).

S1.2 Ω: A proposed feature for the estimation context

We consider a case where agents are randomly placed in the social influence network. This
is typical of many experimental setups [8, 7, 6]. Let Eθ

µ,σ be the expectation with respect to
the random draws of the n i.i.d. initial estimates, a1,0, . . . , an,0 ∼ Fθ

µ,σ, and let Pθ
µ,σ be the

corresponding probability measure. The expected mean square root error, mean absolute error,
and mean squared error of the collective estimate are given by:

MSREn(w̄, F θ
µ,σ) := Eθ

µ,σ

�
|an(w̄) − θ|1/2

�
,

MAEn(w̄, F θ
µ,σ) := Eθ

µ,σ [|an(w̄) − θ|] ,

MSEn(w̄, F θ
µ,σ) := Eθ

µ,σ

�
(an(w̄) − θ)2

�
.

In order to investigate the interaction between the network structure and the distribution of
the initial estimates, (i.e. the estimation context: a population of agents performing a particular
estimation task), we propose the following measure of how the collective estimate an(w̄) =

w̄T ā0 performs against a fully decentralized aggregate an(0):

Ωn(w, Fθ
µ,σ) := Pθ

µ,σ[|an(w̄) − θ| < |an(0) − θ|],

where w is the centrality vector in (S.4). Restricting attention to the class of networks in sub-
section S1.1, with an(ω) = ωa1,0 + (1 − ω) 1

n

�n
i=1 ai,0, we can write:

Ωn(ω, F θ
µ,σ) = Pθ

µ,σ[|an(ω) − θ| < |an(0) − θ|].

This measure, Ωn(ω, F θ
µ,σ), corresponds to the probability that a network with social influence

centralization ω > 0 outperforms a decentralized network with ω = 0, in absolute error perfor-
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mance. Similarly, for other performance measures, we can write:

MSREn(ω, F θ
µ,σ) := Eθ

µ,σ

�
|an(ω) − θ|1/2

�
, (S.6)

MAEn(ω, F θ
µ,σ) := Eθ

µ,σ [|an(ω) − θ|] ,

MSEn(ω, F θ
µ,σ) := Eθ

µ,σ

�
(an(ω) − θ)2

�
.

Our focus throughout the paper will be on Ωn, which we propose as a critical feature of the
estimation context, to capture its suitability to benefit from centralization.

In section S2, we present a theoretical and numerical analysis of the properties of our pro-
posed feature, Ωn. In particular, we show how the behavior of Ωn varies with the estimation
context, i.e. the distribution of the initial estimates. In section S2.1, we present a theoretical
lower bound on Ωn(ω, F θ

µ,σ) and analyze its behavior for various classes of distributions, Fθ
µ,σ.

In section S2.2, we supplement these findings by numerical analysis and simulations.
In section S3, we demonstrate the explanatory power of Ωn in determining how and when

social influence improves the collective estimation accuracy in prior empirical studies. In par-
ticular, in experimental conditions with no social interactions, an external observers polls each
of the participants for their opinions. Therefore, in the absence of social influence, the aggre-
gate is given by an(0) = (1/n)

�n
i=1 ai,0, which is equivalent to a fully decentralized influence

structure. On the other hand, in the presence of social influence, the participants revise their
estimates as a result of their social interactions, thus leading to an aggregate that is a weighted
average of the initial estimate, an(w̄) =

�n
i=1 wiai,0. Hence, social interaction leads to a col-

lective estimate that is less decentralized. In our model, we capture this case by an(ω), ω > 0.
We present our empirical results in the main text for ω = 1/3 and n = 50. In section S4 we
show that our results are robust to our choices of ω and n.

Our proposed feature of the estimation context, Ωn, is concerned only with the probability
of the following event: the collective estimate generated by the agents interacting in a central-
ized influence structure will be closer to the truth than the collective estimate generated by the
agents in a decentralized structure. This is not the same as comparing the expected loss or error
magnitudes. In section S4, Figure S4, we show the results for various loss function choices.
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S2 Theoretical analysis of Ω

In this section, we first propose a lower bound on Ωn(ω, F θ
µ,σ) in subsection S2.1, followed

by analyses of its behavior for different distributions in five sub-subsections: these are the
Pareto, S2.1.1, log-Laplace, S2.1.2, log-normal, S2.1.3, other heavy-tailed, S2.1.4, and thin-
tailed distributions, S2.1.5. In subsection S2.2, we describe the procedure for direct numerical
simulations of Ω for these various classes and offer additional numerical insights.

S2.1 The main proposition

Motivated by empirical literature that pose estimation questions to human participants, we focus
on 0 < θ and distributions F θ

µ,σ with support over positive reals. Fix 0 < θ, 0 < ω < 1,
θ/(1 − ω) < β, and consider the event E1 = {a1,0 < β}. Note that for many distributions
we can make Pθ

µ,σ(E1) arbitrarily close to one by taking β large enough. Next consider the
event En = {an(0) > β + a1,0/n}. Note that En implies an(0) > β; furthermore E1 and En are
independent events. On the other hand, conditioned on the events E1 and En, we have:

|an(ω) − θ| = |ωa1,0 + (1 − ω)an(0) − θ| < ωa1,0 + |(1 − ω)an(0) − θ|

< ωβ + |(1 − ω)an(0) − θ|

= ωβ + (1 − ω)an(0) − θ < ωan(0) + (1 − ω)an(0) − θ = |an(0) − θ| ,

where in the second line we have used β > a1,0, and in the third line we have used an(0) > β

and (1 − ω)an(0) > (1 − ω)β > θ. Hence, conditioned on E1 ∩ En, we have |an(ω) − θ| <

|an(0) − θ|, i.e., centralized networks outperform decentralized ones. We can thus bound
Ωn(ω, F θ

µ,σ), the probability that a social influence network with centralization ω outperforms a
decentralized one (ω = 0) in absolute error measure:

Ωn(ω, F θ
µ,σ) ≥ Pθ

µ,σ[E1 ∩ En] = Pθ
µ,σ[E1]Pθ

µ,σ[En]. (S.7)
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Denoting the cumulative distribution F θ
µ,σ(x) := Pθ

µ,σ[a1,0 ≤ x] and the tail probability F̄ θ
µ,σ(x) :=

Pθ
µ,σ[a1,0 > x], we can write Pθ

µ,σ[E1] = Pθ
µ,σ[a1,0 ≤ β] = F θ

µ,σ(β), and

Pθ
µ,σ[En] = Pθ

µ,σ[
�n

2 ai,0 > nβ ] ≥ Pθ
µ,σ[ max

2,...,n
ai,0 > nβ ] = 1 − F θ

µ,σ(nβ)n−1. (S.8)

Using Pθ
µ,σ[E1]Pθ

µ,σ[En] ≥ F θ
µ,σ(β)(1− F θ

µ,σ(nβ)n−1), together with (S.7), we arrive at our main
proposition:

Proposition. Ωn(ω, F θ
µ,σ) ≥ sup

β>θ/(1−ω)

�
F θ

µ,σ(β)(1 − F θ
µ,σ(nβ)n−1)

�
.

To proceed, let us denote the lower bound:

Ωn(ω, F θ
µ,σ) := sup

β>θ/(1−ω)

�
F θ

µ,σ(β)(1 − F θ
µ,σ(nβ)n−1)

�
. (S.9)

Some observations are now in order regarding the behavior of the lower bound, Ωn(ω, F θ
µ,σ).

First note that Ωn(ω, F θ
µ,σ) is decreasing in θ and ω. Secondly, the asymptotic behavior of

Ωn(ω, F θ
µ,σ), as n → ∞, is determined by F θ

µ,σ(nβ)n−1. Note that F θ
µ,σ(nβ) ≤ 1 and F θ

µ,σ(β) →
1 as n → ∞ for any β > 0. Therefore, if F θ

µ,σ(nβ) → 1 at a slow enough rate such that
F θ

µ,σ(nβ)n−1 is bounded away from one for all n, then F θ
µ,σ(β)(1 − F θ

µ,σ(nβ)n−1) is bounded
away from zero as n → ∞. Subsequently, for various classes of distributions with slow enough
tail decay, we can establish nontrivial lower bounds Ωn(ω, F θ

µ,σ) > 0.
In subsections S2.1.1 to S2.1.3, we give conditions on the estimation context, i.e., the dis-

tribution of the initial estimates (parameterized by µ, σ, and θ), of well-known heavy-tailed
distributions such that Ωn,Ωn → 1 as n → ∞. In subsection S2.1.4, we discuss the general
properties of heavy-tailed distributions that make them relevant to our proposition. Finally, in
subsection S2.1.5 we present countervailing arguments for thin-tailed distributions.

S2.1.1 Pareto (power-law)

Pareto or power-law distributions are archetypal, heavy-tailed distributions characterized by
their polynomial tail decay. Consider a Pareto distribution with location parameter θeµ and
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shape parameter σ, defined as follows:

F̄ θ
µ,σ(x) = (θeµ/x)1/σ , for x ≥ θeµ. (S.10)

For Pareto distributions we have:

F θ
µ,σ(β)(1 − F θ

µ,σ(nβ)n−1) =

�
1 −

�
θeµ

β

�1/σ
�

1 −
�

1 −
�
θeµ

nβ

�1/σ
�n−1




�
�

1 −
�
θeµ

β

�1/σ
��

1 − e−n(θeµ/nβ)1/σ
�

, (S.11)

where we used the n → ∞ asymptotic equality

e−n(θeµ/nβ)1/σ �
�

1 −
�
θeµ

nβ

�1/σ
�n−1

. (S.12)

We now consider the three distinct n → ∞ limiting behavior that arise for σ > 1, σ = 1, and
σ < 1:

• For σ > 1, as n → ∞ we get

Ωn(ω, F θ
µ,σ) ≥ 1 − (θeµ/β)1/σ for all β > θ/(1 − ω),

and letting β → ∞ we conclude that

Ωn(ω, F θ
µ,σ) � Ωn(ω, F θ

µ,σ) � 1, for σ > 1, and any 0 < θ, 0 < ω < 1, and real µ.

• Replacing σ = 1 in (S.11), the lower bound Ωn(ω, F θ
µ,1) can be calculated as follow:

sup
β>θ/(1−ω)

�
1 − θeµ

β
− e−θeµ/β +

θeµ

β
e−θeµ/β

�

=





W0(e
2) + 1/W0(e

2) − 2 ≈ 0.199, if µ ≥ log
�

2−W0(e2)
1−ω

�
,

1 − eµ(1 − ω) − e−eµ(1−ω) + eµ(1 − ω)e−eµ(1−ω), if µ < log
�

2−W0(e2)
1−ω

�
.
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To see why, denote x = θeµ/β. The maximum of 1−x−e−x+xe−x occurs at x� satisfying
−1 + 2e−x� − x�e−x�

= 0. The latter has a unique solution over the positive reals given
by x� = 2 − W0(e

2) ≈ 0.443, where W0 is the principal branch Lambert W function,
uniquely satisfying W0(e

2)eW0(e2) = e2 on positive reals. Replacing x = 2 − W0(e
2)

in 1 − x − e−x + xe−x gives the maximum value W0(e
2) + 1/W0(e

2) − 2 realized at
β = θeµ/(2 − W0(e

2)) if eµ ≥ (2 − W0(e
2))/(1 − ω). If eµ < (2 − W0(e

2))/(1 − ω),
then the supremum is achieved with β = θ/(1 − ω) at a value that is strictly less than
W0(e

2) + 1/W0(e
2) − 2 ≈ 0.199.

• For σ < 1, as n → ∞ we get

�
1 −

�
θeµ

β

�1/σ
��

1 − e−n(θeµ/nβ)1/σ
�
→ 0.

for any β.

We thus obtain the following asymptotic characterization of the lower bound for Pareto distri-
butions (indicating a phase transition at σ = 1):

Ωn(ω, F θ
µ,σ) �





0, if σ < 1,

(1 − eµ(1 − ω))(1 − e−eµ(1−ω)), if σ = 1 and µ < log
�

2−W0(e2)
1−ω

�
,

W0(e
2) + 1/W0(e

2) − 2 ≈ 0.199, if σ = 1 and µ ≥ log
�

2−W0(e2)
1−ω

�
,

1, if σ > 1.

(S.13)
In Figure S1.A, top, we have plotted (S.13) for ω = 1/3, θ = 2, and n = 50. Comparing

with the direct numerical simulation in Figure S1.A, bottom, shows how the bound gets tighter
for large σ.

S2.1.2 Log-Laplace

Jayles et al. [10] point out that log-Laplace provides a better fit to the empirically measured
distribution of the initial estimates, compared to log-Cauchy [11], or log-normal. Here, we
analyze the asymptotic behavior of the proposed lower bound as n → ∞, when the initial
estimates are distributed according to a log-Laplace distribution with parameters log θ + µ and
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σ:

F θ
µ,σ(x) =





1
2
exp

�
log(x/θ)−µ

σ

�
, if log(x/θ) < µ,

1 − 1
2
exp

�
µ−log(x/θ)

σ

�
, if log(x/θ) ≥ µ.

(S.14)

For n large enough, we have log(nβ/θ) ≥ µ, and using the same asymptotics as in (S.12) we
get:

F θ
µ,σ(nβ)n−1 =

�
1 − 1

2
exp

�
µ − log(nβ/θ)

σ

��n−1

=

�
1 −

�
1

n

�1/σ

exp

�
µ + log θ − log β

σ
− log(2)

��n−1

� exp

�
−n

�
1

n

�1/σ

exp

�
µ + log θ − log β

σ
− log(2)

��

�





1, if σ < 1,

exp
�

−eµθ
2β

�
, if σ = 1,

0, if σ > 1.

Subsequently, for σ < 1 we have F θ
µ,σ(β)(1− F θ

µ,σ(nβ)n−1) � 0, for any β. On the other hand,
for σ > 1 we have F θ

µ,σ(β)(1 − F θ
µ,σ(nβ)n−1) � F θ

µ,σ(β), which is increasing in β and goes to
one as β increases to ∞. Hence,

Ωn(ω, F θ
µ,σ) = sup

β>θ/(1−ω)

�
F θ

µ,σ(β)(1 − F θ
µ,σ(nβ)n−1)

�
� 1, for σ > 1.

Finally, for σ = 1, we have:

F θ
µ,1(β)(1 − F θ

µ,1(nβ)n−1) �





�
1 − exp

�
−eµθ
2β

��
β

2θeµ , if β
eµθ

< 1,
�
1 − exp

�
−eµθ
2β

���
1 − eµθ

2β

�
, if β

eµθ
≥ 1.
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Optimizing β gives:

Ωn(ω, F θ
µ,1) �





1−1/
√

e
2

≈ 0.1967, if µ ≥ − log(1 − ω),
�
1 − e−eµ(1−ω)/2

�
(1 − eµ(1 − ω)/2) < 1−1/

√
e

2
, if µ < − log(1 − ω).

We summarize the above results in the following asymptotic characterization of the lower
bound for log-Laplace distributions, with a phase transition at σ = 1:

Ωn(ω, F θ
µ,σ) �





0, if σ < 1,
�
1 − e−eµ(1−ω)/2

�
(1 − eµ(1 − ω)/2) , if σ = 1 and µ < − log(1 − ω),

1−1/
√

e
2

≈ 0.1967, if σ = 1 and µ ≥ − log(1 − ω),

1, if σ > 1.

(S.15)
In Figure S1.B, top, we have plotted (S.15) for ω = 1/3, θ = 2, and n = 50. Comparing

with the direct numerical simulation in Figure S1.B, bottom, shows how the bound gets tighter
for large σ.

S2.1.3 Log-normal

Several empirical studies report a log-normal distribution for the initial estimates [7, 8, 12].
Here, we analyze the case where the initial estimates are distributed according to a log-normal
distribution with parameters log θ + µ and σ:

F θ
µ,σ(x) = Φ

�
log(x/θ) − µ

σ

�
, x > 0, (S.16)

where Φ is the standard normal distribution. We next apply the following control over the
Gaussian tail:

1 − 1√
2πt

e−t2/2 ≤ Φ(t) ≤ 1 − t√
2π(t2 + 1)

e−t2/2
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to obtain:

�
1 − σ√

2π(log(nβ/θ) − µ)
exp

�
−(log(nβ/θ) − µ)2

2σ2

��n−1

≤ F θ
µ,σ(nβ)n−1

≤
�

1 − (log(nβ/θ) − µ)σ√
2π((log(nβ/θ) − µ)2 + σ2)

exp

�
−(log(nβ/θ) − µ)2

2σ2

��n−1

. (S.17)

We next choose σ = σn, with β and θ, fixed such that (log(nβ/θ) − µ)/σn → ∞ as n → ∞.
Taking the limit n → ∞, with σ = σn in (S.17), we get:

F θ
µ,σn

(nβ)n−1 (S.18)

� exp

�
− nσn√

2π log n
exp

�
− (log(nβ/θ) − µ)2

2σ2
n

��

= exp

�
− 1√

2π log n
exp

�
log n + log σn − (log(nβ/θ) − µ)2

2σ2
n

��

Focusing on the second exponent, we obtain :

fn := log n + log σn − (log(nβ/θ) − µ)2

2σ2
n

(S.19)

= log n + log σn − log(nβ/θ)2

2σ2
n

− µ2

2σ2
n

+
µ log(nβ/θ)

σ2
n

= log n + log σn − (log n)2

2σ2
n

− log(β/θ) log n

σ2
n

− log(β/θ)2

2σ2
n

− µ2

2σ2
n

+
µ log(nβ/θ)

σ2
n

.

Setting σn =
�

log n/kn in (S.19) yields:

fn = (1 − kn/2) log n + (1/2) log log n + (µ − log(β/θ)) kn − (1/2) log kn

+ (−(1/2) log(β/θ)2 − µ2/2 + µ log(β/θ))
kn

log n

�





(2−kn)
2

log n, if kn < 2,

(1/2) log log n, if kn = 2,

(2−kn)
2

log n, if kn > 2.
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Finally, substituting in (S.18), we get:

F θ
µ,σn

(nβ)n−1 � exp
�
− efn/(

√
2π log n)

�
�





0, if σn >
�

log n/2,

1, if σn ≤
�

log n/2.

The latter together with the fact that F θ
µ,σn

(β) = Φ ((log(β/θ) − µ)/σn) � Φ(0) = 1/2, for
σn >

�
log n/2, leads to the following asymptotic characterization for log-normal distributions

(indicating a phase transition at σn =
�

log n/2):

F θ
µ,σn

(β)(1 − F θ
µ,σn

(nβ)n−1) �





0, if σn ≤
�

log n/2,

1/2, if σn >
�

log n/2,

which is true for all β, and in particular yields:

Ωn(ω, F θ
µ,σ) = sup

β>θ/(1−ω)

�
F θ

µ,σ(β)(1 − F θ
µ,σ(nβ)n−1)

�

�





0, if σn ≤
�

log n/2,

1/2, if σn >
�

log n/2.
(S.20)

In Figure S1.C, top, we have plotted (S.20) for ω = 1/3, θ = 2, and n = 50. Comparing
with the result of the direct numerical simulation, Figure S1.C, bottom, shows how the bound
gets tighter for larger σ.

S2.1.4 Other heavy-tailed distributions

Many empirical studies [8, 11, 12, 13, 14] point out a heavy-tailed distribution for the numer-
ical estimates (with a few estimates that fall on a fat right tail). Following the proof of the
main proposition, we pointed out that for heavy-tailed distributions where F̄ θ

µ,σ(nβ) decreases
slowly, we can provide non-trivial lower bounds on Ωn that remain bounded away from zero,
Ωn(ω, F θ

µ,σ) > 0, even as n → ∞. In fact, if F̄ θ
µ,σ(nβ) decreases at a rate that is slower than

1/n, i.e., nF̄ θ
µ,σ(nβ) → ∞, then F θ

µ,σ(nβ)n−1 → 0 as n → ∞. For such slowly decaying tails,
the supremum in (S.9) is achieved as β → ∞, and we can guarantee that Ωn � Ωn � 1; hence,
the proposed lower bound is asymptotically tight.
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Here, we identify a second way, in which, our proposed lower bound is tighter for heavy-
tailed distributions. To this end, let us revisit (S.8) — a critical step in deriving the proposed
lower bound:

Pθ
µ,σ[En] = Pθ

µ,σ[
�n

i=2 ai,0 > nβ ] > Pθ
µ,σ[ max

2,...,n
ai,0 > nβ ].

This inequality is at the heart of the so-called “catastrophe principle” [15, Chapter 3] that applies
to many heavy-tailed distributions. Intuitively, this principle entails that when one observes a
larger than expected average value for a collection of heavy-tailed random variables, then this
observation is most likely explained by the existence of a very large sample in the collection,
i.e. a “catastrophe”. On the other hand, the countervailing explanation in the case of light-
tailed random variables is that “most” of the samples in the collection happen to be larger than
expected. Formally, the distribution Fθ

µ,σ of the initial estimates is said to satisfy the catastrophe
principle [15, Definition 3.1], if for any n:

lim
t→∞

Pθ
µ,σ[ max

1,...,n
ai,0 > t ]

Pθ
µ,σ[

�n
i=1 ai,0 > t ]

= 1.

The preceding condition is equivalent to having:

lim
t→∞

nPθ
µ,σ[a1,0 > t]

Pθ
µ,σ[

�n
i=1 ai,0 > t]

= 1, for all n ≥ 2.

The latter is the defining property for the subexponential family of distributions, which include
many common classes of heavy-tailed distributions such as those considered in subsections
S2.1.1 to S2.1.3. Setting t = nβ and letting n → ∞, we obtain that if F θ

µ,σ is a member of the
subexponential family, then

Pθ
µ,σ[En] = Pθ

µ,σ[
�n

i=2 ai,0 > nβ ] � Pθ
µ,σ[ max

2,...,n
ai,0 > nβ ].

Hence, for such distributions belonging to the subexponential family our proposed lower bound
is asymptotically tight in as much as Pθ

µ,σ[E1 ∩ En] � F θ
µ,σ(β)(1 − F θ

µ,σ(nβ)n−1), and the only
way in which our lower bound may be loose is through (S.7), i.e. if Ωn(ω, F θ

µ,σ) > Pθ
µ,σ[E1∩En]

for all β > θ/(1 − ω) as n → ∞.
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It is worth noting that many light-tailed distributions portray an opposite picture, referred to
as “conspiracy principle” in [15, Definition 3.2]; formally defined as follows:

lim
t→∞

Pθ
µ,σ[ max

1,...,n
ai,0 > t ]

Pθ
µ,σ[

�n
i=1 ai,0 > t]

= 0, for all n ≥ 2.

As an example, suppose that the initial estimates are exponentially distributed with mean θeµ

and the following tail probability:

F̄ θ
µ,σ(x) = e−x/θeµ

, x > 0.

Then their sum follows an Erlang distribution, satisfying:

Pθ
µ,σ[

�n
2 ai,0 > nβ ] =

n−2�

k=0

e−nβ/(θeµ)

k!

�
nβ

θeµ

�k

,

such that

Pθ
µ,σ[ max

2,...,n
ai,0 > nβ ] � (n − 1)Pθ

µ,σ[ a1,0 > nβ ] = (n − 1)e−nβ/(θeµ)

�
n−2�

k=0

e−nβ/(θeµ)

k!

�
nβ

θeµ

�k

= Pθ
µ,σ[

�n
i=2 ai,0 > nβ ].

and

Pθ
µ,σ[ max

2,...,n
ai,0 > nβ ]

Pθ
µ,σ[

�n
i=2 ai,0 > nβ ]

� 0.

S2.1.5 Distributions with strong tail decay and classical accounts of the wisdom of crowds

It is instructive to investigate the behavior of the lower bound for light-tailed distributions as
well. Sub-Gaussian distributions are a class of probability distribution with strong tail decay (at
least as fast as a Gaussian). Suppose x is a random variable with mean µ + θ and cumulative
distribution F θ

µ,σ. Furthermore, suppose that x − µ − θ is sub-Gaussain with variance-proxy

S16



parameter σ, thereby, satisfying:

F̄ θ
µ,σ(nβ) = Pθ

µ,σ[x > nβ] ≤ e−(nβ−µ−θ)2/2σ2

On the other hand, we have (1 + F θ
µ,σ(nβ) + F θ

µ,σ(nβ)2 + . . . + F θ
µ,σ(nβ)n−2) ≤ n − 1, which

we can combine with the above to get that

F θ
µ,σ(β)(1 − F θ

µ,σ(nβ)n−1)

= F θ
µ,σ(β)(1 − F θ

µ,σ(nβ))(1 + F θ
µ,σ(nβ) + F θ

µ,σ(nβ)2 + . . . + F θ
µ,σ(nβ)n−2)

≤ nF θ
µ,σ(β) exp

�
−(nβ − µ − θ)2

2σ2

�
→ 0, as n → ∞, for any β > 0.

Therefore, there are no set of parameters µ and σ that lead to a non-trivial, asymptotic lower
bound on Ωn for random variables with sub-Gaussian tails: Ωn(ω, F θ

µ,σ) � 0, for all θ, µ, σ. As
an example, consider the folded Gaussian distribution, which is defined as the absolute value of
a normally distributed random variable with mean θeµ and variance σ:

F θ
µ,σ(x) = Φ

�
x − θeµ

σ

�
+ Φ

�
x + θeµ

σ

�
− 1, x > 0, (S.21)

where Φ is the standard normal distribution. In Figure S1.D, bottom, we have plotted Ωn(ω, F θ
µ,σ)

with ω = 1/3, θ = 2, n = 50, and initial estimates following a folded-Gaussian distribution.
There are no range of distribution parameters, µ and σ, for which Ωn increases above 0.6. In-
deed, for such light-tailed distributions, admitting finite first and second moments, we can show
that the limiting expected absolute error of the collective estimate with centralization ω, an(ω),
is higher than the decentralized baseline, an(0).

Consider the case where Fθ
µ,σ admits the following finite first and second moments: Eθ

µ,σ[a1,0] =

θeµ, and Eθ
µ,σ[a

2
1,0] = θ2e2µ + σ2. Then an(0) → θeµ, and an(ω) → ωa1,0 + (1 − ω)θeµ, both

almost surely, as n → ∞. Hence,

Eθ
µ,σ[|an(ω) − θ|] > |Eθ

µ,σ[a
n(ω) − θ]| = |θ(1 − eµ)| � Eθ

µ,σ[|an(0) − θ|].
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We can repeat the same calculations for the expected mean squared errors as well:

Eθ
µ,σ[(a

n(0) − θ)2] → θ2(1 − eµ)2, and

Eθ
µ,σ[(a

n(ω) − θ)2] → θ2(1 − eµ)2 + ω2σ2 > θ2(1 − eµ)2 � Eθ
µ,σ[(a

n(0) − θ)2].

For distributions with light tails decentralized networks outperform centralized ones, in expec-
tation for absolute and squared errors, for any choice of parameters µ and σ. This verifies
the classical accounts of the wisdom of crowds, whereby the law of large numbers guaran-
tees almost sure convergence of the collective estimate for structures with vanishing individual
influences [16, Proposition 2].

Indeed, among all convex combinations the simple average, an(0), has the minimum vari-
ance. Since all estimators in this class, an(ω), ω ≥ 0, have the same expected value, the simple
average, an(0), is, in fact, the mean squared error (MSE) minimizer in this class. In this sub-
section, we point out that even though the variance/MSE of an(ω) is minimum when ω = 0,
an(ω), with ω > 0 fixed, can “often” outperform an(0), i.e., fall closer to the truth, θ. We show
this by lower bounding the probability, Ωn, that |an(ω) − θ| < |an(0) − θ|. Subsequently, we
identify heavy-tailedness conditions that make this event likely and Ωn large.

It is worth highlighting that although for µ = 0, the sample mean (simple average) is a
minimum-variance, unbiased estimator (MVUE); in statistics, it is well-known that simple av-
erage is not “optimal” for closeness in many situations. For instance, in the presence of outliers
or extreme values the sample median is preferred to sample mean due to its robustness proper-
ties [17]. Our calculations in Subsections S2.1.1-S2.1.4 are of a similar flavor, pointing out the
superiority of a weighted average when the underlying distributions are heavy-tailed .

In subsection S2.2, we discuss direct numerical simulation of the value of Ωn for various
distribution classes. In sub-subsection S2.2.1, we identify other comparable right-skewness
conditions for making Ωn large, e.g., greater than 1/2, by analyzing the location of the medians
of the two estimators, an(ω), ω > 0 and an(0). In section S3, we show that the feature, Ω,
that we identify from this theory has significant explanatory power for determining whether
experimentally measured collective estimation outcomes improve, after group members interact
with each other.
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S2.2 Numerical simulations

For numerical simulations, we have fixed θ = 2, ω = 1/3, and n = 50. The choice of
ω = 1/3 is arbitrary and our conclusions remain valid for ω > 0, as verified by the robustness
checks in section S4. This choice is motivated by our observation in subsection S1.1 that ω
for a star network converges to 1/3 as n → ∞. This also allows us to juxtapose our simula-
tions with common experimental setups that use the star topology as archetypal of centralized
structures [7].

Note that with ω = 1/3 fixed, the dependence of Ωn on the network structure is removed.
Therefore, Ωn(ω, F θ

µ,σ) is entirely determined by the distribution of the initial estimates, F θ
µ,σ,

i.e. the estimation context. Here, we study our proposed task feature, Ωn, numerically for a
palette of empirically relevant distributions.

For any distribution of the initial estimates, F θ
µ,σ, and number of agents, n, we calculate

Ωn using a Monte Carlo method. We sample n initial estimates and calculate the collective
estimates, an(1/3) and an(0), using equation (S.5). If an(1/3) is closer to the truth, θ, than
an(0), implying that a centralized network performed better than a decentralized network, then
we add to our tally of Ωn. We repeat this procedure N times, where N is large enough to allow
for the value of Ωn to converge (see the simulation procedure 1). The results in Figure S1 are
obtained in this manner with θ = 2, n = 50, and N = 10, 000 for four different distributions:
Pareto (S.10), log-Laplace (S.14), log-normal (S.16), and folded-Gaussian (S.21).

Procedure 1: Ωn(ω, F θ
µ,σ) computation

Input: Fθ(µ, σ), n, ω, N
Output: Ωn(ω, F θ

µ,σ)
Initialize Ωn(ω, F θ

µ,σ) = 0.
for j = 1 : N do

Sample a1,0, . . ., an,0 ∼ Fθ(µ, σ).
Compute an(0) and an(ω) according to (S.5).
if |an(ω) − θ| < |an(0) − θ| then

Update Ωn(ω, F θ
µ,σ) = Ωn(ω, F θ

µ,σ) + 1/N .
end

end
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Decentralized better Centralized better

Log-LaplacePareto Log-normal Folded Gaussian
A B C D

Figure S1: Simulating the lower bound Ωn(ω, F θ
µ,σ) and the actual value Ωn(ω, F θ

µ,σ), under
different distributions for the initial estimates: Pareto (S.10), log-Laplace (S.14), log-normal
(S.16), and folded Gaussian (S.21). In all the plots, we have fixed ω = 1/3, θ = 2, and n = 50.

S2.2.1 The effect of the systematic bias, µ

To see the effect of the log-normal distribution parameters, µ and σ, in a different light, it is
instructive to study the behavior of the median of the random variable an(ω). In particular, we
are interested in the location of Median[an(ω)] with respect to the truth θ, as the distribution
parameter µ is varied. We do so in the limit of large group sizes, n → ∞. Note that since
log-normal distributions have finite moments, the strong law of large numbers applies. Hence,
as n → ∞, an(0) converges almost surely to

E[ai,0] = exp(log θ + µ + σ2/2)

In particular we also have that

lim
n→∞

Median[an(0)] = exp(log θ + µ + σ2/2).
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On the other hand, note that for ω > 0, an(ω) = ωa1,0 + (1 − ω)an(0). Hence, as n → ∞,
an(ω) → ωa1,0 + exp(log θ + µ + σ2/2), almost surely. Therefore,

lim
n→∞

Median[an(ω)] = ω Median[ai,0] + (1 − ω) exp(log θ + µ + σ2/2)

= ω exp(log θ + µ) + (1 − ω) exp(log θ + µ + σ2/2),

where we have used the fact that Median[ai,0] = exp(log θ + µ). Next, we note that depending
on where the distributional parameters, θ, σ, and µ, are located, three cases may arise:

• If exp(log θ+µ+σ2/2) < θ, or equivalently, µ < −σ2/2, then limn→∞ Median[an(ω)] <

limn→∞ Median[an(0)] < θ. In this case, as n → ∞, at least half of the time, an(0) falls
closer to θ than an(ω), hence, limn→∞ Ωn < 1/2; see Figure S2.A.

• If exp(log θ + µ) < θ < exp(log θ + µ + σ2/2), or equivalently, −σ2/2 < µ < 0, then
limn→∞ Median[an(ω)] < θ < limn→∞ Median[an(0)]. In this case, the limiting value
of Ωn may be less then, or greater than, but is close to 1/2; see Figure S2.B.

• If θ < exp(log θ+µ+σ2/2), or equivalently, 0 < µ, then θ < limn→∞ Median[an(ω)] <

limn→∞ Median[an(0)]. In this case, as n → ∞, at least half of the time, an(ω) falls
closer to θ than an(0), hence, limn→∞ Ωn > 1/2; see Figure S2.C.

Finally, it is worth noting that a similar argument applies to any right-skewed and heavy-
tailed distribution, for which the population mean exists and is greater than the population
median.

S3 Empirical analysis of estimation contexts in prior work

To empirically illustrate the explanatory power of this theory, we use data from four published
experiments [8, 18, 7, 6], in which 4, 002 participants organized into 131 independent groups
completed a total of 57 estimation tasks generating 20, 030 individual estimations and 815 col-
lective estimations. Each task induces a different distribution on the initial estimates that are
measured empirically. Therefore, each task constitutes an estimation context in our framework
and we have a total of 57 estimation contexts. We calculate Ω directly from the data based on
the empirical initial estimates without the need for making any distributional assumptions, i.e.,
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θ median of an(ω) median of an(0)

µ = − 0.4, σ = 1, θ = 2B µ = 0.1, σ = 1, θ = 2CA µ = − 1, σ = 1, θ = 2

Figure S2: Simulating the medians of an(ω) and an(0) for three different values of the sys-
tematic bias, µ. The distribution median, marked in blue on the x-axis, lags the distribution
mean, marked in red. Subsequently, the median of an(ω) is always less than the median of
an(0) for the distributions studied here. In this framing, there are three different levels of
bias: panel A, when the distribution of initial estimates significantly under-estimates the truth,
µ < −σ2/2, then the median of an(0) is closer to the truth, θ, than the median of an(ω), in
this case, Ωn < 1/2; panel B, when the distribution of initial estimates slightly under-estimates
the truth, −σ2/2 < µ < 0, then the truth lies between the medians of an(ω) and an(0), and
Ω ≈ 0.5; panel C, when the distribution of initial estimates over-estimates the truth, µ > 0,
then the median an(ω) is closer to the truth, leading to Ωn > 1/2. In these simulations, we have
fixed ω = 1/3, θ = 2, n = 50, and N = 10, 000, where N is the number of samples used to
simulate the median values numerically.

sampling initial estimates with replacement from the data. The computational procedure is as
follows (ω = 1/3, n = 50, N = 10, 000):
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Procedure 2: Ωn(ω, experimental task) computation
Input: experimental initial estimates, n, ω, N

Output: Ωn(ω, experimental task)

Initialize Ωn(ω, experimental task) = 0.

for j = 1 : N do
Sample a1,0, . . ., an,0 with replacement from the experimental initial estimates.

Compute an(0) and an(ω) according to (S.5).

if |an(ω) − θ| < |an(0) − θ| then
Update Ωn(experimental task) = Ωn(experimental task) + 1/N .

end

end

S3.1 Regression Analysis

Our main empirical analyses, shown in Figure 3 and Table S1, are based on a mixed effect
model with a random effect to account for the nested structure of the data.

In particular, the regression equation for Figure 3.C (Table S1, Model 1) is:

yij = β0 + β1Ω(j) + β2Ii + β3IiΩ(j) + vi + �ij, (Model 1)

where yij is the standardized (z-score) absolute error of the revised collective estimate for the
i-th group in the j-th estimation context, β0 is the fixed intercept for the regression model, β1

is the fixed coefficient for our proposed feature of the estimation context, Ii ∈ {0, 1} is an
indicator variable of whether social interaction has occurred or not, β2 is the fixed coefficient
for the social influence centralization, β3 is the fixed coefficient for the interaction term between
our proposed feature of the estimation context and influence centralization, and vi is the random
coefficient for the i-th group. Finally, �ij is a Gaussian error term.

The logistic regression equation for Figure 3.D (Table S1, Model 2) is:

yij =
1

1 + exp(β0 + β1Ω(j) + vi + �ij)
, (Model 2)

where yij is a binary indicator of whether the i-th group on the j-th task improved its collective
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estimate after social interaction, β0 is the fixed intercept, β1 is the fixed coefficient for our
proposed feature of the estimation context, vi is the random coefficient for the i-th group, and
�ij is a Gaussian error term.

Table S1: The main effects of our proposed feature, Ω, and its interaction with social influence
(i.e., centralization). Each datapoint is an experimental trial. The results are from a mixed effect
model with a random effect for the group. Note that Ω is computed for a fixed number of agents
(n = 50) and centralization level (ω = 1/3). See Tables S2-S3 for robustness to these choices.

Dependent variable:

Standardized Absolute Error Improved after social interaction

linear generalized linear
mixed-effects mixed-effects

(Model 1) (Model 2)

Estimation context feature Ω 3.359∗∗∗ 2.708∗∗∗

(0.504) (0.478)

Social Influence ∈ {0,1} 2.026∗∗∗

(0.343)

Ω x Social Influence −3.882∗∗∗

(0.539)

Intercept −1.772∗∗∗ −1.334∗∗∗

(0.320) (0.293)

Observations 815 678
Log Likelihood −1,097.161 −447.346
Akaike Inf. Crit. 2,206.323 900.692
Bayesian Inf. Crit. 2,234.542 914.249

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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S4 Robustness checks
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Figure S3: Robustness checks of the simulation results by varying ω and n when calculating
our proposed feature of the estimation context, Ω, for the log-normal distribution. We find that
the qualitative behavior of the phase diagram is robust to these changes. Increasing n or ω leads
to sharper transitions from low Ω to high Ω.
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Table S2: Robustness checks for Model 1 (by varying ω and n when calculating our proposed
feature of the estimation context, Ω, from the empirical data) for the marginal effect of the
interaction term between the centralization of influence and the estimation context feature on
group performance—in terms of standardized absolute error. Each datapoint is an experimental
trial. The results are from a mixed effect model with a random effect for the group. We find that
the nature of the results is robust to alternative parameter choices.

Dependent variable:

Standardized Absolute Error
ω = 0.1, n = 5 ω = 1/3, n = 50 ω = 1, n = 35

(1) (2) (3)

Estimation context feature Ω 6.321∗∗∗ 3.046∗∗∗ 2.742∗∗∗

(1.256) (0.460) (0.413)

Social Influence ∈ {0, 1} 3.666∗∗∗ 1.882∗∗∗ 1.315∗∗∗

(0.743) (0.325) (0.251)

Ω x Social Influence −7.351∗∗∗ −3.538∗∗∗ −3.168∗∗∗

(1.349) (0.492) (0.442)

Intercept −3.170∗∗∗ −1.638∗∗∗ −1.154∗∗∗

(0.692) (0.302) (0.233)

Observations 815 815 815
Log Likelihood −1,105.754 −1,097.441 −1,097.743
Akaike Inf. Crit. 2,223.507 2,206.882 2,207.486
Bayesian Inf. Crit. 2,251.726 2,235.101 2,235.705

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S3: Robustness checks for Model 2 (by varying ω and n when calculating our proposed
feature of the estimation context, Ω, from the empirical data) for the effect of the estimation
context feature on the group performance after social interaction. Each datapoint is an experi-
mental trial. The results are from a mixed effect model with a random effect for the group. We
find that the nature of the results is robust to alternative parameter choices.

Dependent variable:

Whether the group improved after social interaction
ω = 0.1, n = 5 ω = 1/3, n = 50 ω = 1, n = 35

(1) (2) (3)

Estimation context feature Ω 5.601∗∗∗ 2.521∗∗∗ 1.993∗∗∗

(1.173) (0.439) (0.391)

Intercept −2.759∗∗∗ −1.264∗∗∗ −0.743∗∗∗

(0.635) (0.277) (0.215)

Observations 678 678 678
Log Likelihood −452.745 −446.900 −450.914
Akaike Inf. Crit. 911.490 899.799 907.829
Bayesian Inf. Crit. 925.047 913.356 921.386

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure S4: Panel A shows the loss as a function of error for the Mean Squared Error (MSE),
Mean Absolute Error (MAE), and the Mean Square Root Error (MSRE) loss functions — see
(S.6). Panels B, C, and D show the three loss functions for different values of µ and σ for a log-
normal distribution. In each case, we plot the ratio of the loss function evaluated in a centralized
structure, ω > 0, over a decentralized structure ω = 0. A ratio less than 1 indicates that the
centralized network performs better than the decentralized network. The performance of the
two influence structures can vary significantly as a function of the selected loss function [19].
The choice of the loss function is typically application-dependent. For instance, if the reward
for ‘getting it right’ is greater than the cost of being frequently wrong—as in domains where
the loss and payoff are asymmetric, unbounded, or have a remote boundary [20, 21, 13]—then
the decentralized influence structure is more desirable when the dispersion is high. The initial
estimates in these simulations are sampled from a log-normal distribution for a fixed number of
agents (n = 50) and centralization level (ω = 1/3).
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