
Targeting the Poly (ADP-Ribose) Polymerase-1 Catalytic Pocket Using AutoGrow4, a 
Genetic Algorithm for De Novo Design 

by 

Jacob Oscar Spiegel 

Bachelor of Engineering in Biomedical Engineering, State University of New York at Stony 
Brook, 2013 

Submitted to the Graduate Faculty of the 

Dietrich School of Arts and Sciences in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

University of Pittsburgh 

2020



ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

DIETRICH SCHOOL OF ARTS AND SCIENCES 

This dissertation was presented 

by 

Jacob Oscar Spiegel 

It was defended on 

March 10, 2020 

and approved by 

Dr. Andrew VanDemark, Associate Professor, Department of Biological Sciences 

Dr. Jeffrey Lawrence, Professor and Chair, Department of Biological Sciences 

Dr. Bennett Van Houten, Professor, Department of Pharmacology and Chemical Biology 

Dissertation Director: Dr. Jacob Durrant, Assistant Professor, Department of Biological Sciences 



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Jacob Oscar Spiegel 
 

2020 
 
 
 

 



iv 

Targeting the Poly (ADP-Ribose) Polymerase-1 Catalytic Pocket Using AutoGrow4, a 
Genetic Algorithm for De Novo Design 

Jacob Oscar Spiegel, Ph.D. 

University of Pittsburgh, 2020 

AutoGrow4 is a free and open-source program for de novo drug design that uses a genetic 

algorithm (GA) to create novel predicted small-molecule ligands for a given protein target without 

the constraints of a finite, pre-defined virtual library. By leveraging recent computational and 

cheminformatic advancements, AutoGrow4 is faster, more stable, and more modular than previous 

versions. Features such as docking-software compatibility, chemical filters, multithreading 

options, and selection methods have been expanded to support a wide range of user needs. This 

dissertation will cover the development and validation of AutoGrow4, as well as its application to 

poly (ADP-ribose) polymerase-1 (PARP-1).  

PARP-1 is a well-characterized DNA-damage recognition protein, and PARP-1 inhibition 

is an effective treatment for ovarian and breast cancers that are homologous-recombination (HR) 

deficient1–5. As a well-studied protein, PARP-1 is also an excellent drug target with which to 

validate AutoGrow4. Multiple crystallographic structures of PARP-1 bound to various PARP-1 

inhibitors (PARPi) serve as positive controls for assessing the quality of AutoGrow4-generated 

compounds in terms of predicted binding affinity, chemical structure, and predicted protein-ligand 

interactions.  



 v 

This dissertation describes how I (1) generated novel potential PARPi with predicted 

binding affinities that surpass those of known PARPi; (2) validated AutoGrow4 as a tool for de 

novo drug design, lead optimization, and hypothesis generation, using PARP-1 as a test target; (3) 

contributed support to the growing notion that there is a need for HR-deficient cancer 

chemotherapies that do not rely on the same set of protein-ligand interactions typical of current 

PARPi; (4) generated novel potential PARPi that are predicted to bind to PARP-1 independent of 

a post-translational modification that is known to cause PARPi resistance; and (5) generated novel 

potential PARPi that are predicted to bind a secondary PARP-1 pocket that is distant from the 

primary catalytic site. 
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1.0 Introduction 

This chapter introduces the biological and computational background relevant to 

AutoGrow4 and its application to poly (ADP-ribose) polymerase-1 (PARP-1). It also describes the 

current state of the field and the motivation for designing AutoGrow4. It contains expanded 

adaptations of the work published in the AutoGrow4 manuscript.  

AutoGrow4 was published under the Creative Commons Attribution 4.0 International 

License, which “allows unrestricted use, distribution, and reproduction in any medium.”6 Several 

sections presented here are adapted and reprinted with rights and permission: 

  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed most of the experiments discussed in the paper, and analyzed the data. I 

designed the layout for all figures in the paper with Dr. Jacob Durrant. Dr. Durrant refined and 

generated the high-quality images for publication. Dr. Durrant also provided guidance and insight 

as described in the acknowledgement section. All writing in this chapter is original content written 

by Jacob O. Spiegel. 
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1.1 Biological Background 

DNA is under continuous threat of damage7. To respond to different types of damage, cells 

have evolved several pathways for DNA repair8,9. Cancer cells commonly have defects in DNA 

repair pathways and so are prone to acquiring additional mutations10–14.  

This dissertation focuses on rational drug design targeting the protein PARP-1, which is 

involved in DNA-damage repair15,16. I chose PARP-1 because (1) PARP-1 is a proven cancer drug 

target1–5; (2) its catalytic domain has a well-studied druggable pocket17–19; and (3) its multiple 

biologically confirmed inhibitors serve as positive controls and as source compounds for rational 

drug design1–5. This section begins with a review of three DNA repair pathways that interact with 

PARP-1: the base excision repair (BER), non-homologous end joining (NHEJ), and homologous 

recombination (HR) pathways. I then describe how PARP-1 binds to DNA and recruits repair 

proteins. Finally, I detail the pharmacology of PARP-1, including its role in HR-deficient cancer, 

current pharmaceutical options for its inhibition, and identified PARP-1 inhibitor (PARPi) 

resistance mechanisms.  

1.1.1 DNA Damage Repair in Humans 

I will begin by discussing three PARP-1-implicated DNA repair pathways. This discussion 

will overview each pathway’s target DNA-damage type, key proteins, and general mechanisms for 

DNA-repair. Collectively, these pathways are critical because DNA is under continuous threat of 

damage due to exposure to environmental agents, reactive oxygen species, UV-radiation, and 
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errors made while replicating7. As DNA is a complex biological molecule, the possible types of 

DNA-damage vary greatly. Such damage types include abasic sites, double-strand DNA breaks, 

and single-strand DNA breaks. Cells therefore require multiple strategies for identifying different 

types of DNA damage and either repairing or terminating the cell8,9. 

1.1.1.1 Base Excision Repair (BER) 

PARP-1 recruits BER repair proteins to sites of DNA damage20. The BER mechanism 

repairs many types of DNA lesions including abasic sites, single-strand DNA breaks (SSB), and 

various base alterations such as lesions caused by oxidation, alkylation, or deamination20–22. These 

types of DNA damage can stall transcription and translation23, cause genomic instability, progress 

into double-strand DNA breaks (DSB)24, and result in cell death23. As its name implies, BER 

excises small regions of DNA damage and creates an SSB as an intermediate22. This 

“intentionally” formed SSB is usually passed from one protein to the next in the BER pathway to 

prevent the break from becoming a DSB and to ensure that it is repaired21,22. BER also repairs 

“unintentional” SSB such as those that are caused by reactive oxygen species21,22. 

There are several variations of the BER pathway that share many of the same key proteins. 

All variations follow five steps21. (1) Detect and excise the damaged DNA base, resulting in an 

apurinic or apyrimidinic site (AP site), also referred to as an abasic site21. (2) Incise the AP site 

(creating an SSB) using an AP endonuclease or AP lyase21. (3) Clean up the terminal ends of the 

sugar backbone21 using a lyase or a phosphodiesterase21. (4) Replace the missing region with 
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complementary DNA21 using a DNA polymerase21. (5) Ligate the DNA to remove nicks21 using a 

DNA ligase21. 

1.1.1.2 Non-Homologous End Joining (NHEJ) 

PARP-1 binding and activation can also stimulate a type of non-homologous end joining 

(NHEJ)25. NHEJ is one of the most active repair pathways for DSB and rejoins ends of DSB by 

direct ligation25. However, NHEJ is error prone because the rejoined ends may share little to no 

homology to guide the repair. A common consequence of NHEJ is loss of DNA bases at the joining 

site25. NHEJ comprises two main sub-pathways: the well-studied canonical NHEJ (c-NHEJ) and 

the more recently discovered alternative NHEJ (alt-NHEJ)25. Alt-NHEJ has also been referred to 

as “backup NHEJ” and “microhomology-mediated end joining” (MMEJ)25. 

c-NHEJ is activated when the DNA binding proteins Ku70 and Ku80 (Ku proteins) bind 

to the sites of DSB24, whereas alt-NHEJ is stimulated by PARP-1 binding and activation25. Ku and 

DNA-dependent protein kinase (DNA-PK) bind to chains of adenosine diphosphate ribose (ADP-

ribose) that are produced by PARP-1, and so some models propose that PARP-1 recruits c-NHEJ 

proteins to the damage sites24–26. Contrastingly, PARP-1 and Ku also compete for DSB binding, 

so PARP-1 may inhibit c-NHEJ function27. Ku’s stronger affinity and more frequent DSB binding 

support the view that PARP-1-initiated alt-NHEJ is a backup to Ku-initiated c-NHEJ27, but these 

conflicting observations create uncertainty about PARP-1’s role in NHEJ repair. 



 5 

1.1.1.3 Homologous Recombination (HR) 

Although PARP-1 does not directly stimulate the HR pathway, cells that are HR deficient 

(e.g., many breast-cancer cells9,11,14,28) tend to be hypersensitive to PARP-1 pharmacological 

inhibition1–4. In fact, drugs that inhibit PARP-1 have been successfully used to treat patients with 

HR-deficient cancers1–4. Thus, understanding HR repair is crucial to understanding PARP-1’s 

impact on many cancer types.  

HR uses homologous DNA as a template for DSB repair24,29. Unlike NHEJ, which remains 

active throughout the cell cycle, HR activity is mostly limited to S and G2 phases9,14,29. 

Additionally, HR repair is less error prone than NHEJ24,29 and is therefore critically important for 

genome stability and repair fidelity, particularly during DNA replication14. 

Deficiencies in the proteins of the HR pathway are common in many cancers9,11,14,28. The 

breast cancer tumor suppressor proteins BRCA1 and BRCA2 are two frequent examples9,14. These 

proteins are involved in transcription regulation11, end resection14,28, filament promotion14,28, 

DNA-strand protection at stalled forks14, cell-cycle checkpoint11, and cellular apoptosis11. HR-

deficient cells must rely more heavily on alternative repair pathways such as BER or NHEJ or risk 

genomic instability9,28,30. Therefore, HR-deficient cancers are less able to survive further loss of 

non-HR repair pathways than are HR-proficient cells9,28,30. 
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1.1.2 PARP-1 Recruits BER and Alt-NHEJ With Poly (ADP)-Ribose Chains 

In this section, I will discuss the mechanisms by which PARP-1 recruits DNA damage 

repair proteins to sites of DNA damage. This discussion will include a review of the role that ADP-

ribosylation plays in recruiting repair proteins, how PARP-1 identifies DNA damage sites, and the 

communication between different PARP-1 domains required to coordinate its DNA binding and 

catalytic activity. 

1.1.2.1 ADP-Ribosylation as a Form of DNA Repair Signaling 

Nicotinamide adenine dinucleotide (NAD+) is an organic small molecule common to all 

living organisms15. It is composed of an adenosine 5’-monophosphate and a nicotinamide 

mononucleotide that are covalently connected by a phosphodiester bond15 (Figure 1). Among its 

many biological roles, NAD+ can be catabolized into ADP-ribose and nicotinamide by cleaving a 

N-glycosidic bond15 (Figure 1). ADP-ribosyltransferases are proteins that catalyze this reaction 

and attach the resulting ADP-ribose molecule(s) onto acceptor protein(s)15. This post translational 

modification is referred to as mono-ADP-ribosylation (MARylation) when a single ADP-ribose is 

attached, or poly-ADP-ribosylation (PARylation) when multiple ADP-ribose molecules are 

attached15. Poly (ADP-ribose) (PAR) chains can be connected either as a linear chain or as 

branching chains15 (Figure 1B).  

Poly (ADP-ribose) polymerases (PARPs) are a family of ADP-ribosyltransferases found 

in eukaryotes. PARP proteins can transfer ADP-ribose to glutamic-acid, aspartic-acid, cysteine, 
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lysine, and serine acceptor sites31–34. Among the 17 PARP proteins in humans, PARP-1 was the 

first identified and is the most studied35,36. Multiple members of the PARP family, including 

PARP-1, can act both as ADP-ribosyltransferases and PARylation acceptors15. 

PAR chains are thought to act as a scaffold for recruiting DNA repair proteins to sites of 

DNA damage24,37. Many DNA repair proteins, including p53, DNA ligase III, X-ray repair cross 

complementing protein 1 (XRCC1), DNA-PK(CS), and Ku70, contain a PAR-binding motif that 

promotes non-covalent interactions with PAR-chains38. These PAR-binding motifs are typically 

20 amino acids long and consist of two conserved regions: a region dense in basic amino acids, 

and a region consisting of both hydrophobic and basic amino acids38. The location of PAR-binding 

motifs coincides with five different functional domains that are involved in nuclear localization, 

protein degradation, nuclear export, protein-protein interactions, and DNA binding38. Several other 

structures also facilitate protein-PAR noncovalent interactions, including the PAR-binding zinc 

fingers found in the NHEJ protein aprataxin and PNK-like factor (APLF)15,39, tryptophan and 

glutamic-acid rich WWE domains found in E3 ligases15,40, and macro domains found in PAR 

glycohydrase15,41,42.  

When attached to PARP-1, the negatively charged PAR chains may also help PARP-1 

dissociate from negatively charged DNA28, enabling DNA-repair-protein access to the damage 

site43. These PAR chains are rapidly degraded by PAR glycohydrase or PAR hydrolase28,33. Both 

hyperactivation of PARP-1 and inhibition of PAR glycohydrase can cause adenosine triphosphate 

(ATP) and NAD+ depletion, leading to a form of metabolic death known as parthanatos12,26,28,44. 
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Figure 1. The mechanism of PARylation. 

A) The first ADP-ribose modification attached to an aspartic-acid sidechain by PARP-1. 
Nicotinamide is a byproduct of this reaction. B) The attachment and elongation of the PAR chain, 
both as a linear chain and as branching chains. Square brackets with the letters l, m, and n indicate 
repeatable units that could be extended to form a longer or more branched PAR chain. The acceptor 
protein shown in this figure is derived from PDB 4DQY45 and can be viewed in larger and labeled 
scale in Figure 2B (p.11). This figure is adapted with permissions from figures presented in Lin 
(2015)15 and Alemasova and Lavrik (2019)16. 
  



 9 

1.1.2.2 PARP-1 DNA Damage Recognition and Binding 

Understanding PARP-1/DNA interactions is critical given that one of PARP-1’s most 

important functions is to identify and bind to DNA damage sites. The PARP-1 N-terminal DNA-

binding domain (DBD) is responsible for PARP-1’s DNA binding activity. The DBD includes 

three DNA-binding zinc fingers (Zn1, Zn2, and Zn3)17,45,46 (Figure 2) that differ from many other 

DNA-binding zinc fingers in that they recognize DNA structures rather than specific DNA 

sequences33,47. Zn1 and Zn2 identify many types of DNA lesions with high affinity15,45,47,48. 

Without Zn1, Zn2, and Zn3, a SSB cannot trigger PARP-1 DNA-dependent catalytic activation48–

51; without Zn1 and Zn3, a DSB cannot trigger PARP-1 DNA-dependent catalytic activation15,45–

48. Simultaneous deletion of Zn1 and Zn2 reduces PARP-1 binding affinity by over 250-fold, and 

a fragment containing only Zn1 and Zn2 binds to DNA with nearly the same affinity as wildtype 

PARP-147. Isolated Zn1 fragments have much weaker binding affinities for DNA than do isolated 

Zn247. But Zn2 deletion does not impact the binding affinity of PARP-1, and Zn1 deletion results 

in an approximately three-fold reduction in binding affinity47. Despite that fact that Zn2 has a much 

stronger affinity for DNA, Zn1 combined with the C-terminal region of the DBD can apparently 

compensate for the loss of Zn247. 

Zn3, which has a different structure and function than Zn1 and Zn245,47,52, is thought to 

make crucial interdomain contacts that are required for PARP-1 activation45,47 (Figure 2B). 

Similarly, the tryptophan-glycine-arginine-rich subdomain (WGR) also forms contacts with the 

DNA and contributes to important interdomain contacts (Figure 2B). I discuss these interdomain 

contacts and the roles they play in modulating PARP-1’s catalytic activity in “Chapter 1.1.2.5: 
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PARP-1 Catalytic Activation is Modulated by Interdomain Interactions” and “Chapter 1.1.2.6: 

DNA-Unbinding is Regulated by Interdomain Interactions.”  
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Figure 2. Representation of the three domains and seven subdomains of PARP-1. 

A) The DNA binding domain (DBD) is shown in green, the automodification domain (AD) is 
shown in blue, and the catalytic domain (CAT) is shown in orange. There is some disagreement 
as to whether the WGR is its own domain or part of the AD or CAT, hence WGR is shaded 
gray17,46,53. Panel A was generated with the help of PROSITE54. B) PARP-1 bound to DNA (PDB 
ID: 4DQY)45. 4DQY is one of the most complete PARP-1 structures and contains the Zn1 (dark 
green), Zn3 (light green), WGR (gray), helical subdomain (HD) (light orange), and the ADP-
ribosyl transferase subdomain (ART) (reddish orange). DNA is shown in cyan. The Zn2 and 
BRCA C-terminus (BRCT) subdomains are not shown, as they are not present in the crystal 
structure45. 
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1.1.2.3 PARP-1 Catabolizes NAD+ to Perform ADP-Ribosylation 

A primary function of PARP-1 is to act as an ADP-ribosyltransferase, which converts 

NAD+ to ADP-ribose and covalently attaches the ADP-ribose to an acceptor site. It has a highly 

conserved catalytic domain (CAT) that is responsible for binding NAD+ and catalyzing the 

reaction. Understanding the mechanisms of NAD+ binding and catalysis, as well as the structures 

that support that catalysis, is relevant to this dissertation because all FDA-approved PARP-1 

inhibitors are NAD+ competitive inhibitors, and “inhibition of PARP-1” is most often measured 

in terms of PARP-1 catalytic activity17.  

PARP-1’s CAT domain is located on the C-terminal region of the protein. As shown in 

Figure 2 (p. 11), the CAT is comprised of the helical subdomain (HD) and the ADP-ribosyl 

transferase subdomain (ART)17,46. The ART subdomain houses the catalytic pocket that is 

responsible for PAR synthesis. The same pocket also binds NAD+ and all FDA-approved PARP-

1 inhibitors17 (Figure 3A and B, respectively). When fully folded, the HD has an autoinhibitory 

function, blocking NAD+ from binding to the catalytic pocket18 and limiting PARP-1’s catalytic 

activity. PARP-1 binding to DNA triggers conformational changes in the automodification domain 

(AD)18 that propagate to the HD via contacts with the WGR, resulting in the local unfolding of 

HD18. This unfolding enables successful NAD+ binding and PARP-1 catalytic activity (i.e., the 

catalytic activity is DNA dependent)18. Mutagenesis of key residues (A744, A870, G871) at an 

HD-WGR interface results in 3- to 10-fold increases in PARP-1 DNA-independent activity (i.e., 

PARP-1 catalytic activity when not bound to DNA) compared to the wildtype18. 



PARP-1 ADP-ribosylation begins with NAD+ binding to the catalytic site16. A non-

hydrolyzable NAD+ analogue (benzamide adenine dinucleotide, or BAD) has been co-crystallized 

with the CAT domain (PDB: 6BHV55) (Figure 3A) and shows how NAD+ binds within the PARP-

1 catalytic pocket55. The pocket houses a highly conserved catalytic triad consisting of H862, 

Y896, and E988 (Figure 3A), which are required for catalytic activity16. H862 positions the NAD+ 

molecule by binding to the 2’ adenine-ribose hydroxyl group16,56–58. Y896 positions the aromatic 

ring of the nicotinamide moiety by forming a π-π stacking interaction, which is further assisted by 

similar interactions between Y907 and NAD+56 (Figure 3A). E988 binds to the 2′-hydroxyl group 

of the nicotinamide ribose, which orients NAD+ as required for a nucleophilic attack56 (Figure 

3A). This nucleophilic attack both catabolizes NAD+ and covalently attaches the resulting ADP-

ribose to the acceptor protein56. 

The catalytic pocket can be separated into four regions with distinct biochemical functions: 

the nicotinamide-binding pocket (NI site), the adenine-ribose binding site (AD site), the 

phosphate-binding site (PH site), and the acceptor site56. The NI site stabilizes the nicotinamide 

moiety of NAD+ and is defined by the catalytic triad residues E988 and Y896, as well as Y90756. 

The AD site stabilizes the adenine-ribose of the NAD+ and is defined by the catalytic triad 

residue H862, as well as G876, D770, S864, and R87856. The PH site, which consists of D766 

and E763, stabilizes the pyrophosphate group of NAD+56. Collectively, the NI, AD, and PH sites 

make up a larger region referred to as the donor site, as these three subregions contribute to the 

binding and positioning of the NAD+ “donor” molecule56. The acceptor site binds and 

positions the pyrophosphate group of the “acceptor” residue or PAR chain that will be ADP-

ribosyltated56. The acceptor site consists of H826, M890, K903, L985, and Y98616,56 and is 

13 
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thought to influence the branching properties of the PAR chains16,59. The majority of all PARP-1 

inhibitors (PARPi) bind to PARP-1’s donor site16,59; for instance, the FDA-approved PARPi 

niraparib is shown binding to the donor site in Figure 3B. 
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Figure 3. PARP-1 catalytic binding site. 

A) An NAD+ analog, BAD (shown in multi-color stick representation), bound to the PARP-1 
catalytic pocket (Protein Data Bank (PDB) ID: 6BHV Chain A55). The catalytic triad (purple) 
binds to and catabolizes NAD+. Y907 and the catalytic triad residue Y896 position the 
nicotinamide-like benzamide moiety by forming π-π stacking interactions. NAD+ likely binds 
within the catalytic pocket with a similar orientation. B) Niraparib (cyan stick representation), an 
FDA-approved PARPi for treating ovarian cancer4,17, bound to the PARP-1 catalytic pocket (PDB 
ID: 4R6E Chain A17). This structure shows how the HD, shown in light orange, and the ART, 
shown in reddish orange, form contacts with the niraparib. Select residues that interact with 
niraparib are shown in colored-stick representation.   
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1.1.2.4 PARP-1 Acts as an ADP-Ribosyltransferase and ADP-Ribose Acceptor 

PARylation modifications can attach to many nuclear proteins, including PARP proteins60. 

This dissertation focuses on PARP-1 drug-inhibition strategies, which generally aim to prevent 

PARP-1-mediated PARylation events. Understanding the protein targets of PARylation and the 

relationship between PARP-1 and those targets provides insight into potential inhibition strategies.  

PARP-1 can ADP-ribosylate (1) itself (in cis modification) as a monomer16; (2) other 

PARP-1 molecules (in trans modification), both as symmetric and asymmetric homodimers16; and 

(3) other proteins16, such as XRCC1, XRCC5, XRCC6, DNA topoisomerase 2-alpha (TOP2), 

replication protein A1 (RPA1), and RPA260.  

The primary acceptor of PARP-1-mediated PARylation is PARP-1 itself33,45. PARylation 

of PARP-1 is called autoPARylation9,15,16. There are at least 102 potential PAR-acceptor sites on 

PARP-131,61–67 (Figure 4). Although there are PAR-acceptor sites throughout the entire PARP-1 

protein, the automodification domain (AD) houses many of the most well-characterized 

autoPARylation sites31,33,45,61–67 (Figure 4). The AD contains two subdomains, the BRCA C-

terminus subdomain (BRCT) and the WGR17,46 (Figure 2 on p.11). The WGR is essential for 

coordinating catalytic activity with the DBD in binding to DNA damage45 (Figure 2 on p.11). The 

BRCT subdomain plays important roles in protein-protein interactions, such as binding the BER 

protein XRCC1 to PARP-168,69, but it is not essential for PARP-1 binding to DNA or PARP-1 

catalytic activity45. The WGR subdomain is essential for the DNA-dependent catalytic activation 

of PARP-1 because of its roles in interdomain communication45 (see the following section).  
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Figure 4. PARylation acceptor sites mapped onto PARP-1. 

A) DBD is shown in green, AD is shown in blue, and CAT is shown in orange. WGR is shaded 
gray17,46,53. Verified PARylation sites compiled by Daniels et al. (2015)31 from seven studies on 
PARP-1 autoPARylation61–67 are shown in gray if they were identified by only one source 
paper31,61–67, and red if they were identified by two or more independent studies31,61–67. Panel A 
was generated with the help of PROSITE54. B) PARP-1 bound to DNA (PDB ID: 4DQY45). 4DQY 
is one of the most complete PARP-1 structures and contains the Zn1 (green), Zn3 (light green), 
WGR (black), HD (light orange), and ART (brownish orange) subdomains. DNA is shown in cyan. 
The Zn2 and BRCT subdomains are not shown because they are not present in the crystal 
structure45. Views are ~180° rotations of each other. The verified PARylation sites are mapped 
onto the surface of the structure and shown in gray if they were identified by only one source 
paper, or red if they were identified by two or more independent studies31,61–67. 
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1.1.2.5 PARP-1 Catalytic Activation is Modulated by Interdomain Interactions 

In wildtype PARP-1, the catalytic activity of DNA-bound PARP-1 is significantly elevated 

compared to the low basal level of DNA-independent catalytic activity33,45. This modulation of 

PARP-1 catalytic activity is controlled through a network of interdomain interactions that enable 

allosteric communication18,45. Small molecules that disrupt interdomain communication thus have 

potential as PARP-1 drugs/inhibitors (see “Chapter 3.3.5: AutoGrow4 Applied to a Non-catalytic 

PARP-1 Pocket”). To prepare the reader for further discussion of allosteric PARP-1 inhibition, I 

will here discuss each of these interdomain interfaces in detail. 

The minimum PARP-1 protein construct capable of near-wildtype levels of DNA-

dependent PARP-1 activity contains the Zn1, Zn3, WGR, and CAT domains45. Zn1, Zn3, and the 

WGR are essential for DNA-binding and interdomain allosteric communication with the CAT, and 

the CAT domain is essential for catalytic activity45. Several key interdomain interfaces regulate 

DNA-dependent PARP-1 activity: (1) the Zn1-Zn3 interface (Figure 5A and B); (2) the Zn1-WGR-

HD interface (Figure 5A and C); (3) the HD-WGR-Zn3 interface (Figure 5A and D); and (4) the 

two HD-ART interfaces (Figure 6). 

Zn3 binds a surface on Zn1 that is exposed when Zn1 binds DNA, forming the Zn1-Zn3 

interface16,70. The Zn1-Zn3 interface primarily consists of the C-terminal helix of Zn1 and the N-

terminal helix of Zn345 (Figure 5A and B). It is close to but not in direct contact with the bound 

DNA, per the PDB:4DQY crystal structure45. Much of what we know of this interface comes from 

structural and mutagenesis studies. Several key residues have been mutated within this interface, 

including Zn1’s L77, R78, W79, and K97, as well as Zn3’s K238, W246, and K24945,46,52,70,71 
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(Figure 5B). Of particular note are the conservative mutation K97R and the non-conservative 

mutations L77P and K249E, which reduce PARP-1 catalytic activity to <0.5% as compared to the 

wildtype, despite retaining DNA-binding activity71.  

The Zn1-Zn3 interface is critical for the allosteric communication that activates DNA-

dependent catalytic activity, but that interface does not influence DNA binding itself45,46,52,70. 

Mutations that disrupt major contacts between Zn1 and Zn3 (i.e., R78/Zn1 and W246/Zn3; and 

W79/Zn1 and K238/Zn352; Figure 5B) decrease catalytic activity without disrupting DNA binding 

activity45,46,52,70. For instance, the W246A mutant had virtually no catalytic activity45,70 and could 

not form the DNA-dependent Zn1-Zn3 interaction70. Additionally, R78A and W79A mutations 

both resulted in markedly decreased catalytic activity, but had DNA-binding activity nearly equal 

to that of the wildtype46. I will discuss the Zn1-Zn3 interface further in “Chapter 3.0AutoGrow4: 

Application to Poly (ADP-ribose) Polymerase-1 (PARP-1)”, in the context of potential drug-

discovery strategies for PARP-1 inhibition. 

The Zn1-WGR-HD interface (Figure 5A and C) plays an important role in regulating DNA-

dependent PARP-1 catalytic activity. The WGR acts as an intermediate between DNA binding and 

catalytic activity through contacts it forms with the DNA, Zn1, and the HD αE helix45 (Figure 5C). 

The WGR W589 residue stacks with the ribose sugars of the DNA 5’ strand45. WGR R591 forms 

a salt bridge with Zn1 D45 and makes contacts with the HD αE helix45. R591 thus serves as a 

bridge between the Zn1 and HD subdomains. As expected, the R591A mutation disrupts PARP-1 

autoPARylation activity45. D45A and Q40A also reduce PARP-1 autoPARylation activity45,47. In 

summary, the Zn1-WGR-HD interface regulates DNA-dependent catalytic activity45,47. 
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Like the Zn1-Zn3 and Zn1-WGR-HD interfaces, the HD-WGR-Zn3 interface also plays a 

significant role in DNA-dependent catalytic activation and interdomain communication. The HD 

αE helix interacts with the WGR and the extended loop of the Zn3 zinc ribbon fold, with Zn3 

W318 at the center of the interface45 (Figure 5A and D). W318 is on a loop that interacts with the 

HD R735 residue and the WGR K633 residue. W318R and W318A mutations reduce PARP-1 

PAR synthesis activity, without impairing localization to sites of DNA damage18,45,46. W318R is 

thought to disrupt this interface, thereby preventing/limiting interdomain allosteric 

communication18,45. Similarly, mutations R735A and K633A reduced PARylation activity45,46.  

The two HD-ART interfaces, the αF-αJ interface and αD-active site loop (ASL) interface 

(Figure 6), influence the HD’s structure and position relative to the catalytic pocket and thereby 

regulate PARP-1 catalytic activity18. Truncated PARP-1 constructs without the HD subdomain 

had levels of DNA-independent catalytic activity equal to that of the DNA-bound wildtype protein, 

indicating that the HD has an inhibitory effect on PARP-1 catalytic function18. PARP-1 catalytic 

activity is possible only when the HD subdomain undergoes a conformational change, which opens 

the catalytic pocket and allows NAD+ to bind18. This DNA-dependent conformational change 

involves the unfolding of select HD helical regions, including αB, αD, and the C-terminal of αF18. 

In particular, the unfolding of the HD αF has a profound effect on catalytic activity because it 

disrupts the HD’s autoinhibitory effect on the ART αJ and allows NAD+ binding18. Consequently, 

the structure of the αF-αJ interface (Figure 6A and C) must be disrupted to allow catalytic activity. 

In fact, mutations that disrupt the αF-αJ interface (e.g., A774L, A774S, A870L, A870S, A871L, 

A871S) result in 3- to 10-fold increases in PARP-1 DNA-independent activity18. In contrast, the 

αD-ASL interface is thought to serve as a structural support anchoring the HD and ART together 
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in both the active and inactive states18,55. Mutations that disrupt the αD-ASL interface (e.g., S714A, 

Q717A, P882G, P885S, P885G, and the quadrupole substitution mutant 

E883A/A884S/P885S/V887A) largely reduce DNA-dependent activity and minimally affect DNA 

binding and DNA-independent activity18. The exception to this is the L713F mutation, which 

increases DNA-independent activity18,45,72. In summary, the HD domain acts as an intermediate 

between the PARP-1 DNA-interfacing domains and the ART subdomain.  
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Figure 5. PARP-1 interdomain interfaces. 

A) A view of near full-length PARP-1 (PDB ID: 4DQY45) with red boxes encompassing three 
critical interdomain interfaces. B) A zoomed-in view of the Zn1-Zn3 interface with several key 
residues that were mutated in previous studies45,70,7145,46,52,70,71, shown in stick representation. K97 
was omitted, as it was not part of the crystal structure45. C) A zoomed-in view of the Zn1-WGR-
HD interface with several key residues that were mutated in previous studies45, shown in stick 
representation. D) A zoomed-in view of the HD-WGR-Zn3 interface with several key residues that 
were mutated in previous studies45,47, shown in stick representation. PARP-1 subdomain Zn1 
(green), Zn3 (light green), WGR (black), HD (light orange), and ART (brownish orange) are 
shown in cartoon representation, and DNA is shown in cyan. This figure has been adapted with 
rights and permissions from figures presented in Langelier et al. (2012)45. 
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Figure 6. Critical interfaces within PARP-1’s CAT domain. 

A) The PARP-1 CAT domain (PDB ID: 4R6E Chain A17) with red boxes encompassing two 
critical interfaces between the HD (light orange) and ART (brownish orange) subdomains. Two 
views of the same structure are provided to better show the two interfaces. Niraparib (yellow stick 
representation), an FDA-approved PARPi for treating ovarian cancer4,17, is bound in the crystal 
structure and illustrates the location of the NI site relative to these interfaces. Several key structural 
elements are labeled. B) A zoomed-in view of the interface between the αD helix of the HD and 
the active site loop (ASL) of the ART. Several key residues that were mutated in previous studies18 
are shown in stick representation. C) A zoomed-in view of the interface between the αF helix of 
the HD and the αF helix of the ART. Several key residues that were mutated in previous 
studies18,45,72, shown in stick representation. This figure has been adapted with rights and 
permissions from figures presented in Dawicki-McKenna et al. (2015)18.  
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1.1.2.6 DNA-Unbinding is Regulated by Interdomain Interactions 

PARP-1 allostery has historically been discussed in terms of how binding to DNA 

influences catalytic activity4,17,45, but in recent years the research has shifted to studying how the 

PARP-1 CAT influences DNA unbinding55,73. In this section, I will discuss PARP-1 release from 

DNA and how that mechanism informs the design of novel PARPi. 

Many NAD+ analogs that bind to the catalytic pocket (e.g., the nonhydrolyzable NAD+ 

analog BAD55, Figure 3, p.15) immobilize PARP-1 on DNA, a phenomenon referred to as 

“trapping”5,13,55,74–77. Trapping PARP-1 on DNA prevents DNA-repair proteins from accessing 

sites of DNA damage, stalls and/or collapses replication forks, and results in cell-cycle arrest or 

apoptosis5. The fact that catalytic-site occupancy influences DNA affinity and that different small-

molecule ligands impact trapping to varying degrees55,75,76 suggests that there is some allosteric 

regulation controlling DNA binding55,73. 

The degree to which a small-molecule catalytic-pocket ligand traps PARP-1 on DNA 

appears to be related to its ability to (de)stabilize the HD73. HD destabilization enables allosteric 

communication between the CAT and the DBD, resulting in stronger PARP-1 affinity for DNA 

and PARP-1 trapping73. In contrast, stabilizing the αB and αF helixes of the HD causes allosteric 

communication that weakens affinity and releases PARP-1 from DNA73. Small molecules that 

interact with the HD αF helix, such as the NAD+ analogs BAD and EB-47, tend to destabilize the 

HD and consequently have strong trapping capacity55,73.  

Several published experimental findings support this proposed trapping mechanism. First, 

a double mutant created by substituting alanine for D766 and D770 (two residues on the HD αF 
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helix that contacts EB-47 when EB-47 is bound to the catalytic pocket) prevented EB-47 from 

trapping PARP-173. Second, veliparib, a PARPi that does not form contacts with the HD (Figure 

7A, C and E) has a weaker trapping capacity and weaker toxicity to BRCA-deficient cells than 

does UKTT-15, a veliparib-derived inhibitor that contacts the N-terminal portion of the αF helix 

(Figure 7C-E), despite their similar abilities to inhibit PARylation73. Third, W318R and R591C, 

mutations that disrupt the HD-WGR-Zn3 and Zn1-WGR-HD interfaces, respectively, prevent EB-

47 trapping activity. This suggests that PARP-1 trapping relies on allosteric interdomain 

communication. In fact, the R591C mutation was recently discovered in an ovarian cancer patient 

that had developed a resistance to the PARPi talazoparib73,78. Taken together, these recent findings 

suggest that the trapping capacity of a PARPi is linked to its ability to form stable contacts with 

HD’s αF helix, and that trapping is controlled by allosteric communication via interdomain 

contacts73.  

Based on these results, a recently developed PARPi classification system now groups 

inhibitors into three types73: type I, which promote PARP-1 retention on DNA through allosteric 

regulation, resulting in long DNA-retention times and high toxicity73; type II, which are neither 

pro-retention nor pro-release (i.e., relatively allosterically neutral), resulting in moderate DNA-

retention times and toxicity73; and type III, which promote PARP-1 release through allosteric 

mechanisms, resulting in short DNA-retention times and lower toxicity73.  

As examples, consider the PARPi veliparib and UKTT-15. Veliparib is a type III PARPi 

because it is unable to make contact with the HD (Figure 7C and E) and promotes PARP-1 

dissociation from DNA73. In contrast, UKTT-15 is a type I PARPi because it not only contacts but 

disrupts the HD (Figure 7D and E) and so promotes trapping PARP-1 on DNA73. I will further 
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discuss the drug-discovery implications of trapping in “Chapter 1.1.3: PARP-1 Roles in Cancer 

and Cancer Treatments.” 
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Figure 7. Differences in veliparib and UKTT-15 binding. 

A) The structure of the PARP-1 inhibitor veliparib. B) The structure of the veliparib analog UKTT-
15. C) The structure of the PARP-1 catalytic domain bound to veliparib (cyan) (PDB ID: 2RD6 
Chain A79). The HD is shown in brownish orange, and the ART is shown in pink. D) The structure 
of the PARP-1 catalytic domain bound to UKTT-15 (green) (PDB ID: 6VKO Chain A73). The HD 
is shown in red, and the ART is shown in beige. E) The aligned 6VKO and 2RD6 structures 
illustrate that the shared 1H‐1,3‐benzodiazole‐7‐carboxamide groups of both ligands are bound in 
the same position. Veliparib does not contact the HD, but the extended moieties of UKTT-15 that 
contact the HD αF helix. The αF is displaced to accommodate UKTT-15 binding73. 
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1.1.3 PARP-1 Roles in Cancer and Cancer Treatments 

In this section, I will (1) discuss the statistics and standard treatment for patients with HR-

deficient cancers; (2) describe the mechanisms that make drug inhibition of PARP-1 lethal to HR-

deficient cancers; (3) overview current FDA-approved PARPi; (4) document common PARPi-

resistance mechanisms; and (5) describe the current state of the field, including the shortcomings 

of current pharmaceutical options and how they can be improved. This section will prepare readers 

for “Chapter 3.0: AutoGrow4: Application to Poly (ADP-ribose) Polymerase-1 (PARP-1),” where 

I will describe my efforts to design novel PARPi candidates.  

1.1.3.1 The Prevalence of and Standard-of-Care Management for HR-Deficient Cancers 

Breast, ovarian, prostate, and pancreatic cancers are frequently HR deficient80–83. There 

were over two million new cases of breast cancer in 2018, which resulted in nearly 630,000 

deaths80,84; approximately 30% of all hereditary breast cancers have HR defects due to mutations 

in the BRCA1/2 genes80. Ovarian cancer is also common, affecting 11.8 per 100,000 women in the 

United States in 201485. Approximately half of all epithelial ovarian cancers, which make up 90% 

of ovarian cancers85, have HR defects, with BRCA1/2 defects being the most common81. Prostate 

cancers are also frequently HR-defective82. It is estimated that 5-10% of prostate adenocarcinomas 

have BRCA1/2 defects82. Lastly, one study found that individuals with a BRCA2 mutation were 

nearly 22 times more likely than expected to develop pancreatic cancer, with men at a much higher 
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risk86. Given the high rates of HR-deficient cancers, finding effective treatments with improved 

patient survival rates is crucial. 

There is also a need for improved cancer treatments with fewer side effects, to be used as 

either monotherapies (i.e., stand-alone treatments) or co-treatments alongside other 

chemotherapeutics. Since the 1970s, the primary treatment for patients with HR-deficient cancer 

cells has been a combination of surgical cytoreduction and chemotherapy agents (e.g., platinum-

based cisplatin and the better-tolerated carboplatin, or taxanes such as paclitaxel and 

docetaxel)81,87–92. Platinum-based chemotherapies interfere with cell replication by crosslinking 

purine bases, resulting in cell-cycle arrest and apoptosis or necrosis92. Taxane chemotherapies 

primarily function by blocking microtubule depolymerization, resulting in growth-cycle arrest92,93. 

Although not fully understood, taxanes are thought to be antitumorigenic because they arrest 

actively dividing cells during metaphase92,93. Traditional chemotherapeutics can have severe side 

effects, and outcomes have not improved since the early 2000s81,92,94. Fortunately, drugs capable 

of inhibiting PARP-1 are effective treatments against many types of cancer1–4,12,13,24,95. These 

PARPi tend to be more toxic to HR-deficient cancer cells than to non-cancerous cells and have 

been shown to work well on their own or in combination with other chemotherapeuitics1–4,12,13,24,95. 
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1.1.3.2 HR-Deficient Cells and PARPi Sensitivity 

1.1.3.2.1 HR-Deficient Cells and PARPi Sensitivity: Synthetic Lethality 

The HR pathway has a synthetically lethal relationship with PARP-124,43,95, so HR-

deficient cells tend to be hypersensitive to PARP-1 inhibition28,96. Synthetic lethality is the 

dynamic between two genes or pathways wherein a cell can survive when one or either component 

is deficient, but not when both are deficient30. It arises when there are functional redundancies in 

vital cellular processes, such that one mechanism can compensate for the other’s defects97. DNA-

damage repair is one such cellular process that is handled by multiple pathways with overlapping 

roles. For instance, both NHEJ and HR are responsible for repairing DSB24,25,29. Repair of DSB is 

particularly important in actively replicating cells such as tumor cells because an unrepaired break 

can result in daughter cells that do not receive required genes11. Despite losing an important DSB 

repair pathway, HR-deficient cancer cells remain viable by exploiting the complementary 

functions of non-HR repair pathways30. They are far more reliant on non-HR DNA repair pathways 

such as BER and NHEJ than are normal cells30.  

A synthetic-lethal pharmaceutical approach relies on the premise that by inhibiting the 

“right” protein target from the non-HR DNA repair pathway, one can find an effective drug 

treatment that is non-lethal to HR-proficient cells but lethal to HR-deficient cells30,43,95. Since the 

late 1980s, PARP-1 has been one such target of interest95. PARP-1 inhibition is the first successful 

example of a synthetic-lethal approach in pharmaceutical treatment43. 
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PARP-1, which can recruit BER5 and alt-NHEJ25, is often upregulated in PARPi-sensitive 

HR-deficient cancer cells28,96. In contrast, wildtype (HR-proficient) cells are PARPi insensitive 

due to their ability to repair DNA damage with high-fidelity HR24,98. A similar effect has been 

observed in BER-deficient cells treated with PARPi5. PARP-1 plays well-documented roles in 

multiple DNA repair pathways (“Chapter 1.1.1: DNA Damage Repair in Humans”). For these 

reasons, PARP-1 inhibition is an excellent strategy for treating multiple forms of cancer1–4. 

1.1.3.2.2 HR-Deficient Cells and PARPi Sensitivity: Catalytic Inhibition and Trapping 

Although all current FDA-approved PARPi bind to the catalytic pocket and act as 

competitive inhibitors of NAD+73, the synthetic lethality of PARPi in HR-deficient cells cannot 

be explained solely by competitive inhibition77. For example, cellular sensitivity to PARPi 

decreases when PARP-1 expression is reduced via siRNA knockdown77. PARPi toxicity in HR-

deficient cells appears to result from both PARylation inhibition and PARP-1 trapping on the 

DNA73,99,100. As discussed in “Chapter 1.1.2.6: DNA-Unbinding is Regulated by Interdomain 

Interactions,” trapping PARP-1 on DNA can cause stalling and/or collapse replication forks, 

resulting in cell-cycle arrest or apoptosis5.  

1.1.3.3 The Four FDA-Approved PARP-1 Inhibitors (PARPi)  

Currently there are four FDA-approved PARPi (olaparib, rucaparib, niraparib, and 

talazoparib) for treating HR-deficient cancers1–4,12,13,24,95 (Figure 8), and several more are in 

varying stages of clinical trials1–4. Olaparib was the first FDA-approved PARPi2 and has been used 
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as both a monotherapy and co-treatment with additional chemotherapeutics2,101,102. Olaparib was 

first approved in 2014 for treating ovarian cancer with BRCA1/2 mutations2, but it is now approved 

to treat certain HR-defective types of breast103, prostate104, and pancreatic105 cancers as well. 

Although some PARPi have been approved as standalone cancer treatments, they are commonly 

paired with other treatments such as DNA-damaging chemotherapy or radiation12,13,95. 

Many PARPi share structural similarities with nicotinamide95 (Figure 8) and form similar 

protein-ligand interactions when bound to PARP-117–19,106–112. For instance, many PARPi, 

including the NAD+ analog BAD and the PARPi niraparib (Figure 3 p.15), form π-π stacking 

interactions with PARP-1’s Y90717–19,106–112. These shared features raise concerns about PARPi 

resistance and the future of orthosteric (i.e., non-allosteric) PARP-1 inhibition. These concerns are 

revisited in “Chapter 3.0: AutoGrow4: Application to Poly (ADP-ribose) Polymerase-1 (PARP-

1).”  
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Figure 8. The four FDA approved PARPi. 

The chemical structure of each FDA-approved PARPi is shown with the generic name, the 
company that developed it, and the year the FDA approved its use. Nicotinamide, a moiety of the 
endogenous ligand NAD+, is shown in the center to illustrate the chemical similarities between 
the PARPi and the endogenous ligand.  
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1.1.3.4 PARPi Resistance Mechanisms 

PARP-1 is implicated in multiple complex biological pathways, which means there are also 

many possible resistance mechanisms to the four FDA-approved PARPi. In this discussion I will 

focus on resistance mechanisms known to affect HR-defective cells, separated into five categories: 

(1) HR reversion/increased HR capacity; (2) altered NHEJ capacity; (3) corrected replication 

forks; (4) decreased intracellular PARPi; and (5) modified PARP-1 expression, activity, allosteric 

regulation, PARylation, and/or PARPi binding. 

1.1.3.4.1 PARPi Resistance Mechanisms: HR Reversion and Increased HR Capacity 

Many proposed and clinically observed PARPi resistance mechanisms involve increased 

HR capacity30,113. HR-deficient cells tend to be more sensitive to PARPi than HR-proficient cells, 

largely because they rely more on non-HR DNA repair30,113. Consequently, partial or complete 

restoration of HR capacity results in PARPi resistance30,113. This section will discuss three 

mechanisms that increase HR capacity: (1) restoring HR-proficiency through secondary reversion 

mutation; (2) increasing HR protein availability; and (3) altering regulators of HR repair. 

Because an HR defect can result in PARPi sensitivity, secondary mutations that restore HR 

proficiency reduce PARPi sensitivity113. HR-deficiencies are frequently caused by the disruption 

of the BRCA1/2 genes80,81, with the most common disruptions being single-nucleotide mutations, 

short insertions, and deletions that result in frameshifts113. Secondary reversion mutations that 

restore BRCA functionality have been clinically observed to desensitize previously BRCA-
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deficient cells to PARPi30,113,114. The restoration of these genes speaks to the selective pressure 

that PARPi exhibit on tumors113. Unfortunately for patients and physicians, secondary BRCA1/2 

restoration mutations are not only associated with PARPi desensitization, but also with resistance 

to platinum-based chemotherapies115. Treatment with taxanes may remain an option in such 

circumstances because BRCAness (i.e., the phenotype of having deregulated HR, typically due to 

dysfunctional BRCA1/2 and/or BCRA-associating proteins113,116) tends to negatively impact 

treatment with taxanes117.  

Increasing the availability of HR proteins such as BRCA1/2 can also desensitize cells to 

PARPi30,118–120. For instance, a decrease in miR182, an microRNA that negatively regulates 

BRCA1 expression, results in higher levels of BRCA1 expression and consequently PARPi 

desensitization30,119,120. Additionally, PARP-1 negatively regulates BRCA2 expression by binding 

to the silencer-binding region of the brca2-promoter30,118. Inactivation and trapping of PARP-1 by 

PARPi could lead to increased expression of BRCA2, resulting in decreased PARPi 

sensitivity30,118. Overexpression of RAD51, a recombinase and important HR protein, is also a 

mechanism for PARPi resistance30,121,122. RAD51 is frequently overexpressed in BRCA1-deficient 

tumors and is associated with partially restored HR repair30,121–124. RAD51 overexpression has 

been observed in rucaparib-resistant high-grade ovarian carcinoma and colon carcinoma cells that 

were resistant to cotreatments of PARPi and temozolomide, an alkylating 

chemotherapeutic30,121,122. There are multiple ways RAD51 levels can be upregulated, including 

the downregulation miR-9630,125 and Aurura-130,126, which lower RAD51 expression30,125,126, and 

the upregulation of tumor suppressor phosphatase and tensin homolog (PTEN)12,30,127,128. 
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Lastly, HR capacity can be increased by altering the proteins that regulate HR repair, such 

as ataxia telangiectasia mutated (ATM) and 53BP130,113,123,129,130. The kinase ATM, upon sensing 

DNA damage, triggers a kinase cascade that results in HR repair123,129; 53BP1, along with BRCA1, 

modulates the use of HR and NHEJ repair. The loss of BRCA1 results in decreased HR repair and 

increased NHEJ repair, whereas loss of 53BP1 results in increased HR repair, particularly ATM-

dependent HR repair, and decreased NHEJ repair30,113,123,129. Therefore, either an increase in ATM 

or a decrease in 53BP1 could provide PARPi resistance30,123,129. ATM inhibition paired with 

PARPi may therefore circumvent some PARPi resistance mechanisms130.  

1.1.3.4.2 PARPi Resistance Mechanisms: Altered NHEJ Capacity 

Changes to an HR-defective cell’s NHEJ capacity can also result in PARPi 

resistance24,29,30,113. As previously described, NHEJ repair is regulated by 53BP1 and BRCA1, and 

alterations to these proteins can impact NHEJ and HR capacities30,113,123,129. Additionally, 

modifications to the expression or function of NHEJ proteins such as DNA-PK and Ku proteins 

can alter NHEJ capacity and consequently the cell’s sensitivity to PARPi24,30,113.  

Both the downregulation and upregulation of NHEJ drive chromosomal instability and may 

result in PARPi resistance29,30. Downregulation of c-NHEJ proteins diminish PARPi toxicity in 

HR-deficient cells29,30. However, NHEJ is error-prone and increases the opportunity for 

mutations29,30. The increased mutation rate in HR-deficient NHEJ-upregulated cells may further 

promote the acquisition of PARPi-resistance-causing mutations119,131. 
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1.1.3.4.3 PARPi Resistance Mechanisms: Corrected Replication Forks 

PARPi toxicity to HR-defective cells results in part from the tendency of DNA-bound 

PARP-1 to stall replication forks5. BRCA1/2 proteins are involved in DNA-strand protection at 

stalled forks14, so BRCA-deficient cells are sensitive to fork collapse and nascent-strand 

shortening113,132,133. Consequently, proteins that stabilize the replication fork can contribute to 

PARPi resistance133. For example, nucleosome remodeling factor CHD4 was found to be 

expressed at lower levels in chemotherapy-resistant BRCA2-mutant cancer cells, even though 

those cells remain deficient in RAD51-dependent HR repair133. Reduction of CHD4 in BRCA2-

deficient cells resulted in protected nascent replication tracts and PARPi resistance133,134. 

1.1.3.4.4 PARPi Resistance Mechanisms: Decreased Intracellular PARPi 

Lowering the concentration of intracellular PARPi can also lessen the effects of PARPi 

treatment. Intracellular PARPi concentrations are regulated by the ATP-binding cassette (ABC) 

drug efflux transporters p-glycoproteins30,113,135–138. The impact of intracellular PARPi on PARPi 

sensitivity is suggested by the findings that reduced p-glycoprotein levels increased PARPi 

sensitivity in BRCA1-deficient mouse models135,136. Additionally, p-glycoprotein inhibition re-

sensitized BRCA-deficient PARPi-resistant cells to PARPi135,137. Further evaluation of this 

resistance mechanism is necessary because it has mostly been explored only in animal and cell 

models30,113,135–138. 
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1.1.3.4.5 PARPi Resistance Mechanisms: Altered PARP-1 Capacity 

PARPi cytotoxicity in HR-deficient cells is caused by PARP-1 inhibition at the catalytic 

active site and trapping of PARP-1 on DNA73,99,100. Alterations to either of these processes, as well 

as to the function and levels of PARP-1 expression, change a cell’s sensitivity to PARPi.  

PARP-1 expression levels and catalytic activity correlate with PARPi sensitivity. For 

example, PARPi- and temozolomide-resistant clones of colorectal-carcinoma HCT116 cells have 

markedly low levels of PARP-1 expression30,121. Cancer cells with decreased PARylation activity 

but normal PARP-1 expression levels also tend to be more resistant to PARPi30,139. Additionally, 

HR-deficient cells with higher levels of PARylation tend to be more sensitive to PARPi30,140. 

Alterations to the PARPi binding site can also confer PARPi resistance. The proto-

oncogene receptor tyrosine kinase c-Met, which is commonly overexpressed in many forms of 

cancer, alters the PARP-1 catalytic site by phosphorylating Y907 and thereby reducing PARPi 

binding141,142. As described in “Section 1.1.2.3: PARP-1 Catabolizes NAD+ to Perform ADP-

Ribosylation,” Y907 forms π-π stacking interactions with NAD+ and with PARPi142. 

Phosphorylated Y907 (pY907) has increased catalytic activity and weakened binding affinity to 

multiple PARPi142. Because c-Met can reduce PARPi binding, upregulation of c-Met can therefore 

confer PARPi resistance142. pY907 has been confirmed to cause resistance to veliparib, olaparib, 

and rucaparib142. Because all four of the FDA-approved PARPi bind to the same site17, this 

resistance mechanism likely confers resistance to most competitive inhibitors of the PARP-1 

catalytic site. This PARPi resistance mechanism is explored further in “Chapter 3.0: AutoGrow4: 

Application to Poly (ADP-ribose) Polymerase-1 (PARP-1).”  
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Mutations that disrupt the allosteric communications mediated by interdomain interfaces 

which control DNA trapping and PARP-1 catalytic activity (discussed in “Chapter 1.1.2.5: PARP-

1 Catalytic Activation is Modulated by Interdomain Interactions” and “Chapter 1.1.2.6: DNA-

Unbinding is Regulated by Interdomain Interactions”) can provide additional routes for altered 

PARPi resistance. For instance, a R591C mutation at the Zn1-WGR-HD interface was found in an 

talazoparib-resistant ovarian tumor and significantly reduces PARP-1 trapping73,78. Many more 

human-engineered mutations also alter PARP-1 activity, PARPi inhibition, and/or PARPi trapping 

(“Chapter 1.1.2.5: PARP-1 Catalytic Activation is Modulated by Interdomain Interactions” and 

“Chapter 1.1.2.6: DNA-Unbinding is Regulated by Interdomain Interactions.”) Although to date 

many of these have only been documented in lab-generated settings, these mutations still pose 

potential PARPi resistance mechanisms. 

Lastly, the loss of PAR glycohydrase (PARG) activity, which degrades PAR chains, is 

associated with PARPi resistance113,143. This resistance mechanism, discovered in a screen of 

BRCA2-deficient mouse cells, results in increased PARylation, thereby partially rescuing PARP-

1-dependent DNA-damage singling113143. Knockdown of PARG by shRNAs in human BRCA1-

mutated cancer cells (SUM149PT) and BRCA2-deficient cancer cells (DLD-1) caused olaparib 

resistance143. The same study also found low-level PARG expression among a subset of human 

triple-negative breast tumors and serous ovarian carcinomas143. Co-treatment of a PARG inhibitor 

and a PARPi may circumvent this resistance mechanism.  
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1.1.4 The Current State of the Field: PARP-1 and Pharmaceutical Intervention 

In this section, I will summarize the current state of PARPi pharmacology, including 

several limitations of current PARPi. These limitations motivated the research described in this 

dissertation. Over the past decade, four PARPi have been FDA approved1–4. Many studies have 

provided insight into PARP-1 dynamics and the underlying mechanisms of PARP-1 

inhibition16,46,48,55,70,73–75,144, and have identified common resistance mechanisms12,30,113,115,135,142.  

As discussed in “Chapter 1.1.3.4: PARPi Resistance Mechanism,” all FDA-approved 

PARPi bind to PARP-1’s same catalytic pocket in very similar manners. Consequently, many 

PARPi resistance mechanisms likely confer resistance to all current PARPi. There is thus a need 

for new PARPi that are not susceptible to the same resistance mechanisms. 

Current PARPi function as both orthosteric inhibitors of catalytic function and allosteric 

inhibitors that trap PARP-1 on DNA. Ideal novel PARPi would also inhibit one or more PARP-1 

functions. I propose that the next generation of PARPi should target both the catalytic site and the 

important interdomain interfaces that limit PARP-1 release from DNA and/or prevent DNA-

dependent catalytic activation. Developing an array of PARPi that can target multiple PARP-1 

sites and functions could circumvent many forms of PARPi resistance. Of course, expanding the 

PARPi options will not address certain PARPi resistance mechanisms such as secondary BCRA1/2 

mutations that resurrect HR function, or resistance mechanisms that limit PARP-1 expression. 

However, new PARPi that do not rely on the same binding interactions as current inhibitors may 

overcome resistance mechanisms caused by PARP-1 post-translation modifications or mutations. 
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This dissertation details my efforts to predict novel PARPi using computational techniques, 

particularly techniques that do not rely on preexisting small-molecule libraries. These techniques 

allowed me to survey many more compounds than would have been feasible ex silico. The 

following section, “Chapter 1.2: Computational Methodology,” will detail the computational and 

cheminformatic background and rationale for the design of this dissertation project. 

1.2 Computational Methodology 

This dissertation describes the computational techniques I used to design and assess novel 

candidate PARP-1 inhibitors. One technique central to this dissertation is AutoGrow4, a genetic 

algorithm (GA) for de novo drug design. I used AutoGrow4 to identify candidate PARP-1 

inhibitors, but it can be applied to virtually any protein target. 

This section will review the computational concepts relevant to AutoGrow4. Since 

AutoGrow4 is a GA for de novo drug design, I will discuss optimization using GA and relevant 

strategies. I will also review the field of computer-aided drug design (CADD), compare de novo 

and virtual screening (VS) techniques, and discuss chemical drug-likeness filters. AutoGrow4 

assesses compound fitness primarily by docking small molecules into a protein target, so I will 

also discuss protein-ligand docking. Lastly, I will compare AutoGrow4 to other de novo CADD 

programs and will discuss the limitations that motivated me to develop AutoGrow4. 
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1.2.1 Genetic Algorithms (GA) 

I will begin with a thorough overview of the theory behind and rationale for using GA. 

This section will first discuss how GAs work conceptually, including the underlying concept of 

“search space.” I will then explain how GAs problem solve (i.e., how they produce new solutions 

for a given problem), how GAs assess the quality of those solutions, and how GAs select solutions 

to be further tested. I will end by discussing the technique’s limitations and the conditions most 

appropriate for implementing a GA. 

1.2.1.1 Search Space and the Fundamentals of Genetic Algorithms (GA) 

GA are stochastic problem-solving strategies that navigate “search space” by iteratively 

evolving populations of new solutions145,146. “Search space” in this context means the set of all 

possible solutions to a given problem146. In multimodal problems, there are often multiple “good” 

solutions with varying levels of “goodness” or “fitness.” There may or may not be a true global 

optimum, but there are multiple local optima147. Indeed, the number of all potential solutions may 

be enormous146,147. For instance, the search space of all synthesizable drug-like molecules includes 

1020 to 1023 possible solutions148–150. In such cases, testing all possible solutions is impractical or 

impossible.  

GA excel in these scenarios because they balance computational costs with thoroughness 

of search and so can generate multiple “fit” answers to a problem145,146. They comprise a class of 

evolutionary algorithms that attempt to mimic Darwinian evolution by successively evolving 
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populations of solutions (referred to as generations)145,146,151. Traits of the most “fit” parent 

solutions are combined or altered to generate new child solutions145–147,151. These new solutions 

are then evaluated to determine their “fitness.”145–147,151 Selective pressure is applied by selecting 

fit solutions to parent the next generation145–147,151. Randomness is incorporated in several ways, 

such as through seed-population and trait selection145–147,151. This randomness means that the 

predicted solutions may differ each time the algorithm is run, which is why GA are considered 

stochastic. 

1.2.1.2 Populating a Generation of Solutions 

GAs create new generations of solutions by either advancing fit solutions from the previous 

generation or evolving new solutions from those of the previous generation145–147,151. AutoGrow4 

“solutions” are small molecules that dock into a protein pocket. Operators are the functions that 

alter, merge, or advance solutions from one generation to the next145–147,151. The three most 

common operators are crossover, mutation, and elitism145,146,151. Crossovers merge traits of two 

parent solutions145,146, mutations make small alterations to a single parent compound145,146, and 

elitism advances a solution from a previous generation without alteration145,146. I describe these 

operators in the context of AutoGrow4 in “Section 2.2.2: Operators: Population Generation via 

Crossover, Mutation, and Elitism” (Figure 9, p.74). 
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1.2.1.3 Fitness 

All GA require a metric with which to judge the quality of solutions145–147,151. This is 

referred to as a fitness metric and is determined by a fitness function145–147,151. In the case of 

AutoGrow4, the primary fitness metric is the predicted binding affinity that is calculated by a 

docking program. Offspring are created from well-scoring solutions to create a new generation of 

solutions145–147,151.  

The dynamics of how populations of solutions evolve can be viewed in terms of adaptive 

landscapes152–154. This concept was introduced by Sewall Wright in the 1930s as a way to describe 

the relationship between genotype and fitness as related to natural selection152,153. In his 1982 

article, “The Shifting Balance Theory and Macroevolution,”154 Wright describes population shifts 

from one adaptive peak (i.e., optima) to another as a three-step process: (1) “stochastic variability” 

(i.e., random genetic alteration or mutations) causes subpopulations to explore the adaptive 

landscape, which results in the genetic drift of a portion of the population154; (2) natural selection 

pressures subpopulations that exist between adaptive peaks to migrate through genotypic space 

towards a peak154; and (3) populations at the most advantageous peak(s) proliferate and mate with 

other subpopulations to confer advantageous traits to other portions of the population154. Wright’s 

view of adaptive peaks separated by barriers transcends evolutionary biology and is a cornerstone 

of evolutionary algorithms that attempt to mimic Darwinian evolution145,146,151,152. 

In GA, solutions that have reached advantageous peaks (i.e., achieved high scores) 

proliferate at higher rates than other solutions and so can become overrepresented, resulting in a 

homogenized population151. Taken to an extreme, this loss of diversity within the solution pool, 
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referred to as convergence, is a sign that a local optima has been reached and that new solutions 

are not likely to be created from the current population151. Delaying convergence allows for more 

solution space to be explored, which may lead to the discovery of even better solutions151. To delay 

homogenization, AutoGrow4 provides a secondary fitness function that selects for chemically 

unique compounds. The details of both the primary and secondary fitness functions are discussed 

in “Section 2.2.7: Assessing Fitness.” AutoGrow4 also provides multiple options for reassessing 

binding properties, which are detailed in “Section 2.2.7: Assessing Fitness.”  

1.2.1.4 Ranking and Selection Approaches 

A core feature of GA is the application of a selective pressure to guide the fitness of 

successive generations, traditionally by selecting solutions that are able to spawn new solutions 

and/or solutions that advance via elitism151. Broadly speaking, three of the most commonly used 

strategies for selection in GA are Ranking selector, Roulette selector, and Tournament selector151. 

A Ranking selector grades solutions from best to worst and selects the best solutions. This 

is an effective way to find local optima, but it often yields inbred populations comprised of highly 

similar compounds151. In extreme cases, population homogenization can cause convergence 

wherein the algorithm perpetually recreates similar compounds without substantial fitness 

improvement. 

A Roulette selector assigns each solution to an area on a metaphoric roulette wheel, with 

the size of each area weighted by fitness, and so incorporates randomness into each generation. 

This ideally minimizes the GA’s chance of becoming trapped in local optima151. However, this 
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method also provides an opportunity for all potential solutions to advance, including the most 

unfit ones151. 

Lastly, a Tournament selector randomly chooses a subpopulation of candidates from a 

generation and selects the fittest from that subpopulation151, thereby incorporating more 

randomness than a Ranking selector while mitigating the risk of selecting unfit solutions151. 

A user’s choice of strategy depends on the goals and resources of the project. For instance, 

someone aiming to find a good local optimum with little computational overhead would benefit 

from using a deterministic approach with a Ranking selector. Alternatively, if the user’s goal is to 

explore a wider range of search space and test the greatest possible diversity of solutions, a 

stochastic selection strategy that provides randomness is recommended. It is incumbent on users 

to choose the selection strategy most applicable to their studies.  

1.2.1.5 Limitations of Genetic Algorithms (GA) 

GA are most applicable when a search space is so large that it would be impractical to 

brute-force test all possible solutions, and finding the global optima is not essential145. The set of 

all possible drug-like small molecules is one such search space; it includes 1020 to 1023 

compounds148–150, an untestable number of compounds by any means. Because GA operate with 

limited prior knowledge of solution space, they are more efficient than brute-force testing in large 

search spaces145. Conversely, GA are often less efficient than more direct methods in small search 

spaces, or when prior knowledge can be used to intelligently limit the search space145.  
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While some selection approaches can postpone convergence, GA still suffer from local 

optima “trapping,”145,151 which leads to population homogenization as a few solutions begin to 

dominate145 (discussed in “Section 1.2.1.3: Fitness”). This concern is further discussed in “Section 

3.3.1.3: A Caution Regarding Homogeneity and Convergence” 

The stochastic nature of GA means that repeated independent runs can produce different 

results145. This is conducive to a wide search of solution space, but it also raises concerns about 

reproducibility and parameter optimization. A user may have difficulty distinguishing whether 

random chance or a specific parameter is primarily responsible for a given result. 

1.2.2 Computer-Aided Drug Design (CADD) 

AutoGrow is a GA program for computer-aided drug design (CADD)155,156. CADD 

programs are now key components in many pharmaceutical pipelines. 

CADD leverages computing power and automation to perform in silico experiments at scales that 

would be too costly to perform ex silico148–150,155,156. Although an exhaustive search of chemistry 

space remains impractical, thoughtful use of CADD can narrow candidates to a testable subset. 

Though it cannot replace the intuition of trained chemists and biologists, CADD has been 

successfully applied to drug discovery, lead optimization, and compound synthesis155–158. 

This section will begin by defining several categories of CADD. I will then provide a 

comparison of de novo CADD programs. Lastly, I will describe useful properties and filters for 

intelligently designing better drug candidates. 
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1.2.2.1 Categories of CADD Techniques 

The two most prominent CADD techniques are structure-based drug design (SBDD) and 

ligand-based drug design (LBDD)157,159. SBDD finds ligands that bind to the pocket of a known 

biological structure, and LBDD discovers new ligands based on the physiochemical properties of 

known ligands157,159. SBDD programs can be further separated into two main techniques: virtual 

screening (VS), which evaluates compounds from an in silico database, and de novo design, which 

generates novel compounds in silico155–157,160.  

1.2.2.2 De novo and VS CADD 

De novo CADD techniques include lead generation and lead optimization. Lead generation 

identifies novel predicted ligands, and lead optimization refines existing candidate compounds to 

improve specific properties such as binding affinity or solubility95,155,161. 

Neither de novo CADD nor VS can search all possible small molecules; however, whereas 

VS is limited to searching pre-enumerated databases of compounds162, de novo CADD often relies 

on stochastic algorithms such as GA and therefore can explore a wider range of possible 

solutions155–157,160. Additionally, VS databases may contain compounds that are subject to 

intellectual property restrictions162. Compounds identified through de novo techniques are more 

likely to avoid such issues because these techniques search a less restricted space. 

Of course, de novo CADD also has its limitations. Because VS libraries are often 

comprised of readily available compounds, ex silico testing of candidates can begin with minimal 
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delay. In contrast, lead compounds discovered by de novo techniques require synthesis before ex 

silico testing can begin. 

1.2.3 Chemical Properties for Selecting Drug-Like Compounds 

In this section, I discuss important properties that are associated with drug-like compounds 

(i.e., compounds that are similar to clinically successful drugs163). Analyses of existing drugs have 

identified many properties that are typical of a “good drug.” Cheminformatic programs can 

reproducibly predict physiochemical properties164–166, which can be used to select compounds with 

desirable features6,156,162,167. Maximizing the drug-likeness among candidate drugs, whether by 

lead optimization to improve favorable traits or filtering to remove compounds with unfavorable 

traits, can prevent the needless testing of non-drug-like candidates and improve the chance of 

CADD success6,156,168–174. 

1.2.3.1 Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-

PK)  

To predict future drugs, one must consider not only measurements such as binding affinity 

and IC50, but also absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-

PK)175. For instance, even the most potent compound cannot serve a drug if it cannot be delivered 

to its target location in the body176. An inhibitor intended to treat brain cancer will not be effective 

if it cannot enter the blood stream and cross the blood-brain barrier169. Additionally, the liver, 
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spleen, and kidney may modify, degrade, or filter drugs177. When designing a drug, one must 

carefully consider drug metabolism, drug excretion, and drug toxicity175.  

AutoGrow4 provides the option to filter its generated compounds by ADME-PK 

properties. The filters included in AutoGrow4 (version 4.0.0) are described in the following 

section.  

1.2.3.2 Chemical Drug-Likeness Filters 

Chemistry space, the set of all possible compounds178, is so vast that even computational 

methods cannot explore it entirely148–150,178. Because much of chemistry space includes compounds 

that are not likely to become clinical (i.e., viable) drugs due to their physiochemical properties148–

150,178–180, CADD aims to prioritize viable candidate compounds for further experimental 

evaluation. One way that CADD does this is by filtering each candidate according to its drug-

likeness, or similarity to known drugs163.  

Properties associated with drug-likeness include small-molecule solubility, biological 

reactivity, and similarity to common metabolites163,168–174. Filters can be used to select compounds 

for/against such predicted physical and chemical properties163,168–174. When applied before more 

costly steps in drug development, filters can save time and money by removing leads with 

problematic properties. I here discuss the nine chemical filters that are predefined in AutoGrow4 

(Table 1): Lipinski, Lipinski*, Ghose, Ghose*, VandeWaterbeemd, Mozziconacci, BRENK, NIH, 

and PAINS. 
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AutoGrow’s Lipinski filters (Lipinski, Lipinski*) are based on Lipinski’s rule of fives for 

drug-likeness, which was published in 1997 and has become a standard in cheminformatics163. 

Lipinski’s rule of fives states that for a molecule to be orally bioavailable and drug-like, its 

predicted octanol–water partition coefficient (logP), hydrogen-bond donor count, hydrogen-bond 

acceptor count, and molecular weight (MW) should fall within a specific range (Table 1)163. 

However, as Lipinski discussed, there are outliers that violate these chemical standards but are still 

successful clinical drugs163. Additionally, Lipinski recognized that his filter does not allow for one 

ideal property to salvage a bad property163. Both of these concerns are illustrated by the antibiotic 

azithromycin163. Azithromycin has excellent aqueous solubility and oral activity, but a high MW 

and poor permeability163. According to Lipinski’s rule, the latter factors should disqualify it from 

drug-likeness, despite its actual efficacy163. Lipinski’s original implementation partially addressed 

these concerns by allowing one violation before rejecting the compound163. AutoGrow3 and 

AutoGrow4 therefore provide two options for Lipinski filtering: “Lipinski,” which allows a ligand 

to fail a single property and still pass, and “Lipinski*,” which requires a molecule to pass all 

property restrictions (Table 1).  

The Ghose filter, another established standard in cheminformatics, applies a similar set of 

physiochemical property rules163,168. Specifically, it requires that a compound’s logP, MW, and 

molar refractivity conform to a restricted range (see Table 1)168. AutoGrow4 provides two Ghose 

filter options: “Ghose,” which follows all of the rules of Ghose, and “Ghose*,” a modified version 

that relaxes the upper limit of MW from 480 Da to 500 Da (Table 1). The modified Ghose* filter 

was designed to match the Ghose filter settings156 used in AutoGrow3 (version 3.1.3). 
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AutoGrow4’s five new predefined filters take advantage of recent studies that have found 

new properties that can predict drug-likeness, bioactivity, and permeability. The 

VandeWaterbeemd filter uses MW and polar surface area169 to screen for drugs capable of crossing 

the blood-brain barrier (Table 1). The Mozziconacci filter is a drug-likeness filter that tests 

molecules for their number of rotatable bonds, rings, oxygen atoms, and halogen atoms170 (Table 

1). 

Not all chemical filters test physiochemical properties. Structure/substructure-based 

approaches identify compounds with desirable or undesirable functional groups. RDKit165, a 

Python library for cheminformatics, provides three such substructure filters, which have been 

incorporated into AutoGrow4: BRENK, NIH, and PAINS (Table 1). The BRENK filter is a lead-

likeness filter that screens against undesirable functional groups based on 105 fragments identified 

as common false-positive drugs171. The NIH filter screens against compounds containing a set of 

undesirable functional groups172,173. Finally, the PAINS filter screens against compounds 

containing a set of substructures that are known to react with many biological targets and to yield 

false positives and off-target effects174. 
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Table 1. Chemical filters. 
Nine molecular filters that are predefined in AutoGrow4. Lipinski is the traditional interpretation 
of Lipinski’s filter, which allows for one violation. Lipinski* is a stricter version of Lipinski’s 
filter that does not allow for any violations. Ghose* is a more lenient version of Ghose that has a 
relaxed molecular-weight range (up to 500 Da). HD, hydrogen-bond donor; HA, hydrogen-bond 
acceptor; MW, molecular weight (Da); MR, molar refractivity (m3mol-1); Atoms, atom count; 
RotB, rotatable bonds; R, rings; N, O, and X, nitrogen, oxygen, and halogen atoms, respectively; 
PSA, polar surface area (A2); and Sub, substructure searching. This table is taken from the 
AutoGrow4 manuscript, which has been published in the Journal of Cheminformatics. It is 
reprinted with rights and permissions under the Creative Commons Attribution 4.0 International 
License which “allows unrestricted use, distribution, and reproduction in any medium.”6 

 
Name logP HD; HA MW MR Atoms RotB R N; O; X PSA Sub 

Lipinski 163 ≤5.0 ≤5; ≤10 ≤500 
       

Lipinski*156 ≤5.0 ≤5; ≤10 ≤500 
       

Ghose168 -0.4-5.6 
 

160-480 40-130 20-70 
     

Ghose*156 -0.4-5.6 
 

160-500 40-130 20-70 
     

VandeWaterbeemd169 
  

<450 
     

<90 
 

Mozziconacci170 
     

≤15 ≤6 ≥1; ≥1; ≤7 
  

BRENK171 
         

+ 

NIH172,173 
         

+ 

PAINS174 
         

+ 
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1.2.4 Protein-Ligand Interactions and Protein-Ligand Docking 

Protein-ligand docking is a popular computational technique for predicting a small 

molecule's binding geometry (“pose”, i.e., position/orientation) and binding strength (“score”) 

relative to a protein target155,156,181–185. Docking is particularly popular for early-stage drug design 

because it provides information about protein-ligand interactions, and a single docking run requires 

minimal computational resources155,156,181–185. I list several prominent docking programs in Table 

2. 

Because AutoGrow4 relies on protein-ligand docking to assess the compound fitness, this 

section begins with a discussion of protein-ligand docking, including theoretical models of small-

molecules/protein binding. I then detail two core processes common to many protein-ligand 

docking programs: conformational sampling and scoring the protein-ligand binding pose (i.e., 

position/orientation). 
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Table 2. Features of several prominent docking programs. 
FOSS stands for “free and open-source software”; FAU stands for “free for academic use”; 
“Flexible-rigid” indicates that the docking software treats the ligand as flexible and the receptor as 
rigid; “Flexible-flexible” indicates that the docking software treats the ligand as flexible and treats 
the receptor as flexible to some degree. Conformational-sampling approaches are described in 
“Section 1.2.4.2: Conformational Sampling,” and the scoring functions are described in “Section 
1.2.4.3: Docking Scoring Functions.” 
 

Software Availability Flexibility 
(Ligand-Protein)  

Conformational 
Sampling 

Scoring Function 

AutoDock 
Vina185 

FOSS185 Flexible-rigid185,186 Stochastic186 Semi-empirical186 

DOCK6187 FOSS187 Flexible-flexible186 Systematic161,186 Force-field186 
Glide188,189 Commercial Flexible-flexible186 Systematic161,186,190 Semi-

empirical186/Empirical161,190 
GOLD191,192 Commercial Flexible-flexible186 Stochastic161,186 Semi-empirical186/Force-

field161 
PLANTS193–195 FAU196 Flexible-

flexible186,193 
Stochastic161,190,196 Empirical161,195 

FlexX197 Commercial Flexible-rigid186 Systematic161,186,190 Semi-empirical186 
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1.2.4.1 Models of Protein-Ligand Binding 

Models of protein-ligand binding directly inform rational drug design and computational 

chemistry. Our understanding of protein dynamics and protein-ligand interactions has evolved 

since Emil Fischer proposed his “lock-and-key” model of protein-ligand binding more than 125 

years ago. Fischer’s model postulates that ligands fit into protein binding sites the way a key fits 

into a static lock190,198. His “lock-and-key” model was later replaced by the “induced fit” model, 

which states that a protein undergoes a conformational change as a result of binding to a 

ligand190,199,200. 

Recent theories challenge the induced fit model and treat proteins and ligands as dynamic 

entities that can assume an ensemble of conformations190,199,201. These conformations can be 

organized by their potential energies into an energy landscape, with wells representing 

energetically stable conformational states that are separated from inter-state conversion by energy 

barriers190,199,202,203. From this “energy landscape” view emerged the “conformational selection” 

paradigm, which suggests that among the many conformational states there are a select few that 

favor ligand binding and that, conversely, are stabilized by binding190,199,204.  

Now, evidence suggests that protein-ligand dynamics exist as a combination of induced fit 

and conformational selection190,199. Modern models such as Csermely’s “extended conformational 

selection” model consider energy landscapes, induced fit, and conformational selection, embracing 

a dynamic back-and-forth between selection and adjustment190,199. 
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1.2.4.2 Conformational Sampling 

Docking programs sample ligand conformations within a protein pocket and score the 

quality of each pose190, often by predicting protein-ligand binding affinity185,205. As discussed in 

“Chapter 1.2.3.2: Chemical Drug-Likeness Filters,” there are many properties that make for an 

ideal drug candidate155,156,181–185,163,168–174, but it is common practice in the early stages of lead 

discovery to select candidate compounds based on their predicted binding affinities155,156,181–185. 

Accurate predictions of protein-ligand binding save time by reducing the number of ex silico 

(validation) experiments needed. To estimate binding affinity, docking algorithms consider protein 

and ligand conformational states. The first docking algorithms were developed in the early 1980s 

and treated both protein and ligand as inflexible (rigid)190,204. These methods relied heavily on the 

“lock-and-key” theory of ligand binding, treating atoms as spheres and focusing primarily on steric 

interactions190,204. Given the computational resources of the 1980s, these simplifications were 

necessary. Treating any component of pose sampling as flexible increases the number of degrees 

of freedom, which increases computational cost190,206.  

Most modern docking programs treat the ligand as fully flexible190, but it remains largely 

impractical to treat the entire protein as flexible (Table 2 p.55). Instead, many programs make 

approximations such as considering only partial receptor flexibility or limiting flexibility to 

sidechain motions (Table 2 p.55)185,190,207,208. Additionally, some modern techniques, such as 

ensemble docking, dock ligands into multiple protein conformations, which increases the 

computational cost190,208,209.  
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Modern techniques for generating docked ligand poses can be grouped into three main 

strategies: systematic, simulation, and stochastic searches190,206. Systematic searches parameterize 

and test most or all combinations of each degree of freedom190,206. Simulation approaches utilize 

local optimization strategies that apply forces to advance the in silico protein/ligand system over 

time190,206. Molecular dynamics simulations and energy minimizations are the most common 

simulation approaches190,206, though both often suffer from local minima trapping190,206. Lastly, 

stochastic methods for conformational sampling apply random small alterations to a 

system161,186,190,196,206. These tend to be fast, but they often lack convergence190,206 and may miss a 

definitive best solution190,206. This limitation can be mitigated with repeated attempts or by 

adjusting the search’s exhaustiveness (i.e., how comprehensive a pose-sampling search is)190,206. 

1.2.4.3 Docking Scoring Functions 

As a docking program generates ligand poses, its scoring function must reliably assess each 

pose’s binding strength, often by predicting its binding affinity185,205. The three main scoring 

approaches are force-field/physics-based, empirical, and knowledge-based161,182,190,210 (Table 2 

p.55). As a general rule, the more parameters a scoring function considers, the more accurate its 

calculated binding affinity but also the more costly the computation161. Docking scoring functions 

must balance speed and accuracy. 

Force-field-based scoring functions predict binding energies by considering the bonded 

and nonbonded components of the system161,190,210. Bonded components include intramolecular 

terms such as torsions, bond stretching, and angle bending161,190,210, whereas unbonded 
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components include intermolecular terms such as electrostatics and van der Waals forces161,190,210. 

An ab initio energy calculation is performed for every term (i.e., all bonded and non-bonded 

interactions)161,206. Force-field-based scoring functions tend to be more accurate than other types, 

but they also tend to be the most computationally expensive161,182. 

Like force-field-based scoring functions, empirical scoring functions sum various energetic 

terms like electrostatics and van der Waals forces161,182,190,210, but they weigh each term by an 

optimized coefficient rather than calculating ab initio energy contributions161,182,190,210. These 

coefficients are determined by fitting an equation to a training data set containing 3D protein-

ligand structures and experimentally measured binding-affinity data161,190,210. These weights are 

used to adjust each term in the equation161,190,210. These simplified calculations make empirical 

scoring faster but less accurate than force-field-based scoring161,182,210. 

Knowledge-based scoring functions assume that more commonly observed protein-ligand 

interactions correlate with favorable binding interactions161,182,190,210. These functions are trained 

on databases of protein-ligand interactions and assign energy components to each protein-ligand 

contact161,182,190,210. Once trained, they predict binding energetics by summing the energy 

components of the interactions associated with a given protein-ligand pose161,182,190,210. 

Knowledge-based scoring functions tend to have intermediate speed and accuracy compared to 

force-field-based and empirical scoring functions161,182.  

The distinction between these scoring functions is frequently blurred. Hybrid approaches 

such as semi-empirical scoring may use a force field equation with several weighted terms (Table 

2 p.55)190,210. Machine-learning scoring functions, which are trained on data sets of 3D structures 
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and experimental binding data182,190,210, as well as consensus scoring functions, which combine the 

scores of multiple scoring functions182,190,206,210, are also becoming more popular.  

1.2.5 Alternative Approaches for de novo CADD 

There are many de novo drug design programs in addition to AutoGrow4. I here provide a 

summary of several recently published tools for de novo CADD (Table 3). This comparison will 

focus on their features and approaches. Experiments that compare AutoGrow4 with alternative de 

novo CADD techniques are provided in “Chapter 4.3.2: Comparison of AutoGrow4 Lead 

Optimization and other De Novo CADD Programs.” This section will also detail the limitations of 

other techniques, which motivated me to develop AutoGrow4.  
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Table 3. Highlighting the features of several recently published de novo design programs. 
Each of these programs takes a different approach to de novo compound generation. FOSS stands 
for “free and open-source software,” MPI stands for “message passing interface,” and OS stands 
for “operating system.” Table is modified from the AutoGrow4 manuscript, which was published 
in the Journal of Cheminformatics. It is reprinted with rights and permissions under the Creative 
Commons Attribution 4.0 International License, which “allows unrestricted use, distribution, and 
reproduction in any medium.”6 

 
Program FOSS Docking Options MPI Enabled OS 
AutoGrow46 Yes Vina/QVina2/Customizable Yes Linux/macOS/Windows 

(via docker) 
AutoGrow3156 Yes Vina No Linux/macOS/Windows 

(via docker) 
MoleGear211 No Autodock and Vina Yes Unspecified 
GANDI167 Yes DAIM/SEED/FFLD Yes Linux 
De novo 
DOCK162 

Yes DOCK No Linux/macOS 

REINVENT212 Yes N/A Unspecified Linux/macOS 
LigDream213 Yes N/A Unspecified Unspecified 
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1.2.5.1  Comparison of de novo CADD Software 

AutoGrow4 is the fourth major release of the AutoGrow program series. Its predecessor 

and most recent previously published version, AutoGrow3, was published in 2013 and improved 

on the choice of docking software, the re-implementation of compound creation, and molecule 

scoring156. These changes improved AutoGrow’s accuracy and efficiency, but docking software, 

cheminformatic libraries, and multithreading capabilities have since advanced165,205,214. 

AutoGrow4 takes advantage of these advancements, resulting in a faster, more stable, and more 

modularly designed program. Benchmark comparisons of AutoGrow4 and the most current release 

of AutoGrow3 (version 3.1.3) are provided in “Chapter 2.0: AutoGrow4: Implementation and 

Benchmarks”. Here I detail other de novo CADD programs. I will perform comparisons with 

AutoGrow4 with several of these programs in “Chapter 4.0: Comparison of CADD Techniques”. 

MoleGear is another recently published program that performs de novo drug design using 

an evolutionary algorithm211. It provides many user options such as a graphical user interface and 

two docking-software options, AutoDock215 and Vina185. Unfortunately, MoleGear does not yet 

appear to be publicly available, and the program is closed source, meaning that the underlying 

code that runs the algorithm is not publicly accessible211. 

On the other hand, de novo DOCK is an open-source algorithm that is free for academic 

use162. De novo DOCK is integrated into the docking program DOCK6162,187 and uses an iterative 

fragment-growth method162 based on DOCK6's anchor-and-grow search algorithm162,187. This 

approach identifies the core components of a given compound, referred to as “anchors,” and 

expands each anchor layer-by-layer with molecular fragments to create new molecules162,187. De 
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novo DOCK is a powerful tool, but it appears to target expert users, particularly those who are 

already familiar with DOCK6. Many users have pipelines that use alternative docking software, 

so restricting the docking program options limits de novo DOCK's potential users. Additionally, 

the accuracy of some scoring programs, particularly those that have been trained on a specific 

subset of receptor types, varies based on the protein target181. Thus, users may wish to use the 

docking program that is most accurate for their biological target, which may or may not be 

DOCK6. In contrast, AutoGrow4 provides two predefined options for docking as well as the ability 

to easily incorporate additional docking and scoring programs.  

GANDI, another free and open-source program, takes a different approach to de novo 

CADD while still using a GA167. Prior to running GANDI, the user must dock the library of source 

molecular fragments into the target protein pocket167 using the programs DAIM216, SEED217, and 

FFLD218. GANDI evolves the docked fragments using a parallel GA model, often referred to as an 

island model167, which evolves multiple populations of fragments independently with occasional 

events where fragments are exchanged between populations. To generate a final novel compound, 

GANDI links promising fragments together using linker compounds, which are not evolved but 

rather picked from a predefined table167. Both AutoGrow4 and GANDI are MPI enabled, but 

GANDI is limited to the Linux operating system167 and targets experienced users who are familiar 

with the suite of DAIM216, SEED217, and FFLD218.  

Machine learning has also recently been applied to de novo design. REINVENT is a free 

and open-source algorithm that uses recurrent neural networks and reinforcement learning to 

generate de novo compounds212. LigDream, also free and open-source, focuses training on the 3D 

shape of an input compound213. To predict novel compounds, machine learning approaches such 
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as these are typically trained on preexisting drug-like compounds212,213. Additionally, they often 

require known ligands to seed the run. For instance, LigDream is applicable only to lead 

optimization projects because LigDream assesses “good” ligands for the target protein based on 

the provided lead compounds. LigDream does not factor in any other information about the protein 

target213 (e.g., its structure), which limits its applicability to lead optimization213. AutoGrow4 can 

similarly optimize known ligands (“Chapter 3.3.2: PARP-1 Lead Optimization”), but it can also 

generate novel compounds in the absence of known inhibitors6 (“Chapter 3.3.1: Large-Scale de

novo PARPi Run.”) 

1.2.5.2 Motivation for Developing AutoGrow4 

In this section, I will explain the limitations of free and open-source de novo CADD 

programs that motivated me to develop AutoGrow4. AutoGrow4 is a highly customizable, free 

and open-source program that can be easily incorporated into most drug-design pipelines6. It 

provides many predefined user options (e.g., multiple chemical-property filters and docking-

software options), but it also allows users to incorporate new features to match their needs6. 

Additionally, AutoGrow4 has been optimized to work in various computational environments and 

can be scaled according to users’ available resources6. 

First, while successful drug design requires careful consideration of ADME-PK 

properties175, many open-source programs similar to AutoGrow4 lack extensive chemical-property 

filters (e.g., the option to filter compounds with poor ADME-PK properties), or require users to be 

familiar with drug-likeness parameters and set the program parameters 
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accordingly6,156,162,167,212,213. Programs that lack appropriate filter options use computational 

resources to explore poor candidates that could have been excluded from the beginning. Of the 

open-source programs reviewed in Table 3, AutoGrow4 provides the most comprehensive set of 

predefined chemical drug-likeness filters and is the only program that allows users to incorporate 

their own custom filters6,156,162,167,212,213. Both de novo DOCK and GANDI provide options for 

constraining some chemical properties, such as molecular weight and the number of rotatable 

bonds162,167, but these programs are limited to a predefined set of properties and do not incorporate 

many properties that can predict drug-likeness (e.g., polar surface area169) or substructure filters 

(e.g., PAINS filter174). Additionally, AutoGrow3 and AutoGrow4 are the only open-source 

programs reviewed in Table 3 that provide predefined options for commonly used drug-likeness 

filters6,156. However, de novo DOCK and GANDI do provide the option to constrain several 

physiochemical properties, such as MW162,167. Given their limited documentation, these programs 

require users to have a more advanced understanding of drug-design and drug-likeness, thereby 

limiting their ease-of-use. 

Second, many other de novo CADD programs have major usability limitations. CADD 

should reduce much of the unnecessary work in designing drugs, so the ease-of-use must be 

accessible/reasonable for more than just experts in computation and cheminformatics. 

Unfortunately, both de novo DOCK and GANDI rely on multiple third-party programs to prepare 

and manage files, and they do not provide extensive small molecule/fragment libraries162,167. For 

instance, de novo DOCK requires manual preparation of sphere and grid files (the files that 

describe DOCK6's conformational sampling function) prior to docking162. While de novo DOCK 

does provide several scripts to aid these processes, it also requires the additional installation and 
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use of programs162 such as the visualization software Chimera219. GANDI requires users to 

manually prepare and dock all seed compounds/fragments prior to running, which also requires 

installation and operation of multiple additional programs (e.g., VMD220, DAIM216, SEED217, 

FFLD218, CgenFF221–223)167. On the other hand, AutoGrow3 and AutoGrow4 automate all file 

conversion and docking processes6,156 and so only require users to provide the coordinates of the 

desired pocket, a PDB file of the protein target, and the library of small-molecule seeds. 

AutoGrow4 provides multiple general-purpose small-molecule libraries, detailed tutorials, and 

supporting scripts to prepare custom libraries6. Additionally, AutoGrow3 and AutoGrow4 provide 

Docker containers (i.e., a package of software designed to run a program with minimal user effort) 

to simplify the installation of dependencies6,156.  

Lastly, many machine-learning-based de novo CADD programs, including LigDream213 

and REINVENT212, are unable to perform lead generation in the absence of pre-existing inhibitors 

and were therefore insufficient for the PARPi design goals described in this dissertation. These 

techniques are useful when there are many known ligands with which to seed the runs, such as 

when optimizing inhibitors that bind the PARP-1 catalytic site, but they are not applicable in the 

absence of preexisting inhibitors, such as when designing novel inhibitors to bind the PARP-1 

DBD. Additionally, LigDream213 and REINVENT212 do not consider the structure of the protein 

target, so they cannot predict novel lead compounds that avoid interactions with amino acids 

implicated in resistance mechanisms, such as when designing compounds that bind the PARP-1 

catalytic pocket when Y907 is phosphorylated. 

Previous versions of AutoGrow (e.g., AutoGrow3) did provide many features necessary 

for de novo CADD applied to PARP-1, such as the ability to consider the structure of the target, 
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perform both lead optimization and lead generation, and filter candidates according to ADME-PK 

physiochemical properties. However, AutoGrow3 is slow, restricted to an outdated docking 

program, and does not scale well to larger CADD runs (see “Chapter 2.4: Results and Discussion”.) 

The drug-likeness filters provided with AutoGrow3 are also limited. In contrast, AutoGrow4 

provides all the benefits of the previous AutoGrow versions with many added features and 

improved performance. Additionally, the ease-of-use and automation of many processes, such as 

protein/ligand file preparation and docking, make AutoGrow4 ideal for the experiments described 

in this dissertation. 

1.3 Aims of the Dissertation 

All current clinically successful PARPi act as competitive inhibitors that bind to PARP-1 

using the same set protein-ligand interactions, despite many attempts to identify novel 

inhibitors12,17,18,111,224. As discussed in “Chapter 1.1: Biological Background,” current treatment 

strategies are vulnerable to resistance mechanisms because of overreliance on inhibitors that mimic 

NAD+ binding. New PARP-1 inhibition strategies that do not rely on binding to the catalytic 

pocket may improve cancer treatment.  

To help address this shortcoming, I used de novo computer-aided drug design (CADD) to 

search for unique novel candidates. Given the limitations of preexisting open-source de novo 

CADD programs (detailed in “Chapter 1.2.5.2: Motivation for Developing AutoGrow4”), I chose 

to design a new, highly optimized CADD program called AutoGrow4. I then used AutoGrow4 as 
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a search engine to find novel candidate PARP-1 inhibitors. Because of the wealth of preexisting 

information about PARP-1 and PARPi, PARP-1 both served as a test to verify AutoGrow4 utility 

and as a biological subject of great importance. 

In addition to developing AutoGrow4 and using the PARP-1 catalytic domain as a test 

case, I also (1) designed novel candidate inhibitors predicted to bind with strong affinities to the 

catalytic binding pocket generally; (2) designed candidate inhibitors predicted to bind to the 

catalytic binding pocket independent of Y907 phosphorylation, a strategy that may circumvent a 

common PARPi resistance mechanism; (3) applied computational hot spot mapping to the PARP-

1 interdomain interfaces to identify non-catalytic binding pockets; and (4) used AutoGrow4 to 

identify multiple candidate inhibitors that are predicted to bind PARP-1 with strong affinities 

outside the catalytic pocket. 

  



 69 

2.0 AutoGrow4: Implementation and Benchmarks 

This chapter describes the design improvements and features of AutoGrow4, compound 

libraries included in the AutoGrow4 download, and benchmark comparisons of AutoGrow4 verses 

its predecessor AutoGrow3 (version 3.1.3). The AutoGrow4 manuscript was published under the 

Creative Commons Attribution 4.0 International License, which “allows unrestricted use, 

distribution, and reproduction in any medium”6. The work in this chapter expands on that 

manuscript. It is adapted and reprinted with rights and permission:  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed many of the experiments discussed in the paper, and analyzed the data. I 

designed the layout for all figures in the paper with Dr. Jacob Durrant. Dr. Durrant refined and 

generated many of the high-quality images for publication. Dr. Durrant also provided guidance 

and insight as described in the acknowledgement section. All writing in this chapter is original 

content written by Jacob O. Spiegel.  
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2.1 Overview and Rationale 

AutoGrow4, a milestone in the AutoGrow program series, introduces many new features 

and improves the approach of the program. I was motivated to develop AutoGrow4 because 

AutoGrow3 was inefficient, limited in its scalability, restricted to a single docking program, unable 

to maintain chemical diversity across multiple generations, and provided only limited support for 

chemical filters and reactions. AutoGrow3 was capable, but not ideal for many large-scale de novo 

CADD applications, such as the design of novel candidate PARPi throughout this dissertation. 

This chapter will detail the development of AutoGrow4 and the improvements that make 

it superior to AutoGrow3. I will begin with an in-depth discussion of the new features I developed. 

Then I will describe two benchmark experiments that compare AutoGrow4 and AutoGrow3 in 

terms of computational efficiency (i.e., the time required to run each program) and performance 

(i.e., the docking affinities and chemical diversity of the AutoGrow-produced populations). 

Additionally, I will examine the variables that contributed to the improved success of AutoGrow4 

and will close this chapter with several proposed improvements for future AutoGrow4 releases. 

These benchmarks demonstrate AutoGrow4’s improved ability to produce novel candidate 

inhibitors and computational efficiency. However, I provide additional comparisons of 

AutoGrow4 with alternative CADD techniques, including VS and three other de novo CADD 

programs in “Chapter 4.0: Comparison of CADD Techniques.”  
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2.2 AutoGrow4: Development and Improvements 

AutoGrow is a free Python-based open-source program for de novo CADD that uses 

a genetic algorithm (GA) to create new molecules for a given protein target. AutoGrow starts with 

a population of seed compounds that are used to create a new population of potential solutions, 

often referred to as a generation. It then docks these compounds into the target protein pocket and 

scores their binding. These scores are used to rank the fitness of these potential solutions. New 

generations of solutions are seeded with the top-scoring molecules from the previous generation. 

AutoGrow 1.0.0, released in 2009, was one of the first de novo CADD programs to perform 

fully flexible docking and was one of only a few free open-source programs for de novo CADD155. 

AutoGrow3 (version 3.0.0), published in 2013 and the most recent previously published version, 

improved on the choice of docking software, the re-implementation of compound creation, and 

molecule scoring156. At the time, these changes improved AutoGrow’s accuracy and efficiency, 

but docking software, cheminformatic libraries, and multithreading capabilities have since 

advanced165,205,214. I have rewritten AutoGrow4 to take advantage of these advancements, resulting 

in a faster, more stable, and more modularly designed program. Additional implementation choices 

and improvements that are not pertinent to understanding the AutoGrow4 algorithm are provided 

in “Appendix A: Additional AutoGrow4 Implementation Details.” 



 72 

2.2.1 Ligand Handling 

One of the most significant improvements to AutoGrow4 in how it handles ligands. 

Previous releases of AutoGrow worked with small molecules in 3D PDB format155,156, meaning 

that tasks such as substructure searches, molecular alignments, and in silico reactions required 

computationally expensive 3D calculations155,156, as well as extensive custom codebase to address 

each operation155,156. With such a complex system of operations, maintenance and expandability 

were problematic. 

In contrast, AutoGrow4 was designed with accessibility and advancement in mind. 

AutoGrow4 uses Daylight’s SMILES notation, a string notation that describes small molecules, 

and leverages the third-party Python library RDKit165 to perform most ligand operations, including 

crossover, mutation, and filtration. This approach significantly reduces the computational cost of 

generating and manipulating compounds. RDKit also reduces the need for custom handling code, 

making AutoGrow4 more maintainable. Furthermore, many modules, including in silico reactions, 

filters, and docking software, accept plugin code. Plugin architecture allows users to incorporate 

their own customized functions and libraries. This efficient style of design is not only beneficial 

for users but also facilitates long-term maintenance and expansion. 

2.2.2 Operators: Population Generation via Crossover, Mutation, and Elitism 

An AutoGrow4 run begins with a user-defined initial seed population of compounds. This 

input population, referred to as generation-zero, can consist of either random fragments and small 



 73 

molecules (for de novo design) or known ligands (for lead optimization). From this source 

population, AutoGrow4 creates the first generation of compounds through three operations: 

crossover, mutation, and elitism (Figure 9), each of which is explained in more detail below. For 

all subsequent generations, AutoGrow4 creates new compounds in a similar manner, but a 

subpopulation of seed compounds is derived from the immediately preceding generation (Figure 

9).  

AutoGrow4 provides a unique name for all generated compounds. The name includes the 

generation the compound was created in, whether it was created by crossover or mutation, and 

which compound(s) are its parents. Additionally, the names of mutation-generated compounds 

identify the in silico reaction that created the compound. AutoGrow4’s naming scheme allows 

users to reconstruct the lineage of any given compound and, with an accessory script, analyze its 

evolution. This can help provide a potential path for synthesis. 
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Figure 9. Process-flow diagram of the AutoGrow4 algorithm. 

AutoGrow4 generates three independent seed pools consisting of well-scoring and diverse 
compounds from the previous generation (n - 1). These seed pools are used as parents to create the 
next generation of compounds (n) via crossover, mutation, and elitism. Gypsum-DL214 is used to 
convert SMILES to 3D. Then, the compounds are converted to a dockable file format (e.g., 
PDBQT), docked, (re)scored, and ranked according to the fitness function. This process is repeated 
until the user-defined number of generations have been completed. Figure is from the AutoGrow4 
manuscript, which has been published in the Journal of Cheminformatics. This figure is reprinted 
with rights and permissions under the Creative Commons Attribution 4.0 International License 
which “allows unrestricted use, distribution, and reproduction in any medium”6. 
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2.2.2.1 Crossover Operator 

Crossover operators create a child solution by merging two parent solutions (Figure 10A). 

In the case of AutoGrow4, the parent and child solutions are small molecules. To generate a child 

compound, AutoGrow4 first picks two random compounds from the selected list of seeds derived 

from the previous generation (Figure 9 p.74). Next, AutoGrow4 searches for the largest 

substructure shared between the two parent compounds. By default, AutoGrow4 requires that a 

minimum of four atoms be shared between parents; otherwise, it moves on to the next parent pair. 

This minimum number of shared atoms is a user-controllable parameter. Finally, the child is 

generated by randomly combining decorating moieties of the parents that branch off the shared 

substructure (Figure 10A).  

AutoGrow3, the most recent previous version of AutoGrow, used the program Ligmerge 

to perform crossovers156,225. Ligmerge uses 3D representations of compounds, which requires 

geometric calculations to merge the parent compounds225. AutoGrow4 replaces Ligmerge with an 

internal module that relies on RDKit to generate child compounds from SMILES strings of the 

parents. This change reduces the computational cost of compound generation and simplifies the 

crossover portion of the AutoGrow codebase. 
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Figure 10. Crossover and mutation examples. 

The lineage of two compounds generated from a lead-optimization run seeded with PARPi and 
PARPi fragments. All reported docking scores were calculated using QVina2. Occasionally the 
crossover operator will create a child identical to one of the parents. I have omitted these 
intermediates from the figure. A) AutoGrow4 recreated the PARPi olaparib from two source 
fragments. Their largest commonly shared substructure is highlighted in purple. B) A well-scoring 
compound derived from E7499 (a known PARPi) illustrates the modifications made by the 
mutation operator. Figure is from the AutoGrow4 manuscript, which has been published in the 
Journal of Cheminformatics. This figure is reprinted with rights and permissions under the 
Creative Commons Attribution 4.0 International License which “allows unrestricted use, 
distribution, and reproduction in any medium”6. 
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2.2.2.2 Mutation Operator 

AutoGrow’s mutation operator creates child compounds by performing in silico reactions 

on a parent compound from a previous generation (Figure 10B p.76). These children compounds 

are slightly modified from their parent(s). AutoGrow4’s mutation operator has been improved 

from previous AutoGrow releases. AutoGrow3 used a program called AutoClickChem226 as its the 

mutation operator, which was limited to a set of 36 reactions based on Dr. Barry Sharpless’s “click 

chemistry” reactions (a set of high-yielding reactions)226,227. AutoClickChem performs reactions 

using 3D models, which requires extensive custom code to properly perform substructure searches, 

molecule alignments, and reactions156,226. I streamlined AutoGrow4’s mutation module and 

expedited the mutation operation by leveraging Daylight’s SMARTS and RDKit code. 

I implemented a plugin-style design for this operator, which allows the in silico reactions 

to be easily expanded. I converted the AutoClickChem226 set of click chemistry reactions to 

Daylight’s SMARTS-reaction notation, referred to as the AutoClickChemRxn set. I also added a 

second reaction library based on the 58-reaction set published in Hartenfeller et al. 2011228, 

referred to as the RobustRxn set. AutoGrow4 provides a third reaction set consisting of the merged 

AutoClickChemRxn and RobustRxn sets, referred to collectively as the AllRxn set. The AllRxn 

set contains 94 reactions in total. All sets were manually inspected and extensively unit-tested. 

AutoGrow4 also permits custom reaction libraries to be easily incorporated, thereby becoming a 

long-term expandable codebase. The tutorial packaged in the AutoGrow4 download (Appendix D: 

AutoGrow4 Manual and Tutorial), which is available for free at http://durrantlab.com/autogrow4/, 

details how to create and incorporate custom reaction sets. 
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Another major improvement to AutoGrow4’s mutation operator is to the complementary 

molecule libraries used to supplement reactions requiring more than one reactant. Of the 94 

reactions in the AllRxn set, 79 reactions require two reactants. A given reaction that has multiple 

reactants may require specific functional groups not present within the population seeding it, so 

AutoGrow4’s mutation module provides a library of complementary molecules/fragments in 

SMILES file (SMI) format to act as the secondary reactants. These libraries are included in the 

AutoGrow4 download. Further details regarding AutoGrow4’s default libraries can be found in 

“Section 2.3.2: Preparation of Complementary Molecule Libraries.” The tutorial included in the 

AutoGrow4 download (Appendix D: AutoGrow4 Manual and Tutorial) describes how users can 

incorporate custom complementary molecule libraries. 

To showcase the impact that mutations can have on a predicted binding affinity, in Figure 

11 I present an example of a single mutation that produced a well-scoring compound from an 

worse-scoring parent. The parent compound (Figure 11 top right) has a QVina2 score that is worse 

than 83.92% of the other compounds in the same generation. In contrast, the child compound 

(Figure 11 bottom) has a QVina2 score that is better than 82.35% of the other compounds in its 

generation (Figure 11). This compound was created in silico via a Fischer’s indole synthesis 

reaction with phenylhydrazine (Figure 11)228–230, which was taken from the complimentary 

molecule library (ZINC34276250, Figure 11 top left). Of course, not all mutation events create 

such dramatic improvements, and offspring can also score worse than their progenitors. 
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Figure 11. A fit compound generated from a worse-scoring parent via mutation. 

From a poorly scoring parent (top right), this mutation event created a compound (bottom) that 
scored better than 82.35% of all compounds in its generation. ZINC34276250 (top left) served as 
the required phenylhydrazine for the reaction228–230. The parent compound was produced in the 
second generation and the child was created in the third generation of a PARPi lead-optimization 
run seeded with PARPi and PARPi fragments. All reported docking scores were calculated using 
QVina2 docking compounds into the catalytic pocket of PARP-1 (PDB: 4R6E Chain A18). 
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2.2.2.3 Elitism Operator 

Elitism progresses a sub-population of the fittest compounds from the prior generation into 

the next generation without alterations. AutoGrow4’s elitism operator has also been improved 

from previous versions to allow reassessment of compounds that have advanced. Because the pose 

sampling of many docking programs, including AutoDock Vina185, is stochastic (Table 2 p.55), 

the programs might generate slightly different poses each time a compound is docked. 

AutoGrow4’s reassessment includes regenerating variants with Gypsum-DL and redocking. 

Reassessing compounds adds additional computational costs; thus, this is an optional feature. 

2.2.3 Chemical Filters 

De novo molecule generation provides an opportunity to explore a wide range of chemistry 

space, but much of that space includes compounds that are not likely to become clinical drugs due 

to poor physiochemical properties (i.e., compounds that are not “viable”)148–150,178–180. Common 

concerns include small-molecule solubility, biological reactivity, and similarity to common 

metabolites163,168–174. AutoGrow filters compounds according to their predicted physical and 

chemical properties before performing its computationally expensive docking step (Figure 9 p.74), 

thereby reducing resource investment in compounds that are unlikely to be viable drugs. These 

types of filters may remove some “good” candidates, but they improve the success rate of CADD 

techniques overall163,168–174. If an insufficient number of compounds pass the filter(s), AutoGrow 

generates more compounds to populate the generation. 
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AutoGrow4 has nine predefined filter options, described above in “Section 1.2.3.2: 

Chemical Drug-Likeness Filters” and shown in Table 1 (p.53). Any number of these filters may 

be run in series. AutoGrow4 also allows plugins to easily incorporate new chemical property 

filters. Descriptions for creating and incorporating custom filters are provided in the AutoGrow4 

tutorial.  

2.2.4 Conversion of SMILES to 3D PDB 

AutoGrow4 uses SMILES to perform compound creation via mutation and crossover, but 

docking programs require 3D structures, so all compounds must be converted to a 3D format 

(Figure 9 p.74). AutoGrow4 uses Gypsum-DL, a free open-source Python software, to convert 

SMILES to a 3D format214. Gypsum-DL enumerates the ionization, tautomerization, chiral, 

cis/trans isomers, and ring-conformational forms of each compound, producing one or more 3D 

structures214. Because a single compound may have multiple 3D variants, Gypsum-DL—and in 

turn, AutoGrow4—allows users to define the maximum number of variations produced per 

SMILES. Gypsum-DL handles ionization with the free, open-source program Dimorphite-

DL214,231. More information about Gypsum-DL is provided in “Appendix B: Gypsum-DL.” Users 

can control the pH conditions that Dimorphite-DL uses for ligand protonation. 

Protein-ligand docking is the most computationally expensive and time-consuming 

component of AutoGrow, and every compound variant generated by Gypsum-DL results in a 

docking event. Thus, the more variations generated per molecule, the more computationally 
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intense the simulation. On the other hand, sampling more variants provides more tests against the 

protein target, yielding a better chance of observing good binding.  

2.2.5 Docking 

Since AutoGrow3’s release in 2013156, the speed and accuracy of docking programs have 

improved187,205,207. AutoGrow4 was designed to take advantage of these advancements and to 

anticipate future developments. Docking in AutoGrow4 is now a modular component that can be 

easily updated, replaced, or substituted with custom code. A thorough description of docking is 

provided in “Section 1.2.4: Protein-Ligand Interactions and Protein-Ligand Docking.” 

AutoGrow3 was upgraded from using AutoDock (version 4.0.1) to AutoDock Vina 

(version 1.1.2) (Vina) but was limited to this single docking software option156. AutoGrow4 

provides broader docking-program support. It maintains a Vina option but adds a new default 

docking software, QuickVina (version 2.1) (QVina2)205, a Vina-based docking program that runs 

about two-fold faster than standard Vina with minimal change in accuracy205. AutoGrow4 comes 

pre-packaged with both Vina (version 1.1.2) and QVina2 (version 2.1), and also provides an option 

for specifying custom docking executables. I have also implemented a plugin structure that enables 

long-term expandability and user customization. With the appropriate customized code, virtually 

any software for assessing a ligand in a pocket could be substituted into AutoGrow4.  
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2.2.6 File Conversion for Docking 

Protein-ligand docking programs require structure files of both the receptor (protein) and 

ligand (small molecule), and the required file format varies from program to program. For 

example, Vina and QVina2 require the receptor and ligand files to be in PDBQT format, a file 

format similar to PDB185,205. However, the docking program Glide by Schrödinger accepts ligands 

in multiple formats (e.g., Maestro, SD, Mol2, or PDB)232. AutoGrow4 provides a module that 

prepares these files for docking. 

Scoring and docking programs, particularly machine learning-based programs, may be 

sensitive to differences in file preparations such as partial-charge assignment. For instance, the 

rescoring programs NNScore1 and NNScore2 were trained with compounds converted to the 

PDBQT format by MGLTools and docked by Vina (version 1.1.2)215,233,234; it is not recommended 

to use NNScore1 or NNScore2 on compounds prepared by any program other than MGLTools. 

AutoGrow4 provides code to convert both receptors and ligands using AutoDock MGLTools and 

Open Babel164,215, as well as options plugins for alternative file conversion.  

2.2.7 Assessing Fitness 

GA require a fitness metric to assess the quality of each solution. A selection process later 

applies a selective pressure to choose the most fit compounds for elitism or to seed the next 

generation, progressively improving potential solutions (Figure 9 p.74). AutoGrow4 uses two such 

metrics: a primary fitness metric related to docking score, and a secondary fitness metric of 
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structural diversity. Previous releases of AutoGrow used only a single fitness metric based on a 

compound’s docking score. This section will detail the implementation of the primary and 

secondary fitness metrics. 

2.2.7.1 Primary Fitness Metric: Docking Score 

AutoGrow4’s primary fitness metric is an assessment of a ligand’s binding to a protein 

pocket. By default, this metric is the binding affinity prediction of a compound’s best pose 

calculated by the docking software, but AutoGrow4 also allows rescoring of a docked pose by 

standalone scoring functions. AutoGrow4 comes with built-in options to rescore docked poses 

with NNScore1 and NNScore2233,234, but appropriate plugin code can incorporate virtually any 

(re)scoring assessment into AutoGrow4 to be used as the primarily fitness metric.  

Additionally, a ligand’s docking score or reassessment score can be divided by the number 

of non-hydrogen atoms in the ligand. This adjusted score estimates the docking fitness per 

structural element and is referred to as ligand efficiency235.  

AutoGrow4 is currently configured and intended to be used as a high-throughput technique 

for early stage lead discovery and optimization. Assessing compounds by their predicted binding 

affinity, as calculated by a docking program, is ideal for this application because docking has a 

low computational overhead and is highly parallelizable185,205. Compound leads predicted by 

AutoGrow4 should be further evaluated by more accurate techniques. 
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2.2.7.2 Secondary Fitness Metric: Structural Diversity 

Previous versions of AutoGrow based compound selection solely on the docking fitness, 

but selection by a single metric can result in premature convergence at a local optima due to 

population homogenization147. In cases of extreme population homogeny, an evolutionary “cul-

de-sac” condition develops where the algorithm becomes trapped in local optima and is unable to 

create unique compounds, instead repeatedly recreating the same compounds. 

To offset this possibility, AutoGrow4 introduces a secondary fitness metric called the 

diversity score that is assigned to each compound following docking. This metric is optionally 

used to select a portion of the seed population based on structural uniqueness compared to 

compounds in the previous generation. By seeding a generation with a pool that comprises a 

combination of the best-scored and the most chemically diverse compounds, AutoGrow4 delays 

population convergence while still applying a selective pressure for desired binding affinity. 

To calculate the diversity score, AutoGrow4 compares molecular fingerprint 

representations of each compound. Molecular fingerprints are simplified representations of small 

molecules as series of binary digits (bit-strings)236 where each digit in the fingerprint represents a 

chemical feature. Comparing fingerprints provides a quantitative measurement of the similarity of 

two compounds. RDKit’s Dice’s coefficient similarity scoring is used to perform pairwise 

comparisons of the fingerprints of every compound in a generation165,237,238. The similarity, s, of 

two compounds, molA and molB, is determined by Equation 1.  
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𝑠(𝐹𝐴, 𝐹𝐵) =
|𝐹𝐴 ∩ 𝐹𝐵|

|𝐹𝐴| + |𝐹𝐵|
 

Equation 1: Similarity between two compounds, molA and molB, where FA and FB are the 
fingerprint bit-strings for molA and molB, respectively. 

 

For a given pairwise comparison, the value of s is a number ranging between 0.0 and 1.0, 

with 1.0 representing two perfectly matched molecules and 0.0 representing two completely 

different molecules. The diversity score, d, of a given compound, molM, is the sum of all its 

similarity scores with all other compounds within a generation. This diversity score is calculated 

using Equation 2. 

𝑑(𝑚𝑜𝑙𝑀) = ∑ 𝑠(𝐹𝑀, 𝐹𝑁)

𝑛

𝑁≠𝑀

 

Equation 2: Diversity score of molM, where the summation is over all compounds, molN, in a 
generation that are not molM, and s(FM,FN) is the similarity score of the fingerprint bit-
strings for molM and molN, respectively (See Equation 1). AutoGrow4 uses fingerprints that 
are 2048 bits. 

 

The diversity score provides a metric for compound uniqueness compared to other 

compounds in its generation. AutoGrow4 uses both a compound’s affinity metric and its diversity 

score in two independent selections to choose the fittest compounds to seed the next generation 

(Figure 9 p.74), and allows users to control the number of compounds chosen for each metric. By 

seeding each generation with a combination of the best-scored and most unique compounds, 



 87 

AutoGrow4 can search a wider range of chemistry space while still maintaining a selective 

pressure for well-scored compounds. Actively incorporating diversity also curtails population 

homogenization, thus enabling a run to escape local optima. 

2.2.8 Compound Ranking and Seed Selection  

The selection process by which compounds are either chosen to seed or chosen for elitism 

is a critical aspect of AutoGrow. This process occurs at the beginning of each generation (Figure 

9 p.74). Broadly speaking, three of the most commonly used strategies for selection in GA are 

Ranking selector, Roulette selector, and Tournament selector151, which are reviewed in “Section 

1.2.1.4: Ranking and Selection Approaches.”  

Previous versions of AutoGrow exclusively used a Ranking selector. I have expanded 

AutoGrow4 to also provide Roulette and Tournament selectors. The Roulette selector provided in 

AutoGrow4 uses non-linear weighting to increase selective pressures in favor of well-performing 

compounds. These selectors can be applied to any fitness metric including docking score, 

revaluated affinity score, and diversity score. 

Additionally, AutoGrow3 chose a single sub-population of compounds (the seed 

population) from the previous generation to serve as the parent compounds for all crossover, 

mutation, and elitism. In contrast, AutoGrow4 performs three independent pulls to form three seed 

populations, which are then used to create new compounds by means of a single process (e.g., 

crossover, mutation, or elitism) (Figure 9 p.74). In deterministic selections such as the Ranking 

selector, this change in seed selection has no effect and the three seed populations are identical. 
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However, for a stochastic selector such as the Roulette or Tournament selector, the three seed 

populations may be quite different with potential overlap. The three independent selections thus 

minimize the chance of excluding a fit ligand (Figure 9 p.74). As described in “Section 2.2.7: 

Assessing Fitness,” AutoGrow4 selects its seed compounds based on their primary (docking) and 

secondary (diversity) fitness metrics while allowing users to control how many seed compounds 

are selected by each metric. The chosen selection method is used for selecting seeds for both fitness 

metrics. 

Lastly, AutoGrow4 separates seed selection and elitism selection. In AutoGrow3, the 

compounds chosen for elitism were also used to seed crossover and mutation. AutoGrow4 

separates these variables to allow users to control the selective pressures of seeding and elitism 

independently (Figure 9 p.74).  

2.2.9 Availability and Requirements 

Project name: AutoGrow4 

Project home page: http://durrantlab.com/autogrow4/ 

Operating systems: Linux, macOS, and Windows (via Docker) 

Programming language: Python 2/3 

Other requirements: RDKit, NumPy, SciPy, funct_timeout, Mpi4py (optional), MGLTools 

(optional), Open Babel (optional) 

License: Apache License, Version 2.0 
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2.3 Methods 

2.3.1 Receptor File Preparation 

For all AutoGrow runs in this chapter, I used the catalytic domain of PARP-1. I obtained a 

crystal structure of PARP-1’s catalytic domain (PDB ID: 4R6E Chain A) from the Protein Data 

Bank (PDB)17,239 and removed all atoms except chain A of the protein (4R6E:A) and the niraparib 

inhibitor bound in the pocket. Then I used the PDB2PQR server (version 2.1.1 using default 

settings) to add hydrogen atoms and adjust the protein to biological pH conditions (pH 7) 240,241. 

This optimized the protein’s hydrogen bond network for docking. I then converted the PQR file 

produced by PDB2PQR back to a PDB file using Open Babel (version 2.3.1)164. 

Vina and QVina2 require user-defined coordinates and dimensions of the target pocket. 

Choosing to target the catalytic site, I selected five protein residues that flank the bound niraparib 

ligand in the crystal pose: E763, I872, G888, T907, and E988. Using the Scoria Python library242, 

I calculated a bounding box that contained all five of the selected residues. To ensure that the 

entirety of the pocket was included, I expanded the dimensions by several Å in all directions. The 

final dimensions of the box were 25.0 Å, 16.0 Å, and 25.0 Å in the x, y, and z directions, 

respectively. I also determined the geometric center of the pocket using the same bounding box. 

These coordinates and dimensions are relative to the specific orientation of the PDB file. 

The final PDB file and pocket coordinates were used for all AutoGrow runs in this 

dissertation. The PDB file is provided in the AutoGrow4 download, and step-by-step instructions 

for processing and determining coordinates for docking are provided in the AutoGrow4 manual. 
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2.3.2 Preparation of Complementary Molecule Libraries 

As described in “Section 2.2.2.2: Mutation Operator,” reactions often require multiple 

reactants, which may or may not exist in the parent generation. For this reason, AutoGrow4 

provides complementary molecule libraries organized by functional groups to supplement 

reactions with multiple reactants. All reactions contain one compound from the previous 

generation.  

To generate these complementary molecule libraries, a set of 19,274,338 commercially 

available small molecules with molecular weight (MW) less than 250 Da and an octanol–water 

partition coefficient (logP) less than 5.0 were downloaded from the Zinc15 database on December 

19, 2019230. The set was further filtered using the Lipinski* filter, which allows for no violations 

of Lipinski’s rule of fives (Table 1 p.53). Compounds were sorted into functional-group categories, 

and any compound that did not contain at least one functional group from the default reaction set 

(AllRxn) was discarded. To manage the download size and speed of the large complementary 

molecule files, each functional-group category was limited to a maximum of 5,000 compounds, 

selecting those with the lowest MW. These compounds are provided in the AutoGrow4 download 

and serve as the default complementary molecule libraries for the three sets of in silico reactions. 

All AutoGrow4 runs in this dissertation used this set of complementary molecule libraries. 
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2.3.3 Efficiency Benchmarks 

To compare the computational efficiency of AutoGrow4 and AutoGrow3, I compared the 

time required for each program to complete five generations. Both programs were set using as 

comparable of settings as possible. Additionally, I tested the computational efficiency of 

AutoGrow4 when using several new features. 

2.3.3.1 Efficiency Benchmark: File Preparation 

AutoGrow relies on an initial population of compounds to seed the first generation. 

Benchmarks comparing the efficiency of AutoGrow4 with its predecessor, AutoGrow3, require 

the source compound library to be supplied to both programs. AutoGrow3 provided a set of 117 

naphthalene-containing small molecules in PDB format to be used as source compounds156. 

AutoGrow3 only accepts PDB files, whereas AutoGrow4 only accepts SMI files, so I converted 

this set of 117 PDB files to SMILES using Open Babel164 and RDKit165. This list of naphthalene-

containing small molecules is provided with the AutoGrow4 source-code as an SMI file. 

 

2.3.3.2 Efficiency Benchmark: Run Conditions 

To benchmark AutoGrow4’s efficiency compared to its predecessor, I tested six conditions 

for AutoGrow4, varying the docking software and the maximum number of variants per molecule. 

AutoGrow3 was tested using only a single condition because it is limited to AutoDock Vina 
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docking and only creating a single 3D variant per molecule156. The AutoGrow4 benchmarks 

docked with either AutoDock Vina (version 1.1.2) or QuickVina2 (version 2.1), and varied the 

Gypsum-DL setting of maximum variants per molecule between one, three, or five. Runs of these 

seven test conditions were repeated independently 24 times. Benchmarks were tested in a Python 

2.7 environment because AutoGrow3 is not Python 3 compatible. 

In addition to computational variables such as memory, number of computer processors, 

and Python environment, I controlled for variables including population size, mutation reaction 

sets, seed molecules, the ratio of population size to seed size, and selection method. In all cases, 

Ghose* and Lipinski* filters (Table 1 p.53) were applied to the AutoGrow runs. Settings for these 

runs are provided in Appendix JSON 1 and Appendix JSON 2.  

These experiments were performed on computer clusters at the University of Pittsburgh’s 

Center for Research Computation (CRC). To control for variations in memory and processor 

speeds, I ran all benchmarks on the same set of SMP nodes. Experiments were performed using 

SMP multiprocessing because AutoGrow3 is not MPI enabled156. The SMP nodes were 12-core 

Xeon E5-2643v4 3.40 GHz Broadwell nodes with 512 GB RAM. 

2.3.3.3 Efficiency Benchmarks: Post-Run Data Processing 

For each run condition, I pooled the results of each completed generation into a 

corresponding pool. For instance, I pooled the compounds produced during the first generation of 

the AutoGrow4 runs that used Vina docking and a Gypsum-DL setting of one variant per molecule. 

Because the parallel runs could have produced duplicate compounds, I removed compounds with 
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identical canonical SMILES and retained the compound with the best docking score for each 

unique SMILES. 

2.3.4 Performance Benchmarks 

To showcase the improved performance of AutoGrow4 compared to its predecessor, I ran 

both programs using high-performance computational resources over a 24-hour period. Each 

program was set to produce large population sizes and to utilize many of their features. The goal 

of these comparisons is to demonstrate that the new features provided in AutoGrow4 improve not 

just run efficiency, but also the quality of the candidate ligands. 

2.3.4.1 Performance Benchmarks: File Preparation 

Benchmarks comparing the performance of AutoGrow4 (version 4.0.1) with its 

predecessor, AutoGrow3 (version 3.1.3), were seeded with a set of 6,103 ZINC15 small molecules 

with MW between 100 Da and 150 Da (“Chapter 2.3.2: Preparation of Complementary Molecule 

Libraries.”) This same set is provided in the AutoGrow4 download. Because AutoGrow3 requires 

seed compounds in PDB format, I converted the source compounds from SMILES to PDB using 

Gypsum-DL214. 
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2.3.4.2 Performance Benchmarks: Run Conditions 

Because the goal was to compare the best possible compounds that each program produced 

using their respective optimized settings and resources, many of the settings differed between 

programs. I controlled for the duration of each run (24 hours), the target protein pocket (the 

catalytic pocket of 4R6E:A), the seed molecules (“Chapter 2.3.4.1: Performance Benchmarks: File 

Preparation”), and the selection method (the Ranking selector). Additionally, I controlled for 

population size so that each generation produced 2,500 compounds via mutation, 2,500 compounds 

via crossover, and advanced 1,000 compounds via elitism. Both programs applied the Lipinski* 

filter; however, the AutoGrow4 runs were additionally filtered with the Ghose and PAINS filters, 

and the AutoGrow3 runs were also filtered with Ghose*. Settings for these AutoGrow3 and 

AutoGrow4 runs are provided in Appendix JSON 3 and Appendix JSON 4, respectively.  

Due to the limited features provided in AutoGrow3, there are several key differences in the 

settings used in these benchmarks. For instance, the AutoGrow4 runs used the AllRxn reaction 

library containing 94 reactions, whereas the AutoGrow3 runs were limited to the 58 reactions 

provided by AutoClickChem226. Also, because AutoGrow4 offers new 3D conformational 

sampling via Gypsum-DL and provides a faster docking option, I set the AutoGrow4 runs to 

produce a maximum of five variants per compound and used QVina2 docking. In contrast, 

AutoGrow3 only tested one variant per compound and used Vina docking. The AutoGrow4 runs 

evaluated all source compounds, producing a zeroth generation; AutoGrow3 does not provide this 

option and thus began with generation one.  
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The parallelization method, computational resources, and number of independent runs also 

differed between the AutoGrow4 and AutoGrow3. Because AutoGrow4 provides MPI-enabled 

parallelization, I ran the AutoGrow4 experiments on ten MPI-enabled CRC computer nodes with 

28-core Broadwell processors and 64GB RAM/node, which were networked with Intel’s Omni-

Path communication architecture. The AutoGrow4 runs ran for 24 hours and were performed in 

triplicate. On the other hand, AutoGrow3 is limited to SMP parallelization, so these runs were 

performed using 28-core processors and 503GB RAM/node provided by the University of 

Pittsburgh’s Center for Research Computing (CRC). In order to control for the number of 

processors applied to each set of runs, I ran the AutoGrow3 runs 30 times. 

2.3.4.3 Performance Benchmarks: Post-Run Data Processing 

I pooled the results of each completed generation into a corresponding pool. For instance, 

including the zeroth generation, two of the three AutoGrow4 runs completed 22 generations, and 

the third completed 23 generations, so the zeroth through 21st-generation pools consisted of 

compounds derived from all three runs, but the 22nd generation consisted exclusively of the single 

run that completed the 22nd generation. Because the parallel runs can produce duplicate 

compounds, I removed compounds with identical canonical SMILES and retained the compound 

with the best docking score for each unique SMILES. This process was repeated separately for the 

compounds produced by the 30 AutoGrow3 runs. 
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2.3.5 Calculating Normalized Diversity Scores 

Throughout this dissertation, I will use chemical diversity (unitless, see Equation 2, p.86) 

as a metric for assessing (1) how well a de novo CADD program searches chemistry space and (2) 

to what extent a given population has homogenized. Because the diversity score is calculated by 

summing all pairwise comparisons of all compounds within a population, the score increases with 

the number (N) of compounds being compared (Equation 2; p.86). To compare populations of 

different sizes, I will normalize the diversity score by dividing it by N. This unitless “normalized 

diversity score” ranges between 0.0 and 1.0, where 0.0 indicates that the compound is completely 

unique relative to the other compounds in the population, and 1.0 indicates that it is identical to all 

other compounds (i.e., complete homogenization). The mean normalized diversity score for a 

given population is then calculated from the set of associated normalized diversity scores. 

2.4 Results and Discussion 

2.4.1 Efficiency Benchmarks 

To run efficiency benchmark comparisons of AutoGrow4 and its predecessor AutoGrow3 

(version 3.1.3), I ran both programs using the Ranking selection method and AutoDock Vina 

docking. I ran AutoGrow4 with Gypsum-DL set to produce a single variant per generation. These 

AutoGrow3/AutoGrow4 settings produced the same number of variants and thus allowed for a 

roughly equivalent comparison of the two algorithms. AutoGrow4 was on average 1.21 times 
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faster than AutoGrow3 in completing five generations (59.64 vs 49.34 minutes/run, see Figure 

12A).  

Since AutoGrow4 has many features not available in previous versions—most notably, 

offering new docking software and using Gypsum-DL214 to generate alternate ionization, 

tautomeric, chiral, cis/trans isomeric, and ring-conformational variants for each input SMILES 

string—I also ran AutoGrow4 using optimized user-parameters. AutoGrow4 run times vary 

roughly linearly with the maximum number of variants produced by Gypsum-DL (Figure 12B). A 

maximum of three variations per molecule averaged 2.50 variants per compound; a maximum of 

five variations per molecule averaged 3.92 variants per compound.  

I also assessed AutoGrow4’s efficiency by varying the docking software used (Figure 

12C). Docking is the most time-consuming process in both AutoGrow3 and AutoGrow4. QVina2, 

AutoGrow4’s new default docking program205, is faster than Vina and so further improves 

AutoGrow efficiency (Figure 12C). AutoGrow4, with a maximum variance per compound of five, 

is 1.63 times faster when docking with QVina2 (125.04 minutes/run) than with Vina (203.52 

minutes/run) (Figure 12B-C). 

Several important trends can be observed in the docking scores of these benchmarks. I 

chose to review the average docking score from each generation, both for the overall population 

and among the top 500 best-scored compounds. These were chosen to show how the selective 

pressures imposed by each program influence the entire population as well as the more elite 

compounds that are more likely to be chosen as lead candidates. The most predictable and 

noticeable trend is that average docking score improves from each generation, both for the overall 

population (Table 4) and among the top 500 best-scored compounds (Table 5). I looked at these 
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two groups to show how the selective pressures imposed by each program influences the entire 

population as well as the more elite compounds, which are more likely to be chosen as lead 

candidates. The improved docking score trend holds true independent of docking software, version 

of AutoGrow, or number of tested structural variants per compound (Table 4 and Table 5). 

Additionally, as expected, an increase in the maximum number of structural variants tested per 

compound resulted in an increase in mean docking scores, independent of docking software (Table 

4 and Table 5). Lastly, all AutoGrow4 run conditions had higher average docking scores, both 

globally and among the top 500 best-scored compounds, than the corresponding generation 

produced by AutoGrow3. This last trend is examined further in the following section (“Chapter 

2.4.2: Performance Benchmarks.”) 

Overall, AutoGrow4 is more computationally efficient, has more extensive user options, 

and creates compounds with better predicted binding affinities than AutoGrow3. This enables 

more extensive CADD searches that, when combined with expanded ADME-PK filters (“Chapter 

2.2.3: Chemical Filters”), produced better predicted compounds.  
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Figure 12. Benchmark results from 24 comparative runs of AutoGrow. 

All results presented above had sample sizes of 24 runs. Bar height represents the mean time to 
complete a five-generation AutoGrow run, and error bars represent the standard error. A) Running 
AutoGrow 3.1.3 and AutoGrow4 with comparable user options (see Methods “Section 2.3.3: 
Efficiency Benchmarks”). B) Running AutoGrow4 using Vina docking with one, three, and five 
maximum variants per input compound. C) Running AutoGrow4 using QVina2 docking with one, 
three, and five maximum variants per input compound. Figure is modified from the AutoGrow4 
manuscript, which has been published in the Journal of Cheminformatics. This figure is reprinted 
with rights and permissions under the Creative Commons Attribution 4.0 International License 
which “allows unrestricted use, distribution, and reproduction in any medium.”6 
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Table 4. Global docking score averages of the efficiency benchmarks. 
“Maximum Variants per Mol.” indicates the maximum number of structural variants that were 
tested per compound. “Gen. #” indicates the AutoGrow-run generation number. All runs of each 
respective program were pooled together; “Mean” represents the mean of the pooled compounds. 
Means are in units of kcal/mol as measured by either Vina or QVina2. Gray triangles indicate that 
the mean binding affinity tends to increase as the number of considered variants increase, and as 
generations progress. 
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Table 5. Average docking score of the best 500 compounds from the efficiency benchmarks. 
“Maximum Variants per Mol.” indicates the maximum number of structural variants that were 
tested per compound. “Gen. #” indicates the AutoGrow4-run generation number. All runs of each 
respective program were pooled together; “Mean” represents the mean of the 500 best-scored 
compounds. Means are in units of kcal/mol as measured by either Vina or QVina2. Gray triangles 
indicate that the mean binding affinity tends to increase as the number of considered variants 
increase, and as generations progress. 
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2.4.2 Performance Benchmarks 

In this section I compare the performances of AutoGrow4 and AutoGrow3 when run for 

24 hours. Whereas in the previous benchmarks I suppressed AutoGrow4 features that were not 

available in AutoGrow3 to allow for a fair comparison, here I enable several new AutoGrow4 

features in order to provide a thorough comparison in terms of predicted binding affinity and 

chemical diversity. 

2.4.2.1 Performance Benchmarks: Predicted Binding Affinity 

Because both AutoGrow3 and AutoGrow4 use predicted binding affinity as their primary 

fitness metric6,156, I begin by comparing the performance of both in terms of that metric. I will 

compare each program’s best-scored populations (1) relative to each generation and (2) within the 

entire 24-hour run. The latter comparison will be heavily influenced by the number of generations 

each program completes. 

In the allotted 24 hours, AutoGrow3 completed an average of 4.17 generations per run, 

ranging from one to five generations (Figure 13). In contrast, AutoGrow4 completed an average 

of 21.33 generations per run, beyond the zeroth generation (Figure 13). 

I focus the first part of this analysis on the performance of the first five generations. This 

provides a generation by generation comparison of the two programs. By the end of the fifth 

generation, the two best AutoGrow3 compounds both had a docking score of -13.5 kcal/mol. By 

way of comparison, the AutoGrow4 runs had already surpassed that score by the second generation 
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(-13.6 kcal/mol, Figure 13). By the fifth generation, AutoGrow4 had produced 103 compounds 

with docking scores greater than or equal to -13.6 kcal/mol; the best-scored compound had a 

predicted binding affinity of -14.8 kcal/mol (Figure 13). For all generations, AutoGrow4 had better 

average docking scores than AutoGrow3. The same was true when the means of the top 1, 10, 50, 

and 1,000 compounds were considered (Figure 13). This superior performance is even more 

impressive given that AutoGrow3 was run 30 times and so sampled more compounds per 

generation, whereas AutoGrow4 was run only three times. For instance, the AutoGrow3 fourth 

generation had a total population of 134,747 unique compounds, whereas the AutoGrow4 fourth 

generation had a population roughly one tenth the size (14,409 unique compounds). 

In terms of ability to produce well-scored compounds over the allotted 24 hours, 

AutoGrow4 again performed substantially better than AutoGrow3 (Figure 13). AutoGrow4’s MPI-

enabled parallelization allowed me to use ten times the number of CPUs per run, so AutoGrow4 

completed many more generations than AutoGrow3 (Figure 13). This translated to a 3.0 kcal/mol 

difference between the best-scored AutoGrow4 compound (-16.5 kcal/mol, generation 21) and the 

best-scored AutoGrow3 compound (-13.5 kcal/mol, generation five) (Figure 13). 

To explore the factors that contributed to AutoGrow4’s superior performance, I first 

considered the hypothesis that AutoGrow4 benefits by docking and scoring the source compounds 

to form an already evaluated zeroth generation. This feature is not available in AutoGrow3, so 

AutoGrow3 runs do not evaluate the source compounds prior to the first generation. If this zeroth 

generation was solely responsible for AutoGrow4’s improved performance, I would expect the 

average docking scores of AutoGrow4’s n - 1 generation to be closer to those of AutoGrow3’s nth 

generation. However, with a few exceptions (Figure 13), this was generally not the case. For 
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instance, AutoGrow4’s third and fourth generations had average docking scores for the entire 

population and for the top 1, 10, 50, and 1,000 compounds that were better than those of 

AutoGrow3’s fourth and fifth generations, respectively (Figure 13). In fact, the average docking 

score of AutoGrow4’s third generation (-9.85 kcal/mol) was nearly 0.56 kcal/mol better than 

AutoGrow3’s fourth generation (-9.29 kcal/mol) (Figure 13). The improved performance of 

AutoGrow4 thus cannot be fully explained by its assessment of the zeroth generation.  

I next tested the hypothesis that the docking software used might account for some of the 

differences in performance. QVina2 may be posing each compound more accurately and/or 

assigning better scores generally. To test this hypothesis, I reevaluated, in triplicate, the 

AutoGrow3 seed population using Gypsum-DL and the same docking parameters used in the 

AutoGrow4 runs (Table 6). The results of this reassessment clearly indicate that although QVina2 

improves AutoGrow4’s speed (Figure 12; p.99), there is not a noticeable difference in docking 

scores (Table 6). In fact, an unpaired t-test between the entire populations led me to accept the null 

hypothesis that there are not significant differences between using Vina and QVina2 (all tests had 

p-values ≥ 0.35). Furthermore, both Vina and QVina2 ranked the same compound in first place, 

with an identical score of -7.9 kcal/mol (Table 6).  

I next considered the possibility that AutoGrow4’s more thorough testing of multiple 

variants per compound (i.e., creating multiple variants via Gypsum-DL and docking each variant) 

improved its performance over than of AutoGrow3, which does not use Gypsum-DL. As the 

efficiency benchmark experiments show (“Chapter 2.4.1: Efficiency Benchmarks”), AutoGrow4 

averages better docking scores when the maximum number of variants produced by Gypsum-DL 

is increased (Table 4 and Table 5; p.100-101). Because AutoGrow3 only samples a single 
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structural variant per compound, it is less likely to predict an ideal docking pose and thus will on 

average perform worse than AutoGrow4 in terms of docking scores. Testing multiple compound 

variants improves AutoGrow4’s chances of identifying better scoring ligand poses for two reasons. 

First, the number of attempts at docking each compound is increased. Pose sampling algorithms, 

such as the ones used by Vina and QVina2, tend to use stochastic optimization-based 

algorithms185,205. Thus, the chance of finding a better scoring pose increases with repeated docking. 

Second, some protein-ligand interactions and poses are possible in one variant but not in others. 

For instance, depending on the protonation of the protein and ligand, an electrostatic interaction 

may or may not be identified. Sampling multiple compound variants increases the chance of 

identifying these interactions and so improves the average docking scores. 

I next considered whether the different chemical filters applied to the runs influenced the 

docking scores. The AutoGrow4 runs applied a more restrictive Ghose filter than the Ghose* filter 

applied by AutoGrow3. AutoGrow4 also applied the PAINS filter, which is not available in 

AutoGrow3 (“Chapter 2.2.3: Chemical Filters”)6,156. However, although the additional filter 

constraints imposed by AutoGrow4 should yield more drug-like compounds, it is unlikely that 

they improve docking scores. In fact, the more restrictive MW constraints of the Ghose filter used 

in the AutoGrow4 runs is likely to exclude higher MW compounds, which are more likely to have 

better docking scores184. However, despite more restrictive property filters, AutoGrow4 still 

performed better than AutoGrow3. 

Lastly, I considered the possibility that docking scores were influenced by (1) 

AutoGrow4’s expanded compound-production methods (e.g., the expanded mutation-reaction set) 

and (2) AutoGrow4’s incorporation of chemical diversity into the selection process. Because 
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AutoGrow’s compound-generation processes are intrinsically stochastic, it is not possible to 

perform a controlled comparison of compound generation. But, I would expect that the increased 

number of mutation reactions, as well as the larger complimentary molecule libraries, would 

improve the diversity of the generated compounds. I provide an additional analysis of chemical 

diversity in the following section (“Chapter 2.4.2.2: Chemical Diversity”). 
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Figure 13. Plots of the performance benchmarks comparing docking scores. 

In the allotted 24 hours, the AutoGrow3 runs completed between one and five generations per run 
(left), while the AutoGrow4 runs completed between 21 and 22 generations per run (right). 
Additionally, AutoGrow4 evaluated the zeroth generation (right). For each generation, the mean 
of all docking scores is shown in purple. The grand means of the top 1,000, 50, 10, and 1 compound 
are shown in blue, cyan, purple, green, and red, respectively. Error bars represent the standard 
error within each generation. For the reader’s convenience, the docking scores of the best-scored 
compound from the fifth generation of AutoGrow3 (-13.5 kcal/mol; blue dotted line) and 
AutoGrow4 (-14.8 kcal/mol; red dotted line) are also shown. 
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Table 6. Zeroth generation reassessment with Vina and QVina2. 
 “Global” indicates that all unique compounds were included in the respective analyses; “N” 
indicates the number of the top-scoring compounds included in the respective analyses. “Mean” 
represents the mean of the subset; “Dev.” represents the standard deviation of the included scores. 
Each assessment of the zeroth generation was performed in triplicate. All values are in units of 
kcal/mol, as predicted by the corresponding docking program. 
 

Docking  Global    N=1 N=10 N=50 N=1000 
Program Mean Dev. Size Mean Mean Dev. Mean Dev. Mean Dev. 
QVINA2 -5.23 0.72 9091 -7.9 -7.62 0.14 -7.35 0.17 -6.52 0.32 

VINA -5.24 0.72 8731 -7.9 -7.65 0.14 -7.36 0.18 -6.51 0.32 
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2.4.2.2 Chemical Diversity 

AutoGrow4 introduced the option to select compounds based on their chemical diversity 

relative to other compounds in their respective generations. This feature helps maintain diversity 

within the population, thereby allowing AutoGrow4 to search a wider range of chemistry space. 

In this section I compare AutoGrow4 and AutoGrow3’s ability to maintain chemical diversity over 

a 24-hour run. 

Diversity scores are determined by performing pairwise comparisons of all compounds, so 

the required computational resources scale at a rate of N2, where N is the number of compounds. 

Each AutoGrow3 generation (pooled across all 30 runs) included more than 100,000 compounds, 

requiring more than 1010 comparisons per generation (“Chapter 2.3.5: Calculating Normalized 

Diversity Scores”). Calculating global diversity scores was thus computationally intractable. 

Additionally, increasing the number of runs increases the chance of exploring unique regions of 

chemistry space and thereby increases a pooled population’s diversity. This creates an artificial 

bias in favor of AutoGrow3, which pooled from ten times the number of runs as AutoGrow4. To 

compensate, I provide analysis of a pooled subset containing the three AutoGrow3 runs that 

produced the three best-scored compounds (two with docking scores of -13.5 kcal/mol and one 

with -13.4 kcal/mol) by the fifth generation (Table 7). 

AutoGrow4 maintained the global normalized diversity of its generations within a range of 

0.15 and 0.22 (unitless) (Table 7). In fact, the zeroth and first generations had the worst global 

diversity scores (0.20 and 0.22 respectively), and the diversity scores tended to improve in 

subsequent generations (Table 7). This general trend towards improved chemical diversity likely 
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results from AutoGrow4’s new secondary fitness metric (i.e., the structural diversity score) 

(“Chapter 2.2.7.2: Secondary Fitness Metric: Structural Diversity”). AutoGrow3 generations, on 

the other hand, follow the opposite trend. They consistently become less diverse as the runs 

progress, for all tested population subsets (Table 7). Of course, the AutoGrow3 runs completed 

fewer generations in the allotted 24 hours than the AutoGrow4 runs; this limits my discussion to 

only shorter AutoGrow3 runs, though I suspect that the AutoGrow3 runs would continue to 

homogenize in later generations. 

Despite these overall trends (i.e., AutoGrow3 tends to homogenize, and AutoGrow4 tends 

to maintain diversity), AutoGrow4 does lose diversity among its best-scoring sets of compounds 

(i.e., the best-scored 50 and 1,000, compounds) (Table 7). The average normalized diversity scores 

of AutoGrow4’s best-scoring 50 and 1,000 compounds improves from the zeroth generation to the 

second generation, but worsens from the second generation onward (Table 7). However, by the 

tenth generation the diversity scores appear to stabilize (Table 7). The last AutoGrow4 generation, 

generation 22, was an outlier with dramatically worse average diversity scores. This result is likely 

artifactual because only a single run completed that generation, such that the diverse compounds 

of the other two runs were lost (Table 7). 

This experiment demonstrates that AutoGrow4’s new chemical-diversity fitness metric 

maintains structural diversity even in long runs. On the other hand, with no selective pressure for 

chemical diversity, AutoGrow3 tends to lose diversity in each successive generation. AutoGrow3 

is unlikely to find a diversity equilibrium, as observed in the AutoGrow4 runs; instead, it tends to 

converge to a local minimum.   
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Table 7. Diversity scores of the three best AutoGrow3 runs. 
“Gen. #” indicates the AutoGrow generation number. The AutoGrow3 generations are the pooled 
compounds of the AutoGrow3 runs that produced the three best-scored compounds, whereas the 
AutoGrow4 runs are the pooled compounds of all three AutoGrow4 runs. “Global” indicates that 
all compounds are included. “N” indicates the number of the top-scoring compounds selected. 
“Mean” represents the mean of the subset. For each subset of N compounds, the diversity score of 
each compound was assigned using Equation 2, and then normalized by dividing N (“Chapter 
2.3.5: Calculating Normalized Diversity Scores”). The reported means and standard deviations are 
based on these normalized diversity scores (unitless). “Dev.” represents the standard deviation of 
the included scores. “% Pop.” represents the percent of scores that were included (100 * N / Size).  
 

  Global N=50 N=1000 
Program 

Mean Dev. Size Mean Dev. % Pop. Mean Dev. % Pop.   
AutoGrow3 

0.21 0.03 13535 0.25 0.04 0.37 0.25 0.05 7.39 Gen. 1 
Gen. 2 0.24 0.04 14270 0.25 0.03 0.35 0.25 0.03 7.01 
Gen. 3 0.24 0.03 14352 0.27 0.03 0.35 0.26 0.03 6.97 
Gen. 4 0.25 0.03 14190 0.29 0.03 0.35 0.27 0.03 7.05 
Gen. 5 0.26 0.03 13930 0.30 0.04 0.36 0.28 0.03 7.18 

AutoGrow4 
0.20 0.04 9091 0.36 0.07 0.55 0.27 0.07 11.00 Gen. 0 

Gen. 1 0.22 0.04 16234 0.28 0.03 0.31 0.25 0.03 6.16 
Gen. 2 0.19 0.02 15558 0.25 0.02 0.32 0.23 0.02 6.43 
Gen. 3 0.18 0.03 14585 0.26 0.02 0.34 0.24 0.02 6.86 
Gen. 4 0.17 0.02 13810 0.28 0.04 0.36 0.25 0.02 7.24 
Gen. 5 0.17 0.03 14514 0.29 0.04 0.34 0.25 0.02 6.89 
Gen. 10 0.16 0.02 12149 0.35 0.04 0.41 0.30 0.04 8.23 
Gen. 15 0.16 0.03 13607 0.33 0.03 0.37 0.31 0.03 7.35 
Gen. 20 0.15 0.03 11983 0.36 0.05 0.42 0.30 0.02 8.35 
Gen. 21 0.16 0.03 12811 0.37 0.05 0.39 0.31 0.02 7.81 
Gen. 22 0.19 0.05 4322 0.55 0.05 1.16 0.44 0.08 23.14 
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2.5 Conclusion 

2.5.1 AutoGrow3 and AutoGrow4 Benchmarks 

AutoGrow4 is more efficient than its predecessor, as these extensive benchmark 

experiments show. The efficiency benchmarks show that AutoGrow4 is 1.21 times faster than 

AutoGrow3 when controlling for all program features, and even faster if using the upgraded 

docking features (Figure 12; p.99). The performance benchmarks further verified the improved 

speed of AutoGrow4. AutoGrow4 completed 22.33 generations per run on average, including the 

zeroth generation, over 24 hours of run time, whereas AutoGrow3 completed only 4.17 generations 

per run on average (Figure 13; p.107). AutoGrow4 completed more generations than AutoGrow3 

because it is more computationally efficient and because of its MPI-enable parallelization, which 

allows users to run AutoGrow4 on many more CPU’s than AutoGrow3. 

AutoGrow4 also outperformed AutoGrow3 at predicting high-affinity compounds. In both 

benchmark experiments, AutoGrow4 generated compounds with better docking scores than 

AutoGrow3. I showed that the biggest contributing factors include: (1) AutoGrow4 allows testing 

multiple structural variants per compound, whereas AutoGrow3 is limited to a single structural 

variant per compound; and (2) AutoGrow4 assesses the zeroth generation and uses it to inform the 

creation of the first generation, thereby more intelligently designing first-generation compounds. 

The number of tested structural variants does in fact correlate with the population docking scores 

(Table 4; p.100). Additionally, AutoGrow3 generates its first generation without assessing the 

zeroth generation, which limits the first generation’s scoring (Figure 13). I also show that the 
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difference in docking software does not contribute to the difference of each program’s docking 

scores (Table 6 p.108). Lastly, I show that AutoGrow4’s new diversity selection feature helps 

AutoGrow4 maintain chemical diversity across many generations, whereas AutoGrow3 lost 

diversity each successive generation (Table 7; p.111). Although I cannot directly tie these diversity 

and docking scores together, conventional wisdom suggests that diversity is beneficial to GA151.  

Ultimately, AutoGrow4 is better equipped to predict de novo candidate inhibitors. It was 

superior to AutoGrow3 in producing well-scoring compounds and maintaining chemical diversity, 

as well as also being more computationally efficient. As shown in the performance benchmarks, 

the improved computational performance and expanded features allowed for a much larger search 

of chemistry space, ultimately found candidates with stronger predicted binding affinities. 

Additionally, AutoGrow4 provides many user features and customizations that improve ease-of-

use and make AutoGrow4 applicable to a wide range of CADD needs. 

2.5.2 Summary of Improvements 

AutoGrow4’s stochastic search of chemistry space using a GA is a powerful technique for 

discovering potential compounds. The upgrades I made to AutoGrow4 make it a computationally 

efficient tool for de novo CADD. Intentional design choices enable long-term maintainability, and 

user customizability. As a free, open-source program with extensive user options, AutoGrow4 is 

an easy tool to incorporate into drug-discovery workflows.  

A thorough tutorial is provided in the download, detailing installation and instructions. 

AutoGrow4 runs on Linux, macOS, and Windows (via a Docker container, Docker, Inc.). I 
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recommend using the AutoGrow4 Docker container included with the download, which 

automatically installs all dependencies.  

2.5.3 Future Directions 

The most important future direction of AutoGrow4 is its application to different protein 

targets. Since its public release in April 2020, Dr. Durrant and I have received numerous positive 

responses indicating that we were not alone in our desire for a more efficient, intuitive-to-use de 

novo CADD option. In the next chapter (“Chapter 3.0: AutoGrow4: Application to Poly (ADP-

ribose) Polymerase-1 (PARP-1)”), I will apply AutoGrow4 to PARP-1 to target multiple pockets 

and design candidate PARPi that may be less susceptible to known resistance mechanisms. 

Future development will also need to focus on expanding user features, further reducing 

computational costs, and providing more analysis tools. A graphical user interface or webserver 

implementation would improve ease-of-use, particularly for users who are not comfortable with 

command-line interfaces. Expanding the multiprocessing support to GPU multithreading and 

continuing to expand the reaction libraries and chemical filters are other possible avenues of 

improvement. Lastly, incorporating ensemble-style docking is another possible future avenue. 

2.6 Acknowledgements 

I would like to thank the following people for their contributions to the AutoGrow4 

codebase and benchmark experiments. Dr. Jacob Durrant generated the original idea for revising 
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his line of AutoGrow software. He provided guidance in both code, experimental design, co-

authoring the AutoGrow4 publication, editing this chapter of the dissertation, testing AutoGrow4 

on macOS, and generating high-resolution versions of figures for the publication and dissertation.  

I would like to thank Dr. Bennett Van Houten for his suggestion that I apply AutoGrow4 

to PARP-1. 

Additional contributions to AutoGrow4 include: Patrick J. Ropp for useful discussions and 

programming tips; Erich Hellemann for discussions and help with SMARTS reactions; Pauline 

Spiegel for manuscript editing and tutorial testing; Yuri Kochnev for compiling QVina2 for 

macOS; Kevin C. Cassidy for help with molecular rendering; and Harrison Green for help 

developing AutoGrow4 accessory scripts. I would also like to thank the University of Pittsburgh’s 

Center for Research Computing for providing helpful computer resources. The default fragment 

libraries included with AutoGrow4 were derived from a subset of the ZINC database 

(https://zinc.docking.org/). I thank ZINC for allowing me to distribute these fragment libraries to 

AutoGrow4 users. 

2.7 Author Contributions 

Jacob O. Spiegel wrote and tested the codebase of AutoGrow4 and all accessory scripts 

provided in the AutoGrow4 download. AutoGrow4 leverages many libraries and other programs 

which have been cited throughout the code and all related publications. I designed and performed 

all experiments for AutoGrow4 and AutoGrow3 comparisons. Dr. Jacob Durrant and I authored 
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the publication of AutoGrow4. I designed the initial layout for all figures in the paper with Dr. 

Durrant. Dr. Durrant refined and generated many of the high-quality images used in the publication 

and throughout this dissertation. Only sections that I wrote were used verbatim in this dissertation. 

All writing in this chapter is original content written by Jacob O. Spiegel. 
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3.0 AutoGrow4: Application to Poly (ADP-ribose) Polymerase-1 (PARP-1) 

This chapter details my application of AutoGrow4 to the protein target poly (ADP-ribose) 

polymerase-1 (PARP-1) and expands on work published in the AutoGrow4 manuscript. It will 

explore how AutoGrow4 can be used as a tool for lead generation, lead optimization, hypothesis 

generation, and hypothesis testing. 

AutoGrow4 was published under the Creative Commons Attribution 4.0 International 

License which “allows unrestricted use, distribution, and reproduction in any medium”6. The work 

in this chapter is adapted and reprinted with rights and permission:  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed all AutoGrow4 runs discussed in the paper, and analyzed the data. I designed 

the initial layout for all figures in the paper with Dr. Jacob Durrant. Dr. Durrant refined and 

generated many of the high-quality images used in the publication and throughout this dissertation. 

Dr. Durrant also provided guidance and insight as described in the acknowledgement section. All 

writing in this chapter is original content written by Jacob O. Spiegel.   
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3.1 Overview and Rationale 

Poly (ADP-ribose) polymerase-1 (PARP-1), a well-characterized DNA-damage-

recognition protein (“Section 1.1: Biological Background”), was chosen to showcase 

AutoGrow4’s de novo design and lead optimization capabilities. I chose to target PARP-1 because 

(1) its multiple biologically confirmed inhibitors (PARPi) serve as positive controls and as source 

compounds for lead optimization runs1–5; (2) PARPi are proven treatments for multiple cancers, 

including ovarian and breast cancers1–5; and (3) PARP-1’s catalytic domain has a well-studied 

druggable pocket17–19. However, all current PARPi bind to the catalytic pocket and are susceptible 

to many of the same resistance mechanisms. Given this vulnerability, there is a need for next-

generation PARPi that can evade these resistance mechanisms. Presented in this chapter are four 

sets of AutoGrow4 runs that target PARP-1: a single large-scale de novo design run applied to the 

PARP-1 catalytic site, PARPi lead-optimization runs applied to the PARP-1 catalytic site, PARPi 

lead-optimization runs applied to a post-translationally modified PARP-1 catalytic site, and large-

scale de novo design runs applied to the PARP-1 DNA binding domain (DBD). These four 

AutoGrow4 applications aim to find novel candidates for next-generation PARP-1 inhibition, 

particularly ones less susceptible to known PARPi resistance mechanisms. 

Broadly speaking, de novo design experiments are seeded with random small 

molecules/fragments and so are not biased by prior knowledge of the binding pocket or known 

inhibitors. In contrast, lead-optimization experiments refine preexisting ligands. By focusing the 

search of chemistry space (i.e., the coordinate set containing all possible compounds178) on likely 
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leads, lead-optimization approaches spend fewer computational resources testing compounds that 

are unlikely to be successful drugs.  

I designed these AutoGrow4 runs to test different applications of the algorithm. Three sets 

of runs targeted the PARP-1 catalytic domain. The large-scale de novo run was designed to 

demonstrate how AutoGrow4 can create novel drug-like compounds optimized for predicted 

binding affinity. I also wanted to highlight AutoGrow4’s scalability, which allows it to process 

hundreds of thousands of compounds in a single run. The initial PARPi lead-optimization runs 

were designed to demonstrate AutoGrow4’s ability to create novel compounds that are similar to 

experimentally verified PARPi but with stronger predicted binding affinities. Additionally, another 

set of PARPi lead-optimization runs was designed to show how AutoGrow4 results can guide 

hypothesis generation. I applied this second set of lead-optimization runs to a post-translationally 

modified PARP-1 to find compounds that bind PARP-1 in both the modified and non-modified 

states, thereby circumventing resistance mechanisms.  

Lastly, I applied AutoGrow4 to an additional PARP-1 surface pocket, the DBD. There are 

currently no clinically successful non-competitive inhibitors of PARP-112,17,18,111,224 that bind 

outside the catalytic pocket, but such PARPi could mitigate several forms of PARPi resistance, 

such as resistance mechanisms that alter the catalytic binding site142. Speculatively, such an 

inhibitor could be used as a cotreatment with competitive inhibitors of PARP-1. I used the 

computational hot-spot mapping technique FTMap243, a computational technique that identifies 

regions or “hot spots” with favorable ligand binding properties243, to identify druggable pockets 

(i.e., a protein pocket that has known ligands or is predicted to bind small molecules with high 

affinity244). I then compared the physiochemical properties of the pockets and previous mutagenic 
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studies of PARP-1. I ultimately selected the most druggable non-CAT hot spot, which is located 

near the interface of zinc finger I (Zn1) and zinc finger 3 (Zn3) in the DBD. Mutations of residues 

within the Zn1-Zn3 interface prevented PARP-1 DNA-dependent catalytic activity without 

altering the DNA binding activity45,46,52,70; so, ideally, small molecules that bind this site would 

have similar affects. Finally, I used AutoGrow4 to predict candidate inhibitors that bind at this 

interface. My results provide a preliminary exploration of candidate PARPi that do not rely on 

binding the catalytic site.  

3.2 Methods 

3.2.1 Large-Scale de novo Run 

To design novel predicted PARPi that bind to the catalytic site, I ran a large AutoGrow4-

guided lead-generation run. The goal of this run was to generate drug-like compounds with strong 

predicted binding affinities for the catalytic pocket. 

3.2.1.1 File Preparation 

The protein structure used for the AutoGrow4 large-scale de novo run is derived from PDB 

4R6E:A. Details regarding the preparation of the receptor and the determination of docking 

coordinates can be found in “Section 2.3.1: Receptor File Preparation.”  
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3.2.1.2 Preparation of Example Source Compounds 

Large-scale runs require large, diverse source populations to effectively search a wide 

range of chemistry space. Seeding a run with too small or too undiversified a source population 

can result in homogenization and premature convergence. AutoGrow4 provides four sample seed 

lists, organized by molecular weight (MW), for general-purpose use. 

Starting from the same large set of commercially available Lipinski*-filtered Zinc15230 

compounds that are described in “Section 2.3.2: Preparation of Complementary Molecule 

Libraries,” I generated four sizable and chemically diverse general-purpose seed libraries. First, to 

ensure that all compounds could react in at least one of the 94 reactions in the AutoGrow4 default 

reaction set (AllRxn), I separated the compounds by functional group and discarded any that did 

not contain a functional group used by the AllRxn set. I then separated each functional group set 

into four subgroups based on MW (≤ 100 Da, 100 Da < MW≤ 150 Da, 150Da < MW ≤ 200 Da, 

and 200 Da < MW ≤ 250 Da). To maintain both chemical diversity and reasonable size, I randomly 

selected 100 compounds from overrepresented subgroups (>100 compounds) and discarded the 

remaining compounds. I pooled all compounds from all functional groups in each MW range to 

form the final source compound libraries. The final four source-library sets (one for each MW 

range) together include 24,595 unique molecules and are provided in the AutoGrow4 download. 
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3.2.1.3 Large-Scale de novo Run 

To demonstrate that AutoGrow4 is scalable across hundreds of processors and to generate 

novel drug-like compounds with the strongest possible predicted binding affinities, I performed a 

large-scale de novo run seeded with small molecules from the 100 < MW ≤ 150 Da source-

compound library, described in “Section 3.2.1.2: Preparation of Example Source Compounds.” I 

performed this AutoGrow4 run in a Python 3.7 environment using MPI multiprocessing, QVina2 

docking, a Ranking selector, and the Ghose, Lipinski*, and PAINS filters (Table 1 p.53). It ran for 

30 generations. The exact settings are provided in Appendix JSON 5. 

This experiment ran on ten MPI-enabled CRC computer nodes with 28-core Broadwell 

processors and 64GB RAM/node, which were networked with Intel’s Omni-Path communication 

architecture. Blendmol245 was used to generate the figures of the docked molecules. 

3.2.2 PARPi Lead Optimization 

To design novel PARPi with improved predicted binding affinities that are nevertheless 

similar to known PARPi, I ran three AutoGrow4-guided lead-optimization runs. 

3.2.2.1 File Preparation 

The protein structure used for the AutoGrow4 PARPi lead-optimization runs is the 

4R6E:A. Details regarding the preparation of the receptor and the determination of docking 

coordinates can be found in “Section 2.3.1: Receptor File Preparation.”  
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3.2.2.2 Preparation of PARP inhibitor (PARPi) Source Library 

To demonstrate AutoGrow4 lead optimization, I seeded six runs with lead compounds 

(PARPi). I chose 11 PARPi at varying phases of clinical trials from www.clinicaltrials.gov. I 

fragmented these 11 PARPi using RDKit’s Breaking of Retrosynthetically Interesting Chemical 

Substructures (BRICS) function, which decomposes molecules along retro-synthesizable bonds158. 

The accessory script for fragmenting these compounds is included in the AutoGrow4 download. 

This decomposition resulted in 11 original PARPi and 83 fragment molecules, which serve as 

seeds. This seed list is also included in the AutoGrow4 download. 

3.2.2.3 PARPi Lead-Optimization Runs 

To demonstrate AutoGrow4’s ability to optimize known inhibitors, I seeded AutoGrow4 

with a population of known PARPi to bias the search of chemistry space toward likely leads, thus 

sparing computational time that would otherwise be used exploring leads that are not PARPi-like. 

Because I also wanted to demonstrate AutoGrow4’s ability to grow molecules from PARPi 

fragments, I chose to seed these runs with a combination of PARPi and PARPi fragments, as 

described in “Section 3.2.2.2: Preparation of PARP inhibitor (PARPi) Source Library.”  

To focus the search near these PARPi, I limited the number of generations to five but 

increased the docking-exhaustiveness, variants-per-molecule, and population-size settings. Due to 

the relatively small source compound library of 94 seed molecules, the first generation’s size was 

set to be smaller than all subsequent generations. I limited the first generation to 500, 500, and 40 
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molecules derived using the mutation, crossover, and elitism operators, respectively. All 

subsequent generations had population sizes of 2,500, 2,500, and 250 compounds created by the 

mutation, crossover, and elitism operators, respectively. Exact settings are provided in Appendix 

JSON 6. 

These experiments were repeated six independent times in a Python 3.7 environment on 

the same CRC MPI-enable nodes described in “Section 3.2.1.3: Large-Scale de novo Run.” 

Blendmol245 was used to generate the figures of the docked molecules. 

3.2.3 Interaction Assessment of AutoGrow4-Generated Compounds 

To determine the most common protein-ligand interactions critical for high-affinity 

predicted binding to the PARP-1 catalytic pocket, I analyzed the top-scoring compounds from both 

the large-scale de novo and PARPi lead-optimization runs. I used the BINANA algorithm (version 

1.1.2), which detects interactions between a docked ligand and a receptor. These interactions 

include π-π, T-stacking, cation-π, hydrogen-bond, and electrostatic interactions246. Because Vina 

and QVina2 output multiple poses per docked compound, I limited my analysis to the single pose 

with the best predicted binding affinity per docked compound. 

3.2.4 Phosphorylated Y907 PARP-1 Lead-Optimization Runs 

The upregulation of receptor tyrosine kinase c-Met causes PARPi resistance by 

phosphorylating the PARP-1 residue Y907 (pY907)142. Because many PARPi form π-π stacking 

interactions with Y90717–19,106–112, pY907 confers resistance to multiple PARPi142. To identify 
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potential PARPi that are effective independent of pY907, I modeled pY907 into the 4R6E:A 

PARP-1 catalytic domain and used AutoGrow4 to design novel candidate inhibitors that bind this 

modified PARP-1 pocket.  

3.2.4.1 Building the pY907 PARP-1 Structure and Orienting the Phosphate Moiety 

Because there are no high-resolution structures of PARP-1 with phosphorylated Y907 

(pY907), I built a PARP-1 pY907 model using the PyMol plugin PyTMs (version 1.2)247. 

Beginning with the PDB 4R6E:A structure detailed in “Section 2.3.1: Receptor File Preparation,” 

I created one pY907 model using PyTMs’s default settings and another using PyTMs’s 

“Optimization” option, which adjusts the dihedral angle of the phosphate moiety to avoid steric 

van der Waals clashes247. Because PyTMs also alters the protonation state of the protein, I 

manually substituted the atoms of the phosphate group into the 4R6E:A structure, which required 

replacing the hydrogen atom attached to the Y907 side-group oxygen atom with the phosphate 

group atoms and renumbering the protein’s atom indices. 

I then docked three known PARPi into the catalytic pockets of the two pY907 PARP-1 

structures (pY907-PARP-1) and the original 4R6E:A. Docking was performed with QVina2 using 

the same docking coordinates as in the PARPi lead-optimization runs (Appendix JSON 6), with 

QVina2’s exhaustivity parameter set to 25. 
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3.2.4.2 pY907-PARP-1 Lead-Optimization Runs 

The pY907-PARP-1 lead-optimization runs were performed using the same parameters as 

the PARPi lead-optimization runs (“Section 3.2.2: PARPi Lead Optimization” and Appendix 

JSON 6), but docked into the pY907-PARP-1 structure (“Section 3.3.4.1: Building the pY907 

PARP-1 Structure and Orienting the Phosphate Moiety”). 

These experiments were repeated six independent times in a Python 3.7 environment on 

the same CRC MPI-enable nodes described in “Section 3.2.1.3: Large-Scale de novo Run.” 

3.2.5 AutoGrow4 Applied to a Non-CAT PARP-1 Pocket 

To design novel predicted PARPi that do not bind the catalytic site, I (1) identified 

candidate binding pockets using computational hot-spot mapping; (2) selected a pocket guided by 

druggability analysis and known mutations described in the literature that inhibit PARP-1 catalytic 

activity but do not affect PARP-1 DNA binding activity; (3) generated lead compounds that bind 

the selected pocket using three AutoGrow4 runs; and (4) analyzed the chemical-properties of the 

compounds with the best docking scores to assess properties that may influence future drug design 

targeting the new pocket. 

3.2.5.1 Computational Hot-Spot Mapping, Druggability Analysis, and Pocket Selection 

I performed computational hot-spot mapping to identify candidate non-CAT PARP-1 

pockets and evaluated the identified hot spots in terms of druggability. Specifically, I used the 
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FTMap server243 (default settings; accessed March 30th, 2020) to predict hot spots on the surface 

of the 4DQY45 PARP-1 structure. I eliminated all hot spots located in the catalytic site, as well as 

hot spots on the co-crystalized DNA molecule. 

To evaluate the remaining non-catalytic hot spots, I used two pocket analysis programs: 

POVME248 (version 2.1) (default settings) and DoGSiteScorer249 (version 2.0.0 run with default 

settings). POVME calculates the volume of a pocket by filling the empty space of the cavities with 

equidistant points248; points that are located near protein atoms are removed and the remaining 

points are used to calculate the pocket’s volume248. Additionally, POVME outputs a PDB file of 

the remaining points, which is useful for visualizing the dimensions of a pocket248. DoGSiteScorer 

calculates multiple physiochemical properties (e.g., pocket volume, number of 

aromatic/positive/negative/polar/nonpolar amino acids) into a “Drug Score,” with 0.0 being the 

least druggable and 1.0 being the most druggable249. I also analyzed the catalytic pocket with both 

programs to contextualize my results. The niraparib-bound 4R6E:A structure17 serves as a positive 

control for a druggable pocket. 

I added the criteria that the selected pocket must have residues that, if altered, retain WT 

affinity for DNA but disrupt PARP-1 catalytic activity. Current PARPi are lethal to HR- and BER-

deficient cancer cells because they both inhibit PARP-1 catalytic activity and trap PARP-1 on 

DNA5,13,55,74–77. Thus, I reasoned that disrupting an ideal non-catalytic pocket would not influence 

DNA binding activity, but would have a profound influence on PARP-1 catalytic activation. A 

thorough literature search for mutations within each pocket supported my druggability analysis 

and pocket selection process. Ultimately, I selected a DBD pocket located at the interface of Zn1-

Zn3 as the site for AutoGrow4-guided CADD. 
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3.2.5.2 AutoGrow4 Applied to the DBD 

To generate novel compounds predicted to bind the Zn1-Zn3 interface, I applied 

AutoGrow4 using a large-scale lead-generation approach. I chose a lead-generation approach 

rather than a lead-optimization approach because no existing drugs bind this pocket. To enable a 

fair comparison between compounds that bind the DBD and the CAT, I used similar AutoGrow4 

settings to those used in the large-scale de novo AutoGrow4 run described in “Chapter 3.3.1: 

Large-Scale de novo PARPi Run” (e.g., the same selector, seed population, population sizes, 

docking settings, and Gypsum-DL settings); however, in order to better optimize the run (see 

issues of the large-scale de novo run discussed in “Chapter 3.3.1: Large-Scale de novo PARPi 

Run”), I set the DBD runs to propagate for fewer generations (num_generations was set to 10) and 

set the amount of diversity to remain constant throughout the run 

(diversity_seed_depreciation_per_gen was set to zero). Both the DBD and CAT runs were 

performed in triplicate. The exact settings for the DBD runs are provided in Appendix JSON 7. 

These AutoGrow4 run were performed using ten MPI-enabled CRC computer nodes with 

28-core Broadwell processors and 64GB RAM/node, networked with Intel’s Omni-Path 

communication architecture. 

3.2.5.3 Post-Run Analysis 

To analyze the compounds produced by the AutoGrow4 DBD runs, I pooled the 

compounds from the three runs by generation into generations. Because parallel simulations can 
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produce identical compounds, I eliminated all redundant canonical SMILES and preserved the best 

docking score. I repeated this process on the three CAT runs. 

To compare the populations of compounds produced by the DBD and CAT runs, I analyzed 

their ’physiochemical properties such as compound flexibility (i.e., the ratio of rotatable to rigid 

bonds) and the size of the largest cyclic group. All properties were assessed using the Python 

library Scopy166. To assess the protein-ligand interactions of the DBD-targeted compounds, I used 

the BINANA246 algorithm following the procedures described in “Chapter 3.2.3: Interaction 

Assessment of AutoGrow4-Generated Compounds.” Additionally, I visually inspected the 

compounds with strongest predicted binding affinities to better understand high affinity binding 

within the chosen pocket. 

3.3 Results and Discussion 

In this section, I will present five applications of AutoGrow4 runs to PARP-1. First, I will 

present a large-scale lead-generation run targeting the catalytic site. Second, I will describe an 

AutoGrow4-guided PARPi lead-optimization run that also targets the catalytic site. Third, I will 

demonstrate hypothesis generation as a new application of the AutoGrow algorithm. This 

hypothesis-generation approach led me to my fourth application, applying AutoGrow4 to a post-

translationally modified PARP-1 catalytic site that is resistant to known PARPi. Here I have the 

goal of finding novel inhibitors that are unaffected by the post-translational modification. Fifth, I 
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use AutoGrow4 to identify predicted inhibitors that do not bind to the catalytic site. My analysis 

of these compounds will help guide future rational PARPi design. 

3.3.1  Large-Scale de novo PARPi Run 

In this section I will discuss a large-scale AutoGrow4 lead-generation run applied to the 

PARP-1 catalytic site. The goal of this large-scale de novo run was to create drug-like compounds 

optimized for strong predicted binding affinities, as well as to highlight AutoGrow4’s ability to 

process hundreds of thousands of compounds in a single run. I ran AutoGrow4 with large 

population sizes and for 30 generations. The run was seeded with a large, diverse library of random 

seed molecules and fragments. A more thorough description of my methods is provided in “Section 

3.2.1: Large-Scale de novo Run,” and exact settings are provided in Appendix JSON 5.  

3.3.1.1 Predicted Ligands  

This large-scale run produced many high scoring compounds (Figure 14). Compound 4, 

created in the 30th generation by crossover, is one of the best scored compounds in the run and has 

a QVina2-predicted binding affinity of -16.7 kcal/mol (Figure 14 and Figure 15). The crossover 

event that created Compound 4 randomly chose the same decorating moieties as one of Compound 

4’s parents, essentially resampling the parent with newly generated structural variants (via 

Gypsum-DL) and docking poses.  

Some of the best-scoring compounds are very similar to each other. For instance, 

Compound 4 is identical to the best-scoring compound from the 20th generation, but with a 
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different ionization state and docking pose (i.e., binding position/orientation) (Figure 14A). Two 

other close analogs of Compound 4, including the best-scoring compound from the 25th generation 

(Figure 14B middle), also have the same overall best docking score of the run, -16.7 kcal/mol 

(Figure 14B). These best-scoring analogs share three structural regions: a 7-

methylbenzo[d][1,2,3]triazol-1-ide on one end, a central 1H-oxazolo[4’,5’:3,4]benzo[1,2-

d][1,2,3]triazole, and a 1-ethyltetrazolidine at the other end (Figure 14B). That highly similar 

chemical structures have come to dominate the set of best-scoring compounds suggests 

convergence on a local optimum. The convergence of this run, as well as the implications of 

convergence, will be discussed further in “Chapter 3.3.1.3: A Caution Regarding Homogeneity 

and Convergence.” 

Compound 4 has a 1H-benzo[d][1,2,3]triazole substructure that is predicted to form a π-π 

stacking interaction with the PARP-1 Y907, H862, and Y896 residues. Two of these residues 

(H862 and Y896) are part of the PARP-1 catalytic triad16, which is conserved in PARP-1 through 

PARP-616. Hydrogen bonds are also predicted to form between both compounds’ cyclic nitrogen 

atoms and the backbone atoms of PARP-1 residues G863, R865, and R878. 

Lastly, an electrostatic interaction between Compound 4’s tetrazolidine substructure and 

D766 (located on the HD αF helix) suggests that Compound 4 is either a type I PARPi (an inhibitor 

that promotes PARP-1 retention on DNA through allosteric regulation, resulting in long DNA-

retention times and high toxicity73) or a type II PARPi (an allosterically neutral inhibitor with 

moderate DNA-retention times and toxicity73). Type I PARPi drive HD instability, which causes 

a strong allosteric effect that traps PARP-1 on DNA73. Although the electrostatic interaction 

between Compound 4 and D766 is dependent on the protonation states of D766 and the 
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tetrazolidine substructure (Figure 15B), the close proximity of Compound 4 to D766 (Figure 15B) 

suggests that Compound 4 may be capable of disrupting the HD αF helix. 
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Figure 14. Best-scoring compounds from every fifth generation. 

A) The best-scoring compounds from generations 0, 1, 5, 10, 15, 20, 25, and 30 of AutoGrow4’s 
large-scale de novo run. ZINC4292977 (top left) is a source compound that was downloaded from 
the ZINC15 database230. Compound 4 (bottom right) is the best-scoring compound in the run and 
is also shown in Figure 15. All reported docking scores were calculated using QVina2. B) 
Compound 4 (boxed compound on left) and two close analogs (middle and right) had equally good 
docking scores (-16.7 kcal/mol).  
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Figure 15. Results of the large-scale de novo run. 

A) A plot of the QVina2 scores for each generation. Shown in blue line is the average score of all 
compounds per generation. The average scores of the top 50, 20, 10, and 1 compounds are shown 
in cyan, purple, green, and red line, respectively. The QVina2 docking scores of known ligands 
are shown as dashed lines. B) One of the best-scoring AutoGrow4-generated compounds, 
Compound 4, that was docked with QVina2 (30th generation). To the left is a 2D representation 
of Compound 4. To the right is Compound 4 docked into the PARP-1 catalytic domain (PDB ID: 
4R6E:A, shown in blue ribbon). Select residues that interact with Compound 4 are shown in 
colored stick representation. Figure is from the AutoGrow4 manuscript, which has been published 
in the Journal of Cheminformatics. This figure is reprinted with rights and permissions under the 
Creative Commons Attribution 4.0 International License, which “allows unrestricted use, 
distribution, and reproduction in any medium”6. 
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3.3.1.2 A Caution Regarding Chemical Properties 

Although longer AutoGrow4 runs have the potential to produce compounds with 

remarkable predicted binding affinities, I recommend running multiple independent runs for fewer 

generations. In this section, I will discuss several disadvantages of longer runs and approaches to 

counter these disadvantages.  

First, as compounds evolve, biases within the fitness function and/or ligand-creation 

operators begin to apply undesired selective pressures. These selective pressures cause compounds 

to acquire chemical properties that are favored by these biases. For example, Compound 4 (Figure 

15B p.134), one of the best-scoring compounds produced by the extensive PARP-1 de novo run, 

has a MW near the 480 Da maximum permitted by the applied Ghose filter (478.1 Da)168. The 

average MW of the top 100 compounds of this run is 476.98 Da. This apparent evolutionary 

pressure favoring increased MW is likely caused by (1) the Vina scoring function’s known bias in 

favor of larger molecules184, and (2) the AutoGrow4 mutation and crossover operators, which tend 

to expand compounds rather than truncate them. The latter is further evaluated in “Section 3.3.2.2: 

AutoGrow4 Operators and Molecular Weight.” This size bias may be mitigated by using filters 

that place tighter restrictions on MW, as well as ligand-efficiency rescoring235. 

Second, longer AutoGrow4 runs can result in the accumulation of undesirable functional 

groups. The 24th-generation compound shown in the right position of Figure 14B (p.133), one of 

the best-scoring compounds in the large-scale de novo run, is an excellent example of a compound 

acquiring such undesirable moieties. It accumulated azo and ethyne moieties, two functional 

groups that belong to a broad category of substructures that are considered to be mutagenic, 
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pharmacokinetically unfavorable, reactive, and/or likely to interfere with typical high-throughput 

screening approaches171. These functional groups would have been filtered out had the BRENK 

filter been applied during the run171.  

The third disadvantage of longer AutoGrow4 runs relates to a chemical property of great 

importance in de novo design, compound synthesizability. The cumulative number of modifying 

events (e.g., crossover and mutations) that influence a population increases with every new 

generation, creating a population drift in which subsequent generations become less and less like 

the source compounds. Unfortunately, this also means that synthesizability tends to diminish with 

every generation. Again, filter(s) and scoring functions, particularly ones that factor in 

synthesizability, may help to limit this problem. 

3.3.1.3 A Caution Regarding Homogeneity and Convergence 

In this section, I will discuss the problem of population homogeneity for longer AutoGrow4 

runs. Significant loss of population diversity often results in premature convergence147. This occurs 

when compounds become so fit that new compounds are unable to outcompete them. Taken to an 

extreme, these fit compounds can become overrepresented within the pool of generated small 

molecules, resulting in a homogenous population that is unable to escape a local optimum. 

Early generations tend to rapidly improve in overall fitness6 (Figure 15A p.134), but the 

rate of improvement slows in later generations despite requiring similar computational resources 

(Figure 15A p.134). This decrease was observed in the large-scale de novo run (Figure 15A p.134). 

The average docking score of the top 50 molecules improved -6.09 kcal/mol from generation zero 
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to five (-7.36 kcal/mol to -13.45 kcal/mol, respectively), but only improved another -2.99 kcal/mol 

by the 30th generation (-16.44 kcal/mol) (Figure 15A p.134). By the 20th generation the populations 

began to converge, with only minor additional improvements in fitness (Figure 15A p.134). In 

fact, the top-scoring compounds for the last ten generations included only Compound 4 and its 

analogs (Figure 15 p.134). Although it is possible for a GA to escape convergence, it is more 

computationally efficient to run multiple independent experiments for fewer generations. 

To determine when the run had reached convergence, I calculated the normalized diversity 

scores for the total population, as well as for the best docking scored 50, 100, 200, and 500 

compounds per generation (“Chapter 2.3.5: Calculating Normalized Diversity Scores”). The best-

scoring compounds became increasingly homogenous as the run continued (Figure 14 p.133). For 

instance, the normalized diversity score of the top 500 docked compounds (9.09%) increased from 

a low of 0.23 in the second generation to 0.43 in the 30th generation (Figure 16). As described in 

“Section “1.2.1.3: Fitness,” this loss of diversity and lack of score improvement indicates that a 

subset of compounds is so fit that new compounds are unable to outcompete them. These are signs 

of convergence. However, the normalized diversity of the entire population remained fairly 

constant from generation 5 to 30 (Figure 16), suggesting that the population did not fully converge.  

AutoGrow4 offers several strategies to delay population convergence and homogeneity. 

Seeding an experiment with a sizable library of diverse seed molecules, particularly in earlier 

generations, can encourage the exploration of a larger subset of chemistry space. The incorporation 

of the diversity scoring function (see “Section 2.2.7: Assessing Fitness”) also actively incorporates 

more diversity into the list of compounds that seed each generation (Figure 9 p.74). By ensuring 

that each generation is seeded with a combination of well-scoring (primary fitness metric) and 
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unique (secondary fitness metric) compounds, AutoGrow4 aims to search more of chemistry space 

while still maintaining selective pressure for well-scoring compounds. Despite these safeguards, I 

advise performing multiple runs of fewer generations rather than longer runs.  
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Figure 16. Diversity scores of the best-scoring compounds. 

The normalized diversity score of each generation, as well as the top 50, 100, 200, and 500 
compounds per generation. The larger the normalized diversity score, the more homogenous a 
subpopulation. Although there is little change in the overall diversity score, the best docking scored 
compounds become more homogenous in later generations. 
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3.3.2 PARP-1 Lead Optimization 

In this section, I will discuss AutoGrow4-guided lead optimization of known PARPi. A de 

novo search seeded with random molecules is an excellent tool for finding well-scoring candidate 

inhibitors, but it invests a large amount of computational resources in testing unlikely leads. In 

contrast, seeding a de novo lead optimization search with a set of known inhibitors orients the 

search near these inhibitors. The search then loses less time to testing compounds unlikely to 

become successful drugs.  

The goal of these lead-optimization runs was to evolve compounds with improved docking 

scores that remain chemically similar to the PARPi seeds and, in doing so, to illustrate 

AutoGrow4’s utility as a tool for lead optimization. I seeded six independent AutoGrow4 runs 

with 11 PARPi, together with 83 fragments generated by BRICS decomposition of those 11 PARPi 

(see “Section 3.2.2.2: Preparation of PARP inhibitor (PARPi) Source Library”). To focus the 

search near these PARPi, I only ran AutoGrow4 for five generations. I increased the QVina2 

docking-exhaustiveness parameter from the default 8 to 25. This increased docking parameter is 

computationally expensive but improves the chance of finding an optimal docked pose. I also used 

a large population size for each generation (“Section 3.2.2.3: PARPi Lead-Optimization” and 

Appendix JSON 6). 
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3.3.2.1 Predicted Ligands 

AutoGrow4 produced many compounds with stronger predicted binding affinities than the 

seed PARPi (i.e., the zeroth generation). In fact, by the first generation the docking scores had 

already improved (Figure 17). The average QVina2 docking score for the top ten compounds 

across all six runs (the grand mean) was -13.0 kcal/mol (Figure 17). By the third generation, the 

grand mean of the top 20 compounds already equaled that of the best-scored pose of the best-

scoring known PARPi, olaparib (AstraZeneca), with a score of -13.6 kcal/mol (Figure 17). By the 

fifth generation, the grand mean of the top 50 compounds (-14.0 kcal/mol) surpassed that of 

olaparib (Figure 17). 

One of the best-scoring molecules from the six PARPi lead-optimization runs, Compound 

5, has chemical groups derived from olaparib and CEP-9722 (Cephalon), with a QVina2 score of 

-14.7 kcal/mol (Figure 18). I focus the discussion here on Compound 5 rather than on the best-

scoring compound, Compound 3 (Figure 10B p.76), because Compound 3 is comprised of a single 

PARPi that had been heavily modified by three mutation events (Figure 10B p.76). Compound 5, 

on the other hand, is derived from a single crossover event of two PARPi fragments (OlaparibFrag3 

and CEP-9722Frag1) and is comprised exclusively of PARPi-derived moieties, providing a simple 

yet excellent example of AutoGrow4-directed lead optimization (Figure 18). 

The shared substructure used to cross OlaparibFrag3 and CEP-9722Frag1 is a benzene ring 

(Figure 18 and Figure 19). Compound 5 is comprised of two main segments, a (4-

(cyclopropylidene(hydroxy)methyl)piperazin-1-yl)(2-fluorophenyl)methanone derived from 
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olaparib, and a 4,5,6,7-tetrahydro-1H-cyclopenta[a]pyrrolo[3,4-c]carbazole-1,3(2H)-dione 

derived from CEP-9722 (Figure 18 and Figure 19). 

Analysis of PARPi and Compound 5 using the BINANA algorithm246 revealed several 

important interactions. Compound 5 participates in π-π stacking interactions with the PARP-1 

Y907 and Y896 residues (Figure 19C). Additionally, a carbonyl oxygen atom of Compound 5 

forms a hydrogen bond with G863 (Figure 19C). These same interactions are observed in many 

known PARPi17,18,250,251,19,106–112, including the crystallographic structure of olaparib18 (Figure 

19A) and the best-scored pose of CEP-9722 (Figure 19B). 

The region of Compound 5 that is predicted to participate in these π-π stacking interactions 

is a five-ringed aromatic group derived from CEP-9722 (Figure 19). Interestingly, this interaction 

is also present in CEP-9722 even though half of the compound is completely different from CEP-

9722, and this five-ringed aromatic group aligns in a very similar manner (Figure 19B-C). In 

addition to π-π stacking, a CEP-9722-derived oxygen atom forms a hydrogen bond with G863 

(Figure 19). This hydrogen bond is located near the Y907 residue (Figure 19). 

The π-π stacking interactions with Y907 and Y896 appear to be very important for PARPi 

binding. This interaction can also be observed in the crystal structure of olaparib bound in the 

PARP-1 catalytic pocket (PDB: 5DS318) (Figure 19A), as well as in crystal structures of niraparib 

(PDD: 4R6E17), rucaparib (PDB: 4RV617), and talazoparib (PDB: 4UND17). Many of these same 

interactions are found in the top AutoGrow4-generated compounds from both the large-scale de 

novo and PARPi lead-optimization runs.  

Compound 5 contains a piperazine moiety that is derived from olaparib (Figure 18 and 

Figure 19). CEP-9722 also contains a piperazine, but it is attached to the molecule in a different 
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location, and the CEP-9722 and olaparib piperazine moieties are oriented in different directions 

within the pocket (Figure 19B-C). Interestingly, the olaparib-derived piperazine of Compound 5 

docks in the same orientation as the CEP-9722 piperazine (Figure 19). Several additional crystal 

structures of PARPi with piperazine moieties have alternate positionings18,110,252,253. One 

prominent example is the structure of the type I PARPi EB-47254,25573 bound to PARP16 (PDB ID: 

6HXR). In this crystal structure the piperazine group is placed in a similar manner to Compound 

5’s docked pose. However, it should be noted that EB-47 was not included in the PARPi source-

library that seeded the six lead-optimization runs. 
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Figure 17. A plot of the six PARPi lead-optimization runs. 

Generation zero is the initial seed population consisting of 11 PARPi and 83 PARPi fragments. 
Generations one to five are the AutoGrow4-generated populations. For each generation, the grand 
mean of all QVina2 scores across all six runs is shown in blue. The grand means of the top 50, 20, 
10, and 1 compounds are shown in cyan, purple, green, and red, respectively. Error bars represent 
the standard deviations for the six independent runs. Figure is from the AutoGrow4 manuscript, 
which has been published in the Journal of Cheminformatics. This figure is reprinted with rights 
and permissions under the Creative Commons Attribution 4.0 International License, which “allows 
unrestricted use, distribution, and reproduction in any medium.”6 
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Figure 18. The lineage of Compound 5 generated by a PARPi lead-optimization run. 

Compound 5, one of the best-scoring compounds as assessed by QVina2, was created in the first 
generation via a single crossover between CEP-9722Frag1 and OlaparibFrag3. Figure is from the 
AutoGrow4 manuscript, which has been published in the Journal of Cheminformatics. This figure 
is reprinted with rights and permissions under the Creative Commons Attribution 4.0 International 
License, which “allows unrestricted use, distribution, and reproduction in any medium.”6 
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Figure 19. Example ligand structures and poses from a lead-optimization run. 

Select residues of important interactions are shown in colored stick representation (top). The 
shared substructures are highlighted in blue, yellow, and pink (bottom). A) For easy comparison, 
the crystallographic olaparib pose (PDB: 5DS3) was aligned and superimposed on the 4R6E:A 
structure (blue ribbon). B) The best-scoring pose of CEP-9722 docked into the 4R6E:A structure 
using QVina2. C) The best-scoring pose of Compound 5 docked into the 4R6E:A structure using 
QVina2. Figure is from the AutoGrow4 manuscript, which has been published in the Journal of 
Cheminformatics. This figure is reprinted with rights and permissions under the Creative 
Commons Attribution 4.0 International License, which “allows unrestricted use, distribution, and 
reproduction in any medium.”6 
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3.3.2.2 AutoGrow4 Operators and Molecular Weight  

Molecular weight (MW) is an important property for drug-likeness163,168, and the majority 

of small-molecule drugs have MWs between 160 Da and 480 Da168. In this section I will examine 

the MW trends in the AutoGrow4 runs, as well as describe some strategies for mitigating these 

trends.  

Compounds in later generations tended to be larger than those in earlier generations. The 

average MW of the source PARPi and PARPi fragments is 196.37 Da, but by the fifth generation 

the average MW of generated compounds was 386.18 Da. This increase in MW could be caused 

by an AutoGrow4 tendency to grow compounds rather than truncate them. Alternatively, because 

the Vina scoring function has been shown to favor larger compounds184, scoring function bias may 

also contribute to the observed increase in compound size. To determine the role AutoGrow4 plays 

in growing compounds, we examined the lineages of compounds generated in the PARPi lead-

optimization runs. 

First, we analyzed compounds created by mutation. The MW of the 55,683 compounds 

created by the mutation operator in the six PARPi lead-optimization runs was on average 28% 

greater (66.0 Da) than their respective progenitor compounds. Despite this, MW decreased in 11% 

of all mutation events. For example, the mutation event shown in Figure 20A produced a 

compound with a lower MW than the parent compound. 

Second, we analyzed compounds created by crossover events. Because crossovers rely on 

two parent compounds, we compared the MW of the child to the average MW of the parents. The 

six PARPi lead-optimization runs produced 50,169 compounds via the crossover operator; 43% of 
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these had a MW less than the average of its two parent compounds. The average change in MW 

was an increase of 5% (11.5 Da). In the example shown in Figure 20B, the MW of the child 

compound is 13.1% (45.6 Da) less than the average MW of the parent compounds. 

Both the mutation and crossover operators tend to grow compounds. AutoGrow4 offers 

several strategies should users want to mitigate this tendency, such as providing chemical-property 

filters that restrict the MW of compounds. Additionally, the number of generations AutoGrow4 

produces before the compound population approaches filter-imposed MW cutoffs can be expanded 

by seeding generation zero with low-MW small molecules. Increasing the number of crossover 

events relative to the number of mutations may also help because crossovers increase compound 

size to a lesser extent than mutations and so are more likely to reduce the MW of offspring. Lastly, 

AutoGrow4 provides an option to rescore compounds by ligand efficiency, which normalizes the 

docking score by the number of non-hydrogen atoms235, effectively penalizing high-MW 

compounds.  
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Figure 20. Example mutation and crossover events that reduce MW. 

A) An example of a halide-to-cyanide mutation that produced a compound with a lower MW than 
that of the parents. The MW of the child compound is 8 Da less than that of the parent compound, 
a 1.7% reduction. B) An example of a crossover that produced a novel compound with properties 
of both parents, but a lower MW. All compounds in this figure were generated in the AutoGrow4 
PARPi lead-optimization runs. Docking scores were calculated by QVina2, and MWs were 
calculated using RDKit.   
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3.3.3 AutoGrow4 as a Tool for Hypothesis Generation 

In this chapter, I will use the data generated by the AutoGrow4 large-scale de novo run and 

the six parallel PARPi lead-optimization runs to demonstrate AutoGrow4’s usefulness for 

generating hypotheses regarding pharmacologically important protein-ligand interactions. The 

top-scoring compounds from the large-scale de novo run provide insight into protein-ligand 

interactions that have been optimized by 30 generations of selective pressure, whereas the PARPi 

lead-optimization runs provide insight into interactions that are closer to those of experimentally 

verified PARPi. Cataloguing the most prevalent interactions among the best-scoring AutoGrow4-

generated compounds can inform future experiments ranging from quantitative structure-activity 

relationship (QSAR)-based drug design to site-directed mutagenesis. Analysis of the protein-

ligand interactions within both these data sets can teach us about the important interactions of the 

PARP-1 catalytic pocket.  

3.3.3.1 Large-Scale de novo Run Validates AutoGrow4 as a Tool for Lead Generation 

To show that AutoGrow4 is a capable tool for hypothesis generation, I identified the 100 

compounds with the best docking scores from the hundreds of thousands of docking events that 

occurred throughout the large-scale de novo run. I then analyzed the single best predicted pose of 

each compound using the BINANA (version 1.1.2) algorithm246. Four interactions were present in 

all 100 docked poses: two π-π stacking interactions with Y907 and H862, respectively; an 

electrostatic interaction with D766; and a hydrogen-bond interaction with G863 (Table 8). Several 
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other prominent interactions were found that were not as universal: an electrostatic interaction with 

D770 (41%), a hydrogen-bond interaction with R865 (56%), and electrostatic and hydrogen-bond 

interactions with R878 (9% and 47%, respectively) (Table 8).  

The large-scale de novo run was seeded with random small molecules, thereby blinding 

AutoGrow4 from prior knowledge of existing PARPi and their interactions, and thus serves as a 

test of AutoGrow4’s ability to predict pharmacologically important interactions against the well-

characterized catalytic pocket of PARP-1. As discussed above, AutoGrow4 recapitulated many of 

the interactions observed in crystallographic structures of known PARPi. For example, the 

crystallographic pose of the known PARPi olaparib participates in many of the same interactions 

seen among the top AutoGrow4 compounds18. The fact that AutoGrow4 so frequently generated 

compounds that mimic the binding interactions of known PARPi demonstrates AutoGrow4’s 

proficiency at de novo generation and lead-optimization approaches. 

This application of AutoGrow4 also generated many compounds with better docking scores 

than known PARPi (Figure 15A p.134). These in silico compounds provide insight into future 

optimization strategies. For example, all 100 top-scoring AutoGrow4-generated compounds 

formed electrostatic interactions with D766 but olaparib does not, suggesting that adding a 

positively charged moiety extending the olaparib piperazine may enable an additional interaction 

with D766. 
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Table 8. Protein-ligand interactions of the 100 best-scored compounds from the large-scale 
de novo run. 

This table is limited to the single best-scored pose per compound and only includes interactions 
detected by BINANA (version 1.1.2), using the default settings. Infrequent interactions (< 10%) 
are excluded from the table. All values are given as percentages. Table is from the AutoGrow4 
manuscript, which has been published in the Journal of Cheminformatics. This table is reprinted 
with rights and permissions under the Creative Commons Attribution 4.0 International License, 
which “allows unrestricted use, distribution, and reproduction in any medium.”6 
  

D766 D770 H862 G863 R865 R878 Y907 
Cation- π 0 0 98 0 0 0 0 
Hydrogen bond 3 0 1 100 56 47 1 
Electrostatic 100 41 3 0 0 9 0 
T-stacking 0 0 71 0 0 0 0 
π-π 0 0 100 0 0 0 100 
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3.3.3.2 PARPi Lead-optimization Runs Detect Additional Interactions 

Determining the most prevalent protein-ligand interactions among well-scoring 

compounds can inform future lead-optimization efforts. A single interaction was unanimous 

among the top 100 compounds generated by the PARPi lead-optimization runs : π-π stacking with 

Y907 (Table 9). Similar to the large-scale de novo run, the most prevalent interactions included 

interactions with H862 (42% π-π stacking, 8% cation-π, 6% T-stacking, and 1% hydrogen 

bonding), hydrogen bonding with G863 (74%), interactions with R865 (19% hydrogen bonding 

and 1% electrostatic interaction), and hydrogen bonding with R878 (50%) (Table 9). Unlike the 

large-scale de novo run, where electrostatic interactions were commonly formed with the HD αF 

residues D766 and D770 (100% and 41% respectively), only 6% of the top lead optimization pool 

formed electrostatic interactions with D766, and none formed electrostatic interactions with D770. 

Because disruption of the HD αF helix plays an important role in determining the strength of DNA-

trapping73, it is likely that the PARPi lead-optimization compounds would have weaker trapping 

effects than the compounds from the large-scale de novo run. 

Two interactions were common in the lead-optimization pool that were not common in the 

large-scale de novo pool: hydrogen bonding with N868 (10% lead-optimization pool; not present 

in de novo pool), and π-π stacking and hydrogen bonding with Y896 (22% and 1% respectively in 

the lead-optimization pool; 4% and 2% respectively in the de novo pool) (Table 9). N868 and R865 

are located toward the middle of the catalytic pocket. Y907 and D766 are on opposite ends of the 

pocket17. Like R865 interactions, N868 interactions appear to stabilize linker regions of 

compounds that connect moieties docked near Y907 and moieties docked near D766 and N878. 
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The tyrosine residues Y896 and Y907 are located near each other in the 4R6E structure17 in the 

nicotinamide-binding site56, which is where prominent interactions located near Y907 occur. The 

decreased prevalence of π-π stacking with Y896 in the de novo pool is likely due to a closer 

positioning of aromatic groups near Y907; 37 compounds in the de novo pool were < 2.5 Å from 

Y907, but none of the compounds in the lead-optimization pool were proximal to Y907.  
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Table 9. Protein-ligand interactions of the 100 best-scored compounds from the PARPi 
lead-optimization runs. 

This table is limited to the single best-scored pose per compound and only includes interactions 
detected by BINANA (version 1.1.2), using the default settings. Infrequent interactions (< 10%) 
are excluded from the table. All values are given as percentages. 

  
H862 G863 R865 N868 R878 Y896 Y907 

Cation-π 8 0 0 0 0 0 1 
Hydrogen bond 1 74 19 10 50 1 2 
Electrostatic 0 0 1 0 0 0 0 
T-stacking 6 0 0 0 0 0 0 
π-π 42 0 0 0 0 22 100 
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3.3.3.3 Y907 π-π Stacking Interaction and the Future of Orthosteric PARPi 

All of the best-scoring AutoGrow4-generated compounds from both the large-scale de 

novo and lead-optimization runs were predicted to form π-π stacking interactions with Y907 (Table 

8 p.152, Table 9 p.155). Additionally, most prominent interactions are located near Y907, either 

in the nicotinamide-binding pocket (NI site) (e.g., Y896, and Y907) or in the adenine-ribose 

binding site (AD site) (e.g., D770, H862, and R865) (Table 8 p.152, Table 9 p.155, Figure 15 

p.134, and Figure 19 p.146). That many co-crystallized PARPi also π-π stack with Y90717–19,106–

112 reinforces the critical role Y907 plays in high-affinity binding and suggests that this interaction 

may be broadly critical regardless of chemical scaffold.  

The high frequency of Y907 interactions raises concerns for the future of orthosteric (i.e., 

non-allosteric) PARPi. Y907 is phosphorylated by the receptor tyrosine kinase c-Met142, which 

results in increased catalytic activity and weakened binding affinity to PARPi142. Because c-Met 

can reduce PARPi binding, upregulation of c-Met provides a potential mechanism for PARPi 

resistance142. This highlights the need for further development of next-generation PARPi that do 

not rely on Y907 interaction, either by targeting a different pocket or by exploiting a different set 

of protein-ligand interactions. 

3.3.4 AutoGrow4 Applied to PARP-1 with Phosphorylated Y907 (pY907) 

Multiple AutoGrow4 runs revealed that Y907 plays an important role in mediating small-

molecule binding to the PARP-1 catalytic pocket. Because phosphorylation of Y907 (pY907) by 
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the receptor tyrosine kinase c-Met decreases PARP-1 inhibition and weakens the binding affinity 

of veliparib, rucaparib, and olaparib142, finding novel PARP-1 inhibitors that bind independent of 

Y907 phosphorylation is important for treating HR-deficient cancer cells that have gained 

resistance to PARPi via pY907. In this section, I will use AutoGrow4 to design candidate inhibitors 

that are predicted to bind PARP-1 when Y907 is phosphorylated. 

3.3.4.1 Building the pY907 PARP-1 Structure and Orienting the Phosphate Moiety 

To identify novel compounds that bind PARP-1 with phosphorylated Y907, I generated 

models of PARP-1 with pY907 for use in AutoGrow4 lead-optimization runs. Because there 

currently is no high-resolution structure of PARP-1 with pY907, I used the PyMOL plugin PyTMs 

(version 1.2)247 to add and orient the phosphate group. I produced two structures of pY907, one 

using PyTMs’ default settings and the other using PyTMs’ “Optimization” option (Figure 21), 

which adjusts the dihedral angle of the phosphate moiety to reduce steric van der Waals clashes247. 

Using the default settings, PyTMs oriented the phosphate group away from the NAD+ binding site 

(Figure 21B). On the other hand, the “optimized” version oriented the phosphate group toward the 

NAD+ binding site (Figure 21C).  

To determine which version of the pY907 structure is more likely to be biologically 

relevant, I used QVina2 to exhaustively dock the known PARPi veliparib (PDB: 5LX617), 

rucaparib (PDB: 4RV617), and olaparib (PDB: 5DS318) into each version of pY907 PARP-1, as 

well as into the nonphosphorylated structure 4R6E:A. Because these three PARPi have weakened 

binding affinities when Y907 is phosphorylated142, the model associated with the worst docking 
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scores is more likely to be biologically relevant. I predicted that the optimized pY907 PARP-1 

model would yield worse docking scores because the phosphate group blocks π-π stacking with 

pY907. As expected, the docking scores associated with the optimized structure were worse for all 

three PARPi vs. nonphosphorylated PARP-1 (Table 10). I therefore selected this model to use in 

subsequent AutoGrow4 runs. 

The average docking score for these three PARPi was -8.9 kcal/mol when using the 

optimized pY907 PARP-1, which was 13.6% weaker compared to the average score when using 

the nonphosphorylated PARP-1 structure (-10.3 kcal/mol) (Table 10). For the non-optimized 

pY907 PARP-1, QVina2 actually predicted stronger binding affinities for all three PARPi, with 

the average docking score of -10.5 kcal/mol (Table 10). Based on these results, I rejected the 

pY907 PARP-1 structure created with default settings and selected the optimized pY907 PARP-1 

structure for further experiments. I refer to the optimized pY907 PARP-1 structure as pY907-

PARP-1. 

This approach for modeling PARP-1 with pY907 has its limitations, as it ignores the 

possibility that post-translational phosphorylation causes conformational changes within the 

catalytic pocket. However, there are currently no high-resolution PARP-1 structures with pY907 

to suggest what rearrangements may take place in the pocket as a result of phosphorylation. Future 

research using techniques such as molecular dynamics, NMR, and X-ray crystallography to 

determine the structure of pY907 PARP-1 would greatly improve our understanding of the 

mechanism of pY907-triggered PARPi resistance.  
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Figure 21. Comparisons of potential phosphate orientations for pY907. 

A) The catalytic pocket of the nonphosphorylated PARP-1 catalytic domain (PDB: 4R6E:A). In 
this structure the hydrogen atom attached to the side-chain oxygen atom is pointing away from the 
binding pocket. B) The PyTMs-generated position of pY907 using default settings. The phosphate 
moiety is pointing away from the binding pocket. C) The PyTMs-generated position of the pY907 
using the PyTMs “Optimization” option. The phosphate moiety is pointing into the binding pocket. 
PARP-1 is shown in blue cartoon representation. The crystal structure of niraparib (PDB: 4R6E) 
(gray) and Y896 (purple) are shown to provide context.  
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Table 10. Docking scores of three PARPi positioned within the nonphosphorylated and 
pY907-PARP-1 structures. 

The three PARPi that were docked into the PARP-1 structures. “PARP-1” is the 
nonphosphorylated 4R6E:A structure. “pY907 Default” is the pY907-PARP-1 structure generated 
using PyTMs’ default settings. “pY907 Optimized” is the pY907-PARP-1 structure generated 
using PyTMs’ “Optimization” option. All docking scores were calculated using QVina2. 
 

PARPi (PDB) PARP-1 pY907 Default pY907 Optimized 
Veliparib (5LX6) -8.4 kcal/mol -8.7 kcal/mol -7.5 kcal/mol 

Rucaparib (4RV6) -10.2 kcal/mol -10.4 kcal/mol -8.8 kcal/mol 
Olaparib (5DS3) -12.2 kcal/mol -12.4 kcal/mol -10.3 kcal/mol 
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3.3.4.2 AutoGrow4 Predicts Leads that Bind to pY907-PARP-1 

To identify novel compounds that are predicted to bind PARP-1 independent of the Y907 

phosphorylation state, I applied AutoGrow4 to the pY907-PARP-1 catalytic pocket. I ran six 

AutoGrow4 runs, using the same settings as the previous PARPi lead-optimization runs. 

Over five generations, AutoGrow4 identified many candidate compounds with stronger 

predicted pY907-PARP-1 binding affinities than the initial seed population (Figure 22). The grand 

mean of the top 50 compounds improved 56.8% from -7.99 kcal/mol in generation zero to -12.53 

kcal/mol in the fifth generation (Figure 22). This improvement is comparable to that seen in the 

first five generations of the initial nonphosphorylated PARP-1 lead-optimization runs (55.1%, 

Figure 17 p.144). The best-scored compound of the six runs had a docking score of -13.5 kcal/mol 

(Figure 23 and Figure 24). Analysis of this best-scored compound using the BINANA algorithm246 

identified an electrostatic interaction with D770 and a hydrogen bond with D770 and N868 (Figure 

24B). Although this compound’s bicyclo[3.2.0]heptane moiety was positioned only 3.2 Å from 

the phosphate group, BINANA did not detect any specific protein-ligand interactions with pY907 

(Figure 24B). 

To further assess the leads generated by these runs, I re-docked the top ten compounds into 

the nonphosphorylated PARP-1 structure (Figure 23). Of the ten reassessed compounds, half had 

improved docking scores when docked into the nonphosphorylated PARP-1, four had weaker 

scores, and one had the same predicted score (Figure 23). These results suggest that the 

phosphorylation of Y907 does not exclude binding to the catalytic domain. Re-docking the best-

scored compound into the nonphosphorylated PARP-1 structure resulted in a near identical 
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positioning of the compound within the pocket, although with a weakened predicted binding 

affinity (-13.1 kcal/mol) (Figure 23 and Figure 24). Despite this, this compound had a better 

predicted binding affinity when docked into both PARP-1 structures than olaparib (PDB: 5DS318) 

when docked into the nonphosphorylated PARP-1 structure (Figure 23, Figure 24, and Table 10 

p.160).  

Analysis of the 100 best-scored compounds using the BINANA algorithm246 revealed 

several frequent interactions. Despite the presence of the phosphate moiety, 24% of the best-

scoring compounds were still predicted to form π-π stacking interactions with pY907 (Table 11). 

In contrast, in the lead-optimization runs applied to the nonphosphorylated catalytic site, 100% of 

top compounds were predicted to form π-π stacking interactions with Y907 (Table 9 p.155). These 

results suggest that it is possible to design novel PARPi that bind independent of PARP-1’s 

Y907/pY907 state. Additionally, BINANA found that 20% of the top compounds from the pY907-

PARP-1 runs are predicted to form π-π stacking interactions with H862 (Table 11). Again, this 

interaction is more prevalent in the nonphosphorylated PARP-1 runs, where 42% of top 

compounds were predicted to participate in a π-π stacking interaction with H862 (Table 9 p.155). 

Lastly, BINANA detected hydrogen bonding in the pY907-PARP-1 runs: 13% with R878, 4% 

with H862, and 3% pY907 (Table 11). In the lead-optimization runs applied to the 

nonphosphorylated catalytic site, 50% of the top compounds were predicted to form hydrogen 

bonds with R878 (Table 9 p.155). One potential reason for fewer identified prominent (≥ 10%) 

protein-ligand interactions is that the pY907 disrupted the interactions responsible for strong 

binding.  
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This application of AutoGrow4 to pY907-PARP-1 identified candidate PARPi compounds 

that score well when docked into both the nonphosphorylated and pY907 PARP-1 catalytic 

pockets. My results suggest that pY907 does not preclude small-molecule binding to the catalytic 

domain, though it may obstruct several protein-ligand interactions that contribute to high-affinity 

binding to the nonphosphorylated pocket. Although these candidate compounds have yet to be 

experimentally verified as PARPi, this work suggests a method for designing inhibitors that bind 

regardless of the Y907 phosphorylation state. Current inhibitors are susceptible to PARPi 

resistance142 because they all target the same catalytic pocket17–19,106–112, so finding alternative 

inhibitors that are not susceptible to the same resistance mechanisms is important for treating HR-

deficient cancer cells.  
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Figure 22. A plot of the QVina2 scores of six PARPi lead-optimization runs applied to 

pY907-PARP-1. 
Generation zero is the initial seed population consisting of 11 PARPi and 83 PARPi fragments. 
Generations one to five are the AutoGrow4-generated populations. For each generation, the grand 
mean of all QVina2 scores across all six runs is shown in blue. The grand means of the top 50, 20, 
10, and 1 compounds are shown in cyan, purple, green, and red, respectively. Error bars represent 
the standard deviations for the six independent runs. For ease of comparison, the dotted lines 
represent the docking scores of select compounds docked into the nonphosphorylated PARP-1 
structure (4R6E:A).  
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Figure 23. The ten best scoring compounds from the pY907-PARP-1 lead-optimization 

runs. 
The docking scores were determined by exhaustively docking the compound into the pY907-
PARP-1 (top score) and the nonphosphorylated PARP-1 (bottom score) structures. Docking scores 
were determined using QVina2. 
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Figure 24. The best-scored compound of the pY907-PARP-1 PARPi lead-optimization runs. 
A) A 2D representation of the best-scoring compound. The docking score was determined by 
QVina2. B) The docked pose of the best-scoring AutoGrow4-generated compound docked into 
pY907-PARP-1. The phosphorous atom of pY907 is shown in brown. C) The same compound re-
docked into the nonphosphorylated PARP-1 catalytic domain using QVina2. Select residues are 
shown in colored-stick representation.  
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Table 11. Protein-ligand interactions of the 100 best-scored compounds from the pY907-
PARP-1 lead-optimization runs. 

This table is limited to the single best-scored pose per compound and only includes interactions 
detected using BINANA (version 1.1.2), default settings. Infrequent interactions (< 10%) are 
excluded from the table. All values are given as percentages. 

 
 H862 R878 pY907 

Cation-π 1 0 2 
Hydrogen bond 4 13 3 

Electrostatic 0 0 1 
T-stacking 0 0 0 

π-π 20 0 24 
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3.3.5 AutoGrow4 Applied to a Non-catalytic PARP-1 Pocket 

As discussed in “Chapter 3.3.4: AutoGrow4 Applied to PARP-1 with Phosphorylated 

Y907 (pY907),” all current PARPi bind the PARP-1 catalytic pocket and thus are vulnerable to 

the same resistance mechanisms. PARPi that bind PARP-1 at pockets other than the catalytic site 

might serve to address this vulnerability. In this section, I describe a preliminary search for non-

competitive PARP-1 inhibitors. I will begin by using computational hot-spot mapping and prior 

research into PARP-1 structure and function (e.g., about the known effects of mutations at specific 

sites and the mechanism of allosteric regulation through interdomain interactions) to identify 

druggable PARP-1 pockets. Then, I will use AutoGrow4 to predict inhibitors that bind to one of 

these non-catalytic pockets, at a DBD pocket located near the Zn1-Zn3 interface. Lastly, I will 

compare the compounds predicted to bind the DBD with those predicted to bind the catalytic 

domain. 

3.3.5.1 Selecting a Druggable Non-Catalytic Pocket 

To identify druggable PARP-1 pockets, I applied the computational hot-spot mapping 

technique FTMap243 to the most complete, high-resolution PARP-1 structure (PDB: 4DQY45), 

which includes a co-crystallized DNA molecule. FTMap identified five hot spots, excluding those 

positioned on the DNA helix (Figure 25). Of the five, two are located at the Zn1-Zn3 interface 

(Figure 25, top left), one is located at the Zn1-WGR-HD interface (Figure 25A, bottom center), 

and two are located in the CAT (one in the center of the ART subdomain, the other near the αF-αJ 



 169 

interface; Figure 25A, top right). Given the goals of my project, I focused on the Zn1-Zn3 and 

Zn1-WGR-HD hot spots because the two CAT hot spots both occupy the catalytic binding site, 

where existing inhibitors bind. The two hot spots located near the Zn1-Zn3 interface are close to 

each other (Figure 25), so I will treat them as a single site for AutoGrow4-guided CADD. 

Both the Zn1-Zn3 and Zn1-WGR-HD interfaces are promising druggable targets because 

disrupting these interfaces could prevent catalytic activity without influencing DNA binding. As 

discussed in “Chapter 1.1.2.5: PARP-1 Catalytic Activation is Modulated by Interdomain 

Interactions,” both interfaces are involved in interdomain communication, and disruption to either 

interface reduces PARP-1 catalytic activity without altering DNA-binding activity45,46,70. For 

instance, both the W246A (Zn1-Zn3 interface) and W318R (Zn1-WGR-HD interface) mutants 

maintained near-wildtype levels of DNA-binding activity despite having dramatically reduced 

catalytic activity45,46,70. I reason that a small molecule capable of disrupting either the Zn1-Zn3 or 

Zn1-WGR-HD interface could similarly limit catalytic activity without preventing PARP-1 

trapping on DNA, which is important because the effectiveness of current PARPi at treating HR- 

and BER-deficient cancer cells is related to the combined effects of inhibiting PARP-1 activity 

and trapping the inhibited PARP-1 on DNA75,77. Pockets near both interfaces are thus good 

candidate sites for drug inhibition of PARP-1. 

To maximize the chance of identifying useful candidate PARPi, I evaluated each pocket in 

terms of small-molecule druggability. One concern was that both hot spots exist at interdomain 

interfaces. Disrupting protein-protein interfaces with small molecules has been historically 

challenging because protein-protein binding typically occurs on flat, large surfaces that interact 

via many weak interactions256. In contrast, small-molecule/protein binding typically occurs inside 
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deep concavities on the protein surface, allowing the small molecule to make several strong 

interactions256. I will select the most druggable hot spot for AutoGrow4-guided CADD to 

maximize the chance of finding good candidate inhibitors. I will also analyze the properties of the 

niraparib-bound PARP-1 structure (PDB: 4R6E:A), which serves as a reference. 

The Zn1-Zn3 and Zn1-WGR-HD pockets have many similar physicochemical properties, 

but I predict that the Zn1-Zn3 pocket is more druggable (Table 12). Several factors motivate this 

prediction. First, larger and deeper pockets are typically considered more druggable257, and the 

volume of the Zn1-Zn3 pocket is larger than that of the Zn1-WGR-HD pocket, although both are 

less than half the size of the catalytic pocket (Table 12). Second, DoGSiteScorer249, a program that 

assesses pocket druggability (i.e., the likelihood that small molecules bind), suggested that the 

Zn1-Zn3 pocket is more druggable than the Zn1-WGR-HD pocket (Drug Scores, unitless, of 0.14 

and 0.04, respectively) (Table 12); the catalytic pocket (positive control) scored considerably 

better than both (Drug Score of 0.57) (Table 12). Because DoGSiteScorer is closed source, the 

details regarding its scoring algorithm are unavailable249; however, DoGSiteScorer does output 

physicochemical properties of the analyzed pockets, which can indicate why a pocket scored as it 

did249. Unlike the Zn1-Zn3 and Zn1-WGR-HD hot spots, the catalytic pocket is less densely 

packed with protein residues (Table 12), and the number of aromatic atoms is much higher in both 

the Zn1-Zn3 and catalytic pocket (10.84% and 11.95% of amino acids, respectively) compared to 

the Zn1-WGR-HD pocket (4.71% of amino acids) (Table 12). Pockets with more aromatic residues 

provide more opportunities for protein/ligand stacking interactions. The number of hydrogen-bond 

donor and acceptor atoms, as well as the hydrophobicity, were all comparable among the three 

pockets (Table 12).  
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I selected the hot spot located near the Zn1-Zn3 interface for further exploration. This hot 

spot has a larger pocket volume, higher density of aromatic groups, and is ranked more druggable 

by DoGSiteScorer than the hot spot near the Zn1-WGR-HD interface.  
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Figure 25. FTMap-detected PARP-1 hot spots (PDB: 4DQY). 

A) The molecular fragments used to identify hot spots are shown as blue spheres. Hot spots were 
detected between the interface of Zn1 (green) and Zn3 (light green), the interface of Zn1 WGR 
(gray) and HD (light orange), and the interface of HD and ART (brownish orange). DNA is shown 
in cyan. There are two hot spots at the Zn1-Zn3 interface and two in the catalytic pocket. B) The 
pocket volumes of the Zn1-Zn3 interface hot spot (top left) and the Zn1-WGR-HD interface hot 
spot (bottom center) are shown as transparent yellow surfaces. 
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Table 12. Physicochemical properties of hot-spot pockets. 
The physicochemical properties of two FTMap hot spots near the Zn1-Zn3 and Zn1-WGR-HD 
interfaces (PDB: 4DQY). “CAT” indicates the catalytic pocket of PARP-1 (PDB: 4R6E:A), which 
serves as a positive control. “Vol.” indicates the volume of each pocket as predicted by either 
POVME248 (version 2.1) or DoGSiteScorer249 (version 2.0.0). “# Atoms” indicates the number of 
heavy atoms (i.e., non-hydrogen atoms) within the pocket volume. “HD; HA; Aro.” indicates the 
number of hydrogen-bond donor, hydrogen-bond acceptor, and aromatic atoms within the pocket 
volumes, respectively. “Total (# AA)” indicates the number of amino acids; “Pos; Neg; Polar; 
Non” indicates the number of positively charged, negatively charged, polar, and nonpolar amino 
acids within the pocket volume. “Drug Score” is DoGSiteScorer’s final druggability score for each 
pocket, with 0.0 being the least druggable and 1.0 being the most druggable. Both the Drug Score 
and the Hydrophobicity Ratio are unitless.  
 

 POVME DoGSiteScorer 

Pocket 
Vol. 

(Å^3) 
Vol. 

(Å^3) 
Total 

(# Atoms) 
HD; HA; Aro. 

(# Atoms) 
Total 

(# AA) 
Pos; Neg; Polar; Non 

(# AA) 
Hydrophobicity 

Ratio 
Drug 
Score 

Zn1-Zn3 537 634 369 67; 56; 40 72 13; 11; 20; 28 0.68 0.14 
Zn1-WGR-HD 428  595 361 67; 52; 17 79 6; 8; 25; 39 0.693 0.04 
CAT (4R6E:A) 1464 1262 251 43; 46; 30 47 6; 7; 18; 16 0.673 0.57 
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3.3.5.2 AutoGrow4 Applied to the PARP-1 DBD 

In this section, I describe the results of AutoGrow4-guided CADD targeting the DBD. As 

described in “Chapter 3.3.5.1: Selecting a Druggable Non-Catalytic Pocket,” I selected a hot spot 

for drug targeting located near the Zn1-Zn3 DBD interface. I ran three independent AutoGrow4 

runs for ten generations each using the same settings and source compounds as the large-scale de 

novo PARPi runs described in “Chapter 3.3.1: Large-Scale de novo PARPi Run.” I ran the large-

scale catalytic-domain-targeted de novo lead-generation run twice more, using the same 

conditions, to provide a fair comparison to the three AutoGrow4 runs targeting the DBD. 

My goal in applying AutoGrow4 to the DBD is to predict novel drug-like compounds that 

impact the PARP-1 Zn1-Zn3 interface, avoiding PARPi resistance mechanisms such as that caused 

by Y907 phosphorylation (see “Chapter 1.1.3.4: PARPi Resistance Mechanisms”).  

3.3.5.2.1 Predicted Zn1-Zn3-Interface Ligands 

After ten generations, the three AutoGrow4 runs produced many compounds with strong 

predicted binding affinities (Figure 26). The best-scored compound, Compound 6, had a QVina2 

score of -14.0 kcal/mol, which surpasses the predicted affinities of known PARPi that bind the 

catalytic pocket (e.g., the crystal structure of olaparib had a QVina2 score of -12.2 kcal/mol to the 

catalytic pocket; see Table 10 p.160). However, the produced compounds had weaker predicted 

DBD binding affinities than the novel compounds produced during the large-scale, catalytic-

pocket de novo AutoGrow4 runs. For instance, by the tenth generation, the top 1,000 compounds 



 175 

of the three catalytic-site runs had an average docking score of -14.34 kcal/mol and the top 50 

compounds had an average score of -14.98 kcal/mol. In contrast, the top 1,000 and top 50 

compounds of the three DBD runs had average scores of -12.67 kcal/mol and -13.40 kcal/mol, 

respectively. 

The best-scoring DBD compounds consist primarily of elongated small molecules with 

multiple small cyclic groups, which are frequently connected by one or more rotatable bonds 

(Figure 26B). For instance, the best-scoring compound (Compound 6, top-left of Figure 26B) 

contains four ring systems containing a total of six rings, four of which are aromatic. These are 

connected by four rotatable bonds, which create two stereocenters (Figure 26B). Compared to the 

candidate ligands that target the catalytic pocket, the compounds predicted to bind the Zn1-Zn3 

interface tend to be more flexible (i.e., the unitless ratio of rotatable to rigid bonds is higher). The 

top 1,000 compounds from the tenth generation of the DBD and CAT runs having flexibility scores 

of 0.16 and 0.09 respectively (Table 13).  

Additionally, despite having a comparable ring count and MW, the CAT-targeted 

compounds tend to have much larger ring systems than the DBD-targeted compounds; the CAT-

targeted tenth generation’s top 1,000 compounds on average had 14.37 heavy atoms in each 

compound’s largest ring system. In contrast, the DBD-targeted tenth generation’s top 1,000 

compounds averaged 9.22 heavy atoms in the largest ring system per compound (Table 13). This 

indicates that compounds that are flexible and elongated are amenable to high-affinity DBD 

binding, and that compounds that score well in the CAT can be more compact and contain large 

multicyclic groups. The compactness of the CAT-targeted compounds suggests that high-affinity 

binding in the catalytic domain can be achieved by a few strong interactions or by a localized, 
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dense cluster of residues that allow many interactions in a small region. I favor the former 

explanation because in both the lead-generation and PARPi lead-optimization experiments, I 

observed a limited number of interactions with other residues (“Chapters 3.3.1-3.3.4”). Many of 

these protein-ligand interactions were strong stacking interactions or electrostatic interactions, 

such as the prominent π-π stacking with Y907 (Table 8 and Table 9 on p.152 and p.155, 

respectively). On the other hand, the elongation, flexibility, and the smaller cyclic groups observed 

in the DBD-targeted compounds suggest that high-affinity binding to the DBD typically involves 

multiple weak interactions and/or that compounds be flexible enough to fit pocket contours. I will 

explore both options in the following section. 

Lastly, as a proof of principal, these experiments show that AutoGrow4 evolves unique 

compounds that are customized to a respective protein pocket. The DBD-targeted and CAT-

targeted AutoGrow4 runs produced distinctly different compounds, despite being derived from the 

same source compounds/fragments. Of course, not all protein pockets are amenable to drug-

inhibition. However, even though DoGSiteScorer deemed the DBD less druggable than the 

catalytic pocket, AutoGrow4 managed to find novel compounds that docked well for both. 
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Figure 26. Results of AutoGrow4 runs applied to the DBD. 

A) A plot of the three AutoGrow4 runs applied to the Zn1-Zn3 interface. For each generation, the 
mean of all QVina2 scores across all three runs is shown in blue. The average of the top 50, 20, 
10, and 1 compounds are shown in cyan, purple, green, and red, respectively. B) The five best-
scoring compounds generated during the three AutoGrow4 runs.  
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Table 13. Chemical properties of the best 1,000 compounds from the three AutoGrow4 
runs targeting the DBD and CAT.  

“DBD” indicates the AutoGrow4 runs targeting the Zn1-Zn3 interface, and “CAT” indicates the 
AutoGrow4 runs targeting the catalytic site. “Gen. #” indicates the AutoGrow4 generation number. 
Generations are the three independent runs pooled, with redundant compounds removed. “% Pop.” 
represents the percent of scores that were included (100 * N / Size), where N is 1,000. “Flexibility” 
is the ratio of the number of rotatable bonds (“# Rot. Bonds”) to rigid bonds. “Max. Ring System 
Size” is the number of heavy atoms that the largest ring system of a given compound contains. “# 
Rings” indicates the total number of rings contained within a given compound and considers each 
ring in multicyclic groups to be an independent ring; “# Aromatic Rings” indicates the number of 
aromatic rings; “# Stereocenter” indicates the number of stereocenters a given compound contains, 
and “MW” indicates molecular weight in Daltons. All measurements were calculated using the 
Python program Scopy166. “Dev.” represents the standard deviation of the included scores. 
 

 Size Flexibility 
# Rot. 
Bonds 

Max. Ring  
System Size # Rings 

# Aromatic 
Rings # Stereocenter MW 

 % Pop. Mean Dev. Mean Dev. Mean Dev. Mean Dev. Mean Dev. Mean Dev. Mean Dev.  
DBD 

11.3 0.14 0.14 0.99 0.79 6.52 1.64 1.38 0.54 0.92 0.67 0.41 0.84 144.2 4.90 Gen. 0 
Gen. 1 35.3 0.27 0.19 3.62 1.90 7.35 1.67 2.44 0.77 1.98 0.88 0.67 1.06 275.9 47.1 
Gen. 5 7.9 0.20 0.07 5.37 1.46 8.78 1.85 4.79 0.90 3.85 1.15 1.48 1.69 442.8 30.1 
Gen. 10 7.4 0.16 0.05 4.55 1.15 9.22 2.31 5.17 0.84 4.03 1.19 1.99 1.75 456.7 19.1 

CAT 
10.8 0.13 0.12 0.90 0.73 6.68 1.52 1.31 0.49 1.08 0.54 0.16 0.52 142.4 6.3 Gen. 0 

Gen. 1 34.1 0.19 0.16 2.81 2.15 8.10 1.86 2.51 0.73 2.02 0.83 0.39 0.81 259.5 62.3 
Gen. 5 8.1 0.13 0.05 3.88 1.35 10.93 2.55 5.48 0.88 4.25 1.13 1.42 1.53 448.2 23.7 
Gen. 10 8.0 0.09 0.04 2.87 1.15 14.37 2.98 5.93 0.81 4.20 0.99 3.39 2.31 460.9 14.7 
Gen. 15 8.0 0.07 0.03 2.31 1.03 14.87 2.78 6.02 0.65 4.09 0.82 3.92 2.03 465.4 11.2 
Gen. 20 8.0 0.07 0.03 2.27 0.89 13.90 2.79 5.97 0.63 4.16 0.88 3.2 1.90 468.8 8.90 
Gen. 25 8.3 0.07 0.03 2.33 0.93 13.36 2.23 6.12 0.66 4.48 0.96 2.59 1.74 471.2 7.30 
Gen. 30 7.9 0.07 0.03 2.37 0.96 12.85 1.64 6.27 0.73 4.66 1.02 2.23 1.52 472.2 6.40 
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3.3.5.2.2 Predicted Protein-Ligand Interactions Within the DBD Pocket 

In this section, I will further examine the binding of candidate Zn1-Zn3-targeted ligands 

by analyzing the predicted protein-ligand interactions of the 100 best-scoring AutoGrow4-

generated compounds. I will also consider the docked pose of the best-scoring compound at the 

pocket near the Zn1-Zn3 interface. These analyses will provide insight into the interactions that 

contribute to predicted high-affinity binding to this pocket. 

To assess the interactions frequently involved in predicted DBD protein-ligand binding, I 

applied the BINANA algorithm (version 1.1.2) to the top 100 best-scoring compounds from the 

three DBD AutoGrow4 runs (Table 14). I also ran a similar analysis on the best-scoring 100 

compounds that target the CAT (Table 14). The CAT-targeted compounds formed more stacking 

interactions (i.e., π-π, cation-π, and T-stacking interactions) with PARP-1 than did the DBD-

targeted compounds (Table 14). In contrast, the DBD-targeted compounds formed more 

hydrophobic interactions (10.54 hydrophobic interactions per compound) than did the CAT-

targeted compounds (7.58 hydrophobic interactions per compound) (Table 14). Both the DBD and 

CAT compound sets formed a comparable number of hydrogen bonds: 2.45 and 2.13 per 

compound, respectively (Table 14). 

Although stacking interactions were less common, the best-scoring DBD-targeted 

compounds did frequently form π-π interactions with the Zn3 residue W246 (Table 15). As 

discussed in “Chapter 1.1.2.5: PARP-1 Catalytic Activation is Modulated by Interdomain 

Interactions,” W246 forms a contact with the Zn1 residue R78 that is important for DNA-

dependent catalytic activity (Figure 5 p.22). W246 mutations disrupt the DNA-dependent 
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formation of the Zn1-Zn3 interface, thereby preventing virtually all PARP-1 DNA-dependent 

catalytic activity without altering DNA-binding activity45,46,52,70. Small molecules capable of 

disrupting the Zn1-Zn3 interaction, perhaps by stacking with W246, are thus promising because 

they may have similar effects.  

Next, I analyzed the best-scoring compound produced by the AutoGrow4 DBD runs 

(Compound 6) to determine how the topology of the pocket influenced compound generation and 

binding. First, there is a protruding helix at the interface that separates two surface-accessible 

protein cavities (Figure 27A and B). For a small molecule to bind to both cavities it must either be 

flexible enough to bend around the protrusion and/or be angled. In the case of Compound 6, the 

two moieties that branch from the central 1‐fluoro‐2‐methylbenzene are positioned meta to one 

another. This provides the necessary 120° angle that allows Compound 6 to straddle the protrusion 

and extend into both cavities (Figure 27C). This protrusion likely accounts for the shape of the 

best-scoring AutoGrow4 DBD compounds. Additionally, Compound 6 forms more hydrogen-

bond and stacking interactions with the Zn1 than with the Zn3 (Figure 27C), whereas the top 100 

best-scoring compounds form a comparable number of interactions with both domains (Table 15). 

Given the conformational flexibility of the pocket itself as well and these two zinc fingers 

generally70, it would be useful for future DBD-targeted CADD studies to reevaluate this pocket 

using multiple conformations.  
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Table 14. The average number of protein-ligand interactions per compound.  
“DBD” indicates the 100 best-scoring compounds produced by the three AutoGrow4 runs applied 
to the pocket near the Zn1-Zn3 interface. “CAT” indicates the 100 best-scoring compounds 
produced by the three AutoGrow4 runs targeting the catalytic site. Reported values are the average 
number of each interaction type per compound, as detected by the BINANA algorithm. 
 

  Average # of Interactions of the Top 100 Compounds 
Interaction DBD CAT 

Hydrogen Bonds 2.45 2.13 
Hydrophobic 10.54 7.58 

Cation-π Stacking 0.11 0.98 
π-π Stacking 0.13 2.04 
T-Stacking 0.33 0.71 

Electrostatic 0.06 1.53 
Total: 13.62 14.97 
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Table 15. Protein-ligand interactions of the 100 best-scoring compounds from the 
AutoGrow4 runs applied to the DBD. 

This table is limited to the single best-scoring pose per compound and only includes interactions 
detected by BINANA (version 1.1.2) using default settings. Infrequent interactions (< 10%) are 
excluded for readability, as are hydrophobic interactions. All values are given as percentages. 

 
Subdomain Zn1 Zn3 

Residue F74 S75 Q82 K86 Q241 N242 W246 R282 R355 
Cation- π 0 0 0 0 0 0 0 0 11 

Hydrogen bond 0 49 61 11 11 37 0 17 33 
Electrostatic 0 0 0 0 0 0 0 0 0 
T-stacking 20 0 0 0 0 0 0 0 0 

π-π 0 0 0 0 0 0 12 0 0 
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Figure 27. The best-scoring compound at the Zn1-Zn3 interface. 

A) A surface representation of the protein structure shows a protrusion at the interface of the Zn1 
(lime green) and Zn3 (light green). This protrusion requires the best-scoring AutoGrow4-generated 
DBD compound, Compound 6 (orange stick representation), to bend to form contacts with both 
the Zn1 and the Zn3. B) The pocket volume as predicted by POVME248 (version 2.1) (transparent 
yellow surface) shows how Compound 6 bends to fit the contours of pocket. C) Compound 6 forms 
a T-stacking interaction with F74 (purple) and hydrogen bonds with S75, Q82, and Q241 (pink).  



 184 

3.4 Conclusions 

In addition to discussing the significant improvements that I’ve added to AutoGrow4’s 

performance and features, I have shown how AutoGrow4 can be used as a hypothesis-generation 

tool by demonstrating how it can recapitulate many protein-ligand interactions observed in crystal 

structures of known PARPi. In fact, the highest frequency interactions among well-scoring 

AutoGrow4-generated compounds were with residues known to be critical for PARP-1 catalytic 

activity, PARPi binding, and potential PARPi resistance mechanisms17,18. Further runs testing 

pY907-PARP-1 found several potential leads that are predicted to bind to the catalytic pocket of 

PARP-1 with better affinities than known PARPi, both when Y907 is phosphorylated and when it 

is not. This analysis of AutoGrow4-generated compounds targeting the PARP-1 catalytic domain 

both validates AutoGrow4’s utility and raises concern about the future of PARP-1 orthosteric 

inhibition. 

Additionally, my application of AutoGrow4 to the Zn1-Zn3 interface resulted in a set of 

flexible, highly customize candidate ligands that are predicted to bind with high affinity. In vitro 

and in vivo testing is required to further evaluate these compounds, and the conclusions of this 

study could be different if I had applied AutoGrow4 to a different conformation of the DBD. 

However, this study offers preliminary insights into the properties that affect protein-ligand 

binding in this pocket. 

AutoGrow4 also generated many compounds with better predicted binding affinities than 

known PARPi when applied for both de novo design and lead optimization. Taken together, the 

results of these experiments indicate that AutoGrow4 is effective at predicting well-scoring drug-
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like compounds that complement the targeted pocket, exploit important protein-ligand 

interactions, and can inform future experiments.  
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4.0 Comparison of CADD Techniques 

In this chapter I compare the AutoGrow4-guided PARP-1 lead-optimization runs from 

“Chapter 3.3.2: PARP-1 Lead Optimization” to a lead-optimization-style virtual screen (VS), as 

well as lead-optimization runs performed with three other de novo CADD programs.  

AutoGrow4 was published under the Creative Commons Attribution 4.0 International 

License, which “allows unrestricted use, distribution, and reproduction in any medium.”6 This 

chapter contains work that is adapted and reprinted with rights and permission:  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed all AutoGrow4 runs discussed in the paper, and analyzed the data. I designed 

the initial layout for all figures in the paper with Dr. Jacob Durrant, who then generated and refined 

the images. I am solely responsible for the additional figures that appear exclusively in this 

dissertation. I performed all tests and analyses required to compare AutoGrow4 with the three 

alternative de novo programs. Dr. Durrant performed and analyzed the VS experiment from the 

publication. Dr. Durrant also provided guidance and insight as described in the acknowledgement 

section. All writing in this chapter is original content written by Jacob O. Spiegel.   
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4.1 Overview and Rationale 

I have previously shown that AutoGrow4 is useful for early-stage lead discovery and 

optimization, so in this chapter I will compare AutoGrow4 to alternative lead-

refinement/optimization approaches. I compare AutoGrow4’s ability to optimize a set of lead 

compounds (known PARPi) with that of (1) a more conventional virtual screening (VS) lead-

optimization approach258,259 and (2) three other de novo CADD programs. An additional review of 

VS and de novo CADD programs is provided in “Chapter 1.2.2: Computer-Aided Drug Design 

(CADD).”  

As a high-throughput in silico technique, AutoGrow4 is most useful during the early stages 

of drug design when the goal is to find a pool of drug-like candidate compounds that can then be 

further examined using more costly techniques. Although many factors determine the quality of a 

drug candidate175 (e.g., bioavailability, solubility, toxicity, and specificity), the predicted binding 

affinity is commonly used to evaluate compounds during early-stage drug development155,156,181–

185,163,168–174. Accordingly, AutoGrow4 relies on docking affinity for selecting initial candidate 

compounds.  

 VS CADD is one of the most common alternatives to de novo CADD for early stage-drug 

design183 (“Chapter 1.2.2: Computer-Aided Drug Design (CADD)”). Unlike AutoGrow4, which 

creates novel in silico ligands, VS tests a dataset of ligands that are curated before the start of the 

screen258,259. Like AutoGrow4, VS frequently uses molecular docking to assess compounds for 

potential binding183–185. Additionally, AutoGrow4 and VS can both be used for lead generation 

and lead optimization183,258,259. VS lead optimization typically includes generating a library of 
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compounds that are similar to the lead compounds before screening for the compounds with the 

best docking scores compounds258,259. For the VS lead-optimization run described in this thesis, 

we developed an in silico small-molecule library comprised of compounds from PubChem260 that 

are structurally similar to known PARP inhibitors. This library was prepared with Gypsum-DL214 

and then docked with QVina2205. The QVina2 docking score was used to assess the predicted 

accuracy of each compound’s binding to the structure of the PARP-1 catalytic pocket, described 

in “Chapter 2.3.1: Receptor File Preparation”.  

I also selected three de novo CADD programs (de novo DOCK162, GANDI167, and 

LigDream213) to compare to the AutoGrow4 lead-optimization runs. I limited my comparison to 

free, open-source, and free-for-academic-use programs, which eliminated the program 

MoleGear211. Additionally, I limited the comparison to programs that are fully functional without 

modifying their source code162,167,213, which excluded the program REINVENT212. I tested de novo 

DOCK162, GANDI167, and LigDream213 using lead optimization rather than lead generation 

because LigDream is strictly a lead-optimization technique213. For these runs, each program started 

from the same set of PARPi and PARPi fragments used in the AutoGrow4 PARPi lead-

optimization runs. All runs targeted the 4R6E:A catalytic pocket (“Chapter 2.3.1: Receptor File 

Preparation”), with the exception of LigDream which does not use a protein structure213. I 

evaluated the resulting compounds in terms of predicted binding affinity, diversity, 

synthesizability, drug-likeness, and ADME-PK properties. 
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4.2 Methods 

4.2.1 Comparison of AutoGrow4 PARPi Lead Optimization and VS Lead Optimization 

In this section I compare the AutoGrow4-guided PARPi lead-optimization runs with a 

traditional lead-optimization VS. In this context, the goal is not to find novel drugs; rather, it is to 

find a set of candidate compounds that are structurally similar to known PARP inhibitors but with 

improved docking scores. As described in “Chapter 3.0: AutoGrow4: Application to Poly (ADP-

ribose) Polymerase-1 (PARP-1),” by focusing our search on compounds that are similar to known 

inhibitors, we spend fewer computational resources testing compounds that are unlikely to be 

viable drugs.  

4.2.1.1 VS PARPi Lead Optimization 

 To perform the lead-optimization VS, we developed an in silico library of PARPi-like 

compounds. We first downloaded 2,184 unique PARPi SMILES from the BindingDB 

dataset261,262. There were many close analogs in this dataset, so we removed redundancies by 

clustering the compounds into 40 groups using a Tanimoto-based clustering algorithm263, with a 

Tanimoto coefficient cutoff of 0.65. The Tanimoto coefficient is a comparison of two bit-strings 

(i.e., digital representations of small molecules as fingerprints) that is calculated by dividing the 

number of shared bits (digits in the bit-strings) by the total number of bits in the two bit-strings263. 

The most central compound of each group (i.e., the compound with the most neighbors) was 

chosen to represent each cluster. We then downloaded at most 250 similar compounds for each of 



 191 

these 40 PARPi260, selecting compounds that had Tanimoto coefficients greater than 0.80 with 

respect to a given PARPi. This process yielded 8,444 unique molecules. We again applied the 

clustering algorithm (with a Tanimoto cutoff of 0.2) to reduce the list to a set of 4,657 PARPi-like 

compounds that were not in the initial PARPi BindingDB dataset.  

These resulting compounds were then prepared for docking following the same procedures 

and settings as the AutoGrow4 PARPi lead-optimization runs (“Chapter 3.2.2: PARPi Lead 

Optimization” and Appendix JSON 6). First, the compounds were converted to PDB files using 

Gypsum-DL (version 1.1.2)214, then the PDB files were converted to PDBQT using MGLTools 

(version 1.5.6)215. Lastly, the compounds were docked into the structure of PARP-1 described in 

“Chapter 2.3.1: Receptor File Preparation” and scored by QVina2205 using the same docking 

parameters used in the AutoGrow4 PARPi lead-optimization runs (“Chapter 3.2.2: PARPi Lead 

Optimization” and Appendix JSON 6). Finally, the compounds were imported back into SMILES 

using Open Babel164,215 and re-imported into RDKit165 for analysis. Of these compounds, 4,614 

unique SMILES strings were successfully converted to PDBQTs, docked, and re-imported into 

RDKit165. 

4.2.1.2 AutoGrow4 PARPi Lead Optimization 

For these experiments, I use the six AutoGrow4 PARPi lead-optimization runs described 

in “Chapter 3.3.2: PARP-1 Lead Optimization.” Please see that chapter for a description of the file 

preparation and run conditions. 
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4.2.2 Comparison of AutoGrow4 PARPi Lead Optimization and De Novo CADD Programs 

In this section, I compare the AutoGrow4 lead-optimization run with lead-optimization 

runs performed using three alternative de novo CADD programs: (1) de novo DOCK162, (2) 

GANDI167, and (3) LigDream213. I chose these programs because they are all open-source, free-

for-academic-use, and functional without having to modify the source code162,167,213. 

4.2.2.1 De Novo DOCK 

De novo DOCK is a free-for-academic-use de novo CADD program that is built into the 

DOCK6 docking program162. De novo DOCK grows fragments into candidate compounds162. I 

optimized a set of PARPi and PARPi fragments with both de novo DOCK and AutoGrow4 to 

compare program performance.  

4.2.2.1.1 File Preparation and Run Conditions 

To compare AutoGrow4 to de novo DOCK (version DOCK6.9), I used de novo DOCK to 

optimize the same 94 PARPi and PARPi-fragment leads used in the AutoGrow4 PARPi lead-

optimization runs. De novo DOCK requires both the protein and ligand files to be in MOL2 

format162. I converted the 4R6E:A structure from PDB to MOL2 and prepared the docking files 

using Chimera219 and the DOCK6 sphgen and grid tools187,219,264,265. I also converted the 94 

compounds from SMILES to PDB using Gypsum-DL (version 1.1.2)214, and then to the MOL2 

format using Open Babel (version 2.3.2)164,215. The MOL2 ligands were further processed using 
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GANDI’s `mol2_cleaner` script167 and the CgenFF server (interface version 1.0.0 and force field 

version 3.0.1, using the default settings)221–223. Ninety of the PARPi and PARPi fragments 

produced one or more 3D variants in MOL2 format. These MOL2 files were then processed using 

the DOCK6 fragment-library generator, which separates structures and fragments into MOL2 files 

containing either “linker,” “scaffold,” or “sidechain” fragments187. These same fragment sets were 

used to seed de novo DOCK. 

De novo DOCK provides a limited set of filter options (e.g., MW, number of heavy atoms, 

number of rotatable bonds, and formal charge)162. To best match the AutoGrow4 Ghose filter used 

in the PARPi lead-optimization runs, I set de novo DOCK to restrict the MW of its output 

molecules to 160-480 Da and the number of heavy atoms to 20-70. 

Although the docking program used by de novo DOCK, DOCK6 (version 6.9), is MPI 

enabled, MPI multiprocessing is currently disabled for the de novo DOCK function. I submitted 

30 independent de novo DOCK runs on SMP-enabled CRC nodes with 28-core AMD EPYC 7302 

processors. The exact settings for these runs are provided in Appendix JSON 8. Unique random 

seeds were provided for each run. 

4.2.2.1.2 Post-Run Processing 

For each generated molecule, de novo DOCK output 3D poses positioned within the target 

receptor site, which were docked and scored using DOCK6. I scored each ligand pose using 

QVina2’s (version 2.1)205 scoring function without resampling (i.e., without redocking). The 
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MOL2 file(s) for each ligand were converted to PDBQT using OpenBabel164,215 so they could be 

rescored with QVina2. 

Many of the output compounds were redundant. To identify unique compounds, I converted 

every de novo DOCK-generated MOL2 file into a canonical SMILES representation using 

OpenBabel164,215 and RDKit165, and used the best docking score for each unique canonical 

SMILES. This reduced the total number of output molecules from 709,417 to 37,883 unique 

compounds. 

4.2.2.1.3 Post-Processing Compound Analysis 

Following all post-run processing, I evaluated the population of generated compounds 

using several metrics. First, I scored each compound in terms of normalized chemical diversity 

relative to other generated compounds (“Chapter 2.3.5: Calculating Normalized Diversity 

Scores”). I also scored each compound in terms of predicted synthetic accessibility score 

(SA_Score) using the Scopy (version 1.2.1)166 implementation of Ertl and Schuffenhauer’s 

SA_Score266. Next, to assess the physiochemical properties of the compounds, I calculated MW 

and the molecular quantitative estimate of drug-likeness (QED) of all generated compounds. QED 

is calculated by evaluating multiple physiochemical properties such as the number of rotatable 

bonds, polar surface area, and logP. All compounds were evaluated using Scopy’s QEDMean 

measurement166,267. I then filtered the population of compounds using the same chemical filters 

that were used during the AutoGrow4 runs: the Lipinski*, Ghose, and PAINS filters. Lastly, I 

filtered the population of compounds using two Scopy-implemented toxicity filters: the 
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idiosyncratic166,268 and SureChEMBL166,269,270 filters, which will be described and discussed in 

“Chapter 4.3.2.4: Comparison of De Novo CADD Programs: ADME-PK” (p.217). 

4.2.2.2 GANDI 

GANDI is a free and open-source program that uses a GA to generate novel de novo 

compounds167. GANDI uses an island model GA, which evolves populations of compounds 

independently, with occasional events exchanging compounds between populations167. I optimized 

the same set of PARPi and PARPi fragments using GANDI and AutoGrow4 to compare program 

performance. 

4.2.2.2.1 File Preparation and Run Conditions 

To compare AutoGrow4’s performance to that of GANDI (version 2.0)167, I applied 

GANDI to the 94 PARPi and PARPi fragments used in my AutoGrow4 PARPi lead-optimization 

runs. Like de novo DOCK, GANDI also requires that both the protein and ligand files be in MOL2 

format. To prepare the protein for GANDI, I assigned partial charges to the protein using VMD’s 

`Automatic PSF Builder` function220 and converted the 4R6E:A structure from PDB to MOL2 

using Chimera219. The receptor file was further processed using the `mol2tripos_to_seed_protein` 

script provided by the program SEED217.  

Because GANDI requires source compounds that are already positioned in the target 

pocket, I converted the 94 PARPi and PARPi fragments from SMILES to PDB files using Gypsum-

DL (version 1.1.2), and then to the MOL2 format using Open Babel (version 2.3.2)164,215. The 
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MOL2 ligands were further processed using GANDI’s `mol2_cleaner` script167 and the CgenFF 

server (interface version 1.0.0 and force field version 3.0.1, using default settings)221–223. Ninety 

of the PARPi and PARPi fragments produced one or more 3D variants in MOL2 format. Based on 

instructions in the GANDI manual, I then docked the 3D small-molecule variants using the 

program SEED217. The output docked poses were used as the docked fragments required for 

GANDI runs. 

GANDI provides limited predefined filter options to guide small-molecule production: 

MW, number of hydrogen bond donors, and number of hydrogen bond acceptors. To best match 

the Ghose and Lipinski* filters used in the AutoGrow4 lead-optimization runs, I set the MW range 

to 160-480 Da, the number of hydrogen bond donors to 0-5, and the number of hydrogen bond 

acceptors to 0-10.  

I ran GANDI six times using 112 islands, with 1,000 individuals and 1,000 iterations per 

run. Each run was provided a unique random seed. I used the linker fragments provided in the 

GANDI download. This experiment ran on ten MPI-enabled CRC nodes with four 28-core (112 

CPUs) Broadwell processors and 64GB RAM/node, which were networked with Intel’s Omni-

Path communication architecture. The exact settings for these runs are provided in Appendix JSON 

9. 

4.2.2.2.2 Post-Run Processing and Analysis 

For each generated molecule, GANDI output 3D poses positioned within the PARP-1 

catalytic site. To compare the output ligands to AutoGrow4-generated compounds, I scored the 
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binding affinity of each ligand pose using QVina2’s (version 2.1)205 scoring function without 

resampling the pose (i.e., without redocking). The MOL2 file(s) for each ligand were converted to 

PDBQT using OpenBabel164,215 so they could be rescored with QVina2. 

Because many of the output compounds were redundant, I converted every GANDI-

generated MOL2 into canonical SMILES representation using OpenBabel164,215 and RDKit165, and 

used the best docking score for each unique SMILES. This resulted in a total of 589 unique 

compounds. 

Lastly, using the same methods described in “Chapter 4.2.2.1.3: Post-Processing 

Compound Analysis,” I evaluated the compounds in terms of normalized chemical diversity, 

SA_Score, MW, and QED. I also filtered the population using the Lipinski*, Ghose, PAINS, 

idiosyncratic, and SureChEMBL filters. 

4.2.2.3 LigDream 

LigDream is a free and open-source program for lead optimization that uses a neural 

network trained on the 3D shape of drug-like compounds213. I optimized the same set of PARPi 

and PARPi fragments using LigDream and AutoGrow4 to compare program performance. 

4.2.2.3.1 File Preparation and Run Conditions 

To compare LigDream (version 1.0)213 and AutoGrow4 lead optimization, I ran LigDream 

multiple times with different settings to optimize the same set of PARPi and PARPi fragments. For 

all LigDream runs, the maximum number of output molecules was set to 100. Based on the settings 
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used in the LigDream publication213, I ran LigDream with the λ-factor set to 0, 1, 5, 10, and 15. 

The λ-factor controls noise within the algorithm, where a higher λ results in the generated 

molecules deviating more from the source compounds. For each λ value, I ran LigDream sampling 

both with and without the probabilistic recurrent neural network. Each condition was run in 

triplicate. Duplicate SMILES were eliminated, resulting in 21,855 unique LigDream-generated 

compounds. The exact settings for these runs are provided in Appendix JSON 10. 

4.2.2.3.2 Post-Run Processing and Analysis 

Because LigDream outputs molecules in SMILES format without assessing compound 

binding to the target pocket, I docked each LigDream-generated compound into the PARP-1 

catalytic domain (4R6E:A) using QVina2 (version 2.1)205, using the same settings and approach 

as in the AutoGrow4 PARPi lead-optimization runs. I first converted the SMILES to PDBQT 

format using Gypsum-DL (version 1.1.2)214 (maximum variance set to five) and MGLTools 

(version 1.5.6)215, and then docked each variant exhaustively (exhaustivity set to 25) using QVina2. 

Lastly, using the same methods described in “Chapter 4.2.2.1.3: Post-Processing 

Compound Analysis,” I evaluated the compounds in terms of normalized chemical diversity, 

SA_Score, MW, and QED. I also filtered the population using the Lipinski*, Ghose, PAINS, 

idiosyncratic, and SureChEMBL filters. 
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4.2.2.4 AutoGrow4 PARPi Lead Optimization 

AutoGrow4 is a free and open-source de novo CADD program for lead optimization and 

lead generation using a GA6. I optimized a set of PARPi and PARPi fragments using AutoGrow4 

to compare its performance with three other de novo CADD programs. 

4.2.2.4.1 File Preparation and Run Conditions 

For these experiments, I used the six AutoGrow4 PARPi lead-optimization runs described 

in “Chapter 3.3.2: PARP-1 Lead Optimization.” Please see that chapter for a description of the file 

preparation and run conditions. 

4.2.2.4.2 Post-Run Processing and Analysis 

I pooled the results of the six AutoGrow4 PARPi lead-optimization runs by generation. 

Compounds within each generation were ranked by docking score. Duplicate canonical SMILES 

were removed, preserving the best docking score for each unique SMILES. 

Using the same methods described in “Chapter 4.2.2.1.3: Post-Processing Compound 

Analysis,” I then evaluated the compounds in terms of normalized chemical diversity, SA_Score, 

MW, and QED, and I filtered the population using the idiosyncratic and SureChEMBL filters. 
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4.3 Results and Discussion 

4.3.1 Comparison of AutoGrow4 PARPi Lead Optimization and VS Lead Optimization 

In this section I compare AutoGrow4 PARPi lead-optimization and VS lead-optimization 

runs in terms of predicted binding affinity as measured by QVina2 docking and normalized 

compound diversity. The normalized diversity scores were calculated by dividing the diversity 

scores (Equation 2) by the number (N) of compounds being compared (“Chapter 2.3.5: Calculating 

Normalized Diversity Scores”). A lower normalized diversity score indicates that a compound is 

more unique within the set of compounds used for comparison, and a higher score means it is more 

similar (“Chapter 2.3.5: Calculating Normalized Diversity Scores”). The zeroth generation of 

AutoGrow4 runs consists of known PARPi and PARPi fragments, and so the zeroth generation 

scores provide a context for my results. 

Overall, AutoGrow4 yielded compounds with higher predicted docking scores than the VS 

(Table 16). Both AutoGrow4 and the VS successfully predicted PARPi-like compounds with 

stronger predicted binding affinities than the positive control PARPi and PARPi fragments (i.e., 

the AutoGrow zeroth generation) (Table 16). However, by the first generation AutoGrow4 had 

already predicted a compound with a docking score 1.2 kcal/mol better than the best compound 

discovered by the VS (Table 16 and Figure 28). Additionally, the AutoGrow4 first generation also 

had stronger average docking scores among its top 50 and 1,000 compounds than the compounds 

found by the VS (Table 16). The average AutoGrow4 docking scores improved each successive 
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generation, so by the fifth generation the mean score of the top 1,000 compounds (-13.62 kcal/mol) 

was stronger than that of the best compound in the VS (Table 16 and Figure 28). 

The global population of each AutoGrow4 generation was on average more chemically 

diverse than the VS compounds (Table 17). Of course, the chemical diversity of the VS compounds 

is determined by how the library was designed.  

Overall, AutoGrow4 produced compounds with stronger predicted binding affinities that 

were also more chemically diverse than those predicted by the VS. These results suggest that 

AutoGrow4 is in fact searching a wider range of chemistry space and finding better optima than 

the VS.  
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Table 16. Comparison of VS and AutoGrow4 docking scores. 
“Gen. #” indicates the generation number of the AutoGrow4 PARPi lead-optimization runs. The 
“VS” row displays the virtual-screen data. “Global” indicates data for the total of a given 
generation or VS, and “N” indicates the number of top-scoring compounds included in the 
analyses. The data from the six AutoGrow4 runs has been pooled; “Mean” represents the mean of 
the pooled compounds. Means are in units of kcal/mol as measured by QVina2. “Dev.” represents 
the standard deviation of the included scores. “% Pop.” represents the percent of scores that were 
included (100 * N / Size).  
 

  Global  N=1  N=50   N=1000  
Gen. Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop. # 
VS -9.48 1.38 4614 -13.5 -12.70 0.26 1.08 -11.30 0.55 21.67 
0 -7.89 2.32 244 -12.4 -11.05 0.65 20.49 --- --- --- 
1 -9.07 1.61 5402 -14.7 -13.03 0.31 0.93 -11.40 0.63 18.51 
2 -9.84 1.42 28964 -14.7 -13.40 0.31 0.17 -12.52 0.34 3.45 
3 -9.64 2.09 28999 -14.7 -13.78 0.26 0.17 -13.00 0.28 3.45 
4 -10.20 2.06 28272 -14.7 -14.18 0.22 0.18 -13.35 0.28 3.54 
5 -9.30 2.47 27993 -14.8 -14.35 0.18 0.18 -13.62 0.26 3.57 
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Table 17. Comparison of VS and AutoGrow4 diversity. 
“Gen. #” indicates the generation number of the AutoGrow4 PARPi lead-optimization runs. The 
row labeled “VS” displays the virtual screen data. “Global” indicates data for the total of a given 
generation or VS, and “N” indicates the number of the top-scoring compounds included in the 
analysis. The data from the six AutoGrow4 runs has been pooled. For each subset of N compounds, 
the diversity score of each compound was assigned using Equation 2, and then normalized by 
dividing N (“Chapter 2.3.5: Calculating Normalized Diversity Scores”). The reported means and 
standard deviations are based on these normalized diversity scores (unitless). “Dev.” represents 
the standard deviation of the included scores. “% Pop.” represents the percent of scores that were 
included (100 * N / Size). The reported means and standard deviations are based on these 
normalized diversity scores (unitless).  
 

  Global   N=50   N=1000  
Gen. Mean Dev. Size Mean Dev. % Pop. Mean Dev. % Pop. # 
VS 0.31 0.03 4614 0.34 0.03 1.08 0.33 0.03 21.67 
0 0.23 0.05 244 0.29 0.03 20.49 --- --- --- 
1 0.24 0.03 5402 0.36 0.06 0.93 0.27 0.03 18.51 
2 0.23 0.03 28964 0.29 0.03 0.17 0.29 0.04 3.45 
3 0.20 0.02 28999 0.26 0.02 0.17 0.28 0.03 3.45 
4 0.20 0.03 28272 0.28 0.03 0.18 0.27 0.03 3.54 
5 0.20 0.03 27993 0.27 0.03 0.18 0.26 0.02 3.57 
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Figure 28. The five best-scoring compounds from the VS, as well as the first and fifth 

AutoGrow4 generations. 
The top five compounds generated by VS lead optimization (left) and AutoGrow4 PARPi lead 
optimization in the first generation (middle) and fifth generation (right), after removing 
compounds that are preexisting PARPi. The reported docking scores were determined by QVina2. 
The AutoGrow4-generated compounds, Compound 3 and Compound 5, are discussed in “Chapter 
2.2.2: Operators: Population Generation via Crossover, Mutation, and Elitism” and “Chapter 3.3.2: 
PARP-1 Lead Optimization”, respectively. 
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4.3.2 Comparison of AutoGrow4 Lead Optimization and other De Novo CADD Programs 

In this section I compare AutoGrow4’s lead-optimization performance to that of three other 

de novo CADD programs: de novo DOCK, GANDI, and LigDream. An in-depth comparison of 

each program can be found in “Chapter 1.2.5: Alternative Approaches for de novo CADD.” An 

additional comparison of AutoGrow4 to (1) VS-based lead optimization and (2) AutoGrow3, the 

previous version, can be found in “Chapter 4.3.1: Comparison of AutoGrow4 PARPi Lead 

Optimization and VS Lead Optimization” and “Chapter 2.4: Results and Discussion,” respectively.  

I compare the compounds produced by each program in terms of predicted binding affinity 

as assessed by QVina2 as well as chemical diversity and synthetic accessibility as assessed using 

Ertl and Schuffenhauer’s SA_Score266. Predicted binding affinity is a metric for assessing the 

candidate inhibitors. Chemical diversity is a metric for assessing the breadth of each program’s 

search of chemistry space. Synthetic accessibility is a metric for predicting how feasible the 

compounds are to synthesize. Additionally, I compare the compounds in terms of drug-likeness 

and predicted ADME-PK properties. 

4.3.2.1 Comparison of De Novo CADD Programs: Predicted Binding Affinity 

AutoGrow4 selects compounds based primarily on predicted binding affinity as calculated 

by a docking program. Inherent in this process are two assumptions: (1) predicted binding affinity 

correlates with experimental binding affinity, and (2) compounds with stronger binding affinities 

are better inhibitors. Both assumptions are flawed. Firstly, the accuracy of predicted binding 
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affinities varies depending on the protein being targeted, the docking software being used, and the 

exhaustivity of the pose sampling. Additionally, stronger predicted binding affinity does not 

always result in stronger inhibition; for example, talazoparib is a more potent PARP-1 inhibitor 

than olaparib75, but QVina2 predicts that olaparib has a stronger binding affinity than talazoparib 

when docking into 4R6E:A (-13.6 vs. -11.1 kcal/mol). Also, binding affinity does not account for 

many critical factors that determine the success of a drug (e.g., synthesizability, drug-likeness, and 

cytotoxicity), several of which I will explore in later sections (“Chapters 4.3.2.3 and 4.3.2.4.”). 

However, while recognizing these limitations, relying on predicted binding affinity enables 

AutoGrow4 to be used as a high-throughput technique for early-stages of drug design.  

Among the three tested programs, AutoGrow4 produced the compounds with the best 

predicted binding affinities (Table 18). The AutoGrow4 first generations performed better than all 

tested programs in terms of the best-scored compound and the mean docking score of the top 50 

compounds (Table 18). While de novo DOCK had better average docking scores among the top 

1,000 compounds (Table 18), by the second generation AutoGrow4 outperformed all other 

programs in terms of the best average docking score for the entire population and the best-scored 

1, 50, and 1,000 compounds (Table 16 and Table 18 on p.202 and p.209, respectively). By the fifth 

generation, AutoGrow4’s best-scored 1,000 compounds had an average docking score better than 

that of the next best program, de novo DOCK, with average docking scores of -13.62 kcal/mol and 

-11.67 kcal/mol respectively. 

De novo DOCK likely had better average docking scores than GANDI and LigDream 

among the respective top 50 and 1,000 compound sets (Table 18) because it docks the generated 

compounds into the target pocket. In contrast, GANDI and LigDream do not dock162,167,213. 
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GANDI relies on the poses of the source compounds, which users must dock separately prior to 

running the program167. Because GANDI does not reassess the poses of its generated compounds, 

these output poses are arguably more likely to be suboptimal167. Even so, GANDI did produce the 

single best-scoring compound of any non-AutoGrow4 program (-14.52 kcal/mol) and had the 

second-best global mean docking scores (-9.45 kcal/mol).  

On the other hand, LigDream does not use docking to generate and assess novel 

compounds213. It is unique among the tested de novo CADD programs because it does not consider 

the structure of the target protein pocket213. Instead, LigDream relies on a trained recurrent neural 

network to predict compounds that are similar to both known drugs and to the input seed 

compounds213. LigDream assumes that the input SMILES are valid ligands that bind the target 

pocket213. To compare the predicted binding affinities of the compounds across programs, I 

converted the LigDream-output SMILES strings into 3D PDB files and docked them into the 

PARP-1 catalytic pocket using QVina2 (“Chapter 4.2.2.3: LigDream.”) The top 50, and 1,000 best-

scoring compounds generated by LigDream had worse docking scores than those generated by (1) 

AutoGrow4’s first through fifth generations and (2) de novo DOCK (Table 18). 

In general, these comparisons understandably favor the AutoGrow4-generated populations 

because AutoGrow4 is the only tested program that natively uses QVina2 for both ligand-pose 

sampling and scoring. But I chose QVina2 to assess these compounds because of its computational 

efficiency and accuracy. Furthermore, a recent independent study comparing modern docking 

programs found that QVina2 and Vina are more accurate than DOCK6 at ligand-pose placement 

when comparing docked poses against crystal poses271. 
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AutoGrow4 performed markedly better than the other programs in terms of QVina2-

predicted binding affinities and was able to produce the single compound with the strongest 

predicted affinity. By the fifth generation, the average of AutoGrow4’s top 1,000 compounds were 

predicted to bind better than the fifty best compounds produced by any other program (Table 18).  
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Table 18. Comparison of docking scores of de novo CADD-generated compounds. 
“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation, or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All runs of each respective program were pooled 
together. “Mean” represents the mean of the subset of pooled compounds. Means are in units of 
kcal/mol, as calculated by QVina2. “Dev.” represents the standard deviation of the included scores. 
“% Pop” represents the percent of top-scoring compounds included (100 * N / Size).  

 
 Global N=1 N=50 N=1000 

Program Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop.  
De novo DOCK -8.28 1.97 37883 -14.3 -12.81 0.44 0.13 -11.67 0.39 2.64 

GANDI -9.45 1.54 523 -14.5 -11.95 0.80 9.56 --- --- --- 
LigDream -9.12 1.03 21586 -13.0 -12.13 0.26 0.23 -11.19 0.35 4.63 

AutoGrow4 
Gen. 0 -7.89 2.32 244 -12.4 -11.05 0.65 20.49 --- --- --- 
Gen. 1 -9.07 1.61 5402 -14.7 -13.03 0.31 0.93 -11.40 0.63 18.51 
Gen. 5 -9.30 2.47 27993 -14.8 -14.35 0.18 0.18 -13.62 0.26 3.57 
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4.3.2.2 Comparison of De Novo CADD Programs: Chemical Diversity 

Within the context of de novo drug design, chemical diversity represents the sampling of 

different regions of chemical space. Beyond improving the desired metric (e.g., docking affinity 

score, and drug-likeness), an ideal de novo CADD approach must also sample a diverse range of 

chemical structures. Diversity is particularly important in an iterative de novo CADD approach, 

such as a genetic algorithm, because later iterations require a sufficiently diverse population to 

create novel solutions; otherwise, premature convergence is inevitable. Because chemical diversity 

is crucial to drug design, I compared the chemical diversity of each AutoGrow4 generation, as well 

as the compounds with the top 50 and 1,000 best docking scores produced by each de novo design 

program.  

Globally, AutoGrow4 produced more diverse compounds than any other program tested. 

Each AutoGrow4 generation was more diverse than the populations produced by the other three 

programs, with a fifth-generation average normalized diversity score of 0.20 (Table 17 and Table 

19 on p.203 and p.212, respectively, where populations with normalized diversity scores near 0.0 

contain more unique compounds). GANDI performed the worst, with an average normalized 

diversity score of 0.30. De novo DOCK and LigDream performed equally well (0.26 each, Table 

19). LigDream and AutoGrow4’s fifth generation tied for the most diverse populations among their 

top 50 best-scoring compounds, but the average diversity of the AutoGrow4’s top 50 and 1,000 

best-scoring compounds fluctuates from generation to generation (Table 17 and Table 19 on p.203 

and p.212, respectively). 
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LigDream produced equally or more diverse compounds than both de novo DOCK and 

GANDI in all subpopulation sizes (Table 19). LigDream’s excellence in producing diverse 

compounds may be in part due to its user-controllable λ-factor, which determines how similar the 

generated compounds must be to the source compounds213. Based on the LigDream publication213, 

I ran LigDream multiple times with different λ-factor values. Because of this, the LigDream-

generated compound pool consists of a mix of compounds with a wide range of similarities to the 

source compounds. Had these runs been performed with more restrictive λ-factor values or 

performed with the same λ-factor for all runs, the LigDream-generated compounds would likely 

be less diverse. 

However, the top 1, 50, and 1,000 LigDream compounds also had subpar average docking 

scores compared to the other programs (Table 19 on p.212), perhaps because of the increased 

deviance from the source compounds. Rather than assessing the generated compounds with regards 

to the protein structure, LigDream relies purely on the input seed(s) to determine what might be a 

“good” ligand for the target protein; therefore, increasing its deviation from the seed PARPi also 

diverts the algorithm away from the proven drug-like seed compounds. In contrast, AutoGrow4, 

which also provides user controllable diversity parameters, corrects for population drift by 

evaluating each generated compound relative to the target protein pocket. AutoGrow4 thereby 

balances its incorporation of diversity with a focus on compounds that are optimized for a specific 

protein target.  
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Table 19. Comparison of diversity scores of de novo CADD-generated compounds. 
“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation, or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All runs of each respective program were pooled 
together. “Mean” represents the mean of the subset. For each subset of N compounds, the diversity 
score of each compound was assigned using Equation 2, and then normalized by dividing N 
(“Chapter 2.3.5: Calculating Normalized Diversity Scores”). The reported means and standard 
deviations are based on these normalized diversity scores (unitless). “Dev.” represents the standard 
deviation of the included scores. “% Pop.” represents the percent of scores that were included (100 
* N / Size).  
 

 Global N=50 N=1000 
Program Mean Dev. Size Mean Dev. % Pop. Mean Dev. % Pop.  

De novo DOCK 0.26 0.06 37883 0.30 0.05 0.13 0.29 0.06 2.64 
GANDI 0.30 0.03 523 0.30 0.03 9.56 --- --- --- 

LigDream 0.26 0.03 21586 0.27 0.02 0.23 0.27 0.02 4.63 
AutoGrow4 

Gen. 0 0.23 0.05 244 0.29 0.03 20.49 --- --- --- 
Gen. 1 0.24 0.03 5402 0.36 0.06 0.93 0.27 0.03 18.51 
Gen. 5 0.20 0.03 27993 0.27 0.03 0.18 0.26 0.02 3.57 
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4.3.2.3 Comparison of De Novo CADD Programs: Synthetic Accessibility  

Synthesizability is critical in de novo drug design because it determines the cost, time, and 

feasibility of advancing a molecule from in silico to ex silico testing. To compare the 

synthesizability of compounds generated by each de novo CADD programs, I calculated an 

SA_Score266 for each generated compound. The SA_Score predicts how synthesizable a given 

compound is and ranges from 1.0 (easiest to synthesize) to 10.0 (most difficult to synthesize)266. 

As predicted, AutoGrow4’s mean SA_Score tended to increase as the generations 

progressed, suggesting that later AutoGrow4 generations are less synthesizable than earlier 

generations. The mean SA_Score of the 1,000 best docking scored compounds increased from 3.99 

to 4.49 between generations one and five (Table 20). The accumulation of mutation and crossover 

events used to create each subsequent population may have caused the populations to drift from 

the PARPi source compounds, thus becoming less synthesizable. 

Of all the tested programs, LigDream created the most synthesizable compounds in terms 

of entire populations and the compounds with the 50 and 1,000 best docking scores. Additionally, 

LigDream’s best docking scored compound was more synthesizable than the best compound 

produced by any other tested program excluding AutoGrow4’s generation zero which consists of 

know (and therefore synthesizable) PARPi and PARPi fragments. 

A synthesizable compound is only a good drug candidate if it also binds to its target protein; 

however, a small molecule that binds strongly to its target but cannot reasonably be synthesized 

will not likely progress. Therefore, I calculated the ratio of the predicted binding affinity (kcal/mol) 

to the SA_Score (unitless) for each individual compound produced by all of the considered de 
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novo CADD programs. I then calculated the average ratio for each population and for the 

compounds with the best 50 and 1,000 docking scores produced by each program. This efficiency 

metric rewards improved binding affinity and penalizes poorer SA_Scores; more negative results 

indicate better candidate compounds. For instance, the AutoGrow4-generated compound with the 

best docking score between the first and fourth generation, Compound 5 (-14.7 kcal/mol), had only 

a 0.1 kcal/mol difference in docking score from the compound with the best docking score in the 

fifth generation, Compound 3 (-14.8 kcal/mol) (Table 16 and Figure 28; p.202 and p.204 

respectively), but it also had a more favorable SA_Score (3.90 and 5.15 respectively) (Table 20 

and Table 21). This docking-to-SA_Score ratio favored Compound 5 over the better-scored 

Compound 3 (-3.77 and -2.87 respectively) (Table 21) because the gain in predicted binding 

affinity was not enough to overcome the poorer synthesizability. 

The reevaluation of docking-to-SA_Score ratios also shows that among the compounds 

with the best 50 and 1,000 docking score compounds, AutoGrow4 and LigDream produced 

compounds with better docking-to-SA_Score ratio averages than both GANDI and de novo DOCK 

(Table 21).   
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Table 20. Comparison of SA_Scores of de novo CADD-generated compounds. 
“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation, or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All runs of each respective program were pooled 
together. “Mean” represents the mean of the subset of pooled compounds. “Dev.” represents the 
standard deviation of the included scores. “% Pop” represents the percent of top-scoring 
compounds included (100 * N / Size). The reported means and standard deviations are based on 
SA_Scores (unitless).  
 

 Global N=1 N=50 N=1000 
Program Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop.  

De novo DOCK 4.22 1.28 37883 5.83 5.10 1.41 0.13 4.46 1.30 2.64 
GANDI 5.24 0.71 523 4.40 5.17 0.67 9.56 --- --- --- 

LigDream 3.31 0.73 21586 3.79 3.68 0.74 0.23 3.54 0.71 4.63 
AutoGrow4 

Gen. 0 3.58 1.14 244 2.81 3.78 0.72 20.49 
 

--- 
 

--- 
 

--- 
Gen. 1 3.80 0.87 5402 3.90 4.11 0.58 0.93 3.99 0.78 18.51 
Gen. 5 4.81 0.83 27993 5.15 4.53 0.71 0.18 4.49 0.69 3.57 
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Table 21. Comparison of docking-to-SA_Score ratios of de novo CADD-generated 
compounds. 

“Gen. #” indicates the generation number in the AutoGrow4 PARPi lead-optimization runs. 
“Global” indicates data for the total of a given generation or the total produced by a given program, 
while “N” indicates the number of the top scoring compounds selected. All runs of each respective 
program were pooled together; “Mean” represents the mean of the subset of pooled compounds. 
The docking-to-SA_Score ratios for each molecule was determined by dividing the docking score 
(kcal/mol) by the SA_Scores (unitless). “Dev.” represents the standard deviation of the included 
scores. “% Pop.” represents the percent of scores that were included (100 * N / Size). The reported 
means and standard deviations are determined based on those docking-to-SA_Score ratios. 
 

 Global N=1 N=50 N=1000 
Program Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop.  

De novo Dock -2.13 0.79 37883 -2.46 -2.73 0.81 0.13 -2.83 0.78 2.64 
GANDI -1.85 0.46 523 -3.30 -2.36 0.39 9.56 --- --- --- 

LigDream -2.87 0.64 21586 -3.43 -3.43 0.68 0.23 -3.28 0.65 4.63 
AutoGrow4 

Gen. 0 -2.44 0.99 244 -4.41 -3.05 0.68 20.49 --- --- --- 

Gen. 1 -2.51 0.69 5402 -3.77 -3.23 0.49 0.93 -2.97 0.60 18.51 
Gen. 5 -2.00 0.70 27993 -2.87 -3.24 0.49 0.18 -3.11 0.49 3.57 
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4.3.2.4 Comparison of De Novo CADD Programs: ADME-PK Properties 

In this section I compare the ADME-PK properties of the compounds produced by the four 

de novo CADD programs. As discussed in “Chapter 1.2.3: Chemical Properties for Selecting Drug-

Like Compounds,” ideal chemotherapeutic candidates not only bind and inhibit their intended 

target, but also have acceptable physiochemical properties that facilitate drug efficacy. 

Additionally, an ideal cancer chemotherapeutic should have few off-target interactions and a lower 

toxicity to non-cancer cells than to cancer cells. I evaluate the de novo CADD-generated 

compounds using two common cheminformatic metrics: MW (Table 22) and molecular 

quantitative estimate of drug-likeness (QED) (Table 23). I also filter the de novo DOCK, GANDI, 

and LigDream-generated compounds with the three filters applied during the AutoGrow4 runs 

(Lipinski*, Ghose, and PAINS, Table 24) to show that, because of their lack of chemical filter 

options, the non-AutoGrow4 programs waste resources evaluating less drug-like compounds. 

Lastly, to show that AutoGrow4 produced fewer toxic compounds than the other programs did, I 

filtered the compounds produced by all programs with two toxicity filters: the idiosyncratic166,268 

and SureChEMBL166,269,270 filters (Table 25). 

4.3.2.4.1 Physiochemical Properties and Drug-Likeness: MW and QED 

AutoGrow4’s use of ADME-PK filters is one its major advantages over other de novo 

CADD programs. These filters select for more favorable compound properties and thereby guide 

the run towards more favorable regions of chemistry space. For instance, after five generations the 
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AutoGrow4-generated population still had a lower global average MW than those of de novo 

DOCK, GANDI, and LigDream (Table 22), in part due to AutoGrow4’s use of the Lipinski* and 

Ghose filters. Those filters refine candidates by properties that exclude large compounds (e.g., 

MW and atom count). Additionally, through its use of these filters AutoGrow4 maintains a global 

average MW that is well within the drug-like range (i.e., 160-480 Da168), which allows for 

continued sampling (i.e., more generations of testing) without running into issues associated with 

high MW, such as poor compound solubility. However, for all subpopulation sizes and programs, 

the top-scoring compounds tended to have higher MWs than their respective global average MW 

(Table 22). This is likely because high-MW small molecules can make more interactions than 

smaller fragment-like compounds and so tend to have better docking scores.  

Across all tested programs, the average MWs of the compounds with the best docking 

scores were frequently more similar to each other than to the global-average MWs (Table 22). For 

example, the average MWs of the 50 compounds with the best docking scores from AutoGrow4 

generations one to five ranged from 450.7 Da to 465.7 Da. Similarly, the GANDI and de novo 

DOCK compounds, which respectively had the lowest and highest non-AutoGrow4 average MW 

for their compounds with the 50 best docking scores, had a range of 456.8 Da to 469.1 Da (Table 

22). Even though LigDream was the only tested program that does not provide options to set MW 

constraints, the LigDream-generated compounds frequently had lower MW than the GANDI and 

de novo DOCK-generated compounds (Table 22). This is likely because LigDream’s models were 

trained on drug-like compounds with MWs ranging from 250 Da and 500 Da213. 

AutoGrow4 also performed well in terms of QED (Table 23). QED is an integrative metric 

that evaluates multiple physicochemical properties (e.g., the number of rotatable bonds, polar 
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surface area, and logP) to produce a single score ranging from 0.0 to 1.0, where 0.0 indicates that 

a compound has all unfavorable properties and 1.0 indicates that a compound contains all favorable 

properties166,267. QED is useful because compounds with very favorable properties that have only 

a few mildly unfavorable properties can still be evaluated as drug-like166,267. Although the average 

QED scores tend to decrease for each successive AutoGrow4 generation (e.g., global average QED 

went from 0.62 in the zero generation to 0.46 in the fifth generation), the global average QED of 

AutoGrow4’s fifth generation (0.46 +/-0.18) was better than that of de novo DOCK (0.40 +/-0.15) 

and comparable to that of LigDream (0.48 +/-0.14) and GANDI (0.45 +/-0.14) (Table 23). Despite 

multiple generations of evolution and many more novel compounds predicted, AutoGrow4 

maintains drug-likeness comparably or better than the other programs. 
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Table 22. Molecular weight (MW) of de novo CADD-generated compounds. 
“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All runs of each respective program were pooled 
together. “Mean” represents the mean of the subset of pooled compounds. “Dev.” represents the 
standard deviation of the included scores. “% Pop” represents the percent of top-scoring 
compounds included (100 * N / Size). All values are in units of Daltons. 
 

  Global N=1 N=50 N=1000 
Program 

Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop.   
De novo DOCK 432.3 53.2 37883 485.3 469.1 17.9 0.13 456.9 23.8 2.64 

GANDI 442.9 34.8 523 471.3 456.8 30.1 9.56 --- --- --- 
LigDream 390.1 73.8 21586 445.2 462.3 35.1 0.23 441.5 48.9 4.63 

AutoGrow4 
Gen. 0 227.7 95.7 244 434.2 359.3 45.7 20.49 --- --- --- 
Gen. 1 319.2 80.9 5402 472.2 450.7 17.0 0.93 408.2 46.2 18.51 
Gen. 5 384.3 84.8 27993 458.2 465.7 10.5 0.18 461.1 15.3 3.57 
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Table 23. Quantitative estimate of drug-likeness (QED) of de novo CADD-generated 
compounds. 

“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All runs of each respective program were pooled 
together. “Mean” represents the mean of the subset of pooled compounds. “Dev.” represents the 
standard deviation of the included scores. “% Pop” represents the percent of top-scoring 
compounds included (100 * N / Size). The reported means and standard deviations are based on 
QED scores (unitless), calculated using Scopy’s implemintation of QED with average property 
weights (i.e., QEDMean)166,267. QED scores range from 0.0 to 1.0, where 0.0 indicates that a 
compound has all unfavorable properties and 1.0 indicates that a compound contains all favorable 
properties166,267. 

 
  Global N=1 N=50 N=1000 

Program 
Mean Dev. Size Mean Mean Dev. % Pop. Mean Dev. % Pop.   

De novo 
DOCK 0.40 0.15 37883 0.54 0.38 0.13 0.13 0.37 0.11 2.64 
GANDI 0.45 0.14 523 0.53 0.47 0.12 9.56 --- --- --- 

LigDream 0.48 0.20 21586 0.45 0.40 0.15 0.23 0.42 0.16 4.63 
AutoGrow4 

Gen. 0 0.62 0.16 244 0.61 0.66 0.13 20.49 --- --- --- 
Gen. 1 0.62 0.17 5402 0.46 0.51 0.10 0.93 0.54 0.14 18.51 
Gen. 5 0.46 0.18 27993 0.51 0.46 0.10 0.18 0.46 0.11 3.57 
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4.3.2.4.2 Lipinski*, Ghose, and PAINS Applied to de novo CADD-Generated Compounds 

AutoGrow4’s predefined chemical filters help refine lead candidates and reduce the 

resources wasted on evaluating non-drug-like compounds. I applied the Lipinski*, Ghose, and 

PAINS filters to all AutoGrow4 runs, thereby removing unfavorable compounds prior to the 

computationally expensive processes of 3D conversion and docking. Unlike AutoGrow4, the other 

three de novo CADD programs had only limited property filters. To facilitate comparison, I 

subsequently filtered all compounds produced by de novo DOCK, GANDI, and LigDream with 

the Lipinski*, Ghose, and PAINS filter. As a positive control, I also filtered the eleven PARPi that 

in part seeded these runs. Iniparib was the only seed PARPi that failed any of the filters (Ghose) 

because it had fewer non-hydrogen atoms than the 20 atom minima (Table 24). 

The LigDream-generated compounds passed all three filters at the highest rate, only failing 

all three filters 46.26% of the time (Table 24). In contrast, de novo DOCK compounds failed all 

three filters 61.65% of the time, the most of any program considered (Table 24). These percentages 

indicate that these programs dedicate around half of the available computational resources to 

generating compounds that are undesirable according to cheminformatics standards, which are 

based on what is known about existing drugs. Additionally, by outputting so many leads with so 

little chance of being developed into drugs, these programs require the users to test more 

ineffectual compounds to find good candidates. 

Results published in Skalic et al. (2019)213 showed that LigDream-generated compounds 

tend to fail the PAINS filter less frequently when the probabilistic recurrent neural network is 

enabled, than when it is disabled213. My results are consistent with this study. In applying 
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LigDream to PARPi lead optimization, I found that compounds produced using recurrent-neural-

network sampling failed the PAINS filter 6.64% of the time, compared to 8.25% when recurrent-

neural-network sampling was disabled (Table 24). Similarly, the LigDream publication reported 

slightly higher PAINS-filter fail rates when disabling the probabilistic recurrent neural network 

(14.4% vs. 13.5% without)213. Again, these rates are consistent with my results, given differences 

in source compounds and run conditions. 
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Table 24. Drug-likeness filters applied to de novo CADD-generated compounds. 
“Global” indicates all compounds of a given generation or produced by a given program. “N” 
indicates the number of top-scoring compounds selected. “All Three Filters” indicates filtering a 
population with the Lipinski*, Ghose, and PAINS filters. Filters were applied to the compounds 
after running each program and scoring/ranking the compounds. AutoGrow4 was excluded from 
this table because the final set of AutoGrow4-generated compounds already passed these three 
filters prior to 3D conversion with Gypsum-DL6. All values indicate the percent of the 
subpopulation that passed the filter(s).  
 

  Lipinski* Filter Ghose Filter PAINS Filter All Three Filters 

Program 
Global N=1000 N=50 Global N=1000 N=50 Global N=1000 N=50 Global N=1000 N=50 

  

De novo DOCK 73.76 65.60 66.0 42.22 26.10 20.0 97.77 99.30 100.0 38.35 23.50 20.0 

GANDI 98.09 --- 94.0 39.01 --- 32.0 100.00 --- 100.0 38.81 --- 30.0 

LigDream 65.33 57.50 54.0 65.16 49.90 46.0 92.75 93.80 90.0 53.74 43.60 40.0 

 

  



 225 

4.3.2.4.3 Toxicity Filters Applied to de novo CADD-Generated Compounds 

To assess the toxicity of compounds produced by the different de novo CADD programs, I 

filtered all generated compounds with two ADME-PK filters: the idiosyncratic filter166,268 and the 

SureChEMBL filter166,269,270. The idiosyncratic filter, provided by the Python library Scopy166, 

identifies compounds that are prone to cause infrequent (between 1-in-1,000 to 1-in-10,000) events 

of xenobiotic-induced toxicity (i.e., idiosyncratic adverse drug reactions)268. Idiosyncratic 

reactions often go unnoticed in the early and middle stages of drug development because they 

influence only small portions of the population and because animal models are unreliable for 

predicting these reactions268. Therefore, early detection and elimination of idiosyncratic-prone 

functional groups can reduce risk and save both time and resources during further drug 

development268. The SureChEMBL filter, also provided by the Python library Scopy166, is a 

substructure-based filter that eliminates compounds containing any of 164 toxicophores (i.e., 

moieties associated with environmental toxicity or human cytotoxicity)166,269,270. Early elimination 

of toxicophore-containing compounds reduces the risk of off-target effects and similarly saves 

time and resources269,270. Both filters were also applied to the eleven seed PARPi, which served as 

positive controls. Iniparib was the only seed PARPi that failed the idiosyncratic filter, and none 

failed the SureChEMBL filter. 

Most subpopulations of AutoGrow4 compounds passed the toxicity filters at a higher 

percent than the subpopulations of non-AutoGrow4 compounds (Table 25). AutoGrow4 and de 

novo DOCK had higher idiosyncratic-filter success rates than GANDI or LigDream in terms of 

both their top 50 and 1,000 best docking scored compounds as well as the compounds of their 
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entire populations (Table 25). Similarly, most AutoGrow4 generations passed the SureChEMBL 

filter at higher rates than the other programs (Table 25). GANDI had the lowest pass rates for all 

filters and all subpopulation sizes.  
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Table 25. Comparison of de novo CADD-generated compounds with ADME-PK filters. 
“Gen. #” indicates the AutoGrow4 generation number (PARPi lead-optimization runs). “Global” 
indicates all compounds of a given generation or produced by a given program. “N” indicates the 
number of top-scoring compounds selected. All values indicate the percent of the subpopulation 
that passed a given filter. 
 

  Idiosyncratic Filter   SureChEMBL Filter  
Program Global N=1000 N=50 Global N=1000 N=50  

De novo DOCK 92.42 85.40 88.0 57.88 65.10 70.0 
GANDI 50.86 --- 50.0 33.65 --- 40.0 

LigDream 67.28 80.60 82.0 61.55 60.60 48.0 
AutoGrow4 

Gen. 0 97.95 --- 100.0 76.23 --- 80.0 
Gen. 1 86.43 92.10 86.0 68.35 72.90 60.0 
Gen. 5 75.95 89.00 94.0 54.00 77.80 70.0 
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4.4 Conclusions 

In this section, I used PARPi lead-optimization techniques to compare AutoGrow4 to a 

traditional VS as well as to three de novo CADD programs. I showed that AutoGrow4 performed 

better than the other current programs by several metrics. 

To compare AutoGrow4 and VS lead optimization, I focused primarily on how well they 

generated novel PARPi with improved predicted binding affinities. Both approaches found new 

compounds that are similar to known PARPi but with improved docking scores (Table 16 p.202 

and Figure 28 p.204). When testing a comparable number of compounds, AutoGrow4’s GA 

approach yielded better-scoring compounds than the VS approach after evolving only a single 

generation (Table 16 p.202 and Figure 28 p.204). Extended to the fifth generation, the mean 

docking score of AutoGrow’s top 1,000 compounds was better than that of the best-scoring 

compound in the VS (Table 16 p.202). Of course, leads found via any high-throughput 

computational method (VS or AutoGrow4) can generally benefit from further optimization via 

more advanced computational methods (e.g., molecular dynamic simulations) or biochemical 

testing.  

My comparison of AutoGrow4 and VS has its limitations because small changes to 

variables could have significant impacts on the results. For instance, if the Tanimoto cutoff used 

to select the PARPi-like compound dataset was stricter, the VS dataset would have consisted of 

compounds more closely related to known PARPi, which may have yielded even better scoring 

compounds; however, this would have also limited the chemical diversity of the VS library. 
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Additionally, restricting the VS search to the compounds most similar to known PARPi increases 

the chance of encountering intellectual property restriction issues162. 

AutoGrow4 performed as well as or better than the three alternative de novo CADD 

programs in virtually all considered metrics. As predicted, AutoGrow4 excelled at producing 

compounds with high predicted binding affinities while maintaining synthesizability and favorable 

ADME-PK properties. Because of its filters and GA approach, AutoGrow4 produced more 

compounds that passed toxicity and drug-likeness filters than other programs. Overall, the CADD 

techniques explored in this thesis are powerful tools for finding initial candidate compounds for 

further evaluation. 
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5.0 Dissertation Summary 

In this chapter, I will (1) overview the work presented in this dissertation; (2) propose 

future directions for the field of PARP-1 research, with a focus on PARP-1 drug inhibition; and 

(3) propose future directions for AutoGrow and the field of de novo CADD. 

5.1 Overview of Dissertation 

This dissertation catalogs the development and validation of AutoGrow4 and its application 

to poly (ADP-ribose) polymerase-1 (PARP-1).   

5.1.1 Summary of Chapter 2 

In Chapter 2, I detailed the implementation choices that make AutoGrow4 a milestone in 

the AutoGrow program series. AutoGrow4 remains true to its origins by employing a genetic 

algorithm to create novel compounds and by using protein-ligand docking as the scoring metric, 

but I have significantly altered the underlying algorithm. My important improvements include 

redesigning the seed selection process and adding a secondary fitness metric (i.e., diversity score) 

that assesses ligand uniqueness. These innovations both delay convergence and help avoid local 

optima trapping. Through carefully designed benchmarks, I demonstrated that AutoGrow4 is faster 

and more effective at predicting compounds with improved docking scores than its most recent 
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predecessor, AutoGrow3, in part because it samples multiple 3D variants per compound and 

evaluates the zeroth generation. Additionally, I designed the new codebase to be expandable so 

AutoGrow4 can be updated as cheminformatic and docking programs advance. Lastly, AutoGrow4 

incorporates new ADME-PK filters so users can better focus their search of chemistry space on 

drug-like compounds. These improvements better equip AutoGrow4 for modern CADD studies. 

5.1.2 Summary of Chapter 3 

Chapter 3 describes several AutoGrow4 runs in which I designed novel candidate PARP-

1 inhibitors. These runs are useful for five main reasons: (1) they generated novel potential PARP-

1 inhibitors (PARPi) with stronger predicted binding affinities than those of known PARPi; (2) 

they validated AutoGrow4 as a tool for de novo drug design, lead optimization, and hypothesis 

creation; (3) they identified novel potential PARPi that are predicted to bind to both a 

phosphorylated (PARPi-resistant) and nonphosphorylated PARP-1 catalytic pocket; (4) they 

predicted novel inhibitors to target the Zn1-Zn3 interface; and (5) they revealed new insights into 

the physiochemical environment of the Zn1-Zn3 interface.  

In the lead-optimization runs, AutoGrow4 created a novel compound (Compound 5) with 

a docking score of -14.7 kcal/mol after only a single crossover event. This score surpasses those 

of known PARPi (Figure 17 p.144). Further analysis revealed that Compound 5’s predicted 

binding to PARP-1 mimics that of both its parent PARPis, olaparib and CEP-9722 (Cephalon). 

The key protein-ligand interactions and the novel structures presented in this dissertation will aid 

those who wish to design novel PARPi that target the catalytic pocket.  



 233 

I also evaluated the biological relevance of catalytic-site-targeted compounds generated 

during the AutoGrow4 large-scale de novo run. The run was seeded with random small molecules, 

blinding it from prior knowledge about known PARPi, so this run doubled as a test of 

AutoGrow4’s ability to predict compounds designed for a targeted pocket. The resulting 

compounds’ binding poses mimicked those observed in crystallographic structures of 

experimentally verified PARPi bound to PARP-1, in terms of predicted binding affinity, chemical 

structure, and predicted protein-ligand interactions.  

I also used the de novo run to demonstrate how results from AutoGrow4 can help 

researchers generate new hypotheses. Because AutoGrow4 can test hundreds of thousands of 

compounds in a single run, the amount of information generated can be used to direct numerous 

subsequent experiments. For example, analysis of the de novo run detected repeated interactions 

between the best-scoring compounds and a number of pocket residues. These results led me to 

hypothesize that developing catalytic-pocket inhibitors that do not interact with Y907 (a catalytic-

site residue that confers PARPi resistance when phosphorylated142) will be difficult, so I performed 

subsequent lead-optimization runs that targeted the pY907-PARP-1 structure. These prevalent 

interactions could also inform future studies such as quantitative structure-activity relationship 

(QSAR) and site-directed mutagenesis. 

The results of these runs contribute to the growing realization that there is a need for PARP-

1-based chemotherapies that do not rely on the same set of protein-ligand interactions typical of 

current PARPi. All FDA-approved PARPi bind to the PARP-1 catalytic pocket and rely on many 

of the same interactions for binding17,18. Additionally, despite the chemical diversity of the 

compounds generated in my AutoGrow4-guided searches, a similar set of consistent protein-ligand 
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interactions was prevalent among the best-scoring compounds generated by both the catalytic-site-

targeted large-scale de novo and initial lead-optimization runs (Table 8 and Table 9 on p.152 and 

p.155, respectively).  

For example, in my pY907-PARP-1 lead-optimization runs, 24% of the 100 best-scoring 

compounds formed π-π stacking interactions with pY907. Because phosphorylation of Y907 by c-

Met has been verified as a PARPi resistance mechanism142, treatment strategies that rely on this 

common interaction are vulnerable to resistance mechanisms. These results, combined with the 

growing number of identified PARPi resistance mechanisms30,43,95,129,142,272, illustrate the need to 

diversify PARP-1 cancer treatments. 

Finally, I used computational hot-spot mapping, paired with a thorough literature search, 

to identify two non-catalytic pockets located near the Zn1-Zn3 and Zn1-WGR-HD interfaces. 

Analysis of the physiochemical properties of both pockets led me to conclude that the Zn1-Zn3 

pocket was more druggable (“Chapter 3.3.5.1: Selecting a Druggable Non-Catalytic Pocket”). 

AutoGrow4-guided CADD targeting the Zn1-Zn3 pocket produced many novel compounds that 

were predicted to bind with high affinity (Figure 26 p.177). The AutoGrow4-generated compounds 

that target the Zn1-Zn3 pocket are more flexible (i.e., had a higher ratio of rotatable to rigid bonds) 

and had smaller ring structures than those that target the catalytic site (Table 13 p.178). 

Additionally, the Zn1-Zn3 compounds formed fewer stacking and electrostatic interactions than 

the catalytic-site compounds, instead more frequently binding via hydrophobic and hydrogen-bond 

interactions (Table 14 p.181).  

Further analysis of the Zn1-Zn3 pocket revealed a protruding helix that separates two 

surface-accessible cavities within the pocket (Figure 27 p.183). AutoGrow4 evolved and selected 
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for compounds that contour around the protruding protein density to form interactions in both 

cavities. The best-scoring compound of the AutoGrow4 Zn1-Zn3-targeted runs, Compound 6, has 

two moieties angled at 120° that can straddle the protrusion and extend into both cavities (Figure 

27 p.183). This last study revealed important insights into the structure of the Zn1-Zn3 pocket, 

provided several novel candidate PARPi that do not bind to the PARP-1 catalytic site, and 

showcased AutoGrow4’s ability to customize novel ligands to unique protein pockets. 

If computational resources were limitless, I would use molecular dynamics simulations of 

PARP-1 to evaluate the binding of AutoGrow4-predicted PARPi and to test their influence on 

PARP-1 dynamics. Microsecond-timescale molecular dynamics simulations are commonly used 

to assess protein conformational changes and protein-ligand binding273. However, these 

simulations often rely on molecular-mechanical force fields that are less computationally costly 

but also less accurate than quantum mechanical (QM) approaches274. With unlimited 

computational resources, QM molecular dynamics simulations could assess small-molecule 

binding to PARP-1. These simulations could determine protein-ligand binding kinetics and could 

even be used to assess the compound’s PARP-1 DNA trapping activity. Additionally, because it 

is not currently possible to perform whole-cell simulations at atomic resolution, molecular 

dynamics simulations can miss potentially important interactions between PARP-1 and other 

compounds present in vivo. With limitless computational resources, I would perform partial or 

whole-cell simulations that would further improve accuracy and biological relevance. Lastly, if 

time and computational resources were truly unlimited, there would be sufficient computational 

resources to test all of chemistry space. CADD optimization techniques (e.g., the genetic algorithm 

implemented in AutoGrow4) would no longer be necessary. In such a scenario, I would develop a 
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virtual library consisting of all synthesizable, drug-like compounds, which could be used as a 

universal small-molecule drug library. I would screen this entire library to find the compounds that 

are the strongest PARP-1 inhibitors. 

5.1.3 Summary of Chapter 4 

In Chapter 4, I compared PARPi lead optimization using AutoGrow4 to (1) a virtual screen 

(VS) and (2) three alternative de novo CADD programs (de novo DOCK162, GANDI167, and 

LigDream213). Considered alongside the benchmark experiments from Chapter 2, my tests 

demonstrate that AutoGrow4 is superior at designing novel drug-like small molecules than similar 

free and open-source de novo CADD techniques. Although all approaches identified compounds 

that are similar to known PARPi, AutoGrow4 produced the compounds with the best docking 

scores. AutoGrow4 globally produced the most diverse compounds, and each AutoGrow4 

generation was more diverse than the populations predicted by VS or the other three de novo 

CADD programs. Additionally, AutoGrow4 provides the most comprehensive set of ADME-PK 

filters6,162,167,213. These filters helped AutoGrow4 produce drug-like compounds that passed toxicity 

filters more frequently than compounds produced by the other three programs. AutoGrow4 also 

predicted more synthesizable compounds than de novo DOCK and GANDI. 

If time and resources were not limiting factors, I would experimentally test the ligands 

predicted by each program in a wet-lab setting. Rather than comparing the predicted ligands in 

terms of docking score and predicted toxicity, I would compare them in terms of experimentally 

measured PARP-1 binding affinity, PARP-1 catalytic inhibition, PARP-1 trapping, and 
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cytotoxicity. Because computational approaches such as docking are imperfect in predicting 

protein-ligand binding affinity and pose stability271, these wet-lab experiments would provide a 

more accurate assessment of the ligands predicted by each program. I describe an experimental 

protocol for validating candidate PARPi in “Chapter 5.2.1.3: Verifying AutoGrow4-Generated 

Leads,” but current resources cannot feasibly conduct a thorough ex silico comparison of the 

168,161 unique canonical SMILES (Table 18 p.209) predicted by the four tested de novo CADD 

programs (AutoGrow4, de novo DOCK, GANDI, and LigDream). 

5.2 Future Directions of PARP-1 Inhibition 

In this dissertation, I generated novel compounds that are predicted to bind PARP-1’s 

catalytic pocket and DNA-binding-domain interface with higher affinity than FDA-approved 

PARPi. I also discovered several novel leads that are predicted to bind PARP-1’s catalytic pocket 

even when Y907 is phosphorylated, thereby potentially circumventing the pY907 resistance 

mechanism142. Of course, these early-stage leads have only been assessed by molecular docking. 

Further in silico evaluation, synthesis, and experimental validation are the next steps in this drug 

design and development pipeline. 

In this section, I will propose several future directions for PARPi design, including 

biological experiments. First, I will describe proposed experiments that focus on PARPi inhibition 

of the catalytic domain (i.e., orthosteric inhibition). These experiments will elucidate the 

mechanism of pY907-triggered PARPi resistance and verify novel AutoGrow4-generated 
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candidate PARPi. Second, I will propose directions for expanding treatment options of HR-

deficient cancers that do not rely purely on PARP-1 orthosteric inhibition. These will include the 

design and validation of AutoGrow4-generated candidate PARPi that do not bind the catalytic site.  

5.2.1 Future Directions of Orthosteric PARPi 

The aims of the future experiments proposed in this section are to (1) understand the 

mechanism of pY907-mediated PARPi resistance; and (2) verify candidate PARPi leads that are 

less susceptible to the pY907 PARPi-resistance mechanism. The first step in addressing these aims 

is to generate a high-resolution structure of the catalytic site when Y907 is phosphorylated. Then 

I will suggest steps for further evaluation of AutoGrow4-generated leads and the eventual 

transition from in silico to wet-lab testing. 

5.2.1.1 Understanding the Mechanism of pY907-Triggered PARPi Resistance 

pY907 has been shown to confer PARPi resistance by weakening PARPi binding and 

increasing PARP-1 catalytic activity142, but the specific molecular mechanism responsible for this 

effect remains unknown. A crystal structure of pY907 PARP-1 would help answer unresolved 

structural-biology questions regarding the mechanism of pY907-mediated PARPi resistance, 

particularly if the crystallography captured PARP-1 bound to a PARPi or a non-hydrolyzable 

NAD+ analog such as benzamide adenine dinucleotide (BAD). Such crystals would reveal how 

pY907 influences small-molecule binding and whether there are conformational changes within 

the pocket that account for the increased catalytic activity. 
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Whether pY907 alters the binding affinity of the endogenous ligand NAD+ is also 

uncertain. Given the structural similarities between PARPi and NAD+30,75 (Figure 8 p.33), I predict 

that pY907 does weaken NAD+ binding. But if so, why the increase in NAD+ catalytic activity? 

On the other hand, if pY907 instead increases the binding affinity of NAD+, thereby increasing 

enzymatic activity, why the observed decrease in PARPi affinity? 

As a possible explanation, I hypothesize that Y907 phosphorylation causes additional 

conformational changes—not captured in my computational models—that account for both the 

increased catalytic activity and the decreased PARPi binding affinity. Alternatively, 

phosphorylation may simply affect the binding of PARPi and NAD+ differently, so that it 

negatively impacts PARPi binding but strengthens NAD+ binding. A third option is that PARP-1 

catalytic activity increases because phosphorylation affects other factors responsible for PARP-1 

activity that are unrelated to the catalytic pocket itself, such as interactions with the acceptor site 

or the stability of HD, with consequential impacts on the ligand turnover rate.  

To distinguish between these possible explanations for pY907-mediated PARPi resistance, 

I propose (1) calculating the binding kinetics of NAD+ and several other NAD+ analogs to pY907 

in order to determine if pY907 affects PARPi and NAD+ binding differently, and (2) resolving a 

high-resolution structure of pY907-PARP-1 to reveal whether pY907 induces substantial catalytic-

pocket conformational changes. Calculating the binding kinetics of NAD+ and other NAD+ 

analogs can be accomplished following the protocols in Du et. al. (2016)142. However, because 

determining a high-resolution structure of pY907-PARP-1 requires a custom protocol, I detail that 

proposed experiment in the following section.  
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5.2.1.2 Determining the Structure of the pY907-PARP-1 Catalytic Pocket 

In this section I propose an approach to determining the structure of the pY907-PARP-1 

catalytic pocket that can also be used in future CADD efforts targeting the pY907-PARP-1 

catalytic site. Determining a high-resolution structure of pY907 PARP-1 would improve the 

accuracy of future CADD efforts targeting the pY907-PARP-1 catalytic site. The modelling 

method I used to produce the pY907-PARP-1 structure in “Chapter 3.2.4: Phosphorylated Y907 

PARP-1 Lead-Optimization” cannot account for any conformational changes caused by 

phosphorylation.  

I propose resolving a high-resolution pY907 PARP-1 structure using X-ray 

crystallography. The first step to obtain phosphorylated PARP-1 is to purify truncated PARP-1 

using PARP-1 constructs that are known to crystallize, such as those used to produce the 4R6E17 

or 4DQY45 structures. Next, I would purify the constituently active, cytosol-localized c-Met 

mutant METΔ7-8 (which lacks the regions encoded by exons 7 and 8275) using His-tag and Ni-

affinity chromatography, as others have done275. I would then incubate the purified PARP-1 with 

an excess of purified METΔ7-8, thereby encouraging PARP-1 phosphorylation. With a similar 

incubation, Du et al. (2016)142 were able to obtain pY907 PARP-1 protein, although they did not 

attempt to crystallize pY907 PARP-1142. Following the incubation, I would further purify PARP-

1, remove METΔ7-8 using chromatography, and then proceed with crystallography.  

If crystals do not form or if METΔ7-8 does not phosphorylate Y907, molecular dynamics 

simulations starting with my pY907-PARP-1 model could also reveal how the catalytic pocket 
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responds to Y907 phosphorylation. This approach is a promising future direction because it would 

provide better sampling of the catalytic pocket than does my current static pY907-PARP-1 model.  

5.2.1.3 Verifying AutoGrow4-Generated Leads 

The work described in this dissertation has produced a large dataset of AutoGrow4-

generated leads. In this section, I propose a process of verifying that these predicted ligands are in 

fact PARPi. I focus these future directions on candidates predicted to bind independent of the 

phosphorylation state of Y907, although similar evaluation and testing can be applied to candidates 

predicted to preferentially bind nonphosphorylated PARP-1. 

5.2.1.3.1 Evaluating and Verifying AutoGrow4-Generated Leads as PARPi 

The first step in evaluating the AutoGrow4-generated leads is to perform additional in 

silico testing. Because I have already generated many well scoring leads, I propose pooling the 

best compounds from the AutoGrow4 runs applied to both 4R6E:A and pY907-PARP-1. Next, I 

would filter for compounds that are predicted to be synthetically tractable, drug-like, and non-toxic 

by considering SA_Score266, QED166,267, and the idiosyncratic166,268/SureChEMBL166,269,270 filters 

described in “Chapter 4.2.2.1.3: Post-Processing Compound Analysis”. Selecting synthesizable 

compounds will expedite the transition to wet-lab testing, and selecting compounds that are drug-

like and non-toxic will minimize issues such as poor solubility and idiosyncratic adverse drug 

reactions that may otherwise arise in later stages of testing163,268.  
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Having selected the most promising compounds, I would next perform molecular dynamics 

simulations of PARP-1 and pY907 PARP-1 to sample multiple protein conformational states. I 

would run molecular dynamics simulations of the pY907 PARP-1 structure determined in 

“Chapter 5.2.1.2: Determining the Structure of the pY907-PARP-1 Catalytic Pocket”; however, 

the computationally modeled pY907-PARP-1 structure (“Chapter 3.3.4.1: Building the pY907 

PARP-1 Structure and Orienting the Phosphate Moiety”) would serve as a backup if 

crystallography efforts fail. I would reassess each compound’s predicted binding affinity using an 

ensemble-docking approach, wherein compounds are docked into multiple conformations to 

account for protein flexibility. This high-throughput reassessment would further prune the number 

of candidate ligands. 

Once a tractable number of compounds are selected, I would begin synthesizing the 

compounds. A collaboration with a trained synthetic chemist would be invaluable during this stage. 

Alternatively, screening commercially available compounds that are similar to my identified leads 

and removing those that have poor docking scores may identify promising candidates without 

requiring custom compound synthesis.  

Once I have synthesized or purchased compounds, I would assess the ability of each 

compound to inhibit PARP-1’s catalytic activity using an in vitro PARP-1 inhibition assay such 

as the fluorescence-detection-based assay designed by Putt and Hergenrother276. After incubating 

PARP-1, nicked DNA, NAD+, and each candidate inhibitor276, this high-throughput assay 

converts any remaining NAD+ into a fluorophore. A fluorescent plate reader can then be used to 

determine the concentration of NAD+. This initial screen would allow me to eliminate compounds 

that do not inhibit PARP-1 catalytic activity. 
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I would next perform a cell-viability assay75,277 to test whether the inhibitors are (1) lethal 

to BRCA-deficient cells, using HEK293T cells transfected with shRNA vector to knockdown 

BRCA1/2142, (2) non-lethal to cells with functional BRCA proteins, using HEK293T cells 

transfected with control vector142, and (3) lethal to BRCA-deficient cells that have upregulated c-

Met, using HEK293T cells transfected with shRNA vector to knockdown BRCA1/2 and 

ectopically express constituently active c-Met mutant (METΔ7-8)142,275. This combined shRNA 

knockdown and ectopic expression enables a controlled comparison of the inhibitors. Ideally, 

several compounds would be lethal to BRCA-deficient cells independent of c-Met levels, and non-

lethal/less lethal to BRCA-proficient cells. This entire process would require multiple rounds of 

inhibitor refinement and testing, but would ideally identify PARPi that could then progress to 

animal testing and eventually human clinical trials.  

5.2.2 Future Directions of PARP-1 Inhibition and PARPi Drug Design 

In this section, I will propose several future directions for designing PARPi that do not 

bind to the PARP-1 catalytic site, as well as several other strategies for treating HR-deficient 

cancer cells. To effectively recruit DNA repair proteins to sites of DNA-damage, PARP-1 must be 

able to bind DNA-damage sites17,45,46, activate catalytic activity through interdomain 

communication18, and catalyze NAD+ to poly (ADP-ribose)61. Both reduced PARP-1 catalytic 

activity and increased PARP-1 trapping on DNA make PARPi effective against HR-deficient 

cells75,77. 
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My research illustrates the critical role Y907 plays in high-affinity, catalytic-pocket 

binding. Considering that all FDA-approved PARPi target this pocket and rely on interactions with 

Y9071–4,17,18, and that phosphorylation of Y907 by c-Met confers resistance to multiple PARPi142, 

future efforts for PARPi design should focus on binding sites outside of the catalytic binding 

pocket. 

I showed that one potential binding site is located near the Zn1-Zn3 interface. My 

preliminary AutoGrow4-guided CADD efforts targeting this secondary pocket identified novel 

compounds predicted to bind with high affinity and provided insight into the pocket environment. 

As proposed in “Chapter 5.2.1.3.1: Evaluating and Verifying AutoGrow4-Generated Leads as 

PARPi,” I recommend reevaluating candidate leads by docking them into an ensemble of protein 

conformations. Furthermore, I propose wet-lab validation of these compounds to verify that they 

bind to the pocket and inhibit PARP-1 (“Chapter 5.2.1.3.1: Evaluating and Verifying AutoGrow4-

Generated Leads as PARPi”). An additional potential binding site is located at the Zn1-WGR-HD 

interface. Future CADD exploration and wet-lab verification of this interface may also yield 

additional PARP-1 inhibitors.  

Future studies could also focus on treatments that thwart additional PARPi resistance 

mechanisms by combining both PARP-1 inhibitor(s) and c-Met inhibitor(s)142. These approaches 

will not work against all resistance mechanisms, such as reversed BRCA gene(s) mutations that 

restore HR function30,129,272, but they may yield improved treatment outcomes for HR-deficient 

cancer patients. 
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5.3 Future Directions of AutoGrow 

AutoGrow4 is a major milestone in the AutoGrow program series that includes many new 

features such as improved ligand handling and the introduction of a plugin architecture. To stay 

current with future computer-hardware and algorithmic advances, future AutoGrow releases will 

no doubt require additional refinements. In this section I detail features that I hope will one day be 

integrated into AutoGrow as technology and computational resources allow. 

5.3.1 Protein-Ligand Assessment: The Balance between High-Throughput Testing and 

Accuracy 

Future versions of AutoGrow4 could incorporate more advanced methods for sampling 

protein-ligand poses and assessing protein-ligand interactions. AutoGrow4 is currently configured 

for early-stage drug design and so relies on high-throughput protein-ligand docking to assess 

compound fitness. Although AutoGrow4 provides a plugin option that allows for the easy 

integration of alternative docking software and protein-ligand assessments methods, it currently 

does not provide predefined options for more advanced, computationally intensive techniques, 

which may be useful in the later stages of CADD. In this section, I will explore several of these 

advanced techniques. 

Effective CADD requires one to balance the costs of computation, thoroughness of search, 

and accuracy of assessment274. Techniques such as protein-ligand docking tend to favor 

computational efficiency over accuracy. In contrast, quantum mechanical (QM) methods for 
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calculating protein-ligand binding affinities tend to favor accuracy over the overall computational 

cost274. Additionally, docking into a single rigid protein conformation is cost-effective but ignores 

the dynamics of proteins and protein-ligand binding278. But treating a protein as flexible during 

docking is computationally costly due to the high dimensionality of a protein’s conformational 

space279. For instance, calculating the motions of binding-pocket sidechains alone requires the 

additional evaluation of perhaps ten to twenty residues279 with an average of 1.85 rotatable bonds 

per residue280.  

Incorporating the option to treat proteins as flexible, as well as offering multi-conformation 

ensemble docking to account for larger motions279, could improve the docking accuracy of 

AutoGrow4 and fulfill more user needs. On the other hand, ensemble docking does not improve 

search outcomes when applied to similar conformations of a rigid protein pocket279. Short 

molecular dynamics simulations can optimize pose placement and test pose stability281, but they 

too are computationally expensive. Because most pipelines start with high-throughput techniques 

that are followed by increasingly accurate but costly reassessments, selecting the best approach for 

a given step is important. Future versions of AutoGrow should provide options that suit a variety 

of user needs. 

5.3.2 Chemical Filters 

A CADD program that considers docking scores alone without examining absorption, 

distribution, metabolism, excretion, and pharmacokinetics (ADME-PK) is unlikely to predict 

successful drugs175. AutoGrow4’s expanded set of chemical-property filters gives it a major 
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advantage over other free and open-source de novo CADD programs (“Chapter 4.3.2: Comparison 

of AutoGrow4 Lead Optimization and other De Novo CADD Programs”). Future AutoGrow 

releases should continue to incorporate new filters and scoring functions to account for drug-

likeness properties other than predicted binding affinity. 

Expanding AutoGrow4’s filter options to allow researchers to screen out compounds with 

undesirable ADME-PK properties should improve the success rate of predicted lead compounds. 

AutoGrow4 provides nine predefined chemical-property filters. The Lipinski163, Lipinski*, 

Ghose168, Ghose*, VandeWaterbeemd169, and Mozziconacci170 filters focus on physiochemical 

properties such as molecular weight, logP, and polar surface area. These are useful for predicting 

solubility and bioavailability but do not address drug metabolism or drug toxicity163,168–170. The 

BRENK171, NIH172,173, and PAINS174 filters screen for false positives and off-target effects but do 

not address compound stability or drug toxicity171–174. The idiosyncratic166,268 and 

SureChEMBL166,269,270 filters, which I used in “Chapter 4.3.2.4.3: Toxicity Filters Applied to de 

novo CADD-Generated Compounds” to compare the compounds generated by different de novo 

CADD programs, could be incorporated into AutoGrow4 to provide useful toxicity filters.  

The next release of AutoGrow4 could also incorporate ADME-PK properties into its fitness 

functions, thereby actively selecting for compounds with favorable ADME-PK properties rather 

than merely filtering out poor compounds. Because the AutoGrow4 chemical filters are designed 

to screen large numbers of compounds, they also potentially eliminate candidate compounds that 

have other favorable properties. For example, an average of 5,565.3 compounds were removed by 

the Lipinski*, Ghose, and PAINS filters per run in the fifth generation of the pY907-PARP-1 lead-

optimization runs, which is approximately one compound removed for every compound that 
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passed. A scoring system that penalizes compounds that violate filter constraints without 

eliminating them entirely may effectively refine compound populations for ADME-PK properties.  

Lastly, future releases of AutoGrow4 could incorporate measures of compound 

synthesizability into the filter and scoring-function options. AutoGrow4 generates compounds that 

often require custom synthesis before experimental testing, so filters and scoring functions that 

consider compound synthesizability will be useful. 

5.3.3 Compound Generation 

In this section I will discuss two alternative compound-generation methods that could be 

incorporated into AutoGrow4. AutoGrow4 currently creates novel compounds by crossover and 

mutation. Incorporating additional methods could improve the quality of generated compounds.  

First, a machine-learning-based approach could help produce unique and chemically 

synthesizable compounds. In my comparison of AutoGrow4 and alternative de novo CADD 

programs, the machine-learning-based program LigDream213 performed exceptionally well 

creating a diverse set of synthesizable and drug-like compounds; however, it did not compare 

favorably against AutoGrow4 in terms of average predicted binding affinity, likely because 

LigDream does not assess the predicted compounds relative to the target protein pocket (“Chapter 

4.3.2: Comparison of AutoGrow4 Lead Optimization and other De Novo CADD Programs”). 

Using a program such as LigDream to generate novel inhibitors within the AutoGrow framework 

could be a successful merge the strengths of these two programs. 
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Second, I propose incorporating an additional compound-creation operator that fragments 

parent compound(s) (“Chapter 3.3.2.2: AutoGrow4 Operators and Molecular Weight”). Although 

some crossover and mutation events result in child compounds that are smaller than the parent(s), 

the MW of AutoGrow4-generated compounds tends to increase with each successive generation 

(“Chapter 3.3.2.2: AutoGrow4 Operators and Molecular Weight”) until the MW of the population 

reaches the limit imposed by the chemical-property filters. A user option for fragmenting 

compounds would mitigate this issue by introducing low-MW fragments back into the evolving 

populations. 

5.3.4 Additional Improvements 

In this section, I will describe several technical improvements that can further enhance 

AutoGrow4’s ease-of-use, computational efficiency, and multiprocessing support. 

First, providing a graphical user interface or webserver implementation would improve 

AutoGrow’s ease of use, particularly for users who are not comfortable with command-line 

interfaces. AutoGrow4 is currently a command-line program that requires users to separately 

install several third-party programs and libraries. Despite AutoGrow4’s extensive documentation 

describing installation and use (Appendix D: AutoGrow4 Manual and Tutorial), these 

requirements limit the userbase to researchers with at least some computational experience.  

Second, future releases could also include improved parallelization options. In recent years, 

computational advances have come more from improved parallelization across many processors 

than from faster individual processors282. AutoGrow4 was the first AutoGrow program to allow 
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MPI parallelization, which permits job distribution across multiple computer nodes. This enables 

AutoGrow4 to use more central processing units (CPU) than are normally available on a single 

node. However, docking methods that use graphics processing units (GPU) can perform up to 90 

times faster than CPU-based docking methods283. AutoGrow4 is currently a CPU-intensive 

program that is not configured for GPU processing. Future releases could focus on providing a 

GPU-based molecular-docking option.  
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Appendix A Additional AutoGrow4 Implementation Details 

This appendix details additional AutoGrow4 implementation choices that were not 

pertinent to understanding the program or its application. 

Appendix A.1 Parallelization 

AutoGrow4 borrows multiprocessing code from the program Gypsum-DL214. Gypsum-

DL’s multiprocessing code provides the option to distribute jobs across multiple CPUs using two 

parallelization architectures: symmetric multiprocessing (SMP), which is used by most personal 

computers and smaller single-node clusters, and message passing interface (MPI), used on MPI-

enabled clusters214. AutoGrow4 supports both of these options and allows users to scale jobs to 

their own needs and resources. AutoGrow4’s introduction of MPI-enabled parallelization allows 

significantly larger-scale runs to be performed in a reduced amount of time. 

Appendix A.2 Dependencies 

AutoGrow4 runs on Linux and macOS. Users are strongly encouraged to employ the 

AutoGrow4 Docker (Docker, Inc.) container included with the download, which automatically 
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installs all dependencies and further enables use on Windows. AutoGrow4 is Python 2.7 and 3.7 

compatible. 

AutoGrow4 requires a Python environment with the following third-party Python libraries 

installed: RDKit165, numpy284,285, scipy286, matplotlib287, and func_timeout (available via pip 

installation or https://github.com/kata198/func_timeout download). The third-party Python library 

mpi4py is also required for MPI multiprocessings288. macOS requires the additional installation of 

the coreutils package (available via the homebrew package manager). 

To simplify installation, AutoGrow4 pre-packages many of the dependencies. AutoGrow4 

comes installed with the most current versions of AutoDock Vina (version 1.1.2)185, QuickVina2 

(version 2.1)205, NNScore1 (version 1.1)233, NNScore2 (version 2.02)234, MolVS (version 1.1.0) 

(https://molvs.readthedocs.io), Gypsum-DL (version 1.1.2)214, and Dimorphite-DL (version 

1.2.2)231. Additionally, a Docker container (Docker, Inc.) that will create a Linux environment 

with all the necessary dependencies to run AutoGrow4 is provided in the download.  

Docking using Vina and QVina2 requires conversion of PDB to PDBQT format. 

AutoGrow4 provides two predefined options, AutoDock MGLTools and Open Babel164,215, but 

independent installation of either AutoDock MGLTools or Open Babel is required. Instructions 

for AutoGrow4 installation and its dependencies are provided in the AutoGrow4 tutorial 

(Appendix D: AutoGrow4 Manual and Tutorial). 
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Appendix A.3 Accessory Scripts 

AutoGrow4 provides several tools for processing and analyzing AutoGrow4 data. With the 

increased population size enabled by MPI multiprocessing, manually analyzing the initial results 

from an AutoGrow4 run may be impractical. I have written several scripts to produce initial 

analyses of results, including one that plots the average docking score for each generation and 

another that tracks a molecule’s ancestry and creates images of all parent molecules. I also provide 

scripts for file handling and file conversion, as well as for compression/decompression of 

population data to allow for efficient file transfer. For lead optimization experiments, I offer a 

script that fragments user-provided lists of compounds as well as scripts that help prepare custom 

complementary molecule libraries and source compound libraries. These accessory programs are 

designed to prepare experiments and analyze large population data, and require less custom code. 

An in-depth explanation of how to use AutoGrow4’s accessory tools is provided in the tutorial. 

Appendix A.4 Miscellaneous 

AutoGrow4 has been carefully designed to maximize maintainability, expandability, 

readability, and modularity. Its detailed and well-documented modules allow developers and 

advanced users to test and edit individual sections of the code. Many of the modules such as the in 

silico reactions, docking software scripts, scoring functions, and filtration modules provide a 

plugin option to easily incorporate custom code as well as a framework to expand AutoGrow4 as 

cheminformatics and CADD grow as fields. 
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AutoGrow4 also provides several new options that improve usability. AutoGrow4 runs 

create several files per compound (e.g., Gypsum-DL SDF, PDB/PDBQT, and docking output 

files). One large file transfers faster and requires less storage memory than many separate files of 

equal cumulative size. For this reason, AutoGrow4 provides options to purge unnecessary files 

(Gypsum-DL logs and SDF files) at the end of each generation and to concatenate all 3D files 

(PDB, PDBQT, docked files and logs, rescoring files) into a single file to be compressed. This 

reduces file size and improves file transfer speeds. I include an accessory script that decompresses 

and disjoins the files.  

AutoGrow4 also provides a plotting option that generates a line graph at the end of each 

simulation, as well as an accessory script that creates the same line plot after the simulation in case 

the user needs to replot or add control lines, such as the PARPi lines in Figure 15A. 
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Appendix B Gypsum-DL 

This appendix details my work and contributions to the Gypsum-DL codebase and 

publication. Gypsum-DL is a free and open-source program that assigns 3D coordinates to small 

molecules by enumerating ionization, tautomeric, chiral, cis/trans isomeric, and ring-

conformational states. 

The Gypsum-DL publication is published under the Creative Commons Attribution 4.0 

International License which “allows unrestricted use, distribution, and reproduction in any 

medium”214. This appendix has been adapted and reprinted with permission from: 

Ropp, Patrick J†, Jacob O Spiegel†, Jennifer L Walker, Harrison Green, Guillermo A 

Morales, Katherine A Milliken, John J Ringe, & Jacob D Durrant. (2019) Gypsum-DL: an 

open-source program for preparing small-molecule libraries for structure-based virtual 

screening. Journal of Cheminformatics, 11, 34. http://doi.org/gf48dh. 

† Jacob O. Spiegel and Patrick J. Ropp should be regarded as joint first authors. 

My contributions to the project include work on the Gypsum-DL codebase (development, 

testing, optimization, and documentation), experimental design, background research, and 

manuscript writing. As the contents of the Gypsum-DL publication are not entirely my original 

words, this appendix is a rewrite of important parts of the paper, focusing on my contributions and 

the information necessary to understand them.  



 256 

The figures and tables are taken directly from the Gypsum-DL publication with rewritten 

legends. Dr. Jacob Durrant provided editorial guidance on this appendix. All words in this 

appendix are my own original words. 

Appendix B.1 Introductions 

As evidenced by AutoGrow4 (“Chapter 2.0: AutoGrow4: Implementation and 

Benchmarks”), a single computer-aided drug design (CADD) study may require both 1/2D 

representations (such as Daylight’s SMILES and flat SDF files) and 3D representations (such as 

3D SDF and PDB files). Additionally, virtual screening (VS) techniques rely on a finite database 

of compounds289,290 that often only contain a single variant per molecule, resulting in isomers being 

missed by the screen. This can limit the success of the search. Therefore, accurate conversion 

between representations is vital to many CADD pipelines. 

Gypsum-DL is a free and open-source Python-based program for preparing 3D small-

molecule representations. It accepts Daylight’s SMILES and flat SDF files and converts them to 

3D SDF and optionally PDB format. To assign 3D coordinates, Gypsum-DL enumerates 

ionization, tautomeric, chiral, cis/trans isomeric, and ring-conformational forms for each molecule. 

Gypsum-DL is available for free download at http://durrantlab.com/gypsum-dl/ under the 

terms of the Apache License, Version 2.0.  
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Appendix B.2 Implementation 

Appendix B.2.1 Gypsum-DL Workflow 

Since SMILES notation allows multiple compounds in the same SMILES string, Gypsum-

DL begins generating 3D representations by desalting those compounds (Appendix Figure 1). If 

an input compound has multiple small molecules or fragments, Gypsum-DL assumes the largest 

fragment is the intended compound.  

Gypsum-DL uses the Dimorphite-DL algorithm231 to create separate models for each 

potential ionization state within the user-defined pH range. Dimorphite-DL231 uses the 

cheminformatic Python library RDKit (http://www.rdkit.org). By default, Gypsum-DL uses a 

biologically relevant pH range (6.4-8.4). 

Next, Gypsum-DL uses MolVS (https://molvs.readthedocs.io), a Python-based tool that 

standardizes and validates chemical structures, to generate models for each tautomeric state 

(Appendix Figure 1). MolVS has its own limitations and occasionally generates problematic 

models. Gypsum-DL addresses this by rejecting models with an altered number of aromatic rings 

or chiral centers and filtering out models that contain chemically improbable tautomeric forms.  

Gypsum-DL then enumerates unspecified chiral centers and unspecified cis/trans double 

bonds (Appendix Figure 1). Gypsum-DL does this exhaustively, generating each isomer for each 

unspecified site.  
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The next step is to assign initial 3D coordinates (Appendix Figure 1). 3D conformations 

are generated using RDKit’s Experimental Torsion with Knowledge Distance Geometry (ETKDG) 

method291.  

Gypsum-DL then addresses alternative non-aromatic ring conformations (Appendix Figure 

1). Many docking programs, such as AutoDock Vina185, treat rotatable bonds as flexible but 

consider rings rigid and essentially limit them to a single conformation. To generate alternative 

non-aromatic ring conformations, 3D models are optimized using RDKit’s Universal Force Field 

(UFF) method292. The 3D coordinates of each non-aromatic ring are calculated for each model. 

The minimum root-mean-square deviation (RMSD) is calculated by comparing each ring to its 

corresponding ring in the first model (Appendix Figure 2). The list of ring RMSDs for a given 

model comprises its “ring-conformation fingerprint,” which is used to describe a ring’s 

conformational geometry and to cluster the 3D models using k-means clustering293 (Appendix 

Figure 2). Because models may be similar to one another, Gypsum-DL reduces redundancy by 

retaining only the most central 3D model of each cluster (Appendix Figure 2).  

Lastly, a final geometric optimization is performed (Appendix Figure 1) using RDKit’s 

UFF method292. The resulting 3D model(s) is output to SDF and optionally to PDB and HTML 

file(s). 
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Appendix Figure 1. The function and workflow of Gypsum-DL. 

A) Gypsum-DL begins with a set of input molecules. Once the molecules have been desalted and 
alternative ionization, tautomeric, and isomeric forms have been considered, the models are 
assigned 3D coordinates using the ETKDG method. Next, models are optimized using an UFF. 
Lastly, the 3D compounds are output to 3D SDF files and optionally to PDB files. B) Examples of 
the output from each Gypsum-DL step.  
This figure is reprinted with rights and permission under the Creative Commons Attribution 4.0 
International License214.  
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Appendix Figure 2. Ring conformation sampling schematic. 

A) Multiple 3D variants are generated. B) All non-aromatic rings are extracted. C) Coordinates 
are calculated for each extracted ring. D) Extracted rings are converted to a fingerprint using the 
RMSD between each ring and the corresponding ring from the first model. E, F) The fingerprints 
are clustered using the k-means clustering algorithm. Fingerprints are represented by small circles 
on the plots, while clusters are represented by large dashed circles. To reduce redundant structures, 
only the most central fingerprint from each cluster is selected to progress. Selected fingerprints are 
represented by black circles. G) The selected models are geometrically different.  
This figure is modified and reprinted with rights and permission under the Creative Commons 
Attribution 4.0 International License214. 
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Appendix B.2.2 Managing Combinatorial Explosion  

Gypsum-DL enumerates possible variations of multiple properties (ionization, tautomeric, 

chiral, isomeric, and ring-conformational states), meaning it can generate an intractable number of 

output variants. Testing each model as a result of this combinatorial explosion would be costly for 

both Gypsum-DL and for subsequent calculations such as docking the large number of output 

structures. To mitigate this, Gypsum-DL prunes the set of variants following each step in the 

algorithm according to two user-controlled parameters, max_variants_per_compound (m) and 

thoroughness (t). Following a given step, Gypsum-DL randomly selects m x t variants and converts 

each into a 3D conformer using RDKit’s ETKDG method291. The conformers’ energies are 

evaluated using RDKit’s UFF292. Of the m x t variants tested, m will be kept by Gypsum-DL. 

Increases in m or t increase the computation cost. 

Appendix B.3 Methods 

Appendix B.3.1 Gypsum-DL Benchmarking 

Gypsum-DL has been designed to run tasks simultaneously on multiple processors. 

Distributing the workload reduces the amount of time required to complete a given task. Gypsum-

DL’s job_manager parameter allows users to select one of three task-management options: 

“serial,” “multiprocessing,” or “mpi” mode. The serial mode restricts Gypsum-DL to a single 

processor. This allows Gypsum-DL to be used in low-resource environments and in programs that 
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have an independent job manager. Windows operating system is currently limited to the serial 

mode. To test Gypsum-DL’s performance and scalability across multiple processors, we ran 

benchmarks in both multiprocessing and mpi mode. 

The multiprocessing mode distributes jobs across processors on the same computer using 

symmetric multiprocessing (SMP) architecture. Multiprocessing mode benchmarks tested a late-

stage beta version of Gypsum-DL on 1,000 compounds. Benchmarks were performed in triplicate 

on a 24-core Skylake processor provided by the University of Pittsburgh’s Center for Research 

Computing (CRC). 

The mpi mode distributes jobs across multiple computer systems using message passing 

interface (MPI) architecture. The mpi mode benchmarks tested 20,000 compounds and were 

performed on MPI-enabled computing clusters with 28-core Broadwell Processors provided by the 

CRC. These computing clusters were networked using Intel’s Omni-Path communication 

architecture. All experiments were performed in triplicate. 

Appendix B.3.2 Impact on the Accuracy of Docking Pose Prediction 

We compared the impact of file preparation using Gypsum-DL or Open Babel on docking 

pose prediction. We derived a library of 3,177 protein-ligand complexes from the PDBBind refined 

set, with 2,438 different small molecules294,295. The PDBBind refined set contains 4,463 high-

quality complexes294,295; a complex was removed if the ligand had a molecular weight over 500 

Dalton, the ligand was an amino acid or a peptide, the ligand contained atoms with improper 
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names, and/or the ligand file did not match the corresponding entry in the Protein Data Bank 

(https://www.rcsb.org/)239. 

SMILES strings for each ligand in the dataset were obtained from the Protein Data Bank239. 

Since we were testing Gypsum-DL and Open Babel’s abilities to prepare 3D representations of 

small molecules, which includes predicting charge and isomer information, charge was neutralized 

and isomer information was removed from each SMILES. 3D models of these SMILES were 

created using both Open Babel (version 2.3.2) and a late-stage beta version of Gypsum-DL that 

had only minor differences from the published version. We used the following Open Babel flags: 

-d (delete hydrogens), -h (add hydrogens), and -gen3D (generate 3D coordinates). Gypsum-DL 

used default values consistent with the 1.0.0 defaults. Protein and ligands were converted from 

PDB to PDBQT using MGLTools (version 1.5.6)215. 

AutoDock Vina (version 1.1.2) (Vina) was used to dock each ligand into the corresponding 

protein for each protein-ligand complex. This was repeated for each 3D model generated by Open 

Babel and Gypsum-DL. To ensure docking poses were rigorously tested, Vina’s exhaustivity 

parameter was set to 100. All other Vina parameters used the default settings. 

Following docking, hydrogens were removed from all docked ligands using the Python 

library, Scoria242. Next, the Open Babel accessory program, obrms164, was used to calculate the 

RMSD between a docked pose and its respective crystallographic pose. Twenty-six additional 

protein–ligand complexes were removed from the data set due to discrepancies between the atom 

connectivity of the crystallographic pose versus that of the docked models. It is worth noting that 

Open Babel produces only a single structural variant, whereas Gypsum-DL may produce multiple 

structural variants. We used the variant that had the lowest RMSD from the crystallographic pose. 
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Appendix B.4 Results and Discussion 

Appendix B.4.1 Benchmarks 

Gypsum-DL’s multiprocessing mode, which distributes jobs across processors on the same 

computer, uses a dynamic load-balancing approach that distributes tasks to processors as soon as 

a processor becomes available. The time required to process 1,000 compounds decreased as the 

number of processors increased (Appendix Figure 3A). In theory, this should have scaled linearly 

but it did not. We attribute this largely to the fixed time required to perform tasks that could not 

be parallelized, such as the processes of distributing/collecting data to/from processors for 

multiprocessing. 

The mpi mode parallelizes tasks across multiple computer systems (e.g., nodes). This is 

particularly applicable in high-performance computing clusters. Mpi mode uses a static load-

balancing approach, which distributes a set of jobs to each processor at the start of the 

parallelization. The various processors perform their respective calculations simultaneously and 

return the results when completed. Mpi mode allows calculations on a much larger scale but 

requires an MPI-enabled network of computers and an installation of the mpi4py Python 

package288,296,297. 

The static load-balancing of mpi mode reduces required communication between nodes but 

can result in idle processors that have completed all of their tasks while other processors are still 

working. This can occur under two circumstances: first, if one processor receives less time-

consuming tasks than another processor; second, if the number of tasks is not evenly divisible by 
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the number of processors. For example, if the job manager has 402 jobs to distribute across 100 

processors, two processors would receive five tasks while the other 98 processors receive four. If 

every task requires the same time, 98 processors would remain idle while the two finish processing 

their last jobs.  
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Appendix Figure 3. Benchmarks from multiprocessing and mpi mode parallelization. 

A) The time required to process 1,000 SMILES using the multiprocessing mode on 24-core 
Skylake processor computers. B) The time required to process 20,000 SMILES using the mpi 
mode on 28-core Broadwell processors. All experiments were performed in triplicate. The bars 
represent standard deviation. This figure is reprinted with rights and permission under the Creative 
Commons Attribution 4.0 International License214.  
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Appendix B.4.2 Impact on the Accuracy of Docking Pose Prediction 

To assess Gypsum-DL’s impact on docking pose predictions, we prepared ligands from 

3,151 protein-ligand complexes using both Gypsum-DL and Open Babel (version 2.3.2)164. Then, 

after docking, we measured the RMSD of each pose compared to its corresponding 

crystallographic pose. 

Of the 3,151 protein-ligand complexes, 71.4% of Gypsum-DL-processed ligands docked 

with an RMSD less than 3.0 Å from the corresponding crystallographic pose, versus only 53.0% 

of the Open Babel-processed ligands. The mean RMSD for Gypsum-DL-processed ligands was 

2.37 Å (standard deviation: 2.03 Å), whereas Open Babel-processed poses had a mean RMSD of 

3.40 Å (standard deviation: 2.51 Å). We performed a t-test to confirm the statistical significance 

of Gypsum-DL’s superior performance in pose accuracy. To determine which t-test to use, we 

assessed the variance of the two sample sets. An F-test led us to conclude unequal variance in 

Gypsum-DL and Open Babel RMSD (p = 0.00), so we selected a two-tailed t-test that assumes 

unequal variances. Based on the t-test results, we rejected the hypothesis that Gypsum-DL- and 

Open Babel-prepared poses have an equal mean RMSD (p = 0.00). We concluded that by 

accounting for multiple forms of a given compound, Gypsum-DL improves pose-prediction 

accuracy. 



 268 

Appendix B.4.3 Comparison with Similar Programs 

A number of capable programs, each having advantages and disadvantages, can be used to 

assign 3D coordinates to small molecules and convert them between formats.  

Excellent commercial programs, including OpenEye’s OMEGA/QUACPAC298,299 and 

Schrödinger’s LigPrep300 (Schrödinger, LLC) (Appendix Table 1), can be costly and often have 

licensing restrictions.Free programs, such as Frog2301 and Balloon302,303, are excellent alternatives 

(Appendix Table 1). Frog2 is an open-source program with an intuitive web interface. However, 

it handles ionization using Open Babel, which does not consider multiple ionization states, whereas 

Gypsum-DL uses the Dimorphite-DL231 algorithm. Additionally, Frog2 is unable to fully sample 

non-aromatic ring conformations and tautomers (Appendix Figure 4 and Appendix Table 1). These 

limitations are illustrated by several test cases in Appendix Figure 4. 

Balloon302,303 is a free closed-source program. Like Frog2, it does not enumerate alternative 

ionization or tautomeric states (Appendix Figure 4 and Appendix Table 1). 

Additionally, some cheminformatic libraries, such as RDKit165 and Open Babel164, can 

perform many of the same functions as Gypsum-DL but require that users design their own 

workflows. These target more advanced users by providing the core functions necessary to process 

and prepare small-molecules. 
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Appendix Table 1. Features of several prominent programs for assigning small-molecule 
3D coordinates. 

This table is reprinted with rights and permission under the Creative Commons Attribution 4.0 
International License214. 
 
Program Ionize Tautomers Chiral Cis/Trans Rings Optimize Free Open 

Source 
Web 

Gypsum-DL214 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

OpenEye298,299 ✓ ✓ ✓ ✓ ✓ ✓       
LigPrep300 ✓ ✓ ✓ ✓ ✓ ✓       
Frog2301     ✓ ✓   ✓ ✓ ✓ ✓ 
Balloon302,303     ✓ ✓ ✓ ✓ ✓     
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Appendix Figure 4. Comparison of output for Frog2, Balloon, and Gypsum-DL. 

A) Ionization of oseltamivir carboxylate. B) Only Gypsum-DL generates both ketone and enol 
variants for butan-2-one. C) Frog2 and Gypsum-DL generate both (R) and (S) enantiomer variants 
of bromochlorofluroiodomethane, while Balloon does not enumerate both chiral enantiomers. D) 
Frog2 and Gypsum-DL generate both E and Z isomers of 1-bromo-2-chloro-2-fluoro-1-
iodoethene, while Balloon does not. E) Non-aromatic ring conformations of cis-1,4-di-tert-
butylcyclohexane. Gypsum-DL is able to generate the twist-boat conformation of cis-1,4-di-tert-
butylcyclohexane, while Frog2 and Balloon only consider the chair conformation. F) Frog2 and 
Balloon create redundant models of propan-1-ol, while Gypsum-DL creates only a single model. 
This figure is reprinted with rights and permission under the Creative Commons Attribution 4.0 
International License214.  
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Appendix B.5 Conclusion 

Accurate preparation of 3D small-molecule structures is crucial in CADD. Gypsum-DL 

provides a free and open-source platform for preparing 3D small-molecules that is computationally 

efficient, scalable, and accurate. Its intuitive command-line interface and parallelized codebase 

make Gypsum-DL easy to incorporate into any drug-discovery pipeline.  

As with all programs, Gypsum-DL is not without its limitations. For example, large 

macrocycles can have many possible conformations. The ETKDG algorithm uses experimentally 

derived acyclic-bond torsion patterns to generate the initial 3D coordinates for macrocycles291. 

Gypsum-DL then geometrically optimizes these structures with the UFF. Despite being valid 

structures, Gypsum-DL-generated large-macrocycle conformations often are not the most 

energetically favorable. Future improvements to the ETKDG algorithm will hopefully improve 

generation of the initial macrocycle structures. Despite this limitation, Gypsum-DL is an accurate 

program for small-molecule preparation and 3D conformation generation. 

Gypsum-DL is available for free download at http://durrantlab.com/gypsum-dl/ under the 

terms of the Apache License, Version 2.0.  
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Appendix B.7 Authors Contribution 

All writing in this appendix is my original work and is based on the Gypsum-DL 

publication. Figures and tables are taken directly from the publication, but I have rewritten the 

legends. Dr. Jacob D. Durrant contributed editing and guidance to this appendix. 

As stated in the Gypsum-DL publication: “PJR, JOS, GAM, and JDD designed the study. 

PJR, JOS, HG, and JDD contributed to the Gypsum-DL codebase. JOS, JLW, HG, GAM, KAM, 

JJR, and JDD contributed to the text, tables, and/or figures.”214 

  



 273 

Appendix C Supporting JSON-Formatted Parameters 

This appendix provides the exact JSON-formatted parameters used for the de novo CADD 

runs performed in Chapters 2, 3, and 4. Several of these JSON-formatted parameters are taken 

directly from the AutoGrow4 manuscript, which has been published in the Journal of 

Cheminformatics. This is reprinted under the Creative Commons Attribution 4.0 International 

License, which “allows unrestricted use, distribution, and reproduction in any medium”6:  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed many of the experiments discussed in the paper, and analyzed the data. I 

designed the experiments and the JSON-parameters presented in this appendix. All writing in this 

appendix is original content written by Jacob O. Spiegel. 

 
 

  



 274 

{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82, 
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "additional_autoclickchem_parameters": "+all_reactions” 
  "allow_modification_without_frag_addition": true, 
  "directory_of_source_compounds": "/autogrow/autogrow/tutorial/starting_compounds/", 
  "directory_of_fragments": "/autogrow/autogrow/fragments/MW_150/", 
  "number_of_mutants_first_generation": 50, 
  "number_of_crossovers_first_generation": 50, 
  "number_of_mutants": 85, 
  "number_of_crossovers": 85, 
  "top_ones_to_advance_to_next_generation": 70, 
  "num_generations": 6, 
  "max_seconds_per_generation": 18000, 
  "use_lipinski_filter": true, 
  "use_strict_lipinski_filter": true, 
  "use_ghose_filter": true, 
  "scoring_function": VINA, 
  "score_by_ligand_efficiency": false, 
  "maintain_core": false, 
  "minimum_core_atoms_required": 4, 
  "vina_executable": 
"/autogrow4/autogrow/docking/docking_executables/vina/autodock_vina_1_1_2_linux_x86/bin/v
ina", 
  "num_processors": 12 
} 
 

Appendix JSON 1. AutoGrow3 settings used in the efficency benchmarks.  

For ease of comparison, settings are presented in the JSON format even though AutoGrow3 

(version 3.1.3) does not accept JSON-format parameters. All unspecified parameters were set to 

the AutoGrow3 defaults. 

I compensated for several differences between AutoGrow3 and AutoGrow4 to make these 

benchmarks a fair comparison. In all generations except the first, AutoGrow3 treats compounds 
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that advance via elitism as new compounds. In contrast, AutoGrow4 does not count elite 

compounds against the total number of compounds created per generation. Therefore, I increased 

both the number_of_mutants and number_of_crossovers to ensure that AutoGrow3 would create 

exactly 100 new compounds in each generation, in addition to the 70 compounds that advanced 

via elitism. AutoGrow3 also produces an extra generation that summarizes the best compounds 

from all previous generations. This extra generation neither creates nor tests any new compounds, 

but is included simply to perform input/output operations. I thus set the num_generations 

parameter to six to yield five production generations. 

Paths beginning with /autogrow/, such as the directory of source compounds, refer to files 

contained in the AutoGrow3 download. Paths beginning with /autogrow4/, such as the filename 

of the receptor, refer to files contained in the AutoGrow4 download. I do not include the parameters 

that specify the paths to Open Babel (openbabel_bin_directory), MGLTools (mgltools_directory), 

and the output directories (output_dir) because these paths depend on the specific computer used 

for testing. 

This appendix JSON is taken from the AutoGrow4 manuscript, which has been published 

in the Journal of Cheminformatics. It is reprinted with rights and permissions under the Creative 

Commons Attribution 4.0 International License, which “allows unrestricted use, distribution, and 

reproduction in any medium.”6 
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{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82,   
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "source_compound_file": "/autogrow4/source_compounds/naphthalene_smiles.smi", 
  "number_of_mutants_first_generation": 50, 
  "number_of_crossovers_first_generation": 50, 
  "number_of_mutants": 50, 
  "number_of_crossovers": 50, 
  "top_mols_to_seed_next_generation": 70, 
  "number_elitism_advance_from_previous_gen": 70, 
  "number_elitism_advance_from_previous_gen_first_generation": 0, 
  "diversity_mols_to_seed_first_generation": 0, 
  "diversity_seed_depreciation_per_gen": 0, 
  "num_generations": 5, 
  "number_of_processors": 12, 
  "scoring_choice": "VINA", 
  "LipinskiStrictFilter": true, 
  "GhoseModifiedFilter": true, 
  "filter_source_compounds": false, 
  "start_a_new_run": true, 
  "selector_choice": "Rank_Selector", 
  "dock_choice": "VinaDocking", * 
  "max_variants_per_compound": 1, * 
  "generate_plot": false, 
  "debug_mode": true, 
  "reduce_files_sizes": false 
} 
 

Appendix JSON 2. AutoGrow4 settings used in the efficency benchmarks.  

I set several AutoGrow4 parameters to match the run conditions of the AutoGrow3 

efficiency benchmark. I converted the source compounds present in the AutoGrow3 

directory_of_source_compounds directory (Appendix JSON 1) from PDB to SMILES 

(naphthalene_smiles.smi). AutoGrow3 does not separate elitism selection and seeding selection, 

so in AutoGrow4’s runs both top_mols_to_seed_next_generation and 
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number_elitism_advance_from_previous_gen were set to 70. I also used the GhoseModifiedFilter, 

which is noted as the Ghose* filter in Table 1, to match the AutoGrow3 Ghose filter and applied 

LipinskiStrictFilter, which is noted in Table 1 as Lipinski*. I silenced several additional 

AutoGrow4 features (e.g., plotting the results, deleting temporary files, reducing file size by 

compression, and selecting by diversity) because these features are not available in AutoGrow3.  

To test different AutoGrow4 configurations, I varied two parameters: dock_choice and 

max_variants_per_compound (noted with an asterisk). I set the dock_choice parameter, which 

specifies which docking software to use, to either VinaDocking or the default choice of 

QuickVina2Docking. I set the max_variants_per_compound parameter, which determines the 

maximum number of variants that the Gypsum-DL module should produce per input compound, 

to either 1, 3, or 5. I tested all permutations of dock_choice and max_variants_per_compound, 

resulting in six unique parameter configurations.  

In this description of the settings I again excluded the path to the MGLTools directory 

(mgltools_directory) and the root output folder (root_output_folder). All unspecified parameters 

were set to the AutoGrow4 defaults. 

This appendix JSON is taken from the AutoGrow4 manuscript, which has been published 

in the Journal of Cheminformatics. It is reprinted with rights and permissions under the Creative 

Commons Attribution 4.0 International License, which “allows unrestricted use, distribution, and 

reproduction in any medium,”6 

  



 278 

{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82, 
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "additional_autoclickchem_parameters": "+all_reactions” 
  "allow_modification_without_frag_addition": true, 
  "directory_of_source_compounds": "/Fragment_MW_100_to_150_reformat/", 
  "directory_of_fragments": "/autogrow/autogrow/fragments/MW_150/", 
  "number_of_mutants_first_generation": 2500, 
  "number_of_crossovers_first_generation": 2500, 
  "number_of_mutants": 2500, 
  "number_of_crossovers": 2500, 
  "top_ones_to_advance_to_next_generation": 1000, 
  "num_generations": 50, 
  "use_lipinski_filter": true, 
  "use_strict_lipinski_filter": true, 
  "use_ghose_filter": true, 
  "scoring_function": VINA, 
  "score_by_ligand_efficiency": false, 
  "maintain_core": false, 
  "minimum_core_atoms_required": 4, 
  "vina_executable": 
"/autogrow4/autogrow/docking/docking_executables/vina/autodock_vina_1_1_2_linux_x86/bin/v
ina", 
  "num_processors": 28 
} 
 

Appendix JSON 3. AutoGrow3 settings used in the performance benchmarks.  

For ease of comparison, settings are presented in JSON format even though AutoGrow3 

does not accept JSON-formatted parameters. All unspecified parameters were set to the 

AutoGrow3 defaults.  

Paths beginning with /autogrow/, such as the directory of source compounds, refer to files 

contained in the AutoGrow3 download. Paths beginning with /autogrow4/, such as the filename 

of the receptor, refer to files contained in the AutoGrow4 download. I do not include the parameters 
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that specify the paths to Open Babel (openbabel_bin_directory), MGLTools (mgltools_directory), 

and the output directories (output_dir) because these paths depend on the specific computer used 

for testing. The source compounds (directory_of_source_compounds) are the compounds provided 

in /autogrow4/source_compounds/Fragment_MW_100_to_150.smi, though I converted them to 

PDB using Gypsum-DL for use with AutoGrow3. 
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{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82, 
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "source_compound_file": "/autogrow4/source_compounds/Fragment_MW_100_to_150.smi ", 
  "number_of_mutants_first_generation": 2500, 
  "number_of_crossovers_first_generation": 2500, 
  "number_of_mutants": 2500, 
  "number_of_crossovers": 2500, 
  "top_mols_to_seed_next_generation_first_generation": 500, 
  "top_mols_to_seed_next_generation": 500, 
  "number_elitism_advance_from_previous_gen_first_generation": 1000, 
  "number_elitism_advance_from_previous_gen": 1000, 
  "diversity_seed_depreciation_per_gen": 500, 
  "diversity_mols_to_seed_first_generation": 0, 
  "num_generations": 50, 
  "number_of_processors": 280, 
  "scoring_choice": "VINA", 
  "LipinskiStrictFilter": true, 
  "GhoseModifiedFilter": true, 
  "PAINSFilter": true, 
  "filter_source_compounds": false, 
  "selector_choice": "Rank_Selector", 
  "dock_choice": "QVina2Docking",  
  "max_variants_per_compound": 5, 
  "generate_plot": false, 
  "reduce_files_sizes": false 
  "use_docked_source_compounds": true, 
  "rxn_library": "all_rxns", 
  "multithread_mode": "mpi" 
} 
 

Appendix JSON 4. AutoGrow4 settings used in the performance benchmarks.  

I set several AutoGrow4 parameters to match the run conditions of the AutoGrow3 

performance benchmark, and silenced several additional AutoGrow4 features (e.g., plotting the 
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results and reducing file size by compression) because these features are not available in 

AutoGrow3.  

In this description of the settings I excluded the path to the MGLTools directory 

(mgltools_directory) and the root output folder (root_output_folder). All unspecified parameters 

were set to the AutoGrow4 defaults. 

  



 282 

{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82, 
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "source_compound_file": "/autogrow4/source_compounds/Fragment_MW_100_to_150.smi", 
  "number_of_mutants_first_generation": 500, 
  "number_of_crossovers_first_generation": 500, 
  "number_elitism_advance_from_previous_gen_first_generation": 40, 
  "number_of_mutants": 2500, 
  "number_of_crossovers": 2500, 
  "number_elitism_advance_from_previous_gen": 500, 
  "top_mols_to_seed_next_generation_first_generation": 50, 
  "top_mols_to_seed_next_generation": 500, 
  "diversity_mols_to_seed_first_generation": 500, 
  "diversity_seed_depreciation_per_gen": 5, 
  "num_generations": 30, 
  "number_of_processors": 280, 
  "dock_choice": "QuickVina2Docking", 
  "scoring_choice": "VINA", 
  "selector_choice": "Rank_Selector", 
  "LipinskiStrictFilter": true, 
  "GhoseFilter": true, 
  "PAINSFilter": true, 
  "reduce_files_sizes": true, 
  "max_variants_per_compound": 5, 
  "filter_source_compounds": false, 
  "use_docked_source_compounds": true, 
  "rxn_library": "all_rxns", 
  "multithread_mode": "mpi" 
} 
 

Appendix JSON 5. AutoGrow4 settings used in the large-scale de novo run. 

The source compounds were taken from AutoGrow4’s Fragment_MW_100_to_150.smi 

library, which consists of ZINC15 molecules that have molecular weights ranging from 100 Da to 

150 Da. I applied the Ghose, Lipinski*, and PAINS filters. In this description of the settings I again 

excluded the path to the MGLTools directory (mgltools_directory) and the root output folder 
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(root_output_folder). All unspecified parameters were set to the AutoGrow4 defaults. This 

appendix JSON is from the AutoGrow4 manuscript, which has been published in the Journal of 

Cheminformatics. It is reprinted with rights and permissions under the Creative Commons 

Attribution 4.0 International License, which “allows unrestricted use, distribution, and 

reproduction in any medium.”6 
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{ 
  "filename_of_receptor": "/autogrow4/tutorial/PARP/4r6eA_PARP1_prepared.pdb", 
  "center_x": -70.76, 
  "center_y": 21.82, 
  "center_z": 28.33, 
  "size_x": 25.0, 
  "size_y": 16.0, 
  "size_z": 25.0, 
  "source_compound_file": "/autogrow4/source_compounds/PARPI_BRICS_frags.smi", 
  "number_of_mutants_first_generation": 500, 
  "number_of_crossovers_first_generation": 500, 
  "number_elitism_advance_from_previous_gen_first_generation": 40, 
  "number_of_mutants": 2500, 
  "number_of_crossovers": 2500, 
  "number_elitism_advance_from_previous_gen": 250, 
  "top_mols_to_seed_next_generation_first_generation": 50, 
  "top_mols_to_seed_next_generation": 500, 
  "diversity_mols_to_seed_first_generation": 500, 
  "diversity_seed_depreciation_per_gen": 25, 
  "num_generations": 5, 
  "number_of_processors": 280, 
  "dock_choice": "QuickVina2Docking", 
  "scoring_choice": "VINA", 
  "selector_choice": "Rank_Selector", 
  "LipinskiStrictFilter": true, 
  "GhoseFilter": true, 
  "PAINSFilter": true, 
  "reduce_files_sizes": true, 
  "docking_exhaustiveness": 25, 
  "max_variants_per_compound": 5, 
  "gypsum_timeout_limit": 60, 
  "docking_timeout_limit": 600, 
  "filter_source_compounds": false, 
  "use_docked_source_compounds": true, 
  "rxn_library": "all_rxns", 
  "multithread_mode": "mpi", 
  "start_a_new_run": true 
} 
 

Appendix JSON 6. AutoGrow4 settings used in the PARPi lead-optimization runs. 

The source compounds, taken from PARPI_BRICS_frags.smi, consist of 11 PARPi 

molecules, as well as 83 PARPi-derived fragments that I generated using BRICS decomposition. 
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In this description of the settings I excluded the path to the MGLTools directory 

(mgltools_directory) and the root output folder (root_output_folder). All unspecified parameters 

were set to the AutoGrow4 defaults.  

This appendix JSON is from the AutoGrow4 manuscript, which has been published in the 

Journal of Cheminformatics. It is reprinted with rights and permissions under the Creative 

Commons Attribution 4.0 International License, which “allows unrestricted use, distribution, and 

reproduction in any medium.”6 

  



 286 

{ 
  "filename_of_receptor": "4DQY_ChainA.pdb", 
  "center_x": -25.32, 
  "center_y": 58.93, 
  "center_z": 16.89, 
  "size_x": 30.0, 
  "size_y": 20.0, 
  "size_z": 25.0, 
  "source_compound_file": "/autogrow4/source_compounds/Fragment_MW_100_to_150.smi", 
  "number_of_mutants_first_generation": 500, 
  "number_of_crossovers_first_generation": 500, 
  "number_elitism_advance_from_previous_gen_first_generation": 40, 
  "number_of_mutants": 2500, 
  "number_of_crossovers": 2500, 
  "number_elitism_advance_from_previous_gen": 500, 
  "top_mols_to_seed_next_generation_first_generation": 50, 
  "top_mols_to_seed_next_generation": 500, 
  "diversity_mols_to_seed_first_generation": 500, 
  "diversity_seed_depreciation_per_gen": 0, 
  "num_generations": 10, 
  "number_of_processors": 280, 
  "dock_choice": "QuickVina2Docking", 
  "scoring_choice": "VINA", 
  "selector_choice": "Rank_Selector", 
  "LipinskiStrictFilter": true, 
  "GhoseFilter": true, 
  "PAINSFilter": true, 
  "reduce_files_sizes": true, 
  "max_variants_per_compound": 5, 
  "filter_source_compounds": false, 
  "use_docked_source_compounds": true, 
  "rxn_library": "all_rxns", 
  "multithread_mode": "mpi" 
} 
 

Appendix JSON 7. AutoGrow4 settings used in the DBD-targeted runs. 

The source compounds were taken from AutoGrow4’s Fragment_MW_100_to_150.smi 

library, which consists of ZINC15 molecules that have molecular weights ranging from 100 Da to 

150 Da. I applied the Ghose, Lipinski*, and PAINS filters. In this description of the settings I 
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excluded the path to the MGLTools directory (mgltools_directory) and the root output folder 

(root_output_folder). All unspecified parameters were set to the AutoGrow4 defaults.  

These runs were designed to closely match the AutoGrow4 large-scale run (Appendix 

JSON 5); however, the diversity_seed_depreciation_per_gen and num_generations variables 

differ. The diversity_seed_depreciation_per_gen was set to zero to maintain diversity selection 

throughout the run, and the num_generations was lowered to ten generations. Additionally, the 

pocket parameters and receptor file were adjusted to target the appropriate DBD pocket. 
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{ 
  "conformer_search_type": "denovo", 
  "vdw_defn_file": "/dock6/parameters/vdw_AMBER_parm99.defn", 
  "flex_defn_file": "/dock6/parameters/flex.defn", 
  "flex_drive_file": "/dock6/parameters/flex_drive.tbl", 
  "dn_user_specified_anchor": "no", 
  "dn_unique_anchors": 50, 
  "use_database_filter": "yes", 
  "dn_constraint_mol_wt": 480.0, 
  "dbfilter_max_molwt": 480, 
  "dbfilter_min_molwt": 160, 
  "dbfilter_max_rot_bonds": 999, 
  "dbfilter_min_rot_bonds": 0, 
  "dbfilter_max_heavy_atoms": 70, 
  "dbfilter_min_heavy_atoms": 20, 
  "dbfilter_max_formal_charge": 10.0, 
  "dbfilter_min_formal_charge": -10.0, 
  "simplex_random_seed": * 
} 
 

Appendix JSON 8. De novo DOCK settings for the de novo CADD comparison. 

For ease of comparison, settings are presented in JSON format, even though de novo 

DOCK (version DOCK6.9) requires parameters to be provided as a .in file. All unspecified 

parameters were set to the de novo DOCK defaults. De novo DOCK parameters are described in 

the DOCK6 manual187.  

To ensure that runs were not repeated, a unique random seed (simplex_random_seed) was 

provided to each de novo DOCK run (noted with an asterisk). The physiochemical property 

constraints (e.g., molecular weight, number of rotatable bonds, and number of heavy atoms) were 

set to best match AutoGrow4’s Lipinski* and Ghose filters. Because neither filter tests for formal 

charge, I set the formal charge constraints to be as unrestrictive as allowed. 

Paths beginning with /dock6/, such as the file that defines the Van der Waals radius 

(vdw_defn_file), refer to files contained in the DOCK6 download. The following parameters were 
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excluded from this description of the settings because they specify files/directories that depend on 

the specific computer used for testing: dn_fraglib_scaffold_file, dn_fraglib_linker_file, 

dn_fraglib_sidechain_file, dn_torenv_table, grid_score_grid_prefix, receptor_site_file, and 

dn_output_prefix. The dn_fraglib_scaffold_file, dn_fraglib_linker_file, 

dn_fraglib_sidechain_file, and dn_torenv_table parameters specify custom libraries and tables that 

are based on the PARPi and PARPi-fragment seed compounds, in this case created using the 

DOCK6 fragment-library generator. The grid_score_grid_prefix and receptor_site_file are the 

grid and sphere files, respectively, that were used for docking into the 4R6E:A structure. Lastly, 

the dn_output_prefix specifies the path where de novo DOCK writes its output files. 
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{ 
  “NUMTHREADS”: 280, 
  “NUMISLANDS”: 280, 
  “NUMINDIVIDUALS”: 1000, 
  “LIGANDSIZE”: 3, 
  “EXCHANGESTEP”: 50, 
  “MAXCONV”: 0.25, 
  “CONSTRAINT_MW”: “160 480”, 
  “CONSTRAINT_HBDONOR”: “0 5”, 
  “CONSTRAINT_HBACCEPTOR”: “0 10”, 
  “FSIMCUT”: 0.9, 
  “LINKER”: “/GANDI/test_case/linkers/*”, 
  “PARAMETERFILE”: “/GANDI/test_case/gandi.prm”, 
  “RECEPTOR”: [689, 763, 766, 767, 769, 770, 861, 862, 863, 864, 865, 868, 872, 877, 878, 879, 
880, 881, 888, 889, 890, 894, 895, 896, 897, 898, 903, 904, 907, 909, 988], 
  “RANDSEED”: *, 
} 
 

Appendix JSON 9. GANDI settings for the de novo CADD comparison. 

For ease of comparison, settings are presented in the JSON format, even though GANDI 

(version 2.0) requires parameters to be provided as a .ini file. All unspecified parameters were set 

to GANDI defaults. GANDI parameters are described in the GANDI user manual167.  

GANDI requires a list of all linker files (LINKER); for brevity, I provide just the directory 

containing these files (noted with an asterisk). To ensure that runs were not repeated, a unique 

random seed (RANDSEED) was provided to each GANDI run (noted with an asterisk). The 

physiochemical-property constraints (e.g., the molecular weight, the number of hydrogen bond 

donors, and the number of hydrogen bond acceptors) were set to best match AutoGrow4’s 

Lipinski* and Ghose filters. 

To define the coordinates of the binding site, GANDI requires a list of residue numbers be 

provided with the path to the receptor file in the RECEPTOR variable. The receptor file path (a 

MOL2 file of the 4R6E:A structure) was omitted from my description of the settings, as it is 
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specific to the computer used for testing. The residue numbers defined by RECEPTOR were the 

list of all residues identified using the BINANA algorithm246 of the top 500 compounds produced 

during the large-scale de novo run and of the top 500 compounds produced during the PARPi lead-

optimization AutoGrow4 runs. All residues within 2.5Å and/or that formed any interaction(s) with 

a top-scoring AutoGrow4-generated compound were included. 

Paths beginning with /GANDI/ refer to files contained in the GANDI download. The 

RECEPTOR, DOCKEDFRAGMENTS, and OUTPUTDIR parameters were excluded from my 

description because they specify files/directories that depend on the specific computer used for 

testing. DOCKEDFRAGMENTS specifies the file paths of the PARPi and PARPi-fragment seed 

compounds in MOL2 format, which I previously docked into the catalytic site using SEED 

(version 4.0.0)217. Lastly, OUTPUTDIR specifies the path where GANDI writes its output files. 
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{ 
  "seed_mol": "/autogrow4/source_compounds/PARPI_BRICS_frags.smi", 
  "n_attemps": 100, 
  "lam_fact": *, 
  "probab": true/false, 
  "use_filter_unique_valid": true 
} 
 

Appendix JSON 10. LigDream settings for the de novo CADD comparison. 

For ease of comparison, settings are presented in JSON format, even though LigDream213 

(version 1.0) does not accept JSON-formatted files. All LigDream runs used the trained models 

provided in the LigDream download and were seeded with the PARPi and PARPi fragments 

provided in the AutoGrow4 download. Additionally, all runs were set to 100generations 

(n_attempts) and to remove any invalid and/or duplicate SMILES (use_filter_unique_valid). All 

unspecified parameters were set to LigDream defaults.  

The two variables that were changed to test different LigDream configurations, lam_fact 

and probab, are noted with an asterisk (*). All combinations of these settings were tested in 

triplicate. The λ-factor (lam_fact) controls how similar the generated compounds are to the source 

compounds, where a higher λ results in greater deviance in the generated molecules from the source 

compounds213. Based on settings used in the LigDream publication213, I set λ to either 0, 1, 5, 10, 

or 15. The probab variable determines whether probabilistic recurrent neural network decoding is 

used. I set it to either true or false213.  

Paths beginning with /autogrow4/ refer to files contained in the AutoGrow4 download.  
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Appendix D AutoGrow4 Manual and Tutorial 

This appendix is an adaptation of the user manual and tutorial distributed with the 

AutoGrow4 download. AutoGrow4 is available free of charge under the terms of the open-source 

Apache License, version 2.0. This manual is adapted and reprinted with rights and permissions 

from the authors of AutoGrow4. 

AutoGrow4 was published under the Creative Commons Attribution 4.0 International 

License which “allows unrestricted use, distribution, and reproduction in any medium”6. The work 

in this appendix is adapted and reprinted with rights and permission:  

Jacob O Spiegel†, & Jacob D Durrant. (2020) AutoGrow4: An open-source genetic 

algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 

25. https://doi.org/10.1186/s13321-020-00429-4. 

† Jacob O. Spiegel should be regarded as first author. 

I am the first author of the published manuscript, having written the entire AutoGrow4 

codebase, performed many of the experiments discussed in the paper, and analyzed the data. I 

designed the layout for all figures in the paper with Dr. Jacob Durrant. Dr. Durrant refined and 

generated many of the high-quality images for publication. Dr. Durrant also provided guidance 

and insight while designing this manual/tutorial. All writing in this appendix is original content 

written by Jacob O. Spiegel. 
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Appendix D.1 Welcome to AutoGrow4 

This document will break down how to run AutoGrow4. It will also cover what 

dependencies are required. 

Please note that file paths are relative to a given system. There are several paths used in 

this tutorial that need to be replaced with the proper paths of one’s own system. These paths will 

be indicated by a string of ALL_CAPS. For example (from “Appendix D.3: Installing 

AutoGrow4”): 

$ cd /PATH_TO/DESIRED_DIR/ 

You must replace /PATH_TO/DESIRED_DIR/ with the path to the Autogrow4 directory 

on your own system. On an Ubuntu distribution, this may look like: 

$ cd /home/jacob/Documents/ 

For brevity, the main Autogrow4 directory is simplified as /autogrow4/ throughout this 

tutorial. You may need to supply the /PATH_TO/DESIRED_DIR/ described above before 

/autogrow4/. 

Appendix D.2 Computer Requirements 

AutoGrow4 has been tested on Ubuntu 16.04 and higher, as well as on MacOS 10.13 High 

Sierra. It has been verified to work on an HPC cluster using SMP multithreading (RedHat 

Enterprise Server release 7.3 Maipo). 
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AutoGrow4 has not been configured for Windows OS, but a script capable of running 

AutoGrow4 within a Docker container on Windows can be found in: 

/autogrow4/docker/autogrow_in_docker.py 

This script should run on any Docker-enabled machine, and should be capable of 

multithreading. Details on running AutoGrow4 within a Docker container can be found below, in 

the “Appendix D.7: Docker Submission.” 

Appendix D.3 Installing AutoGrow4 

A copy of AutoGrow4 can be downloaded from the Durrant lab website at: 

http://git.durrantlab.com/jdurrant/autogrow4. 

You can also install AutoGrow4 using the git clone command: 

$ cd /PATH_TO/DESIRED_DIR/ 

$ git clone https://git.durrantlab.pitt.edu/jdurrant/autogrow4 

Appendix D.4 Dependencies 

AutoGrow4 has several dependencies that may need to be installed separately. 

https://git.durrantlab.pitt.edu/jdurrant/autogrow4
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Appendix D.4.1 Bash (Required)) 

A modern installation of Bash is required to run AutoGrow4. AutoGrow4 has been tested 

using GNU Bash, version 4.4.19. MacOS and Linux come with Bash preinstalled. 

Appendix D.4.2 Coreutils (Required for macOS) 

Most Linux OS come preinstalled with modern Bash and timeout tool (part of the coreutils 

package) that AutoGrow4 requires. Use on macOS requires the additional installation of the 

coreutils package, available through homebrew, which provides the equivalent gtimeout binary. 

This can be done using the package manager homebrew by running: 

$ sudo brew install coreutils 

Appendix D.4.3 Python Installation (Required) 

AutoGrow4 is primarily written in Python. A modern version of Python can be installed 

using conda: 

•https://docs.conda.io/projects/conda/en/latest/user-guide/install/ or 

•http://www.python.org/getit/. 

AutoGrow4 has been tested with Python 2.7, 3.6, and 3.7. Future support and updates will 

focus on 3.7. We recommend using the most current version of Python available, 3.7 or newer. 

http://www.python.org/getit/
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Appendix D.4.4 MGLTools 

MGLTools215 is written by the creators of Autodock Vina. It is used by AutoGrow4 to 

convert .pdb files to the .pdbqt format. The .pdbqt format is required by Vina-type docking 

programs, including Autodock Vina185 and QuickVina2205. 

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and 

Olson, A. J. (2009) Autodock4 and AutoDockTools4: automated docking with selective 

receptor flexibility. J. Computational Chemistry 2009, 16: 2785-91 

If you prefer to not use MGLTools for file conversion, you may also use Open Babel 

(obabel) or custom file-converting/docking software. 

Installation: 

WARNING: We recommend that you DO NOT pip or conda install MGLTools, as those 

package managers provide an outdated Python package and create issues with environments. 

The best way to install MGLTools is to download the latest release of the command-line 

version (NOT THE GUI VERSION) from http://mgltools.scripps.edu/downloads. 

Once the command-line version of the MGLTools package has been downloaded, follow 

this example installation (Linux, MGLTools 1.5.6): 

1. To extract files, unzip/untar the package:  

$ tar -xvf /PATH_TO/mgltools_x86_64Linux2_1.5.6.tar.gz 

2. Go to the extract folder:  

$ cd /PATH_TO/mgltools_x86_64Linux2_1.5.6 

3. Run the installation script and make sure MGLToolsPckgs is unpacked: 
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– If /PATH_TO/mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/ is a folder:  

$ bash install.sh 

– If /PATH_TO/mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/ is not a folder, you must 

manually unzip/untar MGLToolsPckgs.tar.gz:  

$ tar -xvf /PATH_TO/mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs.tar.gz 

4. Click ‘OK’ to the licensing agreement, which should open automatically. Please note 

MGLTools is free for academic use but may require a license for commercial usage.  

5. Find the path for the AutoGrow4 variable (see next section, Additional Pathing Instructions). 

Additional Pathing Instructions: 

To use MGLTools to convert files, AutoGrow4 is required to know the path to the 

MGLTools directory. The path can be found by: 

1. Going to the extract folder:  

$ cd /PATH_TO/mgltools_x86_64Linux2_1.5.6 

2. Using the pwd command in Bash to get the absolute path to the MGLTools directory: 

$ pwd 

To run AutoGrow4, provide the path of this MGLTools directory using the variable `--

mgltools_directory`:  

$ python RunAutogrow.py ... \ 

   --mgltools_directory /PATH_TO/mgltools_x86_64Linux2_1.5.6 ...  

On Linux and macOS machines, AutoGrow4 will automatically locate three important file 

paths based on mgltools_directory: 
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1. prepare_ligand4.py: mgltools_directory + 

/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_ligand4.py 

2. prepare_receptor4.py: mgltools_directory + 

/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_receptor4.py 

3. mgl_python: mgltools_directory + /bin/pythonsh 

If you’re running on Windows OS (limited support), please provide those paths to 

AutoGrow4 manually: 

$ python RunAutogrow.py ... \ 

    --mgltools_directory /PATH_TO/mgltools_win32_1.5.6\ \ 

    --prepare_ligand4.py /PATH_TO/mgltools_win32_1.5.6\ \ 

    --prepare_receptor4.py /PATH_TO/mgltools_win32_1.5.6\ \ 

    --mgl_python /PATH_TO/mgltools_win32_1.5.6\ + /PATH_TO/pythonsh ... 

Providing custom paths for the `--prepare_ligand4.py`, `--prepare_receptor4.py`, and `--

mgl_python` parameters will override the paths that AutoGrow4 determines using the `--

mgltools_directory` parameter alone. 

Appendix D.4.5 Open Babel 

Open Babel164 is optional, but a conversion method is required. You must use either 

MGLTools, obabel, or a custom file converter and docking software. 

Open Babel citations: 
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N M O’Boyle, M Banck, C A James, C Morley, T Vandermeersch, and G R Hutchison. 

“Open Babel: An open chemical toolbox.” J. Cheminf. (2011), 3, 33. DOI:10.1186/1758-

2946-3-33 

The Open Babel Package, version 2.3.1 http://openbabel.org (accessed Oct 2011) 

obabel is a command-line tool for cheminformatic file conversion. It is used by AutoGrow4 

to convert .pdb files to .pdbqt format, as required by Vina-type docking programs including 

Autodock Vina185 and QuickVina2205:. An alternative conversion option is MGLTools. 

Installation: 

An easy installation on Linux/macOS machines is: 

$ sudo apt-get install openbabel 

$ sudo apt-get update 

Full instructions for obabel installation can be found on their site: 

https://openbabel.org/docs/dev/Installation/install.html 

AutoGrow4 has been tested with obabel version 2.4.1. 

Additional Pathing Instructions: 

To use obabel to convert files, AutoGrow4 requires the path to the obabel executable. Once 

Open Babel is installed, the path to the obabel executable can be found by running: 

$ which obabel 

This path should be provided to AutoGrow4 using the `--obabel_path` variable: 

$ python RunAutogrow.py ...\ 

   --obabel_path /PATH_TO/obabel ... 
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Appendix D.4.6 Python APIs (Required) 

AutoGrow4 also uses several Python API libraries beyond those found in the standard 

library. These must be installed separately. Most can be installed via conda or pip. 

Mandatory Installations: 

RDKit165: Cheminformatic library. RDKit can be downloaded via conda/pip. To install 

using conda use the command: 

$ conda install -c rdkit rdkit 

We use the following RDKit sub-libraries in AutoGrow4: 

>>> import rdkit 
>>> from rdkit import RDLogger, Chem, DataStructs 
>>> from rdkit.Chem import MolSurf, Crippen, rdFMCS, Descriptors 
>>> from rdkit.Chem import AllChem, FilterCatalog, Lipinski, rdDepictor 
>>> from rdkit.Chem.Draw import PrepareMolForDrawing, rdMolDraw2D 
>>> from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint 
>>> from rdkit.Chem.FilterCatalog import FilterCatalogParams 
>>> from rdkit.Chem.rdchem import BondStereo 
 
NumPy285 (mathematical functions) can be downloaded via conda/pip. AutoGrow4 has 

been tested using NumPy version 1.15.0. It can be conda installed using the command  

$ conda install -c anaconda numpy 

SciPy286 (mathematical functions) can be downloaded via conda/pip. AutoGrow4 has been 

tested using SciPy version 1.1.0. It can be conda installed using the command  

$ conda install -c anaconda scipy 

Matplotlib287 (Python graphing tool) can be downloaded via conda/pip. AutoGrow4 has 

been tested using Matplotlib version 3.0.2. It can be conda installed using the command  

$ conda install matplotlib  
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func_timeout (Pythonic timeout tool) can be downloaded via pip. AutoGrow4 has been 

tested using func_timeout version 4.3.5. It can be pip installed using the command  

$ pip install func-timeout 

Optional Installations: 

mpi4py288 (MPI multithreading Python library) is required for multithreading using MPI. 

It can be downloaded via conda/pip. AutoGrow4 has been tested using mpi4py version 3.0.1. It 

can be conda installed using the command  

$ conda install -c anaconda mpi4py  

This may require a preinstallation of mpich:  

$ sudo apt install mpich 

AutoGrow4 requires mpi4py version 2.1.0 and higher. To check the version: 

1. open a python window. 

2. enter into the window: 

>>> import mpi4py 

>>> mpi4py.__version__ 

    3.0.1 

MPI use also requires an MPI-enabled computer environment. OpenMPI was used by the 

authors. 

OpenMPI installation instructions can be found: 

http://lsi.ugr.es/jmantas/pdp/ayuda/datos/instalaciones/Install_OpenMPI_en.pdf 

Quick OpenMPI installation can be done by running in a Bash terminal: 
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$ sudo apt-get install openmpi-bin openmpi-common openssh-client openssh-server 

libopenmpi1.3 libopenmpi-dbg libopenmpi-dev 

Establishing a fully MPI-enabled computer network is complicated and should only be 

attempted by qualified technicians. The authors used an Intel’s Omni-Path communication 

architecture that was established by experts at the University of Pittsburgh’s Center for Research 

Computing. The authors DO NOT RECOMMEND ATTEMPTING THIS ON YOUR OWN. 

Appendix D.4.7 Pre-Installed Python and Binary Dependencies 

AutoGrow4 comes with several dependencies preinstalled, requiring no additional effort 

by the user. These have licenses that allow them to be freely redistributed. If a dependency updates, 

please feel free to contact us, and we will do our best to make our code future-compatible. 

Docking Programs: 

AutoGrow4 comes preinstalled with two docking programs, Autodock Vina185 and 

QuickVina2.1205: 

• Autodock Vina 1.1.2 (packaged with executables for Linux, macOS, and Windows) 

– Version: 1.1.2 

– Location: /autogrow4/autogrow/docking/docking_executables/vina/ 

– Citation: 

Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of 

docking with a new scoring function, efficient optimization, and multithreading. Journal 

of computational chemistry, 31(2), 455–461. doi:10.1002/jcc.21334 
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– License: Apache version 2 

• QuickVina2.1 (compatible with Linux OS and macOS) 

– Version: 2.1 

– Location: /autogrow4/autogrow/docking/docking_executables/q_vina_2/ 

– Citation:  

Alhossary, A., Handoko, S. D., Mu, Y. & Kwoh, C. K. Fast, accurate, and reliable 

molecular docking with QuickVina 2. Bioinformatics 31, 2214–2216 (2015). 

DOI:10.1093/bioinformatics/btv082 

– License: Apache version 2 

Both of these software can be found within the directory: 

/autogrow4/autogrow/docking/docking_executables/ 

AutoGrow4 allows users to provide custom docking software. This could be as simple as 

using a different version of Autodock Vina: 

$ python RunAutogrow.py ... \ 

   --docking_executable /PATH_TO/Autodock_Vina_version_X_executable 

More advanced use allows users to provide a custom docking program. Details regarding 

how to use custom docking software are provided below in the “Appendix D.8: Providing Custom 

Plugins.” 

Scoring/Rescoring Programs: 

NNScore 1233 and NNScore 2234 are free and open-source programs that are distributed 

with AutoGrow4. Both NNScore1 and NNScore2 reassess ligand docking. They were trained 
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using Autodock Vina 1.1.2 so to use these programs we require the docking be performed using 

Autodock Vina 1.1.2. 

AutoGrow4 allows users to provide custom scoring/rescoring software. Details for custom 

scoring/rescoring suites are provided below in the “Appendix D.8: Providing Custom Plugins.”  

• NNScore 1: 

– Version: 1.1 

– Location: /autogrow4/autogrow/docking/scoring/nn_score_exe/nnscore1/ 

– Citation:  

NScore: A Neural-Network-Based Scoring Function for the Characterization of Protein-

Ligand Complexes. Jacob D. Durrant, J. Andrew McCammon. Journal of Chemical 

Information and Modeling, 2010, 50 (10), pp865-1871. 

– License: GNU General Public version 3 

• NNScore 2: 

– Version: 2.02 

– Location: /autogrow4/autogrow/docking/scoring/nn_score_exe/nnscore2/ 

– Citation:  

NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function. Jacob D. Durrant, 

Andrew McCammon. Journal of Chemical Information and Modeling, 2011, 51 (11), pp 

2897-2903. 

– License: GNU General Public version 3 
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SMILES Conversion to 3D and Protonation Adjustments: 

AutoGrow4 performs most of its ligand handling using 2D SMILES. AutoGrow4 uses the 

free and open-source program Gypsum-DL214 to convert small molecules from SMILES to 3D 

SDF format. Gypsum-DL is prepackaged in AutoGrow4. Gypsum-DL itself also includes the 

MolVS and Dimorphite-DL231 packages. 

• Gypsum-DL: 

– Version: 1.1.2 

– Location: /autogrow4/autogrow/operators/convert_files/gypsum_dl/ 

– Citation:  

Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, Ringe JJ, Durrant 

JD. Gypsum-DL: An Open-Source Program for Preparing Small-Molecule Libraries for 

Structure-Based Virtual Screening. J Cheminform. 11(1):34, 2019. [PMID: 31127411] 

[doi: 10.1186/s13321-019-0358-3] 

– License: Apache version 2.0 

• Dimorphite-DL: 

– Version: 1.2.2 

– Location: 

/autogrow4/autogrow/operators/convert_files/gypsum_dl/gypsum_dl/Steps/SMILES

/dimorphite_dl 

– Citation:  
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Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD (2019) Dimorphite-DL: An open-source 

program for enumerating the ionization states of drug-like small molecules. J Cheminform 

11:14. doi:10.1186/s13321-019-0336-9. 

– License: Apache version 2.0 

• MolVS: 

– Version: v0.1.1 2019 release 

– Location: 

/autogrow4/autogrow/operators/convert_files/gypsum_dl/gypsum_dl/molvs 

– Citation:  

https://molvs.readthedocs.io; Downloaded from https://github.com/mcs07/MolVS 

– License: MIT License 

Appendix D.5 Running AutoGrow4 

To run AutoGrow4, use the Python script RunAutogrow.py, located in the top AutoGrow4 

directory, from the command line. AutoGrow4 accepts user input via two methods: 

1. Command-line submission: executing directly from the command line. 

$ cd /PATH_TO/autogrow4/ 

$ python RunAutogrow.py \ 

   --filename_of_receptor 

/autogrow4/autogrow/tutorial/PARP/4r6eA_PARP1_prepared.pdb \ 
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   --center_x -70.76 --center_y  21.82 --center_z 28.33 \ 

   --size_x 25.0 --size_y 16.0 --size_z 25.0 \ 

   --source_compound_file 

/autogrow4/autogrow/source_compounds/naphthalene_smiles.smi \ 

   --root_output_folder /PATH_TO/output_directory/ \ 

   --number_of_mutants_first_generation 50 \ 

   --number_of_crossovers_first_generation 50 \ 

   --number_of_mutants 50 \ 

   --number_of_crossovers 50 \ 

   --top_mols_to_seed_next_generation 50 \ 

   --number_elitism_advance_from_previous_gen 50 \ 

   --number_elitism_advance_from_previous_gen_first_generation 10 \ 

   --diversity_mols_to_seed_first_generation 10 \ 

   --diversity_seed_depreciation_per_gen 10 \ 

   --num_generations 5 \ 

   --mgltools_directory /PATH_TO/mgltools_x86_64Linux2_1.5.6/ \ 

   --number_of_processors -1 \ 

   --scoring_choice VINA \ 

   --LipinskiLenientFilter \ 

   --start_a_new_run \ 

   --rxn_library ClickChem \ 

   --selector_choice Rank_Selector \ 
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   --dock_choice VinaDocking \ 

   --max_variants_per_compound 5 \ 

   --redock_elite_from_previous_gen False \ 

   --generate_plot True \ 

   --reduce_files_sizes True \ 

   --use_docked_source_compounds True \ 

   >  /PATH_TO/OUTPUT/text_file.txt \ 

   2>  /PATH_TO/OUTPUT/text_errormessage_file.txt 

2. JSON file submission: store AutoGrow4 parameters in a .json file 

$ cd /PATH_TO/autogrow4/ 

$ python RunAutogrow.py -j /PATH_TO/json_file_with_variable.json 

Examples of the .json files can be found in the folder /autogrow4/sample_sub_scripts/. 

Appendix D.6 Understanding AutoGrow4 Parameters 

An explanation of every parameter can be retrieved by running 

$ python /autogrow4/RunAutogrow.py --help 

Custom options such as custom filters, docking software, reaction libraries, etc., are 

described in other parts of the tutorial. Additionally, a description of how to prepare the receptor 

file is also provided in the section “Appendix D.9: Preparing the Receptor.” Details for preparing 

source compound files are provided directly below. 
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Appendix D.6.1 Source Compound Files 

Source compound files are provided to AutoGrow4 as a path to tab-delineated SMILES 

files (.SMI). Specify the path using the parameter `--source_compound_file`. 

Examples of source compound files can be found at: /autogrow4/source_compounds/ 

A detail log of how the examples files were prepared is located at:  

/autogrow4/source_compounds/Example_source_compound_notes.txt 

An accessory script that converts a folder of PDB files to a tab-delineated .SMI file is 

provided at /autogrow4/accessory_scripts/convert_directory_ligands_pdb_to_smi.py 

Details for using this accessory script are provided towards the bottom of this document, 

in the section “Appendix D.12.1: Preparation Scripts Pre-Run.”  

Seeding an AutoGrow4 Run with Already-Docked Compounds: 

AutoGrow4 can be set to assess the fitness of source compounds in addition to the fitness 

of compounds created by AutoGrow4. This will dock the source compounds prior to seeding the 

first generation. It creates a generation 0, consisting only of the compounds in the source 

compound file. 

To use this option, set `--use_docked_source_compounds` as True. 

If one is running multiple independent runs using the same source compounds, it may be 

worth it to first test all source compounds and then seed all runs with the same scores for generation 

0. This is accomplished by providing a source compound file with a float value in the second-to-

last tab-delineated slot. Such a SMI file would be formatted like this: 

SMILE   Name    ...any info...  primary_fitness diversity_fitness 
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Please remember that docking scores are relative to a specific protein and pocket. Changing 

the coordinates, protein, docking software, or (re)scoring method will invalidate any information. 

More information is provided in the `--use_docked_source_compounds` section of the 

RunAutoGrow.py help menu, which can be obtained by running 

$ python RunAutoGrow.py –help 

Appendix D.7 Docker Submission 

The /autogrow4/docker/ directory contains the scripts to run AutoGrow4 within a Docker 

container. These scripts are useful when using an OS that is not compatible with AutoGrow4 or its 

dependencies, such as Windows. 

Prior to running these scripts, please install the Docker software. Also, be sure to 

ALWAYS RUN THESE SCRIPTS WITH SUDO (LINUX/MACOS) OR ADMINISTRATOR 

PRIVILEGES (WINDOWS). 

Running AutoGrow4 via Docker will take a few minutes longer the first time because 

Docker must install the dependencies. This is also true if the Docker images have been purged. 

Depending on the AutoGrow4 settings, processor speed/count, etc., AutoGrow4 may 

complete within minutes or may take as long as multiple days. Please make sure to use settings 

that are appropriate for your system. Using nohup may be a useful wrapper for longer runs or when 

running jobs remotely (i.e., running a job over ssh). 



 312 

More details are provided directly below and in the /autogrow4/docker/README.md 

section. 

Appendix D.7.1 How to Setup AutoGrow4 in Docker 

Dockerized AutoGrow4 requires the user to specify parameters via a JSON file (not the 

command line). 

To run the autogrow_in_docker.py script: 

Linux/MacOS: 

1. Go into the /autogrow4/docker/ directory in a Bash terminal:  

$ cd /autogrow4/docker/ 

2. Run autogrow_in_docker.py with sudo and supply a .json file using the normal pathing of 

your system. Please note that the Docker downloads its own copy of obabel and MGLTools, 

so you do not need to provide those paths. Execute autogrow_in_docker.py with sudo 

privileges, providing it with a .json file (MUST EXECUTE FROM /autogrow4/docker/):  

$ sudo python autogrow_in_docker.py -j ./examples/sample_autogrow_docker_json.json 

3. Results will appear in the output directory specified by the `--root_output_folder` parameter. 

Windows OS: 

1. Open a Docker-enabled and Bash-enabled terminal with administrator privileges. 

2. Go to the /autogrow4/docker/ directory in a Bash enabled terminal:  

$ cd /autogrow4/docker/ 
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3. Execute autogrow_in_docker.py with sudo privileges, providing it with a .json file (MUST 

EXECUTE FROM /autogrow4/docker/):  

$ python autogrow_in_docker.py -j ./examples/sample_autogrow_docker_json.json 

4. Results will appear in the output directory specified by the `--root_output_folder` parameter. 

Appendix D.8 Providing Custom Plugins 

AutoGrow4 was designed to be modular. This allows for the easy swapping of code. 

AutoGrow4 is intended to be a living codebase. If you have added custom code and would like to 

make it open source, please contact the authors so that we can grow the user options. 

Many of the AutoGrow4 functions can be supplemented with custom options. These 

functions include: 

1. Custom Ligand Filters *** 

2. Custom Docking Code *** 

3. Custom Ligand Conversion Code from PDB to Dockable Format (e.g., PDBQT) *** 

4. Custom Scoring/Rescoring Code *** 

5. Custom Reaction Libraries 

6. Custom Complementary Molecule Libraries 

*** Indicates that when using this feature, the code is automatically copied into the 

appropriate AutoGrow4 directory. This is only done once, so please unit-test the code prior to 

incorporating it into AutoGrow4. A print message will indicate where the file has been copied to. 
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That file can be manually deleted or overwritten by the user. Restart AutoGrow4 after the custom 

files have been automatically copied into the proper locations. After that, the new script should be 

integrated into AutoGrow4. 

AutoGrow4 ASSUMES ALL CUSTOM CODE HAS BEEN TESTED AND 

FUNCTIONS WITH SPECIFIED I/O. For example, it assumes that scoring favors the most 

negative docking score. 

• AutoGrow4 will continue to assume all custom scoring scripts set the most fit score to the 

most negative for all metrics besides diversity. 

• It also assumes in ranked .smi files that the last column is the diversity fitness and assumes 

the second-to-last column is the metric for “docking/rescored” fitness. 

• If a custom script scores ligands such that the most fit ligand has the highest score, 

AutoGrow4 may inadvertently be favoring ligands that are least fit. If your favored scoring 

software sets the most fit ligand as most positive, please correct this by multiplying the 

custom docking score by -1.0. 

Appendix D.8.1 Custom Ligand Filters *** 

This feature allows the user to incorporate custom Python scripts for filtering ligands. 

These filters are applied to ligands after they are created by mutation/crossover but before 

Gypsum-DL conversion to 3D. 

This custom code will be copied to the directory: 

/autogrow4/autogrow/operators/filter/filter_classes/filter_children_classes/ 
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Script Formatting: 

These filters use a class-based inheritance architecture with filter classes that must: 

1. Inherit ParentFilterClass located at:  

/autogrow4/autogrow/operators/filter/filter_classes/parent_filter_class.py 

2. Have a unique name: class unique_name(ParentFilter) (unique_name cannot match one of the 

predefined filters). 

3. Have at least one function called run_filter (run_filter takes a single variable which must be 

an RDKit molecule object). 

Running Custom Filters: 

Because parameters can be supplied to AutoGrow4 via command-line or JSON file, we 

provide an example of each when submitting custom filters. 

1) Submission through JSON format: 

– Where the custom file is located at /PATH_TO/custom_filter_1.py 

– Unique class name is custom_filter_1 (this will be what it is called in future 

submissions) 

– To run multiple files, replace [["custom_filter_1","/PATH_TO/custom_filter_1.py"]] 

with: 

[["custom_filter_1","/PATH_TO/custom_filter_1.py"],["custom_filter_2","/PATH_

TO/custom_filter_2.py"]] 

{ 
    ..., 
    "alternative_filter": [["custom_filter_1","/PATH_TO/custom_filter_1.py"]] 
} 
Submit in terminal:  
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$ python RunAutogrow.py -j /PATH_TO/json_file_with_variable.json 

2) Submission through command-line format: 

– Custom file is located at /PATH_TO/custom_filter_1.py 

– Unique class name is custom_filter_1 (this will be what it is called in future 

submissions) 

– To run multiple custom filters, replace 

[["custom_filter_1","/PATH_TO/custom_filter_1.py"]] with: 

[["custom_filter_1","/PATH_TO/custom_filter_1.py"],["custom_filter_2","/PATH_

TO/custom_filter_2.py"]] 

$ python RunAutogrow.py ... \ 

    --alternative_filter [["custom_filter_1","/PATH_TO/custom_filter_1.py"]] 

Appendix D.8.2 Custom Docking Code *** 

This feature allows the user to incorporate custom Python scripts for docking ligands. 

Currently AutoGrow4 is configured to dock using Autodock Vina185 and QuickVina2205, but 

AutoGrow4 is not limited to these docking programs. A custom script can be added to run docking 

using virtually any software. 

This custom code will be copied to the directory: 

/autogrow4/autogrow/docking/docking_class/docking_class_children/ 

Script Formatting: 

These docking scripts use a class-based inheritance architecture which require: 
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1. Docking class must inherit ParentDocking: 

/autogrow4/autogrow/docking/docking_class/parent_dock_class.py 

2. Must have a unique name: class unique_name(ParentDocking) (unique_name cannot be one 

of the predefined docking scripts, which are currently just VinaDocking and 

QuickVina2Docking) 

3. Must have at least have three functions following the below formatting: 

def __init__(self, vars=None, receptor_file=None, test_boot=True): 
    """ 
    get the specifications for ligand assessment/docking from vars 
    load them into the self variables we will need 
    and convert the receptor to the proper file format (ie pdb-> pdbqt) 
 
    Inputs: 
    :param dict vars: Dictionary of User variables 
    :param str receptor_file: the path for the receptor pdb 
    :param bool test_boot: used to initialize class without objects for testing purpose 
    """ 
 
def run_dock(self, pdbqt_filename): 
    """ 
    this function runs the docking. Returns None if it worked and the name if it failed to 

dock. 
 
    Inputs: 
    :param str pdbqt_filename: the pdbqt file of a ligand to dock and score 
                if using a docking software that use a file format other than pdbqt please 

substitute that file here 
    Returns: 
    :returns: str smile_name: name of smiles if it failed to dock 
                            returns None if it docked properly 
    """ 
 
def rank_and_save_output_smi(self, vars, current_generation_dir, current_gen_int, 
smile_file, deleted_smiles_names_list): 
    """ 
    Given a folder with PDBQT’s, rank all the SMILES based on docking score (High to 

low). 
    Then format it into a .smi file. 
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    Then save the file. 
 
    Inputs: 
    :param dict vars: vars needs to be threaded here because it has the parallelizer object 

which is needed within Scoring.run_scoring_common 
    :param str current_generation_dir: path of directory of current generation 
    :param int current_gen_int: the interger of the current generation indexed to zero 
    :param str smile_file:  File path for the file with the ligands for the generation which 

will be a .smi file 
    :param list deleted_smiles_names_list: list of SMILES which may have failed the 

conversion process 
 
    Returns: 
    :returns: str output_ranked_smile_file: the path of the output ranked .smi file 
    """ 

Running Custom Docking Scripts: 

Please note integrating a new docking software into AutoGrow4 will likely require 

corresponding custom conversion and scoring scripts. Documentation for these is provided in the 

next two subsections. The example below ignores these extras. 

AutoGrow4 will need to be restarted after this has been incorporated into the code base. 

1) Submission through JSON format: 

— Where the JSON file is located at: /PATH_TO/To/json_file_with_variable.json 

— Where the docking software executable is located at: 

/PATH_TO/EXECUTABLE_FOR_CUSTOM_DOCKING/custom_docking 

— Where the Python script for running docking is located at:  

/PATH_TO/CLASS_OBJECT_FOR_CUSTOM_DOCKING/custom_docking.py 

— Where the name of custom docking class is: custom_docking 

{ 
    ... 
    "docking_executable": 
"/PATH_TO/EXECUTABLE_FOR_CUSTOM_DOCKING/custom_docking", 
    "dock_choice": "Custom", 
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    "custom_docking_script": ["custom_docking", 
"/PATH_TO/CLASS_OBJECT_FOR_CUSTOM_DOCKING/custom_docking.py"] 
} 
 

Submit via terminal 

$ python RunAutogrow.py -j /PATH_TO/To/json_file_with_variable.json 

2) Command-line submission format: 

— Where docking software executable is located at: 

/PATH_TO/EXECUTABLE_FOR_CUSTOM_DOCKING/custom_docking 

— Where Python script for running docking is located at: 

/PATH_TO/CLASS_OBJECT_FOR_CUSTOM_DOCKING/custom_docking.py 

— Where name of custom docking class is: custom_docking 

$ python RunAutogrow.py ... \ 

    --docking_executable     

"/PATH_TO/EXECUTABLE_FOR_CUSTOM_DOCKING/custom_docking" \  

    --dock_choice Custom \ 

    --alternative_filter ["custom_docking", 

"/PATH_TO/CLASS_OBJECT_FOR_CUSTOM_DOCKING/custom_docking.py"] 
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Appendix D.8.3 Custom Ligand Conversion Code from PDB to Dockable Format (e.g., 

PDBQT) 

If using a docking software other than Vina/QuickVina, you may need to convert the PDB-

formatted ligands into a different format. In this case, you must provide a custom script to convert 

the ligands. 

This custom code will be copied to the directory: 

/autogrow4/autogrow/docking/docking_class/docking_class_children/ 

Script Formatting: 

These conversion scripts use a class-based inheritance architecture: 

1. Conversion class object must inherit ParentPDBQTConverter: 

/autogrow4/autogrow/docking/docking_class/parent_pdbqt_converter.py 

2. Have a unique name: class unique_name(ParentPDBQTConverter) (unique_name cannot be 

one of the predefined docking scripts) 

– Currently files named: convert_with_mgltools.py and convert_with_obabel.py 

– Class names already in use are: MGLToolsConversion and ObabelConversion 

3. Must have at least two functions following the below formatting: 

def convert_receptor_pdb_files_to_pdbqt(self, receptor_file, mgl_python, 
receptor_template, number_of_processors): 
    """ 
    Make sure a PDB file is properly formatted for conversion to pdbqt 
 
    Inputs: 
    :param str receptor_file:  the file path of the receptor 
    :param str mgl_python: file path of the pythonsh file of mgl tools 
    :param str receptor_template: the receptor4.py file path from mgl tools. 
    :param int number_of_processors: number of processors to multithread 
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    """ 
    raise NotImplementedError("convert_receptor_pdb_files_to_pdbqt() not 
implemented") 
 
def convert_ligand_pdb_file_to_pdbqt(self, pdb_file): 
    """ 
    Convert the ligands of a given directory from pdb to pdbqt format 
 
    Inputs: 
    :param str pdb_file: the file name, a string. 
    Returns: 
    :returns: bool bool: True if it worked; 
                        False if it’s the gypsum param file or if it failed to make PDBQT 
    :returns: str smile_name: name of the SMILES string from a pdb file 
                                None if it’s the param file 
    """ 
    raise NotImplementedError("rank_and_save_output_smi() not implemented") 
 

Running Custom Conversion Scripts: 

AutoGrow4 will need to be restarted once this has been incorporated into the code base. 

1) Submission through JSONformat: 

— Where the .json is located at: /PATH_TO/To/json_file_with_variable.json 

— Where the custom Python conversion script is located at: 

/PATH_TO/CLASS_OBJECT_FOR/custom_conversion.py 

— Where the name of custom conversion class is: custom_conversion 

{ 
    ... 
    "conversion_choice": "Custom", 
    "custom_conversion_script": ["custom_conversion", 
"/PATH_TO/CLASS_OBJECT_FOR/custom_conversion.py"] 
} 

Submit via terminal:  

$ python RunAutogrow.py -j /PATH_TO/JSON_FILE/json_file_with_variable.json 

2) Submission through command-line format: 
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— Where the custom Python conversion script is located at: 

/PATH_TO/CLASS_OBJECT_FOR/custom_conversion.py 

— Where the name of custom conversion class is: custom_conversion 

$ python RunAutogrow.py ... \ 

    --conversion_choice Custom \ 

    --custom_conversion_script ["custom_conversion", 

"/PATH_TO/CLASS_OBJECT_FOR/for/custom_conversion.py"] 

Appendix D.8.4 Custom Scoring or Rescoring Code 

This feature allows the user to incorporate custom Python scripts for scoring and rescoring 

ligands. 

Currently AutoGrow4 is configured to dock using AutoDock Vina and QuickVina2. There 

are also two options to rescore a ligand using either NNScore 1 or NNScore 2. Additionally, ligand 

efficiency (dividing the score/rescore value by the number of non-hydrogen atoms) can be applied 

with any float-based scoring value. 

Users can incorporate custom scoring and rescoring options into AutoGrow4. This custom 

code will be copied to the directory: /autogrow4/autogrow/docking/scoring/scoring_classes/ 

Script Formatting: 

These (re)scoring scripts use a class-based inheritance architecture: 

1. Scoring class object must inherit parent_scoring_class: 

/autogrow4/autogrow/docking/scoring/scoring_classes/parent_scoring_class.py 



 323 

2. Have a unique name: class unique_name(parent_scoring_class) 

– unique_name cannot be one of the predefined docking scripts. 

– Currently files named: vina.py, nn1.py, nn2.py, and lig_efficiency.py 

– Class names already in use are: VINA, NN1, NN2, and LigEfficiency 

3. Must have at least have two functions following the below formatting: 

def get_name(self): 
    """ 
    Returns the current class name. 
    Returns: 
    :returns: str self.__class__.__name__: the current class name. 
    """ 
    return self.__class__.__name__ 
 
def run_scoring(self, input_string): 
    """ 
    run_scoring is needs to be implemented in each class. 
    Inputs: 
    :param str input_string:  A string to raise an exception 
    """ 
    raise NotImplementedError("run_scoring() not implemented") 
 

Running Custom Scoring/Rescoring Scripts: 

AutoGrow4 will need to be restarted once this has been incorporated into the code base. 

1) Submission through JSON format: 

— Where the .json is located at: /PATH_TO/To/json_file_with_variable.json 

— Where the Python scoring script is located at: 

/PATH_TO/CLASS_OBJECT_FOR/custom_scoring.py 

— Where the name of custom scoring class is: custom_scoring_name 

{ 
    ... 
    "scoring_choice": "Custom", 
    "custom_scoring_script": ["custom_scoring_name", 
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"/PATH_TO/CLASS_OBJECT_FOR/custom_scoring.py"] 
} 

Submit via terminal: 

$ python RunAutogrow.py -j /PATH_TO/JSON_FILE/json_file_with_variable.json 

 

 

2) Submission through command-line format: 

— Where the Python scoring script is located at: 

/PATH_TO/CLASS_OBJECT_FOR/custom_scoring.py 

— Where the name of custom scoring class is: custom_scoring_name 

$ python RunAutogrow.py ... \ 

   --conversion_choice Custom \ 

   --custom_conversion_script ["custom_scoring_name", 

"/PATH_TO/CLASS_OBJECT_FOR/custom_scoring.py"] 

Appendix D.8.5 Custom Reaction Libraries 

AutoGrow4 assumes all custom scripts have been unit-tested. Please ensure all reactions 

and libraries are accurate before using this option. 

Unlike the other custom options, reaction libraries are stored as human-readable JSON 

dictionaries. In contrast, all other custom options use inherited class scripts. These .json files do 

not need to be incorporated into AutoGrow4 and thus require no restarting or copying of files. 
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Reaction libraries are stored as .json files and are dictionaries of dictionaries. The outer 

dictionary uses the reaction’s name as the key and the sub-dictionary containing all information 

about the reaction as the item. 

We provide a script to check complementary molecule and reaction libraries at: 

/autogrow4/accessory_scripts/test_complementary_mol_library.py 

A tutorial is provided in the Accessory Scripts section of this document. 

Three Requirements for Custom Reaction Libraries: 

Custom reaction libraries require three pieces of information, each explained below. 

Reaction Library .json File Contains Reactions and All Reaction Information: 

Each sub-dictionary must contain the following information: 

• “reaction_name”: “Name of the reaction”, 

• “example_rxn_product”: “SMILES of Product using example 

example_rxn_reactants”, 

• “example_rxn_reactants”: [“SMILES of example reactant_1”], 

– If two or more reactants in reaction [“SMILES of example 

reactant_1”,“SMILES of example reactant_2”,…] 

• “functional_groups”: [“functional group name reactant_1”], 

– If two or more reactants in reaction [“functional group name 

reactant_1”,“functional group name reactant_2”,…] 

• “group_smarts”: [“functional_group SMARTS reactant_1”], 

– If two or more reactants in reaction [“functional_group SMARTS 

reactant_1”,“functional_group SMARTS reactant_2”,…] 
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• “num_reactants”: 1, 

– (int) if 2 or more reactants change accordingly 

• “reaction_string”: “reaction string i.e., 

reactant_1_smart.reactant_2_smart>>product_SMART”, 

– This uses Daylights SMARTS reaction notation 

 

• “RXN_NUM”: 3 

– (int) a unique reaction number. This is used in naming products of mutation. 

For example, a ligand named Gen_1_Mutant_72_867328 is a ligand from 

generation 1 created by the 72 reaction in a reaction library 

Simplified Example of a Reaction library (from click_chem_rxns_library.json): 

{ 
    "1_Epoxide_and_Alcohol":     { 
        "reaction_name": "1_Epoxide_and_Alcohol", 
        "example_rxn_product": "CC(C)(C)C(O)(OCCCF)C(C)(C)O", 
        "example_rxn_reactants": ["CC(C)(C)C1(O)OC1(C)C", "FCCC(O)"], 
        "functional_groups": ["Epoxide_clickchem", "Alcohol_clickchem"], 
        "group_smarts": ["[CR1;H2,H1X4,H0X4]1O[CR1;H2,H1X4,H0X4]1", 
"[#6&$([CR0,R1X3,R1X4])&!$([#6](=,-[OR0,SR0])[OR0])]-[OR0;H1,-]"], 
        "num_reactants": 2, 
        "reaction_string": 
"[CR1;H2,H1X4,H0X4:1]1O[CR1;H2,H1X4,H0X4:2]1.[#6&$([CR0,R1X3,R1X4])&!$(
[#6](=,-[OR0,SR0])[OR0]):3]-[OR0;H1,-]>>O[C:1][C:2]O-[#6:3]", 
        "RXN_NUM": 1 
        }, 
    "2_Epoxide_and_Thiol":     { 
        "reaction_name": "2_Epoxide_and_Thiol", 
        "example_rxn_product": "CC(C)(C)C(O)(SCCC(=O)OC(=O)[O-])C(C)(C)O", 
        "example_rxn_reactants": ["CC(C)(C)C1(O)OC1(C)C", "O=C([O-])OC(=O)CCS"], 
        "functional_groups": ["Epoxide_clickchem", "Thiol_1R_clickchem"], 
        "group_smarts": ["[CR1;H2,H1X4,H0X4]1O[CR1;H2,H1X4,H0X4]1", 
"[#6&$([CR0,R1X3,R1X4])&!$([#6](=,-[OR0,SR0])[SR0])]-[SR0;H1,-]"], 
        "num_reactants": 2, 
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        "reaction_string": 
"[CR1;H2,H1X4,H0X4:1]1O[CR1;H2,H1X4,H0X4:2]1.[#6&$([CR0,R1X3,R1X4])&!$(
[#6](=,-[OR0,SR0])[SR0]):3]-[SR0;H1,-]>>O[C:1][C:2]S-[#6:3]", 
        "RXN_NUM": 2 
        }, 
    "3_Alkene_Oxidized_To_Epoxide":     { 
        "reaction_name": "3_Alkene_Oxidized_To_Epoxide", 
        "example_rxn_product": "CNC1(C)OC1(O)Br", 
        "example_rxn_reactants": ["BrC(O)=C(C)NC"], 
        "functional_groups": ["Alkene_clickchem"], 
        "group_smarts": ["[CR0;X3,X2H1,X1H2]=[CR0;X3,X2H1,X1H2]"], 
        "num_reactants": 1, 
        "reaction_string": 
"[CR0;X3,X2H1,X1H2:1]=[CR0;X3,X2H1,X1H2:2]>>[C:1]1O[C:2]1", 
        "RXN_NUM": 3 
        }, 
    ..., 
} 
PLEASE SEE THE EXAMPLE REACTION LIBRARIES FOUND AT: 

• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/all_r

xns/All_Rxns_rxn_library.json

• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/click

_chem_rxns/click_chem_rxns_library.json

• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/robu

st_rxns/Robust_Rxns_rxn_library.json

Reaction libraries identify ligands capable of participating in a given reaction using the 

information found in the sub-dictionary’s items “functional_groups” and “group_smarts.” 

Functional Group Library .json File Simple JSON Dictionary Containing Each Functional 

Group and Its Smarts Definition: 

 Functional group libraries are simple dictionaries of the functional groups used by a
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reaction library. Every moiety used by the reaction library must have an entry in the functional 

group library. 

Functional group libraries are formatted as such: (From 

click_chem_functional_groups.json): 

{ 
    "Acid_Anhydride_Noncyclic_clickchem": "[*]C(=O)-[O;R0]-C(=O)[*]", 
    "Alcohol_clickchem": "[#6&$([CR0,R1X3,R1X4])&!$([#6](=,-[OR0,SR0])[OR0])]-
[OR0;H1,-]", 
    "Alkene_clickchem": "[CR0;X3,X2H1,X1H2]=[CR0;X3,X2H1,X1H2]", 
    "Alkyne_clickchem": "[CR0;X2,X1H1]#[CR0;X2,X1H1]", 
    "Amine_2R_clickchem":  "[#7;$([#7;H3+,H2R0X1]-[#6]),$([#7&!H3;H1R1X3](:,-
[#6R1]):,-[#6R1,#7R1]),$([#7&!H3;H2]-[#6]),$([#7&!H3;H0R1X2](:,-[#6R1;X3H1]):,-
[#6R1X3H1]),$([#7&!H3;H0R1X2](:,-[#6R1;X3]):,-[#7R1X3]),$([#7&!H3;H1R0X3](-
[#6])-[#6R0])]", 
    "Azide_1R_clickchem": "[*;#6]-[$(N=[N+]=[N-]),$([N-][N+]#N)]", 
    "Carbonochloridate_clickchem": "Cl[C;X3](=O)-O[*]", 
    "Carboxylate_clickchem": "[*;!O]-
[$([CR0;X3](=[OR0&D1])[OR0&H1]),$([CR0;X3](=[OR0&D1])[OR0-])]", 
    "Epoxide_clickchem": "[CR1;H2,H1X4,H0X4]1O[CR1;H2,H1X4,H0X4]1", 
    "Ester_clickchem": "[*;#6]C(=O)-O[*]", 
    "Halide_clickchem": "[Cl,Br,I][$([CX4,c]),$([#6X3]=[O,S])]", 
    "Isocyanate_clickchem": "[#6]N=C=O", 
    "Isothiocyanate_clickchem": "[#6]N=C=S", 
    "Primary_Amine_1R_clickchem": "[#7;$([H3+]),$([H2R0;!+])]-[#6]", 
    "Sulfonyl_Azide_clickchem": "[*]S(=O)(=O)-[$(N=[N+]=[N-]),$([N-][N+]#N)]", 
    "Thio_Acid_clickchem": "[C]-
[$([CX3R0]([S;H1,X1])=[OX1]),$([CX3R0]([O;H1,X1])=[SX1])]", 
    "Thiol_1R_clickchem": "[#6&$([CR0,R1X3,R1X4])&!$([#6](=,-[OR0,SR0])[SR0])]-
[SR0;H1,-]" 
} 
Examples can be found here: 

• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/all_r

xns/All_Rxns_functional_groups.json



• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/click

_chem_rxns/click_chem_functional_groups.json

• /autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/robu

st_rxns/Robust_Rxns_functional_groups.json

The SMARTS strings provided in this file should also be present in each sub-dictionary of 

the reaction library .json file that references that functional group, placing the name of the group 

in the list of functional group names of reactants found under sub-dictionary key 

“functional_groups” and placing the SMARTS string of the group in the list of functional group 

SMARTS of reactants found under sub-dictionary k ey “ group_smarts.” 

Directory of Complementary Molecule Libraries, Directory of .smi Files: 

Any reaction containing more than one reactant will require a complementary molecule to 

supplement the reaction. 

For this reason, we require a directory populated with .smi files containing small molecules 

that match each functional group. 

The name of each .smi file should be the name of the functional group (the keys of the 

functional-group-library .json file) + .smi. 

Example: The .smi file for t he functional group “ Acid_Anhydride_Noncyclic_clickchem” 

should be: 

/PATH_TO/complementary_mol_directory/Acid_Anhydride_Noncyclic_clickchem.smi 

There must be one entry per functional group. Because names are cap sensitive in some 

OS and not in others, please check that your name is unique independent of caps. 
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1. No headers are allowed in the file.

2. .smi files can be either tab or four-space delineated.

3. The only columns are the first two columns.

– Column 1: SMILES string

– Column 2: ligand name/identifier (ONE WORD, NO SPACES)

We strongly recommend thoroughly checking that each molecule in each library matches 

the intended functional group. If a ligand does not match the intended functional group, the 

reaction will fail and it will slow the process of mutant creation. 

Running Custom Reactions: 

Running a custom reaction library requires four parameters to be set: 

1. rxn_library

2. rxn_library_file

3. function_group_library

4. complementary_mol_directory

1) Submission through JSON format:

— Where the .json is located at /PATH_TO/To/json_file_with_variable.json 

— Where the reaction library .json file is located at /PATH_TO/rxn_library_file.json 

— Where the function group .json file is located at 

/PATH_TO/function_group_library.json 

— Where the directory of .smi for complementary libraries is located at 

/PATH_TO/complementary_mol_directory/ 

{ 
    ... 

Important Formatting Notes about the .smi File for complementary_mol_directory: 
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    "rxn_library": "Custom", 
    "rxn_library_file": "/PATH_TO/rxn_library_file.json", 
    "function_group_library": "/PATH_TO/function_group_library.json", 
    "complementary_mol_directory": "/PATH_TO/complementary_mol_directory/", 
} 
Submit via terminal 

$ python RunAutogrow.py -j /PATH_TO/json_file_with_variable.json 

2) Submission through command-line format: 

— Where the reaction library .json file is located at: /PATH_TO/rxn_library_file.json 

— Where the function group .json file is located at: 

/PATH_TO/function_group_library.json 

— Where the directory of .smi for complementary libraries is located at: 

/PATH_TO/complementary_mol_directory/ 

$ python RunAutogrow.py ... \ 

    --rxn_library Custom \ 

    --rxn_library_file /PATH_TO/rxn_library_file.json \ 

    --function_group_library /PATH_TO/function_group_library.json \ 

    --complementary_mol_directory /PATH_TO/complementary_mol_directory/ 

Appendix D.8.6 Custom Complementary Molecule Libraries 

One can provide custom libraries of molecules to supplement reactions using the `--

complementary_mol_directory` option. 
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This can be used in conjunction with any of the predefined reactions sets (i.e., 

click_chem_rxns, robust_rxns, all_rxns), but this requires that all functional groups used by those 

reaction libraries have a corresponding .smi file in the custom complementary_mol_directory. 

We strongly recommend thoroughly checking that each molecule in each library matches 

the intended functional group. If a ligand does not match the intended functional group, the 

reaction will fail and it will slow the process of mutant creation. 

We provide a script to check complementary molecule libraries at: 

/autogrow4/accessory_scripts/test_complementary_mol_library.py 

A tutorial is provided in the “Appendix D.12.2: Preparing Custom Reaction Libraries Pre-

Run.” 

THERE MUST BE ONE ENTRY PER FUNCTIONAL GROUP. BECAUSE NAMES 

ARE CAP SENSITIVE IN SOME OS’S AND NOT IN OTHERS, PLEASE CHECK THAT 

YOUR NAME IS UNIQUE INDEPENDENT OF CAPS. 

Important Formatting Notes about the .smi File for complementary_mol_directory: 

1. No headers are allowed in the file. 

2. .smi files can be either tab or four-space delineated. 

3. The only columns are the first two columns. 

– Column 1: SMILES string 

– Column 2: ligand name/identifier (ONE WORD, NO SPACES) 

Running Custom Reactions: 

1) Submission through JSON format: 

— Where the .json is located at: /PATH_TO/To/json_file_with_variable.json 
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— Where the directory of .smi for complementary libraries is located at: 

/PATH_TO/complementary_mol_directory/ 

{ 
    ... 
    "complementary_mol_directory": "/PATH_TO/complementary_mol_directory/", 
} 
 
Submit via terminal:  

$ python RunAutogrow.py -j /PATH_TO/json_file_with_variable.json 

2) Submission through command-line format: 

— Where the directory of .smi for complementary libraries is located at: 

/PATH_TO/complementary_mol_directory/ 

$ python RunAutogrow.py ... \ 

   --complementary_mol_directory /PATH_TO/complementary_mol_directory/ 

Appendix D.9 Preparing the Receptor 

AutoGrow4 takes a single .pdb file for the receptor. Although not required, we recommend 

carefully preparing the receptor file prior to submitting to AutoGrow4. 

1. Remove all ligands, water, or non-protein atoms. This can be done in a PDB viewer such as 

PyMOL or VMD. 

– If a ligand is already bound to the target pocket, you may want to use that ligand to 

identify the pocket location prior to removing it. 

2. Remove chains not being tested. 
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– i.e., many protein structures contain multiple protein chains and even multiple 

proteins. We recommend removing all chains you are not explicitly testing. This can 

be done in a PDB viewer such as PyMOL or VMD. 

3. Adjust the protonation of the receptor to the appropriate pH. Crystal structures frequently do 

not include hydrogen atoms. 

– More accurate scoring requires proper protonation. This can be done using the 

program PDB2PQR240,241, available via the webserver http://nbcr-

222.ucsd.edu/pdb2pqr_2.0.0/ 

• If you use the PDB2PQR to protonate the receptor, you will need to convert it 

back to .pdb. 

– To convert back, we recommend obabel. Installation instructions for 

obabel are provided in the Dependencies section. 

$ obabel -ipqr /PATH_TO/PQR_FILE.pqr -opdb \ 

   -O   /PATH_TO/PDB_OUTPUT_FILE.pdb 

4. Determine and define the binding pocket: 

– Docking software such as Vina and QuickVina require six float parameters to define 

a binding pocket: 

• Coordinates: The center of the pocket location in the x, y, z axis: center_x, 

center_y, center_z 

• Dimensions: The distance from the center of the pocket which will be 

considered part of the pocket in the x, y, z axis: size_x, size_y, size_z 

– AutoGrow4 requires all six parameters to run the docking portion of the code. 
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– To determine these, we recommend using the Python API library Scoria242. 

• Citation:  

Ropp, P., Friedman, A., & Durrant, J. D. (2017). Scoria: A Python module for 

manipulating 3D molecular data. Journal of cheminformatics, 9(1), 52. 

doi:10.1186/s13321-017-0237-8 

• Installation of Scoria: 

– Scoria can be installed either by pip installation or manual download. 

– We recommend pip installation:  

$ pip install scoria 

– Download scoria from https://durrantlab.pitt.edu/scoria/ 

Determining the binding pocket using Scoria: 

a. Manually inspect the pocket of your protein in a protein visualizer such as PyMOL, 

Chimera, or VMD. 

• Pick out three to six residues which will be used to define the protein pocket. 

• For the AutoGrow4 publication we used Chain A of the PARP-1 catalytic 

domain X-ray structure PDB:4R6E17. The selected residues used to define the 

pocket were: 763, 872, 888, 907, 988. 

b. Determine the geometric center of the pocket with Scoria’s get_geometric_center 

function in Python. 

• In a Python terminal or in a Jupyter environment: 

# Import the scoria API 
>> import scoria 
>> 
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# define your protein pdb file 
# The protein pdb file used for the publication can be found at: 

/autogrow4/autogrow/tutorial/PARP/4r6eA_PARP1_prepared.pdb 
>> pdb_file = "/PATH_TO/OF/PDB_FILE.pdb" 
 
# create a scoria mol object from the protein pdb file 
>> mol = scoria.Molecule(pdb_file) 
 
# select which residues are going to be used to define pocket with resseq (the 

residue number) 
>> sel = mol.select_atoms({"resseq":[763, 872, 888, 907, 988]}) 
 
# get geometric center of the protein pocket 
>> geometric_center = mol.get_geometric_center(sel) 
>> print(geometric_center) 
array([-70.75619481,  21.815,  28.32835065]) 
From this you can set: "center_x" = -70.756,"center_y" =21.815,"center_z"= 
28.328 

5. Determine the dimensions of the pocket. 

Determining the binding pocket using Scoria’s bounding_box function in Python: 

# Import the scoria API 
>> import scoria 
>> 
# define the protein molecule from the PDB file 
>> mol = scoria.Molecule("/PATH_TO/OF/PDB_FILE.pdb") 
 
# select which residues are going to be used to define pocket with resseq (the 

residue number) 
>> sel = mol.select_atoms({"resseq":[763, 872, 888, 907, 988]}) 
 
# get the dimensions of the box that encompasses the protein pocket 
>> bounding_box = mol.get_bounding_box(sel) 
>> mol.get_bounding_box(sel) 
array([[-83.764,  15.015,  15.305], 
    [-60.814,  29.578,  36.727]]) 
From this we need to take the difference from the first and second coordinate for 

x,y,z: 

a. 1st box coordinate: x_1st = -83.764,  y_1st = 15.015, z_1st = 15.305 
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b. 2nd box coordinate: x_2nd = -60.814,  y_2nd = 29.578, z_2nd = 36.727 

c. Absolute value of diff from 1st and 2nd: "size_x" = 22.950,"size_y" = 

14.563,"size_z"= 21.422 

We suggest rounding these up to ensure the entire pocket is included: `“size_x” = 

25.00,“size_y” = 16.00,“size_z”= 25.00 

Appendix D.10 Other Factors for Consideration Prior to Running AutoGrow4 

Appendix D.10.1 Processors and Multiprocessing Style 

AutoGrow4 is recommended to be run on a larger computer or a cluster but it can be run 

on a local computer such as a laptop or PC. 

If Running on a Laptop or PC: 

We recommend lowering some AutoGrow4 parameters to reduce the computational 

overhead for smaller machines. 

• Lower the population size and number of generations. This will mean a less intense search of 

chemistry space but will make run times more reasonable. 

• Lower the max_variation to 1. This means for every ligand created by AutoGrow4, we will 

only create 1 conformer and thus only dock once per ligand. This of course means a trade-off 

of getting more useful information for each ligand for computational efficiency. 
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We also recommend considering how long you can allow the computer to run. If you need 

to continually use the computer while running AutoGrow4 then you want to fix the 

number_of_processors to leave several available to perform other activities. 

If you can leave the computer to run undisturbed for an extended period, we 

recommend setting number_of_processors = -1, which will use all available processors. 

If Running on a Larger Super Computer: 

We recommend fixing the number_of_processors to however many processors you intend 

to run AutoGrow4. If number_of_processors = -1, then all available processors will be occupied 

running AutoGrow4. 

If Running on a Cluster: 

We recommend setting the number_of_processors = -1 and defining the number of 

processors in an SBATCH-type submission script. 

Appendix D.11 Multiprocessing/MPI/Parallelization/Parallelizer 

AutoGrow4 uses the Parallelizer.py script from Gypsum-DL214: 

/autogrow4/autogrow/operators/convert_files/gypsum_dl/gypsum_dl/Parallelizer.py 

This script creates a Parallelizer class object which can divide jobs in three manners: 
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1. Serial: run all jobs one at a time 

2. Multiprocessing: dynamically allocate distribution of jobs across multiple CPUs on the same 

device 

3. MPI: static allocation of jobs across many CPUs across multiple machines. 

Appendix D.11.1 Important Notes when Running on Clusters Using SLURM 

1. Multiprocessing: When running AutoGrow4 in Multiprocessing mode using SLURM: 

• First, run the cache_prerun option on a single processor.  

$ srun -n 1 python RunAutogrow.py -c 

– Use srun or mpirun for the cache_prerun. This limits the prerun to a 

single processor, thus preventing errors caused by race conditions 

when creating pycache files. 

• Then, run AutoGrow4 as intended. 

$ python RunAutogrow.py -j custom_parameters.json 

2. MPI: When running AutoGrow4 in MPI mode using SLURM: 

• First, run the cache_prerun option on a single processor. 

$ srun -n 1 python RunAutogrow.py -c 

– USE srun or mpirun for the cache_prerun. This limits the prerun to a 

single processor thus preventing errors caused by race conditions when 

creating pycache files. 

• Then, run the simulation as intended. 
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$ mpirun -n num_processors python -m mpi4py RunAutogrow.py -j 

custom_parameters.json 

– Make sure to provide the `-m mpi4py` before RunAutoGrow.py. This 

tells Python how to handle exceptions. 

Appendix D.12 Accessory Scripts 

AutoGrow4 provides several accessory scripts for preparing files, processing data, and 

analyzing data. 

These files can be found within the /autogrow4/accessory_scripts/ folder. 

Appendix D.12.1 Preparation Scripts Pre-Run 

/autogrow4/accessory_scripts/remove_duplicates_from_smi.sh 

This script accepts a file path to a tab-delineated .smi file. It then filters the file for 

redundancies in the first and second columns of the file. 

The output file is the input file +`_no_dup.smi`. 

This script uses Bash rather than Python because it is less memory intensive when dealing 

with large .smi files in the millions of compounds range. This is important when filtering through 

large databases such as ZINC15230. 

This script takes one input variable (filename str: Required). This is the path to the tab-

delineated .smi file to remove any redundancies. 
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Example submit: 

$ bash /autogrow4/accessory_scripts/remove_duplicates_from_smi.sh \ 

    /PATH_TO/TO/SMILES.smi 

/autogrow4/accessory_scripts/convert_directory_ligands_pdb_to_smi.py 

This script converts a directory of .pdb files (small molecules only, not proteins) to 

SMILES and creates a single .smi file with all SMILES. 

This script takes three input arguments: 

1. `--source_folder` str (-s) Required. Path to folder containing .pdb files to convert. File must 

contain a single small molecule without proteins. Files must end with either .pdb or .PDB’ 

2. `--output_folder` str (-o) Required. Path to folder where we will output a .smi file of converted 

.pdb files. 

3. `--number_of_processors` int (-p). Number of processors to use for parallel calculations. This 

script is not MPI enable but is able to multithread using SMP architecture. Set to -1 for all 

available CPUs. 

Example run: 

$ python /autogrow4/accessory_scripts/convert_directory_ligands_pdb_to_smi.py \ 

    --source_folder /PATH_TO/OF/PDBS/ \ 

    --output_folder /PATH_TO/TO/OUTPUT/ \ 

    --number_of_processors -1 

/autogrow4/accessory_scripts/fragmenter_of_smi_mol.py 

This script will fragment compounds from a .smi file. It is useful for lead optimization. 

This script was used for the PARPi lead-optimization runs in the AutoGrow4 paper. 
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This can fragment compounds in two manners: 

1. BRICS decomposition: This fragments along synthesizable bonds. 

2. Fragment rotatable bonds: This breaks compounds along rotatable bonds. There is an option 

to skip carbon-carbon single bonds. 

For each molecule, all permutations of fragments are calculated. For example, fragment 

rotatable bonds C-O-C1CCCC1 could produce any of the following fragments: 

• C-O-C1CCCC1, not breaking any bonds. 

• C and O-C1CCCC1, breaking the first bond. 

• C-O and C1CCCC1, breaking the second bond. 

• C and O and C1CCCC1, breaking the first bond and second bond. 

A limit on maximum number of fragments per compound and a minimum number of atoms 

per fragment can be set. 

This script takes seven input arguments: 

1. `--smi_file` str Required. Path to tab-delineated .smi file to fragment. 

2. `--output_smi_file` str (-o). Path to output tab-delineated .smi file of fragments. If not 

provided, it will play a file in the same directory as smi_file titled smi_file + 

_Fragmented.smi. 

3. `--frags_per_seed_lig` int. Number of fragments to create per input SMILES. Default is -1, 

which mean all possible fragments. 

4. `--run_brics` bool. Whether to fragment ligands using BRICS fragmentation. This fragments 

along synthesizable bonds. Default is True. 

5. `--run_frag` bool. Whether to fragment ligands over all rotatable bonds. Default is True. 
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6. `--c_c_bonds_off` bool. Whether to exclude fragmenting carbon-carbon single bonds. 

Default is True. If True, it will ignore fragments on C-C bonds; if False, it will fragment. 

7. `--number_of_processors` int (-p). Number of processors to use for parallel calculations. This 

script is not MPI enabled but is able to multithread using SMP architecture. Set to -1 for all 

available CPUs. 

Example run: 

$ python /autogrow4/accessory_scripts/fragmenter_of_smi_mol.py \ 

    --smi_file /PATH_TO/OF/SMILES.smi 

Appendix D.12.2 Preparing Custom Reaction Libraries Pre-Run 

/autogrow4/accessory_scripts/test_complementary_mol_library.py 

This script will test a complementary molecule library to ensure all compounds react in all 

reactions they may be used in. 

We recommend running this test if creating custom complementary libraries or reaction 

libraries. This script takes five input arguments: 

1. `--rxn_library_file` str: Required. This path to a custom .json file of SMARTS reactions to 

use for mutation. 

2. `--function_group_library` str: Required. This path for a dictionary of functional groups to be 

used for mutation. 
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3. `--complementary_mol_directory` str: Required. This path to the directory containing all the 

molecules being used to react with. The directory should contain .smi files contain SMILES 

of molecules containing the functional group represented by that file. Each file should be 

named with the same title as the functional groups described in rxn_library_file and 

function_group_library + .smi. All functional groups specified in function_group_library 

must have their own .smi file. We recommend filtering these dictionaries prior to AutoGrow4 

for the drug-likeness and size filters you will run AutoGrow4 with. 

4. `--output_folder` str: Required. This path to where filtered .smi files and log files will be 

placed. Will save a file in this directory for mols which failed sanitization, mols which failed 

to react in specific reactions, and .smi files that contain all mols that reacted properly. 

5. `--number_of_processors` int (-p). Number of processors to use for parallel calculations. This 

script is not MPI-enabled but is able to multithread using SMP architecture. Set to -1 for all 

available CPUs. 

Example submit: 

$ python /autogrow4/accessory_scripts/test_complementary_mol_library.py \ 

    --rxn_library_file 

/autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/click_chem_rxns

/ClickChem_rxn_library.json \ 

    --function_group_library 

/autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/click_chem_rxns

/ClickChem_functional_groups.json \ 
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    --complementary_mol_directory 

/autogrow4/autogrow/operators/mutation/smiles_click_chem/reaction_libraries/click_chem_rxns

/complementary_mol_dir \ 

    --output_folder /autogrow4/accessory_scripts/output/ 

Appendix D.12.3 File Handling Post-Run 

/autogrow4/accessory_scripts/convert_single_ligand_pdbqt_to_pdb.py: 

This script will convert a .pdbqt file into a .pdb file. This is done by removing a column of 

the PDB file. This script takes two input arguments: 

1. `--pdbqt_file` str (-f) Required. Path to .pdbqt file to convert to a .pdb file. This must be a 

single ligand and must end with .pdbqt. 

2. `--output_folder` str (-o) Required. Path to file where we will output .pdb file. If not provided, 

the output .pdb will be the same as the input pdbqt_file but ending with .pdb instead of .pdbqt. 

Example run: 

$ python /autogrow4/accessory_scripts/convert_single_ligand_pdbqt_to_pdb.py \ 

    --pdbqt_file /PATH_TO/OF/PDBQT_file.pdbqt \ 

    --output_folder /PATH_TO/TO/OUTPUT/FOLDER/ 

/autogrow4/accessory_scripts/convert_vina_docked_pdbqt_to_pdbs.py: 

This script will convert a docked .pdbqt.vina file into separate .pdb file. This is done by 

splitting up a single .pdbqt.vina into separate .pdbqt files for each docked pose. Then, it removes 

a column of the .pdbqt and saves it as a .pdb file. 
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• If parameter `--max_num_of_poses` is not set, it will convert all poses to .pdb. 

• If `--max_num_of_poses` == 1, it will only convert the top docked pose to .pdb. 

• If `--max_num_of_poses` == 2, it will only convert the top two docked poses to .pdb. 

• If `--max_num_of_poses` == 10 but there only eight poses, it will convert the eight poses and 

stop. 

• If `--max_docking_score` is not set, it will convert all poses to .pdb. 

• If `--max_docking_score` == -10.0, it will only convert poses with docking scores less than 

or equal to -10.0. 

• If both `--max_docking_score` and `--max_num_of_poses` are set, they work as AND type 

operators. 

• If `--max_docking_score` == -11.4 and `--max_num_of_poses` == 5, it will take the top five 

poses as long as they also have docking scores <=-11.4 

Remember, docking scores are better when more negative. 

This script takes six input arguments: 

1. `--vina_docked_pdbqt_file` str (-f): Required. Path to .pdbqt.vina file to split into one .pdb 

file per pose that matches all criteria. If this is a directory it will convert all of the files with 

the extension .pdbqt.vina. 

2. `--output_folder` str (-o). Path to folder where the .pdb files will be placed. Files will be the 

basename of the docked file with pose{pose_number}.pdb replacing the extension 

.pdbqt.vina. 

3. `--max_num_of_poses` int. Each docked file will have one or more poses of the ligand. This 

setting controls how many are converted. Default is -1 which means all poses possible. `--
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max_num_of_poses’=1 means only the best-scored pose will be converted. If additional 

criteria like `--max_docking_score` is applied, a pose must meet both criteria to be converted. 

(i.e., if `--max_num_of_poses`= 5 and `--max_docking_score`=-13.0, for a pose to be 

converted it must be between the first and fifth pose in the file and must have docked with a 

score less than or equal to -13.0.) 

4. `--max_docking_score` float. The most positive docking score to be converted. (More 

negative scores are predicted to bind better). If additional criteria such as `--

max_num_of_poses` is applied, a pose must meet both criteria to be converted. (i.e., if `--

max_num_of_poses`= 5 and ̀ --max_docking_score`=-13.0, for a pose to be converted it must 

be between the first and fifth pose in the file and must have docked with a score less than or 

equal to -13.0.) 

5. `--min_docking_score` float. The most negative docking score to be converted. (More 

negative scores are predicted to bind better). If additional criteria such as `--

max_num_of_poses` is applied, a pose must meet both criteria to be converted. (i.e., if `--

min_docking_score`= -15.0 and `--max_docking_score`=-13.0, for a pose to be converted it 

must: -13.0. <= docking score <= -15.0) 

6. `--number_of_processors` int (-p). Number of processors to use for parallel calculations. This 

script is not MPI-enabled but is able to multithread using SMP architecture. Set to -1 for all 

available CPUs. 

Example submit: 

$ python /autogrow4/accessory_scripts/convert_vina_docked_pdbqt_to_pdbs.py \ 
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    --vina_docked_pdbqt_file 

/PATH_TO/Run_1/Run_0/generation_30/PDBs/Gen_30_Cross_313228__1.pdbqt.vina \ 

    --output_folder /PATH_TO/outfolder/ \ 

    --max_num_of_poses 1 --number_of_processors -1 

/autogrow4/accessory_scripts/convert_single_ligand_pdbqt_to_pdb.py: 

This script is used to decompress or recompress AutoGrow4 data. 

If you use the `--reduce_files_sizes` option during an AutoGrow4 run, AutoGrow4 will 

convert, concatenate, and compress all files in the PDB directory of each generation. This is useful 

when doing larger runs because data transfer will be faster, and data storage is reduced when files 

are merged and compressed. 

The concatenation script that is run in AutoGrow4 can be found at 

/autogrow4/autogrow/docking/concatenate_files.py. 

This script will either: 

1. Return the files back to their original uncompressed and deconcatenated formatting. 

2. Concatenate and then compress the files into a single file. 

The formatting of the concatenation is: 

"\n##############################File_name: 

{}\n".format(os.path.basename(file_name_1)) 
... Content of the 1st file... 
"\n##############################$$END_FILE$$ 

{}".format(os.path.basename(file_name_1)) 
"\n##############################File_name: 

{}\n".format(os.path.basename(file_name_2)) 
... Content of the 2nd file... 
"\n##############################$$END_FILE$$ 

{}".format(os.path.basename(file_name_2)) 
 

This concatenated file is then tar.gz compressed. 
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This script takes two input arguments: 

1. `--compress_or_decompress` str (-s) Required. choices=[“compress”, “decompress”]. 

Choose whether to compress or decompress a directory 

2. `--input_folder_or_file` str (-i) Required. Path to directory/file to compress or decompress. 

Example decompression: 

$ python /autogrow4/accessory_scripts/file_concatenation_and_compression.py \ 

    --compress_or_decompress decompress \ 

    --input_folder_or_file 

PATH_TO_RUN/Run_0/generation_1/PDBs/compressed_PDBS.txt.gz 

Example compression: 

$ python /autogrow4/accessory_scripts/file_concatenation_and_compression.py \ 

    --compress_or_decompress compress \ 

    --input_folder_or_file PATH_TO_RUN/Run_0/generation_1/PDBs/ 

Appendix D.12.4 Graph Generation for Post-Run Analysis 

/autogrow4/accessory_scripts/plot_autogrow_run.py: 

This script will create a line plot of the average score for each AutoGrow4 generation. This 

is the same type of figure as the `--generate_plot` option that AutoGrow4 already provides, but it 

also allows plotting of reference lines. 

This script takes four input arguments: 
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1. `--infolder` str (-i): Required. Path to input folder containing the AutoGrow4 run. This should 

be the top folder which contains the vars.json file. 

2. `--outfile` str (-o). Path to folder to output files. It will be created if does not exist. If not 

provided, it will be placed in the infolder/data_line_plot.svg. 

3. `--outfile_format` str. choices = [ svg png jpg pdf ]. The type of file for the figure to be 

exported as default is .svg file. 

4. `--plot_reference_lines` list. This will be a list of lists, with each sublist being a different 

dotted-line reference to plot. For each sublist, the order of information should be: [name, 

value, matplotlib_color] 

• For example, [[‘Olaparib score’,-12.8,’y’],[‘Niraparib score’,-10.7,’k’]] will add 

horizontal dotted lines at -12.8 (yellow) and -10.7 (black) with Olaparib and Niraparib 

added to the legend. Spaces must be within quotes and not be between variables. 

matplotlib colors can be found using mcolors.get_named_colors_mapping().keys() 

Example submit: 

$ python /autogrow4/accessory_scripts/plot_autogrow_run.py \ 

  -i /PATH_TO/Run_1/Run_0/ \ 

--plot_reference_lines [[‘Olaparib Score’,-12.8,’y’],[‘Niraparib’,-

10.7,’k’],[‘NAD/NADH’,-10.3,’purple’],[‘ADP-ribose’,-9.3,’maroon’]] 

/autogrow4/accessory_scripts/make_lineage_figures.py: 

This script creates figures that list all ligands that parented a given ligand. 

All compounds for the entire AutoGrow4 run will be compiled into a dictionary that is used 

to trace lineages. We pickle these dictionaries so these dictionaries do not need to be recreated 
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every time the script is run. For this reason, the first time running this script will take longer than 

future runs. A pre-run option will compile these data sets without generating figures. 

1. `--output_dir` str (-o): Required. Path to output folder. Will be created if does not exist. 

2. `--input_dir` str (-i): Required. Path to input folder containing the AutoGrow4 run. This 

should be the top folder which contains the vars.json file. 

3. `--mol_name` str: Required unless prerun. This is the name of the molecule whose lineage 

will be traced back. If not provided or None, the script will simply compile the necessary 

dictionaries/pickle files and then terminate. These pickle files are stored in the input folder 

containing the vars.json file from the AutoGrow4 run. Example mol_name: 

Gen_5_Cross_203131 or Gen_4_Mutant_7_802531. Can also be provided as full-name, i.e.: 

(Gen_2_Mutant_7_97143)Gen_4_Mutant_7_802531 

4. `--complementary_mol_directory` str. If using a custom complementary molecule library for 

mutations, this path is required. If not, the script will try to autodetect the location of the 

predefined complementary_mol_directory. Many molecules generated by mutation will 

required the complementary molecule that helped spawn them. 

5. `--source_compound_file` str: Required. This is the source .smi file used to seed generation 

zero of the AutoGrow4 run. This is an essential file. 

6. `--pre_run` bool. If True, this will compile the necessary dictionaries/pickle files and then 

terminate. These pickle files are stored in the input folder containing the vars.json file from 

the AutoGrow4 run. 

Example submit: 

$ python /autogrow4/accessory_scripts/make_lineage_figures.py \ 
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    -o /PATH_TO/output_folder/ \ 

    -i /PATH_TO/INPUT_RUN/Run_3/ \ 

    --source_compound_file /autogrow4/source_compounds/PARPI_BRICS_frags.smi \ 

    --mol_name Gen_17_Cross_727024 
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