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Zhi Li, PhD

University of Pittsburgh, 2020

One of the major progress of modern condensed matter physics is the discovery of topo-

logical phases beyond Landau’s paradigm–phases that are characterized by topology besides

symmetries. In this thesis, we address topological phases of free fermionic systems by con-

sidering their topological classification and real-space invariants.

Although the theory for topological classification is fairly complete in momentum space,

essentially based on the topological classification of fiber bundles, the theory in real space

is more difficult. In this thesis, we discuss a formula for the Z2 invariant of topological

insulators. As a real-space formula, it is valid with or without translational invariance.

Moreover, our formula is a local expression, in the sense that the contributions mainly come

from quantities near a point. It is the local nature of this invariant that guarantees the

existence of gapless mode on the boundary. Based on almost commute matrices, we provide

a method to approximate this invariant with local information. The validity of the formula

and the approximation method is rigorously proved.

The topological classification problem can be extended to non-Hermitian systems, an

effective theory for systems with loss and gain. In this thesis, we propose a novel framework

towards the topological classification of non-Hermitian band structures. Different from pre-

vious K-theoretical approaches, this approach is homotopical, which enables us to find more

topological invariants. We find that the whole classification set is decomposed into several

sectors, based on the braiding of energy levels. Each sector can be further classified based

on the topology of eigenstates (wave functions). Due to the interplay between energy level

braiding and eigenstates topology, we find some torsion invariants, which only appear in the

non-Hermitian world. We further prove that these new topological invariants are unstable,

in the sense that adding more bands will trivialize these invariants.
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1.0 Introduction

A central problem in condensed matter physics is to understand different phases of mat-

ter. The most important insight, initiated by Landau one century ago [1], dubbed the Landau-

Ginzburg paradigm, is that different phases are associated with different symme-tries, and 

phase transitions are associated with symmetry breaking or symmetry restoration [2].

Four decades ago, people started to realize that there are new kinds of phases beyond the 

Landau-Ginzburg paradigm, which are characterized by topological invariants besides 

symmetries [3, 4]. One of the most well-known examples is the integer quantum Hall effect [5], 

where the states responsible for the interesting phenomena (such as the quantized Hall 

conductance and the stable gapless chiral edge modes) do not break any symmetry, and the 

distinction between different phases lies in some quantized invariants which have deep 

connections with topology [3].

Those phases are now called “topological phases”, the study of which has become one of 

the most important research directions in modern condensed matter physics. In this thesis, 

we will discuss topological phases of free fermion systems.

1.1 Topological Band Theory

While the complete classification of topological phases is still unknown (although a lot of 

progress has been made, especially for gapped systems), a formal theory for translation-ally 

invariant gapped non-interacting systems, based on topological band theory, have been 

established.

As an example, let us consider a two-band tight-banding model in two dimensions (2D) 

without any symmetry restrictions except particle number conservation, with the following

1
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( )ψ k

Figure 1: Topological origin of Chern insulator. The filled state for each k corresponds to a

point on the Bloch sphere. The map from Brillouin zone torus T 2 to Bloch sphere S2 might

be topologically nontrivial.

Hamiltonian (set chemical potential µ = 0):

Hfull =
∑
x,y

φ†xHx−yφy =

∫
BZ

d2k

(2π)2
φ†kH(k)φk. (1.1)

Here, φx = (ax1, ax2)T is the column vector of annihilation operators at site x, with subscipts

1 and 2 corresponding two orbitals in that site (and therefore two bands). After the Fourier

transformation, each H(k) is a 2 × 2 Hermitian matrix with one positive eigenvalue and

one negative eigenvalue. The integral is taken over the Brillouin zone BZ, which is a two-

dimensional torus T 2 in this case.

We assume that eachH(k) has a positive eigenvalue and a negative eigenvalue. Therefore,

there is a spectral gap at 0 where the chemical potential µ locates at. According to the

standard band theory [6], this is an insulating state.

However, once we consider the eigenvector (instead of eigenvalue) of H(k), things might

become nontrivial. For example, consider the eigenvectors ψ(k) of H(k) associated with

the negative eigenvalue (physically, the filled state). ψ(k) can be regarded as a point on

the Bloch sphere S2 [7], since we could always normalize it and its phase is unimportant.

Therefore, we have defined a map, which assigns a state ψ(k) to each momentum k in the

Brillouin zone, see Fig. 1:

k ∈ T 2 7→ ψ(k) ∈ S2. (1.2)

2



The key point is: it is not always possible for two continuous maps from T 2 to S2 to

transform into each other by continuous deformation (homotopy). More precisely, continuous

maps from T 2 to S2 are topologically classified by a “mapping degree” [8], which is an integer.

Intuitively, this topological invariant measures how many times the image of T 2 covers S2,

considering the orientation. An equivalent point of view is as follows. The assignment

Eq. (1.2) defines a complex line bundle over T 2 [9, 10, 11]. This line bundle can be classified

by some characteristic numbers, in this case, the Chern number (the Chern number here is

exactly equal to the mapping degree mentioned above):

C =
1

4π

∫
T 2

d2k ~ψ · ( ∂
~ψ

∂k1

× ∂ ~ψ

∂k2

), (1.3)

where ~ψ in regarded as a vector in R3, · and × are inner and outer products of vectors.

Therefore, we call an insulator with nonzero Chern number a “Chern insulator” and say

that Chern insulators have a Z classification.

The topological phenomena in Chern insulator are essentially the same as those in integer

quantum Hall effect, characterized by quantized Hall conductance and gapless chiral edge

modes. In this situation, Eq. (1.3) becomes the famous TKNN formula [3] for the Hall

conductance:

σH =
e2

2π~
C, (1.4)

where C is the Chern number for filled band as defined above. Haldane realized that the

same topology can also be realized without magnetic field [12], which may also be called

anomalous quantum Hall effect.

The above example illustrates the key idea of topological band theory: the band struc-

ture, with eigenstates taken into consideration (not only energy levels), may possess some

topological properties, which gives rise to a topological classification.

1.2 The Periodicity Table and Topological Invariants

While the above example considers the case with no symmetry, it is natural to take

symmetries into consideration. A well-known example is the topological insulator (TI), which

3



is a topologically nontrivial system in two-dimension (2D) with time-reversal symmetry,

theoretically proposed in Ref. [13, 14], and experimentally realized in Ref. [15]. It is

characterized by the gapless helical edge modes protected by the time-reversal symmetry

[16], and the band-crossing in the language of topological band theory. The topological

invariant, in this case, is a Z2 number which we call Kane-Mele invariant.

Depending on the existence/nonexistence of various symmetries and their actions on

the Hilbert space, free fermionic systems are classified into ten classes [17]. This is called

the ten-fold way. Depending on the symmetries and dimensions, systems are classified by a

topological invariant valued in Z or Z2 [18, 19, 20, 21]. More interestingly, the ten classes and

dimensions can be organized in a nice way, called the periodicity table (see Tab. 5), where

different topological invariants show nice periodic feature. This will be the main theme of

Chapter. 2.

As mentioned above, a common feature of free-fermionic topological phases is the exis-

tence of protected gapless boundary modes. An argument for the boundary modes goes as

follows: since the system is topological on one side and trivial on the other side, there must

be some gapless modes localized along the boundary to separate two parts, otherwise, two

phases can be connected without a phase transition. Firstly, since there is generally no Bril-

louin zone for systems with boundaries, there must be some real-space notion of topological

versus trivial (instead of topological band theory as discussed above). Secondly, the above

argument is not always valid, as there do exist some examples dubbed gappable boundaries.

To make this argument more rigorous, we need the distinction of topological phase and trivial

phase to be locally detectable, so that two sides of the boundary are indeed different.

In Chapter. 3, we will discuss some examples of real-space local formula for topological

invariants. While the topological band theory is not valid in real space, one can still get

useful results from noncommutative geometry/topology considerations [22, 23, 24, 25] or from

physical considerations such as scattering theory [26] or boundary Anderson delocalization

[19]. The real-space invariants may manifest itself as a trace formula [27, 28, 29], or some

more general (Fredholm, mod 2 Fredholm, Bott, etc) indexes [30, 31, 32, 33, 34, 35, 36, 37, 38].

Once such formulas have been established, they can also be applied to systems with

disorder, where the classification is believed to be robust [18, 39, 40]. Indeed, it is exactly

4



because this stability (for classification and for the edge mode) that people hope topological

phases will be useful in real life, where disorders are inevitable.

1.3 Non-Hermitian Topological Band Structures

Non-Hermitian Hamiltonian can emerge as an effective description of open systems with

gain and loss [41] or as an extension of conventional Hermitian quantum mechanics [42,

43, 44]. Inspired by the great success in topological phases for Hermitian systems, there

have been lots of works focusing on the topological aspects of non-Hermitian systems, see

Ref. [45, 46, 47, 48, 49] and references therein for details.

While some frameworks and techniques can be easily extended to the non-Hermitian

case, there is one more subtlety, coming from the fact that non-Hermitian matrices may

have complex eigenvalues.

For example, consider a translationally invariant one-dimensional system with two bands.

We again work in momentum space and assume E1(k) 6= E2(k) for all k (this condition

is a natural generization of gapness in the Hermitian case). The difference between non-

Hermitian world and Hermitian world is: it is possible that E1(2π) = E2(0). If one follows

the spectrum when k goes around the Brillouin zone (a circle S1 in this case) starting from

E1(0), one may go to E2(0) instead of going back to E1(0), see Fig. 2(a). In this case, we

do not have a good notion of “upper band” and “lower band”. Instead, two bands essential

combines into one band.

Whether E1(2π) = E1(0) or E1(2π) = E2(0) is clearly a topological distinction. It reflects

the fact that energy levels may braid with each other as the momentum k varies. Naturally,

if more bands are given, one will expects more general braiding patterns of energy levels,

see Fig. 2(b). The braiding phenomenon also becomes more complex in higher dimensions,

at least because there are more directions for the momentum to vary1. Moreover, as we

will show, the topological property of energy levels may have some “interferences” with the

1One may wonder whether there is “higher-dimensional braiding” which cannot be decomposed into
products of one-dimensional braiding. We will see essentially there is not.
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k0 2π k0 2π
( )a ( )b

Figure 2: (a) Z2 braiding of energy levels. In this figure, the disk is the complex energy

plane, with two spectra points in it; k is the Bloch momentum, k = 0 and k = 2π should be

identified. (b) A more complicated braiding pattern with four bands.

topological property of states, which provide new topological invariants and/or change the

nature of previous Hermitian topological invaraints.

1.4 Organization of This Thesis

This thesis is organized as follows.

Chapter. 2 reviews the ten-fold way and the K-theoretical periodicity table for Hermitian

topological insulators and superconductors. While the results are more or less well-known,

we will derive the results from the first principle, with special emphasis on mathematical

generality. The treatment in this chapter is largely based on [18, 20].

Chapter. 3 considers the computation of topological invariants in position space instead

of momentum space. We will find that topological invariants are essentially local2. Part of

this chapter is based on [29].

In Chapter. 4, we consider the topological classification of non-Hermitian band struc-

tures. We will consider the braiding phenomenon in higher-dimensions and for more bands.

2Different from topological-ordered systems where order parameters are non-local.
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More importantly, we will consider the interplay between energy level topology and states

topology, based on rigorous algebraic-topological calculations. We will see that, in the ex-

istence of non-trivial braidings, the topological classification contains some novel torsion

invariants. We will further prove that these new topological invariants are unstable, in the

sense that adding more bands will trivialize these invariants. Discussions in this chapter are

based on [50].

In Chapter. 5, we briefly summarize this thesis and provide some questions for further

developments.

7



2.0 K-Theoretical Classification of Topological Insulators and

Superconductors

In this chapter, we review the ten-fold way and the K-theoretical periodicity table for

Hermitian topological insulators and superconductors. While the results are more or less

well-known, we will try to derive the results from the first principle, with special emphasis

on mathematical generality. For this purpose, we will use the “most suitable” mathematical

tools at will. For a review of relevant mathematics, see Appendix A.

We first consider symmetries in quantum mechanics and explain a Z2×Z2 classification

[20]. We emphasize that these two Z2 gradings are natural consequences of general principles

of quantum mechanics. They come from the distinction between linear and antilinear, and

the time-orientation issue, which are in principle applicable to any quantum systems.

We then derive the ten-fold way classification of quantum systems [17]. We again empha-

size that this classification is valid for any quantum mechanical systems in any dimensions,

bosonic or fermionic, interacting or not.

In Sec. 2.2.3.3, we derive the famous periodicity table for topological insulators and

superconductors [18, 19, 21]. We note that, to be in accordance with the spirit of 2.1,

the symmetries are labeled by real quantum symmetries, namely, operators that act on the

physical Hilbert space and with real physical consequences. We found that it is important to

consider particle number conservation [18], since its existence/absence will lead to different

classifications.

2.1 Quantum Symmetries

2.1.1 Wigner’s Theorem

Consider a quantum mechanical system described by the projective Hilbert space PH,

the ray space of Hilbert space H. A point l ∈ PH corresponds to a pure state ψ ∈ H with
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phase information omitted, and we will use the notation lψ. According to the Born rule, the

probability of finding lψ1 in a state lψ2 is given by:

P (lψ1 , lψ2) = |〈ψ1|ψ2〉|2 . (2.1)

This is a well-defined pairing on PH.

A symmetry is a change of our point of view that does not change the results of possible

experiments. Therefore, we have the following:

Definition 2.1 (Symmetry). A symmetry of quantum system is a bijection s of PH such

that:

P (l1, l2) = P (s(l1), s(l2)), (2.2)

for any l1, l2 ∈ PH. We denote the group of s satisfying as Aut (PH), with Aut for auto-

morphism.

The following important theorem [51, 52] tells that any symmetry transformation can be

lifted to the original Hilbert space H.

Theorem 2.1 (Wigner). A symmetry can be induced by a unitary transformation or an

antiunitary transformation U : H → H such that:

s(lψ) = lUψ (2.3)

We remark that there can be operators which is neither unitary nor antiunitary that

induces symmetries on PH. For example, define Uψ = eiθ(ψ)ψ where θ(·) is an arbitrarily

complicated function. Wigner’s theorem says that any such lifting can be made unitary or

antiunitary with such state-dependent phase.

Formally speaking, we denote the group of unitary transformation on H as U(H), de-

note the group of unitary and antiunitary transformations as Aut (PH). Then we have the

following exact sequence of group homomorphism [53]:

1 −−−→ U(H) −−−→ Aut (H)
φ−−−→ Z2 −−−→ 1, (2.4)

where φ = −1 means a transformation is antilinear. Wigner’s theorem says that the homo-

morphism Aut (H)→ Aut (PH) defined by Eq. (2.3) is surjective.

9



Moreover, it is easy to see any unitary or antiunitary transformation that induces identity

on PH must be a phase. Therefore, we have the following exact sequence:

1 −−−→ U(1) −−−→ Aut (H)
π−−−→ Aut (PH) −−−→ 1. (2.5)

Note that since U(1) ⊂ U(H), the homomorphism φ factorizes through Aut (PH). This

means that whether a symmetry can only be lifted as either unitary or antiunitary, but not

both.

2.1.2 Symmetries Compatible with Dynamics

In this thesis, we will assume relevant physics takes place in a trivial space-time back-

ground (as always in non-gravitational physics), therefore we will have a notion of time such

that t ∈ R.

Normally, any physical symmetry operation s is natually associated with a Z2 number

which tells us whether the operation reverses (if τ = −1) the orientation of time [20]:

τ(s) ∈ Z2. (2.6)

It is clear by definition that this τ is a group homomorphism.

By definition, a dynamics of a quantum system is a unitary operator group generated by

a Hermitian Hamiltonian H:

U(t) = exp(−itH). (2.7)

We will assume time-translational symmetry, hence H is time-independent. The unitary

U(t) also induces an isometry on the ray space PH. We say a symmetry s is campatible

with the dynamics U(t) if the following diagram commute:

PH s−−−→ PHyU(τ(s)t)

yU(t)

PH s−−−→ PH

. (2.8)

Therefore, when lifted to H, we have:

s̃−1U(t)s̃ = U(τ(s)t)e−iθs(t), (2.9)
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with θs(t) ∈ R. It is easy to show that:

θs(t1) + θs(t2) = θs(t1 + t2). (2.10)

Hence θs(t) = θst, with some continuity assumptions.

In terms of the Hamiltonian, we have:

s̃−1Hs̃ = φ(s)τ(s)H + φ(s)θs
def
= χ(s)H + θ(s). (2.11)

To simplify the notation, we have defined χ = φτ .

Theorem 2.2. We can always set θ(s) = 0 without loss of generality.

Proof. For ∀s such that χ(s) = 1, the above equation would imply the spectrum of H has

a translational symmetry and in particular, unbounded from below. This situation would

be unphysical since it usually means the system is unstable1. Therefore θ(s) = 0 whenever

χ(s) = 1.

For ∀s, t, we have:

χ(st)H + θ(st) = (s̃t̃)−1Hs̃t̃ = χ(s)χ(t)H + χ(s)θ(t) + θ(s), (2.12)

and therefore:

θ(st) = χ(s)θ(t) + θ(s). (2.13)

For ∀s, t such that χ(s) = χ(t) = −1, we get θ(s) = θ(t). Set this value to be θ.

Now consider H − 1
2
θ. We have:

s̃−1(H − 1

2
θ)s̃ = χ(s)H + θ(s)− 1

2
θ = χ(s)(H − 1

2
θ). (2.14)

The last equation holds no matter whether χs = 1 or −1. Therefore, by the substitution

H − 1
2
θ → H, we can make θ(s) = 0 for ∀s.

To summarize, if the symmetry s on PH is compatible with the dynamics generated by

H, then s and H commutes or anticommute depending on the value of χ(s):

s̃H = χ(s)Hs̃. (2.15)

1It is interesting to consider possible exceptions of this folklore.
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2.1.3 The Z2 × Z2 Grading of Symmetries, Twisted Representation

From the above subsections, we see that there are two natural Z2 grading on the sym-

metry group (now viewed as a subgroup of Aut (PH)), namely, φ and χ.

Depending on the value of φ and χ, there are four possibilities. It turns out all four

possibilities are physically realizable.

• χ = 1, φ = 1. Linear and time-orientation preserving. For example, some ordinary

internal symmetries.

• χ = 1, φ = −1. Antilinear and time-orientation reversal. For example, ordinary time-

reversal symmetry T , and we have [T̃ , H] = 0.

• χ = −1, φ = −1. Antilinear and time-orientation preserving. For example, particle-hole

symmetry C, and we have {C̃,H} = 0.

• χ = −1, φ = 1. Linear and time-orientation reversal. For example, for the combination

of S = CT , and we have {C̃T ,H} = 0. A physical example is the sublattice symmetry,

or chiral symmetry.

We emphasize that the two gradings are both very natural. They come from the dis-

tinction between linear and antilinear (a natural consequence of Wigner’s theorem), and the

time-orientation issue (inevitable as long as we have a notion of time and t ∈ R). Therefore,

for example, while the physical particle-hole symmetry C seems somewhat special (as special

as a fine-tuned internal symmetry), it is essential to take symmetries of this grading type

into consideration.

2.1.4 Twisted Extenstion and Twisted Representation

In most cases, we know the symmetry in an “abstract” form: we known the symmetries

form a group, but we do not know exactly how it acts on the Hilbert space or ray space. For

example, for a single particle in three dimensions, the system possesses a SO(3) symmetry

due to space rotation, but it is not clear by default that how SO(3) acts on the Hilbert

space2.

2It is exactly due to the formalism developed here that a particle could have 1
2 spin.
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We say the quantum system has a symmetry group G, if there G acts on PH as

symmetries (namely, Eq. (2.2) is satisfied). In other words, there is a homomorphism

ρ : G → Aut (PH). Note that then φ can be defined on G. This makes G a Z2-graded

group3, and ρ is grading preserving. With these data, we can pullback [53] the sequence

Eq. (2.5) to the following commuting diagram:

1 −−−→ U(1) −−−→ G̃
π−−−→ G −−−→ 1∥∥∥ yρ̃ yρ

1 −−−→ U(1) −−−→ Aut (H)
π−−−→ Aut (PH) −−−→ 1.

(2.16)

The first line is a φ-twisted extension of G by U(1), in the sense that for ∀eiθ ∈ U(1)

and ∀g̃ ∈ G̃ we have (this is clear seen by the commutativity of the above diagram):

g̃eiθ = eiθφ(g)g̃. (2.17)

It is a central extension iff φ(g) = 1 for ∀g ∈ G. The original bigrading (φ, χ) of G also

naturally extends to a bigrading of G̃ defined in Eq. (2.16), since U(1) is connected.

We note that the same symmetric group G may have different homomorphisms ρ into

Aut (PH), and thus may give rise to different extensions G̃. They should be regarded as

different quantum theories, since G acts on PH in different manners.

Moreover, if the HamiltonianH is gapped at 0, there is a natural Z2-grading of the Hilbert

space H = H0 ⊕ H1 given by eigenspaces of H with positive and negative eigenvalues. It

is easy to check that the ρ̃ is a (φ, χ)-twisted representation of G̃ on the Z2-graded Hilbert

space H, in the sense that:

• ρ̃(g̃) is antilinear if φ(g̃) = −1,

• ρ̃(g̃) is odd (flip the grading of H) if χ(g̃) = −1.

Abstractly, we say a gapped quantum system has a symmetry group G, if there is a

twisted extension G̃ and a (φ, χ)-twisted representation of G̃ on H. If we insist χ = 1, we

can forget the Z2-grading of the Hilbert space, then we obtain a φ-twisted representation on

a non-graded Hilbert space.

3The odd part can be be empty.
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2.2 The Three-Fold Way and the Ten-Fold Way

In this section, we consider the ensemble of Hamiltonians compatible with a given sym-

metry. The purpose is two-fold:

1. It often happens in physics that we are aware of the symmetry without the knowledge

of the detailed interaction. Interestingly, by considering a random Hamiltonian in such

an ensemble, one can still obtain useful information [54].

2. The classification of topological phases of matter depends on the symmetries. It is

obviously useful to understand the ensemble of all possible Hamiltonians before going

on.

The three-fold way [55] and ten-fold way [17] refer to (a minimal) classifications of possible

symmetry actions. By classification, we mean the classification of symmetry group G, the

twisted extension G̃, and the twisted representation ρ̃. Fixing the symmetry, the ensemble

of Hamiltonians is also fixed.

We emphasize that the considerations here are completely general and does not refer

to any specific setup. Therefore, the classifications here valid for any quantum mechanical

systems in any dimensions, bosonic or fermionic, interacting or not.

2.2.1 The Three-Fold Way

In this subsection, we fix χ to be 1. For any symmetry group G, we have the following

sequence (the last homomorphism may not be surjective):

1 −−−→ G0 −−−→ G
φ−−−→ K −−−→ 1, (2.18)

where K is a subgroup of Z2 = {1, T}, where T means anti-linear and time-orientation

reversal.

A twisted extension of G gives rise to a central extension of G0, which is somewhat less

interesting. Therefore, we consider the case G = K.

If K = {1}, then there is no twist and the extension is unique: K̃ = U(1).

If K = {1, T}, then:
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Theorem 2.3. There are two inequivalent twisted extensions of {1, T}, with φ(T ) = −1.

Proof. Choose a lift T̃ of T , then π(T̃ 2) = T 2 = 1 so T̃ 2 = α ∈ U(1). Note that αT̃ = T̃ 3 =

T̃α and also αT̃ = T̃α−1 since φ(T ) = −1, so α must be 1 or −1.

If α = 1 then T̃ 2 = 1 and the extension group will be

K̃ = {z, zT̃ |z ∈ U(1), zT̃ = T̃ z−1, T 2 = 1}, (2.19)

which is isomorphic to O(2).

If α = −1 then T̃ 2 = 1 and the extension group will be

K̃ = {z, zT̃ |z ∈ U(1), zT̃ = T̃ z−1, T 2 = −1}. (2.20)

Moreover, it is easy to see that any lift T̃ of T must be squared to the same value for a

fixed extension. Indeed, any lift of T must be of the form λT̃ where λ ∈ U(1). Since T̃ is

anti-unitary, we have:

(λT̃ )2 = λλ̄T̃ 2 = T̃ 2. (2.21)

Therefore, the above two extensions are distinct.

Following the above discussion, we have obtained a three-fold way classification of sym-

metry action of Z2 and its subgroup {1}, see Tab. 1.

class A AI AII

T +1 −1

Table 1: The three-fold way. Here the second line presents the value of T̃ 2 in the extension,

with empty means T is not a known symmetry and we only consider the subgroup {1}.
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2.2.2 The Ten-Fold Way

Now we consider the general case. Similar to the above, we consider possible subgroups

of Z2 × Z2 and their twisted extensions.

The group Z2×Z2 can be presented as {1, C, T, CT} (denoted by Z2,2 in the following),

where φ grading for both C and T is −1. It has 4 proper subgroups: {1}, {1, C}, {1, T},

and {1, CT}.

• For K = {1}, the twisted extension is unique.

• For K = {1, C} or {1, T}, according to the above subsection, each has two inquivalent

extension.

• For K = {1, CT}, since φ(CT ) = 1, there is actually no twist. The central extension

of K is unique. This is because the group cohomology H2(Z2, U(1)) = 0. Or more

explicitly, any lifting C̃T can be made C̃T
2

= 1 by multiplication with a phase.

• For K = Z2,2. As above, C̃T
2

can always be made to 1 without changing the value of C̃2

and T̃ 2. Therefore, depending on the values of C̃2 and T̃ 2, there are four possibilities.

Therefore, we have obtained a ten-fold way classification of symmetry action of Z2×Z2 and

its subgroups, see Tab. 2. The last line tells us which subgroup of Z2×Z2 we are considering.

2.2.3 Gapped Hamiltonian Ensembles, Clifford Algebra

In this subsection, we will answer the following problem: what is the ensemble of gapped

Hamiltonians that are compatible with the above (twisted) actions of various symmetries?

It turns out that the above extensions of the Z2×Z2 group are closely connected to Clifford

algebras, and we will be able to answer the question with this connection.

2.2.3.1 Kitaev’s Approach [18] As an example, let us consider the extension of {1, T}

with T̃ 2 = −1. We will regard the Hilbert space H as a real vector space with a complex

structure J , J2 = −1. T being antilinear means:

{T̃ , J} = 0. (2.22)
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T C S Symmetry Clifford Gapped Hamiltonian Cartan’s label AZ label

{1} Cl0 Z×BU AIII A

+1 {1, CT} Cl1 U A AIII

+1 {1, T} Cl0,0 Z×BO BDI AI

+1 +1 +1 Z2,2 Cl0,1 O D BDI

+1 {1, C} Cl0,2 O/U DIII D

−1 +1 +1 Z2,2 Cl0,3 U/Sp AII DIII

−1 {1, T} Cl0,4 Z×BSp CII AII

−1 −1 +1 Z2,2 Cl3,0 Sp C CII

−1 {1, C} Cl2,0 Sp/U CI C

+1 −1 +1 Z2,2 Cl1,0 U/O AI CI

Table 2: The ten-fold way. Here ±1 represents the value of g̃2 in the extension, where

g = T or C or S, with empty means g is not a known symmetry. The column “Clifford”

tells us for which Clifford algebra H is a module. Euivalently, it tells us the correct Clifford

extension problem we should ask (for example, Cl0,3 means the Clifford extension problem

Cl0,3 → Cl0,4). The column “Gapped Hamiltonian” tells which symmetric space the space of

gapped Hamiltonians is. “Cartan’s label” is the label for that symmetric space while “AZ”

label is the label for that symmetric class that often seen in the literature.

The symmetry requires:

[T̃ , H] = 0, (2.23)

and H being a complex linear operator requires:

[J,H] = 0. (2.24)

The above equations are equivalent to:

{T̃ , J} = {T̃ , JT̃H} = {J, JT̃H} = 0. (2.25)
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Up to homotopy, we can assume H2 = 1 and equivalently (JT̃H)2 = −1. It is then clear that

e1 = T̃ , e2 = J generate a real representation of Clifford algebra Cl2,0, and the question is to

find the space of possible e3 = JT̃H so the representation can be extended to a representation

of Clifford algebra Cl3,0.

This type of “Clifford extension problem” [56] is discussed in the appendix A.3, where it

is showed that the question is equivalent to finding the space of e5 such that a Cl0,4-module

into a Cl0,5-module. The final answer, in this case, is the symmetric space4 Grad0,4 ∼=

Z× Sp/Sp× Sp = Z×BSp.

2.2.3.2 Freed-Moore’s Approach [20] An alternative point of view is as follows. We

regard H as a complex vector space. Then the antilinear T̃ with T̃ 2 = −1 is a quaternionic

structure which makes H a quaternionic vector space. [T̃ , H] = 0 means H is H-linear.

Its ±1 eigenspaces determines a symplectic gradation of H = H0 ⊕ H1 and are therefore

specified by Z×BSp.

Formally, there is an equivalence between H-vector space and Cl0,4 modules, due to

Cl0,4 ∼= H(2). The fact that H has a quaternionic structure implies that H induces an

ungraded module5 for Cl0,4. The gradation H = H0 ⊕ H1 makes the Cl0,4-module graded.

Therefore, to classify H is the same as to classify the gradation ofH, which is then equivalent

to classify the gradation of Cl0,4-modules.

Therefore, one goes back to the same question as in Kitaev’s approach: extension from

Cl0,4-module to Cl0,5-module.

Following either approach, one can similarly work out gapped Hamiltonian ensembles

(symmetric spaces) and corresponding Clifford algebras (under whichH is a Clifford module)

for other symmetry classes. The results are listed in Tab. 2.

2.2.3.3 Comments on Zero-Dimensional Classification We note that we could get a

classification for general gapped zero-dimensional Hamiltonian (not just free fermions) follow-

4Note that this is the symmetric space of class CII, while the usual terminology for this symmetry class is
AII! The later convention comes from another connection between symmetric spaces and Clifford algebras:
tangent spaces of symmetric classes give the ensemble of Hamiltonian compatible with symmetries without
gapped condition [17]. Two nomenclatures are related by a shift.

5The induced module is H⊕H.
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ing the above discussions. For a Hilbert space of fixed dimension, it is just [pt,Gradp,q(RD)].

For Hilbert space with arbitrary finite dimension, the result will be Repp,q, the set of graded

representation compatible with symmetries indicated by p, q.

However, this will not be an Abelian group yet, and we will not get the usual K theoretic

classification even if we take its Grothendieck group (see Appendix A.4) respected to the

natural monoid structure. This is because the natural “addition” for many-body Hilbert

spaces is not compatible with the definition of usual K. In physics, we consider the tensor

products of Hilbert spaces when combining two systems, while in K theory we are considering

direct sums. See Sec. 2.3.1 for more discussions.

2.3 Classification of Free Fermionic Systems in Arbitrary Dimensions

2.3.1 General Comments on Classification

A classification problem, formally speaking, is to classify elements of a set according to

some equivalence relations. In many condensed matter physics problems, the set is taken

to be the set of Hamiltonians H with a suitably defined “energy gap”, and H1 and H2 are

equivalent if and only if they can be continuously connected while keeping the gap open.

The space of Hamiltonians may also be reduced by imposing some constraints. Accord-

ingly, the classification results will generally be changed, since

• the constraints may eliminate some old class,

• an old class may split into several new classes, if two objects that are used to be able to

continuously connected may not be able to be connected with each other anymore due

to the constraints.

One example is the classification of free fermionic systems in this chapter. Another famous

example is the symmetry protected topological phase (SPT)6 [57, 58].

In general, the classification result will just be a set without any interesting structures.

However, if there is a monoid structure, one may naturally take its Grothendieck group,

6Or symmetry protected trivial phase.
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resulting in an abelian group, which seems more regular. This procedure modifies the original

equivalence relation into ”stably equivalence relation”: if x + z is equivalent to y + z, then

x is also equivalent to y is the stable sense.

The main example of this procedure is the classification of free fermionic systems. Here,

the monoid structure is given by the direct sum of “one-particle Hilbert space” (this notion

is valid only for free systems). Physically, two band structures are stably equivalent if they

are equivalent upon adding another band structure z on top of both.

We remark that taking the Grothendieck group is not the only way to get an Abelian

group structure. For example, if the Brillouin zone is a sphere, then some classification

spaces are automatically groups, since the homotopy groups πk for k ≤ 2 is Abelian. In this

way, one can get some “nonstable” topological invariants, for example, the Hopf invariant

[59].

2.3.2 Free Fermionic Hamiltonians

A free fermionic system, by definition, has the second-quantized Hamitonian with only

quadratic terms. Since we are going to consider both insulators and superconductors (which

violates particle number conservation), it is convenient to introduce Majorana opeators [60]:

c2j−1 = aj + a†j, c2j =
aj − a†j

i
. (2.26)

Under this transformation, the original fermionic anticommutation relations become:

c†m = cm, {cm, cn} = 2δmn. (2.27)

The second-quantized Hamiltonian on the full Hilbert space has the the following form:

Hfull =
i

4

∑
m,n

Am,ncmcn. (2.28)

In this equation, an i is introduced so that we can assume Aij is an anti-symmetric real

matrix without loss of generality. Moreover, this constraint uniquely determines Aij for a

given Hamiltonian Hfull and operator basis {cm}.
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2.3.2.1 Symmetry Actions For free fermion systems, we will assume relevant symme-

tries are induced by their actions in the one-particle space by second quantization.

Let us denote the symmetry on the full Hilbert space by U , the assumption amounts to

say:

UcmU † = Um,ncn. (2.29)

The m,n above are indexes in mode space M, which is a real 2n-dimensional space if one

has n usual fermion operators.

Taking the Hermitian conjugation, we see Um,n must be real. Moreover, U being unitary

or antiunitary implies the anticommutation relation is preserved:

Sm,nSk,l{cn, cl} = 2δm,k, (2.30)

which is then equivalent to UUT = 1. Therefore, S is real orthogonal.

The symmetry-dynamics compatiblility condition UHfullU † = χ(U)Hfull becomes:

UTAU = χ(U)φ(U)A = τ(U)A. (2.31)

In the above equation, the extra φ(U) factor comes from the i
4

prefractor and the possibility

for U to be antilinear.

On the full Hilbert space H, S̃2 is generally neither 1 nor −1. For example, if S̃2 = −1

on a one-particle state |ψ〉 ∈ H, then it will act as 1 on |ψ〉⊗ |ψ〉 ∈ H. We will assume7 that

Ũ2 acts as either 1 or −1 on the one-particle space, namely:

U2cmU †2 = ±cm. (2.32)

This implies U2 = ±1.

For both linear symmetries and antilinear symmetries, U is always a real orthogonal

matrix, acting on the “mode space”. The difference is hidden in the following way. Consider

the effect of c→ ic, c† → −ic†. It will induce an orthogonal transformation Q on {cm} with

Q2 = −1. (2.33)

7It is obviously just an assumption. There’s nothing wrong to formally consider a fermionic system with
two fermions, S̃2 = 1 for one and S̃2 = −1 for the other.
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Therefore, it is a complex structure on the (real) mode space, namely,M = WR where W is

C-linear space. If S̃ is linear, we will have:

[Q,U ] = 0. (2.34)

If S̃ is antilinear, we will have:

{Q,U} = 0. (2.35)

Note that, however, the Hamiltonian does not necessarily compatible with the complex

structure, since it would imply particle number conservation. If it is indeed the case, as for

insulators, we will have:

[Q,A] = 0. (2.36)

In this case, we will be able to regard iA as a Hermitian matrix on W , which is exactly the

one-particle Hamiltonian H. The symmetry actions are:

U †HU = χ(U)H, (2.37)

where U is now regarded as a unitary or anti-unitary operator on W . This is formally the

same as Eq. (2.15) on the full Hilbert space.

To summarize, for free fermionion systems, discussions on the full Hilbert space H can

be translated into the real mode spaceM together with a complex structure Q. The results

are summarized in Tab. 3.

Symmetry Action on A Action on H Linearity Extensions

Time TAT T = −A THT † = H {Q, T} = 0 T 2 = ±1

Particle-Hole CACT = A CHC† = −H {Q,C} = 0 C2 = ±1

Chiral SAST = −A SHS† = −H [Q,S] = 0 S2 = 1

Table 3: Symmetries for free fermionic systems. In the A column, A is real anti-symmetric

as in the Majorana representation, T,C, S are real orthogonal matrices. The H column is

only valid if the system conserves particle number; under this assumption, H is Hermitian,

T,C, S are unitary or antiunitary operators.
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2.3.3 Ten-Fold Way with(out) Particle Number Conservation

For classification purposes, one needs to first classify symmetry actions. As emphasized

several times, it just depends on general principals of quantum mechanics. One still considers

subgroups of {1, C, T, CT} and different twisted extensions. Therefore, the ten-fold way

discussed previously still applies here.

Within each symmetry class, one needs to classify all matrix A (equivalently, the Hamil-

tonian) that is real anti-symmetric and is consistent with the symmetry actions. However,

there is a subtlety here. If we assume no relation between A and Q, there will be no difference

for a S2 = 1 system and a T 2 = 1 system, since they both give the same constraints on A:

real anti-symmetric and anticommuting with the symmetry matrix (the matrix T and S are

of course different, but the classification results will be the same). Therefore, to get a more

complete classification, one needs to consider whether Q is compatible with A or not [18].

This is also physically reasonable since insulators and superconductors are by definition very

different physical systems.

For insulators, Q is compatible with A so we can work on complex Hamiltonians. In this

case, we can repeat the analysis in Sec. 2.2.3, this time on the one-particle Hilbert space.

Therefore, the results of classifying spaces apply here.

For systems where Q is not known to be conserved8, the analysis is different. This is

because previous analyses consider representations and compatible C-linear Hamiltonians on

complex Hilbert spaces, while for our case, the underlying space is the real mode spaceM9.

We first consider {1} with no other symmetries. We will need to find all A that is gapped,

real anti-symmetric. Without gapped condition, it just lives in the Lie algebra o(N), the

tangent space class D symmetric space. So it would be in class D under the AZ convention.

The space of gapped ones is then homotopy to the DIII symmetric space, following Tab. 2.

We can also work in Kitaev’s approach. We can flatten the spectrum by assuming A2 =

−1 if it is gapped. The answer is then immediate by noticing that A defines an orthogonal

complex structure, so the answer is O/U . More generically, this is the Cl0,0 → Cl1,0 extension

8It could be, but just not known.
9One could consider the complexification MC and extend the Hamiltonian C-linearly. But one needs to

be careful since this procedure introduces more structures.
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problem, which maps to Cl0,2 → Cl0,3 problem. The solution this again DIII symmetric space

O/U as shown in Tab. 2.

Another example is the case where T 2 = −1. We have:

T 2 = −1, A2 = −1, {T,A} = 0, (2.38)

so it is a Cl1,0 → Cl2,0 extension problem, which is the same as Cl0,3 → Cl0,4 extension.

The answer for gapped Hamiltonians is the symmetric space AII. Under AZ convention, the

correct AZ label should be DIII.

AZ label T C S Clifford Gapped A new AZ label

A Cl0,2 DIII D

AIII +1 Cl1,2 D BDI

AI +1 Cl1,2 D BDI

BDI +1 +1 +1 Cl0,2 DIII D

D +1 (Cl0,0)2 BDI2 AI2

DIII −1 +1 +1 Cl1,3 DIII D

AII −1 Cl0,3 AII DIII

CII −1 −1 +1 Cl0,4 CII AII

C −1 Cl0 CI A

CI +1 −1 +1 Cl1,1 BDI AI

Table 4: The AZ classfication classes for each AZ symmetry class. Here, “AZ label” means

the AZ label for symmetry actions, where “symmetry” means real, physical symmetry that

acts on the physical Hilbert space. “new AZ label” means the AZ label one should refer to in

order to find the correct classification for that symmetry class. AI2 means the classification

problem decomposed into two independent problems, each results in an AI classification.

In Tab. 2.3.3, we summarize the Clifford extension problem for each case and their

AZ label for classification. The first four columns indicates real symmetries10 for the quan-

10Particle-hole symmetries in BdG Hamiltonians are redundancies instead of real symmetries.
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tum system. The point is: to get the classification for the symmetry class indicated by

(T 2, C2, S2), one needs to look up in literatures by the new AZ label.

2.3.4 Classification in Zero Dimension: K∗(pt)

Now, the classification for zero-dimensional free fermionic systems follows immediately

from discussions above and those in Sec. 2.2.3.

Indeed, we already know the spaces of gapped Hamiltonians are Gradp,q with p, q deter-

mined by the symmetries. Also note that the notion of stably equivalence for free systems

is in accordance with the definition Gradp,q as a limit for those in finite dimensional spaces.

Therefore, the final classification is simply:

[pt,Gradp,q], (2.39)

which is isomorphic to Kp−q(pt), due to the fact that {Gradp,q} is a K theory spectrum.

Equivalently, from the discussions in Appendix A.5.2, we know the answer to the Clifford

extension problem is by definition given by Karoubi’s Kp,q(pt), which in turn is isomorphic

to Kp−q(pt).

2.3.5 Classification in Higher Dimensions: KR Theory

2.3.5.1 Going to Momentum Space For translationally invariant systems, we have:

Hfull =
i

4

∑
x,y,m,n

Ax−y,m,ncx,mcy,n, (2.40)

where x,y are position indexes and m,n are now “orbital” indexes. Going to momentum

space by a Fourier transform on cx,m, we will have:

Hfull =

∫
dk

(2π)d
i

4

∑
m,n

Am,n(k)c−k,mck,n. (2.41)

The real anti-symmetric condition in position space now translates into:

Am,n(k) = −An,m(k), Am,n(k) = Am,n(−k), (2.42)

namely, anti-symmetric covariantly real.
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Let us also translate symmetry actions Eq. (2.29)-Eq. (2.31) into momentum space. To

do so, we will assume that relavant symmetries are local, in the sense that:

Umx,ny = Um,nδx,y, (2.43)

where by abuse of notations we have use the same letter U . U is still a real orthogonal

matrix.

A little calculation shows:

Ucm(k)U † = Um,ncn(φ(U)k),

UTA(k)U = τ(U)A(k)
(2.44)

Unlike what one might expected, under Majorana representation, k does not go to k even

for time-reversal symmetry.

AZ label T C S Symmetry Clifford d = 0 d = 1 d = 2 d = 3

A {1} Cl0 Z Z

AIII +1 {1, CT} Cl1 Z Z

AI +1 {1, T} Cl0,0 Z

BDI +1 +1 +1 Z2,2 Cl0,1 Z2 Z

D +1 {1, C} Cl0,2 Z2 Z2 Z

DIII −1 +1 +1 Z2,2 Cl0,3 Z2 Z2 Z

AII −1 {1, T} Cl0,4 Z Z2 Z2

CII −1 −1 +1 Z2,2 Cl3,0 Z Z2

C −1 {1, C} Cl2,0 Z

CI +1 −1 +1 Z2,2 Cl1,0 Z

Table 5: Periodicity table for free fermionic systems. d is the space dimension. Z or Z2 is

the group that topological invariant values in.

2.3.5.2 Periodicty Table Since Clifford operators U does not alter k, the symmetries

make relevant bundles a Clifford module. The A(k) that one tries to find, should satisfy
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Eq. (2.42). Mathematically this means A(k) is an extra Clifford operator that is compatible

with a Real structure— a Real bundle morphism. The problem in hand exactly corresponds

to Karoubi’s description of KRp,q(X), where X comes with a Real structure k → −k,

originally due to Eq. (2.42). Therefore:

Theorem 2.4 (Classification). Free fermionic systems in d dimension with AZ label cor-

responds to (p, q) are classified by KRp,q(X), where X is the Brillouin zone with a Real

structure k→ −k.

We will consider the case X = S̄, where the bar indicates the Real structure. Using the

properties discussed in Appendix A.7, we have:

KRp,q(S̄d) = KRp+d,q(pt) = KO0,q−p−d(pt). (2.45)

Note the importance of the Real structure. Otherwise for Sd we would get KO0,q−p+d(pt),

which is a wrong answer.

In Tab. 5 we list the results for d = 0, 1, 2, 3. This is the famous periodicity table for

free fermionic systems [18, 19, 21]. In this table, d is the space dimension, Z or Z2 is the

group that topological invariant values in. The first two rows are called complex classes since

the corresponding Clifford algebra are complex algebras; the other eight rows are called real

classes for similar reasons.

The periodicity comes from both the Bott periodicity and the fact that we are using the

sphere as the Brillouin zone and therefore one has the suspension isomorphism: according to

Eq. (2.45), it is the latter property that ensures a shift of dimension is equivalent to a shift

of symmetry class. Indeed, if one works with X = T 2, the Brillouin zone for lattice systems,

one will get some “weak invariant” [18, 61, 62, 63] and the result will not be periodic.
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3.0 Topological Invariants in Real Space

According to the discussions in the previous chapter, at least in translationally invariant

cases, free fermionic systems are classified into 10 classes, within which systems are classified

by a topological invariant valued in Z or Z2. Indeed, one can further get many analytical

formulas for the topological invariants by working in momentum space and (essentially)

considering some vector bundles (with symmetries) over the Brillouin zone [19, 21, 64].

While the classification is believed to be robust against disorder [39, 40, 18], there is no

traditional notion of the Brillouin zone with disorder. Therefore, one must find real-space

formulas for topological invariants. This will be generally more difficult than finding formulas

in momentum space. Nevertheless, one can still get useful results from noncommutative

geometry/topology considerations [22, 23, 24, 25], which may manifest itself as a (Fredholm,

mod 2 Fredholm, Bott, etc) index [27, 30, 31, 32, 33, 34, 35, 36, 37, 38] (although some of

them are abstract definitions and do not tell us how to calculate them efficiently); or from

physical considerations such as scattering theory [26] or boundary Anderson delocalization

[19].

There is another motivation to find real-space topological invariants. A common argu-

ment for the boundary gapless modes goes as follows: since the system is topological on

one side and trivial on the other side, there must be some gapless modes localized along

the boundary to separate two parts. Firstly, since there is generally no Brillouin zone for

systems with boundaries, there must be some real-space notion of topological versus trivial.

Secondly, the above argument is not always valid, as there do exist some examples dubbed

gappable boundaries. To make this argument more rigorous, we need the distinction of topo-

logical phase and trivial phase to be locally detectable, so that two sides of the boundary

are indeed different. It means that the real-space topological invariant should be local, see

Eq. (3.15) and below for more discussions.

In this chapter, we will review some index theorems as examples of real-space topological

invariants. We will also review an interesting approach based on almost commuting matrices

[31]. It turns out the obstruction for making almost commuting matrices commute coincide
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with some topological invariants. Finally, in Sec. 3.4, we discuss a local formula for the

Kane-Mele invariant in real space.

3.1 Filled-Band Projection, Two-Point Correlator, and Flat-Band

Hamiltonian

Before going on, we provide some general discussions one the filled-band projection,

two-point correlator, and the flat-band Hamiltonian.

For free fermionic system, we can effectively consider the one-particle Hilbert space and

the one-particle Hamiltonian Hx,y. The indexes of the matrix are valued in a lattice, for

exmaple, Zd where d is the dimension. We will require that Hx,y (as an operator on the

one-particle Hilbert space) is gapped, in the since that:

∃δ, such that spec(H) ⊂ R\(−δ, δ). (3.1)

With this requirement, one can spectral-flatten the Hamiltonian by making all positive

eigenvalues to be 1 and negative eigenvalues to be -1, and keeping the eigenvectors invariant.

This procedure has been used several times in Chapter 2. After this procedure, we will get

a spectral-flattened Hamiltonian H̄, and a filled-band projection P = P−(H) such that:

H̄ = 1− 2P, P = ⊕λ<0Pλ, (3.2)

where Pλ is the projection matrix on the eigenspace of H with eigenvalue λ.

It turns out that the filled-band projections (a one-particle notion) are equal to the

ground state two-point correlators (a many-body notion). Indeed, without loss of generality,

one can just work in the basis where the one-particle Hamiltonian H is diagonal (for example,

the k basis, if the system is translationally invariant), then it is obvious that projection equals

two-point correlator.

In this section, all formulas work with P , since it contains all information of the eigenvec-

tors (as well as whether it is filled or empty), which are enough to determine the topology.
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3.2 Index Theorems

3.2.1 Relative Index of a Pair of Projections

In this subsection we collect interesting results on a pair of projections (P,Q), where

P,Q are Hermitian idempotent operators [27, 65]. Geometrically, they are about two closed

subspaces in a Hilbert space [66].

Theorem 3.1. Dewnote A = P − Q and B = 1 − P − Q, then the following statements

follow from straightforward calculation, and are valid even for infinite-dimensional Hilbert

space:

(1) A2 +B2 = 1, AB +BA = 0;

(2) A2 commute with P and Q;

(3) Ax = x iff Px = x and Qx = 0, Ax = −x iff Px = 0 and Qx = x;

(4) Bx = x iff Px = Qx = 0, Bx = −x iff Px = Qx = x.

To build up intuitions, one may diagonize A. The above theorem implies the following

decomposition of the Hilbert space:

• P = 1, Q = 1 subspace, so that A = 0, B = −1;

• P = 1, Q = 0 subspace, so that A = 1, B = 0;

• P = 0, Q = 1 subspace, so that A = −1, B = 0;

• P = 0, Q = 0 subspace, so that A = 0, B = 1;

• λ ∈ (−1, 0) ∪ (0, 1) eigenvalues of A must come in pairs and B switches (invertibly)

between them. Moreover, there exists basis such that:

A =

λ 0

0 −λ

 , B =

 0 −
√

1− λ2

−
√

1− λ2 0

 ,
P =

1

2

 1 + λ
√

1− λ2

√
1− λ2 1− λ

 , Q =
1

2

 1− λ
√

1− λ2

√
1− λ2 1 + λ

 .
(3.3)
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Assuming P −Q is compact1, define the relative index between P and Q as:

Ind(P,Q) = dim Ker(P −Q− 1)− dim Ker(Q− P − 1). (3.4)

According to the above analysis, it counts the difference of dimensions where P = 1, Q = 0

and P = 0, Q = 1. For finite-dimensional spaces, it also counts the difference between

dim(P ) and dim(Q), since P = Q = 1 blocks and λ ∈ (−1, 0) ∪ (0, 1) blocks have equal

contributions to the dimensions. Moreover,

Theorem 3.2. If (P −Q)2n+1 is trace class for some n ∈ N, then for ∀m ≥ n:

Ind(P,Q) = Tr[(P −Q)2m+1]. (3.5)

As a corollary, if P − Q is trace class, then even if dim(P ) and dim(Q) are infinite, we still 

have Tr(P − Q) ∈ Z.

Note that in general, dim(P ) and dim(Q) are not finite (more seriously but physically 

relevant, P − Q is not even trace class), the above formalism provides a way to compare the 

difference of two dimensions. It is interesting that we have obtained a quantized trace.

3.2.2 Flow of a Unitary

For any unitary Uij , we draw a directed graph associate with it. Each index i corresponds 

to a point. For each ordered pair (i, j) we imaging a flow from j to i with intensity |Uij |2, 

and a flow from i to j with intensity |Uji|2. The net flow from j to i is:

fij = |Uij|2 − |Uji|2. (3.6)

Obviously, for each point, total flow in=total flow out=1, so2

(∂f)j =
∑
i

fij = 0. (3.7)

Now assume the indexes are valued in Z, and U is quasi-diagonal in the sense that:

Uij ≤ C|i− j|−d for large enough d. (3.8)

1Or more generally, if (P,Q) is a Fredholm pair.
2This is a cycle condition.
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For any cut at η ∈ R, the total flow across η from left to right is independent on η. This

because otherwise the flow will accumulate or dissipate at some points, a contradiction with

“total flow in=total flow out”. This quantity is defined as the flow of the unitary U [28]:

F(U) =
∑

i≥η,j<η,

fij,∀η ∈ R. (3.9)

A nice feature of this quantity is its locality. Since Uij decays fast enough as |i−j| → ∞,

fi,j will be small as long i or j (not neccesarry for both) is far from η. This means F(U)

can be well approximated by only summing over i, j near η, with precision guranteed by

Eq. (3.8).

Interestingly, the flow F(U) of a unitary U must be an integer. Indeed, consider η = 0,

define Π as the projection on N, then:

F(U) = Tr((1− Π)U †ΠU)− Tr((1− Π)UΠU †) = Tr(U †ΠU − Π). (3.10)

Note that U †ΠU is also a projection3, the above equation is just Ind(U †ΠU,U), which must

be an integer.

For finite-dimensional projections, Tr(U †ΠU − Π) = Tr(U †ΠU) − Tr(Π) = 0. This is

because for a finite system, there is no space for a net flow (no Hilbert hotel). However, in

infinite dimensions, there could be a nonzero flow. The simplest example is Ui+1,i = 1, then

F(U) = 1, and indeed U †ΠU is the projection on [−1,∞), which has “one more dimension”

compared to Π.

The quantization of F(U) have a topological origin. Assuming U is translational invari-

ant. One can show that Π can be replaced by X by replacing the trace over all indexes by

the trace per cell:

F(U) = (tr)(U †XU − U) = tr(U †[X,U ]). (3.11)

In momentum space, this is just the winding number of det(U(k)):

F(U) =
i

2π

∫ 2π

0

tr(U †dU). (3.12)

3For this to be true, it is important for U be a unitary, not just a isometry.
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3.2.3 Chern Number of a Projection

Given a projection operator P with indexes in Z2. Assuming P is quasidiagonal4 in the

sense of Eq. (3.8). We define a 2-chain by associate the following number for each triple

(j, k, l):

hjkl = 12πi(PjkPklPlj − PjlPlkPkj). (3.13)

They are real numbers which are totally antisymmetric in indexes. They also satisfy and a

chain condition:

(∂h)kl =
∑
j

hjkl = 0. (3.14)

Similar to Eq. (3.9), we define the Chern number of P as [28]:

ν(P ) = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

(PjkPklPlj − PjlPlkPkj), (3.15)

where this time the space is devided into three parts ABC since we are in 2D (instead of two

parts in 1D), see Fig. 3(b).

Φ

(a)

A B

C

1l

3l 2l

⊗

(b)

A B

C

D

⊗

(c)

Figure 3: (a) Insert a flux in the hole. (b) Divide the plane into three regions A, B, C.

The intersection point is where a flux will be inserted. (c) Truncate the plane with a circle.

Denote the region outside the circle by D. The intersection point is where a flux will be

inserted.

4Unlike U , where it can be strictly finite width even if F(U) 6= 0, there is a No-Go theorem saying that
if ν(P ) 6= 0 then P cannot be of finite width, see Sec. 3.3.1 and Appendix B.
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Similar to F(U), ν(P ) is also a local quantity, in the sense that it can be well approxi-

mated by only summing over j, k, l near the trijunction. For example, one may truncate the

plane with a circle as in Fig. 3(c) and do the same summation (with A, B, and C now finite).

More remarkably, this quantity enjoys similar properties as F(U): it is invariant under

slight changes of boundaries between ABC, and it is also quantized. The first property is due

to the chain condition Eq. (3.14). For the second property, let us define ΠA as the projection

on region A and similarly for B,C, then:

ν(P ) = 4πiTr ([PΠAP, PΠBP ]) . (3.16)

This equation also shows ν(P ) is invariant even if one rotates the boundaries or if the regions

have some finite overlap. Note that they cannot have an infinite overlap, see below.

Now define Πx (and Πy) to be the projection on the right (and upper) half plane. The

above equation can be used to show:

ν(P ) = 2πiTr ([PΠxP, PΠyP ]) . (3.17)

Define U = exp(2πiPΠyP ). It commutes with P . We have:

Ind(U †ΠxU,Πx) = Tr(U †ΠxU − Πx)

= Tr
(
U †PΠxPU − PΠxP + U †(1− P )Πx(1− P )U − (1− P )Πx(1− P )

)
= Tr(U †PΠxPU − PΠxP )

=

∫ 2π

0

Tr

(
d

dφ
(e−iφPΠyPPΠxPe

iφPΠyP )

)
= 2πiTr ([PΠxP, PΠyP ])

= ν(P ).

(3.18)

The first equation is because the trace exists5; the second equation is because [U, P ] = 0;

the third equation is because U = 1 in the P = 0 block.

5This is why we must use Πx,Πy instead of ΠA,ΠB ! Otherwise one will get ν(P ) ∈ 2Z instead of Z,
which is a wrong. To be precise, no points at infinity are close to the boundaries to both regions. It is this
property that make the trace exists.
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In the translational invariant case, one can similarly replace Πx,Πy by X, Y and calculate

ν(P ) by taking trace per cell:

ν(P ) = 2πi tr
(
P [[X,P ], [Y, P ]]

)
. (3.19)

In momentum space, this indeed goes back to the integral representation Eq. (1.3) of Chern

number.

3.3 Almost Commuting Matrices

There is another interesting approach for real-space topological invariants [31]. This

approach is based on the intuition that trivial insulators can be deformed into “atomic

insulators” where electrons are fully localized while topological insulators cannot.

3.3.1 Physical Motivation: Localized Wannier Functions

Let us assume that our system is put on the sphere S2 ⊂ R3 whose radius equals 1.

It is a basic intuition that if all electrons are localized near the lattices, then the system

is an insulator. From band theory, we know that eigenstates usually have a fixed momentum

and therefore not localized. Nevertheless, the intuition is still valid in many cases, provided

that we think about Wannier functions instead of eigenstates.

Given a projection P , a set of Wannier function is a basis {va} of ImP such that each

va has some localization property. Here, by localization, we mean the wavefunction va is

mainly supported near its real-space center. To be precise, we define

xa = 〈va|X |va〉 (3.20)

to be the x-coordinate of its center (and similarly we have ya, za, etc). Here, X is a diagonal

matrix (in real space) with diagonal element Xii = xi, the coordinate of lattice i. There

might be different meaning of localization:

• (exponential localization) ∃C such that |vai | ≤ Ce−|i−x
a|/l (l� 1).
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• (localization) Define X ′ =
∑

a x
a |va〉 〈va|, then

∀ω ∈ ImP, ‖(X −X ′)ω‖ ≤ l ‖ω‖ . (3.21)

In the second definition, X |va〉 =
∑

aX |va〉 〈va|ω〉 while X ′ |va〉 =
∑

a x
a |va〉 〈va|ω〉. So the

definition is indeed a kind of localization property saying that va is localized near xa. If can

be proved that, under technical assumptions, exponential localization implies localization

(with different length scale l).

Here is how the notion of localization comes into play with topological physics. If all

eigenstates are really localized, the system must be a trivial insulator. Therefore, it is

reasonable to claim the following rough correspondence:

localized Wannier functions←→ topologically trivial. (3.22)

This correspondence can be made precise. For example, it can be shown that a system

is trivial iff the Wannier functions can be made exponentially localized [67]. For strictly

localized Wannier functions, there is a stronger no-go result [68], see Appendix B. Moreover,

for strictly localized Wannier cannot exist even if we allow the basis to be overcompleted

[69].

Now let us consider the matrix X ′, Y ′, Z ′. One has:

X ′2 + Y ′2 + Z ′2 = P 2, [X ′, Y ′] = [Y ′, Z ′] = [Z ′, X ′] = 0. (3.23)

For gapped systems, one can prove that the above equations are approximately true for

PXP, PY P, PZP :

∥∥(PXP )2 + (PY P )2 + (PZP )2 − P 2
∥∥ < δ,

‖[PXP, PY P ]‖ , ‖[PY P, PZP ]‖ , ‖[PZP, PXP ]‖ < δ.
(3.24)

Concentrating on the P = 1 subspace, then P 2 above can be repalced by I. It can be

regarded as a ”blurred representation” of a unit sphere, where PXP, PY P, PZP are some

noncommuting coordinates.
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This condition Eq. (3.21) implies that the almost commuting triple (PXP, PY Z, PZP )

is close to a exactly commuting tripe (X ′, Y ′, Z ′). It can be shown that the converse is also

true. Therefore, we finally arrives at the following (rough) correspondence:

topologically trivial←→ PXP, PY P, PZP can be made commute. (3.25)

We can also put the system on the torus, and use two unitaries U, V as coordinates

matrices. Then we need to consider whether it is possible to make almost commuting almost

unitaries PUP, PV P into commuting unitaries.

3.3.2 Bott Index

While almost commuting Hermitian pair can always be made commute [70, 71], there is

an obstruction to make a triple of commuting Hermitian matrices commute [31].

Indeed, consider the matrix:

B(H1, H2, H3) =

 H3 H1 − iH2

H1 + iH2 −H3

 , (3.26)

and define the following Bott index as:

bott(H1, H2, H3) =
1

2
Tr (f0(B(H1, H2, H3))) . (3.27)

Here, f0(x) = sgn(x). If H1, H2, H3 exactly mutually commute and H2
1 + H2

2 + H2
3 = 1,

then it is easy to show that eigenvalues of B(H1, H2, H3) come into pairs of ±1. Therefore

bott(H1, H2, H3) = 0. In general, the Bott index equals the number of positive eigenvalues

minus n, where n is the size of Hi.

It can be proved that bott(H1, H2, H3) is stable under small perturbations. Therefore,

bott(H1, H2, H3) = 0 is a necessary condition to make an almost commuting Hermitian triple

commute. Moreover, the inverse proposition is also true. Therefore, the Bott index is the

only obstruction to make almost commuting Hermitian triple commute.
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Figure 4: A nice map from torus to sphere. We first glue two circles on the torus into two

points, then map the right half onto the sphere where the two points corresponds to two

poles. The left half is mapped to a single longitude. The purpose of this construction is to

make sure fi in Eq. (3.28) are functions in one variable.

For a pair of almost commuting unitaries (U, V ), a similar index existes by reducing the

problem to the commuting triple case. Let (f1, f2, f3) induces a map6 T 2 → S2 ⊂ R3:

(e2πiθ1 , e2πiθ2)→ (f1(e2πiθ1) cos(θ2) + f2(θ1), f1(e2πiθ1) sin(θ2), f3(e2πiθ1)). (3.28)

The matrix version of this map is:

(U, V )→ (f1(U) cos(θV ) + f2(U), f1(U) sin(θV ), f3(U)). (3.29)

Note that it is important for fi to be functions in one variable, otherwise fi(U, V ) is not

well-defined unless they commutes exactly. The function f2 is instroduced for techinical

reason and satisfies f 2
1 + f 2

2 + f 2
3 = 1, f1f2 = 0. See Fig. 4 for an illustration of the idea

behind this map.

Similar to Eq. (3.26), consider:

Q(U, V ) =

 f3(U) f2(U) + if1(U)V †

f2(U) + iV f1(U) −f3(U)

 , (3.30)

6Due to topological difference, the map cannot be a homeomorphism. However, one only need its mapping
degree equals 1.
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and define the Bott index as:

κ(U, V ) =
1

2
Tr(f0(Q(U, V ))). (3.31)

If U, V exactly commute, then κ(U, V ) = 0. By the same logic as above, κ(U, V ) is an

obstruction to make a pair of almost commuting unitaries commute. Moreover, one can

show that the inverse is also true.

The above index have a more topological explanation. Consider the following path in

the complex plane:

t→ det((1− t)UV + tV U). (3.32)

It starts at det(UV ) = 1 and ends at det(V U) = 1. If [U, V ] is small enough, the the path

cannot pass 0, so we can define a winding number ω(U, V ). If [U, V ]=0, then the path always

stay at 1, so ω(U, V ) = 0. It turns out that under technical assumptions,

κ(U, V ) = ω(U, V ). (3.33)

3.3.3 Topological Origin of Bott Index

Here we briefly comment on the mathematical origin on how the Bott index is constructed

and why it is related to almost commuting matrix problem [72, 73].

Consider the general problem of finding commuting matrices in an algebra R. Any

commuting triple (H1, H2, H3) ∈ R3 naturally induces a homomorphism ψ from C(S2) to

R, by mapping f(x1, x2, x3) ∈ C(S2) to f(H1, H2, H3) (it is well defined iff Hi mutually

commutes, essentially by simutaneously diagonalization). With ψ in hand, it is natural to

consider the induced map on the algebraic K0 groups [74]:

ψ∗ : K0(C(S2))→ K0(R). (3.34)

Due to the Serre-Swan duality, K0(C(S2)) ∼= K0(S2) ∼= Z ⊕ Z. Here the first Z factor

is the dimension and the second Z factor is the Chern number of a (virtual) bundle [E] ∈
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K0(S2). A well-known example for nontrivial bundle over S2 is given by the following

projection:

1

2

 1 + x3 x1 − ix3

x1 + ix2 1− x3

 ∈M2(C(S2)). (3.35)

Therefore, the above projection corresponds to a nontrivial element in K0(C(S2)). This is

called a Bott element, which induces the Bott periodicty:

K̃0(S2) ∼= K0(pt) = Z. (3.36)

Considering the image of this Bott element under ψ∗ in K0(R) will induce our Bott index.

It is now clear that the obstruction for making almost commuting matrices commute has

a topological origin, which is a nontrivial bundle over the sphere S2. However, one should

note that here the sphere is in real space, instead of momentum space.

3.4 Real-Space Invariant for Topological Insulators

A topological insulator (TI), first proposed by Kane and Mele in Ref. [13], is an example

of nontrivial systems for AII class in two-dimension (2D). It is characterized by the gapless

helical edge modes protected by the time-reversal symmetry [16], and the band-crossing in

the language of topological band theory. The topological invariant, in this case, is a Z2

number which we call Kane-Mele invariant, see Refs. [13, 75, 76, 62, 77, 78] for more details.

In this section, we discuss a formula for the Kane-Mele invariant, which remains valid

with disorder [29]. It has two useful features:

• It is purely topological, in the sense that we discard many geometrical information or

choices such as distances and angles [see Eq. (3.51)].

• Similar to Eq. (3.15), the input of our formula is the projection P . Also similar to

Eq. (3.15), our formula is essentially a local expression, in the sense that the contribution

mainly comes from quantities near a point.
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3.4.1 Intuition: Flux Insertion and Topological Invariant

In this section, we put Chern insulator/topological insulator on a punctured plane and

insert fluxes at the origin [see Fig. 3(a)]. We will explain how the physics of flux insertion

is related to topological invariant. This section aims to explain our intuition and provide a

physical derivation of our formula, hence, some statements here may not very rigorous. We

will establish our results carefully in the following sections.

Recall the simple case, Chern insulators, which can be realized in integer anomalous

quantum Hall systems. In this case, we have the well-known Thouless charge pump [79]:

when a flux unit is adiabatically inserted, it induces an annular electric field, which in turn

produces a radial electric current due to the Hall effect. As a result, electrons are pushed away

from (or close to, depending on the sign of the current) the origin for “one unit”. In Fig. 5

we draw the band structure for boundary states (near the puncture). Diagrammatically,

when a flux unit is inserted, every occupied state moves toward top right to a lower level.

insert 1-flux
k0k1k2k3

EF EF

k0k1
k2k3

Figure 5: Band for boundary states of a Chern insulator. • means filled, ◦ means empty.

After a unit flux insertion, every filled state moves towards top right to the next level. In

this process, the label ki is tight to the electron, not the level.

The many-body state after the flux insertion is not the ground state, because there is a

filled state above the Fermi level. Compared to the ground states, we can see that the new

ground state has one less electron (k0 electron in Fig. 5) than the old one (note that we are

doing ∞−∞, see comments below). The difference of the number of electrons in ground
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states is exactly the Chern number. This is the idea behind Ref. [27]:

Chern number = Ind(P, P ′) = dim Ker(P − P ′ − 1)− dim Ker(P − P ′ + 1), (3.37)

where P/P ′ is the projection operator onto filled states before/after the flux insertion, Ind

is the relative index for a pair of projections, which intuitively counts the difference of their

ranks (dimension of eigenvalue 1 subspace, number of filled levels in physics). Since the rank

is just Tr(P ) and Tr(P ′), one may expect

Ind(P, P ′) ∼ Tr(P − P ′). (3.38)

This formula is indeed correct if Tr(P − P ′) is well-defined—if (P − P ′) is trace class [80].

This is not the case for nontrivial Chern insulator though: Ind(P, P ′) is still well-defined [27],

but one needs a more complicated formula to evaluate it, which is essentially Eq. (3.15).

Now we turn to topological insulators. In this case, we adiabatically insert a 1
2
-flux

quanta. As shown in Fig. 6, what happens is: energies for left-movers increase, while energies

for right-movers decrease. If we assume (without loss of generality) the Fermi level is right

below an empty state, the ground state after the flux insertion will have one more electron

than before. We want to count the number of extra electrons to determine the Kane-Mele

invariant νKM (mod 2).

To do this, we first count the number of electrons in a finite disk with radius r (the system

is still on an infinite plane, we just draw a virtual circle to define a disk). Due to time-reversal

symmetry, topological insulators have zero total Hall conductance, so the number of electrons

inside the disk remains unchanged under adiabatic flux insertion. However, there is a vertex

state (kR0 in Fig. 6) that is left empty, so in the new ground state the number of electrons in

the disk is increased by 1:

∆ 〈No. electrons in a (large) disk〉 = 1 = νKM (mod 2), (3.39)

where 〈〉 means ground state expectation value (note again that ground states before and

after the flux insertion are different).
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EF

insert 1/2-flux
EF

k1
L

k2
L

k3
L

k1
R

k2
R

k3
R

k0
R

k1
L

k2
L

k3
L

k0
R

k1
R

k2
R

Figure 6: Band for boundary states in a topological insulator. After a half flux insertion, we

get one more state under the Fermi level, which is geometrically near the vertex (flux).

Since P is the projection onto filled states, H0 = 1− 2P can be regarded as a spectral-

flattened Hamiltonian (filled= −1, empty= 1). Denote H 1
2

to be the Hamiltonian after flux-

insertion, consider Q = 1
2
(1−H 1

2
) and corresponding projection matrix Q (see Sec. 3.4.2 for

details). We have

〈Nr〉 (before) = 〈
∑
|i|<r

a†iai〉 = Tr(Pr),

〈Nr〉 (after) = Tr(Qr),

∆ 〈Nr〉 = TrQr − TrPr = Tr(Qr −Qr).

(3.40)

Here Nr is the number of electrons in disk r, Pr, Qr is the truncation of P,Q (Qr means

(Q)r: spectral flatten before truncation). The last equation is because P and Q have the

same diagonal elements (see Sec. 3.4.2) and they are finite matrices.

Thus, we expect

νKM = lim
r→∞

∆ 〈Nr〉 = lim
r→∞

Tr(Qr −Qr) ∼ Tr(Q−Q) (mod 2). (3.41)
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One may want to apply the same idea to Chern insulators. This will just lead to 0 = 0.

Indeed, we still have

∆ 〈No. electrons in a (large) disk〉 = lim
r→∞

Tr(Qr −Qr). (3.42)

However, there will always be an electron go into (or out of) the disk adiabatically, which

compensates the lost (or extra) state, so ∆〈No. electrons in disk〉 in the left-hand side is

always 0 in this case. This can also be seen from the (large) gauge equivalence between the

two systems before and after a unit flux insertion. For the right-hand side, since Q = P ′ in

this case is already a projection, Q = Q, so the r.h.s is 0. The difference between topological

insulators and Chern insulators is as follows: in the former case the number of electrons

through the boundary r is 0 in average (because of zero Hall conductance), while in the

latter it is nonzero and is essentially the Chern number.

As a side note, one may also consider the insertion of a unit flux and consider the

difference between two ground states. A direct application of the relative index Eq. (3.37)

gives 0. However, one may note that two terms (dimension of the kernel) in Eq. (3.37) come

from left movers and right movers separately and therefore one can define the Z2 index with

one kernel. This is the idea behind Ref. [36].

3.4.2 Formula for Infinite System

In this section, we will carefully define the quantities in our main formula Eq. (3.41) and

show its well-definedness.

The input of our formula will be the single-body projection operator P , which is related

to the spectrum-flattened Hamiltonian H0 = 1 − 2P . For gapped states, P decays at least

exponentially [81]:

Px,y < C1e
−C2|x−y|. (3.43)

According to the Peierls substitution [82], if we insert a 1
2
-flux at a vertex, the new (single-

body) Hamiltonian can be written as H 1
2

= 1− 2Q, where

Qx,y = sx,yPx,y. (3.44)
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Here sx,y are phases such that for any loop l = (x1,x2, · · · ,xn = x1), we have

sl
def
=

n∏
i=1

sxi,xi+1
=

−1, if the vertex is in the loop

1, otherwise

. (3.45)

These phases can be chosen as follows: we divide the plane into three regions, as in Fig. 3(b).

Let nx,y to be the number intersections of the straight line segment (x,y) with three

boundaries l1, l2, l3, set

sx,y = (−1)nx,y . (3.46)

We call this gauge “insert half fluxes along the boundaries”. While P is a projection, Q no

longer is. Actually, we have

(Q2 −Q)x,y =
∑
z

sx,zsz,yPx,zPz,y − sx,yPx,y = −2sx,y
∑
z

′
Px,zPz,y. (3.47)

where
∑′ means sum under constraint sxyz = −1. Denote V = Q2 − Q. Since matrix

elements of P decays exponentially, V is mainly supported around the vertex (hence the

notation V ) due to the constraint. To be specific, we have the following:

Proposition 3.1. ∃C ′1, C ′2, such that |Vx,y| < C ′1e
−C2r where r = max{|x|, |y|}.

Proof. Let us calculate Vx,y:

|Vx,y| = |2
∑
z

′
Px,zPz,y| < 2C2

1

∑
z

′
e−C2(|x−z|+|z−y|). (3.48)

From geometry, it is obvious that |x− z|+ |z− y| > r if sxyz = −1, so the summation can

be controlled by

2C2
1e
−C2

2
r
∑
z

e−
C2
2

(|x−z|+|z−y|) < C ′1e
−C′2r. (3.49)

(This is a pretty crude estimation but is enough.)
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In the following, we will refer to this property as the “exponential decay property” (EDP).

Intuitively, Q2 −Q satisfies EDP means the deviation of Q from a projection mainly comes

from states near the vertex point. If we spectral flatten Q to Q (for eigenvalues λ ≤ 1
2
,

convert it to 0, otherwise convert it to 1), we anticipate that Q−Q is mainly supported near

the vertex. Actually, Q−Q also obeys EDP, but we do not need this result. We only need

the following:

Proposition 3.2. Q−Q is trace class.

Proof. |x− x̄| ≤ 2|x2 − x| for ∀x ∈ R, so |Q−Q| ≤ 2|Q2 −Q| = 2|V | as an operator (note

that they commute). Since V obeys EDP, V must be trace class (see the corollary after

Lemma C.2 in appendix C.1.1), so is Q−Q.

Therefore, it is legal to define a “trace over vertex states” as

Trv(Q) = Tr(Q−Q). (3.50)

Note that in the definition of Q we can arbitrarily choose the chemical potential µ ∈ (0, 1),

so the Trv(Q) should be naturally understood as mod 1. In the case of topological insulators,

Q has time-reversal symmetry, every state is Kramers paired, so Trv(Q) can be naturally

understood as mod 2. We will see in the following that it is Trv(Q) mod 2 [instead of Trv(Q)

itself for a fixed “chemical potential”] that has good properties. Also note that Q is not

trace class in general, so we cannot define Trv(Q) as Tr(Q) mod 2.

According to the above analysis, this expression is well-defined and the contributions

mainly come from states near the vertex; it is a local expression. Interestingly, this local

expression turns out to be independent of the flux-insertion point we choose; it only depends

on the state itself. Moreover, it is an integer and is topologically invariant. Our main

proposition is as follows:

Main Proposition Trv(Q) equals to the Kane-Mele invariant.

The derivation of our proposition is in Sec. 3.4.5 and the appendix C.1. Before going on,

we give three comments on our formula.
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Firstly, there is another construction of Q, closely related to the one given by Eq. (3.45):

Q =


AAA −AB −AC

−BA BB −BC

−CA −CB CC

 , (3.51)

where AB means PAB, a block in the original matrix P . If we consider a circle with many

sites on it, it still gives us a total phase −1. In this case,

Q2 −Q = 2


0 ACB ABC

BCA 0 CAB

CBA BAC 0

 , (3.52)

where ACB means PACPCB, etc. It is still concentrated near the vertex (satisfies EDP), as

long as the partition is good7. So we can follow the same procedure to define a new Trv(Q).

We note that the Q defined here is not unitary equivalent to the one in Eq. (3.45)—they

have different spectra in general. However, in Sec. 3.4.5 we will show that Trv(Q) defined

from them are equal (mod 2). We call the Q in Eq. (3.51) the topological one, denoted by

Qt, because its definition does not depend on the geometric information such as “straight

line segments”. The Q in Eq. (3.45) will be called the geometric one, denoted by Qg. It

has the advantage of gauge invariance and many quantities [like spec(Q)] defined from it are

manifestly independent of the partition.

Secondly, for systems in the DIII class (TRS2 = −1, PHS2 = 1 where TRS is time-reversal

symmetry and PHS is particle-hole symmetry), our formula can be simplified. Indeed, since

the original system has PHS:

K†ph(2P − 1)Kph = 2P − 1, (3.53)

where (2P − 1) is the spectral-flattened Hamiltonian with spectrum={±1}. Kph is an onsite

action, and commutes with the operation from P to Q, so the same equation holds for Q.

Therefore the spectra of Q is symmetric with respect to 1/2:

σ(Q) = 1− σ(Q). (3.54)

7For example, the one in Fig. 3(b) is good. However, if we rotate l2 towards l1 and deform it a little bit
so they are parallel at infinity, then Q2 −Q does not satisfy EDP and convergence problem will occur.
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Now, for a spectrum q such that q 6= 1
2
, the Kramers degeneracy and PHS provides us a

four-fold {q, q, 1− q, 1− q}, which contributes 0 to Trv(Q) (mod 2). So:

ν = TrvQ = No. {Kramers pairs at 1
2
} (mod 2). (3.55)

Thirdly, the input P is the correlation matrix for an infinite system. If we start with

a finite system, say a topological insulator on the sphere, then our formula always gives 0.

Mathematically, this is because both Tr(Q) and Tr(Q) = Tr(P ) are even due to time-reversal

symmetry. Physically, it is because when inserting a flux at some point, it is unavoidable

to insert another flux at somewhere else for a closed geometry, then our formula counts the

vertex states at both points. To get the right invariant, we need to “isolate” the physics at

one vertex.

3.4.3 Approximation from Finite System

Although the input of our formula is an infinite-dimensional operator P , our formula is

a trace of vertex states, which should only depend on the physics near the origin. Let us

truncate the plane with a circle r [see Fig. 3(c)]. Denote PN and QN to be the truncation

of P and Q, where N is the number of sites inside the circle, N ∼ r2. We expect that one

can approximate the invariant with data near the origin, i.e. with matrix elements of PN or

equivalently QN .

However, a naive limit limN→∞Tr(QN − QN) is wrong: it will give lim Tr(PN) (mod 2)

since Tr(QN) is even. This is because QN 6= (Q)N . Physically, QN and Q do have similar

“vertex states”. However, unlike Q, QN also includes boundary contributions [see Eq. (3.57)],

which need to be excluded.

We claim that we can use the following algorithm to approximate our invariant.

• Construct a matrix VN by

VN = −2sx,y
∑

z∈(ABC)
sxyz=−1

Px,zPz,y. (3.56)

VN will be almost commuted with QN and it will tell us whether a state is near the

vertex or the boundary.
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• Find approximations Q′N , V
′
N for QN , VN so that they indeed commute8.

• Simultaneously diagonalize Q′N and V ′N to get pairs of eigenvalues (q′, v′). Sum over all

the eigenvalues q′ such that v′ 6= 0.

The summation will converge to Trv(Q) as N →∞.

In the following we explain the algorithm in detail. First of all, we have:

(Q2
N −QN)x,y = −sx,y[2

∑
z∈ABC
sxyz=−1

Px,zPz,y +
∑
z∈D

Px,zPz,y]
def
= (VN)x,y + (WN)x,y. (3.57)

Here, VN is supported near the center, while WN is supported near the boundary. This

means the deviation of QN to a projection happens both near the vertex and the boundary.

We can also work in the topological construction of Q. In this case,

Q2
N −QN = 2


0 ACB ABC

BCA 0 CAB

CBA BAC 0

−

ADA ADB ADC

BDA BDB BDC

CDA CDB CDC


= VN +WN . (3.58)

In both constructions, QN , VN ,WN should almost commute, and VN ,WN are almost orthogo-

nal, since they are mainly supported in different regions (“almost” means relevant expressions

approach 0 as N →∞).

Proposition 3.3. (1) QN , VN ,WN defined above satisfies

‖[QN , VN ]‖ < ε, ‖[QN ,WN ]‖ < ε,

‖VNWN‖ < ε, ‖WNVN‖ < ε,
(3.59)

where the norm ‖·‖ is the L2 norm (maximal singular value), ε ∼ p(r)e−r where p(r) is a

polynomial of r.

(2) There exist Hermitian matrices Q′N , V
′
N ,W

′
N as approximations of QN , VN ,WN in the

sense that

‖QN −Q′N‖ < ρ2, ‖VN − V ′N‖ < ρ, ‖WN −W ′
N‖ < ρ, (3.60)

8In practice, there are some arbitrariness to find Q′
N , V

′
N . What we do is a joint approximation diago-

nalization (JAD) and then make them commute according to some rules. For example, one may make all v′

such that |v′| > ε to zero. Another rule is indicated in Sec. 3.4.4.
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such that

[Q′N , V
′
N ] = [Q′N ,W

′
N ] = V ′NW

′
N = W ′

NV
′
N = 0 (3.61)

Q
′2
N −Q′N = V ′N +W ′

N . (3.62)

Here ρ can be chosen as F (ε)ε1/10 (independent of N) where the function F (x) grows slower

than any power of x.

Proof. (1) Straight forward calculation.

(2) It is easy to check ||QN || and ||VN || are finite, independent of N (one way to do this is

to prove it for the topological construction Q in Eq. (3.51) and use the relationship between

two constructions as in property 3.6). According to Lin’s theorem [70], ∃Q′N , V ′N such that

‖QN −Q′N‖ , ‖VN − V ′N‖ < δ and [Q′N , V
′
N ] = 0. Moreover [71], we can choose δ = E(1/ε)ε1/5

where the function E(x) grows slower than any power of x, independent of N .

Define W ′
N = Q′2N − Q′N − V ′N , then W ′

N , Q
′
N , V

′
N can be simultaneously diagonalized.

Since WN = Q2
N −QN −VN , ‖QN −Q′N‖ , ‖VN − V ′N‖ < δ, so we have ‖WN −W ′

N‖ . δ and

‖V ′NW ′
N‖=‖(V ′N−VN+VN)(W ′

N−WN+WN)‖.ε+ δ∼δ. (3.63)

This means for each pair of eigenvalues (v′N , w
′
N), at least one of them should be smaller

than
√
δ. We manually make these eigenvalues to be 0, while fixing v′N + w′N .

The new V ′N and W ′
N would be strictly orthogonal, and still commute with Q′N , and still

obeys Q
′2
N −Q′N = V ′N +W ′

N . Moreover, now ‖VN − V ′N‖ ∼ δ +
√
δ ∼
√
δ

def
= ρ.

Having Q′N , V
′
N ,W

′
N exactly commute, and V ′N ,W

′
N exactly orthogonal, we use them to

distinguish vertex contributions and boundary contributions. We simultaneously diagonalize

them and get triples (q′, v′, w′). Different contributions are then identified as follows (the

reason for this identification is evident) [see Fig. 7]:

• v′ 6= 0, w′ = 0: vertex states

• v′ = 0, w′ 6= 0: boundary states

• q′ = 0 or 1, v′ = w′ = 0: bulk states
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We anticipate that the summation of q′ over vertex states will be a good approximation of

Trv(Q).

Proposition 3.4 (finite size approximation). After the above procedure,

lim
N→∞

∑
vertex
states

q′ = Trv(Q). (3.64)

The proof is in appendix C.1.2.

3.4.4 Numerical Results

For our numerical results we use the Bernevig-Hughes-Zhang (BHZ) model [14] on a

square lattice with Rashba coupling and scalar/valley disorder:

H =

∫
k

(H0 +HR) d2k +
∑
r

HD(r),

H0(k) = v(τxσz sin kx + τ y sin ky)

+ (m− t cos kx − t cos ky)τ
z,

HR(k) = r(σx sin ky − σy sin kx),

HD(r) = V (r,+)
1 + τ z

2
+ V (r,−)

1− τ z

2
.

(3.65)

Here there are four degrees of freedom per site, with τ and σ acting on valley and spin space

respectively.

In Figs. 7(b) and 7(c), we show the computation of the topological invariant of this

model for v = t = 1, r = 1/2, with the disorder V (r,±) sampled uniformly from the interval

[−0.4, 0.4]. Fig. 7(b) shows a topological phase with m = 1.6, while Fig. 7(c) shows a trivial

phase with m = 2.4.

These plots show the eigenvalues (q′, v′) of the matrices Q′N and V ′N respectively (q′ is

along the x-axis and v′ is along y-axis). Recall that we have (q′)2−q′ = v′+w′ and v′w′ ≈ 0,

hence points (q′, v′) either lives on the parabola y = x2− x (if v′ 6= 0) or along the x-axis (if

v′ = 0). According to our analysis, points along the x-axis represent boundary states; points

near (0, 0) and (1, 0) represent bulk states; all other points on the parabola corresponds to

vertex states. As a comparison, Fig. 7(c) shows the trivial region where there are (mostly)
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(a) (b) (c) (d)

Figure 7: (a) The geometry for computing the topological invariants. The regions A, B,

and C are represented by colours yellow, red, and navy blue respectively. (Region D is

represented by cyan.) (b)–(c) Numerical results for the Hamiltonian Eq. (3.65) with (b)

m = 1.6 and (c) m = 2.4. Shown in the plot are eigenvalues of V ′N vs. Q′N . These results

are generic; dots along the x-axis represent boundary states; dots near (0, 0) and (1, 0) are

bulk states; dots on the parabola represent vertex states. (d) Numerical result from the

Hamiltonian Eq. (3.66), which strongly breaks particle-hole symmetry.

only have bulk states. The goal of the numerical procedure outlined in the previous section

is to isolate the vertex states which lives near the intersection of A, B, and C.

As the model Eq. (3.65) (without disorder) is particle-hole symmetric, the resulting

eigenvalues are reflection symmetric (q′ → 1− q′). Disorder only breaks this symmetry very

weakly. To break this mirror symmetry, we construct a spinful model with three valleys,

H0 = 0.3λ3 + 0.4λ8 + (0.5λ1 + 0.6λ4)σz sin kx + (1.2λ2 − 0.3λ5) sin ky

+ (0.5λ1 − 0.7λ3 − 0.3λ4 + 1.1λ6 − 0.6λ8) cos kx

+ (0.5λ1 − 0.7λ3 − 0.4λ4 + 1.0λ6 − 0.6λ8) cos ky,

(3.66)

where λ1, . . . , λ8 are the Gell-Mann matrices acting on valley space. We retain the Rashba

term with r = 0.1, and disorder (for three valleys independently) sampled from [−0.4, 0.4].

The spectrum (q′, v′) is shown in Fig. 7(d), with ν evaluating to 1.02 indicating a QSH phase.

In Fig. 8, we plot the result of our formula Eq. (3.64) for model Eq. (3.65) as a function

of m. (The data is computed for a single disorder realization.) For the computation of TrvQ,

we distinguished the vertex states (from the bulk and edge states) by only considering points
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3 2 1 0 1 2 3
m

0.0

0.2

0.4

0.6

0.8

1.0

total system size radius of ABC region

blue crosses 7× 7 2.4

green dots 13× 13 4.5

red line 25× 25 8.9

Figure 8: The sum TrvQ (approximating the invariant ν) of a finite system for various

m. The system sizes are shown in the table. (For example, the green crosses shows data

computed with Fig. 7(a)’s geometry.)

satisfying q′ < 0, q′ > 1, or v′ < (q′)2−q′
2

. We see that the system is in the Quantum spin

Hall (QSH) phase for the bulk of −2 . m . 2. As the Hamiltonian H0 + HR is gapless

(Dirac-type) at m = 0, we expect a small sliver of metallic phase near m ≈ 0 from disorder.

(In general, the metallic phase is stable in the AII class, hence we do not expect direct

transition between the QSH and trivial phases.) We see that as the system size increases (so

that it is large compared with the correlation length ξ), the invariant approaches 0 or 1 to
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the gapped phases.

3.4.5 Property and Proof

In this section, we will investigate the property of Trv(Q) and derive our main proposition

step by step.

Proposition 3.5 (Gauge invariance). Fixing the position of the flux and working in the

geometric definition, then Trv(Q) does not depend on the actual partition of the plane. For

example, the following partition and the ordering of A, B, C will give the same Trv(Q).

A B

C

A

B
C= ⊗⊗

(3.67)

This is because different partitions correspond to different gauge choices in the Pierls sub-

stitution. Indeed, fix a reference point ∗, define ux = s∗,x/s
′
∗,x where s, s′ are the phases for

two partitions. Since s∗,xsx,ysy,∗ = s∗xy = s′∗,xs
′
x,ys

′
y,∗, we have:

s′x,y = uxs
′
x,yūy (3.68)

Thus Q′ = UQU † and they have the same spectra.

Proposition 3.6. Trv(Qt) defined from topological Q (for good partitions) and Trv(Qg)

defined from geometric Q are equal (mod 2).

Proof. We calculate Qt −Qg and find that

(Qt −Qg)x,y =


−2Px,y, x,y belong to different regions

and (x,y) intersects 2 boundaries

0, otherwise

. (3.69)

From geometry we can see if |x| > r, then the first condition is satisfied only if |y−x| > O(r)

where r = max{|x|, |y|}. So Qt − Qg satisfies a EDP: |(Qt − Qg)x,y| < C1e
−C2r and thus is

trace class. Therefore,
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• Tr(Qt − Qg) = limN→∞Tr(Qt
N − Qg

N) = 0, since they always have the same diagonal

elements (note that we need trace class condition for the first equation evolving limit

[80]).

• Qt −Qg = (Qt −Qt)− (Qg −Qg)− (Qt −Qg) is also trace class.

Due to time-reversal symmetry,

Tr(Qt −Qg) = Ind(Qt, Qg)

= dim Ker(Qt −Qg − 1)− dim Ker(Qt −Qg + 1)

=0 (mod 2),

(3.70)

where Ind(·, ·) is the index for a pair of projections [27]. So we have

Trv(Qt)−Trv(Qg) = Tr(Qt−Q̄t−Qg−Q̄g) = Tr(Qt−Qg)−Tr(Q̄t−Q̄g) = 0 (mod 2). (3.71)

Now we insert two 1
2
-fluxes at different positions far away from each other. We divide

the plane into four regions, as in Fig. 9. Again, we “insert half fluxes along the boundaries”

and write the Hamiltonian as

Sx,y = sx,yPx,y, (3.72)

where sx,y are defined similar to Eq. (3.46) by the new partition. We have:

S2 − S = −2sx,y
∑
z

sxyz=−1

Px,zPz,y = −2sx,y(
∑
z

O1∈(xyz)
O2 /∈(xyz)

+
∑
z

O1 /∈(xyz)
O2∈(xyz)

)Px,zPz,y
def
= (V1)x,y + (V2)x,y.

(3.73)

Here Vi (i = 1, 2) is the “vertex” term for two junctions respectively. As in Sec. 3.4.2,

Vi (i = 1, 2) satisfies EDP for vertex i and S − S is trace class, so Trv(S) is well-defined.

As dist(1, 2)→∞, we have V1V2 = V2V1 → 0. In the limiting case where V1V2 = V2V1 = 0

exactly, one can simultaneously diagonalize them and at least one eigenvalue for a common

eigenstate should be 0. This means each “vertex state” of S (those states with S 6= 0, 1) is

located at junction 1 or 2. Moreover, define Q1 as the matrix corresponding to a 1/2-flux

insertion at point 1 with partition A+B + CD, Q2 corresponding to the insertion at point
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A

B

C

D1 20
⊗ ⊗⊗

Figure 9: Divide the plane into 4 regions A+B + C +D. Insert a 1
2
-flux for each vertex (1

and 2). We will show that it is “equal” to insert a unit flux at the middle (point 0).

2 with partition AB +C +D, then the effect of S for a state near junction i will be close to

the effect of Qi, so one anticipates that

Trv(S) ≈ Trv(Q1) + Trv(Q2). (3.74)

In the case where dist(1, 2) is large but not infinity, some vertex states of S may come

from the coupling of two vertex states at different fluxes. However, it is not difficult to

convince that Eq.(3.74) still holds. The physics here is similar to that for the two-states

systems: due to the weak but nonzero coupling (off diagonal elements), the eigenstates will

be approximately

|φ±〉 =
1√
2

(|1〉 ± |2〉). (3.75)

Here, we cannot say a vertex states of R is located at one of the fluxes. However, the

summation of eigenvalues for |φ±〉 is still equal to that for |1〉 and |2〉.

Proposition 3.7 (Additivity). Under technical assumptions, as the distance between two

fluxes goes to infinity, the vertex spectrum of S “decouples”:

lim
dist(1,2)→∞

Trv(S)− (Trv(Q1) + Trv(Q2)) = 0. (3.76)

The proof is in appendix C.1.1.

Proposition 3.8. Trv(S) = 0 mod 2. This is an exact equation, no matter whether

dist(1, 2) is large or not.
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The idea is, if one looks from a large distance, inserting two 1
2
-fluxes is approximately

equivalent to insert a 1-flux, which is (singularly) gauge equivalent to 0-flux, so that no

vertex states appear in the spectrum at all.

Proof. We works in the AB gauge, where the vector potential of a flux satisfies

|A(r)| = flux

2πr
, A(r) ⊥ r. (3.77)

We still use S to denote the Hamiltonian in this gauge. Denote T to be the Hamiltonian for

the case of inserting 1-flux at the center of two half-fluxes. S and T should be close outside

the center. We will prove that S − T is trace class in the Appendix C.1.3. Then, similar to

the proof of property 3.6,

Tr(S − T ) = lim
N→∞

Tr(SN − TN) = 0, (3.78)

since they have the same diagonal elements. S − T = (S − S) + (S − T ) is also trace class,

so

Tr(S − T ) = Ind(S, T ) = dim Ker(S − T − 1)− dim Ker(S − T + 1) = 0 (mod 2), (3.79)

due to time reversal symmetry. Therefore,

Trv(S) = Tr(S − S) = Tr(S − T )− Tr(S − T ) = 0 (mod 2). (3.80)

Proposition 3.9. Trv(Q) is an integer (mod 2) independent of the position of the flux.

Proof. For every pair of points 1 and 2, we have

Trv(Q1)− Trv(Q2) = [Trv(Q1) + Trv(Q3)]− [Trv(Q2) + Trv(Q3)]. (3.81)

Due to Properties 3.7 and 3.8, it can be arbitrarily close to 0 (mod 2) as dist(1, 3) and

dist(2, 3) goes to infinity. So we must have

Trv(Q1) = Trv(Q2) (mod 2). (3.82)

Plug this into Eq.(3.76) and use again property 3.8, we obtain that Trv(Q1) = Trv(Q2) ∈

Z2.
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This property already shows that Trv(Q) is an Z2 invariant for topological insulators

which only depends on the state itself. The only natural identification is the Kane-Mele

invariant.

Proposition 3.10. Trv(Q) is equal to the Kane-Mele invariant.

Proof. Denote our invariant as ν. For two gapped time-reversal-symmetric systems A andB,

we stack them (without hopping/interaction) and denote the new system A⊕B. Obviously

ν(A⊕B) = ν(A) + ν(B). From the classification of topological insulator [17, 18, 19, 21] for

AII class, the Kane-Mele invariant νKM is the only invariant with this property. It follows

that

ν = kνKM, (3.83)

where k = 0 or k = 1.

To prove k = 1, it is enough to verify the existence of one system with ν = 1. To this

end, consider a translational invariant system in the DIII class with nontrivial Z2 invariant.

In this case, according to Eq. (3.55), we have

ν = No. {Kramers pairs at
1

2
} = 1 (mod 2). (3.84)

The last equation can be obtained by considering the band structure, due to translational

invariance: A Kramers pair at 1/2 correspond to the a band crossing.

3.5 Summary

In this chapter, we have argued the necessity of real-space topological invariants for

systems with boundaries or disorders. Starting with the filled-band projection, one can

calculate the real-space invariants either based on some index theorems or almost commuting

matrices.

For topological insulators, we proposed a formula Eq. (3.50) for the Z2 Kane-Mele in-

variant in 2D, which remains valid with disorder. The intuition behind our formula is

flux-insertion-induced spectral flow, which manifests itself as the difference of numbers of
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electrons in the ground states. The formula works by taking the single-body projection ma-

trix P (or ground state correlation function) as the input, performing a Peierls substitution

(either geometrical or topological), and then take the “trace over vertex states”. Our formula

is a local expression, in the sense that the contribution mainly comes from quantities near

an arbitrarily but fixed point. The validity of this formula is proved rigorously, by showing

its properties (gauge invariance, addictivity, integrality, etc).

Due to the local property of our formula, it can be well approximated with partial knowl-

edge of the projection matrix. In this case, we construct “vertex matrix” and “boundary

matrix” which almost commute. Using an interesting parabola, the vertex contributions are

separated out. The validity of this algorithm is proved and verified numerically.

Similar ideas may be used in the case of other symmetries and other dimensions. It

would be interesting to work out other cases to see if one can get (and prove) a new formula.

Moreover, the flux-insertion idea also works in some interacting cases, for example, Ref. [83].

It would be interesting to explore such generalizations of our Z2 formula.
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4.0 Homotopical Classification of Non-Hermitian Band Structures

While we are used to assuming the Hermiticity of Hamiltonians, as required by the axioms

of quantum mechanics, there has been growing interest in non-Hermitian Hamiltonians these

years. Indeed, in the Hermitian quantum mechanics framework, non-Hermitian Hamiltonian

can emerge as an effective description of open system with gain and loss [41, 84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103] or systems with finite-lifetime

quasiparticles/non-Hermitian self energy [104, 105, 106], which can be experimental realized

in atomic or optical systems [107, 108, 109, 110, 111, 112, 113]. Moreover, non-Hermitian

Hamiltonians with certain properties can serve as an extension of conventional Hermitian

quantum mechanics [42, 43, 44].

Inspired by the great success in topological phases for Hermitian systems, there has been

lots of works focusing on the topological aspects of non-Hermitian systems [45, 46, 114, 47,

48, 49, 115]. On the one hand, many familiar constructions for topological phases can be

extended in the case of non-Hermiticity. For example, people have constructed the non-

hermitian counterparts for Su-Schrieffer-Heeger model [87, 116, 102, 117, 118, 119], Chern

insulators [120, 121, 122, 123, 124], and quantum spin hall effects [125]. On the other hand,

non-Hermitian systems also exhibit many unusual phenomena with no counterpart in the

Hermitian world. These include exceptional points [126, 127, 128], anomalous bulk-edge

correspondence [129, 102, 130, 131, 132], non-Hermitian skin effect [133, 120] and sensitivity

to boundary conditions [129, 134]. For a recent review, see Ref. [135] and references therein.

There have been some works [45, 46, 114, 47, 48] on the general classification of non-

Hermitian systems, aiming at a generalization of the Hermitian periodicity table. In these

works, the authors first determined reasonable symmetry classes in the non-Hermitian setting

(a generalization of Ref. [17]), then use a unitarization/Hermitianization map to reduce the

problem into the Hermitian setting where one can apply K-theory.

In this chapter, we discuss a more conceptually straightforward homotopical [136, 62,

59, 78, 63, 137, 138] framework towards the topological classification of non-Hermitian band

structures, which enables us to see more topological invariants beyond K-theoretical ap-
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proaches. With rigorous algebraic-topological calculation, we implemented our idea in detail

for systems with no symmetry.

We will also consider the stability issue of these new invariants, in the sense that whether

adding other bands will trivialize these invariants (even if the band has no crossing with

previous bands). Similar to the Z invariants of Hopf insulators [59], our torsion invariants

are unstable. We will give a combinatorial proof for the instability in general.

4.1 Classification Results

4.1.1 Principle of Classification

As discussed in Sec. 2.3.1, one needs to specify the set and the equivalence relation before

talking about classification.

For Hermitian systems, there is no subtlety regarding the meaning of the gap, since all

eigenvalues of a Hermitian Hamiltonian are real and the meaning of a gap on the real line

is clear. For non-Hermitian systems (interacting or not), however, the eigenvalues can be

complex. Therefore, the meaning of a “gap” need to be further clarified [123, 46, 139].

Consider a non-interacting non-Hermitian system with translational invariance. Stan-

dard second quantization and band theory give rise to momentum-dependent one-body

Hamiltonians H(k). In this paper, we will call {H(k)} (k ∈ BZ, the Brillouin zone) a

band structure, which contains information of both their spectrum Ei(k) and associated

eigenstates |ψi(k)〉.

One has at least the following different notions of the gap:

• line gap [46, 140]. There exists a (maybe curved) line l in the complex energy plane

which separates the plane into two disconnected pieces. We require Ei(k) /∈ l for all i

and k, and both connected component have some spectral points in them.

• point gap [45, 46, 114, 48]. Ei(k) 6= 0 for all i and k. Here, 0 is a reference point which

can be altered to any E0.
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• separable band [123, 121]. A specific band Ei(k) is called separable if Ej(k) 6= Ei(k)

for all j 6= i and k.

• isolated band [123]. A specific band Ei(k) is called isolated if Ej(k
′) 6= Ei(k) for all

j 6= i and k, k′.

Note that these notions are not mutually exclusive. For example, an isolated band is always

separable; systems with isolated bands always have line gaps and hence always have point

gaps. Also note that, the first two notions are applicable to general non-Hermitian systems,

while the last two notions are specific to translational-invariant non-interacting cases by

definition.

In our paper, we will consider the classification of separable band structures, since other

cases were solved [45, 46, 114, 47, 48] by mapping back to the Hermitian case. However,

there is one more problem with the definition of separability that needs to be discussed: the

above mentioned Ei(k) may not be a well-defined function of k.

For example, consider a one-dimensional systems with two bands, satisfying E1(k) 6=

E2(k) for all k. It is possible that E1(2π) = E2(0): if one follow the spectrum when k

goes around the Brillouin zone (a circle in this case) starting from E1(0), one may go to

E2(0) instead of going back to E1(0), see Fig. 10. In this case, the notation “Ei(k)” (and

therefore its separability) for a specific i may not be well-defined. Instead, it is better to

define separability in a global manner: for any k, Ei(k) (i = 1, · · · , n) are all different.

This definition of separability automatically rules out exceptional points, i.e., H(k) is not

diagonalizable under similarity transformations, since it requires (algebraically) degenerated

spectra.

To summarize, we will consider the following problem: classify the band structure {H(k)}

where spectrum of H(k) are non-degenerated and {H0(k)} and {H1(k)} are equivalent if and

only if they can be continuously connected by {Ht(k)} for t ∈ [0, 1] and the spectra of Ht(k)

for any t and k are always non-degenerated. Let us consider the general problem of classifying

band structures with n bands on a m-dimensional lattice. Denote

Xn = the space of H(k). (4.1)
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k0 2π

Figure 10: Z2 braiding of energy levels. In this figure, the disk is the complex energy plane,

with two spectra points in it; k is the Bloch momentum, k = 0 and k = 2π should be

identified.

Namely, it is the space of n× n matrices with non-degenerated spectra. Here the Brillouin

zone will be the m-dimensional torus Tm. Mathematically speaking, we want to find the

homotopy equivalent classes of non-based maps from the Brillouin zone Tm to Xn, denoted

by [Tm, Xn].

It will be important to distinguish Tm and Sm since they will give different answers. It is

also important to distinguish based maps and non-based maps: the former requires a chosen

point in Tm to be mapped to a chosen point in Xn while the latter has no such requirement1.

To calculate the classification, we are going to use some standard methods in algebraic

topology. For an introduction, see Ref. [8].

4.1.2 The Space Xn and Its Homotopy Groups

An element H of Xn is an n × n matrix with non-degenerated spectrum, which can be

represented as (λ1, · · · , λn, α1, · · · , αn). Here, (λ1, · · · , λn) are ordered eigenvalues satisfying

λi 6= λj, i.e.,

(λ1, · · · , λn) ∈ Confn(C), (4.2)

1On the other hand, for continuous systems the appropriate choice the based map from Sm to Xn since
the Brillouin zone here is Sn with the requirement that infinite momentum maps to some fixed point [18].
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where Confn(C) is the configuration space of ordered n-tuples in C. (α1, · · · , αn) are corre-

sponding eigenvectors (up to complex scalar multiplications), which are linearly indenpen-

dent. Denote the space of linearly indenpendent ordered n-vectors (up to scalar) in Cn as

Fn. We have

Fn ∼= GL(n)/C∗n, (4.3)

since GL(n) acts transitively on Fn and the stabilizer group is C∗n, where C∗ = C − {0},

the group of nonzero complex numbers. Another way to understand this equation is to

consider the columns of a GL(n) matrix, which are ordered n-vectors in Cn, while “up to

scalar” is taken care of by n independent scalar multiplications C∗n. The space Fn is actually

homotopic to the full flag manifold of Cn.

This representation has some redundancies: one can permute (λi, αi) and get the same

matrix H. Therefore,

Xn
∼= (Confn×Fn)/Sn, (4.4)

where Sn is the permutation group acting on Confn×Fn as simultaneous permutations of

(λi, αi).

Consider π1(Confn), whose elements are (equivalence classes of) paths in Confn, which

correspond to some pure braidings of n mutually different points in C. Here, “pure” means

each point goes back to itself after the braiding. This is true since we are considering ordered

n-tuples. Therefore,

π1(Confn) = PBn, (4.5)

where PBn is the pure braiding group of n points [141, 142].

It turns out [143] that Confn = K(PBn, 1), the classifying space of the group PBn.

Therefore,

πm(Confn) = 0, m ≥ 2. (4.6)

The homotopy groups πm(Fn) can be obtained by the long exact sequence of homotopy

groups [8], based on the fibration Eq. (4.3). For m = 1, we have:

π1(C∗n)→ π1(GL(n))→ π1(Fn)→ π0(C∗n) = 0. (4.7)
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Here, π1(C∗n) = Zn, π1(GL(n)) = Z, which is essentially the determinant. The map

π1(C∗n) → π1(GL(n)) is exactly summing over n components in Zn, which is surjective.

Therefore π1(Fn) = 0. For m = 2, we have:

0 = π2(GL(n))→ π2(Fn)
∂−→ π1(C∗n)→ π1(GL(n)). (4.8)

Therefore, π2(Fn), as the kernel, is represented by n integers with summation equals 0:

{(t1, · · · , tn) ∈ Zn|
∑

ti = 0}, (4.9)

which is isomorphic to Zn−1. This representation with n integers will be useful later. For

m ≥ 3, we have

0 = πm(C∗n)→ πm(GL(n))→ πm(Fn)→ πm−1(C∗n) = 0, (4.10)

therefore πm(Fn) = πm(GL(n)) = πm(U(n)).

To summarize, the result is as follows:

πm(Fn) =


0, m = 1

Zn−1, m = 2

πm(U(n)), m ≥ 3

. (4.11)

Now consider the space Xn. According to Eq. (4.4) and the fact that Sn is discrete,

higher homotopy groups πm≥2(Xn) are the same as those of Confn×Fn, therefore the same

as Eq. (4.11), due to the fact in Eq. (4.6).

For the fundamental group π1, one can take advantage of the fact that π1(Fn) = 0 and

show that:

π1(Xn) = π1(Confn /Sn) = Bn. (4.12)

Here Sn acts on Confn by permutations, giving the configuration space Confn /Sn of non-

ordered n-tuples in C, whose fundamental group is Bn, the braiding group including “non-

pure” braidings.

This is because a loop in Xn corresponds to a path p(t) = (p1(t), p2(t)) in Confn×Fn such

that p1(1) = gp1(0) and p2(1) = gp2(0) for the same g ∈ Sn. Note that g is uniquely deter-

mined by p1(1) (the initial point (p1(0), p2(0)) is a fixed lifting) and Fn is simply connected,
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the path one-to-one (homotopically) corresponds to a path in Confn with p1(1) = gp1(0) and

therefore a loop in Confn /Sn. A more algebraic proof is to note that the actions of Sn on

Confn×Fn and Confn are consistent, which gives the following pullback:

Confn×Fn −−−→ Confny y
Xn −−−→ Confn /Sn

, (4.13)

and then apply the homotopy exact sequence for this pullback square.

The appearance of braiding group Bn is easy to understand. Consider a one-dimensional

band structure and follow the evolution of spectrum {Ei} along the Brillouin zone circle.

Similar to n = 2 case in Sec. 4.1.1 as shown in Fig. 10, in general points in {Ei} will braid

with each other during this evolution and may become other points after one cycle. The

evolution of n disjoint points is topologically classified by the braiding group Bn.

4.1.3 The Set [Tm, Xn]

The equivalent classes [Tm, Xn] is related but may not equal to the homotopy groups

πm, which is, by definition, 〈Sm, Xn〉. Here, 〈−,−〉 is used for based maps, while [−,−] is

used for non-based maps. In general, [T,X] is just a set with no extra structures, even if T

is a sphere, in which case 〈T,X〉 is exactly a homotopy group. The relation between [T,X]

and 〈T,X〉 for general spaces T and X is as follows [8]: There is a right action of π1(X) on

〈T,X〉, and [T,X] ∼= 〈T,X〉 /π1(X), the orbit set of the action.

We will first calculate 〈Tm, Xn〉 and then use the above connection to obtain [Tm, Xn].

In the case m = 1, π1(Xn) acts on 〈T 1, Xn〉 = π1(Xn) by conjugate:

[f ][γ] = [γ−1 ◦ f ◦ γ], (4.14)

therefore [T 1, Xn] is the set of conjugacy classes of group Bn. Determine the conjugacy

classes of braiding group Bn is a difficult problem2 except n ≤ 2.

2For a review of the conjugacy problem in braiding group, see Ref. [144]. It relies on the “Garside
structure” [145].
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In the case m = 2, the set 〈T 2, X〉 is given by [146] (see also Appendix C.2.1):

{(a, b) ∈ π1(X)2|ab = ba} × π2(X)/〈t− ta, t− tb | t ∈ π2〉, (4.15)

where ta is the result of a ∈ π1(X) acting on t ∈ π2(X). Note that this is a noncanonical

identification. In our problem, the result is:⋃
a,b∈Bn
ab=ba

Zn−1/ 〈t− ta, t− tb〉 def
=

⋃
a,b∈Bn
ab=ba

Q(n, a, b). (4.16)

In other words, the classification of based maps is decomposed into several sectors, denoted

by a pair of commuting braidings3 a, b ∈ Bn; classification within each sector (a, b) is given

by the quotient Q(n, a, b), a finite-generated abelian group, by identifying t with ta and tb.

Physically, the braidings a, b is given by following two nontrivial circles la, lb in the Bril-

louin zone T 2. Since lalbl
−1
a l−1

b is the boundary of the 2-cell of T 2, the corresponding braiding

aba−1b−1 must be trivial, hence ab = ba. Fixing a, b, the map on the 2-cell is determined

by π2(Xn) = π2(Fn) = Zn−1, which are ensentially (n − 1) Chern numbers, up to some

ambiguities taken care of by the quotient.

The action t 7→ ta here is determined as follows. Recall Eq. (4.9) that π2(Xn) = Zn−1

can be represented by {(t1, · · · , tn) ∈ Zn|
∑
ti = 0}. a ∈ Bn induced a permutation ã ∈ Sn

by forgetting the braiding. Then ta is represented by a permutation of (t1, · · · , tn):

(t1, · · · , tn) 7→ (ta(1), · · · , ta(n)). (4.17)

The proof of this statement is a bit technical. However, since it is the root of most novel

classifications in this paper, we give a detailed proof in Appendix C.2.2.

Now consider the action of π1(Xn) = Bn on 〈T 2, Xn〉. Pick c ∈ Bn, then c act on (a, b)

by conjugate:

(a, b)→ (c−1ac, c−1bc). (4.18)

The action of c on t̄ ∈ Q(n, a, b) is induced by the action of π1(Xn) on π2(Xn): under

c, t goes to tc, ta goes to tac, therefore t − ta goes to tc − (tc)c
−1ac, therefore the action

of c on t̄ ∈ Q(n, a, b) is well-defined as t̄c = tc ∈ Q(n, c−1ac, c−1bc). Note that Q(n, a, b) ∼=
3For a review of the centralizer problem in the braiding group, see Ref. [147]. The result heavily depends

on the geometry of braiding, namely, the Nielsen-Thurston classification [148].
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Q(n, c−1ac, c−1bc), due to fact that Eq. (4.16) and Eq. (4.17) only care about the permutation

structure of a, b, which is invariant under conjugation. We finally get:

[T 2, Xn] =
⋃
(a,b)
ab=ba

Q(n, a, b), (4.19)

where (a, b) means a conjugacy class of commuting pairs under Eq. (4.18), and Q(n, a, b) =

Q(n, a, b)/πs1(Xn) is the orbit set (not quotient group) of Q(n, a, b) under the stablizer sub-

group πs1(Xn) that keeps (a, b) invariant.

The reason for the appearance of this πs1(Xn) action can be traced back to the difference

between [T,X] and 〈T,X〉. Physically, there is no natural way to label the bands (even

if no braiding happens, namely, a = b = id). In the Hermitian case, bands are naturally

ordered according to their energy, which is not the case for complex energy levels. Therefore

there are some redundancies corresponds to change the label of bands (see Sec. 4.2.2 for an

example). Also note that, while Q(n, a, b) is a finite generated abelian group, Q(n, a, b) is

just a set.

4.2 Examples

4.2.1 Non-Hermitian Bands in One Dimension

In the case of m = 1, we know from Sec. 4.1.3 that band structures are classified by the

conjugacy classes of group Bn.

Determine the conjugacy classes of braiding group Bn is only easy when the number of

bands n = 2, where the braiding group B2 is just Z: a ∈ Z is the number of elementary

braidings (half of a 2π rotation), with a even implies a pure braid and a odd implies a

permutation. In this case, each conjugacy class only has one element, since Z is abelian.

Therefore, the classification is given by:

[T 1, X2] = Z. (4.20)

Same classification was found in Ref. [102, 123, 119]. Note that some authors use 1
2
Z instead

of Z: their spectral “vorticity” is exactly one half of the above invariant.
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4.2.2 Two-Band Chern “Insulators”

Consider the case with m = n = 2, namely, band structures with two bands in two di-

mensional (2D) space. This corresponds to Chern insulators in the Hermitian case. However,

it may not be a true insulator in the non-Hermitian case if there is no line gap (to place the

chemical potential).

Let us calculate Q(2, a, b) and Q(2, a, b), where a, b ∈ B2 = Z. There are four cases,

depending on the even/odd of a and b.

• a, b even. Then ta = tb = t, therefore Q(2, a, b) = Z. The action of c ∈ π1(Xn)

on Q(2, a, b) might be nontrivial: it acts as opposite if c is odd (see below), therefore

Q(2, a, b) = N, the set of nonnegative integers.

• a even, b odd. Then ta = t while tb = −t in the sense that (s,−s)b = (−s, s). Therefore

Q(2, a, b) = 〈(s,−s)〉 / 〈(2s,−2s)〉 ∼= Z2. The action of π1(Xn) at most takes (s,−s) to

(−s, s), which has no effects on Z2, therefore Q(2, a, b) = Z2.

• a odd, b even. Same as above.

• a, b odd. Then ta = tb = −t, Q(2, a, b) = Q(2, a, b) = Z2.

Therefore, band structures are classified by:

⋃
a,b∈Z

N or Z2. (4.21)

The N classification (instead of Z) comes from the fact that we have no natural way

to identify “upper band” and “lower band” as in the Hermitian case, since there C is not

naturally ordered as R. This new feature of non-Hermitian classification will disappear if,

for example, we have a fixed line gap, where the classification will go back to Z.

The Z2 classification in some sectors is a more interesting phenomenon. It comes from

the interplay between spectrum braiding and eigenvector topology (Chern band). Here, we

provide a formula as well as heuristic arguments for this invariant.

We will concentrate on the case where (a, b) is (even, odd). The (odd, even) case is

similar; the (odd, odd) case can be handled by a Dehn twist. Also note that the Z2 invariant

essentially comes from the (odd, even) sector of [T 2, F2/S2] (F2/S2 is the space of distinct

pairs of states), as one can see by following the same calculations as above.
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We claim the following formula for this invariant:

C =
1

2π

∫
BZ

εijBij(k)d2k + SWZW (a, a′). (4.22)

In the first term, the Berry curvature Bij(k) [123] is defined by following one band, therefore

has discontinuity at boundary; the integral is over the conventional 2π × 2π Brillouin zone.

The second term SWZW (a, a′) is a boundary Wess-Zumino-Witten (WZW) term4, defined as

follows. By following one band, one gets a map from a cylinder to the Bloch sphere S2, such

that for any point on the left boundary a, the corresponding point on the right boundary

a′ maps to different point on S2 (since they corresponds to linear independent vectors), see

Fig. 11. We then close two boundaries in a consistent way [62] such that the above condition

is still satisfied on two “caps”. This is always possible since [ã] = 0 in π1(F2/S2) due to the

assumption that a is even, where ã denotes the map from the nontrivial loop (boundary) to

the space of pairs F2/S2. Then SWZW (a, a′) is then defined as

1

4π
× oriented area of caps on S2. (4.23)

By adding the caps, we obtain a closed manifold, therefore Eq. (4.22) is an integer.

As always, there are some ambiguities in the definition of SWZW , corresponding to the

ambiguities in adding the caps. Importantly, the consistency requirement for the caps implies

that Eq. (4.22) can only be shifted by 2 (instead of 1) by the ambiguities5. To see this, note

that we have a deformation retraction from F2/S2 to RP 2, as defined in Fig.11(b). After this

deformation retraction, the consistency condition simply requires that corresponding points

in two boundaries map to antipodal points. Therefore, two caps should always be antipodal

to each other, and

SWZW (a, a′) = 2SWZW (a). (4.24)

Therefore, C is only defined mod 2 and we obtain a Z2 invariant.

4The boundary term is also known as a Berry phase term [149].
5Heuristically, one cannot just flip one cap while leaving the other unflipped in Fig.11(a), otherwise the

Brouwer’s fixed point theorem guarantees an inconsistent point.
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Figure 11: (a) Following one band, we get a map from the cylinder to S2. To define the

WZW term, one needs to close the cylinder with two caps in a consistent way (not necessarily

antipodal in the non-Hermitian case). Here the arrow represents orientation, not to be

confused with the way one identifies two boundaries. (b) A deformation retraction from

F2/S2 to RP 2. Each point in F2/S2 corresponds to a pair of different points in S2. We draw

the great circle corresponds two that pair, and then gradually push the pair to an antipodal

pair (corresponds to a point in RP 2). If a pair is already antipodal, nothing needs to be

done. In this way, we have defined a deformation retraction.

Another way to understand the Z2 invariant is as follows. Using the above deformation

retraction, we see that this Z2 can also be understood from [T 2, RP2]. For the (odd, even)

sector, we have the following diagram:

2T 2 −−−→ S2y y
T 2 −−−→ RP 2

, (4.25)

therefore the classification amounts to classifying covariant maps from 2T 2 to S2. Here,

2T 2 is a double cover of Brillouin zone T 2, by gluing two cylinders along b-direction, see

Fig. 12; “covariant” means corresponding points in the left and right cylinder should map

to antipodal points.

Now, we can add a “bump” of Berry curvature with positive 1 integral and a “bump”

with negative 1 integral by deforming the eigenstates, both in the “upper band”. It is
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Figure 12: Physical origin of the Z2 invariant. (a) Due to energy level braiding, the Brillouin

zone is better considered as a torus with size 4π × 2π on which the energy E(k) and wave-

function ψ(k) is well-defined: if one follows one band on the conventional Brillouin zone

of size 2π × 2π, then after 2π one goes to the other band. The dashed lines indicate this

“gluing”. (b) Each solid line represents a cylinder similar to those in figure (a), the dashed

lines again indicate the “gluing”. Starting with trivial bands, one adds ±1 “bumps” to the

upper band, and ∓1 “bumps” to the lower band, then move the right pair (circled by the

dashed line) to the right. After 2π, they will switch, resulting in a C = 2 “bump” in the

upper band and C = −2 “bump” in the lower band.

necessary to add opposite bumps due to the covariant constraint. We can then move a pair

of bumps along b-direction for 2π. After this procedure, we effectively add a C = 2 bump

to the “upper band” and a C = −2 bump to the “lower band”. Therefore, C is again only

well-defined mod 2.

4.2.3 Multiband Chern “Insulators”

The conjugacy classes and commuting pairs are hard to describe if n > 2. However, the

quotient Q(n, a, b) for given braiding sector (a, b) are not hard to calculate.
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Recall from Eq. (4.17) that π2(Xn) = Zn−1 = {(t1, · · · , tn)|
∑
ti = 0} and (t1, · · · , tn)a =

(ta(1), · · · , ta(n)) where a(i) is the image of i under the permutation a. Therefore, the subgroup

to be quotient out is (we only write down the ta part):

〈t− ta〉 = 〈(t1 − ta(1), · · · , tn − ta(n))|
∑

ti = 0〉 . (4.26)

There are only (n − 1) independent ti: we can use tn = −
∑n−1

i=1 ti to get rid of the

constraint. Then the subgroup Eq. (4.26) is generated by 2(n− 1) (not necessarily indepen-

dent) generators. For example, take t1 = 1, t2 = · · · = tn−1 = 0, tn = −1 and consider the

action of a, we get a generator e1 − ea−1(1) − en + ea−1(n), where e1 = (1, 0, · · · , 0,−1), e2 =

(0, 1, 0, · · · , 0,−1), en−1 = (0, · · · , 0, 1,−1), en = (0, · · · , 0). Therefore, the Q(n, a, b) is the

quotient of 〈e1, · · · , en−1〉 with 2(n− 1) relations ei − ea−1(i) − en + ea−1(n)(i = 1, . . . , n− 1).

Its structure can be determined by standard procedure using Smith normal form.

As a simple example, consider the case where a : 1→ 2→ 3→ 4→ 1, b : 1→ 4→ 3→

2→ 1. This is possible, say, by taking a to be a braiding with such permutation structure,

then taking b = a−1. The auxiliary “generators” given by ti = 1, t1 = · · · = ti−1 = ti+1 =

· · · = tn = 0 writen in terms of n-tuples is the ith columns of the following matrix


1 −1

1 −1

1 −1

−1 1

 . (4.27)

Since the true generators are given by taking ti = 1, tn = −1, tj = 0(j = 1, · · · , i − 1, i +

1, · · · , n−1), we need to subtract the last column from all other columns and delete the last

row. The matrix of true generators for 〈t− ta〉 is:


1 −1

1 −1

1 1 2

 , (4.28)
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and similarly for b: 
2 1 1

−1 1

−1 1

 . (4.29)

Juxtapose those two matrices and calculate its Smith normal form, we get:
1 0 0 0 0 0

0 1 0 0 0 0

0 0 4 0 0 0

 , (4.30)

which means Q(4, a, b) = Z4.

Another example is when b = id, i.e., no permutation. We can decompose a into cycles:

a = (...)(...)...(...). Denote the length of each cycle to be l1, · · · , lk (
∑k

i=1 li = n) where k is

the number of cycles. In this case, we can follow the above procedure and get an explicit

formula for Q(n, a, b).

Denote an l × l matrix of form Eq. (4.27) to be Jl, then the counterpart of Eq. (4.27)

(where columns are auxiliary “generators”) is:
Jl1

Jl2
. . .

Jlk

 , (4.31)

and the counterpart of Eq. (4.28) by subtraction and deleting is:

Jl1

Jl2

. . .

1 1 1 1 1 1
J̄lk



, (4.32)
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where J̄lk is an (lk − 1) × (lk − 1) matrix of form Eq. (4.28). To clarify, the last row of the

above big matrix is (1, 1, . . . , 1, 2). It is easy to perform row transformation on the above

matrix and get: 

Kl1

Kl2

. . .

0 l1 0 l2 ·· ··
K lk



, (4.33)

where Kl = diag{1, · · · , 1, 0} (size l), K l = diag{1, · · · , 1, l} (size l − 1). To clarify, the

last row of the above big matrix is (0, · · · , 0, l1, 0, · · · , 0, l2, · · · , 0, · · · , 0, lk). Therefore, the

structure of Q(n, a, b) is:

Q(n, a, b) = Zk−1 ⊕ Zgcd (l1,...,lk), (4.34)

where Zgcd (l1,...,lk) is the greatest common divisor and Z1 means trivial group {0} if gcd = 1.

The Zk−1 comes from the fact that we have k groups of bands (bands that transfer to

each other under braidings are in the same group). Each band has an integer Chern number,

with summation equals 0. This is the same as the Hermitian case. However, there is an extra

Zgcd. We also see that the extra torsion part is determined by all band groups as a whole, not

from any specific band group. It shows some complicated interplay between energy braiding

and eigenstates topology.

With other permutations a, b(a, b 6= id), it is possible to get more than one torsions. An

example is a : 1↔ 2, 3↔ 4 with b : 1↔ 3, 2↔ 4. The algorithm will give us Z2 ⊕ Z2.

4.3 Instability

Examples in Sec. 4.2 show that our homotopical approach reveals more topological in-

variants than the traditional K-theory approach. For example, a 2-band Chern “insulator”
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in 2D may reveal some Z2 classification due to nontrivial topology of the spectrum.

Similar phenomena also happen in the Hermitian world. For example, in three dimensions

(3D), insulators in class A are always trivial according to the periodicity table. However,

one can still have a Z classification if the number of bands is fixed to be 2, due to the fact

that π3(CP 1) = Z. This is called the Hopf insulator [59], which is unstable against adding

more bands. Indeed, as long as one adds one more band above and below the Fermi surface

respectively, the classification will be trivial due to π3(GrC(3, 1)) = 0 (and similarly for more

bands), where GrC(3, 1) is the complex Grassmannian.

A natural question arises: is our new topological invariants stable against adding bands?

As an example, let us consider 2-band systems in 2D as in Sec. 4.2.2, and add one more

band. Since the classification is decomposed into braiding sectors and each sector has its

own classification set, it only makes sense to add a band with no permutation to previous

bands (therefore it does not alter the braiding sectors). For each sector (a, b), adding a band

without permutation is to add a length-1 cycle after previous a, b.

• a, b even. Then a′ and b′ are trivial permutations, therefore Q(3, a, b) = Z2, which are

just two Chern numbers.

• a even, b odd. Then a′ trivial while b′ decomposes as (12)(3). Eq. (4.34) shows that

Q(3, a′, b′) = Z.

• a odd, b even. Same as above.

• a, b odd. Then both a′ and b′ has the form (12)(3). A Smith normal form calculation

shows Q(3, a′, b′) = Z.

In all cases, we see that the extra band contributes a Chern number Z, as well as kills the

old Z2 invariant it there is any, even if the Z2 comes from other bands that never intersect

with the added band. This is possible since the Z2 not just comes from those two bands,

but from all three bands as a whole, as noted at the end of Sec. 4.2.3.

The instability of Z2 can be understood as follows. Assuming a odd and b even, consider

the procedure shown in Fig. 13: we start with three bands with Chern number 1,−1, 0

respectively, where the first two bands switch to each other after 2π as in Fig. 12(a). Adding

a negative bump and a positive bump in band 1, as well as a positive bump and a negative
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Figure 13: Physical origin of instability. Similar to Fig. 12, solid lines represent the Brillouin;

dashed lines indicate the “gluing”. We start with three bands with Chern number 1,−1, 0

respectively, where the first two bands switch to each other after 2π. If we forget band 3, it

will be nontrivial, indicated by a Z2 invariant. However, add band 3 and follow the procedure

shown in the figure, we can make the band structure totally trivial.

bump in band 3; then move the rightmost bump pair in band 1 and 3, so that the positive

bump cancels the negative bump in band 2; the remaining bumps in band 1 and 3 can be

easily canceled, leaving three trivial bands. During the procedure, the local neutral condition

is always satisfied. Note that it is essential to have the 3rd band for this to work.

Similarly, as long as b = id, Eq. (4.34) shows that Q(n+ 1, a′, b′) has no torsion part.

We can prove a general result regarding the instability, even if b 6= id. For a system with

n bands, consider the braiding sector labeled by the commuting pair (a, b). Let us add an

extra no-permutation band, denote a, b→ a′, b′. The matrix of auxiliary “generators” is:
0

A B
0

0 0 0 0 0

 , (4.35)

where A and B are of form Eq. (4.31) up to some congruent transformation by permutation

matrices. The matrix of generators (counterpart of Eq. (4.28)) is therefore just

[A | B]. (4.36)

We claim that the invariant factors in its Smith normal form must be 1. Indeed, we claim a

more general statement:
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Claim. Assuming a matrix has the following property: there are either 2 or 0 nonzero

elements in each column; in the former case, there is exactly one 1 and one -1. Then the

invariant factors of this matrix must be 1 (if there is any).

Proof. We prove by induction on the total number of nonzero elements N . From the as-

sumption, N must be even. If N = 0, then the statement is trivially true.

Now assume the state is true for N and less, let us consider N + 2. Denote the matrix

to be A. Without lose of generality, assume A1,1 = 1, A2,1 = −1, Ai,1 = 0 for i ≥ 3. Add

row 1 to row 2, denote the new matrix as A′, then A′i,1 = 0 for i ≥ 2. Moreover, from the

assumption on matrix A, there are only 7 possibilities happened to

A1,2

A2,2

 (we only write 4

of them, the other 3 are obtained by adding negative sign):

0

0

→
0

0

 ,
 1

−1

→
1

0

 ,
1

0

→
1

1

 ,
0

1

→
0

1

 . (4.37)

Therefore, the column (A′2,2, · · · , A′n,2)T satisfies the same assumption as columns of A. The

number of nonzero elements in this shorter column is less or equal to that in (A1,2, · · · , An,2)T .

Other columns are similar.

Then we use column transformations to make A′1,i = 0 for i ≥ 2, while keeping other

elements. A′ is of the form:

A′ =


1 0 0

0

0
A′′

 . (4.38)

We can then apply the induction assumption on A′′ and finish the proof.

Therefore, Q(n + 1, a′, b′) is always of the form Zk. This means all torsion invariants

Zi(i ≥ 2) are unstable against adding a no-permutation band.
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4.4 Summary

For non-Hermitian free fermionic systems, we considered the homotopical classification

of band structures from first principles. We found that, the whole classification set is decom-

posed into several sectors, based on the braiding of energy levels. Fix a braiding pattern,

we considered the classification coming from nontrivial eigenstates topology. Due to the fact

that different bands will transfer to each other under braidings, the classification of band

topology is not just a direct summation of Chern numbers. Instead, the interplay between

energy level braiding and eigenstates topology gives some new torsion invariants.

The torsion invariants come from all bands as a whole, instead of a specific band or a

proper subset of bands: even if we add a band with no crossing with previous bands, the

torsion invariants can in principle be changed. We found that those torsion invariants are

unstable, in the sense that just adding one trivial band will trivialize them. This statement

is proved based on an interesting combinatorial argument.

There are definitely many works that can be done in this framework. First of all, due to

the complexity of the braiding group, it is complicated to describe its conjugacy classes and

commuting pairs, let alone the conjugacy classes of commuting pairs. It will be useful to

develop more explicit descriptions of the braiding sectors. On the other hand, in this thesis

we only consider the case with no symmetry as an illustration. It is interesting to consider

other symmetry classes using our framework.
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5.0 Conclusions and Outlooks

Topological phases are important extensions of the Landau-Ginzburg paradigm regarding

phases of matter. Free fermion systems provide interesting examples for topological phases,

which are of both theoretical beauty and experimental relevance.

While the complete classification of topological phases is unknown, we have shown that

it is possible to establish a formal theory for translationally invariant gapped free fermion

systems, starting from first principles of quantum mechanics. The resulting theory, based

on topological band theory, shows deep connections with some beautiful mathematics such

as topological K theory and Bott periodicity.

In this thesis, we have discussed some extensions of topological band theory. We argued

that, to capture systems with boundaries and/or disorders, it is necessary to define and

calculate topological invariants in real space. We showed that it is indeed possible, and

the resulting formula will be some nice local expressions in the sense that one can get a

good approximation with only local information. We have also discussed the non-Hermitian

extension of traditional topological band theory. The main novelty of non-Hermitian band

theory lies in the fact that eigenvalues themself can possess interesting topological properties

(braiding). Moreover, the eigenvalue topology has some interesting interplay between the

conventional eigenvector topology, resulting in new or altered topological invariants.

While the basic properties of free fermion systems are relatively well understood, there

is much work to be done.

First of all, this thesis only addresses free fermion systems. The classification of general

interacting systems is still far from complete. For gapped systems, although a lot of progress

has been made [4, 150, 151, 28, 152, 58, 153], the classification of two-dimensional systems

is essentially still a conjecture in the sense that people cannot derive the result from first

principles yet. Classification of three-dimensional systems and systems in higher dimensions

is more incomplete. For example, the newly discovered fracton phases [154] tell us that our

imagination based on conventional notions like quasiparticles is limited and sometimes even

misleading. We believe it is safe to claim that nature will keep surprising us with more and
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more exotic topological phases of matter.

Secondly, understanding the basic classification is far from understanding everything,

just like understanding set theory is far from understanding mathematics. Even within the

realm of noninteracting systems, there are lots of interesting problems. We have discussed

the extensions to real space and non-Hermitian Hamiltonians. Some other extensions include

Floquet topological phases [155, 156], higher-order topological phases [157] and extensions

with other symmetries [158].

On the realistic side, it is always important to study the topological physics of real mate-

rials and experimentally realize the theoretical models and verify the theoretical predictions.

It is also very interesting and useful to explore their potential utilities in, for example, quan-

tum computations [151].
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Appendix A Clifford Algebra, Symmetric Space, and K Theory

In this appendix, we briefly review Clifford algebra, symmetric space, K theory, and

relations among them. See Ref. [56, 159, 160] for details and more information.

A.1 Clifford Algebra

Definition A.1 (Clifford algebra). The Clifford algebra Cl(V,Q) associated with a vector

space V and a quadratic form Q is the universal algebra such that v ·v = Q(v) for ∀x ∈ V . In

perticular, the real Clifford algebra Clp,q is generated by e1, · · · , ep, · · · , ep+q over R subject

to the relations:

(ei)
2 = −1 (i ≤ p), (ei)

2 = −1 (p+ 1 ≤ i ≤ p+ q), {ei, ej} = 0 (i 6= j). (A.1)

The complex Clifford algebra Cln is generated by e1, · · · , en such that:

(ei)
2 = −1, {ei, ej} = 0 (i 6= j). (A.2)

The structure of real Clifford algebras can be obtained by the following theorem:

Theorem A.1. Clp+1,q+1
∼= Clp,q⊗RCl1,1 (isomorphic as algebra). Cl1,1 ∼= R(2), the matrix

algebra M2(R) over R. Moreover,

Clp+8,q
∼= Clp,q+8

∼= Clp,q ⊗R R(16). (A.3)

According to this theorem, the structure of Clp,q only depends on p − q up to tensor

product with matrix algebra, and have a mod 8 periodicity up to tensor product with matrix

algebra.

Below we list 8 simplest Clifford algebras. The structure for higher p, q can be obtained

by the above theorem.
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Cl0,3 Cl0,2 Cl0,1 Cl0,0 Cl1,0 Cl2,0 Cl3,0 Cl4,0

C(2) R(2) R⊕ R R C H H⊕H H(2)

The structure of complex Clifford algebras can be obtained by complexifying the above

results. We will get a mod 2 periodicity:

Cln+2
∼= Cln ⊗C C(2), (A.4)

and Cl0 ∼= C, Cl1 ∼= C⊕ C.

The periodicities here are simple algebraic facts. Yet they have deep connections with

the profound Bott periodicity.

A.2 Symmetric Space

This section is a very brief review of symmetric spaces, from Lie theory point of view.

The results here will not be used in an essential way in this thesis. The main purpose of this

section is to explain the terminology.

In the following symmetric space means Riemannian Symmetric space: a Riemannian

manifold M such that for ∀p ∈ M , there is an isometry σ of M which flips all geodesics

through p.

For a Lie group G with an involution θ, assuming the fixed point group K = {g|θ(g) = g}

is compact, then G/K will be a symmetric space since θ actually induces an isometry (after

choosing a K, θ-invariant metric on G) of G/K and flips the geodesics through the “origin”.

Conversely, given a Riemannian symmetric space M , consider the isometry group G and an

isotropy subgroup K, one can prove M ∼= G/K. Moreover, K is indeed (with some cautions)

the fixed point group of the following involution on G:

σ : g 7→ spgsp, (A.5)
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where sp is the geodesic-flipping isometry at p. Therefore, the study of symmetric spaces

reduces to the study of Lie groups.

Denote g the Lie algebra of G. The θ = 1 subspace k is the Lie algebra of K, and we

denote the θ = −1 subspace as p. We have g = k⊕ p. Consider another Lie algebra:

gc = k⊕ ip, (A.6)

it will have the same complexification as g, denoted by gC. The involution θ can be extended

on gc linearly:

K + iP 7→ K − iP. (A.7)

We assume the constructions above extends to Lie groups G, Gc, GC, θ : Gc → Gc, and also

assume that G is noncompact while Gc is compact1. It is clear that θ on Gc has the fixed

point group K. Therefore, this construction gives us a pair of symmetric spaces X = G/K

and Xc = Gc/K, which are said to be in duality to each other.

It turns out that under these assumptions, the fixed point group K will be a maximal

compact subgroup of G, so the possibilities are really limited. In the following, we list the

classification results.

On a coarse level, symmetric spaces are classified into four types:

• Type-2. If K is a compact Lie group, it is automatically a symmetric space.

• Type-4. If G is itself the complexification of a compact Lie group K and θ is the

“complex conjugation”, then G/K will be a noncompact symmetric space.

• Type-1. Compact symmetric spaces that is not of type-2.

• Type-3. Compact symmetric spaces that is not of type-4.

Type-2 and type-4 symmetric spaces are dual to each other: here Gc = K × K hence

Xc = Gc/K = K. Therefore, the classification of type-2 and type-4 symmetric spaces reduces

to the classification of compact Lie groups, which then reduces to the classification of simple

complex Lie algebras and discrete subgroups. They are of type A, B, C, D, E6, E7, E8, F4

and G.

1Therefore g = k⊕ p is a Cartan decomposition.
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The classification of type-1 and type-3 symmetric spaces is first done by Cartan. In Tab.

6, we list symmetric spaces with corresponding G, Gc, K. The Cartan label starts with letter

A/B/C/D as the Lie algebra type of g (or equivalently gc and gC) and then follows with

Roman numerals which further classifies symmetric spaces within each Lie algebra class.

Cartan label G Gc K

AI SL(n,R) SU(n) SO(n)

AII SL(n,H) SU(2n) Sp(2n)

AIII SU(p, q) SU(p+ q) S(U(p)× U(q))

BI SO(p, q), p+ q odd SO(p+ q) S(O(p)×O(q))

DI SO(p, q), p+ q even SO(p+ q) S(O(p)×O(q))

DIII SO∗(2n)2 SO(2n) U(n)

CI Sp(2n,R) Sp(2n) U(n)

CII Sp(2p, 2q) Sp(2p+ 2q) Sp(2p)× Sp(2q)

Table 6: Cartan’s classification of classical type-1 and type-3 symmetric spaces. See Ref.

[159] for a more complete form including exceptional cases.

Some final remarks are in order:

• The above table omits symmetric space from exceptional groups. Indeed, there are 

symmetric spaces of class EI-EIX, FI, FII, and G.

• Cartan’s original classification also includes AIV, BII, and DII, which come from AIII, BI, 

and DI by restricting q = 1 (so we do not see DII between DI and DIII in many literatures).

• In some cases we need to take the p, q → ∞ limit. Then BI and DI go to the same limit, 

denoted by BDI.

2The subgroup of SO(2n,C) that fixes the form
∑n

i=1 Im(xixn+1).
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A.3 From Clifford Algebra to Symmetric Space

In this section, we explain the following relation between Clifford algebras and symmetric

spaces: the space of gradations of some Clp,q-modules is a symmetric space.

For a Clp,q-module M , an extension from the Clp,q action to a Clp,q+1 action is called a

gradation on E. Equivalently, we need a endomorphism η of M acts as the extra ep+q+1:

η2 = 1 and ηei + eiη = 0, for ∀i ≤ p+ q. (A.8)

The terminology “gradation” comes from the fact that η = ±1 subspaces make M into a

Z2-graded module. We denote the space of gradations on a Clp,q-module M as Gradp,q(M)

p− q mod 8 Gradp,q Cartan label

0 Z×O/O ×O BDI

1 U/O AI

2 Sp/U CI

3 Sp C

4 Z× Sp/Sp× Sp CII

5 U/Sp AII

6 O/U DIII

7 O D

Table 7: Symmetric spaces as gradations of modules of real Clifford algebras. Here we only

present the limiting case.

By considering a transive group G action and the isotropy subgroup G1, one can express

Gradp,q(M) as G/G1 and check that they are symmetric spaces. In Tab. 7 we list the result

for Gradp,q, defined as lim−→Grad(Mr) for any cofinal systems {Mr} for finitely generated

Clp,q-modules.
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A quick way to remember Tab. 7 is to consider the following chain (most embeddings

are obvious and O ⊂ O ×O is the diagonal map):

O(16r) ⊃ U(8r) ⊃ Sp(4r) ⊃ Sp(2r)× Sp(2r) ⊃ Sp(2r)

⊃ U(2r) ⊃ O(2r) ⊃ O(r)×O(r) ⊃ O(r) ⊃ · · ·
(A.9)

and then the symmetric spaces are successive quotients. This chain also illustrates the

definition of the notations in the table. For example:

O/O ×O def
= lim−→

r

O(2r)/O(r)×O(r), (A.10)

and it is also denoted by BO since it is the classifying space of real vector bundles (structure

group O).

n mod 8 Gradn Cartan label

0 Z× U/U × U AIII

1 U A

Table 8: Symmetric spaces as gradations of modules of complex Clifford algebras. Here we

only present the limiting case.

For complex Clifford algebras, the story is similar, see Tab. 8. The corresponding group

chain is:

U(2r) ⊃ U(r)× U(r) ⊃ U(r) ⊃ · · · (A.11)

A.4 K Theory

Definition A.2 (Grothendieck group). The Grothendieck group3 of an abelian monoid M

is the universal abelian group K such that there exists a monoid homomorphism M → K.

Explicitly, K can be defined as the group of formal subtractions x− y where x, y ∈M such

that:

x− y ∼ x′ − y′ ⇐⇒ ∃z : x+ y′ + z = x′ + y + z. (A.12)
3This is exactly how we obtain Z from N.
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Now consider all (complex or real) vector bundles over a fixed space X. Their equiva-

lence classes form an abelian monoid by the Witney sum (fiber-wise direct sum). We take

its Grothendieck group and denote it as K(X) (for complex bundles) or KO(X) (for real

bundles). Elements in the K group is the stable equivalent class of vector bundles on X. In

the following definitions, we only consider K theory. The extensions to KO theory will be

obvious.

We also define K̃(X) = ker[K(X) → K(pt) ∼= Z], where the homomorphism is induced

by the injection pt → X. It simply counts the dimension. So K̃ contains stable equivalent

class of (virtual) vector bundles with dimension 0.

Definition A.3 (higher K and relative K). Suppose Y is a closed subspace of X, n ∈ N,

then define

K̃−n(X) = K̃(Σn(X)),

K−n(X, Y ) = K̃−n(X/Y ),

K−n(X) = K−n(X, ∅),

(A.13)

where Σ is the suspension.

The definition of K−n is designed such that K−∗ is a generalized cohomology theory. For 

example, one can prove the following exact sequence (as in any cohomology theory):

· · · → K−n−1(X)→ K−n−1(Y )→ K−n(X, Y )→ K−n(X)→ K−n(Y )→ · · · (A.14)

A.5 From Clifford Algebra to K Theory

In this section, we review how Clifford algebras are connected to the K theory. Therefore

the periodicity of Clifford algebras is ultimately connected to the Bott periodicity.
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A.5.1 ABS Construction

To start, consider K(Dn, Sn−1) ∼= K−n(pt). For any graded Cln,0 module W = W 0⊕W 1,

we can define an element:

[E0, E0, α] ∈ K(Dn, Sn−1), (A.15)

where Ei = Dn ×W i is a trivial Clifford bundle, α is an isomorphism of E0 and E1 over

Sn−1, defined by:

α(x,w) = (x, x · w), (A.16)

where in x · w we regard x ∈ Sn−1 as an element in Cln,0 and act it on w (this is why

we need a Cln,0-module). If W happens to be a graded Cln+1,0-module and regard it as a

Cln,0-module by restriction of scalar (since there is a natural injection Cln,0 → Cln+1,0), then

one can check that the K group element obtained in this way is 0.

Theorem A.2 (Atiyah-Bott-Shapiro isomorphism [161]). Define M̂n to be the Grothendieck

group of graded Cln,0-modules, i∗ : M̂n+1 → M̂n is the restriction of scalar map, then:

K−n(pt) ∼= M̂n/i
∗M̂n+1. (A.17)

Using this isomorphism and the structure of Clifford algebras, one can work out K∗(pt)

as follows:

K−n(pt) ∼=

Z, n even

0, n odd

, (A.18)

and

KO−n(pt) ∼= Z,Z2,Z2, 0,Z, 0, 0, 0, for n = 0, 1, 2, 3, 4, 5, 6, 7 (mod 8) (A.19)
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A.5.2 Karoubi’s K Theory and Bott Periodicity

There is a more general connection between Clifford algebra and K theory, which will

be useful in the classification of topological insulators.

Definition A.4. Denote Cp,q be the category of Clp,q modules in category C (namely, each

object of Cp,q is a object of C with a Clp,q action). Define Kp,q(C) to be4 the abelian group

generated by triples (E, η1, η2) where ηi are gradations on E, with the natural addition and

the following identification:

(E, η1, η2) = 0 iff η1 is homotopic to η2 within gradations of E.

According to the above definition, Kp,q(C) is a Grothendieck group of “homotopy class of

Clp,q-module→ Clp,q+1-module extensions”, or “homotopy class of gradations on (ungraded)

Clp,q-modules”.

Since Clp+1,q+1
∼= Clp,q ⊗R R(2), Clp+1,q+1 and Clp,q has essentially the same represen-

tation theory5. Therefore, Kp,q(C) only depends on p− q. Moreover, due to the periodicity

Eq. (A.3), it only depends on p−q mod 8. Similarly, substitute Clp,q with Cln, we can define

Kn
C(C) and it only depends on n mod 2.

The relation between Clifford algebras and K theory is given by the following:

Theorem A.3 (Karoubi). If C = E(X), the category of vector bundles over X, then Kp,q(C)

is canonically isomorphic to KOp−q(X) if p ≤ q. Similar result holds for relative K groups.

According to this theorem, we can also define Kn(X) for n > 0. Moreover, we have

understood the following celebrated:

Theorem A.4 (Bott Periodicity). KOn(X, Y ) is periodic with respect to n with period 8.

Kn(X, Y ) is periodic with respect to n with period 2.

4Equivalently, consider the functor φ : Cp,q+1 → Cp,q, defined by “restriction of scalars”: regard a Clp,q+1-
module as a Clp,q-module. Define Kp,q(C) to be the Grothendieck group of the functor φ. We will not need
this definition.

5This is an example of the Morita equivalence. It is a generalization of the fact that matrix algebra has
a unique simple module.
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It is sometimes useful to consider a Clp,q-module as a Clp,q. To solve this problem, one

just need to use the isomorphism:

Clp,q ⊗ Cl0,2 ∼= Clq,p+2, (A.20)

and the problem will be equivalent to Clq,p+2 → Clq,p+3.

A.6 From K Theory to Symmetric Space

Karoubi’s construction makes the connection between K theory and symmetric spaces

explicit.

Let us consider an element in Kp,q(X), represented as [E, η, η′], where E is a Clp,q-

bundle, η and η′ are gradations. It turns out one can make E trivial (E ∼= M) by direction

addition with some other Clifford bundle. Without loss of generality, one can also fix η

for each E by assuming M has a given Clp,q+1-module structure. Therefore, the equivalent

class of [E, η, η′] is determined by (the stable homotopy class of) η′, which in turn should be

determined pointwisely. Rigorously, we have the following6:

Theorem A.5. Kp,q(X) ∼= lim−→[X,Gradp,q(M)] ∼= [X,Gradp,q].

As an example, let us consider p = q = 0. In this case, we have Grad0,0 ∼= Z × BO,

therefore:

KO(X) ∼= [X,Z×BO]. (A.21)

One can check this relation is indeed correct using classfication of vector bundles. We know

Vect(X) ∼= [X,BO], (A.22)

where Vect(X) is the set of stable equivalence classes of vector bundles over X. Dimensions

are omitted in the above equation since trivial bundles of all dimensions are all represented

by 0. Add the dimension back, we obtain Eq. (A.21).

The above representation theorem for K is a special case of the representability theorem

for any generalized cohomology theory.

6In category theory, this means the functor K is representable. The spaces Gradp,q are called classifying
spaces.

91



Definition A.5 (Ω-spectrum). An Ω-spectrum is a sequence of spaces K1, K2, · · · together

with weak homotopy equivalences Kn → ΩKn+1. Here Ω means loop space.

Theorem A.6 (Brown’s representability). The functor X → [X,Kn] is a generalized coho-

mology theory iff {Kn} is an Ω-spectrum.

For the case of K theory, one can indeed directly check (this can be done in Morse theory)

that Gradp,q as listed in Tab. 7 are Ω-spectra:

Ω(Gradp,q) ' Gradp,q+1. (A.23)

A.6.1 Bott Periodicity for K Spectra and Homotopy Groups

In terms of the K theory spectra, the Bott periodicity can be expressed as periodicities

in the spectra:

Σ8O ' O,Σ2U ' U. (A.24)

A coralary is the periodicity of homotopy groups for O,U and Sp:

πk(O) = πk+4(Sp) = πk+8(O), πk(U) = πk+2(U) (A.25)

with

k mod 8 0 1 2 3 4 5 6 7

πk(O) Z2 Z2 0 Z 0 0 0 Z

πk(U) 0 Z 0 Z 0 Z 0 Z

πk(Sp) 0 0 0 Z Z2 Z2 0 Z

The homotopy groups are the same (with shifting) as K groups for pt in Eq. (A.18) and

Eq. (A.19). This is because

KO−n(pt) = K̃O(Sn) = [Sn,Z×BO]∗ = πn(BO) = πn−1(ΩBO) = πn−1(O), (A.26)

and similarly for complex K. Moreover, the isomorphism between K̃(Sn) and πn−1(O) has

a simple geometric explaination: a G-bundle over Sn can be obtained by gluing two trivial

bundles along the equator Sn−1 and is classified by the homotopy class of gluing functions,

which is simply πn−1(G).
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A.7 KR and KQ

For classifications in higher dimensions or with more symmetries, one will need further

“twist” the K theory. If some symmetries have nontrivial actions on the base manifold (the

Brillouin zone), for example, crystalline symmetry or time-reversal symmetry in some cases,

the symmetry will generally connect fibers on different points.

In this section, we briefly discuss the KR and KQ theory. One may also need other

equivariant theories KG for other symmetries.

Definition A.6. A Real space7 X is a space with an involution cX . A Real bundle over X

is a complex bundle E with an anti-linear involution cE that is compatible with cX :

E
cE−−−→ Eyπ yπ

X
cX−−−→ X

. (A.27)

A morphism between two Real bundles over the same Real space (X, cX) is a morphism over 

the underlying vector bundles (thus preserve base points) that is compatible with cE. The 

set of all Real bundles over a Real space (X, cX) is a monoid, and its Grothendieck group is 

called the KR group8 of X, denoted by KR(X).

For example, if cX is trivial, then cE acts fiberwise and determines a real structure for each 

fiber. So one is essentially classifying real bundles, therefore KR(X) ∼= KO(pt).

In the above definition, if one demands cE to be anti-linear anti-involution instead, one will 

get KQ theory, with Q for quaternion, since cE determines a quaternionic structure for fibers 

with fixed points of cX . It is clearly the most suitable formalism for topological insulators.

One can also defines higher KR by suspensions. This time one needs spheres with Real

space structure. Define Sp,q (and similarly Bp,q) to be the sphere (and the ball) in Rp+q, this

time with involution (x, y)→ (−x, y). Then define:

KRr,s(X, Y ) = KR(X ×Br,s, X × Sr,s ∪ Y ×Br,s). (A.28)

7Real6=real!
8KR 6= KR, the latter usually means KO.
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It is still a generalized cohomology theory. Note that suspension with spheres with −1,

denoted by S̄n, has the involution has opposite effective on the indexes: suspension by S̄n

one gets KRn,0, while suspension by Sn results in KR0,n, as in Eq. (A.13).

Moreover, Karoubi’s descreption on K theory using Clifford algebras still applies here.

Formally, one considers Clp,q-modules in the Real bundle category, and the K-theoretical

classification of extensions as Clp,q-modules will be exactly KRp,q(X). As a result, for KR

theory one has the (1, 1)-periodicty:

KRr+1,s+1(X) ∼= Kr,s(X), (A.29)

and moreover the mod 8 periodicity:

KRr,s(X) only depends on (r − s) mod 8. (A.30)
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Appendix B A No-Go Theorem for Localized Wannier Functions

This appendix is based on the supplemental material of [68]. We will show that for Chern

insulators there is no Wannier basis where all Wannier functions are strictly compacted

supported.

First, we recall how the Chern number (or other topological invariants) is defined from

the filled-band projection (Px,y) for translationally invariant systems.

In general the (minimal) unit cell C may contain several sites and several orbitals, we

need to regard the matrix (Px,y) as a block matrix (Px̄λ,ȳµ) (here λ, µ are labels in a unit

cell, λ, µ ∈ {1, 2, · · · , N}), which only depends on x̄− ȳ and λ, µ. Then taking the Fourier

transform with respect to x̄− ȳ:

P =
∑
x̄,ȳ

φ†x̄Px̄−ȳφȳ =

∫
d2k

(2π)2
φ†kP (k)φk, (B.1)

one obtains projection matrices P (k) = (Pλ,µ(k)) and hence a map:

P : T 2 → Gr(N, q). (B.2)

It induces a vector bundle over T 2 by pullback of the tautological bundle over Gr(N, q).

The Chern number is a characteristic number [11] of this bundle, which is used to classify

topologically inequivalent bundles.

As a remark to be used later, here we have embedded Gr(N, q) into M(N,C), the space

of N × N complex matrices. Indeed, a point of Gr(N, q) corresponds to a q-dimensional

subspace, which uniquely corresponds to the orthogonal projection matrix onto this subspace.

In this appendix, our main result the following:

Theorem B.1. If Px,y = 0 for ∀x,y such that |x− y| is large enough, then c(P ) = 0.
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Proof. We want to show the existence of q everythere-linear-independent global sections of

P ∗(τ), hence the bundle P ∗(τ) is trivial.

To proceed, write the matrix-valued map P (k) : T 2 → Gr(N, q) ⊆ M(N,C) in com-

ponents pij(k) (i, j ∈ {1, 2, · · · , N}). Denote x = eik1 , y = eik2 , where k = (k1, k2). The

condition “Px,y = 0 for sufficiently large |x − y|” is now equivalent to “each pij(x, y) is a

Laurent polynomial of x, y”, i.e: pij ∈ R
def
= C[x, x−1, y, y−1], the Laurent polynomial ring

over x, y. From now on, we extend T 2 to its complexification (C∗)2. We extend the function

P (x, y) to (C∗)2 by the Laurent polynomials pij(x, y) described above.

We still have P 2 = P since it is an algebraic relation and is valid on the real torus. The

rank of P on the entire (C∗)2 is always q since P 2 = P implies that rank(P ) = Tr(P ) and

Tr(P ) is continuous.

Denote

S = {u ∈ RN |Pu = u}, (B.3)

which is the R-module of global Laurent sections (each component is a Laurent polynomial

of x, y).

Remark: For any (x, y), {u ∈ CN |P (x, y)u = u} is the fiber of P ∗(τ) at (x, y), which is

of dimension q. The purpose to construct S is that we want to find a global basis of the

bundle P ∗(τ) made of Laurent polynomials. The below lemma tells us that we can do it at

least locally.

Lemma (local structure): For ∀(x0, y0) ∈ (C∗)2, there exists u1, · · · , uq ∈ S such that

u1(x, y), · · · , uq(x, y) are linear independent in a neighbourhood of (x0, y0).

Proof of Lemma: For a fixed (x0, y0), choose a basis of CN so that

P (x0, y0) = diag(1, · · · , 1, 0, · · · , 0). (B.4)

Under this basis, we write 1− P (x, y) as a block matrix:

1− P (x, y) =
1

xayb

A(x, y) B(x, y)

C(x, y) D(x, y)

 , (B.5)
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where A,B,C,D are matrixes with polynomial elements. By continuity, D is nonsigular on

a neighbourhood of (x0, y0). On this neighbourhood,

A B

C D

 =

Iq B

0 D

A−BD−1C 0

D−1C IN−q

 , (B.6)

where Iq denotes the identity matrix of size q, etc. Since rank(1 − P ) = N − q, we know

A−BD−1C = 0. Therefore, a basis of in ker(1−P ) (dim=q) is given by the columns of the

following N × q matrix:  (detD)Iq

−(detD)D−1C

 . (B.7)

Here we keep det(D) so that each element of the above matrix is a polynomial (no denomi-

nator), as required by the lemma.

The above lemma and its proof tell us S is a locally free module. Indeed, (C∗)2 is an affine

variety with coordinate ring R, so according to the Hilbert’s nullstellensatz, each maximal

ideal of R corresponds to a point in (C∗)2 (The correspondence of ideal and point is the

basic idea of algebraic geometry. Readers who are not familar with these notions may refer

to [162].) For the maximal ideal m corresponds point (x0, y0), consider Sm = { s
f
|s ∈ S, f ∈

R, f(x0, y0) 6= 0}, the localization [162] of S at m. Then every v ∈ Sm can be uniquely

written as a linear combination of vi (the image of ui in Sm) with coefficients in Rm. So Sm

is a free Rm-module with rank q.

Back to the original question. Since S ⊆ RN and R (as a quotient of a polynomial

ring) is a Noetherian ring, S is a Noetherian R-module. Thus S is a projective module1.

According to a generalization of the Quillen-Suslin theorem2 on the Laurent polynomial ring

[164], S must be a free module. Fix a basis of S, then each element si of the basis must be an

everywhere-nonzero section, otherwise, the lemma breaks down at points where si vanishes

(as a vector in CN). So we have found the desired set of global sections.

1A finite-generated module over a Noetherian ring is projective iff it is locally free. Moreover, it is enough
to verify this for the localization at every maximal ideal. See, for example, [163].

2A finite-generated projective module over the polynomial ring k[x1, · · · , xn] is free. See, for example,
[53].
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Geometrically, any such Px,y gives rise to bundle P ∗(τ) with algebraic structure. The

Quillen-Suslin theorem confirms that such an “algebraic bundle” over certain base manifold

(also with algebraic structure) must be trivial.

Corollary B.1. If the Chern number is nonzero, then there is no Wannier basis where all

Wannier functions are strictly compacted supported.

Proof. Assuming there exist a set of compacted-supported Wannier basis, denoted as |va〉.

Then:

Px,y = 〈x|P |y〉 =
∑
a

〈x|va〉 〈va|y〉 . (B.8)

If |x− y| is large enough (larger than twice the largest range of |va〉), there will be no |va〉

contributes to the summation. Therefore Px,y = 0. According to the above theorem, the

Chern number must be 0.

Note: compacted support Wannier functions cannot exist even if they are allowed to be

overcompleted [69]. To prove this result, one cannot just proceed as above, since the module

generated by (Fourier transformation of) Wannier functions is not free, even if localized on

the real torus it is. For example, the module generated by x, y over C[x, y] is not a free

module. Nevertheless, one can to use Hilbert’s Syzygy theorem [53] to make sure that the

bundle is (topologically but may not algebraically) trivial on the real torus.
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Appendix C Technical Details

C.1 More Technicalities for Sec. 3.4

C.1.1 Proof of Additivity

In this appendix, we will prove property 3.7 in Sec. 3.4.5. The proof is a little bit

technical, but the physics idea is simple: vertex states of S comes from those of Q1 and Q2.

Lemma C.1 (Almost orthogonal vectors). For N unit vectors un in a d-dimensional linear

space s.t. |(ui, uj)| < σ for each i 6= j. If σ < 1√
2d

, then N < 2d− 1.

Proof. Let A = (Ai,j) = ((ui, uj)) to be the Gram matrix of {ui}. Denote λ1, · · · , λN the

eigenvalues of A. Since ui ∈ Cd, rank(A) ≤ d, at most d of them are nonzero. By Cauchy

inequality,
∑
λ2
i ≥ (

∑
λi)

2/d = (TrA)2/d = N2/d. On the other hand,
∑
λ2
i = Tr(A2) =∑

|(ui, uj)|2 < N +N(N − 1)σ2. Therefore,

N2

d
< N +N(N − 1)σ2 < N +N(N − 1)

1

2d
. (C.1)

Solving this inequality, we find N < 2d− 1.

Lemma C.2 (an estimation of the eigenvalue distribution). Assume a Hermitian matrix A

satisfying the exponential decay property (EDP) |Ai,j| < C1p(t)e
−C2t where t = max{|i|, |j|},

p(t) is a monic (leading coefficient=1) polynomial. The number of eigenvalues outside (−ε, ε)

is bounded by O( 1
C2

2
ln2 C1

Cα2 ε
), where α = 2 + deg p.

Proof. For an unit eigenvector x: Ax = ax, |a| > ε, we separate x into two parts x = y ⊕ z

according to whether the label is inside or outside a circle: yi = 0 if |i| > r, zi = 0 if |i| < r.

The radius r will be determined later (depend on ε).

We claim that ‖z‖ < δ
def
= C1r3/2p(r)e−C2r

ε
. Indeed, ay ⊕ az = Ax, ||x|| = 1. According to

the Cauchy inequality we have

‖εz‖2 < ‖az‖2 <
∑
|i|>r,j

|Ai,j|2 . [C1r
3
2p(r)e−C2r]2. (C.2)
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Here, . (means inequality up to constant) can be verified by doing integral. Denote the

number of eigenvalues larger than ε to be N : Axn = anxn, n = 1, · · · , N . Without loss of

generality, we can assume they are orthogonal, so

(xi, xj) = 0⇒ |(yi, yj)| = |(zi, zj)| < δ2. (C.3)

Now we have N unit vectors un = yn√
1−z2n

in dimension d ∝ r2 whose inner products with

each other are less than σ
def
= δ2

1−δ2 . We choose r large enough so that

σ <
1√
2d
∼ 1

r
. (C.4)

According to Lemma C.1, N < 2d = O(r2). We can solve Eq. (C.4) to estimate r (thus N).

Roughly, set σ ∼ (C1r3/2p(r)e−C2r

ε
)2 = 1

r
, let x = C2r, we find ex = C1

Cα2 ε
xα, where α = 2+deg p.

The exact solution can be expressed using the Lambert W function [165]. Here we only need

the asymptotic expansion. Denote β = C1

Cα2 ε
, take logarithm, we have the following iteration:

x = ln β + α lnx = ln β + α ln(ln β + α lnx) = · · · = O(ln β). (C.5)

Thus, it is enough to choose r = O( 1
C2

ln C1

Cα2 ε
), and N < 2d = O(r2) = O( 1

C2
2

ln2 C1

Cα2 ε
).

As a corollary, it follows that

∑
|a|<ε

|a| =
∑
|a|<ε

∫ ε

0

θ(|a| − x)dx =

∫ ε

0

∑
|a|<ε

θ(|a| − x)dx <

∫ ε

0

1

C2
2

ln2 C1

Cα
2 x
dx, (C.6)

which converges to 0 as ε→ 0. Therefore any EDP operator is trace class.

Lemma C.3. Assume A is Hermitian. If ∃x 6= 0 s.t. ‖(A− λ)x‖ < ‖εx‖, then A has an

eigenvalue a ∈ (λ− 2ε, λ+ 2ε). Moreover, decompose x = x‖ + x⊥ with respect to subspace

(λ − 2ε, λ + 2ε), then
∥∥x⊥∥∥ < 1

2
. If A is of finite size N × N , then an eigenvector xa of A

with eigenvalue a ∈ (λ− 2ε, λ+ 2ε) satisfies |(x, y)| >
√

3
4N

.
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Proof. Denote B = A− λ, then ‖Bx‖ < ‖εx‖. Without loss of generality, assume ‖x‖ = 1.

Let us diagonalize B, so that B = diag{b1, · · · , bn}. Then we have

ε2 >
∑

b2
i |xi|2 =

∑
|bi|≥2ε

b2
i |xi|2 +

∑
|bi|<2ε

b2
i |xi|2 > 4ε2

∑
|bi|≥2ε

|xi|2 +
∑
|bi|<2ε

b2
i |xi|2. (C.7)

So we must have
∑
|bi|≥2ε |xi|2 <

1
4
, thus

∥∥x⊥∥∥ < 1
2

and ∃i such that |bi| < 2ε. If N is finite,

then from
∑
|bi|<2ε |xi|2 <

3
4

we know ∃i such that |bi| < 2ε, |xi| >
√

3
4N

.

Go back to the original proposition. We want to find a correspondence between vertex

eigenvalues of S and those of Q1 and Q2. To make the notation simple, in the following e−r

means C1p(r)e
−C2r and C1, C2 can change.

For each vertex state x of Q1: Q1x = qx, ‖x‖ = 1 (q 6= 0, 1), separate x as x = y + z

with respect to the disk B(1, r). As in Eq.(C.2), we still have ‖z‖ < e−r

|q2−q| . It is not difficult

to show that

‖(S − q)x‖ = ‖(S −Q1)x‖ ≤ ‖(S −Q1)y‖+ ‖(S −Q1)z‖ . (1 +
1

|q2 − q|
)e−r

def
= δ. (C.8)

According to Lemma C.3, S has an eigenvalue in (q − 2δ, q + 2δ). The same argument also

applies to Q2. Thus, for each vertex eigenvalue q of Q1, Q2, we get an eigenvalue of S in a

neighbourhood of q.

Denote Uε
def
= (−ε, ε) ∪ (1 − ε, 1 + ε). For q /∈ Uε, |q2 − q| > ε/2, so that δ < e−r

ε
. As

r → ∞, we will adjust ε accordingly so that δ is still small enough such that spectral gaps

outside Uε are always greater than δ. Then we can describe the spectra structure of Q1, Q2

in Fig. 14. The shaded windows have width∼ δ and are of three types. For types 1 and 2,

we already get the correspondence. For type 3, we claim the dimension of the subspace X

corresponding to eigenvalues (of S) in such window is at least 4. Indeed, denote x1, x2 the

eigenstates of Q1, x3, x4 the the eigenstates of Q2, then |(xi, xj)| < δ. Let xi = ui + vi where

ui ∈ X and vi ⊥ X, then

|(yi, yj)| ≤ |(xi, xj)|+ |(zi, zj)| < δ +
1

4
. (C.9)

Similar to Eq. (C.1) (here N = 4), we get d ≥ 4.
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-ϵ ϵ 1+ϵ1-ϵ 0 1

1 Q1

Q2

S

Figure 14: Spectra structure of Qi and S. We only consider eigenvalues outside (−ε, ε) ∪

(1− ε, 1 + ε). The dots • are eigenvalues. Each dots represents a Kramers pair due to time

reversal symmetry. The shaded windows are of width δ ∼ e−r

ε
and are (from left to right) of

three types.

Moreover, each eigenstate of S with s ∈ Uε is generated in this way. Indeed, assume

Sx = sx, ‖x‖ = 1 (s 6= 0, 1), then

x =
1

s2 − s
(V1x+ V2x) (C.10)

is a decomposition of x. At least one of ‖Vix‖ should be larger than |s2−s|/2, say V1x. Note

that Vix and (S − s)Vix are mainly supported near vertex i, and

(S − s)V1x+ (S − s)V2x = (S − s)(S2 − S)x = 0, (C.11)

and both terms must be small:

‖(S − s)Vix‖ < e−r. (C.12)

Therefore,

‖(Q1 − s)V1x‖ ≤ ‖(S − s)Vix‖+‖(S −Q1)V1x‖ < e−r ≤ e−r

|s2 − s|
‖V1x‖

def
= δ′||V1x||. (C.13)
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According to Lemma C.3, Q1 has an eigenvalue in (s − 2δ′, s + 2δ′). Therefore, s must be

near (within ∼ δ) a window, and an argument similar to (C.9) shows that x cannot be a

new eigenstate.

Due to this correspondence, the last term in the decomposition

|Trv(S)− (Trv(Q1) + Trv(Q2))| ≤ |
∑
s∈Uε

s|+ |
∑
q1∈Uε

q1|+ |
∑
q2∈Uε

q2|+ |
∑
s/∈Uε

s−
∑
q1 /∈Uε

q1−
∑
q2 /∈Uε

q2|,

(C.14)

is bounded by δ ln2 1
ε

and goes to 0 as r →∞. The second and third term can be bounded due

to Eq. (C.6), since Qi−Qi obeys EDP with the same C1 and C2. For the first term, S2−S also

obeys EDP (with respect to the central point 0), however with a new constant C ′1 ∼ C1e
r.

This is because (see Eq. (3.73)) the EDP of Vi is with respect to vertex i, so the decay

property of S2−S with respect to vertex 0 need to be estimated by e− dist(x,0) < ere− dist(x,1).

Luckily, similar to Eq. (C.6), we still have

|
∑
s∈Uε

s| <
∫ ε

0

1

C2
2

ln2 C1e
r

Cα
2 x

dx→ 0, (C.15)

as r →∞ as long as ε = o( 1
r2

). Thus we have proved that

lim
r→∞

Trv(S)− (Trv(Q1) + Trv(Q2)) = 0. (C.16)

Note that we have assumed that the requirement ε = o( 1
r2

) is compatible with δ = e−r

ε
< gap.

This technical assumption is reasonable. Indeed, according to Lemma C.2, the spectral gap

at ε is roughly ( d
dε

ln2 1
ε
)−1 ∼ ε

ln ε
in average. In order for δ < ε

ln ε
, it is enough to set

ε > Ω(e−C
′r), which is exponentially smaller than 1

r2
for large r. Even if we consider the

fluctuation of the spectral gaps and even if the level statistics is Poissonian (so that no level

repulsion), the probability for this to be true is 1 from the following estimation:

Pr(at least one gap <
p(r)e−r

ε
) <

∑
x>ε

p(r)e−r/ε

x/ lnx
<
p(r)e−r ln ε

ε2
× ln2 1

ε
→ 0 (C.17)
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C.1.2 Proof of the Finite Size Approximation

In this section, we prove Proposition 3.4. The technique used will be similar to the above

section. We need to compare vertex eigenvalues of Q and Q′N . Recall that ‖Q′N −QN‖ ≤

ρ2, ‖V ′N −WN‖ < ρ, ‖V ′N −WN‖ < ρ where ρ ∼ e−Cr.

Temporarily fix ε, and only consider eigenvalues outside Uε
def
= (−ε, ε)∪ (1− ε, 1 + ε). For

any α /∈ U , |α2 − α| > ε/2.

For (Q − q)x = 0, q /∈ Uε, we separate it as x = y + z with respect to circle r/2, again

‖z‖ < p(r)e−Cr

ε

def
= δ. In the following δ means “everything that goes like p(r)e−Cr

ε
with perhaps

different C”. Thus

‖(Q′N − q)x‖ = ‖(Q′N −QN +QN −Q)x‖

≤‖(Q′N −QN)x‖+ ‖(QN −Q)y‖+ ‖(QN −Q)z‖

.δ,

(C.18)

so Q′N has an eigenvalue q′ ∈ (q − 2δ, q + 2δ) with eigenstate x′ satisfies |(x, x′)| >
√

3
4N

(Lemma C.3). This implies x′ must contain a vertex eigenstate. Indeed, if not, we have

V ′Nx
′ = 0 so x′ = 1

q′2−q′W
′
Nx
′ which is concentrated near boundary r, thus

|(x, x′)| = 1

|q′2 − q′|
(x,W ′

Nx
′) <

2

ε
[|(y,W ′

Nx
′)|+ |(z,W ′

Nx
′)|] . δ, (C.19)

a contradiction as r →∞.

On the other hand, if (Q′N − a)x = 0(a 6= 0, 1), and x is a vertex state: W ′
Nx = 0, then

x =
V ′Nx

a2−a . We have

(Q− a)x =
1

a2 − a
(Q−Q′N)V ′Nx =

1

a2 − a
[(Q−QN)VNx+ (QN −Q′N)V ′Nx] . δ. (C.20)

So, Q has an eigenvalue in (a− 2δ, a+ 2δ).

Now we choose r according to the same technical assumption above, so that there is a

correspondence outside region Uε for ∀ε. Then, similarly we have

|
∑

vertex

q′ − Trv(Q)| ≤ |
∑
q∈Uε

q|+ |
∑
q′∈Uε

q′|+ |
∑
q /∈Uε

q −
∑
q′ /∈Uε

q′|. (C.21)

The last term is bounded by δ ln2 1
ε

which goes to 0 as ε → 0. The first term also goes

to 0 since Q − Q is trace class. The second term is bounded by No. {q′}ε. Obviously

No. {q′} < dimQN ∼ r2, so this term also converges to 0 since ε = o( 1
r2

).
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C.1.3 Proof that S − T is Trace Class

In this section, we prove the claim used in Property 3.8.

The first step is to figure out the decay behaviour of the matrix elements of S − T .

According to the Peierls substitution [82],

Sij = Pije
i
∫ j
i A·dr, Tij = Pije

i
∫ j
i A′·dr, (C.22)

where A and A′ are the vector potential for the two flux configurations. See Fig. 15(a) (all

angles here are directed), we have:

A · dr ∝ 2θ, A′ · dr ∝ θ1 + θ2,

(S − T )x,y ∼ Px,ye
i(θ1+θ2)(ei(2θ−θ1−θ2) − 1).

(C.23)

2

1 2

1

3

4

5 6

θ θθ

α α
α

α
α α

α5α6

r

(a) (b)
1 20

r
r

1
2

y
x

d dβ

Figure 15: Relevant geometries in the proof. (a) Position 0 is the position for 1-flux insertion;

position 1 and 2 are the positions for half-flux insertions. (b) To calculate (α5 − α6), we

draw to dashed lines perpendicular to the middle solid line.
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From geometry, 2θ − θ1 − θ2 = (α1 − α2) − (α5 − α6). Let us calculate (α5 − α6). See

Fig. 15(b), we have:

α5 − α6 = arctan
d sin β

r + d cos β
− arctan

d sin β

r − d cos β

= arctan

d sinβ
r+d cosβ

− d sinβ
r−d cosβ

1 + d sinβ
r+d cosβ

d sinβ
r−d cosβ

= − arctan
d2 sin 2β

r2 − d2

= −d
2 sin 2β

r2
+O(

1

r4
).

(C.24)

Due to the energy gap, |Ax,y| . e−C|x−y|. Assuming r1 ≥ r2, we claim that

e−C|x−y||ei(2θ−θ1−θ2) − 1| < e−
C
2
|x−y|O(

1

r3
1

). (C.25)

Indeed, if e−
C
2
|x−y| < 1

(r1+r2)3
, there is nothing needed to prove. If not, then |x−y| < 6

C
ln(r1+

r2) < 7
C

ln r1 (asymptotically). In this case, from geometry, we know |βi − βj| = |θ| . |x−y|
r1

.

Then 2θ− θ1− θ2 = (α1−α2)− (α5−α6) = sin 2β1
r21
− sin 2β2

r22
+O( 1

r42
) will be of order O( |x−y|

r31
)

as can be seen from Taylor expansion. Then it is easy to see that the claim also holds.

The result is (in a more symmetric fashion, ignore constants) as follows: the operator

A = S − T satisfies the following decay property:

|Ax,y| <
1

(|x|+ |y|)3
e−|x−y|. (C.26)

Now, we prove this kind of operator must be trace class. Let us denote the nth singular

value (decreasing order) to be sn. According to the Courant min-max principle [80], we have

sn = min
Yn−1

max
u⊥Yn−1

(Au,Au)

(u, u)
, (C.27)

where Yn−1 means a subspace of dimension n−1. Thus, for any given n-dimensional subspace

Yn−1, we have

s2
n ≤ max

u⊥Yn−1

(Au,Au)

(u, u)
= max

u⊥Yn−1

||u||=1

||Au||2. (C.28)

Let us choose the subspace Yn−1 to be spanned by the n components nearest to the center (so

that the label of the components are approximately in the disk of radius r ∼
√
n). Denote
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the columns of A to be vx (vx = Aex, x ∈ Z2 is the label). With Eq. (C.26) it is easy to

show (note that here e−|x−y| means e−C|x−y| for a different C)

|(vx, vy)| = |(A2)x,y| .
e−|x−y|

|x|3|y|3
. (C.29)

Thus,

‖Au‖2 =

∥∥∥∥∥∥
∑
|x|>r

uxvx

∥∥∥∥∥∥
2

=
∑
|x|,|y|>r

ūxuy(vx, vy) = (
∑
|x−y|≥l
|x|,|y|>r

+
∑
|x−y|<l
|x|,|y|>r

)ūxuy(vx, vy). (C.30)

Here, l will be of the order ln r, to be specific later.

The first summation is (crude but enough) controlled by e−l due to Eq. (C.29) and

Cauchy inequality. For the second summation, we have

|
∑

ūxuy(vx, vy)| < 1

4

∑
(|ux|2 + |uy|2)|(vx, vy)| . l2

r6
. (C.31)

Let us choose l such that e−l = 1
r6

, we finally have

s2
n ≤ e−l +

l2

r6
<

ln2 r

r6
∼ ln2 n

n3
. (C.32)

so
∑
sn =

∑
lnn
n3/2 converges, which means A is trace class.
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Figure 16: (a) The definition of h ∈ π2(X). It is defined by the surface of the cube, made

of f |T 2 , F (a), F (b) and the pre-chosen F (a, b). (b) h̄ is well-defined. The “cap” attached to

the right surface (another one in the left denoted with dashed line) is the other homotopy

F ′(b). Here, F (b), F ′(b) and the homotopy between f2 and f ′2 defined an element s ∈ π2(X).

Pictorially it is the right “cap”+right surface. The one on the left corresponds to sa, since

we have to fixed a base point when defining π2(X), say the one denoted by •.

C.2 Some Algebraic Topology Details for Sec. 4.1

C.2.1 Homotopy Class 〈T 2, X〉–Proof of Eq. (4.15)

In this section, we prove Eq. (4.15) in detail:

〈T 2, X〉 = {(a, b) ∈ π1(X)2|ab = ba} × π2(X)/〈t− ta, t− tb | t ∈ π2〉. (C.33)

Namely, a homotopy class [f ] ∈ 〈T 2, X〉 one-to-one corresponds to an element in set at right

hand side of Eq. (C.33).
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For each pair (a, b) ∈ π1(X)2 such that ab = ba, we choose and fix two loops1 a0, b0,

and also choose and fix a homotopy from a0b0a
−1
0 b−1

0 to 0, denoted by F (a, b). Note that

a0, b0, F (a, b) are arbitrarily chosen. But once they are chosen, they are fixed for all.

Given [f ] ∈ 〈T 2, X〉, we choose a map f : T 2 → X in this class. There are two nontrivial

loops (fixed) in T 2, denoted by l1, l2, with the same base point. The restriction of f on l1

defines a map (loop) f1 : S1 → X and therefore an element a ∈ π1(X). Similarly we have

b ∈ π1(X). Since the loop l1l2l
−1
1 l−1

2 is homotopic to 0 in T 2, we know ab = ba in π1(X).

Obviously a, b are well-defined function of [f ].

Since loop f1 is homotopic to a0, there exists (not unique) a homotopy F (a) from f1 to

a0; the same for b and we have a F (b). Now define an element h in π2(X) as in Fig. 16(a).

In this way we get an element h̄ ∈ π2(X)/〈t− ta, t− tb | t ∈ π2〉.

We need to prove that h̄ does not depend on the choice of f, F (a), F (b). To do this,

assume we choose a different f ′ and therefore different loops l′1, l
′
2 in X, different homotopy

F ′(a) and F ′(b), and different element h′ ∈ π2(X). To compare h and h′ we need to fix a base

point. Defined t to be the element in π2(X) determined by F (a), F ′(a) and the homotopy

between f, f ′, see Fig. 16(b). Also from this figure, we know that

h′ = h+ t− tb + s− sa, (C.34)

therefore h̄ = h̄′.

The inverse map is easy to define. Therefore we have proved Eq. (C.33).

C.2.2 The Action of π1(Xn) on π2(Xn)–Proof of Eq. (4.17)

In this section, we prove that the action t 7→ ta is determined by Eq. (4.17), which we

rewrite here for convenience:

(t1, · · · , tn) 7→ (ta(1), · · · , ta(n)). (C.35)

To see this, consider the projection

Xn = (Confn×Fn)/Sn
j−→ Fn/Sn, (C.36)

1Note the notations here: a, b are homotopy class of loops, a0, b0 are loops.
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which induces an isomorphism on π2 and a surjection Bn → Sn on π1. Therefore, the action

of π1(Xn) on π2(Xn) factorizes through the action of π1(Fn/Sn) = Sn on π2(Fn/Sn):

π2(Xn)
Bn−−−→ π2(Xn)y∼= y∼=

π2(Fn/Sn)
Sn−−−→ π2(Fn/Sn)

. (C.37)

Geometrically, the action of [γ] ∈ π1(Xn) on π2(Xn) is given by any homotopy ft : S2 → Xn

such that ft(s0) = γ(t) (here s0 is a base point on S2); under projection j, j ◦ ft gives a

homotopy S2 → Fn/Sn and therefore an action of p([γ]) ∈ Sn on π2(Fn/Sn).

We now show the action of π1(Fn/Sn) = Sn on π2(Fn/Sn) is given by Eq. (C.35). Indeed,

assuming the loop γ in Fn/Sn is lifted to γ̃ in Fn, γ̃(1) = gγ̃(0) where g ∈ Sn. Then

a homotopy S2 → Fn/Sn corresponding to the [γ] action will be lifted to a homotopy

that deforms the map f̃0 : S2 → Fn to f̃1 : S2 → Fn such that f̃1(s0) = γ̃(1), f̃0(s0) =

γ̃(0). In order to identify the corresponding element of f̃1 in π2(Fn/Sn), one just need to

consider g−1 ◦ f̃1 since they (g−1 ◦ f̃1 and f̃1) are the same map after projection to Fn/Sn and

g−1f̃1(s0) = f̃0(s0) is the correct base point, see Fig. 17 for illustration of above argument.

Now we identify g−1 ◦ f̃1 in π2(Fn) = Zn−1 according to the injection π2(Fn)
∂−→ π1(C∗n)

in Eq. (4.8). Recall that the boundary map ∂ is defined by a homotopy lifting. For example,

to identify ∂(f̃1), one regard f̃0 : S2 → Fn as a map I2 → Fn, where f̃0(∂I2) = {b0}; then

as a homotopy Ht : I1 → Fn. Then lift H0 along into GL(n). This is just the trivial map

to a point, say e0. They use relative homotopy lifting property to lift Ht for t ∈ I. H1(I),

which is the lift of f̃0 on I × {1}, is now a loop based on e0, which induces as an element in

π1(C∗n).

In our case, g−1 ◦ f̃1 is just given by Fig. 17(b). We can construct the lifting explicitly.

First note that Sn has an action on GL(n) by column transformation, which is the lift of its

action on Fn. We lift the path g−1(γ̃) in Fn to a path β in GL(n) starting at e0. We can

make it end at e−1 = g−1e0 by gradually changing the phases of each column vector along

the path. Now the homotopy lifting is defined as follows (see Fig. 17(c)). For t ∈ [0, 1], scan

the square in Fig. 17(b) from bottom to up. For small t (before touching the inner square),

just lift the homotopy it along β. Then one lifts the homotopy inside the inner square by
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Figure 17: (a) An illustration for the proof of Eq. (4.17). Assuming [γ] action takes an

element in π2(Fn/Sn) (represented by A) to B, then the lift f̃t will be a homotopy from Ã to

B̃. To identify the corresponding element of B̃ in π2(Fn/Sn), just consider g−1(B̃) since it

is the same as B̃ under projection. (b) The definition of g−1 ◦ f̃1 (corresponds to g−1(B̃) in

Fig. 17). One regard S2 as I2 with boundary points identified, then draw a smaller square

inside it. Define the map on the inner square as g−1 ◦ f̃0 (would be g−1(Ã) in the notation

of Fig. 17), so that the inner boundary maps to g−1(b0). Then one connects the inner and

outer boundary by the paths g−1(γ̃). One gets a well-defined map from I2 to Fn, with the

outer boundary maps to b0. (c) Illustration of the homotopy lifting process.

g−1◦ the homotopy lifting of f̃0. After one passes the inner square, one can just move e−1 to

e0 by shrinking the line β. The homotopy class (n integers) of the loops on fibers is invariant

(For example, since we are only looking at the bundle over an open path γ̃, we can regard it

as a trivial bundle). The final lifting is a loop on the fiber over b0 with base point e0. It is

easy to see this loop corresponds to Eq. (4.17).
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[35] Hosho Katsura and Tohru Koma. The Z2 index of disordered topological insulators
with time reversal symmetry. Journal of Mathematical Physics, 57(2):021903, 2016.

[36] Yutaka Akagi, Hosho Katsura, and Tohru Koma. A new numerical method for Z2

topological insulators with strong disorder. Journal of the Physical Society of Japan,
86(12):123710, 2017.

[37] Raffaello Bianco and Raffaele Resta. Mapping topological order in coordinate space.
Phys. Rev. B, 84:241106, Dec 2011.

[38] Huaqing Huang and Feng Liu. Quantum spin Hall effect and spin bott index in a
quasicrystal lattice. Phys. Rev. Lett., 121:126401, Sep 2018.

[39] J. Bellissard. K-theory of C∗–Algebras in solid state physics. In T. C. Dorlas, N. M.
Hugenholtz, and M. Winnink, editors, Statistical Mechanics and Field Theory: Math-
ematical Aspects, volume 257 of Lecture Notes in Physics, Berlin Springer Verlag,
pages 99–156, 1986.

[40] J. Bellissard, A. van Elst, and H. SchulzB̃aldes. The noncommutative geometry of the
quantum Hall effect. Journal of Mathematical Physics, 35(10):5373–5451, 1994.

114



[41] Nimrod Moiseyev. Non-Hermitian Quantum Mechanics. Cambridge University Press,
2011.

[42] Carl M. Bender and Stefan Boettcher. Real spectra in non-Hermitian Hamiltonians
having PT symmetry. Phys. Rev. Lett., 80:5243–5246, Jun 1998.

[43] Carl M. Bender, Dorje C. Brody, and Hugh F. Jones. Complex extension of quantum
mechanics. Phys. Rev. Lett., 89:270401, Dec 2002.

[44] Carl M Bender. Making sense of non-Hermitian Hamiltonians. Reports on Progress
in Physics, 70(6):947–1018, May 2007.

[45] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Higashikawa,
and Masahito Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X,
8:031079, Sep 2018.

[46] Kohei Kawabata, Ken Shiozaki, Masahito Ueda, and Masatoshi Sato. Symmetry and
Topology in Non-Hermitian Physics. arXiv e-prints, page arXiv:1812.09133, Dec 2018.

[47] Kohei Kawabata, Takumi Bessho, and Masatoshi Sato. Classification of exceptional
points and non-Hermitian topological semimetals. Phys. Rev. Lett., 123:066405, Aug
2019.

[48] Hengyun Zhou and Jong Yeon Lee. Periodic table for topological bands with non-
Hermitian symmetries. Phys. Rev. B, 99:235112, Jun 2019.

[49] Ananya Ghatak and Tanmoy Das. New topological invariants in non-Hermitian sys-
tems. Journal of Physics: Condensed Matter, 31(26):263001, Apr 2019.

[50] Zhi Li and Roger S. K. Mong. Homotopical classification of non-hermitian band
structures, 2019.

[51] Eugene P. Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik
der Atomspektren. Mit 12 Abbildungen. F. Vieweg & Sohn Akt.-Ges, Braunschweig,
1931.

[52] V. Bargmann. On unitary ray representations of continuous groups. Annals of Math-
ematics, 59(1):1–46, 1954.

[53] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2005.

[54] Eugene P. Wigner. Characteristic vectors of bordered matrices with infinite dimen-
sions. Annals of Mathematics, 62(3):548–564, 1955.

[55] Freeman J. Dyson. The Threefold Way. Algebraic Structure of Symmetry Groups and
Ensembles in Quantum Mechanics. Journal of Mathematical Physics, 3(6):1199–1215,
November 1962.

115



[56] Max Karoubi. K-theory: an introduction. Springer-Verlag, New York, Berlin, 1977.

[57] Zheng-Cheng Gu and Xiao-Gang Wen. Tensor-entanglement-filtering renormalization
approach and symmetry-protected topological order. Phys. Rev. B, 80:155131, Oct
2009.

[58] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen. Symmetry pro-
tected topological orders and the group cohomology of their symmetry group. Phys.
Rev. B, 87:155114, Apr 2013.

[59] Joel E. Moore, Ying Ran, and Xiao-Gang Wen. Topological surface states in three-
dimensional magnetic insulators. Phys. Rev. Lett., 101:186805, Oct 2008.

[60] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi,
44(10S):131–136, Oct 2001.

[61] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
Phys. Rev. Lett., 98:106803, Mar 2007.

[62] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band
structures. Phys. Rev. B, 75:121306, Mar 2007.

[63] Rahul Roy. Topological phases and the quantum spin Hall effect in three dimensions.
Phys. Rev. B, 79:195322, May 2009.

[64] G.E. Volovik. The Universe in a Helium Droplet. International Series of Monographs
on Physics. OUP Oxford, 2009.

[65] J. Avron, R. Seiler, and B. Simon. The index of a pair of projections. Journal of
Functional Analysis, 120(1):220 – 237, 1994.

[66] C. Davis. Separation of two linear subspaces. Acta Sci. Math. (Szeged), 19:172–187,
1958.

[67] Christian Brouder, Gianluca Panati, Matteo Calandra, Christophe Mourougane, and
Nicola Marzari. Exponential localization of wannier functions in insulators. Phys.
Rev. Lett., 98:046402, Jan 2007.

[68] Zhi Li and Roger S. K. Mong. Entanglement renormalization for chiral topological
phases. Phys. Rev. B, 99:241105, Jun 2019.

[69] J. Dubail and N. Read. Tensor network trial states for chiral topological phases in
two dimensions and a no-go theorem in any dimension. Phys. Rev. B, 92:205307, Nov
2015.

[70] Huaxin Lin. Almost commuting selfadjoint matrices and applications. Fields Institute
Commun., 13, 01 1997.

116



[71] M. B. Hastings. Making almost commuting matrices commute. Communications in
Mathematical Physics, 291(2):321–345, Oct 2009.

[72] Terry A. Loring. K-theory and asymptotically commuting matrices. Canadian Journal
of Mathematics, 40(1):197216, 1988.

[73] Terry A. Loring. When matrices commute. Mathematica Scandinavica, 82(2):305–319,
1998.

[74] Jonathan M. Rosenberg. Algebraic K-theory and its applications, volume 147.
Springer-Verlag, New York, 1994.

[75] Liang Fu and C. L. Kane. Time reversal polarization and a Z2 adiabatic spin pump.
Phys. Rev. B, 74:195312, Nov 2006.

[76] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev.
B, 76:045302, Jul 2007.

[77] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang. Topological field theory of
time-reversal invariant insulators. Phys. Rev. B, 78:195424, Nov 2008.

[78] Rahul Roy. Z2 classification of quantum spin Hall systems: An approach using time-
reversal invariance. Phys. Rev. B, 79:195321, May 2009.

[79] D. J. Thouless. Quantization of particle transport. Phys. Rev. B, 27:6083–6087, May
1983.

[80] P.D. Lax. Functional Analysis. Pure and Applied Mathematics: A Wiley Series of
Texts, Monographs and Tracts. Wiley, 2014.

[81] Matthew B. Hastings and Tohru Koma. Spectral gap and exponential decay of corre-
lations. Communications in Mathematical Physics, 265(3):781–804, Aug 2006.

[82] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Zeitschrift fur
Physik, 80:763–791, November 1933.

[83] Sven Bachmann, Alex Bols, Wojciech De Roeck, and Martin Fraas. Many-body Fred-
holm index for ground-state spaces and abelian anyons. Phys. Rev. B, 101:085138,
Feb 2020.

[84] H. J. Carmichael. Quantum trajectory theory for cascaded open systems. Phys. Rev.
Lett., 70:2273–2276, Apr 1993.

[85] Ingrid Rotter. A non-Hermitian hamilton operator and the physics of open quantum
systems. Journal of Physics A: Mathematical and Theoretical, 42(15):153001, Mar
2009.

117



[86] Sebastian Diehl, Enrique Rico, Mikhail A. Baranov, and Peter Zoller. Topology by
dissipation in atomic quantum wires. Nature Physics, 7:971 EP –, Oct 2011. Article.

[87] Kenta Esaki, Masatoshi Sato, Kazuki Hasebe, and Mahito Kohmoto. Edge states and
topological phases in non-Hermitian systems. Phys. Rev. B, 84:205128, Nov 2011.

[88] Alois Regensburger, Christoph Bersch, Mohammad-Ali Miri, Georgy Onishchukov,
Demetrios N. Christodoulides, and Ulf Peschel. Parity-time synthetic photonic lat-
tices. Nature, 488:167 EP –, Aug 2012. Article.

[89] Bo Zhen, Chia Wei Hsu, Yuichi Igarashi, Ling Lu, Ido Kaminer, Adi Pick, Song-Liang
Chua, John D. Joannopoulos, and Marin Soljacic. Spawning rings of exceptional
points out of dirac cones. Nature, 525:354 EP –, Sep 2015.

[90] Liang Feng, Ramy El-Ganainy, and Li Ge. Non-Hermitian photonics based on parity-
time symmetry. Nature Photonics, 11(12):752–762, 2017.

[91] Hui Cao and Jan Wiersig. Dielectric microcavities: Model systems for wave chaos and
non-Hermitian physics. Rev. Mod. Phys., 87:61–111, Jan 2015.

[92] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Mussli-
mani, Stefan Rotter, and Demetrios N. Christodoulides. Non-Hermitian physics and
pt symmetry. Nature Physics, 14:11 EP –, Jan 2018. Review Article.

[93] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani. Beam
dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100:103904, Mar 2008.

[94] Shachar Klaiman, Uwe Günther, and Nimrod Moiseyev. Visualization of branch points
in PT -symmetric waveguides. Phys. Rev. Lett., 101:080402, Aug 2008.

[95] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez,
G. A. Siviloglou, and D. N. Christodoulides. Observation of PT -symmetry breaking
in complex optical potentials. Phys. Rev. Lett., 103:093902, Aug 2009.

[96] S. Longhi. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett.,
103:123601, Sep 2009.

[97] Youngwoon Choi, Sungsam Kang, Sooin Lim, Wookrae Kim, Jung-Ryul Kim, Jai-
Hyung Lee, and Kyungwon An. Quasieigenstate coalescence in an atom-cavity quan-
tum composite. Phys. Rev. Lett., 104:153601, Apr 2010.

[98] Zin Lin, Hamidreza Ramezani, Toni Eichelkraut, Tsampikos Kottos, Hui Cao, and
Demetrios N. Christodoulides. Unidirectional invisibility induced by PT -symmetric
periodic structures. Phys. Rev. Lett., 106:213901, May 2011.

[99] S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and
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